KfK 3274 Februar 1982

Untersuchungen über die Anwendung von Fentons Reagenz zur chemisch-oxidativen Abwasserbehandlung

W. Feuerstein Institut für Radiochemie

Kernforschungszentrum Karlsruhe

KERNFORSCHUNGSZENTRUM KARLSRUHE

Institut für Radiochemie

KfK 3274

Untersuchungen über die Anwendung von Fentons Reagenz zur chemisch-oxidativen Abwasserbehandlung ⁺)

Wolfgang Feuerstein

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

⁺) Von der Fakultät für Chemie der Universität Karlsruhe (TH) genehmigte Dissertation

Als Manuskript vervielfältigt Für diesen Bericht behalten wir uns alle Rechte vor

.

•

Kernforschungszentrum Karlsruhe GmbH ISSN 0303-4003

Zusammenfassung:

Es wurden die Reaktionen von Fentons Reagenz ($H_2O_2/Fe(II)$) mit Modellsubstanzen für persistente aromatische Abwasserinhaltsstoffe (p-Toluolsulfonsäure, Anilin, p-Nitrophenol, 2,4-Dichlorphenol) und einem Industrieabwasser untersucht. Die höchste Reaktionsgeschwindigkeit mit und ohne organischem Substrat und die besten Ergebnisse hinsichtlich der wasserchemischen Summenparameter werden bei pH=3 erreicht. Begasen der Reaktionslösung mit Sauerstoff oder Luft verbessert die Oxidationswirkung entscheidend, da durch den gelösten Sauerstoff über Autoxidationsprozesse wieder H_2O_2 aus der organischen Substanz zurückgebildet wird, so daß der spezifische H_2O_2 -Verbrauch für die Oxidation der Modellsubstanzen bei 50 %iger Entfernung des CSB (Chemischer Sauerstoffbedarf) nur zwischen o.5 und o.9 mg H₂O₂/mg CSB beträgt, d.h. bis zu 80 % der erreichten CS**B**-Erniedrigung stammen von dem eingeleiteten Sauerstoff. Zur 90 %igen Elimination der untersuchten Aromaten werden zwischen 1.9 und 2.4 mmol $H_2O_2/mmol$ Aromat benötigt. Im Falle der Oxidation von Anilin treten biologisch schwer abbaubare Zwischenprodukte auf solange das Anilin noch nicht quantitativ entfernt ist. Fentons Reagenz in Verbindung mit einer Sauerstoff- oder Luftbegasung kann als aussichtsreiches Oxidationsmittel zur Umwandlung von persistenten Aromaten in biologisch abbaubare Folgeprodukte angesehen werden. Der spezifische Oxidationsmittelbedarf ist merklich geringer als im Falle der Ozonung.

Investigations of the application of Fenton's reagent for chemical oxidation in waste water treatment

Abstract:

The reactions of Fenton's reagent $(H_2O_2/Fe(II))$ with model compounds for refractory aromatic waste water components (p-toluenesulfonic acid, aniline, 4-nitrophenol, 2,4-dichlorophenol) and a waste water from the chemical industry were investigated. The highest reaction rate in presence and in absence of aromatic substrates and best results with respect to the sum parameters of waterchemistry are observed at pH=3. Feeding of oxygen or air into the reaction mixture improves considerably the oxidation efficiency, because, the dissolved oxygen takes place in the reaction leading to a re-formation of hydrogen peroxide from organic substance via autoxidation processes. Therefore the specific hydrogen peroxide consumption for 50 % reduction in COD (chemical oxygen demand) was found to be 0.5 to 0.9 mg H_2O_2 per mg of COD, that means, up to 80 % of the COD-dimunuation achieved originates from the discharged oxygen. Ninety percent elimination of model compounds needs 1.7 to 2.4 mmole H_2O_2 per mmole of aromatic compound. Formation of nonbiode-gradable intermediate products were detected with aniline as long as the compound itself was not quantitatively eliminated. Fenton's reagent in combination with feeding pure oxygen or air seems to be a promising oxidation reagent for the conversion of refractory aromatics into biodegradable substances. The specific oxygen reagent consumption is remarkably less than in the case of ozone.

Inhaltsverzeichnis

Zus	ammenf	assung			I		
1.	Einle	eitung ur	nd Aufgaben	stellung	1		
	1.1.	Einleit	ung		1		
	1.2.	Aufgabe	enstellung		2		
	1.3.	Symbole	e und Abkür	zungen	3		
2.	Unter	suchung	der Reakti	on von H ₂ O ₂ mit Fe(II)	4		
	2.1.	Literat	urangaben	zur Reaktion von H_2O_2 mit Fe(II)	4		
	2.2.	Untersu	Ichungserge	bnisse und Diskussion	6		
		2.2.1.	Einfluß d	es pH-Wertes	6		
		2.2.2.	Einfluß d	er Fe(II)-Anfangskonzentration	13		
3.	Unter mit F	suchung entons R	der Oxidat Reagenz	ion von aromatischen Modellsubstanzen	18		
	3.1.	. Literaturangaben zur Reaktion von Fentons Reagenz mit aromatischen Verbindungen					
	3.2.	Untersu p-Toluo	ichung der Isulfonsäu	Reaktion von Fentons Reagenz mit re	22		
		3.2.1.	Einfluß d	er Sauerstoffkonzentration	22		
			3.2.1.1.	Vergleichende Untersuchungen unter Sauerstoff-,Preßluft- und Stickstoff- eintrag	23		
			3.2.1.2.	Untersuchungen zur Bilanzierung des Sauerstoffes	27		
			3.2.1.3.	Zum Mechanismus der Beteiligung des elementaren Sauerstoffes bei der Oxi- dation mit Fentons Reagenz	32		
		3.2.2.	Einfluß d	e s pH- Wertes	39		
		3.2.3.	Einfluß d	er Fe(II)-Anfangskonzentration	43		
		3.2.4.	Einfluß d der Dosie	er Oxidationsmittelmenge und der Art rung	48		
		3.2.5.	Einfluß d	er Absolutkonzentration	59		
	3.3.	Reaktio Modells	nen von Fe ubstanzen	ntons Reagenz mit weiteren aromatischen und einem Industrieabwasser	63		
		3.3.1.	Arbeitswe	ise	63		
		3.3.2.	Anilin		64		
		3.3.3.	p-Nitroph	enol und 2,4-Dichlorphenol	69		
		3.3.4.	Industrie	abwasser	72		

Versu Reage	iche∶zur enz + Flo	Verfahrenskombination "Oxidation mit Fentons ockung"zur Entfernung von p-Toluolsulfonsäure	78
Disku	ission		81
Exper	imentel	ler Teil	87
6.1.	Versuch	hsdurchführung	87
	6.1.1.	Versuche mit Begasung der Reaktionslösung	87
	6.1.2.	Versuche zur Sauerstoffbilanzierung	87
6.2.	Analyt	ische Methoden	88
	6.2.1.	Konzentrationsbestimmung der aromatischen Modellsubstanzen	88
	6.2.2.	H ₂ O ₂ -Bestimmung	88
	6.2.3.	Fe(II)-Bestimmung	89
	6.2.4.	CSB-Bestimmung	89
		6.2.4.1. Automatisierte CSB-Bestimmung	89
		6.2.4.2. CSB-Bestimmung nach Wagner	90
	6.2.5.	TOC-Bestimmung	90
	6.2.6.	BSB ₅ -Bestimmung	90
	6.2.7.	pH-Messung und -Regelung	91
	6.2.8.	Sauerstoff-Messung	91
	6.2.9.	Verwendete Chemikalien	92

7. Literaturverzeichnis

4.

5.

6.

93

<u>1.__Einleitung_und_Aufgabenstellung</u>

1.1 Einleitung

Mit der Einführung des chemischen Sauerstoffbedarfes (CSB) als Maß für die Abwasserschädlichkeit wird es für viele Einleiter von Abwässern unumgänglich sein, bei der Abwasserbehandlung auch die in der biologischen Klärstufe schwer abbaubaren organischen Verbindungen in größerem Ausmaß zu eliminieren.

- 1 -

Die Entfernung dieses "biologisch persistenten CSB" durch chemische Oxidationsmittel ist jedoch zur Zeit noch erheblich teurer als die Entfernung des "biologisch abbaubaren CSB" durch biologische Verfahren und ist auch vorläufig noch teurer als der Abwasserabgabensatz für den chemischen Sauerstoffbedarf. Dieser beträgt für 1 kg CSB ab 1981 DM 0.26 und steigt bis auf DM 0.88 ab 1986.

Aus dieser Sicht günstiger ist daher ein Konzept, bei dem die biologisch schwer abbaubaren Stoffe chemisch in biologisch abbaubare Stoffe umgewandelt werden und die endgültige Mineralisierung anschließend durch biologische Verfahren erfolgt.

Basierend auf den guten Erfahrungen bei der Trinkwasseraufbereitung (1) wurde Ozon als Oxidationsmittel für die chemische Vorbehandlung von Abwasser schon vielfach untersucht, erfüllte jedoch nur bei Verbindungen mit Kohlenstoff-Kohlenstoff-Doppelbindungen einigermaßen die Erwartungen.

Hingegen wurde Wasserstoffperoxid für diese Zwecke bisher wesentlich weniger beachtet, obwohl seine Verwendung in der Wassertechnik nicht unbekannt ist (2,3,4,5). Man kennt es vor allem zur Oxidation anorganischer Abwasserkomponenten, die bei der normalen biologischen Reinigung toxisch wirken, z.B. Sulfid, Sulfit, Thiosulfat, Cyanid und Nitrit (2,5,6,7,8). Ferner lassen sich photographische Abwässer (9,10) und Abwässer, die Phenole und/oder Formaldehyd enthalten, wirkungsvoll entgiften (5,8,11,12). Wasserstoffperoxid wurde ferner vorgeschlagen als Sauerstofflieferant bei der biologischen Abwasserreinigung (3,13,14,15,16,17,18), zur Beseitigung von Geruchsbelästigungen über Klärbecken (19) und zur Nachreinigung des Ablaufes biologischer Kläranlagen (20). Während die Oxidation anorganischer Verbindungen mit Wasserstoffperoxid in wässrigem Medium direkt und schnell abläuft, erfordert eine effektive Oxidation von organischen Wasserinhaltsstoffen Katalysatoren, wobei neben weniger wirksamen heterogenen Katalysatoren (12,21) bevorzugt zwei- und dreiwertiges Eisen als homogener Katalysator in Frage kommt (6,11,20).

Die starke Oxidationswirkung der Kombination $H_2O_2/Fe(II)$ wurde bereits Ende des letzten Jahrhunderts von H.J.H.Fenton entdeckt (22,23, 24) und wird daher ihm zu Ehren als "Fentons Reagenz" bezeichnet.

1.2 Aufgabenstellung

Ziel der vorliegenden Arbeit war die Untersuchung

- der die Oxidation mit Fentons Reagenz beeinflussenden Parameter,
- der Anwendbarkeit von H₂O₂/Fe(II) als Oxidationsmittel für biologisch schwer abbaubare Aromaten anhand der Oxidation von Modellverbindungen,
- der Wirksamkeit dieser Methode hinsichtlich Reagenzverbrauch,
 CSB-Elimination und Erhöhung der biologischen Abbaubarkeit.

Dazu sollten Untersuchungen des Systems H_2^{0} /Fe(II) zunächst eine erste Auswahl erfolgversprechender Bereiche der Reaktionsbedingungen erbringen, da die Oxidation der organischen Verbindungen von den gleichen Sauerstoffradikalen ausgeht wie die Selbstzersetzung von Fentons Reagenz und daher die gleiche Abhängigkeit z.B. vom pH-Wert und dem C(H_2^{0}):C(Fe(II))-Anfangsverhältnis zu vermuten ist. Als Modellverbindungen für substituierte Aromaten dienten p-Toluolsulfonsäure, Anilin, p-Nitrophenol und 2,4-Dichlorphenol sowie ferner als Beispiel eines Industrieabwassers ein Abwasser aus einer organischen Produktion.

Mit p-Toluolsulfonsäure, dem einfachsten Vertreter der Alkylbenzolsulfonsäuren,wurde eine bekanntermaßen schwer oxidierbare Verbindung gewählt, deren Reaktion analytisch gut verfolgt werden konnte. Zur Beschreibung des Oxidationsverlaufes wurden die Konzentrationsabnahme der organischen Substanz und des Wasserstoffperoxides sowie die Anderung des CSB, TOC und des BSB₅ herangezogen.

1.3 Symbole und Abkürzungen

DOC	Dissolved Organic Carbon	in mg/l	С
CSB	Chemischer Sauerstoffbedarf	in mg/l	02
BSB5	Biochemischer Sauerstoffbedarf in 5 Tagen	in mg/l	0_2

p-TS p-Toluolsulfonsäure

p-NP p-Nitrophenol

2,4-DCP 2,4-Dichlorphenol

- C(X)_o Anfangskonzentration des Stoffes X
- $C(X)_t$ Konzentration des Stoffes X zur Zeit t

2. Untersuchung der Reaktion von H₂O₂ mit Fe(II)

2.1. Literaturangaben zur Reaktion von H_20_2 mit Fe(II)

Erste Untersuchungen über den Zersetzungsmechanismus des H_2O_2 durch homogene Katalyse mit Fe(II)-Salzen wurden von Mancheot und Lehmann (25) durchgeführt, die Fe₂O₅, ein fünfwertiges Eisen, als intermediär auftretende Verbindung postulierten. Haber und Willstätter (26) und Haber und Weiss (27,28) fanden je nach Reaktionsbedingungen nichtstöchiometrische Verbrauchsverhältnisse ΔH_2O_2 : Δ Fe(II) von 10 bis 30, was nur durch eine Reaktionskette möglich sein sollte,und formulierten daher das Reaktionsgeschehen als Radikalkettenreaktion mit dem Hydroxylradikal und dem Peroxiradikal als Kettenüberträger:

$$Fe^{2+} + H_2O_2 \longrightarrow Fe^{3+} + OH^- + OH^-$$
 (1)
 $Fe^{2+} + OH^- \longrightarrow Fe^{3+} + OH^-$ (2)

$$\bullet$$
 0H' + H₂O₂ \longrightarrow HO₂' + H₂O (3)

$$HO_2 + H_2O_2 \rightarrow O_2 + H_2O + OH^{(4)}$$

Gleichzeitig wurde von Bray und Gorin (29) als nichtradikalischer Kettenüberträger das Ferryl-Ion FeO^{2+} in die Diskussion gebracht, was sich jedoch aufgrund der experimentellen Befunde als nicht haltbar erwies. Barb und seine Mitarbeiter (30,31,32) modifizierten den Mechanismus von Haber und Weiss, indem sie als weiteren Kettenüberträger das Fe²⁺-Ion vorschlugen und experimentell zeigten, daß die Bildung des Sauerstoffes über die Reaktion des HO₂⁻-Radikals mit Fe(III) erfolgen kann (vgl. Abb.1).

Weitere Arbeiten verschiedener Autoren (33,34,35,36,37,38,39), die das System H₂O₂/Fe(II) hinsichtlich der Reaktionsmechanismen untersuchten und auch Geschwindigkeitskonstanten bestimmten, schlossen sich an und das heute allgemein akzeptierte Schema der in Fentons Reagenz ablaufenden Reaktionen ist in Abbildung 1 dargestellt.

Abbildung 1: Schema der in Fentons Reagenz ablaufenden Reaktionen bei Abwesenheit von organischen Substanzen Reaktionspartner, OReaktionsprodukte

Demzufolge sind sechs reaktive Teilchen am Reaktionsgeschehen beteiligt, das aus insgesamt sieben Einzelreaktionen besteht. Das für die Entfernung von organischen Wasserinhaltsstoffen wichtigste reaktive Teilchen ist das OH-Radikal, das nach Reaktion 1 gebildet wird. Das dabei gleichzeitig entstandene Fe(III) reagiert mit Wasserstoffperoxid zu zweiwertigem Eisen – der Katalysator wird also zurückgebildet – und zu dem HO₂-Radikal (Reaktion 7). Das HO₂-Radikal seinerseits kann mit Wasserstoffperoxid (Reaktion 4) oder mit dreiwertigem Eisen (Reaktion 6) elementaren Sauerstoff bilden, was den Verlust des aktiven Sauerstoffes bedeutet.

Alle beteiligten Radikalreaktionen stellen keine chemischen Gleichgewichte dar, sondern verlaufen nur in einer Richtung. Da jedoch mit Ausnahme des elementaren Sauerstoffes jeder Reaktionsteilnehmer mit jedem anderen reagiert, sind alle stets in endlicher Konzentration anwesend. Die katalytische Selbstzersetzung des Wasserstoffperoxides ist abgeschlossen, wenn nach einiger Zeit der gesamte anfangs vorhandene aktive Sauerstoff in elementaren Sauerstoff übergegangen ist.

2.2.2. Einfluß des pH-Wertes

Bei den meisten Arbeiten über die Reaktionskinetik des Systems $H_2O_2/Fe(II)$ wurde der Einfluß des pH-Wertes auf die H_2O_2 -Zersetzung nicht explizit untersucht, sondern nur durch Zugabe von Mineralsäuren jeweils bestimmte pH-Werte zwischen o und 3 eingestellt (29,30, 31,32,40,41).

Daher wurde in der vorliegenden Arbeit zunächst die Abhängigkeit des Wasserstoffperoxidabbaues vom pH-Wert im Bereich von pH=1 bis pH=11 untersucht. Das molare Verhältnis $C(H_2O_2)_0:C(Fe(II))_0$ betrug bei diesen Versuchen 10:1. Im Reaktionsgefäß wurden 2 1 einer o.21 mmol/l Ammoniumeisen(II)sulfat-Lösung vorgelegt und auf 25 ^OC thermostatisiert. Nach Zugabe von o.5 ml 30%igem Perhydrol, dies entspricht einer H_2O_2-Anfangakonzentration von 2.1 mmol/l, wurde alle 15 bzw. 30 Minuten eine Probe entnommen und die Konzentration an Wasserstoffper-oxid bestimmt.

Der zeitliche Verlauf der H_2O_2 -Abnahme für die ersten 180 min Reaktionszeit ist in Abbildung 2 für diese Versuchsreihe dargestellt. Unter den gewählten Reaktionsbedingungen erfolgte die Selbstzersetzung des H_2O_2 so langsam, daß nach 180 min Reaktionsdauer höchstens die Hälfte des Wasserstoffperoxides zersetzt war. Ab pH=3 zeigten die anfangs klaren Reaktionslösungen durch ausgefallenes Eisen(III)hydroxid eine braune Trübung, die während der gesamten Reaktion bestehen blieb. Oberhalb pH=10 blieben die Lösungen auch während der Reaktion klar, da unter diesen Bedingungen das Eisen(III) komplex gelöst vorliegt.

Abbildung 2:

pH-Abhängigkeit des H₂O₂-Zerfalles in Fentons Reagenz.

(C(H₂O₂)_o=2.1 mmol/1, C(Fe(II))_o=0.21 mmol/1) Der zeitliche Verlauf der Selbstzersetzung ist im Prinzip bei allen pH-Werten gleich. Die Meßkurven zeigen, daß die Reaktion in zwei Phasen verläuft: einer ersten sehr schnellen und einer zweiten, die sich mit einem Zeitgesetz erster Ordnung beschreiben läßt und bei halblogarithmischer Auftragung des H_2O_2 -Restgehaltes über der Reaktionszeit zu einer Geraden führt.

Die Meßwerte lassen sich durch folgende empirische Beziehung, die einer zweistufigen Reaktion entspricht, quantitativ beschreiben:

$$\frac{C(H_2O_2)_t}{C(H_2O_2)_0} = AO + AI \cdot e^{-K \cdot t}$$
(8)

Hierin ist AO der Anteil der anfänglichen schnellen und A1 der Anteil der anschließenden langsamen Reaktion. K ist die Geschwindigkeitskonstante für eine Reaktion erster Ordnung, die, wie bei der folgenden Herleitung noch gezeigt wird, mit K1·C(Fe) gleichzusetzen ist. Die festgestellte Zeitabhängigkeit der H_2O_2 -Selbstzersetzung läßt sich auf der Basis der von Barb et al. (30,31) vorgeschlagenen Reaktionsmechanismen erklären. Diese Autoren haben den zeitlichen Verlauf der Eisenkonzentration und der H_2O_2 -Konzentration bis pH=2 untersucht und gefunden, daß folgende Geschwindigkeitsgleichungen gelten, wenn ein großer Überschuß an H_2O_2 relativ zu Fe(II) angewandt wird:

$$-\frac{dC(Fe^{2+})}{dt} = KF \cdot C(H_2 O_2) \cdot C(Fe^{2+})$$
(9)

$$-\frac{dC(H_2O_2)}{dt} = K1 \cdot C(H_2O_2) \cdot C(Fe^{3+})$$
(10)

mit
$$K_1 = \frac{K_1'}{B_1 + C(H^+)}$$
 (11)

Die Konstanten haben bei 25 ^OC folgende Zahlenwerte (30.31)

Bei den durchgeführten Versuchen änderte sich anfangs, während der schnellen Reaktionsphase die H_2O_2 -Konzentration nur wenig (<15%), so daß man die Wasserstoffperoxidkonzentration als konstant ansetzen kann. Dadurch vereinfacht sich Gleichung 9 zu einem Zeitgesetz erster Ordnung und man erhält durch Integration für den zeitlichen Verlauf der Oxidation des Eisens die folgende Beziehung:

ο.

$$\frac{C(Fe^{2+})_{t}}{C(Fe^{2+})_{0}} = e^{-KF \cdot C(H_{2}0_{2})_{0} \cdot t}$$
(12)

Die Rechnung ergibt für eine Reaktionszeit von einer Minute über 99% Oxidation. Da durch die Reduktionsreaktionen 6 und 7 laufend neues Fe(II) zurückgebildet wird, führt die Gesamtreaktion zu einem bestimmten Verhältnis der beiden Wertigkeitsstufen am Ende der ersten Reaktionsphase.

Messungen während der 180 min Versuchsdauer ergaben C(Fe(II)):C(Fe(III))-Verhältnisse von o.o3 bis o.1. Hierbei ist zu beachten, daß bei der Konzentrationsbestimmung des Fe(II) mit«,α'Bipyridyl die rote Farbe des Komplexes mit der Zeit langsam zunimmt, da durch Reaktion 6 und 7 zurückgebildetes Fe(II) ebenfalls im nicht mehr weiterreagierenden Komplex gebunden wird und so zur Farbvertiefung beiträgt (vgl. 42). Daher sollte die spektrale Absorption der Probe unmittelbar nach der Reagenzzugabe gemessen werden. Da aus arbeitstechnischen Gründen diese Messung erst ca. nach 8 min durchgeführt werden konnte, dürften die zur Zeit der Probenahme bestehenden Fe(II):Fe(III)-Verhältnisse noch unter den angegebenen Werten liegen. Haber und Weiss (27) und Barb et al. (30,31) berichten von Fe(II):Fe(III)-Verhältnissen von o.o1 während des Reaktionsablaufes.

Die erste Reaktionsphase ist damit als die schnelle Reaktion des zweiwertigen Eisens mit dem Wasserstoffperoxid unter Bildung von OH-Radikalen erklärt. Das dabei zersetzte Wasserstoffperoxid ist $A0 \cdot C(H_2O_2)_0$, d.h. bis ca. 15 % der Ausgangskonzentration. Dies entspricht o.2 bis 1.5 Mol H_2O_2 für 1 Mol oxidiertes Eisen(II). Dieser zum Teil überstöchiometrische Verbrauch ist auch von anderen Autoren beobachtet worden (27,30,31).

Während der zweiten Reaktionsphase liegt praktisch alles Eisen in dreiwertiger Form und konstanter (Ausgangs-)Konzentration vor. Damit wird Gleichung 10 zu einem Zeitgesetz erster Ordnung und die Konstante K des obigen empirischen Zeitgesetzes sollte gleich sein mit K1·C(Fe(III)). Gleichung 8 nimmt damit folgende Form an:

$$\frac{C(H_2O_2)_t}{C(H_2O_2)_0} = AO + A1 \cdot e^{-K1 \cdot C(Fe)_0 \cdot t}$$
(13)

Die Konstanten AO, A1 und K1 wurden durch ein Rechenprogramm für nichtlineare Regression ermittelt und sind in Tabelle 1 für verschiedene pH-Werte zusammengestellt.

Der Angleich an obige Funktion gelingt gut , wie die Werte für die Standardabweichungen zeigen. Die maximale Zersetzungsgeschwindigkeit trat bei pH=3 auf, während die Selbstzersetzung im stark sauren und im basischen Gebiet deutlich langsamer erfolgt.

<u>Tabelle 1:</u>	Konstanten	der Selbstz	ersetzung von	Wasserstoffper	oxid
	in Fentons	Reagenz bei	verschiedenen	pH-Werten	

Zeitg	esetz:	$\frac{C(H_2O_2)_t}{C(H_2O_2)_0} =$	A0 + A1.e ^{-K1.C} (Fe) _o •t
Anfan	gskonzentration	n: C(H ₂ O ₂) _o ∝	2.1 mmo1/1	
		C(Fe(II) ₀ ≃	o.21 mmol/1	
рН	Zahl der Meßwerte	AO	A1	K1 l/mol min
1.0	10	0.022 + 0.011	0.978 <u>+</u> 0.006	5.73 <u>+</u> 0.03
2.0	8	0.052 + 0.015	0.984 + 0.010	5.90 + 0.06
2.5	7	0.120 + 0.013	0.880 + 0.010	10.40 <u>+</u> 0.04
2.7	8	0.106 + 0.005	0.894 + 0.003	15.30 + 0.01
3.0	7	0.129 + 0.004	0.871 + 0.003	15.90 <u>+</u> 0.01
3.5	7	o.142 <u>+</u> o.oo7	0.858 + 0.005	1.65 ± 0.11
4` . o	8	0.078 <u>+</u> 0.003	o.922 <u>+</u> o.ool	1.27 + 0.05
6.0	7 ·	0.067 <u>+</u> 0.011	0,933 <u>+</u> 0,008	1.80 <u>+</u> 0.33
8.0	8	≈ 0	≈ 1	2.60 + 0.02
10.0	8	0.011 + 0.009	0.989 + 0.005	4.90 + 0.19
11.0	9	o.o13 <u>+</u> o.oo8	0.987 <u>+</u> 0.004	5.33 <u>+</u> 0.14

Der Vergleich der gemessenen Geschwindigkeitskonstanten K1 mit den nach Gleichung 11 und den Daten von Barb et al. (30,31) berechneten Geschwindigkeitskonstanten ist in Abbildung 3 graphisch dargestellt. Bis pH=3 liegen beide Geschwindigkeitskonstanten in vergleichbarer Größenordnung und weisen gleiche pH-Abhängigkeit auf. Oberhalb pH=3 fällt dagegen im Experiment die Reaktionsgeschwindigkeit wieder stark ab, während Gleichung 11 eine weitere Zunahme bis zu einem Grenzwert ergibt. Allerdings haben Barb et al. den Gültigkeitsbereich ihres Reaktionsmodells auf pH≤3 beschränkt.

Abbildung 3:

Vergleich der gemessenen und der nach Barb et al. (30,31) berechneten Geschwindigkeitskonstanten K1 der Selbstzersetzung von H₂O₂ in Fentons Reagenz.

Die zweite Reaktionsphase läßt sich damit als die langsame Umsetzung des Wasserstoffperoxides mit dreiwertigem Eisen erklären. Dabei laufen nebeneinander die in Abbildung 1 dargestellten Reaktionen ab und alle beteiligten Spezies stehen im "laufenden Gleichgewicht" miteinander.

Erste Anhaltspunkte, warum bei pH=3 das Maximum der Reaktionsgeschwindigkeit beobachtet wird, ergeben sich aus einer Betrachtung der Redoxpotentiale derjenigen Reaktionen, an denen Fe(II), Fe(III) und H_2O_2 beteiligt sind und die zur Bildung von OH-Radikalen führen:

$$Fe^{2+} + H_2^{0}_2 \longrightarrow Fe^{3+} + 0H^- + 0H^-$$
(1)

$$Fe^{3+} + H_2O_2 \longrightarrow Fe^{2+} + HOO' + H^+$$
 (7)

Tritt H_2O_2 als Oxidationsmittel auf (Gleichung 1) läßt sich folgende Halbzellenreaktion formulieren:

$$H_2O_2 + 2 H^+ + 2 e^- - 2 H_2O = E01 = +1.77 V (14)$$

Die Nernstsche Gleichung nimmt damit folgende Form an, wobei zur Vereinfachung mit Konzentrationen und nicht mit Aktivitäten gerechnet werden soll:

E1 = E01 +
$$\frac{0.05916}{2}$$
 · lg (C(H₂0₂) · C(H⁺)²) (15)

Ist hingegen H₂O₂ Reduktionsmittel (Gleichung 7), gilt für die Halbzellenreaktion bzw. die Nernstsche Gleichung:

$$H_2 O_2 \longrightarrow 2 H^+ + O_2 + 2 e^- EO2=+0.66 V$$
 (16)

$$E2 = E02 + \frac{0.05916}{2} \cdot \lg \left(\frac{p(0_2) \cdot C(H^+)^2}{C(H_2 0_2)} \right)$$
(17)

Beide Potentiale sind wegen des Termes $C(H^+)^2$ vom pH-Wert abhängig. Für das Potential des Systemes Fe(II)/Fe(III) gilt folgende Halbzellenreaktion und Nernstsche Gleichung:

Fe²⁺
$$\longrightarrow$$
 Fe³⁺ + 1 e⁻ E03 = + 0.75 V (18)
E3 = E03 + $\frac{0.05916}{1} \cdot 1g \frac{Fe^{3+}}{Fe^{2+}}$ (19)

(Normalpotentiale nach 43,44)

Weiterhin ist zu berücksichtigen, daß Fe(II) und Fe(III) schwerlösliche Hydroxide bildet, deren Bildung ebenfalls pH-**a**bhängig ist:

$$LP(Fe(OH)_{3}) = C(Fe^{3+}) \cdot C(OH)^{3} = 3.8 \cdot 10^{-38} (Mo1/1)^{4} (20)$$
$$LP(Fe(OH)_{2}) = C(Fe^{2+}) \cdot C(OH)^{2} = 4.8 \cdot 10^{-16} (Mo1/1)^{3} (21)$$

(Löslichkeitsprodukte LP nach 45)

Mit Hilfe dieser Gleichungen und Daten wurden die in Abbildung 4 graphisch dargestellten Potentialverläufe für folgende Redoxsysteme berechnet:

- H_2O_2 als Oxidationsmittel mit $C(H_2O_2)_0 = 1 \text{ mmol/l}$ (Kurve A)
- H_2O_2 als Reduktionsmittel mit $C(H_2O_2)_0 = 1 \text{ mmol/l}$ (Kurve B)
- Fe(II) / Fe(III) für ein molares Verhältnis H₂O₂:Fe=1o:1 und unter der Annahme, daß 99 % des Eisens als Fe(III) vorliegt (Kurve C).

(Die Angaben dieser Modellrechnung entsprechen etwa den Konzentrationsverhältnissen, wie sie bei den untersuchten Reaktionen vorlagen.)

Die Redoxpotentiale des H_2O_2 als Oxidationsmittel und als Reduktionsmittel nehmen mit steigendem pH-Wert konstant ab, während die Potentialkurve des Systemes Fe(II)/Fe(III) unter diesen Reaktionsbedingungen einen eckigen Verlauf aufweist: bis pH=3 bleiben die Konzentrationen der beiden Eisenspezies konstant und betragen C(Fe(II))=1·10⁻⁶ und C(Fe(III))=9.9·10⁻⁵ mmol/1, bei weiterer Erhöhung des pH-Wertes und damit Erhöhung der OH⁻-Konzentration ändern sich die Konzentrationen von Fe(II) und Fe(III) entsprechend der Löslichkeitsprodukte ihrer Hydroxide und ab pH>3 fällt Fe(OH)₃ und ab pH>9 fällt Fe(OH)₂ aus.

Abbildung 4: pH-Abhängigkeit der Redoxpotentiale für das System H₂O₂/Fe(II)/Fe(III)

Die Potentialverläufe zeigen, daß die Oxidation des Fe(II) durch H_2O_2 bei allen pH-Werten möglich ist, da Kurve A immer oberhalb von Kurve C liegt. Hingegen kann die Reduktion des Fe(III) durch H_2O_2 nur erfolgen, solange das Redoxpotential des H_2O_2 als Reduktionsmittel (Kurve B) unterhalb des Potentials Fe(II)/Fe(III) liegt. Dies ist der Fall im Bereich von pH=o bis pH=5, wobei die größte Potentialdifferenz und damit die größte Triebkraft für diese Reaktion bei pH=3 vorliegt. Dennoch ist anzunehmen, daß der optimale pH-Wert von 3 auch noch durch andere Einflüsse wie beispielsweise energiearme Zwischenstufen oder stabile Komplexe begünstigt wird, da die Differenzen der Redoxpotentiale auf den ersten Blick eine deutlich geringere Abhängigkeit vom pH-Wert aufweisen als dies bei der Reaktionsgeschwindigkeit der Fall ist.

2.2.2. Einfluß der Eisen(II)-Anfangskonzentration

Die Variation des Anfangsverhältnisses $Fe(II):H_2O_2$ zeigt, daß die Zersetzung des Wasserstoffperoxides um so schneller verläuft, je mehr Fe(II) bei konstanter H_2O_2 -Ausgangskonzentration zugesetzt wird (Abbildung 5). Ebenso wie bei den in 2.2.1. beschriebenen Versuchen wird in einer ersten schnellen Reaktionsphase um so mehr Wasserstoffperoxid verbraucht, je größer das Verhältnis Fe(II): H_2O_2 am Anfang ist.

Abbildung 5:

Zerfall des Wasserstoffperoxides in Fentons Reagenz bei unterschiedlicher Fe(II)-Anfangskonzentration. $(C(H_2O_2)_0=2.1 \text{ mmol/l})$ Die zweite Reaktionsphase folgt einem Zeitgesetz erster Ordnung nur bis zu einem Fe(II): H_2O_2 -Verhältnis von 1:10, ergibt also nur bis dahin eine Gerade bei halblogarithmischer Auftragung der H_2O_2 -Restkonzentration über der Reaktionszeit. Wenn die Anfangskonzentrationen von Fe(II) und H_2O_2 gleich sind, wird die Reaktion im Laufe der Einwirkungszeit langsamer, die Abnahmekurve verläuft zunehmend flacher. Dies ist charakteristisch für den Übergang einer Reaktion "pseudoerster" Ordnung zur Reaktionsordnung zwei, die für die Reaktion des Wasserstoffperoxides mit Eisen(II) gilt.

Diese experimentell gefundene Zeitabhängigkeit ist ebenfalls auf der Basis der von Barb et al. (30,31) abgeleiteten Reaktionskinetik erklärbar.

Die erste Reaktionsphase ist wieder die rasche Oxidation des zweiwertigen Eisens zum dreiwertigen. Die Interpretation der zweiten Phase geht von dem Befund der genannten Autoren aus, daß bei etwa gleicher Konzentration von dreiwertigem Eisen und Wasserstoffperoxid das folgende Zeitgesetz gilt:

$$-\frac{d(H_2O_2)}{dt} = K2 \cdot C(H_2O_2)^{1.5} \cdot C(Fe^{3+})^{0.5}$$
(22)

. . .

Da während der zweiten Reaktionsphase das gesamte Eisen als Eisen(III) vorliegt, ist dessen Konzentration konstant und gleich der Anfangskonzentration und Gleichung 22 läßt sich integrieren:

$$\frac{C(H_2O_2)_t}{C(H_2O_2)_0} = \left(\frac{1}{1 + 0.5 \cdot K2 \cdot t \cdot (C(Fe)_0 \cdot C(H_2O_2)_0)^{0.5}}\right)^2$$
(23)

Darin ist K2 eine Funktion des pH-Wertes analog Gleichung 11. Nimmt man an, daß die durch die Gleichungen 13 und 23 repräsentierten Reaktionen einander überlagernd das Reaktionsgeschehen in der zweiten Phase bestimmen, kommt man für die Gesamtreaktion zu folgender Beziehung für den zeitlichen Verlauf der Wasserstoffperoxidkonzentration:

$$\frac{C(H_2O_2)_t}{C(H_2O_2)_0} = AO + A1 \cdot e^{-K1 \cdot C(Fe)_0 \cdot t} + A2 \left(\frac{1}{1 + 0.5 \cdot K2 \cdot t \cdot (C(Fe)_0 \cdot C(H_2O_2)_0)^{0.5}}\right)^2 (24)$$

Der erste Term AO beschreibt die erste schnelle Reaktionsphase -Oxidation des Fe(II) zu Fe(III) -, der zweite und dritte Term die langsame zweite Reaktionsphase - Umsetzung von H_2O_2 mit Fe(III) bei hohen bzw. bei niedrigen C(H_2O_2):C(Fe(III))-Verhältnissen.

Die Regressionsrechnung ergibt für diese Beziehung einen treffenden Angleich, wie die durchgezogenen Kurven in Abbildung 5 sowie die Standardabweichungen der dabei erhaltenen Konstanten in Tabelle 2 zeigen. Aus Tabelle 2 geht weiterhin hervor, daß eine zusätzliche Begasung der substratfreien Reaktionslösung mit Stickstoff bzw. mit Sauerstoff auf das Ergebnis keinen Einfluß hat. Die Abnahme der H_2O_2 -Konzentration erfolgt ohne Begasung und mit Stickstoff- oder Sauerstoffbegasung innerhalb der Meßfehler gleich schnell (Abbildung 6). Das Reaktionsgeschehen wird also durch den zusätzlichen Gaseintrag nicht beeinflußt, im Gegensatz zu den später behandelten substrathaltigen Lösungen.

Abbildung 6:

Abnahme der H_2O_2 -Konzentration in Féntons Reagenz bei Begasung mit Stickstoff, Preßluft und Sauerstoff. $(C(H_2O_2)_0=2.2 \text{ mmol/1}, \text{molares}$ Verhältnis $H_2O_2:Fe(II)=5:1)$

Der Zusammenhang zwischen dem Restgehalt an Wasserstoffperoxid nach 180 min Reaktionsdauer und dem molaren Verhältnis $Fe(II):H_2O_2$ ist in Abbildung 7 dargestellt. Bei absolut niedrigem Fe(II)-Anteil hat dessen Erhöhung eine erhebliche Beschleunigung der Selbstzersetzung zur Folge. Ab ca. $Fe(II):H_2O_2 \approx 0.3$ bewirkt eine weitere Erhöhung der Eisenkonzentration nur noch wenig. Bei geringen Fe(II)-Zusätzen muß man daher mit

	deş	Verhältniss	es $C(H_2O_2)_0$:	C(Fe(II)) ₀				
Zeitge	esetz:	С(H ₂ С(H ₂	$\frac{(0^2)_t}{(0^2)_0} = A0 +$	A1 e ^{-K1•} C(Fe) _o •t	+ A2• $\left(\frac{1}{1} \right)$	1 + 0.5•K2•t•((C(Fe) ₀ •C(H ₂ 0 ₂) ₀)	1/2
Anfang pH	gskonzentra	tion : C(H ₂ 3.o	0 ₂) = 2.2 mmol/l					
No.	C(H ₂ O ₂) _o C(Fe(II)) _o	Zahl der D ^{Meßpunkte}	AO	A1	K1 l/mol•min	A2	K2]¾⁄mol [¥] min	Anmerkungen
1	1	14	0.67 <u>+</u> 0.01	0.09 <u>+</u> 0.01	16 <u>+</u> 1	0.24 <u>+</u> 0.01	1.2 <u>+</u> 0.06	1) Standardab-
2	2	14	0.45 <u>+</u> 0.01	0.24 <u>+</u> 0.01	18+ <u>+</u> 1	0.31 <u>+</u> 0.01	1.4 <u>+</u> 0.13	weichung größer als
3	5	9	0.23 <u>+</u> 0.01	o.63 <u>+</u> o.3o	17 <u>+</u> 6	o.14 ¹)	0.8 *)	100%
4	5	16	0.22 <u>+</u> 0.01	0.70 <u>+</u> 0.01	21 <u>+</u> 1	0.07 <u>+</u> 0.01	1.0 *)	7
5	8	9	0.20 <u>+</u> 0.03	0.80 <u>+</u> 0.02	14 <u>+</u> 1	- ^z)	-	 kein Mini- mum der Feh-
6	10	7	0.13 <u>+</u> 0.01	0.87 + 0.01	16 <u>+</u> 2	- ^z)	-	lerquadrat-
7	20	9	0.06 <u>+</u> 0.01	0.94 <u>+</u> 0.01	23 <u>+</u> 1	- ^z)	-	zeichen für Regression
8	50	8	0.03 <u>+</u> 0.01	0.97 <u>+</u> 0.01	16 <u>+</u> 1	- ²)	-	mit A2 und K2
Mittelwerte K1, K2					18 <u>+</u> 4		1.1 <u>+</u> 0.3	
9	5	14	0.23 + 0.01	0.76 + 0.07	20 + 2	0.01	0.9	mit N ₂ begast
10	5	16	0.22 <u>+</u> 0.02	0.77 <u>+</u> 0.01	22 <u>+</u> 1	0.01	1.4	mit 0 ₂ begast
Mitte C(H ₂ 02	lwerte für ₂) ₀ :C(Fe(II)}₀	0.22 <u>+</u> 0.01	0.72 <u>+</u> 0.06	20 <u>+</u> 2	≈ 0.06	≈ 1.0	

Tabelle 2 Konstanten der Selbstzersetzung von Wasserstoffperoxid in Fenton's Reagenz bei Variation

1

I

16

1!

<u>Abbildung 7:</u> Zusammenhang zwischen dem Restgehalt H₂O₂ nach 180 min Reaktionsdauer und dem Fe(II):H₂O₂-Verhäftnis.

langen Reaktionszeiten rechnen, bis das gesamte Wasserstoffperoxid abgebaut ist.

Aus Abbildung 7 kann man ersehen, daß es einen "Arbeitsbereich" gibt, bei dem Fe(II)-Zusatz und Reaktionsdauer in einem sinnvollen Verhältnis stehen. Dieser bewegt sich bei einem Fe(II):H₂O₂-Verhältnis von 1:5 bis 1:10. 3. Untersuchung der Oxidation von aromatischen Modellsubstanzen

mit Fentons Reagenz

3.1. Literaturangaben zur Reaktion von Fentons Reagenz mit aromatischen Verbindungen

Die oxidierende Wirkung von Fentons Reagenz beruht auf der großen Elektronenaffinität des OH-Radikals, das mit allen Arten organischer Verbindungen unter Abspaltung eines Wasserstoffatoms (Gleichung 25) oder durch Addition an Mehrfachbindungen (Gleichung 26) reagiert:

$$RH + OH' \longrightarrow R' + H_2O \qquad (25)$$

$$C + OH' \longrightarrow C' + COH \qquad (26)$$

Diese Reaktionen verlaufen sehr schnell, die Geschwindigkeitskonstanten für die Deprotonierung liegen in der Größenordnung von 10^6 bis 10^9 l/mol·sec und für die Addition an aromatische Verbindungen in der Größenordnung von 10^9 bis 10^{10} l/mol·sec.

Die durch diesen Prozeß gebildeten organischen Radikale haben nun mehrere Möglichkeiten abzureagieren, Einige der in der Literatur diskutierten Reaktionswege sind in Abbildung 8 schematisch am Beispiel der Oxidation des einfachsten Aromaten, des Benzols, mit Fentons Reagenz dargestellt.

Das nach Addition an den Benzolring (I) nach Reaktionsweg A entstandene Cyclohexadienylradikal (II) kann in Gegenwart von gelöstem Sauerstoff, der ein wirksamer Radikalfänger ist, zum ortho- bzw. para-Hydroxycyclohexadienylradikal (o-III und p-III, Weg B) abreagieren. Der weitere Reaktionsweg der Radikalzwischenstufe p-III mit intramolekularem Angriff des Peroxyrestes und anschließender Ringöffnung demonstriert beispielsweise, wie der Abbau des Aromaten zu einer aliphatischen Verbindung, in diesem Fall einem Muconsäurederivat, erfolgen kann (Weg K).

Reaktionen von II oder auch III -in der Abbildung dargestellt anhand von o-III- mit Fe(II) und Fe(III)-führen zu hydroxylierten Verbin-

Referenzen:

allg. Lehrbücher der org. Chemie z.B. Henglein (48) A :

- В . : С
 - : Walling (49)
- Walling (49), Baxendale (50), Nonhebel (51) D :
- E :
- F :
- Baxendale (50), Baxendale (50), NG Baxendale (50) Baxendale (50), Chutny (52,53) Chutny (52,53) Balakrishnan (54), Dorfman (55) Balakrishnan (54) G :
- H :
- I :
- J :
- H : Balakrishnan (54)

dungen (Wege D, G). So kann z.B. über Phenol nach Reaktionsweg E über chinoide Zwischenstufen und Ringöffnung Muconsäure gebildet werden. Eine weitere Reaktionsmöglichkeit für II ist die Dimerisierung , die jedoch nur bei Abwesenheit von gelöstem Sauerstoff erfolgt und zu Biphenyl führt (Weg F).

Dadurch, daß die Ausgangsverbindung und deren Oxidationsprodukte im Verlauf der Reaktion um das OH-Radikal konkurrieren, ist ein breites, kaum überschaubares Spektrum von Reaktionen möglich. Da noch zusätzlich Fe(II) und Fe(III) in der Reaktionslösung vorhanden sind, steht weiterhin ein Redoxsystem zur Verfügung, durch das eine Vielzahl organischer Verbindungen reduziert bzw. oxidiert werden kann (vgl. Wege D,G,H und deren Folgereaktionen). Von vielen Oxidationsprodukten ist ferner anzunehmen, daß sie mit Eisen Komplexe bilden,was wiederum die Reaktivität sowohl des Eisens als auch die der Liganden verändert.

Dieses Schema erhebt keinen Anspruch auf Vollständigkeit, es soll lediglich aufzeigen, wie kompliziert das Reaktionsgeschehen in wässriger Lösung schon bei einer einfach gebauten Verbindung wie Benzol sein kann.

In Tabelle 3 sind Literaturangaben über Versuche zur Reaktion von Fentons Reagenz mit verschiedenen Substraten zusammengestellt, wobei je nach Aufgabenstellung ganz verschiedene Reaktionsbedingungen eingehalten wurden.

Bei Untersuchungen, bei denen die Aufklärung der Reaktionsmechanismen von OH-Radikalen mit Aromaten sowie die Bestimmung von Reaktionsgeschwindigkeitskonstanten im Vordergrund stand (49,50,5%), wurde Fe(II) und Substrat im Überschuß gegenüber Wasserstoffperoxid eingesetzt, um nur wenige Reaktionen zu begünstigen und dadurch ein Übersichtlicheres Reaktionsgeschehen zu erhalten.

In Arbeiten, bei denen H_2O_2 als Oxidationsmittel zur Eliminierung der organischen Verbindung sowie zur CSB-Erniedrigung diente, wird dagegen mit mindestens gleichen molaren Konzentrationen an H_2O_2 und Substrat gearbeitet, im übrigen unterscheiden sich jedoch die Reaktionsbedingungen von Fall zu Fall sehr, so daß ein Vergleich der Ergebnisse untereinander kaum möglich ist.

So berichtet Bannert (57) von der Entfernung aromatischer Modellsubstanzen (Phenol,Anilin,Pyridin) mit H_2O_2 unter sehr drastischen Reaktionsbedingungen (thermische Degradation). Bishop (20) oxidierte

Aromat bzw. Abwasser	gefundene Produkte bzw. funkt. Gruppen	Reaktionsbedingungen	Ergebnisse und Anmerkungen	Ref.
Benzol	Biphenyl, Phenol	mit Benzol gesätt. Lsg. (bei $20^{\circ}C=23.2$ mmol/l, $C(H_2O_2)_0=0.094$ mmol/l, Überschuß Fe(II): molares Verhältnis Fe(II):H_2O_2=2.2-13.2, pH=1,3.5,12.4	Bei Begasung mit Luft keine Bil- dung mit Biphenyl	50
Phenol	Catechol, Mucon- säure	C(Phenol) =50 mg/l (=0.53 mmol/l), pH=3 - 7, 10°C	bei 0 ₂ -Begasung schnellere Re- aktion, Phenol-Abnahme nimmt mit steig. H ₂ 0 ₂ - und steig. Fe(II)- Menge zu; optimale Ergebnisse mit 1 Mol Fe(II) und 3 Mol H ₂ 0 ₂ je Mol Phenol	11
Industrieab- wässer mit phenolischen Inhaltsstoffen	-	Inhaltsstoffe berechnet als unsub- stituiertes Phenol; molares Verhält- nis Phenol:H ₂ O ₂ :Fe(II)=1:1:1, Luft- begasung, Reaktionszeit: 30 min	Extrem hoher H ₂ O ₂ -Verbrauch bei Ab- wasser aus Stahlwerk, da viel CN	
Abläufe bio- logischer Klär- stufen	-	pH=1.8 - 9, 65 ⁰ C, Rktzeit 22 h, ver- schiedene Katalysatoren: Fe(II), Fe(II)+Fe(III), Fe(III).	Bei Bioabläufen: CSB-Reduktion von 5o-73% bei 6.1 bis 3.2 mg H ₂ O ₂ /mg CSB im Ansatz bei H ₂ O ₂ /Fe(III), mit O ₂ bessere Abbauraten des CSB mit Fe(III)-Katalysator.	20
Phenol	Catechol,Hydro- chinon,zweibasige Säuren	C(Phenol) =2000 mg/l (=21.3 mmol/l), mg H ₂ O ₂ /mg CSB im Ansatz: 0.3:1 bis 1:1, Fe(II)=0.02 %	Phenol 1oo %ig entfernt bei einer Dosis von 2 mg H ₂ O ₂ /mg Phenol	5
Pyridin, Ani- lin, Phenol	Carbonyl- und Carboxylgruppen	5o-5ooo mg Aromat, 1o mg H ₂ O ₂ /mg Aro- mat, Therm Abbau der org. Substanz bei pH=3-5 in Pyrex-Ampullen bei 15o, 225 und 3oo ^O C, Rktzeit: 15 min	Optimale Degradation bei pH=3-5 mit FeSO ₄ als Kat.und bei 225 und 300 C (org. Substanz zu mehr als 99 % ent- fernt)	57
Benzol	Biphenyl,Phenol	Benzol gesätt. wsg.Lsg (=23.2 mmol/l bei 20 °C), H ₂ O ₂ in "bekannter ge- ringer Menge", îm Unterschuß zu C(Fe(II)) ₀ =18 mmol/l,pH⊨ o und 1	Untersuchungen der Kinetik bei ge- ringen Umsätzen des Benzols	49 56

- 21 -

Bioabläufe verschiedener Kläranlagen bei Zimmertemperatur sowie bei erhöhter Temperatur mit $H_2O_2/Fe(II)$, $H_2O_2/Fe(II)+Fe(III)$ und $H_2O_2/Fe(III)$, wobei sich der überwiegende Teil der publizierten Ergebnisse auf die Experimente mit $H_2O_2/Fe(III)$ bezieht.

Teilweise wurden die Reaktionen unter Luftbegasung durchgeführt, da sich dann nach Eisenhauer (11) die Reaktionszeit verkürzt. Bishop (20) führte einige Oxidationen der Bioabläufe mit $H_2O_2/Fe(III)$ unter Sauerstoffbegasung durch und stellte eine bessere CSB-Elimination fest, wobei jedoch in beiden Fällen auf den Einfluß des Sauerstoffes nicht näher eingegangen wurde.

Die Abhängigkeit der Oxidationsreaktion vom pH-Wert wurde nur in wenigen Arbeiten untersucht (11,20,50), wobei der pH-Wert meist nur zu Reaktionsbeginn eingestellt oder aber mit Puffern, die ihrerseits selbst wieder mit $H_2O_2/Fe(II)$ reagieren, konstant gehalten wurde. Auch über den Einfluß der Fe(II): H_2O_2 -Anfangskonzentration bzw. des Fe(II): H_2O_2 -Anfangsverhältnisses wird in der Literatur nur wenig berichtet (11,20).

3.2. Untersuchung der Reaktion von Fentons Reagenz mit p-Toluolsulfonsäure (p-TS)

3.2.1. Einfluß der Sauerstoffkonzentration

Die ersten Vorversuche zur Oxidation von p-Toluolsulfonsäure mit Fentons Reagenz zeigten, daß der in der Reaktionslösung befindliche Sauerstoff in weit höherem Maße als erwartet in die Reaktion mit einbezogen wird. Experimentell ließ sich dies an der Abnahme der Sauerstoffkonzentration während der Anfangsphase der Reaktion gut verfolgen. Wurde beispielsweise eine 1.1 mmol/l p-TS-Lösung einmalig mit der zweifachen molaren Menge an H_2O_2 in Gegenwart von o.44 mmol/l Fe(II) versetzt, sank die Konzentration des gelösten Sauerstoffes innerhalb von ca. 150 sec. von 7.9 mg/l O_2 auf o.3 mg/l O_2 . Im Gegensatz dazu wurde in der substratfreien $H_2O_2/Fe(II)$ -Lösung unter vergleichbaren Bedingungen keine Sauerstoffabnahme, sondern aufgrund der bereits diskutierten Selbstzersetzung von Fentons Reagenz eine Zunahme der Sauerstoffkonzentration von 8.5 auf 15.4 mg/l O_2 beobachtet. Im folgenden wurde nun untersucht, wie dieser Effekt, daß in Gegenwart von organischem Substrat Sauerstoff verbraucht wird, durch eine gezielte Erhöhung des Sauerstoffangebotes für die technische Abwasseroxidation genutzt werden kann.

3.2.1.1. Vergleichende Untersuchungen unter Sauerstoff-, Preßluftund Stickstoffeintrag

Zur Festlegung der Reaktionsbedingungen im Hinblick auf den gelösten Sauerstoff mußte untersucht werden, wie sich ein definiertes Sauerstoffangebot durch Eintrag von Sauerstoff, Preßluft oder Stickstoff in die Reaktionslösung auf die Reaktion auswirken würde. Die Untersuchungen erfolgten bei 25 ^OC und pH=3. Im Reaktionsgefäß waren zwei Liter einer 1.1 millimolaren p-TS-Lösung vorgelegt, die schon vor Beginn der Versuche jeweils ca. eine Stunde lang mit O_2 , Preßluft oder N_2 begast worden waren, um eine konstante Sauerstoffanfangskonzentration bzw. eine sauerstofffreie Lösung zu erhalten. Versuche ohne Begasung unter sonst gleichen Reaktionsbedingungen erwiesen sich als kaum reproduzierbar, da in der Lösung schon zu Reaktionsbeginn durch die Vorbehandlung des Wassers (Umfüllvorgänge etc.) unterschiedliche Sauerstoffkonzentrationen vorlagen und auch während der Reaktion durch Einrühren von Luft unterschiedliche Mengen an Sauerstoff in die Reaktionslösung gelangten.

Nach Zugabe von Fe(II) als $(NH_4)_2$ Fe $(SO_4)_2$ x6 H₂O mit einer Anfangskonzentration von o.44 mmol/l wurde einmalig o.5 ml Perhydrol, dies entspricht einer H₂O₂-Anfangskonzentration von 2.2 mmol/l, zudosiert. Die Anfangskonzentration des H₂O₂ wurde immer vor jedem Versuch durch Zugabe der gewünschten Menge an Perhydrol zu 2 Liter bidestilliertem Wasser in einem Becherglas bestimmt und die Einwaage der anderen Substanzen nach dieser H₂O₂-Konzentration vorgenommen.

Da zwischen der Fe(II)-Zugabe und der H₂O₂-Zugabe immer ein Zeitraum von mehreren Sekunden lag, bestand die Möglichkeit, daß durch den eingetragenen Sauerstoff eine Oxidation des Fe(II) zu Fe(III) erfolgte. Untersuchungen mit reinen Fe(II)-Lösungen unter den angewandten Reaktionsbedingungen lehrten jedoch, daß dies innerhalb der Reaktionszeiten nicht der Fall war.

<u>Abbildung 9:</u> Oxidation von p-Toluolsulfonsäure mit Fentons Reagenz bei Begasung mit Stickstoff, Preßluft und Sauerstoff bei pH=3 und 25 °C. (C(p-TS) =1.1 mmol/1, molares Verhältnis p-TS:H₂O₂:Fe(II)=1:2:0.4)

Wie Abbildung 9 zeigt, nimmt mit steigendem Sauerstoffangebot sowohl die Konzentration der p-TS als auch die des H_2O_2 schneller ab. Unter Preßluft- und Sauerstoffbegasung wurde die p-TS innerhalb von 6 bzw. 5 Stunden bis unter die Nachweisgrenze eliminiert, wobei die Abnahmekurven der H_2O_2 - und der p-TS-Konzentration prinzipiell gleich, jedoch mit zeitlicher Versetzung, verlaufen.

Unter Stickstoffeintrag hingegen wird zunächst das Wasserstoffperoxid wesentlich schneller abgebaut, nimmt jedoch in der darauffolgenden Reaktionsphase sehr langsam ab, so daß nach 6 Stunden Einwirkungszeit noch 71 % des eingesetzten H_2O_2 und noch 65 % der eingesetzten p-TS in der Lösung vorhanden waren. Selbst nach 100 Stunden Reaktionszeit befanden sich immer noch 27 % der p-TS und 4 % des H_2O_2 im Reaktionsgefäß.

Zusätzlich zur Reaktionsgeschwindigkeit erhöht sich mit dem Sauerstoffangebot auch der Wirkungsgrad hinsichtlich der wasserchemischen Summenparameter (Tabelle 4). Nach vollständigem Abreagieren des H₂O₂ ist die gesamte erreichte CSB-Entfernung bei Begasung mit Preßluft oder Sauerstoff mit 36.4 % bzw. 43.3 % ungefähr doppelt so hoch wie unter Sauerstoffausschluß mit 18.5 %. Entsprechendes gilt auch für die TOC-Erniedri-

Tabelle 4:Einfluß des Sauerstoffgehaltes auf die Oxida-
tionswirkung bei der Reaktion von p-TS mit
Fentons Reagenz. Reaktionsbedingungen wie Abb.9.
Ergebnisse nach vollständigem Abreagieren des
H202.

Reaktionszeit min	Reaktionsbedingungen	CSB-Elimi- nation %	TOC-Elimi- nation %	CSB:TOC mg0 ₂ /mgC	BSB ₅ :CSB -
0	vor Reaktion		-	3.4	0
>6000	H ₂ 0 ₂ /Stickstoff	18.5	4.8	2.9	o.26
390	H ₂ O ₂ /Preßluft	36.4	11.6	2.4	o.29
330	$H_2^{-}0_2^{-}/Sauerstoff$	43.3	13.8	2.3	o.35

gung, die unter Preßluft- und Sauerstoffeintrag mit 11.6 % bzw. 13.8 % wesentlich größer ist als bei Sauerstoffausschluß mit 4.8 %. Der Oxidationsgrad des Produktgemisches, ausgedrückt als Quotient CSB:TOC, der vor der Reaktion einen Wert von 3.4 mg 0_2 /mg C hatte, konnte ebenfalls durch die Gegenwart von Sauerstoff erhöht, bzw. das CSB:TOC-Verhältnis erniedrigt werden. Dieses betrug nach der Oxidation 2.4 mg 0_2 /mg C unter 0_2 -Begasung und 2.3 mg 0_2 /mg C unter Preßluftbegasung gegenüber 2.9 mg 0_2 /mg C unter Stickstoffbegasung.

Die biologische Abbaubarkeit der Ausgangsverbindung mit einem BSB₅:CSB-Verhältnis von null wird durch die oxidative Behandlung in allen Fällen verbessert, wobei das höchste BSB₅:CSB-Verhältnis beim höchsten Sauerstoffangebot, nämlich bei der Begasung mit reinem Sauerstoff erzielt wird.

Die Meßergebnisse unterscheiden sich beim Übergang von Preßluftbegasung auf Begasung mit reinem Sauerstoff hinsichtlich CSB- und TOC-Erniedrigung nur um ca. 20 %. Dies ist vergleichsweise wenig, wenn man berücksichtigt, daß das Sauerstoffangebot von ca. 8 mg/l auf ca. 40 mg/l, also um etwa das fünffache, erhöht wird. Daß das Überangebot an Sauerstoff die Oxidationswirkung nur relativ wenig beeinflußt, läßt darauf schließen, daß die Reaktionen, die ablaufen, im Prinzip gleich sind, aber verschieden schnell ablaufen, während bei Sauerstoffausschluß vollkommen andere Reaktionsmechanismen anzunehmen sind. Baxendale (50) konnte zeigen, daß bei der Oxidation von Benzol mit Fentons Reagenz bei Abwesenheit von Sauerstoff bei geringer H_2O_2 -Dosis $(C(H_2O_2)_0:C(C_6H_6)_0=$ o.o4:1 mmol/mmol) als Hauptprodukt Biphenyl neben sehr wenig Phenol entsteht, während in Gegenwart von Sauerstoff kein Biphenyl, sondern hauptsächlich Phenol gebildet wird (vgl. Reaktionsschema Abb.8). Die Ähnlichkeit im Reaktionsablauf bei Preßluft- und Sauerstoffbegasung äußert sich auch im Sauerstoffbedarf während der Anfangsphase der Reaktion. In Abbildung 10 ist der Konzentrationsverlauf des Sauerstoffes, ausgedrückt als Sauerstoffsättigung, für eine unter Preßluft- und eine unter Sauerstoffbegasung, sowie zum Vergleich für eine ohne Begasung durchgeführte Reaktion während der ersten 15 Minuten Reaktionsdauer aufgetragen.

Abbildung 1o: Verlauf der Sauerstoffsättigung in der Anfangsphase der Reaktion von p-Toluolsulfonsäure mit Fentons Reagenz bei Begasung mit Preßluft und Sauerstoff sowie ohne Begasung. (C(p-TS) =1.1 mmol/l, C(H₂O₂) =2.2 mmol/l, C(Fe(II)) =0.44 mmol/l)

Vor Reaktionsbeginn ist die Lösung bei Begasung mit Sauerstoff zu 100 % mit reinem Sauerstoff gesättigt. Da Preßluft nur 20.95 % Sauerstoff enthält, liegt die O_2 -Konzentration bei Preßluftbegasung bei 20.95 % des Sättigungswertes für reinen Sauerstoff.

Das Schaubild zeigt, daß bei allen drei Versuchen die O₂-Konzentration in den ersten 30 Sekunden der Reaktion um ca. 20 % zurückgeht, in der Anfangsphase der Reaktion also ein sehr hoher Bedarf an gelöstem Sauerstoff vorhanden ist. Bei Begasen mit Preßluft und mit Sauerstoff nimmt die O₂-Konzentration wieder zu und erreicht nach ca. 15 Minuten fast wieder die Sättigungsgrenze für Luft- bzw. Reinsauerstoff, d.h. in dieser Reaktionsphase wird mehr Sauerstoff durch Eintrag nachgeliefert als durch die Reaktion verbraucht wird. Wird hingegen nicht begast – hierbei beträgt die Sauerstoffsättigung vor Reaktionsbeginn 19.9 % – nimmt die Sauerstoffkonzentration nur sehr langsam wieder zu und nach 15 min. Reaktionszeit ist erst ca. 50 % der Luftsauerstoffsättigung wieder erreicht. Da die Sauerstoffzufuhr in diesem Falle nur durch "Einrühren" erfolgte, hängt der Eintrag dann von den Rührbedingungen, von der Geometrie des Reaktionsgefäßes und von dem Volumen der sich über der Lösung befindlichen Luft ab.

Die Ursache für den starken Sauerstoffbedarf in den ersten Minuten der Reaktion ist darin zu suchen, daß gleichzeitig mit der raschen Oxidation des Fe(II) zu Fe(III) durch H_2O_2 im Primärschritt eine hohe Konzentration an OH-Radikalen erzeugt wird, diese sofort mit dem Substrat zu organischen Radikalen abreagieren, die ihrerseits den gelösten Sauerstoff unter Entstehung von Peroxyradikalen abfangen.

Um alle organischen Radikale "abzusättigen", ist also zu Reaktionsbeginn eine ausreichende Menge an gelöstem Sauerstoff erforderlich. Daran anschließend kann man in Bezug auf das OH-Radikal einen stationären Zustand annehmen, bei dem H_2O_2 mit dem in sehr geringen Konzentrationen vorliegenden Fe(II) reagiert, so daß selbst der durch die Flüssigkeitsoberfläche nachgelieferte Sauerstoff für die Reaktion mit den organischen Radikalen ausreicht.

3.2.1.2. Untersuchungen zur Bilanzierung des Sauerstoffes

Die festgestellte bessere Oxidationswirkung des H_2O_2 hinsichtlich der wasserchemischen Summenparameter bei Begasung mit Luft oder reinem Sauerstoff ist ohne Zweifel eine Folge der Reaktion der organischen Radikale mit dem gelösten Sauerstoff. Um die Mitwirkung des molekularen Sauerstoffes zu quantifizieren, wurde eine Versuchsserie zur Sauerstoffbilanzierung durchgeführt, wobei davon ausgegangen wird, daß der als Δ CSB auf die organische Substanz übertragene Sauerstoff aus zwei Anteilen besteht:

- 1.) aus einem Atom "aktivem" Sauerstoff des H_2O_2 -Moleküls, das als OH-Radikal die organischen Verbindungen angreift und
- 2.) aus dem molekular gelösten Sauerstoff.

Zur Erfassung der Menge des gelösten Sauerstoffes erfolgte bei diesen Versuchen kein ständiger 0_2 -Eintrag, sondern wurde die Reaktionslösung vor Reaktionsbeginn mit 0_2 gesättigt oder nur so lange begast, daß eine definierte Sauerstoffkonzentration unterhalb der Sättigungsgrenze vorlag. Bei zwei Versuchen wurde der gelöste Sauerstoff durch Begasen mit Stickstoff entfernt.

Nach Zugabe des Fe(II) und des H_2O_2 wurde das Reaktionsgefäß, das zur Vermeidung eines unkontrollierten 02-Eintrages vollständig mit p-TS-Lösung gefüllt war (vgl. experimentellen Teil), verschlossen und die Reaktionslösung 24 h lang gerührt. Nach den bisherigen Erfahrungen war das $\mathrm{H_20}_2$ nach dieser Reaktionsdauer mit Sicherheit abreagiert. Danach wurde die O2-Konzentration am Meßgerät abgelesen und der CSB der Reaktionslösung bestimmt. Die Sauerstoffkonzentration betrug mit Ausnahme eines Versuches zu Reaktionsende immer null, d.h. es war fast immer der gesamte gelöste Sauerstoff bei der Reaktion verbraucht worden. Die Versuchsserie war so angelegt, daß im Ansatz verschiedene Verhältnisse H_2O_2 :gelöstem O_2 gewählt wurden (Tabelle 5, Spalten 2 & 3). Ausgehend von 0₂-freien Reaktionslösungen bei verschiedenen H₂0₂-Konzentrationen (Versuch 1 & 2) wurde zunächst die Anfangskonzentration des O_2 bis hin zum Sättigungswert für reinen Sauerstoff bei Zimmertemperatur gesteigert (Versuche 3 bis 13), dann wurde bei konstanter Sauerstoffsättigung die Anfangskonzentration des H_2O_2 vermindert (Versuche 14-16). Der Vergleich des insgesamt verbrauchten Sauerstoffes aus gelöstem 0, und aktivem Sauerstoff aus H_2O_2 mit der erreichten CSB-Erniedrigung zeigt, daß die Sauerstoffbilanz bei allen Versuchen innerhalb der Meßgenauigkeit stimmt (s. Quotient:∆CSB:O(gesamt)).

Das Ausmaß der Verbesserung der H_2O_2 -Ausnutzung im Form des spezifischen H_2O_2 -Verbrauches $\Delta H_2O_2/\Delta CSB$ demonstriert der Vergleich des theoretischen H_2O_2 -Verbrauches von 2.125 mg H_2O_2/mg entferntem CSB, wenn der Sauerstoff ausschließlich aus dem H_2O_2 stammt, mit den besten erreichten Werten um o.5 mg H_2O_2/mg CSB (Versuche 14-16).
Tabelle 5:Versuchsergebnisse zur Bilanzierung des Sauerstoffumsatzes bei der Reaktion von p-TSmit Fentons Reagenz in Gegenwart von molekularem Sauerstoff nach vollständigem Abreagieren
des H202.(C(p-TS)=1.28 mmol/1, pH=3, 21°C, molares Verhältnis H202:Fe(II)=5:1)

	Ans	atz	١	lerbrau	ch 1)	CSB-	▲ CSB	∆ H ₂ 0 ₂
Versuchs-	H2 ⁰ 2	0 ₂ (gelöst)	H ₂ 0 ₂	0 ₂ (gelöst)	∆ 0(gesamt) ¹⁾	Erniedrigung	$\Delta 0$ (gesamt)	∆ CSB
Nr.	mg/l	mg/l	mg/l	mg/l	mg/l	mg/1 0 ₂	%	mg/mg
1	75.9	0.0	75.9	0.0	35.7	40.0	112.0	1.90
2	87.0	0.0	87.0	0.0	4o.9	38.6	94.4	2.25
3	75.9	8.4	75.9	8.4	44.1	50.0	113.3	1.52
4	75.9	25.9	75.9	25.9	61.3	63.9	103.7	1.19
5-9	87.1 ± 0.6^2) 41.1 <u>+</u> 0.9	87.1 <u>+</u> 0.6	41.1 <u>+</u> 0.9	82.1 <u>+</u> 0.9	85.6 <u>+</u> 10.7	102.4 + 10.4	1.03 + 0.14
10-13	75.1 ± 1.6^{3}) 41.2 <u>+</u> 0.9	75.1 <u>+</u> 1.6	41.2 <u>+</u> 0.9	76.7 <u>+</u> 1.1	83.4 <u>+</u> 3.5	108.9 <u>+</u> 3.7	0.91 <u>+</u> 0.05
14	34.4	42.0	34.4	42.0	58.3	71.7	123.0	o.48
15	29.0	40.7	29.0	4o.7	54.4	52.6	96.7	o.55
16	17.3	41.0	17.3	30.0	38.1	41.5	108.9	0.42

1) berechnet aus 0_2 (gelöst) und dem H_20_2 entsprechenden "aktiven" Sauerstoff (1 0^{*} je H_20_2)

2) Mittelwert aus 5 Versuchen

3) Mittelwert aus 4 Versuchen

29 -

L

Bei diesen Versuchen, bei denen im Ansatz die Konzentration des gelösten Sauerstoffes höher war als die des aktiven Sauerstoffes aus H_2O_2 , waren demzufolge mit einem Molekül H_2O_2 bis zu fünf Atome Sauerstoff umgesetzt worden, wobei der spezifische H_2O_2 -Verbrauch von Versuch 16 offensichtlich die Untergrenze des H_2O_2 -Verbrauches darstellt, da hierbei nicht der gesamte Sauerstoff, der sich in der Lösung befand, verbraucht wurde.

Bei Reaktionen, bei denen zu Anfang aktiver Sauerstoff aus H_2O_2 und gelöster Sauerstoff in ungefähr gleicher Höhe angeboten wurde (Versuche 5 bis 13), liegt der spezifische H_2O_2 -Verbrauch um den Wert 1 mg $H_2O_2/$ mg CSB, im Mittel werden hierbei also ca. zwei Sauerstoffatome (1 aus H_2O_2 und 1 aus gelöstem Sauerstoff) auf die organische Substanz übertragen.

Ansätze, die anfangs keinen gelösten Sauerstoff enthielten (Versuche 1 & 2), bei denen also nur H_2O_2 als Sauerstoffquelle vorhanden war, hatten einen spezifischen H_2O_2 -Verbrauch, der dem theoretischen Wert von 2.125 mg H_2O_2 /mg CSB entsprach.

Um zu überprüfen, inwieweit die Sauerstoffbilanz auch im Verlauf der Oxidationsreaktion ähnliche Ergebnisse liefert wie nach vollständigem Abreagieren des H_2O_2 (Tabelle 5), wurden zwei Versuche durchgeführt, bei denen es möglich war, auch im Verlauf der Reaktion Proben zu entnehmen, um die Konzentration an H_2O_2 , O_2 und den CSB zu bestimmen (siehe experimentellen Teil).

Einer dieser Versuche entsprach im Ansatz den Versuchen 5 bis 13, Tab. 5, und der andere ohne gelösten Sauerstoff entsprach den beiden ersten Versuchen der obigen Versuchsreihe.

Die Abbildungen 11 und 12, in denen die Sauerstoffbilanz dieser beiden Experimente in Form von Balkendiagrammen für verschiedene Umsätze an H_2O_2 dargestellt ist, zeigen einerseits, daß die Sauerstoffbilanz auch während der Reaktion innerhalb der Meßgenauigkeit stimmt und, bestätigen andererseits bei Gegenwart von Sauerstoff (Abbildung 11) die bereits im letzten Kapitel gemachte Aussage, daß in der Anfangsphase der Reaktion ein hoher Bedarf an gelöstem Sauerstoff besteht, der diesen Messungen zufolge vollständig zur CSB-Erniedrigung verwendet wird. Ab ca. 60 % H_2O_2 -Umsatz ist der gesamte gelöste Sauerstoff verbraucht und die weitere CSB-Erniedrigung wird nur noch durch den aktiven Sauerstoff des H_2O_2 bewirkt.

Abbildung 11:

Sauerstoffbilanz bei verschiedenen H₂O₂-Umsätzen bei der Oxidation von p-TS mit Fentons Reagenz. (C(p-TS)_=1.28 mmol/1, molares Verhältnis p-TS:H₂O₂:Fe(II)= 1:2:0.4, Reaktionslösung vor Reaktion mit O₂ gesättigt)

Ist hingegen, wie im Parallelversuch (Abbildung 12) schon zu Reaktionsbeginn kein gelöster Sauerstoff vorhanden, kann zur CSB-Erniedrigung bei allen H_2O_2 -Umsätzen nur der aktive Sauerstoff des H_2O_2 herangezogen werden und die insgesamt erzielte CSB-Erniedrigung ist dann nur so groß wie der Anteil des aktiven Sauerstoffes bei 100 % H_2O_2 -Umsatz in Abbildung 11.

Abbildung 12:

Sauerstoffbilanz bei verschiedenen H₂O₂-Umsätzen bei der Oxidation von p-TS mit Fentons Reagenz in Abwesenheit von gelöstem Sauerstoff. (Reaktionsbedingungen wie Abbildung 11)

3.2.1.3. Zum Mechanismus der Beteiligung des elementaren Sauerstoffes bei der Oxidation mit Fentons Reagenz

Die bisherigen Ergebnisse für den spezifischen H_2O_2 -Verbrauch zeigen, daß der elementar gelöste Sauerstoff an der CSB-Erniedrigung in wesentlich höherem Ausmaß beteiligt sein kann, als es einer nur einmaligen Reaktion eines organischen Radikals mit einem Sauerstoffmolekül entspricht.

Als Erklärung hierfür kommen zwei Möglichkeiten in Betracht: Radikalketten und Rückbildung von H_2O_2 .

Da es sich bei der vorliegenden Oxidation mit Fentons Reagenz um einem radikalischen Mechanismus handelt, ist zwar das Auftreten von Radikalketten nicht unwahrscheinlich, aber die folgende Rechnung zeigt, daß diese nur sehr kurz sein können. Bei einem Überschuß an molekularem Sauerstoff (Versuche Kap. 3.2.1.2.) stellt man fest, daß mit einem Wasserstoffperoxidmolekül maximal zwei Moleküle gelöster Sauerstoff auf die organische Substanz übertragen werden. Liegen zu Reaktionsbeginn aktiver Sauerstoff aus H_2O_2 und gelöster Sauerstoff in ungefähr gleicher Konzentration vor, wie dies bei den Versuchen 5 bis 13, Tab.5 der Fall war, so werden nur noch 1 bis 1.2 Moleküle gelöster Sauerstoff mit einem Molekül Wasserstoffperoxid auf die organische Substanz übertragen.

Die andere Möglichkeit, den geringen spezifischen H_2O_2 -Verbrauch zu erklären, ist die Rückbildung von Wasserstoffperoxid aus der organischen Substanz. Diese Annahme wird durch den Verlauf der H_2O_2 -Konzentration in Abbildung 9 gestützt: in Anwesenheit eines organischen Substrates nimmt sowohl unter Sauerstoff- als auch unter Stickstoffbegasung die H_2O_2 -Konzentration anfangs rasch ab, was in Analogie zur substratfreien $H_2O_2/Fe(II)$ -Lösung als Oxidation von Fe(II) zu Fe(III) interpretierbar ist. Im weiteren Verlauf unterscheiden sich die Kurven bei Stickstoffbegasung und Sauerstoffbegasung jedoch grundsätzlich.

Während die Kurve der Wasserstoffperoxidabnahme bei p-TS/N₂ monoton abfällt, tritt bei p-TS/O₂ zunächst eine Abflachung der H₂O₂-Konzentrationskurve auf, was einem zwischenzeitlich langsameren Brutto-H₂O₂-Verbrauch entspricht. Dieser charakteristische Kurvenverlauf läßt sich als Überlagerung zweier Reaktionen auffassen:

- erstens eine durch eine als exponentielle Kurve darstellbare Abnahme des Wasserstoffperoxides bei der Reaktion von H₂O₂ mit Fe(III) und
- zweitens die Rückbildung von H_2O_2 aus der organischen Substanz mit anschließender Reaktion des H_2O_2 mit Fe(III).

Die Bildungskurve des H_2O_2 läßt sich nach Abbildung 13 graphisch konstruieren, wenn man in Abhängigkeit von der Zeit die H_2O_2 -Konzentration im substratfreien Fentons Reagenz von der H_2O_2 -Konzentration bei Gegenwart organischen Substrates abzieht.

<u>Abbildung 13:</u> Abnahme der H_2O_2 -Konzentration in Fentons Reagenz in Gegenwart und in Abwesenheit des organischen Substrates p-Toluolsulfonsäure. $(C(H_2O_2)_0=2.2 \text{ mmol/l}, C(Fe(II))_0=0.44 \text{ mmol/l}, C(p-TS)_0=2.2 \text{ mmol/l}, 25 ^{O}C, pH=3, O_2-Begasung 10 l/h/l Lsg.)$

Die Differenzkurve hat die Form einer unsymmetrischen Parabel und ist damit vergleichbar mit dem Konzentrationsverlauf eines Zwischenproduktes B, das gemäß der folgenden Reaktionsfolge gebildet wird und anschließend wieder gleich weiterreagiert:

$$A \xrightarrow{K1} B \xrightarrow{K2} C \qquad (27)$$

Nach den Beziehungen, die die Reaktionskinetik für Folgereaktionen erster Ordnung liefert, tritt diese Kurvenform jedoch nur für den Fall auf, daß die Geschwindigkeitskonstanten K1 und K2 ähnlich groß sind (58), d.h. die Abreaktion und die Rückbildung des H₂O₂ erfolgen mit vergleichbarer Geschwindigkeit.

Es gelang nicht, die beiden Geschwindigkeitskonstanten für den vorliegenden Versuch mit Hilfe eines Rechenprogrammes zu ermitteln, da insbesondere für die Anfangsphase der Reaktion zu wenige Meßpunkte für einen brauchbaren Angleich vorhanden waren.

Einige denkbare Reaktionswege, die zur Rückbildung von Wasserstoffperoxid führen, seien im folgenden diskutiert.

Nach Addition des OH-Radikals an das aromatische System und Reaktion mit dem molekularen Sauerstoff kann das entstandene Hydroxycyclohexadienylperoxyradikal unter Bildung eines hydroxylierten Aromaten ein Peroxyradikal HO₂ abspalten(54):

$$\bigcirc \xrightarrow{\bullet OH^{\bullet}} \bigcirc \xrightarrow{OH} \xrightarrow{\bullet O_2} \bigcirc \xrightarrow{OH} \longrightarrow \bigcirc \xrightarrow{OH} \xrightarrow{\bullet HO_2^{\bullet}} (28)$$

Die Reaktion zweier Peroxyradikale führt unter Disproportionierung zu Wasserstoffperoxid und Sauerstoff (59), die Reaktion eines HO_2 -Radikals mit Fe(II) und H⁺ zu Wasserstoffperoxid und Eisen(III):

$$2 HO_2' \longrightarrow H_2O_2 + O_2$$
 (29)

 $H^{+} + Fe^{2+} + H0_{2}^{-} - H_{2}^{0} + Fe^{3+}$ (30)

Eine weitere Möglichkeit ist die Reaktion des HO_2 -Radikals mit aliphatischen Hydroxyperoxyradikalen, die im Verlauf der Oxidation durch OH-Angriff mit anschließender O_2 -Addition nach **R**ingöffnung des Aromaten entstanden sein können:

$$R - C - H + HO_2$$
 $H_2O_2 + O_2 + RCHO$ (31)

Wie aus den Gleichungen 28 und 29 ersichtlich ist, werden beispielsweise zur Rückbildung von einem Molekül H_2O_2 insgesamt zwei Moleküle H_2O_2 und zwei Moleküle O_2 verbraucht, gleichzeitig wird jedoch wieder ein Molekül O_2 freigesetzt.

Die Neubildung von H_2O_2 wurde für den Fall der p-TS-Oxidation experimentell überprüft, wobei die OH-Radikale jedoch nicht durch einen Redoxprozess aus Fentons Reagenz, sondern strahlenchemisch durch die γ -Strahlung einer Co-6o-Quelle (Gammacell 220, Atomic Energy of Canada Ltd.) erzeugt wurden.

Bei der radiolytischen Spaltung des Wassers entstehen OH-Radikale, H-Radikale und solvatisierte Elektronen:

$$H_2^0 \longrightarrow 0H', H', e_{aq}^{-}$$
 (32)

Um Nebenreaktionen mit dem solvatisierten Elektron zu vermeiden, wird die Reaktionslösung üblicherweise mit N₂O begast, wobei folgender Prozess abläuft:

$$e_{aq} + N_2^0 \longrightarrow N_2 + 0H + 0H$$
 (33)

All diese reaktiven Teilchen werden in den "spurs", der Bahn der ionisierenden Strahlung erzeugt, wobei jedoch nur ein Teil von ihnen in die freie Lösung "entkommt", während die meisten wieder rekombinieren. Da in den spurs eine hohe Teilchendichte herrscht, besteht auch die Möglichkeit, daß zwei OH-Radikale miteinander reagieren, somit H_2O_2 bilden und dann in die freie Lösung diffundieren.

Bei der Bestrahlung von reinem Wasser läßt sich jedoch kein freies H_2O_2 nachweisen, da dieses wiederum sofort von OH-Radikalen angegriffen und gemäß Reaktion 3, Kap. 2.1. abgebaut wird:

$$H_2O_2 + OH = \frac{K3=1.2 \cdot 10^7 \ 1/mol \cdot sec}{H_2O_2} + HO_2 = (3)$$

Bestrahlt man hingegen Wasser in Gegenwart von aromatischen Substanzen, reagiert das OH-Radikal nicht mehr mit H_2O_2 , sondern mit den Aromaten, da diese Reaktionen mit Geschwindigkeitskonstanten von K=10⁹-10¹⁰ l/mol·sec um ca. 2-3 Zehnerpotenzen schneller sind und daher gegenüber der Reaktion mit H_2O_2 bevorzugt ablaufen. Dadurch kann das durch Dimerisierung von OH-Radikalen in den spurs gebildete Wasserstoffperoxid als stabiles Molekül bestehen bleiben, soweit in der Lösung keine anderen Ionen oder Verbindungen vorliegen, die mit ihm reagieren. Bei Abwesenheit von gelöstem Sauerstoff wird H_2O_2 ausschließlich durch diesen Prozeß gebildet und da die strahlenchemisch erzeugte Menge an OH-Radikalen proportional zur absorbierten Strahlendosis ist, muß auch die H_2O_2 -Konzentration proportional zunehmen. Die absorbierte Strahlendosis ist hierbei definiert als diejenige Strahlenenergie, die von einem Gramm Materie absorbiert wird. Die Einheit der absorbierten Strahlendosis ist das rad: 1)

1 rad = 100 erg/g = 0.01 J/kg = 6.34
$$10^{13}$$
 eV (34)

Die Strahlenausbeute wird in der Strahlenchemie als "G-Wert", der Anzahl veränderter Molekel pro 100 eV absorbierter Energie bezeichnet:

$$G = \frac{C \cdot N_{L} \cdot 100}{D_{a} \cdot \rho \cdot 1000 \cdot 6.24 \cdot 10^{13}} = \frac{C}{D_{a} \cdot \rho} 9.66 \cdot 10^{8}$$
(35)

(C=Konzentration der gebildeten bzw. verbrauchten Teilchen in Mol/l, p=Dichte, N_L=Loschmidtsche Zahl, D_a=absorbierte Strahlendosis in rad) So werden beispielsweise bei der Radiolyse des Wassers die radikalischen Primärzersetzungsprodukte mit folgenden Ausbeuten erzeugt (48):

G (0H[•]) = 2.70
G (H[•]) = 0.55
G (
$$e_{aq}$$
) = 2.65

Für die Bildung von H_2O_2 wird in der Literatur ein G-Wert zwischen o.7 und o.8 angegeben (47,48,52,53). Dieser Wert wurde für das vorliegende Reaktionssystem überprüft, indem eine p-TS-Lösung mit einer Anfangskonzentration von 1.36 mmol/l bei pH=3 unter Sauerstoffausschluß strahlenchemisch oxidiert wurde.

Abbildung 14 zeigt, daß die Wasserstoffperoxidkonzentration linear mit der absorbierten Strahlendosis zunimmt, wobei der G-Wert, der durch lineare Regression der Meßpunkte zu o.76 \pm o.o3 ermittelt wurde, gut mit den Literaturangaben übereinstimmt.

¹) rad = \underline{r} adiation <u>absorbed</u> <u>dose</u>, die SI-Einheit ist: J/kg

<u>Abbildung 15:</u> Bildung von Wasserstoffperoxid bei der strahlenchemischen Oxidation von p-Toluolsulfonsäure mit γ -Strahlung bei pH=3 in Gegenwart von gelöstem Sauerstoff. (C(p-TS)₀= 1.36 mmol/l)

Im Parallelversuch, der strahlenchemischen Oxidation von p-Toluolsulfonsäure $(C(p-TS)_0=1.36 \text{ mmol/l})$ bei pH=3 in Gegenwart von gelöstem Sauerstoff entsteht Wasserstoffperoxid außer durch die Reaktion zweier OH-Radikale miteinander auch noch aufgrund der Reaktion der organischen Radikale mit Sauerstoff und der bereits diskutierten Folgereaktionen (Gleichungen 28 - 31) aus der organischen Substanz, so daß die Bildungskurve des insgesamt entstandenen H_2O_2 steiler verläuft (Abbildung 15). $G(H_2O_2)$ ist dann größer als o.7 und wurde durch lineare Regression der im Linearbereich der Kurve (bis o.7 Mrad) liegenden Meßpunkte zu 1.72 ± 0.01 bestimmt und liegt damit in der Größenordnung der für die H_2O_2 -Bildung in Gegenwart organischer Substanzen angegebenen G-Werte der Literatur (Tab.6).

Substanz	G(H ₂ 0 ₂)	Ref.
Ethanol	1.9	60
Methanol	2.8	61
div. Hydro- chinone	2.2-4.4	62
div. Chlor- phenole	1.0-1.8	63
p-Toluolsul- fonsäure	1.72	diese Arbeit

<u>Tabelle 6:</u> G-Werte für die Bildung von H_2O_2 in Gegenwart organischer Substanzen.

Der Anteil des aus der organischen Substanz zurückgebildeten Wasserstoffperoxides läßt sich graphisch ermitteln, wenn man die Konzentration des durch Reaktion zweier OH-Radikale gebildeten H_2O_2 mit $G(H_2O_2)=0.76$ von der H_2O_2 -Gesamtkonzentration abzieht (Abbildung 15). Nach einer Bestrahlungsdosis von 1.2 Mrad wird demzufolge aus einem Molekül p-TS ein Molekül H_2O_2 zurückgebildet.

Diese Ergebnisse bestätigen die oben diskutierte Hypothese einer H₂O₂-Bildung durch Reaktion organischer Radikalzwischenstufen mit molekularem Sauerstoff.

3.2.2. Einfluß des pH-Wertes

Mit den folgenden Experimenten sollte untersucht werden, inwieweit die Ergebnisse der pH-Abhängigkeit substratfreier $H_2O_2/Fe(II)$ -Lösungen auch auf substrathaltige Lösungen übertragbar sind und wie sich die Oxidationswirkung hinsichtlich der wasserchemischen Summenparameter bei Variation des pH-Wertes ändert. In der Literatur wird hierüber nur wenig berichtet. So gibt Eisenhauer (11) für die Oxidation von Phenol mit $H_2O_2/Fe(II)$ als optimalen Bereich pH=3 bis pH=4 an, Bishop (20) erzielte die besten Ergebnisse bei der Behandlung von Abläufen biologischer Klärstufen mit $H_2O_2/Fe(II)$, $H_2O_2/Fe(II)+Fe(III)$ und $H_2O_2/Fe(III)$ zwischen pH=3 und pH=5. Im Rahmen dieser Arbeit wurde die pH-Abhängigkeit der Oxidation von p-Toluolsulfonsäure mit Fentons Reagenz im Bereich von pH=1 bis pH=6 unter den folgenden Reaktionsbedingungen untersucht:

1)

C(p-TS)	ß	1.3 mmol/l
CSB	8	375 mg/1 0 ₂
TOC	2	11o mg/1 C
molares Verhältnis H ₂ 0 ₂ :p-TS		3 : 1
molares Verhältnis $H_2 O_2$:Fe(II)	=	5 : 1
Sauerstoffbegasung	=	1o]/h/] Lsg.
Versuchstemperatur	=	20 ⁰ C

Der pH-Wert der p-TS-Lösungen wurde auf den gewünschten Wert eingestellt und nach Zusatz des Fe(II) das Perhydrol auf einmal zugegeben. In Abhängigkeit von der Zeit wurden Proben entnommen und die Konzentration von H_2O_2 , p-TS und der CSB bestimmt.

Schon kurz nach Beginn der Reaktion fiel bei pH> 2.5 Eisenhydroxid aus, wogegen die stärker sauren Reaktionsmischungen während der gesamten Versuchsdauer ohne Niederschlag blieben . Der schnellste Abbau des Wasserstoffperoxides erfolgte bei pH=3, wie die zeitabhängige prozentuale Konzentrationsabnahme des H_2O_2 in Abbildung 16 zeigt, obwohl hier ein Teil des Eisens ausgefallen ist und somit nicht für eine homogene Katalyse zur Verfügung steht.

Für die Interpretation der Kurvenverläufe lassen sich die bereits diskutierten Abbau- bzw. Bildungsmechanismen des H_2O_2 heranziehen.

¹) Die genaue Einwaage der p-TS und des Fe(II) richtete sich nach der Anfangskonzentration des Wasserstoffperoxides, die vor jedem Versuch durch Zugabe der gewünschten Menge Perhydrol zu 2 1 bidestilliertem Wasser mit pH=3 in einem Becherglas bestimmt wurde.

Abbildung 16: Abnahme der H₂O₂-Konzentration bei verschiedenen pH-Werten bei der Oxidation von p-TS mit Fentons Reagenz. (C(p-TS)₀= 1.3 mmol/1, molares Verhältnis p-TS:H₂O₂:Fe(II)=1:3:0.6, 25°C, O₂-Begasung 10 1/h/l Lsg.)

Bei allen pH-Werten tritt im ersten Moment eine schnelle H_2O_2 -Abnahme auf, die zwischen pH=1 und pH=3 ca. 1o-13 % und bei pH=6 ca. 24 % beträgt und die als Oxidation des Fe(II) zu Fe(III) interpretierbar ist. Bei stöchiometrischer Reaktion wäre die H_2O_2 -Abnahme 20 %. Beim weiteren Konzentrationsverlauf lassen sich mehrere Kurvenformen unterscheiden:

- Bei pH=6 sinkt die H₂O₂-Konzentration monoton und verläuft somit ähnlich wie bei der Oxidation der p-TS unter Stickstoffbegasung (Kap.3.2.1.1.). Dieser Befund und die Tatsache, daß der spezifische H₂O₂-Verbrauch nach Reaktionsende bei 2.22 mg H₂O₂/mg CSB lag und damit innerhalb der Meßgenauigkeit dem theoretischen H₂O₂-Verbrauch von 2.125 mg H₂O₂/mg CSB (= 1 mg O*/mg CSB) entspricht, beweisen, daß bei pH=6 trotz O₂-Begasung der Sauerstoff nicht an der Reaktion teilnimmt und damit keine Rückbildung von H₂O₂ aus der organischen Substanz stattfindet.
- Bei pH=3 und noch deutlicher bei pH=2.5 zeigt die Form der H₂O₂-Konzentrationskurve durch den gegen die Abszisse konvexen Abschnitt eine H₂O₂-Rückbildung an. Der spezifische H₂O₂-Verbrauch nach vollständigem Abreagieren des H₂O₂ beträgt o.64 bzw. o.66 mg H₂O₂/mg CSB (≜o.30 bzw. o.31 mg O*/mg CSB), d.h. mindestens 69 % der CSB-Abnahme wurden durch den eingeleiteten Sauerstoff bewirkt.

- Bei pH=2 ist die H₂O₂-Konzentrationskurve nur noch wenig konvex, der spezifische H₂O₂-Verbrauch von 1.12 mg H₂O₂/mg CSB zeigt aber, daß noch immerhin ca. 50 % der CSB-Verminderung vom gelösten Sauerstoff herrühren.
- Bei pH=1 ist eine H_2O_2 -Rückbildung nur schwach durch einen Sattelpunkt nach 60 min Reaktionszeit zu erkennen, danach nimmt die H_2O_2 -Konzentration nur noch sehr langsam ab und der Versuch wurde nach 49 h mit einer H_2O_2 -Restkonzentration von 39 % abgebrochen.

Abbildung 17:

pH-Abhängigkeit der Oxidation von p-Toluolsulfonsäure mit Fentons Reagenz : H₂O₂-und p-TS-Umsatz nach 2120 min Reaktionsdauer.

Abbildung 17, in der der Umsatz des Wasserstoffperoxides und der p-Toluolsulfonsäure nach 120 min Reaktionsdauer als Funktion des pH-Wertes aufgetragen ist, zeigt, daß in Gegenwart von organischem Substrat die maximalen Reaktionsgeschwindigkeiten bei pH=3 auftreten und damit die gleiche pH-Abhängigkeit wie in der substratfreien $H_2O_2/Fe(II)$ -Lösung zu beobachten ist. Die Umsatz-pH-Kurven sind jedoch nicht symmetrisch, sondern fallen nach pH>3 etwas steiler ab als ins stärker saure Gebiet. Für die Oxidationswirkung hinsichtlich der CSB-Reduktion, die Quotienten BSB₅:CSB und CSB:TOC sowie den spezifischen H_2O_2 -Verbrauch bei 90 % Substanz-Elimination gilt das entsprechende (Abbildung 18 und Tabelle 7).

Abbildung 18:

pH-Abhängigkeit der Oxidation von p-Toluolsulfonsäure mit Fentons Reagenz: CSB-Reduktion und biologische Abbaubarkeit

Tabelle 7:pH-Abhängigkeit der CSB:TOC-Verhältnisses und des spezifischenH202-Verbrauches nach 90 %-Substrat-Elimination bei der Oxi-
dation von p-Toluolsulfonsäure mit Fentons Reagenz. (C(p-TS)0=
1.3 mmol/l molares Verhältnis p-TS:H202:Fe(II)=1:3:0.6)

рН	CSB:TOC mg C mg O ₂	spezifische mg H ₂ O ₂ mg CSB	er Verbrauch mmol H ₂ O ₂ mmol p-TS
2.0	2.7		
2.5	2.0	0.66	2.11
3.0	1.7	o.59	1.92
3.5	2.2	0.69	2.19
6.0	2.9	-	-

Diese Versuchsreihe zeigt, daß der pH-Wert bei der Oxidation von p-Toluolsulfonsäure mit Fentons Reagenz eine sehr wichtige Einflußgröße ist. Das starke Abfallen der Oxidationswirkung nach pH>3 und pH<3 macht eine wirksame Kontrolle des pH-Wertes erforderlich. Hierbei sind jedoch, wie die Ergebnisse hinsichtlich biologischer Abbaubarkeit und spezifischem H_2O_2 -Verbrauch erkennen lassen, Schwankungen um <u>+</u> o.5 pH-Einheiten noch tolerierbar.

3.2.3. Einfluß der Fe(II)-Anfangskonzentration

Die Versuche der Zersetzung von H_2O_2 bei Abwesenheit von organischem Substrat (Kap. 2.2.2.) zeigten, daß Wasserstoffperoxid um so schneller abgebaut wird, je höher das Verhältnis Fe(II): H_2O_2 im Ansatz war. Im folgenden wird gezeigt, welchen Einfluß die Fe(II)-Anfangskonzentration auf die wasserchemischen Summenparameter bei Anwesenheit von organischem Substrat hat. Für diese Experimente wurden die folgenden Reaktionsbedingungen eingehalten:

C(p-TS)	2	1.3 mmo1/1
CSB	21	375 mg/l 0 ₂
TOC	2	11o mg/l C
molares Verhältnis H ₂ 0 ₂ :p-TS	=	3:1
molares Verhältnis H ₂ 0 ₂ :Fe(II)	=	1o : 1 bis 1o : 8
pH-Wert	II	3
Sauerstoffbegasung	=	1o 1/h/1 Lsg.
Versuchstemperatur	=	25 ⁰ C

Wiederum wurde die auf pH=3 eingestellte p-TS-Lösung vorgelegt, dann Fe(II) zugegeben und anschließend das Wasserstoffperoxid mit einer Eppendorf-Pipette möglichst schnell auf einmal in die Reaktionslösung eingebracht. Sofort nach Zugabe des H_2O_2 fiel bei allen Versuchen ein brauner Fe(III)-Hydroxidniederschlag aus, der während der gesamten Reaktionsdauer bestehen blieb und der um so stärker auftrat, je höher das Fe(II): H_2O_2 -Anfangsverhältnis gewählt worden war.

Ebenfalls mit steigendem Fe(II)-Anteil wurde ein höherer Verbrauch an NaOH zum Konstanthalten des pH-Wertes beobachtet. Dies ist auf die Bildung von organischen Säuren zurückzuführen, die als Abbauprodukte bei der Oxidation aromatischer Verbindungen entstehen. Joy (64,65,66) beispielsweise identifizierte bei der Oxidation von p-TS mit Ozon qualitativ und quantitativ Oxalsäure, Brenztraubensäure, Essigsäure und Ameisensäure.

Der Abbau des Wasserstoffperoxides erfolgt auch in Gegenwart von organischem Substrat um so schneller, je höher das $Fe(II):H_2O_2$ -Anfangsverhältnis ist (Abbildung 19). Während jedoch die H_2O_2 -Konzentration in der substratfreien Lösung bei allen $Fe(II):H_2O_2$ -Verhältnissen monoton abfällt (vgl. Abbildung 5), die Abnahmekurve also keinen Wendepunkt aufweist, tritt im Falle der substrathaltigen $H_2O_2/Fe(II)$ -Lösung der für die H_2O_2 -Neubildung charakteristische Kurvenverlauf mit Wendepunkt auf. Er ist bis zu $Fe(II):H_2O_2$ -Verhältnissen

<u>Abbildung 19:</u> Abnahme der H₂O₂-Konzentration bei der Oxidation von p-Toluolsulfonsäure mit²Fentons Reagenz mit verschiedenen Anfangsverhältnissen Fe(II):H₂O₂. (C(p-TS)₀=1.3 mmol/l, molares Verhältnis H₂O₂:p-TS=3:1)

von o.4 gut erkennbar, darüber jedoch nicht mehr, vermutlich weil das gesamte Geschehen auf einen kurzen Zeitraum zusammengedrängt abläuft, für den nur wenige Meßpunkte vorliegen.

Der spezifische H_2O_2 -Verbrauch, berechnet aus den Analysen nach vollständigem Abreagieren des Wasserstoffperoxids, liegt, wie Tabelle 8 zeigt, zwischen o.61 und o.93 mg H_2O_2/mg CSB. Eine Erhöhung der Eisenmenge bewirkt eine Verschlechterung der H_2O_2 -Ausnutzung, aber, wie oben ausgeführt, eine Beschleunigung der Reaktion. Auffälligerweise besteht zwischen der absoluten

Tabelle 8:Spezifischer H_2O_2 -Verbrauch nach vollständigem Abreagieren des
Wasserstoffperöxides bei verschiedenen molaren Verhältnissen
Fe(II): H_2O_2 . (Reaktionsbedingungen s.S.43)

Fe(II):H ₂ 0 ₂	1:10	2:10	4:10	6:10	8:10
mg H ₂ O ₂ /mg CSB	0.61	0.66	o.77	o . 78	0.93

CSB-Abnahme und dem Quotienten $C(Fe(II))_0:C(H_2O_2)_0$ ein linearer Zusammenhang (Abbildung 20). Der Einfluß der Fe(II)-Anfangskonzentration auf den spezifischen H_2O_2 -Verbrauch ist allerdings gering, denn die Steigerung des Fe(II): H_2O_2 -Verhältnisses von o.1 auf o.2, also um 100 %, führt nur zu einem H_2O_2 -Mehrverbrauch von 8.2 %. Der Vergleich des ersten mit dem letzten Meßwert dieser Versuchsserie zeigt, daß die Steigerung des Fe(II)-Anteils um 700 % einen Mehrverbrauch an Wasserstoffperoxid von nur 52.5 % zur Folge hat.

Abbildung 2o:

Zusammenhang zwischen der CSB-Erniedrigung und dem Fe(II):H₂O₂-Anfangsverhältnis bei der Oxidation von p-Toluolsulfonsäure mit Fentons Reagenz.

Die gleiche Tendenz, Abnahme der Oxidationswirkung mit steigendem Fe(II)-Anteil, läßt sich ebenfalls beim TOC beobachten (Abbildung 21). Auch hier erkennt man, zumindest für Fe(II): H_2O_2 -Anfangsverhältnisse von o.2 bis o.8, einen linearen Zusammenhang. Jedoch zeigen die insgesamt geringen Änderungen des TOC, die zwischen 17.5 und 6.5 % liegen, daß die Totaloxidation des organischen Kohlenstoffes bis hin zum CO₂ nur in untergeordnetem Maße abläuft und die Oxidationswirkung hauptsächlich darin besteht, daß sauerstoffreichere organische Verbindungen entstehen. Dies zeigt auch das CSB: TOC-Verhältnis an Ende der Reaktion (Tabelle 9).

Tabelle 9:Oxidationsgrad des Produktgemisches nach Abreagieren des H_2O_2 in Abhängigkeit vom Fe(II): H_2O_2 -Anfangsverhältnis.

			يستعده ويتراك ومراكبته ويتراكب		and the second secon	Contraction of the Owner of Contraction of Contract
Fe(II):H ₂ 0 ₂	vor Ox.	0.1	o.2	o.4	0.6	0.8
CSB:TOC	3.43	1.91	1.74	2.12	2.10	2.29

Abbildung 21:

Zusammenhang zwischen der TOC-Erniedrigung und dem Fe(II):H₂O₂-Anfangsverhältnis bei der Oxidation von p-Toluolsulfonsäure mit Fentons Reagenz.

Die sauerstoffreicheren Oxidationsprodukte sind meist besser biologisch abbaubar, sodaß mit steigender Fe(II)-Menge auch eine Verschlechterung der biologischen Abbaubarkeit des Oxidationsproduktgemisches beobachtet wird. Für diesen Zusammenhang läßt sich in erster Näherung ebenfalls eine lineare Korrelation annehmen (Abbildung 22).

Abbildung 22:

Biologische Abbaubarkeit in Abhängigkeit vom Fe(II):H₂O₂-Anfangsverhältnis bei der²Oxidation von p-Toluolsulfonsäure mit Fentons Reagenz.

Als Erklärung für die Verminderung der Oxidationswirkung mit steigendem Fe(II):H₂O₂-Verhältnis kommt in Betracht, daß mehr Oxidationsmittel zur Überführung von Fe(II) in Fe(III) verbraucht wird und auch daß mit zunehmendem Fe(II)-Anteil die Konzentration an OH-Radikalen im stationären Zustand zunehmen dürfte, womit die Wahrscheinlichkeit für Abbruchreaktionen der Radikalketten größer wird. Dies können Rekombinationen von Radikalen oder auch Desaktivierungsreaktionen an Oberflächen (Wand des Reaktionsgefäßes, Elektroden, Eisenhydroxidniederschlag) sein.

Der Einfluß des Fe(II):H₂O₂-Anfangsverhältnisses auf die wasserchemischen Summenparameter ist, wie den Ergebnissen zu entnehmen war, nicht sehr erheblich, so daß bei einer praktischen Durchführung hinsichtlich der Fe(II)-Dosierung ein gewisser Spielraum gegeben ist. Von den Zahlenwerten der Tabelle 9 her gesehen,erzielt man mit C(Fe(II))₀:C(H₂O₂)₀=1:5 den günstigsten Quotienten CSB:TOC, jedoch darf man dessen Genauigkeit nicht überschätzen (~10 %).

In Bezug auf die Reaktionsdauer sind jedoch die Unterschiede beträchtlich: beim kleinsten Fe(II):H₂O₂-Verhältnis von o.1 dauert es 360 min, bis das gesamte H₂O₂ abreagiert ist, bei Verdoppelung des Fe(II)-Anteils verkürzt sich die Reaktionszeit um ca. 40 % auf 210 min und beim größten untersuchten Fe(II):H₂O₂-Verhältnis von o.8 im Ansatz ist bereits nach 45 min kein H₂O₂ mehr in der Lösung nachweisbar. Die graphische Darstellung dieses Zusammenhanges (Abbildung 23) zeigt, daß es sich hierbei nicht um eine lineare Funktion handelt und daß der Einfluß auf die Reaktionsgeschwindigkeit bei niedrigem Verhältnis Fe(II):H₂O₂ besonders groß ist. In der technischen Anwendung wird deswegen der optimale Betriebspunkt aus einer Abwägung der Kosten für Chemikalien und Apparaten im Einzelfall zu ermitteln sein.

Abbildung 23:

Zusammenhang zwischen der Reaktionszeit zum vollständigen Abreagieren des H₂O₂ und dem Fe(II): H₂O₂-Anfangsverhältnis bei der Oxidation von p-Toluolsulfonsäure mit Fentons Reagenz.

3.2.4. Einfluß der Oxidationsmittelmenge und der Art der Dosierung

Wie die vorangegangene Versuchsreihe zeigte, ist die Oxidationswirkung von Fentons Reagenz in Gegenwart von molekularem Sauerstoff um so größer, je weniger Radikale pro Molekül organischer Substanz und pro Zeiteinheit zur Verfügung stehen. Dies erscheint plausibel, da dann die Wahrscheinlichkeit für Rekombinationen und sonstige Radikaldesaktivierungsreaktionen kleiner wird. Das Konzentrationsverhältnis der OH-Radikale zu organischer Substanz läßt sich außer durch den Quotienten Fe(II):H₂O₂ auch durch das Verhältnis Fentons Reagenz : Substratmenge beeinflussen. Daher wurden in der folgenden Versuchsserie (im weiteren mit "A" bezeichnet) p-TS-Lösungen konstanter Ausgangskonzentration mit steigenden Mengen an Fentons Reagenz umgesetzt, um den Einfluß der Oxidationsmitteldosis auf die Oxidationswirkung zu untersuchen. Die Reaktionsbedingungen waren:

Versuchsserie A

Anfangskonzentration p-TS	2	1.3 mmo1/1	1)
molares Verhältnis H ₂ 0 ₂ :p-TS	=	1:1 bis 4:1	,
molares Verhältnis H ₂ O ₂ :Fe(II)	=	5:1	
pH-Wert	=	3	
Sauerstoffbegasung	=	1o]/h/] Lsg.	
Versuchstemperatur	=	25 ⁰ C	

Wie Tabelle 10 zeigt, verläuft die Reaktion um so schneller, d.h. das vorhandene Wasserstoffperoxid wird um so schneller abgebaut, je größer das molare Verhältnis H_2O_2 :p-TS im Ansatz ist. Bei einem H_2O_2 :p-TS-Verhältnis von 4:1 ist bereits nach 180 min Reaktionsdauer kein H_2O_2 mehr in der Lösung nachweisbar, während dies bei H_2O_2 :p-TS=1:1 erst nach 570 min der Fallist.

Erwartungsgemäß nimmt die CSB- und TOC-Elimination mit steigender Oxidationsmitteldosis zu. Bei der drei- bis vierfachen molaren Menge an H_2O_2 wird über die Hälfte des Anfangs-CSB entfernt. Der Eliminationsgrad für den TOC beträgt zwischen 17.5 und 18.3 %. Auch bei hoher Dosis an Oxidationsmittel findet also nur eine verhältnismäßig geringe Mineralisierung des organischen Kohlenstoffes statt.

Die organische Substanz wird mit steigender H_2O_2 -Dosis höher oxidiert, der spezifische Sauerstoffbedarf CSB:TOC sinkt innerhalb dieser Versuchsserie von 3.4 mg O_2/mg C der Ausgangslösung auf 1.7 mg O_2/mg C bei der drei- bis vierfachen molaren Menge an H_2O_2 im Ansatz.

¹) genaue Anfangskonzentrationen siehe Tabelle 14

H ₂ 0 ₂ :p-TS	Reaktions- zeit bis C(H ₂ O ₂)=o	CSB- Elimi- nation	TOC- Elimi- nation	CSB:TOC	BSB ₅ :CSB	spezifischer H ₂ 0 ₂ -Verbrauch
	min	%	%	mg 0 /mg C	-	mg H ₂ O ₂ /mg CSB
vor Rkt.	-	kar		3.4	0	-
1:1	57o	33.4	8.5	2.5	0.23	o.37
2:1	330	43.3	13.8	2.2	o.35	o.55
3:1	210	56.2	14.4	1.7	o.46	0.66
4:1	180	57.5	18.3	1.7	o.54	0.89

<u>Tabelle 1o:</u> Einfluß der Oxidationsmitteldosis auf die Oxidationswirkung bei der Reaktion von p-Toluolsulfonsäure mit Fentons Reagenz. Ergebnisse der Versuchsserie A. (C(p-TS)_o=konstant)

Bei einem Mol H₂O₂ pro Mol p-TS im Ansatz wird die p-TS nur zu 7o % eliminiert, was sich auch in dem noch recht hohen CSB:TOC-Verhältnis von 2.5 mg O₂/mg C und einer schlechten biologischen Abbaubarkeit (BSB₅:CSB=0.23) bemerkbar macht.

Zur gewünschten vollständigen Entfernung der p-TS muß mindestens die zweifache molare Menge an H_2O_2 eingesetzt werden. Die dann entstandenen Produktgemische sind biologisch abbaubar und bei H_2O_2 :p-TS-Verhältnissen von 3 bis 4 erhält man BSB₅:CSB-Werte um o.5 und liegt damit in der Größenordnung eines kommunalen Abwassers (67). Die weitere biologische Oxidation des Produktgemisches sollte daher möglich sein.

Wie die letzte Spalte in Tabelle 10 zeigt, nimmt der spezifische H_2O_2 -Verbrauch mit steigendem H_2O_2 :p-TS-Anfangsverhältnis zu. Die angegebenen Verbrauchswerte beziehen sich jedoch auf das Ende des Oxidationsprozesses, also nach vollständigem Abreagieren des H_2O_2 und erlauben, da zu diesem Zeitpunkt unterschiedliche Oxidationsgrade vorliegen, keinen direkten Schluß auf den Einfluß des Verhältnisses $C(H_2O_2)_0:C(p-TS)$. Man muß daher den spezifischen H_2O_2 -Verbrauch in Abhängigkeit vom Umsatz der p-Toluol-sulfonsäure betrachten. Abbildung 24, worin der spezifische H_2O_2 -Verbrauch für p-TS-Umsätze 25 %, 50 % und 90 % in Abhängigkeit vom H_2O_2 :p-TS-Anfangsverhältnis aufgetragen ist, zeigt, daß der spezifische H_2O_2 -Verbrauch

auch bei gleichen Umsätzen der p-TS nicht unabhängig vom H_2O_2 :p-TS-Anfangsverhältnis ist, sondern mit dessen Zunahme ebenfalls zunimmt. Dies bedeutet eine zunehmende Verschlechterung des H_2O_2 -Nutzung, die sich mit den eingangs erwähnten Radikaldesaktivierungsreaktionen erklären läßt.

Abbildung 24:

Zusammenhang zwischen dem spezifischen H_2O_2 -Verbrauch und dem molaren Verhältnis H_2O_2 :p-TS im Ansatz.

(C(p-TS) =1.3 mmol/l, molares Verhältnis H₂O₂:Fe(II)= 5:1, 25 ^OC, pH=3, ²Sauerstoffbegasung lo l/h/l Lsg.)

Bezieht man den spezifischen H_2O_2 -Verbrauch nicht auf die CSB- sondern auf die p-TS-Elimination, so ergeben sich bei 90 %igem Umsatz der p-TS die in Tabelle 11 angegebenen Verbrauchswerte. Demnach sind zur Elimination von o.9 mmol p-TS bei einem H_2O_2 :p-TS-Verhältnis von 2:1 1.82 mmol H_2O_2 erforderlich, dieser Wert steigt bis auf 2.28 mmol H_2O_2 bei der vierfachen molaren Menge an H_2O_2 im Ansatz und man erkennt auch aus diesen Ergebnissen die Verschlechterung der H_2O_2 -Ausnutzung. Als Faustregel kann gelten, daß bei einem molaren Verhältnis H_2O_2 :Fe(II)=5:1 unter O_2 -Begasung zur 90 %igen Entfernung von 1 mmol p-TS ca. 2 mmol H_2O_2 erforderlich sind.

H ₂ 0 ₂ :p-TS	mmol H ₂ 0 ₂ /mmol p-TS
1:1	keine 90% möglich
2:1	1.82
3:1	1.92
4 : 1	2.28
	MW : 2.01 <u>+</u> 0.24

Tabelle 11:

Spezifischer H_2O_2 -Verbrauch bei 90 %iger Elimination der p-TS für verschiedene Anfangsverhältnisse H_2O_2 :p-TS Bei einer weiteren Versuchsreihe, im folgenden mit "B" bezeichnet, wurde zur Variation des Verhältnisses H_2O_2 :p-TS nicht die Anfangskonzentration den H_2O_2 bei konstanter p-TS-Anfangskonzentration verändert, sondern umgekehrt bei konstanter H_2O_2 -Anfangskonzentration C(p-TS)₀ vermindert. Die Reaktionsbedingungen waren:

Versuchsserie B

Anfangskonzentration H ₂ 0 ₂	8	2.2 mmo1/1
molares Verhältnis H ₂ 0 ₂ :p-TS	=	1:1 bis 4:1
molares Verhältnis H ₂ O ₂ :Fe(II)	=	5 : 1
pH-Wert	=	3
Sauerstoffbegasung	=	1o]/h/] Lsg.
Versuchstemperatur	=	25 ⁰ C

Die Resultate dieser Versuchsserie sind in Tabelle 12 zusammengestellt. Sie stimmen im wesentlichen mit den Resultaten der Versuchsreihe A bis auf die Feststellung überein, daß die TOC-Elimination mehr als doppelt so groß ist. Es soll an dieser Stelle noch nicht auf die Ergebnisse im einzelnen eingegangen werden, da sie im Zusammenhang mit den anderen Versuchen dieses Kapitels noch besprochen werden.

Tabelle 12:Einfluß der Oxidationsmitteldosis auf die Oxidationswirkung
bei der Reaktion von p-Toluolsulfonsaure mit Fentons Reagenz.
Ergebnisse der Versuchsserie B. $(C(H_2O_2)_0 = konstant)$

H ₂ 0 ₂ :p-TS	Rktzeit,bis C(H ₂ O ₂)= o min	CSB- Elimi- nation %	TOC- Elimi- nation %	CSB TOC mg mgC	BSB ₅ CSB -	spez.H ₂ O ₂ - Verbrauch mg H ₂ O ₂ mg CSB ⁻
vor Rkt.			nan mananan katalan kanan katalan katal Katal	3.4	0	
1 : 1	630	25.3	10.5	2.7	o.21	o.52
1.25: 1	390	34.6	14,7	2.5	-	o.54
2 : 1	330	40.4	21,3	2.4	0.3	o.56
3 : 1	150	56.7	35,7	2.2		0.63
4 : 1	150	61.4	41.1	2.1		0.82

Bei allen bisher beschriebenen Versuchen wurde die zur Oxidation vorgesehene Menge an H₂O₂ auf einmal und in möglichst kurzer Zeit in die Reaktionslösung eingebracht. Im Gegensatz dazu kann die Oxidationsmittelmenge auch aufgeteilt und absatzweise zugegeben werden, was u.a. dann von Vorteil sein wird, wenn sich das Reaktionsgemisch aufgrund hoher Reaktionsenthalpien oder hoher Konzentration der vorliegenden Inhaltsstoffe zu erhitzen droht. Die Zudosierung kann hierbei nach zwei Methoden erfolgen:

- 1.) Es wird mit dem Einbringen des H_2O_2 jeweils so lange gewartet, bis das H_2O_2 der vorangegangenen Zugabe vollkommen abreagiert ist.
- 2.) Die Zudosierung des H₂O₂ erfolgt in Abhängigkeit von einem schnell bestimmbaren "Leitparameter", wie beispielsweise einer bestimmten H₂O₂-Restkonzentration, einer bestimmten UV-Absorption oder nach einer definierten Reaktionszeit.

Beide Möglichkeiten wurden experimentell untersucht und hinsichtlich der Oxidationswirkung mit den Ergebnissen bei einmaliger H₂O₂-Zugabe verglichen. Der Eisenkatalysator wurde jeweils einmalig zu Reaktionsbeginn vorgelegt.

Im ersten Experiment mit absatzweiser H₂O₂-Zugabe (Versuchsserie "C") wurde das Wasserstoffperoxid immer erst dann zugegeben, wenn das der vorangegangenen Dosis abreagiert war. Die Anfangskonzentration der auf pH=3 eingestellten p-TS-Lösung war 1.4 mmol/l, dazu wurde bei 25 ^OC absatzweise fünfmal H_2O_2 zugegeben, so daß die jeweilige H_2O_2 -Anfangskonzentration bei jeder Zugabe ebenfalls 1.4 mmol/l betrug. Die Eisenkonzentration wurde für ein molares Fe(II):H₂O₂-Verhältnis von 1:5 berechnet und war damit o.28mmol/l. Während der Reaktion wurde die Abnahme der H202-Konzentration verfolgt und sobald diese null war, eine Probe zur Bestimmung des CSB, TOC, BSB5 und der p-TS-Konzentration entnommen. Unmittelbar im Anschluß daran wurde die nächste H_2O_2 -Dosis zugegeben, solange das Eisen noch als Fe(III) in der Reaktionslösung vorlag, denn Messungen hatten ergeben, daß nach dem Abreagieren des Wasserstoffperoxides eine Reduktion des während der Oxidationsreaktion in dreiwertiger Form vorliegenden Eisens zu Fe(II) stattfindet. Dieser Prozeß, der durch reduzierende Oxidationsprodukte (Aldehyde, Ketone) bewirkt wird, ist zwar ein sehr langsamer Vorgang -unter vergleichbaren Bedingungen lagen beispielsweise in einem Fall nach 3 Tagen ca. 48 % des Gesamteisens wieder als Fe(II) in der Reaktionslösung vor- , aber der besseren Vergleichbarkeit der Versuchsergebnisse wegen war es sinnvoller, die "Reaktionspausen" möglichst kurz zu halten.

Aus Tabelle 13, in der die Ergebnisse der Versuchsserie C mit absatzweiser H_2O_2 -Zugabe zusammengestellt sind, geht hervor, daß wiederum mit steigender H_2O_2 -Dosis die CSB- und TOC-Elimination größer wird, der Oxidationsgrad zunimmt, sich die biologische Abbaubarkeit verbessert und die H_2O_2 -Nutzung verschlechtert.

<u>Tabelle 13</u> Einfluß der Oxidationsmitteldosis auf die Oxidationswirkung bei der Reaktion von p-Toluolsulfonsäure mit Fentons Reagenz. Ergebnisse der Versuchsserie C. (absatzweise H_2O_2 -Zugabe nach jeweiligem Abreagieren des H_2O_2)

H ₂ O ₂ :p-TS	CSB-Eli- mination	TOC-Eli- mination	CSB TOC	BSB CSB	spezifischer H ₂ 0 ₂ -Verbrauch
· · ·)	%	%	<u>mg O</u> mg C	-	mg H ₂ O ₂ /mg CSB
vor Rkt.			3.43	0.0	_
1 : 1	34.8	9.0	2.44	o.24	o.34
2 : 1	45.8	13.6	2.14	0.36	o.52
3 : 1	57.3	27.5	2.02	o.47	0.63
4 : 1	72.9	50.3	1.86	0.73	0.66
5:1	77.2	58.5	1.87	o.78	o.78

¹) kumulativ bezogen auf C(p-TS)_o

Im folgenden werden die Ergebnisse der einmaligen H_2O_2 -Zugabe bei konstanter p-TS-Anfangskonzentration (Versuchsserie A) und bei konstanter H_2O_2 -Anfangskonzentration (Versuchsserie B) sowie die Ergebnisse der absatzweisen H_2O_2 -Zugabe (Versuchsserie C) hinsichtlich der CSB-Elimination, des BSB₅:CSB-Verhältnisses und des spezifischen H_2O_2 -Verbrauches miteinander verglichen, da diese Parameter für ein Abwasserreinigungsverfahren wegen des Abwasserabgabengesetzes, der biologischen Abbaubarkeit und der Oxidationsmittelkosten von vorrangiger Bedeutung sind.

Zur Übersicht über die Ansätze der durchgeführten Versuchsserien sind in Tabelle 14 die Anfangskonzentrationen der p-Toluolsulfonsäure, des H₂0₂ und des Fe(II) nochmals zusammengestellt.

Tabelle 14: Anfangskonzentrationen der Ansätze zur Untersuchung des Einflusses der Oxidationsmitteldosis (alle Angaben in mmo1/1)

ſ	21 - 21-2	gana ana ang pang ang pang ang ang ang ang ang ang ang ang ang	A	В	С
	Nr.	H ₂ 0 ₂ :p-TS	einmalige Zugabe	einmalige Zugabe	absatzweise Zu-
I		1、	Co(p-TS)=konst.	$Co(H_2O_2) = const.$	gabe ∠)
		-)	p-TS H ₂ 0 ₂ Fe(II)	p-TS ^H 2 ⁰ 2 Fe(II)	p-TS H ₂ 0 ₂ Fe(II)
I	1	1:1	1.28 1.28 o.26	2.22 2.22 0.44	1.41 1.41 0.28
	2	2:1	1.27 2.54 o.51	1.10 2.20 0.44	o.42 1.41 o.28
	3	3:1	1.29 3.85 0.77	o.75 2.23 o.45	0.08 1.41 0.28
	4	4:1	1.29 5.15 1.02	o.56 2.23 o.45	- 1.41 o.28
	5	5:1			- 1.41 o.28
	5	5:1			- 1.41 0.28

¹) H_2O_2 :p-TS kumulativ bezogen auf C(p-TS)₀ ²) p-TS-Konzentration vor der jeweiligen H_2O_2 -Zugabe

Abbildung 25 zeigt die Abnahme der p-TS-Konzentration und des CSB in Abhängigkeit vom H₂0₂:p-TS-Verhältnis. Trotz der unterschiedlichen Konzentrationen an p-TS, H_2O_2 und Fe(II) im Ansatz erhält man für die Restkonzentration des CSB für alle drei Versuchsserien Meßergebnisse, die ungefähr auf einem Kurvenzug liegen. Bei einem H_2O_2 :p-TS-Verhältnis

Abbildung 25:

Abnahme der p-TS-Konzentration und des CSB bei verschiedenen H_20_2 : p-TS-Verhältnissen und bei einmaliger (A,B) und absatzweiser (C) H₂O₂-Zugabe

von 1:1 werden ca. 25-35 % des CSB entfernt und jeweils weitere 1o-15 % bei sukzessiver Steigerung der H_2O_2 -Menge um 1 mmol H_2O_2 /mmol p-TS bis auf 3 mmol H_2O_2 /mmol p-TS. Bei vierfachem molarem Überschuß des Oxidationsmittels findet bei einmaliger H_2O_2 -Zugabe (Versuchsserie A und B) nur noch eine CSB-Erniedrigung um maximal weitere 5 % statt, im Falle der absatzweisen Zugabe ist die Oxidationswirkung größer und es können weitere 15 % des CSB entfernt werden. In der Abbildung ist die durch ein Aufspalten der Kurve angedeutet.

Die vollständige Eliminierung der p-Toluolsulfonsäure wird bei rund 2.5 mmol H_2O_2 /mmol p-TS erreicht. Dabei ist ungefähr die Hälfte des Anfangs-CSB entfernt. Ein biologisch behandelbares Oxidationsproduktgemisch, was bei BSB₅:CSB=0.5 der Fall ist, erhält man nach Abbildung 26, in der das BSB₅:CSB-Verhältnis als Funktion der H_2O_2 -Dosis für alle Meßwerte in erster Näherung als Gerade dargestellt ist, bei einer Dosis von etwa 3 mmol H_2O_2 /mmol p-TS. Die weitere Steigerung der Oxidationsmitteldosis auf H_2O_2 :p-TS=4:1 verbessert zwar noch die biologische Abbaubarkeit und die CSB-Elimination, aber damit steigt auch beispielsweise im Falle der einmaligen H_2O_2 -mg CSB, was einem Mehrverbrauch an Oxidationsmittel um ein Drittel entspricht.

Abbildung 26: Zusammenhang zwischen der erreichten biologischen Abbaubarkeit und der angewandten H₂O₂-Dosis bei der Oxidation von p-Toluolsulfonsäure mit Fentons Reagenz.

Bei absatzweiser H_2O_2 -Zugabe (Versuchsserie C) ist der Unterschied im spezifischen Verbrauch zwischen H_2O_2 :p-TS=3:1 und 4:1 zwar vernachlässigbar (Tabelle 13), aber dafür der Unterschied im Zeitbedarf beträchtlich, da durch das jeweilige "Abreagierenlassen" des H_2O_2 zum Einbringen von 3 mmol H_2O_2 /mmol p-TS insgesamt ein Zeitaufwand von ca. 24 Stunden erforderlich war. Zum Vergleich hierzu betrug die Reaktionszeit bei einmaliger H_2O_2 -Zugabe 3.5 bzw. 2.5 Stunden (Tabelle 10), also nur ca. ein Siebtel bis ein Zehntel der Zeit.

Wenngleich die in dieser Versuchsserie angewandte Dosierungsweise für eine praktische Anwendung aufgrund der hohen Behandlungszeit kaum sinnvoll ist, stellt dieses Verfahren eine nützliche Methode dar, diejenige H_2O_2 -Dosis zu ermitteln, die zur Entfernung des Schadstoffes und zur Erzielung biologisch abbaubarer Produktgemische mindestens notwendig ist.

Im letzten Experiment dieser Versuchsserie wurde die Wasserstoffperoxidzugabe in Abhängigkeit eines Leitparameters untersucht, wobei die Reaktionszeit als Leitparameter gewählt wurde. Im Abstand von einer Stunde wurde dazu eine Lösung von 1.3 mmol/l p-TS mit der zweifachen molaren Menge an H_2O_2 -aufgeteilt in fünf Volumina- versetzt. Das Verhältnis Fe(II): H_2O_2 betrug 1:5, bezogen auf die Gesamtdosis H_2O_2 . Für den Konzentrationsverlauf des H_2O_2 ergibt sich die in Abbildung 27 dargestellte Treppenkurve, da bei jeder H_2O_2 -Zugabe noch eine Restkonzentration an H_2O_2 der vorangegangenen Zugabe vorhanden war und somit jeweils eine "Aufstockung" der H_2O_2 -Konzentration erfolgte.

<u>Abbildung 27:</u> Abnahme der H₂O₂- und p-TS-Konzentration sowie des CSB bei der Oxidation von p-Toluolsulfonsäure mit Fentons Reagenz mit absatzweiser, stündlicher Zugabe des H₂O₂.

Die stärkste Konzentrationsabnahme des H_2O_2 ist nach der ersten H_2O_2 -Zugabe zu beobachten, wenn das gesamte Fe(II) zu Fe(III) oxidiert wird. Bei späteren H_2O_2 -Zugaben tritt dieser Konzentrationssprung zwar ebenfalls auf, wenngleich in geringerem Ausmaße. Dies dürfte jedoch eine andere Ursache haben, denn in dieser Reaktionsphase erfolgt der H_2O_2 -Abbau über Fe(III), und da diese Umsetzung eine Reaktion 2.Ordnung ist, wird der H_2O_2 -Abbau durch die Erhöhung der Konzentration an Wasserstoffperoxid beschleunigt.

Auf die Abnahme der p-TS-Konzentration und des CSB hat die Aufstockung des H_2O_2 unter diesen Reaktionsbedingungen keinen erkennbaren Einfluß, wie die entsprechenden Konzentrations-Zeit-Kurven in Abbildung 27 zeigen, denn diese Kurven fallen monoton ab.

Die letzte Wasserstoffperoxidzugabe wurde nach 4 Stunden vorgenommen, danach wurde die Reaktion noch weitere 6 Stunden lang verfölgt und die Konzentration des H_2O_2 und der p-TS sowie der CSB gemessen. Nach 10 h Reaktionsdauer waren noch 12.1 % der H_2O_2 -Gesamtmenge und 8.6 % der p-TS in der Lösung vorhanden. Dann wurde über Nacht weitergerührt, bis das H_2O_2 vollständig abreagiert war.

Die bei diesem Versuch erzielte Änderung der wasserchemischen Summenparameter ist den entsprechenden Ergebnissen des Parallelversuches mit einmaliger H_2O_2 -Zugabe (Versuch Nr.2 der Versuchsserie A) und den Ergebnissen des zweiten Versuchsabschnittes der Versuchsreihe C (Tabelle 14) gegenübergestellt. Bei letztgenanntem Versuch war die Fe(II)-Konzentration nur halb so groß wie bei den beiden erstgenannten Experimenten.

Die Resultate unterscheiden sich nur wenig voneinander, bei der CSBund TOC-Elimination nur um jeweils ca. 5 % und bei den spezifischen Verbrauchswerten zwischen 2 und 12 %, wobei die besseren Ergebnisse fast immer bei Versuchen mit absatzweiser Reaktionsführung beobachtet werden. Dies ist nach den bisherigen Erkenntnissen plausibel, da in diesem Falle das Wasserstoffperoxid langsamer zerfällt und es dann wiederum wahrscheinlicher ist, daß die gebildeten Radikale mit organischer Substanz reagieren können. Der spezifische H_2O_2 -Verbrauch bei 90 %iger Substanz-Elimination liegt bei diesen Versuchen im Mittel bei 1.79 <u>+</u> 0.06 mmol H_2O_2 /mmol p-TS bzw. bei 0.50 <u>+</u> 0.02 mg H_2O_2 /mg CSB.

		H ₂ O ₂ -Zugabe		
		einmalig	absatzweise stündlich	absatzweise C(H ₂ O ₂)=O
	Co(p-TS) mmol/l	1.27	1.32	1.41
Ansatz	Co(H ₂ O ₂) mmo1/1	2.54	5 x o.53	2 x 1.41
	Co(Fe(II)mmol/l	0.51	0.53	o.28
And and a second s	CSB-Abbau %	45.1	53.0	45.8
Oxida-	TOC-Abbau %	13.8	18.8	13.6
tionswir- kung	BSB ₅ /CSB -	o.35	o.42	o.36
	CSB/TOC mg0 ₂ /mgC	2.20	1.95	2.14
spez.H ₂ 0 ₂ - Verbrauch	$\frac{\Delta H_2 O_2}{\Delta p-TS} \frac{mmo1}{mmo1}$	1.82	1.84	1.72
p-TS-Eli- mination	ΔH ₂ O ₂ mg ΔCSBmg	0.52	o.51	o.48
Zeitbedarf	h	ca. 5.5	ca. 13	ca. 20

<u>Tabelle 15:</u> Vergleich der Versuchsergebnisse bei einmaliger und absatzweiser H₂O₂-Dosierung zur Oxidation von p-Toluolsulfonsäure mit Fentons Reagenz.

Große Unterschiede bestehen jedoch hinsichtlich der Behandlungszeiten: so ist die Reaktion bei einmaliger H_2O_2 -Zugabe bereits nach 5.5 Stunden beendet, während bei zeitabhängiger H_2O_2 -Zugabe mit einstündigem Zeitintervall ca. 13 Stunden (extrapolierter Wert) benötigt wurden und der Zeitaufwand bei H_2O_2 -Zugabe nach Abreagieren des Wasserstoffperoxides ca. 15-20 Stunden betrug. Allerdings lag bei dem letztgenannten Versuch im Ansatz eine nur halb so große Fe(II)-Konzentration vor, d.h. bei gleicher Fe(II)-Anfangskonzentration dürfte die Reaktionszeit etwas kürzer sein'.

3.2.5. Einfluß der Absolutkonzentration

Die p-TS-Modell-Lösungen, an denen die Einflüsse pH-Wert, Anfangsverhältnis p-TS: H_2O_2 :Fe(II) und Dosierungsweise auf die Oxidationswirkung untersucht wurden, hatten Anfangskonzentrationen im Bereich um 1.3 mmol/l und entsprachen hinsichtlich des damit verbundenen CSB von einigen Hundert mg/l O_2 dem Verschmutzungsgrad eines kommunalen Rohabwassers,wenngleich es wegen der Einseitigkeit der Belastung eher einem industriellen Abwasser gleicht. Da bei letzteren CSB-Werte bis zu einigen Tausend mg/l O_2 auftreten können, ist es zur oxidativen Behandlung solcher Abwässer mit Fentons Reagenz wichtig zu wissen, wie die Oxidationswirkung durch eine höhere Konzentration der beteiligten Reaktionspartner beeinflußt wird.

In der folgenden Versuchsserie wurde die Oxidation der p-TS bei konstantem molarem Verhältnis p-TS: H_2O_2 :Fe(II)=1:2:o.4 mit verschieden hohen Anfangskonzentrationen durchgeführt. Wie aus Tabelle 16 hervorgeht, wurden p-TS-Modell-Lösungen im Konzentrationsbereich von o.26 bis 139.3 mmol/l oxidiert. Dies entspricht einem CSB-Bereich zwischen ca. 75 und 40 ooo mg/l O_2 . Die weiteren Versuchsbedingungen waren 25 ^{O}C , pH=3 und O_2 -Begasung der Reaktionslösung mit 10 l/h/l Lsg.

Tabelle 16:	Ansätze der Experimente zur Untersuchung des Einflusses
	der Absolutkonzentration auf die Oxidationswirkung der
	Reaktion von p-Toluolsulfonsäure mit Fentons Reagenz.

Versuchs- nummer	C(p-TS) _o mmo1/1	C(H ₂ O ₂) _o mmo1/1	C(Fe(II)) _o mmol/l	CSB _o mg/1 0	TOC _o mg/1 C
1	0.26	o.52	0.10	74.9	21.8
2	1.27	2.54	o.51	365.8	106.7
3	6.44	12.88	2.58	1855	541
4	12.95	25.90	5.18	3730	1088
5	69.61	139.21	27.84	20048	5846
6	139.3	278.6	55.7	40118	117o1

Der Verlauf der Sauerstoffsättigung (Abbildung 28) zeigt, daß während der ersten sieben Minuten Reaktionsdauer die Sauerstoffkonzentration abnimmt und zwar um so mehr, je höher die Substratkonzentration ist. Sie nimmt jedoch nicht bis auf null ab, d.h. unter den angewandten Reaktionsbedingungen ist der Sauerstoffeintrag nicht als Minimumfaktor anzusehen. Während bei den Versuchen 1 und 2 mit $C(p-TS)_0=0.26$ bzw. 1.27 mmol/l die Sauerstoffsättigung nur um maximal 5 bzw. 22 % sinkt, ist der Verlauf der Sauerstoffsättigungskurven der Versuche mit $C(p-TS)_0$ 6.44 mmol/l mit einer Abnahme der O_2 -Sättigung um 85-90 % nach 10 bis 30 Sekunden Reaktionsdauer nahezu gleich. Offenbar erreicht dann die Reaktionsrate der Sauerstoffzehrung einen Grenzwert und andere Reaktionen treten in den Vordergrund.

Abbildung 28:

Verlauf der Sauerstoffsättigung in der Anfangsphase der Oxidation von p-Toluolsulfonsäure mit Fentons Reagenz bei verschiedenen Absolutkonzentrationen. (molares Verhältnis p-TS:H₂O₂:Fe(II)=1:2:0.4)

Das Verfolgen der Sauerstoffkonzentration während der Reaktion kann bei p-TS-Anfangskonzentrationen von mehr als 6.5 mmol/l gut dazu verwendet werden, das Ende der Oxidation zu erkennen. Die Messung zeigt, daß sich nach der stark O_2 -verbrauchenden Anfangsphase im Verlauf der weiteren Oxidation zwischen Sauerstoffeintrag durch Begasen und Sauerstoffverbrauch durch Reaktionsvorgänge ein Zustand mit ungefähr gleichbleibendem Sauerstoffdefizit einstellt, das um so größer wird, je höher C(p-TS)₀ ist. Typische Intervalle dieser Sauerstoffdefizite während der Reaktion sind in Tabelle 17 angegeben. Sobald das 0_2 -Meßgerät wieder 100 % 0_2 -Sättigung anzeigte, waren in der Reaktionslösung nur noch geringe H₂0₂-Konzentrationen vorhanden bzw. H₂0₂ vollständig abreagiert.

Tabelle 17:Sauerstoffdefizit während der Oxidation von p-Toluol-
sulfonsäure mit Fentons Reagenz bei verschiedenen An-
fangskonzentrationen. (molares Verhältnis p-TS:H202:Fe(II)=
1:2:0.4)

Versuchs- nummer	C(p-TS) _o mmo1/1	Sauerstoff- defizit %
1	o.26	0.7 - 1.6
2	1.27	0.7 - 1.8
3	6.44	2.0 - 2.4
4	12.95	5.6 - 6.8
5	69.61	10.7 - 29.6
6	139.3	40.0 - 56.0

CSB- und TOC-Elimination

Für die Abnahme des CSB ergibt sich bei halblogarithmischer Auftragung der p-TS-Anfangskonzentration über der prozentualen CSB-Reduktion nach vollständigem Abreagieren des H_2O_2 eine Gerade (Abbildung 29). Die erzielten CSB-Abnahmen betragen zwischen 71.1 % bei C(p-TS)₀= o.26 mmol/l und 15.5 % bei C(p-TS)₀=139.3 mmol/l. Aus der Geradensteigung ist zu entnehmen, daß innerhalb des untersuchten Konzentrationsbereiches bei Erhöhung der p-TS-Anfangskonzentration um den Faktor 10 sich die CSB-Abnahme um ca. 20 % verringert. Die (empirische) mathematische Beziehung hierfür hat die Form:

$$\Delta CSB \sim \ln C(p-TS)$$
 (36)

Die Kurve für die TOC-Abnahme ist anfangs ebenfalls eine Gerade, die jedoch bei sehr hohen p-TS-Anfangskonzentrationen abbiegt und sich asymptotisch der Abszisse nähert. In diesem Bereich wird also zwar noch p-TS oxidiert, jedoch nicht mehr wesentlich mineralisiert.

<u>Abbildung 29:</u> CSB- und TOC-Reduktionsraten bei der Oxidation von p-Toluolsulfonsäure mit Fentons Reagenz bei verschiedenen Absolutkonzentrationen C(p-TS)₀. (molares Verhältnis p-TS:H₂O₂:Fe(II)=1:2:0.4)

- p-TS-Elimination und spezifischer H₂O₂-Verbrauch

Tabelle 18 zeigt, daß bei einem p-TS: H_2O_2 -Verhältnis von 1:2 im Ansatz brauchbare Eliminierungsraten des Substrates (ca. 95-100 %) nur bei Anfangskonzentrationen der p-TS in der Größenordnung einiger mmol/l erreicht werden. Der entsprechende H_2O_2 -Verbrauch beträgt in diesen Fällen zwischen 0.53 und 0.87 mg H_2O_2/mg CSB. Bei C(p-TS)₀ = 139.3 mmol/l werden nur noch ca.2/3 der eingesetzten p-TS entfernt, was sich auch in einem hohen CSB:TOC-Verhältnis von 3.06 mg O_2/mg C ausdrückt ((CSB:TOC)₀=3.43). Der spezifische H_2O_2 -Verbrauch beträgt bei diesem Versuch 1.67 mg H_2O_2/mg CSB.

Die Verschlechterung der Oxidationswirkung mit steigender Absolutkonzentration aller Reaktionspartner hat seine Ursache darin, daß die Radikaldichte mit steigender Konzentration zunimmt und somit auch die Wahrscheinlichkeit für Kettenabbruchreaktionen steigt. Die Folge ist, daß die oxidative Verwendung des Wasserstoffperoxides abnimmt. In allen Fällen war jedoch bei dieser Versuchsserie der spezifische H_2O_2 -Verbrauch $\Delta H_2O_2/\Delta CSB$ kleiner als der "theoretische" Wert von 2.125 mg $H_2O_2/$ mg CSB.

Nr.	C(p-TS) _o	Rest- p-TS	CSB:TOC	spez. H ₂ O ₂ - Verbrauch
	mmo1/1	%	mg O/mg C	mg H ₂ 0 ₂ /mg CSB
1	o.26	0.0	1.58	0.53
2	1.27	3.3	1.82	o.55
3	6.44	5.0	2.56	o.87
4	12.95	14.5	2.66	o.75
5	69.63	28.2	2.65	1.00
6	139.3	34.0	3.06	1.61

<u>Tabelle 18:</u> Oxidationswirkung der Reaktion von p-Toluolsulfonsäure mit Fentons Reagenz bei verschiedener Absolutkonzentration aller Reaktionspartner. (molares Verhältnis p-TS:H₂O₂:Fe(II)= 1:2:0.4)

3.3. Reaktion von Fentons Reagenz mit weiteren aromatischen Modellsubstanzen und einem Industrieabwasser

3.3.1. Arbeitsweise

Während die Oxidation der p-Toluolsulfonsäure mit Fentons Reagenz unter den gewählten Reaktionsbedingungen bis zum vollständigen Abreagieren des H₂O₂ Reaktionszeiten in der Größenordnung einiger Stunden erforderte, zeigten schon die ersten Vorversuche mit den anderen Modellsubstanzen Anilin, p-Nitrophenol und 2,4-Dichlorphenol, daß deren Oxidation wesentlich schneller verläuft.

Daher wurde bei diesen Versuchen die in Kapitel 3.2.4. bei der Oxidation der p-Toluolsulfonsäure eingeführte absatzweise H_2O_2 -Zugabe nach jeweiligem Abreagieren des H_2O_2 angewendet, da jene Versuche gezeigt hatten, daß die Ergebnisse hinsichtlich der CSB-Elimination, des spezifischen H_2O_2 -Verbrauches und dem BSB₅:CSB-Verhältnis bei einmaliger Zugabe, Zugabe zu bestimmten Zeiten und Zugabe nach Abreagieren des H_2O_2 nur wenig (<10 %) verschieden waren. Die Experimente wurden in der in Kapitel 3.2.4. angegebenen Weise durchgeführt, daß 2 1 der wässrigen Modell-Lösung im Reaktionsgefäß auf 25 ^OC thermostatisiert und auf pH=3 eingestellt wurde und dann die Zugabe des Fe(II) und des H_2O_2 erfolgte. Vor und während der Reaktion wurde mit Sauerstoff begast. Aus zeitabhängig entnommenen Proben wurde die Konzentration des H_2O_2 bestimmt, um den Endpunkt der Reaktion zu erkennen.

3.3.2. Anilin

Als Modellsubstanz aus der Verbindungsklasse der aromatischen Amine wurde deren einfachster Vertreter, das Anilin, ausgewählt. Anilin zählt zu den elektronenreichen Aromaten und wird daher von elektrophilen Teilchen wie dem OH-Radikal leicht angegriffen.

Die biologische Abbaubarkeit von verdünnten Lösungen des Anilins ist, wie aus der Literatur (1,68) bekannt ist, gut (BSB₅:CSB=0.63). Dies konnte auch durch eigene Messungen bestätigt werden. So wurden bei den Ausgangslösungen mit 1.3 mmol/l Anilin BSB₅:CSB-Verhältnisse um o.7 ermittelt. Aus dieser Sicht sollte die biologische Behandlung von verdünnten Anilin-Lösungen keine Schwierigkeiten bereiten.

Gilbert (1,68) konnte bei der Oxidation von Anilin mit Ozon zeigen, daß die biologische Abbaubarkeit des Oxidationsproduktgemisches bei ca. 80% Anilin-Elimination (${}^{\textcircled{e}}O_3$ -Verbrauch von 1.4 g O_3 /g DOC) sehr viel schlechter wird (BSB₅:CSB=0.08) und erst bei sehr viel höherer Ozondosis (6 g O_3 / g DOC) wieder Substanzen entstehen, die biologisch gut verwertbar sind (BSB₅:CSB=0.5).

Auch andere substituierte Amine wie 2-Aminophenol, 4-Chloranilin und 4-Amino-2-Nitrophenol weisen die gleiche Charakteristik bezüglich der biologischen Abbaubarkeit auf.

Zur Untersuchung des Oxidationsverhaltens von wässrigen Anilin-Lösungen mit Fentons Reagenz wurden drei Versuchsserien unter den in Tabelle 19 angegebenen Reaktionsbedingungen durchgeführt.
Versuchsserie	C(A) _o mmol/1	CSB _o mg0 ₂ /1	TOC _o mgC/1	Zugabe H ₂ 0 ₂ mmo1/1	C(Fe(II) mmol/l
A	1.31	292.4	94.4	4x mit Co=o.66	0.13
В	1.41	335.3	95.6	5x mit Co=1.41	o.28
С	1.31	293.2	97.0	3x mit Co=2.62	0,52
Alle Versuche bei 25 ⁰ C und pH=3 mit 0 ₂ -Begasung 1o 1/h/l Lsg.					

Tabelle 19: Reaktionsbedingungen für die Oxidation der Anilin-Modell-Lösungen mit Fentons Reagenz. (A=Anilin)

Die vor der Oxidation farblosen Anilin-Lösungen färbten sich sofort nach Zugabe des H_2O_2 rot bis violett. Dieser Farbton änderte sich im Verlauf der Reaktion nach braunrot und erst nach einer H_2O_2 -Dosis von ca. 2 mmol H_2O_2 /mmol Anilin erfolgte wieder eine Farbaufhellung nach hellbraun.

Um einen Eindruck vom Ausmaß der Farbänderung im sichtbaren Bereich zu erhalten, wurde die spektrale Absorption der Reaktionslösung bei 400 nm am Ende eines jeden Reaktionsabschnittes gemessen (Abbildung 30).

Abbildung 30: Abnahme der Anilinkonzentration und Verlauf der spektralen Absoption bei 400 nm bei der Oxidation von Anilin mit Fentons Reagenz.

Die rasche Zunahme der Absorption bei 400 nm bis zu einer Dosis von $2 \text{ mmol } H_2O_2/\text{mmol Anilin bei gleichzeitiger Abnahme der Anilinkonzen$ tration unterstützt die Ergebnisse von Legube (69), der ozonte Anilin-Lösungen untersuchte und herausfand, daß als Ursache für die Farbentstehung Verbindungen in Frage kommen, die durch Kondensation von Oxidationsprodukten des Anilins mit Anilin selbst entstanden sind (Abbildung 31). Der schwarze Niederschlag, der bei allen Oxidationsversuchendes Anilins auftrat, soll ebenfalls aus Kondensationsprodukten des Anilins bestehen, aus deren Vielzahl beispielsweise Verbindung <u>2</u> in Abbildung 31 erwähnt werden soll.

<u>Abbildung 31:</u> Bisher identifizierte Zwischenprodukte bei der Oxidation von Anilin (69).

Die gebildeten farbigen Produkte sind offensichtlich schwerer oxidierbar als Anilin selbst, denn die spektrale Absorption bei 400 nm nimmt erst dann wieder ab, wenn das Anilin weitgehend (83-100 %) entfernt ist. Die biologische Abbaubarkeit der Ausgangslösung (BSB₅:CSB=0.7 bzw. 0.73) verschlechtert sich nach einer H_2O_2 -Dosis von 1 mmol H_2O_2 /mmol Anilin drastisch und weist BSB₅:CSB-Werte von nur 0.12 bzw. 0.09 auf (Abbildung 32). Zu diesem Zeitpunkt sind ca. 60-65 % des Anilins eliminiert; erst bei weiterer Steigerung der H_2O_2 -Dosis wird das BSB₅:CSB-Verhältnis wieder größer und erreicht nach ca. 6 mmol H_2O_2 /mmol Anilin nahezu den Anfangswert.

Abbildung 32:

Abnahme der Anilinkonzentration und BSB₅:CSB-Verhältnis bei der Oxidation von Anilin mit Fentons Reagenz.

Die Mindestdosis an Wasserstoffperoxid, die erforderlich ist, um z.B. das BSB_5 :CSB-Verhältnis eines kommunalen Rohabwassers zu erreichen, beträgt nach Abbildung 31 ca. 5 mmol H_2O_2 /mmol Anilin, also etwa 2 mmol mehr, als zur 90 %igen Entfernung des Anilins selbst notwendig sind. Diese hohe H_2O_2 -Dosis bewirkt natürlich auch eine starke Erniedrigung des CSB. Bei 90 %iger Elimination des Anilins sind 40 % des CSB, bei guter biologischer Abbaubarkeit der Reaktionsmischung bereits 70 % des CSB entfernt (Abbildung 33), was im Hinblick auf das Abwasserabgabengesetz ein interessant erscheinendes Ergebnis ist. Die Abbildung zeigt, daß die Meßergebnisse zwischen den einzelnen Versuchsserien jedoch bis zu 17 % Differenz aufweisen. Die Ursache für diese Streuung ist in der

Abbildung 33 :

Zusammenhang zwischen der CSB-Reduktion und der H₂O₂dosis bei der Oxidation² von Anilin mit Fentons Reagenz. CSB-Bestimmung selbst zu suchen, da die Endpunktserkennung bei der Dichromat-Rücktitration der Oxidationsproduktgemische einige Schwierigkeiten bereitete.

Dies hat zur Folge, daß die Versuchsergebnisse hinsichtlich Oxidationsgrad und spezifischem H_2O_2 -Verbrauch (Tabelle 20) unterschiedlich und sogar zum Teil widersprüchlich sind.

	CSB/TOC mg0 ₂ /mgC			mg H ₂ O ₂ /mg CSB
H ₂ 0 ₂ :A	А	В	C	A B C
vor Rkt.	3.11	3.51	3.02	
o.5 : 1	2.84		-	o.59 -´ -
1 : 1	2.60		-	o.63 1.45 -
1.5 : 1	2.62	-	-	o.71
2:1	2.29	3.49		o.73 1.o5 o.69
3:1	-	2.52	-	- o.88 -
4:1	-	2.48	1.44	- o.98 o.80
5:1		2.18	-	- 1.09 -
6 : 1	-		1.01	1.05

<u>Tabelle 20:</u> Oxidationsgrad und spezifischer H₂O₂-Verbrauch bei der Oxidation von Anilin mit Fentons ²Reagenz.

Das CSB:TOC-Verhältnis nimmt zwar innerhalb jeder einzelnen Versuchsserie ab, Einzelergebnisse verschiedener Versuchsreihen können jedoch zwischen 30 und 50 % Unterschied aufweisen. Der Oxidationsgrad bleibt bei einer H_2O_2 -Dosis zwischen 1.0 und 1.5 mmol H_2O_2 /mmol Anilin bei Versuchsserie A und zwischen o.o und 2.0 mmol H_2O_2 /mmol Anilin bei Versuchsserie B konstant, und da genau in diesem Dosierungsbereich die gefärbten Zwischenprodukte auftreten bedeutet dies wiederum, daß diese schwerer oxidierbar sind als Anilin selbst und auch schwerer oxidierbar als die erst wieder bei höherer H_2O_2 -Dosis (>3 mmol H_2O_2 /mmol Anilin) gebildeten Abbauprodukte.

Auch bei dem spezifischen H_2O_2 -Verbrauch sind nur bei den Versuchsreihen A und C Gemeinsamkeiten festzustellen, da dieser in beiden Fällen mit steigender H_2O_2 -Dosis zunimmt. Hingegen wird bei Versuchsreihe B bei einer Dosis von 3 mmol H_2O_2 /mmol Anilin das Auftreten eines Minimums des spezifischen H_2O_2 -Verbrauches beobachtet. Phenol ist die in der Literatur bezüglich der Oxidation mit Fentons Reagenz am besten untersuchte aromatische Verbindung (3,5,8,11,12), da phenolische Abwässer häufig bei industriellen Prozessen (Kokereien, Raffinerien, Kunststoffproduktion etc.) anfallen und deren Entgiftung aufgrund der Toxizität, der Geruchsbelästigung und der Gefahr, daß sich bei Chlorungsprozessen noch toxischere Chlorphenole bilden, unerläßlich ist.

Für die vorliegende Arbeit wurde daher nicht Phenol selbst, sondern zwei andere Vertreter aus der Verbindungsklasse der Phenole, nämlich p-Nitrophenol (p-NP) und 2,4-Dichlorphenol (2,4-DCP) ausgewählt und einer oxidativen Behandlung mit Fentons Reagenz unterzogen. Die Reaktionsbedingungen dieser Versuche sind in Tabelle 21 zusammengestellt.

		X=p-Nitro- phenol	X=2,4-Dichlor- phenol				
C(X)	mmo1/1	1.41	1.41				
CSB	mg/1 0 ₂	384.9	294.5				
тос	mg/1 C	1o2.2	102.2				
(BSB ₅)	mg/1 0 ₂	0.0	0.0				
pH	-	5.55	5.4o				
C(Fe(II)) _o	mmo1/1	o.28	o.28				
5 absatzweise H_2O_2 -Zugaben mit jeweils $C(H_2O_2)_2=1.41 \text{ mmol/l}$							
Reaktionen	Reaktionen bei 25 $^{\circ}$ C und pH=3 mit 10 1/h/l Lsg0 ₂ -Begasung						

Tabelle 21: Reaktionsbedingungen für die Oxidation von p-Nitrophenol und 2,4-Dichlorphenol mit Fentons Reagenz.

Die Modell-Lösungen wurden zunächst mit H_2SO_4 auf pH=3 eingestellt. Beide Ausgangslösungen waren farblos, erhielten jedoch nach Zugabe des H_2O_2 eine grüne Farbe, die im Verlauf der Reaktion dunkler wurde und bei weiterer H_2O_2 -Zugabe wieder aufhellte. Die spektrale Absorption der Reaktionslösungen im sichtbaren Bereich bei 400 nm (Abbildung 33) durchläuft nach verschiedener H_2O_2 -Dosis in beiden Fällen ein Maximum bei 2 mmol H_2O_2 /mmol substituiertem Phenol. Auffallend ist auch hier wiederum, wie bei der Oxidation des Anilins, daß die Abnahme der Absorption erst dann wieder erfolgt, wenn die Ausgangsverbindung zum Großteil abreagiert ist. Dies legt nahe, auch bei der Oxidation dieser substituierten Phenole Zwischenverbindungen anzunehmen, die durch Reaktion von Oxidationsprodukten mit der Ausgangssubstanz entstanden sind.

<u>Abbildung 34</u>: Oxidation von p-Nitrophenol und 2,4-Dichlorphenol mit Fentons Reagenz: Konzentrationsabnahme und spektrale Absorption bei 400 nm nach verschiedener H₂0₂-Dosis.

Der Einfluß der verschiedenen Substituenten macht sich ebenfalls in Abbildung 34 bemerkbar, da durch die farbvertiefende Wirkung des NO₂-Restes die spektrale Absorption der oxidierten p-Nitrophenol-Lösungen wesentlich höher liegt als die der 2,4-Dichlorphenol-Lösungen.

Die Veränderung der Farbe bedingt bei der Oxidation von p-Nitrophenol und 2,4-Dichlorphenol jedoch – anders als bei Anilin – nicht eine Verschlechterung der biologischen Abbaubarkeit, sondern das BSB₅:CSB-Verhältnis steigt kontinuierlich an (Abbildung 35).

Bei p-Nitrophenol läßt sich der Anstieg des BSB_5 :CSB-Verhältnisses bis zu einer Dosis von 5 mmol H_2O_2 /mmol p-NP gut durch eine Gerade beschreiben. Nach dieser Dosis ist BSB_5 :CSB=0.31. Die biologische Abbaubarkeit der oxidierten 2,4-Dichlorphenol-Lösungen ist zunächst schlecht (BSB₅:CSB=0.08), sie verbessert sich jedoch nach einer Dosis von mehr als 2 mmol H_2O_2 /mmol 2,4-DCP drastisch (BSB₅:CSB=0.47). Bei 4 mmol H_2O_2 / mmol 2,4-DCP erreicht das BSB_5 :CSB-Verhältnis seinen Maximalwert von 0.85,

<u>Abbildung 35:</u> Oxidation von p-Nitrophenol und 2,4-Dichlorphenol mit Fentons Reagenz: Zusammenhang zwischen der biologischen Abbaubarkeit und der H_2O_2 -Dosis.

fällt dann jedoch bei 5 mmol $H_2O_2/mmol 2,4-DCP$ auf o.15 zurück. Dieses Verhalten ist folgendermaßen erklärbar:

Bei der Oxidation von 2,4-Dichlorphenol erfolgt neben dem Angriff auf den Aromaten und Ringöffnung auch die Abspaltung der Chloratome (70,71). Nach den Untersuchungen von Gilbert (7o) liegen bei der Oxidation von 2,4-Dichlorphenol mit Ozon nach vollständiger Eliminierung des 2,4-DCP ca. 90 % des organischen Chlors als Chlorid vor. Die dann entstandenen, kein organisch gebundenes Chlor mehr enthaltenden Verbindungen sind einerseits gut biologisch abbaubar und andererseits, wie die rasche Zunahme der CSB-Elimination nach einer Dosis zwischen 2 und 3 mmol $H_2O_2/$ mmol 2,4-DCP zeigt, gut oxidierbar (Tabelle 22). Das CSB:TOC-Verhältnis nach 4 mmol H₂O₂/mmol 2,4-DCP beträgt o.82 mg O₂/mg C und ist ein Hinweis darauf, daß sich vermutlich nur noch Oxalsäure in der Reaktionslösung befindet, da nur diese Substanz ein ähnlich niedriges CSB:TOC-Verhältnis aufweist (72). Die starke Zunahme der TOC-Eliminierung von 63.9 auf 91.1 % nach der nächsten H_2O_2 -Zugabe deutet auf die anschließende Decarboxylierung der Oxalsäure hin. Danach bleibt in der Reaktionslösung nur noch wenig organische Substanz (Rest-CSB=6.9%) mit einem hohen CSB:TOC- und einem niedrigen BSB5:CSB-Verhältnis zurück.

	p-Nitrophenol			2,4-Dichlorphenol		
H ₂ 0 ₂ :Ph ¹)	CSB-Eli- mination	TOC-Eli- mination	CSB:TOC	CSB-Eli- mination	TOC-Eli- mination	CSB:TOC
	%	%	mg0 ₂ /mgC	%	%	mg0 ₂ /mgC
1 : 1	27.1	11.4	3.10	7.2	20.5	3.37
2 : 1	39.5	17.0	2.75	31.3	25.0	2.65
3 : 1	53.2	21.8	2.70	81.1	41.6	o.93
4 : 1	65.7	32.8	2.30	89.7	63.9	0.83
5 : 1	70.9	45.7	2.42	93.1	91.1	2.22

Tabelle 22: Oxidation von p-Nitrophenol und 2,4-Dichlorphenol mit Fentons Reagenz: Oxidationsgrad und CSB-Und TOC-Elimination.

1) Ph=Phenolderivat

Im Oxidationsproduktgemisch des p-Nitrophenol befinden sich hingegen nach der gleichen Oxidationsmittelmenge (5 mmol $H_2O_2/mmol$ p-NP) noch 29.1 % des CSB und 54.3 % des TOC. Dies zeigt, daß der Abbau des p-Nitrophenols über andere Zwischenprodukte , die oxidativ schwerer angreifbar sind, abläuft, und unterschiedliche Substituenten am gleichen aromatischen Kern einen starken Einfluß auf die Oxidationswirkung haben.

3.3.4. Industrieabwasser

Zum Vergleich zu den bisher untersuchten reinen Modell-Substanzen wurde ein indusrielles Problemabwasser, das als Hauptbestandteil eine substituierte Aminonaphtalinsulfonsäure enthielt, mit Fentons Reagenz oxidiert. Um größenordnungsmäßig in den CSB-Bereich der Modell-Lösungen zu gelangen, wurde die Abwasserprobe 1:100 verdünnt. Diese Ausgangslösung hatte einen CSB von 404.2 mg/l O_2 und einen pH-Wert von 2.5, der vor Reaktionsbeginn mit NaOH auf pH=3 eingestellt wurde. Die Oxidation mit Fentons Reagenz erfolgte absatzweise nach jeweiligem Abreagieren des Wasserstoffperoxides, wobei zunächst 1 ml Perhydrol je Liter Abwasser zugegeben wurde, was einer H_2O_2 -Anfangskonzentration von 10.62 mmol/l (=339.8 mg/l) Zum Vergleich: bei der absatzweisen Oxidation der untersuchten Reinsubstanzen mit einer Gesamtdosis von 5 mmol $H_2O_2/mmol$ Aromat wurden folgende, auf CSB_o bezogene Mengen an Wasserstoffperoxid zugegeben:

p-Toluolsulfonsäure	:	o.59 mg	H ₂ O ₂ /mg	CSB
Anilin	:	o.76 mg	H_20_2/mg	CSB
p-Nitrophenol	:	o.73 mg	H_2^{0}/mg	CSB
2,4-Dichlorphenol	:	o.82 mg	H_2^0/mg	CSB

Damit liegt der zur Oxidation des Industrieabwassers gewählte Ansatz etwas höher als der bei der Oxidation der Modell-Lösungen. Die erforderliche Menge an Fe(II)-Katalysator für ein molares Verhältnis H_2O_2 :Fe(II)=5:1, bezogen auf die erste H_2O_2 -Zugabe, errechnete sich nach Abzug des bereits in der Abwasserlösung vorhandenen Eisens (C(Fe(II))=0.77 mmol/l) zu 1.35 mmol/l Fe(II).

Um die Auswirkungen einer 0_2 -Begasung nochmals an einem realen Abwasser zu untersuchen, wurde dieses Experiment einmal mit Sauerstoffbegasung (10 l/h/l Lsg.) und einmal ohne Begasung durchgeführt.

In beiden Fällen färbte sich die vor der Oxidation braunviolette Ausgangslösung nach Zugabe des H_2O_2 nahezu schwarz und hellte erst im Verlauf weiterer H_2O_2 -Zugaben wieder auf. Zur Erfassung dieser Farbänderungen wurde die spektrale Absorption im sichtbaren Bereich bei 400 nm und 470 nm verfolgt. Abbildung 36 zeigt, daß die spektrale Absorption bei beiden

Abbildung 36:

Oxidation eines 1:100 verdünnten Industrieabwassers: spektrale Absorption nach verschiedener H₂O₂-Dosis mit und ohne Sauerstöffbegasung. Wellenlängen unter Sauerstoffbegasung bei allen H₂O₂-Zugabemengen niedriger liegt als bei der nicht begasten Reaktionslösung, bei der ein Sauerstoffeintrag nur durch "Einrühren" erfolgt.

Das Maximum der spektralen Absorption bei 400 nm liegt mit 218 m⁻¹ bei Begasung mit 0_2 um 34 % niedriger als ohne Begasung und tritt ferner schon bei einer geringeren H_20_2 -Dosis auf, was ebenfalls die bessere Oxidationswirkung der Kombination $H_20_2/0_2$ demonstriert, da dann einerseits weniger gefärbte Oxidationsprodukte entstehen bzw. diese offensichtlich schneller wieder weiteroxidiert werden. Das gleiche gilt für die Abnahme des CSB, die bei jeweils gleicher H_20_2 -Dosis bei 0_2 -Begasung um ca. 12-22 % höher ist als bei der nicht begasten Reaktionslösung (Tabelle 23). Der spezifische H_20_2 -Verbrauch ist nach dem ersten Reaktionsabschnitt ohne Begasung ca. doppelt so hoch wie mit 0_2 -Begasung, der Unterschied wird dann jedoch mit steigender H_20_2 -Dosis geringer und beträgt nach der letzten H_20_2 -Zugabe nur noch ca. 18%.

Tabelle 23: CSB-Elimination und spezifischer H₂O₂-Verbrauch bei der Oxidation eines 1:100 verdünnten Industrieabwassers.

Zugabe H ₂ O ₂ mg/1 Abwasser	CSB-Abnahme % oB mB		spezH mgH ₂ 0 ôB	2 ⁰ 2-Verbrauch 2 ^{/2} mg CSB mB
I : 361.1 II : 541.6 III: 722.2 IV : 9o2.7	100 84.4 67.3 45.0 37.9	100 70.0 45.5 31.2 25.7	- 5.95 4.18 3.29 3.63	- 2.91 2.42 2.57 2.98

oB=ohne Begasung mB=mit Begasung

Auffallend ist, daß sämliche Verbrauchswerte weit über dem theoretischen H_2O_2 -Verbrauch von 2.125 mg H_2O_2/mg CSB (H_2O_2 als alleinige Sauerstoffquelle) liegen, obwohl bei beiden Versuchen noch gelöster Sauerstoff vorhanden war bzw. durch Begasen der Reaktionslösung sogar O_2 zugeführt wurde, d.h. ein erheblicher Teil des H_2O_2 wird durch parasitäre Reaktionen erbraucht, wobei in erster Linie die Oxidation von anorganischen Wasserinhaltsstoffen wie CN⁻, Cl⁻, SO₃²⁻, Metallkationen etc. in Frage kommt. Der Einfluß der Wasserstoffperoxid-zehrenden Ionen zeigt sich darin, daß der spezifische H_2O_2 -Verbrauch $\Delta H_2O_2/\Delta CSB$ mit steigender CSB-Eliminationsrate zunächst ab-, und erst nach Durchlaufen eines Minimums bei ca. 55 % CSB-Elimination wieder zunimmt (Abbildung 37), während bei den untersuchten Reinsubstanzen ein kontinuierliches Ansteigen des spezifischen H_2O_2 -Verbrauches beobachtet wird (vgl. z.B. Tabelle 10). Demzufolge werden die anorganischen Wasserinhaltsstoffe in Konkurrenz zu den organischen Substanzen angegriffen. Hierbei können diese anorganischen Ionen mit H_2O_2 direkt oder aber mit dem OH-Radikal reagieren, da die Geschwindigkeitskonstanten für die Reaktion des OH-Radikals mit anorganischen Ionen zwischen 10^7 und 10^{10} l/mol·sec (46) betragen und damit in der gleichen Größenordnung wie diejenigen der Reaktion des OH-Radikals mit Aromaten liegen.

Berücksichtigt man bei der Berechnung des spezifischen H_2O_2 -Verbrauches $\Delta H_2O_2/\Delta CSB$ diejenige Menge an H_2O_2 , die allein zur Oxidation des Chloridions erforderlich ist (1 mg Cl \cong 0.48 mg H_2O_2), und dies waren bei einer angegebenen Chloridkonzentration von 280 mg/l in dem 1:100 verdünnten Abwasser 134.4 mg/l H_2O_2 , verlaufen die "Cl-korrigierten" Verbrauchskurven in Abhängigkeit von der CSB-Elimination wesentlich flacher , bzw. im Falle der O_2 -begasten Reaktionslösung bleibt der spezifische H_2O_2 -Verbrauch zunächst konstant und nimmt erst, nachdem offensichtlich alle oxidierbaren anorganischen Substanzen abreagiert sind, ab ca. 50 % CSB-Elimination wieder zu (Abbildung 37).

Abbildung 37:

Oxidation eines 1:100 verdünnten Industrieabwassers: spezifischer H₂O₂-Verbrauch in Abhängigkeit von²der CSB-Elimination mit und ohne O₂-Begasung und unter Berücksichtigung der H₂O₂-Zehrung durch Chlorid-Ionen. Die Zehrung des Wasserstoffperoxides durch Oxidation anorganischer Ionen scheint jedoch nicht die einzige Ursache für die geringere Ausnutzung des H_2O_2 hinsichtlich der Oxidation der organischen Substanzen zu sein, wie sich aus dem Verlauf der Sauerstoffsättigung während der ersten Minuten eines jeden Reaktionsabschnittes ableiten läßt (Abbildung 38).

Abbildung 38:

Verlauf der Sauerstoffsättigung während der ersten Minuten eines jeden Versuchsabschnittes der Oxidation eines 1:100 verdünnten Industrieabwassers.

Nach Zugabe des H_2O_2 im ersten und zweiten Reaktionsabschnitt (I & II) besteht, wie dies auch bei der Oxidation der Modellsubstanzen der Fall war, Bedarf an Sauerstoff zum Abfangen der organischen Radikale. Wird die Reaktionslösung nicht begast, war die O_2 -Konzentration sogar einige Minuten lang null. Im Gegensatz dazu wird nach Zugabe des H_2O_2 in den Reaktionsabschnitten III und IV eine Sauerstoffübersättigung beobachtet, die nur möglich ist, wenn H_2O_2 zu O_2 und H_2O zersetzt wird. Denkbar ist beispielsweise die Selbstzersetzung des H_2O_2 in Fentons Reagenz in Konkurrenz zur Oxidation der organischen Verbindungen oder aber die Zersetzung des H_2O_2 durch heterogene Katalyse z.B. an MnO_2^- , PbO_2 -Partikeln oder sonstigen katalytisch aktiven Oberflächen. Die Zersetzung des H_2O_2 zu Sauerstoff findet jedoch nicht erst nach der dritten und vierten H_2O_2 -Zugabe statt, sondern auch schon während der beiden ersten Reaktionsabschnitte. Dies läßt sich anhand der Zunahme der Sauerstoffsättigung in der nicht begasten Reaktionslösung zeigen.

Dazu wurde in einem Blindversuch aus auf pH=3 eingestelltem bidestilliertem Wasser bei 25 ^OC durch Begasen mit Stickstoff der gesamte gelöste Sauerstoff ausgetrieben. Zur Zeit t=o wurde der N2-Strom abgeschaltet und die Zunahme der Sauerstoffsättigung durch Eintrag von Luftsauerstoff unter Rühren verfolgt. Legt man den Beginn des "Lufteinrührens" für die nicht mit 0, begaste Reaktionslösung auf die 4.Minute von Reaktion I (offene Kreise, Abbildung 38), zeigt die gestrichelte Linie in Abbildung 38 unten, daß die Zunahme der 02-Sättigung durch Einrühren wesentlich langsamer erfolgt als bei Reaktionsabschnitt I, also offenbar durch Zersetzung von H_2O_2 noch zusätzlich Sauerstoff entstanden ist. Zusammenfassend kann festgestellt werden, daß der CSB des untersuchten 1:100 verdünnten Industrieabwassers mit der eingesetzten H_20_2 -Dosis von 2.23 mg H_2O_2/mg CSB₀ unter Sauerstoffbegasung auf ca. 25 % des Anfangswertes reduziert werden kann, was im Hinblick auf das Abwasserabgabengesetz sicherlich als eine für die Praxis brauchbare Oxidationswirkung anzusehen ist. Der spezifische H_2^{0} -Verbrauch ist, bezogen auf eine 50 %ige Elimination des CSB, mit 2.5 mg H_2O_2/mg CSB rund fünfmal höher als z.B. im Falle der Oxidation von p-Toluolsulfonsäure (=0.55 mg H₂O₂/mg CSB). Es wurde jedoch noch keine befriedigende biologische Abbaubarkeit erreicht, das BSB5:CSB-Verhältnis änderte sich von o.o auf o.21 bei der 02-begasten und auf 0.17 bei der nicht begasten Reaktionslösung.

Die Oxidation dieses Industrieabwassers zeigt beispielhaft, daß jedes organisch belastete Mischabwasser seine eigene Charakteristik bezüglich der Oxidierbarkeit der organischen und anorganischen Inhaltsstoffe aufweist. 4. Versuche zur Verfahrenskombination "Oxidation mit Fentons Reagenz

+ Flockung" zur Entfernung von p-Toluolsulfonsäure

Aus der Abwassertechnik ist bekannt, daß bei der Flockung zur Phosphatentfernung neben Phosphat auch bis zu 50 % des CSB durch durch Adsorption an die Flocken entfernt wird (73). Zur Weiterbehandlung des Produktgemisches aus der Oxidation mit Fentons Reagenz bietet sich somit außerdem die Einführung einer Flockungsstufe an. Ob ein solcher Behandlungsschritt beispielsweise zur Entfernung von p-Toluolsulfonsäure aus Abwasser sinnvoll und wirkungsvoll sein würde, sollte anhand der folgenden Versuche, die jedoch nur orientierenden Charakter haben, geklärt werden.

Die Anfangskonzentrationen aller Ansätze wurden gegenüber den sonstigen Versuchen (mit Ausnahme von Kapitel 3.2.5) um den Faktor 10 erhöht, um nach der Oxidation für die Flockungsversuche nach Verdünnung 1:10 ausreichende Mengen Produktgemisch gleicher Zusammensetzung zu erhalten, auch wenn sich durch diese Verfahrensweise eine insgesamt schlechtere Nutzung des H_2O_2 ergibt. Die p-Toluolsulfonsäure-Lösungen (C(p-TS)_0=12.8 mmol/1) wurden zur Erzielung unterschiedlicher Oxidationsgrade mit der gleichen, doppelten und vierfachen molaren Menge an Wasserstoffperoxid oxidiert, C(Fe(II))_0 betrug bei allen Versuchen konstant 5.11 mmol/1, damit auch bezüglich der Eisenkonzentration vor der Flockung die gleichen Ausgangsbedingungen vorlag.

Das erhaltene Produktgemisch wurde nach Verdünnen 1:10 auf pH=7 eingestellt. Da bei der Flockung mit Fe(III)-Salzen der pH-Wert abnimmt, mußte für eine ausreichende Pufferungskapazität der Lösungen gesorgt werden, was in der Weise erfolgte, daß zunächst Na_2CO_3 und $NaHCO_3$ zugegeben und die nunmehr alkalische Lösung durch Begasen mit CO_2 wieder neutralisiert wurde.

Zur Flockung wurde eine Dosis von 1, 2 und 4 mg Fe(III) je mg organischem Kohlenstoff eingesetzt, wobei die entsprechende Menge an Flockungsmittel als FeCl₃-Lösung (C= 15 g/l Fe(III)) zu jeweils 500 ml Lösung des Oxidationsproduktgemisches in einem Becherglas zugegeben wurde. Parallel dazu erfolgte die Flockung einer nicht oxidierten p-Toluolsulfonsäurelösung mit C(p-TS)₀=1.28 mmol/l. Durchführung der Flockungsversuche:

 Zugabe des Flockungsmittels bei Rührerdrehzahl 250 Upm, mit der anschließend noch eine Minute lang weitergerührt wurde,

- danach zur Teilchenagglomeration weitere 30 min mit 25 Upm rühren. Zur Bewertung der Flockungswirkung wurde nach Absitzen des Niederschlages der DOC des filtrierten (Membranfilter, o.45 μ m Porenweite) Überstandes gemessen.

Die Balkendiagramme in Abbildung 39 zeigen die DOC-Abnahme der Modell-Lösungen nach alleiniger Flockung sowie nach Oxidation mit verschiedenen H_2O_2 :p-TS-Molverhältnissen und anschließender Flockung mit verschiedener Fe(III)-Dosis.

Die Flockung der nicht oxidierten p-TS-Lösung bewirkt erst ab einer Dosis von 4 mg Fe(III)/mg C eine geringfügige Abnahme des DOC um 3 %, bei geringerer Fe(III)-Dosis wird kein DOC und damit auch keine p-Toluolsulfonsäure entfernt, so daß innerhalb der angewandten Fe(III)-Dosierungen p+JS als "nicht flockbar" anzusehen ist.

Durch Oxidation mit 1 mmol H₂O₂/mmol p-TS werden ca. 3 % des DOC entfernt, weitere 10 % durch Flockung. Allerdings bleiben nach beiden Verfahrensschritten insgesamt noch 35-38 % der p-TS zurück, wobei die Entfernung der p-TS ausschließlich durch die Oxidation bewirkt wird, die Flockungsstufe vermindert deren Konzentration nicht, d.h. durch die Flockung werden also nur Oxidationsprodukte der p-TS entfernt.

Wird die H₂O₂-Dosis bei der Oxidation auf 2 mmol H₂O₂/mmol p-TS gesteigert, werden durch die anschließende Flockung zwischen 3 und 20 % des DOC eliminiert, wobei es sich ebenfalls nur um Oxidationsprodukte der p-TS handelt, da deren Restkonzentration mit 7 % konstant bleibt.

Abbildung 39:

Ergebnisse der Verfahrenskombination "Oxidation mit Fentons Reagenz + Flockung" zur Entfernung von p-Toluolsulfonsäure. Man beobachtet ferner, daß mit steigendem Oxidationsgrad eine Verschlechterung der Flockbarkeit auftritt, d.h. die gebildeten Niederschläge sitzen gar nicht oder nur schlecht ab. Durch Steigerung der Fe(III)-Dosierung läßt sich das Absetzverhalten zwar jeweils etwas verbessern, aber selbst nach mehrstündigem Stehenlassen bleibt noch ein feiner Niederschlag in der überstehenden Lösung zurück. Die Ursache hierfür ist wahrscheinlich die Bildung von Komplexen des Fe(III) mit Oxidationsprodukten der p-TS, was eine negative Beeinflussung der Flockenbildung (74) und damit einen erhöhten Aufwand zur Abtrennung der Fällungsprodukte zur Folge hat.

Insgesamt zeigen die Resultate dieser Versuchsserie, daß es im speziellen Fall der Entfernung von p-Toluolsulfonsäure die Einführung einer Flockungsstufe nicht empfehlenswert erscheint, da p-TS selbst nicht flockbar ist und sie daher quantitativ durch Oxidation eliminiert werden muß. Bei der dann anzuwendenden H_2O_2 -Dosis von ca. 2.5-3.0 mmol H_2O_2 /mmol p-TS erhält man jedoch bereits ein Oxidationsproduktgemisch, das biologisch verwertbar ist (vgl. Kapitel 3.2.4.), so daß die weitergehende biologische Oxidation zu CO_2 der Fixierung des organischen Kohlenstoffes am Hydroxidschlamm vorzuziehen ist. 5. Diskussion

Die bisherigen Ergebnisse zeigen, daß die Oxidation mit H₂O₂/Fe(II) in Gegenwart von molekularem Sauerstoff als wirkungsvoller Verfahrensschritt zur Umwandlung von persistenten in biologisch abbaubare Verbindungen eingesetzt werden kann. Als persistente Verbindungen wurden in erster Linie substituierte Aromaten betrachtet, wie sie als Bausteine vieler industrieller Produkte zu finden sind. Deren Entfernung aus dem Abwasser ist aus vielerlei Gründen wünschenswert:

- Viele dieser Stoffe sind toxisch und können daher empfindlich die "normale" biologische Reinigung bzw. die natürliche Selbstreinigung stören.
- Aufgrund ihrer Persistenz kann eine Bioakkumulation mit noch weitgehend unbekannten Folgen eintreten.
- Durch den Wasserkreislauf können diese Stoffe wieder in den Trinkwasseraufbereitungsprozess gelangen und dort Probleme und Störungen verursachen.

Das beste Verfahren, persistente Stoffe sicher aus der Umwelt zu entfernen, ist deren Oxidation zu Köhlendioxid. Nach dem dieser Arbeit zugrundeliegenden Konzept soll die Oxidation mit chemischen Oxidationsmitteln -im vorliegenden Falle mit Wasserstoffperoxid- jedoch nicht bis zur vollständigen Mineralisierung des organischen Kohlenstoffes führen, sondern es soll nur eine Teiloxidation zu Reaktionsprodukten erfolgen, die dann einer biologischen Weiteroxidation zugänglich sind. Durch diese oxidative Behandlung wird also "persistenter CSB" in "biologisch abbaubaren CSB" umgewandelt, der sich in jedem Falle preisgünstiger entfernen läßt. Hierzu eine Kostenabschätzung, dargestellt an einer unter Laborbedingungen durchgeführten Oxidation der p-Toluolsulfonsäure:

2 l p-TS-Lösung sollen oxidativ behandelt werden, so daß insgesamt eine Verminderung des CSB um 80 % erreicht wird. Bei einem ange-

nommenen CSB_o=400 mg/l O₂ sind somit 640 mg CSB zu entfernen. Zugrundegelegt wurden die (teilweise gerundeten) Ergebnisse der absatzweisen p-TS-Oxidation Kapitel 3.2.4., Tabelle 13, Versuchsserie C sowie die folgenden Behandlungskosten : 1 kg (biologisch abbaubarer) CSB durch biologische Oxidation: DM 1.--1 kg loo %iges H_2O_2 nach (3): DM 2.--1 kg O_2 mit Eintragskosten: DM o.lo 1 kg O_2 mit Eintragskosten: DM o.lo 1 kg O_2 = 10⁻⁵ Pf

Für die Berechnung des 0_2 -Bedarfes wurde vereinfachend nur die zur Erniedrigung des CSB erforderliche Menge angenommen. Dieser Wert dürfte daher auf jeden Fall zu niedrig liegen, da selbst bei Kreislaufführung des Sauerstoffes Verluste unvermeidbar wären. Die Rechnung zeigt jedoch, daß im obigen Beispiel die Kosten für 0_2 nur ca. 10-20 % der Kosten für H $_20_2$ ausmachen.

In Tabelle 24 sind die Aufwendungen bei unterschiedlicher Verteilung der "Oxidationsanteile" bei Oxidation bis zu 80 % Entfernung des CSB aufgeschlüsselt:

Demzufolge ist die Oxidation mit H_2O_2 allein -ohne O_2 -Begasung- mehr als viermal so teuer wie die biologische Oxidation (bei biologischer Abbaubarkeit der Substanzen !). Jedoch lassen sich die spezifischen Kosten schon bei Begasung mit Sauerstoff um ca. 60 % senken. Bei einem BSB₅:CSB-Verhältnis von 0.47, das bei 60 % chemischer CSB-Elimination erreicht ist, betragen die Mehrkosten gegenüber (hypothetischer) biologischer Reinigung nur noch 30 %. Ist die Biomasse nach entsprechender Adaption in der Lage, auch Lösungen mit niedrigerem BSB₅:CSB-Verhältnis, z.B. 0.36, weiterzu-oxidieren, liegt man nach dieser allerdings idealisierten Kostenabschätzung nur noch 11 % über den Kosten der rein biologischen Oxidation des CSB. Weitere Vorteile des vorgeschlagenen Verfahrens sind die leichte Verfügbarkeit und Handhabung der verwendeten Chemikalien sowie der geringe apparative Aufwand.

- Wasserstoffperoxid ist im Handel in verschiedenen Konzentrationen erhältlich und man kann, was die Handhabung angeht, auf die umfangreichen Erfahrungen der Hersteller zurückgreifen (75,76).
- Als Katalysator kommt vorzugsweise FeSO₄ in Betracht, welches kostengünstig als Abfallprodukt aus der Titanproduktion anfällt (ca.2 Pf/Mol).
- Sauerstoff kann entweder als reiner Sauerstoff oder als Luftsauerstoff in die Reaktionslösung eingebracht werden, wobei es statt einer ständigen Begasung sicherlich ausreichend ist, wenn eine bestimmte Mindestsauerstoffkonzentration aufrecht erhalten bleibt.
- Zur Durchführung der Reaktion reicht im Prinzip ein Reaktionsbehälter mit pH-Regelung und Dosiereinrichtungen für H₂O₂, Fe(II)-Lösung und Säure/Base zum Konstanthalten des pH-Wertes sowie eine Belüftungseinrichtung.

Tabelle 24:Kostenabschätzung bei Kombination "Oxidation mit H202/Fe(II)/02 + Biologie" zur Behandlung von 2 Liter
eines p-Toluolsulfonhaltigen Abwassers. Modellrechnung mit CSB2=400 mg/l (≜800 mg insgesamt),der zu
zu 80 % enfernt werden soll.

biol. zu elim. CSB	chem.ox. zu elim. CSB	H202 p-TS	spez. H ₂ 0 ₂ -Ver- brauch	CSB-Eli- mination d. H ₂ 0 ₂	CSB-Eli- mination d. O ₂	Bedarf ^H 2 ⁰ 2	Zusatz- bedarf ⁰ 2	Ко ^Н 2 ⁰ 2	sten 0 ₂	bjol.	Gesamt- kosten 2 ₎	spezif. Kosten
mg	mg	mmol mmol	mgH ₂ 02 mg CSB	%	· %	mg	mg	Pf	Pf	Pf	Pf	DM/kg CSB
_	640(80%)	≈14:1	2.125	100.0	0.0	1360	-	o.272	_	_	0.273	4.20 ³)
-	640(80%)	≈5:1	.0.80	36.0	64.0	512	910	0.102	0.009	-	o.112	1.73
160(20%)	480(60%)	3:1	0.63	30.0	70.0	302	705	0.061	0.007	0.016	0.085	1.32
280(35%)	360(45%)	2:1	0.52	24.5	75.5	187	576	0.037	0.006	0.028	0.072	1.11
640(100%)	-	-	-	-	-		-	-	-	0.064	0.065	1.00 4)

- ¹) Kosten für 1 kg biologisch abbaubaren CSB, ausgehend von dem Erfahrungswert, daß im Normalfall der CSB eines kommunalen Abwassers in der Kläranlage von 600 mg/l auf 100 mg/l zurückgeht und die Behandlung ca. o.5 DM/m³ kostet
- ²) Hierin sind die Kosten zum Neutralisieren von 2 1 Lösung mit pH=3 enthalten (ca. o.ool Pf)
- ³) ohne Sauerstoffbegasung
- ⁴) hypothetisch unter der Annahme, daß p-Toluolsulfonsäure biologisch abbaubar wäre

-83 Die Zugabe des H_2O_2 kann einmalig oder bei hoher Reaktionsenthalpie der zu oxidierenden Substanzen auch absatzweise erfolgen, ohne daß sich dadurch, abgesehen vom Zeitaufwand, die Oxidationswirkung des H_2O_2 hinsichtlich biologischer Abbaubarkeit und **s**pezifischem H_2O_2 -Verbrauch wesentlich ändert.

Ein Nachteil der Oxidation mit Fentons Reagenz ist sicherlich die starke Abhängigkeit der Oxidationswirkung vom pH-Wert mit optimalen Ergebnissen bei pH=3. Eine wirksame pH-Regelung ist daher unerläßlich , wobei die Schwankungen des pH-Wertes kleiner sein sollten als o.5 pH-Einheiten. Vorzugsweise wird man dieses Verfahren daher zur Behandlung von sauren Abwässern einsetzen.

Für die Festlegung der Oxidationsmitteldosis gelten die folgenden Überlegungen:

Wenn das Hauptziel der Oxidation die Entfernung der persistenten und/oder toxischen Aromaten ist, reichen nach diesen Untersuchungen bei p-Toluolsulfonsäure, Anilin, p-Nitrophenol und 2,4-Dichlorphenol für eine 90 %ige Substanz-Elimination zwischen 1.7 und 2.4 mmol H₂O₂/mmol Aromat aus (Tabelle 25).

	Oxidatior	n mit
	Fentons Reagenz	Ozon ¹)
Substanz	mmol H ₂ 0 ₂	mmo10 ₃
	mmol Aromat	mmol Aromat
p-Toluolsulfonsäure	1.7	9.9
Anilin	2.2	3.1
p-Nitrophenol	2.4	4.9
2,4-Dichlorphenol	2.1	3.2

Tabelle 25:	Spezifischer Oxidationsmittelverbrauch bei 90 %iger Sub-	•
<u> </u>	stanz-Elimination bei der Oxidation mit Fentons Reagenz und Ozon.	

1, Ref.: 1,68,70

Wenn jedoch die Aufgabe darin gesehen wird, "CSB" zu vermindern, ist von der Wirtschaftlichkeit her gesehen, eine biologische Oxidation als zweiter Behandlungsschritt erforderlich. Es reicht dann aus, das $BSB_5:CSB-Ver$ hältnis mittels H_2O_2 nur soweit zu verbessern, daß das Oxidationsproduktgemisch biologisch gut abbaubar ist. Dies ist i.a. bei $BSB_5:CSB=0.5$ der Fall. Nach Tabelle 26 wird ein BSB_5 :CSB-Verhältnis von ca. o.5 bei der Oxidation von p-Toluolsulfonsäure und 2,4-Dichlorphenol nach einem H_2O_2 -Verbrauch von 3 mmol H_2O_2 /mmol Aromat erreicht. Bei Anilin und p-Nitrophenol werden 5.0 bzw. 7.5 mmol H_2O_2 /mmol Aromat benötigt, da die entstandenen Zwischenprodukte schwerer oxidierbar sind. Für die weitergehende Aufgabe der CSB-Eliminierung muß also eine höhere H_2O_2 -Dosis aufgewendet werden als für die alleinige Entfernung der Substrate.

Tabelle 26: baren Oxidationsproduktgemisches (BSB₅:CSB≈0.5) bei der Oxidation von Modell-Lösungen mit Fentons Reagenz.

Substanz	mmol [´] H ₂ O ₂ /mmol Aromat
, p-Toluolsulfonsäure	3.0
2,4-Dichlorphenol	3.0
Anilin	5.0
p-Nitrophenol	7.5 ¹)

¹) linear extrapolierter Wert

Da das als oxidatives Agens verwendete OH-Radikal sehr reaktiv und damit auch wenig selektiv ist, werden auch anorganische Ionen leicht oxidiert und die anorganischen Salzbelastung eines Abwassers hat dementsprechend einen starken Einfluß auf den spezifischen H_2O_2 -Verbrauch $\Delta H_2O_2/\Delta CSB$ (Tabelle 27). Bei dem untersuchten 1:100 verdünnten Industrieabwasser werden beispielsweise zur Erzielung der gleichen CSB-Erniedrigung drei- bis fünfmal soviel H_2O_2 benötigt wie bei den reinen Modell-Lösungen ohne anorganische Belastung.

$\frac{\text{Tabelle 27:}}{\text{Elimination.}} \text{ Specifischer H}_2^0 2^{-\text{Verbrauch }(\Delta H_2)}$	$\frac{10^{1}}{2}$	0 % Iger CSB-
--	--------------------	---------------

Substanz	mg H ₂ O ₂ /mg CSB	mg CSB/mmol Substanz
p-Toluolsulfonsäure	o.55	288
Anilin	0.88	224
p-Nitrophenol	o.69	232
2,4-Dichlorphenol	0.62	208
Industrieabwasser 1:1oo verdünnt	2.48	- -

Nach beendeter Oxidation kann die Reaktionslösung mit den nunmehr biologisch abbaubaren Substanzen nach Neutralisation in die biologische Klärstufe eingeleitet werden. Der Eisenhydroxidschlamm ist bei Bedarf abzutrennen. Es entstehen keine Nachteile durch Einleiten von Resten Wasserstoffperoxid, da das Enzym Katalase, das in allen aeroben Mikroorganismen auftritt, Wasserstoffperoxid zu Wasser und Sauerstoff zersetzen kann (18).

Für einen Vergleich von Wasserstoffperoxid mit Ozon seien neben den Angaben von Tabelle 25 noch Daten aus der Dissertation von U.Degen (77) herangezogen. Dort ist angegeben, daß der spezifische Oxidationsmittelbedarf bei etwa 8 mmol 0₃ je mmol abgebauter p-TS liegt, wobei die p-TS selbst nur zu maximal 75% entfernt wurde. Untersuchungen von Gilbert (1) ergaben bei 90 %iger p-TS-Elimination einen spezifischen Oxidationsmittelbedarf von sogar 9.9 mmol 0_3 /mmol p-TS. Schon der günstigere Wert von Degen ist rund fünfmal höher als der, der in dieser Arbeit für Wasserstoffperoxid bei Sauerstoffbegasung ermittelt wurde (1.7 mmol $H_2O_2/mmol p-TS$). Da ferner die Oxidationsmittelkosten für H_2O_2 mit DM 2.00/kg = 6.8 Pf/Mol wesentlich geringer sind als die von Ozon (DM 3.oo/kg = 20.8 Pf/Mol), ergibt sich ein bedeutender Preisvorteil des Wasserstoffperoxides. Seine für gleiche chemische Oxidationswirkung anfallenden Oxidationsmittelkosten sind weniger als 1/10 der für Ozon. Im Falle des Anilins liegt der spezifische Oxidationsmittelverbrauch für diese beiden Reagentien zwar nicht so weit auseinander (2.2 bzw. 3.1 mmol Oxidationsmittel/mmol Anilin), jedoch ergibt sich hierbei noch immer ein Kostenverhältnis $H_2O_2:O_3=1:4$.

Somit bietet der Einsatz von Wasserstoffperoxid zur chemisch oxidativen Wasserreinigung aus wirtschaftlicher Sicht viel bessere Aussichten als der von Ozon. Allerdings ist zu bedenken, daß mit der Anwendung von H_2O_2 eine Aufsalzung des Abwassers verbunden ist, was bei Ozonbehandlung nicht der Fall ist.

6. Experimenteller Teil

6.1. Versuchsdurchführung

6.1.1. Versuche mit Begasung der Reaktionslösung

Die meisten Oxidationsversuche wurden in einem doppelwandigen, thermostatisierten Glaszylinder (H=28 cm, øinnen=10.5 cm) durchgeführt. Das Reaktionsvolumen betrug in allen Fällen 2 Liter. Als Abdeckung des Reaktionsgefäßes diente ein Plexiglasdeckel mit diversen Bohrungen zur Aufnahme von Elektroden, Gaseinleitungsrohr, Thermometer etc.. Die Versuchsanordnung ist in Abbildung 40 schematisch dargestellt. Die Versuchstemperatur bei den im Batch-Verfahren durchgeführten Experimenten betrug 25 ^OC, der Magnetrührer (Ika-Combimag RET) war auf 800 Upm eingestellt, so daß eine gute Vermischung zwischen Reaktionslösung und Gasblasen gewährleistet war.

6.1.2. Versuche zur Sauerstoffbilanzierung

Die Versuche zur Bilanzierung des Sauerstoffes wurden in einem Fünf-Hals-Kolben durchgeführt, dessen Inhalt bis zum Beginn der Normschliffe unter Berücksichtigung des durch die Elektroden verdrängten Volumens 2375 ml betrug.Eine Probenahme während des Reaktionsablaufes war durch eine aufgesetzte Spritze möglich, wobei der durch das entnommene Probevolumen entstandene Unterdruck durch das Einbringen eines verschiebbaren Glaskolbens ausgeglichen wurde.

6.2. Analytische Methoden

6.2.1. Konzentrationsbestimmung der aromatischen Modellsubstanzen

Die eingesetzten substituierten Aromaten absorbieren alle im UV-Bereich, so daß sich ihre Konzentration spektralphotometrisch bestimmen läßt. Die Spektren wurden nach entsprechender Verdünnung mit bidestilliertem Wasser oder im Falle pH-abhängiger Absorption mit einem Puffer in einer 1 cm Quarzküvette mit einem CARY 14 Recording Spectrometer aufgenommen. Die molaren Absorptionskoeffizienten wurden durch lineare Regression der spektralen Absorption von Lösungen bekannter Konzentration ermittelt. Die Absorptionsmaxima der einzelnen Substanzen und ihre molaren Absorptionskoeffizienten sind in Tabelle 28 aufgelistet.

Aromat	λ _{max} nm	AbsorpKoeff. 1/cm.Mol	Puffer
p-Toluolsulfonsäure	221	1o o41 <u>+</u> 236	-
Anilin	227	8 294 <u>+</u> 55	6.88
p-Nitrophenol	32o	9 828 <u>+</u> 13o	2.01
2,4-Dichlorphenol	285	2 142 <u>+</u> 45	-

Tabelle 28: Molare Absorptionskoeffizienten der untersuchten Modell-• substanzen

6.2.2. H_2O_2 -Bestimmung

Die Wasserstoffperoxidkonzentration wurde mit dem ZEISS PMQ II spektralphotometrisch nach Eisenberg (78) bestimmt. Dieses colorimetrische Verfahren beruht auf der Reaktion des Ti⁴⁺-Ions mit Wasserstoffperoxid zur gelben Pertitansäure:

$$Ti^{4+} + H_2O_2 + 2 H_2O \longrightarrow H_2TiO_4 + 4 H^+$$

Zur raschen Bestimmung der Absorption wurden 3 ml der Probelösung mit $C(H_2O_2) < 2 \text{ mmol/l mit } 0.3 \text{ ml}$ der Reagenzlösung versetzt und bei 410 nm gemessen. Der molare Absorptionskoeffizient wurde zu 711 <u>+</u> 8 l/cm·Mol bestimmt. Als Vergleich diente eine Mischung aus 3 ml Probelösung und 0.3 ml einer 1:5 verdünnten H_2SO_4 .

6.2.3. Fe(II)-Bestimmung

Die Konzentration des Eisen(II)-Ions wurde nach der Methode von Moss und Mellon (79) bestimmt. Die rote Farbe des α, α' -Bipyridyl-Fe(II)-Komplexes wurde bei 522 nm mit dem ZEISS PMQ II gemessen. Der spektrale Absorptionskoeffiezient beträgt 8650 l/cm·Mol.

6.2.4. CSB-Bestimmung

Die Bestimmung des chemischen Sauerstoffbedarfes beruht auf der Reaktion der oxidierbaren organischen Wasserinhaltsstoffe mit Kaliumdichromat in schwefelsaurer Lösung. Dabei wird die organische Substanz im Idealfall zu CO_2 und H_2O oxidiert. Aus Heteroatomen entstehen unterschiedliche Oxidationsprodukte (72).

6.2.4.1. Automatisierte CSB-Bestimmung

Im Technikon Autoanalyser II wurde die Probe (ca.1-2 ml) bei 160 $^{\circ}$ C ca. 13 Minuten lang mit Chromschwefelsäure in Gegenwart von HgSO₄ zum Maskieren des Chlorid-Ions und von Ag₂SO₄ als Katalysator aufgeschlossen. Zur Detektion wird die Abnahme der spektralen Absorption des gelben Cr(VI) bei 420 nm herangezogen. Die Kalibrierung erfolgte mit Oxalsäure, wobei eine o.1 N Oxalsäure einen CSB von 800 mg/l O₂ hat. Da Proben, die im Verlauf der Oxidationsreaktion der organischen Substanz mit Fentons Reagenz entnommen wurden, noch H₂O₂ enthalten, das ebenfalls von Kaliumdichromat in schwefelsaurer Lösung oxidiert wird, muß der durch H₂O₂ hervorgerufene "scheinbare" CSB vom gemessenen CSB abgezogen werden. Experimentell wurde gefunden, daß eine Lösung mit C(H₂O₂)=1 mmol/1 einen CSB von 14.8 <u>+</u> o.4 mg/l O₂ hervorruft (theore-tischer Wert: 16.0 mg/l O₂).

Die Abweichungen der nach diesem automatisierten Verfahren bestimmten CSB-Werte von den theoretisch berechneten CSB-Werten beträgt beispielsweise für 42 Einzelbestimmungen von p-Toluolsulfonsäure-Ausgangslösungen: -3.0 + 1.9 %.

Bei der anderen Modellsubstanzen Anilin, p-Nitrophenol und 2,4-Dichlorphenol konnte dieses Verfahren nicht angewendet werden, da die erhaltenen Schreibersignale nicht auswertbar waren. Hier lieferte die nachfolgende CSB-Bestimmungsmethode die besser mit der Theorie übereinstimmenden Werte.

6.2.4.2. CSB-Bestimmung nach Wagner (72)

In einem 500 ml Schliff-Erlenmeyerkolben werden zu 5 ml der Probe und 50 ml bidestilliertem Wasser 1 g (ca. 1 Spatelspitze) HgO gegeben. Anschließend werden 50 ml Chromschwefelsäure zugefügt und die Lösung 2 h lang bei 140 ^OC im Trockenschrank gehalten. Nach Beendigung der Oxidation wird das nicht verbrauchte Dichromat mit Ammoniumeisen(II)sulfat mit Ferroin als Indikator zurücktitriert. Parallel zu jeder Untersuchungsserie werden zwei Blindproben in der gleichen Weise behandelt.

6.2.5. TOC-Bestimmung

Die Messung des totalen organischen Kohlenstoffes erfolgte mit einem Beckman Total Carbon Analyser Model 915, wobei zur Kalibrierung Oxalsäure-Lösungen bekannten Kohlenstoffgehaltes eingesetzt wurden. 15 μ l der Probe werden direkt in das Verbrennungsrohr eingespritzt und bei 900 ^OC katalytisch zu CO₂ verbrannt, dessen Konzentration mit einem IR-Detektor registriert wird.

6.2.6. BSB₅-Bestimmung

Der biochemische Sauerstoffbedarf in fünf Tagen, diejenige Menge an Sauerstoff, die von Mikroorganismen zur biochemischen Oxidation der abbaubaren organischen Wasserinhaltsstoffe bei 20 ^OC erforderlich ist, wurde mit dem Voith-Sapromaten gemessen.

Dazu wurde zu 225 ml der auf pH=6.5-7.5 eingestellten Probelösung 25 ml verkeimtes Wasser (Ablauf der biologischen Stufe der KfK-Kläranlage) sowie eine definierte Menge an anorganischen Nährsalzen gegeben. Das Sapromat-Verfahren beruht darauf, daß das durch die Mikroorganismentätigkeit entstehende CO₂ an festem KOH adsorbiert und der verbrauchte Sauerstoff elektrolytisch nachgeliefert wird, so daß im Reaktionsgefäß immer ein konstanter Druck herrscht.

6.2.7. pH-Messung und -Regelung

Der pH-Wert wurde mit einer kombinierten Glaselektrode vom Typ N 65 der Firma Schott und einem pH-Meter "Knick-Portamess 9o2" gemessen. Zum Konstanthalten des pH-Wertes diente eine pH-Regeleinheit bestehend aus einem Dulcometer-pH-Steuergerät und einer ProMinent-Pumpe, beide Geräte von der Firma Chemie und Filter GmbH (cfg), Heidelberg.

6.2.8. Sauerstoff-Messung

Die Bestimmung der Konzentration des im Wasser gelösten Sauerstoffes erfolgte mit der Meßgeräte/Sauerstoffelektroden - Kombination OXI 39/ Eo 12 der Firma WTW, Weilheim. Das membranpolarometrische Verfahren beruht auf der Polarisation einer Goldkathode und einer Silberanode in einem Kaliumchlorid-Elektrolyt-Gel.

Die Eichung der Elektrode wurde wie folgt vorgenommen:

- der untere Eichpunkt der Elektrode mit o.o mg/l 0₂ läßt sich durch Eintauchen der Elektrode in eine sauerstofffreie 3 %ige Natriumsulfit-Lösung ermitteln,
 - zur Festlegung des oberen Eichpunktes bedient man sich des Henry'schen Gesetzes, nach dem die Sättigungskonzentration des Sauerstoffes in wäßriger Lösung dem Partialdruck des Sauerstoffes im Gasgemisch proportional ist. Die Sättigungswerte des Sauerstoffes in Luft sind bei Normaldruck für verschiedene Temperaturen tabelliert.
- 2) Da der Meßbereich des verwendeten Gerätes nur zwischen o.o und 30.0 mg/l 0₂ beträgt, bei Begasung mit reinem Sauerstoff jedoch Sauerstoffkonzentrationen bis zu 40.0 mg/l 0₂ auftreten, wurde in diesen Fällen eine Relativmessung vorgenommen. Dazu wurde der obere Eichpunkt bei Sättigung mit reinem Sauerstoff auf einen beliebigen Skalenwert, z.B. 27.0 mg/l 0₂, eingestellt und die dann abgelesenen Meßwerte zu diesem Sättigungswert in Beziehung gesetzt.

Mit Hilfe dieser letztgenannten Methode läßt sich die Konzentration an gelöstem Sauerstoff zwischen o.o mg/l O₂ und der Sättigung mit reinem Sauerstoff recht gut bestimmen, wie vergleichende Messungen mit zwei Sauerstoffmeßgeräten gleichen Typs zeigten:

Meßgerät A wurde "normal" nach 1) geeicht und betrieben, mit Meßgerät B wurde die Relativmessung nach 2) durchgeführt. Die Versuchstemperatur betrug 25 O C, der Tagesluftdruck 765 Torr, damit ist der Sättigungswert für Luft: (765/760)x8.11= 8.16 mg/l O₂. Da der Sauerstoffgehalt der Luft 20.946 % beträgt, sollte bei Sättigung mit reinem Sauerstoff eine Konzentration von 39.0 mg/l O₂ in der Lösung vorliegen. Tabelle 29 zeigt die mit Meßgerät A direkt gemessene und die aus den Meßdaten des Meßgerätes B berechneten Sauerstoffkonzentrationen, die sich nur um maximal 3.3 % voneinander unterscheiden. Verwendet wurden die Daten eines p-TS-Oxidationsversuches zur Bilanzierung des Sauerstoffes (Kapitel 3.2.1.2.).

Tabelle 29:Bestimmung der Sauerstoffkonzentration durch Absolut- und
Relativmessung mit Hilfe zweier Sauerstoffmeßgeräte

t	Absolutmess u ng Messgerät A	Re 1	a t i v m e Messgerät B	ssung B
min	mg/1 0 ₂	Skalenteile	%Sättigung	mg/1 O ₂ berech.
0.0	>30.0 ¹)	27.0	100.0	39.0
0.5	28.0	18.8	69.6	27.2
1.0	27.5	18.4	68.1	26.6
2.5	26.5	17.8	65.9	25.7
7.0	24.9	17.0	63.0	24.6
10.0	24.5	16.7	61.8	24.1
15.0	23.o	15.9	58 .9	23.0
30.0	19.6	13.7	50.7	19.8
60.0	13.4	9.2	34.1	13.3
90.0	7.6	5.4	20.0	7.8

¹) außerhalb des Meßbereiches

6.2.9. Verwendete Chemikalien

3o %iges H ₂ O ₂ – "Perhydrol"	Merck 721o
$(NH_4)_2 Fe(SO_4)_2 \times 6 H_2O$	Merck 3792
Toluolsulfonsäure-4-monohydrat	Merck 9613
Anilin	Merck 1261
p-Nitrophenol	Fluka
2,4-Dichlorphenol	Merck-Schuchard 82o 447
B1	

Die Konzentrationsangaben im Text beziehen sich immer auf 100 %iges H202

7. Literaturverzeichnis

1) Gilbert,E.

Chemische Umsetzungen und Reaktionsprodukte bei der Ozonisierung von organischen Wasserinhaltsstoffen Oxidationsverfahren in der Trinkwasseraufbereitung, 11.-13.9.1979, Karlsruhe, S.246-283, Hrsg.: W.Kühn und H.Sontheimer, Engler-Bunte-Institut, Universität Karlsruhe

2) Schwarzer,H.

Wasserstoffperoxid zur Abwasserreinigung Chem.Tech. <u>8</u>, 67-71 (1979), <u>8</u>, 283-286 (1979)

3) Sekoulov, I.

Anwendung von H₂O₂ in der Abwassertechnik Dechema Monographien 81 (1670-1692), 243-256 (1977)

- 4) Kibbel,W.H.
 Hydrogen Peroxide helps solve Industrial Wastewater Problems Industrial Wastes 24, 26-29 (1978)
- 5) Kibbel,W.H., Raleigh,C.W., Sheperd,J.A. Hydrogen Peroxide for Industrial Pollution Control 27th Annual Purdue Industrial Waste Conference Part 2, West Lafayette, Ind. (1972)
- 6) Strunk,W.G.
 Hydrogen Peroxide for Industrial Wastewater Pollution Control Proc. Nat. Conference, Treat Disposal Ind. Wastewater Residues Princeton, N.J., 119-125 (1977)
- 7) Knorre,H. Entgiftung cyanidischer Abwässer Galvanotechnik 66, 374-383 (1975)
- Kibbel,W.H.
 Peroxide Treatment for Industrial Waste Problems Ind. Water Engineering Aug/Sept., 6-11 (1976)

- 9) Anon Ein neues Verfahren zur Oxidation photographischer Abwässer Research Disclosure 160, 38-39 (1977)
- 1o) Hahn,F., Maier,F. Über die Behandlung von Abwässern aus Filmkopieranstalten Chemikerzeitung 95, 467-471 (1971)
- Eisenhauer,H.R.
 Oxidation of Phenolic Wastes, Part I: Oxidation with Hydrogen Peroxide and a Ferrous Salt Reagent J.Water Poll.Contr.Fed. <u>36</u>, 1116-1128 (1964)
- 12) Verfahren zur Entgiftung von Abwässern, die Phenol, Phenolderivate oder Phenol und Formaldehyd enthalten Deutsche Offenlegungsschrift P 27 o3 268 (10.8.78)
- 13) Schlegel,H.G. Aeration without Air: Oxygen Supply by Hydrogen Peroxide Biotech.& Bioeng. 19, 413-424 (1977)
- 14) Cole,C.A., Ochs,L.D., Funnel,F.C.
 Hydrogen Peroxide Solves Need for Supplemental Oxygen Sources in Waste Water Treatment 46th Annual Conference of WPCF, Sept.3o-Oct.5 (1973)
- 15) Chin,C., Hicks,G., Geisler,C.A. Bio-Oxydation Stabilisation Using Hydrogen Peroxide J. Water Poll. Control Fed. 45, 283-291 (1973)
- 16) Ochs,D.L., Cooke,C.W. Industrial Applications of Hydrogen Peroxide AIChE Symp. Series 151, 59-63 (1975)
- 17) Ochs,D.L. Hydrogen Peroxide as a Supplemental Oxygen Source in Industrial Waste Treatment 28th Annual Purdue Industrial Waste Conference, West Lafayette, Ind. 447-453 (1973)

- Houtmeyers, J., Poffé, R., Verachtert, H.
 Hydrogen Peroxide as a Supplemental Oxygen Source for Activated Sludge: Microbiological Investigations European J.Appl.Microbiol. 4, 295-305 (1977)
- 19) Cole,C.A., Paul,P.E., Brewer,H.P. Odor Control with Hydrogen Peroxide J. Water Poll. Contr. Fed. <u>48</u>, 297-306 (1976)
- 20) Bishop,D.F., Stern,G., Fleischmann,M., Marshall,L.S. Hydrogen Peroxide Catalytic Oxidation of Refractory Organics in Municipal Waste Water Ind. Eng. Chem. Process Des. & Dev. 7, 110-117 (1968)
- 21) Robinson,E Waste Water Treatment by Catalytic Oxidation New Processes of Waste Water Treatment and Recovery, Chapter 20, Ellis Horwood Ltd., Published for Society of Chem. Ind.,London
- 22) Fenton,H.J.H. On a new Reaction of Tartaric Acid Chemical News <u>33</u>, 19o (1876)
- 23) Fenton,H.J.H. The Formation and Properties of new Organic Acids Brit. Assoc. Advance Sci. Rep. 663 (1895)
- 24) Fenton,H.J.H. Oxidation of Tartaric Acid in Presence of Iron J.Chem.Soc. 65, 899-905 (1894)
- 25) Manchot,W., Lehmann,G. Über die Einwirkung von Hydroperoyd auf Ferrosalz Annalen der Chemie 460, 179-201 (1928)
- 26) Haber,F., Willstätter,R. Unpaarigkeit und Radikalketten im Reaktionsmechanismus organischer und enzymatischer Vorgänge Berichte der Deutschen Chemischen Gesellschaft 64, 2844-2856 (1931)

- 27) Haber,F., Weiss,J. The Catalytic Decomposition of Hydrogen Peroxide by Iron Salts Proc. Roy. Soc. (Brit.) A <u>147</u>, 332-351 (1934)
- 28) Haber,F., Weiss,J. Über die Hydrolyse des Hydroperoxydes Naturwissenschaften 51, 948-950 (1932)
- 29) Bray,W.C., Gorin,M.H. Ferryl Ion, a Compound of Tetravalent Iron J. Am. Chem. Soc. <u>54</u>, 2124-2125 (1932)
- Barb,W.G., Baxendale,J.H., George,P., Hargrave,K.R.
 Reactions of Ferrous and Ferric Ions with Hydrogen Peroxide.
 Part I: The Ferrous Ion Reaction
 Trans. Farad. Soc. <u>47</u>, 462-500 (1951)
- 31) Barb,W.G., Baxendale,J.H., George,P., Hargrave,K.R. Reactions of Ferrous and Ferric Ions with Hydrogen Peroxide. Part II: The Ferric Ion Reaction Trans. Farad. Soc. 47, 591-616 (1951)
- 32) Barb,W.G., Baxendale,J.H., George,P., Hargrave,K.R. Reactions of Ferrous and Ferric Ion with Hydrogen Peroxide Nature 163, 692-694 (1949)
- 33) Taylor,W., Weiss,J. The Rate Constant of the Reaction between Hydrogen Peroxide and Ferrous Ions J.chem.phys. 21, 1419-1420 (1953)
- 34) Rigg,T., Taylor,W. Weiss.J. The Rate Constant of the Reaction between Hydrogen Peroxide and Ferrous Ions J. chem.phys. 22, 575-577 (1954)
- 35) Rigg,T., Taylor,W., Weiss,J. The Rate Constant of the Bimolecular Reaction between Hydrogen Peroxide and Ferrous Ion Experimentia <u>10</u>, 202-203 (1954)

36) Hardwick, T.J.

The Rate Constant of the Reaction between Ferrous Ions and Hydrogen Peroxide in Acid Solutions Can.J.Chem. 35, 428-436 (1957)

- 37) Hardwick,T.J. The Kinetics of the Oxidation of Ferrous Ions by Hydrogen Peroxide in the Presence of Dissolved Hydrogen and Carbon Monoxide Can.J.Chem. 35, 437-443 (1957)
- 38) Dainton,F.S., Hardwick,T.J. The Reactivity of Hydroxyl Radicals in Aqueous Solution Part I: Reaction with Hydrogen and Carbon Monoxide Trans. Farad. Soc. <u>53</u>, 333-343 (1957)
- 39) Dainton,F.S., Bunn,D., Salmon,G.A. The Reactivity of Hydroxyl Radicals in Aqueous Solution Part II: Relative Reactivities with Hydrogen, Deuterium and Hydrogen Deuteride Trans.Farad.Soc. 55, 1760-1767 (1959)
- 4o) Medalia,A.I., Kolthoff,I.M.
 Redox Recipes I: Reaction between Ferrous Iron and Peroxides
 General Considerations
 J. polymer Science 4, 377-398 (1949)
- 41) Kulikov,I.A. Kinetics of the Reaction between Iron(II) and Hydrogen Peroxide in Nitric Acid and Sulfuric Acid Solution Russian J. of Phys. Chem. 53, 364-366 (1979)
- 42) Kuhn,R., Wassermann,A. Komplexbildung und Katalyse hochreaktiver Zwischenstufen Annalen der Chemie 503, 202-232 (1933)
- 43) Ullmann's Encyklopädie der technischen Chemie Bd. 13, 3.Auflage (1962), S.204-206 und Bd. 17, 4.Auflage (1979) S.696

44) Christen, H.R.

Grundlagen der allgemeinen und anorganischen Chemie 3.Auflage 1971, Verlag Sauerländer-Salle

- 45) D'Ans-Lax Taschenbuch für Chemiker und Physiker Springer Verlag 1964
- 46) Anbar, M., Neta, P.

A Compilation of Specific Bimolecular Rate Constants for the Reactions of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals with Inorganic and Organic Compounds in Aqueous Solution Int.J.Applied Rad. and Isotopes <u>16</u>, 227-242 (1965) & ibid <u>18</u>, 493-523 (1967)

- 47) Dorfman,L.M., Adams,E.A.
 Reactivity of the Hydroxyl Radical in Aqueous Solutions
 National Standard Reference Data System, Report No. NSRDS-NBS 46 (1973)
- Henglein,A., Schnabel,W., Wendenburg,J.
 Einführung in die Strahlenchemie
 Verlag Chemie, Weinheim, Bergstraße (1969)
- 49) Walling,C., Johnson,R.A. Fentons Reagent V: Hydroxylation and Side-Chain Cleavage of Aromatics J.Am.Chem.Soc. 97, 363-367 (1975)
- 50) Baxendale,J.H., Magee,J. The Oxidation of Benzene by Hydrogen Peroxide and Iron Salts Discussions of Farad. Soc. 14, 160-169 (1953)
- 51) Nonhebel, D.C., Walton, J.C. Free Radical Chemistry Cambridge University Press (1974)
- 52) Chutny,B. Mechanismus und Kinetik der Oxidation von Eisen(II)-Ionen und Aceton in wässriger saurer Lösung durch -Strahlung Coll.Czechoslov.Chem.Commun. <u>27</u>, 1877-1885 (1962)

- 53) Chutny,B. Contribution to the Oxidation Mechanism of Ferrous Ions by Hydroxyl Radicals in the Presence of Organic Compounds Coll.Czechoslov. Chem. Commun. <u>31</u>, 358-361 (1966)
- 54) Balakrisnan, I., Reddy, M.P.
 Mechanism of Reaction of Hydroxyl Radicals with Benzene in the Radiolysis of the Aerated Aqueous Benzene System
 J. phys. Chem. 74, 850-855 (1970)
- 55) Dorfman,L.M., Taub,I.A., Bühler,R.E. Pulse Radiolysis Studies I: Transient Spectra and Reaction Rate Constants in Irradiated Aqueous Solutions of Benzene J.chem.Phys. <u>36</u>, 3051-3061 (1962)
- 56) Walling,C. Fentons Reagent Revisited Acc. Chem. Res. <u>8</u>, 125-131 (1975)
- 57) Bannert, Ch., Speiser, P. Oxidation organischer Verbindungen in Wasser Vom Wasser 42, 221-229 (1974)
- 58) Frost,A.A., Pearson,R.G. Kinetik und Mechanismen homogener chemischer Reaktionen Verlag Chemie, Weinheim, Bergstraße (1969)
- 59) Scholes,G., Weiss,J. Oxygen Effekt and Formation of Peroxides in Aqueous Solution Rad. Res. Supplement <u>1</u>, 177-189 (1959)
- Schultze,H., Schulte-Frohlinde,D.
 OH-Radical Induced Oxidation of Ethanol in Oxygenated Aqueous Solution
 J. chem. Soc. Trans. I 5, 1099-1105 (1975)
- Bothe,E., Schulte-Frohlinde,E.
 The Bimolecular Decay of the α-Hydroxymethyperoxyl Radicals in Aqeous Solution
 Z. Naturforschung 33b, 786-788 (1978)

- 62) Rao,P.S., Hayon,E. Redox Potentials of Free Radicals IV: Superoxide and Hydroperoxy Radicals J. phys. Chem. 79, 397-383 (1975)
- Gilbert,E., Güsten,H.
 Der strahlenchemische Abbau biologisch resistenter organischer Schadstoffe in wäßriger Lösung Vom Wasser <u>41</u>, 359-368 (1973)
- 64) Joy,P. Über die Einwirkung von Ozon auf p-Toluolsulfonsäure und Nonylbenzolsulfonsäure in wäßriger Lösung Dissertation Universität Karlsruhe (1976)
- 65) Joy,P., Gilbert,E., Eberle,S.H. Untersuchungen über die Wirkung des Ozons auf ABS und Waschmittel in wäßriger Lösung Organische Verunreinigungen in der Umwelt – Erkennen, Bewerten, Vermindern, Hrsg.: K.Aurand, Schmidt Verlag, Berlin (1978), S.164-177
- 66) Joy,P., Gilbert,E., Eberle,S.H. A Quantitative Investigation of the Reaction of Ozone with p-Toluenesulfonic Acid in Aqueous Solutions as a Model Compound for Anionic Detergent, Water Research 14, 1509-1516 (1980)
- 67) Eberle, S.H. Wasserschadstoffe - Vorkommen und Verhalten im Wasserkreislauf Vorlesungsscriptum WS 1980/81, Universität Karlsruhe
- 68) Gilbert,E., Zinecker,H.
 Ozonation of Aromatic Amines in Water
 Ozone Science and Engeneering <u>2</u>, 65-74 (1980)
- 69) Legube,B., Langlais,B., Dore,M.
 Identification of Ozonation Products of Aromatic Hydrocarbon Micropollutants: Effect of Chlorination and Biochemical Filtration
 5. Int. Ozon Weltkongress Berlin 81, S.541-561 (ISBN 3-7678-0546-4)
- 70) Gilbert,E.
 Über den Abbau von organischen Schadstoffen im Wasser durch Ozon Vom Wasser <u>43</u>, 275-290 (1974)
- 71) Gilbert,E., Güsten,H.
 Die strahlenchemische Oxidation biologisch resistenter organischer Schadstoffe in Industrieabwässern
 Chemiker Zeitung <u>101</u>, 22-27 (1977)
- 72) Wagner,R. Eine Modifikation der Kaliumdichromatmethode zur Bestimmung des totalen Sauerstoffbedarfes organischer Stoffe Vom Wasser 41, 1-26 (1973)
- 73) Eberle,S.H.
 Weitergehende Abwasserreinigung
 Vorlesungsscriptum WS 1979/80, Universität Karlsruhe
- 74) Bernhardt,H., Wilhelms,A.
 Einfluß chelatbildender Substanzen auf die Flockung mit Al-Salzen in der Trinkwasseraufbereitung
 Vom Wasser 38, 215-231 (1971)
- 75) Wasserstoffperoxid Eigenschaften und Anwendung Broschüre der Fa. Degussa, Postfach 6o2, 645o Hanau
- 76) Wasserstoffperoxid Broschüre der Fa. Peroxid-Chemie GmbH, 8o23 Höllkriegelsreuth
- 77) Degen,U. Modellversuche über die Ozonung als Vorstufe der biologischen Abwasserreinigung Dissertation, Universität Karlsruhe (1978)
- 78) Eisenberg,G.M. Colorimetric Determination of Hydrogen Peroxide Ind. Eng. Chem., Anal. Ed. 15, 327-328 (1943)

79) Moss,M.L., Mellon,M.G. Colorimetric Determination of Iron with 2,2'Bipyridyl and with 2,2',2''-Terpyridyl Ind.Eng. Chem. <u>14</u>, 862-865 (1942)