KfK 3087 B Januar 1981

Binäre und ternäre Carbide und Nitride der Übergangsmetalle und ihre Phasenbeziehungen

H. Holleck Institut für Material- und Festkörperforschung

Kernforschungszentrum Karlsruhe

KERNFORSCHUNGSZENTRUM KARLSRUHE Institut für Material- und Festkörperforschung

K£K 3087 B

BINÄRE UND TERNÄRE CARBIDE UND NITRIDE DER ÜBERGANGSMETALLE UND IHRE PHASEN-BEZIEHUNGEN^{*})

H. Holleck

的一些人。 小茶 韩 这种情况的。

Kernforschungszentrum Karlsruhe GmbH., Karlsruhe

^{*)} Als Habilitationsschrift bei der Fakultät für Maschinenbau der Universität Karlsruhe vorgelegt.

Als Manuskript vervielfältigt Für diesen Bericht behalten wir uns alle Rechte vor

> Kernforschungszentrum Karlsruhe GmbH ISSN 0303-4003

Binäre und ternäre Carbide und Nitride der Übergangsmetalle und ihre Phasenbeziehungen

Das Auftreten und die Strukturen der binären und ternären Carbide und Nitride der Übergangsmetalle werden beschrieben. Phasendiagramme werden für die meisten binären und ternären Systeme zusammengestellt. Viele Diagramme von ternären Systemen werden dabei in dieser Abhandlung erstmals veröffentlicht.

Binary and ternary carbides und nitrides of the transition metals and their phase relations

The occurrence and the structure of the binary and ternary transition metal carbides and nitrides are described. Phase diagrams are assessed for most of the binary and ternary systems. Many ternary phase diagrams are published in this report for the first time.

7.1.1981

INHALTSVERZEICHNIS

		Seite
-	Zusammenfassende Vorbemerkungen	· 1
-	Preliminary conclusions	١٧
1.	Einführung	1
- ,	Literatur zu Kap. 1	12
2.	Aufbau binärer Systeme	16
2.1	Binäre Carbidsysteme	17
2.1.1	Carbide der Seitenen Erden	17
2.1.2	Carbide der Actinoiden	24
2.1.3	Carbide der Übergangsmetalle der 4., 5. und 6. Gruppe	26
2.1.4	Carbide der Übergangsmetalle der 7. und 8. Gruppe	35
-	Literatur zu Kap. 2.1	37
2.2	Binäre Nitridsysteme	43
2.2.1	Nitride der Seltenen Erden	43
2.2.2	Nitride der Actinoiden	44
2.2.3	Nitride der Übergangsmetalle der 4., 5. und 6.Gruppe	50
2.2.4	Nitride der Übergangsmetalle der 7. und 8. Gruppe	57
-	Literatur zu Kap. 2.2	59
2.3	Binäre Metallsysteme	66
2.3.1	Eutektische Systeme	67
2.3.2	Systeme mit ausgedehnter Löslichkeit im festen Zustand	67
2.3.3	Systeme mit stabilen intermetallischen Phasen	71
-	Literatur zu Kap. 2.3	78
3.	Aufbau ternärer Systeme	81
3.1	Ternäre Carbidsysteme	81
3.1.1	Ternäre Carbidsysteme der Übergangsmetalle der 3. Gruppe	82

Seite

3.1.1.1	Ternäre Carbidsysteme der Seltenen Erden	82
3.1.1.2	Ternäre Carbidsysteme der Actinoiden	86
3.1.1.3	Ternäre Carbidsysteme der Actinoiden mit den Seltenen Erden	91
-	Literatur zu Kap. 3.1.1	99
3.1.2	Ternäre Carbidsysteme der Seltenen Erden und [,] Actinoiden mit den Übergangsmetallen anderer Gruppen	103
3.1.2.1	Ternäre Carbidsysteme der Seltenen Erden mit den Übergangsmetallen anderer Gruppen	104
3.1.2.2	Ternäre Carbidsysteme der Actinoiden mit den Übergangsmetallen anderer Gruppen	108
3.1.2.3	Quaternäre Carbidsysteme der Actinoiden mit Übergangsmetallen anderer Gruppen	125
-	Literatur zu Kap. 3.1.2	128
3.1.3	Ternäre Carbidsysteme der Übergangsmetalle der 4., 5. und 6. Gruppe	134
3.1.3.1	Ternäre Carbidsysteme der Übergangsmetalle der 4. Gruppe	139
3.1.3.2	Ternäre Carbidsysteme der Übergangsmetalle der 4. und 5. Gruppe	139
3.1.3.3	Ternäre Carbidsysteme der Übergangsmetalle der 5. Gruppe	144
3.1.3.4	Ternäre Carbidsysteme der Übergangsmetalle der 5. und 6. Gruppe	144
3.1.3.5	Ternäre Carbidsysteme der Übergangsmetalle der 6. Gruppe	150
3.1.3.6	Ternäre Carbidsysteme der Übergangsmetalle der 4. und 6.Gruppe	156
3.1.3.7	Quasiternäre Mischcarbide der Übergangsmetalle der 4., 5. und 6. Gruppe	160
-	Literatur zu Kap. 3.1.3	164
3.1.4	Ternäre Carbidsysteme der Übergangsmetalle der 4., 5. und 6.Gruppe mit Mn und den Metallen der Eisengruppe: Fe, Co, Ni	170
3.1.4.1	Komplexcarbide der Übergangsmetalle der 4., 5. und 6.Gruppe mit Mn, Fe, Co und Ni	170
3.1.4.2	Carbidsysteme mit Mn	172

7147		Seite
2.1.4.2	Carbidsysteme mit Fe, Co und Ni	177
-	Literatur zu Kap. 3.1.4	191
3.1.5	Ternäre Carbidsysteme der Übergangsmetalle der 4., 5. und 6. Gruppe mit Rhenium und Platinmetallen	197
3.1.5.1	Ternäre Carbidsysteme mit Rhenium	198
3.1.5.2	Ternäre Carbidsysteme mit Ruthenium	204
3.1.5.3	Ternäre Carbidsysteme mit Rhodium	207
3.1.5.4	Ternäre Carbidsysteme mit Palladium	209
3.1.5.5	Ternäre Carbidsysteme mit Osmium	212
3.1.5.6	Ternäre Carbidsysteme mit Iridium	212
3.1.5.7	Ternäre Carbidsysteme mit Platin	215
3.1.5.8	Zur Existenz ternärer Carbide mit Platinmetallen	219
-	Literatur zu Kap. 3.1.5	226
3.1.6	Ternäre Carbidsysteme der Übergangsmetalle der 7. und 8. Gruppe	229
-	Literatur zu Kap. 3.1.6	230
3.2	Ternäre Nitridsysteme	231
3.2.1	Ternäre Nitridsysteme der Übergangsmetalle der 3. Gruppe	232
3.2.1.1	Ternäre Nitridsysteme der Seltenen Erden	232
3.2.1.2	Ternäre Nitridsysteme der Actinoiden	236
3.2.1.3	Ternäre Nitridsysteme der Actinoiden mit den Seltenen Erden	238
3.2.2	Ternäre Nitridsysteme der Seltenen Erden und Actinoiden mit Übergangsmetallen anderer Gruppen	245
3.2.2.1	Ternäre Nitridsysteme der Seltenen Erden mit Übergangsmetallen anderer Gruppen	245
3.2.2.2	Ternäre Nitridsysteme der Actinoiden mit Über- gangsmetallen anderer Gruppen	246
3.2.2.3	Quaternäre Nitride des Urans	254
3.2.2.4	Zum Mischungsverhalten von UN mit Nitriden anderer Übergangsmetalle und zur rechnerischen Abschätzung der Gleichgewichte	254
-	Literatur zu Kap. 3.2.1 und 3.2.2	257
3.2.3	Ternäre Nitridsysteme der Übergangsmetalle der 4., 5. und 6. Gruppe	260
3.2.3.1	Nitridsysteme mit Übergangsmetallen der 4.Gruppe	260
3.2.3.2	Nitridsysteme mit Übergangsmetallen der 5. Gruppe	265
3.2.3.3	Nitridsysteme mit Übergangsmetallen der 6.Gruppe	267
-	Literatur zu Kap. 3.2.3	268

		Seite
3.2.4	Ternäre Nitridsysteme der Übergangsmetalle der 4., 5. und 6. Gruppe mit Mn und den Metallen der Eisengruppe: Fe, Co Ni	270
3.2.5	Ternäre Nitridsysteme der Übergangsmetalle der 4., 5. und 6. Gruppe mit Rhenium und Platinmetallen	279
3.2.6	Ternäre Nitride der Übergangsmetalle der 7. und 8. Gruppe	280
-	Literatur zu Kap. 3.2.4 - 3.2.6	281
3.3	Carbonitridsysteme	283
3.3.1	Carbonitride der Seltenen Erden	283
3.3.2	Carbonitride der Actinoiden	285
3.3.3	Carbonitride der IV A Übergangsmetalle Ti, Zr, Hf	287
3.3.4	Carbonitride der V A Übergangsmetalle V, Nb, Ta	290
3.3.5	Carbonitride der VI A Übergangsmetalle Cr, Mo, W	293
3.3.6	Carbonitride der Übergangsmetalle der 7. und 8. Gruppe	294
3.3.7	Quaternäre Carbonitridsysteme	294
-	Literatur zu Kap. 3.3	296
3.4	Borocarbid- und Boronitridsysteme	300
3.4.1	Borocarbide	300
3.4.1.1	Borocarbide der Übergangsmetalle der 3.Gruppe	300
3.4.1.2	Borocarbide der Übergangsmetalle der 4., 5. und 6.Gruppe	303
3.4.1.3	Borocarbide der Übergangsmetalle der 7. und 8.Gruppe	309
3.4.2	Boronitride	309
	Literatur zu Kap. 3.4	313
4.	Zur Konstitution von Systemen mit Actinoiden	317
4.1	Strukturchemische Aspekte ternärer Carbide und Nitride der Actinoiden	318
-	Literatur zu Kap. 4.1	322
4.2	Zur Frage der Wertigkelt und Atomradien der Actinoiden und anderer Übergangsmetalle in Car- biden, Nitriden und intermetallischen Phasen	323
-	Literatur zu Kap. 4.2	338

l

ZUSAMMENFASSENDE VORBEMERKUNGEN

In der vorliegenden Abhandlung wird das Auftreten binärer und ternärer Carbide und Nitride der Übergangsmetalle beschrieben und deren Reaktionsverhalten bei erhöhter Temperatur aufgezeigt. Auf der Grundlage eigener Arbeiten und der in der Fachliteratur zugänglichen Ergebnisse werden für alle Systeme, wo genügend Information vorliegt, Phasendiagramme zusammengestellt. Diese graphischen Darstellungen enthalten in komprimierter und zusammenfassender Form die wesentlichen Daten über den Existenzbereich der Phasen im Hinblick auf Konzentrations- und Temperaturparameter und über deren heterogene Gleichgewichte mit den Komponenten und anderen Verbindungen der Systeme.

I

Von den in Phasendiagrammen wiedergegebenen ∿350 ternären Carbidund Nitridsystemen beruhen etwa 170 im wesentlichen auf eigenen, meist schon veröffentlichten Untersuchungen, etwa 60 sind zum Teil auf eigene Arbeiten zurückzuführen, und etwa 120 ternäre Schnitte sind im wesentlichen auf Literaturdaten begründet. Es werden etwa 180 ternäre Komplexcarbide und -Nitride diskutiert. Ungefähr die Hälfte dieser Verbindungen wurden in eigenen Untersuchungen erstmals aufgefunden und charakterisiert. Die im wesentlichen auf Literaturdaten beruhenden Phasendiagramme wurden nicht direkt übernommen, sondern mit der weiteren zugänglichen Literatur überprüft und teilweise adjustiert, um ein konsistentes Bild zu erhalten. Zusammenhänge hinsichtlich Auftreten, Struktur und Stabilität von Phasen sind in Inhalt und Darstellung auf eigenen Arbeiten und Einschätzungen begründet (Ausnahmen sind durch Angabe entsprechender Literaturstellen gekennzeichnet).

Betrachtet man die einzelnen Kapitel, so kann man einige allgemeine, charakterisierende Aussagen machen. Die binären Carbidsysteme sind nur für die Actinoiden und die hochschmelzenden Übergangsmetalle der 4., 5. und 6.Gruppe gut bekannt. Beim Übergang von Metallen der 3.Gruppe zur 4., 5. und 6.Gruppe verlagert sich das Stabilitätsmaximum in den Systemen von den Dicarbiden MC₂ über die Monocarbide der MC zu den Subcarbiden M_2 C. Für die Übergangsmetalle mit höherer Gruppennummer werden Carbide zunehmend instabil. Binäre Nitridsysteme sind ähnlich aufgebaut wie die der entsprechenden Carbide. Die Phasengleichgewichte sind jedoch weit weniger gesichert als bei den Carbiden. Sowohl in Carbid- wie auch in Nitridsystemen sind Sauerstoffverunreinigungen vielfach Ursache für widersprüchliche experimentelle Befunde. Im Hinblick auf ein besseres Verständnis der ternären Systeme werden die metallischen Randsysteme der Übergangsmetalle in drei Gruppen (Eutektische Systeme, Systeme mit ausgeprägter Mischkristallbildung, Systeme mit stabilen intermetallischen Phasen) kurz behandelt und charakterisiert.

Die ternären Systeme der Seltenen Erden und der Actinoiden untereinander sowie miteinander sind gekennzeichnet durch ausgeprägte Mischphasenbildung der binären Carbide. Die Carbidsysteme dieser Übergangsmetalle der 3. Gruppe mit den hochschmelzenden Übergangsmetallen der 4., 5. und 6.Gruppe sind nur für die Actinoidenelemente Uran und Thorium gut bokannt. Hier treten viele ternäre Komplexcarbide auf. Solche ternären Verbindungen werden auch in den meisten Carbidsystemen der Seltenen Erden und der Actinoiden mit den Metallen der Eisengruppe und den Platinmetallen beobachtet. Die Phasengleichgewichte in diesen letzteren Systemen werden vielfach durch sehr stabile intermetallische Verbindungen bestimmt. Die technologisch wichtigen ternären Carbidsysteme der hochschmelzenden Übergangsmetalle der 4., 5. und 6.Gruppe sind ausführlich untersucht worden. Sie werden in ihrem Aufbau durch meist vollständige Mischkristallreihen der binären Monocarbide, die vielfach extreme Eigenschaften zeigen, geprägt. Quasibinäre eutektische Systeme zwischen Carbiden dieser hochschmelzenden Übergangsmetalle und den Metallen der Eisengruppe, sowie ternäre, metallreiche Komplexcarbide sind charakteristische Bestandteile der Systeme der Übergangsmetalle der 4., 5. und 6. Gruppe mit Mn, Fe, Co und Ni. In den Systemen der hochschmelzenden Übergangsmetalle mit Rhenium und Platinmetallen treten ternäre kubisch flächenzentrierte Hochtemperaturcarbide auf. Die Zusammensetzung dieser Carbide wird von der Valenzelektronenkonzentration in der Weise bestimmt, dass bei zunehmender Valenzelektronenkonzentration der beteiligten Metalle der Kohlenstoffgehalt abnimmt. Es werden homogene Übergänge zwischen Carbiden und Metallphasen beobachtet, wodurch das Einlagerungsprinzip als Modellvorstellung für den Aufbau von Carbiden gestützt wird. In den ternären Carbidsystemen der Metalle Mangan, Eisen, Kobalt und Nickel untereinander ist eine Unterscheidung zwischen der Koexistenz metastabiler Phasen und stabilen Gleichgewichten schwierig.

||

Diese Systemgruppe, in der keine eigenen experimentellen Arbeiten durchgeführt wurden, wird nur kurz behandelt.

Die ternären Nitridsysteme der Übergangsmetalle haben bisher weniger Bedeutung erlangt als die entsprechenden Carbide und sind dementsprechend weniger untersucht worden und weniger bekannt. Die binären Nitride der Seltenen Erden und Actinoiden sind untereinander und miteinander meist voll mischbar. Die Gleichgewichte dieser ternären Nitridmischphasen mit den benachbarten Verbindungen wurden in vielen Fällen rechnerisch ermittelt. In den Systemen der Actinoiden mit den Übergangsmetallen der 4., 5. und 6. Gruppe und Stickstoff treten neben Mischphasen vor allem ternäre Komplexnitride auf. Zusammenhänge zwischen diesem Auftreten, der Zusammensetzung und der Struktur der ternären Carbide und Nitride verdeutlichen einerseits die enge Verwandtschaft zwischen Carbiden und Nitriden, andererseits aber auch den charakteristischen und unterschiedlichen Einfluss des Kohlenstoffs und Stickstoffs als Komponente in ternären Verbindungen. Die ternären Nitridsysteme der Übergangsmetalle der 4., 5. und 6.Gruppe werden durch ausgedehnte, meist vollständige Mischkristallbildung der binären Nitride bestimmt. Die Existenz dieser ternären Phasen ist allerdings teilweise nur bei hohen Stickstoffdrucken gegeben. In den Systemen der vorgenannten Nitride mit Platinmetallen treten ternäre Komplexnitride auf.

Die Carbonitridsysteme der Übergangsmetalle werden, bedingt durch den ähnlichen strukturellen Aufbau von Carbiden und Nitriden, durch ausgedehnte Bereiche ternärer Mischphasen bestimmt. Im Gegensatz dazu hat der unterschiedliche strukturelle Aufbau von Carbiden und Nitriden einerseits und Boriden andererseits nur sehr geringe gegenseitige Löslichkeiten in den ternären Systemen der Übergangsmetalle mit Kohlenstoff bzw. Stickstoff und Bor zur Folge. Hier treten vielfach komplexe ternäre Verbindungen auf, die allerdings nur im Falle der Borocarbide eingehender untersucht wurden.

Am Ende der vorliegenden Abhandlung wird die Frage der Einordnung der Actinoiden innerhalb der Übergangsmetalle im Hinblick auf deren Reaktionsverhalten in Carbid-, Nitrid- und Metall-Systemen diskutiert. Die Actinoiden lassen sich bei Berücksichtigung der unterschiedlichen Wertigkeit meist zwanglos dem Verhalten der übrigen Übergangsmetalle zuordnen.

PRELIMINARY CONCLUSIONS

This report is a description of the occurrence of binary and ternary carbides and nitrides of the transition metals and of their reaction behavior at elevated temperatures. For all systems on which sufficient information is available phase diagrams are set up on the basis of work conducted by the author and results available in the technical literature. These graphic representations are condensed summaries of the main data about the ranges in which the respective phases exist, indicating concentration and temperature parameters and of the heterogeneous equilibria of those phases with the components and other compounds in the systems.

Roughly 170 out of the approx. 350 ternary carbide and nitride systems covered in phase diagrams are based chiefly on studies conducted by the author, most of which have been published previously, while some 60 are partly based on studies conducted by the author, and some 120 ternary sections are mainly based on data found in the literature. Approximately 180 ternary complex carbides and nitrides are discussed. About half of these compounds were first discovered and characterized by the author. Those phase diagrams which are mainly based on data from the literature were not reprinted directly, but verified on the basis of other accessible literature and partly adjusted, in order to offer a consistent picture. Conditions with respect to occurrence, structure and stability of phases are based on studies and estimates conducted by the author, both in terms of contents and representation (exceptions are indicated by the respective references).

A brief overview of the different chapters allows some general descriptive remarks to be made. Binary carbide systems are well known only for actinides and high melting transition metals of the 4th, 5th, and 6th groups. In the transition from metals of the 3rd group to the 4th, 5th and 6th groups, the stability maximum in the system shifts from the MC₂-dicarbides through the MC-monocarbides to the M_2 C-subcarbides. For the transition metals with higher group numbers, carbides are becoming more and more unstable. Binary nitride systems show simi-

lar structures as the corresponding carbides. However, the phase equilibria are far less certain than for the carbides. Both in carbide and in nitride systems oxygen impurities are frequent causes of conflicting experimental findings. In order to improve our understanding of ternary systems, the metallic boundary systems of the transition metals are briefly treated and characterized in three groups (eutectic systems, systems with pronounced solid solution formation, systems with stable intermetallic phases).

The ternary systems of rare earths and actinoids are characterized by pronounced formation of mixed phases of the binary carbides, both within each category and among the categories. The carbide system of the transition metals of the 3rd group with the high melting transition metals of the 4th, 5th and 6th groups are well known only for the actinide elements uranium and thorium. There are many ternary complex carbides in these cases. Such ternary compounds are also observed in most carbide systems of the rare earth and the actinoids with the metals of the iron group and the platinum metals. The phase equilibria in the latter systems are frequently determined by very stable intermetallic compounds.

Ternary carbide systems of technological importance, i.e., those of the high melting transition metals of the 4th, 5th and 6th group, have been studied in great detail. Their structure is characterized by mostly complete solid solution series of the binary monocarbides, many of them exhibiting extreme properties.

Quasi-binary eutectic systems among carbides of these high melting transition metals and the metals of the iron group and ternary complex carbides rich in metal are characteristic constituents of the systems of the transition metals of the 4th, 5th and 6th group with Mn, Fe, Co and Ni.

In the systems of high melting transition metals with rhenium and platinum metals there are ternary face centered cubic high temperature carbides. The composition of these carbides is determined by the valence electron concentration in such a way that increasing concentra-

tion of valence electrons of the participating metals causes the carbon content to decrease. Homogeneous transitions between carbides and metal phases are observed, which supports the inclusion principle as a model concept describing the structure of carbides (interstitial compounds). In the ternary carbide systems formed among the manganese, iron, cobalt and nickel metals a distinction between the coexistence of metastable phases and stable equilibria is difficult to make. This group of systems, in which no experimental studies were conducted by the author, is treated only briefly.

The ternary nitride systems of the transition metals have so far achieved less significance than the corresponding carbides and, accordingly, have been studied less frequently and are less well known. The binary nitrides of the rare earth and actinoids are mostly fully miscible among each other and with each other. The equilibria of these ternary nitride mixed phases with the adjacent elements and compounds were determined by computation in many cases. In the systems of actinoids with the transition metals of the 4th, 5th and 6th group and nitrogen ternary complex nitrides occur in addition to mixed phases. Connections between this occurrence, the composition and the structure of ternary carbides and nitrides, on the one hand, reflect the close relationship between carbides and nitrides and, on the other hand, also indicate the characteristic and different influences of carbon and nitrogen as components in ternary compounds.

The ternary nitride systems of the transition metals of the 4th, 5th and 6th groups are determined by extensive, mostly complete solid solution formation of the binary nitrides. However, the existence of these ternary phases can be proved partly only at high nitrogen pressures. In the systems of the above nitrides and platinum metals ternary complex nitrides are found.

The carbonitride systems of the transition metals are determined by extensive areas of ternary mixed phases, because of the similar structures of carbides and nitrides. By contrast, the different structures of carbides and nitrides, on the one hand, and borides, on

the other hand, results in only very low mutual solubilities in the ternary systems of the transition metals with carbon and nitrogen, respectively, and boron. Frequently complex ternary compounds are encountered which, however, were studied in more detail only for borocarbides.

At the end of this study the question of classification of the actinoids within the transition metals category is discussed with respect to their reaction behavior in carbide, nitride and metal systems. Taking into account the different valencies it is mostly possible to easily classify actinoids under the behavior of the other transition metals.

1. EINFÜHRUNG

Die Carbide und Nitride der Übergangsmetalle - gemeinsam mit den Boriden und Siliciden als sogenannte Hartstoffe bezeichnet - weisen eine Reihe von Eigenschaften auf, die sie sowohl für den Technologen als auch für den Wissenschaftler zu einer besonders interessanten Verbindungsgruppe machen. Die am meisten genutzte Eigenschaft ist die hohe Härte. Diese kommt besonders zur Geltung bei Anwendungen wie Sinterhartmetallen, Gusshartmetallen, Verschleissteilen oder verschleissfesten Schichten. Schnellstählen u.a. Die extrem hohen Schmelzpunkte bis über 4200 K haben sie als Hochtemperaturwerkstoffe, wie z.B. Tiegelmaterialien oder Schutzschichten, interessant gemacht. Ausgezeichnete thermische und elektrische Leitfähigkeit, hohe Sprungpunkte der Supraleitfähigkeit-(Beispiele für binäre Carbide und Nitride sind in Abb.1.1a und b gegeben), gute chemische Beständigkeit und katalytische Eigenschaften sowie hohe Werte des Elastizitätsmoduls sind nur einige weitere Eigenschaften, die diese Verbindungen auszeichnen. Das Spektrum der Eigenschaften und gleichzeitig der Möglichkeiten sie zu beeinflussen, wird durch die weiten homogenen Bereiche der Carbide und Nitride, verbunden mit Defektstrukturen im Kohlenstoff-bzw. Stickstoffteilgitter, beträchtlich erhöht. Abb. 1.2 zeigt - stellvertretend auch für andere Eigenschaften die Änderung der Härte, des spezifischen elektrischen Widerstandes, der effektiven Austrittsarbeit und des Wärmeausdehnungskoeffizienten in Abhängigkeit von der Stöchiometrie der Monocarbide. (vgl. /1/). Neben den Möglichkeiten der Eigenschaftsänderung bzw. -optimierung durch Variation des Nichtmetall/Metall-Verhältnisses bietet sich auch der Austausch der Metallatome an, der sowohl bei Carbiden als auch bei Nitriden in weiten Bereichen möglich ist. In beiden Fällen ist eine Änderung der VEK (Valenzelektronenkonzentration) und damit des Bindungszustandes von teilweise beträchtlichen Eigenschaftsänderungen begleitet. Bei diesen mehrkomponentigen Hartstoffen beeinflussen darüber hinaus auch Ungleichgewichtszustände im weitesten Sinne, Spannungszustände im Gitter durch Mischkristallbildung sowie Gefügeeffekte die Eigenschaften. In den meisten Fällen der Praxis sind es gerade ternäre oder mehrkomponentige Hartstoffe, die eingesetzt oder

- 1 -

a)

Abb.1.1: Sprungpunkte der Supraleitfähigkeit von Carbiden (a) und Nitriden (b) der Übergangsmetalle (vgl. /47/)

entwickelt werden, so z.B. in Hartmetallen, als Supraleiter, als Kernbrennstoffe,oder aber die als Konstituenten auftreten, z.B. in Stählen oder Schnellstählen, bzw. als Reaktionsprodukte in Kernbrennstoffen oder bei Hochtemperaturanwendungen. Die Kenntnis der Phasenbeziehungen in den Carbid- und Nitridsystemen, vor allem bei mehreren Komponenten, ist die Grundlage für jedes Verständnis der Eigenschaften und für deren

<u>Abb. 1.2:</u> Mikrohärte, spezifischer elektrischer Widerstand, effektive Elektronenaustrittsarbeit und Wärmeausdehnungskoeffizient in Abhängigkeit von der Stöchiometrie binärer Übergangsmetallcarbide (vgl. /1/)

gezielte Veränderung. Beispiele aus der Praxis konventioneller Hartmetalle WC-Co (vgl. Kap. 3.1.5) verdeutlichen dies eindrucksvoll.

Auch in der Kerntechnik konnte erst das Verständnis des konstitutionellen Aufbaus der komplexen Systeme das Abbrandverhalten der Brennstäbe überschaubarer machen. Dies wird bei der Behandlung der Systeme, die Brennstoffe als Komponenten haben, näher angesprochen. Ein weiterer Gesichtspunkt, der uns in naher Zukunft zwingen wird, Überlegungen anzustellen, welche Materialien durch welche anderen Werkstoffe oder aber welche Komponenten in Werkstoffen durch andere ersetzt werden können, soll hier nicht vergessen werden. Materialien wurden in der Vergangenheit oftmals ohne Rücksicht auf die Rohstoffvorräte entwickelt und verbraucht. Inzwischen haben verschiedene Studien ergeben (vgl. z.B. /3 - 5/), dass für manche Elemente auch bei optimistischen Prognosen nur sehr begrenzte abbauwürdige Reserven vorhanden sind und dass bei

<u>Abb.1.3</u>: a) Abschätzungen von Rohstoffvorräten bestimmter Übergangsmetalle, Häufung der Vorkommen auf der Erde sowie

 b) Prognosen über die Jahre der Verfügbarkeit unter Berücksichtigung eines prognostizierten Verbrauchszuwachses (vgl. /5/)

anderen Metallen der überwiegende Teil der Vorräte in ganz wenigen Ländern konzentriert ist, was zu Abhängigkeiten führen kann, die besonders für hochindustrialisierte Länder zu einem Risiko werden. Abgesehen davon, sind stark steigende Preise bei knapper werdenden Materialien die logische Folge. Die Abschätzungen über Rohstoffvorräte, Häufung der Vorkommen auf der Erde und Prognosen über die Jahre der Verfügbarkeit (in Abb. 1.3) verdeutlichen die Problematik für die hochschmelzenden Übergangsmetalle und die Metalle der Eisengruppe. Besonders Carbidsysteme sind hier angesprochen. Untersuchungen über Ersatzmöglichkeiten für Wolfram, Tantal und Kobalt, die natürlich in erster Linie auf der Kenntnis der Konstitution in diesen und ähnlichen Systemen beruhen, sind im Gange. Ähnliche Untersuchungen - durchgeführt unter Berücksichtigung der Eigenschaften, der Vorräte, des Preises und der Verarbeitungsmöglichkeiten - werden für andere Metalle folgen. Besonders was die Verarbeitungsmöglichkeiten anbelangt, bieten sich durch Kenntnis der temperaturabhängigen Gleichgewichte in mehrkomponentigen Carbidund Nitridsystemen ausgezeichnete Möglichkeiten, Werkstoffe mit optimaler Gefügestruktur herzustellen. Als Beispiele von vielen seien genannt: Feinkorngefüge durch spinodalen Zerfall, hochwarmfeste Schneidwerkzeuge durch Zerfall von einphasigen Subcarbiden in Monocarbid-Metall-Verbundwerkstoffe, aushärtbare (W,Mo)C-Gusshartmetalle, verschleissfeste Schichten durch Reaktion, gerichtet erstarrte Eutektika oder aber martensitisch aushärtbare Hartmetalle. Die hier besprochenen Gesichtspunkte mögen genügen, die zentrale Bedeutung des Phasenaufbaus von Hartstoffsystemen für die Materialentwicklung und das Verständnis der Eigenschaften anzudeuten. Weitere technologische Gesichtspunkte werden bei der Behandlung der einzelnen Systeme angesprochen. Dort steh**en**allerdings die chemische Konstitution und die Thermodynamik der Phasenbeziehungen der einzelnen Systeme im Vordergrund.

Die Carbide und Nitride der Übergangsmetalle werden als sogenannte Einlagerungsverbindungen bezeichnet. Dieser Charakterisierung liegt das Konzept von Hägg /6/ zugrunde, das den kristallchemischen Aufbau der Verbindungen als Einlagerung von kleinen Nichtmetallatomen in Lückenpositionen der dicht gepackten Metallgitter beschreibt. Die dichtest gepackten Anordnungen der Metallatome führen zu oktaedrischen Lücken mit einem Radius von $r_0 = 0.414$ r und zu tetraedrischen Lücken mit r₊ = 0.225 r (r = Metallradius), so dass kleine Atome, wie Wasserstoff, Bor, Kohlenstoff und Stickstoff diese Positionen bei einer Vielzahl von Übergangsmetallen besetzen können. Das Einlagerungsprinzip hat das Verständnis des kristallchemischen Aufbaus der Existenzbereiche und der Eigenschaften der Hartstoffe stark gefördert. Ein eindrucksvolles Beispiel der Entwicklung der häufigsten Monocarbid- (NaCl-Typ) und Dicarbidstruktur (KCN-Typ) zeigt Abb.1.4. Bei höheren Temperaturen entwickeln sich ThC und ThC2 durch sukzessiven C-Einbau in Lückenpositionen des kubisch flächenzentrierten lpha-Th. Im ThC sind alle Oktaederlücken einfach, im ThC $_2$ doppelt besetzt. Die Einlagerung der Nichtmetallatome in ein metallisches Wirtgitter führte dazu, dass die von den eingelagerten Elementen eingebrachten Valenzelektronen zunächst dem Metallgitter zugerechnet

Abb.1.4: Phasenbeziehungen und Strukturen im System Thorium-Kohlenstoff

Abb.1.5: Schmelztemperaturen für Übergangsmetalle der 2.langen Periode sowie für deren Carbide und Nitride (schematisch)

wurden. Diese Betrachtungsweise ermöglicht es, eine Vielzahl von empirischen Zusammenhängen zwischen Eigenschaften und dieser formalen Valenzelektronenkonzentration aufzustellen. Solche Beziehungen waren und sind wertvolle Hilfen bei der Suche nach Verbindungen mit ganz bestimmten Zusammensetzungen, Strukturen und Eigenschaften. Es ergeben sich Elektronenkonzentrationen, bei denen die Bindungsfestigkeit besonders stark ist – dies ist bei Carbiden und Nitriden der Fall bei einer formalen VEK von etwa 8,4 – was sich z.B. in maximalen Schmelzpunkten bzw. maximalen Härtewerten ausdrückt. Betrachtet man z.B. die Schmelzpunkte (Abb. 1.5) von Übergangsmetallen der 2. langen Periode und deren Änderung bei Kohlenstoffeinlagerung (Carbidbildung) bzw. Stickstoffeinlagerung (Nitridbildung), so verschiebt sich das Schmelzpunktmaximum im Sinne der Einhaltung einer bestimmten VEK beim Übergang von Metallen zu Carbiden und Nitriden zu Übergangsmetallen niedrigerer VEK.

Es fehlt nicht an Versuchen, diese vereinfachenden Vorstellungen allgemeingültig zu fassen und physikalisch zu beschreiben. So entstanden viele theoretische Modelle, bei denen es jedoch oftmals schwierig ist, den Zusammenhang zu technisch interessierenden Eigenschaften zu finden. Den Hägg'schen Vorstellungen am naheliegensten ist hierbei das sogenannte Übergangsmetall-Modell (vgl. z.B. /7 - 11/), in dem Elektronen von den energetisch höher liegenden 2p-Zuständen des Nichtmetalls in das d-Band des Übergangsmetalls übergeführt werden. Bevorzugt Metall-Nichtmetall Wechselwirkungen werden bei anderen Modellvorstellungen /12 - 17/ in den Vordergrund gerückt, um Eigenschaften, die typisch sind für gerichtete Bindungen, wie z.B. die hohe Härte, beschreiben zu können und um andererseits strukturchemischen Gesichtspunkten Rechnung zu tragen. Hier wird eine Ladungsverteilung angenommen, die entgegengesetzt ist jener im Übergangs-Metall Modell, d.h. Ladungen werden vom Metall zum Nichtmetall verschoben. Ähnliche Vorstellungen scheinen durch Röntgen- und Elektronenspektraluntersuchungen bestätigt zu werden /18/. In jedem Fall hat man bei den Hartstoffen mit starken metallischen d-d Wechselwirkungen sowie kovalenten p-d Kräften zu rechnen. Inwieweit auch ionische Bindungsanteile eine Rolle spielen, bleibt offen. Auch die Valenzelektronenzahl zwischen 8 und 9, wo bestimmte Eigenschaften Extremwerte annehmen, lässt sich in einem Bändermodell verstehen. Es existieren zwei Energiebänder, die aus p-Zuständen des Nichtmetalls und d-Zuständen des Metalls gebildet werden. Das untere Band enthält die Elektronen in bindenden Zuständen, während das obere Band keinen ausgesprochenen bindenden Charakter mehr hat. Die Wirkung des unteren Bandes kommt voll zur Geltung, wenn es voll mit Elektronen besetzt ist. Bei einem weiteren Ansteigen der Fermigrenze tritt sie in das lockernde Band ein, was mit einer Verminderung der Bindungsstärke gekoppelt ist. Dieser Übergang von einem Band in das andere findet bei den kubisch flächenzentrierten Strukturen der Carbide und Nitride zwischen 8 und 9 Valenzelektronen statt.

Die Fragen der Bindung sollen hier nicht weiter behandelt werden. Es existieren neben einer Vielzahl von Einzelarbeiten auch Übersichten /19 - 23/, die sich mit verschiedenen Modellen auseinandersetzen. Diese Betrachtungen wurden zwar kaum auf die ternären Carbide und Nitride ausgedehnt. Da diese sich jedoch in vielen Fällen durch Mischphasenbildung ergeben bzw. aus ähnlichen Strukturelementen wie die binären Hartstoffe zusammengesetzt sind, lassen sich die Aussagen meist auch auf die mehrkomponentigen Systeme übertragen.

Um die unwahrscheinlich vielen Möglichkeiten einer gezielten Materialentwicklung im Bereich der Hartstoffe nützen zu können, müssen Gro-Existenz mehrkomponentiger Carbide und Nitride, deren homogene Bereiche in Abhängigkeit von Zusammensetzung und Temperatur sowie deren Verhalten gegenüber anderen Elementen und Verbindungen bekannt oder zumindest abschätzbar sein. Für derartige Aussagen müssen pri mär experimentelle Untersuchungen die benötigten Daten liefern, und erst darauf aufbauend können Berechnungen und Abschätzungen von Gleichgewichten herangezogen werden. Dies gilt ganz besonders für mehrkomponentige Carbid- und Nitridsysteme, well hier häufig neue Phasen auftreten, deren Existenzbedingungen, Strukturen und Stabilitäten nicht berechnet und nur in manchen Fällen auf Grund empirisch gewonnener Zusammenhänge abgeschätzt werden können. Die Basis der in den folgenden Kapiteln behandelten Konstitution in den Hartstoffsystemen sind daher experimentelle Ergebnisse. In den meisten Systemen sind zur vollständigen Wiedergabe der Gleichgewichte Abschätzungen, gelegentlich auch Rechnungen, herangezogen worden.

Das oberste Ziel dieser Darstellung des Aufbaus binärer und im wesentlichen ternärer Carbid- und Nitridsysteme der Übergangsmetalle war es, ein in sich möglichst konsistentes Bild zu entwerfen. Hierzu mussten viele der wiedergegebenen Phasendiagramme im Vergleich zu jenen in der Originalliteratur erschienenen meist nur geringfügig, manchmal jedoch auch stärker verändert werden, um neueren Ergebnissen anderer Arbeiten über binäre oder ternäre Systeme gerecht zu werden. In vielen Fällen wurde der Versuch unternommen, experimentelle Untersuchungen verschiedener Autoren zu einem Phasendiagramm zusammenzufassen. Bei der Fülle der experimentellen Ergebnisse auf den verschiedensten Forschungsgebieten, die sich in einer teilweise unüberschaubaren Flut von Publikationen ausdrückt, wird es für den einzelnen der diese Ergebnisse nutzen will, meist zu einem hoffnungslosen Unterfangen, die verschiedenen Werte zu ordnen, zu beurteilen und teilweise widersprüchliche Angaben zu einem Ganzen zusammenzufügen. Einer kritischen Aufarbeitung und Darstellung der Materie kommt deshalb eine besondere Bedeutung zu. Der Aufbau und das Reaktionsverhalten lassen sich bei einer solchen kritischen Darstellung am besten in Phasendiagrammen wiedergeben. Dem Rechnung tragend wurde in den folgenden Kapiteln versucht, die Information über die chemische Thermodynamik in den verschiedenen Systemen in graphischen Darstellungen zusammenzufassen. Oftmals sind die wiedergegebenen Phasendiagramme Vorschläge, geboren aus der Erfahrung und den Ergebnissen eigener experimenteller Arbeiten, die in den verschledenen Systemgruppen im Laufe der letzten 15 Jahre durchgeführt wurden. Gestrichelte Linien bedeuten wahrscheinliche, jedoch experimentell nicht belegte Gleichgewichte. Die Abgrenzung der Einphasenbereiche – besonders im Falle flüssiger Phasen – wurde oftmals durch Verbindung der binären Phasengrenzen durch einen ge-

- 9 -

strichelten Kurvenzug vorgenommen. Dies Ist sicherlich in manchen Fällen eine starke Vereinfachung. Die wesentliche Information liegt hierbei im prinzipiellen Auftreten einer flüssigen Phase bzw. einer Mischphase. Phasendiagramme, die als Vorschläge bezeichnet wurden, sind z.T. unter Heranziehung der bekannten thermodynamischen Daten der Randverbindungen abgeschätzt worden.

Die Kombination von Experiment, Rechnung und Abschätzung ist der einzig mögliche Weg, einen möglichst umfassenden Überblick Über das Reaktionsverhalten in mehrkomponentigen Systemen zu erhalten. Obwohl auf das Experiment nie verzichtet werden kann, weil sich das Auftreten mehrkomponentiger Phasen und der Verlauf der Potentiale einzelner Komponenten in homogenen Bereichen nicht voraussagen lassen, können Abschätzungen mit Hilfe thermodynamischer Daten sowie Rechnungen auf der Basis vorgegebener Modellvorstellungen die Kenntnisse über das Reaktionsverhalten im Hinblick auf Temperatur-, Druck- und Konzentrationsbereich erweitern und vervollständigen. Die Literatur hinsichtlich der experimentellen Bestimmung sowie der verschiedenen Möglichkeiten der Berechnung und Abschätzung von Phasendiagrammen ist zahlreich und kann im Rahmen dieser Abhandlung nicht diskutiert werden. Als typische Arbeiten auf diesem Gebiet seien die Referenzen /24 - 43/ genannt.

In Carbid- und Nitridsystemen haben verschiedene Autoren (z.B. /43 - 46/) versucht, Gleichgewichte mit Hilfe rechnerischer Methoden abzuschätzen. Diese Abschätzungen wurden zum Teil bei den einzelnen Systemgruppen berücksichtigt. In den einzelnen Kapiteln werden binäre Carbide und Nitride, ternäre Carbidsysteme, ternäre Nitridsysteme, Carbonitridsysteme sowie Borcarbid- und Bornitridsysteme behandelt. Nicht mit aufgenommen wurden die sauerstoffenthaltenden Systeme, d.h. Carboxid- und Nitridoxidsysteme. Der Einfluss von Sauerstoff auf die Carbid- und Nitridsysteme wird jedoch an mehreren Stellen mitdiskutiert. In Kap. 4 werden Zusammenhänge zwischen empirischen Atomradien und Valenzzuständen der Übergangsmetalle in Carbiden, Nitriden und intermetallischen Phasen diskutiert. Besonders auf die Zuordnung der Actinoiden zu den anderen Übergangsmetallen im Hinblick auf die Phasenbildung wird hier eingegangen.

Die Literatur wird für jedes Kapitel gesondert angegeben. Da - wie schon erwähnt - die Zahl der laufend neuerscheinenden Arbeiten auf dem Gebiet der Carbid- und Nitridsysteme der Übergangsmetalle gross ist, werden am Ende einiger Kapitel teilweise neueste Arbeiten aufgeführt, die im Text nicht mehr Eingang finden konnten, die jedoch die wiedergegebenen Phasenbeziehungen nicht grundsätzlich ändern.

Bei den wiedergegebenen ternären Schnitten entspricht die Einteilung der Seiten der Dreiecke einer Aufteilung in Atomprozenten (Die Strecke zwischen zwei Teilstrichen entspricht 10 Atom %). Temperaturen werden in Grad Celsius als Parameter der Abbildungen und in Kelvin im Text angegeben. Die Phasenfelder wurden meist beschriftet. Nur in Fällen, wo die Übersichtlichkeit leidet, wurde darauf verzichtet.

Literatur - Einführung -

- /1/ G.V.Samsonov, V.Ya.Naumenko, L.N.Okhremchuk phys.stat.sol. 6 (1971) 201
- /2/ H.Pastor L'Industrie Céramique 710 (1977) 663
- /3/ G.Govett, M.Govett (Hrsg.)
 World Mineral Supplies , Elsevier, Amsterdam 1976
- /4/ F.Heitzinger Powder Met.Inst. 9 (1977) 80
- /5/ N.N. Metall 32 (1978) 388
- /6/ H.Hägg Z.phys.Chem. B 6 (1929) 221 sowie B 12 (1931) 33
- /7/ R.Kiessling Met.Rev. 2 (1959) 77
- /8/ E.Dempsey Phil.Mag. 8 (1963) 285
- /9/ R.G.Lye, E.M.Logothetis Phys.Rev.147 (1966) 623
- /10/ R.G.Lye NBS, Special Publ.364, Solid State Chem. (1972)
- /11/ P.Costa Bericht ONERA-TR-540 (1969)
- /12/ R.E.Rundle Acta Cryst.1 (1948) 180
- /13/ W.Hume-Rotherey Phil.Mag.44 (1953) 1154
- /14/ H.Krebs Acta Cryst. 9 (1956) 95
- /15/ H.Bilz Z.Phys. 153 (1958) 338
- /16/ V.Ern, A.C.Switendick Phys.Rev. 137 A (1965) 1927
- /17/ S.R.Denker J.Less Common Met. 14 (1968) 1

/18/ L.Ramqvist J.Appl.Phys. 42 (1971) 2113 /19/ L.Ramqvist Jernkont. Ann.153 (1969) 159 /20/ A.Neckel, H.Nowotny in F.Benesovsky (Hrsg.) Hochtemperaturwerkstoffe 6. Plansee Seminar 1968, S.1, Springer Verlag Wien, 1969 /21/ G.V.Samsonov in F.Benesovsky (Hrsg.) Hochtemperaturwerkstoffe 6. Plansee Seminar 1968, S.10, Springer Verlag Wien, 1969 /22/ A.Merz Neue Hütte 17 (1972) 7 L.H.Bennet, A.J.McAlister, R.E.Watson /23/ Physics today, Sept. (1977) 34 /24/ G.V.Raynor "Phase Diagrams and their Determination" in: R.W.Cahn, Physical Metallurgy, North Holland Publ., Amsterdam (1970) S.309 /25/ O.Kubaschewski, J.Barin "Phase Equilibria in Condensed Systems" , Pure and Appl. Chem. 38 (1974) 469 /26/ Y.K.Rao "Thermodynamics of Phase Diagrams" in: A.M.Alper, Phase Diagrams, Materials Science and Technology, Vol.1, Academic Press, New York, 1970, S.1 /27/ J.B.Macchesney, P.E.Rosenberg "The Methods of Phase Equilibria Determination and their Associated Problems" in: A.M.Alper; vgl. /26/ S.113 H.C.Yeh /28/ "Interpretation of Phase Diagrams" in: A.M.Alper; vgl. /26/ S. 167 /29/ V.B.John "Understanding Phase Diagrams" MacMillan, London, 1974 T.B.Massalski, H.Pops /30/ "Intermediate Phases in Metallic Phase Diagrams" in: A.M.Alper; Phase Diagrams, Materials Science and Technology, Vol II,

Academic Press, New York, 1970, S.221

- 13 -

- /31/ A.D.Pelton, W.T.Thomson
 "Phase Diagrams"; Progress in Solid State Chemistry, Vol. 10,
 Part 3 (1975) S.119
- /32/ W.Kurz, P.R.Sahm Kap. 2 "Phasendiagramme" in: Gerichtet Erstarrte Eutektische Werkstoffe, Springer Verlag Berlin, 1975, S.8
- /33/ A.Reisman "Phase Equilibria and Materials Preparation" in P.Weller (Hrsg.) Solid State Chemistry and Physics, M.Dekker, Inc. New York (1977) S.721
- /34/ A.Reisman Phase Equilibria; Academic Press, New York, 1970
- /35/ A.Prince Alloy Phase Equilibria; Elsevier Publ.Comp., Amsterdam, 1966
- /36/ L.S.Darken, R.W.Gurry Physical Chemistry of Metals; McGraw-Hill, New York, 1953
- /37/ L.Brewer
 "Prediction of Transition Metal Phase Diagrams"; J.Nucl.Mat.
 51 (1974) 2
- /38/ R.Kikuchi "Ternary Phase Diagram Calculations; General Theory"; Acta Met.25 (1977) 195
- /39/ R.Kikuchi, D. de Fontaine, M.Murakami, T.Nakamura "Ternary Phase Diagram Calculations; Examples of Clustering and Ordering Systems"; Acta Met.25 (1977) 207
- /40/ L.Kaufman, H.Bernstein Computer Calculation of Phase Diagrams; Academic Press, New York, 1970
- /41/ A.D.Pelton, C.W.Bale Computational Techniques for the treatment of Thermodynamic Data in Multicomponent Systems and the Calculation of Phase Equilibria"; CALPHAD 1 (1977) 253
- /42/ E.Rudy "Calculation of Thermodynamic Quantities from Phase Diagrams" Nucl.Met.Symp. on Reprocessing of Nucl. Fuels, Ames, Jowa, Aug. 1969, AED-Conf-69-245-014 (1969)

- /43/ E.Rudy "Zur Thermodynamik der Phasenumsetzungen in Ternären Systemen" Z.Metalik. Teil 1:54 (1963) 112, Teil 11: 54 (1963) 213
- /44/ E.Rudy Thermodynamics of Nucl.Mat. IAEA, Wien 1962, S.243
- /45/ H.Holleck, T.Ishii Bericht KfK 1754 (1973)
- /46/ H.Holleck, N.Shohoji Bericht KfK, in Vorbereitung

2. AUFBAU BINÄRER SYSTEME

.

· · ·

2.1 Binäre Carbidsysteme

Der Aufbau der binären Systeme der Übergangsmetalle mit Kohlenstoff sowie die Eigenschaften der Carbide wurden vielfach untersucht. Zusammenfassende Darstellungen geben Storms /a/ für die Carbide von Th,U,Pu und den Übergangsmetallen der 4., 5. und 6. Gruppe, Rudy /b/ für die Carbide der hochschmeizenden Übergangsmetalle der 4., 5, und 6.Gruppe, Samsonov /c/ für die Carbide der Seltenen Erden und Übergangsmetalle der 4., 5. und 6. Gruppe sowie Holleck und Kleykamp /d/ für die Transuranelemente.

Während die wesentlichen Phasenbeziehungen schon seit längerem bekannt sind, wurden viele Detailfragen, wie Ordnungszustände und Homogenitätsbereiche sowie Gleichgewichtszustände bei hohen Temperaturen, erst vor kurzem geklärt bzw. werden noch untersucht. Im folgenden werden die wesentlichen Merkmale der binären Carbidsysteme – als Grundlage für die Charakterisierung der mehrkomponentigen Systeme – skizziert. Zusätzlich werden eine möglichst vollständige Auflistung der bisher bekannten Carbidphasen gegeben (vgl. Tabellen 2.1.1 bis 2.1.4) und die wechselseitigen Phasenbeziehungen in Diagrammen dargestellt, die mit meist geringfügigen Änderungen, entsprechend einer Anpassung an neueste Ergebnisse, aus der Literatur entnommen wurden. Die freien Bildungsenergien der Carbide der hochschmelzenden Übergangsmetalle wurden kürzlich in übersichtlicher Form zusammengestellt /90/.

2.1.1 Carbide der Seltenen Erden

Die Seitenen Erden bilden Subcarbide M₂₋₃C mit einer Defekt-NaCl Struktur und Ordnungstendenz bei tiefen Temperaturen (Sc, Y, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), Monocarbide (Sc, Y), Sesquicarbide (alle Seitenen Erden ausser Sc) und Dicarbide (alle Seitenen Erden ausser Sc). Die Dicarbide treten in einer tetragonalen Raumtemperaturmodifikation und einer kubischen Hochtemperaturmodifikation auf. Y und wahrscheinlich auch Sc besitzen darüber hinaus bei hohen Temperaturen weite homogene Bereiche. In ein kubisch flächenzentriertes Metallgitter kann Kohlenstoff von einer nur teilweisen bis zu einer fast doppelten Auffüllung der Oktaederlücken eingebaut werden. Bei tiefen Temperaturen ordnen sich die C-Atome, was oft eine Verzerrung des Gitters bewirkt. Tab. 2.1.1 gibt die Phasenzusammensetzung, Strukturtyp, Raumgruppe, Gitterkonstanten und Existenzbereich der binären Carbide der Seitenen Erden wieder.

Tab. 2.1.1: Binäre Carbide der Seltenen Erden

Phase	Strukturtyp Raumgruppe	Gitterkonstante [nm]	Existenzbereich Bemerkung	Litera- tur
sc ₂₋₃ c	kfz., Fe ₄ N O <mark>h</mark> - Pm3m	a = 0.467 - 0.472	Existenzbereich, Zusammensetzung und Struktur der Carbide mit NaCl-Defekt- struktur noch nicht endgültig geklärt	/1,2/
sc ₂ c	hex., CdC1 ₂ D _{3d} - R3m	a = 0.3337 c = 1.6347		/3b, 5/
scC _{1-x}	kfz, NaCl O <mark>5</mark> - Fm3m		Existenz bei hohen Temperaturen in weitem Konzentrationsbereich wahr- scheinlich	
sc4 ^C 3	hex., anti-Th ₃ P ₄	a = 0.7207		/3/
sc ₂ c ₃	krz., Pu ₂ C ₃ T ⁶ - 143d	a = 0.7205	Zusammensetzuną entsprechend ^{Sc} 2 ^C 3-x	/ 1/
^{Sc} 15 ^C 19	tetragonal, D ² _{2d} - P 42 ₁ C	a = 0.750 c = 1.500	-	/2/
۲ ₂ С	kfz., Defekt-NaCl O <mark>5</mark> - Fm3m		bei hohen Temperaturen	/4/
Y ₂ C	hex., CdC1 ₂ D ⁵ 3d ⁻ R3m	a = 0.3167 c = 1.796	bei tiefen Temperaturen Ordnungsphase	/5/
YC _{1-x}	kfz.,NaCl O <mark>5</mark> - Fm3m	a = 0.499	T > ∿ 1850 K	/4/
^Y 5 ^C 6	· · · · · · · · · · · · · · · · · · ·		Т < 1800 К	/6/
Y ₂ C ₃			, 1485 K < T < 1925 K	/6/
Y ₂ C ₃			Т < 1485 К	/6/
Y ₂ C ₃	krz., Pu ₂ C ₃ T ⁶ - I43d	a = 0.8214	unter Druck	/7/
ΥC ₂ (α)	tetr., CaC ₂ D <mark>17</mark> - I4/mmm	a = 0.3664 c = 0.6169	T < 593 K	/4/
YC ₂ (B)	0 <mark>5</mark> - Fm3m		1593 K < T < 2688 K	/4,6,8,9/
La ₂ C3	krz., Pu ₂ C ₃ T ⁶ - I43d	a = 0.88034		/10/
LaC ₂ (a)	tetr., CaC ₂ D ¹⁷ - I4/mmm	a = 0.392 c = 0.656	Umwandlung tetr>kfz.; 1343 K	/8,10/
LaC ₂ (B)	kfz., KCN 0 <mark>5</mark> - Fm3m		Umwandlung kfz.→ tetr.: 1268 K	/11,12,13/
Ce2C3	krz., ^{Pu} 2 ^C 3 T <mark>6</mark> - I 4 3d	a = 0.8448		/10/
^{CeC} 2 (a)	tetr., CaC ₂ D <mark>17</mark> - I4/mmm	a = 0.388 c = 0.649	Umwandlung tetr.→kfz⊥ 1363 K	/10,8/
CeC ₂ (B)	kfz., KCN 0 <mark>5</mark> - Fm3m		Umwandlung kfz.→tetr.: 1363 K	/8,13/

Phase	Strukturtyp Raumgruppe	Gitterkonstante [nm]	Existenzbereich Bemerkung	Litera- tur
Pr2C3	krz., Pu ₂ C ₃ T _d ⁶ - I43d	a = 0.8573		/10/
PrC ₂ (α)	tetr., $CaC_2 D_{4h}^{17} - 14/mmm$	a = 0.3847 c = 0.6428	Umwandlung tetr.—≻kfz: 1408 K	/8,10/
PrC ₂ (B)	kfz., KCN O <mark>5</mark> - Fm3m		Umwandlung kfz.—>tetr.: 1373 K	/8,13/
Nd2 ^{C3}	krz., Pu ₂ C ₃ T <mark>6</mark> - Iā3d	a = 0.8521		/10/
NdC ₂ (α)	tetr., CaC ₂ D <mark>17</mark> -14/mmm	a = 0.3822 c = 0.6401	Umwandlung tetr.—>kfz.: 1423 K	/8,10/
NdC ₂ (B)	kfz., KCN O ⁵ - Fm3m		Umwandlung kfz.→tetr.: 1423 K	/8,13/
SmC _{1-x}	kfz., Defekt-NaCl O <mark>5</mark> - Fm3m	a = 0.5059	Hochtemperaturphase	/14/
Sm ₃ C	kfz, Fe ₄ N O <mark>1</mark> - Pm3m	a = 0.5172		/10/
Sm ₂ C	hex., CdCl ₂ D _{3d} - R3m		Tieftemperatur-Ordnungsphase	/14,15/
sm2 ^C 3	krz., Pu ₂ C ₃ T ⁶ - I43d	a = 0.8399		7107
SmC ₂ (α)	tetr., CaC ₂ D _{4h} - I4/mmm	a = 0.3775 c = 0.6324	Umwandlung tetr.→kfz: 1443K	/8,10/
SmC ₂ (β)	kfz. KCN O ⁵ - Fm3m			. /8/
Eu ₂₋₃ C	kfz., Fe ₄ N O <mark>h</mark> - Pm3m	a = 0.508		/16/
EuC ₂ (α)	· · · ·	a = 0.4045 c = 0.6645		/17/
EuC2	kfz.	a = 0.596	durch Carboreduktion des Oxids er- halten, daher evtl. O ₂ -haltig	/18/

Phase	Strukturtyp Raumgruppe	Gitterkonstante [nm]	Existenzbereich Bemerkung	Litera- tur
^{GdC} 1-x	kfz., Defekt-NaCl ′0 <mark>5</mark> - Fm3m	a = 0.506 - 0.502	Hochtemperaturphase	/14/
Gd ₃ C	kfz., Fe ₄ N D ¹ _h - Pm3m	a = 0.5126		/10/
Gd ₂ C	hex., CdC1 ₂ D _{3d} - R3m	· · · · · · · · · · · · · · · · · · ·	Tieftemperatur-Ordnungsphase	/14,15/
Gd2c3	krz., Pu ₂ C ₃ T ⁶ - 143d	a = 0.8322		/10/
$GdC_2(\alpha)$	tetr., CaC ₂ D <mark>17</mark> - I4/mmm	a = 0.3717 c = 0.6264	Umwandlung tetr.→kfz.:1543 K	/8,10/
GdC ₂ (B)	kfz., KCN 0 <mark>5</mark> - Fm3m		Umwandlung kfz.—>tetn:1491 K	/8,13/
тьзс	kfz., Fe ₄ N D <mark>1</mark> - Pm3m	a = 0.5107		/10/
ть ₂ с	hex., CdC1 ₂ D ⁵ _{3d} - R3m	a = 0.3595 c = 1.819		/19/
ть ₂ с ₃	krz., Pu ₂ C ₃ T <mark>6</mark> - 143d	a = 0.8243		/10/
ΤЬС ₂ (α)	tetr., CaC ₂ D ¹⁷ - I4/mmm	a = 0.3692 c = 0.6210	Umwandlung tetr.— kfz.: 1558 K	/8,10/
тьс ₂ (в)	kfz., KCN O ⁵ _h - Fm3m	a = 0.5691	Gitterkonst. bei 1558 K	/8/
DyC _{1-x}	kfz., Defekt-NaCl O <mark>5</mark> - Fm3m	a = 0.501	Hochtemperaturphase	/14/
Dy ₃ C	kfz., Fe ₄ N O <mark>1</mark> - Pm3m	a = 0.5079		/10/
Dy ₂ C ₃	krz., Pu ₂ C ₃ T ⁶ - I43d	a = 0.8198		/10/
DyC ₂ (a)	tetr., CaC ₂ D <mark>17</mark> - I4/mmm	a = 0.3666 c = 0.6162	Umwandlung tetr.—>kfz.: 1568 K	/8,10/
DyC ₂ (β)	kfz., KCN	·····, ·····	Umwandlung kfz.—>tetr.: 1523 K	/8,13/
Phase	Strukturtyp	Gitterkonstante	Existenzbereich	Litera
--------------------------------	---	--------------------------	--------------------------------------	-------------
HoC _{1-X} .	kfz., Defekt NaCl	[ת ת]	Bemerkung Hochtemperaturphase	tur /14/
Ho ₃ C	kfz., Fe ₄ N O ¹ _h - Pm3m	a = 0,5061	Ordnungsphase	/10/
Ho ₂ C	hex., CdC1 ₂ D ⁵ _{3d} - R3m		Ordnungsphase	/14,19
^{Ho} 2 ^C 3	krz., Pu ₂ C ₃ T <mark>6</mark> - I43d	a = 0.8176		/10/
HoC ₂ (a)	tetr., CaC_2 D_{4h}^{17} - 14/mmm	a = 0.3644 c = 0.6136	Umwandlung tetr.→kfz: 1578 K	/8,10/
HoC ₂ (β)	kfz., KCN O <mark>5</mark> -Fm3m h		Umwandlung kfz.→tetr: 1553 K	/8,13/
ErC _{1-x}	kfz., Defekt-NaCl 0 <mark>5</mark> - Fm3m		Hochtemperaturphase	/14/
Er ₃ C	kfz., Fe ₄ N O <mark>1</mark> - Pm3m	a = 0,5034	Ordnungsphase	/10/
Er2C	hex., CaCl ₂ D ⁵ _{3d} - R3m		Tieftemperatur-Ordnungsphase	/15,20
Er ₂ C ₃			isotyp Y ₂ C ₃	/10/
ErC ₂ (a)	tetr. CaC ₂ D ¹⁷ _{4h} - 14/mm	a = 0.3617	Umwandlung tetr.: → kfz.:1598 K	/8,10/
ErC ₂ (β)	kfz., KCN O <mark>5</mark> - Fm3m	c = 0.6099	Umwandlung kfz.→tetr.: 1548 K	/8,13/
Tm ₃ C	kfz., Fe ₄ N O <mark>1</mark> - Pm3m	a = 0.5016		/10/
Tm ₂ C ₃	······································		-	/10/
TmC ₂ (α)	tetr., CaC ₂ D ¹⁷ - I4/mmm	a = 0.3604 c = 0.6012	Umwandlung tetr.→ kfz 1626 K	/8,10/
TmC ₂ (β)	kfz., KCN			/8/

Phase	Strukturtyp Raumgruppe	Gitterkonstante [nm]	Existenzbereich Bemerkung	Litera- tur
^{YbC} 1~x	kfz.,Defekt-NaCl O <mark>5</mark> - Fm3m	a = 0.496 - 0.488	Hochtemperaturphase	/14/
чь _з с	kfz., Fe ₄ N O <mark>1</mark> - Pm3m	a = 0.4993	Ordnungsphase	/10/
^{Yb} 2 ^C 3	-	-		/10/
ΥЪС ₂ (α)	tetr., CaC ₂ D ¹⁷ - 14/mmm	a = 0.3649 c = 0.6133	Umwandlung nicht beobachtet	/8,10/
Lu ₃ C	kfz., Fe ₄ N O <mark>h</mark> - Pm3m	a = 0.4695		/10/
Lu ₂ C ₃	-	-	-	/10/
LuC ₂ (α)	tetr., CaC ₂ D <mark>17</mark> - I4/mmm	a = 0,3564 c = 0,5962	Umwandlung tetr.→kfz: 1773 K	/8,10/
LuC ₂ (ß)	kfz., KCN O ⁵ - Fm3m	a = 0.5505	Gitterkonstante bei 1773 K Umwandlung kfz.→tetr: 1663 K	/8,13/

Die Phasenbeziehungen sind nur im System <u>Yttrium-Kohlenstoff</u> /4,6/ (vgl. Abb. 2.1.1) und <u>Lanthan-Kohlenstoff</u> /21/ (vgl. Abb. 2.1.2) zumindest teilweise bekannt. Allen Systemen dürfte ein beträchtlicher Anstieg der Schmelztemperatur von den Kohlenstoff-armen Carbiden bis hin zu den Kohlenstoff-reichen Dicarbiden eigen sein. Mit Ausnahme der Metalle La, Ce, Pr, Nd und Pm sind bei allen Seltenen Erden bei höheren Temperaturen ausgedehnte Homogenitätsbereiche kubisch flächenzentrierter Carbide mit einer Defekt-NaCl Struktur zu erwarten. Bei tiefen Temperaturen beobachtet man Ordnungsphasen, deren Strukturen noch nicht vollständig geklärt sind. So werden für die Zusammensetzung M₃C der Fe₄N-Typ berichtet /10/ und für M₂C der CdCl₂-Typ /14,15/. Auch hinsichtlich der Gitterparameter der kubisch flächenzentrierten Phasen bestehen Diskrepanzen /10,20/.

Abb.2.1.1: Phasendiagramm Yttrium-Kohlenstoff (nach Lit. /4,6/)

Abb.2.1.3: Phasendiagramm Thorium-Kohlenstoff (nach Lit. /22/)

Abb.2.1.2: Phasendiagramm Lanthan-Kohlenstoff (nach Lit. /21/)

Abb.2.1.4: Phasendiagramm Uran-Kohlenstoff (nach Lit. /28/)

Abb.2.1.5: Phasenbeziehungen im kohlenstoffreichen Teil des Systems Uran-Kohlenstoff (nach Lit. /42/)

- 23 -

2.1.2 Carbide der Actinoiden

Die Actinoiden unterscheiden sich in ihrem Verhalten gegenüber Kohlenstoff in starkem Masse von den Lanthanoiden und zeigen auch innerhalb der Folge ein teilweise recht unterschiedliches Verhalten, was die Stabilität verschiedener Carbide anbelangt. So beobachtet man bei den leichten Actinoiden (Th bis Np) relativ stabile Monocarbide und im Vergleich hierzu weniger stabile höhere Carbide; bei den Actinoiden beginnend vom Pu schliesslich eine zunehmende Stabilität der höheren Carbide und damit eine zunehmende Ähnlichkeit zu dem Verhalten der Lanthanoiden. Dies lässt sich mit einer zunehmenden Lokalisierung der f-Elektronen erklären. Tab. 2.1.2 enthält die bisher bekannten binären Carbide der Actinoiden.

Die Phasenbeziehungen sind nur für die Systeme <u>Thorium-Kohlenstoff</u>, Uran-Kohlenstoff und Plutonium-Kohlenstoff bekannt. Im System Thorium-Kohlenstoff kann α -Th bei hohen Temperaturen durch Kohlenstoffeinbau in homogener Phase über das Monocarbid in das Dicarbid übergehen /22,41/. Unterschiedliche Literaturangaben finden sich für die Entmischungstemperaturen der Hochtemperatur-phase ThC_{1±x} in Th+ThC einerseits und ThC+ThC₂ andererseits. Chiotti u.a. /41/ finden 1843 K für den Beginn der Entmischung in Thorium und Thoriummonocarbid und etwa 2373 K für den Beginn der Entmischung in Thoriummonocarbid und Thorimdicarbid, während Benz und Stone /22/ als Entmischungstemperaturen 1413 bzw. 2123 K angeben. Abb. 2.1.3 zeigt das Phasendiagramm Thorium-Kohlenstoff nach Benz und Stone /22/. Bei Temperaturen unterhalb etwa 1050 K ordnen sich bei einer Zusammensetzung ThC_{0,75} die Leerstellen, so dass sich die Elementar-zelle verdoppelt /23a/ (bez. Ordnung vgl. /88/).

Das System Uran-Kohlenstoff wurde vielfach untersucht (vgl. /a/). Abb. 2.1.4 zeigt das Phasendiagramm nach Benz u.a. /28/, in welches auch die Ergebnisse früherer Arbeiten mit eingearbeitet sind (Literaturzitate siehe /28/). UC kann zusätzlich Kohlenstoff lösen und bei Temperaturen oberhalb etwa 2350 K durch Ersatz der Kohlenstoffatome durch C₂-Gruppen in homogener Phase in das Dicarbid übergehen. Bei etwa 2050 K wandelt sich das kubische UC₂ in die tetragonale Modifikation um, die wiederum bei etwa 1800 K in U₂C₃ und Kohlenstoff zerfällt. Bildung und Zerfall des Dicarbids und Sesquicarbids sind empfindlich

Tabelle 2.1.2: Binäre Carbide der Actinoiden

Phase	Strukturtyp Raumgruppe	Gitterkonstante [nm]	Existenzbereich Bemerkung	Litera- tur
ThC _{1±x}	kfz., NaCl 0 <mark>5</mark> - Fm3m	a = 0.5317 (44 At.% C) a = 0.5330 (47 At.% C a = 0.5342 (50 At.% C)	0 - 50 At.% C bei 1600 K 20 - 65 At.% C bei 2200 K	/22, 23/
^{ThC} o.75	kfz.	a = 1.063	Ordnungsphase bei T∿<1050 K	/23a/
Th 2 ^C 3	krz., Pu ₂ C ₃ T ⁶ - I43d	a = 0.85513 - 0.85609	Hochdruckphase p ≥30 Kbar	/24/
ThC ₂ (a)	monoklin, ThC ₂	a = 0.6691 b = 0.4231 c = 0.6744 $\beta = 103^{0}50'$	T <1713 K	/22,25/
ThC ₂ (B)	tetr.; CaC ₂ D17-14/mmm ²	a = 0.4221 bei 1450 ⁰ C c = 0.5394 bei 1450 ⁰ C	1528 K < T < 1740 K bei C/Th ~1 .7	/22,26/
ThC ₂ (y)	kfz.; KCN On - Fm3m	a = 0.5806 bei 1550 ⁰ C	. 1768 K < T < 2718 K	- /22,26/
PaC	kfz., NaCl 0 <mark>5</mark> - Fm3m	a = 0,5061	Carbothermische Reaktion aus PaO_2 ; ev. O_2 -haltig	. /27/
PaC2	tetr.	a = 0.361 c = 0.611	Existenzbereich nicht ge- sichert	/27/
UC _{1+x}	kfz., NaCl O _h - Fm3m	a = 0.4961 (50 At.% C)	x = 0.1 bei 2093 K	/a, 28/
U2C3	krz., Pu ₂ C ₃ T ⁶ - I 4 3d	a = 0,80899	Т < 2093 К	/28,29/
UC ₂ (α)	tetr., CaC ₂ D <mark>17</mark> - I4/mmm	a = 0.3519 c = 0.5979	∿1770 K < T <∿2050 K	/a, 28,30/
UC ₂ (B)	kfz., KCN 0 <mark>5</mark> - Fm3m	a ≈ 0.5488 bei 2173 K	T >∿2050 K	/28,31/
^{NpC} 1-x	kfz., NaCl O <mark>5</mark> - Fm3m	a = 0.4991 (45 At.% C) a = 0.5006 (49 At.% C)		/32/
Np2C3	krz., Pu ₂ C ₃ T ⁶ - I 4 3d	a = 0.81030		/33,34/
NpC2	tetr., CaC ₂ (?)	a = 0.3580 c = 0.6030		/35,36/
Pu3 ^C 2	-		Т < 848 К	/37/
PuC _{1~x}	kfz., NaCl O ⁵ - Fm3m	a = 0.4958 (45 At.% C)	nur unterstöchiometrisch	/37, d/
Pu2C3	krz., Pu ₂ C ₃ T ⁶ _d - I43d	a = 0,8131	T ≤ 2320 K	/34 d/
PuC2	tetr., CaC ₂ D ¹⁷ - I4/mmm	a = 0.363 c = 0.6094	metastabil	/38/
PuC2	kfz.	a = 0.572 bei 2023 K	Hochtemp.Phase 1943 K <t<2503 k<="" td=""><td>/39,40/</td></t<2503>	/39,40/
Am2C3	$\frac{krz., Pu_2C_3}{T^6 = I\overline{4}3d}$	a = 0.82757		/34/

vom Sauerstoffgehalt abhängig. Ausserdem ist die Bildungskinetik von U_2C_3 vielfach Ursache sich widersprechender Angaben über die vorliegenden Gleichgewichte. Das in Abb. 2.1.4 wiedergegebene Phasendiagramm muss als zur Zeit am besten belegt gelten. Die thermodynamischen Daten der Verbindungen lassen darauf schliessen, dass bei Raumtemperatur nur UC stabil ist. U_2C_3 müsste sich bei etwa 1100 K in UC+C zersetzen. Etwas unterschiedlich im Bereich der kohlenstoffreichen Carbide ist der Vorschlag einer Phasenaufteilung, den Laugier und Blum /42/ aus Hochtemperaturröntgenaufnahmen zogen (vgl. Abb. 2.1.5).

Im System <u>Plutonium-Kohlenstoff</u> treten die vier Carbide Pu_3C_2 , PuC_{1-x} , Pu_2C_3 und PuC_2 auf. Abb. 2.1.6 zeigt ein Phasendiagramm, welches aus Literaturdaten zusammengesteilt wurde (vgl. /a,d, 37,39/). Pu_3C_2 zersetzt sich peritektoid bei etwa 850 K in ε -Pu und PuC_{1-x} . Das "Monocarbid" tritt nur unterstöchiometrisch auf und hat ebenso wie Pu_2C_3 einen homogenen Bereich. Die Hochtemperaturphase PuC_2 hat höchstens einen geringen Homogenitätsbereich, was die Gitterkonstanten von a = 0.570 nm im Gleichgewicht mit Pu_2C_3 und a = 0.572 nm im Gleichgewicht mit Kohlenstoff dokumentieren /43/. Während die Zerfallstemperatur in Pu_2C_3 und C mit 1930 K (vgl. /d/) gesichert erscheint, ist nicht vollständig geklärt, ob sich PuC_2 bei etwa 2500 K peritektisch zersetzt /39/ oder aber, wie Dampfdruckmessungen vermuten lassen /44/, bei 2620 K kongruent schmilzt.

2.1.3 Carbide der Übergangsmetalle der 4., 5, und 6. Gruppe

Die Carbidsysteme der hochschmeizenden Übergangsmetalle waren im Hinblick auf ihre hervorstechenden Eigenschaften, wie z.B. hoher Schmelzpunkt, hohe Härte, gute Wärmeleitfähigkeit und elektrische Leitfähigkeit, hohe Sprungtemperatur der Superleitfähigkeit sowie ihr Emissionsvermögen, besonders oft Gegenstand experimenteller Untersuchungen (vgl. die zusammenfassenden Darstellungen /a,b,c/). Hier wird deshalb nur eine Übersicht über die auftretenden Verbindungen und deren Phasenbeziehung unter Miteinbeziehung neuester Ergebnisse gegeben, soweit sie als Grundlage für das Verständnis des Aufbaus der mehrkomponentigen Systeme erforderlich ist. In Tab. 2.1.3 sind die bisher bekannten Carbidphasen mit ihren Strukturen, Gitterparametern und Existenzbereichen zusammengestellt.

Die Systeme der Übergangsmetalle, Titan, Zirkon und Hafnium mit Kohlenstoff werden durch Monocarbide mit weitem Homogenitätsbereich bestimmt. Eine Ordnung

Phase	Strukturtyp Raumgruppe	Gitterkonstante (nm)	Existenzbereich	Litera- tur
⊺i ₂ C	kfz; O _h - Fd3m	a = 0.86	T < 2173 K	/45,46/
TiC _{1-x}	kfz; NaCl O ⁵ _h - Fm3m	$ \begin{array}{r} a = 0.4327 \ (49 \ At.\% \ C) \\ a = 0.4326 \ (45 \ At.\% \ C) \\ a = 0.4317 \ (40 \ At.\% \ C) \\ a = 0.4305 \ (35 \ At.\% \ C) \\ \end{array} $	32 - 48.8 At.% C (1923 K) 38 - 49.4 At.% C (3049 K)	/a,b,c/
ZrC _{1-x}	kfz; NaCl O <mark>5</mark> - Fm3m	a = 0.4697 (49 At.% C) a = 0.4702 (45 At.% C) a = 0.4699 (40 At.% C)	37.5 - 49.4 At.% C (2108 K)	/a,b,c/
ZrC _{o,75}	kfz; Überstr.	a ≃ 0,9386	T < 1330 K	/80/
HfC _{1-x}	kfz; NaC1 0 <mark>5</mark> - Fm3m	a = 0.4642 (49 At.% C) a = 0.4637 (45 At.% C) a = 0.4630 (40 At.% C)	37.5 - 49.5 At.% C (1973 K) 34 - 49.5 At.% C (2633 K)	/a,b,c/
V ₂ С (В)	hex; L'3 D _{6h} - P6 ₃ /mmc	a = 0.2906 (33 At.% C) c = 0.4597	T >∿1073 K	/a,b/
V ₂ C (α)	orthorhomb. ähnlich ζ-Fe ₂ N Pbcn	a = 1.149 b = 1.006 c = 0.4554	T <∿1073 K	/b,47/
	orthorhomb.; c-Fe ₂ N D ¹⁴ - Pbcn	a = 0.4567 b = 0.5742 c = 0.5037		/48/
V ₄ C ₃	trigonal; Sn ₄ P ₃ D _{3d} - R3m	a = 0.2917 c = 2.783	C < 42.8 At.%	/49/
VC _{1-x}	kfz; NaCl O <mark>5</mark> - Fm3m	a = 0.4166 (46 At.% C) a = 0.4126 (41 At.% C)	41 - 47 At.% (1873 K)	/a,b/
^V 6 ^C 5	hexagonal, Oberstr.		Т <∿1520 К	/50,51/
V ₈ C ₇	kubisch; Überstr.	a = 0.8334	T <∿1360 K	/51,52/
Nb ₂ C (ß)	hex.; L'3 D ⁴ _{6h} - P6 ₃ /mmc	a = 0.3126 c = 0.4965	. T >∿1470 K	/a,53/
Nb ₂ C (α)	orthorh. z-Fe₂N D <mark>14</mark> - Pbcn	a = 1.0920 b = 0.4974 c = 0.3090	T ≪1470 K	/54/
Nb4c3	trigonal; Sn ₄ P ₃ D _{3d} - R3m	a = 0.314 c = 3.01		/49/
NBC1-X	kfz.; NaCl 0 <mark>5</mark> - Fm3m	$a = 0.4469 (49 \text{ At.} \% \text{ C}) \\ a = 0.4464 (47 \text{ At.} \% \text{ C}) \\ a = 0.4454 (45 \text{ At.} \% \text{ C}) \\ a = 0.4454 (41 \text{ At.} \% \text{ C}) \\ a = 0.4430 (41 \text{ At.} \% \text{ C}) \\ \end{array}$	30 - 49 At.%C (2800 K) 39 - 49 At.% C (2200 K)	/a,b,c 53/
NbC _{0,75}	Oberstr.	· · · ·	4 v.	/81/
^{Nb} 6 ^C 5	hex.; Oberstr.		T < 1300 K	/55/

Tab. 2.1.3: Binăre Carbide der IV A, V A und VI A Obergangsmetalle

Phase	Strukturtyp Raumgruppe	Gitterkonstante (nm)	Existenzbereich	Litera- tur
Та ₂ С (В)	hex.; L'3 D ⁴ _{6h} - P6 ₃ /mmc	a = 0.3106 c = 0.4945	T > 2450 K	/a,b/
Ta ₂ C (α)	hex.; CdJ ₂ D ³ _{3d} - P 3m1	a = 0.3106 c = 0.4945	T < 2450 K	/a,b/
Ta4C3	trigonal; Sn_4P_3 $D_{3d}^5 - R3m$	a = 0.3116 c = 3.000		/49/
TaC _{1-X}	kfz.; NaCl O _h ⁵ - Fm3m	$\begin{array}{r} a = 0.4454 & (49 \ \text{At.\% C}) \\ a = 0.4440 & (47 \ \text{At.\% C}) \\ a = 0.4426 & (45 \ \text{At.\% C}) \\ a = 0.4406 & (42 \ \text{At.\% C}) \end{array}$	36 - 49 At.% C (3600 K) 42 - 50 At.% C (2300 K)	/a,b,c/
Ta ₆ C ₅	hex.; Überstr.		Т _{Та} < Т _{Nb} < 1300 К	/55/
^{Cr} 23 ^C 6	kub.; D8 ₄ 0 <mark>5</mark> - Fm3m	a = 1.0659		-/a,b,c/
Cr7C3	orthorh.; Mn ₇ C ₃ D ⁵ - Pmma	a = 0.7010 b = 1.2142 c = 0.4526		/a,b,c/
Cr ₃ C ₂	orthorh.; Cr ₃ C ₂ D ¹⁶ - Pnma	a = 0.5533 b = 0.2829 c = 1.1472		/a,b,c/
Мо ₂ С (В)	hex.; L'3 D ⁴ - P6 ₃ /mmc	a = 0.2997 c = 0.4727	T >∿ 1700 K	/a,b/
Mo ₂ C (α)	orthorh.; <pre2<sup>N D¹⁴ - PbCn 2h - PbCn</pre2<sup>	a = 0.4736 b = 0.6035 c = 0.5205	T <∿ 1700 K	/a,b/
MoC _{1-x} (n)	hex. $D_{6h}^4 - P6_3/mmc$	a = 0.3013 c = 1.464	1928 K <t 2823="" <="" k<br="">(39 At.% C)</t>	/a,b,c/
MoC _{1-x} (a)	kfz.; NaCl 0 ⁵ - Fm3m h	a = 0,4281	2133 K <t 2873="" <="" k<br="">(41 At.% C)</t>	/a,b,c/
МоС	hex.; WC D _{3h} - Pōm2	a = 0.2901 c = 0.2819	Т < 1453 К	/82,83/
W ₂ C (Y)	hex.; L'3 D <mark>4</mark> - P6 ₃ /mmc	a = 0.2990 c = 0.4720	Ţ >∿2750 K	/a,b/
₩ ₂ C (β)	orthorh.; z-Fe ₂ N D ¹⁴ - Pbcn	a = 0.4728 b = 0.6009 c = 0.5193	2350 K < T <∿ 2750 K	/b,56/
W ₂ C (a)	hex.; CdJ ₂	· · _ · · · · · · · · · · · ·	1520 K < T <∿2350 K evtl. 0 ₂ -stabilisiert	/a,56/
WC _{1-x}	kfz.; NaCl O <mark>5</mark> ~ Fm3m	a = 0.4220	T > 2800 K	/a,b/
WC	hex.; WC D ³ - Pốm2	a = 0.2906 c = 0.2837		/a,b/

3067 ± 25 °

S+TIC

Abb. 2.1.6: Phasendiagramm Plutonium-Kohlenstoff (nach Lit. /a,d,37,39/)

3200

3000

2800

der Kohlenstoffdefekte wurde bisher im System <u>Titan-Kohlenstoff</u> für die Zusammensetzung Ti₂C unterhalb 2173 K /45,46/ sowie im System <u>Zirkon-Kohlenstoff</u> für die Zusammensetzung ZrC_{0,75} /80/ festgestellt.⁺⁾Phasendiagramme wurden von Storms /a/ und Rudy /b/ zusammengestellt. Abb. 2.1.7 bis 2.1.9 geben die Phasenbeziehungen der Systeme Titan-Kohlenstoff, Zirkon-Kohlenstoff und Hafnium-Kohlenstoff bei hohen Temperaturen /b/ wieder.

Die Systeme von Vanadin, Niob und Tantel mit Kohlenstoff sind gekennzeichnet durch Subcarbide M_2C und Monocarbide MC_{1-x} mit weitem Homogenitätsbereich. Bei hohen Temperaturen sind die Kohlenstoffatome in den Subcarbiden M $_2$ C statistisch verteilt (hexagonales Gitter, L'3-Typ), ordnen sich jedoch bei tiefen Temperaturen unter teilweiser Verzerrung des metallischen Wirtgitters. Je nach der Anordnung der Kohlenstoffatome beobachtet man den ϵ -Fe $_{2}$ N-Typ, ζ -Fe₂N-Typ oder CdJ₂-Typ (vgl. z.B. /57/). Auch die Monocarbide VC_{1-x}, NbC und TaC ordnen sich bei tiefen Temperaturen im Nichtmetallteilgitter. Eine Fernordnung mit hexagonaler Überstruktur wurde für die Zusammensetzung M₆C₅ (M = V,Nb,Ta) nachgewiesen. Die Ordnungstemperatur sinkt dabei von etwa 1520 K für VC_{1-x} über 1300 K für NbC_{1-x} auf noch tiefere Temperaturen für TaC_{1-x}, wo dann die Kohlenstoffdiffusion schon sehr gering ist. Im System Vanadin-Kohlenstoff existient darüber hinaus eine Ordnungsphase der Zusammensetzung V_8C_7 . Neben diesen Ordnungsphasen existieren auch Bereiche mit Nahordnung der Kohlenstoffatome /51,58/. Abb. 2.1.10 zeigt das Phasendiagramm des Systems Vanadin-Kohlenstoff nach Rudy /b/ und Abb. 2.1.11 einen Ausschnitt nach Billingham u.a. /51/, der die Ordnungserscheinungen im Bereich des Monocarbids verdeutlicht.

Die Phasenbeziehungen im System <u>Niob-Kohlenstoff</u> sind vor allem im Bereich des Subcarbids Nb₂C nicht restios geklärt. Abb. 2.1.12 zeigt die verschiedenen Vorschläge der Phasenfeldaufteilung: a) nach Rudy /b/, b) nach Storms u.a. /53/ und c) nach Brizes und Brody /59/. Während Rudy /b/ ein γ -Nb₂C oberhalb etwa 2800 K findet, welches sich erst bei 3310 K peritektisch zersetzt, geht Nb₂C nach Storms u.a. /53/ bei etwa 2800 K in die unterstöchiometrische kubisch flächenzentrierte Monocarbidphase über und zersetzt sich Nb₂C nach Brizes und Brody /59/ bei etwa 2800 K peritektisch in NbC_{1-x} und Nb-Schmelze. Abb. 2.1.13 zeigt einen Ausschnitt des Phasendiagramms im Bereich des Monocarbids bei tiefen Temperaturen /51/.

X) (Bezüglich Ordnung in kubischen Carbiden vgl. auch /88,92/).

Abb.2.1.10: Phasenbeziehungen Vanadin-Kohlenstoff (nach Lit. /b/)

Abb.2.1.31: Phasenbeziehungen im Bereich von VC_{1-x} bei tiefen Temperaturen (nach Lit. /51/)

Abb. 2.1.12a: Phasenbeziehungen Niob-Kohlenstoff (nach Lit./b/)

Abb.2.1.12b: Phasenbeziehungen Niob-Kohlenstoff (nach Lit./53/)

Abb.2.1.12c: Phasenbeziehungen im System Niob-Kohlenstoff (nach Lit. /59/)

Abb.2.1.13: Phasenbeziehungen im Bereich von NbC_{1-X} bei tiefen Temperaturen (nach Lit. /51/)

Abb.2.1.14: Phasendiagramm Tantal-Kohlenstoff (nach Lit. /b/)

Das System Tantal-Kohlenstoff (Abb. 2.1.14) ist sehr ähnlich aufgebaut wie das entsprechende System mit Niob. Die Schmelz- bzw. Zersetzungstemperaturen der Carbide liegen hier mit 3600 K für Ta₂C und 4260 K für TaC noch höher als die der übrigen VA-Carbide. Die Ordnungsphase im Bereich des Monocarbids tritt hier erst beträchtlich unterhalb 1300 K auf und ist wegen der hier schon geringen Atombeweglichkeit schwieriger nachzuweisen /55/. Die Natur, Existenzbereich und Bildungsbedingungen der Zeta-Phase (Ta₄C₃) sind nicht vollständig klar. Sie scheint jedoch eine Gleichgewichtsphase bei tieferen Temperaturen zu sein.

Während die Carbidbildung bei den IV A- und V A-Übergangsmetallen mit einem beträchtlichen Anstieg der Schmelztemperaturen verbunden ist, beobachtet man bei den Übergangsmetallen der 6.Gruppe (Chrom, Molybdän und Wolfram) ein umgekehrtes Verhalten. Die Schmelzpunkte der Carbide liegen teilweise weit unterhalb der Schmelzpunkte der reinen Metalle.

Das System <u>Chrom-Kohlenstoff</u> nimmt, was Zusammensetzung und Struktur der Verbindungen anbelangt, eine Sonderstellung unter den betrachteten Systemen ein. Die Metallatome bilden in den Verbindungen $Cr_{23}C_6$, Cr_7C_3 und Cr_3C_2 wegen des im Vergleich zum Kohlenstoff zu kleinen Atomradius keine dichtgepackten Strukturen mehr. Das Einlagerungsprinzip tritt zurück, und die Strukturen werden komplizierter. An Stelle der oktaedrischen Baugruppe tritt das trigonale Prisma. Abb. 2.1.15 zeigt das Phasendiagramm des Systems Chrom-Kohlenstoff nach Rudy /b/. Im metastabilen Zustand abgeschreckter Proben konnte auch ein zu Fe₃C isotypes Cr_3 C mit orthorhombischer Struktur und Gitter-konstanten a = 0.458 mm, b = 0.512 mm, c = 0.680 mm /91/ nachgewiesen werden.

Im System <u>Molybdän-Kohlenstoff</u> ist bis etwa 1900 K nur das Subcarbid Mo₂C und unterhalb 1453 K das hexagonale MoC /83/ stabil. Dieses ist unterhalb \sim 1700 K im Kohlenstoffteilgitter geordnet. Rudy u.a. /60/ nehmen an, dass die Umwandlung im unterstöchiometrischen Bereich ohne Diskontinuität erfolgt (vgl. Abb.2.1.16). Dies konnte von Bowman u.a. /vgl. a. (1972)/ allerdings nicht bestätigt werden. Als Hochtemperaturphasen, die nur schwer abgeschreckt werden können, existieren das hexagonale ζ -MoC_{1-x} bei 39 At.% Kohlenstoff und das kubisch flächenzentrierte α -MoC_{1-x} bei etwa 41 At.% Kohlenstoff. Die Phasenbeziehungen verdeutlicht Abb.2.1.16 (bez. Struktur und Aufbau des Systems Mo-C vgl. auch /84-86,94/).

- 33 -

Das System Wolfram-Kohlenstoff beanspruchte besondere Aumuer Koemkeil wegen

der technischen Bedeutung von WC in Hartmetallen. Neben dem Subcarbid W₂C, weiches unterhalb etwa 2750 K im Kohlenstoffgitter geordnet auftritt und dem erwähnten WC,existiert auch in diesem System ein kubisch flächenzentriertes Carbid bei etwa 38 At.% Kohlenstoff und Temperaturen oberhalb 2800 K. Die Ordnungsumwandlungen von W₂C sind nicht restlos geklärt. Vor allem ist auch der Einfluss von Sauerstoff auf die Umwandlung bei 2350 K nicht klar. Das Subcarbid wird unterhalb ∿1520 K instabil. Abb. 2.1.17 zeigt einen Ausschnitt des Phasendiagramms nach Rudy und Windisch /56/.

2.1.4 Carbide der Übergangsmetalle der 7. und 8. Gruppe

Mit zunehmender Auffüllung der d-Schalen der Übergangsmetalle werden die gebildeten Carbide instabiler. Während Mangan und die Metalle der Eisen-Gruppe - Eisen, Kobalt und Nickel-Carbide geringer Stabilität oder metastabile Carbidphasen bilden, nimmt die Neigung zur Bildung von Carbiden innerhalb einer Gruppe mit steigender Ordnungszahl ab. So bildet Mangan die Carbide Mn₂₃C₆ /61/, $Mn_{11}C_3$ /62,63/, Mn_3C /61/, Mn_5C_2 /61/, Mn_7C_3 /61,64/.Technetium bildet ein Carbid der Zusammensetzung Tc $_{2-3}$ C /65,66/ und Rhenium unter Normaldruck wahrscheinlich kein Carbid /67/. Bei hohem Druck wurde sowohl eine hexagonale Struktur für ReC /68/ als auch eine kubisch flächenzentrierte Elementarzelle 769/ gefunden. Ausserdem wird ein Re₂₋₄C als metastabile Phase angegeben /70/. Im System Eisen-Kohlenstoff sind trotz der unzähligen Untersuchungen (vgl. /75/) die Existenzbedingungen für die Carbide nicht endgültig geklärt. Ähnliches gilt für das oben genannte System Mangan-Kohlenstoff und auch für die Systeme Kobalt-Kohlenstoff und Nickel-Kohlenstoff. Verbindungen mit Kohlenstoff sind in diesen Systemen instabil oder metastabil, können jedoch durch bestimmte Herstellungsbedingungen und in bestimmten Temperaturbereichen erhalten werden. Kobalt und Nickel bilden mit Kohlenstoff eutektische Systeme mit eutektischen Punkten bei etwa 13 At.% Kohlenstoff und 1580 K für das System Kobalt-Kohlenstoff und etwa 10 At.% Kohlenstoff und 1590 K für Nickel-Kohlenstoff. Die Kohlenstofflöslichkeit in festem Kobalt bzw. Nickel beträgt bei den eutektischen Temperaturen etwa 5 bzw. 3 At.# /e/. Die Platinmetalle bilden mit Kohlenstoff ebenfalls eutektische Systeme /77/, Carbide der Zusammensetzung RuC und OsC /78/ konnten in späteren Untersuchungen nicht bestätigt werden /79/.

***** (a = 0.4005 nm, p >180 kbar)

Untersuchungen bei hohen Temperaturen und Drucken vgl. /89/. Neueste Untersuchungen stabiler und instabiler Gleichgewichte vgl. /93/.

Tabelle 2.1.4; Binäre Carbide der Obergangsmetalle der 7. und 8.Gruppe

Phase	Struktur Raumgruppe	Gitterkonstante [nm]	Existenzbereich	Litera- tur
^{Mn} 23 ^C 6	kub., Cr ₂₃ C ₆ 0 <mark>5</mark> - Fm3m	a = 1.061	T<∿1300 K	/61/
^{Mn} 11 ^C 3	hex.	a = 0,7492 c = 0,5080	∿1150 K < T <∿1250 K	/62, 63/
Mn ₃ C	orthorh., Fe ₃ C DO ₁₁ -Pnma	a = 0.4530 b = 0.4573 c = 0.6772	∿1220 K < T <∿1320 K	/61/
Mn ₅ C ₂	monoklin., -C2/c	a = 0.5086 b = 0.4573 c = 1.166 β = 17,750	T<∿1320 K	/61/
Mn7 ^C 3	hex., Cr ₇ C ₃ -P31c	a = 1.390 c = 0.454	T<∿1370 K	_/61/
Mn7 ^C 3	orthorh., ^{Mn} 7 ^C 3 D ⁵ 2h ⁻ Pnma	a = 0.4546 b = 0.6959 c = 1.1979		·/64/
^{тс} 2-3 ^С	kfz., Defect-NaCl O ⁵ -Fm3m h	a = 0.3982		/65, 66/
ReC	hex. P6 ₃ /mmc	a = 0.2840 c = 0.985	T>∿1070 K p >60 Kbar	/68/
Re ₂₋₄ C			metastabil	/70/
Fe ₃ C	orthorh., Fe ₃ C DO ₁₁ -Pnma	a = 0.5090 b = 0.6748 c = 0.4523		/71/
Fe ₇ C ₃	hex., Th ₇ Fe ₃ D10 ₂ -P6 ₃ mc	a = 0.6882 c = 0.4540	thermisch instabil	/72/
,	monoklin	a = 0.2794 c = 0.4360 γ = 120.92°		/73/
Co ₂ C	orthorh., Co ₂ N -Pnma	a = 0.2910 b = 0.4469 c = 0.4426	thermisch instabil T<∿730 K	/74,75/
Co3C	orthorh., Fe ₃ C DO ₁₁ -Pnma	a = 0.4483 b = 0.5033 c = 0.6731	thermisch instabil T≪∿750 K	/74,75/
Ni ₃ C	rhomboedrisch -R3c	$a = 0.5505 \alpha = 53^{0}39^{1} a = 0.4553 c = 1.292$	Stabilitätsbereich nicht gesichert hexagonale Zelle	/75,76/
	hexagonal	a = 0.2628 c = 0.4306		(vg1.75)

.

.....

Literatur: Binare Carbide (Kap. 2.1) /a/ E.K.Storms; Refractory Carbides; Academic Press, New York (1967) sowie: E.K.Storms; Phase Relationship and Electrical Properties of Refractory Carbides and Nitrides; in L.Roberts (Herausgeber) Solid State Chemistry, 10 (1972), 37; Butterworth, London 1972 /b/ E.Rudy; "Compendium of Phase Diagram Data", Tech.Rep. AFML-TR-65-2, Part V (1969) /c/ G.V.Samsonov, G.S.Upadchaja, V.S.Nespor; Fiziceskol materialovedenie karbidov, Jzd.Naukova dumka, Kiew 1974 /d/ H.Holleck, H.Kleykamp; in Gmelins Handbuch der anorganischen Chemie; Transurane, Teil C, S.199; Verlag Chemie, Weinheim (1972) /1/ H.Rassaerts, H.Nowotny, G.Vinek, F.Benesovsky; Mh.Chem.98 (1967) 460 /2/ H.Jedlicka, H.Nowotny, F.Benesovsky; Mh.Chem.102 (1971) 389 /3a/ N.H.Krikorian, A.L. Giorgi, E.G. Szklarz, M.C.Krupka; J.Less Common Met. 19 (1969) 253 /3b/ N.H.Krikorian, A.L.Bowman, M.C.Krupka, G.B.Arnold; High Temp. Sci. 1 (1969) 360 /4/ O.N.Carlson, W.M.Paulson; Trans. AIME 242 (1968) 846 /5/ M.Atoji, M.Kitzuchi; J.Chem-Phys.51 (1969) 3863 /6/ E.K.Storms; High Temp.Sci. 3 (1971) 99 /7/ M.C.Krupka, A.L.Giorgi, N.H.Krikorian, E.G.Szklarz; J.Less Common Met. 17 (1969) 91 /8/ N.H.Krikorian, T.C.Wallace, M.G.Bowman; Colloque Internat. Centre Nat.Rech.Sci. Univ. Paris 1965; LA-DC-6819 (1965) /9/ A.L.Bowman, N.H.Krikorian, G.P.Arnold, T.C.Wallace, N.G.Nereson; LA-DC-8451 (1967) /10/ F.Spedding, K.Gschneidner, A.Danne;

J.Am.Chem.Soc.80 (1958) 4499

- 37 -

- /11/ A.L.Bowman, N.H.Krikorian, G.P.Arnold, T.C. Wallace; Acta Cryst., B 24 (1968) 459
- /12/ A.L.Bowman, G.P.Arnold, W.G.Wittemann, T.C.Wallace, N.G.Nereson; Acta Cryst.21 (1966) 670
- /13/ I.J.McCohn, T.A.Quigley; J.inorg. nucl. Chem. 35 (1973) 1931
- /14/ R.Lallement, J.J.Veyssie; Progress in the Science and Technology of the Rare Earth L.Eyring (Hrsg.) Perg. Press 1968, S. 284
- /15/ G.L.Bacchella, P.Meriel, M.Pinot, R.Lallement; Bull.Soc.Franc.Miner.Crist. 89 (1966) 226
- /16/ A.Lapace, R.Lorenzelli; Colleg.int. CNRS, 180 (1970) 385
- /17/ R.E.Gebelt, H.A.Eick; Inorg.Chem. 3 (1964) 335
- /18/ N.N.Matyushenko, A.P.Svinarenko; Ukrain. fiz. jurn.13 (1968) 1083
- /19/ M.Atoji; J.Chem.Phys. 51 (1969) 3872
- /20/ R.Lallement; Report CEA-R 3043 (1966)
- /21/ F.Spedding, K.Gschneidner, A.Danne; Trans. AIME, 215 (1959) 192
- /22/ R.Benz, P.L.Stone; High.Temp.Sci.114 (1969) 1
- /23/ P.Chiotti, R.W.White; J.Nucl.Mat.23 (1967) 37
- /23a/ R.Lorenzelli, I. deDieuleveult; J.Nucl.Mat.29 (1969) 349
- /24/ M.C.Krupka; J.Less Common Met.20 (1970) 135
- /25/ P.K.Gantzel, N.L.Baldwin; Acta Cryst. 17 (1964) 772
- /26/ A.L.Bowman, N.H.Krikorian, G.P.Arnold, T.Wallace, N.G.Nereson; Acta Cryst. B 24 (1968) 1121
- /27/ R.Lorenz, H.L.Scherff, N.Toussaint; J.inorg.nucl.Chem. 31 (1969) 2381

- /28/ R.Benz, C.G.Hoffman, G.N.Rupert; High.Temp.Sci 1 (1969) 342
- /29/ J.F.Hennecke, C.J.Toussaint; J.Appl.Crystallogr. 2 (1969) 301
- /30/ H.Tagawa, K.Fujii, Y.Sasaki; J.Nucl.Sci.Technol. 8 (1971) 244
- /31/ A.L.Bowman, G.P.Arnold, W.G.Witteman, T.C.Wallace, N.G.Nereson; Acta Cryst. 21 (1966) 670
- /32/ M.V.Nevitt; ANL - 6868 (1963) 312
- /33/ R.Lorenzelli; Compt.Rend. C266 (1968) 900
- /34/ A.W.Mitchell, D.J.Lam; J.Nucl.Mat. 36 (1970) 110
- /35/ W.H.Zachariasen, H.A.Plettinger; ANL - 4798 (1952) 38
- /36/ I.Sheft, S.Fried; J.Am.Chem.Soc. 75 (1953) 1236
- /37/ R.N.Mulford, F.H.Ellinger, G.S.Hendrix, E.D.Albrecht; in E.Grison, W.B.Lord, R.D.Fowler; Plutonium 1960, Proc. 2ndIntern. Conf. Plutonium Met., Grenoble, 1960 (1961) S. 301
- /38/ D.M.Chackraburtty, N.C.Jayadevan; Acta Cryst. 18 (1965) 811
- /39/ J.G.Reavis, J.A.Leary; in W.N.Miner, Proc. 4.Int.Conf. Plutonium 1970 and other Actinides, Santa Fe 1970, S. 809
- /40/ J.T.Dalton, E.A.Harper, H.J.Hedger, R.W.Stannard; In: W.N.Miner, Proc.4.1M#.Conf.Plutonium 1970 and other Actinides, Santa Fe 1970, S. 829
- /41/ P.Chiotti, F.W.Korbitz, G.J.Dooley; J.Nucl.Mat. 23 (1967) 55
- /42/ J.Langier, P.L.Blum; Compt.Rend, Ser.C, 270 (1970) 1358
- /43/ E.A.Harper, H.J.Hedger, J.T.Dalton; Nature 219 (1968) 151
- /44/ J.P.Marcon, J.Poikean, G.Roullet; in: W.N. Miner, Proc. 4.Int.Conf.Plutonium 1970 and other Actinides, Santa Fe 1970, S.779

- /45/ H.Goretzki; Phys.Status Solidi, 27 (1967) 141
- /46/ P.S.Bell, M.H.Lewis; Phil.Mag.24 (1971) 1247
- /47/ E.Rudy, C.E.Brukl; J.Am.Ceram.Soc. 50 (1967) 265
- /48/ K.Yvon, W.Rieger, H.Nowotny; Mh.Chem. 97 (1966) 689
- /49/ K.Yvon, E.Parthé; Acta Cryst. B 26 (1970) 149
- /50/ J.D.Venables, D.Kahn, R.G.Lye; Phil.Mag.18 (1968) 177
- /51/ J.Billingham, P.S.Bell, M.H.Lewis; Acta Cryst. A 28 (1972) 602
- /52/ Y.Guérin, Ch.de Novion; Rev.Int.Hautes Tempér. et Refract.8 (1971) 311
- /53/ E.Storms, B.Calkin, A.Yencha; High Temp. Science 1 (1969) 430
- /54/ K.Yvon, H.Nowotny, R.Kieffer; Mh.Chem. 98 (1967) 34
- /55/ J.D.Venables, M.H.Meyerhoff; NSB Publ.Solid State Chem. Proc. 5th Mat.Res.Symp.,Gaithersburg, Juli 1975, S. 583
- /56/ E.Rudy, S.Windisch; J.Am.Ceram.Soc. 50 (1967) 272
- /57/ H.Nowotny, P.Ettmayer; J.Inst.Metals, 97 (1969) 180
- /58/ M.Sauvage, E.Parthé; Acta Cryst. A 28 (1972) 607
- /59/ W.F.Brizes, H.D.Brody; J.Am.Ceram.Soc.55 (1972) 277
- /60/ E.Rudy, S.Windisch, A.Stosick, J.Hoffman; Trans AIME, 239 (1967) 1247
- /61/ K.Kuo, L.E.Persson; J.Iron Steel Inst. 178 (1954) 39
- /62/ J.P.Bouchaud, R.Fruchart; Compt.Rend. 258 (1964) 3495

- /63/ R.Fruchart, J.P.Audière, A.Michel: Compt.Rend. C 266 (1968) 1691
- /64/ J.P.Bouchaud, R.Fruchart; Bull.Soc.Chim.France, 1 (1965) 130
- /65/ W.Trzebiatowski, J.Rudzinski; Z.Chem. 2 (1962) 158
- /66/ H.R.Haines, P.G.Mardon, P.E.Potter; 5th. Int.Conf. on Pu and other Actinides, Baden-Baden, Sept.1975

Proceedings, S. 233

- /67/ J.E.Hughes; J.Less Common Met. 1 (1959) 377
- /68/ S.V.Popova, L.G.Baiko; High Temp.-High Pressure 3 (1971) 237
- /69/ S.V.Popova, L.N.Fornicheva, L.G.Khvostansev; JETP. Letters 16 (1972) 429
- /70/ E.M.Savitskii, M.A.Tylkina, L.Z.Koniveva, V.I. Kashin, E.L.Kiebanov; Jzv. Vyssh Ucheb Zaved. Tsvet Met. 5 (1972) 134
- /71/ F.H.Herbstein, J.Smuts; Acta Cryst.17 (1968) 1331
- /72/ F.H.Herbstein, J.A.Suyman; Inorg.Chem. 3 (1964) 894
- /73/ G.H.Barton, B.Gale; Acta Cryst. 17 (1964) 1460
- /74/ S.Nagakura; J.Phys.Soc. Japan, 16 (1961) 1213
- /75/ vgl. M.Hansen "Constitution of Binary Alloys" 1958 R.P.Elliott "First Supplement" 1965 F.A. Shunk "Second Supplement" 1969 McGraw-Hill, New York
- /76/ S.Oketani, S.Nagakura; J.Phys.Soc. Japan 17, Suppl. B-11 (1962) 235
- /77/ E.Raub, G.Falkenburg; Z.Metallkunde 55 (1964) 186
- /78/ C.P.Kempter, M.R.Nadler; J.Chem.Phys. 33 (1960) 1580
- /79/ B.Jeantet, A.G.Knapton; Planseeber. Pulvermet. 12 (1964) 12

- /80/ N.Obata, N.Nakazawa; J.Nucl.Mat. 59 (1976)
- /81/ V.G.Zubkov, L.B.Dubrovskaya, P.V.Geld, V.A.Tskhay, Y.A.Dorofeyer; Fiz. metal. metalloved 27 (1969) 352
- /82/ J.Schuster, E.Rudy, H.Nowotny; Mh.Chem. 107 (1976) 1167
- /83/ E.Rudy, B.F.Kieffer, E.Baroch; Planseeber. Pulvermet. 26 (1978) 105
- /84/ A.N.Christensen; Acta Chem.Scand, A 31 (1977) 509
- /85/ A.Ya.Shinyaer, V.B.Federov, L.G.Gorshkova, D.B.Chernov; Sov.Phys. Dokl. 18 (1974) 673
- /86/ B.V.Khaenko; Porosk.Met. 1 (1978) 71
- /87/ J.Schuster, H.Nowotny; Mh.Chem. 110 (1979) 321
- /88/ Ch.H.DeNovion, V.Maurice; J.de Physique 38 (1977) (7-211)
- /89/ I.A.Korsunskaya, D.S.Kamenetskaya, T.B.Ershoya; High Temp. High Press 8 (1976) 661
- /90/ S.R.Shatynski; Oxidation of Met. 13 (1979) 105
- /91/ A. Inoue, T.Masumoto Scripta Met. 13 (1979) 711
- /92/ B.V.Khaemko Neorg. Mat. 15 (1979) 1952
- /93/ E.Schürmann, R.Schmid Arch. Eisenhüttenwes. 50 (1979) 185
- /94/ J.C.Schuster, H.Nowotny Mh.Chem. 110 (1979) 321

•

2.2 Binäre Nitridsysteme

Die Nitridsysteme der Übergangsmetalle sind wesentlich weniger untersucht worden und in ihrem Aufbau entsprechend weniger bekannt als die Systeme mit Kohlenstoff. Der Hauptgrund hierfür dürfte in der Problematik der experimentellen Untersuchung infolge der thermischen Instabilität der Nitride bei hohen Temperaturen liegen. Aber auch die zumindest in der Vergangenheit geringere technologische Bedeutung der Nitride gegenüber den Carbiden dürfte hierbei eine Rolle spielen, Neben vielen Gemeinsamkeiten, insbesondere hinsichtlich der Struktur und Phasenzusammensetzung von Nitriden und Carbiden ergeben sich auch charakteristische Unterschiede, vor allem bei den Systemen mit den Seltenen Erden und Actinoiden. Zusammenfassende Darstellungen über Struktur und Eigenschaften der Nitride sowie über die Phasenbeziehungen in Nitridsystemen geben Samsonov /a/ für alle Nitride der Übergangsmetalle, Lallement und Veyssie /b/ für die Nitride der Lanthanoiden, Potter und Rand /c/ sowie Holleck und Kleykamp /d/ für die Nitride der Actinoiden bzw. Transuranelemente, Kieffer und Benesovsky /e/, Tath /f/ und Storms /g/ für die Nitride der IV A, V A und VI A Übergangsmetalle sowie Goldschmidt /g/ insbesondere auch für die Nitride der Übergangsmetalle der 7. und 8. Gruppe. Weitere Daten, insbesondere auch Eigenschaften in Nitridsystemen, wurden von Fromm und Gebhardt /i/ gesammelt. Aus den zitierten Übersichtsarbeiten lässt sich jedoch kein einheitliches Bild über den Aufbau der Nitridsysteme gewinnen, da teilweise zu wenige Ergebnisse vorliegen, teilweise aber auch, da die Angaben in der Literatur zu widersprüchlich oder zu unvollständig sind. Auch heute sind wesentliche Bestimmungsstücke, die den Aufbau der Nitridsysteme beschreiben, noch unbekannt oder unklar. Vor allem gilt dies für die Druckabhängigkeit der Gleichgewichte, wie auch für die phasenstabilisierenden Einflüsse (z.B. Sauerstoffgehalt, Kohlenstoffgehalt usw.). Im folgenden wird der Aufbau der Nitridsysteme charakterisiert, wobei vor allem neuere Arbeiten mitberücksichtigt und die Diskrepanzen herausgestellt werden.

2.2.1 Nitride der Seltenen Erden

Die Seltenen Erden bilden nur ein stabiles Nitrid, das Mononitrid der Zusammensetzung SE.N. Diese Verbindungen treten nahezu stöchlometrisch auf und kristallisieren im NaCI-Typ. Die Gitterkonstante wird empfindlich durch den Sauerstoffgehalt beeinflusst. Da eine geringfügige Sauerstoff-

kontamination auch bei sorgfältiger Herstellung nur schwer zu vermeiden ist, findet man in der Literatur sehr unterschiedliche Werte für die Gitterkonstanten. Zusätzlich können die Nitride auch leicht unterstöchiometrisch auftreten, was ebenfalls die Zellabmessungen beeinflusst. Eine Sauerstofflösung in den Mononitriden führt im allgemeinen zu einer Verringerung der Gitterkonstante. Im Falle des Cers wird offensichtlich durch Sauerstoff der 3-wertige Zustand stabilisiert. Dies bewirkt einen Parameteranstieg mit steigender Sauerstoffkonzentration. Abnehmender Stickstoffgehalt hat eine zunehmende Gitterkonstante zur Folge. Dies wurde bisher für Ce /1/ sowie Ho und Er /2/ nachgewiesen, jedoch auch für andere Nitridphasen wahrscheinlich gemacht /2,3/. In Tab. 2.2.1 sind die binären Nitride der Seltenen Erden mit den Strukturdaten zusammengestellt. Als Gitterkonstanten wurden typische Werte ausgewählt. Die Werte von Holleck u.a. /3/ wurden an bei Stickstoffüberdruck im Lichtbogen geschmolzenen Proben gemessen und repräsentieren Werte für sauerstoffarme, leicht unterstöchiometrische Nitride.

Die Phasendiagramme der Systeme der Seltenen Erden mit Stickstoff sind mit Ausnahme der Systeme <u>Yttrium-Stickstoff</u> /7a/ und <u>Cer-Stickstoff</u> /7b/ nicht untersucht worden. Man kann jedoch annehmen, dass alle Systeme sehr ähnlich aufgebaut sind, d.h. eine hochschmelzende Verbindung mit geringem Homogenitätsbereich enthalten, die mit dem Metall und Stickstoff im Gleichgewicht steht. Die Abb.2.2.1 und 2.2.2 zeigen als typische Beispiele die Phasendiagramme der Systeme Yttrium-Stickstoff und Cer-Stickstoff.

2.2.2 Nitride der Actinoiden

Während die Seltenen Erden ein einheitliches Verhalten gegenüber Stickstoff zeigen, beobachtet man bei den Actinoiden einen unterschiedlichen Aufbau der Systeme je nach dem Grad der Lokalisierung der 5 f-Elektronen in den einzelnen Elementen der Actinoidenreihe. Die Elemente zu Anfang der Serie (Th,U) bilden zwei oder mehrere Nitride. Die Actinoiden werden jedoch mit steigender Ordnungszahl durch zunehmende Stabilisierung des 3-wertigen Zustandes den Seltenen Erden ähnlicher, was sich auch in den Phasenbeziehungen in der Weise ausdrückt, dass analog zu den Nitridsystemen der Seltenen Erden nur mehr ein Nitrid beobachtet wird (vgl. System Pu-N, Abb. 2.2.5). Tab. 2.2.2 gibt die bisher bekannten binären Nitrid-

Tab.	2.2.1:	Binäre	Nitride	der	Seltenen	Erden
	COLUMN TWO IS NOT THE OWNER.					

Phase	Strukturtyp Raumgruppe	Gitterkonstante (nm)	Existenzbereich	Literatur
ScN	kfz., NaCl 0 <mark>5</mark> - Fm3m h	0.4496		/4/
YN	kfz., NaCl O <mark>5</mark> - Fm3m h	0.4892 /3/ 0.5004 /5/	Schmelzpunkt bei 10 bar N ₂ T _s = 2940 K	/3,5/
LaN	kfz., NaCl O <mark>5</mark> - Fm3m h	0.5305 /3/ 0.5300 /5/	T _s (10 bar N ₂) = 2720 K	/b,3,5/ /7/
CeN	kfz., NaCl O <mark>5</mark> - Fm3m	0.5024 /3/ 0.5019 /5/	T _s (10 bar N ₂) = 2840 K	/6,3,5/ /7/
PrN	kfz., NaCl O <mark>5</mark> - Fm3m h	0.5165 /3/ 0.5157 /5/	T _s (10 bar N ₂) = 2840 K	/b,3,5/ /7/
NdN	kfz., NaCl O ⁵ - Fm3m h	0.5126 /3/ 0.5129 /5/	T _s (10 bar N ₂) = 2830 K	/b,3,5/ /7/
SmN	kfz., NaCl O ⁵ - Fm3m h	0.5049 /2/ 0.5045 /5/	· ·	/b,2,5/
EuN	kfz., NaCl 0 <mark>5</mark> - Fm3m h	0.5018 /2/ 0.5026 /5/		/b,2,5/
GdN	kfz., NaCl O ⁵ - Fm3m h	0.4988 /2/ 0.4985 /5/		/b,2,5 /7/
ТЪМ	kfz., NaCl O ⁵ - Fm3m	0.4938 /2,5/		/b,2,5/
Dyn	kfz., NaCl 0 <mark>5</mark> - Fm3m	0.4904 /5/		/b,5/
HoN	kfz., NaCl O ⁵ - Fm3m h	0.4875 /2/ 0.4871 /5/		/b,2,5/
ErN	kfz., NaCl 0 <mark>5</mark> - Fm3m	0.4843 /2/ 0.4841 /5/		/b,2,5/
TmN	kfz., NaCl O ⁵ - Fm3m h	0.4846 /5/		/b,5/
YDN	kfz., NaCl 0 <mark>5</mark> - Fm3m	0.4783 /2,5/		/b,2,5/
LuN.	k fz., NaCl 0 ⁵ - Fm3m h	0.4760 /5/		/b,5/

.

Abb.2.2.1: Phasendiagramm des Systems Yttrium-Stickstoff (nach Lit.[7a])

Abb.2.2.3: Phasendiagramm des Systems Thorium-Stickstoff (vgl.Lit.[8,9])

Abb.2.2.2: Phasendiagramm des Systems Cer-Stickstoff (nach Lit.[7b])

Phase	Strukturtyp Raumgruppe	Gitterkonstante (nm)	Existenzbereich Bemerkung	Litera- tur
ThN	kfz.; NaCl O <mark>5</mark> - Fm3m	a = 0.5155	T < T _s < 3080 K (PN ₂ ∿ 2 - 3 bar)	/c/
Th ₃ N ₄	rhomboedr., R3m monoklin	a = 0.3875 c = 2.739 a = 0.6952 b = 0.383 c = 0.6206 α = 90.71 ⁰	hexagonale Gitterkon- stanten	/8,9,9a/ /8,9,9a/
UN	kfz.; NaCl 0 <mark>5</mark> - Fm3m	a = 0.4889	T _S ∿ 3120 K (2 - 3 bar N ₂)	/c,13,14,15/ /16/
^{β-U} 2 ^N 3-x	hex.; La ₂ 0 ₃	a = 0.3696 c = 0.5840	T > 1070 K	/c,13,17,18/
^{α-U} 2 ^N 3+x	krz.; Mn ₂ 0 ₃	a = 1.0685		/c,13/
^{UN} 1.7	kfz.; def.CaF ₂	a = 0.531		/23/
NpN	kfz.; NaCl O <mark>5</mark> = Fm3m	a = 0.48987	T _s ∿ 3100 K (10 bar N ₂)	/d/ /25/
PuN	kfz.; NaCl O <mark>5</mark> - Fm3m	a = 0.4904	T _{zers.∿} 2840 K (1 bar N ₂) √3040 K(10 bar N ₂)	/d/ /26,27,28/
AmN	kfz.; NaCl O ⁵ - Fm3m	a = 0.5000		/d,30/
CmN	kfz.; NaCl 0 <mark>5</mark> - Fm3m h	a = 0.5027		/31,32/
BkN	kfz.; NaCl O ⁵ - Fm3m h	a = 0.5010	ohne genaue Analyse	/32/

Tab. 2.2	.2 Binäre	Nitride	der	Actinoiden	

phasen der Actinoiden wieder. Eingehendere Untersuchungen liegen nur für die Systeme Thorium-Stickstoff, Uran-Stickstoff und Plutonium-Stickstoff vor.

Im System <u>Thorium-Stickstoff</u> existieren zwei Verbindungen, ThN und Th₃N₄ /8,9/. Ein Nitrid der Zusammensetzung Th₂N₃ /10/ erwies sich als Oxinitrid Th₂N₂O /11/. ThN hat einen sehr geringen Homogenitätsbereich /12/, innerhalb dessen sich die Gitterkonstante geringfügig zwischen 0.5155 nm und 0.5153 nm ändert. ThN schmilzt kongruent bei etwa 3080 K unter einem Stickstoffdruck von 2 bis 3 bar /c/. Abb. 2.2.3 zeigt ein Phasendiagramm des Systems Thorium-Stickstoff, welches nach den experimentellen Befunden von Benz u.a. /8,9/ gezeichnet wurde.

Von den binären Nitridsystemen der Actinoiden ist das System Uran-Stickstoff am besten untersucht (vgl. eine Zusammenfassung vieler Einzelergebnisse in Lit. /13/). Dies liegt vor allem an dem zeitweise regen Interesse an UN-haltigen Kernbrennstoffen. Trotzdem sind aber auch hier die Phasenbeziehungen nicht endgültig geklärt. Uran bildet drei bzw. vier Nitride. Das Mononitrid UN tritt stöchiometrisch, mit einem sehr geringen Homogenitätsbereich bei höheren Temperaturen auf. Die Gitterkonstante der im NaCI-Typ kristallisierenden Verbindungen beträgt 0.4889 nm /14,15/. Die Verbindung schmilzt kongruent bei ∿3120 K und einem Stickstoffdruck von 2 bis 3 bar /16/. $B-U_2N_{3-x}$ existient nur oberhalb etwa 1070 K /17,18/ und kristallisiert im La₂0₃-Typ, isotyp dem A-Typ der Sesquioxide der Seltenen Erden. Der Stickstoffgehalt der Verbindung liegt immer unterhalb dem Verhältnis N/U = 1.5 /19,20,21,22/. Umgekehrt wird die kubische Phase $\alpha - U_2 N_{3+x}$ nur bei N/U-Verhältnissen grösser als 1.5 beobachtet. α -U₂N_{3+x} kann unter erhöhtem Stickstoffdruck erhebliche Mengen Stickstoff im Gitter lösen. Bei einem N/U-Verhältnis von 1.70 bis 1.75 wandelt sich die kubisch raumzentrierte Struktur (Mn_2O_3 -Typ), die als Defekt-CaF2-Typ mit geordneten Leerstellen betrachtet werden kann, in die kubisch flächenzentrierte Struktur des CaF₂-Typs um. Für eine Verbindung $UN_{1,71}$ wurde eine Gitterkonstante von a = 0.531 nm gefunden /23/. Mit zunehmendem Stickstoffgehalt nimmt die Gitterkonstante ab.

Das Phasendiagramm des Systems Uran-Stickstoff (Abb.2.2.4) wurde im wesentlichen unter Zugrundelegung der Literaturdaten (vgl. /13/), unter Be-

Abb.2.2.4: Phasendiagramm des Systems Uran-Stickstoff (vgl. Lit.[13,24])

Abb.2.2.5: Phasendiagramm des Systems Plutonium-Stickstoff (vgl.Lit.[29])

Abb.2.2.6: Phasendiagramm des Systems Titan-Stickstoff (vgl. Lit.[53])

Abb.2.2.7: Phasendiagramm des Systems Zirkon-Stickstoff (vgl. Lit.[f])

rücksichtigung von Untersuchungen mit der Differentlalthermoanalyse im stickstoffreichen Gebiet /24/ aufgestellt.

Im System Neptunium-Stickstoff ist bisher nur das Mononitrid NpN bekannt, das kongruent bei 3100 K und 10 bar N $_2$ schmilzt /25/.

Im System <u>Plutonium-Stickstoff</u> existiert wie bei den Nitridsystemen der Seltenen Erden nur eine Verbindung. Das kubisch flächenzentrierte Mononitrid PuN tritt stöchiometrisch auf und hat höchstens einen geringen Homogenitätsbereich (vgl. /d/). Es zersetzt sich bei 1 bar N_2 und v2840 K /26,27/. Auch bei 25 bar N_2 und v3040 K /28/ wurde inkongruentes Schmelzen beobachtet. Der Vorschlag eines Phasendiagramms (vgl. Abb. 2.2.5) wurde vom Autor aufgrund der Literaturdaten gegeben /29/. Während über das System Protactinium-Stickstoff keine Angaben vorliegen, wurden in den Systemen Americium-Stickstoff /30/, Curium-Stickstoff /31,32/ und Berkelium-Stickstoff /32/ jeweils ein kubisch flächenzentriertes Mononitrid nachgewiesen. Die Strukturdaten sind in Tab. 2.2.2 wiedergegeben. Weitere Ergebnisse liegen in der Literatur über diese Systeme nicht vor.

2.2.3 Nitride der Übergangsmetalle der 4., 5. und 6.Gruppe

Die Stabilität der Nitride nimmt von den Übergangsmetallen der 4.Gruppe Ti, Zr und Hf, über die der 5.Gruppe, V,Nb und Ta, zu den Metallen der 6.Gruppe stark ab. Gleichzeitig werden die Nitride innerhalb einer Gruppe mit steigender Ordnungszahl des Metalls instabiler. So bleibt TiN_{1-x} bei 1 bar N₂ bis nahe 3300 Kstabil, während Wolfram auch bei hohen Stickstoffdrucken (∿300 bar) keine Stickstoffaufnahme zeigt. im Gegensatz zu den Seltenen Erden und den Actinoiden sind die Nitridsysteme der Übergangsmetalle der 4. und 5.Gruppe durch mehrere Nitridphasen mit teilweise ausgedehnten Homogenitätsbereichen charakterisiert. Fragen des Einflusses von Stickstoffdruck und Sauerstoffgehalt auf die Gleichgewichte sind oftmals ungeklärt. Ebenso ist die Frage der Ordnung im Nichtmetallgitter - bei den Carbiden schon eingehender untersucht - hier noch kaum betrachtet worden. Die Nitridphasen der Übergangsmetalle der 4., 5. und 6.Gruppe sind in Tab. 2.2.3 zusammengestellt. Hierbei wurden nur Nitride berücksichtigt, die als einigermassen gesichert angesehen werden können. Einige "Nitride" wurden

(vgl. /92,97/)

Phase	Strukturtyp Raumgruppe	Gitterkonstante (nm)	Existenzbereich Bemerkung	Literatur
Ti2 ^N	tetr., P4 ₂ /mnm	a = 0,49428 c = 0,30357	1173 К < Т < 1673 К	/33,33a/
	tetr.	a = 0.4140 c = 0.8805	T < 1173 K	/33a/
TiN _{1-x}	kfz., NaCl O <mark>5</mark> - Fm3m	a = 0.4223 (29 At.% N) a = 0.4242 (50 At.% N) a = 0.4225 (52 At.% N)	29 - 52 At.% N	/35,36/
ZrN _{1-x}	kfz., NaCl O <mark>5</mark> - Fm3m	$ \begin{array}{l} a = 0.4581 & (38 \ \text{At.\% N}) \\ a = 0.4577 & (45 \ \text{At.\% N}) \\ a = 0.4577 & (47 \ \text{At.\% N}) \\ a = 0.4577 & (47 \ \text{At.\% N}) \\ a = 0.4575 & (49 \ \text{At.\% N}) \end{array} $	35 - 50 At.% N	/34,35/ /37/
Hf ₃ N _{2-x}	romboedr. D ⁵ -R3m d	a = 0.7972 a = 23°12'	∿1100 K < T < ∿2300 K	/38,39/
Hf ₄ N ₃			ev. O ₂ -haltig	/38/
HfN1-x	kfz., NaCl O <mark>5</mark> - Fm3m	a = 0.4525 (45 At.% N) a = 0.4519 (50 At.% N) a = 0.4512 (52 At.% N)	42 - 52 At.% N	/e, 40/
V _{2+x} N	hex., L'3 D <mark>4</mark> - P6 ₃ /mmc	a = 0.28368 - 0.28408 c = 0.45421 - 0.45501	27 - 33 At.% N	/35/ /41/
VN _{1-x}	kfz., NaCl D <mark>5</mark> - Fm3m	a = 0.40662 (42 At.% N) a = 0.41398 (50 At.% N	42 - 50 At.% N	/35/
Nb ₂ N	hex., L'3 D <mark>á</mark> h - P6 ₃ /mmc	a = 0.3056 c = 0.4955 - 0.4996	28 - 33 At.% N	/35,42/
	hex., ε-Fe ₂ N			/35/
y-Nb ₄ N ₃ (0)	tetr., def. NaCl	a = 0.4385 c = 0.4310	43 - 44 At.% N ev. O ₂ -haltig	/35/ /43/
S-NDN 1-x	kfz., NaCl O _h ⁵ - Fm3m	a = 0.4381 (47 At.% N) a = 0.4392 (49 At.% N)	47 - 49 At.% N (1 bar N ₂) - 51 At.% (160 bar N ₂)	/35/
8-NbN(0)	hex.,Anti-NiAs	a = 0,2966 c = 0,5536	0 ₂ -haltig	/35,43/
e~NbN(0)	hex., TiP-Typ	a = 0.2959 c = 1.1271	0 ₂ -haltig	/35,43/
ND5N6	hex.	a = 0.5193 c = 1.0380	erhalten durch Nitrierung dünner Schichten in NH ₃	/44/
Nb ₄ N ₅ (0)	tetr.	a = 0.6873 c = 0.4298	erhalten durch Nitrierung dünner Schichten in NH ₃	/44/
Ta ₂ N	hex., L'3 D _{6h} - P6 ₃ /mmc	a = 0.3050 (33 At.% N) c = 0.4928	29 - 33 At.% N	/34,35,45/
	hex., ε-Fe ₂ N		Ordnungsphase	/35/
^{6-TaN} 1-x	kfz., NaCl D <mark>5</mark> - Fm3m h - Fm3m	a = 0.433 - 0.435	Hochtemperaturphase	/45,46/
ε-TaN(0)	hex., CoSn∓Typ Ð ¹ - P6/mman	a = 0.5190 c = 0.2900	50 At.% N (ev. O ₂ -haltig)	/35,47/

Tabelle	2.2.3:	Binäre	Nitride	der	Obergangsmetalle	der	4.,	5.	und	6.	Gruppe

Phase	Strukturtyp Raumgruppe	Gitterkonstante (nm)	Existenzbereich Bemerkung	Literatur
TaN _{0.8-0.9}	hexagonal, WC-Typ	a = 0.2925 - 0.2938 c = 0.2876 - 0.2883	(ev. 0 ₂ -stabilisiert)	/34,35/
Ta5N6	hex.	a = 0.5176 c ≃ 1.0353	Reaktion mit NH3 oder Zers. von höheren Nitriden	/48/
Ta4N5	tetr.	a = 0.6831 c ≈ 0.4269		/48/
Ta ₃ N5	Стст	a = 0.3893 b = 1.0264 c = 1.		/49/
Cr ₂ N	hex., L'3 D ⁴ . ~ P6p/mmc	a = 0.2752 - 0.2775 c = 0.4448 - 0.4483		/34,35/
	bn ^{tr} anna	a = 0.4760 - 0.4806 c = 0.4438 - 0.4479	Oberstruktur der hexagona- len Zelle	/34,35/
CrN	kfz., NaCl Oh - Fm3m	a = 0.4149	50 At.% N	/34,35/
β-Mo ₂ N	tetrag.	a = 0.4205 (30.5 At.% N) c = 0.8026	29 - 34 At.% N	/50/
Y-Mo ₂ N	kfz.	a = 0.4145 (30.5 At.% N)	29 - 34 At.% N	/50/
e-Mon	h ex., D ⁴ _{6h} - P6 ₃ /mmc	a = 0.5725 c = 0.5608	geordnete Phase a'(ungeordnet) ⁼ 2 c'(ungeordnet) ⁼ 2	/51/
W2N	kfz.	a = 0.4126		/34,35/
6-WN	hex., D _{6h} - P6 ₃ /mmc	a = 0.2893 c = 0.2826	auch Ordnungszustände existent	/51/

Abb.2.2.8: Phasendiagramm des Systems Hafnium-Stickstoff (vgl. Lit. [55])

zusätzlich mit (O) versehen, um darauf aufmerksam zu machen, dass sie evtl. durch Sauerstoff stabilisiert sind.

Im System <u>Titan-Stickstoff</u> sind zwei Nitride bekannt: das kubisch flächenzentrierte Mononitrid TiN_{1-x}, welches unterstöchlometrisch bis zu einer Zusammensetzung von etwa TiN_{0.41} auftreten kann /30/, und die Tieftemperaturphase Ti₂N mit einer primitiv tetragonalen Zelle /31/. TIN existiert auch leicht überstöchlometrisch. Hierbei ist von Fehlstellen im Metallgitter auszugehen. Die Gitterkonstante des Nitrids stelgt nahezu linear von der unteren Phasengrenze (TIN_{0.41}) bis TIN an und nimmt dann im überstöchlometrischen Bereich stark ab /32/. TiN schmilzt unabhängig vom Stickstoffdruck (p \geq 1 bar) bei etwa 3200 K /52/. Abb. 2.2.6 zeigt ein Phasendiagramm, welches im wesentlichen nach-Befunden von Palty u.a. /53/ zusammengestellt wurde (vgl. auch /85,89/).

Das System <u>Zirkon-Stickstoff</u> wird bestimmt durch eine Nitridphase in den Grenzen zwischen 35 At.% N₂ und 50 At.% N₂ sowie durch eine ausgedehnte feste Lösung von Stickstoff in α -Zr, ähnlich der Lösung von Stickstoff in α -Ti. ZrN schmilzt bei etwa 3300 K ($p \ge 1$ bar N₂) /52/. Abb. 2.2.7 zeigt das Zustandsdiagramm des Systems Zirkon-Stickstoff, in wesentlichen Teilen auf einer Darstellung von Storms /f/ beruhend (vgl. auch /93/). Das System Hafnium-Stickstoff ist dem System Zirkon-Stickstoff in sei-

nem grundsätzlichen Aufbau sehr ähnlich. Neben dem Mononitrid - in den Grenzen zwischen etwa 34 At.% N₂ und etwa 53 At.% N₂ - und der festen Lösung von Stickstoff in α -Hf wurden Nitride der Zusammensetzung Hf₃N_{2-x} (33 At.% N₂) /38,39/ und Hf₄N₃ (38 At.% N₂) /38/ gefunden. Ebenso wie ZrN enthält HfN_{1±x} Leerstellen sowohl im Metall als auch im Stickstoffteilgitter /40/. HfN schmilzt bei etwa 3600 K /52/ bzw. etwa 3700 K /54/. Abb. 2.2.8 zeigt das Phasendiagramm des Systems Hafnium-Stickstoff im wesentlichen nach Angaben von Rudy /55/.

Die Nitridsysteme der V A Übergangsmetalle sind nur unzureichend bekannt, da viele der bisherigen Arbeiten an sauerstoffhaltigen Proben durchgeführt wurden bzw. da der Stickstoffdruck nicht definiert wurde.

Verhältnismässig wenige Arbeiten befassen sich mit dem Aufbau des Systems <u>Vanadin-Stickstoff</u>. Es sind zwei Vanadinnitride bekannt: V₂₋₃N mit einem Homogenitätsbereich von VN_{0.37} bis VN_{0.43} bei 1230 K /56/ bzw. von VN_{0.35} bis VN_{0.40} bei 1570 bis 1870 K /57/. VN_{1-x} existiert bei Temperaturen zwischen 1270 und 1870 K in den Grenzen VN_{0.71} bis VN_{1.0} /56,57/.⁺⁾VN schmilzt bei 2600 \pm 20 K und erhöhtem Stickstoffdruck (p > 1 bar) unzersetzt /52/ (bzw. V-Nitride, vgl. auch /84,86-91,98/).

Obwohl im System Niob-Stickstoff und auch im System Tantal-Stickstoff viele Untersuchungen durchgeführt wurden, ist die Existenz mancher Nitridphase nicht gesichert. Vor allem ist der Einfluss des Sauerstoffs auf die Phasengleichgewichte unklar. Im System Niob-Stickstoff werden in vielen Arbeiten (vgl. /a,e,f/) die Nitride Nb₂N (hexagonal, 0.4 < $\frac{N}{Nb}$ < 0.5), γ -Nb₄N₃ (tetragonal), δ -NbN_{1-x} (kubisch), ϵ -NbN (hexagonal) als binäre Nitridphasen angegeben. Darüber hinaus wurden eine weitere hexagonale Phase &'-NbN bei 0.75 \leq N/Nb \leq 0.80/46,58;59/ sowie höhere Nitride Nb_5N_6 und Nb_4N_5 - diese bei Nitrierung mit NH_3 -, gefunden /44/. Untersuchungen von Roberts /60/ deuten darauf hin, dass nur Nb₂N und das kubische NbN_{1-x} wirklich binäre Phasen sind, und dass vor allem das tetragonal deformierte Nb_AN_3 sowie das hexagonale ϵ -NbN durch Sauerstoff stabilisiert werden. Die Sauerstoffstabilisierung von Nb_4N_3 wurde übrigens schon von Schönberg /51/ erwähnt. Anzeichen hierfür könnten auch sein, dass es kürzlich gelang, stöchlometrisches NbN mit kubisch flächenzentrierter Kristalistruktur (a = 0.4394 nm) durch Nitrierung von Niob in reinstem Stickstoff herzustellen /61/. Vorschläge zum Aufbau des Phasendiagramms wurden mehrfach gegeben (vgl. /a,f,35/). Abb. 2.2.9a zeigt einen Vorschlag nach Daten von Levinskiy /62/ und Abb. 2.2.9b einen modifizierten Vorschlag unter Annahme der Sauerstoffstabilisierung von Nb_AN_x und ϵ -NbN (vgl. System Nb-N-O) sowie unter Berücksichtigung von neueren Angaben über die Zersetzung und den Schmelzpunkt der Nitride /52,63/. Die Löslichkeit von Stickstoff im kubisch raumzentrierten Niob ist bei tiefen Temperaturen gering (z.B. 3,7 At.% bei 1770 K) nimmt jedoch zu hohen T@mperaturen beträchtlich zu (z.B. 18 At.≸ bel 2570 K nach /64/).

Auch im System <u>Tantal-Stickstoff</u> scheint die Frage einer eventuellen Sauerstoffstabilisierung mancher"Nitridphasen" nicht endgültig geklärt. Sichere Phasen des binären Systems sind das hexagonale Ta₂N (0.4 < N/Ta < 0.5) und das kubisch flächenzentrierte TaN_{1-x} /a,e,f,35,45/.

+) Unterhalb etwa 800 K tritt bei einer Zusammensetzung VN 0.85 Ordnung im Stickstoffteilgitter auf /90/.

Abb.2.2.9: Phasendiagramm des Systems Niob-Stickstoff (p=1 bar N₂) a) (vgl.Lit.[62]) b) modifiziert unter Berücksichtigung der mög-lichen 0_2 -Stabilisierung und neuerer Arbeiten (siehe Text)

Abb.2.2.10: Phasendiagramm des Systems Tantal-Stickstoff (vg]. Lit.[45])

Abb.2.2.11: Phasendiagramm des Systems Chrom-Stickstoff (vgl. Lit. [70,71,72,73])

Da das kubisch flächenzentrierte Ta N_{1-x} bei hohen Temperaturen einen hohen Stickstoffzersetzungsdruck aufweist und bei tiefen Temperaturen in das hexagonale TaN /35,47/ (nach /43/ sauerstoffstabilisiert) zerfällt, wurde die Darstellung meist unter Stickstoffdrucken ≥ 10 bar durchgeführt. Im stickstoffreichen Teil des Systems werden die Verbindungen Ta_5N_6 /48/, Ta₄N₅ /48/ und Ta₃N₅ /49/ angegeben, die allerdings nur bei tiefen Temperaturen und hohen Stickstoffdrucken bzw. bei $\mathsf{NH}_{\mathtt{x}}\text{-}$ Nitrierung in dünnen Schichten zu erhalten sind. Die Löslichkeit von Stickstoff in Tantal ist stark temperaturabhängig. Sie beträgt bei 2570 K etwa 15 At.% N /h/. Bei tiefen Temperaturen beobachtet man innerhalb dieses Bereiches geordnete Phasen der Zusammensetzung Ta₂₇N /65/, Ta_8N und $Ta_{38}N_5$ /66/ sowie Ta_9N_2 /67/ und Ta_4N /68/. Der Schmelzpunkt von Ta2N liegt bei 3200 K /52,54/. Ein Vorschlag für ein Phasendiagrammdes Systems Tantal-Stickstoff (Abb. 2.2.10) unter Berücksichtigung von Literaturdaten wurde von Gatterer u.a. /45/ gegeben. In dieser Darstellung ist ε-TaN als binäre Phase aufgenommen. Es sei an dieser Stelle bemerkt, dass sowohl bei Nitridschichten, die sich bei 1770 K unter 1 k bar N2 gebildet haben, als auch bei chemischer Abscheidung aus der Dampfphase nur Ta₂N, 8-TaN (kfz) und ein höheres Nitrid beobachtet werden /46,69/.

Im System <u>Chrom-Stickstoff</u> existieren nur die zwei Verbindungen Cr₂N und CrN (vgl. Tab. 2.2.3). Thermodynamische Messungen /70,71,72,73/ und Rechnungen /74/ lassen sich in einem Phasendiagramm gemäss Abb. 2.2.11 zusammenfassen.

<u>Nitride des Molybdäns</u> sind wenig stabil und können deshalb nur unter hohem Stickstoffdruck oder durch Ammoniaknitrierung bei tiefen Temperaturen erhalten werden, Es sind mehrere Arbeiten über Strukturen auftretender Nitridphasen bekannt (vgl. z.B. /34,35,50,51,74,75,76/) und einige Angaben über den Aufbau des Systems /43,50,77/. Trotzdem erscheinen die vorliegenden Ergebnisse nicht ausreichend um ein Phasendiagramm anzugeben. Ettmayer /50/ konnte durch Nitrieren von Mo mit Stickstoff (300 bar) Nitride der Formel Mo₂N herstellen (vgl. Tab. 2.2.3) und den Bereich der Umwandlung von der kubischen in die tetragonale Modifikation eingrenzen. Nach Jack und Jack /43/ sind nur ein in hexagonal dichtester Packung der Metallatome kristallisierendes ϵ -Mo₂N und das einfach

vgl. auch Ref. /96/
hexagonale δ-MoN Phasen des binären Systems. Molybdän löst bei 1670 K und 100 bar Stickstoffdruck etwa 0.1 at.%, bei 1 bar etwa 0.01 at.% Stickstoff im Gitter /78/ (Phasenbeziehungen vgl. /94,95/).

Noch instabiler als Molybdännitride sind <u>Wolframnitride</u>. Es werden in der Literatur mehrere Nitridphasen angegeben /a,e,34,35,51/. Alle Nitride wurden durch Ammoniaknitrierung bei Temperaturen zwischen 400 K (vgl. /a/) und 1070 K /51/ erhalten. Die Kinetik bzw. auch stabilisierende Einflüsse, die zur Bildung der verschiedenen Nitridphasen führen, sind nur unzureichend bekannt. Über Phasenbeziehungen liegen keine verwertbaren Angaben vor.

2.2.4 Nitride der Übergangsmetalle der 7. und 8.Gruppe

Im System <u>Mangan-Stickstoff</u> treten zumindest vier Nitride auf: ε -Mn₄N, das sich als geordnete Phase aus der kubisch flächenzentrierten festen Lösung von Stickstoff in γ -Mn bei Abkühlung ergibt, eine hexagonal dicht gepackte Phase mit einer Zusammensetzung von etwa Mn₂N und zwei tetragonalen Phasen Mn₃N₂ sowie Mn₆N₅. Angaben über Strukturen, Herstellungsbedingungen und Stabilitätsbereiche sind in verschiedenen Arbeiten zusammenfassend mitgeteilt /a,h,34,35/.

<u>Technetium</u> soll ein kubisch flächenzentriertes Nitrid der Formel TcN_{0.72-0.76} mit Gitterkonstanten zwischen 0.3980 und 0.3985 nm bilden/79,84/. Diese Phase wurde durch Glühen von NH₄TcO₄ in Ammoniak bei Temperaturen zwischen 1170 und 1370 K gebildet /79/. Möglicherweise wirken hier auch die Nichtmetallatome 0 oder H stabilisierend.

Durch NH_3 -Nitrierung wurde auch im System <u>Rhenium-Stickstoff</u> ein Nitrid der Formel ReN_{0.43} mit kubisch flächenzentriertem Gitter (a = 0.392 nm) erhalten /80/. Auch durch Zersetzen von NH_4ReO_4 in NH_3 bei 540 - 720 K sollen Nitride erhalten werden, deren Zustammensetzungen zwischen Re_2N und Re_3N liegen /81/.

Das System <u>Eisen-Stickstoff</u> wurde mehrfach untersucht (vgl. /a,h,34,35, 43,82,83/). Neben einer ausgeprägten Löslichkeit von Stickstoff in γ -Fe (bis zu 10 At.% N) werden die Nitride Fe₁₆N₂ (tetragonal), Fe₄N (kubisch flächenzentriert), ϵ -Fe_{0.3}N (hexagonal) und Fe₂N (orthorhombisch) angegeben.

Diese Nitridphasen treten allerdings nur bei tiefen Temperaturen auf und sind teilweise metastabil oder möglicherweise durch andere Nichtmetaile stabilisiert.

Auch für <u>Kobalt und Nickel</u> werden Nitride angegeben, die bei tiefen Temperaturen in Ammoniak erhalten wurden (z.B. Co_3N , Co_2N , Ni_3N) /a,h, 34,35/. Alle diese Verbindungen sind jedoch nur bei Temperaturen von etwa 650 K in Ammoniak darstellbar.

Die <u>Platinmetalle</u> bilden keine Nitride und lösen auch praktisch keinen Stickstoff im Gitter. Beobachtungen der Bildung eines Palladiumnitrids im Lichtbogen zwischen Pd-Elektroden in Stickstoffatmosphäre /84/ müssten weiter erhärtet werden.

Literatur: Binäre Nitridsysteme (Kap. 2,2) /a/ G.V.Samsonov; Chimija i fizika nitrodov; Akademija nauk ukrainskoy SSR, Naukova Dumka, Kiew, 1968 sowie G.V.Samsonov; Nitridy; Naukova Dumka, Kiew, 1969, /b/ R.Lallement, J.J.Veyssie; in L.Eyring (Hrsg.) Progress in the Science and Technology of the Rare Earth, Perg. Press 1968, S.284 /c/ P.E.Potter, M.H.Rand; 4th Int.Conf. on Chemical Thermodynamics, Montpelier, Frankreich, 1975 Proceedings /d/ H.Holleck, H.Kleykamp; in Gmelins Handbuch der anorganischen Chemie; Transurane, Teil C, S.82, Verlag Chemie, Weinheim (1972) /e/ R.Kieffer, F. Benesovsky; Hartstoffe, Springer Verlag, Wien, 1963 /f/ L.E.Toth; Transition Metal Carbides and Nitrides; Academic Press, New York, 1971 E.K.Storms; /a/ A Critical Review of Refractories, LA-2942 (1964) E.K.Storms: Phase Relationships and Electrical Properties of Refractory Carbides and Nitrides; in L.E.Roberts (Hrsg.) Solid State Chemistry, 10 (1972) 37, Butterworth, London 1972 /h/ H.J. Goldschmidt; Interstitial Alloys, Butterworth, London, 1967 /i/ E.Fromm, E.Gebhardt (Hrsg.) Gase und Kohlenstoff in Metallen, Springer Verlag, Berlin, 1976 /1/ R.C.Brown, N.J.Clark; Mat.Res.Bull. 9 (1974) 1007 /2/ R.C.Brown, N.J.Clark; J.inorg. nucl. Chem., 36 (1974) 2507 /3/ H.Holleck, E.Smailos, F.Thümmler; J.Nucl.Mat 32 (1969) 281 /4/ M.D.Lyutaya, V.F.Bukhanevich; Zh.Neorg.Khim 7 (1962) 2487

- /5/ G.Busch, E.Kaldis, E.Schaufelberger-Teker, P.Wachter; in: Les Eléments des Terres Rares", CNRS, Paris, 1970, S.2487
- /6/ P.Ettmayer, R.Kieffer, F.Hattinger; Metall 28 (1974) 1151
- /7/ A.Vendl, P.Ettmayer, W.Prohaska; V.Int@Conf. on Solid Compounds of Transition Elements, Uppsala/ Schweden, Juni 1976; High Temp.- High Press.9 (1977) 313
- /7a/ O.N.Carlson, R.R.Lichtenberg, J.C.Warner; J.Less Common Met. 35 (1974) 275
- /7b/ G.F.Kobzenko, V.G.Ivantschenko; Diagrammy Sostojanija metallitscheskich System, S.183, Nauka, Moskau 1971
- /8/ R.Benz, C.G.Hoffmann, G.N.Ruppert; J.Am.Chem.Soc. 89 (1967) 191
- /9/ R.Benz; J.Nucl.Mat. 31 (1969) 93
- /9a/ R.Juza, H.Gerke; Z.anorg. all.Chem., 363 (1968) 245
- /10/ W.H.Zachariasen; Acta Cryst.2 (1949) 388
- /11/ R.Benz, W.H.Zachariasen; Acta Cryst.21 (1966) 838
- /12/ R.Benz, J.E.Troxel; High Temp. Sci 3 (1971) 422
- /13/ J.H.Tagawa; J.Nucl.Mat. 51 (1974) 78
- /14/ H.Holleck, E.Smailos, F.Thümmler; J.Nucl.Mat. 32 (1969) 281
- /15/ V.J.Temnery, E.S.Bomar; J.Am.Ceram.Soc. 54 (1971) 297
- /16/ W.M.Olson; R.N.Mulford; J.Phys.Chem. 67 (1968) 1952
- /17/ R.Benz, W.B.Hutchinson; J.Nucl.Mat.36 (1970) 135
- /18/ P.L.Blum; J.Luaugier, J.M.Martin, J.P.Morlevat; Compt. Rend.Ser.C, 266 (1968) 1456

- /19/ R.Benz, G.Balog, B.H.Baca; High.Temp.Sci 2 (1970) 221
- /20/ A.Naoumidis, H.J.Stöcker; Ber.Deutsch.Keram.Ges. 43 (1966) 724
- /21/ J.Laugier, J.M.Martin; J.Nucl.Mat. 28 (1968) 215
- /22/ Y.Sasa, T.Atoda; J.Am.Ceram.Soc. 53 (1970) 102
- /23/ R.E.Rundle, N.C.Baenziger, A.S.Wilson, R.A. McDonald; J.Am.Cbem.Soc. 70 (1948) 99
- /24/ H.Holleck, T.Ishii; Thermal Analysis, Vol.2, S.137; Proceedings Third ICTA, Davos, 1971 Birkhäuser Verlag Basel, 1972
- /25/ W.H.Olson, R.N.Mulford; J.Phys.Chem. 70 (1966) 2932
- /26/ W.M.Olson, R.N.Mulford; J.Phys.Chem. 68 (1964) 1098
- /27/ D.F.Caroll; Bericht HW-SA-3370 (1964)
- /28/ F.Anselin, G.Dean, R.Lorenzelli, R.Pascard; Carbides in Nucl.Energy (Hrsg. L.E.Russel u.a.) MacMillan, London, 1964, S.131
- /29/ H.Holleck; IAEA-Symp. Thermodynamics of Nuclear Materials, Wien 1975, S.213
- /30/ Y.Akimoto; J.Inorg. Nucl.Chem 29 (1967) 2650
- /31/ J.P.Charvillat, U.Benedict, D.Damien, M.Müller; Inorg.Nucl.Chem. Letters 20 (1975) 371
- /32/ J.N.Stevenson; Dissertation University of Tennessee, 1973
- /33/ Holmberg; Acta Chem.Scand. 16 (1962) 1255
- /33a/ G.Lobler, J.P.Marcon; Compt. Rend. 268 (1969) 1132
- /34/ W.B.Pearson; Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon Press, Volume 1 (1958), Volume 11 (1967)

- /35/ Vgl. M.Hansen; "Constitution of Binary Alloys" 1958 R.P.Elliott; "First Supplement" 1965 F.A.Shunk; "Second Supplement" 1969 McGraw-Hill, New York
- /36/ E.H.Rennhack, W.C.Coons, P.A.Perkins; Trans. Met.Soc. AIME 242 (1968) 343
- /37/ M.A.Eropyan, R.G.Avarté; Neorg.Mat. 10 (1974) 2156
- /38/ E. Rudy; AFML-TR-69-117 Part x (1970)
- /39/ M.Billy, B.Teyssedre; Bull Soc.Chim. France 5 (1973) 1537
- /40/ A.L.Giorgi, E.G.Szklarz, T.C.Wallace Proc.Brit.Ceram.Soc. 10 (1968) 183
- /41/ J.Billingham, P.S.Bell, M.H.Lewis; J.Cryst. Growth 13/14 (1972) 693
- /42/ A.Deschanvres, A.Maisseu, G.Nonet, J.Vincens; J.Less-Common Met. 34 (1974) 237
- /43/ D.H.Jack, K.H.Jack; Mat.Science and Eng. 11 (1973) 1
- /44/ N.Terao; J.Less-Common Met.23 (1971) 159
- /45/ J.Gatterer, G.Dufek, P.Ettmayer, R.Kieffer; Mh.Chem. 106 (1975) 1137
- /46/ C.Politis; VII. Int. Conf. on Solid Compounds of Transition El., Stuttgart, Collected Abstracts, S.122, 1979
- /47/ R.Kieffer, P.Ettmayer; Chemie-Ing.-Techn. 46 (1974) 843
- /48/ J.C.Gilles; Compt.rend. 226, Serie C (1968) 546
- /49/ J.Strähle; Z.anorg.allg.Chem. 402 (1973) 47
- /50/ P.Ettmayer; Mh.Chem. 101 (1970) 127
- /51/ N.Schönberg; Acta chem.scand. 8 (1954) 214

/52/	P.Ettmayer, R.Kieffer, F.Hattinger; Metall, 28 (1974) 1151
/53/	A.Palty, H.Margolin, J.Nielsen; Trans.Amer.Soc.Met. 46 (1954) 312
/54/	P.H.Booker, C.E.Bruk1; AFML-TR-69-117, Part VI (1969)
/55/	E.Rudy; AFML-TR-65-2, Part V (1969)
/56/	H.Halm; Z.Anorg.Chem. 258 (1949) 58
/57/	G.Brauer, W.A.Schmell; J.Less Common Met. 6 (1964) 326
/58/	G.Braun, R.Esselborn; J.anorg.allgem.Chem. 309 (1961) 151
/59/	J.Pelissier; J.Less. Common Met. 35 (1974) 193
/60/	W.Roberts; Ph.D.Thesis, University of Newcastle upon Tyne (1970)
/61/	A.N.Christensen; Atca Chem.Scand., A 31 (1977) 77
/62/	Yu.V.Levinskiy; Russ.Metallurgy (1974) 34
/63/	V.M.Zhikarev, E.D.Kharina; Trudy chelyabinskii Politekhnicheskii Institut Chelyabinsk, 147 (1974) 30
/64/	E.Gebhard, E.Fromm, D.Jakob Z.Metalikunde 55 (1964) 423
/65/	D.P.Seraphim, N.R.Stemple, D.T.Noick; J.Appl.Phys. 33 (1962) 136
/66/	C.Oritz, S.Steeb; J.Less Common Met. 42 (1975) 51
/67/	R.H.Geils, D.I.Potter; Met.Trans 4 (1973) 1469
/68/	J.Vicens, P.Delavignette; phys.stat.sol. 33 (1976) 497
/69/	H.Hieber; Thin Solid Films 24 (1974) 157

- /70/ T.Mills; J.Less-Common Met. 22 (1970) 373
- /71/ T.Mills; J.Less-Common Met. 23 (1971) 317
- /72/ T.Mills; J.Less-Common Met. 26 (1972) 223
- /73/ V.N.Sretschnikov, G.F.Kobzenko, V.G.Wantschenko, E.L.Martynschuk; "Diagrammy sostojanija metallitscheskich system", S.135, Nauka, Moskau, 1971
- /74/ M.Jarl; CALPHAD 1 (1977) 91
- /75/ N.V.Troickaja, Z.G.Pinsker; Kristallografija 6 (1961) 43
- /76/ N.V.Troickaja, Z.G.Pinsker; Kristallografija 8 (1963) 548
- /77/ D.A.Evans, K.H.Jack; Acta cryst. 10 (1957) 833
- /78/ H.Jehn, P.Ettmayer; High Temp., High Press. 8 (1976) 83
- /79/ W.Trzebiatowski, J.Rudzinski; J.Less-Common Met. 6 (1964) 244
- /80/ G.V.Samsonov, T.S.Verkhoglyadora; Ikr. Khim.Zh. 30 (1964) 143
- /81/ A.Matthias, W.H.Zachariasen; Phys.Chem.Solids 7 (1958) 98
- /82/ M.Hillert, M.Jack; Met.Trans. 6 A (1975) 553
- /83/ N.DeCristofaro, R.Kaplow; Met.Trans. 8 A (1977) 35
- /84/ J.V.Vinogradov, M.I.Konarev, L.L.Zajtseva, S.V.Shepel'kov; Zh.Neorg. Khim. 23 (1978) 1158
- /85/ M.P.Arbuzov, S.Ya Golub, B.V.Khaenko; Neorg.Mat. 13 (1977) 1779
- /86/ B.V. Khaenko; Dop. Akad.nauk Ukrain. Ser.A. 3 (1977) 275
- /87/ M.P.Arbuzov, B.V.Khaenko, O.A.Frenkel; Neorg. Mat. 11 (1975) 236

- /88/ B.V.Khaenko, V.G.Fak; Neorg.Mat. 14 (1978) 1294
- /89/ M.P.Arbuzov, B.V.Khaenko, E.T.Kachkovskaya; Porosh. Met. 6 (1973) 69
- /90/ T.Onozuka; J.Appl.Cryst. 11 (1978) 132
- /91/ L.N.Galkin, V.V.Vabiloba, L.E.Fykin Fiz.metallov. i.metalloved. 45 (1978) 84
- /92/ Ch. de Novion, V.Maurice; J. de Physique, Colloque Nr.5; 38 (1977) C7-211
- /93/ J.V.Levinsky Zur. fiz. chim. 98 (1974) 845
- /94/ H.Jehn, P.Ettmayer; J.Less Common Met. 58 (1978) 85
- /95/ H.Jehn, P.Ettmayer; High.Temp.- High Press. 8 (1976) 83
- /96/ A.Vendl; Mh. Chem. 109 (1978) 1009
- /97/ B.V. Khaemko Neorg. Mat.15 (1979) 1952
- /98/ A.N.Christensen, B.Lebach Acta Cryst. B 35 (1979) 2677

2.3 Binäre Metallsysteme

Der Aufbau der binären Systeme der Übergangsmetalle in Abhängigkeit von der Konzentration der Komponenten und von der Temperatur ist für viele Kombinationen recht gut bekannt. Als typische Nachschlagewerke seien hier genannt: für den Aufbau der Systeme Ref. /a/ bis /c/ und für die Strukturen und Gitterparameter von festen Lösungen und intermetallischen Phasen Ref. /d/ bis /f/. Da die Wechselwirkung der Übergangsmetalle untereinander einen ganz wesentlichen Einfluss auf den Aufbau der später zu behandelnden mehrkomponentigen Systeme hat, erscheint zum Verständnis der Phasenbeziehungen und der auftretenden Verbindungen eine kurze kritische Betrachtung dieser binären Übergangsmetallsysteme notwendig.

Wesentliche Bestimmungsstücke für den Aufbau der binären Systeme sind die sterischen, elektronischen u.thermodynamischen Parameter der einzelnen Elemente. Diese Parameter spiegeln sich unter anderem wieder in den Atomradien und den Strukturen der Elemente in den Schmelz- und Siedepunkten der Metalle sowie in Umwandlungswärmen und Entropien einzelner Phasen. Die Wechselwirkung zweier Elemente miteinander wird hierbei von der Möglichkeit bestimmt, einen Zustand minimaler freier Energie einzustellen, entweder durch Lösung der einen Komponente in der anderen im festen oder flüssigen Zustand (Systeme mit Mischkristallbildung oder eutektische Systeme) oder durch Verbindungsbildung. Es gibt Ansätze diese Wechselwirkung und damit den Aufbau der Systeme zu errechnen bzw. auf Grund empirischer Zusammenhänge vorherzusagen. Als Beispiele seien die Engel Brewer-Theorie /1,2,3/, die Rechnungen von Kaufmann auf Grund eines Modells regulärer Lösungen /4,5,6/ oder empirische Zusammenhänge von Hume-Rothery /7/ genannt. Alle Verfahren, auf die hier nicht weiter eingegangen wird, bemühen sich, die Stabilität einer Phase bzw. eines Phasengemisches in Abhängigkeit von der Konzentration und der Temperatur zu beschreiben und mit möglichen anderen Zuständen zu vergleichen. Nachstehend werden typische Phasenbeziehungen in Systemen der Übergangsmetalle sowie die häufigsten Verbindungstypen kurz charakterisiert.

2.3.1 Eutektische Systeme

Die Übergangsmetalle der 3.Gruppe, d.h. die Seltenen Erden und die Actinoiden, zeigen nur geringe Tendenz der Verbindungsbildung bzw. der gegenseitigen Lösung im festen Zustand mit den hochschmelzenden Übergangsmetallen der 4., 5. und 6.Gruppe. Im flüssigen Zustand sind die Elemente jedoch oft vollständig mischbar. Thermodynamisch betrachtet bedeutet dies bei der Modellvorstellung regulärer Lösungen, dass die Mischungsenthalpie im festen Zustand positiv und im flüssigen Zustand bei vollständiger Mischbarkeit negativ oder leicht positiv und bei dem Auftreten einer Mischungslücke in der Schmelze auch im flüssigen Zustand stark positiv ist. Als typische Beispiele für solche Systeme sind in Abb. 2.3.1 bis 2.3.3 die Phasendiagramme der Systeme Yttrium-Niob, Yttrium-Molybdän und Thorium-Tantal wiedergegeben. Die geringe Tendenz der Reaktion im festen Zustand kann sowohl auf eine grosse Differenz der Atomradien (keine festen Lösungen) als auch auf ungünstige Verhältnisse der Valenzelektronenkonzentration (keine Elektronen in nichtbindenden Zuständen der d-Bänder) und dem dadurch bedingten Fehlen stabiler intermetallischer Verbindungen erklärt werden. Ausnahmen werden bei Elementen der 3.Gruppe beobachtet, die wie z.B. Uran oder Plutonium auch in höheren Wertigkeitsstufen auftreten können, was zu einer Kontraktion des Atomradius führt. Hierdurch ermöglichen zumindest die sterischen Verhältnisse die Ausbildung ausgedehnter Mischkristallbereiche wie sie z.B. in den Systemen Uran-Zirkon, Uran-Niob oder Plutonium-Zirkon (vgl. Abb. 2.3.4) beobachtet werden.

2.3.2 Systeme mit ausgedehnter Löslichkeit im festen Zustand

Voraussetzung für ausgedehnte Löslichkeiten im festen Zustand sind ähnliche Atomradien und die Möglichkeit im gelösten Zustand die Struktur des lösenden Metalls einzunehmen. Bei vollständiger Mischbarkeit ist Isotypie Voraussetzung. Die Übergangsmetalle kristallisieren in der überwiegenden Mehrheit in einer der typischen Metallstrukturen, dem kubisch raumzentrierten Gitter, der kubisch dichtesten Packung oder der hexagonal dichtesten Packung. Etwas kompliziertere Strukturen, die meist auf einer Abwandlung der Folge der dichtgepackten Schichten

Abb.2.3.1: Phasendiagramm Niob-Yttrium /b/

Abb.2.3.3: Phasendiagramm Tantal-Thorium /b/

Abb.2.3.4: Phasendiagramm Plutonium-Zirkon /b/

AL% 50 Abb.2.3.5: Phasendiagramm Cer-Scandium /c/

Abb.2.3.6: Phasendiagramm Neodym-Scandium /c/

Abb.2.3.7: Phasendiagramm 'Abb.2.3.8: Phasendiagramm Neodym-Praseodym /c/ Thorium-Yttrium /b/

beruhen, werden für manche Lanthanoiden und Actinoiden beobachtet. Der ähnliche strukturelle Aufbau der Übergangsmetalle bedingt das Bestehen ausgedehnter Mischkristallbereiche in Systemen wo die Atomradien der Komponenten ähnlich sind. Systeme dieser Art treten besonders bei Kombinationen von Elementen der Lanthanoiden oder Actinoiden untereinander, bei den binären Systemen der hochschmelzenden Übergangsmetalle der 4., 5. und 6.Gruppe sowie bei Systemen zwischen Übergangsmetallen der 7. und 8.Gruppe auf. Typische Beispiele für Systeme dieser Art zeigen die Abb. 2.3.5 bis 2.3.16. Das System Cer-Scandium zeigt Abb.2.3.5 als Beispiel für Systeme von Elementen die in mehreren und nicht gleichen Modifikationen auftreten. γ -Ce (kubisch dichteste Packung) und α -Sc (hexagonal dichteste Packung) zeigen nur begrenzte Löslichkeiten. während die kubisch raumzentrierten Hochtemperaturmodifikationen vollkommen mischbar sind. Im System Neodym-Scandium (Abb. 2.3.6) hingegen treten beide Metalle bei tiefen Temperaturen hexagonal dichtest gepackt und bei hohen Temperaturen kubisch raumzentriert auf. Beide Modifikationen sind vollkommen mischbar. Die Phasenbeziehungen deuten auf eine starke positive Mischungsenthalpie der Tieftemperaturphasen im Vergleich zur Hochtemperaturmischphase hin (Umwandlungsminimum $\beta \rightarrow \alpha$ im Zweistoffsystem, Mischungslücke). Das System der beiden benachbarten Elemente Neodym-Praseodym (Abb. 2.3.7) zeigt hingegen weitgehend ideales Mischungsverhalten der verschiedenen Modifikationen. Abb. 2.3.8 zeigt als Beispiel ein System zwischen je einem Element aus der Reihe der Actinoiden und der Seltenen Erden. Die unterschiedlichen Strukturen der Tieftemperaturmodifikation von Thorium einerseits und Yttrium andererseits, verhindern hier, trotz starker Tendenz gegenseltiger Lösung, vollständige Mischbarkeit.

Die hochschmelzenden Übergangsmetalle der 4., 5. und 6.Gruppe sind in weiten Bereichen mischbar. Abb. 2.3.9 verdeutlicht schematisch, welche Metalle untereinander vollkommen löslich sind. In manchen Fällen besteht diese vollständige Löslichkeit allerdings nur bei sehr hohen Temperaturen, wie Abb. 2.3.10 für das System Tantal-Zirkon zeigt. Gelegentlich, so z.B. bei tiefen Temperaturen im System Tantal-Vanadin (Abb. 2.3.11) oder im System Hafnium-Molybdän (Abb. 2.3.12), treten auch intermetallische Phasen auf. Auch die binären Systeme der Über-

Ti	v	Cr
Zr	Nb	Μο
Hf	Τα	w

Abb. 2.3.9: Mischbarkeit der Übergangsmetalle der 4., 5. und 6.Gruppe (gleiches Symbol bedeutet vollständige Mischbarkeit)

2600 2200 Temperatur [°C] 1930 9 1800 8-1911**4** 1400 1230°C 1000 ны 600 Hf 20 40 60 60 Мо AL% Mo

Abb.2.3.10: Phasendiagramm Tantal-Zirkon /b/

Abb.2.3.11: Phasendiagramm Tantal-Vanadin /b/

Abb.2.3.12: Phasendiagramm Hafnium-Molybdän /b/

Abb.2.3.13: Phasendiagramm Eisen-Ruthenium /b/

Abb.2.3.14: Phasendiagramm Nickel-Ruthenium /b/

Abb.2.3.15: Phasendiagramm Iridium-Osmium /c/

gangsmetalle der 7. und 8. Gruppe sind charakterisiert durch ausgedehnte Mischkristallbereiche. Die Abb. 2.3.13 bis 2.3.15 zeigen die Systeme Eisen-Ruthenium, Nickel-Ruthenium und Iridium Osmium als Beispiele für Systeme mit unterschiedlicher Struktur der Komponenten und dadurch bedingter begrenzter Löslichkeit, während mit dem System Eisen-Palladium (Abb.2.3.16) ein Beispiel mit isotypen Komponenten und vollständiger Mischbarkeit wiedergegeben ist. Bei diesem letzteren System wird die Ausbildung von Ordnungsstrukturen bei tiefen Temperaturen deutlich, ein Vorgang der in vielen Übergangsmetallsystemen auftritt.

Den Übergang von den Systemen mit ausgeprägter Mischkristallbildung zu den Systemen deren Aufbau durch das Auftreten intermetallischer Phasen gekennzeichnet ist, bilden die binären Systeme der VI A Übergangsmetalle Chrom, Molybdän und Wolfram mit den Metallen der 8.Gruppe. Hier beobachtet man z.B. bei Elementen der 2. und 3. langen Periode Phasen mit ausgedehnten Homogenitätsbereichen, deren Strukturen mit zunehmender Valenzelektronenkonzentration vom kubisch raumzentrierten Gitter über die hexagonal dichteste Packung zur kubisch dichtesten Packung übergeht. Typische Beispiele hierfür sind die Systeme Molybdän-Ruthenium (Abb. 2.3.17), Molybdän-Rhodium (Abb. 2.3.18) und Molybdän-Palladium (Abb. 2.3.19). Im System Molybdän-Rhenium (Abb. 2.3.20) treten mit der σ -Phase und der χ -Phase neben der ausgeprägten Mischkristallbildung der Randkomponenten zwei für Übergangsmetallsysteme typische intermetallische Phasen auf, die im nächsten Abschnitt behandelt werden.

2.3.3 Systeme mit stabilen intermetallischen Phasen

Die Übergangsmetalle auf der linken Seite des Periodensystems - d.h. diejenigen, bei denen die d-Schale noch nicht zur Hälfte aufgefüllt ist - bilden mit den Übergangsmetallen auf der rechten Seite des Periodensystems - d.h. diejenigen, bei denen die d-Schale über die Hälfte aufgefüllt ist - bevorzugt intermetallische Phasen. Die Stabilität, Struktur und Zusammensetzung dieser Phasen ist im wesentlichen abhängig von geometrischen, elektrochemischen und elektronischen Faktoren der jeweiligen Metalle. Eine ausführliche Diskussion des spezifi-

Abb. 2.3.16: Phasendiagramm Eisen-Palladium /b/

Abb.2.3.17: Phasendiagramm Molybdän-Ruthenium /b/

Abb.2.3.19: Phasendiagramm Molybdän-Palladium /c/

Abb. 2.3.20: Phasendiagramm Molybdän-Rhenium /b/

fischen Einflusses der jeweiligen Faktoren wurde z.B. von Pearson /8/ gegeben. In den Übergangsmetallsystemen treten bestimmte Strukturtypen besonders häufig auf. Abb. 2.3.21 zeigt schematisch, welche Verbindungstypen bei einer bestimmten Zusammensetzung bevorzugt beobachtet werden. Diese Abbildung bezieht sich auf eine Übersicht von Nevitt /9/ über das Legierungsverhalten der Übergangsmetalle. Manche Phasen treten in allen Systemen bevorzugt bei der gleichen Zusammensetzung auf (dargestellt durch kleine Quadrate) manche, wie z.B. die μ -, χ oder o-Phase, jedoch je nach betrachtetem System auch bei sehr unterschiedlichen Zusammensetzungen, jedoch meist ähnlicher Valenzelektronenkonzentration. Auch Hume Rothery /10/ wies auf die typische Folge von Strukturen in Systemen der Übergangsmetalle hin. Man beobachtet z.B. in Systemen von Molybdän und Wolfram mit den Platinmetallen in steigender Valenzelektronenkonzentration folgende Gittertypen: kubisch raumzentriert \rightarrow β Wolfram (Cr_zO) \rightarrow σ \rightarrow α -Mangan (χ) \rightarrow hexàgonal dichteste Packung -> kubisch dichteste Packung (vgl. z.B. Abb. 2.3.17 bis 2.3.20). Es können die eine oder andere Phase in einem System fehlen, jedoch bleibt die Reihenfolge erhalten.

Die einzelnen Verbindungstypen werden im folgenden an Hand einiger charakteristischer Übergangsmetallsysteme kurz beleuchtet. In den Systemen der Übergangsmetalle der 3., 4. und 5.Gruppe mit jenen der Mn- und Fe-Gruppe (Beispiele Cer-Ruthenium (Abb. 2.3.22), Cer-Eisen (Abb. 2.3.23), Hafnium-Rhenium (Abb. 2.3.24)) ebenso wie in den Systemen der Übergangsmetalle der 5. und 6. Gruppe mit den Eisen-Metallen Fe, Co, Ni (Beispiele Niob-Nickel (Abb. 2.3.25), Molybdän-Nickel (Abb. 2.3.26)) treten meist nur wenige Verbindungen auf. Typische Strukturen sind der CsCl-Typ bzw. μ -Phasen (W₆Fe₇-Typ) bei equimolarer Zusammensetzung (vgl. Abb. 2.3.25), Lavesphasen (MgCu₂-Typ, MgZn₂-Typ, MgNi₂-Typ) bei einem Verhältnis von 1:2 der Übergangsmetalle (vgl. Abb. 2.3.22 und 2.3.23) sowie geordnete dicht gepackte Strukturen bei einem Verhältnis von 1:3. Die häufigsten Typen der geordneten Phasen, die sich untereinander meist nur durch die Folge der dichtgepackten Schichten unterscheiden, sind in Abb. 2.3.21 aufgeführt. Die Übergangsmetallsysteme der 3. und 4- und teilweise auch der 5.Gruppe mit den Metallen der Cobait- und Nickel-Gruppe bilden darüber hinaus oft eine Vielzahl

Abb.2.3.21: Strukturtypen intermetallischer Phasen in Systemen der Übergangsmetalle (nach Lit. /9/)

Abb.2.3.22: Phasendiagramm Cer-Ruthenium /c/

Abb.2.3.23: Phasendiagramm Cer-Eisen /c/

Abb.2.3.24: Phasendiagramm Hafnium-Rhenium /b/

Abb.2.3.25: Phasendiagramm Niob-Nickel /c/

Abb. 2.3.26: Phasendiagramm Molybdän-Nickel /c/

Abb.2.3.27: Phasendiagramm Yttrium-Nickel /b/

Abb.2.3.28: Phasendiagramm Zirkon-Nickel /b/

Abb. 2.3.29: Phasendiagramm Niob-Iridium /c/

anderer Verbindungen (vgl. Abb. 2.3.27 bis 2.3.29) mit teilweise komplizierten Strukturen, die in vielen Fällen noch nicht aufgeklärt sind.

Die Stabilität dieser intermetailischen Phasen - insbesondere die der geordneten Phasen bei einem Metallverhältnis von 1:3-erreicht manchmal ungewöhnlich hohe Werte. So ergibt sich z.B. für die Verbindung ZrPt₃, die sich infolge der hohen frei werdenden Energie explosionsartig bildet /11/, eine freie Bildungsenthalpie von -121 kcal/mol bei 1100 K /3/. Qualitativ kann die hohe Stabilität dieser Verbindungen erklärt werden mit der Zunahme der Bindungen bei Reaktionen von Metallen mit nur geringer Besetzung der d-Schale und Metallen mit nahezu vollständiger Besetzung und damit mit d-Elektronen in "nichtbindenden" Zuständen.

Hinweise auf die hohe Stabilität intermetallischer Verbindungen zwischen den Actinoiden und den Platinmetallen wurden erstmals in hochabgebrannten oxidischen und carbidischen Kernbrennstoffen gefunden, wo die Spaltprodukte aus der Reihe der Platinmetalle mit den Brennstoffverbindungen (U,Pu)O2 bzw. (U,Pu)C unter Bildung solcher intermetallischer Phasen reagierten /12,13/. Für die Systeme von Uran mit Ruthenium und Rhodium bestimmten Holleck und Kleykamp /14,15/ die freien Bildungsenthalpien und erklärten die beobachteten Reaktionen damit quantitativ /16/. Die Phasendiagramme der Actinoiden mit den Übergangsmetallen sowie die in diesen Systemen gebildeten Verbindungstypen lassen sich zwanglos in das Verhalten der übrigen Übergangsmetalle einordnen. Lavesphasen bei einer Zusammensetzung entsprechend Actinoid/Übergangsmetall 1/2 sowie geordnete Phasen bei einem Verhältnis von 1:3 sind in der Regel die stabilsten Phasen dieser Systeme. Dies verdeutlicht z.B. die Lage der Schmelzpunkte in den Systemen von Uran mit Ruthenium /17/, Rhodium /18/ und Palladium /19. 20,21/ (Abb. 2.3.30) und Plutonium mit Ruthenium, Rhodium und Palladium /22/ (Abb. 2.3.31). Charakteristische Unterschiede der Strukturen der auftretenden Verbindungen, vor allem in den Systemen der Actinoiden sowie Vergleiche mit den übrigen Übergangsmetallen, werden in Kapitel 4 eingehender diskutiert. Die Darstellung /23/, Kristallchemie /24/ und Anwendung /25/ intermetallischer Phasen wurde kürzlich ausführlich behandelt.

Abb.2.3.30: Phasendiagramm in den Systemen Uran-Ruthenium Rhodium, Palladium (nach Lit. /17/ bzw. /18/ bzw. /19,20,21/)

Abb.2.3.31: Phasendiagramm in den Systemen Plutonium-Ruthenium, Rhodium, Palladium (nach Lit. /22/)

Literatur: Binare Metallsysteme (Kap. 2.3)

- /a/ M.Hansen, Constitution of Binary Alloys, McGraw Hill, New York, 1958
- /b/ R.P.Elliott, Constitution of Binary Alloys , First Supplement, McGraw Hill, New York, 1965
- /c/ F.A. Shunk, Constitution of Binary Alloys, Second Supplement, McGraw Hill, New York, 1969
- /d/ W.B.Pearson, A Handbook of Lattice Spacings and Struktures of Metals and Alloys, Volume 1, Pergamon Press, Oxford, 1958
- /e/ W.B.Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys, Volume 2, Pergamon Press, Oxford, 1967
- /f/ Landoldt-Börnstein, Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, Gruppe III, Band 6: Strukturdaten der Elemente und intermetallischen Phasen, Springer Verlag, Berlin, 1971
- /1/ L.Brewer in P.Rudman, J.Stringer, R.I.Jaffee (Hrsg.) Phase Stability in Metals and Alloys, McGraw Hill, New York, (1967) 39
- /2/ W.Hume-Rothery, The Engel-Brewer Theories of Metals and Alloys; Progr. Mater. Sci. 13 (1967) 229
- /3/ L.Brewer, P.R. Wengert, Met.Trans.4 (1973) 83
- /4/ L.Kaufman. in P.Rudman, J.Stringer and R.I.Jaffee (Hrsg.) Phase Stability in Metals and Alloys, McGraw Hill, New York (1967) 125
- /5/ L.Kaufman., The Stability of Metallic Phases, Progr. Mater. Sci. 13 (1969) 57
- /6/ L.Kaufman , H.Bernstein, Computer Calculation of Phase Diagrams, Academic Press, New York,(1970)

- /7/ W.Hume-Rothery in P.Rudman, J.Stringer und R.I.Jaffee (Hrsg.), Phase Stability in Metals and Alloys, McGraw Hill, New York (1967) 3
- /8/ W.B.Pearson, The Crystal Chemistry and Physics of Metals and Alloys, Wiley Interscience, New York (1972)
- /9/ M.V.Nevitt in P.A.Beck, Electronic Structure and Alloy Chemistry of the Transition Elements, Interscience Publishers, New York (1963) 101
- /10/ W.Hume-Rothery in P.A.Beck (Hrsg.) Electronic Structure and Alloy Chemistry of the Transition Elements, Interscience Publishers, New York (1963) 83
- /11/ L.Brewer, Acta Met. 15 (1967) 553
- /12/ J.I.Bramman, R.M.Sharpe, D. Thorn, G.Yates, J.Nucl.Mat.25 (1968) 201
- /13/ J.I.Bramman, R.M.Sharpe, R.Dixon, J.Nucl.Mat.38 (1971) 226
- /14/ H.Holleck, H.Kleykamp, J.Nucl.Mat. 35 (1970) 158
- /15/ H.Holleck, H.Kleykamp, J.Nucl.Mat. 45 (1972/73) 47
- /16/ H.Holleck, H.Kleykamp, KFK 1181 (1970)
- /17/ J.J.Park, J.Res. Natl.Bur.Std. 72 A (1968) 1
- /18/ J.J.Park J.Res. Natl.Bur.Std. 72 A (1968) 11
- /19/ J.A. Catterall, J.D.Grogan und R.J.Pleasance, J.Inst. Metals 85 , (1965) 63
- /20/ G.P.Pells, J.Inst.Metals 92 (1964) 416
- /21/ G.I.Terekhov, S.I.Sinyakora, M.V.Verdernikov und O.S.Ivangov, in: Physik, Chemie der Legierungen und hochschmelzenden Verbindungen von Thorium und Uran, S.103, Moskau: Nauka. (1968)
- /22/ R.N.Mulford, F.H.Ellinger, G.D.Hendrix, E.D.Albrecht "Plutonium 1960", Cleaver Hume, London (1961) 301

- /23/ M.Jurisch, in "Intermetallische Phasen" VEB, Deutscher Verlag für Grundstoffindustrie, Leipzig 1976. S.65
- /24/ H.Nowotny, in "intermetallische Phasen" VEB, Deutscher Verlag für Grundstoffindustrie Leipzig 1976. S.13
- /25/ J.H.Westbrook Met.Trans. 8A (1977) 1327

.

3. AUFBAU TERNÄER SYSTEME

3.1 Ternäre Carbidsysteme

.

3.1.1 Ternäre Carbidsysteme der Übergangsmetalle der 3. Gruppe

Die Carbidsysteme der III A Übergangsmetalle lassen sich zwanglos in drei Teilen betrachten. Die Carbidsysteme mit zwei Metallen der Seltenen Erden, die Systeme mit zwei Metallen der Actinolden und die ternären Systeme mit Actinoiden und Seltenen Erden als Metallkomponenten. Während Systeme mit zwei Actinoiden und Kohlenstoff in der Kerntechnik eine besondere Bedeutung als "Brennstoffsysteme" erlangt haben und Systeme der Actinoiden mit Seltenen Erden in der Folge wegen der Spaltproduktproblematik (Elemente aus der Reihe der Seltenen Erden sind häufige Spaltprodukte, vgl. Abb. 3.1.1.8) aktuell wurden, stehen z.Zt. bei mehrkomponentigen Carbidsystemen, die ausschliesslich Seltene Erden enthalten, im wesentlichen kristallchemische Gesichtspunkte im Vordergrund. Wegen dieser geringeren technologischen Bedeutung sowie sicherlich auch aufgrund der experimentellen Schwierigkeiten infolge der Oxidationsanfälligkeit ist über den Aufbau dieser letzteren Systeme nur wenig bekannt. Die Systeme mit den Actinoiden sind dagegen z.T. ausführlich untersucht worden. Zusammenfassende Arbeiten betreffen bisher nur einzelne Systeme oder Systemgruppen und sind deshalb in die laufenden Literaturzitate mit aufgenommen.

3.1.1.1 Ternäre Carbidsysteme der Seltenen Erden

Carbidsysteme mit zwei oder mehreren Seltenen Erden wurden bisher nur im Bereich der Dicarbide untersucht. Hier existieren ausgedehnte Mischkristallbereiche, bei denen vor allem die Problematik der Umwandlung der kubisch flächenzentrierten Hochtemperaturphasen in die tetragonalen Tieftemperaturcarbide im Vordergrund stand. Tab. 3.1.1 enthält Daten solcher im einzelnen untersuchten Mischcarbide. Die Umwandlungstemperaturen der kubischen in die tetragonale Modifikation, die für die binären Carbide der Seltenen Erden – soweit bekannt – in Tab. 2.1.1 angegeben sind, liegen im ternären Bereich meist erheblich tiefer. So werden z.B. für LaC₂ und GdC₂ Umwandlungstemperaturen von 1355 K bzw. 1520 K beobachtet, für die Mischphase (La_{0.5}Gd_{0.5})C₂ dagegen eine Umwandlungstemperatur von nur 1036 K /3,4/.

Bei Kombinationen, wo Seltene Erden mit noch grösseren Differenzen in den Ionenradien (>14%) als in diesem letzteren Falle beteiligt sind,

Phase	Strukturtyp Raumgruppe	Gitterkonstante (nm)	Existenzbereich Bemerkung	Litera- tur
(Y _{1-x} La _x)C ₂	tetr.; CaC ₂ D ¹⁷ - I 4/mmm		0 ≤ x ≤∿0.35 ∿0.65 ≤ x ≤ 1	/1/
(Y _{0.5} La _{0.5})C ₂	kfz.; KCN O <mark>5</mark> - Fm3m	a = 0.575	Zerfall nicht beo- bachtet	/1/
(La _{0.5} Ce _{0.5})C ₂	kfz.; KCN 0 <mark>5</mark> - Fm3m		T > 1220 K unterhalb T = 1220 K tetr.; CaC ₂ -Typ	/2/
(La _{0.5} Pr _{0.5})C ₂	kfz.; KCN O ⁵ - Fm3m		T > 1263 K unterhalb T = 1263 K tetr.; CaC ₂ -Typ	_ /2/
(La _{0.51} Nd _{0.49})C ₂	tetr.; CaC ₂ D <mark>17</mark> - I 4/mmum	a = 0.3880 c = 0.6481	Т < 1312 К	/3,4/
(La _{0.5} Nd _{0.5})C ₂	kfz.; KCN 0 <mark>5</mark> - Fm3m h		T > 1238 K unterhalb T = 1238 K tetr.; CaC ₂ -Typ	/2/
$(La_{1-x}Gd_x)C_2$	tetr.; CaC ₂ D _{4h} ¹⁷ - I 4/mmm		Т < 1030 К	/3/
(La _{0.5} Gd _{0.5})C ₂	kfz.; KCN D <mark>5</mark> - Fm3m		T > 1036 K	/3/
^{(I.a} o.51 ^{Tb} o.49 ^{)C} 2	kfz.; KCN O <mark>5</mark> - Fm3m h		Zerfall nicht beo- bachtet	/3/
(La _{o.80} Dy _{o.20})C ₂	tetr.; CaC ₂ D ¹⁷ - I 4/mm	a = 0.3900 c = 0.6474	T < 1044 K darüber kubisch	/4/
(La _{0.5} Dy _{0.5})C ₂	kfz.; KCN 0 <mark>5</mark> - Fm3m	a = 0.572	Zerfall nicht beo- bachtet	/1/
(La _{0.5} Ho _{0.5})C ₂	kfz., KCN 0 <mark>5</mark> - Fm3m	a = 0.572	Zerfall nicht beo- bachtet	/1/
(La _{0.4} Er _{0.6})C ₂	kfz.; KCN O <mark>5</mark> - Fm3m	a = 0.567	Zerfall nicht beo- bachtet	/1/

Tabelle	3.1.1:	Ternäre	Carbide	der	Seltenen	Erden	
	CONTRACTOR OF THE OWNER OWNE						

Strukturtyp Raumgruppe	Gitterkonstante (nm)	Existenzbereich Bemerkung
kfz., KCN 0 <mark>5</mark> - Fm3m		T > 1323 K unterhalb T = 1323 K tetr., CaC ₂ -Typ
kfz., KCN O _h - Fm3m		T > 1353 K unterhalb T = 1353 K tetr., CaC ₂ -Typ
kfz., KCN		T > 1248 K

Literatur

/2/

^{(Ce} 0.43 Nd 0,57 ^{)C} 2	kfz., KCN 0 <mark>5</mark> - Fm3m		T > 1353 K unterhalb T = 1353 K tetr., CaC ₂ -Typ	/2/
(Ce _{0.49} Gd _{0.51})C ₂	kfz., KCN O _h - Fm3m		T > 1248 K unterhalb T = 1248 K tetr., CaC ₂ -Typ	/2/
(Ce _{0.5} Dy _{0.5})C ₂	kfz., KCN .0 ⁵ - Fm3m . h		T > T _u T _u < 750 K	/2/
(Ce _{0.53} Er _{0.47})C ₂	kfz., KCN O _h - Fm3m	a = 0.564	т > Т _и т _и < 750 К	_ /2/
(Pr _{0.54} Nd _{0.46})C ₂	kfz., KCN O <mark>5</mark> - Fm3m		T > 1378 K unterhalb T = 1378 K tetr., CaC ₂ -Typ	/2/
(Pr _{0.54} Gd _{0.46})C ₂	kfz., KCN O <mark>5</mark> - Fm3m		T > 1323 K unterhalb T = 1323 K tetr., CaC ₂ -Typ	/2/
(Pr _{1-x} Ho _x)C ₂	tetr., CaC ₂ D ¹⁷ - I4/mmmm		T > 1078 K	/2/
(Pr _{0.50} Ho _{0.50})C ₂	kfz., KCN O <mark>5</mark> - Fm3m h		T > 1083 K unterhalb T = 1378 K tetr., CaC ₂ -Typ	/2/
(Pr _{0.50} Er _{0.50})C ₂	kfz., KCN O <mark>5</mark> - Fm3m		T > T _u T _u < 750 K	/2/
(Pr _{0.5} Lu _{0.5})C ₂	kfz., KCN O _h ⁵ - Fm3m	a = 0.562	Zerfall nicht beobachtet	/1/
(Nd _{0.48} Gd _{0.52})C ₂	kfz., КСN О _h - Fm3m		T > 1378 K unterhalb T = 1378 K tetr., CaC ₂ ~Typ	/2/
(Nd _{0.50} Dy _{0.50})C ₂	kfz., KCN 0 <mark>5</mark> - Fm3m		T > 1281 K unterhalb T = 1281 K tetr., CaC ₂ -Typ	/2/
^{(Nd} 0.45 ^{Ho} 0.54 ^{)C} 2	kfz., KCN 0 ⁵ - Fm3m		T > 1238 K unterhalb T = 1238 K tetr., CaC ₂ -Typ	- /2/
(Nd _{0.53} Er _{0.47})C ₂	kfz., KCN 0 <mark>5</mark> - Fm3m		T > 1113 K unterhalb T = 1113 K tetr., CaC ₂ -Typ	/2/

Phase

 $(Ce_{0.54}Pr_{0.46})C_{2}$

- 85	-	

Phase	Strukturtyp Raumgruppe	Gitterkonstante (nm)	Existenzbereich Bemerkung	Litera- tur
(Gd _{o.45} Dy _{o.55})C ₂	kfz., KCN O _h ⁵ - Fm3m		T > 1458 K unterhalb T = 1458 K tetr., CaC ₂ -Typ	/2/
^{(Gd} 0.47 ^{Ho} 0.53) ^C 2	kfz., KCN O <mark>5</mark> - Fm3m		T > 1478 K unterhalb T = 1478 K tetr., CaC ₂ -Typ	/2/
^{(Gd} o.50 ^{Er} o.50 ^{)C} 2	kfz., KCN O <mark>5</mark> - Fm3m		T > 1398 K unterhalb T = 1398 K tetr., CaC ₂ -Typ	/2/
(Dy _{0,50} Ho _{0,50})C ₂	kfz., KCN O <mark>5</mark> - Fm3m		T > 1533 K unterhalb T = 1533 K tetr., CaC ₂ -Typ	/2/
(Dy _{0.50} Er _{0.50})C ₂	kfz., KCN D _h ⁵ - Fm3m		T > 1503 K unterhalb T = 1503 K tetr., CaC ₂ -Typ	/2/
(Ho _{o.50} Er _{o.50})C ₂	kfz., KCN O ⁵ - Fm3m		T > 1548 K unterhalb T = 1548 K tetr., CaC ₂ -Typ	. /2/

Abb. 3.1.1.1: Isothermer Schnitt bei ~1300 K im System La-Ce-C (Vorschlag des prinzipiellen Aufbaus)

Abb.3.1.1.2: Isothermer Schnitt bei ~1670 K im System La-Ce-C (Vorschlag des prinzipiellen Aufbaus)

z.B. $(La, Dy)C_2$ und $(La, Er)C_2$, wird ein Zerfall der kubischen Modifikation in die tetragonale im Bereich gleicher Anteile der jeweiligen Dicarbide der Seltenen Erden gar nicht mehr beobachtet /4/. Es ist offensichtlich, dass die unterschiedlichen Abmessungen der Seltenen Erden in der Mischphase stabilisierend auf die kubische Modifikation wirken. Dieser generelle Befund wird von mehreren Autoren bestätigt /1-4, 53,55/ wenn auch verschiedentlich unterschiedliche Umwandlungstemperaturen gemessen werden.

Was die Phasenbeziehungen in den ternären Systemen anbelangt, sind weder isotherme noch Konzentrations-Schnitte eingehender untersucht worden. Der Aufbau der Systeme dürfte allerdings den in Abb. 3.1.1.1 bis 3.1.1.3 vorgeschlagenen Schnitten für das System La-Ce-C und La-Gd-C qualitativ entsprechen. Bei hohen Temperaturen (Abb. 3.1.1.2) ist mit vollständiger Mischbarkeit der kubischen Dicarbide und Sesquicarbide zu rechnen. Bei tiefen Temperaturen (Abb. 3.1.1.1) zerfällt der Dicarbidmischkristall in tetragonale Randphasen und eine ternäre kubische Dicarbidphase. Einen Vorschlag für den Konzentrationsschnitt LaC₂-GdC₂ zeigt Abb.3.1.1.3 als Beispiel für den grundsätzlichen Aufbau der Dicarbidschnitte. Hierbei wurden Literaturdaten für die Umwandlungstemperatur zu Grunde gelegt.

3.1.1.2 Ternäre Carbidsysteme der Actinoiden

Eingehend untersucht wurden bisher die ternären Systeme Th-U-C und U-Pu-C, da sie für den Hochtemperaturreaktor bzw. den Schnellen Brüter von erheblichem Interesse sind. Über die Systeme Th-Np-C und Th-Pu-C sind dagegen vergleichsweise wenige Daten bekannt, und für andere ternäre Carbidsysteme liegen gar keine Angaben vor. In Tab. 3.1.2 sind die bisher gefundenen ternären Carbide der Actinoiden zusammengestellt.

Im System <u>Th-U-C</u> sind ThC und UC vollkommen mischbar /5-10/. Thoriumreiche Mischcarbide existieren auch mit erheblichen Defekten im Kohlenstoffteilgitter.Während U_2C_3 praktisch kein Thorium zu lösen vermag, bestehen auf dem Dicarbidschnitt ausgedehnte Mischcarbidbereiche. Dieser Dicarbidschnitt wurde im Hinblick auf das Interesse von Seiten des Hochtemperaturreaktors mehrfach untersucht /8,11 - 13/. Konzentrationsschnitte, die sich jedoch gegenseitig widersprechen und die in manchen Bereichen un-

Phase	Strukturtyp Raumgruppe	Gitterkonstante (nm)	Existenzbereich Bemerkung	Literatur
(Th _{1-y} U _y)C _{1-x}	kfz., NaCl O _h - Fm3m	weitgehend linearer Gitterpara- meterverlauf für stöch, Mischcar- bide	O ≤ y ≤ 1;bei x∿O	/5 - 10/
(Th _{1-y} U _y)C _{2-x}	monoklin, ThC ₂		T < 1500 K; O ≤ y ≤ 0.55	/11,12/
	tetragonal, CaC ₂ D ₄ ¹⁷ - 14/mmm		T > 1500 K; 0.75 ≤ y ≤ 1	/11,12,13/
· · · · · · · · · · · · · · · · ·	kfz., KCN D <mark>5</mark> - Fm3m	linearer Gitterparameterver- lauf	T > 2100 K; 0 ≤ y ≤ 1	/11,12,13/
(Th _{1-y} Np _y)C _{1-x}	kfz., NaCl 0 <mark>5</mark> - Fm3m	positive Abweichung von der Linearität	Mischphase stöchiometr., sowie mit Kohlenstoffde- fekt wahrscheinlich	/14/
(Th _{1-y} Pu _y)C _{1-x}	kfz., NaCl 0 <mark>5</mark> - Fm3m	positive Abweichung von der Linearität	bei T = 1323 K u.x = 0 \rightarrow 0 s y s 0.32; für x = 0.18 \rightarrow 0 s y s 1	/15/
(Pu _{1-y} Th _y)2 ^C 3	krz., Pu ₂ C ₃ T _d - I4̃3d		T = 1513 K; 0 ≤ y ≤ 0.3	/16/
(Th _{1-y} Pu _y)C _{2-x}	monoklin, ThC ₂		$T = 1400 K; 0 \le y \le 0.55$	/17/
	tetragonal, CaC ₂ D ¹⁷ - I4/mmm		unterhalb T ∿ 1700 K nur als ternäres Carbid; y ≤ 0.5	/17/
	kfz., KCN O <mark>5</mark> - Fm3m		1943 K ≤ T ≤ 2503 K O ≤ y ≤ 1	/17/
(U _{1-y} Pu _y)C _{1-x}	kfz., NaCl O <mark>5</mark> - Fm3m	negative Abweichung von der Linearität auf der UC reichen Seite	Volle Mischbarkeit auf der Pu-reichen Seite nur im unterstöchiometri~ schen Bereich	/18,19/
(U _{1-y} Pu _y) ₂ C ₃	krz., Pu ₂ C ₃ T _d - I43d	negative Abweichung von der Linearität		/18,19/
(U _{1-y} Pu _y)C ₂	kfz., KCN O ⁵ _h - Fm3m		∿2070 K ≤ T ≤ 2500 K	/19,20/

Tabelle 3.1.2. Ternäre Carbide der Actinoiden

vollständig sind, wurden insbesondere von den Autoren der Ref. /11-13/ angegeben. Man kann davon ausgehen, dass oberhalb etwa 2100 K vollständige Mischbarkeit der kubisch flächenzentrierten Dicarbidmischphasen vorliegt $((U_{1-y}Th_y)C_{2-x} \text{ mit } 0 \le y \le 1)$ bei 1800 K noch in einem weiten Bereich $((U_{1-y}Th_y)C_{2-x} \text{ mit } 0.2 \le y \le 1)$ und bei 1500 K nur in einem sehr engen Bereich um y \sim 0.4. Die Gitterparameter dieser kubischen Mischphase ändern sich linear mit der Zusammensetzung. Die tetragonale Mischphase existiert auf der uranreichen Seite des Systems UC₂-ThC₂ unterhalb 1500 K bis etwa 25 Mol % ThC₂, auf der thoriumreichen Seite kann keine klare Abgrenzung zwischen der tetragonalen und der monoklinen Misch-

phase gegeben werden. Auch die Art und Weise der Umwandlung der tetragonalen in die monokline Modifikation ist unklar /11,12/. Das metallreiche Gebiet ist gekennzeichnet durch ein Dreiphasengleichgewicht (Th,U)C + Th + U. Die Zusammensetzung des Carbidmischkristalls, der mit Thorium und Uran im Gleichgewicht steht, liegt bei (Th_{0.906}U_{0.094})C_{0.712} /9,21/ bzw. (Tho.72 0.28)C1-x /8/. Die bisher vorliegenden Ergebnisse lassen sich in den in Abb.3.1.1.4 gezeigten isothermen Schnitten bei 2073 K, 1600 K und 1273 K zusammenfassen. Diese Schnitte müssen allerdings als Vorschläge gelten, da viele Gleichgewichte sehr stark temperaturabhängig und deshalb nicht in eingefrorenem Zustand direkt zu beobachten sind. Bei sehr hohen Temperaturen ist mit einem einphasigen Gebiet, begrenzt durch die binären Randverbindungen ThC-U-C-ThC $_2$ -UC $_2$ zu rechnen. Es sei bemerkt, dass thermodynamische Daten der Mischphase (Th,U)C, ausgehend von den Phasengleichgewichten abgeschätzt /22/ oder mit Hilfe von EMK-Messungen experimentell bestimmt wurden /10/. ThC und NpC sind leicht unterstöchiometrisch voll mischbar. Über die weiteren Phasenbeziehungen des Systems Th-Np-C liegen bisher keine Angaben vor /14,54/.

Im System <u>Th-Pu-C</u> sind die Monocarbide ThC_{1-x} und PuC_{1-x} ebenfalls vollkommen mischbar. Infolge des nur unterstöchlometrischen Existenzbereiches von PuC_{1-x} existiert die homogene Mischphase (Th_yPu_{1-y})C für 50 At.% C bei 1320 K nur in den Grenzen 0.68 $\leq y \leq 1$; für 45 At.% C bei 1320 K jedoch für den ganzen Bereich O $\leq y \leq 1$ /15/. Auch die höheren Carbide lösen sich gegenseitig. So existiert eine Sesquicarbidmischphase (Th_yPu_{1-y})₂C₃ bei 1500 Kin den Grenzen O $\leq y \leq 0.3$ /16/, während die

Abb. 3.1.1.3: Konzentrationsschnitt LaC₂-GdC₂ (Vorschlag des prinzipiellen Aufbaus)

kubische Dicarbidmischphase (Th $_{y}$ Pu $_{1-y}$)C $_{2}$ über den ganzen Bereich, d.h. für 0 \leq y \leq 1, auftritt. Monoklines ThC $_{2}$ löst bei 1400 K etwa 55 Mol % PuC $_{2}$, während die tetragonale Dicarbidmischphase im Temperaturbereich zwischen etwa 1420 K und 1680 K nur als ternäre Phase auftritt. Auf Grund von Literaturdaten und Abschätzungen wurden vom Autor isotherme Schnitte für das System Th-Pu-C bei 1874 K und 1573 K vorgeschlagen /23/ (vgl. Abb. 3.1.1.5).

Das technologisch sicherlich wichtigste ternäre Carbidsystem der Actinoiden ist das System <u>U-Pu-C</u>, da aus diesem System ein möglicher Hochleistungsbrennstoff für Schnelle Brutreaktoren hervorgehen könnte. Demzufolge gibt es viele Untersuchungen in dem System, die schon früher zusammenfassend betrachtet wurden (vgl. z.B. /19,24,25/). Die Monocar-

3.1.1.4: Isotherme Schnitte bei 2073 K (a), 1600 K (b) und 1273 K (c) im System Th-U-C (Vorschläge)

c)

3.1.1.5: Isotherme Schnitte bei 1873 K (a) und 1573 K (b) im System Th-Pu-C (Vorschläge, vgl. Lit. /23/)

bide UC und PuC_{1-x} sowie die Sesquicarbide U_2C_3 und Pu_2C_3 sind vollkommen mischbar /18/. Die Dicarbide UC_2 und PuC_2 bilden zumindest in weiten Konzentrationsbereichen kubische Mischkristalle. Sehr wahrscheinlich sind sie bei Temperaturen >2070 K vollkommen mischbar /20/, obwohl auch Anzeichen für eine Mischungslücke gefunden wurden /26/. Der Bereich des ternären Systems U-Pu-C mit weniger als 50 At.% C wurde für verschiedene Temperaturen zwischen 670 und 900 K untersucht /27/. Besonders wichtig für ein Verständnis des Verhaltens eines Mischcarbidbrennstoffes ist der Bereich ≥ 50 At.% C, insbesondere das Zweiphasengebiet (U,Pu)C + (U,Pu)₂C₃. Abb. 3.1.1.6 zeigt Vorschläge für isotherme Schnitte des Systems U-Pu-C bei 2273 und 1873 K, unter Berücksichtigung der bisher vorliegenden experimentellen Ergebnisse. Die Lage der eingezeichneten Konoden (dünn gestrichelt = errechnet unter Annahme idealer Lösung /24/; dick gestrichelt = experimentelle Befunde nach /28/ für die UC-reichere Zusammensetzung und nach /29/ für die UCärmere Zusammensetzung) zeigt, dass Rechnung und Experiment hier gut übereinstimmen und dass sowohl die Sesquicarbidmischphase als auch die metallische Phase erheblich Pu-reicher sind als die Monocarbidmischphase mit der sie im Gleichgewicht stehen. Eine Aufcarburierung des Brennstoffes, wie sie während des Abbrandes zu erwarten ist (vgl. hierzu z.B. /30,31/), führt deshalb zu einer Plutoniumanreicherung in der höheren Carbidphase. Es sei hier bemerkt, dass bei geringen Gehalten von N oder O im Monocarbid, wie im realistischen Falle eines Kernbrenn-

Abb. 3.1.1.6: Isotherme Schnitte bei 2273 K (a) und 1873 K (b) im System U-Pu-C (Vorschläge, vgl. Lit. /23/)

stoffes zu erwarten ist, die Segregation von Pu in der Sesquicarbidphase zurückgeht. Dies drückt sich in einem Ansteigen der Kohlenstoffaktivität und einem Abfall der Plutoniumaktivität aus /25/. Bei hohen Temperaturen (vgl. Abb. 3.1.1.6 a) wird U_2C_3 instabil und kann nur mehr gelöst in Pu_2C_3 existieren. Auf der uranreichen Seite steht jetzt eine Dicarbidmischphase mit dem Monocarbid im Gleichgewicht.

Ternäre Carbidsysteme mit Pa und Np wurden bisher nicht betrachtet. Abb.3.1.1.7 verdeutlicht das zu erwartende Mischungsverhalten der Monocarbide und der kubisch flächenzentrierten Dicarbide der Actinoiden. Auch quaternäre (Th,U,Pu)C_{1-x}-Mischcarbide wurden in weiten Konzentrationsbereichen nachgewiesen /32/.

Abb. 3.1.1.7: Zur Mischbarkeit der Monocarbide (a) und Dicarbide (b) der Aktinoiden untereinander + voll mischbar, (+) wahrscheinlich voll mischbar aber noch nicht untersucht

Die Metalle Y,La,Ce,Pr,Nd Pm und Sm sind häufige Spaltprodukte sowohl bei der Uran- als auch bei der Plutoniumspaltung. Abb. 3.1.1.8 verdeutlicht, dass diese Metalle zusammen betrachtet, die grösste Gruppe unter den Spaltprodukten darstellen. Entsprechend gross kann auch ihr Einfluss auf das Verhalten eines Kernbrennstoffes mit steigendem Abbrand sein. Dieser Einfluss wird durch das Reaktionsverhalten der Seltenen Erden im Brennstoff bestimmt und kann sich auswirken in einer Stöchiometrieänderung und damit in einer Änderung des Kohlenstoffpotentials oder in einer Bildung flüchtiger und reaktiver Verbindungen. Die Problematik dieser Spaltproduktreaktionen wurde von verschiedenen Autoren behandelt /30,31,33-41/. Um diesen Einfluss berücksichtigen zu können, wurden Phasendiagramme der interessierenden Systeme experimentell untersucht, errechnet oder abgeschätzt. So wurden vom Autor /23/ Carbidsysteme der Actinoiden Thorium, Uran und Plutonium mit den Seltenen Erden Yttrium und Cer auf Grund vorhandener experimenteller Daten abgeschätzt und Phasenbeziehungen in den Systemen U,Pu-La,Ce,Nd,Gd-C von Haines und Potter /31/ diskutiert. Sehr viele Einzelheiten sind noch ungelöst, deswegen können die nachfolgend wiedergegebenen isothermen Schnitte in vielen Fällen nur Vorschläge sein, die allerdings den Kenntnisstand der Thermodynamik in diesen Systemen zusammenfassen und wiederspiegeln.

S.E. Zr	Mo	Pt.M.
45.4 17.4	22.2	42.5

Abb. 3.1.1.8: Stabile produkte

Stabile oder langlebige Spaltprodukte pro 100 Spaltungen von Pu₂₃₉
Von den Systemen der Actinoiden mit Yttrium liegen nur für das System U-Y-C experimentelle Daten vor /42,56/. Nach /42/ ist bei 1773 K sowohl UC und YC_{1-x} als auch UC_2 und YC_2 vollkommen mischbar. Berücksichtigt man jedoch die Konstitution der binären Systeme U-C und Y-C, so muss man diesen Befund leicht revidieren, denn es existiert erst oberhalb etwa 2100 K kubisches UC2, welches eine vollständige Lösung mit YC2 eingehen kann. Andererseits wandelt sich YC_2 erst bei Temperaturen von 1593 K in die tetragonale Modifikation um. Bei diesen Temperaturen ist UC, nicht mehr existent. Unter Berücksichtigung des Aufbaus der binären Systeme kann bei 1873 K mit den in Abb.3.1.1.9 wiedergegebenen iso-.thermen Schnitten gerechnet werden. Über das System Th-Y-C und Pu-Y-C liegen zwar gar keine experimentellen Befunde vor, jedoch erscheint die Mischbarkeit der Verbindungen ThC_{1-x} und YC_{1-x} sowie ThC₂ und YC₂ ebenso wie PuC_{1-x} und YC_{1-x} wahrscheinlich. Die Ausdehnung der homogenen Bereiche des Dicarbidschnitts UC_2 -YC $_2$ sowie die Löslichkeit von $m Y_2C_3$ in $m Pu_2C_3$ und von PuC $_2$ in YC $_2$ ist unsicher und die Darstellung kann hier nur den prinzipiellen Aufbau veranschaulichen. Im System UC-YC $_{1-x}$ wird eine kleine Mischungslücke vermutet /31/. Dies erscheint jedoch zumindest bei höheren Temperaturen (z.B. denen der Schnitte in Abb. 3.1.1.9) unwahrscheinlich.

Das System <u>U-La-C</u> wurde im Bereich von UC, und zwar bezüglich der Bildung einer (U,La)C-Mischphase /40,31,43,44/ sowie auf dem Dicarbidschnitt UC₂-LaC₂ /45/ untersucht. Abb.3.1.1.10 zeigt einen isothermen Schnitt bei 1773 K, der unter Berücksichtigung dieser Arbeiten aufgestellt wurde. Die Löslichkeiten von "LaC" in UC sowie von La_2C_3 in U_2C_3 liegen unter 1 Mol % /31,42/. Die Umwandlungstemperatur der kubischen Mischphase (U,La)C₂ in die tetragonale Modifikation liegt weit unter derjenigen der binären Randphasen. So wird z.B. bei den Mischphasen im Bereich zwischen (La_{0.2}U_{0.8})C₂ und (La_{0.85}U_{0.15})C₂ bis Raumtemperatur kein Zerfall der kubischen Modifikationen beobachtet /45/.

Auch im System <u>Pu-La-C</u> bleibt eine kubische Dicarbidmischphase $Pu_{0.5}La_{0.5}C_2$ bis Raumtemperatur stabil. Die Löslichkeit von "LaC" in PuC_{1-x} liegt bei 2 Mol %, jene von La₂C₃ in Pu₂C₃ abhängig von der Temperatur zwischen 6 Mol % (1223 K) und 8.5 Mol % (1723 K) /31/.

Ein Schnitt bei 1673 K wird von /56/ gegeben.

x) Bei hohen Temperaturen und Drucken (33-45 kbar) konnten auch Th₂C₃ u.Sesquicarbidmischphasen (Th,M)₂C₃ mit den Seltenen Erden M = Sc,Y,La,Ce,Pr,Nd,Gd,Tb,Dy,Ho,Er und Lm hergestellt werden /49-52/.

a)

b)

c)

Abb. 3.1.1.9: Isotherme Schnitte bei 1873 K in den Systemen Th-Y-C (c), U-Y-C (b) und Pu-Y-C (c) (Vorschläge, vgl. Lit. /23/)

Abb. 3.1.1.10: Isothermer Schnitt bei 1773 K im System U-La-C (Vorschläg) des prinzipiellen Aufbaus)

Am ausführlichsten wurden innerhalb dieser Systemgruppe die Carbidsysteme der Actinoiden mit Cer untersucht /31,34,40,43,45,46,47/. Unter Zugrundelegung dieser Arbeiten können die in Abb.3.1.1.11 wiedergegebenen isothermen Schnitte bei 1873 K angenommen werden. Die Löslichkeit eines hypothetischen "CeC" beträgt bei 1873 K etwa 40 Mol 🖇 in ThC. etwa 10 - 15 Mol % in UC und etwa 10% in PuC_{1-x} . Die Dicarbidschnitte zeigen dagegen ausgeprägte Mischkristallbildung und im Falle des Systems Pu-Ce-C besteht, mitbedingt durch die in diesem System hohe Stabilität der Sesquicarbide, vollkommene Mischbarkeit dieser Verbindungen. Die Gleichgewichte in den Ce-enthaltenden Systemen sind offensichtlich stark temperaturabhängig. Dies ist möglicherweise auf einen Wertigkeitswechsel des Cers zurückzuführen. Die experimentellen Befunde wurden fast ausschliesslich an abgekühlten Proben bei Raumtemperatur gewonnen, so dass die Gleichgewichte bei hohen Temperaturen unter Berücksichtigung möglicher und wahrscheinlicher Umwandlungen abgeschätzt werden müssen. Anzeichen für Mischungslücken isotyper Phasen beruhen oftmals auf einem Zerfall bei tiefen Temperaturen, dies trifft vor allem für die Dicarbidschnitte zu. Aber auch im Bereich der Mischphase (U,Ce)C scheint die starke Temperaturabhängigkeit der Gleichgewichte die Festlegung des homogenen Bereiches in Abhängigkeit von der Temperatur zu erschweren. So ist es zu erklären, dass Löslichkeiten im Bereich von wenigen % bis zu 30% "CeC" in UC angegeben werden. Bei etwa 30 Mol 🖇 "CeC" und Temperaturen um 1500 K wird auch eine kubisch flächenzentrierte Verbindung ($U_{\sim 0.7}$ Ce $_{\sim 0.3}$)C_{1-x} (45 At.% <C <50 At.%) angegeben, die durch ein Zweiphasenfeld von der kubisch flächenzentrierten Mischphase (U,Ce)C getrennt ist /31/.

Abb. 3.1.1.11: Isotherme Schnitte bei 1873 K in den Systemen Th-Ce-C (a), U-Ce-C (b) und Pu-Ce-C (c) (Vorschläge, vgl. Lit. /23/)

UC löst im System <u>U-Pr-C</u> bei 1700 K etwa 3 Mol % "PrC", das Sequicarbid etwa 2 Mol % Pr₂C₃ /31/. Ein isothermer Schnitt bei 1673 K ist ähnlich aufgebaut wie die Schnitte in den Systemen U-La-C und U-Ce-C /57/.

c)

Aus den wenigen vorliegenden experimentellen Befunden im System <u>Pu-Pr-C</u> kann man auf höhere Löslichkeiten in den Plutoniumcarbiden schliessen. So ergeben sich aus Gitterparameteränderungen eine Löslichkeit bis zu 6 Mol % "PrC" in PuC_{1-x}, vollständige Mischbarkeit der Sesquicarbide und weite Mischkristallbereiche auf dem Dicarbidschnitt /31/. Das System <u>U-Nd-C</u> wurde vor allem im Bereich des UC experimentell untersucht /31,40,43/. Die Löslichkeit eines hypothetischen "NdC" in UC liegt bei 4 (1600 K) bis 6 (1800 K) Mol %. Etwa 2,5 Mol % Nd₂C₃ sind in U₂C₃ löslich /31,43/. Der Vorschlag eines isothermen Schnittes (Abb. 3.1.1.12) bei 1773 K verdeutlicht die zu erwartenden Gleichgewichte.

In PuC_{1-x} löst sich bis zu 4 Mol ^g "NdC". Die Sesquicarbide im System <u>Pu-Nd-C</u> zeigen offensichtlich geringe gegenseitige Löslichkeiten, dagegen sind zumindest die tetragonalen Modifikationen der Dicarbide vollständig mischbar /31/.

Die schweren Seltenen Erden, beginnend mit Samarium, bilden kubisch flächenzentrierte Subcarbide MC $_{1-x}$ (M = Sm-Lu), die bei tiefen Temperaturen geordnet sind. Die Gitterparameter dieser Phasen liegen zwischen a = 0.506 nm (SmC_{1-x}) und 0.470 nm (LuC_{1-x}) und lassen deshalb auf vollständige bzw. ausgedehnte Mischphasenbildung mit UC und möglicherweise auch PuC1-y schliessen. Am Beispiel des Systems U-Gd-C konnte dies nachgewiesen werden /31/. Es wird bei Temperaturen von etwa 1300 K allerdings eine kleine Mischungslücke angenommen. Unter Berücksichtigung der Gleichgewichte in den binären Carbidsystemen der Seltenen Erden (vgl. Y-C) ist es jedoch wahrscheinlich, dass dies ein "Abkühlungseffekt", bedingt durch Ordnungserscheinungen bei tiefen Temperaturen ist, und dass bei hohen Temperaturen vollkommener Austausch von Uran gegen Gadolinium unter gleichzeitiger Einführung von Defekten im Kohlenmöglich ist. Dies ist auch im Vorschlag eines isostoffteilgitter thermen Schnittes bei 1773 K (vgl. Abb. 3.1.1.13) ausgedrückt. Die Dicarbide UC₂ und GdC₂ sind sowohl in der kubischen als auch in der tetragonalen Modifikation vollkommen mischbar /48/.

Die vorliegenden Ergebnisse an Carbidsystemen zeigen, dass isotype Carbide der Actinoiden und der Lanthanoiden in weiten Bereichen mischbar sind. Oftmals wird dieses gegenseitige Lösungsverhalten jedoch durch andere Gleichgewichte beeinträchtigt. So verhindern z.B. stabile Gleichgewichte zwischen Dicarbiden und Monocarbiden in manchen Systemen die Ausbildung fester Lösungen der Sesquicarbide. Auch quaternäre Uran-Cer-Zirkon-Mischphasen wurden untersucht /34/, wobei sich ergab, dass das Lösungsvermögen einer (U,Zr)C-Mischphase für "CeC" mit steigendem Zirkongehalt rasch abnimmt.

3.1.1.12: Isothermer Schnitt bei 1773 K im System U-Nd-C (Vorschlag des prinzipiellen Aufbaus)

3.1.1.13: Isothermer Schnitt bei 1773 K im System U-Gd-C (Vorschlag, vgl. Lit. /31/)

<u>Liter</u>	ratur: Ternäre Carbidsysteme der Übergangsmetalle der 3.Gruppe(Kap.3.1.1)									
/1/	G.Adachi, H.Kotani, N.Yoshida, J.Shiokawa J.Less-Common Met. 22 (1970) 517									
/2/	I.J.McColm, T.A. Quigley, N.J.Clark J.McColm, T.A. Quigley, N.J.Clark J.McColm, T.A. Quigley, N.J.Clark									
/3/	G.Adachi, J.Shiokawa Proc. 11 th Rare Earth Res.Conf., Traverse City, Vol.ll, S.1077 (1974)									
/4/	G.Adachi, Y.Shibata, K.Ueno, J.Shiokawa J.Inorg.Nucl.chem. 38 (1976) 1023									
/5/	H.Nowotny, R.Kieffer, F.Benesovsky, E.Laube Planseeber. Pulvermet. 5 (1957–102									
/6/	E.Laube, H.Nowotny Mh.Chem. 89 (1958) 312									
/7/	V.Cirilli, C.Brisi Ricerca Sci. 28 (1958) 1431									
/8/	F.Benesovsky, E.Rudy Mh.Chem. 92 (1961) 1186									
/9/	J.T.Venard ORNL-TM-2015 (1968)									
/10/	M.Osaki, N.Obata, T.Kirihara Nippon Kinzoku Gaikkai-Shi. Sendai.Japan 37 (1973) 100									
/11/	J.Henna, J.W.Jones Trans.Br.Ceram.Soc.67 (1968) 613									
/12/	S.Langer, P.K.Gantzel, N.L.Baldwin Inorg. Chem. 5 (1966) 2033									
/13/	N.H.Hill, O.B.Cavin ORNL - 3668 (1964)									
/14/	M.V.Newitt Bericht ANL 6868 (1963) 312									
/15/	S.Rosen Bericht ANL 6677 (1962) 265									
/16/	R.Lorenzelli Compt.Rend, C 266 (1968) 900									
/17/	J.T.Dalton, P.E.Potter, J.L.Shaw in A.E.Kay, M.B.Waldron (Hrsg.) Plutonium 1965									

.

Proc. 3, Intern.Conf.; London 1965 (1967) S. 775

- /18/ J.T.Dalton in L.E.Russel (Hrsg.) Carbides in Nuclear Energy, MacMillan, London (1964) S.77
- /19/ H.Holleck, H.Kleykamp in Gmelins Handbuch der anorganischen Chemie, Transurane, Teil C. S.199; Verlag Chemie, Weinheim (1972)
- /20/ J.G.Reavis, J.A.Leary in W.N.Miner (Hrsg.) Proc. Intern.Conf. Plutonium 1970 and other Actinides, Santa Fe 1970, S.809
- /21/ O.S.Jvanow, Z.M.Aleksejewa Sb.Stroenic splawow nekotorych system a uranom i toriem; Gosatomizdat, 1961, 428
- /22/ E.Rudy Thermodynamics of Nuclear Materials, IAEA, Vienna 1962, p. 243
- /23/ H.Holleck Thermodynamics of Nuclear materials 1974, Vol.2, IAEA, Wien, 1975, S.213
- /24/ P.E.Potter UKAEA Bericht, AERE-R 5922 (1968)
- /25/ P.E.Potter in H.Blank, R.Lindner (Hrsg.) Plutonium 1975 and other Actinides, North Holland, Amsterdam, 1976, S.211
- /26/ J.T.Dalton, E.A.Harper, H.J.Hedger, R.W.Stannard in W.N.Miner, Proc. 4.Int.Conf. Plutonium 1970 and other Actinides, Santa Fe, 1970, S.829
- /27/ S.Rosen, M.v.Nevitt, J.J.Barker J.Nucl.Mat. 9 (1963) 128
- /28/ F. deKeroulas, D.Calais, J.P.Marcon J.Nucl.Mat. 44 (1972) 64
- /29/ P.Browning. B.A.Phillips, P.E.Potter, M.H.Rand in H.Blank, R.Lindner (Hrsg.) Plutonium 1975 and other Actinides, North Holland, Amsterdam, 1976, S.257
- /30/ H.Holleck, E.Smailos, F.Thümmler Reaktortagung Berlin 2-5 April 1974, Tagungsband S.884
- /31/ H.R.Haines, P.E.Potter Thermodynamics of Nuclear Materials 1974, Vol.11, IAEA, Wien, 1975, S. 145
- /32/ A.S.Coffinberry, F.H.Ellinger Proc. 1. U.N. Int.Conf. Peaceful Uses A.Energy, Geneva 1955,

- /33/ H.Holleck Berichte der Diskussionstagung Reaktormetalle (DGM), Jülich, Nov. 1966
- /34/ H.Holleck, W.Wagner IAEA-Symp.: Thermodynamics of Nucl.Mat., Wien (1967) 667 und KFK 643 (1967)
- /35/ H.Holleck Stoffliche Veränderungen beim Abbrand im Reaktor, in "Kernbrennstoffe für Schnelle Brutreaktoren" KFK 1111 (1969) S. 111-1
- /36/ H.Holleck, H.Kleykamp KFK 1181 (1970)
- /37/ H.Holleck, H.Kleykamp, F.Thümmler Reaktortagung, Bonn, 1971, Berichte des Deutschen Atomforums, S.582
- /38/ H.Holleck, E.Smailos in "Behaviour and Chemical State of Irradiated Fuels" IAEA, Wien, 1974, S. 361
- /39/ E.Smailos KFK 1953 (1974)
- /40/ H.R.Haines, P.E.Potter UKAEA-Bericht AERE-R 6513 (1970)
- /41/ U.Benedict, G.Giacchetti, H.J.Matzke, K.Richter, C.Sari, H.E.Schmidt Nuclear Technology 35 (1977) 154
- /42/ W.Chubb, D.L.Keller Bericht BMI 1685 (1964)
- /43/ N.Lorenzelli, J.P.Marcon J.Less Common Met. 26 (1972) 71
- /44/ N.Lorenzelli Bericht, CEA R-4465 (1973)
- /45/ I.J.MacCohn, J.Colqukoun, H.J.Clark J.Inorg.Nucl.Chem. 34 (1972) 3809
- /46/ P.Stecher, A.Neckel, F.Benesovsky, H.Nowotny Planseeber. Pulvermet.12 (1964) 181
- /47/ T.Nomura, A.Naoumidis, H.Nickel Bericht, Jül. 1432 (1977)
- /48/ T.C.Wallace, N.H.Krikorian, P.L.Stone J.Electrochem.Soc. 111 (1964) 1404

- /50/ M.C.Krupka, A.L.Giorgi, N.H.Krikorian, E.G.Szklarz US Patent 3.586641, 1971
- /51/ A.L.Giorgi, E.K.Szklarz, N.H.Krikorian, M.C.Krupka J.Less Common Met. 22 (1970) 131
- /52/ M.C.Krupka, A.L.Giorgi, E.G.Szklarz J.Less Common Met. 30 (1973) 217
- /53/ G.Adachi, T.Nishihata, J.Shiokawa J.Less Common Met. 32 (1973) 301
- /54/ M.V.Nevitt, S.Rosen Acta Cryst. 16 (1963) A 18
- /55/ G.Adachi, F.Tonomura, Y. Shibeta, J.Shiokawa J.inorg.nucl.Chem. 40 (1978) 489
- /56/ M.Peatfield, N.H.Brett, H.R.Haines, P.E.Potter J.Nucl.Mat. 89 (1980) 13
- /57/ M.Peatfield, N.H.Brett, P.E.Potter J.Nucl.Mat. 89 (1980) 27

3.1.2 Ternäre Carbidsysteme der Seltenen Erden und Actinoiden mit den Übergangsmetallen anderer Gruppen

Die Carbidsysteme der Übergangsmetalle der 3. Gruppe mit jenen anderer Gruppen lassen sich in zwei Teilen betrachten. Während wenig über den Aufbau der Systeme mit Seltenen Erden als Komponente bekannt ist, sind die Systeme der Actinoiden mit Übergangsmetallen anderer Gruppen und Kohlenstoff teilweise ausführlich untersucht worden. Die Ursache hierfür ist das Interesse, welches von seiten der Kernforschung und Kerntechnik diesen Systemen zukommt, da die meisten Elemente, die z.B. in einem Brennstab direkt in Berührung kommen, dieser Gruppe angehören. Abb. 3.1.2.1 verdeutlicht die Lage der Elemente der Kernbrennstoffe, der Spaltprodukte und der Hüllmaterialkomponenten im Periodensystem. Die Häufung dieser Materialkomponenten im Bereich der Übergangsmetalle ist offenkundig. Die Kenntnis der entsprechenden Phasenbeziehungen stellt die Voraussetzung dar für die Einschätzung und Deutung des Reaktionsverhaltens. Dieses wiederum bestimmt massgeblich das Langzeitverhalten eines Brennstabes.

≪-/	۹-۲	-			'	r —				∡			B				
IA	ШΑ											шв	IVB	٧B	VI 8	VIIB	
Li	Be											В	C	N	0	F	Ne
Na	Mg	ША	IVA	VA	VI A	VIIA		νщ		ів	ΠВ	AI	SI	Ρ	S	сι	Аг
К	Ca	Sc	FV/	St/	Cr	Ma	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zſ	NB	Mo	Τc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	:Te:	j	Xe
Cs:	Ba	La:	Hf	Ta	w	Re	0s	lr	Pt	Au	Hg	TI	РЬ	Bi	Po	At	Rn
Fr	Ra	Ac		••••••							•	•		•			
			\backslash	Ce:	Pr	Nď	Рm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
			À					Continue		r				1			
				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Elemente der Kernbrennstoffe

Spaltprodukte in Kernbrennstoffen

Hüllmaterialkomponenten

<u>Abb. 3.1.2.1</u>: Verteilung der Elemente der Kernbrennstoffe, der Spaltprodukte und der Hüllmaterialkomponenten im Periodensystem

3.1.2.1 Ternäre Carbidsysteme der Seltenen Erden mit den Übergangsmetallen anderer Gruppen

Systeme mit Scandium, dem leichtesten Element aus der Reihe der Seltenen Erden, wurden vor allem wegen des hohen Preises dieses Metalles kaum untersucht, obwohl es Hinweise auf sehr interessante Eigenschaften in mehrkomponentigen Systemen gibt. So konnte z.B. im System <u>TiC-ScC</u> eine Löslichkeit von mindestens 20 Mol % ScC in TiC nachgewiesen werden, was zu einem Härteanstieg von etwa 3000 HV (TiC) auf 5680 HV (Ti_{0.8}Sc_{0.2})C und damit zur zweithärtesten Substanz nach dem Diamant führen soll /1/. In eigenen Versuchen konnte dieser Härteanstieg allerdings bisher nicht erhalten werden. Die Löslichkeit von TiC in ScC soll weniger als 10 Mol % betragen /1/. Auch das mit WC gesättigte ScC soll eine extrem harte Substanz mit einer Härte von 3800 HV sein /2/.

Mit den Übergangsmetallen der 8.Gruppe bildet Scandium Komplexcarbide. Während Sc-reiche Carbide in den Systemen <u>Sc-Ru-C</u>, <u>Sc-Rh-C</u> und <u>Sc-Os-C</u> bisher zwar festgestellt, aber noch nicht charakterisiert werden konnten /3/, sind die Carbide $ScCo_3C_{1-x}$, $ScRu_3C_{1-x}$, $ScRh_3C_{1-x}$ und $ScIr_3C_{1-x}$ hinsichtlich Zusammensetzung und Struktur bekannt /4/ (vgl. Tab.3.1.2.1). Die Phasenbeziehungen im Bereich dieser Komplexcarbide mit Perowskitstruktur zeigt Abb. 3.1.2.2 für die Systeme Sc-Ru-C, Sc-Rh-C gemeinsam mit jenen des Systems <u>Sc-Pd-C</u>. Scandium fällt im Hinblick auf das Reaktionsverhalten etwas aus dem Rahmen der Seltenen Erden heraus. In vielen Fällen ähneit dieses eher jenem der Übergangsmetalle der 4.Gruppe. Dies wird ausführlicher in Kap. 4.2 angesprochen.

Abb.3.1.2.2: Phasenbeziehungen bei 1573 K im platinmetallreichen Teil der Systeme Sc-Ru-C, Sc-Rh-C und Sc-Pd-C (vgl. /4/)

Yttriumdicarbid reagiert mit Iridium und Platin (vgl. Abb. 3.1.2.3) unter Bildung von <u>Yttrium-Platinmetal</u>-Phasen und freiem <u>Kohlenstoff</u> /6/. Ähnliches Verhalten ist auch im Kontakt mit anderen Platinmetallen zu erwarten.

Die Systeme Ce-Zr-C und Ce-Mo-C wurden im Bereich der Carbide geprüft /7/. Phasenfeldaufteilungen gemäss Abb. 3.1.2.4 bzw. 3.1.2.5 können erwartet werden. Die Gleichgewichte in diesen beiden Systemen, die von den binären Verbindungen bestimmt werden, deuten darauf hin, dass keine Wechselwirkung zwischen den Spaltprodukten der Seltenen Erden und Zr bzw. Mo untereinander in einem Carbidbrennstoff auftreten.

Cer bildet mit Ruthenium und Kohlenstoff ein Perowskitcarbid CeRu₃C /5/ (Strukturdaten Tab. 3.1.2.1) und eine weitere ternäre Phase der Zusammensetzung Ce₃Ru₂C₅ /8/.^{X)} Die Phasenbeziehungen in den platinmetallreichen Gebieten der Systeme <u>Ce-Ru-C, Ce-Rh-C</u> und <u>Ce-Pd-C</u> bei 1573 K zeigt Abb. 3.1.2.6. Kohlenstoff kann in der Intermetallischen Phase CeRh₃ bis zu einer Zusammensetzung nahe CeRh₃C gelöst werden. Alle dreiwertigen Seltenen Erden bilden mit Rhodium Perowskitcarbide der Zusammensetzung MRh₃C_{1-x} (M = Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) /5/. Diese Verbindungen, deren Gitterkonstanten in Tab. 3.1.2.1 angegeben sind, treten je nach Temperatur mit Kohlenstoffdefekten auf. Zusammensetzungen zwischen MRh₃C_{0.7} und MRh₃C_{0.98} wurden nachgewiesen. Teilweise bestehen auch homogene Bereiche, so dass die Besetzung der Oktaederlücken auch abhängig ist von den anderen Phasen mit denen das Perowskitcarbid im Gleichgewicht steht. Bezüglich der Zusammenhänge zwischen dem Auftreten der Perowskit-

Abb. 3.1.2.4: Isothermer Schnitt bei 1873 K im System Ce-Zr-C (Vorschlag, vgl. Lit. /7/)

Abb.3.1.2.5: Isothermer Schnitt bei 1873 K im System Ce-Mo-C (Vorschlag, vgl. Lit. /7/)

X) Stabilität gasförmiger Ce-Ru-C und Ce-Rh-C Moleküle in /89/.

Phase	Gitterkonstante (nm)	Existenzbereich Bemerkung	Literatur
ScCo ₃ C _{1-x}	0.3827	eren en e	/4/
ScRu ₃ C _{1-x}	0.4031	im Gleichgewicht mit Ru und C	/4/
ScRh ₃ C _{1-x}	0.4017 0.3968 0.3940	ScRh ₃ C _{0.85} ScRh ₃ C _{0.50} ScRh ₃ C _{0.25}	/4/
ScIr ₃ C _{1-x}	0.3994	im Gleichgewicht mit ScIr $_{ m 2}$ und C	/4/
YRh ₃ C _{1-x}	0.4129 - 0.4135	Phase steht im Gleichgewicht mit Rh und C	-/5/
LaRh ₃ C _{1-x}	0.4166 - 0.4229	Kohlenstoffgehalt variierend	_/5/
CeRu ₃ C _{1-x}	0.4137	Phase steht im Gleichgewicht mit CeRu ₂ , C und Ru	/4,5,9/
CeRh ₃ C _{1-x}	0.4117 0.4080 0.4060	CeRh ₃ C _{0.9} CeRh ₃ C _{0.5} CeRh ₃ C _{0.25}	/4,5/
PrRh ₃ C _{1-x}	0.4181 - 0.4195	Phase steht im Gleichgewicht mit Rh und C	/5/
NdRh3C1-x	0.4171 - 0.4191	Kohlenstoffgehalt variierend	/5/
SmRh ₃ C _{1-x}	0.4153 - 0.4163	Kohlenstoffgehalt variierend	/5/
EuRh ₃ C _{1-x}	0.4126 - 0.4151	Kohlenstoffgehalt variierend	/5/
GdRh ₃ C _{1-x}	0.4125 - 0.4139	Kohlenstoffgehalt variierend	/5/
TbRh ₃ C _{1-x}	0.4119 - 0.4127	Kohlenstoffgehalt variierend	/5/
DyRh ₃ C _{1-x}	0.4127 - 0.4133	Kohlenstoffgehalt variierend	/5/
HoRh ₃ C _{1-x}	0.4111 - 0.4123	Kohlenstoffgehalt variierend	/5/
ErRh ₃ C _{1-x}	0.4105 - 0.4117	Kohlenstoffgehalt variierend	/5/
TmRh ₃ C _{1-×}	0.4094 - 0.4104	Kohlenstoffgehalt variierend	/5/
YbRh ₃ C _{1-x}	0.4098 - 0.4104	Kohlenstoffgehalt variierend	/5/
LuRh ₃ C _{1-x}	0.4076 - 0.4090	Kohlenstoffgehalt variierend	/5/

Tabelle 3.1.2.1: Perowskit-Carbide der Seltenen Erden mit Übergangsmetallen anderer Gruppen

carbide mit Platinmetallen und der Stellung der Partner im Periodensystem, die vom Autor mehrfach diskutiert wurde /4,5,9,10,13/, sei auf Kapitel 3.1.5.8 und 4 verwiesen.

Cercarbide, wie auch Erbiumcarbide (und voraussichtlich auch die Carbide der anderen Seltenen Erden) reagieren mit Iridium und Platin unter Bildung intermetallischer Phasen und gleichzeitiger Freisetzung von Kohlenstoff. Dieses Verhalten wird durch die Phasenbeziehungen in Abb. 3.1.2.3 a bis f dokumentiert /6/.

Abb. 3.1.2.6: Phasenbeziehungen bei 1573 K im platinmetallreichen Teil der Systeme Ce-Ru-C, Ce-Rh-C und Ce-Pd-C (vgl. /4/)

3.1.2.2 Ternäre Carbidsysteme der Actinoiden mit den Übergangsmetallen anderer Gruppen

Viele dieser Systeme, die teilweise erhebliches technologisches Interesse beanspruchen, wurden vom Autor schon früher zusammenfassend betrachtet /12/ und neuerdings kritisch analysiert /13/. Naturgemäss sind die Carbidsysteme von Uran und den anderen Übergangsmetallen mit Abstand am ausführlichsten untersucht und am besten bekannt. Dies spiegelt sich z.B. auch in Abb.3.1.2.7 wieder, wo einer Vielzahl auch strukturell bekannter Komplexcarbide (auch Nitride sind in dieser Abbildung aufgeführt) wesentlich weniger z.T. unzureichend charakterisierten ternären Carbiden von Thorium und Plutonium gegenüberstehen. Systeme der übrigen Actinoiden mit den Übergangsmetallen und Kohlenstoff wurden bisher nicht näher betrachtet.

<u>Abb.</u>	3.1.	2.7	: Komp	lex-c	cart	pide	und
-nitr	ride	von	Th,U	und	Pu	mit	den
Überg	angs	smeta	allen	ande	erer	- Gru	ippen

	Th	U	Pu
V		UVC ₂ UVN ₂	
Nb	_	UNDN ₂	
Ta		U Ta N ₂	
Cr	₹h₂CrN₃	UCrC ₂ U ₂ CrN ₃	
Mo	2 Verb.	UMoC2 UMoC1.7	PuMoC ₂
w		UWC ₂ UWC _{1.7} z-(U,W,C)	PuWC ₂
Mn	Th ₂ MnN ₃	UMn C ₂ U ₂ Mn N ₃	
Īc		UTc C 2	Pu Tc C ₂
Re	Verb.	UReC ₂ UReC _{1.7}	
Fe		UFeC ₂	PuFeC ₂ Pu ₃ Fe ₄ C ₅
Ru	Th₃Ru₄C₅ ThRu₃C _{I,5} ThRu₃C	U ₂ RuC ₂ U Ru ₃ C _{I-x}	Pu Ru ₃ C
Os	Verb.	U ₂ OsC _{2+x}	
Co		U Co C 2	
Rh	_	U2RhC2	PuRh ₃ C _{I-x}
١r	Verb.	U ₂ IrC ₂	
Ni	Th ₂ Ni ₃ C ₂ Th ₂ Ni ₃ C ₅	UNIC ₂ U ₂ NIC ₃	
Pd			
Pt	Verb,	U ₂ PtC ₂	

Der Aufbau der ternären Systeme Th, U, Pu-Ti-C ist untereinander sehr ähnlich. Die gegenseitige Löslichkeit der Carbide ist gering /14,15,16,17/, und das stabilere TiC steht mit den Metallen Th,U bzw. Pu im Gleichgewicht. Abb.3.1.2.8 verdeutlicht die Phasenbeziehungen, die als Vorschläge gelten müssen, da in den Systemen Th-Ti-C /17/ und U-Ti-C /15,16/ nur wenige, im System Pu-Ti-C keine experimentellen Untersuchungen vorliegen. Bei den Systemen Th,U,Pu -Zr-C nimmt Uran eine besondere Rolle ein, da UC mit ZrC eine vollkommene Mischkristallreihe bildet /14,18,19,20/, während ThC und ZrC sich nur geringfügig gegenseitig lösen /17,87,88/, und PuC und ZrC den wenigen Angaben nach zu schliessen, auch nur geringen Metallaustausch in den jeweiligen Carbiden zeigen /21,22/. Der Aufbau des Systems U-Zr-C wurde mehrfach untersucht /18,23,24,25,26/. Besonderes Augenmerk wurde dabei auf die Lage des nonvarianten Punktes des Dreiphasengleichgewichts UC2+(U,Zr)C+C, d.h. auf die Zusammensetzung der Mischphase im Gleichgewicht mit UC₂ und C gelegt. Die unterschiedlichen Angaben (30 Mol % UC bei 1973 K /18/; 70 Mol % UC bei 1973 K /23/; 50 Mol % UC bei 1873 K; 32 Mol % UC bei 2073 K und 28 Mol % US bei 2073 K /24/; 39 Mol % UC bei 1973 K; 32 Mol % UC bei 2173 K und 23 Mol % UC bei 22 73 K /25/ sowie 22 Mol % UC bei 2300 K /26/) deuten auf Schwierigkeiten bei der Gleichgewichtseinstellung hin. In jedem

- 110 -

Abb.3.1.2.8: Isotherme Schnitte bei 1773 K bzw. 1873 K in den Systemen Th-Ti-C (a) U-Ti-C (b) und Pu-Ti-C (c) (Vorschläge vgl.Lit. /13/)

Abb.3.1.2.9: Isotherme Schnitte in den Systemen Th-Zr-C bei 1773 K (a), U-Zr-C bei 1973 K (b) und Pu-Zr-C bei 1873 K (c) (vgl.Lit. /11,13,17,26/)

Falle verschiebt sich der nonvariante Punkt mit steigender Temperatur zu UC-ärmeren Zusammensetzungen. Bei 2000 K erscheint ein Wert zwischen 35 und 40 Mol % UC gesichert zu sein. Abb. 3.1.2.9 zeigt isotherme Schnitte der Systeme <u>Th-Zr-C</u>, <u>U-Zr-C</u> und <u>Pu-Zr-C</u>, welche die Phasenbeziehungen wiederspiegeln. (Hinsichtlich Strukturdaten vgl. Tabelle 4.1.2.2). Der Schmelzpunkt der Mischphase (U,Zr)C fällt stetig von etwa 3700 K für ZrC auf 2770 K für UC ab /19/.

Im System U-Hf-C liegt die kritische Entmischungstemperatur der festen Lösung (U,Hf)C nahe 2000 K. Bei 1970 K wurde nur teilweise Mischbarkeit festgestellt /18/, während bei 2273 K eine vollkommene Lösung nachgewiesen werden konnte /23/. (Die Tatsache, dass auch bei 2320 K noch Anzeichen für Unmischbarkeit beobachtet wurden /55/ deutet auch hier auf Schwierigkeiten bei der Gleichgewichtseinstellung hin.) Einen Vorschlag für die Phasenfeldaufteilung bei 2273 K zeigt Abb. 3.1.2.10.

Im System U-V-C tritt ein Komplexcarbid der Formel UVC₂ (vgl. Tabelle 4.1.2.2) auf /31, 56/. Die freie Bildungsenthalpie dieser Verbindung wurde aus dem Phasendiagramm zu ${}^{f} \Delta G_{2150}^{O} \sim -47000$ (cal / Mol) abgeschätzt /12,31/. Die Löslichkeiten von VC in UC und umgekehrt von UC in VC sind gering /14,16,31/. Abb. 3.1.2.11 verdeutlicht die Phasengleichgewichte bei 1873 K.

<u>Abb.3.1.2.11</u>: Isothermer Schnitt bei 1873 K im System U-V-C (vgl. Lit. /31/)

Phase	Strukturtyp Raumgruppe	Gitterkonstante (nm)	Existenzbereich Bemerkung	Literatur
Th _x Mo _y C _z		_	ternäres Carbid nicht näher identifiziert	/27/
Th _x Re _y C _z	-	-	ternäres Carbid nicht näher identifiziert	/27/
. Th _{3+x} Ru _{4-x} C ₅	krz.	a = 1.078	isotyp Pu ₃ Fe4C5 (mikrobereichsanaly- tisch bestimmte Zusammensetzung Th _{3,3} Ru _{3,7} C ₅)	/17,28/
ThRu ₃ C _{1.5}	-	-	Struktur unbekannt	/17,28/
ThRu3 ^C 1-x	kfz., CaTiO ₃ -Typ Pm3m	a = 0.4210	(0 < x < 0.1)	/17,28/
Th x ^{Os} y ^C z	-	-	Ternäres Carbid nicht näher identifiziert	/27/
Th _x Ir _y C _z		-	Ternäres Carbid nicht näher identifiziert	-/27/
Th ₂ Ni ₃ C ₂	-	-	Struktur des Carbids unbekannt	/29/
Th ₂ Ni ₃ C ₅	- ·	-	Struktur des Carbids unbekannt	/29/
Th _x Pt _y Cz	-	-	ternäres Carbid nicht näher identifi- ziert	_ /27/
(U,Zr)C	kfz., NaCl-Typ O <mark>5</mark> - Fm3m	a = 0.4822 für (U _{0.5} Zr _{0.5})C	geringfügige Gitterkontraktion bei Mischphasenbildung	/19,23/
(U,Hf)C	kfz., NaCl-Тур O ⁵ - Fm3m	a = 0.4693 für $(U_{0,2}Hf_{0,8})C$ a = 0.484 für	Vollkommene Mischbarkeit nur oberhalb ∿2250 K	/18,23/
uvc ₂	orthorh., CrUC ₂ -Typ Pnma	a = 0.5523 b = 0.3250 c = 1.0714	Bildung (peritektoid)unterhalb ∿2100 K	/31/
(U,Nb)C	kfz., NaCl-Тур 0 <mark>5</mark> - Fт3т	$a = 0.4522 \text{ für} \\ \{U_{0.1}Nb_{0.9}\}C \\ a = 0.4738 \text{ für} \\ (U_{0.6}Nb_{0.4})C \\ \end{bmatrix}$	negative Abweichung der Gitterkonstan- ten von der Linearität	/21,32 14/
(U,Ta)C	kfz., NaCl-Typ O <mark>5</mark> - Fm3m	a = 0.4688 für (V _{0.5} Ta _{0.5})C	negative Abweichung der Gitterkonstan- ten von der Linearität	/14,19/
UCrC2	orthorh., CrUC ₂ -Typ Poma tetr.	a = 0.5433 b = 0.3231 c = 1.0536 a = 0.3636 c = 1.5739	Schmelzt. T _s ~2620 K nach Schmelzen von UCrC ₂ in Graphit	/3,34/ /38/
umoc ₂	orthorh., CrUC ₂ -Typ Puma	a = 0.5625 b = 0.3249 c = 1.0980	Schmelzt. T _s ∿2620 K	/33,34, 35/
UMOC1.7	monokl.	a = 0.5626 b = 0.3238 c = 1.1661 $\beta = 109.7^{\circ}$	isotyp mit UWC _{1 7} und UReC _{2 7} Bildung periteRtisch unterfalb ~2500 K	/34,36/

,

Tabelle.3.1.2.2 Ternäre Carbide der Acti∵noiden mit Obergangsmetallen anderer Gruppen

Phase	Strukturtyp Raumgruppe	Gitterkonstante (nm)	Existenzbereich Bemerkung	Literatur
UWC2	orthorh., CrUC ₂ -Typ Pnma	a = 0.5629 b = 0.3251 c = 1.0960	Schmelzt. T _s ∿2850 K	/33,37/
UWC1,75	monokl.	$\begin{array}{r} a = 0.5625 \\ b = 0.3243 \\ c = 1.1650 \\ \beta = 109.6^{\circ} \end{array}$	isotyp mit UMoC $_{1,7}$ und UReC $_{2-x};$ peritekt. Bild. bei 1_p ${\sim}2600~{\rm K}$	/37/
UMnC ₂	orthorh., CrUC ₂ -Typ Pnma	a = 0.504 b = 0.3172 c = 1.074	-	/38/
UTcC2	orthorh., CrUC ₂ -Typ Pnma	a = 0.555 b = 0.3232 c = 1.090	Strukturtyp nicht ganz sicher, da ei- nige Linien nicht identifiziert; peritekt.Bild. bei T _p ∿2070 K	/38/
Utc3C1-x	kfz., CaTiO ₃ -Typ O <mark>1</mark> - Pm3m	a = 0.4132 -0.4148	0.55 ≤ x ≤ 0.65	/86/
(U,Tc,C)	tetr.	a = 0.5030 c = 1.2493	Zusammensetzung etwa UTc ₃ C _{1+x}	/86/
UReC2	orthorh., CrUC ₂ -Typ Pnma	a = 0.5544 b = 0.3229 c = 1.0742	Schmelzt. T _S >2273 K	/34,38, 41/
UReC _{2-x}	monok1.	a = 0.5569 b = 0.3209 c = 1.1643 β = 109°.52°	isotyp mit UMoC _{1.7} und UWC _{1.7} ; peri- tekt. Bild. bei T _p >2273 K	/34,40/
U ₅ Re ₃ C ₈	tetr.	a = 0.3292 c = 1.1306	möglicherweise existent mit C-De- fekten	/34,70/
UFeC2	tetr.	a = 0.4942 c = 0.7381	Peritekt. Bild bei T _p ∿1870 K; isotyp mit UCoC ₂ und UNiC ₂	/42,43/
U ₂ RuC ₂	tetr., U ₂ IrC ₂ -Typ D ¹⁷ - I4/mmm	a = 0.3455 c = 1.2592	Peritekt. Bild. bei T _p ∿2000 K	/44,45, 46/
URu ₃ C _{1-x}	kfz., def. CaTiO ₃ Pm3m	a = 0.4051	Lösung von C in URu ₃ bis URu ₃ C _{o.7}	/46/
U ₂ 0sC ₂	tetr., U ₂ IrC ₂ -Typ D _{4h} - I4/mmm	a = 0.346 c = 1.259	homogener Bereich; bei von der Stöchiometrie abweichenden Zus. \Rightarrow orthorh.Zelle; Peritek.Bild bei T_p 2000 K	/44,47/
UCoC2	tetr.	a = 0.4944 c = 0.7316	isotyp mit UFeC ₂ und UNiC ₂	/42/
U ₂ RhC ₂	tetr., U ₂ IrC ₂ -Typ D <mark>17</mark> - I4/mmm	a = 0.3466 c = 1.2512	Peritekt.Bild.bei T _p ~2000 K	/38,44, 48/
U ₂ IrC ₂	tetr., U ₂ IrC ₂ -Typ D <mark>17</mark> - I4/mmm	a = 0.3479 c = 1.2478	Schmelzt. T _s ~2000 K	/38,44, 47,73/
UNIC2	tetr.	a = 0.4961 c = 0.7346	Peritekt. Bild.bei T _P ~1670 K; isotyp mit UFeC ₂ und UCoC ₂	/42,49/
U ₂ NiC ₃	-	-	Phase nicht näher beschrieben, stabil bis etwa 2100 K	/49/
U ₂ PtC ₂	tetr.; U ₂ IrC ₂ -Typ D ¹⁷ - I4/mmm	a = 0.352 c = 1.254	Peritekt.Bild. bei T _p ∿2000 K	/44,45, 50/

11. 12. `

Phase	Strukturtyp Raumgruppe	Gitterkonstante (nm)	Existenzbereich Bemerkung	Literatur
PuMoC ₂	orthorh., CrUC ₂ ~Typ Pnma	a = 0.5614 b = 0.3218 c = 1.0887	Schmelzt. T _s ~2370 K `	/51/
PuWC2	orthorh., CrUC ₂ -Typ Pnma	a = 0.5621 b = 0.3245 c = 1.0877		/37,52/
PuWC _{1.75}	monokl.	a = 0.5616 b = 0.3252 c = 1.1609 $\beta = 109.83^{0}$	isotyp mit PuTcC _{2-x}	/37,52/
PuTcC _{2-x}	monokl.	a = 0.5425 b = 0.3224 c = 1.1213 $\beta = 109.00^{3}$	isotyp mit Pu WC _{1,75}	/41/
PuFeC ₂	tetr.	-	wahrscheinlich isotyp UFeC ₂	/53/
Pu3Fe4C5	krz.,	a = 1.011		/53/
PuRu ₃ C	kfz., CaTiO ₃ -Typ Pm3m	a = 0.4113		/8,54/
PuRh ₃ C _{1-x}	kfz.; CaTiO ₃ -Typ Pm3m	a = 0.498	Lösung von C in PuRh ₃ bis PuRh ₃ C	/8,54/

.

Die Systeme von Thorium und Uran mit Niob und Kohlenstoff ähneln in lhrem Aufbau jenen des Zirkons. ThC vermag kein NbC zu lösen, ebenso ist umgekehrt ThC nicht in NbC löslich /17/, während UC und NbC eine vollkommene feste Lösung bilden /14,32/, deren Schmelztemperatur weitgehend linear von etwa 3800 K auf 2770 K abfällt /19/. Das System U-Nb-C wurde vor allem im kohlenstoffreichen Gebiet mehrfach untersucht /18,24,39, 57, 58/. Ähnlich wie im System U-Zr-C wurde hierbei besonders die Lage des Fusspunktes des Dreiphasengleichgewichts $UC_2^+(U,Nb)C+C$ geprüft, um einerseits Aussagen über die thermodynamische Stabilität der Mischphase zu erhalten und andererseits UC-haltige Carbidphasen zu stabilisieren, die mit Kohlenstoff im Gleichgewicht stehen. Über das System Pu-Nb-C liegen zwar gar keine experimentellen Untersuchungen vor, trotzdem wurde in Abb. 3.1.2.12 der Versuch unternommen, gemeinsam mit den isothermen Schnitten der Schnitte <u>Th-Nb-C</u> und <u>U-Nb-C</u> auch einen Vorschlag der Phasenfeldaufteilung des Systems <u>Pu-Nb-C</u> zu geben. Hierbei wurden thermodynamische Daten der Randverbindungen der Abschätzung zu Grunde gelegt.

- 115 -

Abb. 3.1.2.12: Isotherme Schnitte in den Systemen Th-Nb-C (a) bei 1773 K /17/, U-Nb-C (b) bei 1973 K (vgl. Lit. /18,57/) und Pu-Nb-C (c, Vorschlag) bei 1873 K

Das System Th-Ta-C wird von den Randverbindungen bestimmt. Es treten im ternären keine nennenswerten Löslichkeiten auf /17/ (vgl.Abb. 3.1.2.13a). Im System U-Ta-C dagegen sind die Monocarbide UC und TaC vollkommen mischbar /14,19/. Die Schmelztemperatur fällt in einer leicht nach oben gekrümmten Kurve von etwa 4100 K bei TaC (empfohlener Schmelzpunkt für TaC in Kap. 2.1.3 dieses Bandes ∿ 4250 K) auf etwa 2770 K für UC ab /19/. Der isotherme Schnitt in Abb.3.1.2.13b verdeutlicht das Reaktionsverhalten in diesem System /18,59/. Die Lage der Konoden ist Ausdruck für die im Vergleich zu UC höhere thermodynamische Stabilität von TaC. Bei 1973 K kann eine feste Lösung (U,Ta)C bis zu etwa 22 Mol % UC gegen eine Aufcarburierung zu UC₂ stabilisiert werden. Eine Schmelze am Kontakt von stöchicmetrischem UC und Ta tritt bei steigender Temperatur erstmals bei 1448 K auf /60/ (An den Grenzflächen UC/Nb bei 1408 K, UC/Mo bei 2023 K und UC/W bei 2323 K TaC soll bis zu 67 Mol % PuC und PuC etwa 17 Mol % TaC lösen /60/). /11/.

Abb. 3.1.2.13: Isotherme Schnitte in den Systemen Th-Ta-C (a) bei 1773 K 717/ und U-Ta-C (b) bei 1973 K (vgl. Lit. /18,59/)

im System <u>U-Cr-C</u> wurde neben dem Komplexcarbid UCrC₂ /33,34/ eine weitere ternäre Phase beobachtet /61/, deren Zusammensetzung und Struktur allerdings ungeklärt sind. Möglicherweise handelt es sich um die in Tab. 4.1.2.2 angegebene tetragonale Phase, die beim Schmelzen von UCrC₂ in Graphit auftritt /38/. UC steht, wie es der isotherme Schnitt in Abb. 3.1.2.14 zeigt, mit Cr und allen Chromcarbiden im Gleichge-wicht /61/. Der eutektische Punkt eines Konzentrationsschnittes UC-Cr-liegt bei 1700 K und etwa 72 Mol % Cr /62/. Im System <u>Pu-Cr-C</u> wurden kürzlich ein Carbid PuCrC₂ (wahrscheinlich isotyp UCrC₂) aufgefunden und die Phasenbeziehungen geprüft /86/. Die Existenz einer weiteren ternären Phase mit geringerem Kohlenstoffgehalt und tetragonaler Struktur (a = 0.3656 nm, c = 1.5809 nm) ist wahrscheinlich /86/.

Der Aufbau der Systeme von Thorium, Uran und Plutonium mit Molybdän und Kohlenstoff wird durch ternäre Komplexcarbide (vgl. Tab. 4.1.2.2) bestimmt. Im System <u>Th-Mo-C</u> konnten diese bisher nicht näher charakterisiert werden. Hier lässt sich ein isothermer Schnitt (Abb. 3.1.2.15a) nur im Bereich der höheren Carbide angeben (vgl. /63,13/). Im System U-Mo-C sind die beiden in der Zusammensetzung sehr ähnlichen Komplexcarbide UMoC₂ und UMoC_{1.7} entgegen früheren Befunden /57,63,64/ durch ein Zweiphasengebiet getrennt /65,66,34/. Abb.3.1.2.15b verdeutlicht die Phasenbeziehungen bei 1773 K. Flüssige Phasen treten mit steigender Temperatur bei den folgenden Schnitten erstmals bei der angegebenen Temperatur auf: Schnitt UC-Mo -> 2100 K, Schnitt UMoC₂-Mo -> >2273 K, Schnitt UMoC₂-C -> 2470 K, Schnitt UC-UMoC₂ -> >2273 K /66/. Die thermodynamische Stabilität der Komplexcarbide UMoC₂ und UMoC_{1.7} wurde aus dem Phasendiagramm abgeschätzt zu: $f_{\Delta}G_{+}^{\circ}$ UMoC₂> = - 46360 - 0.69 T (cal/Mol) und

 $^{f}\Delta G^{O}_{+} < UMoC_{1.7} > = -40350 - 0.69 T (cal/Mol) /66/.$

Im System <u>Pu-Mo-C</u> tritt offensichtlich nur ein ternäres Komplexcarbid auf /21/, obwohl bei einer früheren Untersuchung des Systems Anzeichen für eine weitere, kohlenstoffärmere Phase gefunden wurden /51/. PuC_{1-x} steht mit Mo und PuMoC₂ im Gleichgewicht. Abb. 3.1.2.15c gibt die weiteren Phasenbeziehungen wieder.

Die Systeme Th,U,Pu-W-C sind in ihrem grundsätzlichen Aufbau jenen des Molybdäns ähnlich. Ternäre Carbide UWC₂ /33,37/ und PuWC₂ /37,52/ bzw. UWC_{1.75} /37/ und PuWC_{1.75} /37,52/, die untereinander isotyp sind, bestimmen den Aufbau der uran- und plutoniumhaltigen Systeme. Im System Th-W-C (Abb.3.1.2.16a zeigt die Phasenbeziehungen, aufbauend auf Literaturdaten /67/, der heutigen Kenntnis der binären Systeme angepasst) konnte dagegen keine ternäre Phase nachgewiesen werden. Die Phasenbeziehungen im System U-W-C wurden mehrfach geprüft /57,67,34,37/, besonders auch im Hinblick auf das Lösungsverhalten von W in UC /68,69/, welches entgegen früher gefundenen Werten /68,69/, mit etwa 2 Mol.% W in UC bei 2403 K gering zu sein scheint. Abb.3.1.2.16b und c zeigen isotherme Schnitte in den Systemen U-W-C und <u>Pu-W-C</u>.

Während bezüglich der Systeme der Actinoiden mit Mangan und Kohlen-

Abb.3.1.2.15: Isotherme Schnitte in den Systemen Th-Mo-C(a) bei 1773 K (vgl. Lit. /63,13/), U-Mo-C (b) bei 1773 K /65,66,34/ und Pu-Mo-C (c) bei 1173 K /21/

<u>Abb.3.1.16</u>: Isotherme Schnitte in den Systemen Th-W-C (a) bei 1773 K (vgl.Lit. /67/), U-W-C (b) bei 1973 K /37/ und Pu-W-C (c) bei 1673 K /37/

Abb.3.1.2.17: Isotherme Schnitte in den Systemen U-Tc-C (a) bei 1773 K und Pu-Tc-C (b) bei 1523 K /41/ (bez. neuerer Untersuchungen im metallreichen Gebiet dieser Systeme vgl. /86/)

stoff nur Angaben über eine ternäre Verbindung UMnC₂ (vgl. Tab.4.1.2.2) vorliegen /38/,, zog das Element Technetium als Spaltprodukt mehr Aufmerksamkeit auf sich /38,41/. Abb. 3.1.2.17 zeigt isotherme Schnitte in den Systemen U-Tc-C und Pu-Tc-C /41/. Sowohl Uran wie Plutonium bilden ein Komplexcarbid mit Technetium, die allerdings untereinander nicht isotyp sind (vgl. Tab. 4.1.2.2). UTcC₂ schliesst sich in der Struktur an UMoC₂ und UWC₂ an, während PuTcC_{1-x} in der Struktur von UMoC_{1.75} kristallisiert. Im Tc-reichen Konzentrationsgebiet des Systems U-Tc-C treten zwei weitere in Abb.3.1.2.17 nicht berücksichtigte ternäre Carbide auf. Das Perowskitcarbid UTc₃C_{1-x} und ein weiteres Carbid etwa UFe₃C_{1-x}, dessen Röntgenbeugungsbild sich tetragonal indizieren lässt /86/. Auch im System Pu-Te-C scheint ein weiteres Carbid zu existieren.

Im System U-Re-C sind drei ternäre Carbide gefunden worden /34,38,40, 41,70,71/: UReC₂, UReC_{2-x}, U₅Re₃C₈ (vgl. Tab. 4.1.2.2). Das letztere Carbid wurde hinsichtlich Zusammensetzung und Struktur erst kürzlich charakterisiert /70/. Abb. 3.1.2.18 verdeutlicht das Reaktionsgeschehen in einem Schnitt bei 1773 K. Hier wurde diese letztere ternäre Phase etwas unterstöchiometrisch eingezeichnet, da bei einer Zusammensetzung gemäss U₅Re₃C₈ die von anderen Autoren beobachteten Gleichgewichte, wie z.B. UC+UReC₂ nicht existieren dürften.

Orientierende Untersuchungen im System <u>Pu-Re-C</u> zeigten, dass hier zumindest keine zu den bekannten Komplexcarbiden isotype ternäre Phasen existieren/41/. Im kohlenstoffreichen Gebiet wird das System durch ein Dreiphasenfeld: Pu_2C_3+Re+C bestimmt.

- 119 -

Abb. 3.1.2.18: Isothermer Schnitt bei 1773 K im System U-Re-C /41/

Uran bildet mit den Metallen der Eisengruppe: Eisen, Kobalt und Nickel isotype tetragonale Komplexcarbide der Formel UMeC₂ (Me = Fe,Co,Ni) /42/. Ein Plutoniumcarbid gleicher Zusammensetzung (PuFeC₂) /53/ kristallisiert wahrscheinlich isotyp. Ein weiteres Komplexcarbid von Pu und Fe wurde bei einer Zusammensetzung von etwa $Pu_3Fe_4C_5$ (kubisch raumzentriert, vgl. Tab. 4.1.2.2) nachgewiesen /53/. Neben isothermen Schnitten in den Systemen U-Fe-C und Pu-Fe-C (Abb.3.1.2.19) sowie

<u>Abb. 3.1.2.19</u>: Isotherme Schnitte bei 1273 K in den Systemen U-Fe-C (a) und Pu-Fe-C (b) (vgl. Lit./53/)

Abb. 3.1.2.20: Isotherme Schnitte bei 1273 K in den Systemen Th-Ni-C (a) (vgl. Lit. /29/) und U-Ni-C (b) (vgl. Lit. /49/)

<u>Th-Ni-C</u> und <u>U-Ni-C</u> (Abb. 3.1.2.20) wurden vor allem Konzentrationsschnitte in den Systemen U-Fe-C und U-Ni-C im Hinblick auf das Verträglichkeitsverhalten von Carbidbrennstoffen mit Stählen untersucht. Die Schnitte UC-Fe und UC-UFe₂ stellen Systeme mit eutektischen Schmelzen bei 1478 K bzw. 1313 K dar /62/. Auf dem Schnitt UC-Ni im System U-Ni-C treten schon ab etwa 1330 K flüssige Phasen auf /72, 62,49/. In diesem System beobachtet man neben UNIC₂ eine weitere ternäre Phase /49/ , deren Struktur bisher nicht geklärt ist. Ebenso ungeklärt sind bisher Komplexcarbide der Zusammensetzung Th₂Ni₃C₂ und Th₂Ni₃C₅ im System Th-Ni-C /29/. Stichproben im System Pu-Ni-C ergaben keine Hinweise für eine Existenz ternärer Verbindungen. Die Dreiphasengleichgewichte: Pu₂C₃+Pu₂Ni₁₇+C und Pu₂C₃+PuC+PuNi₂ bestimmen den Aufbau des Systems /86/.

Die Systeme der Actinoiden Thorium, Uran und Plutonium mit den leichten Platinmetallen Ruthenium, Rhodium und Palladium sind wieder im Hinblick auf die "Spaltproduktproblematik" ausführlich untersucht worden. Kombinationen mit den schweren Platinmetallen, Osmium, Iridium und Platin sind hingegen nur für Uran eingehender geprüft. Komplexcarbide dieser Systemgruppe sind (vgl. Tab. 4.1.2.2): die Thorium-Ruthenium Carbide Th_{v3}Ru_{v4}C₅, ThRu₃C_{1.5} und ThRu₃C /17,28/ sowie weitere ternäre Thorium

-Carbide in den Systemen Th-Os-C, Th-Ir-C und Th-Pt-C; die isotypen Uran-Platinmetallcarbide der Formel U_2MC_2 (M = Ru,Rh,Os,Ir,Pt) /44,45/, deren Struktur am Beispiel von U_2IrC_2 bestimmt wurde /73/ sowie die Perowskitcarbide URu_3C_{1-x} , $PuRu_3C_{1-x}$ und $PuRh_3C_{1-x}$ /46,8,54/. Zusammen-

- 121 -

hänge hinsichtlich des Auftretens dieser Perowskitcarbide und der Valenz der Actinoiden sind im Anhang diskutiert. Mit Hilfe dieser Zusammenhänge konnten z.B. die ternären Plutoniumcarbide PuRu $_3C_{1-x}$ und PuRh $_3C_{1-x}$ vorausgesagt /5/ und später experimentell bestätigt werden /8,54/. Die freien Bildungsenthalpien der ternären Carbide wurden mit Hilfe von EMK-Mess**un**gen bestimmt oder aus den Phasendiagrammen abgeschätzt /17,46, 48,74/. Keines der binären Carbide der Actinoiden steht mit einem der Platinmetalle im Gleichgewicht. In jedem System reagieren die Carbide ThC, UC und PuC_{1-x} mit den Platinmetallen unter Bildung von Komplexcarbiden oder unter Bildung stabiler intermetallischer Phasen bei gleichzeitiger Freisetzung von Kohlenstoff. Dies hat z.B. zur Folge, dass in hochabgebrannten Carbidbrennstoffen sowohl Komplexcarbide des Typs $\rm U_2MC_2$ als auch intermetallische Phasen, die teilweise durch Kohlenstoffeinlagerung weiter stabilisiert sind, beobachtet werden /75,76/. Die Abb. 3.1.2.21 bis 3.1.2.23 zeigen isotherme Schnitte in den Systemen Th-Ru-C, U-Ru-C, Pu-Ru-C, Th-Rh-C, U-Rh-C, Pu-Rh-C, Th-Pd-C, U-Pd-C und Pu-Pd-C /77, 17, 46, 48, 50, 21/. Die Art der Zusammenstellung ermöglicht neben einer Analyse des Reaktionsverhaltens auch gleichzeitig typische Unterschiede im Verhalten der einzelnen Actinoiden zu erkennen (eingehendere Diskussion in Kap. 4.1. und 4.2).

Carbidsysteme der Actinoiden mit den Platinmetallen der dritten langen Periode: Os, Ir und Pt sind bisher nur mit Uran untersucht worden. Im System <u>U-Os-C</u> erstreckt sich das ternäre Komplexcarbid U_2OsC_2 über einen homogenen Bereich von der stöchiometrischen Zusammensetzung, wo es tetragonal kristallisiert, zu höherem Kohlenstoffgehalten, wo es dann orthorhombisch verzerrt auftritt und strukturell den Übergang zu anderen Komplexphasen (wie z.B. U₂CrN₃) bildet /78/ (vgl. Kap. 4.1). Abb. 3.1.2.24 zeigt einen isothermen Schnitt im System U-Os-C /47/. In den Systemen<u>U-Ir-C</u> /47/ und <u>U-Pt-C</u> /50/ bestimmen ebenfalls Komplexcarbide $(U_2|rC_2 bzw, U_2P+C_2)$ den Aufbau (vgl. Abb. 3.1.2.25 und 3.1.2.26). Ein Vergleich der durch die isothermen Schnitte wiedergegebenen Gleichgewichte in den Systemen U-Os-C, U-Ir-C und U-Pt-C zeigt deutlich, dass die binären Uran-Iridium Phasen stabiler als die binären Uran-Platin Phasen und diese wiederum stabiler als die Uran-Osmium Phasen sind. Am Beispiel von Ulr₃, Ulr₂ und UOs₂ wurde dies mit Hilfe von EMK-Messungen auch direkt nachgewiesen /50/. Unter Zugrundelegung dieser Messwerte konnten die thermodynamischen Stabilitäten der Komplexcarbide abgeschätzt werden /50/.

- 122 -

Abb.3.1.2.21: Isotherme Schnitte in den Systemen Th-Ru-C (a) bei 1473 K /17/, U-Ru-C (b) bei 1573 K /46/ und Pu-Ru-C (c) bei 1473 K /8,54/

Abb.3.1.2.22: Isotherme Schnitte in den Systemen Th-Rh-C (a) bei 1473 K /17/, U-Rh-C (b) bei 1573 K /48/ und Pu-Rh-C (c) bei 1473 K /8,54/

Abb. 3.1.2.25: Isothermer Schnitt bei 1573 K im System U-Ir-C /47/

Abb. 3.1.2.24: Isothermer Schnitt bei 1773 K im System U-Os-C /47/

Abb. 3.1.2.26: Isothermer Schnitt bei 1573 K im System U-Pt-C /50/

3.1.2.3 Quaternäre Carbidsysteme der Actinoiden mit Übergangsmetallen anderer Gruppen

Quaternäre Carbide ergeben sich in vielen Fällen indem Uran in Komplexphasen teilweise durch Plutonium ersetzt wird. Entsprechend den im Hinblick auf einen Einsatz in Brutreaktoren betrachteten Brennstoffzusammensetzungen von $(U_{0.85}Pu_{0.15})$ C bis $(U_{0.70}Pu_{0.30})$ C wurden auch quaternäre Carbide dieser Actinoidenmischcarbide mit anderen Übergangsmetallen bekannt. Diese Verbindungen sind in Tab. 3.1.2.3 gemeinsam mit anderen quaternären uranhaltigen Phasen zusammengestellt. Abb.3.1.2.27 zeigt die homogenen Bereiche quaternärer Carbide, die sich durch Lösung anderer Carbide in UC ergeben. Es sei darauf hingewiesen, dass die Mischungslücke in den HfC-haltigen Systemen (Abb.3.1.2.27b) wahrscheinlich bei der angegebenen Temperatur schon geschlossen ist. Die anderen HfC-haltigen Systeme wurden wegen dieser Unsicherheit in die Abbildung nicht mit aufgenommen.

Auch das Reaktionsverhalten im mehrkomponentigen System U-Fe-Cr-Ni-C beanspruchte Interesse im Hinblick auf die Verträglichkeit von UC mit Stählen /85/. Wie Abb. 3.1.2.28 verdeutlicht, stehen nur eng begrenzte Bereiche um Fe und Cr mit UC im Gleichgewicht (vgl. /85/).

.

Phase	Strukturtyp Raumgruppe	Gitterkonstante (nm)	Existenzbereich Bemerkung	Literatur
(U _{1-x-y} Th _x Zr _y)C	kfz., NaCl-Typ O _h - Fm3m	-	Mischphase der binären Verbindungen bei jeweils kleinen Werten von x bzw.y (vgl. Abb. 3.1.2.27a)	/79/
(U _{1-x-y} Pu _x Zr _y)C	kfz.,NaCl-Typ C <mark>5</mark> - Fm3m	-	Weiter homogener Konzentrationsbe- reich für Pu-arme Zusammensetzungen	/80/
(U _{1-x-y} Hf _x Zr _y)C	kţz., NaCl-Typ Oĥ - Fm3m	-	Mischphase der binären Carbide (vgl. Abb. 3.1.2.27b)	/55/
(U _{1-x-y} Hf _x Nb _y)C	kfz., NaCl-Typ O <mark>5</mark> - Fm3m	-	weiter homogener, temperaturabh. Be- reich	/55/
(U _{1-x-y} Hf _x Ta _y)C	kfz., NaCl-Typ O <mark>5</mark> - Fm3m	-	weiter homogener, temperaturabh. Be- reich	/55/
(U _{1-x-y} Zr _x Nb _y)C	kfz., NaCl-Typ O <mark>5</mark> - Fm3m	-	homogener Mischkristall für $0 \le x, y \le 1, x+y \le 1$ (vg]. Abb. 3.1.2.27c)	/81/
(U _{1-x-y} Zr _x Ta _y)C	kfz., NaCl-Typ O <mark>5</mark> - Fm3m	-	homogener Mischkristall für O ≤ x, y ≤ 1, x+y ≤ 1 (vgl. Abb. 3.1.2.27c)	/81/
(U _{0.85} Pu _{0.15})MoC ₂	orthorh., CrUC ₂ -Typ Pnma	-	isotyp UMoC ₂ ; volle Mischbarkeit von UMoC ₂ und PüMoC ₂	/82,21/
(U _{0.85} PU _{0.15})MoC _{1.7}	monokl.	$\begin{array}{c} a = 0.5626 \\ b = 0.3238 \\ c = 1.1661 \\ \beta = 109.7^{\circ} \end{array}$	isotyp UMoC _{1.7}	/82/
(V _{0.8} Pu _{0.2})WC ₂	orthorh., CrUC ₂ ~Typ Pnma	a = 0.5633 b = 0.3256 c = 1.0944	isotyp UWC2; volle Mischbarkeit von UWC2 und PUWC2	/83,84/
(U _{0.8} Pu _{0.2})WC _{1.75}	monok1.	a = 0.56257 b = 0.32498 c = 1.1623 B = 109.6°	isotyp UWC _{1.75}	/37,83/
(V _{0.7} Pu _{0.3})FeC ₂	tetr.	-	isotyp UFeC ₂	/53/
(U _{0.8} Pu _{0.2})RuC ₂	tetr., U ₂ IrC ₂ -Typ D ¹⁷ - I4/mmm	-	isotyp U ₂ RuC ₂	/8/

Tabelle 3.1.2.3: Quaternăre Carbide der Actinoiden mit Obergangsmetallen anderer Gruppen

Abb.3.1.2.28: Zur Verträglichkeit von (Fe,Cr,Ni)-Legierungen mit stöchiometrischem sowie unterstöchiometrischem (UC+U) und überstöchiometrischem (UC+U₂C₃) Uranmonocarbid

Literatur: Ternäre Carbidsysteme der Seltenen Erden und Actinoiden mit den Übergangsmetallen anderer Gruppen (Kap. 3.1.2)

- /1/ G.V.Samsonov, G.N.Makarenko, T.Ya.Kosolapova Dok.Akad. Nauk. SSSR 144(1962) 1062
- /2/ G.V.Samsonov, G.N.Makarenko, A.N.Krushinskii in G.V.Samsonov (Hrsg.) "Refractory Inorganic Compounds" Engl. transl. U.S.A.E.C. Rept. AEC-Tr-6873 (1971) 325
- /3/ H.Holleck, H.Kleykamp unveröffentlichte Untersuchungen
- /4/ H.Holleck J.Less-Common Met. 52 (1977) 167
- /5/ H.Holleck J.Nucl.Mat. 42 (1972) 278
- /6/ N.H.Krikorian J.Less Common Met. 23 (1971) 271
- /7/ P.Stecher, A.Neckel, F.Benesovsky, H.Nowotny Planseeber.Pulvermet. 12 (1966) 181
- /8/ H.R.Haines, P.E.Potter Thermodynamics of Nuclear Materials 1974, Vol.2, IAEA Wien, 1975, S.145
- /9/ H.Holleck Proc. Conf. Rare Earth and Actinides, Durham, England 1971. Conf. Digest No.3, The Institute of Physics, London and Bristol, 1971
- /10/ H.Holleck Symp. Festkörperchemie, Universität Wien 1972; KFK-Rep. 1726 (1972)
- /11/ U.Benedict, K.Richter, C.T.Walker J.Less Common Met. 60 (1978) 123
- /12/ H.Holleck, H.Kleykamp J.Nucl.Mat. 32 (1969) 1
- /13/ H.Holleck Thermodynamics of Nuclear Materials 1974, Vol. 2, IAEA Wien, 1975, S.213
- /14/ H.Nowotny, R.Kieffer, F.Benesovsky, E.Laube Mh.Chem. 88 (1957) 336
- /15/ C.Milet Bericht CEA-R 3201 (1967)
- /16/ F.Rough, W.Chubb Bericht BMI 1441 (1960)
- /17/ H.Holleck J.Nucl.Mat. 66 (1977) 273
- /18/ F.Benesovsky, E.Rudy Planseeber. Pulvermet. 9 (1961) 65
- /19/ L.D.Brownlee J.Inst.Metals 87 (1958) 58
- /20/ W.G.Wittemann J.M.Leitnaker, M.G.Bowman Bericht LA - 2159 (1958)
- /21/ H.R.Haines, P.E.Potter Bericht UKAEA, AERE-R-6512 (1970)
- /22/ J.B.Burnham, R.E.Skordahl, T.D.Chikalla
 in: L.E.Russel (Hrsg.) "Carbides in Nuclear Energy London,
 1964, S.51
- /23/ E.Rudy, F.Benesovsky Mh. Chem. 94 (1963) 204
- /24/ T.Sano, Y.Yamamoto, K.Watanabe Mitsubishi Atom. Power Industr. Inc., Abstract (1963)
- /25/ H.Nickel, Ö.Inanc, K.Lücke J.Nucl.Mat. 28 (1965) 7
- /26/ E.K.Storms, J.Griffin High Temp. Sci (1973) 423
- /27/ H.Holleck Ergebnisse unveröffentlichter Untersuchungen, 1978
- /28/ H.Holleck J.Nucl.Mat. 39 (1971) 226
- /29/ C.Brisi, P.Appendino An. di Chimica 54 (1964) 661
- /30/ N.H.Krikorian W.G.Witteman, M.G.Bowman J.Electrochem. Soc. 110 (1963) 560

- 129 -

- /31/ K.G.Spear, J.M.Leitnaker, T.B.Lindemer High.Temp. Sci 2 (1970) 176
- /32/ R.B.Roof, J.J.Lombardo Trans AIME 212 (1958) 50
- /33/ H.Nowotny, F.Benesovsky, R.Kieffer, E.Laube Mh. Chem. 89 (1958) 692
- /34/ Z.M.Alexeyeva, O.S.Ivanov Thermodynamics of Nuclear Materials 1979, Vol.2, IAEA Wien, 1975, S. 175
- /35/ D.T.Cromer, A.C.Larson, R.B.Roof Acta Cryst. 17 (1964) 272
- /36/ F.Anselin, P.Barthelemy Bull.Soc.Fr.Miner.Crist, 89 (1966) 132
- /37/ M.Ugajin Bericht JAERI - 6804 (1976) sowie J.Nucl.Mat.47 (1973) 205
- /38/ J.D. Farr, M.G.Bowman in:L.E. Russel (Hrsg.) "Carbides in Nuclear Energy", London, 1964, S. 184
- /39/ W.Chubb, D.L.Keller in: L.E.Russel (Hrsg.) "Carbides in Nuclear Energy", London, 1964, S.208
- /40/ Z.M.Alexeyeva J.Nucl.Mat. 49 (1974) 333
- /41/ H.R.Haines, P.G.Mardon, P.E.Potter in:H.Blank, R.Lindner (Hrsg.) Plutonium 1975 and other Actinides, North Holland Publ. 1976, S. 233
- /42/ R.Pascard in: L.E.Russel (Hrsg.) "Carbides in Nuclear Energy", London, 1964, S.245
- /43/ P.Baldock, J.R.McLaren, H.J.Hedger, G.Briggs J.Nucl.Mat. 5 (1962) 257
- /44/ H.Holleck J.Nucl. Mat. 28 (1968) 339
- /45/ H.R.Haines, P.E.Potter Nature 221 (1969) 1238
- /46/ H.Holleck, H.Kleykamp J.Nucl.Mat. 35 (1970) 158

- 131 -
- /47/ H.Holleck, H.Kleykamp, J.I.Franco Z.Metallkunde 66 (1975) 298
- /48/ H.Holleck, H.Kleykamp J.Nucl.Mat.45 (1972/73) 47
- /49/ F.Anselin, D.Calais, J.C.Passefort Bericht CEA - R 2945 (1965)
- /50/ H.Holleck Mh. Chem. 102 (1971) 1699
- /51/ J.T.Dalton, P.E.Potter, J.L.Shaw Plutonium 1965; Proc. Int. Conf. Plutonium 3 (London 1975) S. 775
- /52/ M. Ugajin, J.Abe J.Nucl.Mat.47 (1973) 117
- /53/ J.L.Nichols, J.A.C. Marples in: L.E.Russel (Hrsg.) "Carbides in Nuclear Energy", Macmillan, London, 1964, S. 264
- /54/ H.Holleck, H.Kleykámp, U.Benedict, C.Sari Bericht KfK 2985 (1980)
- /55/ E.Rudy, H.Nowotny, F.Benesovsky, R.Kieffer, A.Neckel Mh.Chem. 91 (1960) 176
- /56/ F.Gorle, W.Zimmermans, F.Casteels, J.Vangeel, M.Brabers Thermodynamics of Nucl.Mat. Proc. Symp., Wien 1967, S.481
- /57/ W.Chubb, D.L.Keller Bericht BMI - 1686 (1964)
- /58/ T.Nomura, A.Naoumidis, H.Nickel Bericht Jül. 1432 (1977)
- /59/ J.D. Allinson Bericht AERE-R 4702 (1965)
- /60/ J.D. Allinson Rev. Hautes Temp. et Refract. 3 (1966) 255
- /61/ G.Briggs, S.K.Dutta, J.White
 in: L.E.Russel (Hrsg.) "Carbides in Nuclear Energy, London,
 1964, S. 231
- /62/ J.Barta, G.Briggs, J.White J.Nucl.Mat. 4 (1961) 322
- /63/ E.Rudy, F.Benesovsky Mh.Chem. 94 (1963) 85

- /64/ W.Chubb J.Nucl.Mat. 23 (1967) 336
- /65/ F.Anselin, P.Barthelomy Bull. Soc. Fr.Miner.Christ. 89 (1966) 132
- /66/ M.Ugajin, J.Abe, M.Kurihara J.Nucl.Sci. and Techn. 12 (1975) 650
- /67/ E.Rudy, El.Rudy, F.Benesovsky Mh.Chem. 93 (1962) 522
- /68/ N.N. Bericht, USAEC, NAA - SR - 11805 (1965)
- /69/ A.I.Evstyukkin, G.B.Fedorov, G.I.Solover, E.A.Smirnov, F.I.Zhomov, A.G.Zaluzhuyi High Purity Metals and Alloys, Transl.Consult. Bur., New York, 1967
- /70/ Z.M.Alexeyeva J.Nucl.Mat. 64 (1977) 303
- /71/ Z.M.Alexeyeva J.Nucl.Mat. 49 (1974) 333
- /72/ S.K. Dutta, J.White Trans.Brit.Ceram.Soc., 7 (1967) 177
- /73/ N.H.Krikorian, T.C.Wallace, M.C.Krupka, C.L.Radosevich J.Nucl.Mat.21 (1967) 236
- /74/ M.G.Naraine, H.B.Bell J.Nucl.Mat. 30 (1974) 83
- /75/ H.Kleykamp J.Nucl.Mat.47 (1973) 271
- /76/ J.I.Bramman, R.M.Sharpe, R.Dixon J.Nucl.Mat.38 (1971) 226
- /77/ H.Holleck Bericht KFK 1111 (1969)
- /78/ H.Holleck Bericht KFK 1726 (1972)
- /79/ V.E.Ivanov, T.Y.Badaleva Proc. 2nd UN Conf. 6, Genf, 1958, S. 139
- /80/ R.Boucher, P.Barthelemy, C.Milet Mem.Sci. Rev.Met. 63 (1966) 543

- /81/ F.Benesovsky, E.Rudy Metal114 (1960) 875
- /82/ R.Boucher, P.Barthelemy Bericht, CEA - R 3229 (1967)
- /83/ M.Ugajin, Y Suzuki, J.Shimokawa J.Nucl.Mat. 43 (1972) 277
- /84/ M.Ugajin, I.Takahashi, Y.Suzuku, J.Abe, M.Kurihara J.Nucl.Mat. 49 (1973) 151
- /85/ E.C.Beahm, C.A.Culpepper Conf - 761103 - 9 (1976)
- /86/ H.R.Haines, P.E.Potter, M.H.Rand Symp. Thermodyn. Nucl.Mat., IAEA, Jülich, 29.1.-2.2.1979; IAEA-SM-236/42
- /87/ E.Rudy, F.Benesovsky Mh.Chem. 93 (1962) 1279
- /88/ T.A.Badaeva, R.I.Kuznetsova, Stroenie i Svoistva Splavor Urana, Tóriya i Tsirkoniya, Sbernik Statei 1963, S 223
- /89/ K.A.Gingerich, D.L.Cocke Inorg. Chim. Acta 33 (1979) 107

Im Bereich dieser Systemgruppe liegen die interessantesten Carbidzusammensetzungen für die nichtnukleare Technologie. Hierfür sind u.a. die besonders hohen Schmelzpunkte, Härten und Festigkeiten sowie andere bemerkenswerte Eigenschaften verantwortlich. Durch Änderung der Zusammensetzung in ternären Carbiden können Extremwerte in den Eigenschaften gezielt eingestellt werden. Abb. 3.1.3.1 a und b verdeutlicht dies am Beispiel der Härte einiger Mischcarbide. Neben einer Variation der Valenzelektronenkonzentration (VEK) durch Metallaustausch und Stöchiometrieänderung (vgl. Abb. 3.1.3.1 a) führen bei diesen mehrkomponentigen Carbidphasen auch mikrostrukturelle Effekte, wie sie bei Mischkristallbildung, Ungleichgewichtszuständen oder Ordnungszuständen auftreten, zu teilweise beträchtlichen Eigenschaftsänderungen. Nur so ist z.B. das Härtemaximum (Abb.3.1.3.1 b) in der Mischphase (Ti,Hf)C, in der sich die VEK nicht ändert, zu erklären. Der Aufbau der ternären Carbidsysteme der 4., 5.u. 6.Gruppe und die gegenseitigen Löslichkeiten der binären Carbide wurden in einigen Sammelwerken schon früher, z.T. allerdings nur für bestimmte Systemgruppen behandelt (a-c). Besonders bei diesen Carbidsystemen der hochschmelzenden Übergangsmetalle hat das steigende Interesse viele neuere Arbeiten und Ergebnisse zur Folge. Oftmals beschäftigen sie sich allerdings nur am Rande mit dem Aufbau der Systeme und den Gleichgewichten und werden deshalb hier nicht zitiert. Im Gegensatz zu anderen Kombinationen lässt sich ein recht übersichtliches Bild über den Aufbau dieser nachfolgend im einzelnen beschriebenen Systeme gewinnen. Dies gilt jedoch nur für höhere Temperaturen (~>1700 K), wo die Gleichgewichtseinstellung leicht zu erreichen 1st und Entmischung bzw. Ordnung noch nicht auftreten. Das Verhalten der Mischphasen und Systeme bei den für die Praxis besonders interessanten tieferen Temperaturen ist gar nicht oder nur unzureichend bekannt. Ausdruck hierfür sind oftmals unerwartete Eigenschaftsänderungen, die nicht ohne weiteres erklärt werden können.

In Tab. 3.1.3.1 sind die ternären Carbide der hochschmelzenden Übergangsmetalle mit ihren Strukturdaten aufgeführt. Ternäre Verbindungen - 135 -

Abb. 3.1.3.1: Härte von Carbidmischphasen in Abhängigkeit von der Valenzelektronenkonzentration (a) bei Carbiden von Metallen aus verschiedenen Gruppen und von der Zusammensetzung (b) bei Carbiden von Metallen aus der gleichen Gruppe

ergeben sich bei dieser Systemgruppe bevorzugt durch ausgedehnte oder vollständige Mischkristallbildung der binären Carbide. Reine Komplexcarbide sind selten. Abb. 3.1.3.2 verdeutlicht das Auftreten vollständiger fester Lösungen der einzelnen Monocarbide MC (a) und Subcarbide M2C (b). Die Analyse der Löslichkeiten sowie die nachfolgend skizzierten Phasenbeziehungen stellen die Grundlage dar für eine Weiterentwicklung vieler technologisch interessanter Verbindungen sowie für die zunehmend an Bedeutung gewinnende Frage nach Ersatzelementen für knapper werdende Materialkomponenten.

b)

a)

Abb. 3.1.3.2: Mischbarkeit isotyper Monocarbide MC und Subcarbide M_2C der Übergangsmetalle der 4., 5. und 6.Gruppe. (Gleiche Zeichnung bei den einzelnen Verbindungen bedeutet vollständige Mischbarkeit)

Phase	Strukturtyp Raumgruppe	Gitterkonstante (nm)	Existenzbereich Bemerkung	Literatur
(Ti,Zr)C	kfz., NaCl O <mark>5</mark> - Fm3m	leicht positive Abweichung von der Linearität	vollkommene Mischbarkeit der binären Carbide TiC und ZrC; Entmischungstemperatur ∿2300 K	/a,b/
(Ti,Hf)C	kfz., NaCl C <mark>5</mark> - Fm3m	leicht positive Abweichung von der Linearität	vollkommene Mischbarkeit der binären Carbide TiC und HfC; Entmischungstemperatur ∿2100 K	/a,b/
(Ti,V)C	kfz., NaCl O <mark>5</mark> - Fm3m	lineare Beziehung	vollkommene Mischbarkeit der binären Carbide TiC und VC	/a,b, 6 - 9/
(Ti,Nb)C	kfz., NaCl 0 <mark>5</mark> - Fm3m	lineare Beziehung	vollkommene Mischbarkeit der binären Carbide TiC und NbC	/a,b, 11,12/
(Ti,Ta)C	kfz., NaCl O <mark>5</mark> - Fm3m	lineare Beziehung	vollkommene Mischbarkeit der binären Carbide TiC und TaC	/a,b, 13/
(Ti,Mo)C _{1-x}	kfz., NaCl O <mark>5</mark> – Fm3m	-	vollkommene Mischbarkeit der binären Carbide TiC und MoC _{1-X} oberhalb 2133 K	/56 - 60, 41/
(Ti,W)C _{l-x}	kfz., NaCl D <mark>5</mark> - Fm3m		vollkommene Mischbarkeit der binären Carbide TiC und WC1- _X oberhalb 2800 K wahrscheinlich	/61,62/
(Zr,Hf)C	kfz., NaCl O _h ⁵ - Fm3m	lineare Beziehung	vollkommene Mischbarkeit der binären Carbide ZrC und HfC	/a,b/
(Zr,Nb)C	kfz., NaCl O <mark>5</mark> - Fm3m	geringfügig negative Ab- weichung von der Li- nearität	vollkommene Mischbarkeit der binären Carbide ZrC und NbC	/a, 11, 12/
(Zr,Ta)C	kfz., NaCl O ⁵ - Fm3m	geringfügig negative Ab- weichung von der Li- nearität	vollkommene Mischbarkeit der binären Carbide ZrC und TaC	/a,b/
(Zr,Mo)C _{1-x}	kfz., NaCl 0 <mark>5</mark> - Fm3m	-	vollkommene Mischbarkeit der binären Carbide ZrC und MoC _{1-x} oberhalb 2133 K	/63,64/
(Zr,W)C _{1-x}	kfz., NaCl 0 <mark>5</mark> - Fm3m	-	vollkommene Mischbarkeit der binären Carbide ZrC und WC _{1-x} oberhalb 2800 K	/65,66/
(Hf,Nb)C	kfz., NaCl O <mark>5</mark> - Fm3m	lineare Beziehung	vollständige Mischbarkeit der binären Carbide HfC und NbC	/a,11,12/
(Hf,Ta)C	kfz., NaCl O <mark>5</mark> - Fm3m	geringfügig negative Ab- weichung von der Lineari- tät	vollständige Mischbarkeit der binären Carbide HfC und TaC	/a,b/
(Hf,Mo)C _{l-x}	kfz., NaCl O <mark>5</mark> - Fm3m	-	vollständige Mischbarkeit der binären Carbide HfC und MoC _{1-x} oberhalb 2133 K	/71-75/
(Hf,₩)C _{1-x}	kfz., NaCl O <mark>5</mark> – Fm3m	-	vollständige Mischbarkeit der binären Carbide HfC und WC _{1-x} oberhalb 2800 K	/68,78, 41/
	I	4		a de la companya de l

Tab. 3.1.3.1: Ternäre Carbide der Obergangsmetalle der 4., 5. und 6.Gruppe

Phase	Strukturtyp Raumgruppe	Gitterkonstante (nm)	Existenzbereich Bemerkung	Literatur
(V,Nb)C	kfz., NaCl 0 <mark>5</mark> – Fm3m	geringfügige positive Abwei- chung von der Linearität	vollständige Mischbarkeit der binären Carbide VC und NbC oberhalb etwa 1750 K	/3,5/
(V,Nb) ₂ C	hex., L'3 D ⁴ - P6 ₃ /mmc	-	vollständige Mischbarkeit der binären Carbide V ₂ C und Nb ₂ C	/b/
(V,Ta)C	kfz., NaCl O <mark>5</mark> - Fm3m	geringfügige positive Abwei- chung von der Linearität	vollständige Mischbarkeit der binären Carbide VC und TaC oberhalb etwa 1600 K	/3,5/
(V,Ta) ₂ C	hex., L'3 D <mark>4</mark> - P6 ₃ /mmc	-	vollständige Mischbarkeit der binären Carbide V ₂ C und Ta ₂ C	/26/
VTa ₂ C ₂	rhomboedrisch D _{3d} 5 - R3m	a = 0.7481	bei 1923 K Homogenitätsbereich ^{Ta} 1.80-2.04 ^V 1.20-0.96 ^C 1.74-1.80	/92/
(V _{1-y} Cr _y)C	kfz., NaCl O <mark>5</mark> - Fm3m	-	Lösung von "CrC" in VC bis etwa (V _{0.6} Cr _{0.4})C	/28,29/
(V _{1-y} Cr _y) ₂ C	hex., L'3 D ⁴ _{6h} - P6 ₃ /mmc	-	Lösung von "Cr2C" in V2C bis etwa (V _{0.5} Cr _{0.5}) ₂ C. Umwandlung hex. → orthorh. unklar	/28,29/
VCr2C2	orthorh., Cr ₃ (C,N) ₂ D ¹⁷ - Cmcm	a = 0.693 b = 0.934 c = 0.289	homogener Bereich	/28,29, 91/
(V,Mo)C _{1-x}	kfz., NaCl O <mark>5</mark> - Fm3m	-	vollständige Mischbarkeit der binären Carbide VC und MoC _{1-x} oberhalb 2133 K	/31,32, 78/
(V,Mo) ₂ C	hex., L'3 D ⁴ _{6h} - P6 ₃ /mmc	-	vollständige Mischbarkeit der binären Carbide V ₂ C und Mo ₂ C	/31,59/
(V,W)C _{1-x}	kfz., NaCl D <mark>5</mark> - 7m3m	-	vollständige Mischbarkeit der binären Carbide VC und WC _{1-x} oberhalb 2800 K	/35,59, 41/
(V,W) ₂ C	hex., L'3 D ⁴ _{6h} - P6 ₃ /mmc	-	vollständige Mischbarkeit der binären Carbide V ₂ C und W ₂ C	/35,59/
(Nb,Ta)C	kfz., NaCl 0 <mark>5</mark> - Fm3m	lineare Beziehung	vollständige Mischbarkeit der binären Carbide NbC und TaC	/b/
(Nb,Ta) ₂ C	hex., L'3 D ⁴ - P6 ₃ /mmc	-	vollständige Mischbarkeit der binären Carbide Nb ₂ C und Ta ₂ C	/b/
(Nb,Mo)C _{1-X}	ƙfz., NaCl O <mark>5</mark> - Fm3m	-	vollständige Mischbarkeit der binären Carbide NbC und MoC _{1-x} oberhalb 2133 K	/33/
(Nb _y Mo _{l-y}) ₂ C	hex., L'3 D <mark>4</mark> - P6 ₃ /mmc	-	Lösung von Nb ₂ C in Mo ₂ C bis et- wa (Mo _{0.6} Nb _{0.4}) ₂ C	/33/
(Nb,W)C _{1-x}	kfz., NaCl O <mark>5</mark> - Fm3m	-	vollständige Mischbarkeit von NbC und WC _{1-X} oberhalb 2800 K	/b/
(Nb _y W _{1-y}) ₂ C	hex., L'3 D <mark>4</mark> - P6 ₃ /mmc	-	Lösung von Nb ₂ C in W ₂ C bis etwa ^{(W} 0.6 ^{Nb} 0.4 ⁾ 2 ^C	/b/

Phase	Strukturtyp Raumgruppe	Gitterkonstante (nm)	Existenzbereich Bemerkung	Literatur
(Ta,Mo)C _{1-X}	kfz., NaCl O <mark>5</mark> - Fm3m	-	vollständige Mischbarkeit von TaC und MoC _{1-x} oberhalb 2133 K	/34/
(Ta,Mo) ₂ C	hex., L'3 D ⁴ _{6h} - P6 ₃ /mmc	-	vollständige Mischbarkeit von TaC und Mo ₂ C oberhalb etwa 2500 K	/34/
(Ta,W)C _{1-x}	kfz., NaCl O <mark>5</mark> - Fm3m	-	vollständige Mischbarkeit von TaC und WC _{1-x} oberhalb 2800 K	/59,37, b/
(Ta,₩) ₂ C	hex., L'3 D ⁴ _{6h} - P6 ₃ /mmC	-	vollständige Mischbarkeit von Ta ₂ C und W ₂ C oberhalb etwa 2730 K	/b/
(CryMo _{1-y}) ₂ C	hex., L'3 D ⁴ _{6h} - P6 ₃ /mmc	-	Lösung von "Cr ₂ C" in Mo ₂ C bis etwa (Cr _{0.66} Mo _{0.34}) ₂ C	/44,46/
(Cr _{1-x} ^{Mo} y) ₂₃ C ₆	kub., Cr ₂₃ C ₆ O ⁵ - Fm3m	-	Lösung von "Mo23C6" in Cr23C ₆ bis etwa (Cr _{0.8} Mo _{0.2}) ₂₃ C ₆	/44,46/
(Cr _y W _{1-y}) ₂ C	hex., L'3 D ⁴ _{6h} - P6 ₃ /mmc	-	Lösung von "Cr ₂ C" in W ₂ C bis etwa (^{Cr} o.8 ^W o.2 ^{)2^C}	/45,46/
(Mo,W)C	hex., WC D _{3h} - Pēm2	-	vollständige Mischbarkeit von MoC und WC unterhalb 1453 K	/50/
(Mo _{1-y} W _y)C _{1-x}	kfz., NaCl O <mark>5</mark> – Fm3m	-	Lösung von WC _{1-x} in α-MoC _{1-x} bis etwa ^{(Mo} 0,65 ^W 0.35 ^{)C} 1-x	/50/
(Mo _{1-y} W _y)C _{1-x}	hex., D _{4h} - P6 ₃ /mmc	-	Lösung von WC _{1-x} in n-MoC _{1-x} bis et- wa (Mo _{0.6} W _{0.4})C _{1-x}	/50/
(Mo,₩) ₂ C	hex., L'3 D ⁴ _{6h} - P6 ₃ /mmc	-	vollständige Mischbarkeit von Mo ₂ C und W ₂ C	/50/

3.1.3.1 Ternäre Carbidsysteme der Übergangsmetalle der 4. Gruppe

Der Aufbau der Systeme Ti-Zr-C, Ti-Hf-C und Zr-Hf-C wird durch die Mischphasen (Ti,Zr)C_{1-x}, (Ti,Hf)C_{1-x} und (Zr,Hf)C_{1-x} als einzige ternäre Verbindungen bestimmt /b, 1,2/ (vgl. Abb.3.1.3.3, 3.1.3.5 und 3.1.3.7). Die kritischen Entmischungstemperaturen liegen im System TiC_{1-x}-ZrC bei 2300 K und im System TiC_{1-x}-HfC bei etwa 2100 K /b, 2/ (vgl. Abb. 3.1.3.4 und 3.1.3.6). Rechnungen mit Hilfe des Modells regulärer Lösungen ergeben teilweise gute Übereinstimmung mit den experimentellen Befunden /3,4,90/. Berechnete Schmelzpunktminima im ternären Bereich beider Mischphasen /4/ wurden in den nur schematisch wiedergegebenen Schmelzbereichen der Konzentrationsschnitte TiC-ZrC und TiC-HfC (Abb. 3.1.3.4 und 3.1.3.6) nicht berücksichtigt. Experimentelle Befunde, die in den Systemen Ti-Zr-C und Ti-Hf-C auch unterhalb 1100 K vollständige Mischbarkeit zeigen /1/, beruhen offensichtlich auf eingefrorenen Phasen.

Abb.3.1.3.3: Isotherme Schnitte im System Ti-Zr-C bei 2373 K (a) und 1773 K (b) /b/

3.1.3.2 Ternäre Carbidsysteme der Übergangsmetalle der 4. und 5.Gruppe

Mischcarbide der Übergangsmetalle der 4. und 5. Gruppe zeigen ein Maximum an Bindungsfestigkeit bei einer formalen Valenzelektronenkon-

zentration von etwa 8.4 (Fermigrenze im Minimum der Zustandsdichte zwischen bindendem und nichtbindendem Band) und zeigen hier besonders hohe Härte und Schmelzpunkte.

Abb.3.1.3.5: Isotherme Schnitte im System Ti-Hf-C bei 2273 K (a) und 1773 K (b) (vgl. /b,1,2/)

Im System <u>Ti-V-C</u> /b, 6-9/ sind die Monocarbide vollkommen mischbar. Im Subcarbid V₂C sind bei ~1700 K 15 At.\$ Ti löslich /a, 9/. Abb.3.1.3.8 zeigt isotherme Schnitte bei 1673 K /a, b/ bzw. 1273 K /b, 9/. Gerringfügige Unterschiede sind im Bereich der festen Lösung (V,Ti)₂C und in der Lage des invarianten Punktes des Dreiphasengleichgewichts $(Ti,V)C_{1-x} + (V,Ti)_2C + V$ auf der Monocarbidmischphase festzustellen. Ti,V-Mischcarbide haben schon vor etwa 40 Jahren ein Interesse als Hartstoffe für eine Anwendung in Hartmetallen auf sich gezogen. Neuerdings werden TiC-Basis Carbide beschrieben, bei denen Zusätze von 2 Mol \$ VC_{1-x} zu einem Härteanstieg von 2950 HV auf 3670 HV führen sollen /10/ (Zusätze von 2,5 Mol \$ NbC_{1-x} ergeben Werte von 3830 HV und 2 Mol \$ TaC_{1-x} 3610 HV). Es muss allerdings angenommen werden, dass hierbei Eigenspannungen, hervorgerufen durch Ungleichgewichtszustände, eine erhebliche Rolle spielen.

Dem System Ti-V-C sehr ähnlich zeigt sich der Aufbau der Dreistoffe <u>Ti-Nb-C</u>/b, 11,12/ und <u>Ti-Ta-C</u>/b, 13/ (vgl. Abb.3.1.3.9 und 3.1.3.10). Der vollständigen Mischbarkeit der Monocarbide steht eine begrenzte temperaturabhängige Löslichkeit von "Ti₂C" in Nb₂C bzw. Ta₂C gegenüber. Diese beträgt bei 1773 K etwa 10 Mol % "Ti₂C" in Nb₂C und 40 Mol %"Ti₂C" in Ta₂C /b/.

Die homologen Elemente des Titans, Zirkon und Hafnium verhalten sich in Mehrstoffsystemen sehr ähnlich. Wie zu erwarten, ist deshalb auch

Abb.3.1.3.7: Isotherme Schnitte im System Zr-Hf-C bei 2673 K (a) und 1873 K (b) $\mbox{/b/}$

Abb. 3.1.3.8: Isotherme Schnitte im System Ti-V-C bei 1673 K /b/ und 1273 K /9/

- 142 -

Abb.3.1.3.9: Isothermer Schnitt im System Ti-Nb-C bei 1773 K /b/

Abb.3.1.3.10: isothermer Schnitt im System Ti-Ta-C bei 1773 K /b/

Abb.3.1.3.11: Isothermer Schnitt im System Zr-V-C bei 1273 K /14/

Abb.3.1.3.12 Konzentrationsschnitt im quasibinären System ZrC-VC /15/

der Aufbau der Systeme Zr-V-C und Hf-V-C fast identisch /14/ (vgl. Abb.3.1.3.11bis 3.1.3.14). Die Monocarbidschnitte stellen eutektische Systeme mit nur geringen Randlöslichkeiten dar /15/ (vgl. Abb.3.1.3.12 und 3.1.3.14). Eine Verbindung Zr_3V_3C (n-Carbid) mit Ti₂Ni-Struktur /16/ existiert nicht im ternären System und ist wahrscheinlich sauer-stoffstabilisiert.

Die Monocarbide ZrC und HfC sind im festen Zustand mit NbC vollkommen mischbar /a, 11,12/. Die Löslichkeit von Zr bzw. Hf in Nb₂C ist gering. Hierfür ist sicherlich die hohe Stabilität der Monocarbidmischphasen verantwortlich, die eine $(Nb,Zr)_2C$ - bzw. $(Nb,Hf)_2C$ -Phase auf Kosten des Gleichgewichts Monocarbid + Metall zurückdrängt. Abb.3.1.3.15 und 3.1.3.16 verdeutlichen den ähnlichen Aufbau der Systeme <u>Zr-Nb-C</u> und <u>Hf-Nb-C</u>. Die Dreistoffsysteme <u>Zr-Ta-C</u> und <u>Hf-Ta-C</u> werden durch die sehr stabilen Monocarbidmischphasen (Zr,Ta)C und (Hf,Ta)C bestimmt /b, 17-22/ (Abb. 3.1.3.17 und 3.1.3.18). Über das Bestehen von Schmelzpunktsmaxima in diesen Mischphasen liegen unterschiedliche Angaben vor /b, 17,18/. Im quasibinären System HfC-TaC tritt ein deutliches Härtemaximum auf /23,24/, das bis zu hohen Temperaturen erhalten bleibt /23/.

3.1.3.3 Ternäre Carbidsysteme der Übergangsmetalle der 5.Gruppe

Der Aufbau der Systeme <u>V-Nb-C</u> und <u>V-Ta-C</u> wird ebenso wie der des Systems Nb-Ta-C durch die Mischkristalle der Monocarbide MC und der Subcarbide M₂C geprägt /a,b, 26,27/ (vgl. Abb. 3.1.3.19, 3.1.3.21 und 3.1.3.23). Die kritischen Entmischungstemperaturen der Monocarbidmischphasen liegen für (V,Nb)C bei 1750 K und für (V,Ta)C bei 1600 K /5,3/ (vgl. auch /88/). Ein Komplexcarbid Ta₂VC₂ konnte identifiziert werden /92/.

3.1.3.4 Ternäre Carbidsysteme der Übergangsmetalle der 5. und 6.Gruppe

Die Carbide der Übergangsmetalle der 5. Gruppe Vanadin, Niob und Tantal und die Chromcarbide sind nicht isotyp, demzufolge bestehen nur begrenzte Löslichkeiten in den ternären Systemen. Während die Vanadincarbide erhebliche Mengen Chrom in das Gitter aufnehmen können, ist die Löslichkeit von Chrom in den Carbiden von Niob und Tantal gering. Dies ist sicherlich vor allem auf die ähnlichen (V und Cr) bzw. unterschiedlichen (Nb, Ta und Cr) Atomradien der beteiligten Übergangsmetalle zurückzuführen. Auch in den Chromcarbiden ist nur Vanadin

Abb.3.1.3.13: Isothermer Schnitt im System Hf-V-C bei 1273 K /14/

Abb.3.1.3.14 Konzentrationsschnitt im quasibinären System HfC-VC /15/

Abb.3.1.3.15: Isothermer Schnitt im System Zr-Nb-C bei 1773 K (nach /11, 12/)

(Hf,Ta)C _{I-x}

+a-Hf+(Hf,Ta)

ά Hf

β

(Hf,Ta)C_{1-x}

+(Hf,Ta)

Abb.3.1.3.17: Isothermer Schnitt im System Zr-Ta-C bei 1773 K /b/

(Zr, Ta)CI-x

(Zr, Ta)C_{1-x}

+ (Zr, Ta) + Ta

(Zr,Ta)C_{1-x}

+(Zr,Ta)

Zr

t (Ta,Zr)₂ر

+ Ta

Ta,C

(Zr, Ta)C_{1-x} + Ta

Τa

Abb. 3.1.3.18: Isothermer Schnitt im System Hf-Ta-C bei 2123 /b/

(Hf,Ta)C_{1-x}∖

(наннанда)

(Ta,Hf)C1-x

+(Ta,Hf)

Ta₂C

-{Hf,Ta)C_{1-x} +{Ta,Hf)₂C+{Ta,Hf}

Τα

.

Abb.3.1.3.19: Isothermer Schnitt im System V-Nb-C bei 1673 K /b/

Abb.3.1.3.20: Konzentrationsschnitt im quasibinären System VC-NbC (vgl. /3,5/)

Abb.3.1.3.21: Isothermer Schnitt im System V-Ta-C bei 1673 K (Vorschlag vgl. Lit. /26/) bez. Ta₂VC₂ vgl. /92/

Abb.3.1.3.22: Konzentrationsschnitt im quasibinären System VC-TaC (vgl. /3, 5/)

Abb.3.1.3.23: Isothermer Schnitt im System Nb-Ta-C bei 2073 K /b/

Abb.3.1.3.24: Isothermer Schnitt im System V-Cr-C bei 1623 K (vgl. /28,29/)

in grösserem Umfang löslich. Die Löslichkeitsgrenzen und die Phasengleichgewichte in den Systemen V-Cr-C /28,29/, Nb-Cr-C /28,30/ und Ta-Cr-C /28,30/ verdeutlichen die Abbildungen 3.1.3.24 bis 3.1.3.26. Die strahlenförmig von NbC_{1-x} bzw. TaC_{1-x} ausgehenden Gleichgewichtslinien in den Systemen Nb-Cr-C und Ta-Cr-C sind Ausdruck der höheren Stabilität dieser Carbide im Vergleich zu den Chromcarbiden. Im System V-Cr-C tritt ein im Re₃B-Typ kristallisierendes Komplexcarbid der Formel VCr₂C₂ auf (vgl. Tab. 3.1.3.1).

Abb.3.1.3.25: Isothermer Schnitt im System Nb-Cr-C bei 1323 K (vgl. /28,30/)

Abb.3.1.3.26: Isothermer Schnitt im System Ta-Cr-C bei 1273 K (vgl. /28,30/)

Abb.3.1.3.27: Kubisch flächenzentrierte Carbidbereiche in den Systemen (Ti,Hf,Nb,Ta)-Mo-C (vgl. /41/)

Kubisch flächenzentrierte Carbide des Molybdäns und Wolframs existieren nur bei hohen Temperaturen, und zwar für Molybdän oberhalb 2133 K

und für W oberhalb 2800 K. Oberhalb dieser Temperaturen bestehen vollständige feste Lösungen von VC, NbC und TaC einerseits und MoC $_{1-x}$ und WC_{1-x} and ererse its. Abb.3.1.3.27 und 3.1.3.28 verdeutlichen die Ausdehnung dieser Mischcarbidbereiche für einige Systeme schematisch /41/. Unterhalb der Zerfallstemperaturen der binären Carbide von Mo und W können diese jedoch durch Lösung in den isotypen Carbiden der anderen Übergangsmetalle stabilisiert werden. Die Ausdehnung der Bereiche fester Lösungen ist stark temperaturabhängig, wie die isothermen Schnitte der Systeme V-Mo-C /31,32,78/ (Abb. 3.1.3.29), V-W-C /35/ (Abb.3.1.3.30), Nb-Mo-C /33/ (Abb. 3.1.3.31), Nb-W-C /36,77/ (Abb.3.1.3.32), Ta-Mo-C /34/ (Abb. 3.1.3.33) und Ta-W-C/37,39,40/(Abb.3.1.3.34) verdeutlichen. Ein interessanter Aspekt, auf den hier besonders hingewiesen werden soll, fällt bei den isothermen Schnitten des Systems Ta-Mo-C in Abb. 3.1.3.33 ins Auge. Temperaturabhängige Phasengleichgewichte bilden oftmals eine ausgezeichnete Gelegenheit, das Gefüge von Werkstoffen zu beeinflussen. Eine Mischphase (Ta,Mo)₂C bei 2773 K (Abb.3.1.3.33a) zerfällt beim Abkühlen in ein Phasengemisch (Ta,Mo)C $_{1-x}$ + Mo(Ta) (Abb. 3.3.1.33b). Bei schnellem Abkühlen erhält man ein äusserst feinkörniges Material, welches sich besonders im System Ta-W-C durch hohe Härte und Abriebfestigkeit auszeichnet /43/.

3.1.3.5 Ternäre Carbidsysteme der Übergangsmetalle der 6.Gruppe

Die Chromcarbide, die in den Systemen Cr-Mo-C /44,46/ und Cr-W-C /45,46, 96/ keine isotypen Partner haben, lösen nur begrenzte Mengen Mo bzw. W in ihrem Gitter. Am grössten ist die Löslichkeit im kubischen $Cr_{23}C_6$ mit etwa 20 Mol % "Mo₂₃C₆" bzw. etwa 10 Mol % "W₂₃C₆". Ausgesprochen hoch ist dagegen die Löslichkeit eines hypothetischen "Cr₂C" in Mo₂C bzw. W₂C (vgl. isotherme Schnitte in Abb. 3.1.3.35 und 3.1.3.36). Dies deutet darauf hin, dass ein hexagonales "Cr₂C" im binären System Chrom-Kohlenstoff nur leicht instabil ist. Besondere Beachtung findet das System Mo-W-C /47,48,49,50/ seit einiger Zeit, da man sich aus diesem Dreistoff einen evtl. Ersatzhartstoff für WC in Hartmetallen erhofft. Mo₂C und W₂C sind vollkommen mischbar. Alle anderen Carbide zeigen, wie es die isothermen Schnitte (Abb. 3.1.3.37) verdeutlichen, ausgedehnte Löslichkeitsbereiche, die jedoch stark temperaturabhängig sind. Während die Löslichkeit von WC_{1-x} in den Molybdäncarbiden

*

Bei hohen Temperaturen T >1923 tritt zusätzlich ein ternäres Carbid $z\text{-(Cr,Mo)}_4\text{C}_{3\text{-}x}$ auf (Verhältnis Mo/Cr \sim 3/1) /94/

Abb.3.1.3.29: Isotherme⁻ Schnitte im System V-Mo-C bei 2273 K (a), 2073 K (b) und 1773 K (c) (Vorschläge vgl. /31,32/)

- 151 -

Abb.3.1.3.30: Isothermer Schnitt im System V-W-C bei 1773 K /35/

Abb.3.1.3.31:|sotherme Schnitte im System Nb-Mo-C bei 2513 K (a) und 1773 K (b) /33/

Abb. 3.1.3.32: Isotherme Schnitte im System Nb-W-C bei 2963 K (a) und 1973 K (b) /b/

Ta₂C

Tα

+ (Ta,Mo)

{Ta,Mo}C1-x +Mo2C +Mo

-{Ta,Mo}C_{1-x}+ Mo

Мο

- 153 -

Мо

Abb.3.1.3.35: Isothermer Schnitt im System Cr-Mo-C bei 1623 K /44, 46/

(Cr, Mo) +(Cr, Mo)23 C6

Cr

Abb.3.1.3.34: Isotherme Schnitte im System Ta-W-C bei 2223 K (a) und 1773 K (b) /b/

Abb.3.1.3.36: Isothermer Schnitt im System Cr-W-C bei 1673 K (vgl. /45,46/)

Abb.3.1.3.37: Isotherme Schnitte im System Mo-W-C bei 2373 K (a) und 1273 K (b) (vgl. /50/)

 α -MoC_{1-x} und n-MoC_{1-x} mit fallender Temperatur abnimmt, nimmt die Löslichkeit von "MoC" im hexagonalen WC zu. Hexagonales MoC existiert nur unterhalb 1453 K, wo es dann mit WC vollkommen mischbar ist (Abb. 3.1.3.38).

3.1.3.6 Ternäre Carbidsysteme der Übergangsmetalle der 4. und 6.Gruppe

Diese Kombinationen lassen sich zwanglos in zwei Teilen betrachten, und zwar einmal die Systeme mit Cr: (Ti,Zr,Hf)-Cr-C und zum anderen die mit Mo und W: (Ti,Zr,Hf)-(Mo,W)-C.

In den Dreistoffen <u>Ti-Cr-C</u> /52,53/, <u>Zr-Cr-C</u> /54/ und <u>Hf-Cr-C</u> /52,55/ treten keine ternären Verbindungen auf, und die Löslichkeiten sind verhältnismässig gering. Nur TiC vermag bis zu 25 Mol % Cr₃C₂ im Gitter aufzunehmen /52,95/. In allen drei Systemen ist der Aufbau bestimmt von Gleichgewichten der sehr stabilen Monocarbide TiC_{1-x}, ZrC_{1-x} und HfC_{1-x} mit den anderen Randphasen der binären Systeme (vgl. Abb. 3.1.3.39, 3.1.3.41, und 3.1.3.43). Die Schnitte Monocarbid-Cr stellen eutektische Systeme dar (Abb. 3.1.3.40 und 3.1.3.42). Der Aufbau der Systeme der Übergangsmetalle der 4.Gruppe mit Molybdän, Wolfram und Kohlenstoff wird durch Mischkristallbildung der Monocarbide bei sehr hohen Temperaturen (wo MoC_{1-x} und WC_{1-x} in der kubisch flächenzentrierten Modifikation existieren) und durch ausgedehnte homogene Monocarbidbereiche, in denen "MoC_{1-x}" und "WC_{1-x}" durch Lösung in TiC, ZrC und HfC stabilisiert

Abb.3.1.3.39: Isothermer Schnitt im System Ti-Cr-C bei 1623 K /52/

- 157 -

werden können, bei tiefen Temperaturen (wo ${\rm MoC}_{1-{\rm x}}$ und ${\rm WC}_{1-{\rm x}}$ in reiner Form thermodynamisch instabil sind) bestimmt. Die isothermen Schnitte der Systeme Ti-Mo-C /56-60,97/ (Abb.3.1.3.44), <u>Ti-W-C</u> /61,62,100/ Abb. 3.1.3.46), Zr-Mo-C /63,64/ (Abb.3.1.3.47), Zr-W-C /65-70/ (Abb.3.1.3.49), Hf-Mo-C /71-75,89,102/(Abb.3.1.3.50) und Hf-W-C /68-70,76,77,101/ (Abb.3.1.3.51) verdeutlichen ausserdem in der Lage der Konoden die wesentlich höhere Stabilität der Monocarbide der 4.Gruppe im Vergleich

Abb. 3.1.3.41: Isothermer Schnitt im System Zr-Cr-C bei 1573 K /54/

Abb.3.1.3.42: Konzentrationsschnitt ZrC-Cr im System Zr-Cr-C (vgl./53/)*

Abb.3.1.3.43: Isothermer Schnitt im System Hf-Cr-C bei 1623 K /52/

zu den Molybdän- und Wolframcarbiden. Diese stabilen Carbide stehen mit den Metallen Mo bzw. W im Gleichgewicht (vgl. Abb.3.1.3.45 u. 3.1.3.48). Die Systeme (Ti,Zr,Hf)-(Mo-W)-C besitzen ein hohes "technologisches" Potential. Teilweise kommen aus ihnen Bestandteile von Hartmetallen, teilweise liegen jedoch auch aussichtsreiche Alternativen für die Hartmetallentwicklung in diesen Kombinationen. Die Bedeutung der temperaturabhängigen Gleichgewichte bei Hartmetallen sei an einem weiteren Beispiel dargelegt. Viele konventionelle WC-Basis Hartmetalle enthalten TiC als Zusatz, um die Verschweißneigung des Werkzeuges, z.B. mit Stahl, herabzusetzen. Hierbei macht man sich die Gleichgewichte im System Ti-W-C insofern zunutze, als ein (Ti,W)C-Mischkristall bei hoher Temperatur hergesteilt, mit WC und Co gemischt und bei tiefer

Ref./55/ gibt als eutektischen Punkt etwa 96 Mol % Cr und 1785^oC für ZrC-Cr und 87 Mol % HfC und 1810^oC für HfC-Cr

Abb.3.1.3.44: Isotherme Schnitte im System Ti-Mo-C bei 2273 K (a), 2023 K (b) und 1773 K (c) /b,57/

Temperatur fertiggesintert wird. Hierbei scheiden sich feinste Carbidteilchen aus, werden teilweise im Binder gelöst, um sich beim Abkühlen wiederum auszuscheiden, wobei sie ganz entscheidend die Eigenschaften der Hartmetalle beeinflussen (vgl. z.B. /93,99/).

3.1.3.7 Quasiternäre Mischcarbide der Übergangsmetalle der 4.,5. und 6. Gruppe

Neben den quasibinären Carbidmischkristallen wurde in vielen Fällen auch das Löslichkeitsverhalten der Carbide der Übergangsmetalle in mehrkomponentigen Systemen geprüft. Naturgemäss treten auch hier weite homogene Carbidbereiche auf, die von drei oder vier binären Carbiden durch gegenseitige Lösung gebildet werden. Solche quasiternären Mischcarbide wurden z.B. in folgenden Systemen hergestellt, hinsichtlich der Ausdehnung der Existenzbereiche charakterisiert und teilweise bezüglich Entmischungserscheinungen beschrieben: TiC-HfC-"MoC" /80/, TiC-HfC-WC /81/, TiC-VC-ZrC, VC-TaC-ZrC, VC-NbC-ZrC /82/, TiC-HfC-WC /83/, ZrC-NbC-MoC_{1-x} /84/, VC-HfC-"MoC" /85/, VC-HfC-WC /86/. Als Beispiel für ein untersuchtes pseudoquaternäres System (Fünfstoffsystem) sei die

Abb.3.1.3.46: Isotherme Schnitte im System Ti-W-C bei 2873 K (a) und 2173 K (b) (vgl. /61,62, 100/.

Kombination WC-TaC-TiC-VC /87/ genannt. Auch die Subcarbide M_2C bilden quasiternäre Mischphasen. So wurden z.B. ausgedehnte homogene Bereiche in den Systemen Ta₂C-V₂C-Mo₂C, Ta₂C-V₂C-W₂C oder Ta₂C-Nb₂C-W₂C /b/ beschrieben.

Die sich ergebenden Kombinationen sind zahlreich, ebenso vielfältig sind die Möglichkeiten neue Werkstoffe in diesen Systemen zu erhalten. Temperaturabhängige Gleichgewichte, insbesondere Entmischungserschei-

Abb.3.1.3.47: Isotherme Schnitte im System Zr-Mo-C bei 2273 K (a) und 1673 K (b) (vgl. /63,64/)

- 161 -

Abb.3.1.3.48: Konzentrationsschnitt ZrC-Mo im System Zr-Mo-C (vgl. /64/)

nungen bei tiefen Temperaturen, tragen zusätzlich dazu bei, gewünschte Eigenschaften zu erzielen. Neben den hier als Beispiel angegebenen quasiternären und quasiquaternären Mischcarbiden – im wesentlichen neuer Arbeiten – sei hinsichtlich weiterer Kombinationen auf die Literatur verwiesen /a,b,d/.

Abb.3.1.3.49: Isotherme Schnitte im System Zr-W-C bei 2873 K (a) und 1773 K (b) (vgl./65,66/)

Abb.3.1.3.51: Isotherme Schnitte im System Hf-W-C bei 2873 K (a) und 1773 K (b) (vgl./68,76,101/)

- 163 -

Literatur: Ternäre Carbide der Übergangsmetalle der 4., 5. und 6.Gruppe (Kap.3.1.3) /a/ R.Kieffer, F.Benesovsky Hartstoffe, Springer Verlag, Wien, 1963 /b/ E.Rudy "Compendium of Phase Diagram Data", Techn.Rep. AFML-TR-65-2, Part V (1969) /c/ G.V.Samsonov; G.S.Upadehaja, V.S.Nespor Fiziceskol materialovedenie karbidov; Izd. Naukova dumka, Kiew 1974 /d/ W.B.Pearson A Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon Press Oxford, Band 1 1958, Band 11 1967 /1/ Yu.V.Voroshilov, L.V.Gorshkova, A.M. Popova, T.F.Fedorov Porosh. Met.5 (1967) 81 /2/ C.E.Brukl, D.P.Harmon Bericht AFML-TR-65-2, Part 11, Vol.18 (1966) /3/ A.I.Gusev; G.P.Shveikin Neorg.Mat.13 (1977) 67 /4/ V.V.Ogorodnikov, A.A.Ogorodnikova Neorg. Mat.13 (1977) 658 /5/ R.Kieffer, H.Nowotny, A.Neckel, P.Ettmayer, L.Usner Mh. Chem. 99 (1968) 1020 /6/ V.N.Eremenko, L.A.Tretyachenko Porosh. Met.6 (1964) 27 /7/ L.A.Tretyachenko, V.N.Eremenko Porosh. Met.7 (1966) 84 /8/ L.A.Tretyachenko, V.N.Eremenko Porosh. Met. 8 (1966) 33 /9/ T.F.Fedorov, L.V.Gorskova, E.L.Gladyshevskiy Metally 4 (1966) 128 /10/ G.V.Samsonov, M.A.Voronkin Porosh. Met. 4 (1976) 64 /11/ P.Stecher, F.Benesovsky, A.Neckel, H.Nowotny Mh.Chem. 95 (1964) 1630 /12/ T.F.Fedorov, N.M.Popova, E.L.Gladyshevskiy Metally 3 (1965) 158

- 164 -
- /13/ J.G. McMullin, J.T.Norfon J.Metals 5 (1953) 1205
- /14/ Yu.V.Voroshilov, T.F.Fedorov, L.V.Gorshkova Neorg.Mat.4 (1968) 154
- /15/ P.Ettmayer, R.Kieffer, L.Usner Planseeber. Pulvermet.16 (1968) 89
- /16/ K.Kuo Acta Met. 1 (1953) 301
- /17/ V.S.Yemel'yanov, A.I.Yevstyukhin, Yu.G.Godin, G.I.Solv'ev, A.A.Kokhtev Metallurgiya i metallovedemic chistykh metallov 6 (1967) 108
- /18/ R.A. Andrievsky, N.S.Strelnikova, N.I.Poltoratsky, E.D.Kharkhadrin, V.S.Smirnov Porosh. Met. 1 (1967) 85
- /19/ A.I.Avgustinik, S.S.Ordan'yan Zhnr. Prikl. Khimii 39 (1966) 318
- /20/ E.I.Gladyshevskii, T.F.Fedorov, L.V.Gorskova Russ. J.Inorg. Chem. 9 (1964) 639
- /21/ E.Rudy, H.Nowotny Mh. Chem. 94 (1963) 507
- /22/ D.L.Deadmore, J.Zaplatynsky Bericht NASA TN D - 2768 (1965)
- /23/ S.S.Ordan'yan, G.P.Zaitsev, S.M.Kats, A.I.Avgustinik Neorg. Mat. 12 (1976) 1577
- /24/ H.Holleck, B.Scholz, H.Schneider, F.Thümmler Z.Metallk. 65 (1974) 738
- /25/ Y.A. Chang Bericht AFML - TR - 65 - 2, Part II, Vol. 16 (1967)
- /26/ A.Trtachenko, S.A.Komarova, V.N.Eremenko Tug.Karbid. Nauk, Dunka, Kiew 1970, S.96
- /27/ E.Rudy, P.Booker Bericht AFML - TR - 69-117, Part III (1969)
- /28/ T.F.Fedorov, N.M.Popova, L.V.Gorshkova, R.V.Skolozdra, Yu. B.Kuz'ma Porosh. Met. 3 (1968) 42
- /29/ H.Rassaerts, F.Benesovsky, H.Nowotny Planseeber. Pulvermet.14 (1966) 178

- /30/ H.Rassaerts, F.Benesovsky, H.Nowotny Planseeber. Pulvermet. 13 (1965) 199
- /31/ E.Rudy, El.Rudy, F.Benesovsky
 Planseeber. Pulvermet. 10 (1962) 42
- /32/ V.F.Funke, I.V.Pshenichny, Yu.D.Loktionov, L.A. Pliner Neorg.Mat. 7 (1971) 1561
- /33/ E.Rudy, C.E.Brukl, St.Windisch Trans. Met. Soc. AIME 239 (1967) 1796
- /34/ E.Rudy, C.E.Brukl, St.Windisch J.Am.Ceram.Soc. 51 (1968) 239
- /35/ E.Rudy, F.Benesovsky, El.Rudy Mh.Chem. 93 (1962) 693
- /36/ A.Taylor, N.J,Doyle J.Less Common Met. 13 (1967) 511
- /37/ T.Hachisuka J.Jap.Soc. Powder and Powder Met. 16 (1969) 38
- /38/ E.Rudy, Y.A.Chang Plansee Seminar 1964, Proceedings, S.786
- /39/ E.Rudy, El.Rudy, F.Benesovsky Mh. Chem. 93 (1962) 1176
- /40/ E.Rudy Bericht AFML-TR-65-2, Part II, Vol. VII (1966)
- /41/ V.N.Eremenko, T.Ya. Velikanova, S.V.Shabanova, L.V. Atyukh Porosh.Met. 11 (1973) 58
- /42/ V.N.Eremenko, T.Ya.Velikanova, L.V.Atyukh, S.V.Shabanova Neorg. Mat.10 (1974) 1249
- /43/ E.Rudy, US.Patent 3725055 (1973)
- /44/ Y.B.Kuzma, T.F.Fedorov Porosh. Met. 11 (1965) 62
- /45/ E.I.Gladyshevskiy, V.S.Tellgus, T.F.Fedorov, Yu.B.Kuz'ma Metally 1 (1967) 190
- /46/ Y.A.Chang, D.Nauglock Met.Trans. 3 (1972) 1693
- /47/ L.V.Gorshkova, V.S.Tellgus, F.I.Shamrai, Yu.V.Kuz'ma Porosh. Met. 3 (1973) 74

- /48/ J.Schuster, E.Rudy, H.Nowotny Mh.Chem. 107 (1976) 1167
- /49/ L.V.Gorshkova, F.I.Shamrai Porosh.Met. 11 (1970) 66
- /50/ E.Rudy, B.F.Kieffer, E.Baroch Planseeber.Pulvermet. 26 (1978) 105
- /51/ H.J.Albert, J.T.Norton Planseeber. Pulvermet. 4 (1956) 2
- /52/ H.Rassaerts, F.Benesovsky, H.Nowotny Planseeber. Pulvermet. 14 (1966) 23
- /53/ J.P.Guha, D.Kolar J.Less Common Met. 31 (1973) 331
- /54/ T.F.Fedorov, Yu.B.Kuzma Porosh. Met. 3 (1963) 234
- /55/ A.K.Shurin, G.P.Dmitrieva Metallofizika 51 (1974) 105
- /56/ H.J.Albert, J.T.Norton Planseeber. Pulvermet. 4 (1956) 2
- /57/ E.Rudy Bericht AFML-TR-69-117, Part 1, 1969
- /58/ V.N.Eremenko, T.Ya. Velikanova Porosh.Met. 1 (1963) 347
- /59/ T.Ya Velikanova, V.N.Eremenko Porosh.Met. 4 (1973) 46
- /60/ V.I.Trefilov, O.M.Barabash, V.A.Borisenko, A.S.Zakharkin, V.P Krashchenko, V.F.Moiseyev, E.P.Pechkovskiy; Metall 6 (1977) 110
- /61/ H.Nowotny, E.Parthé, R.Kieffer, F.Benesovsky Z.Metallkunde 45 (1954) 97
- /62/ O.Matsumoto, H.Hirose, Y.Kawara, T.Ohue High Temp.Science 9 (1977) 27
- /63/ T.C.Wallace, C.P.Gutierrez, P.L.Stone J.Phys.Chem.67 (1963) 796
- /64/ T.F.Fedorov, Yu. B.Kuzma, L.V.Gorshkova Porosh. Met. 3 (1965) 69
- /65/ Yu.B.Kuzma, T.F.Fedorov, E.A.Shvets Porosh.Met. 2 (1965) 22

- /66/ Yu.N.Vil'k, SS.Ordan'yan, A.I.Avgustinik Neorg.Mat.8 (1972) 1245
- /67/ V.N.Eremenko, T.Ya.Velikanova, S.V.Shabanova, L.V.Artyukk Porosh.Met. 11 (1973) 58
- /68/ V.N.Eremenko, T.Ya.Velikano, L.V.Artjukh, G.M.Aksel'rod, A.S.Vishnevsky Dop. Akad.nauk URSR, Ser. A.Kiew, 1976, S.80
- /69/ A.M.Zacharov, O.P.Naumkin, G.V.Kurganov Metally 1 (1974) 224
- /70/ O.Matsumoto, H.Hirose, Y.Kawara, T.Ohne High Temp.Sci. 9 (1977) 27
- /71/ V.N. Eremenko, S.V.Shabanova, T.Ya.Velikanova Porosh. Met. 7 (1975) 49
- /72/ V.N. Eremenko, S.V.Shabanova, T.Ya.Vellkanova Porosh. Met. 7 (1975) 45
- /73/ V.N. Eremenko, S.V.Shabanova, T.Ya.Velikanova Porosh. Met.9 (1975) 52
- /74/ V.N.Eremenko, S.V.Shabanova, T.Ya.Velikanova Porosh. Met.10 (1975) 44
- /75/ V.N.Eremenko, S.V.Shabanova, T.Ya.Velikanova Porosh. Met.9 (1977) 73
- /76/ V.N. Eremenko, T.Ya.Velikanova, L.V.Artyukh. A.S.Vishnervsky Rev. int. Htes Temp. et Réfract. 12 (1975) 209
- /77/ Ye.M.Savitsky, K.B.Povarova, P.V.Makarov, Ye.K.Zavarzina Planseeber. Pulvermet. 25 (1977) 168
- /78/ V.N. Kiseleva, A.M.Zakharov, S.I.Yudkovskii Metally 2 (1974) 214
- /79/ A.Carter J.Inst.Metals, 83 (1955) 481
- /80/ P.Rogl, S.K.Naik, E.Rudy Mt.Chem. 108 (1977) 1325
- /81/ P.Rogl, S.K.Naik, E.Rudy Mt. Chem. 108 (1977) 1189
- /82/ J.T.Norton, A.L.Mowry J.Metals 3 (1951) 923
- /83/ R.Kieffer, G.Trabesinger, N.Reiter Planseeber. Pulvermet. 17 (1969) 25

- /84/ V.V.Fuake, I.V.Pshenichnyi, P.V.Zubarev, L.A.Pliner, D.M.Ljakhov, V.M.Golomazov Porosh.Met.12 (1977) 76
- /85/ P.Rogl, S.K.Naik, E.Rudy Mh.Chem. 108 (1977) 1339
- /86/ P.Rogl, S.K.Naik, E.Rudy Mh. Chem. 108 (1977) 1213
- /87/ W.Mader, R.Kieffer, H.Nowotny. P.Ettmayer J.Powder Met. + Techn. 13 (1977) 41
- /88/ E.Rudy Z.Metallk. 54 (1963) 112
- /89/ V.N.Eremenko, S.V.Shabanova, T.Ya.Velikanova, O.M.Tolstikov, G.M.Aksel'rod, L.A.Petzenko Porosh.Met. 9 (1975) 52
- /90/ N.Shohoji, H.Holleck KfK (in Vorbereitung)
- /91/ P.Ettmayer, G.Vinek, H.Rassaerts Mh.Chem.97 (1966) 1258
- /92/ E.Rudy J.Less Common Met.20 (1970) 49
- /93/ O.Rüdiger Umschau 74 (1974) 629
- /94/ E.Rudy J.Less Common Met. 33 (1973) 327
- /95/ V.N.Eremenko, Z.I.Tolmacheva
 Porosh.Met 2 (1961) 30, sowie 4 (1961) 31
- /96/ P.Stecher, F.Benesovsky, H.Nowotny Planseeber. Pulvermet. 12 (1964) 89
- /97/ A.M.Zakharov, I.I.Novikov, V.G.Parshikov Izvest. Vyssh. Ucheb. Zaved., Tsvet. Met.6 (1970) 106
- /98/ A.M.Zakharov, I.I.Novikov, V.G.Parshikov Metally 6 (1970) 204
- /99/ W.May J.Mater. Sci. 6 (1971) 1209
- /100/ E.Rudy J.Less Common Met. 33 (1973) 245
- /101/ L.V.Actyukh, T.Ya.Velikanova, V.N.Eremenko Neorg. Mat. 15 (1979) 634
- /102/ V.N.Eremenko, S.V.Shabanova, T.Ya.Velikanova Porosh. Met. 10 (1977) 40

Gesinterte Verbundwerkstoffe der hochschmelzenden, harten Carbide mit den niedrig schmelzenden Bindemetallen der Eisengruppe haben verbreitete Anwendung auf dem Gebiet der verschleißfesten Materialien, insbesondere der Hartmetalle, gefunden. Die Carbide sind dabei die Härteträger, während das Bindemetall pulvermetallurgische Verarbeitung ermöglicht und ausserdem dem Werkstoff die notwendige Zähigkeit verleiht. Die Sintertemperatur liegt meist knapp oberhalb des eutektischen Schmelzpunktes der Systeme Carbid-Metall. Neben einer hohen Verdichtung erreicht man durch Löse- und Ausscheidungsvorgänge zusätzlich eine Festigkeitssteigerung. Die eutektischen Schmelztemperaturen der Systeme der Monocarbide der Übergangsmetalle der 4. und 5.Gruppe mit Fe, Co und Ni wurden mit Hilfe der Differentialthermoanalyse bestimmt /1/ und sind in Abb.3.1.4.1 zusammen mit den Schmelzbereichen wiedergegeben. Es ist auffallend, dass die Lage des eutektischen Schmelzpunktes sich mit steigender Schmelztemperatur des Carbids zu höheren Fe-, Co- bzw. Ni-Konzentrationen verschiebt (vgl. Abb.3.1.4.2), Auch im Hinblick auf eine Festigkeitssteigerung von Eisen-Nickel- und Kobaltlegierungen durch Carbidzusätze hat die Lage der eutektischen Punkte grosse Bedeutung. Beachtliche Festigkeitssteigerungen konnten z.B. bei Werkstoffen auf Austenit- bzw. Ferrit- sowie Co- und Ni-Basis durch Ausscheidungen /107/ kontrollierte Erstarrungsbedingungen erhalten werden /3/. Typisch für alle Systeme der hochschmelzenden Übergangsmetalle mit den Metallen der Eisengruppe sind quasibinäre Gleichgewichte zwischen den Carbiden und Fe, Co und Ni (vgl. Abb. 3.1.4.1). Dies gilt allerdings nur für einen mehr oder weniger engen Stöchlometriebereich der Carbide. Bei einer bestimmten Kohlenstoffdefektkonzentration wird die Metallaktivität so hoch, dass intermetallische Phasen oder Komplexcarbide entstehen.

3.1.4.1 Komplexcarbide der Übergangsmetalle der 4., 5. und 6.Gruppe mit Mn, Fe, Co und Ni

Typische Complexcarbide dieser Systemgruppe sind die n-Carbide bei Zusammensetzungen gemäss $T_{4-3}M_{2-3}C$ bzw. T_6M_6C (T = Ti,Zr,Hf,Nb,Ta, - 171 -

Abb. 3.1.4.1: Lage der eutektischen Schmelzpunkte in den Systemen MC-Fe,Co,Ni (M = Ti,Zr,Hf,V,Nb,Ta) /1/

- 172 -

Mo,W; M = Mn,Fe,Co,Ni) und die k-Carbide bei einer Zusammensetzung von etwa T_zMC (T = W; M = Mn,Fe,Co,Ni). Die ternären Carbidphasen der Übergangsmetalle der 4., 5, und 6. Gruppe mit Mn,Fe,Co und Ni sind in Abb. 3.1.4.3 zusammengestellt. Die n- und k-Carbide gehören zu der Familie der sogenannten nichtmetallstabilisierten Phasen, deren Auftreten in mehrkomponentigen Carbid- und Nitridsystemen mehrfach diskutiert wurde (vgl. z.B. /3-8/). Charakteristisch ist für diese Verbindungsgruppe die oktaedrische Baugruppe, gebildet aus Übergangsmetallen mit Nichtmetallatomen in oktaedrischen Lückenpositionen. Auch bei den binären Carbiden und Nitriden ist diese Gruppe das wesentliche Bauelement (vgl. Abb. 3.1.4.4 und 3.1.4.5). Als Nichtmetallatome treten bevorzugt B,C,N und O auf. Abb.3.1.4.6 verdeutlicht Auftreten, Zusammensetzung und Struktur verschiedener Komplexphasen in Systemen der Übergangsmetalle mit Nichtmetallen. Neben dem Strukturtyp der Komplexphasen sind auch Zahlen angegeben, welche einen ungefähren Überblick über die Häufigkeit des Auftretens des jeweiligen Verbindungstyps geben. Die häufigsten und technologisch bedeutendsten ternären Carbidphasen der Übergangsmetalle mit Mn, Fe,Co und Ni sind die sogenannten n-Carbide (teilweise aufgefüllter Ti2Ni-Typ. Tab. 3.1.4.1 gibt die bekannten Phasen mit ihren Gitterparametern wieder). Diese Verbindungen leiten sich von den binären Phasen T₂M her durch Auffüllung (meist nur teilweise Auffüllung) der oktaedrischen Lückenpositionen mit Kohlenstoff.Die Zusammensetzung variiert dabei meist in den Grenzen $T_4M_2C_{1-x}$ und $T_3M_3C_{1-x}$. Dies ergibt sich aus der Besetzung der Metallatome im Ikosaederzentrum im ersten Falle durch T-Elemente und im zweiten Fall durch M-Elemente (vgl. Abb.3.1.4.5). Der Auffüllungsgrad ist unterschiedlich. In den meisten Fällen werden Zusammensetzungen der Verbindungen gemäss T_4M_2C oder T_3M_3C (n-W $_4Co_2C$, $n-Mo_3Fe_3C$) und T_6M_6C ($n-W_6Co_6C$) beobachtet. Die Zusammensetzung der κ-Carbide ist in vielen Fällen nur ungenau bekannt. Die Struktur wurde erstmals am Beispiel von W_QCo₃C₄ bestimmt /12/.

3.1.4.2 Carbidsysteme mit Mangan

Nur die Systeme von Chrom, Molybdän und Wolfram mit Mangan und Kohlenstoff wurden bisher untersucht /13,14/. Im System <u>Cr-Mn-C</u> sind die Garbide Cr_{23}C_6 und Mn_{23}C_6 sowie Cr_7C_3 und Mn_7C_3 vollkommen mischbar /14/. - 173 -

Abb.3.1.4.2: Zusammensetzung der eutektischen Schmelzbereiche der Carbid-Metall Systeme in Abhängigkeit von der Schmelztemperatur des Carbides

<u> </u>	Fe	Co	Ni
ͺMo ₃ Mn ₃ C (η)	Mo ₃ Fe ₃ C (η)	(V ₄ Co ₂ C) (η)	(V ₄ Ni ₂ C) (η)
W ₃ Mn ₃ C (ŋ)	W ₃ Fe ₃ C (η)	Nb ₄ Co ₂ C (η)	Nb ₄ Ni ₂ C (η)
Mo ₂ Mn ₄ C	W ₆ Fe ₆ C (η)	Tα ₄ Co ₂ C (η)	Τα ₄ Νi ₂ C (η)
W3MnC1+x(H)	W3 FeC (x)	Mo ₄ Co ₂ C (η)	Mo ₄ Ni ₂ C (η)
(Mn,W) ₂ C		Μο ₆ Cο ₆ C (η)	Mo ₆ Ni ₆ C (η)
		W4 C02 C (M)	W ₄ Ni ₂ C (η)
		W ₆ Co ₆ C (η)	W ₆ Ni ₆ C (η)
		W3COC (X)	W3NIC (21)

Abb. 3.1.4.3: Ternäre Carbide der Übergangsmetalle der 4., 5. und 6. Gruppe mit Mn,Fe,Co und Ni (n = n Carbide, teilweise aufgefüllte Ti₂Ni-Struktur; $\kappa = \kappa$ Carbide, $W_9Co_3C_4$ -Typ)

Phase	Strukturtyp Raumgruppe	Gitterkonstante (nm)	Existenzbereich Bemerkung	Literatur
V ₄ Co ₂ C	kfz., W ₃ Fe ₃ C-Typ 0 <mark>7</mark> - Fd3m	a = 1.089	aufgef. Ti ₂ Ni-Struktur, n ₂ -Carbid, Existenzbeding. unsicher	/16/
V ₄ Ni ₂ C	kfz., W ₃ Fe ₃ C-Typ 0 <mark>7</mark> - Fd3m	a = 1.087	aufgef. Ti ₂ Ni-Struktur, n ₂ -Carbid, Existenzbeding. unsicher	/16/
Nb ₄ Co ₂ C	kfz., W ₃ Fe ₃ C-Typ O _h - Fd3m	a = 1.1655 - 1.1588	n ₂ -Carbid	/7,16,55/
Nb ₄ Ni ₂ C	kfz., W ₃ Fe ₃ C-Typ 0 <mark>7</mark> - Fd3m	a = 1.1659 - 1.1687	n2-Carbid	/7,16,55/
Ta ₄ Co ₂ C	kfz., W ₃ Fe ₃ C-Typ 0 <mark>7</mark> - Fd3m	a = 1.158 - 1.161	n2-Carbid	/7,16/
Ta ₄ Ni ₂ C	kfz., W ₃ Fe ₃ C-Typ O _h ⁷ - Fd3m	a = 1.159 - 1.162	n ₂ -Carbid .	/7,16/
(Cr,Mn) ₂₃ C ₆	киb., Сг ₂₃ С ₆ -Тур О _л ⁵ - Fm3m	a = 1.0659- 1.061	vollst. Mischphase	/14/
(Cr,Mn) ₇ C ₃	orthorh., Mn ₇ C ₃ - Typ D ⁵ _{2h} -Pmma		vollst. Mischphase	/14/
Mo ₃ Mn ₃ C	kfz., W ₃ Fe ₃ C-Typ 0 <mark>7</mark> - Fd3m	a = 1.113 - 1.117	n _l -Carbid	/13/
Mo ₂ Mn ₄ C	-	-	Struktur unbekannt	/13/
Mo ₃ Fe ₃ C	kfz., W ₃ Fe ₃ C-Typ O ₆ ⁷ - Fd3m	a = 1.1095 - 1.1140	η ₁ -Carbid	/66/
MoFe ₂ C	orthorh. P222 ₁	a = 1.627 b = 1.003 c = 1.132		/99/
Mo ₂ Fe ₂₁ C ₆	kub., Сг ₂₃ С ₆ -Тур 0 <mark>5</mark> - Fm3m	a = 1.053	metastabil	/68,79/
Mo ₄₋₃ Co ₂₋₃ C	kfz., W ₃ Fe ₃ C-Typ 0 <mark>7</mark> - Fd3m	a = 1.1058 - 1.1244	n ₂ ,n ₁ -Carbid	/66/
Mo ₆ Co ₆ C	kfz., W ₃ Fe ₃ C-Typ 0 <mark>7</mark> - Fd3m	a = 1.0897	n1-Carbid	/66/
Mo ₄₋₃ Ni ₂₋₃ C	kfz., W ₃ Fe ₃ C-Typ 0 <mark>7</mark> - Fd3m	a = 1.961 - 1.1255	n ₂ ,n ₁ -Carbid	/66/
Mo ₆ Ni ₆ C	kfz., W ₃ Fe ₃ C-Typ O _h ⁷ - Fd3m	a = 1.0894	n ₁ -Carbid	/66/

Tab. 3.1.4.1: Ternäre Carbide in Systemen der Übergangsmetalle der 4., 5. und 6.Gruppe mit den Metallen Mn, Fe, Co und Ni

Phase	Strukturtyp Raumgruppe	Gitterkonstante (nm)	Existenzbereich Bemerkung	Lițeratur
₩ ₃ MnC	hex., W ₉ Co ₃ C ₄ -Typ P6 ₃ /mmc	a = 0.7764 c = 0.7775	k-Carbid	/13/
W ₃ Mn ₃ C	kfz., W ₃ Fe ₃ C-Typ 0 ⁷ _h - [−] d3m	a = 1.111 - 1.117	n ₁ -Carbid	/13/
(W,Mn) ₂ C	hex.	a = 0,275 c = 0.450	∿70 At.% Mn ∿5 - 10 At.% W	/13/
W ₃ FeC	hex., W ₉ Co ₃ C ₄ -Typ P6 ₃ /mmc	a = c = 0.7806 - 0.7810	ĸ-Karbid	/79/
W ₃ Fe ₃ C	kfz., W ₃ Fe ₃ C-Typ 0 ⁷ - Fd3m	a = 1.1102 - 1.1146	n ₁ -Carbid	/79/
₩ ₆ Fe ₆ C	kfz., W ₃ Fe ₃ C-Typ 0 <mark>7</mark> - Fd3m	a = 1.0956 - 1.0958	n _l -Carbid	/79/
[₩] 2 ^{Fe} 21 ^C 6	kub., Сг ₂₃ С ₆ -Тур О <mark>5</mark> - Гт3т	a = 1,052	metastabil	/68,79/
W ₃ CoC	hex., W ₉ Co ₃ C ₄ -Typ P6 ₃ /mmc	a = c = 0.7826	ĸ-Carbid	/47/
W ₄ Co ₂ C	kfz., W ₃ Fe ₃ C-Typ O _h ⁷ - Fd3m	a = 1.1066 - 1.1251	n ₂ -Carbid	/79/
₩ ₆ Co ₆ C	kfz., W ₃ Fe ₃ C-Typ O _h ⁷ - Fd3m	a = 1.0894 - 1.0902	n _l -Carbid	/79/
W ₃ NiC	hex., W _g Co ₃ C ₄ -Typ P6 ₃ /mmc	a = c = 0.7837	ĸ-Carbid	/89/
W ₄ Ni ₂ C	kfz., W ₃ Fe ₃ C-Typ 0 <mark>7</mark> - Fd3m	a = 1.1226 - 1.1257	n ₂ -Carbid	/89/
₩ ₆ N1 ₆ C	kfz., W ₃ Fe ₃ C-Typ O ⁷ - Fd3m h	a = 1.0900	n ₁ -Carbid	/89/

Abb. 3.1.4.4: Oktaederbaugruppe in binären und ternären Carbiden und Nitriden (vgl. /3a, 9, 10/)

Abb. 3.1.4.5: Kristallstruktur der n-Phasen T_4M_2X (vgl. /11/)

Abb. 3.1.4.6: Auftreten, Zusammensetzung und Struktur von Komplexphasen in mehrkomponentigen Systemen der Übergangsmetalle mit Nichtmetallen

In den Systemen <u>Mo-Mn-C</u> und <u>W-Mn-C</u> (vgl. isotherme Schnitte in Abb. 3.1.4.7) treten neben begrenzten Randlöslichkeiten ternäre Komplexcarbide auf. Neben den n-Carbiden Mo_3Mn_3C (a = 1.113 - 1.117 nm) und W_3Mn_3C (a = 1.111 - 1.117 nm) beobachtet man im System Mo-Mn-C ein hinsichtlich der Struktur nicht näher charakterisiertes Carbid Mo_2Mn_4C und im System W-Mn-C das κ -Carbid W_3MnC (a = 0.7764 nm, c = 0.7775 nm) sowie eine hexagonale Phase (Mn,W)₂C mit etwa 70 At.% Mn und 5 - 10 At.% W (a \sim 0.275 nm, c \sim 0.450 nm).

3.1.4.3 Carbidsysteme mit Eisen, Kobalt und Nickel

Die Gleichgewichte in dem ternären System <u>Ti-Fe-C</u> (vgl. Abb. 3.1.4.8a) werden durch die binären Randphasen bestimmt /15 - 18/. TiC steht je nach Temperatur und Kohlenstoffgehalt mit γ - oder α -Eisen im Gleichgewicht. Der Schnitt TiC-Fe stellt ein eutektisches

<u>Abb.3.1.4.7</u>: Isotherme Schnitte bei 1073 K in den Systemen Mo-Mn-C (a) /13/ und W-Mn-C (b) (vgl. /13/)

System dar. Die eutektische Schmelztemperatur liegt bei 1650 K /1/ bzw. 1730 K /19/. Die Löslichkeit von TiC in Eisen beträgt bei 1530 K <0,6 Mo! % /2,19/. Die hohe Löslichkeit von Fe in TiC, festgestellt von japanischen Forschern /18/ bei 1273 K,scheint unwahrscheinlich und konnte in anderen Untersüchungen nicht nachgewiesen werden /16/.

Im System <u>Ti-Co-C</u> (Abb.3.1.4.8b) steht TiC_{1-x} bei 1100^OC mit Co, TiCo₂, TiCo und einer flüssigen (Ti,Co)-Schmelze im Gleichgewicht /16,20, 21,97/. TiCo₃ ist bei der Temperatur des isothermen Schnittes (Abb. 3.1.4.8b) wahrscheinlich keine Gleichgewichtsphase /16,23/. Das quasibinäre System TiC_{1-x}-Co hat eutektischen Charakter. Der eutektische Punkt liegt bei etwa 1673 K und 94 Mol % Co (vgl. Abb.3.1.4.1) /1/ bzw. 1633 K und 94 Mol % Co /19/. Die kobaltreiche Ecke des ternären Systems wurde kürzlich eigehend hinsichtlich des Erstarrungsverhaltens und der Mikrostrukturen untersucht /22/. Die eutektische Temperatur wurde hier zu ~1630 K bei einer Zusammensetzung entsprechend 83 Mol %Co bestimmt. Die Löslichkeit von TiC_{1-x} in Kobalt beträgt etwa 1 Mol % bei Temperaturen zwischen 1500 K und 1633 K /2,19/.

Ganz ähnlich wie die Systeme Ti-Fe-C und Ti-Co-C ist auch das ternäre System <u>Ti-Ni-C</u> (Abb. 3.1.4.8c) aufgebaut. Das Monocarbid steht mit Ni, TiNi₃ und TiNi im Gleichgewicht /24,25/.Der Schnitt TiC_{1-V} -Ni wurde sowohl

- 178 -

<u>Abb.3.1.4.8</u>: Isotherme Schnitte in den Systemen Ti-Fe-C bei 1273 K (a), Ti-Co-C bei 1373 K (b) und Ti-Ni-C bei 1373 K (c) /16/ (vgl. auch /15-18, 20-2 $\frac{5}{3}$)

Abb.3.1.4.9: Isotherme Schnitte in den Systemen Zr-Fe-C bei 1373 K (a), Zr-Co-C bei 1473 K (b) und Zr-Ni-C bei 1373 K (c) /16/ (vgl. auch /30-35/)

In Bezug auf die Thermodynamik /1,19,22/ als auch in Hinblick auf die Kinetik der Lösung /26/ untersucht. Die Erstarrungstemperatur des eutektischen Schnittes TiC_{1-x}-NI liegt bei etwa 1550 K/1,19/(vgl.auch /104,105/) bzw. 1570 K /22/. Die eutektische Zusammensetzung beträgt \sim 10 Mol % TiC /1/ bzw. \sim 9 Mol % /19/. Ein experimentell bestimmter Wert von \sim 18 Mol % TiC /22/ scheint demgegenüber etwas hoch. Die Löslichkeit von TiC in Nickel beträgt bei der eutektischen Temperatur etwa 6 Mol % TiC /19/ und bei 1530 K etwa 5 Mol % TiC /2/. An dem eutektischen Aufbau des Schnittes Carbid-Metall ändert sich auch nichts bei Lösung von Cr in Ni /27/. Das System Ti-Ni-C hat besondere Bedeutung bei der Entwicklung von Hartmetallen. Hierbei spielt auch das duktile Verhalten der intermetallischen Phase TiNi eine Rolle /28, 29/.

Auch das System Zr-Fe-C (Abb. 3.1.4.9a) ist, nach den bisherigen Untersuchungen zu schliessen, durch das Fehlen ternärer Verbindungen charakterisiert /16,30,31/. Eine als metastabile Verbindung nachgewiesene Phase nahe Zr_3Fe_3C /7/ ist entweder nur in einem kleinen Temperaturbereich stabil oder durch geringe Gehalte anderer Elemente (z.B. O₂) stabilisiert. Der Schnitt ZrC-Fe stellt ein eutektisches System dar /1,31/. Der eutektische Punkt liegt bei etwa 1670 K und 4 Mol % ZrC /1/ bzw. 1748 K und 3 Mol % ZrC /31/. Die Löslichkeit von ZrC in γ -Fe ist <0.5 Mol % /2/.

Der Aufbau der Systeme <u>Zr-Co-C</u> (Abb. 3.1.4.9b) und <u>Zr-Ni-C</u> (Abb. 3.1.4.9c) wird durch Gleichgewichte des Monocarbids ZrC_{1-x} mit den binären intermetallischen Phasen der Systeme Zirkon-Kobalt bzw. Zirkon-Nickel bestimmt /16,32/. Ternäre Phasen wurden bei den bisherigen, zum Teil jedoch nur überblicksmässig durchgeführten Untersuchungen nicht gefunden. Die Konzentrationsschnitte ZrC_{1-x} -Co und ZrC_{1-x} -Ni sind eutektisch in ihrer Natur /1,33,34,35/. Die eutektischen Punkte liegen bei 1633 K (ZrC-Co) bzw. 1503 K (ZrC-Ni) und etwa 5 Mol % ZrC (Rest Co bzw. Ni) /1/. Auch Temperaturen von 1543 K /34/ und 1563 K /33/ für ZrC-Ni wurden gemessen. Die Löslichkeit von ZrC in Co und Ni ist temperaturabhängig und relativ gering. Bei 1100^oC sind etwa 1 Mol % ZrC in Nickel löslich /16,33/.

HfC_{1-x} steht in den Systemen Hf-Fe-C (Abb. 3.1.4.10a), <u>Hf-Co-C</u> (Abb. 3.1.4.10b) und <u>Hf-Ni-C</u> (Abb.3.1.4.10c) mit den Metallen der Eisengruppe Fe, Co und Ni sowie mit den intermetallischen Phasen dieser Elemente mit Hafnium im Gleichgewicht /16,98/. Der Stöchiometriebereich von HfC_{1-x}, welcher mit den Metallen nicht zu Reaktionen führt, engt sich beim Übergang von Fe über Co zu Ni ein. Die Löslichkeiten in den ternären Bereichen sind gering. Die Teilsysteme HfC_{1-x}-Fe, HfC_{1-x}-Co und HfC_{1-x}-Ni sind eutektische Schnitte mit Schmeiztemperaturen von 1683 K (HfC_{1-x}-Fe), 1643 K (HfC_{1-x}-Co) und 1593 K (HfC_{1-x}-Ni) /1/. Die eutektische Zusammensetzung liegt für alle Systeme bei etwa 3 Mol % HfC_{1-x} /1/. Andere Meßwerte sind 1763 K und 2 Mol % HfC für das System HfC_{1-x}-Fe /31/ und 1603 K und etwa 5 Mol % HfC_{1-x} für das System HfC_{1-x}-Ni /33/. Die Löslichkeit von HfC in Fe ist gering (<0.3 Mol %) /31/, jene von HfC in Ni beträgt maximal 1 Mol % HfC bei der eutektischen Temperatur /33/.

Der Aufbau der Systeme V-Fe-C (Abb.3.1.4.11a), V-Co-C (Abb.3.1.4.11b) und V-Ni-C (Abb. 3.1.4.11c) ist charakterisiert durch ausgedehnte Phasenfelder, in denen das Monocarbid VC_{1-x} mit den Metallen Fe, Co und Ni bzw. mit den festen Lösungen von V in diesen Metallen im Gleichgewicht steht. Als einzige intermetallische Phase tritt die σ -Phase in allen drei Systemen auf und steht mit V₂C, im Falle des Systems V-Co-C auch mit VC_{t-x} im Gleichgewicht. Die isothermen Schnitte in den Systemen bei 1373 K verdeutlichen die Aufteilung der Phasen im festen Zustand (Abb.3.1.4.11). Einige Punkte sind allerdings noch als offen zu betrachten. So z.B. die Löslichkeit von Vanadin in γ-Eisen. Im reinen Metallsystem Eisen-Vanadin wird das γ-Eisen Feld schon durch 1.6 At.% V unterdrückt. Ältere Arbeiten im System V-Fe-C beschreiben einen durchgehenden Y-(Fe,V)-Phasenraum bei einigen Atomprozent Kohlenstoff /36,37/ bzw. einen ausgedehnten Einphasenbereich, ausgehend von γ -(Fe,C) /38/ (vgl. auch /39/). Dies konnte in neueren Untersuchungen nicht voll bestätigt werden /16,100-103/. Der homogene Bereich von γ -(Fe,V,C) im Dreistoffsystem ist deshalb als ungesichert anzusehen. Nicht voll geklärt ist ausserdem das Auftreten von n-Carbiden in den Systemen V-Fe-C, V-Co-C und V-Ni-C. In den entsprechenden Nitridsystemen wurden n-Nitride der Zusammensetzung $V_A Co_2 N$ und $V_A Ni_2 N$ festgestellt /40,41/ (s. Kap. 3.2.4).

Abb. 3.1.4.11: Isotherme Schnitte in den Systemen V-Fe-C (a), V-Co-C (b) und V-Ni-C (c) bei 1373 K /16/ (vgl. auch /36-41/)

Auch in den entsprechenden Carbidsystemen wurden Anzeichen für die Existenz von n-Phasen V_3Fe_3C (a = 1.0877 nm) /100/, V_4Co_2C (a = 1.089 nm) und V_4Ni_2C (a = 1.087 nm) gefunden, deren Gitterparameter geringfügig über denen der Nitride liegen, was konsistent mit dem Phasenverhalten in anderen Systemen wäre. Diese n-Phasen wurden jedoch nur in engen Konzentrations- und Temperaturbereichen beobachtet /16/. Ihre Stabilität im Vergleich zu den benachbarten binären Phasen ist offensichtlich gering und die jeweiligen Existenzbedingungen müssen daher noch abgesichert werden.

Die Konzentrationsschnitte VC_{1-x}-Fe, VC_{1-x}-Co und VC_{1-x}-Ni stellen eutektische Teilsysteme dar mit Schmelzen bei 1663 K und etwa 8 Mol % VC_{1-x} (System VC_{1-x}-Fe), 1603 K und etwa 16 Mol % VC_{1-x} (System VC_{1-x}-Ni) / 1/. VC_{1-x}-Co) und 1483 K und etwa 10 Mol % VC_{1-x} (System VC_{1-x}-Ni) / 1/.

Während das System Nb-Fe-C (Abb.3.1.4.12a) nur sehr unvollständig bekannt ist, kann ein klares Bild über den Aufbau der ternären Systeme Nb-Co-C (Abb.3.1.4.12b) und Nb-Ni-C (Abb.3.1.4.12c) gegeben werden. Ältere Arbeiten (vgl. z.B. /39/) beschreiben nur die eisenreiche Ecke und tragen wenig zur Kenntnis des Aufbaus des Gesamtsystems bei. Neuere Ergebnisse beziehen sich entweder nur auf den Schnitt NbC_{1-x}-Fe /1/ oder aber sind nicht umfassend genug ausgelegt um den Einfluss von Verunreinigungen (besonders Sauerstoff) oder die Temperaturabhängigkeit der Gleichgewichte beschreiben zu können (vgl./39,16/). Die Unsicherheit des Aufbaus des binären Systems Niob-Eisen (vgl. /43-50/) kommt hinzu. In Abb.3.1.4.12a ist daher nur ein vorläufiger isothermer Schnitt für dieses System angegeben. Es tritt offensichtlich keine ternäre Phase auf und im System Niob-Eisen nur die Laves-Phase NbFe2 und die μ -Phase NbFe. Im ternären Bereich wird bei abgeschreckten Proben auch die σ -Phase beobachtet /16/. NbC $_{1-x}$ steht mit Eisen im Gleichgewicht. Eine eutektische Schmelze tritt in diesem Teilsystem bei 1693 K und etwa 4 Mol % NbC_{1-x} auf /1/. Die Löslichkeit von NbC in Eisen soll bei 1523 K knapp 2 Mol % betragen /2/.

In den Dreistoffsystemen Nb-Co-C (Abb.3.1.4.12b) und Nb-Ni-C (Abb. 3.1.4.12c) treten ternäre Carbide auf, die im aufgefüllten $Ti_2Ni-Typ$ kristallisieren /51/. Als Zusammensetzung wurden sowohl Nb_4Co_2C bzw. Nb_4Ni_2C /7/ als auch Nb_3Co_3C und Nb_3Ni_3C /52,53/ genannt. Eingehendere

Eutektische Schmelztemperaturen von 1583 K (NbC-Fe), 1498 K (NbC-Co) und 1388 K (NbC-Ni), gewonnen aus metallographischen Anschliffen geglühter Proben /96/ erscheinen wenig verlässlich.

'Abb.3.1.4.12: Isotherme Schnitte in den Systemen Nb-Fe-C (a), Nb-Co-C (b) und Nb-Ni-C (c) bei 1373 K /16/

TaC+Fe₃C+C ȚaC_{1-x} +γ-Fe TaC_{1-x}+Fe₃C+Y-Fe Fe₃C TaC_{I-x} •TaFe₂ +Y+F TaFe TaFe₂ v-Fe 1100°C TaC + Co + C $Ta_4 Co_2 C + Ta C_{1-x} + \beta - Ta Co_2$ TaC_{1-x} +γ-TaCo₂ +Co ΤαC_{⊢x}+Co a.Co.(B-TaCo2 +Ta, Co2C Ta₂Co TaCo β- γ-ΤαCo₂ Co 1100°C TaC + Ni + C TaC_{1-x}+Ni TaC 1-x+TaNi3+Ni Ta₄Ni₂C TaC 1-x TaNi₃ Ta₂Ni ĩaNi TaNi₂ TaNi₃ NI

С

1100 °C

Untersuchungen zeigten, dass die n-Carbide zwar geringe Homogenitätsbereiche aufweisen, dass die Zusammensetzungen jedoch der Formel Nb₄Co₂C bzw. Nb₄Ni₂C entsprechen /55,16/ (Gitterparameter vgl. Tab. 3.1.4.1). NbC_{1-x} steht sowohl mit Co als auch mit Ni im Gleichgewicht. Eutektische Schmelzen treten in diesen Teilsystemen bei 1653 K und etwa 5 Mol % NbC (NbC_{1-x}Co) bzw. 1593 K und etwa 5 Mol % NbC (NbC_{1-x}-Ni) auf /1/. Andere Messungen geben in Übereinstimmung mit den oben genannten Daten z.B. 1603 K und 5 Mol % NbC /54/ bzw. 1603 K und etwa 6 Mol % NbC /34/. Die Löslichkeit von NbC in Ni beträgt bei der eutektischen Temperatur etwa 4 Mol %, bei 1500 K etwa 2 Mol % /54/. Werte von etwa 5 Mol % NbC in Ni bei 1523 K /2/ scheinen zu hoch zu sein.

Die Systeme Ta-Fe-C (Abb.3.1.4.13a), Ta-Co-C (Abb.3.1.4.13b) und Ta-Ni-C (Abb.3.1.4.13c) zeigen einen ähnlichen konstitutionellen Aufbau wie die entsprechenden Niobsysteme. Die binären Randverbindungen, die kaum Löslichkeit für die dritte Komponente zeigen, bestimmen die Phasenfelder des ternären Systems Ta-Fe-C /16/. TaC1-x steht bis etwa TaC_{0.85} mit Fe bei niedrigerem Kohlenstoffgehalt mit TaFe₂ im Gleichgewicht. Der eutektische Schmelzpunkt des Schnittes TaC-Fe liegt bei 1713 K und sehr nahe dem reinen Eisen (∿2 - 3 Mol % TaC) /1/. In den Systemen Ta-Co-C und Ta-Ni-C treten n-Carbide der Zusammensetzung Ta4Co2Cbzw. Ta4Ni2Cauf /7/ (vgl. Tab.3.1.4.1). Diese Komplexphasen, die sich peritektisch bilden, bestimmen den Aufbau im tantalreichen Gebiet der Systeme. Ta C_{1-x} steht mit den Metallen Co und Ni sowie mit den intermetallischen Phasen TaCo, und TaNi, im Gleichgewicht. Eutektische Schmelzen treten auf den Schnitten TaC $_{1-x}$ -Co und TaC1-x-Ni erstmals bei 1643 K auf /1/ (nach /54/ 1613 K). Die TaCkonzentration dieser Schmelzen liegt bei etwa 3 Mol 🖇 /1/ (etwa 7 Mol 🖇 TaC für das System TaC-Ni nach /54/) Die Löslichkeit von TaC in Ni beträgt etwa 3 - 4 Mol % bei der eutektischen Temperatur /54/ (v2 Mol % nach /55/). Ältere Daten, welche eine Löslichkeit von etwa 1.6 Mol % TaC in Fe, 9.1 Mol % TaC in Co und 14.7 Mol % TaC in Ni angeben /2/ sind offensichtlich zu hoch.

Eine besondere Bedeutung kommt dem Aufbau der Carbidsysteme der Übergangsmetalle der 6. Gruppe Cr, Mo und W mit den Metallen der Eisen-

Abb.3.1.4.14: Isotherme Schnitte in den Systemen Cr-Fe-C (a), Cr-Co-C (b) und Cr-Ni-C (c) bei 1073 K (vgl. z.B./39,64,65/)

Abb.3.1.4.15: Isotherme Schnitte in den Systemen Mo-Fe-C (a), Mo-Co-C (b) und Mo-Ni-C (c) bei 1273 K (vgl. /66/)

gruppe zu. Während die Cr-haltigen Systeme vor allem im Hinblick auf legierte Stähle wichtig sind, beinhalten die Mo- und W-Carbidsysteme mit Eisen, Kobalt und Nickel die interessantesten Hartmetallwerkstoffe.

Die ersten Untersuchungen im System <u>Cr-Fe-C</u> gehen schon weit zurück (vgl. z.B. /39/) und trotz vieler neuerer Arbeiten /57-63,106/ sind immer noch einige offene Probleme, die z.B. das Auftreten der stahlversprödenden, harten σ -Phase, der metastabilen Fe₃C-Phase, die durch Chrom offensichtlich stabilisiert wird oder aber die Löslichkeiten in Abhängigkeit von der Temperatur in den drei Chromcarbiden betreffen. Vor allem ist das Ausmass der Lösung von Fe in Cr₃C₂ nicht geklärt. Abb. 3.1.4.14a zeigt einen isothermen Schnitt bei 1073 K, welcher die wesentlichen Gleichgewichte in diesem wichtigen System veranschaulicht. Die Gleichgewichtslinien sind gestrichelt gezeichnet, da die genauen Gleichgewichtszusammensetzungen bei den verschiedenen Autoren etwas variieren. Die Systeme <u>Cr-Co-C</u> und <u>Cr-Ni-C</u> (vgl. Abb.3.1.4.14b und c) sind ähnlich aufgebaut /64,65/. Es fällt auf, dass die Löslichkeit der Metalle der Eisengruppe in den Chromcarbiden von Fe über Co zu Ni stark abnimmt. (vgl. auch /94,55/).

Die Systeme von Mo mit Fe,Co und Ni und Kohlenstoff haben bisher noch nicht annähernd die Bedeutung erlangt wie diejenigen des homologen Elementes Wolfram. Im Zuge der Bestrebungen, Wolfram, wenn möglich, durch Molybdän zu ersetzen, kommt dem konstitutionellen Aufbau dieser Materialien jedoch steigende Bedeutung zu. Bei Temperaturen unterhalb 1928 K existiert nur ein Molybdäncarbid, Mo₂C. Diese Verbindung steht mit Fe, Co und Ni im Gleichgewicht. Bei niedrigeren Kohlenstoffgehalten, als den Schnitten Mo2C-Fe,Co,Ni entspricht, treten n-Carbide der Zusammensetzung $Mo_{4-3}M_{2-3}C$ (M = Fe,Co,Ni) und in den Systemen Mo-Co-C und Mo-Ni-C zusätzlich isotype Carbide der Zusammensetzung Mo₆Co₆C bzw. Mo₆Ni₆C auf /39,66,68,73/ (vgl. Tab.3.1.4.1). Abb. 3.1.4.15a - c zeigen isotherme Schnitte der Systeme Mo-Fe-C, Mo-Co-C und Mo-Ni-C bei 1273 K. Im System Mo-Fe-C wurde die eisenreiche Ecke von mehreren Autoren im Detail untersucht /67,69,70,71,72,74,108/.Bei 1270 K sind etwa 2 At.% Mo und 4 At.% C in der mit Mo₂C im Gleichgewicht stehenden Stahlphase gelöst. Ausführliche thermodynamische Analysen vervollständigen das Bild über den Aufbau dieses Systems /75,76/. (Die Carbide Mo₂Fe₂₁C₆, ebenso wie W2Fe21C6, die in Stählen beobachtet werden, sind zumindest bei Temperaturen um 1000°C instabil oder metastabil /68,79/.)

Eine ganz besondere Bedeutung haben die Systeme W-Fe-C (Abb.3.1.4.16a). W-Co-C (Abb.3.1.4.16b) und W-Ni-C (Abb.3.1.4.16c) - insbesondere aber das System W-Co-C - auf dem Gebiet der verschleissfesten Werkstoffe (Hartmetalle) erlangt (vgl. z.B. /81/). Verfolgt man die Entwicklung der Hartmetalle bis zu den Anfängen in den Jahren 1920 bis 1925 zurück, so muss man feststellen, dass bis heute keine wirklichen Alternativen zu den nun schon über 50 Jahren auf dem Markt befindlichen WC (teilweise mit Zusätzen von TiC, NbC oder TaC)-Co Hartmetallen gefunden wurden. Das WC nimmt damit auch heute noch eine herausragende Stellung bei der Hartmetallproduktion ein. Mindestens 98% aller handelsüblichen Hartmetalle enthalten Wolframcarbid als Hauptbestandteil. Für diese bevorzugte Stellung des WC sind neben den mechanischen Eigenschaften des Hartstoffes (hohe Härte, hoher E-Modul, hohe Druckfestigkeit) besonders die ausgezeichnete Benetzbarkeit und die hohe temperaturabhängige Löslichkeit von WC im Kobaltbinder maßgebend. Im Laufe der Jahre hat sich eine Technologie etabliert, die es gestattet, durch Änderung des Zustandes der Ausgangsmaterialien, der Herstellungsparameter und durch Zusätze Hartmetalle mit bestimmten spezifischen Eigenschaften reproduzierbar herzustellen. Wie genau dabei bestimmte Phasengleichge-

wichte eingehalten werden müssen, verdeutlicht Abb.3.1.4.17. Maximale Festigkeitswerte werden nur auf bestimmten Konoden des Zweiphasenbereiches WC-Co erhalten /91,92/.

<u>Abb. 3.1.4.16</u>: Biegebruchfestigkeit von WC-Co Hartmetallen in Abhängigkeit von der Phasenzusammensetzung (vgl. /91,92/)

- a) bei einem Hartmetall mit 8 Gew.% Co in Abhängigkeit vom Gehalt an freiem Kohlenstoff bzw. an n-Carbid;
- b) bei einem Hartmetall mit 25 Gew.% Co in Abhängigkeit vom Gesamtkohlenstoffgehalt bzw. dem Wolframgehalt im Binder

Neue Impulse erhält die Forschung und Entwicklung durch die weltweit durchgeführten Studien hinsichtlich der Erschöpfung bestimmter Rohstoffe und der damit verbundenen Preisentwicklung, z.B. von Wolfram und Kobalt. In diesem Zusammenhang erlangen die Systeme W-Fe-C und W-Ni-C aber auch Mo-haltige Systeme Bedeutung. Bei Hartmetallsystemen der Art WC-(Fe-Co-Ni) kann man darüber hinaus durch Nutzung der martensitischen Umwandlung zu beachtlichen Eigenschaftsverbesserungen gelangen /90/.

Abb.3.1.4.17: Isotherme Schnitte in den Systemen W-Fe-C bei 1523 K /77-80/ (a), W-Co-C bei 1423 K /79,81-87/ (b) und W-Ni-C bei 1573 K /88,89/ (c)

- 189 -

Die Systeme W-Fe-C /68,77-80/,W-Co-C /79,81-87/ sowie W-Ni-C /88,89/ sind charakterisiert durch quasibinäre Gleichgewichte des WC mit den Metallen Fe,Co und Ni sowie durch das Auftreten von je drei Komplexcarbiden bei niedereren Kohlenstoffpotentialen als den technologisch so wichtigen oben erwähnten Schnitten entspricht. Die ternären Carbide entsprechen sich in Zusammensetzung und Struktur weitgehend in den einzelnen Systemen. Es sind κ -Carbide W₃MC (M = Fe,Co,Ni) sowie n-Carbide der Zusammensetzung W₄M₂C (M = Fe,Co,Ni) und W₆M₆C (M = Fe,Co,Ni) mit allerdings ausgeprägten Homogenitätsbereichen (Strukturdaten Tab. 3.1.4.1). Isotherme Schnitte, die sich im wesentlichen auf neuere Arbeiten beziehen und Änderungen gegenüber älteren Arbeiten, vor allem im Bereich der Komplexcarbide aufweisen, sind in Abb. 3.1.4.17a bis c wiedergegeben.

Bei der Sinterung von konventionellen WC-Co Hartmetallen tritt bei zu geringen Kohlenstoffgehalten die versprödende n-Phase auf (vgl. z.B. /13/). Die Zusammensetzung dieses Komplexcarbids liegt bei W_3Co_3C . Dem Phasendiagramm in Abb. 3.1.4.17 b) zufolge müsste die Zusammensetzung W_6Co_6C lauten. Der scheinbare Widerspruch erklärt sich durch Änderung der Gleichgewichte mit der Temperatur. Bei der Sintertemperatur der Hartmetalle von 1400 bis 1500^oC gilt ein isothermer Schnitt gemäss Abb. 3.1.4.18. Hier ist das Carbid M₆C die Gleichgewichtsphase mit WC und Co. Nach Abkühlung bleibt diese Verbindung dann in metastabilem Zustand in den Hartmetallproben erhalten.

Abb.3.1.4.18: Isothermer Schnitt im System W-Co-C bei 1673 K (vgl./79/)

- Literatur: Ternäre Carbidsysteme der Übergangsmetalle der 4., 5. und 6. Gruppe mit Mangan und den Metallen der Eisengruppe: Eisen, Kobalt und Nickel (Kap. 3.1.4)
- /1/ H.Frey, H.Holleck
 in I.Buzas (Hrsg.), Thermal Analysis, Vol. 1. S.339,
 Akademiai Kiado, Budapest 1975
- /2/ R.Edwards, T.Raine Plansee Proceedings 1952, S.232
- /3/ F.D.Lemkey, E.R.Thompson Met.Trans. 2 (1971) 1537
- /3a/ H.Nowotny Angew. Chem. 84 (1972) 973
- /4/ H.Nowotny, P.Ettmayer J.Inst.Met. 97 (1969) 180
- /5/ H.H.Stadelmaier in B.C.Giessen (Hrsg.), Developments in the Structural Chemistry of Alloy Phases Plenum Press, New York 1969, S.141
- /6/ H.Holleck, F.Thümmler J.Nucl.Mat. 23 (1967) 88
- /7/ H.Holleck, F.Thümmler Mh.Chem. 96 (1967) 133
- /8/ P.Rogl, H.Nowotny Mh.Chem. 108 (1977) 1167
- /9/ H.Nowotny, W.Jeitschko, F.Benesovsky Planseeber. Pulvermet.12 (1964) 31
- /10/ H.Nowotny, F.Benesovsky
 in "Phase Stability of Metals and Alloys" McGraw-Hill, New York,

(1967) S.319

- /11/ M.H.Müller, H.W.Knott Trans AIME 227 (1963) 1407
- /12/ N.Schönberg Acta Met. 2 (1954) 837
- /13/ V.S.Telegus, Yu.B.Kuz'ma, M.A.Marko Poros**h**. Met 11 (1971) 56
- /14/ H.J.Goldschmidt, Interstitial Alloys, Butterworth London (1967) S.171

- /15/ W.Jellinghaus Archiv Eisenhüttenw. 40 (1969) 843
- /16/ H.Holleck, K.Biemüller in: H.Holleck, F.Thümmler (Hrsg.) KfK 2826 B (1979)S. 69
- /17/ L.Northcott, D.Mclean J.Iron and Steel Inst. 157 (1947) 492
- /18/ V.Murakami, H.Kirmura, J.Nishimura Man.Fac.Eng.Kyoto Univ. 19 (1957) 302, sowie: Trans.Natl.Res.Inst. Met. 1(1959) 7
- /19/ V.N.Eremenko Zhur.Neorg.Khimii 9 (1956) 2131
- /20/ V.N.Eremenko, N.D.Lesnik
 in: Probleme der Pulvermetallurgie, Akad.Nauk. Ukr. SSR Kiew
 1956, S.73
- /21/ R.Kossowsky, F.J.Harvey Met.Trans.5 (1974) 790
- /22/ L.Bäckerud, B.Carlsson, R.Oskarsson, M.Mikus Scand.J. of Metallurgy 3 (1974) 225
- /23/ F.A.Shunk Constitution of Binary Alloys McGraw-Hill, New York 1969
- /24/ E.R.Stover, J.Wulff Trans.Met.Soc. AIME 215 (1959) 127
- /25/ V.N.Eremenko, V.M.Polyakova, Z.P.Golubenko in: Probleme der Pulvermetallurgie, Akad.Nauk, Ukr. SSR Kiew 1956 S.62
- /26/ V.V.Federenko, B.P.Shveikin, S.A.Nemnonov, V.D.Lyubimor, B.V.Mitrofanov Neorg.Mat.13 (1977) 1316
- /27/ V.N.Eremenko, Z.I,Tolmachova Porosh. Met. 2 (1965) 27
- /28/ A.G.Rozner, E.F.Heintzelmann, W.J.Bucklee, J.V.Gilfrich Trans. ASM 58 (1965) 415
- /29/ H.Doi, K.Nishijaki in: H.Hausner,"Modern Development in Powder Met." Vol.10,1976, S.525
- /30/ R.Vogel, K.Löhberg Archiv Eisenhüttenw. 7 (1934) 473
- /31/ A.K.Schurin, G.P.Dmitrieva Metallov. Termich. Obrat. Metallovi 8 (1974) 27

- /32/ T.F.Fedorov, Yu.B.Kuz'ma, R.V.Skolozdra, N.M.Popova Porosh.Met. 12 (1965) 63
- /33/ G.P.Dmitrieva, A.K.Shurin Metallofizika 53 (1974) 97,sowie: Dop.Akad.Nauk Ukrain SSR 9 (1973) 845
- /34/ G.M.Leiderman, V.A.Nikolaeva Neorg.Mat. 9 (1973) 1721
- /35/ H.H.Stadelmeier Metall 7 (1966) 712
- /36/ R.Vogel, E.Martin Archiv Eisenhüttenw. 4 (1931) 487
- /37/ F.Wever, A.Rose, H.Eggers Mitt. Kaiser-Wilhelm Inst., Eisenf., Düsseldorf XVIII (1936) 239
- /38/ R.Ebeling, H.Wever Archiv Eisenhüttenw. 40 (1968) 551
- /39/ H.J.Goldschmidt, Institial Alloys, Butterworth, London (1967)S.173
- /40/ H.Holleck, F.Thümmler Mh. Chem. 98 (1967) 133
- /41/ M.F. El-Shahat, H.Holleck Mh. Chem. 109 (1978) 193
- /42/ H.Holleck; n-Carbide, -Nitride und Oxide in Systemen von Hartstoffen mit Fe,Co und Ni; Hauptvers. DGM, Den Haag 1979 ,1NKA Conf. 7916003 (1979)
- /43/ M.Hansen Constitution of Binary Alloys, McGraw Hill, New York, 1958
- /44/ R.P.Elliott Constitution of Binaty Alloys, First Supplement, McGraw Hill, New York, 1965
- /45/ F.A.Shunk Constitution of Binary Alloys, Second Supplement, McGraw Hill, New York, 1969
- /46/ W.B.Pearson
 A Handbook of Lattice Spacings and Structures of Metals and
 Alloys, Vol.1, Pergamon Press, Oxford, 1958
- /47/ W.B.Pearson A Handbook of Lattice Spacings and Structures of Metals and Alloys, Vol.2, Pergamon Press, Oxford, 1967

- /48/ Landoldt-Börnstein Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, Gruppe III, Band 6: Strukturdaten der Elemente und intermetallischen Phasen, Springer Verlag, Berlin, 1971
- /49/ P.I.Kripyakevick, E.I.Gladyshevskii, R.V.Skolozdra Sov.Phys.Crystallogr. 12
- /50/ A.Ramam Proc.Ind.Acad.Sci, 55 A (1967) 256
- /51/ W.Jeitschko, H.Holleck, H.Nowotny, F.Benesovsky Mh.Chem. 95 (1964) 1004
- /52/ L.K.Borusevich, E.I.Gladyshevskii, T.F.Fedorov, N.M.Popova Zh.Strukt.Khim. 6 (1975) 313
- /53/ L.K.Borusevich, T.F.Fedorov, N.M.Popova Metally (1965) 159
- /54/ T.K.Vasileva, V.E.Shelepin, L.S.Guzei Moscow Univ.Chem.Bull. New York 16 (1975) 506
- /55/ H.Stadelmaier, M.L.Fiedler Z.Metallk. 66 (1975) 224
- /56/ M.R.Jackson Met.Trans. 8A (1977) 905
- /57/ W.Jellinghaus, H.Keller Archiv Eisenhüttenw. 43 (1972) 319
- /58/ T.Nishizawa Scand.J.Met. 6 (1974) 74
- /59/ T.Nishizawa, B.Uhrenius Scand.J.Met. 6 (1977) 74
- /60/ R.S.Jackson J.Iron Steel Inst. 208 (1970) 163
- /61/ R.Benz, J.Elliott, J.Chipman Metallurg.Trans, 5 (1974) 2235
- /62/ K.Bungardt, E.Kunze, E.Horn Archiv Eisenhüttenw. 29 (1958) 193
- /63/ L.Messulam, A.S.Appleton Trans.Met.Soc. AIME 236 (1966) 222
- /64/ W.Köster, F.Sperner Archiv Eisenhüttenw. 26 (1955) 555

- /65/ W.Köster, S.Kabermann Archiv Eisenhüttenw. 26 (1955) 627
- /66/ A.C.Fraker, H.H.Stadelmaier Trans.Met.Soc. AIME 245 (1969) 847
- /67/ R.F.Campbell, S.H.Reynolds, L.W.Ballard, K.G.Carroll Trans.Met.Soc. AIME 218 (1960) 723
- /68/ W.Jellingha**v**s Archiv Eisenhüttenw. 39 (1968) 705
- /69/ B.Uhrenius, H.Harvig Metal Science 9 (1975) 67
- /70/ T.Nishizawa Scand J.Met. 1 (1972) 41
- /71/ T.Wada, H.Wada, J.F.Elliott, J.Chipman Met.Trans.3 (1972) 2865
- /72/ L.A.Schevtschuk, L.R.Dudeckaje, V.I.Gurinovitsch, V.A.Tkatscheva Seryja fizika-technitschnyck navuk 2 (1977) 46
- /73/ D.H.Jack, K.H.Jack Mat.Science and Eng.11 (1973) 1
- /74/ T.Sato Nippon Kink.Gakk. 6 (1960) 395
- /75/ C.Chatfield, M.Hillert CALPHAD 1 (1977) 201
- /76/ H.Kleykamp in E.Petzow, W.Huppmann Contempory inorganic materials, Dr.Riederer Verlag, Stuttgart, 1978, S.27
- /77/ M.Bergström Mat.Science and Eng.27 (1977) 257
- /78/ M.Bergström Mat.Science and Eng. 27 (1977) 271
- /79/ C.B.Pollock, H.H.Stadelmaier Met.Trans. 1 (1970) 767
- /80/ T.A.Lyndvinskaya, P.F.Nizhnikovskaya in: G.V.Samsonov (Hrsg.) Karbidy i splavy na ikh osnove, Kiew 1976, S.80
- /81/ R.Kieffer, F.Benesovsky Hartmetalle, Springer Verlag, Wien, 1965

- /82/ P.Rautala, J.T.Norton Trans. AIME 194 (1952) 1095
- /83/ P.Ettmayer, R.Suchentrunk Mh.Chem. 101 (1970) 1098
- /84/ B.Uhrenius, B.Carlson, Th.Franzen Scan.J.Met. 5 (1976) 49
- /85/ H.Johnsson Scan.J.Met. 5 (1976) 81
- /86/ T.Johannsson, B.Uhrenius Metal Science (1978) 83
- /87/ I.N. Tschaporova, A.E.Schtschetilina Metallurgiga i toplivo 1 (1961) 126
- /88/ K.Whitehead, L.D.Brownlee Planseeber. Pulvermet. 4 (1956) 62
- /89/ M.L.Fiedler, H.H.Stadelmaier Z.Metalik. 66 (1975) 402
- /90/ H.Holleck L.Prakash, F.Thümmler Conf. on "Recent Advances in Hard Metal Production" University of Loughborough, England, Sept. 1979 Vorabdrucke S. 25 - 1
- /91/ G.S.Kreimer "Strength of hard alloys" Consultants Bureau New York 1968, S.166
- /92/ H.Pastor L'industrie céramique 710 (1977) 663
- /93/ L.Akesson Thermodinamica Acta 29 (1979) 327
- /94/ P.R.Sahm, M.Lorenz, W.Huge, V.Frühauf Met.Trans.3 (1972) 1022
- /95/ K.Löbl, H.Tuma Met. i Term. Obrabotka Met.1 (1973) 21
- /96/ J.P.Guha, D.Kolar J.Less Common Met.29 (1972) 33
- /97/ N.Takamura, H.Sasaki Bull.Eng.Res.Inst., Kyoto Univ. 15 (1959) 90
- /98/ V.N.Svedinov, A.K.Shurin Metallofizika 16 (1962) 124
- /99/ D.J.Dyson, K.W.Andrews Acta Cryst.17 (1964) 459

- /100/ L.Borusevich, E.I.Gladyshevsky, T.F.Fedorov, N.M.Popova Zhur.Strukt. Khim. 6 (1965) 313
- /101/ Yu.V.Grdina, I.D.Lykhin, T.F.Fedorov Izvest. Vyssh. Ucheb. Zaved., Chern.Met., 6 (1966) 156
- /102/ B.M.Mogutnov, I.A.Tomilin, L.A.Shvartsman Zhur.Fiz.Khim. 45 (1971) 2047

1

- /103/ M.J.Collins J.Iron Steel Inst. 210 (1972) 284
- /104/ V.N.Eremenko, Z.I.Tolmacheva Porosk.Met.2 (1961) 21
- /105/ W.C. Ballamy, E.E.Hucke J.Metals 22 (1970) 43
- /106/ R.C.Sharma, G.R.Purdy, J.S.Kirkaldy Met.Trans. 10A (1979) 1119
- /107/ R.W.Honeycombe Scand. J. of Met.8 (1979) 21
- /108/ L.R.Woodyatt, G.Krauss Met.Trans. 10A (1979) 1893
- /109/ A.Burdese, G.Pradelli, C.Gianogli Metall. Ital. 69 (1977) 487

3.1.5 Ternäre Carbidsysteme der Übergangsmetalle der 4., 5. und 6. Gruppe mit Rhenium und Platinmetallen

Als Bindemetalle für hochschmelzende Carbide haben sich bisher nur die Metalle der Eisengruppe: Fe, Co, Ni und Legierungen dieser Metalle durchgesetzt. Dem Bestreben, hochschmelzende Metalle mit höherer Warmfestigkeit einzusetzen, sind oftmals durch das Reaktionsverhalten dieser Metalle mit den Carbiden Grenzen gesetzt. Dennoch bieten sich hier, wie in Kap. 3.1.3. gezeigt wurde, Kombinationen wie z.B. NbC bzw. TaC mit Mo und W an. Wenig Beachtung fanden hingegen bisher Rhenium und die Platinmetalle hauptsächlich wegen ihres hohen Preises. Herstellung und Eigenschaften von TiC-Ru Hartmetallen wurden von Warren und Waldron beschrieben /1/. Palladium nimmt, was sein häufiges Vorkommen und den relativ niedrigen Preis anbelangt, eine Sonderstellung unter den Platinmetallen ein. Die für die Platinmetalle typischen guten Eigenschaften, wie Oxidations- und Reaktionsbeständigkeit sowie Warmfestigkeit sind zwar beim Palladium nicht so ausgeprägt, lassen sich aber durch Legierungsbildung verbessern /2/. Bei den Platinmetallen der 3. langen Periode (Os, 1r und Pt) ist das hohe spezifische Gewicht neben dem Preis ein zusätzlicher Grund, der gegen eine technische Anwendung spricht. Unabhängig davon interessiert jedoch das Reaktionsverhalten, besonders z.B. mit Platin als Tiegel- oder Kontaktwerkstoff, jedoch auch mit Osmium und Iridium, nicht zuletzt um neue Hinweise über die Existenz und Stabilität der Phasen in diesen Systemen zu erhalten.

Die Platinmetalle bilden mit den hochschmelzenden Metallen stabile intermetallische Verbindungen und neigen deshalb zur Freisetzung von Kohlenstoff aus den Carbiden dieser Metalle /3,4,5/. Untersuchungen über das Reaktionsverhalten von Carbiden mit Platinmetallen wurden für die Systeme TiC-Ru, TaC-Ru, VC-Ru und TiC-Pt /6/ beschrieben, und weitere Reaktionen einiger Carbide mit Rh und Ir verfolgt. Das Reaktionsverhalten ist z.T. empfindlich von der Stöchiometrie der Carbide abhängig und in vielen Systemen durch die Bildung ternärer Verbindungen gekennzeichnet /3, 7,8/.

Das Reaktionsverhalten der Übergangsmetallcarbide mit Rhenium wurde ausführlich in Arbeiten russischer Autoren untersucht und beschrieben /9-22/. Obwohl die Kenntnis des Aufbaus dieser Systeme sicherlich vor allem von grundsätzlicher Bedeutung ist, stehen auch bestimmte Anwendungsgebiete im Hintergrund, wie z.B. Kathodenmaterialien, Thermoelemente oder temperaturbeständige Überzüge /23/.

3.1.5.1 Ternäre Carbidsysteme mit Rhenium

In den ternären Systemen Ti-Re-C /10/, Zr-Re-C /11-13/, Hf-Re-C /14/, V-Re-C /9/, Nb-Re-C /16,17/ und Ta-Re-C /18,19/ stehen die Monocarbide MC mit Rhenium im Gleichgewicht (vgl. Abb. 3.1.5.1 bis 3.1.5.10). Es treten keine ternären Verbindungen auf, und die gegenseitigen Löslichkeiten sind gering. Die Konzentrationsschnitte MC-Re (M = Ti,Zr,Hf,V, Vb,Ta) stellen eutektische Systeme dar (vgl. Abb. 3.1.5.1, 3.1.5.3, 3.1.5.5, 3.1.5.6, 3.1.5.8 und 3.1.5.10).

in den Systemen der Übergangsmetalle der 6.Gruppe (Cr,Mo,W) mit Rhenium und Kohlenstoff nehmen die Löslichkeiten im ternären Bereich zu. Während das System Cr-Re-C (vgl. Abb.3.1.5.11) ein Zwischenglied darstellt - hier sind nur nennenswerte Mengen von Re in Cr₂₃C₆ löslich /20/ -, bestehen in den Systemen Mo-Re-C und W-Re-C ausgedehnte homogene Bereiche der kubischen und hexagonalen Carbidphasen. Bei höchsten Temperaturen (Befunde aus Schmelzproben) sind Mo₂C und Re vollkommen mischbar, während in MoC $_{1-x}$ Molybdän zu etwa 80% durch Rhenium ersetzt werden kann /21/. Auch bei tieferen Temperaturen (z.B. 1773 K in Abb. 3.1.5.12a) ist eine ternäre kubisch flächenzentrierte Carbidphase (Mo,Re) $C_{v0.4}$ stabil, obwohl das binäre kubische Mo C_{1-x} nicht mehr existiert. Der Kohlenstoffgehalt dieses ternären Carbids liegt wesentlich unterhalb einem angegebenen Literaturwert /21/, so dass ein isothermer Schnitt gemäss Abb.3.1.5.12b gilt /25,26/. In Tab.3.1.5.1 sind neben der ternären (Mo,Re)-Carbidphase auch die isotypen Verbindungen mit Chrom, Molybdän, Wolfram und den Platinmetallen mit Gitterparametern und Existenzbereichen aufgeführt /25/. Im System W-Re-C ist die kubisch flächenzentrierte, ternäre Carbidphase nur bei Temperaturen knapp unterhalb des Schmelzpunktes existent, dafür wird eine hexagonale Mischphase W2C-Re auch bei 1773 K beobachtet /22/ (vgl. Abb. 3.1.5.1.13). Hier tritt ausserdem ein Komplexcarbid W₃Re₂C mit B-Mn Struktur (a = 0.6859 nm) auf. Strukturchemische Gesichtspunkte

Tab. 3.1.5.1: Ternäre kubisch flächenzentrierte Carbide der Übergangsmetalle Cr, Mo und W mit Rhenium und Platinmetallen /25/

Carbid	Gitterkonstante (nm)	Existenzbereich Bemerkung
(Cr _{0.5} ^{Ru} 0.5)C _{00.33}	a = 0.386	homogener Bereich,stabil bei 1575 K ≤ T ≤ 1730 K
^{(Cr} 0.5 ^{Rh} 0.5 ^{)C} ~0.25	a = 0.379	homogener Bereich,stabil bei T > ∿ 1450 K
(Cr _{0.5} Ir _{0.5})C _{00.25}	a = 0.379	homogener Bereich;T = 1773 K
(Cr _{0.5} Pt _{0.5})C _{v0.1}	a = 0.383	homogener Bereich; T = 1773 K
^{(Мо} о.5 ^{Re} о.5 Со.4	a = 0.409	homogener Bereich;T = 1773 K
(Mo.5 ^{Ru} 0.5)C _{00.33}	a = 0.402	homogener Bereich;T > ∿1575 K
(Mo _{0.5} Rh _{0.5})C _{v0.25}	a = 0.397	homogener Bereich; $T > \sim 1630$ K
(Mo _{0.5} 0s _{0.5})C _{vo.33}	a = 0.405	homogener Bereich in Schmelz- proben; T > 1800 K
(Mo _{0.5} Ir _{0.5})C _{v0.25}	a = 0.398	homogener Bereich in Schmelz- proben; T > 1800 K
(Mo _{0.5} Pt _{0.5})C _{vo.1}	a = 0.396	homogener Bereich;T > 1500 K
(W.5 ^{Ru} 0.5)C _{00.33}	a = 0.400	homogener Bereich;T = 2270 K
(W _{0.5} Rh _{0.5})C _{00.25}	a = 0.395	homogener Bereich;T = 2270 K
(W _{0.5} ^{Os} _{0.5})C _{0.33}	a = 0.401	homogener Bereich; T > 2300 K
(W _{0.5} Pt _{0.5})C _{∿0.1}	a = 0.399	homogener Bereich;T = 2270 K
(W _{0.5} ^{Os} _{0.5}) ^C _{v0.33} (W _{0.5} ^{Pt} _{0.5}) ^C _{v0.1}	a = 0.401 a = 0.399	homogener Bereich; T > 2300 1 homogener Bereich; T = 2270 1

Abb.3.1.5.1: Konzentrationsschnitt TiC-Re (vgl. /10/)

Abb.3.1.5.2: Isothermer Schnitt bei 2273 K im System Zr-Re-C (vgl. /11-13/)

Abb. 3.1.5.3: Konzentrationsschnitt ZrC-Re (vgl. /13/)

Abb.3.1.5.4: Isothermer Schnitt bei 1773 K im System Hf-Re-C (vgl./14/)

Abb.3.1.5.5: Konzentrationsschnitt HfC-Re (vgl. /14/)

Abb.3.1.5.6: Konzentrationsschnitt VC-Re (vgl. /9/)

Abb.3.1.5.7: Isothermer Schnitt bei 2273 K im System Nb-Re-C (vgl. /16,17/)

Abb.3.1.5.8: Konzentrationsschnitt NbC-Re (vgl. /17/).

Abb.3.1.5.9: Isothermer Schnitt bei 2373 K im System Ta-Re-C (vgl. /18,19/)

Abb.3.1.5.10: Konzentrationsschnitt TaC-Re (vgl. /18/)

<u>Abb. 3.1.5.11:</u> Isothermer Schnitt bei 1573 K im System Cr-Re-C (vgl. /20 /)

Abb.3.1.5.12: Isotherme Schnitte im System Mo-Re-C bei 1673 K (a) (vgl. /21/) und 1773 K (b) (nach /25,26/)

Abb.3.1.5.13: Isothermer Schnitt im System W-Re-C bei 1773 K (vgl. /22/)

der ternären Carbide sowie Zusammenhänge hinsichtlich Zusammensetzung und Valenzelektronenkonzentration werden in Kap. 3.1.5.8 diskutiert.

Phase	Gitterkonstante (nm)	Bemerkung
ZrRu ₃ C _{1-x}	a = 0.4040	∿15 A+.% C
HfRu ₃ C1 - x	a = 0.4016	∿15 At.% C
^{VRu} 3 ^C 1-x	a = 0.3890	nur in engem Tempera- turbereich bei ∿9 At.%C stabil
NbRu ₃ C _{1-x}	a = 0.3900	nur in engem Tempera- turbereich bei∿9 At.%C stabil
^{TaRu} 3 ^C 1−x	a = 0.3928	nur in engem Tempera- turbereich bei∿9 At.%C stabil

Tab. 3.1.5.2:	Perowskitcarbide	hochschmelzender	Übergangsmetalle
	mit Ruthenium		

Abb. 3.1.5.14: Phasengleichgewichte bei 1973 K im System Ti-Ru-C und bei 1773 K in den Systemen Zr-Ru-C und Hf-Ru-C /3/

3.1.5.2 Ternäre Carbidsysteme mit Ruthenium

Abb. 3.1.5.14 verdeutlicht die Phasengleichgewichte in den Systemen <u>Ti-Ru-C, Zr-Ru-C</u> und <u>Hf-Ru-C</u>. Die stöchiometrischen Carbide stehen

mit Ru im Gleichgewicht. Eine leichte Unterstöchiometrie bewirkt jedoch die Bildung von Perowskitcarbiden der Formel MRu₃C_{1-x} (M = Zr,Hf). Der Kohlenstoffgehalt dieser Carbide liegt bei etwa 15 At.% C. Tab. 3.1.5.2 gibt Gitterkonstanten und Existenzbedingungen der Perowskitcarbide mit Ruthenium wieder /3,8/. Die relative Stabilität dieser Verbindungen nimmt mit steigender Temperatur zu. Der Schmelzbeginn in den Systemen TiC_{1-x}-Ru, ZrC_{1-x}-Ru und HfC_{1-x}-Ru liegt bei etwa 2000 K bzw. 2100 K bzw. 2300 K /3/. Für das System TiC-Ru wurde von Ref. /6/ 2113 K für den eutektischen Schmelzpunkt angegeben.

Abb. 3.1.5.15 zeigt beobachtete und abgeschätzte (gestrichelt) Phasenfeider in den Systemen <u>V-Ru-C</u>, <u>Nb-Ru-C</u> und <u>Ta-Ru-C</u> bei 1873 K /3/. Auch hier reagieren nur die unterstöchiometrischen Carbide mit Ru unter Bildung von Perowskitcarbiden MRu₃C_{1-x} (M = V,Nb,Ta) (vgl. Tab. 3.1.5.2). Der Kohlenstoffgehalt in diesen Carbiden liegt bei etwa 10 At.% C. Abb. 3.15.39verdeutlicht den Zusammenhang zwischen der Gruppennummer des ein Perowskitcarbid bildenden Metalls und dem Kohlenstoffgehalt des Carbids. Diese ternären Phasen sind nicht über den ganzen Temperaturbereich bis zum Aufschmelzen der Proben stabil. Genaue Temperaturangaben über die Stabilitätsbereiche lassen sich nicht machen. Der Schmelzbeginn auf

Abb.3.1.5.17: Isotherme Schnitte im System Mo-Ru-C bei 1773 K (a) und 1373 K (b) (vgl. /25-27/)

den Schnitten MC-Ru liegt für M = V bei etwa 1900 K, für M = Nb bei 2000 K und für M = Ta bei 2200 K /3/.

In den Systemen <u>Cr-Ru-C</u> (Abb. 3.1.5.16), <u>Mo-Ru-C</u> (Abb.3.1.5.17) und <u>W-Ru-C</u> (Abb.3.1.5.18) werden ternäre, kubisch flächenzentrierte Carbide beobachtet (vgl. Tab. 3.1.5.1). Der Existenzbereich dieser Carbide ist stark temperaturabhängig. Bei 1773 K treten sie nahe der Zusammensetzung $M_{0.5}Ru_{0.5}C_{00.33}$ auf (M = Cr,Mo,W). Sie besitzen einen homogenen Bereich, der sich mit steigender Temperatur auf die binären Hochtemperaturcarbide MoC_{1-x} und WC_{1-x} bzw. ein hypothetisches CrC_{1-x} hin ausdehnt. Bei tiefen Temperaturen (vgl.Tab.3.1.5.5 und Schnitt bei 1373 K in Abb.3.1.5.17) zerfallen diese Phasen. Hier werden die Gleichgewichte nur durch die binären Verbindungen bestimmt. Durch den Zerfall der Hochtemperaturcarbide lassen sich harte, feinkörnige korrosions- und oxidationsbeständige Materialien herstellen (s.auch Kapitel 3.1.3.6). Im Gegensatz zu den Carbiden der Übergangsmetalle der 4. und 5. Gruppe stehen die Carbide der 6. Gruppe auf Grund der geringen Stabilität nicht mit Ruthenium im Gleichgewicht.

3.1.5.3 Ternäre Carbidsysteme mit Rhodium

Abb. 3.1.5.19 zeigt die Phasengleichgewichte der Systeme <u>Ti-Rh-C</u>, <u>Zr-Rh-C</u> und <u>Hf-Rh-C</u> bei 1773 K, welche das Reaktionsverhalten zwischen den Monocarbiden und Rhodium bestimmen. Man erkennt, dass die Monocarbide MC mit Rh reagieren unter Bildung stabiler intermetallischer Phasen und Kohlenstofffreisetzung. In den binären Ordnungsphasen MRh₃ der IV A-Übergangsmetalle Ti, Zr und Hf lösen sich etwa 5 (TiRh₃) bis 10 (ZrRh₃) At.% Kohlenstoff. Dies lässt sich aus dem Gitterparamteranstieg bei geringen Kohlenstoffgehalten abschätzen. In den Monocarbiden lösen sich keine merklichen Mengen von Rhodium.

In ähnlicher Weise, wie in den Systemen mit den Übergangsmetallen der 4.Gruppe reagieren auch die Carbide der V A-Übergangsmetalle mit Rh unter Bildung von MRh₃ und freiem Kohlenstoff. Abb. 3.1.5.20 gibt die Phasenfeldaufteilung in dem für die hier betrachteten Reaktionen interessanten Teil der Systeme <u>V-Rh-C</u>, <u>Nb-Rh-C</u> und <u>Ta-Rh-C</u> wieder /3/. Die metallreichen Gebiete der Dreistoffsysteme wurden bisher nicht untersucht. Im Gegensatz zu den Ordnungsphasen TiRh₃, ZrRh₃ und HfRh₃ lösen die Verbindungen VRh₃, NbRh₃ und TaRh₃ kaum Kohlenstoff. Nur für NbRh₃ konnte im Gleichgewicht mit Kohlenstoff eine geringfügige Gitteraufweitung gemessen werden /3/.

Ähnlich wie in den Systemen mit Ruthenium bilden Chrom, Molybdän und Wolfram mit Rhodium und Kohlenstoff ternäre Carbide mit ausgedehnten Homogenitätsbereichen /25,26/. Zusammensetzung, Gitterkonstante und Existenzbedingungen sind in Tab. 3.1.5.1 aufgeführt. Der Kohlenstoffgehalt der Verbindungen ist geringer als jener der isotypen Carbide mit Ruthenium. Die untere Zerfallstemperatur steigt von

Abb.3.1.5.18: Isotherme Schnitte im System W-Ru-C bei 2273 K (a) und 1773 K (b) (vgl. /25,26/)

Abb.3.1.5.19: Phasengleichgewichte bei 1773 K in den Systemen Ti-Rh-C, Zr-Rh-C und Hf-Rh-C /3/

Abb.3.1.5.20: Phasengleichgewichte bei 1773 K in den Systemen V-Rh-C, Nb-Rh-C und Ta-Rh-C /3/

 $(Cr,Rh)C_{0.25}$ über (Mo,Rh) $C_{0.25}$ auf über 2000 K für (W,Rh) $C_{0.25}$ an (vgl.Tab.3.1.5.5). Mit steigender Temperatur dehnt sich der Homogenitätsbereich auch hier auf die binären Cr-, Mo- bzw. W-Carbide hin aus. Die isothermen Schnitte der Systeme <u>Cr-Rh-C</u> (Abb. 3.1.5.21), Mo-Rh-C (Abb. 3.1.5.22) und W-Rh-C (Abb. 3.1.5.23) verdeutlichen das Reaktionsgeschehen, welches zunehmend durch stabiler werdende Metallphasen bestimmt wird.

3.1.5.4 Ternäre Carbidsysteme mit Palladium

Die Ordnungsphasen der Übergangsmetalle der 4. Gruppe mit Palladium kristallisieren hexagonal im TiNi₃-Typ. Sie zeichnen sich durch hohe Stabilität aus, was auch hier zu den schon in den Systemen mit Rhodium beobachteten Reaktionen der Carbide mit den Metallen unter Bildung der dicht gepackten Ordnungsphasen und einer Freisetzung von Kohlenstoff führt. Abb. 3.1.5.24 zeigt die beobachteten Phasenfelder der Systeme <u>Ti-Pd-C</u>, Zr-Pd-C und Hf-Pd-C bei 1573 K /3/.

Im System Ti-Pd-C wird in Schmelzproben an Stelle der hexagonalen Ordnungsphase TiPd₃ eine offensichtlich kohlenstoffstabilisierte Phase TiPd₃C_x mit Cu₃Au-Struktur und einer Gitterkonstante von a = 0.3883 nm beobachtet. Diese Phase zerfällt bei 1573 K /3/.

Die intermetallischen Phasen der Übergangsmetalle der 5.Gruppe (V,Nb,Ta) mit Pd sind weniger stabil als die Verbindungen der 4.Gruppe (Ti,Zr,Hf). Dies dokumentiert sich in den isothermen Schnitten der Systeme <u>V-Pd-C</u>, <u>Nb-Pd-C</u> und <u>Ta-Pd-C</u> (Abb.3.1.5.25). Trotz der geringeren Stabilität der Monocarbide VC, NbC und TaC im Vergleich zu TiC, ZrC und HfC. liegt der Fusspunkt des Dreiphasenfeldes MC+MPd +C weiter zur Pd-Seite verschoben. Die Monocarbide stehen hier mit einer metallischen Mischphase auf der Basis von Pd im Gleichgewicht, die im Falle von VC etwa 20 At.% V, im Falle von NbC etwa 15 At.% Nb und im Falle von TaC etwa 16 At.% Ta enthält. Eine Reaktion der Carbide VC, NbC und TaC mit Pd erfolgt also unter Lösung von V, Nb bzw. Ta in Pd und gleichzeitiger Freisetzung von C. Die Systeme der Carbide VC, NbC und TaC mit Pd geben von der Konstitution her die Möglichkeit, unterstöchiometrische Carbide mit ei-

Abb.3.1.5.23: Isotherme Schnitte im System W-Rh-C bei 2273 K (a) und 1773 K (b) (vgl. /25,26/)

- 210 -

Abb.3.1.5.24: Phasengleichgewichte bei 1573 K in den Systemen Ti-Pd-C, Zr-Pd-C und Hf-Pd-C /3/

Abb.3.1.5.25: Phasengleichgewichte bei 1573 K in den Systemen V-Pd-C, Nb-Pd-C und Ta-Pd-C /3/

Abb.3.1.5.26: Phasengleichgewichte bei 1773 K im kohlenstoffreichen Teil der Systeme Ti-Os-C, Zr-Os-C, Hf-Os-C, V-Os-C, Nb-Os-C und Ta-Os-C /4/

ner (Pd,V)- bzw. (Pd,Nb)- bzw. (Pd,Ta)-Legierung abzubinden. Die Carbidsysteme von Cr, Mo und W mit Pd sind nicht untersucht.

3.1.5.5. Ternäre Carbidsysteme mit Osmium

Die Carbide TiC, ZrC, HfC, VC, NbC und TaC stehen bei 1773 K mit Osmium, welches zum Teil geringe Mengen des carbidbildenden Übergangsmetalls in feste Lösung aufnimmt, im Gleichgewicht. Abb. 3.1.5.26 verdeutlicht dies an Hand eines isothermen Teilschnittes in den Systemen der entsprechenden Übergangsmetalle mit Os und Kohlenstoff. Tab. 3.1.5.3 gibt die Gitterkonstanten der hexagonalen Osmiumphase im Gleichgewicht mit den Carbiden MC und Kohlenstoff sowie die Parameter der Carbide MC im Gleichgewicht mit Os und Kohlenstoff wieder. Die geringen Änderungen der Werte im Vergleich zu reinem Osmium auf der einen Seite lassen auf eine geringfügige Lösung des Übergangsmetalles M im Os bei Gegenwart von freiem Kohlenstoff schliessen. Die durchwegs geringfügige Erniedrigung der Gitterkonstanten der Carbide deutet auf eine kleine Löslichkeit von Os in den Carbiden hin /4/. Auf der Zr-reichen Seite des Systems wurden Anzeichen für die Existenz eines n-Carbids Zr_4Os_2C gefunden /36/.

Molybdän und Wolfram bilden mit Osmium und Kohlenstoff ternäre Carbide mit ausgedehnten temperaturabhängigen Homogenitätsbereichen. Verbindungen der Zusammensetzung $(Mo_{0.5}Os_{0.5})C_{\sim 0.33}$ bzw. $(W_{0.5}Os_{0.5})C_{\sim 0.33}$ (s. Tabelle 3.1.5.1) zerfallen bei Temperaturen, die oberhalb 1800 K bzw. 2300 K liegen. Bei tieferen Temperaturen werden die Gleichgewichte in den ternären Systemen <u>Mo-Os-C</u> und <u>W-Os-C</u> von den binären Verbindungen bestimmt (vgl. Abb.3.1.5.27 und 3.1.5.28) /25,26/.

3.1.5.6 Ternäre Carbidsysteme mit Iridium

Die Carbide MC (M = Ti, Zr, Hf, V, Nb, Ta) reagieren mit Iridium unter Bildung der geordneten kubisch flächenzentrierten Verbindung MIr₃ und unter Ausscheidung von freiem Kohlenstoff. Abb.3.1.5.29 zeigt einen isothermen Teilschnitt der ternären Systeme bei 1773 K, in welchem das die Konstitution aller betrachteten Systeme bestimmende Dreiphasenfeld MC+MIr₃+C zu erkennen ist. Die in den Dreiphasenfeldern beobachteten Gitterparameter der Carbidphasen MC sowie der Ordnungsphasen MIr₃ Tab. 3.1.5.3: Gitterkonstanten der Carbide MC (M = Ti,Zr,Hf,V,Nb,Ta) sowie von Os im Gleichgewicht miteinander und mit Kohlenstoff. (Werte in Klammern entsprechen den einzelnen Carbiden bzw. dem Metall Os im Reinzustand.)

Dreiphasengleich- gewicht	Gitterkonstante (nm)			
	MC		Os(M)	
TiC+Os+C	a = 0.4317	(0.4327)	a = 0.2731 c = 0.4313	(0.2734) (0.4319)
ZrC+Os+C	a = 0.4689	(0.4697)	a = 0.2730 c = 0.4315	
HfC+Os+C	a = 0.4632	(0.4642)	a = 0.2730 c = 0.4315	
VC+Os+C	a = 0.4156	(0.4166)	a = 0.2724 c = 0.4309	
NbC+Os+C	a = 0.4460	(0.4469)	a = 0.2731 c = 0.4313	sn
TaC+0s+C	a = 0.4448	(0.4454)	a = 0.2735 c = 0.4340	

<u>Abb. 3.1.5.27:</u> Isothermer Schnitt bei 1773 K im System Mo-Os-C (vgl. /25,26/)

Abb. 3.1.5.28: Isothermer Schnitt bei 2273 K im System W-Os-C (vgl. /25,26/)

Tab. 3.1.5.4: Gitterkonstanten der Carbide MC sowie der geordneten Phasen MIr₃ (Cu₃Au-Typ) (M = Ti,Zr,Hf,V,Nb,Ta) im Gleichgewicht miteinander und mit Kohlenstoff. (Werte in Klammern entsprechen den einzelnen Verbindungen im Reinzustand.)

Dreiphasen- gleich- gewicht	Gitterkonstante (nm) MC MIr ₃			
TiC+TiIr ₃ +C	a = 0.4318	(0.4327)	a =0.3838	(0.3845)
ZrC+ZrIr ₃ +C	a = 0.4691	(0.4697)	a =0.3950	(0.3943) ⁻
HfC+HfIr ₃ +C	a = 0.4631	(0.4642)	a =0.3938	(0.3926)
VC+VIr3+C	a ≡ 0.4157	(0.4166)	a =0.3800	(0.3807)
NbC+Nblr ₃ +C	a = 0.4458	(0.4469)	a =0.3871	(0,3886)
TaC+TaIr ₃ +C	a = 0.4445	(0.4454)	a =0.3876	(0.3886)
	<u> </u>		L	

Abb.3.1.5.29: Phasengleichgewichte bei 1773 K im kohlenstoffreichen Teil der Systeme Ti-Ir-C, Zr-Ir-C, Hf-Ir-C, V-Ir-C, Nb-Ir-C und Ta-Ir-C /4/

sind in Tab. 3.1.5.4 wiedergegeben. Während die Carbidphasen ähnlich wie bei Os mit einer durchwegs geringfügig kleineren Gitterkonstanten vorliegen als dem Literaturwert für die reinen Monocarbide entspricht, kann man aus der Erhöhung der Gitterkonstanten für Zrir₃ und Hfir₃ auf eine geringfügige Lösung von Kohlenstoff in den oktaedrischen Lücken dieser kubisch flächenzentrierten Ordnungsphasen schliessen/4/.

Chrom, Molybdän und wahrscheinlich auch Wolfram bilden mit Iridium in den ternären Systemen <u>Cr-Ir-C</u>, <u>Mo-Ir-C</u> und <u>W-Ir-C</u> Carbide mit sich ausweitenden Homogenitätsbereichen bei steigenden Temperaturen/25/.Zusammensetzungen gemäss ($Cr_{0.5}|r_{0.5}$) $C_{v0.25}$ bzw. ($Mo_{0.5}|r_{0.5}$) $C_{v0.25}$ sind bis zu tieferen Temperaturen, d.h. <1773 K bzw. v1800 K stabil (vgl. Tab. 3.1.5.1). Die Natur dieser Verbindungen wird in Kap. 3.1.5.8 eingehender diskutiert. Unterhalb der Zerfallstemperaturen dieser ternären Carbide werden die Gleichgewichte von den binären Phasen bestimmt (vgl. Abb. 3.1.5.30). Hierbei macht sich bei der Aufteilung der Phasenfelder die zunehmende Stabilität der metallischen Phasen bemerkbar, wenn man von Os über Ir zu Pt übergeht. Ausdruck hierfür ist die Lage des Fusspunktes des Dreiphasengleichgewichts $Mo_2C+\epsilon-(Mo,Ir)+C$ bzw. WC+ $\epsilon-(W,Ir)+C$ im Vergleich zu den Os-Systemen bzw. der zunehmende Bereich metallischer Phasen, die mit Kohlenstoff im Gleichgewicht stehen.

3.1.5.7 Ternäre Carbidsysteme mit Platin

Die Carbide MC (M = Ti, Zr, Hf, V, Nb, Ta) reagieren mit Platin unter Bildung geordneter metallischer Phasen und Ausscheidung von freiem Kohlenstoff. Abb.3.1.5.31 zeigt einen isothermen Teilschnitt, gültig für alle sechs Systeme bei 1773 K/4/.Die bei der Reaktion der Carbide mit Platin entstehenden geordneten metallischen Phasen sind nicht mehr isotyp für die verschiedenen Übergangsmetalle. Die Reaktion von TiC mit Pt führt beim Erschmeizen zur Bildung von TiPt₃ mit TiNi₃-Struktur und Kohlenstoff. Bei 1773 K entsteht jedoch TiPt₃ mit Cu₃Au-Struktur, möglicherweise durch Kohlenstoff stabilisiert. Die Reaktion der Carbide ZrC und HfC mit Platin führt sowohl beim Schmelzen als auch bei tiefe-

Abb.3.1.5.30: Isotherme Schnitte in den Systemen Mo-Ir-C (a) bei 1773 K und W-Ir-C (b) bei 2273 K (vgl. /25,26/)

- 216 -

ren Temperaturen (1773 K) zur Bildung der hexagonalen Ordnungsphasen ZrPt₃ bzw. HfPt₃ mit TiNi₃-Struktur. VC bildet im Kontakt mit Platin eine kubisch flächenzentrierte Phase der Zusammensetzung VPt_{3-x}, wobei es sich wahrscheinlich um eine kohlenstoffstabilisierte ungeordnete Mischphase handelt.

Bei der Reaktion der Carbide von Niob und Tantal mit Platin entstehen bei 1793 K die monoklinen Verbindungen NbPt_z und TaPt_z sowie freier Kohlenstoff. Die Platinmetalle der 3. langen Periode (Os, Ir, Pt) verhalten sich hiermit gegenüber den Monocarbiden der hochschmelzenden Übergangsmetalle (TiC, ZrC, HfC, VC, NbC, TaC) in mancher Hinsicht ähnlich wie die Platinmetalle der 2.langen Periode (Ru, Rh, Pd), zeigen jedoch auch charakteristische Unterschiede, was die Reaktionsprodukte betrifft. Os steht ebenso wie Ru mit den stöchiometrischen Monocarbiden im Gleichgewicht. Im Gegensatz zu Ru wurde jedoch bei unterstöchiometrischen Carbiden keine Bildung von ternären Komplexcarbiden beobachtet. Ebenso wie Rh reagiert ir mit den Monocarbiden unter Bildung der geordneten dicht gepackten Verbindungen Mirz. Im Gegensatz zu den Systemen mit Rh löst sich jedoch kaum Kohlenstoff in diesen Phasen. Die Systeme der IV A-Übergangsmetalicarbide (TiC, ZrC, HfC) mit Pd und Pt sind sehr ähnlich. Bei den V A-Übergangsmetallcarbiden (VC, NbC, TaC) deutet die Bildung der Verbindungen MPt₃ bei Reaktion mit Platin im Vergleich zur Bildung der Mischphasen (Pd,M) bei Reaktionen mit Pd auf eine höhere Stabilität der Platinphasen hin.

Die Systeme <u>Cr-Pt-C</u>, <u>Mo-Pt-C</u> und <u>W-Pt-C</u> sind durch ternäre Carbide bei hohen Temperaturen /25/ bestimmt. Die Formel dieser Carbide kann mit ($M_{o.5}Pt_{o.5}$)C_{$\sim o.1$} (M = Cr,Mo,W) angegeben werden (vgl. Tab. 3.1.5.1). Mit steigendem Cr-, Mo- bzw. W-Gehalt innerhalb der homogenen Bereiche dieser Carbide steigt auch der Kohlenstoffgehalt an (s. auch Diskussion in Kap. 3.1.5.8). Für die Zusammensetzung Cr_{2.4}Pt_{1.7}C wurde Ordnung im Metallgitter entsprechend dem CaTiO₃-Typ festgestellt /28/. Bei tiefen Temperaturen zerfallen die Carbide in die binären Randphasen. Zerfallstemperaturen für einige der besprochenen ternären Carbide wurden mit Hilfe der DTA bestimmt und sind in Tab. 3.1.5.5 wiedergegeben /29/. Isotherme Schnitte für die Systeme Mo-Pt-C und W-Pt-C zeigen Abb. 3.1.5.32 und 3.1.5.33, wobei die Phasenbeziehungen im System

Temp.	Reaktion
1600 ± 20 K:	^{(Cr} o.38 ^{Ru} o.62 ^{)C} ∿o.25 + Cr ₃ C ₂ , ε-(Cr,Ru),C
1460 ± 20 K:	$(Cr_{0.5}Rh_{0.5})C_{0.2} \rightarrow Cr_3C_2, \epsilon-(Cr,Rh),C$
1590 ± 20 K:	$(Mo_{0.5}Ru_{0.5})C_{0.33} \rightarrow Mo_2C, \epsilon-(Mo,Ru),C$
1660 ± 20 K:	$(Mo_{0.5}Rh_{0.5})C_{0.2} \rightarrow Mo_2C, \epsilon-(Mo,Rh),C$
1530 ± 20 K:	$(M_{0}, 56^{\text{Pt}}_{0.44})^{\circ}_{0.11} \rightarrow M_{2}^{\circ}_{2}, \delta - (M_{0}, \text{Pt}), \epsilon - (M_{0}, \text{Pt})$

Tab. 3.1.5.5 Zerfallstemperaturen ternärer Platinmetall enthaltender Carbide /29/

<u>Abb. 3.1.5.32</u>: Isotherme Schnitte im System Mo-Pt-C bei 1773 K (a) und 1373 K (b) (vgl. /25,26/)

I

W-Pt-C allerdings, wie auch die gestrichelten Linien dokumentieren, in weiten Bereichen abgeschätzt sind /26/.

3.1.5.8 Zur Existenz ternärer Carbide mit Platinmetallen

Empirische Zusammenhänge zwischen Auftreten, Zusammensetzung (Valenzelektronenkonzentration) und Struktur der in den vorangegangenen Kapiteln behandelten ternären Carbide der Platinmetalle lassen in eindrucksvoller Weise Faktoren erkennen, welche die Stabilität bestimmter Verbindungstypen beeinflussen, liefern darüber hinaus wertvolle Hilfsdienste bei der Beurteilung von Modellen zur chemischen Bindung und sind nicht zuletzt wichtige Hilfen bei der Einschätzung des Einflusses von Nichtmetallatomen auf die Phasengleichgewichte metallischer Systeme. Diese Zusammenhänge sollen deshalb deutlich gemacht werden.

In den Systemen der Übergangsmetalle der 2. und 3. langen Periode Mo,Tc,Ru,Rh und Pd sowie W,Re,Os,Ir und Pt beobachtet man intermetallische Phasen bzw. feste Lösungen, deren Struktur und Zusammensetzung eng mit der Zahl der Valenzelektronen gekoppelt sind (vgl. z.B. /30, 31,32/).Mit steigender Valenzelektronenkonzentration erfolgt ein Übergang vom kubisch raumzentrierten Gitter über die hexagonal dichteste Packung zum kubisch flächenzentrierten Strukturtyp. Ordnet man den Übergangsmetallen die Zahl der sich in unabgeschlossenen Schalen befindlichen Elektronen als Valenzelektronen zu, so erhält man für metallische Legierungen von Molybdän Grenzen, wie in Abb. 3.1.5.34 angedeutet, d.h. kubisch raumzentriertes Gitter für VEK < 6.4, hexagonal dichte Packung für 6.8 < VEK < 8.5 und kubisch flächenzentriertes Gitter für VEK> ∿8.5. Auf die Äquivalenz zwischen den hexagonal dicht gepackten ε-Phasen, z.B. ε-(Mo,Rh) und den hexagonal dichten Packungen der Reinmetalle, z.B. Ruthenium, sei in diesem Zusammenhang hingewiesen. So sind z.B. Moo.5Rho.5 und Ruthenium voll mischbar /33/. Geht man von den binären Metallsystemen zu den Carbidsystemen über, so erhält eine Valenzelektronenabzählung zwar einen noch formaleren Charakter. Elektronenübergänge vom Metall zum Nichtmetall, aber auch vom Nichtmetall zum Metall, finden in Modellen ihre Begründung (vgl. Kap. 1).

Abb. 3.1.5.33: Isothermer Schnitt bei 2273 K im System W-Pt-C (vgl. /25,26/)

Abb.3.1.5.34: Zum Auftreten von kubisch raumzentrierter, hexagonal dichtest gepackter und kubisch flächenzentrierter Struktur in binären Legierungen des Molybdäns und Wolframs mit der formalen Valenzelektronenkonzentration als Parameter

6	7	8	9	10
	000 <u>0</u> 00			
	CROCH	(U 🛗		°d
Bog		<u> </u>		
	e 🗱 C)s 🖁 🛄		
		γ α 8 ∰		
	1	•]	1	1
Mo Xad	<u>ľc</u>	ŧ.	1	-
Mo	2005	Ru	i	1
Мо	9888	888 🎹	Rh	
Mo			6 3111111	Pa
Mo D	Re	r		
Ma	0000008		1	i
			1	
MD	5896267		<u>lr</u>	
Mo				PL
W R	Tc		1	! ·
w is s	8996999	Ru	I I	
w 😹	20222	932 ⊞⊞⊔	Rh	
w				B.
w loss of	¦		╠┎┎╻┊┙┎┎╘╘┎ ╽	
	<u>ne</u> (ļ	i	
	2020200	<u>0s</u>	 	
<u> ₩¦∭</u> \$	9 <u>88889</u>		<u>lr</u>	
w 🔊 👘				Pt
6 7	<u>.</u> א	i	i] `
🐰 kubisch ra	umzentri:	9 ert	I.	,
🐱 hexagonal dichtest genockt				
III kubisch di	chinet -	Seback	•	
LI Kubisch Ol	chiest g	араскі		

Es ist jedoch auffallend, dass man eine ähnliche Reihenfolge wie bei den metallischen Phasen bei den entsprechenden Carbiden erhält, wenn man dem Kohlenstoff die VEK 4 zuordnet und das Verhältnis Valenzelektronen pro Metallatom berechnet. Diese Werte sind in Abb. 3.1.5.35 für verschiedene Mo enthaltende Systeme als Linien eingetragen. Die Ausdehnung der homogenen Bereiche der Phasen mit den betrachteten Grundstrukturen bei sehr hohen Temperaturen ist schematisch wiedergegeben. Bei Valenzelektronenkonzentrationen pro Metallatom von 6 bis wenig darüber existiert das kubisch raumzentrierte Metall mit etwas Kohlenstoff gelöst, zwischen 7 und 8 das hexagonale Subcarbid und zwischen 8 und 9 das kubisch flächenzentrierte Defektmonocarbid.

Die Valenzelektronenkonzentration in den ternären Mischphasen bleibt konstant dadurch, dass bei sinkendem Platinmetaligehalt der Kohlenstoffgehalt steigt bzw. dass beim Übergang von Re (VEK 7) zu Ru (VEK 8), Rh (VEK 9) und Pt (VEK 10) der Kohlenstoffgehalt sinkt. Dies ist schematisch in Abb. 3.1.5.36 verdeutlicht. Betrachtet man das kubisch flächenzentrierte Gitter, so ist auffallend, dass die einzelnen Carbide alle bei einer formalen Valenzelektronenkonzentration von etwa 8.5 auftreten. Aus dem Bändermodell der kubischen Hartstoffe folgt, dass zwischen 8 und 9 Valenzelektronen ein Maximum der Bindungsfestigkeit zu erwarten ist. – Die ternären Phasen sind als Übergang von den kubisch flächenzentrierten bzw. hexagonalen Carbiden der Übergangsmetalle zu den kubisch flächenzentrierten bzw. hexagonalen Platinmetallphasen aufzufassen. Am Beispiel des Systems Mo-Pt-C konnte dieser homogene Übergang von MoC_{1-x} zu Pt(Mo) bei hohen Temperaturen nachgewiesen werden /26/.

Die Vorstellung eines metallischen Wirtgitters, in welches Nichtmetallatome eingelagert sind, deren Elektronen gemeinsam mit jenen des Metalles die Struktur des Metallgitters bestimmen, scheint für Systeme mit Übergangsmetallen, wo die d-Schale wie bei Mo zumindest halb gefüllt ist, damit besonders plausibel. Der Einfluss des Kohlenstoffs bei Einlagerung in Übergangsmetalle der rechten Hälfte einer Periode (Mo bis Pd bzw. W bis Pt) kann mit einer Erhöhung der effektiven Valenzelektronenkonzentration interpretiert werden. Starke zusätzliche Bindungen Metall-Nichtmetall treten nicht mehr auf. Dies wird z.B. deutlich bei Betrachtung des Einflusses von Kohlenstoff auf die Schmelzpunkte und

a)

c)

Abb.3.1.5.35: Zum Auftreten von kubisch raumzentrierten, hexagonal dichtest gepackten und kubisch flächenzentrierter Struktur in ternären Carbidsystemen des Molybdäns a) Mo-Re-C, b) Mo-Ru-C, c) Mo-Rh-C, d) Mo-Pt-C

Abb.3.1.5.37: Maximal möglicher Kohlenstoffeinbau in Übergangsmetalle der 2. langen Periode

die Energie (ΔH_m), die notwendig ist, ein Metallatom aus dem Kristallverband in den gasförmigen Zustand überzuführen. Während bei den Ubergangsmetallen der 3., 4. und 5.Gruppe sowohl Schmelztemperaturen als auch Atomisierungsenergie der Metallatome mit dem Kohlenstoffgehalt ansteigen, ist bei Mo ein leichter Abfall beider mit zunehmendem Kohlenstoffgehalt zu beobachten. Auch eine Auftragung des maximalen Kohlenstoffgehaltes in den k.f.z. Carbiden der Übergangsmetalle (in Abb. 3.1.5.37 für die 2. lange Periode) verdeutlicht den Zusammenhang zwischen VEK des Metalls und möglichem Kohlenstoffeinbau.

Ein weiteres Beispiel für die Charakterisierung der Rolle des Kohlenstoffs in Platinmetallen bietet eine kritische Betrachtung des Auftretens der Perowskitcarbide sowie der binären Ordnungsphasen im Cu_zAu-Typ. Abb.3.1.5.38a zeigt die Elementarzelle der binären k.f.z. Ordnungsphasen $M^{11}Pd_3$ bzw. $M^{1V-V}Rh_3$ (3wertige Übergangsmetalle bilden CuzAu-Typ Phasen mit Pd, 4 und 5wertige mit Rh). Im Sinne der Einhaltung einer bestimmten Valenzelektronenkonzentration lassen sich jedoch auch mit Ru und den Übergangsmetallen der 4. und 5.Gruppe sowie mit Rh und den Übergangsmetallen der 3.Gruppe k.f.z. Ordnungsphasen erhalten, wenn gemäss Abb. 3.1.5.38b ein C-Atom in das Ru- bzw.Rh-Oktaeder eingebaut wird. Alle Übergangsmetalle, für die C-stabilisierte Phasen mit Ru (sog. Perowskitcarbide) gefunden wurden, bilden binäre Verbindungen gleicher Struktur mit Rh, und aller Übergangsmetalle, für die C-stabilisierte Phasen mit Rh erhalten wurden /34,35/, bilden binäre Phasen gleicher Struktur mit Pd. Nicht alle Oktaederlücken müssen mit C aufgefüllt sein. Der zur Stabilisierung notwendige Kohlenstoffgehalt entspricht bei den Perowskitcarbiden mit Ru gemäss MRu₃C_{1-x} (vgl. Abb.3.1.5.39) für M = Th, Pu, Ce und Sc einer nahezu vollkommenen Auffüllung (= 0 bis 0,1), für Zr und Hf einer Auffüllung von etwa 75% (x ∿0,25) und für M = V, Nb, Ta einer Auffüllung der Lücken von etwa 50% (x ∿0,50). Eine ähnliche Abhängigkeit ist der Abb.3.1.5.40 für Rh enthaltende Phasen gleicher Struktur zu entnehmen. Metalle, die in mehreren Wertigkeitsstufen auftreten (Sc *, Ce, U, Pu) zeigen hinsichtlich des Kohlenstoffgehaltes homogene Bereiche in den Grenzen der für jeden Valenzzustand typischen Zusammensetzung. So lösen z.B. die Phasen ScRh3, CeRh3 und PuRh3 Kohlenstoff bis etwa MRh3C0.75.

***** vgl. Kap. 4.2

Vereinfachend ausgedrückt, verhält sich ein Rh-Oktaeder kristallchemisch ähnlich wie ein Ru-Oktaeder mit eingelagertem Kohlenstoff und ein Pd-Oktaeder ähnlich wie ein Rh-Oktaeder mit eingelagertem Kohlenstoff.

<u>Abb.3.1.5.39</u>: Kohlenstoffgehalt in Perowskitcarbiden gemäss MRu_3C_{1-X} in Abhängigkeit von der Stellung des Metalles M im Periodensystem

Abb.3.1.5.40: Kohlenstoffgehalt in Perowskitcarbiden und kfz. Ordnungsphasen gemäss MRh₃C_{1-x} in Abhängigkeit von der Stellung des Metalles M im Periodensystem

Literatur:	Ternäre Carbidsysteme der Übergangsmetalle der 4., 5. und 6.
	Gruppe mit Rhenium und Platinmetallen (Kap. 3,1.5)

- /1/ R.Warren, M.B.Waldron Powder Met.Int. 7 (1975) 18
- /2/ G.Reinacher Metall 26 (1972) 673
- /3/ H.Holleck, K.Biemüller, G.Schlickeiser in: H.Holleck, F.Thümmler (Hrsg.) KFK-Ext. 6/76-1 (1976) 66
- /4/ H.Holleck, K.Biemüller, G.Schlickeiser in: H.Holleck, F.Thümmler (Hrsg.) KFK-Ext. 6/77-1 (1978)93
- /5/ L.Brewer, P.R. Wengert Met.Trans. 4 (1973) 83
- /6/ E.Raub, G.Falkenburg Metall 27 (1973) 669
- /7/ H.Holleck AED-Conf 73-279-006 (1973)
- /8/ H.Holleck Bericht KFK 1726 (1972)
- /9/ S.S.Ordan'yan Porosh.Met. 2 (1975) 48
- /10/ S.S.Ordan'yan, G.V.Kruglova, A.I.Avgustinik Neorg.Mat. 4 (1968) 1086
- /11/ L.V.Gorshkova, Yu.V.Voroshilov, T.F.Fedorov Porosh. Met. 2 (1969) 82
- /12/ Yu.N. Vil'k, I.N.Donisina, Yu.A.Omel'chenko Neorg.Mat. 9 (1973) 145
- /13/ S.S.Ordan'yan, A.I.Avgustinik Neorg. Mat. 4 (1968) 1898
- /14/ T.F.Fedorov, E.I.Gladyshevskiy, L.V.Gorshkova Russ.Metallurgy 6 (1966) 75
- /15/ S.S.Ordan'yan, N.V.Kosterova, A.I.Avgustinik Neorg.Mat.8 (1972) 1495
- /16/ L.V.Gorshkova, T.F.Fedorov, Yu.B.Kuzma Porosh.Met. 4 (1967) 42
- /17/ S.S.Ordan'yan, Yu.N.Vil'k, A.I.Avgustinik Neorg.Mat. 8 (1972) 383

- /18/ S.S.Ordan'yan, N.V. Kosterova, A.I.Avgustinik Neorg. Mat. 5 (1969) 389
- /19/ S.S.Ordan'yan, I.V.Kosterova, A.I.Avgustinik Neorg. Mat. 7 (1971) 64
- /20/ L.V. Gorshkova, T.F.Fedorov, Yu.B.Kuz'ma Porosh.Met. 1 (1966) 231, sowie 3 (1966) 75
- /21/ L.K.Borusevich, E.I.Gladyshevskii Porosh.Met. 6 (1964) 22
- /22/ Yu.B. Kuz'ma, V.I.Lakh, V.Karkiv, B.I.Stadnyk, E.I.Gladyshevskii Porosh.Met. 4 (1963) 40
- /23/ R.Kieffer, H.Retelsdorf, W.Wruss, D.Fister Planseeber. Pulvermet.25 (1977) 285
- /24/ H.Holleck unveröffentlichte Ergebnisse 1978
- /25/ H.Holleck Z.Naturforschung 34b (1979) 647
- /26/ H.Holleck unveröffentlichte Ergebnisse
- /27/ H.Holleck Bericht KFK 1260 (1970)
- /28/ E.Gangelberger, H.Nowotny, F.Benesovsky Mh.Chem. 96 (1965) 1781
- /29/ H.Frey, H.Holleck in : H.Buzas (Hrsg.), Thermal Analysis, Vol.1, S.339 Akademiai Kiado, Budapest 1975
- /30/ K.Schubert in: J.H.Westbrook (Hrsg.), Intermetallic Compounds, John Wiley, New York 1967, S. 100
- /31/ L.Brewer in: P.A.Beck (hrsg.), Electronic Structure and Alloy Chemistry of the Transition Elements, Interscience Publishers, New York 1963, S.221
- /32/ W.Hume-Rothery
 in: P.S.Rudman , J.Stringer, R.I.Jaffee (Hrsg.), Phase
 Stability in Metals and Alloys, McGraw-Hill, New York, 1967
- /33/ A.E.Dwight, D.R.O'Boyle Bericht ANL 7577 (1969)

- /34/ H.Holleck J.Nucl.Mat. 42 (1972) 278
- /35/ H.Holleck Ber. Bunsenges. Phys.Chem. 79 (1975) 975
- /36/ H.Holleck, F.Thümmler Mh. Chem. 98 (1967) 133

3.1.6 Ternäre Carbidsysteme der Übergangsmetalle der 7. und 8. Gruppe

Dieses für Eisenbasiswerkstoffe ungemein wichtige Gebiet wird hier nur kurz behandelt, da keine eigenen Untersuchungen durchgeführt wurden und infolge der geringen Stabilität bzw. Meta- oder Instabilität der Carbide auch im ternären Bereich eine Unterscheidung zwischen Gleichgewichten, die thermodynamisch stabil sind, und solchen die im metastabilen Zustand beobachtet werden, sehr schwierig ist. Die isotypen Strukturen der binären Carbide sowie die ähnlichen Atomradien von Mn und den Eisenmetallen bringen ausgedehnte Löslichkeiten mit sich. So werden im System <u>Mn-Fe-C</u> Carbidmischphasen (Mn,Fe)₇C₃, (Mn,Fe)₅C₂, (Mn,Fe)₃C, (Mn,Fe)₁₅C₄, (Mn,Fe)₂₃C₆, $(Mn, Fe)_2C$ sowie ein ausgedehntes γ -(Mn, Fe, C)-Feld beobachtet /1/. Teilweise sind diese Mischphasen bei bestimmten Temperaturen nur im ternären Bereich stabil. Die Phasengleichgewichte wurden für verschiedene Temperaturen zwischen 1373 K und 1073 K ausführlich studiert /1/. Frühere Arbeiten /2/ (vgl. auch Zusammenstellung älterer Ergebnisse in /3/) sind damit teilweise überholt. Weitere Untersuchungen im System Mn-Fe-C betreffen vor allem die thermodynamische Stabilität der verschiedenen Carbide /4,5/ sowie die Konodenlage und Kohlenstoffaktivität im ternären System /6/. Über die Systeme <u>Mn-Co-C</u> und Mn-Ni-C liegen nur sehr unvollständige Angaben vor /3/. Ein ternäres Carbid der Formel Mn_2Co_2C soll pseudokubisch mit a = 0.379 nm kristallisieren /7/. Im System <u>Mn-Ni-C</u>wurden vor allem Schmelzgleichgewichte und Kohlenstofflöslichkeiten in (Mn, Ni)-Phasen bestimmt /8/. Die Systeme Fe-Co-C und Fe-Ni-C wurden vor allem auf der eisenreichen Seite im Hinblick auf die Kohlenstofflöslichkeit untersucht. Sowohl Co wie Ni setzen die C-Löslichkeit in γ -Fe herab /14/ (Literaturzustammenstellung in /9, 3, 13/). In Fe_zC sind erhebliche Mengen von "CozC" und "NizC" löslich. Eingehend wurde die Konodenlage /10/ und Kohlenstoffaktivität /11,12/ in Phasenfeldern des Systems Fe-Ni-C in neueren Arbeiten behandelt.

Über ternäre Carbidsysteme von Re, Tc oder Platinmetallen untereinander oder mit Eisenmetallen liegen nur wenige Angaben vor. Die Bildung eines Perowskitcarbids Fa₃PtC in CO Atmosphäre wurde beobachtet /17/.

Ternäre Carbidsysteme der Übergangsmetalle der 7. und Literatur: 8. Gruppe (Kap. 3.1.6) /1/ R.Benz, J.F.Elliott, J.Chipman Met.Trans. 4 (1973) 1975 /2/ K.Kuo, L.E.Persson J.Iron and Steel Inst. 178 (1954) 39 /3/ H.J.Goldschmidt Interstitial Alloys, Butterworths, London 1967, S.180 /4/ M.Hillert, M.Waldenström Met.Trans. 8A (1977) 5 /5/ G.I.Silman, V.A.Teikh in O.S.Ivanov, Z.M.Alekseeva (Hrsg.) Struktura Faz, Fazovye Prevasc.; Diagr. Sostojanija Met.Sist.; Moskau 1974, S.103 /6/ T.Nishizawa Scand. J.Metallurgy 6 (1977) 74 /7/ A.H.Holtzman, G.P.Conrad J.Appl.Phys.30 (1959) 103 /8/ A.K.Butylenko, I.Yu.Ignateva Dop.Akad.Nauk Ukrainsk. RSR, Ser.A 2 (1977) 160 /9/ E.Fromm, E.Gebhardt Gase und Kohlenstoff in Metallen, Springer Verlag Berlin 1976, S.589 u. 199 /10/ A.D.Romig, J.I.Goldstein Met.Trans. 9A (1978) 1599 /11/ I.Eliezer, R.A.Howald High Temp, Science 9 (1977) 119 /12/ B.S.Achar, A.P.Miodownik CALPHAD 1 (1977) 275 /13/ A.Price Multicomponent Alloy Constitution Bibliography 1955-1973, The Metals Society London, 1978 /14/ D.J.Fray, J.Chipman Trans.Met.Soc,AIME 245 (1969) 1143 /15/ K.O.Miller. J.F.Elliott Trans.Met.Soc AIME 218 (1960)900 /16/ J.C.Greenbank J.Iron Steel Inst. 209 (1971) 819 /17/ L.A.Harris, H.L.Yakel, C.S.Yust J.Am.Ceram.Soc. 56 (1973) 220

3.2 Ternäre Nitridsysteme

3.2.1 Ternäre Nitridsysteme der Übergangsmetalle der 3. Gruppe

Das Interesse am Aufbau der ternären Nitridsysteme der Übergangsmetalle der 3. Gruppe des Periodensystems begründet sich hauptsächlich in dem zeitweilig regen Interesse von Nitriden als Kernbrennstoffe /1-7/. Die untersuchten Systeme betreffen meist Teilaspekte des Verhaltens eines Nitridbrennstoffes unter Bestrahlung, z.B. das Verhalten der Spaltprodukte, die Reaktionen mit der Hülle, den Einfluss von Verunreinigungen oder von Zusatzelementen. Dem Rechnung tragend, wurden vor allem Nitridsysteme von Uran und Elementen aus der Reihe der Spaltprodukte, der Hüllmaterialien oder anderer Nichtmetalle untersucht. Abb.3.2.1.1 zeigt schematisch mit welchen anderen Elementen das Reaktionsverhalten von UN bisher in experimentellen Untersuchungen betrachtet wurde /8/. Diese Untersuchungen beziehen sich oft nur auf die Frage einer Existenz ternärer Nitride /9-11/. Mit Hilfe der Modellvorstellung regulärer Lösungen und abgeschätzten Wechselwirkungsparametern wurden die Phasengleichgewichte in anderen Konzentrationsbereichen errechnet /8/. Hierbei ergab sich eine meist gute Übereinstimmung bezüglich der Mischungsverhältnisse auf den Mononitridschnitten. Viele der wiedergegebenen ternären Schnitte sind demzufolge rechnerisch vervollständigt worden. Die hierzu verwendeten Wechselwirkungsparameter sind bei jedem Phasendiagramm aufgeführt. Auf Einzelheiten der Rechnung kann hier nicht eingegangen werden (vgl. /8/). Einige grundsätzliche Überlegungen sind in Kap.3.2.2.4 skizziert.

Das Gebiet der ternären Nitridsysteme von Seltenen Erden und Actinoiden wurde noch nicht zusammenfassend dargestellt. Teilgebiete wurden jedoch überblicksmässig gestreift /10-13/. Tab. 3.2.1 enthält alle bisher bekannten ternären Nitride der Seltenen Erden und Actinoiden.

3.2.1.1 Ternäre Nitridsysteme der Seltenen Erden

Die wenigen experimentellen Untersuchungen dieser Systemgruppe betreffen quasibinäre Mononitridschnitte. Wie zu erwarten, sind die Mononitride der Seltenen Erden untereinander vollkommen mischbar, sofern die Kombinationen sich nicht allzusehr in den Gitterparametern (vgl. Tab.2.2.1) unter-

Sc Keine Daten

Ergebnisse an quasibinären Schnitten oder Phasen des Systems

Ergebnisse an ternären Schnitten

scheiden. Vollkommene Mischbarkeit wurde nachgewiesen für die Nitridpaare: LaN-CeN /14,15/, LaN-NdN /14/, LaN-GdN /15,16/, CeN-PrN /15/, CeN-NdN /14,15/, CeN-GdN /15,16/, NdN-GdN /14/, EuN-GdN /16/ und GdN-YbN /16/. In den Systemen LaN-GdN und PrN-GdN sollen bei 1273 K Mischungslücken auftreten /49/. Grosse Probleme in der Deutung experimenteller Ergebnisse sowie Unsicherheiten hinsichtlich der Befunde verschiedener Autoren bringt der kaum zu vermeidende Sauerstoffgehalt in den Nitridsystemen der Seltenen Erden mit sich. Die meisten der in der Literatur beschriebenen Monoxide der Seltenen Erden sind in Wirklichkeit Oxinitride und existieren nicht im reinen Oxidsystem. Der hohen Stabilität dieser Oxinitride Rechnung tragend, haben auch die binären Nitride der Seltenen Erden meist mehr oder weniger Sauerstoff gelöst. Interessant ist der Einfluss des Sauerstoffs auf die ternäre Mischphase (Ce,Nd)N. Während für weitgehend sauerstofffreie Mischnitride eine nahezu lineare Gitterparameterabhängigkeit von der Konzentration beobachtet

Phase	Strukturtyp Raumgruppe	Gitterkonstante (nm)	Existenzbereich Bemerkung	Literatur
(Sc,Ti)N	kfz., NaCl 0 <mark>5</mark> - Fm3m	-	weitgehende Mischbarkeit der binären Nitride ScN und TiN	/30/
(Sc,V)N	kfz., NaCl 0 <mark>5</mark> - Fm3m	-	vollkommene Mischbarkeit der binären Nitride ScN und VN	/29/
(Y,Th)N	kfz., NaCl O ⁵ - Fm3m	linearer Gitterparameter- verlauf	vollkommene Mischbarkeit der binären Nitride YN und ThN	/22/
(Y,U)N	kfz., NaCl O _h ⁵ - Fm3m	linearer Gitterparameter- verlauf	vollkommene Mischbarkeit der binären Nitride YN und UN	/23/
(Y,Zr)N	kfz., NaCl O <mark>5</mark> – Fm3m	-	ausgedehnte Mischkristallbe- reiche zwischen ZrN und YN	/30/
(La,Ce)N	kfz., NaCl O _h ⁵ - Fm3m	linearer Gitterparameter- verlauf	vollkommene Mischbarkeit der binären Nitride LaN und CeN	/14,15/
(La,Nd)N	kfz., NaCl O <mark>5</mark> - Fm3m	linearer Gitterparameter- verlauf	vollkommene Mischbarkeit der binären Nitride LaN und NdN	/14/
(La,Gd)N	kfz., NaCl O <mark>5</mark> - Fm3m	linearer Gitterparameter- verlauf	vollkommene Mischbarkeit der binären Nitride LaN und GdN	/15,16/
(La,Th)N	kfz., NaCl O <mark>5</mark> - Fm3m	linearer Gitterparameter- verlauf	vollkommene Mischbarkeit der binären Nitride LaN und ThN	/22/
(La,U)N	kfz., NaCl O ⁵ - Fm3m	linearer Gitterparameter- verlauf	vollkommene Mischbarkeit der binären Nitride LaN und UN oberhalb ∿2000 K	/23/
La ₂ U ₂ N ₅	tetrag.	a = 0.843 c = 0.850	-	/25/
(Ce,Pr)N	kfz., NaCl O <mark>5</mark> - Fm3m	Gitterparameterverlauf emp- findlich abhängig vom O ₂ - Gehalt	vollkommene Mischbarkeit der binären Nitride CeN und PrN	/15/
(Ce,Nd)N	kfz., NaCl 0 <mark>5</mark> - Fm3m h	Gitterparameterverlauf emp- findlich abhängig vom O ₂ - Gehalt	vollkommene Mischbarkeit der binären Nitride CeN und NdN	/14,15/
(Ce,Gd)N	kfz., NaCl O <mark>5</mark> - Fm3m	Gitterparameterverlauf emp- findlich abhängig vom 0 ₂ - Gehalt	vollkommene Mischbarkeit der binären Nitride CeN und GdN	/15,16/
(Ce,Th)N	kfz., NaCl 0 <mark>5</mark> - Fm3m	stark positive Abweichung vom linearen Verlauf	vollkommene Mischbarkeit der binären Nitride CeN und ThN	/22/
(Ce,U)N	kfz., NaCl 0 <mark>5</mark> - Fm3m	negative Abweichung vom linearen Verlauf	vollkommene Mischbarkeit der binären Nitride CeN und UN	/26/
(Pr,Th)N	kfz., NaCl O <mark>5</mark> - Fm3m	linearer Gitterparameter- verlauf	vollkommene Mischbarkeit der binären Nitride PrN und ThN	/22/
(Pr,U)N	kfz., NaCl 0 <mark>5</mark> - Fm3m	linearer Gitterparameter- verlauf	vollkommene Mischbarkeit der binären Nitride PrN und UN	/23/

Tabelle 3.2.1: Ternäre Nitride der Übergangsmetalle der 3.Gruppe

Phase	Strukturtyp Raumgruppe	Gitterkonstante (nm)	Existenzbereich Bemerkung	Literatur
(Nd,Gd)N	kfz., NaCl O ⁵ _h - Fm3m	linearer Gitterparameter- verlauf	vollkommene Mischbarkeit der binären Nitride NdN und GdN	/14/
(Nd,Th)N	kfz., NaCl O ⁵ - Fm3m	linearer Gitterparameter- verlauf	vollkommene Mischbarkeit der binären Nitride NdN und ThN	/22/
(Nd,U)N	kfz., NaCl O <mark>5</mark> - Fm3m	negative Abweichung vom linearen Verlauf	vollkommene Mischbarkeit der binären Nitride NdN und UN	/23/
(Eu,Gd)N	kfz., NaCl O <mark>5</mark> - Fm3m	ی پر میں	vollkommene Mischbarkeit der binären Nitride EuN und GdN	/16/
(Gd,Yb)N	kfz., NaCl 0 <mark>5</mark> - Fm3m	-	vollkommene Mischbarkeit der binären Nitride GdN und YbN	/16/
(Th,U)N	kfz., NaCl O <mark>5</mark> - Fm3m	linearer Gitterparameter- verlauf	vollkommene Mischbarkeit der binären Nitride ThN und UN	/47,48/
(Th _{o.2} Pu _{o.8})N	kfz., NaCl O <mark>5</mark> - Fm3m	a = 0.4980	-	/18/
Th ₂ CrN ₃	orthorh., U_2CrN_3 D_{2h}^{25} - Immu	a = 0.38654 b = 0.35154 c = 1.28446	-	/34/
Th2 ^{MnN3}	orthorh., D ²⁵ - Immm	a = 0.37919 b = 0.35482 c = 1.28321	-	/34/
(U,Pu)N	kfz., NaCl 0 <mark>5</mark> - Fm3m	linearer Gitterparameter- verlauf	vollkommene Mischbarkeit der binären Nitride UN und PuN	/19/
(U,Zr)N	kfz., NaCl O ⁵ _h - Fm3m	linearer Gitterparameter- verlauf	vollkommene Mischbarkeit der binären Nitride UN und ZrN	/31/
(U,Hf)N	kfz., NaCł O <mark>5</mark> - Fm3m	linearer Gitterparameter- verlauf	vollkommene Mischbarkeit der binären Nitride UN und HfN	/31/
UVN2	orthorh., UCrC ₂ Pnma	a = 0.5456 b = 0.3184 c = 1.0671	-	/9,11,17/
(U,NÞ)N	kfz., NaCl 0 ⁵ - Fm3m	· · ·	ausgedehnte Mischphasenbildung zwischen UN und NDN	/11/
UNDN2	orthorh., UCrC ₂ Pnma	a = 0.5668 b = 0.3266 c = 1.0959	-	/9,11/
UTaN ₂	orthorh., UCrC ₂ Рпта	a = 0.5645 b = 0.3249 c = 1.0937	-	/9,11/
U ₂ CrN ₃	orthorh., U ₂ CrN ₃ D _{2h} - Immm	a = 0.37397 b = 0.33082 c = 1.23335		/9,11/34/
U2 ^{MnN} 3	orthorh., U_2CrN_3 D_{2h}^{25} - Imm	a = 0.37216 b = 0.33274 c = 1.22137		/34/
(Pu _{~0.7} Zr _{~0.3})N	kfz., NaCl O <mark>5</mark> - Fm3m	-	Mischphase aus PuN und ZrN	/44/

Abb.3.2.1.2: Gitterparameterverlauf in Systemen mit wechselnder Cer-Wertigkeit a) CeN(0)-NdN(0), b) ThN-CeN /22/ bzw. Th-Ce

wird, ergibt sich bei sauerstoffhaltigen Proben ein ausgeprägtes Maximum in der Gitterkonstanten (vgl. Abb.3.2.1.2a). Der Grund hierfür liegt offensichtlich in einer bevorzugten Stabilisierung des dreiwertigen Zustandes des Cers in der quaternären Phase. Den grundsätzlichen Aufbau der ternären Nitridsysteme der Seltenen Erden verdeutlicht Abb.3.2.1.3. Eine Metallschmelze steht mit dem Nitridmischkristall und dieser mit Stickstoff im Gleichgewicht.

3.2.1.2 Ternäre Nitridsysteme der Actinoiden

Von den ternären Nitridsystemen der Actinoiden sind nur die Systeme <u>Th-U-N</u> und besonders <u>U-Pu-N</u> hinsichtlich ihres Aufbaus untersucht worden. Das Dreistoffsystem U-Pu-N zog über längere Zeit das Interesse auf sich, da ein Mischnitridbrennstoff für Schnelle Brutreaktoren interessante Eigenschaften aufweist (vgl. z.B. /46/).

Abb.3.2.1.3: Grundsätzlicher Aufbauder ternären Nitridsysteme der Seltenen Erden

Abb. 3.2.1.4: Isotherme Schnitte im System U-Th-N; a) experimentell ermittelte Phasenbeziehungen im metallreichen Gebiet bei 1273 K /48/, b) errechnete Phasengleichgewichte bei 1273 K /8,12/

Im System Th-U-N sind die Mononitride ThN und UN vollkommen mischbar /47,48/. Als kritische Entmischungstemperaturen wurde unter Anwendung des Modelles regulärer Lösungen mit abgeschätzten Wechselwirkungsparametern ein Wert von 673 K /8/ bzw. 1000 K /17/ errechnet. Die Pha-

- 237 -

senbeziehungen im metallischen Gebiet des Systems U-Th-N zeigt Abb.3.2.1.4a. Es wird hier deutlich, dass die Mischphase (U,Th)N von reinem UN ausgehend bis zu einer Zusammensetzung von $(^{Th}_{o},944^{U}_{o},o56})^{N}_{1-x}$ mit Uran im Gleichgewicht steht, bzw. mit Thorium reagiert /48/. Die Phasengleichgewichte im stickstoffreichen Teil des Systems wurden errechnet /8,12/ (vgl. Abb.3.2.1.4b) unter Berücksichtigung der thermodynamischen Daten der binären Verbindungen und Abschätzung geeigneter Wechselwirkungsparameter. Im metallischen Gebiet stimmen die rechnerisch ermittelten Gleichgewichte gut mit den experimentell ermittelten überein (vgl. Abb.3.2.1.4a und b).

ThN und PuN sind im ternären System <u>Th-Pu-N</u> wahrscheinlich voll mischbar. Eine Mischphase der Zusammensetzung (Th_{0.2}Pu_{0.8})N ist einphasig mit einer Gitterkonstanten von a = 0.4980 nm /18/.

Im System U-Pu-N sind UN und PuN vollkommen mischbar /19/. Für den Gitterkonstantenverlauf wurden sowohl positive wie negative Abweichungen von der Linearität angegeben (vgl. /10/). Eine berechnete Zerfallstemperatur der ternären Mischphase liegt unterhalb 273 K /8/ bzw. bei 100 K /17/. Die Phasengleichgewichte wurden sowohl abgeschätzt als auch rechnerisch erfasst /8,12,20/. Abb. 3.2.1.5 zeigt einen errechneten isothermen Schnitt bei 1273 K. Unklar ist bisher, inwieweit sich Plutonium in den höheren Urannitriden α -U₂N₃ und β -U₂N₃ lösen kann. Bis zu 15 Mol % "Pu₂N₃" sollen die Urannitride angeblich aufnehmen /21/. Die für Schnelle Brutreaktoren interessante Zusammensetzung der Mischphase liegt bei etwa 20 Mol % PuN.

3.2.1.3 Ternäre Nitridsysteme der Actinoiden mit den Seltenen Erden

Bei dieser Systemgruppe steht, analog zu den beschriebenen Carbidsystemen, das Verhalten der Spaltprodukte aus der Reihe der Seltenen Erden in einem potentiellen Nitridbrennstoff als technologisches Problem im Vordergrund. Die experimentellen Untersuchungen beziehen sich nur auf die Mononitridschnitte. Die Phasengleichgewichte können jedoch auf Grund von Abschätzungen und Rechnungen /8,12/ auch für die anderen Konzentrationsbereiche angegeben werden.

Abb. 3.2.1.5: Abgeschätzter(a) bzw. errechneter (b) isothermer Schnitt in den Systemen Th-Pu-N (a) bei 1773 K und U-Pu-N (b) bei 1273 K (vgl. /8,12/)

Die Systeme mit Thorium wurden nicht eingehender untersucht. Nur die vollkommene Mischbarkeit von ThN mit YN, LaN, CeN, PrN und NdN wurde experimentell nachgewiesen /22/. Errechnete Entmischungstemperaturen liegen bei 750 K für ThN-YN, 1000 K für ThN-LaN und 1450 K für ThN-UN /17/. Die Gitterkonstanten der Mischphase (Th,Ce)N zeigen wieder ein Beispiel für wechselnde Wertigkeit des Cers im Gitterverband mit Th-Atomen (Abb.3.2.1.2b). Die ausgesprochen positive Abweichung von der Linearität lässt darauf schliessen, dass die Ceratome, die im CeN zum grossen Teil im vierwertigen Zustand vorliegen, bei Lösung im ThN zum Teil dreiwertig werden, um den gebotenen Platz auszufüllen. (Ein umgekehrter Vorgang wird übrigens im metallischen System Th-Ce nachgewiesen. Abb.3.2.1.2b verdeutlicht die Stabilisierung des 4 wertigen Cers durch Lösung in Thorium.)

Im System <u>U-Y-N</u> sind UN und YN vollkommen mischbar /23/. Die Gitterkonstanten ändern sich weitgehend linear (vgl. Tab.3.2.1). Die Mischphase steht bei hohen Temperaturen mit einer (U,Y)-Schmelze und Stickstoff im Gleichgewicht (Abb.3.2.1.6a). Bei tiefen Temperaturen verdeutlicht ein errechneter Schnitt (Abb.3.2.1.6b) die zu erwartenden Gleichgewichte. Die errechnete Entmischungstemperatur des Mischnitrids (U,Y)N liegt unter 273 K /8/. Die Stickstoffzersetzungsdrucke von (U,Y)N lassen auf weitgehend ideales Lösungsverhalten von UN und YN schliessen /24/.

- 239 -

Abb. 3.2.1.6: Isotherme Schnitte in den Systemen Th-Y-N(a, abgeschätzt für 2073 K /12/, U-Y-N (b), abgeschätzt für 2073 K (c), errechnet bei 1473 K /8,12/ und Pu-Y-N (d), abgeschätzt für 1873 K /12/

Infolge der relativ grossen Gitterparameterdifferenz zwischen UN und LaN sind diese beiden Nitride im System <u>U-La-N</u> nur bei hohen Temperaturen vollkommen mischbar /23/. Unterhalb etwa 2000 K zerfällt die Mischphase (errechnete Temperatur ∿2073 K /8/ bzw. 2000 K /17/). Die Gitterkonstanten der Mischphase ändern sich linear mit der Konzentration /23/. Das Mischnitrid steht mit einer (U,La)-Metallschmelze bzw. mit den Schmelzen der Metallkomponenten im Gleichgewicht. Abb. 3.2.1.7a und b zeigen die errechneten Phasengleichgewichte bei 1473 K und 2073 K. Bei der höheren Temperatur ist die Mischungslücke in der flüssigen Phase des Metallsystems wahrscheinlich geschlossen, so dass ein isothermer Schnitt ähnlich wie Abb.3.2.1.6 für U-Y-N auch für U-La-N zu erwarten wäre. Bei höheren Stickstoffdrucken wird ein tetragonales höheres Nitrid der Formel

Abb.3.2.1.7: Errechnete isotherme Schnitte im System U-La-N bei 1473 K (a) und 2073 K (b) (vgl. /8,12/)

$U_2La_2N_5$ (a = 0.843 nm, c = 0.850 nm) beobachtet /25/.

Im System <u>U-Ce-N</u> sind die Nitride UN und CeN vollkommen mischbar /26/. Der Gitterparameterverlauf zeigt eine ausgeprägte negative Abweichung von der Vegard'schen Geraden. Ähnliche Abweichungen werden in Ce-haltigen Systemen öfters beobachtet und sind meist Ausdruck der wechselnden Wertigkeit des Cers (vgl. Abb.3.2.1.2). Die kritische Entmischungstemperatur der Nitridphase ergibt sich aus Modellrechnungen zu <273 K /8/ bzw. 825 K /17/. Das ternäre Nitrid steht mit den Metallschmelzen und U₂N₃ gemäss den in Abb.3.2.1.8a und b wiedergegebenen Phasenbeziehungen im Gleichgewicht. Abb. 3.2.1.8b stellt dabei einen errechneten /8,12/ Schnitt bei 1473 K und Abb.3.2.1.8a einen abgeschätzten /12/ bei 1873 K dar. Die Stickstoffzersetzungsdrucke der Mischphase (U,Ce)N erhöhen sich weitgehend linear von UN zu CeN /27/.

Im System <u>U-Pr-N</u> sind die binären Nitride UN und PrN ebenfalls vollkommen mischbar /23/. Die Gitterkonstanten ändern sich in der Mischphase weitgehend linear. Einer rechnerischen Abschätzung zufclge entmischt sich die Phase bei 773 K /8/. Die Gleichgewichte im ternären System verdeutlicht ein errechneter Schnitt bei 1473 K /8/ (Abb.3.2.1.5).

- 241 -

- 242 -

Abb.3.2.1.8: Isotherme Schnitte in den Systemen Th-Ce-N (a), abgeschätzt für 1973 K /12/ ,U-Ce-N (b), abgeschätzt für 1873 K /12/;(c), errechnet für 1473 K /8,12/ und Pu-Ce-N (d), abgeschätzt für 1873 K /12/

Eine leicht negative Abweichung von der Linearität zeigen die Gitterkonstanten der vollkommenen Mischkristallreihe UN-NdN im System <u>U-Nd-N</u> /26/. Dies deutet auf zusätzliche Bindungen in der Mischphase hin. Die kritische Entmischungstemperatur ergibt sich aus Rechnungen zu etwa 373 K. Die Phasenbeziehungen bei tiefen Temperaturen verdeutlicht ein errechneter Schnitt bei 1473 K /8/ (Abb.3.2.1.10).

Abb.3.2.1.9: Errechneter isothermer Schnitt bei 1473 K im System U-Pr-N (vgl. /8/)

Abb.3.2.1.10:Errechneter isothermer Schnitt im System U-Nd-N bei 1473 K (vgl. /8/)

Abb.3.2.1.11: Zur Mischbarkeit von UN mit Nitriden der Seltenen Erden

	ThN	UN	NpN	PuN	AmN		YN	LaN	CeN	PrN	NdN
ThN		*	(+)	(+)	(+)		+	+	+	+	+
UN	*		(+)	+	(+)		*	+	+	+	+
NpN	(+)	(+)		(+)	[+}	1	(+)	(+)	(+)	(+)	(+)
PuN	(+)	*	(+)		(+)		(+)	(+)	(+)	(+)	(+)
Am N	(+)	(4)	(+)	(+)			(+)	(+)	(+)	(+)	(+)
	-	<u>. </u>			201		• • • • • •				
	+] mi	ischl	bar							

(+) nicht untersucht, Mischbarkeit wahrscheinlich

Abb.3.2.1.12: Zum Mischungsverhalten der Nitride der Actinoiden und der Seltenen Erden

Man kann davon ausgehen, dass in den Systemen mit den anderen Seltenen Erden die Nitride mit UN vollkommen mischbar sind. Dies wird einerseits durch die Radienverhältnisse nahegelegt, denn für Kombinationen mit den grössten Radiendifferenzen wurde volle Mischbarkeit experimentell nachgewiesen (vgl. Abb. 3.2.11), zum anderen geben auch unveröffentlichte Stichprobenversuche des Autors Hinweise in dieser Richtung. Neuerdings konnte dies auch für weitere Kombinantioen wie UN-SmN, UN-GdN, UN-DyN und UN-ErN belegt werden /50/.

Das Mischungsverhalten der Nitride der anderen Actinoiden mit den Nitriden der Seltenen Erden verdeutlicht Abb.3.2.1.12. Obwohl viele Systeme noch nicht untersucht sind, ist volle Mischbarkeit auch für die Nitride von NpN, PuN und AmN sehr wahrscheinlich, zumal die Actinoiden mit zunehmender Ordnungszahl den Seltenen Erden ähnlicher werden. Errechnete Entmischungstemperaturen liegen für die Systeme PuN-LaN bei 1450 K und PuN-CeN bei 725 K /17/.

Für einen Nitridkernbrennstoff bedeuten die aufgezeigten Phasengleichgewichte, dass alle Spaltprodukte aus der Reihe der Seltenen Erden im Brennstoff gelöst zu erwarten sind /28/.

3.2.2 Ternäre Nitridsysteme der Seltenen Erden und Actinoiden mit Übergangsmetallen anderer Gruppen

3.2.2.1 Ternäre Nitride der Seltenen Erden mit Übergangsmetallen anderer Gruppen

Nitridsysteme der Seltenen Erden mit Übergangsmetallen anderer Gruppen wurden bisher kaum untersucht. ScN und TiN sind weitgehend mischbar /30/. Nur in Systemen mit Vanadin können isotherme Schnitte gegeben werden. Abb.3.2.2.1 verdeutlicht das Reaktionsverhalten, welches im

<u>Abb.3.2.2.1</u>: Isotherme Schnitte in den Systemen Sc-V-N (a), Y-V-N (b), Ce-V-N (c) und Pr-V-N (d) bei 1474 K (vgl. /29/)

System <u>Sc-V-N</u> durch eine Mischphase (Sc,V)N und in den anderen Systemen durch die binären Randverbindungen bestimmt wird /29/. Die von den S.E.-Nitriden strahlenförmig ausgehenden Gleichgewichtslinien sind Ausdruck der höheren Stabilität der Nitride aus der Reihe der Seltenen Erden im Vergleich zu Vanadinnitrid. Im System YN-ZrN bestehen ausgedehnte Mischkristallbereiche /30/, deren Grenzen allerdings bisher nicht im Detail festgelegt wurden.

3.2.2.2 Ternäre Nitridsysteme der Actinoiden mit Übergangsmetallen anderer Gruppen

Nur die Systeme mit Uran sind eingehender untersucht worden und nur hier ergibt sich demzufolge ein einigermassen geschlossenes Bild über das Reaktionsverhalten. Die Übergangsmetalle der 4. Gruppe des Periodensystems bilden Nitride die stabiler sind als UN. Deshalb reagieren sowohl UN als auch U_2N_3 mit den Metallen Ti, Zr und Hf unter Bildung von TiN bzw. den Mischnitriden (U,Zr)N und (U,Hf)N (vgl. /8,12/). Abb.3.2.2.2 zeigt einen isothermen Schnitt im System <u>U-Ti-N</u> bei 1273 K in welchem die bestehenden Gleichgewichte graphisch dargestellt sind. Die Lage der Konoden wurde unter Berücksichtigung der angegebenen Wechselwirkungsparameter ε errechnet. Im quasibinären Schnitt UN-TiN tritt zwischen 1973 K und 2673 K eine begrenzte Löslichkeit von 1 bis 4 Mol % TiN in UN auf /31/. Die kritischen Entmischungstemperaturen einer hypothetischen (U,Ti)N Mischphase wurden zu 4273 K /8/ bzw. 5000 K /17/ errechnet.

Abb. 3.2.2.2: Isotherme Schnitte im System U-Ti-N bei 1273 K (a) und 2273 K (b) (Konodenlage errechnet /8/)

Abb. 3.2.2.3: Isotherme Schnitte in den Systemen Th-Zr-N bei 1773 K (a, Vorschlag), U-Zr-N bei 1273 K (b) und 2000 K (c) (Konodenlage errechnet /8/) sowie Pu-Zr-N (d, Vorschlag) (vgl. /12/)

Im System <u>U-Zr-N</u> sind UN und ZrN vollkommen mischbar /31/. Die Gitterkonstante ändert sich weitgehend linear mit der Konzentration. Unter Zugrundelegung eines regulären Lösungsmodells ergeben sich als kritische Entmischungstemperatur 1073 K /8/ bzw. 1400 K /14/. Die Gleichgewichte werden durch die in Abb. 3.2.2.3a und b wiedergegebenen berechneten isothermen Schnitte für 1273 K und 2000 K veranschaulicht. Die Konoden machen die höhere Stabilität der zirkonreichen Mischphase im Vergleich zu der uranreichen und damit die Reaktion von UN mit Zr deutlich. Als Parameter für die Lage der Phasengrenzen und Phasenfelder ist der Stickstoffpartialdruck angegeben. (U,Zr)N wurde als Kernbrennstoff mit geringer Dissoziationsneigung vorgeschlagen /32/.

Abb.3.2.2.4: Errechnete isotherme Schnitte im System U-Hf-N bei 1773 K (a) und 1473 K (b) (vgl. /8/)

Auch PuN und ZrN scheinen weitgehend mischbar zu sein. Darauf deutet die Existenz einer Nitridphase ($Pu_{\sim 0.7}Zr_{\sim 0.3}$)N hin /44/. Der Vorschlag von Phasenfeldaufteilungen in den Systemen <u>Th-Zr-N</u> und <u>Pu-Zr-N</u> zeigen Abb.3.2.23a und d. Die Löslichkeiten im Schnitt ThN-ZrN scheinen gering zu sein /22/.

Abb.3.2.2.5: Isotherme Schnitte im System U-V-N bei 1973 K (a, experimentell /11,33/ und rechnerisch vervollständigt /8/) und 2273 K (b, errechnet /8/)

Auch UN und HfN sind im System <u>U-Hf-N</u> vollkommen mischbar /31/. Der Gitterparameterverlauf ist linear. Errechnete Schnitte unter Zugrundelegung der experimentell bestimmten Mischbarkeit, thermodynamischer Literaturdaten und abgeschätzter Wechselwirkungsparameter /8/ sind in Abb.3.2.2.4a und b für 1773 K und 1473 K wiedergegeben. Auch hier sind die Phasengleichgewichte Ausdruck der höheren Stabilität von HfN im Vergleich zu UN. Bei 1473 K /8/ bzw. 1900 K /17/ tritt, den Rechnungen nach, bereits eine Mischungslücke im quasibinären Schnitt UN-HfN auf.

Beim Übergang von den Nitriden der 4.Gruppe über die 5. zur 6.Gruppe des Periodensystems nimmt die Stabilität der Nitride stark ab. Die Nitride der 5.Gruppe sind weniger stabil als UN. UN steht deshalb bei hohen Temperaturen im Gleichgewicht mit den Metallen, allerdings treten gewisse Randlöslichkeiten auf. Etwaige Reaktionen bei diesen hohen Temperaturen (~>1773 K) beschränken sich daher auf geringe Löslichkeit der Metalle der 5.Gruppe in UN bzw. von U in den Metallen der 5. Gruppe.

Ein charakteristisches Merkmal der Systeme der Übergangsmetalle der 5.Gruppe mit Uran und Stickstoff ist das Auftreten von orthothombischen Komplexnitriden der Zusammensetzung UMeN₂ (Me = V,Nb,Ta) /9,11/. UVN₂ bildet sich zwischen 1973 und 2173 K aus Mischungen von UN und VN /11/. Experimentelle Untersuchungen in dem System <u>U-V-N</u> führten zu einer Phasenfeldaufteilung gemäss dem wiedergegebenen Schnitt bei 1973 K /17/ (Abb.3.2.2.5a). Die Phase UVN₂ kristallisiert orthorhombisch mit Gitterparametern von a = 0.546 nm, b = 0.318 nm und c = 1,067 nm /11/. Sie steht mit N, UN, VN und V₂N im Gleichgewicht. Bei 2273 K zerfällt das Komplexnitrid in die binären Nitride. Die Randlöslichkeiten von VN in UN und umgekehrt sind sehr gering und stimmen mit Rechnungen, die für 2073 K eine gegenseitige Löslichkeit von 1 Mol % /8/ ergeben, gut überein (vgl. Tab. 3.2.2). Abb. 3.2.2.5b zeigt einen abgeschätzten Schnitt bei 2273 K /8/.

Im System <u>U-Nb-N</u> ergibt sich auf dem quasibinären Schnitt UN-NbN bei 2273 K ausgedehnte Mischphasenbildung (bis etwa (U_{0,5}Nb_{0,5})N bei \sim 0,4 bar N₂). Bei tieferen Temperaturen (\sim 2000 K, 0,4 bar N₂) tritt ein ternäres Komplexnitrid der Formel UNbN₂ auf. Diese Phase kristallisiert orthorhombisch mit den Gitterparametern a = 0.556 nm, b = 0.326 nm und c = 1.094 nm /11/. Errechnete Schnitte, welche die

<u>Abb.3.2.2.6:</u> Errechnete isotherme Schnitte im System U-Nb-N bei 1273 K (a) und 2273 K (b) (vgl. /8,12/)

Gleichgewichte des ternären Nitrids mit anderen Verbindungen des Systems verdeutlichen, zeigen Abb.3.2.2.6a und b /8,12/. Es ist allerdings davon auszugehen, dass auch bei 1273 K eine Löslichkeit von NbN in UN besteht, die bei dem errechneten Schnitt in Abb.3.2.2.6a nicht mehr zum Ausdruck kommt. Modellrechnungen ergeben für die kritische Entmischungstemperatur einer hypothetischen (U,Nb)N Mischphase 2873 K /8/ bzw. 3850 K /17/.

Abb. 3.2.2.7: Errechneter isothermer Schnitt im System U-Ta-N bei 2273 K (vgl. /8/)

UN löst bei 2273 K und 0,4 bar N_2 etwa 10 Mol % TaN. Bei höheren TaN-Konzentrationen tritt im System <u>U-Ta-N</u> ein orthorhombisches Komplexnitrid der Formel UTaN₂ auf (a = 0.565 nm, b = 0.325 nm, c = 1.094 nm). Diese Verbindung, die pulvermetallurgisch und schmelzmetallurgisch allerdings nur sehr schwer vollkommen einphasig - hergestellt werden kann, ist im Gegensatz zu den isotypen Phasen der homologen Elemente, Vanadin und Niob, auch bei 2273 K und 0,4 bar N₂ noch stabil. Einen errechneten Schnitt bei 2273 K im System U-Ta-N zeigt Abb.3.2.2.7.

ThN und CrN reagieren im System <u>Th-Cr-N(Vorschlag einer Phasenfeldauf</u>teilung Abb. 3.2.2.8a) zu einem ternären Komplexnitrid Th₂CrN₃. Diese Phase kristallisiert orthorhombisch mit Gitterkonstanten von a = 0.38654 nm, b = 0.35154 nm und c = 1.28446 nm /34/.

Der Aufbau der Systeme von Uran mit den Übergangsmetallen der 6.Gruppe: <u>U-Cr-N, U-Mo-N</u> und <u>U-W-N</u> ist gekennzeichnet durch Gleichgewichte von UN mit den Metallen Cr, Mo und W. U₂N₃ bildet mit Cr ein Komplexnitrid der Formel U₂CrN₃ /11,34/. Die Gitterparameter der Phase sind a = 0.374 nm, b = 0.0331 nm und c = 1.235 nm /11/ bzw. a = 0.37397 nm, b = 0.33082 nm und c = 1.23335 nm /34/. U₂CrN₃ steht mit U₂N₃, UN, CrN und Cr₂N im Gleichgewicht, wie der isotherme Schnitt bei 1473 K vgl. /12/ in Abb. 3.2.2.8b verdeutlicht. Die Stabilität des Komplexnitrids wurde aus Messungen des Stickstoffgleichgewichtsdrucks bestimmt. Zwischen 1300 und 1523 K ergibt sich ${}^{f}\Delta G^{O}$ <U₂CrN₃> = - 694 + 0.229 T (kJ/Mol) /35/.

Plutonium bildet kein zu U₂CrN₃ isotypes Komplexnitrid. Die Phasenbeziehungen verdeutlicht Abb.3.2.2.8c.

Keine ternären Verbindungen wurden in den Systemen U-Mo-N und U-W-N beobachtet. Hier steht auch das höhere Nitrid U₂N₃ mit den hochschmelzenden Metallen im Gleichgewicht (vgl. Abb.3.2.2.9 und 3.2.2.11) /8/.Die quasibinären Schnitte UN-Mo und UN-W stellen eutektische Systeme dar mit eutektischen Schmelztemperaturen von etwa 2670 K /36/ bzw. etwa 3000 K /36,37/. Einen Konzentrationsschnitt UN-Mo zeigt Abb.3.2.2.10.

.

Abb.3.2.2.8: Isotherme Schnitte bei 1473 K in den Systemen Th-Cr-N (a, Vorschlag), U-Cr-N (b, vgl. /12/) und Pu-Cr-N (c, vgl. /45/)

In den Systemen Th-Mn-N und U-Mn-N treten Komplexnitride Th_2MnN_3 bzw. U₂MnN₃ auf. Die Verbindungen kristallisieren orthorhombosch mit Gitterkonstanten a = 0.38654 nm, b = 0.35154 nm und c = 1.28446 nm bzw. a = 0.37216 nm, b = 0.33274 nm und c = 1.22137 nm /34/.

Die Systeme <u>U-Fe-N</u> und <u>U-Ni-N</u> wurden nur auf den Schnitten Urannitrid-Metall näher untersucht. Während UN mit Fe ein eutektisches System bildet (eutektische Temperatur 1668 ± 5 K) /38,39/, reagiert das Mononitrid mit Nickel gemäss der Gleichung:

$$3UN + 5NI = U_2N_3 + UNI_5 / 40,41/.$$

Die Löslichkeit von Nickel in UN ist äusserst gering (~1500 ppm). Das Reaktionsverhalten im System U-Ni-N oberhalb 873 K entspricht den in Abb.3.2.2.12 skizzierten Gleichgewichten.

Abb. 3.2.2.9: Phasenbeziehungen im System U-Mo-N bei 1473 K (vgl. /8/)

Abb. 3.2.2.10: Konzentrationsschnitt UN-Mo im ternären System U-Mo-N (vgl. /36/)

Systeme mit anderen Übergangsmetallen, insbesondere mit den Platinmetallen, wurden bisher nicht untersucht. Aus den thermodynamischen Daten der Randverbindungen kann man jedoch abschätzen, dass UN mit Platinmetallen bei tiefen Temperaturen (T < \sim 1300 K) unter Bildung von U₂N₃ und metallischen Ordnungsphasen UM₃ (M = Platinmetall) reagiert und bei hohen Temperaturen sich UN unter Abspaltung von Stickstoff und Bildung der gleichen intermetallischen Phasen zersetzt.

Abb.3.2.11: Phasenbeziehungen im System U-W-N bei 1473 K (vgl. /8/)

Abb.3.2.12: Phasengleichgewichte im System U-Ni-N bei 900 bis etwa 1400 K (vgl. /40/)

Nitridmischphasen, die hier für Uran beschrieben wurden, bestehen sicherlich auch in vielen Fällen für das im Hinblick auf einen Kernbrennstoff für Brutreaktoren im Blickpunkt gewesene (U_{0.8}Pu_{0.2})N. Ein weiteres quaternäres Nitrid von Uran mit zwei Übergangsmetallen wurde im System <u>U-Zr-Ce-N</u> in dem in Abb. 3.2.2.13 gekennzeichneten Konzentrationsbereich nachgewiesen /30,43/.

3.2.2.4 Zum Mischungsverhalten von UN mit Nitriden anderer Übergangsmetalle und zur rechnerischen Abschätzung der Gleichgewichte (vgl./8,17/).

Abb.3.2.2.14 verdeutlicht schematisch das Auftreten von experimentel ermittelten ternären Mischphasen des Urannitrids mit anderen Nitriden. Durch Abschätzung von Wechselwirkungsparametern für binäre Metallsysteme und pseudo-binären Nitridsysteme /8,17/ wurden isotherme Schnitte in den Systemen von Uran und Stickstoff mit anderen Übergangsmetallen errechnet /8/. Die erhaltenen isothermen Schnitte, denen meist experimentelle Befunde an Teilsystemen zugrunde liegen und die z.T. hier abgebildet wurden, sind als Vorschläge einer Phasenfeldaufteilung zu betrachten. Die Annahme eines vom U/Me-Verhältnis unabhängigen ε ist eine Vereinfachung, die bei den ternären Schnitten zwangsläufig zu symmetrischen Mischungslücken führt, was mit dem Experiment meist nicht voll in Einklang steht. Trotzdem können wesentliche Merkmale der Systeme durch Abschätzung der Wechselwirkungsparameter der flüssigen und festen Mischphasen und deren rechnerischer Verknüpfung gewonnen werden. Den grundsätzlichen Aufbau von binären Systemen oder quasibinären Schnitten in Abhängigkeit von den Wechselwirkungsparametern ε der flüssigen und festen Phase wird z.B. in Ref./42/ diskutlert. Die in der Berechnung von UN-haltigen Mischphasen erhaltenen kritischen Entmischungstemperaturen und die Randlöslichkeiten sind in Tab. 3.2.2 mit den experimentellen Ergebnissen bestimmter Systeme aufgeführt. Es besteht teilweise eine gute Übereinstimmung zwischen errechneten und beobachteten Werten. Im Falle, wo niedere kritische Entmischungstemperaturen errechnet wurden (UN-ThN,-PuN,-YN,-CeN,-NdN), wurde vollständige Mischbarkeit beobachtet. Diese Mischkristallbildung reicht wahrscheinlich zu weit tieferen Temperaturen als bisher experimentell bestätigt. Es ist jedoch schwierig, dies experimentell nachzuprüfen, da die Reaktionsgeschwindigkeiten bei diesen tiefen Temperaturen für einen

<u>Abb.3.2.2.13</u>: Bereich quaternärer Nitride im System U-Ce-Zr-N (vgl./30, 43/)

Abb.3.2.2.14: Ternäre Mischphasen in Nitridsystemen von Uran mit Übergangsmetallen

System		berechne	t				
	kritiscl K	he Temp.	Löslichkeit in UN	experimentell			
UN-ThN.	673 /8/	1000 /17/	vollst.löslich	vollst.Mischbarkeit bei 1273 K	/15/		
UN-PuN	<0 /8/	100 /17/	vollst.löslich	vollst.Mischbarkeit bei 1173 K	/19/		
UN-YN	<0 /8/	/17/	vollst.löslich	vollst.Mischbarkeit bei 2073 K	/23/		
UN-LaN	2073 /8/	2000 /17/	vollst.1öslich >2000 K	kritische Temperatur 🛛 ~1973 K	/23/		
UN-CeN	<0 /8/	825 /17/	vollst.löslich	vollst.Mischbarkeit bei 2073 K	/26/		
UN-PrN	773 /8/		vollst.löslich	vollst.Mischbarkeit bei 2173 K	/23/		
UN-NdN	373 /8/		vollst.1öslich	vollst.Mischbarkeit bei 2173 K	/26/		
UN-TiN	4273 /8/	5150 /17/	1973 K 1,5% 2273 K 3,0% 2673 K 5,0%	1973 K 1%) 2273 K 3%) TiN in UN 2673 K 5%)	/31/		
UN-ZrN	1073 /8/	1400 /17/	vollst.löslich >1073 K	vollst.Mischbarkeit bei 2273 K	/31/		
UN-HfN	1573 /8/	1900 /17/	vollst.löslich 1573 K	vollst.Mischbarkeit bei 2273 K	/31/		
UN-VN	5273 /8/	7300 /17/	2072 K 1% /8/	2073 K ∿1% VN in UN	/11/		
UN-NBN	2873. /8/	3850 /17/	2273 K 14% /8/	2273 K ~50% NbN in UN	/11/		
UN-TaN	3073 /8/	4350 /17/	2273 K 12% /8/	2273 K ∿10% TaN in UN	/11/		

Tab. 3.2.2: Kritische, errechnete Entmischungstemperaturen und experimentelle Befunde in quasibinären Nitridsystemen mit UN

sichtbaren Zerfall nicht ausreichen. Mittlere kritische Entmischungstemperaturen werden für UN-ZrN und UN-HfN errechnet. Für Nitridkombinationen mit hohen kritischen Entmischungstemperaturen (UN-LaN,-TiN,-VN), werden Mischungslücken mit teilweise nur geringen Randlöslichkeiten beobachtet. Entsprechend den Stabilitätsunterschieden der Nitride in den einzelnen Nitridsystemen lassen sich folgende allgemeine Beobachtungen machen:

Die Nitride der Actinoide und der Lanthanoide vesitzen ähnliche Stabilität. Dementsprechend stehen uranreichere (höhere Stabilität des Urannitrids) oder uranärmere (höhere Stabilität des anderen Nitrids) Mischkristalle mit den beiden Metallen im Gleichgewicht. Die Nitride der IVA-Metalle sind stabiler als UN und stehen deshalb mit Uran im Gleichgewicht. Der umgekehrte Fall gilt für die Nitride der VA- und VIA-Metalle. Hier steht deshalb Urannitrid im Gleichgewicht mit entsprechenden Metallen.

Die dargestellten errechneten Gleichgewichte in den ternären Nitridsystemen können als Richtwert für das Reaktionsverhalten in Systemen von Urannitrid und Übergangsmetallen und als Grundlage für weitere experimentelle Untersuchungen betrachtet werden.

Literatur: Ternäre Nitridsysteme der Übergangsmetalle der 3.Gruppe /1/ M.Albutt, R.M.Dell J.Nucl.Mater.24 (1967) 1 /2/ W.Chubb, D.Keller, R.Wullart, V.Storhok U.S.P. 3.661.709 (1972) /3/ Bericht BMI 1962 (1972) /4/ A.Benadik Jad.Energ. 15 (1969) 325 /5/ J.M.Leitnaker, K.E.Spear U.S.P. 3.746,616 (1973) /6/ A.A.Bauer Reactor Technol.15 (1972) 87 /7/ F.Thümmler Reaktortagung des Deutschen Atomforums, Berlin, 1970, Tagungsband S.561 /8/ H.Holleck, T.Ishii KfK 1754 (1973) /9/ H.Holleck KfK 1726 (1972) /10/ H.Holleck, H.Kleykamp in Gmelins Handbuch der anorganischen Chemie, Bd.4; System Nr.71 Transurane, Teil C, Verbindungen Verlag Chemie, Weinheim/Bergstr., 1972, S.157 /11/ H.Holleck KfK 1011 (1969) /12/ H.Holleck IAEA-Symp. Thermod. of Nucl. Mat, Proceedings, Wien 1975, S.213 /13/ E.Smailos KfK 1953 (1974) /14/ A.Vendl J.Nucl.Mat. 79 (1979) 246 /15/ H.Holleck, E.Smailos unveröffentlichte Ergebnisse 1970 /16/ R.J.Gambino, J.J.Cuomo J.Electrochem.Soc. 113 (1966) 401 /17/ H.Holleck, N.Shohoji

KfK, in Vorbereitung

- /18/ W.M.Pardue, V.W.Storhok, R.A.Smith in A.E.Kay, M.B.Waldron; Plutonium 1965, London, 1967, S.639
- /19/ F.Anselin J.Nucl.Mat. 10 (1963) 301
- /20/ P.E.Potter J.Nucl.Mat. 47 (1973) 7
- /21/ R.Lorenzelli CEA R-3536 (1968)
- /22/ H.Holleck, E.Smailos J.Nucl.Mat.91 (1980)237
- /23/ H.Holleck, E.Smailos, F.Thümmler J.Nucl.Mat. 32 (1969) 281
- /24/ N.Shohoji, M.Katsura, T.Sano J.Nucl.Mat. 73 (1978) 89
- /25/ J.Waldhart, P.E.Ettmayer Mh.Chem.110 (1979) 21
- /26/ H.Holleck, E.Smailos, F.Thümmler J.Nucl.Mat. 28 (1968) 105
- /27/ N.Shohoji, M.Katsura, T.Sano J.Nucl.Mat. 73 (1978) 89
- /28/ H.Holleck, H.Kleykamp,F.Thümmler Reaktortagung, Bonn, 1971, Berichte des Deutschen Atomforums, S.582
- /29/ vgl. z.B. A.A.Bauer Reactor Technol. 15 (1972) 87
- /30/ H.Holleck unveröffentlichte Ergebnisse
- /31/ H.Holleck, E.Smailos, F.Thümmler Mh.Chem.99 (1968) 985
- /32/ R.A.Potter, J.L.Scott US-Patent 2532739/A/1976
- /33/ K.E.Spear, J.M.Leitnaker High Temp.Sci., 3 (1971) 29
- /34/ R.Benz, W.H.Zachariasen J.Nucl.Mat. 37 (1970) 109

- /35/ S.Imoto, S.Namba J.Nucl.Mat. 51 (1974) 106
- /36/ C.Politis, F.Thümmler, H.Wedemeyer J.Nucl.Mat. 38 (1971) 132
- /37/ C.Politis KfK 2168 (1975**)**
- /38/ G.Briggs Trans.Brit.Ceram. Soc. 62 (1963) 221
- /39/ J.P.Guha J.Nucl.Mat. 41 (1971) 187
- /40/ J.P.Guha J.Nucl.Mat. 45 (1972) 40
- /41/ F.Anselin CEA-R-2762 (1965)
- /42/ A.D.Pelton, W.T.Thomson "Phase Diagrams", Progress in Solid State Chemistry, Vol.10, Part 3 (1975) 119
- /43/ H.Holleck, W.Wagner Thermodyn. Nucl.Mat. 1967, IAEA Wien, 1968, 667
- /44/ D.F.Carrol HW-81603 (1965)
- /45/ J.P.deLuca, J.M.Leitnaker J.Am.Ceram.Soc.55 (1972) 273
- /46/ D.Brucklacher, W.Dienst, Th.Dippel, O.Götzmann, P.Hofmann, H.Holleck H.Kleykamp, W.Siebmanns, F.Thümmler Neue Technik 7 (1971) S.299
- /47/ J.T.Venard, J.E.Spruiell, O.B.Cavin J.Nucl.Mat.27 (1968) 257
- /48/ J.T.Venard, J.E.Spruiell, O.B.Cavin J.Nucl.Mat.24 (1967) 245
- /49/ B.Magyar J.Inorg.Chem. 7 (1968) 1457
- /50/ P.Ettmayer, J.Waldhart, A.Vendl Mh. Chem. 110 (1979) 1109

Ternäre Nitride haben bei weitem nicht die technische Bedeutung erlangt, wie die entsprechenden Carbide. Als Gründe hierfür sind vor allem die thermische Instabilität, aber auch eine im Vergleich zu Carbiden im allgemeinen geringere Härte und ein schlechteres Benetzungsverhalten zu Bindemetallen anzusehen. Eine teilweise höhere Duktilität sowie eine geringere Verschweissneigung beim Bearbeiten von Eisenbasislegierungen haben jedoch in letzter Zeit neues Interesse an Nitriden bzw. Carbonitriden für Hartstoffe in verschleissfesten Materialien entstehen Iassen (vgl. z.B. /1-4/). Trotz einiger, diesem Trend folgender, neuerer Untersuchungen ist der Kenntnisstand über Aufbau und Eigenschaften ternärer Nitridsysteme sehr unvollständig. Die wenigen älteren Arbeiten sind in zwei Übersichtswerken zusammengefasst /5,6/. Diese beziehen sich fast ausschliesslich auf das Auftreten ternärer Nitride. Die kubisch flächenzentrierten Nitride der Übergangsmetalle der 4., 5. und 6.Gruppe sind meist vollkommen mischbar. Das Mischungsverhalten verdeutlicht Abb.3.2.3.1.

3.2.3.1 Nitridsysteme mit Übergangsmetallen der 4.Gruppe

In den Systemen <u>Ti-Zr-N</u> und <u>Ti-Hf-N</u> sind die Mononitride TiN und ZrN bzw. HfN bei Temperaturen von 2600 K bzw. 2500 K vollkommen mischbar /3,7,8/. Eine rechnerische Abschätzung der kritischen Entmischungstemperaturen führt zu 1850 K für das quasibinäre System TiN-ZrN und zu 1300 K für TiN-HfN /9/. Die Gitterkonstanten der Mischphasen sind deutlich grösser als nach der Additivitätsregel zu erwarten ist. Auch im System <u>Zr-Hf-N</u> sind die Mononitride bis zu tiefen Temperaturen voll mischbar /3,7/. Der abgeschätzte Zerfall des Mischkristalls liegt bei 75 K /9/.

Die Phasengleichgewichte in den ternären Systemen <u>Ti-V-N</u>, <u>Zr-V-N</u> und <u>Hf-V-N</u> sind gekennzeichnet durch eine höhere Stabilität der Nitride der Übergangsmetalle der 4.Gruppe im Vergleich zu jenen der 5.Gruppe. Dies bedingt eine Konodenlage, ausgehend von den stabileren Nitriden TiN, ZrN und HfN zu Vanadin (vgl. Abb.3.2.3.2). TIN und VN sind im Gegensatz zu den Kombinationen ZrN-VN und HfN-VN vollkommen mischbar /3,7/.

Tab. 3.2.3.1: Ternäre Nitride der Übergangsmetalle der 4., 5. und 6. Gruppe

Dhana	Strukturtyp	Gitterkonstante	Existenzbereich	1.140,000,000
Phase	Raumgruppe	(nm)	Bemerkung	Literatur
(Ti,Zr)N	kfz., NaCl 0 <mark>5</mark> - Fm3m	positive Abweichung von der Linearität	vollkommene Mischbarkeit der binären Nitride TiN und ZrN	/3,7/
(Ti,Hf)N	kfz., NaCl O <mark>5</mark> - Fm3m	positive Abweichung von der Linearität	vollkommene Mischbarkeit der binären Nitride TiN und HfN	/3,7/
(Ti,V)N	kfz., NaCl O <mark>5</mark> ~ Fm3m	fast lineare Beziehung	vollkommene Mischbarkeit der binären Nitride TiN und VN	/3,7/
(Ti,Nb)N	kfz∴, NaCl O <mark>5</mark> - Fm3m	fast lineare Beziehung	vollkommene Mischbarkeit der binären Nitride TiN und NbN	/3,7/ .
(Ti,Ta)N	kfz., NaCl O _h ⁵ - Fm3m	positive Abweichung von der Linearität	vollkommene Mischbarkeit der binären Nitride TiN und TaN bei etwa 2000 K und 30 bar N ₂	/12/
(Ti,Čŗ)N	kfz., NaCl O <mark>5</mark> - Fm3m	negative Abweichung von der Linearität	vollkommene Mischbarkeit der binaren Nitride TiN und CrN; orthorh. Verzerrung des MK unterhalb 1000 K auf der Cr-Seite	/13/ /14/
(Zr,Hf)N	kfz., NaCl 0 <mark>5</mark> - Fm3m	positive Abweichung von der Linearität	vollkommene Mischbarkeit der binären Nitride ZrN und HfN	/3,7/
Zr _{~3} V _{~3} N	kfz., W ₃ Fe ₃ C E9 ₃ , Fd3m	a = 1.215	n-Nitrid, Zusammensetzung unsicher	/28/
(Zr,Nb)N	kfz., NaCl O <mark>h</mark> - Fm3m	geringfügig positive Ab- weichung von der Li- nearität	vollkommene Mischbarkeit der binären Nitride ZrN und NbN	/3,7/
(Zr,Ta)N	kfz., NaCl 0 <mark>5</mark> – Fm3m	geringfügig positive Ab- weichung von der Li- nearität	vollkommene Mischbarkeit der binären Nitride ZrN und TaN bei etwa 2000 K und 30 bar N ₂	/12/
(Zr,Cr)N	kfz., NaCl 0 <mark>5</mark> - Fm3m	-	vollkommene Mischbarkeit der binären Nitride ZrN und CrN oberhalb etwa 1700 K	/13/
(Hf _{1-y} V _y)N	kfz., NaCl O <mark>h</mark> - Fm3m	-	erhebliche Löslichkeit von VN in HfN	/10/
(Hf,Nb)N	kfz., NaCl O <mark>5</mark> - Fm3m	geringfügig positive Ab- weichung von der Li- nearität	vollkommene Mischbarkeit der binären Nitride HfN und NbN	/3/
(Hf,Ta)N	kfz., NaCl O <mark>5</mark> - Fm3m	positive Abweichung von der Linearität	vollkommene Mischbarkeit der binären Nitride HfN und TaN bei etwa 2000 K und 30 bar N ₂	/12/
(Hf,Cr)N	kfz., NaCl 0 <mark>5</mark> - Fm3m	-	vollkommene Mischbarkeit der binären Nitride HfN und CrN	/13/
(Hf,Mo)N	-	-	Zusammensetzung unsicher	/1/

Phase	Strukturtyp Raumgruppe	Gitterkonstante (nm)	Existenzbereich Bemerkung	Literatur
(V,Nb)N	kfz., NaCl O _h ⁵ - Fm3m	geringfügig positive Ab- weichung von der Li- nearität	vollkommene Mischbarkeit der binären Nitride VN und NbN	/3,7/
(V,Ta)N	kfz., NaCl O <mark>5</mark> - Fm3m h	stark positive Abweichung von der Linearität	vollkommene Mischbarkeit der binären Nitride VN und TaN bei etwa 2000 K und 30 bar N ₂	/12/
(V,Cr)N	kfz., NaCl O <mark>5</mark> - Fm3m	negative Abweichung von der Linearität	vollkommene Mischbarkeit der binären Nitride VN und CrN	/16/
(V,Cr) ₂ N	hex., L'3 D _{6h} - P6 ₃ /mmc	-	vollkommene Mischbarkeit der binären Nitride V ₂ N und Cr ₂ N sehr wahrscheinlich	/16/
(V,Mo)N _{1-x}	kfz., Defekt NaCl O _h ⁵ - Fm3m	-	vollkommene Mischbarkeit der Nitride VN und MozN bei etwa 1400 K und 30 - 300 bar N ₂	/20/
(Nb,Ta)N	kfz., NaCl 0 <mark>5</mark> - Fm3m	geringfügig positive Ab- weichung von der L1- nearität	vollkommene Mischbarkeit der Nitride NbN und TaN bei etwa 2000 K und 30 bar N ₂	/12/
NbCrN	tetrag. D _{4h} - P4/nmm	a = 0.3037 c = 0.7391	-	/17,18/
Nb ₃₋₄ Cr ₂₋₃ N	kfz., W ₃ Fe ₃ C E9 ₃ , Fd3m	a = 1.151	n-Nitrid, Zusammensetzung unsicher	/28/
NbMoN _{1-x}	tetrag. D ⁷ - P4/nmm	a = 0.3095 b = 0.7799	Z-Phase	/21/
Ta _{0.8} Cr _{1.2} N	tetrag. D _{4h} - P4/nmm	a = 0.3.13 b = 0.7334	Z-Phase	/17/
Ta ₃₋₄ Cr ₂₋₃ N	kfz., W ₃ Fe ₃ C E9 ₃ , Fd3m	a = 1.143	n-Nitrid, Zusammensetzung unsicher	/28/
TaMoN	tetrag. D _{4h} - P4/nmm	a = 0.3081 b = 0.7800	Z-Phase	/22/
(Cr,Mo)N _{1-x}	kfz., Defekt NaCl O _h ⁵ - Fm3m	-	vollkommene Mischbarkeit der binären Nitride CrN und Mo ₂ N bei etwa 1300 K und 30 - 300 bar N ₂	/24/
(Cr,Mo) ₂ N	hex., L'3 D _{6h} - P6 ₃ /mmc	-	weitgehender Cr/Mo Austausch in Cr ₂ N	/24/
(^{Mo} 1-y ^W y)2 ^N	kfz., Defekt NaCl	-	Lösung von bis zu 35 Mol % WaN in MoaN	/29/

.

TiN		٧N		CrN	
	[]]				
\bigotimes		 \bigotimes			
ZrN		NPN		MazN	
	_				
HfN		TaN			
				1	
		\otimes			

Abb.3.2.3.1: Zum Mischungsverhalten der Nitride der 4., 5. und 6. Gruppe (Gleiche Zeichnung bei den einzelnen Verbindungen bedeutet vollständige Mischbarkeit)

Die Löslichkeit auf dem Schnitt HfN-VN übersteigt bei einer bestimmten Temperatur diejenige des quasibinären Systems ZrN-VN merklich. Dies steht in vollem Einklang mit errechneten Zerfallstemperaturen der Mischphasen von 375 K für (Ti,V)N, 2850 K für (Zr,V)N und 1950 K für (Hf,V)N /9/. Isotherme Schnitte bei 1473 K in den Systemen Ti-V-N, Zr-V-N und Hf-V-N zeigt Abb.3.2.3.2 (vgl. /10/). Im metallreichen Gebiet des Systems Zr-V-N, nahe der Zusammensetzung Zr₃V₃N wurden übrigens Anzeichen für die Existenz eines n-Nitrids gefunden /28/.

Die Systeme <u>TI-Nb-N</u>, <u>Zr-Nb-N</u> und <u>Hf-Nb-N</u> sind gekennzeichnet durch vollkommene Mischkristallreihen (Ti,Nb)N, (Zr,Nb)N und (Hf,Nb)N /3,7, 11,31/.Die Gitterkonstanten der Mischphasen zeigen durchwegs eine positive Abweichung von der Linearität. Errechnete Entmischungstemperaturen liegen bei 650 K für (Ti,Nb)N, 775 K für (Zr,Nb)N und 275 K für (Hf,Nb)N. Die Phasengleichgewichte in den drei Systemen (vgl. Abb. 3.2.3.3) gestalten sich sehr ähnlich. Ein Ti-, Zr- bzw. Hf-reicher Nitridmischkristall steht mit einer Nb-Basis-Legierung im Gleichgewicht. Weitere Untersuchungen im System Hf-Nb-N betreffen hauptsächlich den niobreichen Teil des Systems /26/.

Um ternäre, kubisch flächenzentrierte, tantalreiche Nitridmischphasen zu erhalten, werden hohe Temperaturen (1900 K) und höhere Stickstoffdrucke (30 bar N₂) benötigt /12/. Bei diesen Bedingungen besteht vollkommene Mischbarkeit der Nitridpaare <u>TiN-TaN</u>, <u>ZrN-TaN</u>, <u>HfN-TaN</u> und ebenso VN-TaN und NbN-TaN. Entmischungstemperaturen lassen sich abschätzen zu 900 K für (Ti,Ta)N, 1150 K für (Zr,Ta)N, 600 K für (Hf,Ta)N, 100 K für (V,Ta)N und 75 K für (Nb,Ta)N /9/. - 264 -

Abb.3.2.3.2: Isotherme Schnitte bei 1473 K in den Systemen Ti-V-N, Zr-V-N und Hf-V-N (vgl. /10/)

Abb.3.2.3.4: Isothermer Schnitt bei 1273 K im System Ti-Cr-N (vgl. /13)/

Aus der Gruppe der Nitridsysteme der Übergangsmetalle der 4.Gruppe mit jenen der 6.Gruppe ist nur das System <u>Ti-Cr-N</u> näher untersucht worden /13,14/. TiN und CrN sind vollkommen mischbar. Die Phasengleichgewichte verdeutlicht Abb. 3.2.3.4 in einem isothermen Schnitt bei 1273 K. In den Systemen <u>Zr-Cr-N</u> und <u>Hf-Cr-N</u> sind nur die Mononitridschnitte charakterisiert /13/. Während für das Nitridpaar HfN-CrN vollständige Mischbarkeit bei 1273 K gefunden wurde, tritt im System ZrN-CrN eine Mischungslücke auf. Der Verlauf der Phasengrenzen deutet allerdings auf eine Schliessung dieser Mischungslücke bei Temperaturen um 1700 K hin. In den Systemen <u>Ti-Mo-N</u>, <u>Zr-Mo-N</u> und <u>Hf-Mo-N</u> treten neben Randtöslichkeiten bei 1473 K und 30 bar N₂ (isotherme Schnitte in /32/) höchstens im System Hf-Mo-N eine ternäre Phase auf /1/. In einer früheren Arbeit wurden allerdings Anzeichen für ternäre Nitride (Zr,Mo)N_{1-x} gefunden /27/. ZrN reagiert bei 10 bar N₂ nicht mit Wolfram bis zum Erreichen des eutektischen Schmelzpunktes /37/.

3.2.3.2 Nitridsysteme mit Übergangsmetallen der 5.Gruppe

Obwohl die Nitridsysteme der Übergangsmetalle der 5.Gruppe <u>V-Nb-N</u>, <u>V-Ta-N</u> und <u>Nb-Ta-N</u> nur im Bereich der kubischen Nitridmischphasen untersucht wurden, sind auch für die anderen binären Nitride ausgeprägte gegenseitige Lösungen zu erwarten. Im System Nb-Ta-N konnte dies z.B. für verschiedene (Ta,Nb)N_x-Phasen gezeigt werden /15,30,36/. Die kubisch flächenzentrierten Mononitride VN, NbN und TaN sind untereinander auch im festen Zustand vollkommen mischbar /12/. Errechnete Entmischungstemperaturen liegen bei 1150 K für (V,Nb)N, 100 K für (V,Ta)N und 75 K für (Nb,Ta)N /9/.

- 265 -

 $\frac{Abb.3.2.3.6}{1373 \text{ K} (p_{N_2} \leq 300 \text{ bar}) \text{ in den Systemen}} \\ V-Mo-N (a, /20/), Nb-Mo-N (b, /19,34/u. Ta-Mo-N (c, /19,35/) \\ \end{array}$

<u>Abb.3.2.3.7</u>: Isotherme Schnitte bei 1273 K bzw. 1373 K ($P_{N_2} \leq 300$ bar) in den Systemen Cr-Mo-N (a), Cr-W-N (b) und Mo-W-N (c) (vgl. /19, 24, 25,29/)

1000 °C

Mo₂N

1100 °C

1100°C

P_{N2}≤ 300 bar

w

p_{N2}≦ 300bar

ICr, MolN_{1-x} + ICr, Mol₂N + Mo

-Mo₂N + Mo

Мо

 $P_{N_2} \cong 300 \text{ bar}$

Die ternären Nitridsysteme der Übergangsmetalle der 5. und 6.Gruppe sind durch ausgeprägte Mischkristallbildung sowie durch Bildung von ternären Komplexnitriden charakterisiert. Im System <u>V-Cr-N</u> sind sowohl die Mononitride VN und CrN als auch die Subnitride V₂N und Cr₂N bei 1373 K vollkommen mischbar (vgl. isothermer Schnitt in Abb. 3.2.3.5). In den analogen Systemen mit Niob und Tantal treten tetragonale Komplexnitride der Formel NbCrN und TaCrN auf /17,18/. Zur Charakterisierung des strukturellen Aufbaus dieser Phasen wird ein neues Strukturelement für Übergangsmetall-Nichtmetall Phasen vorgeschlagen: die vierseitige Pyramide /19/. Auf der metallreichen Seite der Systeme <u>Nb-Cr-N</u> und <u>Ta-Cr-N</u> treten sogenannte n-Nitride auf, deren Zusammensetzung nicht genau fixiert ist /28/. Die Phasen Nb₃₋₃Cr₂₋₃N und Ta₃₋₄Cr₂₋₃N kristallisieren kubisch mit a = 1.151 nm bzw. a = 1.143 nm (vgl. Tab. 3.2.3.1).

Isotherme Schnitte bei 1373 K für Stickstoffdrucke zwischen 1 und 300 bar in den Systemen <u>V-Mo-N</u>, <u>Nb-Mo-N</u> und <u>Ta-Mo-N</u> zeigt Abb. 3.2.3.6a bis c. VN_{1-x} und das kubisch flächenzentrierte Mo₂N sind vollkommen mischbar /20/. Niob und Tantal bilden mit Molybdän und Stickstoff Komplexnitride NbMoN bzw. TaMoN /21,22/. Diese Phasen (Z-Phasen) kristallisieren tetragonal isotyp zu NbCrN bzw. TaCrN (Gitterkonstanten vgl. Tab.3.2.3.1). Bei hohen Stickstoffdrucken (360 bar) könnte zusätzlich eine tetragonale Verbindung Mo(Ta,Mo)₂N₂ hergestellt und charakterisiert werden /33/. Mo₂N löst erhebliche Mengen Niob und Tantal.Frühere Untersuchungen bei 2273 K und etwa 10⁻⁹ bar N₂ zeigten demgegenüber nur geringe gegenseitige Löslichkeit /23/. Weitere Untersuchungen in den Systemen Nb-Mo-N und <u>Nb-W-N</u> betreffen nur den niobreichen Teil /26/.

3.2.3.3 Nitridsysteme mit Übergangsmetallen der 6.Gruppe

Während im System <u>Cr-Mo-N</u> bei 1273 K vollständige Löslichkeit im festen Zustand zwischen CrN und Mo₂N sowie ein weitgehender Cr/Mo Austausch in (Cr,Mo)₂N beobachtet wird, vermag im System <u>Cr-W-N</u> weder CrN noch Cr₂N merkliche Mengen Wolfram im Gitter aufzunehmen /24,25/. Isotherme Schnitte in den Systemen Cr-Mo-N bei 1273 K Cr-W-N bei 1373 K und Mo-W-N bei 1373 K und Stickstoffdrucken \leq 300 bar N₂ zeigt Abb.3.2.3.7a bis c. Im System <u>Mo-W-N</u> vermag Mo₂N etwa 35 Mol % W₂N zu lösen /29/.

- Literatur zu Kap. 3.2.3: Ternäre Nitridsysteme der Übergangsmetalle der 4., 5. und 6.Gruppe
 - /1/ R.Kieffer, P.Ettmayer High Temp. High Press. 6 (1974) 253
 - /2/ R.Kieffer, P.Ettmayer, M.Freudhofmeier Metall, 25 (1971) 1335
 - /3/ R.Kieffer, H.Nowotny, P.Ettmayer, G.Dufek Metall, 26 (1972) 701
 - /4/ R.Kieffer, D.Fister, E.Heidler Metall, 25 (1972) 128
- /5/ R.Kieffer, F.Benesovsky Hartstoffe, Springer Verlag, 1965
- /6/ G.V.Samsonov Nitride; Kaukova Dumka, Kiew, 1969
- /7/ P.Duwez, F.Odell J.Electrochem.Soc. 97 (1950) 299
- /8/ H.Nowotny, F.Benesovsky, E.Rudy Mh. Chem. 91 (1960) 348
- /9/ H.Holleck, N.Shohoji in Vorbereitung
- /10/ A.K.Shurin, O.M.Barabasch Metallofizika 45 (1973) 84
- /11/ O.M.Barabasch, A.K.Shurin Metallofizika 71 (1978) 83
- /12/ J.Gatterer, G.Dufek, P.Ettmayer, R.Kieffer Mh.Chem. 106 (1975) 1137
- /13/ R.Kieffer, P.Ettmayer, F.Petter Mh.Chem. 102 (1971) 1182
- /14/ M.I.Aivazov, T.V.Rezchikova, V.F.Degtyareva Neorg. Mat.11 (1975) 242
- /15/ G.Brauer, E.Mohr-Rosenbaum Z.anorg.allg.Chem. 405 (1974) 225
- /16/ P.Ettmayer, W.Schebesta, A.Vendl, R.Kieffer Mh.Chem. 109 (1978) 929
- /17/ P.Ettmayer Mh.Chem. 102 (1971) 858
- /18/ D.H.Jack, K.H.Jack J.Iron Steel Inst. 210 (1972) 790

- /19/ A.Vendl Planseeber.Pulvermet. 26 (1978) 233
- /20/ A.Vendl Mh.Chem.110 (1979) 685
- /21/ A.Vendl Mh.Chem.110 (1979) 103
- /22/ A.Vendl Mh.Chem.109 (1978) 1001
- /23/ G.Hörz, E.Steinheil Z.Metallk. 62 (1971) 893
- /24/ P.Ettmayer, A.Vendl, R.Kieffer High Temp. High Press., 10 (1978) 699
- /25/ P.Ettmayer, A.Vendl, G.Banik, R.Kieffer Mh.Chem. 109 (1978) 1005
- /26/ A.Taylor, N.J.Doyle J.Less Common Met. 13 (1967) 413
- /27/ G.Brauer, F.Leibrandt J.Less Common Met. 12 (1967) 57
- /28/ H.Holleck, F.Thümmler Mh.Chem. 98 (1967) 133
- /29/ G.Banik, P.Ettmayer, A.Vendl, R.Kieffer High Temp. High Press, 11 (1979) 349
- /30/ W.P.Killani Dissertation Uni.Freiburg, 1978
- /31/ H.Savage, C.Altstetter J.Less Common Met. 22 (1970) 399
- /32/ O.M.Barabash, A.K.Shurin Metally, 4 (1978) 180
- /33/ P.Ettmayer, A.Vendl Mh. Chem.111 (1980) 547
- /34/ A.Vendl Mh. Chem.110 (1979) 1099
- /35/ A.Vendl Mh. Chem.110 (1979) 879
- /36/ G.Brauer, W.Kiliani Z.anorg.allg. Chem. 452 (1979) 17
- /37/ S.P.Kogel, M.A.Eronyan, R.G.Avarbe, A.N.Petrov Neorg.Mat. 14 (1978) 89

3.2.4 Ternäre Nitridsysteme der Übergangsmetalle der 4., 5. und 6. Gruppe mit Mn und den Metallen der Eisengruppe: Fe,Co und Ni

Nitride der hochschmelzenden Übergangsmetalle werden in Verbindung mit den Eisenmetallen als Binder für verschleissfeste Hartmetalle in Betracht gezogen. Reaktionen zwischen den Hartstoffphasen und dem Bindemetall beeinflussen die Eigenschaften meist in negativer Weise (vgl. /1/). Die Phasenbeziehungen in den betreffenden Systemen geben Auskunft über das Reaktionsverhalten in Abhängigkeit von Parametern wie Stöchiometrie, Temperatur und Art des Bindemetalles. Auf der metallreichen Seite der Nitridsysteme von Übergangsmetallen treten häufig Komplexnitride mit einer Ti₂Ni-Wirtstruktur auf (vgl. z.B. /2/).

Zusammensetzung sowie Bildungsbedingungen sind in vielen Fällen nur unzureichend bekannt. Im Rahmen der Untersuchungen zum Aufbau und zu den Eigenschaften ternärer Nitridsysteme wurde daher besonders der Frage der Stabilisierung von ternären Verbindungen durch Nichtmetalle Beachtung geschenkt. Das Verhalten der Nitride der Übergangsmetalle der 4.Gruppe mit Mn,Fe,Co und Ni wurde bisher kaum betrachtet. Gleichgewichte zwischen den Nitriden TiN, ZrN und HfN mit Mn, Fe, Co und Ni sind wahrscheinlich. TiN und MnN_{1-x} zeigen eine ausgeprägte Löslichkeit im festen Zustand. Ausgehend von TIN konnte eine Mischphase Ti 0.55 Mn 0.37 No.80 hergestellt werden /3/. Im metallreichen Konzentrationsbereich der Systeme sind n-Nitride wahrscheinlich. Ternäre Nitride der Zusammensetzung Ti_{0.7}Co_{0.3}N und Ti_{0.7}Ni_{0.3}N, die im WC-Typ kristallisieren und durch Reaktion in NH_z bei etwa 1000 K hergestellt wurden, sind in einer älteren Arbeit beschrieben /4/. n-Nitride treten in den Dreistoffsystemen Zr-Fe-N, Zr-Co-N und Zr-Ni-N nahe der Zusammensetzung $Zr_{4}M_{2}N$ (M = Fe,Co,Ni) auf /2/ (vgl. Tab. 3.2.4.1).

Die Systeme der Übergangsmetalle der 5.Gruppe V,Nb und Ta mit den Metallen der Eisengruppe und Stickstoff wurden kürzlich etwas eingehender geprüft /5-7/.Abb.3.2.4.1a und b zeigen die Phasenfeldaufteilung des Systems V-Fe-N bei 1473 K bzw. 1373 K. Die nonvarianten Punkte der Dreiphasengleichgewichte VN_{1-x}+V₂₋₃N+a-(Fe,V) bzw. VN+N+a-(Fe,V) verschieben sich mit steigender Temperatur zu höheren Vanadingehalten,

Phase	Strukturtyp Raumgruppe	Gitterkonstante (nm)	Existenzbereich Bemerkung	Literatur
(Ti,Mn)N _{1-x}	kfz., NaCl 0 <mark>5</mark> - Fm3m	-	Mischkristal] von MnN _{1-x} in TiN bis ^{Ti} o.55 ^{Mn} o.37 ^N o.80	/3/
Ti ₄ Fe ₂ N	kfz., W ₃ Fe ₃ C 0 <mark>7</mark> - Fd3m	a = 1.1319	n-Nitrid	/27/
Ti _{0.7} Co _{0.3} N	hex., WC D ³ _{3h} - P6m2	a = 0.294 c = 0.290	hergestellt durch NH ₃ - Nitrierung	/4/
Ti _{o.7} Ni _{o.3} N	hex., WC D ³ _{3h} - Рбт2	a = 0.294 c = 0.289	hergestellt durch NH ₃ - Nitrierung	/4/
Zr ₄ Fe ₂ N	kfz., W ₃ Fe ₃ C O _h - Fd3m	a = 1.220	n-Nitrid	/2/
Zr ₄ Co ₂ N	kfz., W ₃ Fe ₃ C 0 <mark>7</mark> - Fd3m	a = 1.216	η-Nitrid	/2/
Zr ₄ Ni ₂ N	kfz., W ₃ Fe ₃ C O <mark>7</mark> - Fd3m	a = 1.217	n-Nitrid, Zusammensetzung unsicher	/2/
(V,Mn)N _{1-x}	kfz., NaCl O <mark>5</mark> - Fm3m	-	Mischkristall von MnN _{1-x} in VN bis V _{0.56} Mn _{0.37} N _{0.83}	/3/
V ₄ Co ₂ N	kfz., W ₃ Fe ₃ C 0 <mark>7</mark> - Fd3m	a = 1.088 - 1.083	n-Nitrid	/2,5/
V ₄ Ni ₂ N	kfz., W ₃ Fe ₃ C O _h - Fd3m	a = 1.088 - 1.081	n-Nitrid	/2,5/
Nb ₃₋₄ Mn ₂₋₃ N	kfz., W ₃ Fe ₃ C 0 <mark>7</mark> - Fd3m	a = 1.142	n-Nitrid, Zusammensetzung nicht gesichert	/2/
Nb _{4-y} Fe _{2+y} N	kfz., W ₃ Fe ₃ C 0 <mark>7</mark> - Fd3m	a = 1.142 (Nb-reich) b = 1.131 (Fe-reich)	n-Nitrid	/2,5/
Nb _{4-x} Co _{2+y} N	kfz., W ₃ Fe ₃ C O _h - Fd3m	a = 1.159 (Nb-reich) a = 1.144 (Co-reich)	n-Nitrid	/2,6/
ND4Ni2N	kfz., W ₃ Fe ₃ C O _h - Fd3m	a = 1.160	n-Nitrid	/2,6/

.

Tab. 3.2.4.1: Ternäre Nitride der Übergangsmetalle der 4., 5: und 6.Gruppe mit Mn und den Metallen der Eisengruppe: Fe,Co,Ni
Phase	Strukturtyp Raumgruppe	Gitterkonstante (nm)	Existenzbereich Bemerkung	Literatur
ta ₃ MnN ₄	hex., D _{6h} - P6 ₃ /mmc	a = 0.3023	hergestellt durch NH ₃ - Nitrierung	/9/
$Ta_{\sim 3}Mn_{\sim 3}N$	kfz., W ₃ Fe ₃ C O _h ⁷ - Fd3m	a = 1.135	n-Nitrid, Zusammensetzung nicht gesichert	/2/
^{Ta} 2 ^{FeN} 2.6	hex., D _{3h} - F6m2	a = 0.5156 c = 1.031	hergestellt durch NH ₃ - Nitrierung	/9/
Ta ₄ Fe ₂ N	kfz., W ₃ Fe ₃ C 0 <mark>7</mark> - Fd3m	a = 1.130	n∼Nitrid	/2,7/
Ta _{3+y} Fe _{3-y} N	kfz., W ₃ Fe ₃ C 0 <mark>7</mark> - Fd3m	-	n-Nitrid	/7/
Ta2CoN2.5	hex., D _{3h} - Fóm2	a = 0.5161 c = 1.030	hergestellt durch NH ₃ - Nitrierung	/9/
Ta ₄ Co ₂ N _{1-x}	kfz., W ₃ Fe ₃ C 0 _h ⁷ - Fd3m	a = 1.153 - 1.159	n - Nitrid	/2,7/
Ta ₃ Co ₃ N	kfz., W ₃ Fe ₃ C O _h - Fd3m	a = 1.122 - 1.126	n-Nitrid	/7/
Ta ₂ NiN _{2.45}	hex., D _{3h} - Fēm2	a = 0.5168 b = 1.036	hergestellt durch NH ₃ - Nitrierung	/9/
Ta ₄ Ni ₂ N	kfz., W ₃ Fe ₃ C O <mark>7</mark> - Fd3m	a = 1.150 - 1.158	n-Nitrid	/2,7,8/
(Cr,Mn)N _{1-x}	kfz., NaCl 0 <mark>5</mark> - Fd3m	a = 0.4162 für ^{Cr} o.5 ^{Mn} o.5 ^N o.92	Mischphase von MnN _{1-x} in CrN bis Cr _{0.21} Mn _{0.79} N _{0.80} bei 1273 K	/11,12/
(Cr,Mn) ₂ N	hex., L'3 D ⁴ - P6 ₃ /mmc		vollständige Mischbarkeit von ^{Cr} 2 ^N und Mn ₂ N	/11/
Mo3Fe7N4	kub., β-Mn P4 ₁ 32	a = 0.6695 - 0.6702	Mo ₃ Co ₇ N4 und Mo ₃ Ni7N4 wahrscheinlich	/17/
Mo ₃ Fe ₃ N	kfz., W ₃ Fe ₃ C O _h - Fd3m	a = 1.1065 ~ 1.1095	n-Nitrid	/17/

•

.

bei gleicher Temperatur mit steigendem Stickstoffdruck zu höheren Eisengehalten /5/. Es tritt keine ternäre Phase auf. Der Schnitt VN-Fe stellt unter 1 bar N2 ein eutektisches System dar. Der eutektische Schmelzpunkt liegt bei 1773 ± 20 K. Die Phasengleichgewichte im System V-Co-N bei 1473 K und etwa 10⁻⁸ bar Stickstoff verdeutlicht Abb. 3.2.4.2. Das ternäre Nitrid V₄Co₂N /2,5/ kristallisiert kubisch mit einer Gitterkonstante von 1.088 ± 0.001 nm auf der V-reichen Seite und 1.083 ± 0.001 nm auf der Fe-reichen Seite. Diese Phase bildet sich offensichtlich peritektisch. Unter 1 bar N2 stellt auch der Schnitt VN-Co ein eutektisches System mit einer eutektischen Schmelztemperatur von 1703 ± 20 K dar /5/. Die Phasengleichgewichte im System V-Ni-N (Abb.3.2.4.3) entsprechen weitgehend jenen des Systems V-Co-N. Das ternäre Nitrid $V_4 Ni_2 N$ mit Gitterkonstanten von a = 1.088 ± 0.01 nm auf der V-reichen Seite und a = 1.081 ± 0.001 nm auf der Ni-reichen Seite kristallisiert wiederum im teilweise aufgefüllten Ti₂Ni-Typ. Die Phase bildet sich peritektisch. Die nonvarianten Punkte der Dreiphasenfelder VN+(Ni,V)+N und VN1-x+V2-3N+(Ni,V) verschieben sich bei hohen Temperaturen zu höheren Vanadingehalten. Der Schnitt VN-Ni stellt bei 1 bar N_2 ein eutektisches System mit einer eutektischen Schmelztemperatur von 1680 ± 20 K dar.

Die Gleichgewichte in den Systemen V-Fe-N, V-Co-N und V-Ni-N sind naturgemäss abhängig von Temperatur und Stickstoffdruck. Bei 1 bar Stickstoff steht das Mononitrid im Gleichgewicht mit den fast reinen Metallen der Eisengruppe bzw. ihren Mischkristallen. Mit abnehmendem Stickstoffdruck werden Eisen-, Kobalt- oder Nickel-reiche Mischphasen oder Verbindungen gegenüber Stickstoff stabilisiert, d.h. der nonvariante Punkt des Dreiphasengleichgewichts VN+N+(Fe,V) oder (Co,V) oder (Ni,V) verschiebt sich zu steigenden V-Gehalten. Ein Vergleich der Lage dieses nonvarianten Punktes in den drei ternären Systemen V-Fe-N, V-Co-N und V-Ni-N lässt auf eine höhere Stabilität der festen Lösungen von V in Co und Ni im Vergleich zur festen Lösung von V und Fe schliessen. Im Gegensatz zu den besprochenen Systemen mit den Metallen der Eisengruppe löst VN erhebliche Mengen von Mangan als Nitrid.

- 273 -

<u>Abb. 3.2.4.1</u>: Isotherme Schnitte bei 1473 K (a) und 1373 K (b) und 10⁻⁸ bar $\rm N_2$ im System V-Fe-N

Zusammensetzungen bis V_{0.56}Mn_{0.37}N_{0.83} konnten erhalten werden /3/.

Im metallreichen Konzentrationsbereich des Systems <u>Nb-Mn-N</u> tritt ein ternäres Nitrid Nb₃₋₄Mn₂₋₃N auf /2/ (Ti₂Ni-Typ, a = 1.142 nm, vgl. Tab.3.2.4.1). Abb.3.2.4.4 zeigt einen isothermen Schnitt des Systems <u>Nb-Fe-N</u> bei 1473 K (10⁻⁸ bar N₂) /6/. Es tritt eine ternäre Nitrid-

Abb.3.2.4.3: Isothermer Schnitt bei 1473 K und 10⁻⁸ bar N₂ im System V-NI-N

- 274 -

phase auf, deren Formel als Nb_{4-x}Fe_{2+x}N angegeben werden kann. Dieses n-Nitrid, dessen Homogenitätsbereich sich von Nb₄Fe₂N bis etwa Nb_{3,7}Fe_{2,3}N erstreckt, kristallisiert im teilweise aufgefüllten Ti₂Ni-Typ und besitzt eine Gitterkonstante von 1.142 nm auf der Nb-reichen und 1.13 1 nm auf der Fe-reichen Seite. Das Komplexnitrid steht mit Nb₂N, Nb, μ -(NbFe) und NbFe₂ im Gleichgewicht. Der isotherme Schnitt des Systems <u>Nb-Co-N</u> in Abb.3.2.4.5 bei 1473 K fasst die Phasengleichgewichte zusammen. Es tritt wiederum ein Komplexnitrid

Abb.3.2.4.6: Isothermer Schnitt bei 1473 K im System Nb-Ni-N

Abb. 3.2.4.7: Phasenbeziehungen bei 1473 K im niobreichen Teil der Systeme Nb-Fe-O (a), Nb-Co-O (b) und Nb-Ni-O(c)

 $Nb_{4-3}Co_{2-3}N$ auf, dessen Gitterkonstanten auf der niobreichen Seite a = 1.159 nm und auf der kobaltreichen 1.144 nm betragen. Die ternäre Phase steht mit NbN_{1-x}, Nb₂N, Nb, μ -(NbCo) und NbCo₂ im Gleichgewicht. Sie bildet sich beim Abkühlen aus der Schmelze peritektisch. Im Gegensatz zu den Systemen Nb-Fe-N und Nb-Co-N, wo Komplexnitride mit weiten Homogenitätsbereichen beobachtet werden, tritt im System Nb-Ni-N ein n-Nitrid ohne Homogenitätsbereich bei der Zusammensetzung Nb4Ni2N auf. Die Gitterkonstanten der Phase bewegen sich zwischen 1.159 und 1.161 nm /2,6/.

.

Abb. 4.2.4.8: Isothermer Schnitt bei 1273 K auf der tantalreichen Seite des Systems Ta-Ni-N (vgl. /8/)

Abb.3.2.4.6 zeigt einen isothermen Schnitt bei 1473 K. Die n-Phase befindet sich mit Nb_2N , Nb, μ -(NbNi) und $NbNi_3$ im Gleichgewicht und bildet sich, ebenso wie die anderen n-Nitride peritektisch. Untersuchungen zum Sauerstoffeinfluss auf die Nitride (O_2 ist als Verunreinigung meist zugegen) zeigten, dass die ternären Nitride nicht sauerstoffstabilisiert sind, dass jedoch im System Nb-Fe-O und Nb-Co-O je ein und im System Nb-Ni-O (vgl. Abb.3.2.4.7a bis c) zwei durch Sauerstoff stabilisierte n-Phasen existieren.

In den Systemen von Ta mit Mn, Fe, Co und Ni werden bei NH_3 -Nitrierung ternäre Nitridphasen mit hexagonal dichtester Packung der Metallatome der Formel Ta₃MnN₄ bzw. Ta₂MN_{2.5} (M = Fe,Co,Ni) erhalten /9/. Strukturdaten sind in Tab.3.2.4.1 zusammengefasst. Auf der tantalreichen Seite der Systeme treten n-Nitride unterschiedlicher Zusammensetzung auf /2,7/. Ein ternäres n-Nitrid wurde z.B. nahe der Zusammensetzung Ta₃Mn₃N gefunden (vgl. Tab. 3.2.4.1). Im System <u>Ta-Fe-N</u> sind es zwei oder drei ternäre Nitride, die alle im Ti₂Ni Typ bzw. einer Variante dieses Typs kristallisieren /7/. Die Gleichgewichte, besonders aber der Einfluss von Sauerstoff, sind hier noch nicht restlos geklärt. Im System <u>Ta-Co-N</u> werden zwei ternäre n-Nitride: Ta₂Co₂N_{1-x} (a = 1.153 - 1.159 nm) und Ta₃Co₃N (a = 1.122 - 1.126 nm) beobachtet. Diese stehen mit Ta_{2+x}N, Ta,TaCo₂ bzw. TaN, TaCo₂ und N₂ im Gleichgewicht /7/. Nur ein ternäres n-Nitrid der Formel Ta_4Ni_2N (a = 1.150 - 1.158 nm) konnte dagegen im System Ta-Ni-N nachgewiesen werden. Dieses teht mit $Ta_{2+x}N$, Ta, Ta_2Ni , TaNi und $TaNi_3$ im Gleichgewicht /2,7,8/. Einen isothermen Schnitt auf der tantalreichen Seite des Systems Ta-Ni-N zeigt Abb.3.2.4.8.

Nur sehr wenig ist über den Aufbau der Nitridsysteme der Übergangsmetalle der 6.Gruppe mit Mn,Fe,Co und Ni bekannt, obwohl diese Komponenten Bestandteile mancher Stähle sind (vgl. z.B. /10/). Im System Cr-Mn-N können bei 1273 K und 800 bar N₂ fast 80 Mol % MnN_{1-x} in CrN gelöst werden. Die Subnitride Cr₂N und Mn₂N sind vollkommen mischbar im festen Zustand /11/. Bei 1073 K und 100 bar N₂ konnten auf dem Mononitridschnitt Zusammensetzungen bis Cr_{0.5}Mn_{0.5}N_{0.92} erreicht werden /12/.

Experimentelle Untersuchungen in den Systemen Cr-Fe-N /13,14,28,29,30/, Cr-Co-N /15, und Cr-Ni-N /16/ geben keinen klaren Einblick in die Konstitution dieser ternären Systeme. Rechnungen bzw. Abschätzungen auf Grund der thermodynamischen Daten binärer Phasen der Systeme ergeben Gleichgewichte die strahlenförmig von CrN und Cr_2N ausgehen. Dieses Verhalten ist Ausdruck der höheren Stabilität der Chromnitride im Vergleich zu Nitriden von Fe, Co oder Ni (vgl. /10/).

In den Systemen <u>Mo-Co-N</u> und <u>Mo-Ni-N</u> wurden durch Nitrierung mit NH₃ Phasen der Zusammensetzung Mo_{0.8}Co_{0.2}N_{0.9} und Mo_{0.8}Ni_{0.2}N_{0.91}, die hexagonal im WC-Typ kristallisieren, erhalten /4/. Bei geringen Stickstoffgehalten wurde im System Mo-Fe-N ein ternäres im β-Mn-Typ kristallisierendes Nitrid der Formel Mo₃Fe₇N₄ (Mo₃Co₇N₄ und Mo₃Ni₇N₄ wahrscheinlich) erhalten /17/. Auch ein n-Nitrid Mo₃Fe₃N wurde identifiziert /17/ (vgl. Tab. 3.2.4.1).

3.2.5 Ternäre Nitridsysteme der Übergangsmetalle der 4., 5. und 6.Gruppe mit Rhenium und <u>Platinmetallen</u>

Diese Nitridsysteme wurden bisher kaum untersucht. Experimentelle Daten beschränken sich auf die Löslichkeit von Stickstoff in Nb-Re und Nb-Ru-Legierungen /18-20/, auf die Existenz eines kubisch flächenzentrierten ternären Nitrids Mo_{1.76}Re_{0.24}N /21/ sowie auf das Auftreten einiger ternärer n-Nitride /2/. In den Systemen Zr-Re-N, Zr-Ru-N Zr-Os-N, Zr-Rh-N, Zr-Ir-N, Zr-Pd-N und Zr-Pt-N werden Komplexnitride der Formel Zr₄M₂N beobachtet. Die Phasen Zr₄Re₂N (a = 1.232 nm), Zr₄Ru₂N (a = 1.230 nm) Zr₂₄Os₂₂N (a = 1.237 nm), Zr₄Rh₂N (a = 1.234 nm), Zr₄Ir₂N (a = 1.235 nm), Zr₄Pd₂N (a= 1.240 nm) und Zr₄Pt₂N (a = 1.243 nm) kristallisieren im teilweise aufgefüllten Ti₂Ni-Typ /2/ (vgl. auch Tab. 3.2.5.1) . Chrom bildet mit den Platinmetallen Perowskitnitride Cr₃MN (M = Rh,Ir,Pd,Pt) /31/.

3.2.6 Ternäre Nitride der Übergangsmetalle der 7. und 8.Gruppe

Ternäre Nitride dieser Systemgruppe, die bisher nur sehr unzureichend untersucht wurde, bilden sich durch Mischkristallbildung binärer Nitride, z.B. (Mn,Fe)₄N, (Fe,Ni)₄N, (Mn,Ni)₄N mit Ordnung der Metallatome bei bestimmten Zusammensetzungen, z.B. Fe₃NiN (vgl. z.B. /22,23,24/), oder als Komplexnitride, wie z.B. Fe₃PdN oder Fe₃PtN, die in der Perowskitstruktur mit a = 0.3847 nm bzw. a = 0.3839 nm kristallisieren /25/. Weitere Perowskitnitride sind für Mangan bekannt (Mn₃PtN_x, Mn₃PdN_x, Mn₃RhN_x, Mn₃CoN_x, Mn₃IrN_x) /32,33/.

Phase	Strukturtyp Raumgruppe	Gitterkonstante (nm)	Existenzbereich Bemerkung	Literatur
Zr _{v4} Re _{v2} N	kfz., W ₃ Fe ₃ C O <mark>7</mark> - Fd3m	a = 1.232	n-Nitrid, Zusammenset- zung nicht gesichert	/2,26/
Zr ₄ Ru ₂ N	kfz., W ₃ Fe ₃ C 0 <mark>7</mark> - Fd3m	a = 1.230	n-Nitrid	/2,26/
Zr _{v4} Os _{v2} N	kfz., W ₃ Fe ₃ C O _h ⁷ - Fd3m	a = 1.237	n-Nitrid, Zusammenset- zung nicht gesichert	/2,26/
Zr ₄ Rh ₂ N	kfz., W ₃ Fe ₃ C 0 <mark>7</mark> - Fd3m	a = 1.234	n-Nitrid	/2,26/
Zr ₄ Ir ₂ N	kfz., W ₃ Fe ₃ C 0 <mark>7</mark> - Fd3m	a = 1.235	n-Nitrid	/2,26/
Zr ₄ Pd ₂ N	kfz., W ₃ Fe ₃ C O <mark>7</mark> - Fd3m	a = 1.240	n-Nitrid	/2,26/
Zr ₄ Pt ₂ N	kfz., W ₃ Fe ₃ C O _h ⁷ - Fd3m	a = 1.243	n-Nitrid	/2,26/
Cr ₃ RhN	kfz., CaTiO ₃ O <mark>h</mark> - Pm3m	a = 0.3854	Perowskitnitrid	/31/
Cr ₃ IrN	kfz., CaTiO ₃ O <mark>l</mark> - Pm3m	a = 0.3843	Perowskitnitrid	/31/
Cr ₃ PdN	kfz., CaTiO ₃ O <mark>l</mark> - Pm3m	a = 0.3889	Perowskitnitrid	/31/
Cr ₃ PtN	kfz., CaTiO ₃ O <mark>l</mark> - Pm3m	a = 0.3879	Perowskitnitrid	/31/
^{Mo} 1.76 ^{Re} o.24 ^N	kfz.	a = 0.4125	Mischphase auf der Basis von Mo ₂ N	/21/.

Tab. 3.2.5.1: Ternäre Nitride der Übergangsmetalle der 4., 5. und 6.Gruppe mit Rhenium und Platinmetallen

- Literatur zu Kap. 3.2.4 3.2.6: Ternäre Nitridsysteme mit Übergangsmetallen der 7. und 8.Gruppe
- /1/ H.Holleck, F.Thümmler Planseeber.Pulvermet. 23 (1975) 175
- /2/ H.Holleck, F.Thümmler Mh.Chem. 98 (1967) 133
- /3/ M.I.Aivazov, E.V.Agababyab, 1.A.Domashnev Neorg.Mat.12 (1976) 243
- /4/ N.Schönberg Acta Met. 2 (1954) 427
- /5/ M.F.El-Shahat, H.Holleck Mh.Chem. 109 (1978) 193
- /6/ M.F.EI-Shahat, H.Holleck in H.Holleck, F.Thümmler (Hrsg.) KfK-Ext.6/78-1, S.124
- /7/ M.F.El-Shahat, H.Holleck in Vorbereitung
- /8/ H.Stadelmaier, J.C.Shugart, M.Kotyk, M.L.Fiedler Z.Metallk. 66 (1975) 487
- /9/ N.Schönberg Acta Chem.Scand. 8 (1954) 213
- /10/ P.Ettmayer in "Intermetallische Phasen" VEB Verlag Leipzig, 1976,S.267
- /11/ P.Ettmayer, A.Vendl, E.Horvath, R.Kieffer Mh.Chem.109 (1978) 1277
- /12/ M.I.Aivazov, T.V.Rezchikova, E.V.Agababyan, I.A.Domashnev Neorg.Mat. 12 (1976) 426
- /13/ H.Krainer, O.Mirt Archiv Eisenhüttenw. 15 (1942) 467
- /14/ B.Mortimer, P.Grieveson, H.H.Jack Scand. J.Metallurgy 1 (1972) 203
- /15/ A.R.Elsea, C.C.McBridge J.Metals 188 (1950) 154
- /16/ L. H. Abrahamson, N.J.Grant in "Ductil Chromium", ASM, Cleveland (1957) 277

- /17/ D.A.Evans, K.H.Jack Acta cryst.10 (1957) 762
- /18/ R.Ziegeldorf, G.Hörz Z.Metallk. 67 (1976) 655
- /19/ R.Ziegeldorf, G.Hörz Z.Metallk. 67 (1976) 661
- /20/ G.Hörz, R.Ziegeldorf Z.Metallk. 67 (1976) 758
- /21/ E.M.Savitskii, M.A.Tylkina, I.A.Tsyganova, Yu.B.Kuz'ma Neorg.Mat.9 (1973) 4998
- /22/ H.J.Goldschmidt, Interstitial Alloys, Butterworth, London (1967) 238
- /23/ W.B.Pearson Handbook of Lattice Spacings and Structures of Metals, Pergamon Press, Oxford, Volume 2, 1967
- /24/ R.Juza, K.Deneke, H.Puff Z.Elektrochem.63 (1959) 551
- /25/ H.H.Stadelmaier, A.C.Frankee Trans.Met.Soc. AIME 218 (1960) 571
- /26/ H.Holleck, F.Thümmler J.Nucl.Mat.23 (1967) 88
- /27/ H.Holleck unveröffentlichte Ergebnisse 1979
- /28/ G.W.Wiener, J.A.Berger J.Metals 7 (1955) 360
- /29/ W.H.Smith Dissertation, Rensselæer Polytech.Inst. 1959
- /30/ V.G.Permyakov, A.V.Belotskii, R.I.Barabash Metallofizika 42 (1972) 102
- /31/ M.Nardin, G.Lorthioir, M.Barberon, R.Madar, E.Fruchart, R.Fruchart Compt.rend. 274C (1972) 2168
- /32/ R.Madar, P.Gilles, A.Rouault, J.P.Bouchaud, E.Fruchart, G.Lorthioir, R.Fruchart Compt. rend 264C (1967) 308
- /33/ D.Fruchart Dissertation Universität Grenoble 1976

3.3 Carbonitridsysteme

Kristallstruktur, chemische Bindung und Gitterkonstanten von Carbiden und Nitriden der Übergangsmetalle sind in sehr vielen Fällen gleich bzw. ähnlich, so dass vollständige Mischbarkeit bzw. ausgedehnte Löslichkeitsbereiche zu erwarten sind. Die Bildung sogenannter Carbonitride wurde dementsprechend schon frühzeitig nachgewiesen (vgl. z.B. /1/); das Interesse an einer technischen Anwendung der Carbonitride entwickelte sich jedoch erst merklich im letzten Jahrzeh. * So wurden z.B. Carbonitride der Actinoiden als Kernbrennstoffe interessant /2/, Carbonitride der hochschmeizenden Übergangsmetalle als Hartstoffe in Hartmetallen geprüft /3/ und Carbonitride z.B. des Titans als verschleissfeste und dekorative Schutzschichten verwendet /4/.

Einige Sammelwerke befassen sich u.a. auch mit den Carbonitridsystemen. So z.B. Kieffer und Benesovsky /a/ mit den Carbonitriden der hochschmelzenden Übergangsmetalle, Goldschmidt /b/ in einem Kapitel allgemein mit Carbonitriden und Pearson /c/ mit Strukturdaten der Carbonitride.

3.3.1 Carbonitride der Seltenen Erden

Es liegen nur wenige Untersuchungen in ternären Systemen der Seltenen Erden mit Kohlenstoff und Stickstoff vor. Vor allem in Carbonitridsystemen von Scandium, Yttrium und den schweren Seltenen Erden muss mit teilweise ausgedehnten Löslichkeiten von Kohlenstoff in den Mononitriden gerechnet werden. Untersuchungen im System La-C-N /5/ ergaben die Existenz eines rein ternären Carbonitrids mit einer mittleren Zusammensetzung von LaC_{0.88}N_{0.77}. Die Randverbindungen zeigen gemäss Abb. 3.3.1.1 keine Löslichkeit für die 3. Komponente. Im System Ce-C-N sollen sowohl CeC₂ als auch Ce₂C₃ beträchtliche Mengen Stickstoff lösen /6/. Darüber hinaus wurde zumindest ein weiteres Carbonitrid gefunden, welches kubisch flächenzentriert kristallisiert und sich offensichtlich aus CeN bei Ersatz von N durch C herleitet. Die Formei des Carbonitrids das mit Ce₂C₃ im Gleichgewicht steht, kann als CeN C mit x+y > 0,8 und 0,4 < x < 0,7, y < 0,4 angegeben werden.

Im System Pr-C-N werden zwei kubisch flächenzentrierte Carbonitride gefunden /7/. Die Zusammensetzung dieser Phasen entspricht in einem Falle etwa PrN_xC_y mit x+y \sim 1 und 0,008 < x < 0,81, 0,23 < y < 0,94 im anderen PrN_xC_y mit \sim 0,5 < x+y < 0,9.

Abb.3.3.1.1: Teil eines isothermen Schnittes bei 1473 K im System La-C-N (nach Lit.[5])

Abb.3.3.2.1: Isothermer Schnitt bei 1773 K im System Th-C-N (nach Lit.[9])

Abb.3.3.2.2: Verallgemeinerte Phasenbeziehungen im System U-C-N

Abb.3.3.2.3: Isothermer Schnitt bei 2073 K im System U-C-N (vgl. Lit.[18, 24])

3.3.2 Carbonitride der Actinoiden

Stöchiometrisches ThC und leicht unterstöchiometrisches ThC_{1-x} sind mit ThN vollkommen mischbar /8/. Stark unterstöchiometrisches ThC_{1-x} (x<0,2) und ThN sind dagegen durch eine Mischungslücke getrennt /9/. Tab. 3.3.2 enthält einige Gitterparameter der Mischphase ThC_{1-x}_y, die weitgehend einer linearen Beziehung folgen /13/. Im nichtmetallreichen Teil des Systems tritt eine weitere ternäre Verbindung ohne grössere Phasenbreite auf /9/. Dieses Carbonitrid mit der Zusammensetzung ThCN kristallisiert monoklin /14/ (vgl. Tab. 3.3.2). Neueste Untersuchungen mit Hilfe der Hochtemperaturröntgendiffraktometrie zeigen, daß ThCN oberhalb 1400 K hexagonal kristallisiert. Die Hochtemperaturmodifikation läßt sich nicht abschrecken /82/. Kohlenstoffatome treten in dieser Struktur als Paare mit sehr kurzen Abständen auf (Dreifachbindung Th₂C = CN₂). Die Phasenbeziehungen im System Th-C-N sind vom Stickstoffdruck abhängig. Unter Gleichgewichtsdruck lässt sich für 1500^oC ein isothermer Schnitt gemäss Abb. 3.3.2.1 angeben.

Das System U-C-N wurde im Hinblick auf seine Bedeutung in der Kerntechnik vielfach untersucht /16-30/. UC und UN sind vollkommen mischbar. Die Gitterparameter zeigen dabei eine leicht positive Abweichung von der Vegard'schen Geraden /31/. Die Phasenbeziehung in dem System werden durch das in Abb.3.3.2.2 gezeigte Diagramm verdeutlicht. Die Lage der nonvarianten Punkte (1,2,3) ist vom Stickstoffdruck und von der Temperatur abhängig. Das Auftreten bestimmter Phasenfelder, so z.B. mit UC $_2$ bzw. U₂C₃, ist ebenfalls stark temperaturabhängig (vgl. binäres System Uran-Kohlenstoff). Hierbei ist allerdings zu berücksichtigen, dass das Auftreten von UC₂ offensichtlich durch Stickstoff begünstigt wird /24/. Mit steigender Temperatur verschiebt sich vor allem der nonvarlante Punkt 2 zu höheren UN-Gehalten. Es sei darauf hingewiesen, dass offensichtlich auch ein Einfluss der Art des Kohlenstoffs auf die Lage dieser Punkte besteht /29,30/. So liegt der UN-Gehalt eines Carbonitrids, das im Gleichgewicht mit Graphit gebildet wird, höher als bei einem Carbonitrid im Gleichgewicht mit aktivem Kohlenstoff. Abb.3.3.2.3 zeigt als Beispiel einen isothermen Schnitt des Systems U-C-N bei 1800°C /18,24/. Ganz ähnliche Phasenfelder konnten in diesem Temperaturbereich durch Rechnung erhalten werden /32/.

Auch PuC und PuN sind vollkommen mischbar /16,17/. Experimentelle Untersuchungen über die Phasenverhältnisse liegen für die Temperaturbereiche von 1400 - 1600[°]C /17/ sowie von 1550 - 1840[°]C /33/ vor. Eine kritische Übersicht über die Thermodynamik in diesem System wurde von Potter /34/

Tabelle 3.3.1	Carbonitride	der	Actinoiden

Phase	Strukturtyp Raumgruppe	Gitterkonstante (nm)	Existenzbereich Bemerkung	Literatur '
ThC _{1-x} N _y	kfz., NaCl 0 <mark>5</mark> – Fm3m	$a = 0.5310 (ThC_{0.80}N_{0.21})$ $a = 0.5288 (ThC_{0.63}N_{0.28})$ $a = 0.5241 (ThC_{0.47}N_{0.47})$ $a = 0.5220 (ThC_{0.28}N_{0.63})$	Schmelzpunkt maximum (3180 K) bei ^{ThC} o.35 ^N o.65	/8,10,11,12/
THCN	monokl., C ³ _{2h} - C2/m	a = 0.7025 b = 0.3946 c = 0.7276 β = 95.67°	exakte Zusammens.: ThC _{0.96±0.02} N _{0.96±0.02} Zersetzungsdruck: ~8 mbar bei 1500 ⁰ C ~600 mbar bei 1900 ⁰ C	/9,14,15/
uc ^{1-x} Nx	kfz., NaCl 0 <mark>5</mark> - Fm3m	a = 0.4942 ($UC_{0.64}O_{0.34}O_{0.02}$) a = 0.4919 ($UC_{0.36}N_{0.63}O_{0.03}$) a = 0.4907 ($UC_{0.20}N_{0.78}O_{0.04}$)	Schmelzpunkt maximum (3180 K) bei UC _{o.3} N _{o.7}	/31,34/
PuC _{1-x} N _x	kfz., NaCl 0 <mark>5</mark> - Fm3m	a = 0.4927 (PuC _{~0.25} N _{~0.75})		/17/

- 286 -

gegeben. Danach sind die Phasenbeziehungen sehr ähnlich denen im System U-C-N. Abb.3.3.2.4 zeigt einen isothermen Schnitt für den Temperaturbereich zwischen 1400 und 1600[°]C. Bei hohen Temperaturen (1800[°]C) löst PuC₂ etwas Stickstoff /33/. Auch für dieses System führte Potter /32/ einen Vergleich zwischen experimentellen Ergebnissen und verschiedenen Modeilrechnungen durch.

Besonders aktuell im Hinblick auf Hochleistungsbrennstoffe für schnelle Brutreaktoren sind die quaternären (U,Pu)C,N-Carbonitride. Die Phasenbeziehungen in diesem System unterscheiden sich nur unwesentlich von jenen der Systeme U-C-N und Pu-C-N. Bei Ersatz von Pu durch (U,Pu) verschieben sich die nonvarianten Punkte zur carbidreichen Seite. Eine eingehende Analyse der Phasenverhältnisse sowohl von experimenteller als auch von theoretischer Seite wurde von Potter gegeben /32/.

3.3.3 Carbonitride der IV A Übergangsmetalle Ti, Zr und Hf

Die Carbonitride der IV A Übergangsmetalle, insbesondere Titancarbonitride, werden als Hartstoffe sowohl in Hartmetallen /35,36/ als auch bei der Erzeugung hochverschleissfester Schichten /37,38,80/ verwendet. Hierbei kommt den Werkstoffen der Härteanstieg zugute, der bei Ersatz des Kohlenstoffs durch Stickstoff in IV A-Carbiden beobachtet wird. Das Härtemaximum liegt auch hier bei einer formalen VEK von etwa 8,2, wie schon in früheren Kapiteln erwähnt. Besondere Bedeutung haben Ti(C,N)-Hartstoffe als Komponente in mehrphasigen Werkstoffen erlangt. Es seien hier Ti(C,N)-Mo-Ni Hartmetalle erwähnt, die durch spinodalen Zerfall von (Ti,Mo)(C,N)-Mischkristallen mit extrem feinkörnigem Gefüge erhalten werden /39/ oder (Ti,W)(C,N)-Co-Hartmetalle /40/, die sich durch besonders gute Zerspanungseigenschaften auszeichnen.

Tab. 3.3.2 gibt eine Übersicht über die bekannten Carbonitride der Übergangsmetalle der 4., 5. und 6.Gruppe. TiC und TiN sind in einem weiten Stöchiometriebereich vollkommen mischbar /41,42,43/. Während die Phasengleichgewichte im titanreichen Gebiet /44/ ebenso wie der Bereich der festen Lösung von TiC_{1-x} und TiN_{1-x} /41,42,43/ untersucht sind, sind die Gleichgewichte an der nichtmetallarmen Phasengrenze von Ti(C,N)_{1-x} nicht geklärt. Die nichtmetallreiche Phasengrenze soll bei etwa 51 - 52 Atom-% N+C liegen /41/. (Bezügl. nichtmetallarmer Phasengrenze vgl. Ref./75/, Ordnung in Ti(C,N) Ref./77/, Herstellung Ref. /80/).

Abb.3.3.3.1 zeigt die Ausdehnung des homogenen Bereiches der Ti $(C,N)_{1-x}$ Mischphase bei 2000⁰C. Titancarbonitride zeichnen sich besonders durch

Phase	Strukturtyp Raumgruppe	Gitterkonstante (nm)	Existenzbereich Bemerkung	Literatur
Ti(C _x N _y)	kfz., NaCl O _h ⁵ - Fm3m	$a = 0.4317 TiC_{0.86}N_{0.10}$ $a = 0.4313 TiC_{0.82}N_{0.15}$ $a = 0.4306 \GammaiC_{0.70}N_{0.23}$ $a = 0.4297 TiC_{0.61}N_{0.31}$ $a = 0.4286 TiC_{0.53}N_{0.40}$ $a = 0.4267 TiC_{0.41}N_{0.50}$ $a = 0.4267 T1C_{0.33}N_{0.58}$ $a = 0.4251 TiC_{0.14}N_{0.77}$ $a = 0.4238 TiC_{0.04}N_{0.87}$	0.33 ≤ x + y ≤ 1.04	/a,c,42,45/
Zr(C _x N _y)	kfz., NaCl O <mark>5</mark> - Fm3m	a = 0.4643 ZrC _{0.62} N _{0.32} a = 0.4590 ZrC _{0.45} N _{0.45} a = 0.4559 ZrC _{0.23} N _{0.66}	0.54 ≤ x + y ≤ ∿1.04	/a,c,43,46/
Hf(C _x N _y)	kfz., NaCl O <mark>5</mark> - Fm3m	a = 0.4580 HfC _{0.5} N _{0.5}	0.67 ≤ x + y ≤ ∿1.1	/a,c,47,48/
v(c _x N _y)	kfz., NaCl 0 <mark>5</mark> - Fm3m	a = 0.4137 $VC_{0.17}N_{0.82}$ a = 0.4149 $VC_{0.49}N_{0.47}$ a = 0.4155 $VC_{0.70}N_{0.23}$	∿0.72 ≤ x + y ≤ ∿0.98	/c,54,55/
V ₂ (C _x Ny)	hex., L'3 D _{6h} - P6 ₃ /mmc	a = 0.2867 c = 0.4535 $V_2^{C_0.68}N_{0.32}$ a = 0.2888 c = 0.4548 $V_2^{C_0.98}N_{0.09}$	~0.9 ≤ x + y ≤ 0.98	/c,54,55/
Nb(C _x N _y)	kfz., NaCl O <mark>5</mark> - Fm3m	a = 0.4391 NbC _{0.07} N _{0.84} a = 0.4450 NbC _{0.59} N _{0.37} a = 0.4469 NbC _{0.91} N _{0.05}		/c,56/
Nb ₂ (C _x N _y)	hex., L'3 D ⁴ - Р6 ₃ /ттс	$a = 0.3080 Nb_2C_{0.28}N_{0.50}$ c = 0.4953 $a = 0.3097 Nb_2C_{0.46}N_{0.22}$ c = 0.4944		/c,56/

Tabelle 3.3.2 Carbonitride der Übergangsmetalle der 4., 5. und 6. Gruppe

Phase	Strukturtyp Raumgruppe	Gitterkonstante (nm)	Existenzbereich Bemerkung	Literatur
Ta(C _x Ny)	kfz., NaCl O <mark>5</mark> - Fm3m	a=0.440 TaC _{~0.47} N _{~0.47}		/c,57/
$Ta_2(C_XN_y)$	hex., L'3 D <mark>4</mark> - Р6 ₃ /ттс	a = 0.3078 Ta ₂ C _{~0.5} N _{~0.5} c = 0.4917		/c,51,57/
Cr ₂ (N _x C _y)	hex., L'3 D _{6h} - P6 ₃ /mmc orthorh., z-Fe ₂ N D ¹⁴ - Pbcn	$a = 0.485 Cr_2 N_{\sim 0.5} C_{\sim 0.5}$ $a = 0.445 Cr_2 N_{\sim 0.5} C_{\sim 0.5}$ $a = 0.4884 Cr_2 N_{0.39} C_{0.61}$ $c = 0.4438 Cr_2 N_{0.39} C_{0.61}$	У ≤ ∿0.15 У ≥ ∿0.15	/59/
^{Cr} 3 ^{(C} 0.8 ^N 0.2 ⁾ 2	orthorh., Cr ₂ VC ₂ D <mark>17</mark> - Атат	a = 0.695 b = 0.925 c = 0.284	1670 К Р _{N2} ~ 10 bar	/60,61/
Mo ₂ (C _x Ny)	hex., L'3 D _{6h} - P6 ₃ /mmc		$P_{N_2} = 1 \text{ bar}$ $\longrightarrow y \le 0.26$	/62/
Mo (N _x C _y)	hex., WC D ³ _{3h} - Pōm2	$a = 0.2810 MoC_{0.7}N_{0.3}$ c = 0.2896 $a = 0.2811 MoC_{0.2}N_{0.8}$ c = 0.2872	N ₂ -reich nur bei ho- hen N ₂ -Drucken Unterhalb ∿1450 K wahr- scheinlich vollst. Mischbarkeit von MoC und MoN	/62/ /62/

Abb.3.3.3.1: Existenzbereich der Ti(C,N)-Mischphase bei 2273 K (vgl.Lit.[41-43])

hohe Härte, geringes spezifisches Gewicht und günstiges Verhalten zu verschiedenen Bindemetallen aus. ZrC und ZrN sind ebenfalls vollständig mischbar /a,43,46/. Ähnlich wie bei den Titancarbonitriden scheint auch hier im ternären Bereich ein geringeres Nichtmetall/Metall Verhältnis möglich zu sein als bei den binären Randverbindungen. Dies drückt sich in einem homogenen Bereich aus, wie er in Abb.3.3.3.2 wiedergegeben ist.

Der homogene Bereich der Mischphase HfC N bei 2000°C ist in Abb.3.3.3.3 gezeigt /47/. Die Gitterparameter der lückenlosen Mischkristallreihe HfC-HfN /48/, die sich im unterstöchiometrischen Bereich bis zu einem C+N/Hf-Verhältnis von etwa 0,66 ausdehnt, folgen dabei, wie auch jene der homologen Mischkristallreihen TiC-TiN und ZrC-ZrN, der Vegard'schen Gesetzmässigkeit.

3.3.4 Carbonitride der VA Übergangsmetalle V,Nb und Ta

Obwohl auch Carbonitride der VA Übergangsmetalle im Hinblick auf eine technische Anwendung untersucht /49,50,51,52/ und als Hartstoff in Hartmetallen vorgeschlagen wurden /49,50,52/, kommt dieser Verbindungsgruppe für verschleissfeste Werkstoffe sicherlich eine geringere Bedeutung zu als den zuvor genannten Carbonitriden der IVA Übergangsmetalle. Die Gründe hierfür liegen einmal in der zunehmenden Instabilität der Nitride und zum anderen in einer negativen Beeinflussung der Bindungsfestigkeit Metall/Nichtmetall bei Ersatz des Kohlenstoffs durch Stickstoff in den Monocarbiden der VA Übergangsmetalle. Um dennoch zu guten Eigenschaften z.B. hoher Härte zu gelangen, muss das C+N/Metall Verhältnis stark reduziert werden. Dies hat jedoch in Hartmetallen eine Reaktion mit Bindemetallen zur Folge, was sich in verhältnismässig niedrigen Festigkeiten /49,50/ und geringem Widerstand gegen Verschleiss ausdrückt /53/. Besondere Beachtung verdienen Carbonitride der VA-Metalle, insbesondere Niobcarbonitride allerdings im Hinblick auf ihre hohen Sprungpunkte der Supraleitfähigkeit (NbC $_{0.7}$ \rightarrow 17.8 K) (vgl. hierzu z.B. B.T.Matthias; Phys.Rev.92 (1953) 874).

Im ternären System V-C-N sind sowohl das Monocarbid VC_{1-x} und VN_{1-x} als auch das Subcarbid V₂C und V₂N vollkommen mischbar /54,55/. Für die Ausdehnung der homogenen Bereiche bei 1400[°]C ergeben sich die in Abb.3.3.4.1 dargestellten Phasengrenzen.

Abb.3.3.3.3: Existenzbereich der Hf(C,N)-Mischphase bei 2273 K (vgl. Lit.[47])

Abb.3.3.4.2: Existenzbereiche der Nb₂(C,N)- und Nb(C,N)-Mischphasen bei 1673 K (vgl. Lit.[56])

Abb.3.3.4.3: Existenzbereiche der Ta₂(C,N)- und Ta(C,N)-Mischphasen bei 2173 K (vgl. Lit.[51,57])

Abb.3.3.5.1: Isotherme Schnitte bei 1373K im System Cr-C-N a) $P_{N_2}=1$ bar b) $P_{N_2}=30$ bar (nach Lit.[59-61])

Abb.3.3.5.2: Isotherme Schnitte bei 1373 K im System Mo-C-N a) nach Lit.[62] b) Vorschlag unter Berücksichtigung der Existenz von MoC(WC-Typ)

Auch im System Nb-C-N existieren (vgl. Abb.3.3.4.2) die Mischphasen NbC N und Nb₂C N /56,76).Die Gleichgewichte auf der Niobnitrid-reichen Seite werden aufgrund der Unsicherheiten im Aufbau des binären Systems Niob-Stickstoff (vgl. dort) hier nicht aufgeführt. Die Nitride der Übergangsmetalle werden mit zunehmender Gruppennummer und steigender Ordnungszahl instabiler. Dies macht sich schon in einer nennenswerten Druckabhängigkeit der Gleichgewichte im System Nb-C-N bemerkbar. Besonders stark ist diese Abhängigkeit der Existenzbereiche von Carbonitriden im System Ta-C-N. Das Subcarbid Ta₂C und das Subnitrid Ta₂N sind im Gegensatz zu Befunden früherer Untersuchungen /57/ vollkommen mischbar /51/. Das kubische TaN kann durch Lösung in TaC stabilisiert werden. Bei Temperaturen oberhalb etwa 1800° C ist zur Bildung einer vollständigen Mischkristallreihe von TaC_{1-x} und TaN_{1-x} ein Stickstoffdruck von etwa 10 bar erforderlich /58/.

3.3.5 Carbonitride der VI A Übergangsmetalle Cr, Mo und W

Im System Cr-C-N löst Cr₂N bis zu 80 Mol % "Cr₂C", wobei sich das hexagonale Gitter offensichtlich orthorhombisch verzerrt /59,78/. Bei höheren Stickstoffdrucken tritt eine ternäre Verbindung Cr3(C0.8N0.2)2 /59,60, 61/ auf. Die Chromcarbide lösen keinen Stickstoff. Abb.3.3.5.1 zeigt isotherme Schnitte bei 1100°C und Stickstoffdrucken von 1 bar (a) bzw. 30 bar (b). Wesentlich instabiler als die Chromnitride sind die Molybdännitride. Dies bedingt, dass für eine Stabilisierung stickstoffreicher Molybdäncarbonitride hohe Stickstoffdrucke erforderlich sind. Das hexagonale Mo₂C löst etwa 65 Mol % Mo₂N (p_{N2} \sim 50 bar). In einem weiten Bereich kann eine Carbonitridphase mit WC-Struktur stabilisiert werden /62/. Diese ist auf der MoN-Seite allerdings nur bei sehr hohen Stickstoffdrucken zu erhalten (z.B. $p_{N_2} \sim 300$ bar). Bei Temperaturen unter 1180 $^{\circ}$ C ist auf Grund der neuesten Befunde im System Mo-C /63/ mit einer vollkommenen Mischbarkeit zwischen MoC (WC-Typ) und MoN zu rechnen. Die langsame Einstellung des Gleichgewichts bei den tiefen Temperaturen erschwerte in diesem System eine klare Aussage. Abb. 3.3.5.2 zeigt isotherme Schnitte Im System Mo-C-N bei 1100⁰C a) nach Ettmayer, b) Vorschlag aufgrund einer Berücksichtigung der wahrscheinlich vollständigen Mischbarkeit von MoC und MoN. Einer Stabilisierung des hexagonalen MoC bei höheren Temperaturen durch geringe Stickstoffgehalte kommt erhebliches technisches Interesse zu. Hierdurch wird evtl. eine Möglichkeit geboten, WC in Hartmetallen durch MoC zu ersetzen.

3.3.6 Carbonitride der Übergangsmetalle der 7. und 8. Gruppe

Über Carbonitride dieser Übergangsmetalle liegen nur im Bereich des Elsens umfangreiche Untersuchungen vor /b,64,65,66,67/. Eisencarbonitride treten in Stählen in unterschiedlicher Zusammensetzung und Morphologie auf /67/. Eine ausführliche Beschreibung der Strukturen, Phasenverhältnisse und Erscheinungsformen wurde von Jack und Jack /64/ gegeben. Als wirkliche Eisencarbonitride kann man nur die feste Lösung von "Fe₂C" im ε -Fe₂N_{1-x} betrachten. Dieser Mischkristall existiert bis zu einem Kohlenstoffgehalt entsprechend etwa Fe₂N_{0.6}C_{0.4} /65/. Die anderen binären Verbindungen des Systems Fe-C-N zeigen nur geringe Löslichkeit für die 3.Komponente.

Carbonitride von Mangan, Kobalt und Nickel leiten sich meist von binären Nitriden ab. So werden Carbonitride von Mn ohne nähere Angaben genannt /64/. Kobaltcarbonitride entwickeln sich durch Lösung von Kohlenstoff in Co_2N (bis etwa $Co_2N_{0.47}C_{0.53}$) und Co_3N (bis etwa $Co_3N_{0.87}C_{0.18}$) /68/. Ein Nickelcarbonitrid ϵ -Ni₃(C,N) soll isotyp ϵ -Fe₃N sein /69/.

3.3.7 Quarternare Carbonitridsysteme

Neben dem Austausch der Nichtmetallatome können auch gleichzeitig die Metallatome ersetzt werden. Man hat es dann mit Mischreihen der Form M^1C-M^2N zu tun oder allgemeiner mit qua ternären Phasen aus dem System $M^1C-M^2N-M^2C-M^2N$. Theoretische Überlegungen zur Mischbarkeit von Carbiden und Nitriden verschiedener Übergangsmetalle /70/ wie auch thermodynamische Rechnungen der Stabilität und des spinodalen Zerfalls solcher Mischcarbonitride /71/, existieren ebenso wie zahlreiche experimentelle Untersuchungen (vgl. /a,b,c,72,73/. Abb.3.3.7 gibt einen Überblick über die Mischbarkeit isotyper Carbide und Nitride der Übergangsmetalle der 4. und 5.Gruppe. Die Angaben beziehen sich hier auf die weitgehend stöchiometrischen Verbindungen. Volle Mischbarkeit wurde jedoch auch bei stark unterstöchiometrischen Hartstoffen, z.B. im System Ti-V-C-N /74/ beobachtet. Auch (U,Ce)(C,N)-Carbonitride lassen sich einphasig herstellen /81/.

٧N TiC ٧C Ti N CrN ZrC NEC ZrN NbN MoN 7// WN HfC HfN TaN TaC -----┥<u>┥</u>╸╉╸ ╋╋┿┥┝

Abb.3.3.7: Mischbarkeit isotyper Carbide und Nitride der Übergangsmetalle der 4. und 5. Gruppe (gleiche Zeichnung bei den einzelnen Verbindungen bedeutet vollständige Mischbarkeit)

.

Т

Literatur - Carbonitridsysteme (Kap. 3.3)

- /a/ R. Kieffer, F. Benesovsky Hartstoffe, Springer Verlag, Wien 1964 /b/ H.J. Goldschmidt Interstitial Alloys, Butterworth, London 1967 /c/ W.B. Pearson. A Handbook of Lattice Spacings and Structures of Metals and Alloys Volume 1(1958), Volume 2(1967), Pergamon Press, Oxford. /1/ P. Duwez, F. Odell J.Electrochem.Soc. 97 (1950) 299 /2/ vgl. z.B. H. Blank, R. Lindner, H.J. Matzke, Int.Conf. on Nuclear Power and its Fuel Cycle, Salzburg, Mai 1977, IAEA-CN-36/369 /3/ R. Kieffer, P. Ettmayer, M. Freudhofmeier, Metall 25 (1971) 1335 /4/ W. Schintelmeister, O. Pacher. Planseeber.Pulvermet, 23 (1975) 260 15/ A. Vendl, G. Dufek, P. Ettmayer Mh.Chem. 108 (1977) 973 /6/ J.S. Anderson, N.J. Clark, I.J. McColm J.Inorg.Nucl.Chem.31 (1969) 1621 /7/ J. Colquhoun, I.J. McColm, W. Batey J. | norg. Nucl. Chem. 37 (1975) 1705 /8/ R.S. Street, T.N. Waters J.Less Common Met. 5 (1963) 295 /9/ R. Benz, J.E. Troxel High Temp. Science 3 (1971) 422 /10/ R. Benz J.Nucl.Mat.31 (1969) 93 /11/ S. Anderson, A.B. Auskern J.Chem.Phys. 48 (1968) 1760 /12/ A.B. Auskern, S. Anderson J.Appl.Phys. 41 (1970) 227 /13/ R. Benz, G. Balog High Temp. Science 3 (1971) 511 /14/ R. Benz, G.P. Arnold, W.H. Zachariasen Acta Cryst. B 28 (1972) 1724 /15/ R. Benz J. Electrochem, Soc. 119 (1972) 1596 /16/ F. Anselin, G.Dean, R. Lorenzelli, R. Pascard Carbides in Nuclear Energy (ed. L.E. Russell et al.) MacMillan, London 1964 S.131 /17/ R. Lorenzelli CEA report R-3536 (1968)
- /18/ A.E. Austin, A.F. Gerds Bericht BMI-1272 (1958)

- /19/ J. Williams, R.A. Sambell J.Less Common Metais 1 (1959) 217
- /20/ A. Naoumidis, H.J. Stöcker Thermodynamics of Nuclear Materials 1967, MEA Wien, 1968, S. 287
- /21/ J.M. Leitnaker ibid, Seite 317
- /22/ T. Sano, M. Katsura, H. Kai ibid, Seite 301
- /23/ F. Mueller ibid, Seite 331
- /24/ A. Naoumidis, M. Katsura, H. Nickel Collques internationaux CNRS, Paris, 205 (1971) 265
- /25/ J.M. Leitnaker, R.A. Potter, K.E. Spear, W.R. Laing High Temp. Science 1 (1969) 389
- /26/ A. Naoumidis J.Nucl.Mat. 34 (1970) 230
- /27/ M. Katsura, A. Naoumidis, H. Nickel J.Nucl.Mat. 36 (1970) 169
- /28/ M. Katsura, T. Nomura J.Nucl.Mat. 51 (1974) 63
- /29/ M. Katsura, N. Shohoji, T. Yato, T. Nomura, T. Sano Thermodynamics of Nuclear Materials 1974, IAEA Wien 1975, S.347
- /30/ H. Blank Paper submitted to IAEA Technical Panel on the thermodynamic properties of uranium and plutonium carbides, Wien 1969

t.

- /31/ E.H.P. Cordfunke J.Nucl.Mat. 56 (1975) 319
- /32/ P.E. Potter in H. Blank, R. Lindner (Hrsg.) Plutonium 1975 and other Actinides, North Holland, Amsterdam 1976, S. 211
- /33/ M. de Franco CEA report R-4573 (1974)
- /34/ R. Benz J.Nucl.Mat. 31 (1969) 93
- /35/ R. Kieffer, G. Dufek, P. Ettmeyer, R. Ducreux
 4. Europ.Symp.Pulvermetallurgie, Grenoble, 13-15 Mai 1975
 Vorabdrucke der Societé Francaise de Metallurgie, Beitrag 5-7
- /36/ B.V. Mitrofanov, E.K. Plaksin, G.P. Shveikin, V.D. Ljubimov Neorg.Mat. 10 (1974) 1001
- /37/ W. Schintelmeister, O. Pacher, T. Raine
 4. Europ.Symp.Pulvermetallurgie, Grenoble 13-15 Mai 1975,
 Vorabdrucke der Societé, Francaise de Metallurgie, Beitrag 5-18
- /38/ T. Sadahiro, S. Yamaya, K. Shibuki, N. Ujile
 9. Planseeseminar, Reutte/-Tirol, 1977, Beitrag 32, Vorabdruck
- /39/ E. Rudy, S. Worcester, W. Elington High Temp. High Press. 6 (1974) 447
- /40/ T. Yamamoto, T. Nomura, T. Asai, A. Hara, H. 1tami Patent DT 25 46 623 A1 (1975)

- /41/ P. Griveson Proc.Brit.Ceram.Soc., 8 (1967) 137
- /42/ G.M. Klimashin, A.J. Afgustinik, G.V. Smirnov Neorg.Mat. 8 (1972) 843
- /43/ J.N. Vilk, I.N. Danisiana Porosh.Met., Nr.12 (1976) 42
- /44/ L. Stone, H. Margolin J. Metais, (1953) 1498
- /45/ N.A. Ivanov, L.P. Andreeva, S.I. Alyamovskii, B.V. Mitrofanov Neorg.Mat. 12 (1976) 1209
- /46/ Y.N. Vilk, I.N. Danisiana, Yu.A. Omelchenko, T.P. Ryzhkova Zhur.Prikl.Khim. 41 (1968) 718
- /47/ H. Brundiers KFK-Rep. 2161 (1975)
- /48/ H.Nowotny, F.Benesovsky, E.Rudy Mh.Chem.91 (1960) 348
- /49/ R.Kieffer, P.Ettmayer, M.Freudhofmeier Metall 25 (1971) 1335
- /50/ R.Kieffer, H.Nowotny, P.Ettmayer, G.Dufek Metall 26 (1972) 701
- /51/ H.J.Ritzhaupt-Kleis I, H.Holleck, F.Thümmler Planseeber.Pulvermet.24 (1976) 84
- /52/ M.Komac, F.Thümmler Planseeber.Pulvermet.21 (1973) 88
- /53/ M.Komac, M.Drofenik, T.Kosmac, H.Holleck 4th Int.Round Table Conf. on Sintering, Dubrovnik, Sept. 1977
- /54/ G. Brauer, W.D. Schnell J. Less Common Met. 7 (1964) 23
- /55/ K.E. Spear, J.M. Leitnaker High Temp. Science 1 (1969) 401
- /56/ G. Brauer, R. Lesser Z. Metallk. 50 (1959) 487
- /57/ G. Brauer, R. Lesser Z. Metalik. 50 (1959) 513
- /58/ C. Politis pers. Mitteilung, KFZ Karlsruhe 1977
- /59/ P. Ettmayer Mh.Chem. 97 (1966) 1248
- /60/ P. Ettmayer, G. Vinek, H. Rassaerts Mh.Chem. 97 (1966) 1258
- /61/ R. Kieffer, P. Ettmayer, Th. Dubsky Z. Metallk. 58 (1967) 560
- /62/ P. Ettmayer Mh.Chem. 101 (1970) 1720
- /63/ E. Rudy, B.F. Kieffer, E. Barock 9. Planseeseminar Reutte/Tirol, Mai 1977, Beitrag 37

م ميريد.

/64/	K.H.Jack Proc.Roy.Soc., A.195 (1948) 41
/65/	F.Naumann, G.Langenscheid Archiv für das Eisenhüttenwesen 36 (1965) 677
/66/	A.Burdese, M.Lucco Bortera, G.Pradelli Metall.ital.59 (1967) 949
/67/	D.H.Jack, K.H.Jack Materials Science and Engineering 11 (1973) 1
/68/	J.Clarke, K.H.Jack Chemistry and Industry, Nov. (1971) 1004
/69/	K.H.Jack Acta cryst.3 (1950) 392
/70/	A.I.Gusev, G.P.Shveikin Neorg.Mat.10 (1974) 2144
/71/	E.Rudy J.Less Common Met.33 (1973) 43
/72/	H.Nowotny, F.Benesovsky, E.Rudy Mh.Chem.91 (1960) 348
/73/	J.Gatterer, G.Dufek, P.Ettmayer, R.Kieffer Mh.Chem. 106 (1975) 1137
/74/	S.V.Borisov, A.I.Gusev, G.P.Shveinin Neorg.Mat.13 (1977) 217
/75/	M.P.Arbuzov, S.Ya.Golub, B.V.Khaenko Neorg.Mat.14 (1978) 1442
/76/	E.K.Storms High Temp. Science 7 (1975) 103
/77/	I.Karimov, V.T.Em, V.F.Petrunin, I.S.Latergaus, V.S.Polishchuk Neorg.Mat. 12 (1976) 1492
/78/	V.I.Arkharov, L.M.Katanov, V.N.Konev, G.V.Samsonov Uch.Zap.Ural.Univ. 50 (1966) 79
/79/	G.V.Samsonov, I.I.Bilyk, V.V.Morozov Neorg.Mat. 9 (1973) 1724
/80/	E.Heidler Dissertation Technische Hochschule Wien, 1971

/81/ S.lhara, K.Tanaka, M.Suzuki, Y.Akimoto J.Nucl.Mat. 39 (1971) 203

3.4.1 Borocarbide

Im Gegensatz zu den Nitridsystemen der Übergangsmetalle ist der Aufbau der Boridsysteme dem der Carbidsysteme wenig ähnlich. In den Strukturen treten an Stelle des Einlagerungsprinzips andere Bauprinzipien in den Vordergrund. So z.B. Borketten und -netze, welche die Übergangsmetallatome einschliessen. Entsprechend dem unterschiedlichen Aufbau der Verbindungen und Systeme zeigen Carbide und Boride geringe Tendenz der gegenseitigen Lösung. Dagegen treten vor allem in den Systemen der Übergangsmetalle der 3.Gruppe mit Bor und Kohlenstoff häufig Komplexverbindungen auf. Bor und Kohlenstoff bilden neben dem schon lange bekannten BAC (rhomboedrisch, a = 0.560 nm, c = 1.212 nm) möglicherweise weitere Verbindungen (z.B. B₁₃C₂ /1,63,77/, die sich jedoch aus der Lösung von Bor in B_4C ergeben könnten /82/. Der Aufbau der Boridsysteme wird hier nicht weiter besprochen. Es sei diesbezüglich auf die Standardwerke über die Konstitution in binären Systemen (vgl. Kap. 2.3, Ref. a - f), insbesondere aber auf typische Arbeiten, die sich mit den Boridsystemen der Übergangsmetalle befassen, verwiesen /2 - 5/. Auf den Aufbau von Borocarbiden und Borocarbidsystemen wird in einigen Sammelwerken /2,6,7,7a/ teilweise eingegangen.

3.4.1.1 Borocarbide der Übergangsmetalle der 3.Gruppe

Die Borocarbidsysteme derSeltenen Erden sind wenig untersucht. Nur in Systemen Y-C-B /8/ und Gd-C-B /9/ sind die Phasengleichgewichte bekannt. Hier wurden vier bzw. fünf ternäre Borocarbide nachgewiesen. Dies lässt darauf schliessen, dass auch in den anderen Systemen Borocarbide verschiedener Zusammensetzung auftreten werden. Bisher wurde für die meisten Elemente der Seltenen Erden ein Borocarbid der Formel MB₂C₂ /8,9,79,80/ und für die schweren Seltenen Erden mit kleinerem Atomradius zusätzlich eine Phase gemäss MB₂C beschrieben /9,10,73/.Tab.3.4 enthält Formel und Strukturdaten von Borocarbiden soweit sie schon bekannt sind.

Einen Schnitt des Systems Y-C-B /8/ zeigt Abb.3.4.1. Da den Gleichgewichten Röntgenbefunde aus vom flüssigen Zustand abgeschreckten Proben zu Grunde liegen, kann für die Phasengleichgewichte keine bestimmte Tempera-

Phase	Strukturtyp Raumgruppe	Gitterkonstante (nm)	Literatur Bemerkung
ScB ₂ C ₂	orthorh.; Pbam	a = 0.5175 b = 1.0075 c = 0.3440	/11/
Y ₂ BC ₂	-	-	/8/
YBC	orthorh.; D ¹⁹ - Cmmm 2h - Cmmm	a = 0.3388 b = 1.3693 c = 0.3627	/8/
үв ₂ с	tetr.; D ¹³ - P4 ₂ /mbc	a = 0.6769 c = 0.7430	/8/
YB ₂ C ₂	tetr.; HoB ₂ C ₂ P42C	a = 0.3796 c = 0.72124	/8/
LaBC	· _	-	/12/
LaB2 ^C 2	tetr.; ^{HoB} 2 ^C 2 P4/mbm	a = 0.382 c = 0.396	/9/
LaB2C4	-	-	/13/
CeB ₂ C ₄	<u> </u>	-	/13/
PrB2 ^C 2	tetragonal	a = 0.382 c = 0.381	/9/ Existenz nicht ge- sichert
NdB2C2	tetr.; HoB ₂ C ₂ P4/mbm	a = 0,3803 c = 0,3794	/9/
SmB2C2	-	-	/9/ Existenz nicht ge- sichert
GdB ₂ C ₂	tetr.; HoB ₂ C ₂ P4/mbm	a = 0.3792 c = 0.3640	/ 9/
GdBC	orthorh.; D ¹⁹ - Cmmm	a = 0.3456 b = 0.3796 c = 0.3697	/14/
^{Gd} o.35 ^B o.45 ^C o.20	-	-	/9/
^{Gd} o.3 ^B o.4 ^C o.3	-	-	/9/
^{Gd} o.4 ^B o.35 ^C o.25	-		/9/
^{Gd} o.35 ^B o.19 ^C o.46	-	-	/9/
тьв ₂ с	tetr.; D ¹⁴ - P4 ₂ /mbc	a = 0.6791 c = 0.7522	/10/
TbB ₂ C ₂	tetragonal	a = 0.3784 c = 0.3591	/9/
DyBC	orthorh.; D <mark>19</mark> - Cmmm 2h - Cmmm	a = 0.3384 b = 1.3727 c = 0.3647	/14/
DyB ₂ C	tetr.; D ¹³ _{4h} - P4 ₂ /mbc	a = 0.6788 c = 0.7452	/10/
Dy82 ^C 2	tetragonal	a = 0.3782 c = 0.3560	/9/

Tab. 3.4 Bomcarbide der Übergangsmetalle

- 301 -

Phase	Strukturtyp Raumgruppe	Gitterkonstante (nm)	Literatur Bemerkung
HoB ₂ C	tetr.; D ¹³ - P4 ₂ /mbc	a = 0.6776 c = 0.7389	/ 10 /
HoB2C2	tetragonal	a = 0.3780 c = 0.3537	/9/
Er8 ₂ C	tetr; $D_{4h}^{13} - P4_2/mbc$	a = 0.6753 c = 0.7321	/10/
ErB2 ^C 2	tetragonal	a = 0.3778 c = 0.3508	/9/
үьв ₂ с	tetr.; D _{4h} - P4 ₂ /mbc	a = 0.6724 c = 0.7240	/10/
YbB2C2	tetragonal	a = 0.3775 c = 0.3560	/9/
Th ₃ BC ₃	monok1. C <mark>1</mark> - P2/m	$ \begin{array}{l} a = 0.3702 \\ b = 0.9146 \\ c = 0.3773 \end{array} $ $ Y = 100.06^{0} $	/64/
ThBC	$D_4^3 - P4_1^{22}$	a = 0.3762 c = 2.5246	/15,65/
ThB ₂ C	hex.; ähnlich AlB2 P6 / mmmmm	a = 0.3868 c = 0.3810	/15/
^{ThBC} 2	-	-	/15/
UBC	orthorh.; UBC Cmcm	a = 0.3591 b = 1.195 c = 0.3372	/16/
.Cr7 ^{BC} 4	orthorh.;	a = 0.2870 b = 0.9260 c = 0.6982	/17/
Mo ₂ BC	orthorh.; Cmcm	a = 0.3086 b = 1.735 c = 0.3047	/18/
^{Mn} 23 ^B 3 ^C 3	kub.; Cr ₂₃ C ₆ Fm3m	-	/19/
Mn ₇ BC ₂	-	-	/19/
Fe ₂₃ C ₃ B ₃	kub.; Cr ₂₃ C ₆ Fm3m	a = 1.0594	bei $\frac{800^{\circ}\text{C}}{\text{Fe}_{23}(C_0, 38B_0.62)_6}$ und Fe $_{23}(C_0, 77B_0.23)_6$ existent /20/
Fe ₃ (C,B)	orthorh., Fe ₃ C DO ₁₁ - Pnma	-	Lösung von 8 in Fe ₃ C bis Fe ₃ C _{0.2} B _{0.8} /21/

tur angegeben werden. Für das System <u>Ce-C-B</u> ergeben thermodynamische Betrachtungen /22/ die Koexistenz folgender Phasen: $Ce_2C_3^+CeB_4$, $CeC_2^+CeB_4$, CeB_6^+C und $B_4C^+CeB_6$. Ein isothermer Schnitt im System Gd-C-B (vgl. Abb. 3.4.2;nach Angaben der Autoren /9/ für Temperaturen zwischen 2000 und $3000^{\circ}C$) enthält fünf ternäre Borocarbide, deren Zusammensetzung in Tab. 3.4 wiedergegeben ist.

Borocarbide der Actinoiden sind nur im Falle des Thoriums und Urans bekannt (vgl. Tab. 3.4). Die Struktur dieser Phasen wurde küzrlich bestimmt /64,65/. Die Phasenbeziehungen für die Systeme Th-B-C /15/ und U-B-C /16/ zeigen die Abb. 3.4.3 und 3.4.4 in isothermen Schnitten bei 1300°C.

3.4.1.2 Borocarbide der Übergangsmetalle der 4., 5. und 6. Gruppe

Die Boride der Übergangsmetalle der 4., 5. und 6.Gruppe zeichnen sich ähnlich wie die entsprechenden Carbide durch sehr hohe Härte (TiB₂ 3400 HV, HfB₂ 2900 HV, NbB₂ 2600 HV) und hohe Schmelzpunkte (HfB₂ 3500 K, NbB₂ 3300 K, TaB₂ 3400 K) aus. Verbundwerkstoffe z.B. aus TiC+TiB₂ fanden deshalb schon frühzeitig Interesse (vgl. /23/). In neuerer Zeit wurde der Einfluss von Boridausscheidungen vor allem in den Carbiden TiC und VC studiert und die festigkeitssteigernde Wirkung solcher feinster Ausscheidungen deutlich gemacht /24 - 27/. Dies konnte durch den Nachweis von teilweise beträchtlichen Härteanstiegen, vor allem bei höheren Temperaturen, ergänzt werden /28, 29/.

Thermodynamische Abschätzungen /22/ sowie experimentelle Untersuchungen /30/ in den Systemen $M^{IV,V,VI} - C - B$ führten zu einem ersten Überblick über koexistierende Phasen. Infolge der hohen Stabilität der Diboride stehen diese mit B₄C,Kohlenstoff und den Monocarbiden im Gleichgewicht. Die Löslichkeiten zwischen den Boriden und den Carbiden sind durchwegs gering. Eine ternäre Verbindung wurde nur im System Mo-B-C beobachtet.

Das System Titan-Bor-Kohlenstoff wurde eingehend /31/ und manche Schnitte mehrfach untersucht (vgi./2,6/), Einen isothermen Schnitt des Systems <u>Ti-B-C</u> bei 2073 K zeigt Abb. 3.4.5 und einen Konzentrationsschnitt zwischen den beiden koexistierenden Phasen TiC_{1-x} und TiB₂ Abb. 3.4.6 /32/. Die gegenseitigen Löslichkeiten sind danach bei Temperaturen unterhalb 2273 K gering. Die Löslichkeit von TiB₂ in TiC_{1-x} ist stark abhängig von der Stöchiometrie des Carbids. Sie beträgt bei TiC_{0.95} etwa 3 Mol %

- 303 -

- 304 -

Abb.3.4.1: Schnitt im System Y-B-C (Befunde von abgeschreckten Schmelzproben) (nach Lit.[83])

Abb.3.4.2: Isothermer Schnitt bei 2273 K im System Gd-B-C (nach Lit. [9])

Abb.3.4.4: Isothermer Schnitt bei 1573 K im System U-B-C (nach Lit. [16])

Abb.3.4.3: Isothermer Schnitt bei 1573 K im System Th-B-C (vgl. Lit. [15,64]

Abb.3.4.5: Isothermer Schnitt bei 2073 K im System Ti-B-C (nach Lit. [18])

Abb.3.4.6: Konzentrationsschnitt TIC_{0.95}-TiB₂ im System Ti-B-C (vgl.Lit [32])

Abb.3.4.7: Isothermer Schnitt bei 1673 K im System Zr-B-C (nach Lit. [33])

Abb.3.4.8: Isothermer Schnitt bei 1773 K im System Hf-B-C (nach Lit. [33])

bei TiC_{0.68} etwa 7 Mol % TiB₂. Die Härte von TiC bzw. TiB₂ lässt und sich durch Zugabe von TiB₂ bzw. TiC steigern /32/. Sehr ähnlich im Aufbau sind auch die Systeme Zr-B-C (Abb.3.4.7) und Hf-B-C (Abb. 3.4.8) /33/. Auffallend ist nur die Nichtexistenz eines ZrB (FeB-Typ). Dies führt dazu, dass Mischungen aus ZrC_{1-x} und ZrB_2 mit metallischem Zirkon im Gleichgewicht stehen und zu harten und zähen Verbundwerkstoffen verarbeitet werden können /33/. Die grosse Affinität des Zirkons zu Sauerstoff und Stickstoff und die damit verbundene Versprödung setzt hier allerdings sicherlich Grenzen. Einen Konzentrationsschnitt der besonders hochschmelzenden Komponenten HfC-HfB₂ zeigt Abb.3.4.9 /34/. Auch hier beobachtet man beträchtliche Härtesteigerungen der Carbid- bzw. Boridphase im ternären Bereich. Weitere Phasendiagramme der Systeme Ti,Zr,Hf,W-B-C in Ref. /65/. Schnitte MB₂-C, M = Ti,Zr,Hf, in Ref./66/. Das quaternäre System TiC-TiB2-Fe ist aus den Randverbindungen aufgebaut.

Die Borocarbidsysteme der Übergangsmetalle der 5. Gruppe unterscheiden sich von jenen der Übergangsmetalle der 4. Gruppe vor allem durch das Auftreten mehrerer binärer Boridphasen. Dagegen bleiben die Gleichgewichte der hochschmelzenden Verbindungen MB_2+MC , MB_2+C und MB_2+B_4C erhalten. Abb. 3.4.10 zeigt einen isothermen Schnitt im System V-B-C /35/ bei 1723 K, der ebenso wie die Schnitte bei 2023 K im System Nb-B-C (Abb. 3.4.11) und Ta-B-C (Abb.3.4.13) von den binären Verbindungen bestimmt wird. Die quasibinären Schnitte NbC-NbB₂ (Abb. 3.4.12) und TaC-TaB₂ (Abb. 3.4.14) stellen eutektische Systeme mit geringen Randlöslichkeiten dar /36,37/. Die Carbide NbC $_{1-x}$ und TaC $_{1-x}$ erfahren eine beträchtliche Härtesteigerung durch Lösung und teilweises Wiederausscheiden von NbB2 und TaB2 /28,36,37/. Sinterprodukte aus Niob und Tantal mit B $_{\it A}$ C, die sich je nach den Mengenverhältnissen bei Glühungen entsprechend den Phasendiagrammen in die Boride und Carbide der entsprechenden Metalle umsetzen, erlangten schon früh Beachtung wegen der hohen Härte, Zugfestigkeit und Verschleissfestigkeit /38,39/. Schnitte MB2-C M = V,Nb,Ta, in Ref./69/.

Bei den Übergangsmetallen der 6. Gruppe, Cr,Mo und W nimmt das System <u>Cr-B-C</u> eine Sonderstellung ein. Es fällt auf, dass in den Chromcarbiden – im Gegensatz zu den Carbiden der übrigen Übergangsmetalle – erhebliche Boranteile gelöst werden können. Dies beruht sicherlich auf den schon bei den binären Carbidsystemen erwähnten unterschiedlichen Bauprinzipien der Chromcarbide einerseits und der Carbide der hochschmelzenden Übergangsmetalle andererseits. Bei 1723 K (vgl. Abb. 3.4.15)

Abb.3.4.9: Konzentrationsschnitt HfC-HfB₂ im System Hf-B-C (vgl. Lit. [34])

Abb.3.4.10: Isothermer Schnitt bei 1723 K im System V-B-C (nach Lit. [35])

Abb.3.4.11: Isothermer Schnitt bei 2023 K im System Nb-B-C (nach Lit. [35])

Abb.3.4.12: Konzentrationsschnitt NbC-NbB₂ im System Nb-B-C (vgl. Lit. [36,37])

Abb.3.4.13: Isothermer Schnitt bei 2023 K im System Ta-B-C (nach Lit. [35])

Abb.3.4.15: Isothermer Teilschnitt bei 1723 K im System Cr-B-C (vgl. Lit. [40,62]

Abb.3.4.16: Isotherme Schnitte bei 1573 (a) bzw. 2073 K (b) im System Mo-B-C (nach Lit. [35])

können in Cr_{23}C_6 etwa 30%, in Cr_7C_3 etwa 36% und in Cr_3C_2 etwa 5% der Kohlenstoffplätze durch Bor ersetzt werden /40,62/. Im nichtmetallreichen Gebiet, wo die Phasenbeziehungen nicht mehr im einzelnen bekannt sind, tritt ein ternäres, orthorhombisch kristallisierendes Borcarbid der Formel Cr7BC1 auf /17/. Das System Mo-B-C wurde eingehend untersucht /35/. Das Reaktionsverhalten ist in den Abb. 3.4.16a und 3.4.16b für 1573 bzw. 2073 K charakterisiert. Es werden keine nennenswerten Löslichkeiten beobachtet, jedoch tritt ein ternäres Borocarbid Mo₂BC auf, welches ebenfalls orthorhombisch kristallisiert /18/.Bor vermag die Hochtemperaturcarbide α -MoC_{1-x} und n-MoC_{1-x} zu tieferen Temperaturen zu stabilisieren /35,41/. Dies wird besonders deutlich in ternären Mo-reichen Carbiden /41/. Es ist noch unklar, inwieweit hierfür thermodynamisch oder kinetisch bedingte Vorgänge eine Rolle spielen. Das System W-B-C baut sich aus den binären Wolframboriden und Wolframcarbiden auf. Es werden weder nennenswerte Löslichkeiten noch ternäre Verbindungen beobachtet (Abb. 3.4.17) /35/. (Schnitte MB_x-C, M = Cr,Mo,W, vgl. Ref. /70/)

3.4.1.3 Borocarbide der Übergangsmetalle der 7. und 8. Gruppe

Borocarbidsysteme für die Übergangsmetalle der 7. und 8. Gruppe sind nur im Falle des Eisens näher untersucht worden /20,21,42,43/. Kohlenstoff kann bis zu etwa 80% in Fe₃C durch Bor ersetzt werden. Zusätzlich zu dieser Mischphase tritt ein ternäres, kubisches Borocarbid Fe₂₃C₃B₃ auf /20/. Eine isotype Phase ist auch im System <u>Mn-B-C</u> bekannt /19,74/. Hier wurde zusätzlich ein Borocarbid der Formel Mn₇BC₂ gefunden /19,62/. Im System Co-B-C konnte Co₁₁B₂C identifiziert werden /67/.

3.4.2 Boronitride

Die Boronitridsysteme der Übergangsmetalle haben bisher bedeutend weniger Interesse gefunden, als die entsprechenden Borocarbidsysteme, obwohl die Phasengleichgewichte interessante Verfahren zur Herstellung gefügeoptimierter Werkstoffe nahe legen.(Hier sind z.B. coatings, mit Ti(BN) /61/, Werkstoffe auf der Basis HfB2-HfN /71/ und W-BN /68/ und BN (Zinkblende- und Wunzitmodifikation) als Schneidwerkstoffe zu nennen /75,76/.) Die vorliegenden Daten lassen somit nur eine beschränkte Übersicht zu (vgl. z.B. /44/). Es ist nur eine Verbindung im System Bor-Stickstoff bekannt. BN tritt in drei verschiedenen Modifikationen in Erscheinung (hexagonale Graphitstruktur, kubische Zinkblendestruktur, hexagonale Wunzitstruktur) (vgl. /6/).

Abb.3.4.17: Isothermer Schnitt bei 1973 K im System W-B-C (nach Lit. [35])

Abb.3.4.18: Isothermer Teilschnitt bei 1073K im System Fe-B-C (vgl. Lit. [42,43])

Abb.3.4.19: Isothermer Schnitt bei 1673 K im System TI-B-N (nach Lit. [31])

Über Boronitridsysteme der Seltenen Erden und der Actinoiden liegen kaum Angaben vor. Eine begrenzte Löslichkeit von Bor in den kubisch flächenzentrierten Monónitriden ist wahrscheinlich. Für UN wird eine Löslichkeit von etwa 12 Mol % angegeben /45/.

Die Phasengleichgewichte der Systeme der Übergangsmetalle der 4.Gruppe mit Bor und Stickstoff wurden sowohl in Abschätzungen aufgrund thermodynamischer Daten /22/ als auch in experimentellen Untersuchungen /31, 46-49/ behandelt.

Im System <u>Ti-B-N</u> treten keine ternären Verbindungen auf, und die binären Randphasen lösen auch nur sehr geringe Mengen der dritten Komponente. Abb.3.4.19 zeigt einen isothermen Schnitt bei 1673 K /31/. Es wird deutlich, dass TiB₂ sowohl mit BN als auch mit TiN_{1-x} im Gleichgewicht steht. Legierungen auf dem Schnitt TiB₂-TiN besitzen zwar keine grössere Härte als die Ausgangskomponenten, zeigen jedoch einen gestelgerten Widerstand gegen Oxidation /46/. \times)

Der Aufbau der Systeme Zr-B-N und Hf-B-N ist ähnlich, wenn man davon absieht, dass kein Zirkonmonoborid (ZrB) existiert. Die Abb. 3.4.20 und 3.4.21 zeigen isotherme Schnitte bei 1773 K. Rechnungen ergeben, dass die Gleichgewichte TiN+BN bzw. ZrN+BN bei einem Stickstoffdruck von 0,5 bar nur bis 1900 bzw. 1820 K existieren. Darüber stehen die Diboride TiB₂ bzw. ZrB₂ mit Stickstoff im Gleichgewicht /22/. Auffallend ist, dass die Löslichkeit von Bor in den Nitriden der IV A Übergangsmetalle von TiN über ZrN zu HfN erheblich zunimmt. In HfN_{1-x} können nahezu 50 Mol % HfB gelöst werden /47,71/. Reaktionen der Übergangsmetalle Ti,Zr und Hf mit BN ergeben je nach Temperatur und Stickstoffdruck reine Boride oder hochtemperaturbeständige Borid-Nitrid-Legierungen unterschiedlicher Zusammensetzung und Gefügestruktur /50,51/.

Was die Übergangsmetalle der 5. Gruppe anbetrifft, so sind die Phasenbeziehungen mit Bor und Stickstoff nur im System V-B-N bekannt. Abb. 3.4.22 zeigt einen isothermen Schnitt bei 1473 K Auch hier sind die Gleichgewichte stark druck- und temperaturabhängig. So existiert das zentrale Dreiphasenfeld VB+BN+VN bei 1 bar N₂ nur unterhalb 2010 K /52/. Weder Löslichkeiten noch ternäre Verbindungen werden beobachtet /52,53,54/. Das gleiche trifft offensichtlich für die Systeme <u>Nb-B-N</u> und Ta-B-N zu /53,55,56/. In den Systemen Cr-B-N und W-B-N wurde das

×)Löslichkeiten von TiN-TiB sowie ZrN-ZrB /78/

Reaktionsverhalten der Boride mit Stickstoff rechnerisch und experimentell geprüft /22,57/. Bei Temperaturen unterhalb etwa 2000 K steht Cr mit BN im Gleichgewicht ($p_{N_2} \sim 0.5$ bar). Darüber bilden alle Chromboride mit Stickstoff (0.5 bar) stabile Phasenkombinationen /vgl. z.B. /72/). Wolfram steht mit BN bei Temperaturen unterhalb ~1600 K im Gleichgewicht. Bei höheren Temperaturen bilden sich Wolframboride unter Stickstoffabgabe /68/.

Im System Fe-B-N wurde das Reaktionsverhalten der Eisenboride mit Stickstoff untersucht /57,58/. Keine Reaktionen wurden zwischen α -Fe und BN beobachtet.

Abb. 3.4.21: Isothermer Schnitt bei 1773 K im System Hf-B-N (nach Lit. [47])

Quaternäre Boronitride auf der Basis von TaN-ZrB₂ wurden als binderfreie Schneidwerkzeuge für schwierig zu bearbeitende Werkstoffe entwickelt /59/ (vgl. auch Ref./60/). Solche Materialien haben zwar eine relativ geringe Festigkeit, zeichnen sich jedoch durch hohe Härte und gute Wärmeleitfähigkeit aus. Auch andere Kombinationen erscheinen in dieser Hinsicht aussichtsreich für eine Anwendung in verschleissfesten Werkstoffen.

Lite	ratur: Borocarbide und Boronitride (Kap. 3.4)
/1/	G.Will, K.H.Kossobutzki J.Less Common Met. 44 (1976) 87
/2/	R.Kieffer, F.Benesovsky Hartstoffe, Springer Verlag Wien, 1963
/3/	V.I.Matkovich (Hrsg.) Boron and Refractory Borides Springer Verlag Berlin, 1977
/4/	R.Thompson in: R.J.Brotherton, H.Steinberg (Hrsg.) Progress in Boron Chemistry, Vol.2, Pergamon Press, Oxford, 1969, S. 173
/5/	K.E.Spear Phase behavior and related properties of rare earth borides; in A.M.Alper (Hrsg.) Material Science and Technology; Phase Diagrams, Academic Press, New York, 1975
/6/	G.V.Samsonov, G.S.Upadchaja, V.S.Nespor Fiziceskol materialovedenie karbidov; Izd.Naukova dumka, Kiev, 1974
/7/	H.Nowotny, H.Boller, G.Zwilling Nat.Bur.Stand.Spec.Publ.364, Solid state chemistry; Proc. of 5 th Mater.Res.Symp., July 1972
/7a/	H.J.Goldschmidt Interstitial Alloys, Butterworths, London, 1967, S. 546
/8/	J.Bauer, H.Nowotny Mh. Chem. 102 (1971) 1129
/9/	P.K.Smith, P.W.Gilles J.inorg.nucl.Chem. 29 (1967) 375
/10/	J.Bauer, J. Debuigne J.Inorg.nucl.Chem. 37 (1975) 2473
/11/	G.S.Smith, Q.Johnson, P.C.Nordine Acta Cryst. 19 (1965) 668
/12/	R.W.Johnson, A.H.Danne J.Phys.Chem. 65 (1961) 909
/13/	LY.Markovskii, N.Y.Vekshina, G.F.Pron Zh.Prikl.Khim 38 (1965) 245 sowie Zh.Prikl.Khim 35 (1962) 2090
/14/	J.Bauer, J.Debuigne Compt. Rend. Ser.C 274 (1972) 1271
/15/	L.E.Toth, H.Nowotny, F.Benesovsky, E.Rudy Mh. Chem. 92 (1961) 956
/16/	L.E.Toth, H.Nowotny, F.Benesovsky, E.Rudy Mh. Chem. 92 (1961) 794
/17/	Y.D.Kondrashev Kristallografija 11 (1966) 559

/18/	W.Jeitschko, H.Nowotny, F.Benesovsky; Mh.Chem 94 (1963) 565
/19/	L.Y.Markovskii, E.T.Bezruk Zh.Prikl Khim 39 (1966) 258
/20/	H.H.Stadelmaier, R.A.Gregg Metall 17 (1963) 412
/21/	M.E.Nicholson Trans. AlME. J.Met. 9 (1957) 1
/22/	L.Brewer, H.Haraldsen J.Electrochem. Soc. 102 (1955) 399
/23/	R.Kieffer, F.Benesovsky Hartmetalle, Springer Verlag Wien, 1965
/24/	W.S.Williams J.appl.phys. 32 (1961) 552
/25/	W.S.Williams Trans. Met. Soc. AIME 236 (1966) 211
/26/	J.D.Venables Phil. Mag. 16 (1967) 873
/27/	J.D. Venables phys. stat. sol. 15 (1966) 413
/28/	M.Engeldinger, H.J.Ritzhaupt-Kleissl, F.Thümmler Science of Sintering 9 (1977) 121
/29/	H.Holleck Vortrag, Deutsche Gesellschaft für Metallkunde, Innsbruck, Mai 1978, AED-Conf. 78-154000
/30/	F.W.Glaser, J.Metals 4 (1952) 391
/31/	H.Nowotny, F.Benesovsky, C.Brukl, O.Schob Mh.Chem. 92 (1961) 403
/32/	S.S.Ordanyan, V.I. Unrod, A.I.Augustinik Porosh. Met.9 (1975) 40
/33/	H.Nowotny, E.Rudy, F.Benesovsky Mh.Chem. 92 (1961) 393
/34/	S.S.Ordanyan, V.I.Unrod, A.E.Lutsenko Neorg.mat. 13 (1977) 546
/35/	E.Rudy. F.Benesovsky, L.Toth Z.Metallk. 54 (1963) 345
/36/	S.S.Ordanyan, E.K.Stepanenko, V.I.Unrod Neorg. Mat. 13 (1977) 373
/37/	S.S.Ordanyan, V.I.Unrod, V.S.Polishehuk, N.M.Storonkina Poroshkovaya Met. 9 (1965) 40
/38/	D.Patent 1027883 (1952/58), Deutsche Norton Ges. US.P. 2613154 (1950/52)

- /39/ F.Pat. 1015543 (1948/52) Metallwerk Plansee /40/ G.Pradelli Met.It. 66 (1974) 551 /41/ H.Holleck Metall, 10 (1979) 1064 M.Lucco Borlera, G.Pradelli /42/ Met. 1+. 59 (1967) 907, sowie: 60 (1968) 140 und 63 (1971) 107 O.I.Fomichev, V.F.Kator, A.K.Kushnereva /43/ Neorg.Mat.12 (1976) 128 /44/ O.A.Medvedeva Porosh. Met. Nr.2 (1972) 38 /45 S.Imoto, H.Niihara, H.J.Stöcker Thermodynamycs of Nuclear Materials, IAEA, Wien, 1967, S.371 /46/ G.V.Samsonov, E.V.Petrash Met. i Obrabotka Metalov 4 (1955) 16 /47/ E.Rudy, F.Benesovsky Mh.Chem. 92 (1961) 415 /48/ H.Nowotny, E.Rudy, F.Benesovsky Mh.Chem. 91 (1960) 963 0.A.Medvedeva /49/ Porosk. Met.Nr.1 (1971) 34 G.V.Samsonov, A.L.Burykina, O.A.Medvedeva, V.P.Kosteruk /50/ Porosk. Met. Nr.11 (1973) 50 /51/ P.Schwarzkopf, F.W.Glaser Z.Metallk. 44 (1953) 353 K.E.Spear, H.Schäfer, P.W.Gilles /52/ J.Less Common Met.14 (1968) 449 N.Pressal, B.Gold /53/ J.Phys.Chem. 29 (1968) 19 M.I.Aivazov, S.V.Gurov /54/ Neorg.Mat.8 (1972) 1913 /55/ M.P.Asanova, A.F.Gerasimov, V.I.Konev Fiz.Metal. i Metalloved 96 (1960) 89 /56/ B.Aronsson Ark.Kemi 16 (1961) 379 /57/ R.Kissling, Y.H.Liu J.of Metals 8 (1951) 639 /58/ R.W.Fountain, J.Chipman J.Trans.met.Soc. AIME 223 (1961) 677 sowie 224 (1962) 559
 - /59/ Y.Murata, E.Dow Whitney Am.Ceram.Soc.Bull. 48 (1969) 698

/60/ P.Ettmayer in: "Intermetallische Phasen", VEB Verlag Leipzig 1976, S.267 /61/ J.L.Peytavy, A.Lebugle, G.Montel, H.Pastor High Temp. High Press. 10 (1978) 341 /62/ G.Papesch, H.Nowotny, F.Benesovsky Mh. Chem.104 (1973) 933 /63/ V.I.Matkovich J.Less Common Met.47 (1976) 39 /63/ P.Rogl J.Nucl.Mat. 79 (1979) 154 /64/ P.Rogl J.Nucl.Mat. 73 (1978) 198 /65/ E.Rudy Bericht AFMLTR 65.2, Tell 5, 1969 /66/ Yu.V.Levinskii, S.E.Salibekov Russ. J. Inorg. Chem. 10 (1965) 319 L.Ya.Markovskii, E.T.Bezruk, G.E.Berlova /67/ Neorg.Mat. 7 (1971) 56 /68/ A.Ya. Artamonov, Yu.K.Lapskov, M.V.Kozachenko, D.Z.Yurchenko, E.M.Dudnik Porosh.Met. 9 (1967) 58 /69/ Yu.V.Levinskii, S.E.Salibekov, M.Kh.Levinskaya Porosh.Met. || (1965) 66 /70/ Yu.V.Levinskii, S.E.Salibekov, M.Kh.Levinskaya Porosh.Met.12 (1965) 56 /71/ 0.A.Medvedeva Porosh.Met. 8 (1971) 52 /72/ A.I.Avgustinik, V.S.Vigderganz, N.G.Kalinia, S.S.Ordanyan Zhur.Priklad. Khim. 38 (1965) 665 L.Ya.Markovskii, N.V.Vekshina, Yu.D.Kondrashev; /73/ Zhur.Priklad.Khim.45 (1972) 1183 /74/ M.Lucco Borlera, G.Pradelli Atti Accad. Nazl. Lincei, Mem., Classe Sci.Fis., Mat. e Nat.10 (1971) 68 /75/ A.V.Bochko, O.N.Grigorev, S.S.Dzhamarov, G.G.Karjuk, Ju.V.Milman V.I.Trefilov Porosh. Met. 6 (1977) 64 /76/ S.Sabirov, H.G.Lutze, K.Herfurth, T.Weise Wiss.Zeitschr. T.H. Karl Marx Stadt 19 (1977) 737

- /77/ A.Kirfel, A.Gupta, G.Will Acta Cryst. B35 (1979) 1052
- /78/ S.I.Alyamovskii, Yu.G.Zainulin, G.P.Shveikin, P.V.Geld, N.V.Bausova Neorg.Mat. 11 (1975) 175
- /79/ E.T.Bezruk, L.Ya.Markovskii Zhur. Prikl. Khim. 45 (1972) 3
- /80/ N.A. Fishel, H.A.Eick J.inorg.nucl.Chem. 31 (1969) 891
- /81/ H.H.Stadelmaier, J.B.Ballande Z.Metallk. 58 (1967) 449
- /82/ M.Bouchacourt, F.Thevenot J.Less-Common Met. 67 (1979) 327
- /83/ A.K.Shurin, N.A.Razumova Porosh. Met.12 (1979) 204

4. ZUR KONSTITUTION VON SYSTEMEN

.

.

MIT ACTINOIDEN

4.1 Strukturchemische Aspekte ternärer Carbide und Nitride der Actinoiden

Anders als bei den Elementen aus der Reihe der Seltenen Erden unterscheidet sich die Konstitution mehrkomponentiger Systeme der Actinoiden beträchtlich, je nachdem, welches Metall im einzelnen betrachtet wird und in welchem Valenzzustand es vorliegt. Bei der Besprechung des Aufbaus der mehrkomponentigen Systeme in den vorausgehenden Kapiteln wurde den Kombinationen, die ein Element aus der Reihe der Actinoiden als Komponente enthalten, besondere Beachtung geschenkt. So konnte erstmals der Aufbau der mehrkomponentigen Carbid- und Nitridsysteme von Thorium, Uran und Plutonium in Zusammenhang mit den Systemen der übrigen Übergangsmetalle dargestellt werden. Eine kritische Analyse der einzelnen Systeme ergibt die Möglichkeit einer zwanglosen Einordnung des Verhaltens der Actinoiden in jenes der anderen Übergangsmetalle und zeigt eine enge Verwandtschaft mancher sich bildender Phasen. So treten ausgedehnte Carbid- oder Nitridmischphasen im festen Zustand auf, wenn nur die Atomabmessungen nicht zu unterschiedlich sind. Gerade diese Grössenunterschiede sind es dann auch, die das Auftreten neuer Strukturtypen bei Komplexcarbiden und -nitriden der Actinoiden im Vergleich zu anderen Übergangsmetallen zur Folge haben /1,2/. So beobachtet man in ternären Systemen in Konzentrationsbereichen die wenig Actinoidmetall enthalten, sehr ähnliche Phasenverhältnisse wie bei anderen Übergangsmetallen gleicher oder ähnlicher Valenz.(Dies demonstriert Abb.4.1.1 für die Systeme Sc-(Ru,Rh,Pd)-C, Ce-(Ru,Rh,Pd)-C und Pu-(Ru,Rh,Pd)-C . /3/. Bei höheren Actinoidkonzentrationen treten, sofern die Bildung fester Lösungen nicht möglich ist, Komplexcarbide oder -nitride auf. Diese Phasen, die allerdings nur für Uran gut bekannt sind, zeigt Abb. 4.1.2. Es wurde an mehreren Stellen dieser Abhandlung darauf hingewiesen, dass sowohl die Konstitution von Systemen wie auch Struktur und Eigenschaften von Phasen mit der formalen Valenzelektronenkonzentration oft in eindrucksvoller Weise in Zusammenhang zu bringen sind. Betrachtet man Carbide und Nitride, so treten häufig isotype Nitridphasen bei Übergangsmetallen mit niedrigerer Gruppennummer auf wie entsprechende Carbidphasen. Auch das Stabilitätsmaximum verschiebt sich

Abb.4.1.1: Phasenbeziehungen im Platinmetall-reichen Konzentrationsbereich der Systeme Sc-(Ru,Rh,Pd)-C, Ce-(Ru,Rh,Pd)-C und Pu-(Ru,Rh,Pd)-C (vgl. /3/)

bei Nitriden zu Übergangsmetallen niedrigerer Gruppennummer, verglichen mit den Carbiden. Betrachtet man nun die ternären Komplexcarbide und -nitride von Uran, so zeichnen sich auch hier Zusammenhänge dieser Art ab. Dies verdeutlicht Abb.4.1.3. Uran bildet mit den Übergangsmetallen der 8.Gruppe, den Platinmetallen, Komplexcarbide U_2MC_2 (M = Ru,Rh,Os,Ir,Pt), mit Chrom und Mangan aus der 6. und 7.Gruppe Komplexnitride, strukturell eng verwandt, den vorgenannten Carbiden. Diese enge strukturelle Beziehung geht aus Abb.4.1.4 hervor. Die Metallpositionen sind im Gitter von U_2CrN_3 und U_2RuC_2 die gleichen. Die Zelle von U_2CrN_3 zeigt jedoch eine höhere Auffüllung mit Nichtmetallen, was zu einer orthorhombischen Verzerrung der ursprünglich tetragonalen Zelle führt. Es ist in diesem Zusammenhang interessant, dass die Phase

Abb. 4.1.2:

Ternäre Komplexcarbide und -nitride von Thorium, Uran und Plutonium

	Th	U	Pu
V			
Nb	_	UNbN ₂	
Ta		U Ta N ₂	
Cr	Th ₂ CrN ₃	UCr C ₂ U ₂ Cr N ₃	
Мо	2 Verb.	UM0C2 UM0C17	PuMoC ₂
W		UWC ₂ UWC _{1.7} z-(U,W,C)	PuWC ₂
Mn	Th ₂ MnN ₃	UMn C ₂ U ₂ Mn N ₃	
Ĩc		UTc C ₂	Pu Tc C 2
Re	Verb.	UReC ₂ UReC _{1.7}	
Fe		UFeC2	PuFeC ₂ Pu ₃ Fe ₄ C ₅
Ru	Th ₃ Ru ₄ C ₅ ThRu ₃ C _{1,5} ThRu ₃ C	U ₂ RuC ₂ URU ₃ C _{1-x}	Pu Ru ₃ C
05	Verb.	U ₂ OsC _{2+x}	
Co		UCoCz	
Rh		U ₂ RhC ₂	PuRh ₃ C _{1-x}
11	Verb.	U2IrC2	
Ni	Th ₂ Ni ₃ C ₂ Th ₂ Ni ₃ C ₅	UNIC ₂ U ₂ NIC ₃	
Pd			
Pt	Verb.	U ₂ PtC ₂	

 U_2OsC_{2+x} einen homogenen Bereich hat und nur bei der Zusammensetzung U₂OsC₂ tetragonal ist. Sie vermag zusätzlich Kohlenstoff im Gitter aufzunehmen unter orthorhombischer Verzerrung der Elementrarzelle (vgl. Kap. 3.1.2.2).U2OsC2+x stellt damit den direkten Übergang zwischen den tetragonalen Carbiden U $_2^{
m MC}$ $_2$ und den mit Übergangsmetallen niedrigerer Gruppennummer existierenden Nitriden U $_2$ MN $_3$ dar (in Abb. 4.1.4 ist darüber hinaus die enge strukturelle Beziehung zwischen den kubisch flächenzentrierten Carbid- und Nitridmischphasen und den Komplexcarbiden bzw. -nitriden verdeutlicht). Betrachtet man die Komplexcarbide des Urans, die schwerpunktmässig mit den Übergangsmetallen der 6. und 7.Gruppe auftreten, so findet man isotype Nitride mit den Übergangsmetallen der 5.Gruppe. Stabilen Carbidphasen von Uran mit Übergangsmetallen der 4. und 5. Gruppe stehen stabile Nitridphasen mit den Metallen der 3. und 4.Gruppe gegenüber. Ähnliche Zusammenhänge sind für Komplexphasen der anderen Actinoiden, infolge der noch zu unvollständig untersuchten Systeme, nur beschränkt möglich. Beziehungen zwischen den Valenzzuständen der einzelnen Actinoiden und den auftretenden Phasen werden jedoch besonders im nächsten Kapitel deutlich.

IVA	VA	VIA	VII A		VIII	
{ - }		N.C.N			—	_
(U,Zr)N	and the second			—		—
(U,Hf)N	KILL B	—	_	_		—

-	ane,	Mores of	2	Ufec,	UCoC,	UNIC,
(U,Zr)C	(U,Nb)C	UMoC,	UlcC ₂	U.Ruc-	UzRhCz	_
(U,Hf)C	(U,Ta)C	uwc,	URaC,	10,050,	Ustres	USPIC

f.c.c orthorn. attrag. or tetrag.

Abb.4.1.3: Zur Lage der Übergangsmetalle die Komplexcarbide bzw. -nitride mit Uran bilden im Periodensystem

Abb.4.1.4: Strukturelle Beziehungen zwischen kubisch flächenzentrierten Mischphasen (U,M)C (Metallatome statistisch verteilt), Komplexnitriden U₂MN₃ (M = Cr,Mn) und Komplexcarbiden U₂MC₂ (M = Ru, Rh, Os, Ir, Pt)

- /1/ H.Holleck Symp. Festkörperchemie, Universität Wien, 1972 KfK 1726 (1972)
- /2/ H.Holleck Thermodynamics of Nucl.Mat. 1974, Vol.2. IAEA Wien (1975) S.213
- /3/ H.Holleck J.Less Common Met. 52 (1977) 167

4.2 Zur Frage der Wertigkeit und Atomradien der Actinoiden und anderer Übergangsmetalle in Carbiden, Nitriden und intermetallischen Phasen

Wie die Besprechung der Carbid- und Nitridsysteme in den vorangegangenen Kapiteln zeigte, ergeben sich enge Beziehungen im Reaktionsverhalten der Actinoiden mit dem der anderen Übergangsmetallen. Die leichten Actinoiden (Th bis Np) schliessen sich in ihrem Phasenverhalten an die Ubergangsmetalle der d-Serien der 4. und 5. Gruppe an. Bei den schweren Actinoiden (Pu und folgende) beobachtet man ein Verhalten, das den Seltenen Erden ähnlich ist. Beziehungen zwischen den Gitterabständen, Atomradien und Valenzzuständen ergeben für die Übergangsmetalle einschliesslich der Actinoiden ein einheitliches Bild, wenn man ein bestimmtes Atomradien-System zu Grunde legt. Empirische Zusammenhänge, die man bei Verknüpfung von Atomradien, Valenzzuständen und beobachteten Gitterparametern erhält, ergeben nützliche Voraussagen hinsichtlich der Existenz von Verbindungen und der Bildung von Mischphasen. Die Frage der Einordnung der Actinoiden im Periodensystem im Hinblick auf das Reaktionsverhalten, wie auch Fragen der formalen Wertigkeit, wurden vom Autor kürzlich diskutiert /a/.Im folgenden sind rein empirische Zusammenhänge zwischen Atomradien, Valenzzuständen und der Existenz bestimmter Verbindungen dargestellt und deren Aussagekraft und Anwendungsmöglichkeiten skizziert.

Seit den Anfängen der Kristallstrukturuntersuchungen mit Röntgenstrahlen gibt es immer neue Versuche, Gitterabstände im Festkörper aufzuteilenin Radien der einzelnen Atome. Bragg-1920 /1/, Wasastjerna-1923 /2/, Goldschmidt-1926 /3/, Pauling-1927 /4/und Zachariasen-1931 /5/ seien als Beispiele aus dieser Anfangszeit genannt. Die in neuerer Zeit entwickelten Radiensysteme von Elementen sind meistens differenzierter nach Struktur- und Bindungsverhältnissen und betrachten dementsprechend enger abgegrenzte Bereiche bestimmter Strukturtypen oder Verbindungsklassen. Beispiele hierfür sind Radien von Geller /6/ für β -W-Phasen, Shannon und Prewitt /7/ für Ionenkristalle oder Van Vechten und Phillips /8/ für kovalent gebundene Kristalle tetraedrischer Koordination. Naturgemäss sind die Radien der Elemente in ihren Gittern mit gleichen Bausteinen besser bestimmt als in Strukturen mit verschiedenen Gitterbausteinen. Demzufolge ist die Angabe genauer Radien von Atomen in Verbindungen sicherlich nur für enge Bereiche isotyper und in den Bindungsverhältnissen ähnlicher Phasen sinnvoll und sie sind in intermetallischen Phasen wahrscheinlich mehr als bei rein heteropolaren Verbindungen als Rechengrössen zu betrachten. Auch ein Radiensystem von Slater /9/, welches - dem Braggschen /1/ ähnlich - zugleich sowohl für Elemente als auch für Verbindungen und sowohl für kovalente, metallische und ionische Bindung gilt, ist im Einzelfall sicherlich zu wenig differenziert, um die Verhältnisse in allen intermetallischen Phasen oder gar in Carbiden und Nitriden zu beschreiben. Obwohl von Slater auch die gute Übereinstimmung zwischen diesen empirisch ermittelten Radien und den aus der maximalen Ladungsdichte der äussersten Elektronenschalen errechneten Radien hingewiesen wird, bleibt die physikalische Bedeutung aller empirisch ermittelten Radien unklar. In jedem Falle jedoch haben die aufgrund der Atomradien entwickelten Modellvorstellungen das Verständnis der Kristallstrukturen, die Kriterien für das Auftreten bestimmter Verbindungen und die Deutung von Eigenschaften wesentlich gefördert.

Radien der Actinoiden

Für die Übergangsmetalle ist eine starke Abnahme des Atomradius mit zunehmender Zahl von d-Elektronen in bindenden Zuständen, gefolgt von einer leichten Zunahme, sobald die Elektronen nichtbindende Zustände einnehmen, charakteristisch. Eine ausführliche Behandlung dieser Problematik wird von Pearson /10/ gegeben. Empfindlich verhalten sich die Atomabmessungen bei Änderung des Valenzzustandes eines Übergangsmetalls. Dies wird besonders offenkundig bei den verschiedenen Valenzzuständen der Actinoiden, hervorgerufen durch eine Hybridisierung von 5f- und 6d-Zuständen.

Der Zusammenhang zwischen Valenz und Radius der Übergangsmetalle ist nicht gesichert und vor allem bei den Actinoiden umstritten. Zachariasen /11,12/ schloss aus der Analyse der Zusammenhänge zwischen Radius und Gruppennummer bei den Übergangsmetallen der 2. und 3. langen Periode auf die Abhängigkeit der Atomradien von der Elektronenkonfiguration in der 4. langen Periode. Hierbei wird eine Abhängigkeit des Radius von der Zahl der s- und d-Elektronen angenommen, ähnlich der mit Rb beginnenden langen Periode und ein Faktor eingeführt in der Weise, dass für Th berechneter und beobachteter Radius übereinstimmen. Th wird als Fixpunkt gewählt, weil der vierwertige Zustand dieses Elements aus seinem chemischen Verhalten offenkundig ist. f-Elektronen tragen in dieser Modellvorstellung nicht zur chemischen Bindung bei. Eine Zunahme der f-Elektronen führt infolge der zunehmenden Kernladung und einer nicht vollständigen Abschirmung durch die f-Schale zu einer Radienkontraktion.

Das von Zachariasen abgeleitete Radiensystem für die Actinoiden in verschiedenen Valenzzuständen wurde von Cunningham und Wallmann /13/ modifiziert, indem als Fixpunkt der experimentell bestimmte Radius von Cm - wegen der angenommenen stabilen 5f^{\prime}-Konfiguration als 3-wertig postuliert - gewählt wurde. Das so erhaltene Radiensystem weist wesentliche Unterschiede zu dem von Zachariasen auf (vgl. Tabelle 1) und ist sehr ähnlich demjenigen, welches später Weigel und Trinkl /14/ erhielten, indem sie die Zusammenhänge nach Zachariasen an ihrem experimentell bestimmten Radius des 2-wertigen Radiums verankerten. Eine Bestätigung dieser letzteren beiden Radiensysteme scheint durch den Radius des 3-wertigen Actiniums /15/ gegeben, der sich hier gut einordnet, jedoch nicht in den Zusammenhang nach Zachariasen. Der Wert von r = 1.878 Å ist nach Zachariasen /12/ im Vergleich zu dem Radius des homologen Elementes der dritten langen Periode La (r = 1.876 Å) zu klein. In einer neueren Arbeit von Zachariasen /16/ werden Valenzen und Radien der Actinoiden unter Miteinbeziehung der exp. Daten von Ra und Cm abermals diskutiert und mit jenen der übrigen Übergangsmetalle zusammengestellt. Tabelle 1 verdeutlicht in vereinfachter Form die wesentlichen Unterschiede der zitierten Radiensysteme. Die erste Spalte zeigt die aus den Elementstrukturen abgeleiteten Radien der Elemente und die folgenden Spalten errechnete Radien der Elemente in verschiedenen Valenzzuständen. Die Radien wurden auf 2 Dezimalstellen auf- bzw. abgerundet und die ähnlichen

- 325 -

Tab. 4.2.1: Atomradien von Ra und den Actinoiden in den Elementstrukturen sowie abgeschätzte Radien für verschiedene Wertigkeitsstufen (Atomradien in R-Einheiten 1 R = 0.1 nm)

Element	beobachtete Radien	abgeschätzte Radien für verschiedene Valenzzustände					
<u> </u>		2	3	4	5	6	7
Ra	2,29	2,29*) 2,29*)					
Ac .	1,88		1,98*) 1,84*)				
Th	1,80		1,81 *)	1,80*) 1,65*)			
Pa	1,64 — 1,78	ſ	1,79+)	1,77*) 1.63*)	1,64*) 1.50*)		
U	1,54		1,90*) 1,78*)	1,75*) 1.61 ⁺)	1,62*) 1,48*)	1,54*) 1,43 ⁺)	
Np	1,50		1,88*) 1,77*)	1,73*) 1,60*)	1,61*) 1,47*)	1,53*) 1,42 ⁺)	1,50*)
Pu	1,52 - 1,64		1,87*) 1,76*)	1,72*) 1,60 ⁺)	1,60*) 1,47*)	1,53*) 1,41 ⁺)	1,50*)
Am	1,73	2,10*)	1,86*) 1,75†)	1,72*) 1,59*)	1,59*) 1,46 ⁺)	1,53*) 1,40 ⁺)	
Cm	1,75 – 1,78		1,86*) 1,75†)	1,71*) 1,59*)	1,45+)	1,40+)	
Bk	1,70-1,76	:	i,84*)	1,70*)		. ,	
Cſ	Í	2,03*)	1,81 *)	1,69*)			
Es		2,01*)	1,81 *)	1,68*)		-	

*) Radien nach Zachariasen /16/

*) Radien nach Cunningham und Wallmann /13/ sowie Weigel und Trinkl /14/

Radiensysteme von Cunningham und Wallmann einerseits, sowie Weigel und Trinkl andererseits zusammengefasst.

Man erkennt, dass etwa gleiche Radien bei den verschiedenen Autoren für benachbarte Wertigkeitsstufen gelten, dass also z.B. der Radius für 4-wertiges Th nach Zachariasen dem für 3-wertiges Th nach Cunningham und Wallmann bzw. Weigel und Trinkl entsprechen.

Diesen empirisch erhaltenen Zusammenhängen zwischen Valenz und Radius stehen auch theoretische Überlegungen und Rechnungen gegenüber. Bandstrukturrechnungen an den Actinoiden veranlassten Kmetko und Hill /17/, auch die f-Elektronen als bindende die Valenz mitbestimmende Elektronen zu betrachten und damit die Grundlagen der empirischen Bezlehungen in Frage zu stellen. In einer weiteren Arbeit /18/ wird

der zu kleine, nicht in die Zusammenhäng nach Zachariasen passende Radius des dreiwertigen Ac theoretisch untermauert. Da es schwierig und fast aussichtslos erscheint, zum augenblicklichen Zeitpunkt einerseits die Aussagen der verschiedenen errechneten Bandstrukturmodelle und Elektronenkonfigurationen mit jenen einfacher empirischer Zusammenhänge in volle Übereinstimmung zu bringen, da andererseits die Aussagen oft zu allgemein und nicht unmittelbar vergleichbar sind, um wirkliche Gegensätze herauszuarbeiten, soll hier nicht weiter darauf eingegangen werden. Hinsichtlich der Theorie des Aufbaus der Actinoiden sei auf ein kürzlich erschienenes Buch verwiesen /18/. Nützlich erscheint es jedoch, weitere empirische Zusammenhänge zu suchen, die das Verhalten der Actinoiden innerhalb der Übergangsmetalle klar werden lassen, und damit sicherlich zur Überwindung bestehender Diskrepanzen beitragen. Bisher wurden zur Charakterisierung der Eigenschaften und des chemischen Verhaltens der Übergangsmetalle hauptsächlich die Lösungschemie der Elemente berücksichtigt oder es wurden reine Metalle oder polare Verbindungen untersucht. Dementsprechend werden z.B. Radien als Metallradien oder lonenradien abgeleitet und Valenzzustände aus dem Lösungsverhalten oder der Koordinationschemie der Übergangsmetalle bestimmt. Infolge der teilweise sehr grossen Elektronegativitätsunterschiede der Komponenten in polaren Verbindungen tritt das spezifische mit der Elektronenstruktur des Metalls gekoppelte Verhalten oft zurück. In letzter Zeit wurden eine Vielzahl neuer Carbid-, Nitrid- sowie intermetallische Phasen der Actinoiden mit anderen Übergangsmetallen bekannt /19 - 21/. Bei den intermetallischen Phasen handelt es sich hauptsächlich um Lavesphasen und dicht gepackte Ordnungsphasen, die teilweise durch Kohlenstoff stabilisiert sind. Diese Phasen bieten sich für eine kritische Betrachtung des Verhaltens der Actinoiden und vorhandener Modellvorstellungen an.

Auftreten von Carbiden, Nitriden und intermetallischen Phasen und Stellung der Komponenten im Periodensystem

Als Basis für spätere Aussagen über die Valenz der Actinoiden wird das Auftreten bestimmter Phasen mit der Stellung der Komponenten im Periodensystem verknüpft. Als Verbindungen werden hierbei die Monocarbide und Mononitride der Übergangsmetalle sowie die Lavesphasen und Ordnungsphasen

der Übergangsmetalle mit den Platinmetallen der 2. langen Periode Ru, Rh und Pd betrachtet.

Abb. 4.2.1 und Abb. 4.2.2 zeigen das Auftreten von Monocarbiden und Mononitriden der Übergangsmetalle. Hier ist eine Lokalisierung der Elemente im Periodensystem, die diese Verbindungen bilden, unscharf.

MC1-x (NaCl - Typ)

MN (NaCl-Typ)

Te die Monocarbide bilden im Periodensystem

Abb.4.2.1: Lage der Übergangsmetal- Abb.4.2.2: Lage der Übergangsmetalle die Mononitride bilden im Periodensystem

108 IVB

18 118

VB VIB

BCNOFNe

AL SI P S CI Ar

Ga Ge As Se Br Kr

J Xe

Es fällt allerdings eine Verschiebung des Schwerpunktes in Richtung auf 3wertige Metalle beim Übergang von Carbiden zu Nitriden auf. Viel deutlicher wird eine Zuordnung bei anderen Verbindungstypen. Abb. 4.2.3 verdeutlicht z.B. das Auftreten von Lavesphasen gemäss MRh₂(MgCu₂-Typ) und von Ordnungsphasen gemäss MRh₃(Cu₃Au-Typ). Es fällt auf, dass die Metalle der 1. bis 3. langen Periode, die Lavesphasen MRh₂ bilden, der 2. und 3.Gruppe angehören und dass die 3d-, 4dund 5d-Übergangsmetalle, die Ordnungsphasen MRh $_{\pi}$ bilden, bevorzugt der 4. und 5.Gruppe des Periodensystems angehören. Die 3d-Elemente Sc und Cr ändern dieses Bild nur unwesentlich, da hier, wie später für Sc noch näher ausgeführt wird, offensichtlich eine "Valenzanpassung" vorliegt.

Beide Verbindungstypen zugleich werden von Ce gebildet, das als 3und 4-wertig bekannt ist, und von den Actinoiden ab Pu, wo die Lokalisierung der 5f-Elektronen zunimmt, d.h. die Metalle in ihrem Verhalten den Lanthanoiden ähnlicher werden. Die leichteren Actinoiden verhalten sich wie die Übergangsmetalle der 4. und 5. Gruppe. Einen

ähnlichen Befund erkennt man in den binären Systemen der Übergangsmetalle mit Pd. Abb. 4.2.4 verdeutlicht das Auftreten von Ordnungsphasen MPd₃(Cu₃Au-Typ) und MPd₄ (defekter Cu₃Au-Typ). Von den 3-wertigen Seltenen Erden werden die Phasen MPd₃ und von den Übergangsmetallen der 4.Gruppe die Phasen MPd₄ gebildet. Bei den Actinoiden sind die Systeme mit Pd noch nicht vollständig untersucht, jedoch erkennt man zu Anfang der Serie ein den Übergangsmetallen der 4.Gruppe ähnliches Verhalten und ab Pu zunehmende Tendenz des dreiwertigen Verhaltens. Sc,Ce und Pu verhalten sich sowohl wie die Metalle der 3. Gruppe als auch wie die der 4.Gruppe. Die binären Phasendiagramme dieser Metalle zeigen homogene kfz. Bereiche zwischen den Zusammensetzungen entsprechend MPd₃ und MPd₄. Der strukturelle Aufbau der kfz. Phasen MPd₄ ist nicht in jedem Falle bekannt. Überstrukturlinien

lassen zwar in den meisten Fällen auf Ordnung der Metallatome schliessen /22/, jedoch ist unklar, ob die Defektstruktur bei den einzelnen Phasen durch Besetzung von M-Plätzen durch Pd oder durch Leerstellen im M-Teilgitter hervorgerufen wird. Im Falle der Verbindung UPd₄ konnte eine Atombesetzung des Gitters gemäss U_{0.75}Pd₃ nachgewiesen werden /23/. Als weiterer Hinweis für das Bestehen ähnlicher Valenzzustände der Übergangsmetalle der d-Serien und der f-Serien ist in Abb.4.2.5 das Auftreten kohlenstoffstabilisierter Ordnungsphasen dargestellt /24,25/. Auch hier wird der Einfluss der Gruppennummer des Übergangsmetalls auf das Auftreten der Ordnungsphasendeutlich. 3-wertige Metalle bilden Komplexcarbide mit Rhodium, 4- und 5-wertige mit Ruthenium. Wie schon bei den binären Pd-Systemen angedeutet, so zeigen die Metalle, die in mehreren Wertigkeitsstufen auftreten ("Sc", Ce,U,Pu) auch hinsichtlich des Kohlenstoffgehaltes homogene Bereiche in den Grenzen der für jeden Valenzzustand typischen Zusammensetzung. So lösen z.B. die Phasen ScRh₃, CeRh₃ und PuRh₃ Kohlenstoff bis etwa MRh₃C_{0.75}.

<u>Abb.4.2.4</u>: Zum Auftreten von kfz.Ordnungsphasen MPd₃ (Cu₃Au-Typ) und MPd₄ (defekter Cu₃Au-Typ)

<u>Abb.4.2.5</u>: Zum Auftreten von C-stabilisierten kfz. Ordnungsphasen MRu₃C_{1-x} und MRh₃C_{1-x}

Trotz der noch bestehenden Lücken infolge nicht untersuchter Systeme im Bereich der Actinoiden, fallen in Abb.4.2.5 die zwei Gruppen der Übergangsmetalle mit unterschiedlichem Verhalten auf. Die leichten Actinoiden schliessen sich an die Übergangsmetalle der 4. und 5.Gruppe an. Sc, Ce und Pu zeigen das Verhalten der beiden Elementgruppen. Auch für die Elemente Pa, Np, Am und Cm kann man mit der Existenz von Perowskitcarbiden rechnen.

Gitterabstände, Atomradien und Valenzzustände

Die weitere Betrachtung soll einen Zusammenhang zwischen Gitterabständen, Atomradien und Valenzen der Übergangsmetalle herstellen. Da die Radien nicht nur von der Wertigkeit der jeweiligen Metalle, sondern auch vom jeweiligen Partner in der Verbindung, d.h. also von der Art der Bindung abhängen, sind die Metallradien (abgeleitet bei gleichen Gitterbausteinen) und die Radien der Metalle in Verbindung grundsätzlich nicht gleich. In intermetallischen Phasen beobachtet man eine zunehmende Radienkontraktion, ausgehend von Phasen des Typs fester Lösungen von in ihrem Aufbau ähnlichen Übergangsmetallen, z.B. MoRh oder Molrz, bis zu Phasen mit stärker ausgeprägter polarer Komponente, wie z.B. LaPdz. Auch bei den CuzAu-Typ Phasen mit Rh und Pd erkennt man, wie Abb. 4.2.6 zeigt, eine zunehmende Gitterkontraktion in den Phasen mit zunehmender Differenz der Elektronegativitäten der beteiligten Komponenten. Um dennoch die Metallradien (konsistente und sehr ähnliche Werte für die Übergangsmetalle entwickelten Teatum u.a. /26/ sowie Zachariasen /16/) für eine Abschätzung von Valenzzuständen, Stabilitätsktriterien oder Strukturfragen in intermetallischen Phasen, Carbiden und Nitriden heranziehen zu können, muss entweder der betrachtete Bereich von Elementen genügend klein gewählt werden, oder es müssen Korrekturen angebracht werden, die dem spezifischen Verhalten der Elemente in den intermetallischen Phasen Rechnung tragen.

Für Zusammenhänge im Bereich der Übergangsmetalle der 4. und 5. Gruppe lassen sich z.B. die Radien nach Slater /9/ für Verbindungen in geringfügig angepasster Form gut in die empirischen Zusammenhänge einbauen. Tab. 4.2.2 gibt die in den folgenden Abbildungen verwendeten Radien der Übergangsmetalle wieder. In Abb. 4.2.7 bzw. 4.2.8 sind die Gitterkonstanten der Monocarbide MC. bzw. der Verbindungen MRh₃ über dem Metallradius der Komponenten M aufgetragen. M ist bei den Übergangsmetallen der d-Serien bevorzugt ein Metall der 4. und 5. Gruppe. Es ergeben sich Kurven und die Actinoiden fügen sich mit ihrem dem 4- bzw. 5-wertigen Zustand entsprechenden Radien (nach Zachariasen) gut in diesen Zusammenhang zwischen Gitterkonstante und Atomradius ein. (Unter Zugrundelegung des Radiensystems nach Cunningham und Wallmann bzw. Weigel und Trinkl würden Radien der 3-wertigen Actinoiden Th,Am,Cm dem Kurvenverlauf gerecht werden und damit würden die Actinoiden zwanglos in den Zusammenhang der 4 und 5 wertigen Übergangsmetalle ein.

	and a second	, til og state skalens	
Å	Â		8
Sc (3) 1.64	Th 1.80	Ti	1.40
Sc (4) 1.52	Pa (4) 1.77	Zr	1.55
Y 1.77	Pa (5) [,] 1.64	Hf	1.53
La 1.88	U (4) 1.75		
Ce (3) 1.85	U_ (5) 1.62	V	1.35
Ce (4) 1.67	U (6) 1.54	́NЬ	1.45
Pr 1.83	Np (4) 1.73	Та	1.45
Nd 1.82	Np (5) 1.61		
Sm 1.80	Pu (3) 1.87	Ru	1.34
Eu 1.80	Pu (4) 1.72	Rh	1.35
Gd 1.80	Pu (5) 1.60	Рd	1.38
Tb 1.78	Am (3) 1.86		
Dy 1.78	Am (4) 1.72		
Ho 1.77	Cm (3) 1.86		
Er 1.76	Cm (4) 1.71		
Tm 1.75	BK (4) 1.70		
Yb 1.74			
Ln 1.74			

Tab. 4.2.2:Metallradien (KZ.12) der Übergangsmetalle bei den dargestellten Beziehungen (1 \Re = 0.1 nm) (vgl. /9,16,26/)

Dem Sc wurde in Abb. 4.2.8 ein Radius von 1,52 Å zugeordnet, während der Metallradius des 3-wertigen Sc bei 1,64 Å liegt. Es wurde schon erwähnt, dass Sc sich einerseits wie ein 3-wertiges Element verhält, andererseits auch Verbindungen bildet, die für die Übergangsmetalle der 4.Gruppe charakteristisch sind. Trägt man die Gitterkonstanten der zu den Sc-Phasen isotypen Verbindungen über dem Metallradius von M

Abb. 4.2.9: Gitterkonstanten von Mononitriden MN in Abhängigkeit vom Atomradius des Metalles M

auf (Abb.4.2.10), so erkennt man, dass der scheinbare Radius des Sc in Verbindungen der typisch 4-wertigen Elemente (Ti,Zr) bei 1,52 Å liegt, während aus den Verbindungen der typisch 3-wertigen Elemente der bekannte Radius von 1,64 Å für 3-wertiges Sc folgt. Dies verdeutlicht auch Abb.4.2.11 für Komplexcarbide und Komplexboride /27/.

In Abb.4.2.12 sind die Gitterkonstanten von Verbindungen MPd₃ über den Radien von Maufgetragen, wobei M bei den Übergangsmetallen der d-Serien

Abb. 4.2.10: Zur Abschätzung des Radius von Sc in intermetallischen Phasen

Abb.4.2.11: Gitterkonstanten von Komplexcarbiden und Komblexboriden der Seltenen Erden in Abhängigkeit vom Atomradius

Atomradius [Å] Abb.4.2.12: Gitterkonstanten von Phasen der Zusammensetzung MPdz In Abhängigkeit vom Atomradius

des Metalles M

Abb.4.2.13: Zur Abschätzung von Radien und Valenzen von Übergangsmetallen in Verbindungen MPd_A

der 3.Gruppe angehört. Die Actinoiden fügen sich hier mit ihren dem 3-wertigen Zustand entsprechenden Radien gut in den Zusammenhang ein. (Nach Cunningham und Wallmann bzw. Weigel und Trinkl würden die Radien der 2-wertigen Elemente dem Kurvenverlauf entsprechen.)

Wie Abb. 4.2.4 zeigte, ist das Auftreten von Phasen im defekten Cu_3 -Au-Typ gemäss MPd₄ typisch für die Übergangsmetalle der 4.Gruppe. Trägt man die Gitterkonstanten von TiPd₄, ZrPd₄ und ThPd₄ über den Radien von Ti, Zr und Th auf, so erhält man die in Abb.4.2.13 dargestellte Kurve. Aus den Gitterkonstanten von MPd₄-Phasen, die von Metallen M gebildet werden, deren Valenz nicht bestimmt ist, lassen sich mit dieser Kurve Radien abschätzen, die in Übereinstimmung mit den Fixpunkten der Kurve auch für diese Metalle auf Valenzen sehr nahe bei 4 schliessen lassen. Es sei hier allerdings darauf hingewiesen, dass neben Sc, dessen Verhalten innerhalb der betrachteten Zusammenhänge schon diskutiert wurde, auch Y eine kubisch flächenzentrierte Phase YPd₄ bildet. Der Gitterparameter dieser Verbindung liegt beträchtlich unterhalb des Wertes, der unter Zugrundelegung des Atomradius für 3-wertiges Y zu erwarten wäre. Hierauf wiesen schon Harris und Normann /28, 29/ bei ihren Untersuchungen von Pd-Mischphasen hin.

Auch bei den C-stabilisierten Phasen MRu₃C_{1-X} fügen sich Actinoiden und Seltene Erden mit den Radien, die der Valenz 4 oder 5 entsprechen, wie Abb. 4.2.14zeigt, vollkommen in den Zusammenhang der anderen Übergangsmetalle ein. Wegen der unvollständigen Auffüllung der Oktaederlücken in der Zr-, Hf-, V- und Ta-Phase mit Kohlenstoff, wurden die Gitterkonstanten dieser Phasen auf die Zusammensetzung MRu₃C extrapoliert. Hierbei wurde als Erfahrungswert eine Gitteraufweitung von 0,1 Å für die Auffüllung aller Oktaederlücken mit Kohlenstoff angesetzt. In ähnlicher Weise fügen sich die Actinoiden mit den Radien, die der Valenz 3 entsprechen, bei den Phasen MRh₃C_{1-X} (Abb.4.2.15) in den Zusammenhang der anderen Übergangsmetalle ein und in gleicher Weise ergeben sich Zusammenhänge zwischen den Gitterkonstanten von Lavesphasen und vieler anderer Verbindungen und den Atomradien der Metalle.

Ähnliche Zusammenhänge, wie sie hier für wenige Verbindungstypen dargelegt wurden, lassen sich auch für andere Übergangsmetallphasen herausarbeiten. Die Lavesphasen und im Hosonderen die Ordnungsphasen mit Rh und Pd boten sich vor allem wegen der guten Kenntnis der entsprechenden Verbindungen der Actinoiden an. Die Zusammenhänge zwischen Gitterparametern und Atomradien lassen sich auch erweitern auf isotype Phasen von Metallen verschiedener Valenz oder auf feste Lösungen in Verbindungen, gebildet von Metallen, die in verschiedenen Wertigkeitsstufen auftreten. So lässt sich z.B. ein empirischer Zusammenhang angeben zwischen der Bildungsenthalpie der Ordnungsphasen und der Gitterkontraktion, wenn man die Radien und Valenzen der Actinoiden entsprechend den hier für bestimmte Verbindungen abgeleiteten Werten wählt /29/. Bei festen Lösungen beeinflussen die Metallatome des Wirtgitters die der gelösten Phase sowohl hinsichtlich des Raumbedarfs als auch bezüglich der Valenz. Die Folge sind oft erhebliche Abweichungen der Gitterabstände von der Linearität in Mischkristallreihen, bei denen Metalle beteiligt sind, die sowohl Atomgrösse als auch die Valenz anpassen können, wie z.B. die Actinoiden oder Cer und z.T. auch Scandium.

<u>Abb.4.2.14:</u> Gitterkonstanten von Carbiden der Zusammensetzung MRu₃C in Abhängigkeit vom Atomradius des Metalles M

 $\frac{Abb. 4.2.15}{Carbiden der Zusammensetzung MRh_3C_{1-X}}$ in Abhängigkeit vom Atomradius des Metalles M

Beispiele hierfür sind die Gitterparameter in den metallischen Mischphasen Zr-Sc, Th-Ce, La-Ce, Th-Pu ..., oder bei Systemen intermetallischer Phasen: CeRh₃-CePd₃, ScRh₃-ScPd₃.

Berücksichtigt man die skizzierten Zusammenhänge zwischen dem Auftreten von intermetallischen Phasen, der Struktur und den Bindungsverhältnissen (ausgedrückt durch Gitterabstände), so lässt sich ein einheitliches Verhalten innerhalb zweier Bereiche erkennen, bestehend einmal aus den 3-wertigen Metallen und zum anderen jenen der 4. und 5.Gruppe. Cer, z.T. Sc und die Actinoiden im Übergangsbereich der zunehmenden Lokalisierung der 5f-Zustände zeigen häufig das Verhalten beider Gruppen. Die leichteren Actinoiden schliessen sich in ihrem Phasenverhalten an die Übergangsmetalle der d-Serien der 4. und 5.Gruppe an. Die empirischen Zusammenhänge zwischen Radien, Valenzen und Gitterkonstanten von Phasen ergeben sich innerhalb jeder dieser beiden Gruppen in etwas unterschiedlicher Form. In beiden Fällen bestätigten diese Zusammenhänge das Radiensystem für die Actinoiden nach Zachariasen.

Die Kenntnis des Valenzzustandes der Actinoiden in Phasen z.B. mit Pd und Rh war auch das Ziel von magnetischen Messungen (vgl. z.B. /18,30,31/). Obwohl es schwierig ist, den magnetischen Suszeptibili-;täten der Verbindungen eindeutige Valenzzustände der Komponenten zuzuordnen, scheint zumindest eine starke Hybridisierung von 5f- und 6d-Zuständen am Anfang der Actinoidenserie ebenso wie eine zunehmende Lokalisierung der 5f-Zustände ab Pu bestätigt zu werden. Folgerungen aus den magnetischen Momenten /30/, dass Pu in PuRh₃ wahrscheinlich 3-wertig ist, oder aus dem magnetischen Hyperfeinfeld und dem elektronischen magnetischen Moment /31/, dass für Np in intermetallischen Phasen eine starke Lokalisierung der 5f-Elektronen zu erwarten ist, stehen allerdings nicht in Einklang mit den beschriebenen Beobachtungen.

So wenig theoretisch untermauert die Radien in intermetallischen Phasen der Übergangsmetalle auch sind, sie können als sehr nützliche Rechengrössen herangezogen werden, z.B. für die Abschätzung von Valenzzuständen und den Einfluss sterischer und elektronischer Parameter auf das Auftreten bestimmter Phasen oder für die Überprüfung experimenteller Daten und die Feststellung von Inkonsistenzen. Dieser letztere Gesichtspunkt wurde erst kürzlich am Beispiel von Ergebnissen über das Metall Californium /32,33/ besonders deutlich.

- Literatur: Zur Frage der Wertigkeit und Atomradien der Actinoiden und anderer Übergangsmetalle in Carbiden, Nitriden und intermetallischen Phasen (Kap. 4.2)
- /a/ H.Holleck, Ber.Bunsenges.79 (1975) 975
- /1/ W.L.Bragg, Philos. Mag. 40 (1920) 169
- /2/ J.A.Wasastjerna, Soc. Sci. fenn. Comment. physico-math.38 (1923) 22
- /3/ V.M.Goldschmidt, T.Barth, G.Lunde, W.Zachariasen, Geochemische Verteilungsgesetze der Elemente, Skr.Norsk. Videns-Akad., Oslo, I.Mat.-Nat. Kl. No.2 (1926)
- /4/ L.Pauling, J.Amer.chem.Soc. 49 (1927) 765
- /5/ W.H.Zachariasen, Z.Kristallogr. 80 (1931) 137
- /6/ S.Geller, Acta Cryst.9 (1956) 885
- /7/ R.D.Channon, C.T.Prewitt, Acta Cryst. B 25 (1969) 925
- /8/ J.A.VanVechten, J.C.Phillips, Physic. Rev. B 2 (1970) 2160
- /9/ J.C.Slater, J.chem.Physics 41 (1964) 3199
- /10/ W.B.Pearson, The Crystal Chemistry and Physics of Metals and Alloys; Wiley-Interscience, New York 1972
- /11/ W.H.Zachariasen, in: G.T.Seaborg und J.J.Katz (Herausg.), The Actinide Elements, S. 769, Mc Graw-Hill, New York 1954
- /12/ W.H.Zachariasen, in: A.Coffinberry und W.N.Miner, The Metal Plutonium, S.99, University of Chicago Press 1961

- /13/ B.B.Cunningham, J.C.Wallmann, J.inorg. nucl. Chem. 26 (1964) 271
- /14/ F.Weigel, A.Trinkl, Radiochimica Acta 10 (1968) 78
- /15/ J.D.Farr, A.L.Giorgi, M.G.Bowman, R.K.Money, J.inorg.nucl.Chem. 18 (1961) 42
- /16/ W.H.Zachariasen, J.inorg.nucl.Chem.35 (1973) 3487
- /17/ E.A.Kmeto, H.H.Hill, in: W.N.Miner (Hrsg.): Plutonium 1970 and other Actinides, Nucl.Metallurgy Vol.17 (1970), S. 233
- /18/ A.J.Freemann, J.B.Darby (Hrsg.), The Actinides; Electronic Structure and Related Properties; Volume 1 and 11, Academic Press, New York 1974
- /19/ H.Holleck, J.Nucl.Mat, 42 (1972) 278
- /20/ D.J.Lam, A.W.Mitchell, J.Nucl.Mat.44 (1972) 279
- /21/ B.Erdmann, C.Keller, J.Solid State Chem. 7 (1973) 40
- /22/ M.Norman, I.R.Harris, J.Less-Common Met.18 (1969) 333
- /23/ G.I.Terekhov, S.I.Sinyakova, M.V.Verdernikov , O.S.Ivanov, in: Phys.Chemie von Legierungen und hochschmelzenden Verbindungen von Th und U, S.103, Nauka, Moskau 1968 (in russisch)
- /24/ H.Holleck, J.Nucl. Mat.42 (1972) 278
- /25/ H.Holleck, KFK-Bericht 1726 (1972) sowie: IV.Int.Conf. on Solid Comp. of Transition Elements, Genf 9. - 13.4.1973, AED-Conf. 73-128-015
- /26/ E.T.Teatum, K.A.Gschneidner, J.T.Waber, Bericht, LA - 4003 (1968)
- /27/ H.Holleck, J.Less-Common Met. 52 (1977) 167
- /28/ I.R.Harris, M.Norman, J.Less-Common Met. 15 (1968) 285
- /29/ I.R.Harris, M.Norman, J.Less-Common Met. 22 (1970) 127

- /30/ M.Murabayashi, H.Kleykamp, J.Less-Common Met.39 (1975) 235
- /31/ W.J.Nellis, A.R.Harvey, M.B.Brodsky, AIP Conf. Proc.Nr. 10, Part 2, Magnetism and Magnetic Materials - 1972; Am.Inst. of Physics, New York 1973
- /32/ B.D.Dunlap, G.H.Lander, Phys.Rev.Letters 33 (1974) 1046
- /33/ R.G.Haire, R.D.Baybarz J.inorg.nucl.Chem. 36 (1974) 1295
- /34/ W.H.Zachariasen, J.inorg.nucl.Chem. 37 (1975) 1441