KfK 3329 April 1982

Untersuchungen zur Bildung schwefelhaltiger Aerosolteilchen: Die Bedeutung der heterogenen SO₂-Oxidation

R. Dlugi Laboratorium für Aerosolphysik und Filtertechnik

Kernforschungszentrum Karlsruhe

KERNFORSCHUNGSZENTRUM KARLSRUHE

Laboratorium für Aerosolphysik und Filtertechnik

KfK 3329

Untersuchungen zur Bildung schwefelhaltiger Aerosolteilchen:

Die Bedeutung der heterogenen S0₂-Oxidation

R. Dlugi

Dissertation genehmigt von der Naturwissenschaftlich-Mathematischen Gesamtfakultät der Ruprecht-Karls Universität Heidelberg

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

Als Manuskript vervielfältigt Für diesen Bericht behalten wir uns alle Rechte vor

Kernforschungszentrum Karlsruhe GmbH ISSN 0303-4003

Zusammenfassung

Die Literatur zur heterogenen SO2-Oxidation zeigt, daß die Reaktionsraten und die Produktmasse am Reaktionsende (die Kapazität) unter atmosphärischen Bedingungen von den physicochemischen Eigenschaften der Partikeln und dem thermodynamischen Zustand der Teilchenumgebung abhängen. Zur Charakterisierung der Teilcheneigenschaften wurden verschiedene chemische und physikalische Analysemethoden ausgewählt und miteinander kombiniert. Die Experimente zeigten, daß bei der heterogenen S02-Oxidation als stabiles Primärprodukt Schwefelsäure entsteht, die sich mit Oxiden, Chloriden und Carbonaten teilweise zu Sulfaten umsetzt. Die vergleichende Untersuchung des Reaktionsverlaufes in zwei verschiedenen Reaktortypen bewies, daß der Einfluß von Massentransportvorgängen auf die (katalysierte) S02-Oxidation im Zusammenhang mit einer Reaktionshemmung durch die Produktbildung die Ursache für die sehr unterschiedlichen Reaktionsraten und Kapazitäten bei verschiedenen früheren Experimenten darstellt. Es konnte für Kohlekraftwerksstäube, Zemente und basische Ruße gezeigt werden, daß die Kapazität und die Reaktionsrate jeweils Maxima für neutrale und leicht saure Teilchenoberflächen (6 < pH < 7,5) besitzen, während für basische Stäube vorwiegend wesentlich niedrigere Werte der Kapazität bestimmt werden. Eine mögliche Erklärung hierfür ist das Ausfallen von katalytisch wirksamen Elementen als Hydroxide in basischen Medien. Der Anstieg der Reaktionsrate und der Kapazität bei zunehmender relativer Feuchte ließ sich quantitativ als Funktion des wasserlöslichen Massenanteils, der H^+ -Ionenkonzentration, der SO₂-Konzentration und der Wasseraufnahme der Partikeln beschreiben. Bei gleichem Mangangehalt besitzen die untersuchten Teilchen gegenüber synthetischen Partikeln eine wesentlich höhere SO2-Oxidationsrate und eine größere Kapazität. Durch eine heterogene Reaktion können an anthropogenen Stäuben in Rauchfahnen ca. 1-5 % des emittierten SO_2 bei relativen Feuchten bis 95 %, an Rußen nur 0.02 - 0.1 % oxidiert werden. Die Bildung wasserlöslicher Verbindungen beeinflußt signifikant die Wirkung der Partikeln als Kondensationskeim bei der Wolkenbildung und die Effektivität verschiedener Depositionsmechanismen.

Abstract

Examination on the Formation of Sulfur-containing Aerosols: The Importance of the Heterogeneous SO₂-Oxidation

The literature on the heterogeneous SO_2 -oxidation shows that for atmospheric conditions the reaction rates and capacities depend on the physico-chemical properties of the particles and the thermodynamic environmental conditions. To characterize the particle properties a combination of different chemical and physical analytical methods was used. The experiments showed, that the stable primary product is sulfuric acid which reacts with oxides, chlorides and carbonates to form sulfates. The comparison of the reaction kinetics deduced from experiments in two different types of reactors showed that the influence of diffusion processes and poisoning during the product formation can explain the very different reaction rates and capacities described in earlier publications. For coal fly ash, cements and basic soots the capacity and also the reaction rate shows maxima for neutral and slightly acid particle sufaces (6 < pH < 7,5). For basic dusts the capacities are small. One possible explanation for these findings is the inactivation of catalytic metal ions in basic solutions. The increase of the reaction rate and the capacity with increasing relative humidity can be quantitatively described as a function of the water soluble mass, the H^+ -ion and SO₂-concentrations and the particles water content. For equal Mn content these dusts show a significant higher oxidation rate and capacity than synthetic particles. For relative humidities up to 95 % in plumes about 1-5 % of the emitted SO₂ can be oxidized on dusts but only 0.02 - 0.1 % on basic soots. The formation of water-soluble compounds significantly influences the behavior of particles as condensation nuclei and the efficiencies of different deposition mechanisms.

ΙI

Inhaltsverzeichnis

Seite

1.	Einleitung	1
1.1	Prozesse der Entstehung und chemischen Umwandlung von Aerosolteilchen in der Atmosphäre	2
1.2	Die chemische Umwandlung und Zusammen- setzung atmosphärischer Aerosolteilchen	5
1.3	Die Adsorption und Oxidation des Schwe- feldioxyds an Aerosolteilchen und in Tropfen	12
2.	Modelle zur Beschreibung der hetero- genen Gasreaktionen	18
2.1	Die chemische Reaktion	20
2.2	Diffusion und chemische Reaktion	23
2.3	Chemische Reaktion und Gasphasen- diffusion	31
2.4	Ein Langmuir-Hinselwood Modell der S0 ₂ /0 ₂ Reaktion an Oberflächen	34
3.	Experimentelle Methoden	37
3.1	Die Reaktionskammer (Reaktor A)	38
3.2	Die Versuchsdurchführung im Reaktor A	41
3.3	Der Strömungsreaktor (Reaktor B)	47
3.4	Messung physikalischer Aerosoleigen- schaften	49
3.5	Bestimmung der chemischen und der Elementzusammensetzung der Aerosol- teilchen	51
3.5.1	Die Neutronenaktivierungsanalyse	52

,

Inhaltsverzeichnis Seite 3.5.2 Photoelektronenspektroskopie 52 3.5.3 Sulfatnachweis 55 3:5.4 Nachweis von Schwefelsäure und schwef-58 liger Säure 3.5.5 Nachweis von Elementen in Einzel-59 teilchen 4. Bestimmung verschiedener Partikel-62 eigenschaften 4.1 Physikalische und physico-chemische 63 Aerosolteilcheneigenschaften 4.2 Die Größenverteilungen der verschie-71 denen Aerosolteilchensysteme 4.3 Elementanalysen 81 4.4 Teilchenzusammensetzung und 90' Oberflächenanalyse 4.5 Die Acidität und Basizität der Teilchen 106 5. Bildung von Schwefelsäure und Sulfaten 111 auf Aerosolteilchenoberflächen 5.1 Die S0₂-Oxidation auf oxidhaltigen 112 Stäuben 5.1.1 Die Reaktionskapazität der Stäube 112 5.1.2 Die Reaktionsraten 128 5.1.3 Die Analyse von Einzelteilchen 135 5.2 Die heterogene SO_2 -Oxidation an 139 Salzteilchen 5.3 Diskussion und Zusammenfassung 145 152 5.4 Die Sulfatbildung auf Rußen

ΙV

Inhaltsverzeichnis

6.	Die Bedeutung der heterogenen SO ₂ - Oxidation für atmosphärische Prozesse	161
6.1	Der SO ₂ -Abbau durch heterogene Reaktion in Rauchfahnen	162
6.2	Die Sulfatentstehung durch einen homogenen und einen heterogenen Oxidationsprozeß	166
6.3	Die Wasserdampfkondensation auf Partikeln	175
6.4	Die Bedeutung der SO ₂ -Oxidation auf Rußteilchen für den Strahlungshaushalt	179
7.	Schlußbemerkungen	181
8.	Anhang A Literaturverzeichnis Danksagung	186

Abbildungen Seite Abb. 1 Schematische Darstellung der Entstehungs-4 mechanismen unterschiedlicher Partikelgrößen des atmosphärischen Aerosols Abb. 2 Der troposphärische Schwefelkreislauf 7 Abb. 3 Schematische Darstellung der häufigsten 8 relativen Anreicherung verschiedener Elemente und Ionen in einzelnen Bereichen der Größenverteilung (Aufgetragen ist eine Oberflächenverteilung) Abb. 4 Schematische Darstellung des Ablaufes 19 einer homogenen und heterogenen katalytischen Reaktion Abb. 5 Die Sulfatmasse als Funktion der Re-22,113 aktionszeit für den Kohlekraftwerksstaub VII bei verschiedenen relativen Feuchten $(/_{S0_2}7_0 = 4,5 \text{ mg m}^{-3})$ Abb. 6 39 Schematische Darstellung der Versuchsanordnung Abb. 7 Schematischer Versuchsablauf im Reaktor A 41 45 Abb. 8 Der Verlauf der Massenkonzentration als Funktion der Zeit gemessen (+, o, o) und gerechnet (-). Abb. 9 Der schematische Versuchsablauf im Strö-48 mungsreaktor B Abb 10 Anregungsmöglichkeiten für Elektronenspek-53 tren und schematischer Aufbau hochauflösender Spektrometer

VI

Abbildungen Seite Abb. 11 65 Typische Staubteilchen aus der Kohleverbrennung in Kraftwerken mit hohem Anteil löslicher Substanz auf den Oberflächen Abb. 12 65 Typische Staubteilchen aus einem Kohlekraftwerk, gesammelt auf einem Faserfilter hinter dem Elektrofilter 66 Abb. 13 Große, innen hohle Staubteilchen aus dem Elektrofilter eines Kohlekraftwerkes Abb. 14 Typische Partikel des Zementstaubs 67 PZ 35 68 Abb. 15 Zwei nebeneinander liegende Agglomerate von Sterling MT nach der Reaktion mit. $SO_{2}(2,8 \text{ cm} = 1 \text{ um})$ Abb. 16 69 Ein größerer Ausschnitt einer Probe von Vulcan XC 72 R nach der Reaktion mit SO2 (2, 2 cm = 10 um)Abb. 17 Der Bereich der Summenrückstandskurven 73 der Massengrößenverteilung von Kohlekraftwerksstäuben nach dem Dispergieren für Impaktormessungen am Reaktor A und an Reingasströmen von Steinkohlekraftwerken (Jockel, 1980) Abb. 18 Das Zeitverhalten verschiedener Massen-73-75 a - e: und Oberflächengrößenverteilungen in der Reaktionskammer - berechnet mit dem Modell gemäß Abschnitt 6

VII

Abbildungen

<u>Seite</u>

•			
Abb.	19	Vergleich der Größenverteilung des Kohle- kraftwerksstaubes K I in der Reaktions- kammer mit einer Messung in einer Rauch- fahne 5 km von der Quelle entfernt (Parungo et al., 1978)	77
Abb.	20	Partikeln mit Volumenäquivalentradien r _{äq} < 1 μm, gesammelt an der Station Deuselbach/Hunsrück	79
Abb.	21	Typisches energiedispersives Spektrum für Kohlekraftwerksstäube aus Schmelzkammer- feuerungen (hier nach der Reaktion mit SO ₂)	90
Abb.	22	Häufigkeit verschiedener Elemente in Kohle- kraftwerksstaub vor der Reaktion (Staub K I und Staub aus einer Rauchfahne)	91
АЪЪ.	23	Schematische Darstellung der Schicht- struktur von Kohlekraftwerksstäuben nach der Reaktion mit SO ₂ (r.F. = 55 %)	96
Abb.	24	Form des Schwefelpeaks beim ESCA-Spektrum von K I (bzw. K 14) vor () und nach () der Reaktion mit SO_2 . Bei 169,5 eV ist SO_3^{2-} , bei 174,5 eV SO_3 zu vermuten	98
АЪЪ.	25	Die relative Intensität für verschiedene Elemente nach verschiedenen Sputterzeiten (hier als Schichtdicke ausgedrückt: 15 sec = 100 Å) aus den ESCA-Messungen für die Probe K II nach der Reaktion mit SO ₂	99
АЪЪ.	26	Atmosphärische Teilchen aus Deuselbach/ Hunsrück, die einem Sekundäraerosol ähneln	102

VIII

Abbildungen	<u>Seite</u>
Abb. 27 Vergleich der für den Kohlekraf K I gemessenen Sulfatmasse als der Reaktionszeit mit dem aus o schwinden berechneten Werten na al. (1978)	ftwerksstaub 114 Funktion lem SO ₂ -Ver- ach Haury et
Abb. 28 Die Abhängigkeit der Reaktionsk von der relativen Feuchte für H werksstäube, Zemente (pH = 10, künstliche Aerosolteilchen	xapazität 117 Kohlekraft- 7) und
Abb. 29 Abhängigkeit der Reaktionskapar (d. h. der <u>neu</u> gebildeten Sulfa pH-Wert an der Oberfläche der H werksstäube und Zemente zu Begi Reaktion mit SO ₂	zität 118 atmenge) vom Kohlekraft- inn der
Abb. 30 Die auf den Sulfatgehalt vor Be der Reaktion mit SO ₂ normierte für Kohlekraftwerksstäube und 2 im Vergleich mit Modellrechnung	eginn 120 Kapazität C Zementstaub gen
Abb. 31 Der Einfluß solarer Strahlung a Reaktionskapazität des Kohlekra staubes K VI $(/_{S0}_{2}, 7_{0}) = 4,5$ mg	auf die 124 aftwerks- g m ⁻³)
Abb. 32 a Die nach den Gleichungen (2) ba (5b) berechnete Sulfatbildung a Probe K VII im Vergleich mit de	zw. (5), 130 für die en Meßdaten
Abb. 32 b Die nach der Gleichung (23) ber Sulfatbildung für die Probe K V Vergleich mit den Meßdaten	rechnete 131 VII im

Abbildung	en	<u>Seite</u>
Abb. 33	Die Abhängigkeit der Reaktionskonstante a _o vom pH-Wert und der relativen Feuchte für Kohlekraftwerksstäube und Zemente	134
Abb. 34	Die relative Anzahl der Partikeln, die mit SO ₂ reagiert haben,als Funktion der relativen Feuchte	136
Abb. 35	Die Reaktionsrate verschiedener mangan- haltiger Aerosolteilchen bei r.F. = 95 % und $/ SO_2 / \sigma^2 1,8 \text{ mg m}^{-3}$ im Vergleich mit dem Bereich der Raten von Kohlekraftwerksstäuben, Zementen und Rußen sowie den Raten für manganhaltige Lösungen	141
Abb. 36	Gemessene Reakti p nskapazitäten verschie- dener Aerosolsysteme	149
Abb. 37	Die Oberfläche einer mit Ruß (Elftex) bedeckten Trägerplatte vor der Reaktion mit SO ₂	152
Abb. 38	Die Oberfläche einer mit Ruß bedeckten Trägerplatte nach der Reaktion mit SO ₂	153
Abb. 39	Bildung von Sulfat als Funktion der Zeit und der Vorbehandlung für zwei ver- schiedene Ruße	154
Abb. 40	Die Reaktionskapazität für verschiedene Ruße als Funktion der relativen Feuchte	155

Х

Abbildungen		
Abb. 41 Der Vergleich zwischen der gemessenen Sulfatbildung mit den Modellrechnungen für Ruß	158	
Abb. 42 Die Größenverteilung der Primärteil- chen (Kohlekraftwerksstaubteilchen)	170	
Abb. 43 Die Schwefelsäurebildung auf Primärteil- chen durch Koagulation mit Schwefel- säurepartikeln	171	
Abb. 44 Die Schwefelsäurebildung auf den Primär- teilchen durch eine heterogene Reaktion und durch homogene Keimbildung und Koagulation	173	
Abb. 45 Die kritische Übersättigung für Kohle- kraftwerksstäube, Zemente und Vulkan- ascheteilchen	176	
Abb. 46 Der Bereich der kritischen Übersättigung für Rußteilchen	177	
Abb. 47 Mittelwerte des Absorptionsindex	180	

XI

Tabel	<u>l'en</u>		<u>Seite</u>
Tab.	1	Gleichgewichtskonstanten für das SO ₂ -System	27
Tab.	2	Grenzwerte der Partikelmassenkon- zentration zur Zeit $t_i = 0.5 t_z$ für die Auswertung von Versuchen im Reaktor A	43
Tab.	3	Mittlere Materialdichten § und dy- namische Formfaktoren ¤ der verwen- deten Aerosolteilchen	63
Tab.`	4	Angaben über synthetische Ruße der Firma Cabot Corp.; in Klammern /7 eigene Meßergebnisse	69
Tab.	5	Die Wasseraufnahme einiger Aerosol- teilchenproben (K I,K II, S I: Tab. 7)	70
Tab.	6	Die für die Berechnung des Zeitver- haltens von Log-Normalverteilungen verwendeten Parameter	76
Tab.	7	Der Elementgehalt der verschiedenen bei den Versuchen verwendeten Aerosol- materialien	83
Tab.	8	Spezifische Elementverteilung in Aero- solmaterialien aus Emissionsmessungen	84
Tab.	9	Der Bereich des wasser- und säure- löslichen Massenanteils einzelner Elemente und Verbindungen in den Kohle- kraftwerksstäuben aus Tab. 7 <u>vor</u> der Reaktion mit SO ₂	85
Tab.	10	~ Spezifische Elementverteilung in Aero- solmaterialien von Immissionsmessungen mit Impaktoren	87

XII

<u>Tabellen</u>

<u>Seite</u>

Tab.	11	Prozentualer Anteil verschiedener Elemente in verschiedenen Einzelteilchen	93
Tab.	12	Die relative Intensität für verschiedene Elemente in den Teilchen (in denen dieses Element nachweisbar ist) nach verschie- denen Sputterzeiten bezogen auf die nichtbehandelte Probe	95
Tab.	13	Vergleich der Sulfatbestimmung mit der BaCl ₂ -Methode und der Analyse des Schwe- felgehaltes von Einzelteilchen mit dem EDS <u>vor</u> und <u>nach</u> der Reaktion mit SO ₂ .	104
Tab.	14	Vergleich der näherungsweise berech- neten Aciditätsfunktion H _o für ver- schiedene Materialien mit dem entspre- chenden Gewichtsanteil von H ₂ SO ₄ in einer Säurelösung mit dem entsprechenden pH-Wert.	108
Tab.	15	Die aus den Meßdaten berechneten, aus der Analyse der Ionen- und Elementzu- sammensetzung der Proben berechneten und die an Proben gemessenen m _w /m _o Werte	121
Tab.	16	Die Reaktionskapazität von Aerosolteil- chenproben bei der SO ₂ -Oxidation	125
Tab.	17	Die Schwefelsäuremenge als Funktion der Reaktionszeit für K I, K II und K VII bei r. F. ≃ 80 %	126
Tab.	18	Die Reaktionskapazitäten und die Re- aktionszeiten t _c bis zum Erreichen von C für K VII aus Experimenten im Reaktor A und im Reaktor B	127

XIII

Tabellen

Tab.	19	Die verschiedenen Parameter für die Anpassung der experimentellen Ergeb- nisse mit den Gleichungen (5) und (5a)	129
Tab.	20	Näherungsweise berechnete Grenzwerte a bei entsprechenden SO ₂ -Konzentra- tionen	133
Tab.	21	Die relative Anzahl der Teilchen (K I), die mit SO ₂ reagiert haben, für drei Größenklassen	137
Tab.	22	Reaktionskapazitäten von katalytisch wirksamen Aerosolen bei der SO ₂ -Oxidation	139
Tab.	23	Die Reaktionskapazität für Ruße	153
Tab.	24	Die Reaktionskapazität pro m ²	156
Tab.	25	Die verschiedenen Paramter für die Anpassung der experimentellen Ergeb- nisse für Ruße	157
Tab.	26	Die maximal durch heterogene Oxidation abbaubare SO ₂ -Menge für niedrige Par- tikelkonzentrationen hinter modernen Elektrofiltern.	164

1. Einleitung

Natürliche und anthropogene Prozesse führen der Atmosphäre ständig eine große Zahl verschiedener gas- und partikelförmiger Spurenstoffe zu. Neben den gasförmigen Schwefel-, Stickstoff- und Kohlenwasserstoffverbindungen kommt den in Partikeln auftretenden S-, N- und C-Verbindungen eine große Bedeutung für die in der Atmosphäre ablaufenden chemischen Reaktionen zu. Die Aufenthaltsdauer dieser Gase und Teilchen in der Atmosphäre wird durch ihre physikalischen Eigenschaften und ihre chemische Reaktionsfähigkeit bestimmt, da hiervon die jeweilige Effektivität von physikalischen und physico-chemischen Abbauprozessen abhängt.

- 1 -

Die Partikeln besitzen nicht nur eine passive Bedeutung für die Spurenstoffkreisläufe sondern beeinflussen aktiv - je nach Größe und Zusammensetzung - den Strahlungshaushalt der Erdatmosphäre und wirken als Kondensationskeime bei der Entstehung von Wolken und Nebel. Vor allem im regionalen Bereich um die Industriezentren tragen die Aerosolteilchen wegen der in ihnen enthaltenen sauren und z. T. kanzerogenen Verbindungen zur Belastung der Biosphäre und zur Korrosion an Materialien bei. Speziell bei diesen Vorgängen beeinflußt die chemische Reaktivität der Teilchen deren Wirkung, da saure und kanzerogene Verbindungen z. T. erst durch heterogene Oxidationsprozesse auf Partikeloberflächen gebildet werden.

Das Gesamtsystem aus Teilchen und Gasen wird als Aerosol bezeichnet. Das Aerosol ist an jedem Ort der Erdatmosphäre wegen der unterschiedlichen Verteilung, Art und Stärke von Gas- und Teilchenquellen verschieden. Die Gase und Teilchen werden sowohl durch natürliche als auch anthropogene Quellen - z. B. Ozeane, Vulkane, Industrie- und Kraftwerke und Kraftfahrzeuge – emittiert. Die direkt in die Atmosphäre abgegebenen Teilchen nennt man gewöhnlich Primärteilchen, während als Sekundärteilchen diejenigen Partikeln bezeichnet werden,

. . .

welche erst durch physikalische und chemische Prozesse in der Atmosphäre entstehen.

In den folgenden Abschnitten sollen einige Ergebnisse von Untersuchungen zur Bildung von schwefelhaltigen Aerosolteilchen in der Atmosphäre zusammen mit Resultaten der Analyse von atmosphärischen Partikelproben diskutiert werden, um die Bedeutung einiger Bildungsmechanismen für partikelförmige Schwefelsäure und Sulfate aufzuzeigen. Hierbei wird vor allem auf die Bedingungen eingegangen, unter denen ein größerer Anteil des vorhandenen SO₂ auf den Oberflächen von Aerosolteilchen zu Schwefelsäure und Sulfaten oxidiert werden kann.

1.1 <u>Prozesse der Entstehung und chemischen Umwandlung von</u> <u>Aerosolteilchen in der Atmosphäre</u>

In der Folge werden die Veränderungen eines Aerosols aus der Sicht des physikalischen und chemischen Verhaltens der Partikeln aus betrachtet. Die Umwandlung von gasförmigen Bestandteilen der Atmosphäre zu Reaktionsprodukten, die über homogene und heterogene Kondensationsprozesse Partikeln bilden können, wird dabei als Quelle für partikelförmige Substanz angesehen.

Die Massenkonzentration der Aerosolteilchen beträgt in "Reinluft" oft weniger als 1 μ g m⁻³ und steigt über den Kontinenten (im sogenannten "Background") auf Werte um 100 μ g m⁻³ an. In stärker anthropogen beeinflußten Gebieten bzw. in Städten können Werte bis ca. 2 000 μ g m⁻³ erreicht werden.

Die anthropogen erzeugte Teilchenmasse unterhalb von D = 3 - 5 µm sollte nach verschiedenen Abschätzungen ca. 7 - 30 % der jährlich insgesamt weltweit produzierten Partikelmasse betragen (Jaenicke, 1980). Über einem großen Teil der Kontinente überdecken Partikeln aus anthropogenen Quellen den Einfluß anderer Teilchenquellen, z. B. des Ozeans. Auch über den Ozeanen selbst sollte jedoch zumindestens ein Teil des "Überschußsulfates" im Seesalzaerosol von kontinentalen Quellen stammen (Georgii, 1978).

Betrachtet man die Partikelzahlkonzentrationen, so lassen sich in "Reinluft" einige hundert Teilchen nachweisen, während in Industriegebieten 10^5 pro cm⁻³, in Rauchfahnen noch höhere Teilchenzahlkonzentrationen gemessen werden. Während bei den Teilchenzahlen die Partikeln unter 0.1 - 0.5 µm Durchmesser den größten Beitrag zur Gesamtzahl liefern, findet man die Masse oft bimodal (manchmal auch trimodal) verteilt auf zwei Moden der Größenverteilung mit den Hauptanteilen zwischen etwa 0.1 - 2 µm und 2 - 40 µm Durchmesser. Die Partikeln unter 0.1 µm Durchmesser tragen zur Volumen- oder Massenkonzentration nur wenig bei. Da sie zumindestens teilweise jedoch erst in der Atmosphäre entstanden sind (Abb. 1), geben ihre Anzahl- und Massenverteilung zusammem mit der chemischen Analyse Aussagen über mögliche Bildungsmechanismen. Berechnet man aus den Meßdaten Oberflächenverteilungen (z. B. Whitby, 1978 a), so tragen in den urbanen Gebieten der Erde vorwiegend die Partikeln zwischen etwa 0.01 - 2 µm Durchmesser (in Rauchfahnen ca. 0.01 - 8 µm) zur Oberfläche bei (Abb. 1).

Obwohl der Transport durch die Atmosphäre die Eigenschaften der Teilchen durch physikalische (Abb. 1) und chemische Prozesse (Abb. 2) stark verändern kann, läßt sich die aus Messungen in der Atmosphäre abgeleitete Dreiteilung der Oberflächenverteilung teilweise durch in einzelnen Partikelgrößenbereichen unterschiedlich wirksame Bildungsmechanismen deuten (z. B. Mc. Murry, 1977; Middleton et al. 1980; Gelbard und Seinfeld, 1979; Whitby, 1978 a). Dies gilt auch für die Massenverteilung selbst. Die Teilchen im Aitkenkernbereich können durch homogene Kondensation von Dämpfen entstehen und wachsen durch Koagulationsprozesse miteinander und etwas größeren Partikeln zu Teilchen im Akkumulationsbereich (d. h. mit der längsten "Lebensdauer" in der Atmosphäre)

von etwa 0.1 - 0.5 µm Durchmesser an. Daneben laufen die Prozesse der heterogenen Kondensation von Dämpfen auf den gerade neu entstandenen, bzw. bereits vorhandenen Teilchen ab (z.B. Mc Murry et al., 1981; Perrin, 1980). Ein großer Teil der vor allem bei Messungen in Rauchfahnen gewonnenen Ergebnisse kann jedoch nur interpretiert werden, wenn neben den verschiedenen Kondensationsprozessen noch eine heterogene chemische Oxidation von Gasen auf Partikeln angenommen wird (Abschnitt 1.2 und 1.3). Die schematische Darstellung einiger Teilchenbildungs- und Umwandlungsmechanismen in Abb. 1 ist gegenüber der üblichen Darstellungsweise (Whitby, 1978 a) etwas modifiziert. Die bei etwa 2 µm Partikeldurchmesser angenommene starke Trennung des Bereichs der "Riesenteilchen" von dem der kleineren Teilchen (wegen ihrer als unterschiedlich angenommenen Entstehungsmechanismen) hat sich bei neueren Untersuchungen als nicht begründbar erwiesen. Sowohl aus Kraftwerken als auch anderen Industriewerken werden direkt Teilchen im Submikronbereich emittiert (z. B. Ondov und Biermann, 1980). Auch im Staub aus Wüstengebieten findet man eine große Zahl von Partikeln bis etwa 0.01 µm Durch-

<u>Abb. 1:</u> Schematische Darstellung der Entstehungsmechanismen unterschiedlicher Partikelgrößen des atmosphärischen Aerosols (aufgetragen ist eine **Oberflächenverteilung**)

messer (D'Almeida: u. Jaenicke, 1980). Dabei sind jeweils vergleichbare Bildungsmechanismen für die Entstehung dieser Primärteilchen in den verschiedenen Moden der Größenverteilung verantwortlich; z. B. entstehen die Flugstaubpartikeln in Kohlekraftwerken beim Verbrennungsprozeß vorwiegend durch homogene und heterogene Kondensationsprozesse. Für die Entfernung der Partikeln aus der Atmosphäre sind die physikalischen Eigenschaften - wie z. B. Größe, Materialdichte und Form - bestimmend, da sie direkt in die Impaktionswahrscheinlichkeit und die Sedimentationsgeschwindigkeit der Partikeln eingehen. So kann z. B. die trockene Ablagerung von Partikeln am Boden bzw. an Grenzflächen durch den gleichzeitigen Einfluß von Impaktion, Sedimentation und turbulenten Transport erklärt werden (Roedel, 1981). Bei dem Prozeß des Auswaschens sind im wesentlichen die gleichen physikalischen Größen der Teilchen und Tropfen von Bedeutung, die auch die direkte Ablagerung am Boden bestimmen. Nehmen die Teilchen unterhalb 100 % relativer Feuchte Wasser auf, so ändert sich ihr Sedimentationsverhalten (Hänel, 1976). Wachsen die Teilchen zu Wolkentropfen an, so können sie als Regentropfen ausfallen bzw. ausregnen. Vor allem die Wirksamkeit der beiden letzteren Mechanismen hängt neben den physikalischen Eigenschaften auch von der chemischen Zusammensetzung der Partikeln ab (Pruppacher und Klett, 1978; In Lee et al., 1979).

1.2 <u>Die chemische Umwandlung und Zusammensetzung atmos-</u> phärischer Aerosolteilchen

Die experimentellen Beobachtungen zur Bildung schwefelund sulfathaltiger Aerosole in der Atmosphäre zeigen eine starke Abhängigkeit der Bildungsraten vom jeweiligen Zustand der planetarischen Grenzschicht (wie z. B. dem vertikalen Wind-, Temperatur- und Feuchteprofil, dem Stabilitätsparameter, der Rauhigkeitshöhe), von der solaren Einstrahlung und von der Konzentration zahlreicher Spurengase wie Wasserdampf, Ozon, Stickstoffoxide, Kohlenwasserstoffe und OH-Radikale. Von Wichtigkeit erscheint ferner die Anwesenheit katalytisch wirksamer Aerosolteilchen, wobei vor allem deren wasserlöslicher Anteil und dessen pH-Wert einen Einfluß auf die

- 5 -

gebildete Sulfatmenge besitzen sollten. Die Abb. 2 zeigt die für den troposphärischen Schwefelkreislauf wichtigsten Adsorptions- und Oxidationsmechanismen schwefelhaltiger Gase an Partikeln und in Wassertropfen. Die homogenen Gasreaktionen (z. B. Calvert et al., 1978) wirken als Quellterm (a, c, d₁, d, e) für gas- bzw. dampfförmige Produkte und die Depositionsvorgänge (b, q) als Senken. Bei den Abbauvorgängen der Gase spielen neben den bereits erwähnten Prozessen Sorptionsvorgänge von Gasen an Partikeln sowie Tropfen und nachfolgene Oxidation zu H_2SO_4 oder/und Sulfaten eine Rolle. Deshalb werden diese Prozesse von den Oberflächeneigenschaften der Partikeln und Tropfen, ihrer Größe, chemischen Zusammensetzung sowie den daraus resultierenden Gleichgewichtszuständen abhängen (Laidler, 1950, Klose, 1977).

Als ein Produkt der SO_2 -Gasphasenoxidation wird H_2SO_4 -Dampf angesehen, der über die Prozesse der homogenen Nukleation (z. B. Middleton und Kiang, 1978; Stauffer et al., 1973) in heterogene Kondensation und die Dissoziation von Gasen und Dämpfen auf vorhandenen Teilchen bzw. in Tropfen als konkurrierende Prozesse und sollten nach einer rein mechanischen Vorstellung den größten Beitrag zur Bildung neuer Partikelmasse im Bereich des Maximums der Partikeloberflächenverteilung liefern (z. B. Abb. 1, 3). Diese heterogenen Prozesse werden jedoch stark von der chemischen Zusammensetzung der Teilchen (und Tropfen) beeinflußt, so daß die Gleichgewichtskonzentration von Gasen und Dämpfen in wäßrigen Lösungen unter atmosphärischen Bedingungen um mehrere Zehnerpotenzen variieren können (z. B. Robinson und Stokes, 1959; Freyer, 1976). Deshalb hängt auch die Adsorption und Oxidation von Gasen (z. B. durch katalytisch wirksame Verbindungen oder aktive Zentren) an einzelnen Partikeln von deren chemischer Zusammensetzung ab, wie z. B. Peterson und Seinfeld (1980) oder Middleton et al. (1980) durch Modellrechnungen zeigten. Ein Resultat dieser Studien ist, daß die Prozesse, welche die verschiedenen Teilchen durchlaufen, nicht dazu führen, daß homogen gemischte Aerosolteilchen auftreten müssen. Dies heißt, daß eine Probe atmosphärischer Partikeln aus zahlreichen chemisch völlig verschiedenen Teilchen bestehen kann. Somit ist die generelle Anwendbarkeit des Konzepts der inneren und

und <u>äußeren</u> Mischung in Frage gestellt (Winkler und Junge, 1972).

Abb. 2: Der troposphärische Schwefelkreislauf in der Atmosphäre

 \square nachweisbare Verbindungen und Ionen, Δ Prozesse mit eindeutiger Richtung, \Diamond reversible Prozesse, a Quelle, b Senke, c Partikelbildung aus der Gasphase, d Sorption von Gasen und Dämpfen, d₁ Sorption von Gasen, Dämpfen und Partikeln, d₂ heterogene Oxidation von Gasen an Partikeln, e Lösung von Gasen und Partikeln, f Auskristallisieren, g Wasseraufnahme von Aerosolteilchen, h Reaktion in konzentrierten Lösungstropfen, i Kondensation von Wasserdampf (Tropfenbildung), j Verdampfung von Tropfen, k Einfangen von Aerosolteilchen durch Tropfen, l Reaktion in verdünnten Lösungstropfen, m Regen, n Gefrieren unterkühlter Tropfen, o Schmelzen von Eisteilchen, p direkte Sublimation von Eis auf Keimen, q Niederschlag Betrachtet man unter diesem Gesichtspunkt die Ergebnisse der chemischen Analysen von Aerosolteilchenproben (Abb. 3), so erscheint es plausibel, daß nur einige häufig wiedergefundene Ergebnisse aufgrund der physikalischen und chemischen Vorgänge interpretierbar sind. Für die Ionen H⁺ und SO₄²⁻ z. B. wird oft eine Anreicherung (bezogen auf das Integral über alle untersuchten Teilchengrößen) im Bereich D < 2 μ m nachgewiesen (z. B. Hering et al., 1981; Hidy et al., 1975; Stevens et al., 1978; Puxbaum et al., 1979; Höfken, 1981).

<u>Abb. 3:</u> Schematische Darstellung der häufigsten relativen Anreicherung verschiedener Elemente und Ionen in einzelnen Bereichen der Größenverteilung (aufgetragen ist eine Oberflächenverteilung)

In vielen der untersuchten Fälle werden nur etwa 10 - 30 🖇 dieser Ionen im Bereich der "Riesenteilchen" (D ≥ 2.0 µm) zusammen mit basischen Komponenten gefunden. Das Bild entspricht der Vorstellung, daß z. B. H₂SO₄ mit geringem Sättigungsdampfdruck (Roedel, 1979) vorwiegend über die Mechanismen der homogenen und heterogenen Kondensation gebildet und im Bereich D \leq 1.0 μ m angereichert wird (z. B. Middleton und Kiang, 1978). Allerdings gibt es - zumindestens in urbanen Gebieten - Hinweise dafür, daß beträchtliche Schwefelsäurekonzentrationen auch bei geringer oder fehlender solarer Einstrahlung (im Winterhalbjahr bzw. nachts) auftreten (z. B. Panter und Penzhorn, 1979). In der Nähe von Karlsruhe fand man Schwefelsäurekonzentrationen von etwa 0.2 - 15.9 μg m^{-3} am Tag und 0.2 - 10.2 μ g m^{-3} nachts mit Maxima im Juni/ Juli <u>und</u> Februar. Hierbei trat Schwefelsäure nachts bzw. im Winter verstärkt im Größenbereich D ≥ 1.0 µm auf. Somit müssen z. B. auch Reaktionen an Partikeln oder in Tropfen außer den photochemisch induzierten Reaktionen mit anschließender Partikelbildung durch Kondensationsprozesse zur Entstehung schwefelsäurehaltiger Teilchen beitragen (Abb. 2). Auch Okita (1967) und Ono (1981) fanden in japanischen Städten unlösliche Teilchen, die auf der Oberfläche Schwefelsäure und Sulfate tragen. Basset et al. (1981) finden bei Modellrechnungen die gleiche Form einer Aerosolgrößenverteilung für den Einfluß von Kondensations- und Koagulationsprozessen ohne und mit zusätzlicher heterogener Sulfatbildung auf den Partikeln. Die Sulfatbildung durch heterogene Reaktionen steigt mit zunehmender Partikelgröße an und überwiegt gegenüber der Rate der Sulfatentstehung durch Kondensationsund Koagulationsprozesse schon bei Teilchen um etwa 0.2 µm Durchmesser.

Ergebnisse dieser Art werden auch bei Untersuchungen zum SO₂-Abbau in Rauchfahnen gefunden (z. B. Georgii et al, 1977; Gillani et al., 1978; Husar et al., 1978, 1981; Whitby et al., 1978; Forrest et al, 1979; Mc Murry et al., 1981; Dittenhofer, 1979). Bei zunehmender Intensität der solaren Einstrahlung wird bei diesen Messungen ein Anstieg der

Produktion kleiner Partikeln beobachtet, während bei hohen relativen Feuchten und sichtbarer Wasserdampfkondensation die Produktion feiner Teilchen stark zurückgeht, jedoch die Sulfatproduktion sehr stark ansteigt. Dittenhoefer (1979), Mamane und de Pena (1978), Mamane und Pueschel (1979) sowie Parungo et al. (1979) finden in Rauchfahnen Mischteilchen - d. h. Flugstäube mit einer Sulfat- bzw. Schwefelsäureschicht auf der Oberfläche - neben offensichtlich reinen Sulfatteilchen und Nitratteilchen. Die Zahl der Mischteilchen ist besonders hoch bei sehr hohen relativen Feuchten, wenn SO2-Abbauraten von 7 % $\rm h^{-1}$ und mehr bestimmt werden. Bei fast allen Experimenten ist jedoch nur eine qualitative Interpretation der Meßdaten wegen der Beeinflussung der physikalischen und chemischen Partikelbildungsprozesse durch die turbulenten Durchmischungsvorgänge in der Rauchfahne und die nur teilweise berücksichtigten Ablagerungsprozesse möglich (Newman, 1981). Dies ist insofern nicht verwunderlich, als z. B. Freiberg (1978) für ein ähnlich einer Rauchfahne expandierendes Volumen zeigte, daß die Oxidationsprozesse stark von dem Verdünnungsvorgang abhängen. Dabei zeigen die Mechanismen der heterogenen (katalytischen) SO_2 -Oxidation auf Partikeln (Abb. 2, d_2), die Oxidation durch 03 in Tropfen und die homogene Gasphasenoxidation 2. Ordnung den gleichen Zeitverlauf der Abbauraten im expandierenden Volumen. Ein vergleichbares Ergebnis für das Aerosolverhalten finden auch Basset et al. (1981). Damit wird an einem sehr vereinfachten Beispiel deutlich, welche Bedeutung allein der Verdünnungsvorgang bzw. die turbulente Durchmischung einer Rauchfahne mit der Umgebungsluft für den Abbau von Gasen und Teilchen besitzt. Aus dem Zeitverlauf einer Produktkonzentration in einer Rauchfahne kann also nicht auf den reaktionskinetischen Mechanismus geschlossen werden. Bisher ist die Frage nicht geklärt, in welchem Maße heterogene Reaktionen zum SO2-Abbau in Rauchfahnen, Wolken, Nebel bzw.in der urbanen Atmosphäre beitragen. Der Gasabbau an Partikeln wird bei Modellrechnungen nur benutzt, um die

gefundenen Ergebnisse mit geschätzten Abbauraten anzunähern. Für diesen Prozeß des heterogenen SO₂-Abbaus an Partikeln sind bisher nur wenige – sehr unterschiedliche – Reaktionsraten gemessen (siehe Abschnitt 1.3).

Betrachtet man in der Oberflächenverteilung , Abb. 3, die Massenanteile anderer Ionen und Elemente, so findet man im Bereich der Aitkenkerne neben den aus der Gasphase gebildeten H2S0, - und Sulfatpartikeln Rußteilchen und kohlenwasserstoffhaltige Partikeln aus Verbrennungsprozessen (Lürzer, 1979). Diese letzteren Teilchenarten lassen sich ebenfalls im Akkumulationsbereich nachweisen, in dem auch meistens ihr größter Massenanteil auftritt. So sind z. B. etwa 2 - 10 % der Teilchen in ländlichen anthropogen beeinflußten Regionen Mitteleuropas Rußpartikeln mit nur geringem Schwefelgehalt (Andre et al., 1981), während der Anteil in Städten auf 25 % und mehr steigen kann (Weiss et al., 1978; Puxbaum, 1979). Die Teilchen mit Elementen, die eine SO₂-Oxidation katalytisch beeinflussen können (Abschnitt 1.3), existieren in beiden Moden der Größenverteilung ab D ≈0,06 µm. Im Größenbereich kleiner 2 µm sind diese Elemente u. a. in z. T. rußhaltigen Verbrennungsrückständen aus der Industrie, aus dem Hausbrand und aus Kraftfahrzeugen angereichert, treten aber u. a. auch in Köhlekraftwerksstaubteilchen und natürlichen Aerosolen auf (Ondov und Biermann, 1980). Im Bereich $D > 2 \mu m$ findet man neben mechanisch durch Erosion erzeugten Partikeln hauptsächlich Teilchen anthropogener Herkunft aus Kohlekraftwerken, Metallhütten und Kokereien, Kalk- und Zementwerken und verschiedenen chemischen Betrieben. Gerade die emittierten Industriestäube weisen jedoch oft zwei Maxima der Massengrößenverteilung bei Volumenäquivalentdurchmessern von etwa 0.1 - 0.4 und 0.8 - 3 µm auf, was durch die geringe Abscheidewirksamkeit von Elektrofiltern und Naßwäschern in diesem Größenbereich erklärbar ist. Die Industriestäube tragen je nach der verwendeten Gasreinigungstechnik oft schon ca. 0.1 - 10 % der Eigenmasse an Sulfaten und ca. 0.05 % an Schwefelsäure auf der Oberfläche, wenn sie emittiert werden. Je nach den Bildungsmechanismen, die bei den Entstehungsprozessen dominieren (Abb. 1), sind unterschiedliche Mengen katalytisch wirksamer Metalle auf den Teilchenoberflächen

angereichert (Brosset, 1978; Dlugi und Jordan, 1978; Linton et al., 1976; Smith et al, 1979). Bei der Wirksamkeit der Metalle als Katalysator für die SO_2 -Oxidation kommt es allerdings darauf an, in welcher Weise sie gebunden sind. So ist z. B. γ -Fe₂O₃ als Katalysator geeignet, α -Fe₂O₃ wegen seiner Korundstruktur weniger (Rasch, 1977). Über die Wirksamkeit von Verbindungen, die z. B. Al, Si, Ti, Cr, Cu, Zn und Ni oder C enthalten, liegen noch wenige oder z. T. sich widersprechende Ergebnisse vor. Einige sollen im folgenden Abschnitt diskutiert werden.

1.3 <u>Die Adsorption und Oxidation des Schwefeldioxyds</u> <u>an Aerosolteilchen und in Tropfen</u>

Bei der heterogenen Oxidation von Gasen an Partikeln kann zwischen Bereichen niedriger - bis etwa 70 % - und höherer relativen Feuchte - von 70 - 100 % - unterschieden werden (Abb. 2). Die Gründe hierfür sind, daß die experimentellen Untersuchungen zum Feuchtewachstum atmosphärischer Aerosolpartikeln etwa ab 70 % eine stärkere Wasseraufnahme der Teilchen zeigen (Hänel, 1976; Winkler, 1970). Bei diesem Prozeß des Anwachsens gehen die wasserlöslichen Bestandteile der Partikeln in Lösung über. In Übereinstimmung mit diesen Ergebnissen zeigen sowohl die erwähnten atmosphärischen Experimente als auch die Laborversuche zum Schwefeldioxydabbau an Teilchen, daß die Abbauraten mit zunehmender relativer Feuchte stark ansteigen. Über den Einfluß von Katalysatoren auf die Oxidation von Schwefeldioxyd in Wolkentropfen (siehe Abb. 2) berichten Barrie (1975), Barrie und Georgii (1976), Hegg und Hobbs (1978) und Beilke et al. (1975), wobei auch der Einfluß von Ozon, Stickstoffdioxyd und einigen organischen Substanzen betrachtet wird. Bei geringer Konzentration katalytisch wirksamer Metalle in den Tropfen sollte in der Atmosphäre die Reaktion von Schwefeldioxyd mit Ozon dominieren und zu Abbauraten von maximal 3 % h⁻¹ führen (Erikson et al., 1977). Bei Anwesenheit katalytisch wirksamer Schwermetalle verstärkt Ozon die Reaktion und erhöht die Abbaurate um mehr als das Zweifache (Barrie, 1975; Penkett et al., 1979).

Die zweiwertigen Mangan- und Eisenionen besitzen gemeinsam eine wesentlich stärkere katalytische Wirkung auf den Schwefeldioxydabbau in Wassertropfen als eine vergleichbare Menge eines Katalysators allein (Barrie, 1975; Barrie und Georgii, 1976). Katalytische Eigenschaften sollen auch Eisen-3-Ionen und Kupfer-2-Ionen (Hegg und Hobbs, 1978; Eatough et al., 1978, 1981) besitzen, während Barrie (1975) für Kupfer-2-Ionen keinen meßbaren Effekt findet. Die Reaktionsraten hängen stark vom pH-Wert ab. Die Oxidationsrate für pH = 2 ist klein und steigt für größere pH-Werte stark an, was schon Junge und Ryan (1958) berichten. Ferner ist eine Abhängigkeit der Reaktionsraten von der Temperatur und der Katalysatorkonzentration festzustellen. Für Fe (III) findet Fuzzi (1978) eine Änderung der Reaktionsordnung n hinsichtlich S (IV) von n = 1 (pH ≤ 4) zu n = 2 (pH ≥ 5). Chang et al. (1978) messen eine sehr hohe Sulfatproduktion durch die katalytische Oxidation von H_2SO_3 in Rußsuspensionen. Die Reaktionsrate ist im Bereich 1,45 \leq pH \leq 7,5 unabhängig vom pH-Wert und steigt mit der Temperatur an. Es wird jeweils eine Reaktion 1. Ordnung, Oter Ordnung und 0.69ter Ordnung für die Abhängigkeit von der Rußkonzentration sowie der H2S03- und der 02-Konzentration gefunden. Eine ähnliche Kinetik ermitteln auch Zuckmantel et al. (1979) für die katalytische Oxidation schwefliger Säure durch verschiedenste Kohlenstoffe. Allerdings sind die insgesamt umgesetzten H_2SO_3 -Mengen niedriger als von Chang et al (1978) angegeben. Offensichtlich hängt die katalytische Aktivität von Kohlenstoffen (und anderen wasserunlöslichen Bestandteilen in den atmosphärischen Aerosolteilchen) u. a. auch von der Oberflächenstruktur der Partikeln und deren Vorbehandlung ab. Weitere Untersuchungen der SO2-Oxidation in Lösungen und Tropfen durch Mangan- und Eisenverbindungen wurden z. B. von Hoather und Goodeve (1934), Junge und Ryan (1958) und Johnstone und Coughanowr (1958) durchgeführt. Über Reaktionen von Schwefeldioxyd mit Aerosolteilchen, die im Feuchtebereich 70 - 100 % Wasser aufgenommen haben, gibt es bisher nur wenige Untersuchungen (Britton und Clarke, 1979; Dlugi et al., 1981a, b; Haury et al., 1978;

Haury, 1976; Calabrese und Sorensen, 1975; Runca-Köberich, 1979; Judeikis et al., 1978; Piver, 1974; Kaplan et al., 1981). In einem urbanen Aerosol sollen etwa 25 % des gesamten Mangan's und 10 % der Gesamtmenge Eisen wasserlöslich sein (Barrie und Georgii, 1976; Zitat: Müller, 1974). Bei Kondensation von Wasserdampf an den Partikeln kann dieser Bestandteil bei sauren Medien in Lösung übergehen, da die Übergangsmetalle die Eigenschaft haben, bevorzugt Wasserdipole anzulagern und stabile Komplexverbindungen zu bilden. In den Hydrathüllen dieser Metalle erfolgt dann eine Lösung des Schwefeldioxyds. Da z. B. Mangan bei der Entstehung von Rauchgasaerosolen vorzugsweise auf der Oberfläche von Primärteilchen kondensiert und sich danach erst das Wasser anlagert, müssen die Manganverbindungen nicht unbedingt wasserlöslich sein, um eine Reaktion mit Schwefeldioxyd herbeizuführen. Etwa 0,1 $\mu {\rm g}~{\rm m}^{-3}$ Mangan kann bei 90 % relativer Feuchte 10 - 30 % des anwesenden Schwefeldioxyds zu Sulfat oxidieren (Wadden et al., 1974), wobei Reaktionsraten von ca. 1 % h⁻¹ zu erwarten sind. Diese Größenordnung der Reaktionsraten finden z. B. auch Haury et al. (1978). Alle Autoren berichten (bzw. nehmen an), daß die Reaktion hinsichtlich des Katalysators nach erster Ordnung abläuft, woraus man aber nicht schließen kann, daß eine monomolekulare Reaktion stattgefunden hat. Es ist bekannt, daß viele komplexe Reaktionen einen Reaktionsablauf nach 1. Ordnung zeigen und die langsamste Reaktion die Ordnung der Gesamtreaktion bestimmt.

Auch bei niedrigeren Feuchten ist an den Aerosolteilchen Wasser adsorbiert. Haury und Jordan (1975), Haury et al. (1978), Brosset (1978) und Runca-Köberich (1979) berichten, daß auch bei relativen Feuchten kleiner 40 % die katalytische Wirkung von mangan- und eisenhaltigen Partikeln nicht verschwindet. Vanadiumpentoxyd besitzt im Gegensatz zu Rußen keine meßbare katalytische Wirkung auf den Schwefeldioxydabbau bei Zimmertemperaturen (Barbaray et al., 1977). Ebenfalls einen geringen Einfluß besitzt rotes Eisenoxid, währendl sich für Manganoxid eine merkliche Erhöhung der Reaktionsrate zeigt. Diese Ergebnisse bedeuten, daß sowohl die Löslichkeit einer Verbindung als auch der Bindungspartner

eines katalytisch wirksamen Elements seine Reaktionsfähigkeit bestimmen. Weitere Untersuchungen zu SO2-Reaktionen an Aerosolteilchen sind von Johnstone und Moll (1970), Cheng et al. (1971), Chun und Quon (1973), Liberti et al. (1978) und Judeikis et al. (1978) durchgeführt worden. Ferner wurde über Versuche zum SO2-Abbau an Rußen bzw. kohlenstoffhaltigen Festkörpern, z. B. von Britton und Clarke (1979), Cofer et al. (1980), Dlugi et al., (1981 b), Menotti et al. (1978), Novakov et al. (1974), Tartarelli et al. (1978) berichtet. Die Versuche bestätigen, daß Ruße und kohlenstoffhaltige Festkörper Schwefeldioxyd auch bei niedrigeren relativen Feuchten abbauen können. Dabei entstehen an den Partikeloberflächen chemische Umsetzungen sowohl zu Sulfat als auch Sulfit und elementarem Schwefel. Die spezifischen Oberflächen der Aerosole sind dabei etwa um den Faktor 10 - 300 größer als z.B. bei den von Haury et al. (1978) untersuchten Flugstäuben. Da in der anthropogen beeinflußten Atmosphäre der Rußanteil an der Aerosolgesamtmasse 20 - 50 % erreichen kann, steht bei hohen Teilchenzahlen eine große reaktive Fläche für den Schwefeldioxydabbau zur Verfügung. Allerdings wurden bei Einzelteilchenanalysen von atmosphärischen Proben bisher nur selten Rußpartikeln mit einem hohen Schwefelgehalt gefunden (Andre et al., 1981; Russel, 1978), während jedoch meistens Ruße und Sulfate im gleichen Bereich der Größenverteilung angereichert sind (Brosset, 1978; Whitby, 1978). Ob es sich bei den einzelnen Messungen um eine Folge der physikalischen Aerosolentstehungsprozesse oder um heterogene Reaktionen auf Rußoberflächen handelt, ist bisher noch nicht geklärt. Auch auf Zeoliten kann SO₂ bei Zimmertemperaturen zu SO $_4^2$ oxidiert werden (Pearce und Lunsford, 1978), wobei die Reaktion als 1. Ordnung in SO₂ angegeben wird.

Alle Laboruntersuchungen zur heterogenen SO_2 -Oxidation weisen gemeinsame Merkmale auf. Die insgesamt an einem Teilchen oder in einem Tropfen umgesetzte SO_2 -Menge erreicht einen Sättigungswert, der offensichtlich u. a. vom pH-Wert abhängt. Der pH sinkt mit der Versuchszeit ab, d. h. és bildet sich vermutlich Schwefelsäure. Die Reaktion stoppt bei pH-Werten kleiner etwa pH = 2. Die Ergebnisse diser Untersuchungen zeigen ferner, daß zahlreiche Partikeleigenschaften für die durch heterogene Reaktionen auf Aerosolteilchen gebildete Schwefelsäure und Sulfate eine Bedeutung haben können.

Diese Parameter sind:

- die spezifische Oberfläche der Teilchen
- die Oberflächenstruktur der Teilchen
- die chemische Zusammensetzung der Partikeln
- die chemischen Verbindungen an den Teilchenoberflächen
- die Zahl saurer oder basischer Zentren an den Teilchenoberflächen
- die Wasseraufnahme der Partikeln bei steigender relativer Feuchte und das Löslichkeitsverhalten
- die Möglichkeit zur Komplexbindung von Übergangsmetallen an der Oberfläche der Teilchen
- die Radiusabhängigkeit der genannten Faktoren
- die zeitliche Änderung der genannten Faktoren während der Reaktion
- der Einfluß anderer Spurengase (z. B. NH₃, NO₂, NO)
- die Temperatur
- der Einfluß von solarer Strahlung

Der Einfluß dieser Parameter ist in vielen Arbeiten nur zum Teil betrachtet worden, so daß die Ergebnisse unterschiedlicher Laborexperimente oft nicht miteinander vergleichbar sind. Wesentlich ist aber auch, daß sich die Resultate der bisherigen Untersuchungen deshalb auch nicht unmittelbar auf die Atmosphäre übertragen lassen, zudem Reaktionsgeschwindigkeitskonstanten bisher nur selten ermittelt wurden. Betrachtet man die Werte für die pro Aerosolmasse maximal gebildete Sulfat- oder Schwefelsäuremasse – die Reaktionskapazität $(g_{SO_2}/g_{Aerosol})$ bzw. $g_{SO_4}^{2-}/g_{Aerosol})$ – so ergeben sich für vergleichbare Partikelsorten oft Unterschiede von mehr als einer Zehnerpotenz. Als Beispiel hierfür sollen die Daten für Kohlekraftwerksstäube von Haury et al. (1978) von ca.

- 16 -

0,1 g_{SO2}/g_{Ae} , Judeikis et al. (1978) von ca. 10^{-4} g $_{SO2}/g_{Ae}$ und von Liberti et al. (1978) (für den gleichen von Haury et al. verwendeten Staub!) von ca. $6 \cdot 10^{-5} g_{SO2}/g_{Ae}$ gelten. Die von Haury et a. (1978) gefundenen Werte sind etwa um den Faktor 10^3-10^4 <u>höher</u>, die Reaktionszeiten bis zum Erreichen eines Sättigungswertes sind größer. Da sich nun die Versuchsapparaturen und die Auswerteverfahren der drei Autoren in wesentlichen Punkten unterscheiden, ergibt sich die Frage, ob die Unterschiede vorwiegend vom Versuchsverfahren bedingt sind und welches Verfahren die auch in der Atmosphäre vorgefundenen Werte liefern kann.

Während Haury et al. die Aerosolteilchen im luftgetragenen Zustand in einer Reaktionskammer untersuchten, haben Judeikis et al. und Liberti et al. die Partikeln als Schicht in Strömungsrohren aufgebracht. Die Schichten werden tangential bzw. senkrecht mit SO2-haltigem Gas angeströmt. Haury et al. wiesen den SO₂-Abbau an den Partikeln durch Messungen der SO₂-Abnahme im Versuchsgefäß nach, während die anderen beiden Gruppen auch die gebildete Sulfatmasse bestimmten oder die Ergebnisse aus Desorptionsmessungen erhielten. Deshalb schien es angebracht, die Reaktionskapazitäten (d.h. die Masse an Reaktionsprodukt pro Masseneinheit Aerosolteilchen) zusätzlich direkt zu messen, also den H_2SO_4 - und Sulfatgehalt von Teilchenproben vor und <u>nach</u> den Reaktionen von SO2 mit Partikeln im luftgetragenen Zustand zu bestimmen. Darüber hinaus sollten Reaktionsgeschwindigkeiten für die SO_{l}^{2-} -Bildung und weitere Parameter, welche das chemische Verhalten des Aerosolsystems beeinflussen können, bestimmt werden. Zu diesem Zweck war eine Methodik zu entwickeln, die es erlaubt, Partikeln unter ähnlichen Bedingungen wie in der Atmosphäre in einer Reaktionskammer mit Gasen reagieren zu lassen. Als Teilchen wurden typische Partikeln aus anthropogenen Quellen (Kohlekraftwerksstäube, Zementstäube, Ruße) und einige synthetische Teilchen sowie Partikeln vom Vulkan St. Helens gewählt. Dabei war das Ziel vor allem, die Bedeutung

heterogener Reaktionen an Partikeln für den SO₂-Abbau in Rauchfahnen, z. B. von Kohlekraftwerken, zu untersuchen. Es sollten die Ursachen für die Unterschiede in den Reaktionskapazitäten gefunden und die Reaktionsgeschwindigkeitskonstanten für die Sulfatbildung berechnet werden. Ferner war zu klären, in welchem Maße Ruße $SO_{\mathcal{O}}$ auf den Oberflächen abbauen können. Daneben war die Frage von Interesse, in welchem Maße die Bildung von löslichen Verbindungen auf der Oberfläche von Partikeln deren dynamisches Verhalten in der Atmosphäre beeinflussen kann. Dies wurde beispielhaft für die Prozesse der Wasserdampfkondensation und des Anwachsens der Teilchen zu Wolkentropfen untersucht. Dabei ergaben sich auch Aussagen für die Interpretation atmosphärischer Probenanalysen. Abschließend wurde - ebenfalls exemplarisch - die Entstehung von Sulfaten auf Partikeln durch eine heterogene Reaktion in einem expandierenden Volumen mit dem Prozeß der Bildung von Sulfatteilchen aus der Gasphase und anschließender Koagulation von Sulfatteilchen mit Flugstäuben verglichen.

2. Modelle zur Beschreibung der heterogenen Gasreaktionen

In diesem Abschnitt werden drei mögliche Modellansätze zur Beschreibung bzw. Auswertung von Experimenten zur Untersuchung der heterogenen Gasreaktionen beschrieben. Folgt man den Ergebnissen früherer Untersuchungen, so sollten nicht nur katalytisch wirksame Übergangsmetalle sondern auch reaktive Oberflächenzentren für die Oxidationsvorgänge von SO2, aber auch NOx an Festkörperoberflächen verantwortlich sein (Abschnitt 1.3). Es gibt bisher keine geschlossenen Modelle zur Beschreibung der heterogenen Oxidationsprozesse an atmosphärischen Teilchen, da viele der notwendigen Voraussetzungen (z. B. verdünnte Lösungen, in denen die Reaktion 🗤 abläuft; bekannte Pufferkapazität anderer Verbindungen für Säuren usw.) nicht erfüllt bzw. unbekannt sind. Die drei verschiedenen Modellansätze dienen deshalb nur der Berechnung von Reaktionsgeschwindigkeitskonstanten aus den experimentellen Ergebnissen unter jeweils verschiedenen
Annahmen und nicht der Wiedergabe der realen Reaktionsabläufe. Die Versuche zur Sulfatbildung auf Aerosolteilchenoberflächen und in wäßrigen Lösungen bzw. Suspensionen zeigen (Abschnitt 1.3), daß <u>nicht</u> unbegrenzt SO_2 oxidiert werden kann. Es existiert ein Grenzwert, der bezogen auf die Aerosolmasse als Reaktionskapazität / Masseneinheit (SO_2 bzw. SO_4^2) pro Masseneinheit Aerosol_7 bezeichnet wird (z. B. Abb. 5). Nach einer kurzen Anlaufzeit steigt die oxidierte SO_2 -Menge fast linear an, um dann einen konstanten Wert zu erreichen. Die vereinfachte schematische Darstellung in Abb. 4 zeigt, daß eine katalytische Reaktion in mehreren Einzelschritten von der Adsorption der Reaktanden bis zur Desorption der Reaktionsprodukte abläuft.

Abb. 4: Schematische Darstellung des Ablaufes einer homogenen und heterogenen katalytischen Reaktion

> (E_{ads} , E_{des} = Aktivierungsenergie der Adsorption und Desorption; E_{kat} = Aktivierungsenergie der Bildung aktiver Komplexe; E_{hom} = Aktivierungsenergie der homogenen Reaktion; λ_{ads} , λ_{des} = Adsorptions- bzw. Desorptionswärme der Reaktanden bzw. Produkte).

Bei konstanten Versuchsparametern (Druck, Gaskonzentrationen, Temperatur und relative Feuchte) stellt die Reaktionskapazität eine Teilcheneigenschaft dar. Da die verschiedensten Parameter die einzelnen Reaktionsschritte beeinflussen können, ist die Sulfatbildungsrate der heterogenen Reaktion a priori wie folgt anzusetzen:

 $\frac{d}{dt} \int SO_4^2 - 7 = f (S (IV); H SO_3; SO_3^2; pH; Temperatur;$ rel. Feuchte; solare Strahlung; Gaskonzentrationen von $SO_2, NO, NO_2, NH_3; Ablagerung von Produkten;...) (1)$

Hier beschreibt S (IV) alle 4-wertigen Schwefelverbindungen, während H SO $_3^-$ bzw. SO $_3^2^-$ den jeweiligen Anteil dieser Ionen (gleichfalls S (IV)) in einer wässrigen Salzlösung bzw. an der Oberfläche der Partikeln angibt.

2.1 <u>Die chemische Reaktion</u>

Der Prozeß der heterogenen katalysierten SO₂-Oxidation durch Metallionen oder aktiven Oberflächenzentren läßt sich in verschiedene Einzelschritte zerlegen, von denen jeder den bestimmenden Schritt der Gesamtreaktion darstellen kann (Alder, 1962; Astarista, 1967; Koballa und Dudukovic, 1977; Szekely et al., 1976). Es müssen die folgenden Einzelschritte betrachtet werden (Abb. 4):

- die Diffusion von A (SO_2) und B (O_2) zum Substrat (Teilchen, Tropfen)

- die Adsorption der Ausgangsstoffe am Substrat S

$$A + S \xrightarrow{k_1^A} A_S$$
$$B + S \xrightarrow{k_{-1}^B} B_S$$

- die Bildung von Komplexverbindungen bzw. Zwischenprodukten möglicherweise mit katalytisch wirksamen Metallen M, z. B.

$$M_{S} + A_{S} + B_{S} \xrightarrow{k_{2}^{A}} M_{S} A_{S} + B_{S}$$

- die Bildung von Produkten P, z. B.

$$M_{S}A_{S} + B_{S} \qquad \stackrel{k_{3}}{\underset{k_{-3}}{\overset{k_{3}}{\underset{k_{-3}}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}}{\underset{k_{-3}}{\underset{k_{-3}}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}{\underset{k_{-3}}}{\underset{k_{-3}}{\underset{k_{-3}}$$

- die Desorption von Produkten, z. B.

$$P_{AS}$$
 k_{4}^{A} $P_{A} + S$ k_{-4}^{A}

Ist an einem Partikel Wasser adsorbiert bzw. betrachtet man einen Tropfen, so muß zusätzlich die Dissoziation von A bzw. B betrachtet werden; z. B.

wobei üblicherweise $K_1 = \frac{k_5}{k_{-5}}$ und $K_2 = \frac{k_6}{k_{-6}}$ als Dissozi-

ationskonstanten bezeichnet werden. Außerdem treten noch verschiedenste Prozesse der Adsorption und Desorption an einer Grenzfläche, das Ausfallen von Verbindungen sowie Ionenaustauschreaktionen auf (Abschnitt 2.2), die vor allem von den Eigenschaften der Grenzfläche fest-flüssig und dem pH-Wert abhängen. Bei der Analyse der experimentellen Daten erhält man für Teilchenproben aller untersuchter Partikelarten die erwähnte Sättigungskurven, wie sie in Abb. 5 für Kohleflugstaub bei verschieden relativen Feuchten gezeigt sind. Eine Kurve dieser Art erhält man auch

für die Produktbildung bei einer Reaktion A $\underset{k=1}{\overset{k_1}{\underset{k=1}{\overset{k_1}}}}{\overset{k_1}{\overset{k1}{\overset{k_1}{\overset{k_1}{\overset{k}}{\overset{k1}{\overset{k1}}{\overset{k1}}{\overset{k1}$

Dann folgt mit x = $/P_7 - /P_7_0$ ($/P_7_0$ = Anfangskonzentration des Produktes) eine Sättigungsgleichung mit x₀₀ = $/P_7_0 - /P_7_0$

$$x = x_{on} (1 - e^{-(k_1 + k_{-1})t})$$
 (2)

Sei $\underline{/P}7 = \underline{/S0}_4^2 \overline{7}$ so folgt $\underline{/P}_{\infty} = \underline{/S0}_4^2 \overline{-7}_{\infty}$ (t 3∞)

Mit $k_1 \gg k_{-1}$ folgt $k = k_1$ als irreversible Reaktion. Im Prinzip ist die ablaufende heterogene Reaktion wesentlich komplizierter und wird vermutlich von zahlreichen Zwischenschritten bestimmt, die auch Vergiftungsreaktionen des Katalysators mit einschließen (Abb. 4) (z. B. Klose, 1977). Auch Folgereaktion des Typs (bzw. auch des Michaelis-Menten Typs)

$$A \xleftarrow{k_1} B \xleftarrow{k_2} P$$

oder Parallelreaktionen zeigen gleichartige Zeitgesetze, bei denen je nach dem Verhältnis k_1/k_2 die formale Form des Zeitgesetzes (2) erscheint. Die langsamste Reaktion bestimmt dabei die Ordnung der Gesamtreaktion (z. B. Kehlen et al., 1974). Bei den durchgeführten Versuchen wurde nicht die eigentliche Kinetik (Abb. 4) gemäß den einzelnen Schritten (Abschnitt 1.2) untersucht, sondern nur das Verschwinden von SO₂ durch Oxidation an den Partikeln und die Bildung der Produkte Schwefelsäure und Sulfat als Funktion der Zeit verfolgt (Abb. 5). Deshalb erscheint es nicht sinnvoll, diese detaillierte Kinetik allein aufgrund von Annahmen aufzustellen, für welche die Eingangsgrößen experimentell nicht zugängig sind. Das Verhältnis der Geschwindigkeitskonstanten ist bei dieser Betrachtung (2) nicht konstant für alle Versuchsparameter, sondern es gilt für t $\rightarrow \infty$ gemäß (1):

$$\frac{\sum_{k=1}^{\infty} \sqrt{k_{k}}}{\sum_{k=1}^{\infty} \sqrt{k_{k}}} = \frac{k_{1}}{k_{1}} = K_{C} = f \text{ (rel. Feuchte, solare Strahlung, pH, Teilcheneigenschften, ...) (3)}$$

Der Quotient ist bei den durchgeführten Versuchen nicht unabhängig von der SO₂-Konzentration

2.2 Diffusion und chemische Reaktion

Eine theoretische Beschreibung der heterogenen Oxydation von Gasen an Festkörpern und in Lösungen bei Berücksichtigung der Diffusion ist bisher nur näherungsweise für Systeme gelungen, bei denen eine bestimmte Teilreaktion (Abb. 4; Abschnitt 2.1) eindeutig allein den Ablauf der Gesamtreaktion bestimmt. Dies ist z. B. teilweise für die katalysierte SO_2 -Oxidation bei hohen Temperaturen in Festbetten oder der nichtkatalysierten Reaktion mit CaCO₃- bzw. CaO-Teilchen gelungen (z. B. Klose, 1977; Koballa und Dudukovic, 1977; Georgakis et al., 1977, 1979; Szekely et al., 1976). In diesen Fällen wird die Kontinuitätsgleichung (4) zur Beschreibung einer heterogenen, irreversiblen Reaktion 1. Ordnung für den gasförmigen Reaktanden A (hier SO₂) auf bzw. in einem kugelförmigen Teilchen bzw. Tropfen mit dem Radius R gelöst (Radienbereich bei den erwähnten Experimenten: 0.1 & R **£** 20mm).

$$\frac{d}{dt} A = D_{W} \Delta A - k A \qquad (4)$$

(mit D_{W} = Diffusionskoeffizient in der wäßrigen Phase bzw. auf dem Teilchen, k = Reaktionsgeschwindigkeitskonstante (s⁻¹)). In diesem Ansatz steckt die Annahme, daß die Reaktion auf allen untersuchten Teilchen auf gleiche Weise abläuft und bezogen auf die unreagierte Teilchenmasse m_a auch dieselbe Produktmenge m liefert, unabhängig vom Radius und den Teilcheneigenschaften. Dies bedeutet, daß vom Meßwert an einer Probe auf eine mittlere Partikeleigenschaft geschlossen wird. Die Berechtigung zur Verwendung eines mittleren modalen Radius R der Oberflächenverteilung und der obigen Annahme insgesamt wird zusammen mit den Meßergebnissen (Abschnitt 4 und 5) diskutiert. Für $\underline{/A}$ (r, o)7= 0, r \leq R und $\underline{/A}$ (R, t)7 = $\underline{/A}7_1$, t \geq 0 (mit $/ A_7 = Konzentration von / A_7 an der Grenzfläche$ Gas - Oberfläche) folgt die analytische Lösung für die als Funktion der Zeit umgesetzte Masse m(t) (z. B. Szekely et al., 1976; Crank, 1975; Schwartz und Freiberg, 1981):

$$m_{p}(t) = (4 \pi R^{3}) / A_{7_{1}} \left\{ \frac{1}{2} \left(\frac{\coth q}{q} - \operatorname{csch}^{2} q \right) - \frac{2}{\pi^{2}} e^{-kt} \sum_{n=1}^{\infty} \frac{n^{2} \exp / - \left(\frac{\pi n}{q} \right)^{2} k t 7}{/ (n^{2} + (q/\pi)^{2} / 7)^{2}} + \left(\frac{\coth q}{q} - \frac{1}{q^{2}} \right) kt \right\}$$

$$(q = R (k/D_{w})^{\frac{1}{2}})$$

$$(q = R (k/D_{w})^{\frac{1}{2}})$$

$$(q = R (k/D_{w})^{\frac{1}{2}})$$

Der Term q = R $(k/D_w)^{\frac{1}{2}}$ entspricht hierbei dem Verhältnis der Rate der chemischen Reaktion zur Rate des Diffusionstransportes von A im Tropfen bzw. in der Wasserhülle um ein festes Teilchen. Klose (1977) löst (4) unter Verwendung der Größe D_{II} = (A₁/R) q² (D_{II} = Dammköhlerzahl II) durch

numerische Integration, um die begrenzte Reaktionsfähigkeit von Katalysatoren durch Produktablagerung auf der reaktiven Oberfläche zu berechnen. Die Modellgleichung (5) beschreibt die zeitliche Entwicklung der in einem Tropfen bzw. an einem Teilchen gelösten SO₂-Masse, wenn das Teilchen einer konstanten SO₂-Konzentration zum Zeitpunkt t \geq O ausgesetzt wird. Die instationäre Lösung (Term 2 in (5)) trägt nur für kleine Zeiten zum Gesamtumsatz bei. Der 1. Term stellt für zeitlich konstantes k und D eine Konstante dar, während der dritte Term /(cot q/q) - $(1/q^2)_7$ dem Verhältnis der Umsatzgeschwindigkeiten mit und ohne Diffusionshemmung aus der Lösung für den stationären Fall (d / A_7/dt = o) entspricht. In diesem Fall ist der dritte Term in (5) auch gleich dem Verhältnis aus der über das Volumen $(4/3)\pi R^3$ gemittelten Konzentration $\underline{/}^{A_7}_{sm}$ (s = stationär, m = räumliches Mittel) und / A_7, also

$$\frac{\sqrt{-A_{3m}}}{\sqrt{-A_{1}}} = 3 \left(\frac{\coth q}{q} - \frac{1}{q^{2}}\right)$$
(6)
kleine q (q 4 1) ist/ $-A_{7m}/\sqrt{-A_{1}} \approx 1.$

Für große q (q \gtrsim 10) gilt lim (/ A $_7_{sm}$ / / A $_7_1$) = 3 q⁻¹. Dies

bedeutet, daß für konstante Werte von q und D_W die Reaktion für kleine R unabhängig vom Teilchenradius ist. Für kleine Werte q ≤ 1 steigt die Reaktionsrate proportional zu k, während bei Werten q ≥ 10 die Rate proportional zu (k)^{-1/2} verläuft. Wendet man die Ratengleichung $\bar{\nu}' = k' / A_1 / A_1$ auf experimentelle Daten an (mit k' = scheinbare Ratenkonstante), so findet man unter Verwendung von q' = R (k'/D_W)^{1/2} für q' $\leq 1,2$, Werte / \bar{A}_{sm} 7 / / $\bar{A}_1 / A_2 \sim 1$, während für q' ≥ 3 die Beziehung k/k' $\approx / (q'/3) + (1/q) / 2^2$ folgt (z. B. Schwartz und Freiberg, 1981). Im folgenden soll / $\bar{A}_1 = /\bar{H} SO_3 / 2_1$ gemäß der Gleichgewichtsbeziehung für unoxidiertes SO_2 in reinem Wasser (S(IV)

= $SO_2 + HSO_3 + SO_3^2$) gegeben sein.

Für

$$S(IV) = (1 + \frac{K_1}{(H^+)} + \frac{K_1K_2}{(H^+)^2}) H p_{SO_2}$$
 (7)

 $(K_1, K_2 = \text{erste bzw. zweite Dissoziationskonstante, H = Henry-konstante})$

Da die Analysen der Sulfatentstehung zeigen, daß als primäres Reaktionsprodukt Schwefelsäure entsteht, müssen bei der Berechnung der H⁺-Ionenkonzentration sowohl die SO_4^{2-} -Ionen als auch die Bindungspartner M^{m+} der Sulfationen (z. B. Ca²⁺, Mg²⁺, K⁺, Na⁺, Fe²⁺, Fe³⁺, Mn²⁺, Al³⁺ usw.) in der Elektroneutralitätsbedingung berücksichtigt werden. Diese lautet dann

$$m M^{m+} + \underline{/}^{H+} 7 = \underline{/}^{OH} 7 + 2 \underline{/}^{SO} 3^{2} 7 + \underline{/}^{HSO} 3 7$$
$$+ 2 \underline{/}^{SO} 4^{2} 7 \qquad (8)$$

Eine Berücksichtigung der verschiedenen Metallionen setzt die Kenntnis ihrer Bindungsart sowie der zugehörigen Gleichgewichtskonstante voraus (Morgan und Stumm, 1970; Pourbaix, 1966). Beide Parameter sind im vorliegenden Fall nicht bekannt. Sie lassen sich für die konzentrierten Salzlösungen auf den Partikeloberflächen auch nicht einfach berechnen, da vom wasserlöslichen Anteil der Teilchen nur der jeweilige Elementanteil der verschiedenen möglichen Bin dungspartner, nicht jedoch die wirkliche Bindungsart selbst bekannt sind (siehe hierzu Abschnitt 4.).Besonders in hochkonzentrierten Lösungen treten außerdem an einer Grenzfläche Festkörper - Flüssigkeit verstärkt die Adsorption von Reaktanden, Zwischenprodukten oder Produkten, sowie Lösungsprozesse und vor allen Ionenaustauschreaktionen auf (z. B. Bolt, 1979; Kavanaugh und Leckie, 1980; Morrison, 1977; Stumm und Morgan, 1970; Trasatti, 1981). In diesen Fällen sind die Gleichgewichte aller Reaktionsschritte vom pH-Wert der Lösung und der Zahl basischer bzw. saurer Zentren an den Festkörperoberflächen abhängig. Da für die vorliegenden komplexen Systeme eine Berechnung der Gleichgewichte äußerst unsicher ist, wird Gleichung (7) im Gegensatz zu Runca-Köberich (1979) zur Berechnung der / H⁺7 Ionenkonzentration

als Funktion der Zeit bei der modelltheoretischen Berechnung der Sulfatbildung nach (5) verwendet. Für t = 0 wird der pH-Wert einer Teilchen-Wasser-Suspension eingesetzt, wie er für das Verhältnis von m_w/m_o (Gleichungen 13a, b) bei einer bestimmten Feuchte experimentell bestimmt wurde.

Zusätzlich zu (5) wird die Ratengleichung (5 a)

$$\frac{d}{dt} / M_{x} (SO_{4})_{y} - 7 = k_{M} / M^{m+7} / SO_{4}^{2} - 7 \qquad (5 a)$$

für die Bildung von (Metall-)Sulfaten gemäß

$$\mathbf{x} \cdot \mathbf{M}^{m+} + \mathbf{y} \cdot \mathbf{SO}_4^{2-} \xrightarrow{\mathbf{k}_M} \mathbf{M}_{\mathbf{x}} (\mathbf{SO}_4)_{\mathbf{y}}$$

gelöst mit der Voraussetzung $k_M \gg k$. Die Bindungspartner M^{m+} des Sulfations werden dabei aus den Ergebnissen der Elementanalysen der Proben und Einzelteilchen bzw. der löslichen Bestandteile (Abschnitt 4) entnommen. Erst, wenn alle Bindungspartner M^{m+} sich mit H_2SO_4 zu Sulfaten umgesetzt haben, sinkt der pH-Wert in der Modellrechnung auf Werte unterhalb des Anfangswertes für t = 0 ab. Für die Rechnungen wird die Entstehung der folgenden Sulfate aufgrund der Analysenergebnisse (Abschnitt 4) angenommen:

Die Gleichgewichtskonstanten für die Löslichkeit von SO_2 in Wasser und die Dissoziation von SO_2 und H_2SO_4 sind in Tab. 1 zusammengefaßt.

Tab. 1:Gleichgwichtskonstanten für das SO2-SystemReaktionGleichgewichtskonst, Wert (298 °K)

$HSO_3^- \rightleftharpoons H^+ + SO_3^{2-}$	$K_2 = \frac{a_{\rm H} + \cdot a_{\rm S0}^2}{a_{\rm HS0}}$	6.0139 ·	10 ⁻⁸ mol kg ⁻¹
$HSO_4^- \iff SO_4^{2-} + H^+$	$K_{s} = \frac{a_{H}^{+} \cdot a_{S0_{4}}^{2}}{a_{HS0_{4}}^{2}}$	1.D14 ·	10 ⁻² mol kg ⁻¹

Die möglichen Einflüsse verschiedener Ionen auf die Gleichgewichte, die kinetischen Salzeffekte, die eine Ion-Ion Wechselwirkung beeinflussen können und die Bildung von Ionenpaaren (Clarke, 1981) wird sowohl bei der Aufstellung der Ratengleichungen (5) (5a) als auch bei der Berechnung der Gleichgewichte (7) vernachlässigt. Als noch freier Parameter in (5) zur Berechnung einer 'overall' Rate verbleibt q. Die weitere Spezifikation des Reaktionsmodells besteht darin, daß eine Ratengleichung 1. Ordnung in HSO₃ für die Lösung von (4) bzw. (5):

 $v = k / S(IV) 7_1 = k / H S0_3 7$ (9) verwendet wird. Ferner ist $D_w = D_H S0_3 = 1,5 \cdot 10^{-5} cm^2 s^{-1}$ (Roberts, 1979) gesetzt.

Die Bildung von Sulfat gemäß (5) muß nach den experimentellen Beobachtungen für t $\rightarrow \infty$ gegen einen Grenzwert (Abb. 5)-die Reaktionskapazität C-gehen, d. h. lim $(m(t)/m_a) = C$ $t \rightarrow \infty$ P

(m_a = Masse am Anfang der Reaktion, t = 0). Dies wird im Modell zwangsläufig dadurch bewirkt, daß die Konzentration von Sulfit (/ A_7₁ = / HSO₃-7) für pH \leq 1 stark abnimmt. Ferner nimmt auch der Diffusionkoeffizient D_{HSO3} in hochkonzentrierten Lösungen für pH \leq 1 ab (Kortüm, 1972; Roberts, 1979). Somit folgt:

$$\lim_{t \to \infty} \sqrt{-HSO_3 - 7} \to 0 \tag{10}$$

$$\lim_{t \to \infty} D_{HSO_3^-} \ll D_{HSO_3^-} (t = 0)$$
(11)

Wegen der experimentellen Ergebnisse, daß aktivierte Teilchen stärker reagieren und mehr SO₂ oxidieren (Abschnitt 5) wird daraus geschlossen, daß zumindestens ein wichtiger Reaktionsschritt an der Partikeloberfläche abläuft. Somit bedeutet (11), daß eine Diffusionshemmung der Reaktion durch einen (unbekannten) Prozeß (z. B. Produktablagerung auf einer reaktiven Oberfläche)stattfindet, wie ihn z. B. Klose (1977)

als Ursache für eine Begrenzung einer heterogenen Reaktion behandelt. Die Begründung für den Ablauf der Reaktion bis zu pH-Werten pH 🗲 1 auf den Partikeln folgt aus der Bestimmung des Schwefelsäuregehaltes der Partikelproben (Abschnitt 5). Die Analyse des H2SO/Gehaltes in den Proben ergibt - bei Berücksichtigung der adsorbierten Wassermenge - Werte von pH≈0.1 - 0.7. Die Gleichung (9) bedeutet eine Annahme, die dazu führt, daß auf einfache Art die experimentellen Daten mit Hilfe von (5) approximiert werden können. Die Annahme einer Reaktion 1. Ordnung ist dadurch gerechtfertigt, daß eine Reaktion der 1. Ordnung und 2. Ordnung für etwa gleichgroße Reaktionsraten bei den vorliegenden Teilchengrößenklassen um R ~ 1 µm nicht eindeutig unterschieden werden (Gelbard und Seinfeld, 1979; Szekely et al., 1976). kann Eine Reaktion quasi O. Ordnung ist bei einem Einfluß von Diffusionsprozessen auf eine chemische Reaktion nicht zu erwarten (z. B. Emmet, 1954). Wegen der Abhängigkeit des Diffusionskoeffizienten D_w von der Produktmenge folgt, daß q selbst zeitabhängig wird und k als "freier" Parameter für einen in seinen Teilschritten unbekannten Reaktionsverlauf angepaßt werden kann. Dies geschieht mit der Annahme: k(t) = const. Man erhält also die Beziehung

lim $q \gg 1$ (12) $t \rightarrow \infty$ Dies bedeutet gleichfalls lim / d_pm (+) / $dt_7 = 0$ $q \rightarrow \infty$, $t^{-} \rightarrow \infty$ k = const.

Die Reaktionskonstante k für Gleichung (9) bzw. (5) wird damit durch Anpassung an die experimentellen Kurven gewonnen.

Für das Reaktionsvolumen eines Teilchens $\frac{4}{3} \pi R^3$ in (5) wird bei der Berechnung der Sulfatbildung m_{SO}^2 - (t) = m(t) das Volumen m_w/S_w (S_w = 1 g cm⁻³) an Wasser auf den Teilchenoberflächen verwendet, für das auch der pH-Wert berechnet wird. Die Masse Wasser m_w pro Trockenmasse m_o der Teilchen wird für einige Partikelarten experimentell mit einer Mikrowaage bestimmt (Hänel und Zankl, 1980)(Abschnitt4).Der Vergleich mit der von Hänel (1976) und Thudium (1979) beschriebenen Theorie zeigt, daß sich m_w/m_o für diese Partikeln mit guter Näherung aus der Kenntnis einer mittleren Zusammensetzung des löslichen Anteils jeder Partikelart für relativen Feuchten größer etwa 70 % auf ca. <u>+</u> 15 % und für kleinere Feuchten auf etwa <u>+</u> 30 - 40 berechnen läßt. Es gelten die Beziehungen (z. B. Hänel, 1976):

$$\frac{m_{W}}{m_{S}} = \bar{\mathcal{M}}_{S} \left(\frac{a_{W}}{1 - a_{W}} \right)$$
(13 a)
$$\frac{m_{W}}{m_{S}} = -\frac{\bar{\mathcal{N}}_{B}}{\ln a_{W}}$$
(13 b)

bzw.

 $(\vec{\mathcal{A}}_{s} = mittlerer linearer Massenzuwachskoeffizient,$ $\vec{\mathcal{T}}_{s} = mittlerer exponentieller Massenzuwachskoeffizient,$ $m_{s} = Masse löslicher Substanz, a_{w} = Wasseraktivität)$

Der mittlere exponentielle Massenzuwachskoeffizient $\eta_{_{
m S}}$ läßt sich mit Hilfe von Ionenmischungsregeln (Hänel, 1976; Thudium, 1979) für die Annahme vollständiger Dissoziation aus gemessenen osmotischen Koeffizienten (Low, 1969; Robinson und Stokes, 1959) berechnen. Die gemessene Sulfatmenge wird dabei stöchiometrisch auf die analytisch ermittelten verschiedenen Metallanteile (Ba²⁺, Ca²⁺, Mg²⁺, K^+ , Na⁺, Fe²⁺, Mn²⁺, Al³⁺, Ni²⁺) verteilt. Da zumindestens BaSO, bei allen pH-Werten und Ca SO, bei höherem pH-Wert ausfällt, werden diese Verbindungen bei der Berechnung des Wassergehaltes abgezogen. Zusätzlich wird die Schwefelsäure bei der Berechnung von $ar{\eta}_{
m S}$ nach (14) berücksichtigt. Die Annahme über die Bindungsart macht sich bei der Berechnung von $ar{m{\mu}}_{
m s}$ oder $ar{m{\eta}}_{
m s}$ nicht sehr stark bemerkbar, da nach diesen Rechnungen und Messungen die Schwefelsäuremenge je nach Aerosolteilchenart allein 30 - 80 % des aufgenommenen Wassers bindet. Bei der Elektroneutralitätsbeziehung (8) verändern diese Annahmen jedoch den möglichen Anteil an HSO_3^- - Ionen um mehr als <u>+</u> 50 %

bei pH = 2. Außerdem kann eine Bildung von Komplexverbindungen in Ionenmischungen und ein Ausfallen von Verbindungen <u>nicht</u> einfach durch Differenzbildung berücksicht werden (Bolt, 1979). Es gilt bei den untersuchten Kohlekraftwerks- und Zementstäuben sowie den Rußen

$$\bar{\eta}_{s} = \bar{\emptyset} (m) \frac{M_{w}}{\bar{M}_{s}} \frac{m_{s}}{m_{o}} \frac{m_{o}}{m_{w}}$$
(14)

 $(\emptyset$ (m) = mittlerer osmotischer Koeffizient, berechnet gemäß Thudium, 1979; M_W = Molmasse von Wasser; M_S = mittlere Molmasse an löslicher Substanz (Schreiber, 1977); m_S = Masse des löslichen Anteils). Es gelten also die Beziehungen (m_u = unlösliche Masse):

$$m_{o} = m_{u} + m_{s} \tag{15a}$$

$$m_{a} = m_{o} = m_{u} + m_{So}$$
 (15 b)

$$m_{p}(t) = m (Sulfat) = m_{SO}^{2}$$
 (15 c)

$$C = Kapazität = m_{SO_4^2} (t \rightarrow \infty) / m_{o_a}$$
(15 d)

2.3 Chemische Reaktion und Gasphasendiffusion

Während im Abschnitt2.2 der Einfluß von Diffusionsvorgängen auf die chemische Reaktion 1. Ordnung behandelt wurde, soll hier der Einfluß der Gasphasendiffusion auf die aktuelle Reaktionsrate diskutiert werden. Für den Fluß J_D,mit dem ein Gas durch Diffusion zu einer Kugeloberfläche transportiert wird gilt (Szekely et al., 1976):

$$\vec{J}_{\rm D} = h_{\rm D} \vec{\nabla} c = \mathrm{Sh} \frac{D_{\mathrm{Gas}}}{R} \vec{\nabla} c$$
 (16)

(Sh = Sherwoodzahl, Re= Reynoldszahl, Sc = Schmidtzahl. h_D = Massenübergangskoeffizient) Mit Sh = 2 + 0.6 Re^{1/2} Sc^{1/3} (Re = $\frac{vR}{v_g}$, Sc = v_g/D_{gas} , v = Geschwindigkeit des Teilchens im Gas, v_g = kinematische Viskosität des Trägergases, D_{gas} = Diffusionskoeffizient von S0₂) folgt für

$$R = 5 \text{ Am}, v_{3} = v_{\text{Luft}} = 1,5 \cdot 10^{-5} \text{ m}^{2} \text{ s}^{-1}$$

$$v = \text{Sedimentationsgeschwindkeit} = 0.1 \text{ cm s}^{-1}$$

$$D_{\text{gas}} \simeq 0.4 \text{ cm}^{2} \text{ s}^{-1} \text{ eine Reynoldszahl Re} = 16,6,$$
eine Schmidtzahl Sc = 3.7 $\cdot 10^{-5}$ und eine Sherwoodzahl
Sh = 2,081.
Damit folgt gemäß (15) h_{D} = 1664 \text{ cm s}^{-1}.
Für R = 10^{-5} \text{ cm} = 0.1 \,\mu\text{m} folgt mit $v_{\text{max}} = 10^{-2} \text{ cm s}^{-1}$,
Re = 6,6 $\cdot 10^{-3}$ und Sh = 2,002. Damit berechnet man
h_{D} = 8 $\cdot 10^{4} \text{ cm s}^{-1}$. Für R = 10⁻⁴ cm = 1 μ m und
 $v_{\text{max}} = 0.06 \text{ cm s}^{-1}$ erhält man h_{D} = 8050 cm s^{-1}.
In allen Fällen wird also der Diffusionsfluß von SO₂ an die
Teilchenoberfläche den Fluß im Teilchen um mehrere Größen-
ordnungen übersteigen. Wird die Geschwindigkeit größer als
die Sedimentationsgeschwindigkeit, so erhöht sich der
Massentransferkoeffizient zum Teilchen. Das ist z. B. der
Fall, wenn Partikeln auf einem Filter von Gas angeströmt
werden. Mit v = 5 cm s^{-1} erhält man für einen Teilchen-
radius R = 1 μ m h_{D} = 8461, also einen um 5 % höheren Wert.
Bei v = 0, also reiner Brownscher Diffusion, h_{D} = 8000 für
R = 1 μ m.
Bildet man das Verhältnis der Gaskonzentration außerhalb
der Teilchen (A 7₆₀ zu (-A 7 1, so erhält man (Schwartz
und Freiberg, 1981): (17)

$$\underline{/}^{A}_{\infty}/\underline{/}^{A}_{1} = 1 + k R^{2} (1 + \frac{K_{1}}{\underline{/}^{H}_{7}^{+}} + \frac{K_{1}K_{2}}{\underline{/}^{H}_{7}^{+}}) R_{Gas}T/3 D_{gas}$$

 $(R_{Gas} = Gaskonstante)$

Für die Versuchsbedingungen (SO₂ - Partialdruck < 10^{-5} atm)

wird gemäß den Ergebnissen von Schwartz und Freiberg (1981) die Abweichung weniger als 1 °/oo betragen (für $k \le 10^4 s^{-1}$). Ferner ist die Reaktion für pH \le 7,5 nicht durch die Gasphasendiffusion beschränkt, sondern bei den Versuchsbedingungen ($p_{SO2} < 10^{-5}$ atm) nur von der Diffusion der S(IV) Komponenten in der Lösung und der Reaktion selbst bestimmt. Die Diffusion von Sauerstoff wird in keinem Fall behindert (Schwartz und Freiberg, 1981).

Aufgrund der schon erwähnten experimentellen Ergebnissen darf angenommen werden, daß zumindestens eine Teilreaktion an den Festkörperoberflächen abläuft (siehe auch Abschnitt 2.4, 4., 5). Ist z. B. durch Produktbildung die Diffusion des gasförmigen oder gelösten Reaktanden zur Reaktionszone behindert, so entspricht das der Beziehung (11) bzw. (12). In luftgetragenem Zustand werden die Teilchen unabhängig voneinander reagieren. Sind sie jedoch in einer Schicht auf einem Träger aufgebracht (Liberti et al., 1978; Judeikis et al., 1978) und wird diese Schicht SO2-haltigem Gas ausgesetzt, so füllt die Produktschicht bei dichterer Teilchenpackung die Hohlräume aus. Als Konsequenz folgt, daß D_u aber auch D_{Gas} stärker und schneller abnehmen,als für Einzelteilchen im luftgetragenen Zustand bzw. bei einer sehr dünnen Teilchenschicht auf einem Filter. Dann folgt:

$$\lim_{t \to \infty} \frac{\sqrt{m_p(t)}}{\sqrt{1} \operatorname{luftgetragen}} \ge \lim_{t \to \infty} \frac{\sqrt{m_p(t)}}{\sqrt{1} \operatorname{Schicht}}$$
(18 a)

 b_{zw} . $C_{luftgetragen} \ge C_{Schicht}$ (18 b)

und $/ [dm_p(t)/dt_7]$ luftgetragen $\geq / [dm_p(t)/dt_7]$ (18 c)

Dies gilt sowohl bei senkrechter als auch paralleler Anströmung einer Teilchenschicht und bei reiner Brown'scher Diffusion (z. B. Szekely et al., 1976). Diese Bedingungen sind also bei der Auslegung einer Reaktionsanordnung zur Untersuchung heterogener Reaktionen zu beachten.

2.4 Ein Langmuir-Hinselwood Modell der SO_2/O_2 Reaktion

an Oberflächen

Betrachtet man die gleichzeitige Adsorption von SO_2 und O_2 an aktiven Zentren auf Oxid- oder Kohlenstoffoberflächen (Tanabe, 1970), so läßt sich dieser Vorgang vereinfacht dadurch beschreiben, daß SO_2 und O_2 an verschiedenartigen Zentren adsorbiert werden. SO_2 wirkt sowohl als Lewis-Base als auch als Lewis-Säure. Bei vielen Experimenten konnte bestätigt werden, daß SO_2 an sauren Zentren (die H⁺ abgeben bzw. OH⁻ aufnehmen) und O_2 an basischen Zentren (die OH⁻ abgeben bzw. H⁺ aufnehmen) adsorbiert wird (z. B. Chang et al., 1979; Kavanaugh und Leckie; 1980; Pearce und Lunsford, 1978; Summers, 1979; Tanabe, 1970; Zuckmantel et al., 1979). Dabei gelten die Beziehungen (analog Abschnitt 2.1):

$SO_2 + s \implies$	so ₂ -s	(Adsorption)	(19 a)
0 ₂ + 2 <i>s</i>	20 - s	(Dissoziation)	(19 Ъ)
2 -s + 0 -s>	so ₃ -s +s	(Reaktion)	(19 c)

(s = Oberflächenzentrum),

S0

wobei die letzte Reaktion irreversibel ist und zum Verbrauch an Zentren für die 0_2 -Adsorption führt. Die Gesamtkonzentration an Zentren in mol g⁻¹ substanz ist (c_u = unbesetzte Zentren):

$$c_{\rm T} = c_{\rm u} + c_{\rm SO_2} + c_{\rm 0} + c_{\rm SO_3}$$
 (20)

Mit dieser Beziehung folgt:

$$\frac{d}{dt} c_{SO_3} = k_{19} c_{SO_2} p_{SO_2} K_{O_2}^{1/2} p_{O_2}^{1/2} c_u^2$$
(21)
mit $c_{SO_2} = K_{SO_2} p_{SO_2} c_u$ und $c_0^2 = K_{O_2} p_{O_2} c_u$

Mit der Annahme, c_{SO_2} (t = 0) = 0 folgt die Anfangsrate a_0

$$a_{o} = \frac{k_{19c} K_{S02} p_{S02} K_{02}^{1/2} p_{02} C_{T}^{2}}{(1 + K_{S02} p_{S02} + K_{02}^{1/2} p_{02}^{1/2})^{2}}$$
(22)

und mit (20) die Reaktionsrate

$$\frac{d}{dt} c_{SO_3} = a_0 \left(1 - \frac{c_{SO_3}}{c_T}\right)^2$$
(23 a)

Für die experimentell bestimmten Massen erhält man mit $m_{SO}_{4}^{2-} = M_{SO}_{4}^{2-} C_{SO}_{4}^{2-} = M_{SO}_{4}^{2-} C_{SO}_{3}^{2-} (M_{SO}_{4}^{2-} = M_{OIMASSE} SO_{4}^{2-}).$ $\frac{1}{m_{oa}} \frac{d}{dt} m_{SO}_{4}^{2-} = a_{o} (1 - \frac{m_{SO}_{4}^{2-}}{m_{SO}_{4}^{2-}})^{2}$ (23 b)

Man kann noch $a_0 = k / SO_{2-71} \approx$ schreiben, mit $\frac{1}{50} = \frac{7}{1} = \frac{7}{5} (IV) \frac{7}{1}$ und Beziehung (7) bzw. die äquivalente Beziehung für 02 einführen. In jedem Fall sind jedoch sowohl ^k19c als auch K_{SO2} und K_{O2} unbestimmt. Da K_{SO2} die Adsorption an einer Festkörperoberfläche beschreibt, kann diese Konstante nicht einfach durch die Henry-Konstante (Tab. 1) ersetzt werden. Somit kann aus Experimenten, bei denen der Sulfat- und Schwefelsäuregehalt von Teilchenproben als Funktion der Zeit bestimmt wird, nur a ermittelt werden. Die Größe a ist die Bildungsrate nach Beginn der Reaktion. Die Beziehung (23) beschreibt also nur eine einfache physikalische Anlagerung und chemische Umsetzung von SO₂ zu Schwefelsäure bzw. Sulfat an den Teilchenoberflächen (Klose, 1977). Komplizierte Teilreaktionen sind integral in der Gleichung enthalten, d. h. der Sulfatbildungsmechanismus wird mit der Beziehung nicht explizit beschrieben. Da ferner die gebildeten Reaktionsprodukte die Wasseraufnahme der Partikeln und den pH-Wert ändern und - wie noch beschrieben wird - die Rate und die Kapazität pH-Wert-abhängig sind, kann auch a nicht als Konstante angesehen werden. Somit ist a eine Funktion des pH-Wertes, der relativen Feuchte und gegebenenfalls anderer Parameter

wie der SO₂-Anfangskonzentration, also implizit der Zeit t. Integriert man (23), so folgt:

$$\frac{1}{m_{SO_4^{2-}}} = \frac{1}{a_0 \cdot t} + \frac{1}{m_{SO_4^{2-}}}$$
(24)

Trägt man $(m_{SO}^{2})^{-1}$ gegen t⁻¹ auf, so erhält man Geraden der Steigerung a₀⁻¹, mit Ordinatenschnittpunkten bei $(m_{SO}^{\infty})^{2}$ -)⁻¹. Das Verfahren führt – wie auch die Lösung von (2) und (5) – zu sogenannten 'overall'-Reaktionsraten a₀ für die Gesamtreaktion. Durch die Berücksichtigung der Abhängigkeit von a₀ = a₀ (r. F., pH, $/ SO_2 / 7$, ...)von den Eigenschaften des Gesamtsystems $/ SO_2 - H_2O$ (Gas) – trockene Luft-Aerosol7 ist es möglich, die Werte a₀ aus den Laborversuchen direkt in luftchemischen Modellen zu verwenden.

3. Experimentelle Methoden

Die Diskussion verschiedener möglicher Modellvorstellungen zur Beschreibung der heterogenen SO2-Oxidation in Abschnitt 2. hat gezeigt, daß verschiedene Bedingungen bei der Durchführung von Experimenten zur Untersuchung dieses Types einer chemischen Reaktion zu beachten sind. Neben Diffusions- bzw. Massentransportvorgängen beeinflussen auch die Gaskonzentrationen (hier SO2), der Wasserdampfgehalt des reaktiven Gasgemisches, das Verhältnis der SO₂- zur Partikelkonzentration und verschiedene Partikeleigenschaften (z. B. spezifische Oberfläche, Zahl der reaktiven Zentren, Teilchengröße) die Reaktionsrate und die insgesamt abgebaute SO2-Masse. Dies erforderte eine spezielle Untersuchung und Auslegung der zur Verfügung stehenden experimentellen Methoden. Diese Untersuchungen konzentrierten sich auf einige Analyseverfahren für Aerosolteilchenproben und Einzelteilchen sowie Parameterstudien hinsichtlich der Anwendungsmöglichkeiten verschiedener Typen von chemischen Reaktoren.

In diesem Abschnitt werden die Bedingungen, welche bei der Verwendung einer Reaktionskammer (Reaktor A) zur Untersuchung von chemischen Reaktionen an Teilchen im luftgetragenen Zustand und bei Experimenten in einem Strömungsreaktor (Reaktor B) zu beachten sind, diskutiert. Ferner werden die experimentellen Methoden zur Analyse der Reaktionsprodukte $(H_2SO_4, H_2SO_3, Sulfate)$, zur Element- und Oberflächenanalyse und zur Bestimmung physikalischer Teilcheneigenschaften beschrieben. Diese Verfahren wurden eingesetzt, um die Reaktionsraten, die Reaktionskapazität und einige die heterogene Reaktion kontrollierende Parameter für verschiedene Aerosolteilchen zu ermitteln. Neben den in Abschnitt 3.1 -3.3 beschriebenen chemischen Reaktoren gibt es noch zahlreiche Variationen, z. B. Fließbettreaktoren mit und ohne Wärmeaustausch, Festbettreaktoren mit senkrechter bzw. paralleler Anströmung der Partikelschichten, Festbettreaktoren

. . .

bei denen nur Diffusionsprozesse wirksam sind (z. B. Judeikis et al., 1978; Satterfield, 1980; Szekely et al., 1976). Wichtig ist bei der Verwendung einer jeweiligen Technik vor allem die Beachtung der in Abschnitt 2 diskutierten Bedingungen für den Reaktionsablauf. Dies bedeutet, daß die Reaktionsrate und die Produktmenge für eine Summe von unabhängigen Einzelteilchen bestimmt werden müssen; d. h. eine gegenseitige Beeinflussung von Partikeln während der Reaktion sollte ausgeschlossen sein. Ferner sollten die heterogenen Reaktionen für Teilchenkollektive untersucht werden, wie sie nach ihrer Größe, Form und Oberflächenbeschaffenheit auch in der Atmosphäre gefunden werden. Neben der Herstellung repräsentativer Größenverteilungen müssen auch die thermodynamischen Bedingungen denen der Atmosphäre entsprechen. Unter diesen Bedingungen ist es möglich, die Ergebnisse der Laboruntersuchungen auf die atmosphärischen Verhältnisse zu übertragen (z. B. Sein feld, 1976).

3.1 <u>Die Reaktionskammer (Reaktor A)</u>

Für die Untersuchungen der Reaktionen zwischen Gasen und Partikeln steht eine im Labor für Aerosolphysik und Filtertechnik I entwickelte und in früheren Experimenten (Haury und Jordan, 1975; Haury, 1976) erprobte Reaktionskammer (im folgenden als Reaktor A bezeichnet) von 4,5 m³ Inhalt zur Verfügung. Im Versuchsgefäß sind Temperatur und Feuchte auf \pm 0.3 °C und \pm 0,5 % regelbar. Es ist eine Beleuchtungseinrichtung mit 4 Lampen vorhanden, die eine Simulation des Sonnenspektrums gestatten. Das Prinzip der Versuchsordnung mit einem Teil der Meßgeräte ist in Abb. 6 gezeigt. In dieser Reaktionskammer wird eine Modellatmosphäre hergestellt, in der unter kontrollierten Bedingungen eine chemische Reaktion abläuft. Damit entspricht der Reaktor z. B. einem Volumenelement V einer Rauchfahne mit der Randbedingung dV/dt = 0.

Die Beschichtung der Innenwand der Kammer mit Penton behindert die Adsorption und Reaktion von SO₂ mit der Metallinnenwand (Jordan, 1973). Der Meßgasverbrauch durch die SO₂- und Aerosolmeßgeräte beträgt maximal 20 1/h und verringert sich bei diskontinuierlichem Betrieb auf ca. 2 1/h. Somit sind die Meßgasverluste bis zu Versuchszeiten von etwa 5 - 8 h gering. Eine Einschränkung ist nur in den Aerosolverlusten durch Ablagerung an den Reaktorwänden zu sehen. Da die Teilchen auch an der Reaktorwand weiterhin mit SO₂ reagieren, wird die SO₂-Konzentration selbst nur wenig von diesen physikalischen Aerosolprozessen beeinflußt. Die Ablagerung der Partikeln verändert jedoch die vorhandene luftgetragene Partikelmassenkonzentration

und die Größenverteilung. Da die Produktmasse bei der heterogenen Oxidation an die Partikelmasse gekoppelt ist, wird bei diesem Reaktortyp auch die Probenmasse mit zunehmender Reaktionsdauer abnehmen (Abschnitt 3.2). Die hier beschriebenen Experimente (Abschnitt 5) wurden bei SO_2 -Anfangskonzentrationen $2SO_2$, $= 0.05 - 5 \text{ mg m}^{-3}$, Temperaturen von 8 - 34 ^OC und relativen Feuchten von 28 - 95 % durchgeführt. Der Reaktor A wird zu Beginn evakuiert, um Gasreste zu entfernen und dann wahlweise mit gereinigter Raumluft bzw. synthetischer Luft gefüllt, die vor dem Eintritt in den Reaktor durch einen Befeuchter geleitet wird (Abb. 6). Die Zugabe von SO₂ erfolgt bei etwa 100 - 150 Torr unter dem Normaldruck über eine Gasdosiervorrichtung. Der Füllvorgang ist bei Erreichen des Außendrucks abgeschlossen. Die zu untersuchenden Teilchen werden beim Füllvorgang über einen gleichfalls befeuchteten Gasstrom in den Reaktor transportiert. Wahlweise können mit verschiedenen Aerosolgeneratoren Proben von gesammelten Industriestäuben erneut dispergiert oder künstliche Teilchen durch Versprühen von Salzlösungen hergestellt werden. Auf diese Weise läßt sich in die Reaktionskammer A eine Aerosolmasse bis zu ca. 1 g (d. h. 0.222 g m⁻³) während einer Aerosolzugabezeit $t_z = 10$ Minuten einbringen. Danach werden die Aerosolgrößenverteilung, die Massenkonzentration und die Gaskonzentration durch die Entnahme von 21 Probengas bestimmt und der Reaktor geschlossen. Nach einer Versuchszeit t" können 2 - 4 Proben auf Filtern (Teflon bzw. Teflon-Polyethelen) entnommen werden (Probenahmezeit = t_p). Durch die Analyse des Schwefelsäure- und Sulfatgehaltes der Proben erhält man für verschiedene Zeiten t, (bei jeweils konstantem t_z und t_p) die in einer bestimmten Gesamtversuchszeitt;

$$t_{i} = \frac{1}{2} t_{z} + t_{v} + t_{p}$$
 (25 a)

. . .

gebildete Produktmasse m_p. Die Zeit $\frac{1}{2}$ t_z anstatt t_z wird eingesetzt, da nur ein Teil der am Ende(der Teilchenzugabe) vorhandenen Masse mit dem SO₂ während der **Teilchenzugabe** reagiert. Die Berechtigung zur Verwendung des arithmetischen Mittels 1/2 t_z folgt aus Vergleichsmessungen mit dem Strömungsreaktor (Reaktor B, Abschnitt 3.3).

3.2 Die Versuchsdurchführung im Reaktor A

Das Schema des Versuchsablaufes in Abb. 7 zeigt die einzelnen Arbeitsschritte. Demnach muß für einen einzelnen Meßpunkt in Abb. 5 jeweils ein Versuch (Gesamtdauer ca. 5 - 7 h) durchgeführt werden. Eine mehrmalige Probenentnahme zu verschiedenen Versuchszeiten t, ist nicht möglich.

Abb. 7: Schematischer Versuchsablauf in Reaktor A

Evakuieren (1.5 h) Füllen mit feuchter Luft (2 h) SO₂-Zugabe (0.5 h) Teilchenzugabe (0.2 h) Gaszufuhr beendet Messen der Gas- und Schließen des und Größenverteilung (2 min)

Dafür gibt es mehrere Gründe, die durch die mögliche Kinetik der heterogenen Reaktion (Abschnitt 2.) und den Meßbereich der zur Verfügung stehenden Gasmeßgeräte für SO₂ (0.02 - 5 mg m⁻³ mit einer Genauigkeit von:1 mg m⁻³ \pm 5 %) gegeben sind. Entsprechend Abb. 7 können nach einer Gesamtversuchszeit t_i (Gleichung (25a)) einige Proben der insgesamt luftgetragenen Produktmasse zur Analyse aus dem Reaktor

. . .

- 42 -

entnommen werden. Dabei läßt sich die relative Feuchte auf einen Absolutwert von + 1,5 % konstant halten, wenn die Probennahme auf Filtern nicht durch Absaugen mit Hilfe einer Pumpe, sondern durch Erhöhung des Innendrucks im Reaktor A gegenüber dem Außendruck durch Zugabe befeuchteter Luft in die Reaktionskammer erfolgt. Gleichzeitig verringert sich die aktuelle SO2-Konzentration durch die Verdünnung mit reiner Luft und es gilt $/ SO_2 / (t > t_i) < / SO_2 / (t_i = (1/2)t_z)$. Der Fehler bei der Bestimmung der neuen Anfangsbedingungen (Zusammensetzung der Teilchen, Aerosolmassenkonzentration, S02-Konzentration, Partikelgrößenverteilung) wird wegen der abnehmenden Größe der Absolutwerte größer als zum Zeitpunkt $t_i = (1/2) t_z$. Dazu kommt die zusätzliche Bedingung, daß zur Untersuchung der Abhängigkeit der Reaktionsrate und der Reaktionskapazität C von der SO₂-Konzentration das Verhältnis dieser Gaskonzentrationen zur Aerosolteilchenmassen-(bzw. -Oberflächen-)konzentration variiert werden muß. Es muß die Bedingung einstellbar sein, daß sich die SO2-Konzentration während einer Reaktionszeit t, nur wenig ändert. Dann kann man die für verschiedene thermodynamische Bedingungen maximal abbaubare SO2-Menge bestimmen, d. h. es muß $/[S0_2_7] \approx /[S0_2_7]$ (t_i) gelten. Wegen des Grenzwertes der experimentell erfaßbaren SO2-Konzentration bedeutet dies, daß eine obere Grenze für die Partikelmassenkonzentration existiert. Die Grenzwerte, bis zu denen die Versuche im Reaktor A auswertbar sind, kann man für verschiedene Änderung $\Delta / SO_2 7 = (/ SO_2 7 - / SO_2 7 (t_i))$ $/ SO_2 7_0$) der Tab. 2 entnehmen. Dabei wird für den vom Meßfehler gegebenen Wert 🛆 SO₂ 💰 5 % angenommen, die Kapazität C sei von der SO2-Konzentration abhängig; für Δ SO₂ > 5 % gilt, C sei unabhängig von der SO₂-Konzentration.

. . .

<u>Tab. 2</u> Grenzwerte der Partikelmassenkonzentration zur Zeit $t_i = 0.5 t_z$ für die Auswertung von Versuchen im Reaktor A

C(g _{S04} ^{2-/g} Aer)	Δ SO ₂ (%)	$\frac{\sqrt{(m_{a_0})}}{(g_{\text{Aerosol}}^{3}m_{a_0}^{3})} \max$	/ ⁻ SO ₂₋₃ , max (mg m ⁻)	t _{i max} (min)	t _{i min} (min)
1	5	3,75 · 10 ⁻⁴	5	> 360	30
	10	7,5 • 10 ⁻⁴	5	> 420	60
	30	$2,25 \cdot 10^{-3}$	5	> 480	60
	50	3,75 . 10 ⁻³	5	> 480	> 100
1	5	$7,5 \cdot 10^{-5}$	1	> 300	-
	30	4.5 10 ⁻⁴	1	> 300	20
	50	$4,5 \cdot 10^{-4}$	1	> 580	50
		7,5 * 10	 	- 420	00
1	5	7,5 \cdot 10 ⁻⁶	0.1	> 120	_
	10	1,5 10 5	0.1	> 200	-
	30	$4,5 \cdot 10^{-5}$	0.1	> 240	-
	50	7,5 · 10 ⁻⁵	0.1	> 300	
0.1	5	$3,75 \cdot 10^{-3}$	5	> 480	> 100
	50	$3,75 \cdot 10^{-2}$	5	> 560	> 100
0.1	5	$7,5 \cdot 10^{-5}$	0.1	> 300	_
	50	7,5 · 10 ⁻⁴	0.1	> 420	60
0.01	5	$3,75 \cdot 10^{-2}$	5	, > 560	>100
	50	$3,75 \cdot 10^{-1}$	5	> 600	>100
0.01	5 50	7,5 \cdot 10 ⁻⁴ 7,5 \cdot 10 ⁻³	0.1	> 420 > 480	60 > 100

Dies bedingt, daß die Partikelmassenkonzentration als Maß für die verfügbare reaktive Oberfläche schon zu Beginn der Reaktion recht kleine Werte annimmt. Die Zeiten timax und t_{imin} folgen aus Rechnungen und Messungen zum Zeitverhalten der Partikelmassenkonzentration und der Größenverteilung im Reaktor A (Abb. 8 und Abschnitt 4.2). Da auch die Reaktionsrate von der S02-Konzentration abhängen kann, lassen sich die Versuche entsprechend den Gleichungen (5) bzw. (23) nur für Δ SO₂ \lesssim 5 % auswerten. Diese Bedingung begrenzt die mögliche Versuchszeit, da für große Werte von C die möglichen Partikelanfangskonzentrationen kleiner als ca. 0,375 mg m⁻³ sind und insgesamt etwa 20 μ g Probenmasse zur Verfügung stehen muß, um die Kapazität von zwei Proben auf 10 % genau zu bestimmen (Abschnitt 3.5.3). Wie die Abb. 8 zeigt, liegen die Versuchszeiten, bei denen eine Sulfatbildung auf Aerosolteilchenoberflächen untersucht werden kann, bei ca. 2 - 10 h, wenn entsprechende Größenverteilungen mit den Aerosolgeneratoren hergestellt werden. Für Materialdichten $g = 1, 8 - 3 \text{ gm}^{-3}$ halten sich Partikeln mit dynamischen Formfaktoren 🛰 = 1 und Volumenäquivalentradien r_{äq} = 1 µm in genügend hohen Konzentrationen in der Versuchskammer. Der Verlauf der gemessenen Massenkonzentration als Funktion der Zeit ist für verschiedene Log-Normalgrößenverteilungen mit unterschiedlichen mittleren Anzahlradien $\bar{\mathbf{r}}_{\mathsf{A}}$, Standardabweichungen s und verschiedenen Werten von q und lpha mit Ergebnissen von Modellrechnungen verglichen. Das Modell (Bunz et al., 1981) zur Simulation des Aerosolverhaltens in einem Volumen V ist in Abschnitt 6. kurz beschrieben.

<u>Abb. 8:</u> Der Verlauf der Massenkonzentration als Funktion der Zeit gemessen (+, o, o) und gerechnet (-). Für die Rechnungen wurden Log-Normalverteilungen verwendet. (Rechnung 1: $\bar{\mathbf{r}}_{A} = 1,5 \,\mu$ m, $g = 2,5 \text{ g cm}^{-3}$, $\varkappa = 1$, lns = 0.405; 2: wie 1 aber $g = 1.8 \text{ g cm}^{-3}$; 3: wie 1 aber $\bar{\mathbf{r}}_{A} = 1.4 \text{ m}$; 4: $\bar{\mathbf{r}}_{A} = 0.5 \,\mu$ m, $g = 2 \text{ g cm}^{-3}$, lns = 0.405); Messungen: +: $\bar{\mathbf{r}}_{A} = 1.58 \,\mu$ m, $g = 2.55 \text{ g cm}^{-3}$, $\varkappa = 1$, lns = 0.4; o: $\bar{\mathbf{r}}_{A} = 0.95 \,\mu$ m, $g = 2.52 \text{ g cm}^{-3}$, $\varkappa = 1$, lns = 0.4; o: $\bar{\mathbf{r}}_{A} = 0.52 \,\mu$ m, $g = 1.95 \text{ g cm}^{-3}$, $\varkappa = 2 - 2,5$) Mit der Methode zum Sulfatnachweis (Abschnitt 3.5.3) ist minimal noch 1 µg Sulfat pro mg Aerosolteilchenmasse nachweisbar. Nach einer Reaktionszeit t. muß also noch eine Massenkonzentration von ca. 1 mg m $^{-3^{\perp}}$ im luftgetragenen Zustand vorhanden sein, um für 2 - 3 Proben eine Analyse des Sulfatgehaltes oberhalb der Nachweisgrenze mit einem Fehler 510 % zu ermöglichen (Ab. 2). Für $\pi = 1$, g = 2.5 g cm⁻³, C = 1 und ∆SO₂ ≲ 5 % bedeutet dies, daß eine Versuchszeit von ca. 5 - 6 h bei Größenverteilungen mit $\bar{r}_{\Lambda} \simeq 0.9$ - 1 μ m nicht überschritten werden kann (Abb. 8), um genügend Partikelmasse für die Analysen zur Verfügung zu haben. Aus Abb. 8 folgt auch, daß nur eine genaue Messung der physikalischen (und chemischen) Aerosolteilcheneigenschaften vor und nach den Versuchen eine Auswertung der Experimente unter den genannten Bedingungen erlaubt. Aus diesen Gründen erscheint es zweckmäßig, die Reaktionskapazität C und die 'overall'-Reaktionsraten ohne die Beeinflussung durch das physikalische Verhalten der Partikeln zu untersuchen, wie es in Abschnitt 3.3 beschrieben ist.

Die Kenntnis des physikalischen Verhaltens der Aerosolteilchen im Reaktor A ist auch bei der Bestimmung des SO_2 -Abbaus nach der Methode von Haury et al. (1978) bzw. Haury (1976) von Bedeutung. Bei diesen Versuchen wurden die Teilchen nahezu kontinuierlich mit dem Luftstrom in die Reaktionskammer gegeben, der die durch die Meßgeräte entnommene Luft ersetzt. Aus der auf einen Leerversuch ohne Partikelzugabe, aber mit SO_2 normierten SO_2 -Abnahme läßt sich für Reaktionszeiten <u>größer</u> als 1,5 h mit den über die Versuchszeit gemittelten Werten der Verdünnungsrate und einiger Aerosolparameter die am Reaktionsende insgesamt durch die Teilchen abgebaute SO_2 -Menge berechnen. Man erhält mit dem Verfahren eine zeitlich gemittelte Reaktionsgeschwindigkeitskonstante und eine Reaktionskapazität unter der Annahme, die Gesamtreaktion laufe nach nullter oder erster Ordnung bezüglich SO_2 ab. Da die SO₂-Konzentration durch die Verdünnung und die chemische Reaktion abnimmt folgt, daß für diese Methode der Versuchsdurchführung die Reaktionsrate nur geringfügig von der SO₂-Konzentration abhängen darf. Die Reaktionskapazität C wird dabei als unabhängig von der SO₂-Konzentration angenommen.

Zusammenfassend ist der Vorteil der Versuchsdurchführung im Reaktor A darin zu sehen, daß die Teilchen im luftgetragenen Zustand ohne gegenseitige Wechselwirkung und unter Beachtung der Kriterien aus Abschnitt 2. mit SO₂ reagieren können. Die Versuchsdurchführung zur Bestimmung der korrekten Partikelund Probenmassen und der Versuchszeit t_i, aus denen die Reaktionsrate und Reaktionskapazität berechnet werden, verlangt eine genaue zeitlich aufgelöste Bestimmung von physikalischen Aerosolteilcheneigenschaften. Deshalb wurde zusätzlich ein anderer Reaktortyp (Reaktor B) entwickelt, bei dem die verfügbare Probenmasse nach einer bestimmten Versuchszeit von den physikalischen Partikeleigenschaften unabhängig ist.

3.3 Der Strömungsreaktor (Reaktor B)

Bei diesem chemischen Reaktor werden sechs gegenüber SO_2 inerte Filter bekannter Masse (Teflon bzw. Teflon-Polyethelen) mit Partikeln belegt und nach dem erneuten Wiegen zusammen in eine Halterung eines Reaktionsrohres aus Glas eingelegt. Das SO_2 -haltige befeuchtete Gas strömt nur durch die sechs Filter hindurch (v \leq 5 cm s⁻¹) und reagiert dabei mit den Teilchen. Nach der Reaktionszeit t_i stehen sechs Filter für die jeweiligen Analysen zur Verfügung (Abb. 9). Es gilt im Gegensatz zu Abschnitt 2.2 (25 a) im Reaktor B

$$t_{i} = t_{v}$$
(25 b)

Abb. 9: Der schematische Versuchsablauf im Strömungsreaktor B

Wiegen der Leerfilter		Versuchsende
Probenherstellung		Filterentnahme
Wiegen der Filter		aktors (t_ =t.)
L.		1
Filtereingabe in	Öffnen des Reaktors	Reaktion mit
den Reaktor	$(t_v = 0)$	so ₂

Nach einer gut definierten Versuchszeit t, (25 b) stehen insgesamt sechs Proben mit einer konstanten (vorher bekannten) Partikelmasse für die Analysen zur Verfügung. Die Versuchszeit t, selbst ist nur wenig größer als die Gesamtzeit zur Durchführung eines Versuches einschließlich der Vorarbeiten. Die Strömungsgeschwindigkeit kann gemäß Abschnitt 2.3 leicht klein (< 5 cm s⁻¹) gehalten werden. Übersteigt die Massenbelegung nicht den Wert von 0.1 mg cm^{-2} , so sind bei Berücksichtigung der Meßfehler nur negative Abweichungen von -(5-11) % bei der Berechnung der Reaktionsraten und -(8-14)% bei der Berechnung der Reaktionskapazität für den Reaktor B gegenüber dem Reaktor A zu erwarten. Bei einer Filterfläche von ca. 4 cm² lassen sich mit diesem Reaktor B noch Reaktionsproduktmengen von ca. 1 $^{\circ}/\circ o$ der Probenmasse mit Fehlern < 10 % bestimmen. Die Partikelgrößenverteilung und andere Partikeleigenschaften können, wie beim Betrieb des Reaktors A, bei der Probenherstellung mit Hilfe von Partikelmeßgeräten (oder einem Elektronenmikroskop an Teilchenproben) bzw. mit anderen Verfahren durch separate Probenahme ermittelt werden, um die Ergebnisse der Laborversuche direkt auf die Atmosphäre übertragen zu können. Zur Beantwortung der Frage, unter welchen Bedingungen diese Übertragung möglich wird, ist ein Analysenverfahren notwendig, das die physikalischen und chemischen Eigenschaften der im Labor untersuchten Partikeln erfassen kann. Ferner müssen auch Analysen an direkt von anthropogenen Quellen emittierten Teilchen durchgeführt werden, um deren Eigenschaften mit denen der im Labor erneut dispergierten Partikeln zu vergleichen.

- 48 -

Die in Abschnitt 3.4 und 3.5 beschriebenen Methoden dienen der Bestimmung mechanischer und physico-chemischer Probenund Einzelteilcheneigenschaften <u>vor</u> und <u>nach</u> den Reaktionen mit SO₂. Dies sind:

- Partikelgrößen, Formen, Materialdichten, spezifische Oberflächen
- wasserlösliche, säurelösliche und wasserunlösliche Bestandteile
- das Feuchtewachstum der Teilchen
- die Elementzusammensetzung von Proben und Einzelteilchen
- die Oberflächenverbindungen auf Proben
- die Elemente auf Teilchenoberflächen
- der Gehalt an katalytisch wirksamen Elementen und Verbindungen
- die Kapazität und Reaktionsrate gemessen an Proben und Einzelteilchen (Unterschiede, Einfluß der Probenvorbehandlung; Grad der inneren Mischung

Darüber hinaus können mit den gleichen Verfahren auch Proben und Einzelteilchen von atmosphärischen Experimenten analysiert werden. Diese Ergebnisse werden u. a. auch als Eingangsdaten zur modellmäßigen Beschreibung der heterogenen Reaktion gemäß (5) und (5a) sowie (13) und (14) benötigt.

3.4 Messung physikalischer Aerosoleigenschaften

Zur Bestimmung der physikalischen Aerosoleigenschaften sind die im folgenden beschriebenen Verfahren verwendet bzw. weiterentwickelt worden. Zu Beginn der Untersuchungen standen folgende Meßgeräte zur Verfügung (Dlugi et al., 1981 b):

Gerät	Prinzip	Meßgeräte	Bereich
Kondensations-	Kondensation von	Partikel-	$10^2 - 10^6 \text{cm}^{-3}$
kernzähler	Wasserdampf,	konzen-	
(Environment	Photometrie	tration	
One Corp.)			
Quarz-Massen-	elektr.stat. Ab-	Massen-	$10 - 30 \text{ mgm}^{-3}$
waage	scheidung und	konzen-	(min. 10 ng)
(Thermosystem)	piezoelektr.	tration	0,01≤ D≤10µm
	Waage		
Filtersammler	Trägheits- und	Massenkon-	D> 0,05 mm
	Diffusionsab-	zentration	
	scheidung		

- 49 -

Dieses System ist erweitert worden, um die Partikelgrößenverteilung über einen großen Bereich gleichzeitig beim Probensammeln zu bestimmen, die Massenverteilung direkt zu messen und dynamische Formfaktoren und Dichteunterschiede von Partikeln messen zu können:

Gerät	Prinzip	Meßgröße	Bereich
Andersen Mark III Impaktor (8 Stufen)	Trägheitsab- scheidung	aerodyn. Durch- messer, Massen- verteilung	0,6 ≤ D ≤ 15µm
Cascade Particulate Mass Monitor (10-Stufen- impaktor)	Trägheits- abscheidung, Massenwaage	aerodyn. Durch- messer, Massen- verteilung	0,05≴D ≴ 25µm
Stöber- zentrifuge	Sedimen- tation	aerodyn. Durch- messer, aerodyn. Formfaktor, Dichteunter- schiede	0,2 ≴ D ≴ 5µm
Electrical Mobility Analyzer (TSI)	elektr.stat. Beweglich- keit	elektr.stat. Mobilitäts- durchm., Größen- verteilung	0,01 S D S 1 µ m bis 10 ⁶ T cm ⁻³
Kondensa- tionskern- zähler (TSI)	Kondensation von Butylal- kohol, Pho- tometrie	Partikelkonzen- tration	10 ⁻² - 10 ⁷ ст ⁻³ D > 0,01 µ т
Thermalprä- zipitator	Thermophoret. Abscheidung ^{x)}	Diffusions- durchmesser	D 矣 О, 5 лт
Streulicht- spektrome- ter (Polytec)	Streulicht (Weißlicht, 90 ⁰)	Streulicht- durchmesser, Partikelgrößen- verteilung Par- tikelkonz.	0,5 ≤ D ≤ 15µm 0-10 ⁵ T cm ⁻³

x) Thermophoretische Abscheidung = Partikelabscheidung aufgrund von großen Temperaturgradienten (z. B. Strauß, Band II, 1972) Ferner wurde die Materialdichte der Partikeln mit Hilfe eines Pyknometers gemessen. Die Wasseraufnahme einiger Partikelsorten wurde mit einer sehr empfindlichen Mikrowaage bestimmt (Hänel, Zankl, 1980). Der ständige Einsatz des Streulichtspektrometers erbrachte folgende Vorteile: statt einer Parallelschaltung der Partikelmeßgeräte und der Filtersammeleinrichtung (Abb. 6) werden zu Beginn der Versuche die Teilchen durch eine Glasküvette im Zentrum des Meßkopfes des Streulichtphotometers abgesaugt. Hinter der Küvette lassen sich mit den übrigen Meßgeräten Proben entnehmen, um für das gleiche Gasvolumen auch eine Massenkonzentration und die SO₂-Konzentration zu bestimmen. Das Streulichtgerät muß für jede verwendete Aerosolteilchensorte neu geeicht werden.

3.5 <u>Bestimmung der chemischen und der Elementzusammensetzung</u> <u>der Aerosolteilchen</u>

Die im folgenden beschriebenen Methoden dienen zur Analyse der unter den jeweiligen Bedingungen stabilen Verbindungen und Elementen <u>vor</u> und <u>nach</u> den Reaktionen mit SO₂. Somit ist es möglich, die insgesamt erzeugten Produktmengen zu bestimmen und die Abhängigkeit der Produktmengen von thermodynamischen Größen und Teilcheneigenschaften zu untersuchen. Die Reaktionsraten werden aus den Produktmengen zu verschiedenen Zeiten ermittelt (Abschnitt 2).

Bei den zur Verfügung stehenden Techniken muß man unterscheiden zwischen Methoden zur Bestimmung der Elementzusammensetzung und zur Ermittlung der Oberflächenverbindung von Teilchenproben (Abschnitt 3.5.1 - 3.5.4), d. h. einer großen Gesamtheit von Partikeln, und Methoden zur Analyse der Elementzusammensetzung in Einzelteilchen (Abschnitt 3.5.5) unter Verwendung elektronenmikroskopischer Verfahren.

- 51 -

3.5.1 Die Neutronenaktivierungsanalyse

Die Elementanalyse von Aerosolproben wurde von R. Härtel im Labor für Isotopentechnik I des Kernforschungszentrums Karlsruhe mit Hilfe der Neutronenaktivierungsanalyse für Ordnungszahlen Z > 11 durchgeführt (Vogg und Härtel, 1977). Die Aktivierungsanalyse ist allgemein eine Methode der Element- und Isotopenanalyse. Sie beruht auf die Umwandlung der stabilen Nuklide durch Bestrahlung der Probe wie in diesem Fall mit thermischen Neutronen; aber auch geladene Teilchen oder Photonen lassen sich verwenden, um radioaktive Nuklide des gleichen Elements oder benachbarter Elemente $(Z = \pm 2)$ zu erzeugen (z. B. Krivan, 1979). Die durch Bestrahlung produzierten Radionuklide zerfallen mit bekannter Halbwertzeit und senden charakteristische radioaktive Strahlung aus, die zur Identifikation der Nuklide verwendet wird. Die quantitative Bestimmung basiert auf der Proportionalität zwischen Elementmenge und der Aktivität des gebildeten Radionuklids. Kombiniert man bei einem Neutronenfluß von 9 \cdot 10¹³ n cm⁻² sec⁻¹ drei Bestrahlungszeiten (2 min, 10 min, 7 d) mit jeweils drei Abklingzeiten (10 min, 10 - 15 h, 21 - 28 d), so können 42 Elemente nachgewiesen werden (Vogg und Härtel, 1977). Ferner lassen sich noch Si und O durch Bestrahlung mit 14 MeV-Neutronen bestimmen. Wegen der niedrigen Nachweisgrenzen konnte auch die Elementzusammensetzung der löslichen Anteile der Partikeln bestimmt werden.

3.5.2 Photoelektronenspektroskopie

Eine Festkörperoberfläche kann z. B. durch Photonen, Elektronen und Ionen zur Emission von Elektronen, Sekundärelektronen und Sekundärionen angeregt werden. Im Fall der Anregung mit Photonen – hier Röntgenstrahlung mit 1487 eV der Al-Kw_{1,2}-Linie oder 1500 eV der Mg-Kw-Linie – kann man die charakteristischen Bindungsenergien der Valenz- aber vor allem der Nichtvalenzelektronen identifizieren. Deshalb nennt man das Verfahren auch ESCA - Electron Spectroscopy for Chemical Analysis oder XPS - X - ray Photoelectron Spectroscopy.

Die Bindungsenergien E_b der Valenzelektronen, aber auch der inneren Elektronen, ändern sich mit der chemischen Umgebung. Diese Eigenschaft kommt in den kinetischen Energien der durch Röntgenstrahlung ionisierten und emittierten Elektronen zum Ausdruck) (z. B. Siegbahn et al., 1967; Nordling, 1972). Da die wechselwirkungsfreie mittlere Austrittstiefe der Elektronen je nach Element nur ca. 4 - 20 Å beträgt, erhält man mit dieser Technik ausschließlich Information über die chemische Oberflächenzusammensetzung von Partikelproben. Die kinetischen Energien der Elektronen können mit hochauflösenden Instrumenten bestimmt werden, deren schematischer Aufbau in Abb. 10 zu sehen ist.

<u>Abb. 10:</u> Anregungsmöglichkeiten für Elektronenspektren und schematischer Aufbau hochauflösender Spektrometer (z. B. Siegbahn et al., 1967) Es wurde ein prozeßrechnergesteuertes ESCA AEI-ES-100 im Institut für Heiße Chemie des Kernforschungszentrums Karlsruhe verwendet. Die Berechnung und Identifikation der Spektren erfolgt gemäß der Beziehung für den Photoeffekt

$$E_{b} = h\nu - E_{K} - \emptyset$$
 (26)

mit E_b als Bindungsenergie, h ν als Energie der einfallenden Röntgenstrahlung und E_K als kinetische Energie, bei der ein spezieller Peak auftritt. Korrekturen müssen hinsichtlich der Spektrometereigenschaften Ø (Apparatekonstante), der Aufladungseffekte und der Oberflächenstruktur der Probe angebracht werden. Die letzteren beiden Korrekturen wurden für verschiedene Probenträger (Metall, Teflonfilter, Glasträger) und Standards aushomogenem SiO₂ und Metallschichten (Cu, Fe, Mn, Al, C) sowie Schichten und Teilchenproben aus Na₂SiO₃, FeSO₄, Na₂SO₄, NaCl., Al₂O₃ und Ruß nach dem von Carter III (1974) angegebenen Verfahren durchgeführt. Bei einem konstanten Fluß der anregenden Röntgenquanten erhält man für den reziproken Wert 1/ α des inelastischen "effektiven" Streuquerschnittes pro Einheitslänge α näherungsweise

$$1/\alpha \simeq (E_{\rm K})^{1/2}$$
 (27)

Damit folgt für das Verhältnis der integrierten Intensität N_{z,nl} der Nebenschalen nl einer beliebigen Photoelektronlinie eines Elementes Z zur Intensität der C 1s Linie mit (26)

$$\frac{N_{z, nl}}{N_{C, 1 s}} = \frac{G_{z, nl}/(h\nu - E_{b}(z, n))}{G_{C, 1 s}/h\nu - E_{b}(C, 1 s)} \frac{1/2}{1/2}$$
(28)

Bei dieser Notation ist $G_{z,nl}$ der Photoelektronwirkungsquerschnitt einer Nebenschale. Die Bindungsenergie E_b (C, 1 s) wird experimentell ermittelt und beträgt nach den Korrekturen E_b (C, 1 s_{1/2}) = 285 eV. Die relative Intensität beträgt für N(S, 2 p_{3/2})/N(Na, 1 s) = 0.31, für N(Cl, 2 p_{3/2})/N(Na, 1 s) = 0.4, für N(0, 1s)/N(Na, 1 s) = 0.49, für N(Si, 2 p_{3/2})/ N(Na, 1 s) = 0.16 und für N(C, 1 s)/N(Na, 1 s) = 0.19.
Der Vergleich mit verschiedenen Ergebnissen der relativen Intensitäten zeigt, daß Abweichungen zwischen experimentell ermittelten und theoretischen Werten von + 20 % für die Quotienten in (28) zu erwarten sind (siehe auch: Carter III, 1974). Der Einfluß der Partikelgrößen in einer Aerosolprobe bzw. der Inhomogenitäten einer Schicht verändert die effektive Schichtdicke und erlaubt es nicht, die Spektren an Teilchenproben quantitativ auszuwerten. So kann z. B. ein Sulfatgehalt von 10 µg in einer Probe von 1 mg bei einer Fläche von 0,3 cm² nicht genauer als auf ca. <u>+</u> 50 % angegeben werden. Wenn zusätzliche Eichkurven der Abhängigkeit der einzelnen Größen &, N(z, nl) und der effektiven Austrittstiefe von der Probenoberflächenstruktur vorliegen, kann man die Fehler reduzieren. Bei einer Auflösung von 0,2 eV bei dem verwendeten Gerät läßt sich z. B. noch adsorbiertes SO_2 von SO_3^- und SO_4^{2-} unterscheiden, da die charakteristischen Peaks jeweils um etwa 1 eV auseinander liegen (Lindberg et al., 1970; Siegbahn et al., 1967). Mit Hilfe einer Sputteranlage (Ar⁺-Ionen) können Oberflächenverbindungen abgetragen werden und es lassen sich Tiefenprofile der Elemente und Verbindungen auf den Proben gewinnen. Allerdings ist darauf zu achten, daß der Ar⁺-Ionen-Beschuß nicht zu chemischen Umwandlungen in den Proben führt.

Somit läßt sich mit dieser Methode feststellen, welche Verbindungen nach einer Reaktion von Aerosolteilchen mit SO₂ vorliegen. Ferner kann ermittelt werden, welche Verbindungen vorzugsweise auf Partikeloberflächen angereichert sind.

3.5.3 Sulfatnachweis

Die Messung des wasserlöslichen Gesamtsulfates wurde anfangs mit einer photometrischen Methode nach Pötzl (1974) durchgeführt. Die SO²⁻-Ionen werden durch einen genau definierten geringen Ba²⁺-Überschuß in schwach salzsaurem 70 % Aceton

- 55 -

enthaltenen Medium in BaSO, überführt. Zur Vermeidung von Übersättigungserscheinungen wird dabei mit Spuren reinem BaSO₄ "geimpft". Nach ca. 2 Stunden ist die Reaktion be-endet und der nicht an SO_4^{2-} gebundene Bariumrest wird nun in ammoniakalischer Lösung mit dem Kupfer (II)-Komplex der Äthyldiamintetraessigsäure umgesetzt. Hierbei wird eine dem Ba^{2+} äquivalente Menge von Cu^{2+} frei, die sich mit dem organischen Farbstoff PAN bei 546 nm empfindlich photometrisch bestimmen läßt. Aus der Menge derangewandten Reagenzien ergibt sich so indirekt der Gehalt der Probe an SO_4^{2-} . Die praktische untere Meßgrenze ist etwa 0,05 μ g/ml. Störungen verursachen alle Kationen mit Ausnahme der Alkalien. Sie müssen deshalb durch eine Probenvorbehandlung mit einem stark sauren Kationenaustauscher entfernt werden. Die hier beschriebenen Experimente wurden - wegen der leichteren Bearbeitung größerer Probenmengen - mit Hilfe der Isotopenverdünnungsanalyse (IVA) (Denzinger, 1975) analysiert, die keine spezielle Probenvorbehandlung erfordert. Allerdings muß der störende Einfluß von wasser- und säurelöslichen Eisen- und Aluminiumionen durch eine getrennte Elementanalyse mittels Eichkurven berücksichtigt werden. Bei dieser Methode muß die Änderung der sogenannten spezifischen Aktivität (Aktivität pro Gewicht) ermittelt werden. Diese Änderung wird dadurch hervorgerufen, daß man eine radioaktiv markierte Verbindung mit dem gleichen, jedoch inaktiven Element (inaktive Verbindung), welches in einer Probe zu ermitteln ist, "verdünnt".

Da man Isotopieeffekte ausschließen kann, verhalten sich beide Nuklide (Verbindungen) nach der homogenen Durchmischung chemisch und physikalisch gleich; d. h. die prozentualen Verluste sind bei den anschließenden Reinigungs- und Isolierungsschritten für beide Molekülsorten gleich groß. Daher genügt es, nur einen Bruchteil der zu bestimmenden Komponente möglichst rein zu isolieren und seine spezifische Aktivität zu bestimmen. Gerade diese unvollständige Trennung zeichnet die IVA gegenüber anderen Analysenverfahren aus. Als Trennoperationen eignen sich praktisch alle gängigen Methoden (z. B. Fällung, Ionenaustausch, flüssig-flüssig-Extraktion oder elektrolytische Abscheidung). Die Bestimmung der Menge des abgetrennten Anteils erfolgt nach einem geeigneten analytischen Verfahren. Aus Gleichung (29 a) kann die unbekannte Menge x der zu bestimmenden Komponente berechnet werden.

 $x = a \cdot (\frac{s_0}{s_x} - 1)$ (29 a)

x / g_7 unbekannte Menge der zu bestimmenden Substanz a / g 7 bekannte Menge des zugesetzten radioaktiven Isotops A Zerfälle pro min. bekannte Aktivität des zugesetzten DPM radioaktiven Isotops $s_0 = \frac{A}{a}$ spez. Aktivität vor dem Durchmischen ("Verdünnen") $s_x = \frac{A}{a + x} = \frac{A_x}{b}$ spez. Aktivität nach dem Durchmischen ("Verdünnen") b / g_7 Menge der nach dem Durchmischen iso-⊥ierten Substanz A / DPM_7 gemessene Aktivität der isolierten

Substanz

In der ursprünglichen Form der Isotopenverdünnungsanalyse ist zur Ermittlung von S_x die analytische Bestimmung der abgetrennten Menge b erforderlich. Dieser Schritt ist besonders im Hinblick auf die Anwendung der IVA im Spurenbereich von Nachteil. Wird nun sowohl aus der ursprünglichen Radionuklidlösung, als auch aus der Lösung, die nach der Verdünnung mit dem inaktiven zu bestimmenden Element erhalten wird, immer die gleiche Menge b, z. B. durch ein Fällungsreagens $(BaSO_4^2)$ abgeschieden, dann können die spez. Aktivitäten in Gleichung (29 a) durch die zu b gehörenden Aktivitäten ersetzt werden, wenn das substöchiometrische Prinzip, d. h. b \leq a erfüllt ist. Es gilt dann (mit S_o = A_o/b):

$$x = a \left(\frac{A_0}{A_x} - 1\right)$$
 (29 b)

Die Aktivitäten A_x und A_o der jeweils isolierten Menge b werden in geeigneter Weise gemessen.

Für die Berechnung von x nach Gleichung (29 b) ist nur entscheidend, daß sowohl aus der ursprünglichen Radionuklidlösung als auch aus der Mischung tatsächlich die gleichen Mengen b isoliert werden. Die Auswertung der Zählraten nach (29 b) ergibt die gesamte SO_4^{2-} - Menge in einer Probe. Ein Vergleich der IVA mit der photometrischen Methode nach Pötzl (1974) zeigt im Bereich 0.5 $\mathcal{A}g_s$ ml - 5 $\mathcal{A}g_s$ ml maximale Abweichungen von 30 % bei einer Streuung von \pm 7 % für die IVA-Werte und \pm 23 % für die Werte der photometrischen Methode. Der Vergleich mit der Röntgenfloureszenanalyse gibt eine maximale Abweichung der Schwefelwerte von den Werten der IVA von \pm 12 % erst bei höherer Teilchenbeladung auf den Filtern von mehr als 0,2 mg cm⁻².

3.5.4 Nachweis von Schwefelsäure und schwefliger Säure

Für den Nachweis von H_2SO_4 und H_2SO_3 in den Teilchenproben wurde eine gaschromatographische Methode nach Penzhorn und Filby (1976) eingesetzt. Dabei werden die Schwefelverbindungen in den Proben mit Diazomethan in die Methylderivate übergeführt. Mit dem Verfahren läßt sich neben H_2SO_4 auch H_2SO_3 gaschromatographisch nachweisen (Panter und Penzhorn, 1979). Es wurden zwei Säulen (12 ft 20 % Triton auf Chromosorb, 6 ft 5 % Degs auf Chromosorb) verwendet. Als Detektor dient ein schwefelspezifischer flammenphotometrischer Detektor. Die Proben werden wanlweise nach den Versuchen sofort mit Diazomethan versetzt und kühl gelagert, oder unter Luftabschluß aufbewahrt, um eine stabile H_2SO_4 -Menge nach einigen Tagen Standzeit zu bestimmen. 3.5.5 Nachweis von Elementen in Einzelteilchen

Die Form und Mikrostruktur von Aerosolteilchen läßt sich für Partikeln größer 0,05 Am Radius mit einem leistungsfähigen Rasterelektronenmikroskop (REM) bestimmen. Es wurde ein Mikroskop Stereoscan 180 (Cambridge Instrument (Corp.) im Institut für Elektronenmikroskopie der Universität Karlsruhe benutzt. Die Spektroskopie von Köntgenstrahlen ist das z. Zt. einzige universelle Verfahren zur Mikroanalyse von Einzelteilchen in Verbindung mit dem REM (z. B. Brümmer, 1980). Es wurde neben einem wellenlängendispersiven Spektrometer (WLS) hauptsächlich ein energiedispersives Spektrometer (EDS) verwendet, bei dem die durch Elektronenbeschuß erzeugten Röntgenstrahlen nach ihrer Energie zerlegt werden. Ein Halbleiterdetektor setzt, die von den Teilchen emittierten Köntgenquanten in elektrische Impulse um, die verstärkt und über eine Vielkanalimpulshöhenanalysator gezählt und gespeichert werden; d. h. man erhält das Energiespektrum der charakteristischen Röntgenstrahlung der Elemente. Es können Elemente mit Ordnungszahlen Z > 11 gleichzeitig nachgewiesen werden. Leichtere Elemente $(Z \ge 4)$ sind mit einem fensterlosen Detektor bei höherem Strahlstrom nachweisbar. Die Nachweisgrenzen liegen für Kohlenstoff bei 1 % und erniedrigen sich für schwere Elemente bis auf ca. 0,05 %. Die absolute Nachweisgrenze des EDS liegt je nach Element, Teilchenstruktur und Substrat zwischen 10^{-11} und 10^{-17} g. Zum Beispiel lassen sich in einem Teilchen mit D = $1 \mu m$ der Dichte 2,5 g cm⁻³ (Masse = 1,3 \cdot 10⁻¹²g) noch etwa 10⁻¹⁶ g Schwefel mit einem Fehler von ca. + 30 % Genauigkeit bestimmen, wenn geeignete Standards zur Verfügung stehen (Armstrong, 1978; Grasserbauer, 1978).

Zur Verringerung des Untergrundsignals wurden für Z > 11 Kohlenstoffträger oder Cu-Filme auf Glas sowie für den Nachweis von Rußteilchen Quartzglasträger verwendet.

- 59 -

Bei festen Beschleunigungsspannungen läßt sich leicht durch qualitative Analysen die Häufigkeit einzelner Elemente in Teilchen bestimmter Größe feststellen. Eine "halb" quantitative Analyse einzelner Partikeln ent-

sprechend den Methoden von Armstrong (1978) oder Grasserbauer (1978) setzt voraus, daß Partikeln entsprechender Größe und Form (Neff, 1980) mit bekannter Zusammensetzung verfügbar sind. In erster Näherung setzt man voraus (Castaing, 1951), daß sich der Massengehalt w^A eines Elementes A in einem Teilchen oder einer homogenen Schicht aus den sogenannten k-Wert berechnen läßt, d. h.

$$k^{A} = I^{A} / I^{A}_{O} \qquad w^{A} \qquad (30 a)$$

 $(I^A = Intensität der A-Strahlung aus der Probe, I^A_o = Inten$ sität der A-Strahlung des reinen Elementes)

Mit dieser Näherung enthält man i. A. zu niedrige Werte w^A. Die Korrektur von Matrixeffekten durch Faktoren fi (f₁ = Atomzahlkorrektur, f₂ = Absorptionskorrektur, f₃, f₄ = Floureszenzkorrekturen) führt zu verbesserten k-Werten

$$\mathbf{k}^{\mathbf{A}} = \mathbf{f}_{1} \cdot \mathbf{f}_{2} \cdot \mathbf{f}_{3} \cdot \mathbf{f}_{4} \mathbf{w}^{\mathbf{A}}$$
(30 b)

Bei der Analyse von Einzelteilchen muß ferner ein multiplikativer Faktor f₅ zur Berücksichtigung der Teilchenform bzw. des effektiven Teilchenvolumens hinzugefügt werden (Neff, 1980). Für homogene Partikeln der gleichen Form gilt näherungsweise, wenn Standard und Teilchen die gleiche Form und Größe haben

$$w^{A} \simeq (I^{A} / I^{A}_{s}) w^{A}_{s}$$
 (31)

 $(I_s^A = Intensität der A-Strahlung von Standard S, w_s^A = Massengehalt von A im Standard S)$

Bei inhomogen aufgebauten Teilchen läßt sich diese Methode nur noch näherungsweise anwenden. Für die Kohlekraftwerksstaubteilchen, die Zemente und andere Partikeln, die Oxidgemische enthalten, wurde als Standard Al_20_3 und $Si0_2$ gewählt, da sich durch Rechnungen mit dem von Neff (1980) verwendeten Modell zeigte, daß sich die Korrekturen in (30 b) für Al-Si-Oxidmischungen gegenseitig kompensieren. Die Rechenergebnisse stimmen auf ca. <u>+</u> 10 % mit Messungen an Al-Si-Mischoxiden im Durchmesserbereich 0.8 ≤ D ≤ 5µm überein (Neff und Eck, 1980). Für den Nachweis von nur in einer Schicht stark angereicherten Elementen läßt sich die Methode nur anwenden, wenn der Elektronenstrahldurchmesser (d. h. das angeregte Volumen) größer ist als der Teilchendurchmesser. Eine Aufweitung des Strahl verringert zwar die Nachweisempfindlichkeit; trotzdem lassen sich etwa die erwähnten Genauigkeiten bis zu Teilchendurchmessern von D ≃ 4µm und Beschleunigungsspannungen bis zu 30 keV erreichen.

4. Bestimmung verschiedener Partikeleigenschaften

Neben den physikalischen Partikeleigenschaften (Größenverteilung, Form und Materialdichte) bestimmen verschiedene, oft von mehreren Größen abhängige Parameter den Anteil der luftgetragenen Teilchenmasse in einem Volumen (Reaktor A, Atmosphäre) und die Reaktivität der Teilchen gegenüber Spurengasen. So hängt z. B. die Wasseraufnahme von Partikeln bei einer bestimmten relativen Feuchte von der Teilchengröße, aber auch der chemischen Zusammensetzung ab. Je größer ein Teilchen wird, um so größer ist auch seine Sedimentationsgeschwindigkeit. Gleichzeitig kann aber in einer Wasserhülle um einen unlöslichen Kern eine größere Menge SO₂ gelöst werden, als es bei einem nahezu trockenen Teilchen möglich ist.

In diesem Abschnitt werden die Ergebnisse der Bestimmung von physikalischen und physico-chemischen Eigenschaften von Partikelproben und Einzelteilchen aus den Laboruntersuchungen mit denen von atmosphärischen Partikelproben verglichen. Mit diesen Ergebnissen ist es anschließend möglich, die Schwefelsäure- und Sulfatentstehung auf Partikeln in Abhängigkeit von einzelnen Parametern zu diskutieren (Abschnitt 5). Bei diesen Untersuchungen wurden die Eigenschaften von Kohlekraftwerksstäuben, Zementstäuben, synthetischen Rußteilchen, Vulkanstaub (St. Helens) und künstlichen Aerosolen (Al₂0₃, NaCl, NaCl + MnCl₂, NaCl + MnSO₄, MnCl₂, MnSO,, FeSO,) bestimmt. Die Stäube stammen aus den Kohlekraftwerken Mannheim und Karlsruhe und von Zementwerken in der Umgebung von Karlsruhe (Betreiber: Portland AG). Die synthetischen Ruße wurden von der Firma Cabot Corporation in Offenbach bezogen. Zusätzliche Resultate liegen von Messungen in einem Kohlekraftwerk und an atmosphärischen Proben vor.

- 62 -

4.1 Physikalische und physico-chemische Aerosolteilcheneigenschaften

Für den Transport und das dynamische Verhalten von Partikeln in der Atmosphäre und im Reaktor A sind neben der Teilchengröße (z. B. als Radius einer volumengleichen Kugel = Volumenäquivalentradius $r_{
m aq}$), die Materialdichte $ar{s}$ und der dynamische Formfaktor x von Bedeutung (x beschreibt die Abweichung der Bewegung eines nichtkugelförmigen Teilchens von der Bewegung einer volumengleichen Kugel). Diese Größen bestimmen auch das Abscheideverhalten von Partikeln in Trägheitsabscheidern (Impaktoren, Abschnitt 3.4) und werden deshalb auch zur quantitativen Berechnung von Massen- bzw. Oberflächengrößenverteilungen (Abb. 3) der atmosphärischen Partikeln benötigt. Die Werte von 🛪 sind mit Hilfe der Stöber-Zentrifuge (Abschnitt 3.4) entsprechend der Methode von Kops (1976) gewonnen, wobei ein Rasterelektronenmikroskop (REM) Stereoscan 180 zur Bestimmung der Größe und Form der Partikeln diente (Tab. 3)(Dlugi et al., 1981 b).

<u>Tab.3</u>: Mittlere Materialdichten \overline{g} und dynamische Formfaktoren \overline{w} der verwendeten Aerosolteilchen

Material	$\bar{g}(g \text{ cm}^3)$	$\pi(r_{aq} = 1 \mu m)$	$\bar{w}(r_{iiq} = 0, 5 \mu m)$
Kohlekraftwerksstäube	2,5 - 2,8	1 - 1,1	1 - 1,1
Zementstäube	2,9 - 3,2	1,18 - 1,45	1,2
Rußteilchen (vor der	1,8 - 2	1,5 - 2,9	1,4 - 2,0
Reaktion)			
Rußteilchen (nach	1,8 - 2	1,1 - 1,8	
der Reaktion)		•	
NaCl	2,16	1,1	
	a grana ana ana	· · · · · · · · · · · · · · · · · · ·	

Während sich die Bestimmung der Partikelgrößenverteilung im Fall kugelförmiger Kohlekraftwerksstäube verhältnismäßig einfach gestaltet, muß bei der Ermittlung der Größenverteilung für andere Teilchenformen mit $\bar{\varkappa} > 1$ der Volumenäquivalentradius r_{äg} als Radius einer volumengleichen Kugel oder der aerodynamische Radius r_a auf recht aufwendige Weise ermittelt werden. Der Volumenäquivalentradius r_{äq} und der aerodyna-mische Radius r_a sind durch die Relation

 $\mathbf{r}_{a} = \pi \frac{-1/2}{(\mathbf{g})^{1/2}} \left\{ C_{S}(\mathbf{r}_{\ddot{a}q}) / C_{S}(\mathbf{r}_{a}) \right\}^{1/2} \mathbf{r}_{\ddot{a}q} \quad (32)$

verküpft, wobei $C_S(r_{aq})$ bzw. $C_S(r_a)$ jeweils die Gleitkorrektur für eine entsprechende Kugel mit Radius r_{aq} bzw. r_a darstellen. Die von Kops (1976) beschriebenen Verfahren der Bestimmung von \mathbf{x} oder der verschiedenen Radien sind zur Charakterisierung der Zement- und Rußteilchen verwendet worden. Es zeigt sich, daß die mit dieser Methode bestimmten Parameter genau genug sind, um auch die Abscheidewirksamkeit von Impaktoren für nichtkugelförmige Teilchen richtig zu berechnen (Dlugi, 1978).

Für die Kontrolle der Konstanz der Größenverteilung bei den Laborversuchen in der Reaktionskammer genügt es, die entsprechenden Größenverteilungen der verwendeten Zementstäube und Ruße einmal zu bestimmen. Die Verknüpfung zwischen der Projektionsfläche und r_{äq} erlaubt dann, aus Filterprobenanalysen mit dem REM eine nachträgliche Kontrolle der einzelnen Versuche durchzuführen. Ferner läßt sich während der Versuche die Größenverteilung mit dem Partikelmeßsystem (Abschnitt 3.4) überwachen.

Die Partikelform und damit der dynamische Formfaktor $\bar{\mathbf{x}}$ unterscheidet sich stark aufgrund der Bildungsmechanismen bei der Teilchenentstehung (Abb. 1). Bei der Kohleverbrennung in Kraftwerken herrschen Temperaturen von ca. 2000[°]K, so daß außer SiO₂ und Al₂O₃ alle weiteren Elemente wie z. B. Mg, V, Mn, Fe, Cu, Ni sowie K, Na, S, Cl, P gasförmig vorliegen. Bei den Abkühlungsprozessen kondensieren die Verbindungen entsprechend ihrer Verdampfungstemperatur auf den vorhandenen Keimen. Dadurch erhält man nahezu kugelförmige Teilchen (Abb. 11) mit einer gewissen Schichtstruktur (z. B. Linton et al., 1976; Dlugi und Jordan, 1978). Dies trifft auf Stäube aus Schmelzkammerfeuerungen zu, die ausschließlich in diesem Vorhaben untersucht wurden. Partikelproben anderer Kohlefeuerungsanlagen konnten nicht beschafft werden.

<u>Abb. 11:</u> Typische Staubteilchen aus der Kohleverbrennung in Kraftwerken mit hohem Anteil löslicher Substanz auf den Oberflächen

Abb. 12: Typische Staubteilchen aus einem Kohlekraftwerk, gesammelt auf einem Faserfilter hinter einem Elektrofilter

Nach den eigenen Messungen am Kessel 14 und 15 des Großkraftwerks Mannheim liegt der mittlere Anzahldurchmesser hinter der Filteranlage je nach Betriebsart zwischen 0,6 und 2,5 - 3 μ m. In den Filterrückständen findet man aber auch sehr große Teilchen (D > 10 μ m), die innen hohl sind und kleine Partikeln enthalten (Abb. 13).

<u>Abb. 13:</u> Große, innen hohle Staubteilchen aus dem Elektrofilter eines Kohlekraftwerkes

Die Zahl dieser Teilchen ist sehr klein. Bei Emissionsmessungen hinter den Filtern und bei Immissionsmessungen für Entfernungen von ca. 60 - 90 km von der Quelle wurden diese Teilchen nicht gefunden (Parungo et al., 1978; Mamane und de Pena, 1978; Ondov und Bierman, 1980; Andre et al., 1981). Der größte Teil der emittierten Teilchen ist kleiner als etwa 6 µm Durchmesser, nahezu kugelförmig und enthält keine Hohlräume (Abb. 12). Die Befunde entsprechen denen von Fisher et al. (1978), die Partikelemissionen von Kohlekraftwerken nach morphologischen Kriterien untersuchten. Demnach sind ca. 85 - 95 % der Teilchen kugelförmig und kompakt mit einer mehr oder weniger ausgeprägten Schichtstruktur, die vom verwendeten Brennersystem und der Rauchgasbehandlung abhängt (Abschnitt 4.4). Die Eigenschaften von Zementstäuben unterscheiden sich von denen der Kohlekraftwerksstäube. Bei der Herstellung von Zementen werden gleichfalls hohe Temperaturen von mehr als 1400 [°]K erreicht, so daß verschiedene Elemente, u. a. die alkalischen Bestandteile und Schwefel, verdampfen. Im Zementrohmehl ist schon bei 1400 bis 1500 [°]K Fe₂O₃, Al₂O₃ und SiO₂ in Calciumferriten, -aluminaten und -silicaten gebunden. Es entsteht eine CaO-Schicht auf den Teilchen, die durch den Mahlvorgang nur teilweise zerstört wird. Der mittlere Volumenäquivalentdurchmesser der unregelmäßig geformten Teilchen beträgt 0,8 - 1 µm (Abb. 14);

Abb. 14: Typische Partikeln des Zementstaubs PZ 35

damit sind die Partikeln (\bar{g} = 2,8 g cm⁻³; $\bar{x} \simeq 1,3$) klein genug, um mehrere Stunden im luftgetragenen Zustand in der Reaktionskammer A zu verbleiben. Die synthetischen Ruße (Markennamen: Vulcan XC-72 R, Elftex 5, Sterling MT; Cabot Corp.) unterscheiden sich je nach ihrer Herstellungsart im mittleren Durchmesser der Primärteilchen, ihrer spezifischen Oberfläche, dem Kohlenstoffgehalt und den flüchtigen Bestandteilen (Tab. 4). Während Sterling MT durch thermische Spaltung von Kohlenwasserstoffen mit anschließendem "Abschrecken" durch Kühlwasser erzeugt wird, ist Vulcan XC-72 R durch Verbrennen von Öl in einer einzelnen großen Flamme und anschließendem "Abschrecken" durch Eindüsen von Wasser hergestellt. Der Ruß Elfex 5 wird im wesentlichen wie Vulcan XC-72 R hergestellt, allerdings sind die Betriebsbedingungen so verändert, daß eine geringere spezifische Oberfläche entsteht.

Die zuerst gebildeten sehr kleinen Primärteilchen lagern sich mit 10 - 10³ Teilchen zu größeren Agglomeraten zusammen. Die Abb. 15 und 16 zeigen zwei verwendete Ruße. Man erkennt, daß die Rußteilchen nach den Reaktionen mit SO₂ zu klumpenförmigen Agglomeraten zusammengezogen sind, während sie vor den Versuchen als mehr kettenförmige Agglomerate vorliegen. Die Partikeln selbst bilden beim Sammeln auf den Filtern oft größere Agglomerate von ca. 5 - 20 µm.

<u>Abb. 15:</u> Zwei nebeneinander liegende Agglomerate von Sterling MT nach der Reaktion mit SO₂ (2,8 cm = 1 µm)

- <u>Abb. 16:</u> Ein größerer Ausschnitt einer Probe von Vulcan XC 72 R nach der Reaktion mit SO_2 (2,2 cm = 10 μ m)
- Tab. 4: Angaben über synthetische Ruße der Firma Cabot Corp.; in Klammern /__7 eigene Meßergebnisse

Material	spez. Oberfl m ² g ⁻¹	Primärteilchen durchmesser, um	Kohlenstoff gehalt, %	рH
Vulcan XC-72 R (S I) Elftex 5 Sterling MT (SII)	220/ ⁻ 215_7 74/ ⁻ 83_7 7/ ⁻ 10_7	0,03/ ⁻ 0,038_7 0,027/ ⁻ 0,025_7 0,25/ ⁻ 0,26_7	98/ ⁻ 98,2_7 99/ ⁻ 98,9_7 99,5/ ⁻ 99,4_7	7,5 <u>/</u> 7,2_7 7,0 <u>/</u> 6,8_7 9,5 <u>/</u> 8,9_7

Der Benzolextrakt dieser drei Ruße in obiger Reihenfolge ergibt 0,1 %, 0,06 %, 0,5 %, der Aschegehalt (s. Tab. 7) ist hier im Kohlenstoffgehalt enthalten. Weiterhin sind noch flüchtige Bestandteile von weniger als 1 ppm vorhanden. Die Wasseraufnahme verschiedener Aerosolproben wurde vor und nach der Reaktion mit SO₂ mit einer empfindlichen Mikrowaagenmethode nach Hänel (1976) von B. Zankl (Hänel und Zankl, 1980) bestimmt (Tab. 5). Eine eigene Messung des Wassergehalts von Partikelproben mit der Methode der Wassergehaltsbestimmung nach Karl Fischer (Eberius, 1954) zeigt nur eine Abweichung der Meßdaten von – 10 %. Die Meßdaten für Ruß und Kohlekraftwerksstäube vor der Reaktion mit SO₂ entsprechen etwa den Minimalwerten m_w/m_o , die Winkler (1970) für Montmorillonit, Tonmineralien und den wasserunlöslichen Anteil atmosphärischer Aerosolteilchen im selben Feuchtebereich angibt.

<u>Tab. 5:</u> Die Wasseraufnahme (m_W/m_o; Gleichung 14) einiger Aerosolteilchenproben (K I, K II, S I: Tab. 7)

Teilchenart	relative Feuchte	mw mo	Methode
	<i>r-</i>		a an
K I (vor der Reaktion)	70 85 90 95	0.02 0.03 0.05 0.07	Mikrowaage (1 Probe)
K I (nach der Reaktion bei 80 % r. F.)	70 80 90 95	0.31 0.33 0.69 0.97	Mikrowaage (1 Probe)
S I (vor der Reaktion)	70 90 95	0.01 0.01	Mikrowaage (1 Probe)
SI (nach der Reaktion)	90 96	0.21 0.68	Mikrowaage (1 Probe)
K II (vor der Reaktion	85 90 95	0.04 0.07 <u>+</u> 0. 0.09	Karl-Fischer- 05 Titr.(3 Proben)
K II (nach der Reaktion	70 85 90 95	$\begin{array}{c} 0.50 + 0.0 \\ 0.78 + 0.0 \\ 0.85 + 0.0 \\ 0.98 + 0.0 \\ 0.98 + 0.0 \\ \end{array}$	05 Karl-Fischer- 04 Titr.(3 Proben) 04
K I (nach der Reaktion	80 95	0.3 ± 0.00 0.88 ± 0.000	05 Karl-Fischer- 04 Titr.(4 Proben)

Nach der Reaktion sind wasserlösliche Bestandteile vorhanden, die das Verhältnis von m_W/m_o um mehr als eine Größenordnung erhöhen. Diese Werte aus Tab. 5 liegen unterhalb der Meßwerte m_W/m_o für atmosphärische Proben. Bei r. F. \cong 95 % erhält z. B. Lehmann (1978) $m_W/m_o \simeq 2 - 10$, Hänel (1976) $m_W/m_o \simeq 2 - 10$ und Winkler (1970) $\frac{m_W}{m_o} \ge 2$.Diese niedrigeren Werte lassen sich qualitativ deuten, wenn man berücksichtigt, daß die Wasseraufnahme der vorliegenden Sulfate geringer ist, als diejenige der in atmosphärischen Partikelproben vorhandenen Verbindungen H_2SO_4 , $(NH_4)_2SO_4$ und NH₄NO₃(Abschnitt 5).

4.2 Die Größenverteilungen der verschiedenen Aerosolteilchensysteme

Die Diskussion der Versuchsdurchführung im Reaktor A zeigte (Abschnitt 3.2), daß sich die Ergebnisse von Versuchen mit Aerosolteilchen im Reaktor A nur auswerten bzw. auf die Atmosphäre übertragen lassen, wenn u. a. das dynamische Verhalten der Partikeln in der Kammer untersucht wird. Sind neben der Partikelgröße die Form (\$) und die Materialdichte \overline{x} bekannt, so läßt sich die Koagulationswahrscheinlichkeit und die Sedimentationsgeschwindigkeit einzelner Partikelgrößenklassen berechnen und experimentell bestimmen (Hidy and Brock, 1970). Die Änderung der Größenverteilung bei der Wasseraufnahme der Teilchen läßt sich berechnen, wenn die chemische Zusammensetzung der Partikeln bekannt ist (Abschnitt 2.3 und 5) Auf diese Weise erhält man einen vom System "Reaktionskammer" unabhängigen Datensatz, der sich z. B. auf die Verhältnisse in Rauchfahnen übertragen läßt. Dazu sollten die Partikelgrößenverteilungen zu Beginn der Versuche in der Reaktionskammer und am Emissionsort in der Atmosphäre möglichst gleich sein. Diese Übereinstimmung kann nur durch die Verwendung eines geeigneten Aerosolgenerators erreicht werden, wenn die z. B. in einem Kraftwerk oder Zementwerk gesammelten

Stäube erneut in der ursprünglichen Form dispergiert werden können. Das wird mit einem Aerosolgenerator durchgeführt, der aus einem Glasgefäß besteht, in dem eine Probe mit einem Magnetrührer bei gleichzeitigem Andüsen mit einem Luftstrahl zerstäubt wird. Dieses ursprünglich von Jordan und Haury (1975) entwickelte Verfahren wurde verbessert, so daß die pro Zeiteinheit dispergierte Aerosolmasse 0.01 ± 0.0008 g min⁻¹ bis 0.1 ± 0.005 g min⁻¹ beträgt. Das Maximum der Anzahlgrößenverteilung - mit dem REM aus Filterproben bestimmt - liegt je nach verwendetem Staub und Betriebszustand des Aerosolgenerators im Bereich 0.6 ≤ D ≤ 2 µm. Rechnet man diese Werte in Massengrößenverteilungen um, so liegt das Maximum der Massengrößenverteilung bei etwas kleineren Radien, als es bei Impaktormessungen von Jockel und Geipel (1979) sowie Jockel (1980) in mehreren Kohlekraftwerken gefunden wird. Die Abb. 17 zeigt den Bereich von Summenrückstandskurven einiger Impaktormessungen von Kohlekraftwerksstäuben 10 Minuten nach Beendigung der Aerosolzugabe im Reaktor A (t = t_{z} + 10) im Vergleich mit Impaktormessungen von Jockel (1980) in verschiedenen Reingasströmen von Steinkohlekraftwerken. Die Messungen sind mit einer Materialdichte $\bar{s} = 2,6 \text{ g cm}^{-3}$ (Tab. 3) ausgewertet. Näherungsweise lassen sich die Größenverteilungen der Staubpartikeln mit einer Lognormalverteilung beschreiben (siehe auch Abb. 8).

Die erneut dispergierten Stäube zeigen etwas kleinere mittlere Anzahl- und Massendurchmesser als die im Rauchgas hinter den Elektrofiltern gemessenen Verteilungskurven. Die bedeutet für die Versuche im Reaktor A keine Einschränkungen, da nur die kleineren Teilchen eine größere Aufenthaltsdauer in der Versuchskammer und in einer Rauchfahne haben. Bei den Einzelmessungen treten Abweichungen im. 50 %-Durchmesser von D₅₀ = 0.85 um \pm 10 % bis D₅₀ = 1.8 um \pm 6 % zwischen der Impaktormessung und der Auswertung von Filterproben (780 Teilchen) mit dem Elektronenmikroskop auf.

<u>Abb. 17:</u> Der Bereich der Summenrückstandskurven der Massengrößenverteilung von Kohlekraftwerksstäuben nach dem Dispergieren für Impaktormessungen am Reaktor A und an Reingasströmen von Steinkohlekraftwerken (Jockel, 1980)

<u>Abb. 18 a:</u>

<u>Abb. 18 b:</u>

<u>Abb. 18 c:</u>

Abb. 18 d:

<u>Abb. 18 a - e:</u> Das Zeitverhalten verschiedener Massen- und Oberflächengrößenverteilungen in der Reaktionskammer - berechnet mit dem Modell gemäß Abschnitt 6 - (Daten in Tab. 6)

<u>Tab. 6:</u>	Die für die Berechnung des Zeitverhaltens von
	Log-Normalverteilungen verwendeten Parameter
	zur Zeit t = 0 (\bar{r}_{Anz} = mittlerer Anzahlradius
	(μm) , $s = Standardabweichung, c = Massenkon-$
	zentration (g cm ⁻³), g = Materialdichte (g cm ⁻³)
	🗴 = aerodynamischer Formfaktor, Reaktorvolumen =
	4,5 m ⁻³ , Reaktorhöhe = 2 m, Reaktorgrundfläche
	= 1,6114 m ² . Temperatur = 20 °C. r. F. = 70 %.

Abbildung	r (µm)	ln s	(g cm ⁻³) (g cm ⁻³)	
18 a	1.5	0.405	2.5	$2.22 \cdot 10^{-7}$	1
7 _{81 b}	1	0.405	2.5	$2.22 \cdot 10^{-7}$	1
18.C	1	0.405	2.0	$2.22 \cdot 10^{-8}$	3
18 d	0.5	0.405	2.0	$2.22 \cdot 10^{-7}$	1
18 e	0.5	0.405	2.0	2.22 \cdot 10 ⁻⁷	2

Die Kurven 1 (Abb. 8) gehört zu den Größenverteilungen in Abb. 18 a, die Kurve 3 (Abb. 8) gehört zu Abb. 18 b und die Kurve 4 (Abb. 8) zu Abb. 18 e.

Die Abb. 18 a - e zeigt das Zeitverhalten verschiedener Massen- und Oberflächengrößenverteilungen in der Reaktionskammer A. Nach einigen Stunden Reaktionszeit liefern nur noch Teilchen mit Radien r < 2 µm einen Beitrag zur Massenbzw. Oberflächenverteilung, wie es schon für die Massenkonzentration in Abschnitt 2.2 (Abb. 8) zu sehen war. Das Zeitverhalten der Massenverteilungen von Kohlekraftwerksstäuben (Abb. 17) und Zementen (r_{aq} < 1 µm) wird durch die Abb. 18 b bzw. Abb. 18 d wiedergegeben. Für Zementstäube erhält man mit dem gleichen Aerosolteilchengenerator - wie er für die Dispergierung von Kohlekraftwerksstäuben verwendet wird - Größenverteilungen mit 50 % Durchmessern von D₅₀ = 0.75 µm ± 9 % bis D₅₀ = 1,05 µm ± 7 %. Dies bedeutet, daß für beide Partikelarten auch für Versuchszeiten t_i > 3 h eine genügend große Probenmasse vorliegt, da mit dem Aerosolteilchengenerator geeignete Größenverteilungen herstellbar sind. Somit kann die Bedingung Δ SO₂ < 5 % (Tab. 2, Abschnitt 3.2) eingehalten werden, obwohl die maximal zulässige Aerosolteilchenmassenkonzentration (Tab. 2) etwa um den Faktor 10² - 10⁴ kleiner ist, als die bei den Rechnungen (Abb.18 a - e) verwendeten Werte.

Die Abb. 19 zeigt eine Größenverteilung des in die Reaktionskammer eingebrachten Kohlekraftwerksstaubes (K I) im Vergleich mit der Größenverteilung in einer Rauchfahne eines US-Kraftwerkes 5 km von der Quelle entfernt (Parungo et al., 1978).

<u>Abb. 19:</u> Vergleich der Größenverteilung des Kohlekraftwerksstaubes K I in der Reaktionskammer (für t = 40 min) mit der Messung in einer Rauchfahne 5 km von der Quelle entfernt (Parungo et al., 1978)

Die Verteilungen unterscheiden sich deutlich, da nach 5 km bzw. etwa 40 - 60 Minuten Transportzeit die größeren Teilchen aus der direkten Abgasfahne durch Sedimentation teilweise verschwunden sind. In den Meßpunkten (Parungo et al., 1978) zeigt sich ein Maximum der Größenverteilung bei D 🗠 0.2 µm und ein zweites bei D 🎽 0.6 µm, das durch die numerische Operation der Anpassung der Größenverteilung an die Whitby'sche zwei modale Anzahlverteilung unterdrückt wird. Nach den Ergebnissen von Ondov und Biermann (1980) sind die Partikelgrößenverteilungen von Aerosolteilchen aus Kraftwerken, die gemahlene Kohle verbrennen, bimodal mit Maxima der Volumenverteilung bei etwa D pprox 0.1 μ m und D \approx 2,5 μ m (Abschnitt 1.1 und 1.2, Abb. 1 - 2). Aus den Messungen von Parungo et al. (1978) ergibt sich ein komplexes trimodales Verhalten. Dies läßt eine Überlagerung einer bimodalen Verteilung von Primärteilchen mit der Verteilung der durch photochemische Prozesse entstehenden Verteilung vermuten. Berücksichtigt man die Koagulationsprozesse, so sollte sich ein Maximum der Massenverteilung bei D \simeq 0.1 - 0.5 μ m einstellen (z. B. Eltgroth, 1978). Dies zeigt, daß die Größenverteilung der Aerosole in der Reaktionskammer als repräsentativ für atmosphärische Verhältnisse angesehen werden können.

Während die Zementstäube und Kohlekraftwerksstäube keine wesentliche Änderung der Teilchenform während der Reaktion mit SO₂ zeigen, findet man eine solche Änderung bei Rußen. Die ursprünglich verzweigten Agglomerate ballen sich oft zu schwammartigen Gebilden zusammen (Abb. 15 und 16, Tab. 3), obwohl die Versuche bei nur 50 – 80 % relativer Feuchte durchgeführt wurden und die Wasseraufnahme der Ruße gering ist (Tab. 5, Abschnitt 4.1). Das Zeitverhalten von Rußteilchen im Reaktor A wird durch die Abb. 18 b und 18 e beschrieben. Der Einfluß von Materialdichteschwankungen bis ca. 20 % zwischen einzelnen Staubproben hat einen geringeren Einfluß auf das Zeitverhalten der Partikelgrößenverteilungen, als eine Radiusänderung um den gleichen Faktor. Für die Rußpartikeln liegen die Werte des dynamischen Formfaktors bei $\bar{\mathbf{x}} \simeq 1,5$ - 3, wobei $\bar{\mathbf{x}}$ mit der Teilchengröße ansteigt (Tab. 3). Deswegen haben auch die größeren Rußpartikel (Abb. 15 und 16) eine Aufenthaltsdauer von 3 - 5 h im luftgetragenen Zustand.

Die synthetischen Salzteilchen wurden mit einem selbstentwickelten Aerosolgenerator hergestellt, bei dem eine Salzlösung gegen eine Glaswand versprüht wird (Dlugi, 1977). Die zerplatzenden Tropfen trocknen durch Zumischen von erhitzter synthetischer Luft und durch Überleiten über ein Trocknungsmittel ab. Die Partikelmassenverteilung der Teilchen besitzt (als Log-Normalverteilung ausgewertet) Werte des 50 %-Durchmessers zwischen 0.3 - 1,2 µm (zum Vergleich Abb. 17).

Der Vergleich mit atmosphärischen Proben (Abb. 20) zeigt nun, daß Kohlekraftwerksstäube auch in größerer Entfernung vom Kraftwerk in ländlichen anthropogen beeinflußten Gebieten im Partikelradienbereich von ca. 0.5 - 3 μ m auftreten (Andre et al., 1981). Die Abb. 20 zeigt eine

Abb. 20: Partikeln mit Volumenäquivalentradien r_{äq} », 1 μm, gesammelt an der Station Deuselbach/Hunsrück

Impaktorprobe von Teilchen mit $r_{aq} \ge 1 \mu m$, die kugelförmige Partikeln enthält, welche mit Hilfe des REM und der energiedispersiven Analyse (Abschnitt 3.5.5 und 4.4) als Kohlekraftwerksstäube klassifiziert wurden. Die Größe der Kohlekraftwerksstaubteilchen in diesen Proben großer ($r_{aq} \ge 1 \mu m$) und kleiner (0.1 $\le r_{aq} \le 1 \mu m$) Teilchen liegt im Bereich 0.2 $< r_{aq} < 2 \mu m$ mit einem D₅₀ $\simeq 1.2 \mu m \pm 0.2 \mu m$ wenn die Daten als Log-Normalverteilung ausgewertet werden. Darüber hinaus sind auch mineralische und salzhaltige Teilchen sowie pflanzliche Rückstände in derartigen Proben nachgewiesen worden. Auch Zementstäube werden im betrachteten Größenbereich gefunden. Allerdings lassen sie sich wegen der wesentlich geringeren Emissionshöhe der Kamine von Zementwerken und der z. T. erheblichen "diffusen Emission" in Bodennähe nur in der näheren Umgebung bis ca. 8 - 15 km um die Quellen nachweisen.

Die Größe von Rußteilchen in der Atmosphäre ist bisher nur in einigen Fällen und dann als aerodynamischer Radius ra bestimmt worden (Lürzer, 1979; Macias et al., 1978; Malissa, 1978; Puxbaum, 1979; Russel, 1978). Die mit Hilfe eines Elektronenmikroskops (REM) und einer Kombination von Mikrosondentechnik und energiedispersivem Analysator durchgeführten Untersuchungen an atmosphärischen Proben aus Deuselbach ergeben, daß die größte Anzahl von Rußteilchen vorzugsweise im Bereich $r_{ad} \leq 0.5 \ \mu m \ (\bar{g} \simeq 1.85 - 1.95 \ g \ cm^{-3})$ zu finden sind (Andre et al., 1981). Diese Ergebnisse stimmen gut mit Messungen der Emissionscharakteristik anthropogener Quellen überein (Whitby, 1978 b) und können als Bestätigung der wenigen Messungen der Größenverteilung atmosphärischer Rußteilchen angesehen werden (Abb. 2). Auf jedem Fall gilt, daß wegen Gleichung (32) für Rußteilchen mit $\Im > 1$ immer die Ungleichung $r_a < r_{\ddot{a}q}$ erfüllt ist.

Für die Untersuchungen des SO₂-Abbaus an Rußpartikeln in der Reaktionskammer A ergibt sich insofern eine Diskrepanz zu diesen Ergebnissen der Teilchengrößenbestimmung, als die in die Kammer eingebrachten Teilchen größer sind als die bei Immissionsmessungen in ruralen Gebieten beobachteten Partikeln. Sie entsprechen jedoch in Größe und Form den Partikeln, wie sie in Städten gefunden werden. Da sich die spezifischen Oberflächen der Rußteilchen (Tab. 4) vor und nach dem Dispergieren nur geringfügig ändern und die mittlere Aufenthaltsdauer im Reaktor A größer als drei Stunden ist, sollte die zu Beginn der Reaktion vorliegende reaktive Oberfläche durch das Dispergierungsverfahren nicht beeinflußt werden.

Zusammenfassend läßt sich aussagen, daß es mit den verwendeten Dispergierungsverfahren gelingt, die Partikeln in der Weise erneut zu dispergieren, daß ihre Größenverteilung etwa derjenigen entspricht, die man bei Emissions- und Immissionsmessungen findet. Damit ist eine der Voraussetzungen für die Durchführung der Versuche im Reaktor A und der Übertragbarkeit der Ergebnisse auf atmosphärische Verhältnisse erfüllt.

4.3 Elementanalysen

Die Elementanalysen von Partikelproben durch Neutronenaktivierung (Abschnitt 3.5.1) beschränkten sich vorwiegend auf den Nachweis von katalytisch wirksamen Übergangsmetallen sowie von einigen charakteristischen Elementen wie z. B. Br, Ca, Al und Si. Einige Messungen betrafen auch die Abhängigkeit spezifischer Elementkonzentrationen vom Partikelradius, wobei größenklassifizierte Impaktorproben analysiertwurden und die Analysen des löslichen Anteils der Partikeln. Die Ergebnisse für einen Teil der bei den Laborversuchen verwendeten Aerosolsysteme sind in Tab. 7 aufgeführt. Von den als Katalysator bei der SO₂-Oxidation in Frage kommenden Übergangsmetallen Titan bis Zink sind alle Elemente vorhanden. Auch Co und Cuwerden in gleicher Größenordnung wieCr gefunden, sind hier aber nicht aufgeführt. Die Alkali- und Erdalkalimetalle sowie Eisen treten im Prozentbereich auf.

Man erkennt, daß die zu KIII₁ gehörige Kohle einen wesentlich geringeren Massenanteil an Übergangselementen besitzt als die Kohlekraftwerksstäube. Die Anreicherungsfaktoren im Staub betragen für diese Elemente 10² - 10³, während dies für Cl und Fe nicht zutrifft. Nur bei Chlor zeigt sich eine merkliche Differenz zwischen den Stäuben, die vor den Filtern, aus den Elektrofiltern und im Reingas hinter dem Elektrofilter gesammelt wurden. In Tab. 8 (KII) ist gezeigt, daß einige Elemente nicht gleichmäßig über die Partikelgrößenklassen verteilt sind. Die Proben sind mit einem Casella-Impaktor hergestellt worden. D_a ist der aerodynamische Durchmesser. Während K, Na, Ca und V etwa gleich verteilt vorliegen, scheinen Mg, Al und Fe eine bimodale Verteilung zu besitzen. Die Elemente S, Cl, Cr, Ni, und Zn sind offensichtlich in kleineren Teilchen angereichert. Für Ti liegt ein Maximum für 0.9 € D € 2,2 µm vor. Die Ergebnisse stimmen qualitativ mit Analysenergebnissen von direkt in einem Kohlekraftwerk (Plant A) in den USA gesammelten Impaktorproben überein (Ondov et al., 1979). Allerdings wird dort das Verhalten für Cl und Fe (das Maximum) nicht gefunden. Der Vergleich der Impaktorprobe KII aus dem Reaktor A und einer während der Sammelzeit der Gesamtprobe KII im Kraftwerk hergestellten Impaktorprobe gibt jedoch in den betrachteten Größenklassenbereichen nur Differenzen von <u>+</u> 7 - 12 % in der Elementverteilung als Funktion der Teilchengröße. In den Kohlekraftwerks- und Zementstäuben sind die Elemente Na, K,Mn und Fe meisten**s** in vergleichbaren Konzentrationen vorhanden. Bis auf Fe sind diese Elemente bei Kohlekraftwerksstäuben vorwiegend auf den Tabelle 7: Elementgehalt der verschiedenen bei den Versuchen verwendeten Aerosolmaterialien (Lücke = nicht gemessen;

(K (2), K I - K IV, K VI - K VIII nach dem E-Filter; K V = aus dem E-Filter; " - " = nicht nachweisbar)

K X vor dem E-Filter)

Kohlekraftwerks- stäube (K)	Na °/	K %	Mg %	Ca %	A1 %	Ti °/	V ppm	Cr ppm	Mn °/	Fe %	Ni ppm	Zn °/	Si %	0 %	C1 °/
<pre>K (2) (pH = 4,4) K I (pH = 4,7) K II (pH = 6,0) K III (pH = 5,1) K IV (pH = 5,65) K V (pH = 4,2) Kohle (K III_) K VI (pH = 6,94) K VII (pH = 6,35) K VIII(pH = 7,9) K IX (pH = 8,8) K X (pH = 11,2)</pre>	8,7 1,0 9,0 11,1 8,0 7,8 0,4 10,2 8,1 12,7 8,8 7,9	4,2 3,2 2,5 3,6 2,7 3,5 0,9 4,1 4,5 3,4 2,8 2,6	2,0 2,9 1,9 1,1 1,3 1,4 0,04 1,4 1,3 1,2 0,69 1,9	4,4 3,6 2,5 2,3 2,5 3,0 0,01 2,2 2,1 2,6 2,4 3,7	6,7 13,6 14,5 13,6 17,2 17,5 0,9 14,6 13,2 13,6 12,0 13,7	4,0 3,1 1,3 8;8 1,4 6,7 0,07 9,4 8,6 7,2 7,3 6,1	630 930 850 790 850 1063 6 890 760 1200 1200 1040 350	240 710 660 560 270 790 9 745 683 642 500 312	1,4 0,9 0,85 0,15 0,81 0,14 0,001 0,58 0,83 0,57 0,51 1,2	2,2 4,9 4,7 5,7 2,0 5,6 2,3 5,8 5,2 3,87 3,45 7,59	400 1600 600 460 100 500 80 530 470 300 350 300	4,1 13,3 5,3 8,1 4,0 6,2 0,1 14,2 6,7 4,0 3,3	(12) 14,2 13,9 15,8 12,4 10,2	(43) 39 45	2,1 1,9 1,4 2,3 1,1 0,5 1,4 3,2 2,1 4,3 0,3 0,3
Zement (Feinfrakti PZ 35 (Z) PZ 45	on) 0,87 0.81	0,22	1,2	37,3 42.1	1,9	1,1	35	44 41	0,62	1,8	300 500	2,8		35,3 35 8	0,01
Ruß (synthetisch) Vulcan XC-72 (S I) Sterling MT (SII) Elftex 5 <u>Vulkanstaub</u> (St. Helens) (SH 2, (pH = 8,6)	°/ 0,77 0,1 0,05 2,31	°/°° 0,05 0,05 0,05 0,66	°/。。 0,3 0,05 0,1 1,13	°/ 0,4 0;2 0,4 4,1	°/ 0,3 0,03 - 9,2	ppm 50 10 10 5,8	ppm 2 0,01 1 94	ppm 1 0,4 0,3 24	ppm 0,5 1, 0,5 0,77	ppm 50 35 50 5,1	_ _ 300	ppm 0,5 0,5 0,5 128	_ _ 23		% 2,3 0,035 0,28 0,4

Element	Erd- d	Kohle- d	K II	b (D_in	µm)		Ö1- , d	Müll- d	Zement _d ,e	Eisen y.	Auto-
	kruste	kraftwerk	D∢O,9	0,9-2,2	2,2-3,6	>3,6	kraftwerk	verbrenn.	staub	Stahl	mobil
Al	8,6	1-10	13,2	11,9	18,3	12,3	0,01 - 0,5	1-10	1-5	0,001-0,1	
Ba	0,06	0,01 - 0,1					0,05 - 1	0,01 - 0,5			
Ca	1,25	1- 5	2,7	3,3	2,4	2,5	0,001-0,1	1-10	5-45		
Cd	0,00003	0,005						0,001-0,5	0,001-0,1		
C1	0,18		0,27	0,17	0,07	0,1		0,5 - 20	0,1 -8		6,8
Cr	0,01	0,001-0,1	0,09	0,069	0,053	0,066	0,007	0,01 - 0,5	0,001-0,1	0,001-0,01	
Cu	0,005	0,001-0,1					0,005-0,2	0,01 - 0,5	0,01 -1	0,001-0,01	
Fe	4,8	1-50	4,8	4,5	2,6	5,1	1-10	0,1 - 10	0,5 -6	0,1 -10	0,4
K	1,68	0,5- 5	2,8	3,3	2,7	3,1	0,1		1-20		
Mg	1,62	0,1-1	3,3	1,6	1,3	2,0	0,05 - 0,5	0,001-0,1	3-20	0,01 -0,1	
Mn	0,05	0,01 - 0,1	0,096	0,1	0,08	0,076	0,001- 0,01	0,005-0,5	0,01 -0,1	0,001-0,1	
Na	0,9	0,5-5	0,9	0,92	0,92	0,93		0,2 - 5	0,1 -2		
Ni	0,006	0,001-0,1	0,15	0,03	0,05	0,04			0,01 -0,1	0,001-0,1	
РЪ	0,002	0,01 - 0,5					0,02 - 0,2	1-10	0,01 -0,1	0,001-0,1	20-40
Si	24	10-50					0,1 - 1	0,001-0,1	2-10	0,001-0,1	
Ti	0,51	0,1-2	1,3	1,6	1,3	0,77		0,2 - 2	0,01 -1		
v	0,01	0,005-0,5	0,09	0,08	0,096	0,077	0,01 - 20	0,001- 0,01	0,001-0,01		
Zn	0,03	0,01 - 1	0,8	0,64	0,18	0,67	0,02 - 0,35	1-10		0,1 -1	0,14
S	0,05	0,5 - 50	0,006	0,0048	0,002	0,001	1-10		0,5 -20		

Tabelle 8: Spezifische Elementverteilung in Aerosolmaterialien aus Emissionsmessungen

Massenkonzentration in der Probe in %

d) Strauß (1977)

- 84 -

e) Sprung (1966)

Teilchenoberflächen angereichert, während sie bei Zementstäuben mehr gleichverteilt über die Teilchenvolumina vorliegen (Abschnitt 4.4). Der Ba-Anteil der Kohlekraftwerksstäube beträgt 800 - 3000 ppm, der Kohlenstoffgehalt (als C_{gesamt}) ca 3 - 6 %.(Mainka, 1981).

Der Wasser- und säurelösliche Anteil einiger Kohlekraftwerksstäube und Zemente wurde an Suspensionen von 1 g Staub in 30 ml H_2O_{dest} ermittelt. Die Suspension wurde 1 Stunde lang gerührt, dann filtriert und der Lösungsanteil eingedampft. Die Rückstände sind mit Hilfe der NAA analysiert worden. Obwohl die Methode wegen des Ausfallens von Hydroxiden Fehler beinhaltet, ändert dies nichts an der relativen Aussage dieser ersten Untersuchungen. Der wasserlösliche Anteil einiger Kohlekraftwerksstäube vor der Reaktion mit SO₂ beträgt etwa 0.2 - 7 % Massenanteil, während bei Zementen 20 - 40 % gefunden werden (Tab. 9).

<u>Tab. 9:</u> Der Bereich des wasser- und säurelöslichen (H₂SO₄, pH = 2) Massenanteils einzelner Elemente und Verbindungen in den Kohlekraftwerksstäuben aus Tab. 7 <u>vor</u> der Reaktion mit SO₂ (filtriert nach 5 min bzw. 1 h Standzeit einer Suspension; Analysemethoden: NAA, RFA, IVA, GC)

Element	Massenanteil %	davon wasserlöslich (%) (pH = 7;1h)	davon säurelöslich (%) (pH = 2;1h)	davon säurelöslich (%) (pH = 2;5 min)
Al Ca Mg Ba Fe Mn Ni Zn K Na Cl	7 - 19 $2 - 5$ $1 - 4$ $800 - 3000 ppm$ $2 - 8$ $0.01 - 0.7$ $0.01 - 0.1$ $0.1 - 1.5$ $2 - 6$ $0.5 - 2$ $0.005 - 0.3$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
SO_{4}^{2} (IV A) S (IV A) $H_{2}SO_{4}(GC)$ $H_{2}SO_{3}(GC)$	0.001 - 0.16 0.0003 - 0.06 0.001 - 0.005	85 - 100 85 - 100 100		

Einige zusätzliche Messungen lassen vermuten, daß der wasserlösliche Anteil auf Stäuben, die vor den Elektrofiltern gesammelt wurden, niedriger ist als bei E-Filterstäuben. Der säurelösliche Massenanteil bei Kohlekraftwerksstäuben (pH ≲ 7) steigt mit sinkendem pH-Wert (2 ≤ pH ≤ 7) bis auf ca. 17 % (nach 5 min) und 10 % (nach 1 h) an, wobei das Löslichkeitsverhalten einzelner Elemente sehr unterschiedlich ist. Bei Kohlekraftwerksstäuben sind unterhalb pH = 6 bis zu 80 % Mn, bis zu 50 % Cr, aber nur 1 - 10 % Ti, Ni, V und Fe löslich. Dies deutet auf eine Anreicherung von Mn und Cr auf den Teilchenoberflächen hin.Für Si ergeben diese ersten Untersuchungen säurelösliche Massenanteile von ca. 3 - 11 %. Die Ergebnisse der Löslichkeitsbestimmung in einem heterogenen Vielkomponentensystem sind vorerst nur als Überblick über mögliche Massenanteile löslicher Verbindungen anzusehen. Wegen der Zeitabhängigkeit der Lösungs- und Adsorptionsvorgänge einzelner Verbindungen in der Suspension und der Wechselwirkung mit verschiedenen Ionen kann über die Ursachen für die verschiedenen Löslichkeiten bisher nichts ausgesagt werden. Hinsichtlich der Wasseraufnahme der Kohlekraftwerksstäube vor der Reaktion mit SO_2 ist zu sagen, daß der geringe Massenanteil wasserlöslicher Substanz (Tab. 9) ausreicht, um bei etwa 90 % relativer Feuchte einen Massenzuwachs um 3 - 10 % hervorzurufen (Hänel, 1976; Robinson u. Stokes, 1959), wenn man als lösliche Anionen Cl⁻ und SO $_4^{2-}$ und als Kationen Na⁺ und K⁺ annimmt (Tab. 5). Aus den Analyseergebnissen folgt auch, daß Chloride und Sulfate auf diesen Stäuben vor der Reaktion mit SO2 vorhanden sind. Der wasserlösliche Massenanteil ist kleiner als die Minimalwerte, die Henry und Knapp (1980) für verschiedene Kohle- und Ölkraftwerke in den USA gefunden haben. Offensichtlich sind die Elemente Cl, K, Na und einige Metalle zumindestens teilweise in einer glasähnlichen Matrix $(SiO_2 \cdot Al_2O_3)$ gebunden, wie das Löslichkeitsverhalten zeigt. Es sind jedoch jeweils größere Anteile an Al, Ca, Mg, Fe, K und Na vorhanden, um mit H_2SO_4 Sulfate zu bilden.

Element	Erd- kruste ^d	Deuselbach ^b (0,2µm≤D<2µm)	Deuse1bach ^b (2µm≰D<20µm)	Deuselbach ^a (D>0,2µm)	New York ^C (0,2 4 D<2µm)	New York ^C (D>2 jum)	Karlsruhe ^a (D>0,2µm)	Mainz ^b (0,6µm <d≤20µm)< th=""></d≤20µm)<>
Al	8,6	0,19 - 0,4	3,5 - 4,9	1,3	0,2	2,0	1,7	0,59
Ba	0,06			0,47			0,04	
Br		0,04 - 0,06			0,33	0,09		0,13
Ca	1,25	0,13 - 0,94	4,5 - 7,8	2	0,55	2,7	2,2	0,66
Cd	0,00003	-					0,0005	
C1	0,18	0,05 - 0,17	0,25 - 0,81	-	0,35	1,4		0,63
Cr	0,01	0,035	0,094-0,18	0,022	0,038	0,035	0,017	0,008
Cu	0,005			0,039	0,1	0,07	0,036	
Fe	4,8	1,0 - 3,2	4,6 - 7,2	1,8	0,59	2,2	1,8	0,9
K	1,68	0,9 - 1,6	0,4 - 1,9	1	0,4	0.43	1	0,7
Mg -	1,62	0 - 0,4	0 - 1,3	0,57			0,44	0,21
Min.	0,05	0,1 - 0,29	0,1 - 0,2	0,3	0,085	0,1	0,097	0,055
Na	0,9	0,3 - 0,7	3,5 - 4,3	0,8			0,96	0,8
Ni	0,006	0,04 - 0,08	0,08	0,02	0,001	0,0004	0,03	0,02
Pb	0,002	0,01 - 0,06	-	0,005	1,6	0,4	0,9	0,7
Si	24	ca. 0,6		5,2	0,55	4,7	5,4	
Ti	0,51	0 - 0,03	0,35 - 0,6	0,012	0,07	0,096	0,13	0,05
v	0,01	0,018-0,027	0,03 - 0,2	0,02	0,32	0,19	0,039	0,027
Zn	0,03	.0,3 -0,7	0,2 - 0,4	0,47	0,58	0,20	0,43	0,27
S	0,05	8,5 -12,9	0,5 - 2,8	8,3	8,6	0,94	4,4	15,7
	1							

Tabelle 10: Spezifische Elementverteilung in Aerosolmaterialien von Immissionmessungen mit Impaktoren

Massenanteil in der Probe in %

a) Vogg u. Härtel (1977)b) unveröffentlicht (Methode nach a)

c) Stevens et al. (1978); d) Strauß (1977)

ł - 18 Von den bei einer SO₂-Oxidation möglicherweise als Katalysator wirksamen Elementen sind z. B. Mn und Fe in größeren Massenanteilen löslich. Somit kann bei der Wasseraufnahme der Partikeln (Tab. 5) eine Reaktion nicht nur an einer Teilchenoberfläche (Abschnitt 2.4) sondern auch in einer wäßrigen Hülle um den festen Teilchenkern ablaufen (Abschnitt 2.2).

Die Rußproben enthalten an anorganischen Bestandteilen ca. 0.5 - 1 % Ascherückstände. Berücksichtigt man die spezifischen Oberflächen (Tab. 4) und die Primärteilchengrößen, so ist die Oberflächenkonzentration an Mn und Fe bei SI gegenüber SII selbst dann etwa um den Faktor 5 - 10 höher, wenn man annimmt, daß die Elemente im Volumen etwa gleich verteilt sind. Der Vergleich mit dem Bereich der Elementkonzentration für Kohlekraftwerke zeigt, daß die Werte aus Tab. 7 im Bereich der typischen Konzentrationswerte (Tab. 8) liegen. Auch der Elementgehalt der Zemente (Tab. 7) entspricht etwa den mittleren Werten, während die synthetischen Ruße weniger Spurenstoffe enthalten, als es den Mittelwerten für Partikeln aus Ölkraftwerken entspricht. Als Katalysator für die S0₂-Oxidation wirksame Elemente treten auch in den Stäuben aus der Eisen- und Stahlindustrie und den Kraftwerken auf (Tab. 8).

Die Analyse der Proben aus Immissionsmessungen (Tab. 10) zeigt, daß Elemente, die hauptsächlich in Mineralien vertreten sind, wie z. B. Al, Ca und Si, grundsätzlich in den Teilchenproben mit Durchmessern größer 2 µm angereichert sind, während Br und Pb als typische Elemente für das Auftreten von Partikeln aus der Öl- und Benzinverbrennung entsprechend ihrer Bildungsmechanismen in Partikeln mit $D \leq 2 \mu m$ zu finden sind (Abb. 1 - 2). Die hohen Werte von Vanadium in Deuselbach (D ≥ 2 um) sind mit hohen Eisen- und Titankonzentrationen korreliert, was auf einen größen Anteil von Kohlekraftwerksstäuben in diesem Größenbereich

hindeutet. Die REM-Analyse der Proben zeigt einen Anteil von 5 - 40 % an Teilchen aus der Kohleverbrennung im Größenbereich D & 2 µm. Auch der recht hohe Schwefelgehalt dieser Proben ist jeweils mit der Anzahl dieser Teilchen in einer (Probe (Abb.20) korreliert (Abschnitt 4.4). Die Elemente Na und Cl treten - wie auch beim Seesalzaerosol - vorzugsweise im Bereich D ≥ 2 µm auf (Andre et al., 1981; Dlugi et al., 1981 b). Bei der Probe aus Mainz (Tab. 10) sieht man den während der Sammelzeit am Immissionsort (Universität Mainz) fehlenden direkten Einfluß spezieller ortsansässiger Industrien (Zementwerke; Glasindustrie). Die Brom- und Bleiwerte entsprechen etwa den übrigen urbanen Daten, der Schwefelgehalt ist höher als bei anderen Teilchenproben (will man jeweils die atmosphärischen Konzentrationen berechnen, so ist zu beachten, daß etwa ein typisches Massenverhältnis kleiner zu großer Teilchen von etwa 2 : 1 bis 5 : 1 angenommen werden muß) (Andre et al., 1981; Stevens et al., 1978). Die aus der Staubfahne des Vulkans St. Helens 240 km östlich am 20.05.1980 am Boden abgelagerten Stäube (Tab. 7; SH 2) entsprechen in ihrer Partikelform und chemischen Zusammensetzung den Teilchen, die Fruchter et al. (1980) an Orten mehr als 250 km entfernt vom Vulkan sammelten. Allerdings wurden nur Partikeln kleiner als 10 µm Durchmesser für die Probenanalyse (Tab. 7) verwendet. Die Proben enthalten nur glasartige mineralische Teilchen (ähnlich Glassplittern). In Übereinstimmung mit den eigenen Messungen erhöht sich der pH-Wert einer Teilchen-Wasser-Suspension gegenüber dem pH-Wert des Wassers für alle Partikelproben (Fruchter et al., 1980). Der Sulfatgehalt der Partikelprobe beträgt 0.0024 mg $(S0_l^{2-})$ g⁻¹ (Substanz), Schwefelsäure war nicht nachweisbar. Der Kohlenstoffgehalt beträgt 0.22 % (Mainka, 1981).

4.4 Teilchenzusammensetzung und Oberflächenanalyse

Die in Abschnitt 3.5 beschriebenen Untersuchungsmethoden der energiedispersiven Analyse und der Photoelektronenspektroskopie (ESCA) sind zuerst an künstlichen Teilchen erprobt worden, um die Verfahren zu testen und geeignete Standards zu finden. Anschließend sind Messungen an Kohlekraftwerks- und Zementstäuben, Rußen und atmosphärischen Teilchenproben durchgeführt worden. Da als Standards homogene Partikeln etwa gleicher Größe und Form dienen, deren Zusammensetzung bekannt ist, läßt sich für die verschiedenen Partikeln die Massenkonzentration einiger Elemente in einem Teilchen mit einem Fehler von <u>+</u> 30 - 50 % angeben (Grasserbauer, 1978; Armstrong, 1978). Der Fehler für die Elemente Si, Al und Fe beträgt ca. + 10 - 15 %. Die typische Form des Spektrums der energiedispersiven Analyse von Kohlekraftwerksstäuben (hier nach der Reaktion mit SO₂) zeigt, daß hauptsächlich Elemente wie Al, Si, S, K, Ca, Ti und Fe in den Teilchen vorhanden sind (Abb. 21).

Abb. 21: Typisches energiedispersives Spektrum für Kohlekraftwerksstäube aus Schmelzkammerfeuerungen (hier nach der Reaktion mit S0₂) (Beschleunigungsspannung 30 keV; Probenstrom i=3. 10^{-9} A)
In Spuren ist Cl, Sc (vor Ti), V, Cr, Mn, Ni, Cu und Zn nachweisbar. Die Elemente Na und Mg sind in den Teilchen enthalten, lassen sich jedoch erst bei niedriger Anregungsenergie (10 - 20 keV) deutlich nachweisen (Schütz, 1977). Teilweise sind die Kg - und die Kg -Linien aufeinanderfolgender Elemente überlagert. Die Untersuchung der Häufigkeit verschiedener Elemente in 350 Einzelteilchen (Abb. 22), entsprechend ihrer relativen Anzahl in der Probe im Größenbereich 0,5 \leq D \leq 4 µm vor den Reaktionen mit S0₂ zeigt, daß nur Al und Si in allen Teilchen nachweisbar sind.

Da etwa 10⁻¹⁶- 10⁻¹⁷ g die absolute Empfindlichkeitsgrenze darstellen, ist es möglich, daß z. B. kleinere Mengen an Mn oder Cr in vielen Partikeln vorhanden sind, die sich nicht nachweisen lassen. Parungo et al. (1978) untersuchten 300 zufällig ausgewählte Teilchen, die in einer Rauchfahne gesammelt wurden. Die Unterschiede zwischen beiden Messungen lassen sich deshalb sowohl durch die verschiedenen statistischen Auswahlkriterien, als auch durch die tatsächlich unterschiedliche Zusammensetzung der Aerosole erklären. Alle eigenen Messungen zeigen, daß sowohl die chemische Zusammensetzung von gleich großen als auch verschieden großen Teilchen gleicher Herkunft (z. B. Kohlekraftwerk, Eisenhütte) unterschiedlich sein kann.

> ---- Parungo et al. (1978) ----- Dlugi, Jordan (1978)

<u>Abb. 22</u>: Häufigkeit verschiedener Elemente in Kohlekraftwerksstaub vor der Reaktion (Staub KI aus dem Reingasstrom und Staub aus einer Rauchfahne; 30 keV, i = 3. 10⁻⁹ A)

Damit werden Ergebnisse morphologischer Untersuchung von Fischer et al. (1978) bestätigt. Je nach Kohleart, Brennertyp und Rauchgasbehandlung wird eine verschiedene Anzahl magnetischer und glasähnlicher Teilchen gebildet. Die magnetischen und nichtmagnetischen Teilchen lassen sich leicht mit einem Labormagneten voneinander trennen. Die Partikeln unterscheiden sich schon rein durch die Farben, da die Fe_30_4 -Anteile dunkel sind und die Fe_20_3 -Bestandteile den Partikeln einen gelb-bräunlichen Farbton geben. Die eigenen Messungen ergeben, daß Magnetit (Fe₃0₄)-haltige Partikeln hauptsächlich in der ersten Stufe von Elektrofiltern und nur in geringem Maße in den vom Kraftwerk emittierten Stäuben auftreten. In Filterstäuben sind Alkalimetalle. Erdalkalimetalle und seltene Erden verstärkt im glasähnlichen Typ, Übergangsmetalle wie z. B. V, Mn, Cr und Co vermehrt in der magnetischen Teilchenart angereichert (siehe auch: Hulett et al., 1978). Es gibt z. T. Unterschiede im Schwefelgehalt von Einzelteilchen um mehr als eine Zehnerpotenz. Der Schwefelgehalt von Partikelproben beträgt weniger als 6 % für Stäube aus den Elektrofiltern und weniger als 2 % für Reingasstäube (Tab. 7, 9)(Dlugi et al., 1981 b). Die Abb. 22 zeigt, daß in 30 % aller Teilchen dieser Probe vor der Reaktion mit SO₂ Schwefel nachweisbar ist. Der Schwefelgehalt der Einzelteilchen beträgt ca. 0.05 🐜 8 🖇 des Massenanteils ($\bar{g} = 2,6 \text{ g cm}^{-3}$). Der Schwefel liegt fast ausschließlich als Sulfat vor (Tab. 9) und ist größtenteils wasserlöslich. Bei Partikeln größer etwa 6 µm Durchmesser sind die Sulfatgehalte aus Analysen dieser Proben mit der IVA kleiner, als die auf den Sulfatgehalt umgerechneten Schwefelwerte der energiedispersiven Analyse und der Röntgenfloureszenzanalyse der Proben . Möglicherweise ist dies auf die Anwesenheit von Sulfiten (Brosset, 1978; Etough et al., 1978, 1981) oder Sulfiden zurückzuführen.

In nur etwa 8 % der Kohlekraftwerksstaubteilchen der Probe K I (Abb. 22) ist Mangan <u>nachweisbar</u>. Daher sollten entweder auch geringere Spuren von Mangan für eine katalysierte S0₂-Oxidation ausreichen oder der wesentlich höhere Eisenanteil in ca. 80 % der Teilchen trägt ebenfalls wesentlich zur Sulfatentstehung bei.

Der Anteil verschiedener Teilchen in einer Probe (jeweils 350 Teilchen), in denen ein bestimmtes Element nachweisbar ist (EDS, 30 keV Beschleunigungsspannung) variiert z. T. recht stark (Tab. 11).

Tab. 11: Prozentualer Anteil verschiedener Elemente in verschiedenen Einzelteilchen (Tab. 7 ;Es wurden jeweils 350 Teilchen vor der Reaktion mit SO₂ analysiert; Zählzeit pro Teilchen = 5 min)

Probe Teilchengrößenbereich Element Anteil (%) (Durchmesser, µm) K II 0.6 - 1,5 S 26 14 Mn 13 Cr92 Fe 87 Ca 100 Si 100 Al 27 Mn K VI 0.6 - 1,5 16 Cr97 Fe 76 Ca 100 A1 100 Si 96 Mn 98 Fe . 95 Ca Ζ 0.6 - 1,5100 A-1 100 Si Mn Fe 76 SH 2 0.8 - 2 Ca 89 Al 100 Si 100 97 Mn Cr97 Fe K II 1.5 - 3 94 Ca 100 Al 100 Si 19 S

(D)	urchmess	er, µm)		
K II	3	- 6	Mn Fe Ca Si Al S	7 98 96 100 100 11
ΚV	1,5	- 3	Mn Fe Ca Si Al S	11 91 87 100 100 35
K V (nicht magne- tischer Anteil)	3	- 6	Mn Fe Ca Si Al S	8 92 90 100 100 24
K V magne- tischer Anteil	3	- 6	Mn Fe Ca Si Al S	37 100 67 100 100 2

Probe	Teilchengrößenbereich (Durchmesser,µm)	Element	Anteil (%)
		Mn Fe	7 98

Es fällt auf, daß der Mn-, Cr- und S-Anteil bei abnehmender Teilchengröße für die Reingasstäube zunimmt. Die magnetische Teilchenart findet sich nur in Filterstäuben bei Durchmessern D 这 3 µm und enthält kaum Schwefel. Die Analyse von Zementstäuben zeigt ein etwas einheitlicheres Bild. In fast allen Partikeln sind vor der Reaktion mit SO₂ die Elemente Si, Al, Ti, Mn, Fe, Ca, Mg, Cl, K, Na, C und S nachweisbar. Eine unterschiedliche Elementverteilung auf Größenklassen kann nicht gefunden werden.

Das Sputtern mit Ar⁺-Ionen erlaubt es, von den Partikelproben die an der Oberlfäche vorhandener Elemente bzw. Verbindungen zu entfernen und dann erneut den Elementgehalt von Einzelteilchen dieser Partikelart zu analysieren. Der Elementgehalt an S, Cr, Mn, Na und K nimmt schon nach einmaligem Sputtern (Zeit = 15 sec) ab (Tab. 12).

Nach 60 sec ist ein großer Teil der im wesentlichen an der Oberfläche angereicherten Elemente bzw. Verbindungen abgetragen. Der Vergleich der Messung der Intensität der Elementlinien von 350 Teilchen nach einminütigem Waschen mit H_2SO_4 (pH = 2) zeigt ebenfalls, daß z. B. Mn, Ni und S wesentlich an den Teilchenoberflächen angereichert sind. Diese eindeutige Schichtstruktur wurde für Zementteilchen vor der Reaktion mit SO_2 nicht gefunden. Auch die Flugstäube vom St. Helens Vulkan weisen keine Schichtung auf. Bei der Untersuchung von Proben anderer Industriestäube – z. B. aus der Metallverhüttung – wurden hingegen bis zu 28 verschiedene Teilchenarten gefunden.

<u>Tab. 12</u>: Die relative Intensität für verschiedene Elemente in den Teilchen (in denen dieses Element nachweisbar ist) nach verschiedenen Sputterzeiten bezogen auf die nicht behandelte Probe (für 350 Teilchen, Teilchengrößen D = 1 µm <u>+</u> 0.1 µm, Probe K II, Beschleunigungsspannung = 35 keV).

Sputterzeit Element rel.Intensität rel. Inte (sec) (%), EDS (%), EDS, 60 s	nsität Waschen ec
Mn 0.70	
S 0.65	
15 Ni 0.6	
Fe 1	
Al 1	
1 and Simon Simon and	
Mn 0.45	
S 0.35	
30 Ni 0.35	
Fe 1	
Al 1	
1	
Mn 0.2 0.13	
60 S 0.1 0.02	•
Ni 0.1 0.05	
Fe 1 0.95	

Zusammenfassend läßt sich also folgendes feststellen: Die Struktur von Partikeln, die hinter Elektrofiltern im Reingasstrom gesammelt sind, unterscheidet sich oft wesentlich von derjenigen der Elektrofilterstäube. Vor allem gibt es quantitative Unterschiede hinsichtlich der Anzahl verschiedener Partikeltypen. So findet man den magnetischen Teilchentyp bei diesen Messungen nie im Reingasstaub, der in die Atmosphäre gelangt, sondern nur im Elektrofilterstaub. Auch die relative (bzw. absolute) Dicke von Oberflächenverbindungen, die Mn, Cr oder S enthalten, ist von der Teilchenart abhängig. Die abnehmende Intensität verschiedener Elementlinien (Tab. 12) nach dem Sputtern entspricht auch dem Befund der hohen Löslichkeit der gleichen Elemente (Tab. 9, Tab. 12), die also offensichtlich an den Teilchenoberflächen stark angereichert sind. Die auf den nahezu kugelförmigen Kohlekraftwerksstaubteilchen auftretenden Oberflächenrauhigkeiten (Abb. 23) bestehen vorwiegend aus schwefelhaltigen Verbindungen. Hinsichtlich der Form und Struktur ergibt sich eine gute Übereinstimmung mit Ergebnissen von Fischer et al. (1976). Unterschiede sind nur bei Fällen der Rauchgasbehandlung mit Kondensationskühlern oder Wasserdampf gefunden worden. In diesen Fällen sind die Staubteilchen hinter den Elektrofiltern mit einer wasserlöslichen Sulfatschicht (\$ 0.15 g_{SO4} g_{Ae}^{-1}) bedeckt (Abb. 11).

<u>Abb. 23</u>: Schematische Darstellung der Schichtstruktur von Kohlekraftwerksstäuben (vor und nach der Reaktion mit SO)

- 96 -

Die Partikeln aus Kohlekraftwerken sind also schon bei der Emission nicht gleichartig, sondern unterscheiden sich z.B. in ihrer Elementzusammensetzung und dem löslichen Anteil. Dies bedeutet speziell für diese Teilchen, daß die Analysenergebnisse von Partikelproben und Einzelteilchen verschieden sind.

Die Messungen mit ESCA an Teilchenproben ergeben, daß Schwefel sowohl <u>vor</u> als auch <u>nach</u> den Reaktionen mit SO₂ im wesentlichen als S (+ VI) (d. h. hier SO_4^{2-}) auftritt, wie der Schwefelpeak in Abb. 24 zeigt. Beim Aufheizen der Proben bis 120 ^OC ändert sich die Linienform und Fläche nicht. Deshalb darf angenommen werden, daß kein adsorbiertes SO₂ vorhanden ist. Andere Schwefelverbindungen (Lindberg et al., 1970) - z. B. Sulfite (Eatough et al., 1978, 1981) oder Sulfide, die aufgrund der chemischen Verschiebung neben dem SO₄²⁻-Peak liegen - lassen sich aufgrund der breiten Linienform vermuten, aber nicht eindeutig klassifizieren. Auch die Anwesenheit verschiedener Sulfate verbreitert die Sulfatlinie (Siegbahn et al., 1967).

Die einzelnen Elemente an den Partikeloberflächen liegen z.T. in verschiedenen Wertigkeitsstufen vor. Aus Vergleichsmessungen mit künstlichen Mischungen und Löslichkeitsuntersuchungen entsprechend Tab. 12.kann nach den Reaktionen mit SO₂ neben K₂SO₄, Na₂SO₄, CaSO₄ und Spuren von MnSO₄ sowie FeSO₄ auch Al₂(SO₄)₃ vermutet werden. Es liegen hauptsächlich wasserlösliche Sulfate vor. Das Ergebnis entspricht den Resultaten des Sulfatnachweises mit der Isotopenverdünnungsanalyse.

<u>Abb. 24</u> Form des Schwefelpeaks beim ESCA-Spektrum von KI (bzw. K14) vor (---) und nach (-) der Reaktion mit SO₂. Bei 169,5 eV ist SO₃²⁻, bei 174,5 eV SO₃ zu vermuten.

Das Sputtern mit Ar⁺-Ionen ergibt (diesmal für eine Probe) vergleichbare Ergebnisse zu den Einzelteilchenuntersuchungen (Abb. 25).

Im glasähnlichen Typ treten die Elemente Al und Si offensichtlich als Oxidgemi'sch $(3 \text{ Al}_2 \text{ O}_3 \cdot 2 \text{ SiO}_2 - 2 \text{ Al}_2 \text{ O}_3 \cdot \text{SiO}_2)$ auf. Eine Probe des magnetischen Teilchentyps zeigt neben einem höheren Eisengehalt (als $\text{Fe}_3 \text{ O}_4 \cdot \text{Fe}_2 \text{ O}_3$ -Gemisch) auch einen größeren Mn-Gehalt auf der Oberfläche. Der Schwefel tritt (Abb. 24) vornehmlich als Sulfat ($\text{K}_2 \text{SO}_4$, $\text{Na}_2 \text{SO}_4$, $\text{Al}_2(\text{SO}_4)_3$, FeSO_4 , (MnSO₄)) auf. Die Werte für K und Na erreichen einen Grenzwert von etwa 0.1, der möglicherweise durch den Einbau von K und Na im glasähnlichen Mischoxid des Teilchenkerns (Abb. 23) gegeben ist.

<u>Abb. 25</u>: Die relative Intensität für verschiedene Elemente nach verschiedenen Sputterzeiten (hier als Schichtdicke ausgedrückt: 15 sec = 100 Å) aus den ESCA-Messungen für die Probe nach der Reaktion mit SO₂ (r. F. = 80 %). (Die Werte von Na, K, S sind auf K₂SO₄- und Na₂SO₄-Partikelstandards, die Werte von Mn, V, Fe auf MnSO₄, V₂O₅- und FeSO₄-Partikelstandards und die Werte von Si, Al und Ti auf SiO₂, Al₂O₃ und TiO₂ Standards bezogen.

Bei Zementen scheint Si als SiO_2 , Ca und Mg als CaO bzw. MgO, Fe als Fe_2O_3 und C als Carbonat vorzuliegen. Ferner findet man auf den Oberflächen bei ESCA-Messungen Verbindungen wie K_2SO_4 , Na_2SO_4 und KC1. Je nach Ofenart und Rohstoff sind natürlich verschiedene mineralische Phasen

unterschiedlich vertreten. Ebenso variiert der Gehalt an für den SO₂-Abbau möglicherweise katalytisch wirksamen Elementen. Die Partikeln besitzen eine schwach ausgeprägte Schichtstruktur mit einer geringen Anreicherung von CaCO3, CaO und Alkalisulfaten auf den Oberflächen, wodurch teilweise die Ergebnisse der früheren Analysen von Elektrofilterstäuben unterschiedlicher Produktionsanlagen mit physikalischen und naßchemischen Methoden wiedergefunden werden (Sprung, 1966). Bei Rußteilchen ist neben der Oberflächenbeschaffenheit und dem organischen Anteil der Spurenstoffgehalt von Interesse. Außer sehrgeringen Mengen an Mg, Al, Ca, Cl und S sind mit Hilfe der energiedispersiven Analyse (Z > 11) keine weiteren Elemente in den agglomerierten Teilchen (D > 1 μm) nachweisbar. Man muß die Neutronenaktivierungsanalyse von Proben verwenden. Die ESCA-Spektren sind wegen der organischen Bestandteile komplex und ohne aufwendige zusätzliche Analysen nicht auswertbar. Vermuten lassen sich aber relativ fest gebundene Carboxyl-, Phenol- und Äthergruppen auf den Rußoberflächen.

Die ersten Analysen von atmosphärischen Partikelproben aus einem ruralen Gebiet (Deuselbach/Hunsrück) zeigen, daß und Ruß vorwiegend im Größenbereich r_{äg} < 1 µm Kohlenstoff auftreten (Andre et al., 1981). Parallel dazu ist in allen Fällen Schwefel vorhanden, der in fast allen Fällen gleichfalls im Partikelgrößenbereich $r_{aq} < 1 \ \mu m$ angereichert ist. Von den untersuchten 117 Rußteilchen ist nur bei 23 klumpenförmigen Partikeln eine größere Schwefelmenge bis zu $g_{SOZ}^2 - / g_{Ae}$ auf den Oberflächen gefunden worden. ca. 0.06 Eine stark verzweigte Kettenform ließ sich bei geringem Schwefelgehalt finden. Die schwefelhaltigen Teilchen besitzen etwa aerodynamische Formfaktoren 1,35 😿 ≲ 1,6, die übrigen Partikeln etwa 1,55 🕱 52,4, wenn man die Untersuchungen von Kops (1976) bei der Auswertung von Elektronenmikrosr kopaufnahmen zugrunde legt. Wie schon erwähnt, gilt dann

nach (31) r_a < r_{iq}. Für die Messung von Massengrößenverteilungen mit Impaktoren hat dies zur Konsequenz, daß ein bestimmter Anteil von Rußteilchen in einer Stufe für kleine Radien r, gefunden wird, während Sulfate mit 🛠 = 1 in der nächsthöheren Stufe vermehrt auftreten (Lürzer, 1979; Puxbaum, 1979). Dieser Effekt macht sich vor allem bei hohen relativen Feuchten (r. F. > 80 %) stärker bemerkbar, da. dann die Sulfatteilchen merklich Wasser aufnehmen und so groß werden, daß ein beträchtlicher Teil von ihnen auf einer Stufe für Partikeln mit größerem aerodynamischen Radius abgeschieden wird (z. B. Ahlberg et al., 1978, Dlugi, 1978). Es darf deshalb vermutet werden, daß in vielen Fällen Rußteilchen und Sulfatteilchen getrennt nebeneinander vorliegen, also in vielen Fällen keine inneren Mischungen bilden. Dieses Beispiel zeigt, daß physikalische und chemische Eigenschaften von atmosphärischen Aerosolteilchen eng miteinander verknüpft sein können.

Der gefundene Stickstoff läßt sich aus den ESCA Spektren nur teilweise als $(NH_{L})_{2}SO_{L}$ abschätzen. Es müssen auch andere Stickstoffverbindungen, wie z. B. Nitrate vorhanden sein. Im Größenbereich $r_{aq} < 1 \ \mu m$ wird immer Br und Pb gefunden, während für Proben von Partikeln mit $r_{aq} > 1 \mu m$ kein Br und nur wenig Pb auftritt. Dieses Ergebnis stimmt gut mit den Ergebnissen der Elementanalysen überein (Tab. 10). Bei allen untersuchten atmosphärischen Proben liegt die Schwefellinie S 2p über der Linie der Sulfatstandards, so daß offensichtlich die Oberflächenverbindungen auf den Teilchen dieser Proben vorwiegend Sulfate enthalten. Beim Sputtern anehmen analog zu den Untersuchungen an Kohlekraftwerksstaubproben die relativen Intensitäten der Br-, Pb-, Mn- und Ni- Linien stark ab. Bei Proben großer Teilchen nimmt auch der Schwefelgehalt beim Sputtern in gleicher Größenordnung wie in Tab. 12 für Kohlekraftwerksstäube ab. Die Kohlenstofflinie der Proben mit $r_{aq} \lesssim 1 \ \mu$ m hat ihr Maximum bei der Bindungsenergie von elementarem Kohlenstoff ($E_{h} = 285 \text{ eV}$).

Bei höheren Bindungsenergien ($E_b = 286 - 291 \text{ eV}$) ist z. T. eine breite Nebenlinie sichtbar, die beim Erhitzen der Proben auf 320° C teilweise verschwindet. Während die Kohlenstofflinie bei 285 eV auf die Anwesenheit von Rußteilchen in den Proben hindeutet, ist die Kohlenstofflinie bei Proben größerer Teilchen ($r_{aq} > 1 \mu m$) zu höheren Bindungsenergien verschoben. Dies könnte auf den höheren Gehalt dieser Proben an Carbonaten hindeuten (Carter III, 1974).

In Proben von Teilchen aus dem Akkumulationsbereich (Abb. 3, Abb. 26) finden sich kleine kugelförmige Teilchen, die üblicherweise als charakteristisch für Sekundäraerosole angesehen werden (Abb. 26) und sulfathaltig sind. Diese Teilchen müssen allerdings nicht notwendigerweise durch "gas-to-particle conversion" bzw. photochemische Prozesse entstehen, sondern können z. B. auch durch heterogene Reaktion an Teilchenoberflächen oder zwischen Gasen und salzhaltigen Wassertropfen, die dann wieder abtrocknen, gebildet worden sein. Es wurden sowohl "homogene" Salzteilchen als auch Mischteilchen aus Sulfat (bzw. schwefelhaltigen Verbindungen) und einem unlöslichen Kern gefunden.

<u>Abb. 26</u>: Atmosphärische Teilchen aus Deuselbach/Hunsrück, die einem Sekundäraerosol ähneln (r_{äg} < 1 µm)

Es treten in den Partikelproben (Abb. 20, Abb. 26) Kohlekraftwerksstaubteilchen auf (bzw. kugelförmige Teilchen mit gleichem energiedispersiven Spektrum (Abb. 21) und einer Sulfatschicht). Für die Übertragung der Versuche zum S02-Abbau an Kohlekraftwerksstäuben ist es nun interessant, daß die Schwefelmengen auf diesen Partikeln in atmosphärischen Proben etwa 0,05 - 0,18 g_{S04}^{2-}/g_{Ae} betragen (und damit ver-gleichbare Werte annehmen, wie sie bei den Laborexperimenten gefunden werden, Abschnitt 5). Ein Vergleich mit in Rauchfahnen (r. F. < 40 %) und in Deuselbach gesammelten Teilchen erfolgte zusammen mit Mamane und Parungo (NOAA) nach dem von Mamane (1977) bzw. Mamane und de Pena (1978) beschriebenen Verfahren während eines Aufenthaltes in Boulder/Co., USA. Dabei wurden Partikeln vor und nach der Reaktion mit S0, auf Transmissionselektronenmikroskopnetzen, die anschließend mit BaCl2 bedampft werden, aufgebracht. Setzt man diese Proben eine Stunde einer relativen Feuchte von 75 % aus, so reagieren die anwesenden Sulfate und die Schwefelsäure mit BaCl₂ und bilden Reaktionsringe um die Partikeln. Die Größe der Ringe ist der Gesamtsulfatmasse proportional. Es zeigt sich entsprechend den Ergebnissen der Schwefelanalyse von Partikeln, daß die Sulfatmasse auf Teilchen gleicher Größe sehr verschieden sein kann. Ob dies auf den unterschiedlichen Anteil katalytisch wirksamer Elemente wie Mangan oder Eisen in den Partikeln zurückzuführen ist, konnte bei der geringen jeweils untersuchten Teilchenzahl nicht geklärt werden. Die Ergebnisse sind in der Tab. 13 zusammengefaßt.

In den Proben aus Immissionsmessungen werden**els** Kraftwerksstaub Partikeln bezeichnet, deren EDS-Spektrum dem der Partikeln aus den Reingasproben entspricht (Abb. 22), die gleichzeitig kugelförmig sind und aufgrund der Trajektorienanalyse (Andre et al., 1981) aus Industriegebieten stammen sollten.

Tab. 13: Vergleich der Sulfatbestimmung mit der BaCl₂-Methode (Mamane, 1977) und der Analyse des Schwefelgehaltes von Einzelteilchen mit dem energiedispersiven Spektrometer <u>vor</u> und <u>nach</u> der Reaktion mit SO₂

Probe	Methode	g _{S0} ^{2-/g} Ae	Bemerkungen
K II	BaCl ₂	0.0015 - 0.01 0.04 - 0.07	<u>vor</u> der Reaktion (50 Teilchen) <u>nach</u> der Reaktion (47 ")
K II	EDS	0.001 - 0.02 0.03 - 0.08	<u>vor</u> der Reaktion (50 ") <u>nach</u> der Reaktion (47 ")
Probe Deusel- bach r _{äq} < 1 μm (Abb. 26)	BaCl ₂ EDS	0.18 - 1 0.01 - 0.06 0.025 - 0.1	91 Teilchen 41 Rußteilchen 95 Rußteilchen 1981) (Probe Nr. 6, Tab 1: Andre et al.
Probe Deusel- bach r _{äq} > 1 μm (Abb.20)	BaCl ₂ EDS	0.03 - 0.24 0.01 - 0.34	94 runde "Kohlekraftwerksstaubteil 96 runde "" (Probe Nr. 6, Tab. 1: Andre et al., 1981)

Die Ergebnisse dieser Untersuchungen zeigen folgendes:

- Die Elementzusammensetzung der Partikelproben, an denen die heterogene SO₂-Oxidation untersucht wird (Tab. 7), entspricht - bis auf die Zusammensetzung der Ruße - derjenigen gleichartiger Partikelproben (Tab. 8).
- Die Zusammensetzung der Oberflächenverbindungen und des wasser- und säurelöslichen Anteils der untersuchten Partikelproben entspricht nur teilweise den Ergebnissen anderer Autoren.
- In atmosphärischen Teilchenproben tritt Sulfat auch in Mischteilchen auf. Rußpartikeln tragen nur wenig Sulfat auf der Oberfläche.
- Die Zusammensetzung der Einzelteilchen kann sich stark von derjenigen einer Probe unterscheiden. Trotzdem liefert die Bestimmung der mittleren Konzentration von katalytisch wirksamen Metallen, die Bestimmung ihres Löslichkeitsverhaltensund ihrer teilweisen Anreicherung an Proben-(Teilchen)-oberflächen einige mittlere Parameter zur Beschreibung heterogener Reaktionen durch eine Probenanalyse.
- Es ist zu erwarten, daß unterschiedliche Teilchen ein verschiedenes Reaktionsverhalten zeigen.
- Somit lassen sich zur modellmäßigen Beschreibung der heterogenen SO₂-Oxidation (Abschnitt 2) nur mittlere Werte für Proben (mittlerer Radius, ein mittlerer Elementgehalt und löslicher Anteil usw) verwenden, während das Verhalten der z. T. sehr unterschiedlichen Einzelteilchen von diesen Ergebnissen stark abweichen wird.

4.5 Die Acidität und Basizität der Teilchen

Die chemischen Eigenschaften von Festkörperoberflächen lassen sich u. a. auch durch die Zahl und "Stärke" von sauren und basischen Oberflächenzentren beschreiben (z. B. Morrison, 1977; Stumm und Morgan, 1970; Tanabe, 1970). In der Regel treten beide Arten von Zentren nebeneinander auf einer Oberfläche auf. Auf dieser Vorstellung basiert auch einer der drei Modellansätze zur Beschreibung einer heterogenen SO₂-Oxidation (Abschnitt 2.4). Die Zahl und "Stärke" der Zentren läßt sich durch Titration mit sauren und basischen Reagenzien und (Farb-) Indikatoren feststellen (z. B. Tanabe, 1970). Man bestimmt auf diese Weise die sogenannte Aciditätsfunktion H_o nach Hammett (Kortüm, 1972)

$$H_{o} \equiv -\log a_{H}^{} + \frac{\chi_{B}^{}}{\chi_{BH}^{+}}$$
(33 a)

Diese Definition entspricht formal der allgemeinen Definition des pH-Wertes (Kortum, 1972)

pH =
$$-\log \alpha_{H}^{+} \frac{\chi_{B}}{\chi_{BH}^{+}}$$
 (33 b)

 $({}^{a}_{H}$ + = Protonenaktivität; \mathcal{X} = Aktivitätskoeffizienten der neutralen Base und der konjugierten Säure)

In verdünnten Lösungen wird $\mathcal{L}_B / \mathcal{L}_{BH}^{+} \approx 1$; damit gleichen unter diesen Bedingungen (33 a) und (33 b) formal der konventionellen Definition des pH-Wertes.

Eine gegenüber der Titration einfachere Methode besteht darin, den resultierenden pH-Wert einer Teilchen-Wasser-Suspension zu messen. Diese Messungen wurden für jeweils 1. g Substanz in 30 ml H₂O-bidest mit pH = 6,5 durchgeführt. Ein pH-Wert pH < 6,5 einer Teilchen-Wasser-Suspension bedeutet dabei, daß an einer Oberfläche mehr OH⁻-Ionen als H_3O^+ -Ionen absorbiert sind. Die Substanz wirkt somit als Säure, im Fall pH > 6,5 wirkt der Feststoff als Base.

Eine Neutralisation des bidestillierten Wassers mit NaOH auf pH = 7 gibt für alle untersuchten Stäube eine Verschiebung in die gleiche Richtung, wie sie für pH = 6,5 gemessen wurde. Die resultierende Oberflächenladung eines Festkörpers in einer Lösung kann gleich Null werden. Dann behält die Lösung den eingestellten pH-Wert (hier pH. = 6,5 bzw. pH = 7). Dieser Punkt entspricht etwa dem isoelektrischen Punkt eines Festkörpers, bei dem also die effektive Oberflächenladung (z. B. durch 0⁻, 0^{2-} , $xMe^{m+} \cdot yOH^-$) Null wird. Die Bestimmung der pH-Werte von ungewaschenem Kohlekraftwerksstaub in Wasser-Suspensionen von den Versuchen mit SO₂ ergab Werte 4 ≤ pH ≤ 11,2. Für Stäube, die hinter den Filteranlagen gesammelt wurden, findet man pH-Werte 4 ≤ pH ≤ 8,8, während Stäube aus der ersten Filterstufe oder davor Werte pH 😞 6 aufweisen. Da die Filterwirkung elektrischer Filter bei Stäuben mit steigender Oberflächenleitfähigkeit ansteigt, werden polarisierbare Teilchen besser abgeschieden als nicht leitende Aerosolteilchen. Viele der älteren Filteranlagen besitzen eine schlechtere Filterwirkung. Deshalb fand man hinter diesen Anlagen häufig Aerosole mit pH-Werten 4 < pH < 5, während neuere Proben meistens Werte um 5,5 ≤ pH ≤ 8 ergeben (Tab. 7). Die Stäube aus der Kohleverbrennung, die das Kraftwerk in die Atmosphäre verlassen, besitzen also in der Regel an der Oberfläche in geringem Maße saure oder basische Verbindungen. Im Gegensatz zu diesen Ergebnissen findet Pueschel (1981) nur basische Flugstäube im Reingas von Kohlekraftwerken, während Henry und Knapp (1980) sowohl saure als auch basische Stäube finden, je nachdem wie das Rauchgas zur Reinigung behandelt wird. Der pH-Wert einer Zementteilchen-Wasser-Suspension vor der Reaktion mit SO2 liegt bei 10,6 - 11,5, da vor allem basische Verbindungen bzw. Gruppen auf den Oberflächen angereichert sind. Die untersuchten Ruße wirken basisch (Tab. 5).

Einige Messungen für mehrfach mit H₂O_{bidest} gewaschene Kohlekraftwerksstäube und Ruße zeigen Änderungen im pH-Wert für sauer wirkende Stäube von pH = + 0.2 bis pH = - 0.3 und für basische Stäube von pH = + 0.1 bis pH = - 0.5. Dies zeigt, daß die sauren oder basischen wasserlöslichen Verbindungen auf den Stäuben den pH-Wert einer Partikel-Wasser-Suspension nur geringfügig verändern und die vereinfachte Methode zur Bestimmung des resultierenden sauren oder basischen Verhaltens der Partikeloberflächen anwendbar ist.

Ein Vergleich des Bereichs der möglichen Aciditätsfunktionen H_o verschiedener reiner Substanzen mit den nach (33 a) für $\lambda_B^{\prime}/\lambda_{BH}^{\prime}$ = 1 berechneten Werten für die untersuchten Aerosolpartikelproben (Tab. 4 und Tab. 7) zeigt die Tab. 14. Es sind die Werte für mehrfach gewaschene Partikelproben in Wasser von pH = 6,5 aufgetragen. Die Werte für verschiedene Substanzen unterscheiden sich stark je nach

<u>Tab. 14:</u> Vergleich der näherungsweise berechneten Aciditätsfunktionen H_o für verschiedene Materialien mit dem entsprechenden Gewichtsanteil von H₂SO₄ in einer Säurelösung mit dem entsprechenden pK-Wert.

Stoff	Н _о	H ₂ SO ₄ (%)
SiO ₂ · MgO	-3,0 - 1,5	48 - 0.02
synth. Si0 ₂ · Al ₂ 0 ₃	> -8,2	< 90
natürl.Si0, · Al ₂ 0 ₃	>(-6) - (-3)	< 75 - 48
ZnO ~ ~ ~ ~	3,3 - 6,8	$3 \cdot 10^{-4} - 8 \cdot 10^{-8}$
Al ₂ 0 ₃	-5,6 - 3,3	$71 - 3 \cdot 10^{-4}$
CaO	10	10 ⁻¹⁰
$MnSO_{1} \cdot 7H_{2}O$	0.8	0.1
$Al_2(\tilde{SO}_1)_3$	0 - 7	1
MgSO,	0 - 7	1
ΚΙ	4,6 - 5	10 ⁻⁵
K II	6,0 - 6,5	$5 \cdot 10^{-7}$
K VI	7	10 ⁻⁷
K IX	9	10 -9
SI	7,2 - 7,6	10 ⁻⁷
S II	9,3	$5 \cdot 10^{-10}$
		· · · · · · · · · · · · · · · · · · ·

(Tabelle mit Werten von Tanabe (1970) und Morrison (1977)).

der Vorbehandlung der Oberflächen durch Heizen der Proben, Adsorption von NH3 und/oder Wasserdampf oder Reaktion mit verschiedenen oberflächenaktiven Stoffen. Somit kann die Tab. 14 nur zu einer groben Klassifizierung der untersuchten Stäube dienen. Die Kohlekraftwerksstäube aus dem Reingas besitzen für 4,5 \leq pH \leq 7 H $_{\odot}$ -Werte im Bereich der isoelektrischen Punkte von Si02-Al203 (pH & 4,5), Si02 (pH \approx 6) und Al₂O₃ (pH \approx 7) (Kita et al., 1981). Unterhalb dieser Werte tragen die Festkörperøberflächen positive Ladung (und adsorbieren OH-Ionen bzw. Anionen, oberhalb dieser Werte sind sie negativ geladen (und adsorbieren H₃0⁺-Ionen bzw. Kationen). Während z. B. auf CaO und MgO-Partikeln-wie bei Zementen-vorwiegend basische Zentren existieren, besitzen SiO₂-Al₂O₃ Gemische, basiche und saure Zentren. Bei Rußen hängt der pH-Wert an der Oberfläche gleichfalls stark von den Entstehungsbedingungen ab. Ruße, die unter reduzierenden Bedingungen entstanden sind, ergeben pH-Werte zwischen 7-9, während nachoxidierte Ruße sauer reagieren. Während die basischen Oberflächenoxide auf Rußen oft pyronartige Strukturen besitzen, wurden als saure Oberflächenoxide z.B. Carboxyl-Gruppen, OH-Gruppen und Carbonyl-Gruppen nachgewiesen (Boehm, 1974).

Für eine Kohlekraftwerksstaubprobe mit pH = 6,55 wurde eine Größenabhängigkeit des pH-Wertes (bzw. der geschätzten H_0 -Funktion) festgestellt. Die Teilchenprobe wurde mit einem Impaktor (Typ KfK; Hersteller: Priv. Doz. Dr. Berner, Universität Wien) in 3 Größenklassen von D \bigstar 0.5 µm,0.5 \bigstar D \bigstar 1.5 µm,D > 1.5 µm unterteilt. Für jeweils dasselbe Oberflächen zu Massenverhältnis zeigten die kleinsten Teilchen einen pH \simeq 5,6, die mittlere Teilchenklasse einen pH \simeq 6,0 und die größten Partikeln einen pH \simeq 7,8. Bei einer zweiten Probe (K II) für die gleichen Größenklassen ergeben sich in derselben Reihenfolge pH \simeq 5,3, pH \simeq 5,8 und pH \simeq 7,6. Offensichtlich nehmen die basisch wirkenden Oberflächenzentren bzw. Verbindungen bei diesen Proben mit ansteigendem Partikelradius zu.

Diese Ergebnisse entsprechen zum einen den Ergebnissen der Elementanalyse verschiedener Größenklassen von Kohlekraftwerksstäuben (Tab. 7-8). Danach bilden die Oxide der wichtigen Matrixelemente Aluminium, Silizium, Eisen und Calcium massenmäßig den größten Anteil der Stäube. Da der lösliche Anteil der Partikeln gering ist (Tab. 9), sollten die Oxidgemische dieser Elemente auch die Zusammensetzung der Oberflächen und deren Eigenschaften bestimmen. Allerdings sind auf den Oberflächen verschiedene Elemente wie z. B. As, Cl, Cr, Mn, Cn, Ni, Pb und Zn aufgrund des Entstehungsmechanismus der Teilchen stark angereichert (Abschnitt 4.4). Der Anteil an Mangan wächst aber erst stärker im magnetischen Kohlekraftwerksstaub an. Für diese Stäube aus Elektrofiltern erhält man pH-Werte pH > 7 (Tab. 7), mit einer abnehmenden Löslichkeit von Mn, Fe, Cr und Al.

Diese Ergebnisse zeigen, daß neben der Elementzusammensetzung von Partikelproben auch deren Oberflächeneigenschaften (beschrieben durch H_o bzw. den pH-Wert) unterschiedlich sind. Dies bedeutet im Hinblick auf die Voraussetzungen zur modellmäßigen Beschreibung der heterogenen Reaktion einen weiteren Parameter (neben dem Gehalt an katalytisch wirksamen Elementen), der die mittlere Reaktionsrate und die mittlere Reaktionskapazität einer großen Teilchenzahl beeinflussen kann (Abschnitt 2.4).

Im folgenden Abschnitt werden die Ergebnisse der Untersuchungen des heterogenen SO₂-Abbaus in Abhängigkeit von den thermodynamischen und teilchenspezifischen Parametern beschrieben. Ferner wird die Anwendbarkeit der Modellansätze aus Abschnitt 2 auf die Resultate diskutiert.

5. Die Bildung, von Schwefelsaure und Sulfaten auf Aerosol-

<u>teilchenoberflächen</u>

Im vorhergehenden Abschnitt ließ sich mit einigen Beispielen eigener Untersuchungen die noch geringe Zahl der Untersuchungsergebnisse anderer Autoren bestätigen, daß in atmosphärischen Partikelproben oft Mischteilchen neben mehr homogen aufgebaut erscheinenden Teilchen zu finden sind. Einige Teilchenarten (z. B. Ruße oder Kohlekraftwerksstäube) tragen nur geringe oder auch größere Mengen Sulfat-(bzw. Schwefel) auf den Oberflächen. Nach der einleitenden Diskussion (Abschnitt 1) können diese Verbindungen sowohl durch Koagulations- und Kondensationsprozesse, als auch chemische Reaktionen auf die Partikeloberflächen gelangen. Im folgenden sollen nun die Ergebnisse von Experimenten zur Untersuchung der heterogenen SO2-Oxidation auf Teilchenoberflächen als ein möglicher Reaktionsweg bei der Entstehung von sulfathaltigen Mischteilchen beschrieben werden. Aus der Analyse des Elementgehaltes von Proben und Einzelteilchen, der Schichtstruktur einiger Partikelarten, der Art der Oberflächenverbindungen und dem Auftreten saurer und/oder basischer Verbindungen bzw. Zentren auf den Oberflächen ist zu vermuten (Abschnitt 4), daß die Beschreibung der heterogenen SO2-Oxidation durch die Verwendung der Ergebnisse von Probenanalysen nur ein mittleres Verhalten einer großen Teilchenzahl wiedergibt. Das Verhalten der einzelnen Partikeln sollte sich - wenn u. a. der Elementgehalt, der pH-Wert und die Oberflächenverbindungen diese Reaktion beeinflussen - von dem Mittel über die Probe unterscheiden. Da jedoch bei fast allen Analysen atmosphärischer Aerosolteilchenproben nur Ergebnisse für Proben - nicht aber für Einzelteilchen - gewonnen werden, beschränkt sich die folgende Auswertung und modellmäßige Beschreibung der Experimente vorwiegend auf die für Partikelproben zugängigen Ergebnisse der Analyse des Gehaltes verschiedener Elemente und Verbindungen und der Bestimmung mittlerer Oberflächeneigenschaften. Die Ergebnisse dieser Untersuchungen werden anschließend im Vergleich mit den Resultaten der Einzelteilchenanalysen diskutiert.

Der Schwefeldioxidabbau auf Partikeloberflächen und die Bildung von Reaktionsprodukten wurde als Funktion der Zeit für die Partikelarten aus Tab. 7 (Kohlekraftwerksstäube, Zementstäube, Vulkanstaub; synthetische Ruße) und Partikeln aus Al₂O₃, NaCl, NaCl + MnCl₂, NaCl + MnSO₄, MnCl₂, MnSO₄ und FeSO₄ beobachtet und analysiert.

Im Reaktor A und B ließen sich Experimente für Temperaturen von 8 - 34 °C, relative Feuchten von 28 - 96 % und S0₂-Konzentrationen von 0.05 - 5 mg m⁻³ durchführen. Einige Experimente bei S0₂-Konzentrationen von 4 - 80 mg m⁻³ konnten in einem Reaktor ähnlich dem Reaktor B im Institut für Chemische Technik (Univ. Karlsruhe) erfolgen. Es erwies sich, daß die Ergebnisse der Experimente an Kohlekraftwerksstäuben, Zementen, Aluminiumoxid und dem Vulkanstaub mehrere Gemeinsamkeiten aufweisen. Deshalb werden die Versuche an diesen oxidhaltigen. Stäuben gemeinsam behandelt, während den Untersuchungen an Rußen ein eigener Abschnitt gewidmet ist.

5.1 Die SO_2 -Oxidation auf oxidhaltigen Stäuben

5.1.1 Die Reaktionskapazitäten der Stäube

Die Experimente wurden im wesentlichen im Reaktor A entsprechend dem Schema in Abb. 7 durchgeführt. Einige Versuche - vor allem zur Bestimmung von ungefähren Werten der Kapazität vor den Experimenten im Reaktor A bei höheren SO₂-Konzentrationen - ließen sich nur im Reaktor B durchführen.

Als Reaktionsprodukte konnten mit Hilfe der IVA Sulfat, mit Hilfe der gaschromatographischen Technik H_2SO_4 und mit Hilfe der Elektronenspektroskopie (ESCA) ebenfalls Sulfat identifiziert werden. Daneben besteht in einigen Fällen die Vermutung, daß Sulfite vorhanden sind (siehe auch Abb. 24). Eine Reduktion von SO_2 (also z. B. S(IV) \rightarrow S(II)) ließ sich nicht nachweisen. Es hat demnach überwiegend eine Chemiesorption des Schwefeldioxids an den Partikeln stattgefunden. Die Sulfatanalyse der Partikelproben zeigt für alle drei Partikelarten ein vergleichbares Zeitverhalten der Sulfatbildung (Dlugi et al., 1981 a + b). Dies ist in Abb. 5 dargestellt (siehe auch Abschnitt 2.1).

<u>Abb. 5:</u> Die Sulfatmasse als Funktion der Reaktionszeit für den Kohlekraftwerksstaub K VII (Tab. 7) bei verschiedenen relativen Feuchten.

Sowohl die Reaktionsrate ($\Delta mp/\Delta t$) als auch die Kapazität C nimmt bei den Proben mit steigender relativer Feuchte zu. Dies gilt gleichermaßen auch für Zementstäube, Aluminiumoxid und den Vulkanstaub mit quantitativen Unterschieden in den Raten und in der Kapazität C. Die Abb. 27 zeigt den Vergleich der Reaktionskapazität durch die Bestimmung des Sulfatgehaltes der Proben (mit der IVA; 20 Proben) und der von Jordan und Haury (1975), Haury (1976) und Haury et al (1978) beschriebenen Methode aus 7 Versuchen in Reaktor A. Die höchsten Werte der Kapazität aus der Probenanalyse für die vier Versuchszeiten t_i (Punkte oberhalb der Kurve a)) gelten für den Fall Δ SO₂ = 0.035%, die niedrigsten Werte beschreiben den Fall Δ SO₂ = 0.33% für <u>/</u> SO₂-7_o 4,5 ± 0.16 mg m⁻³ (Tab. 2). Für die Berechnung der Kapazität und der Reaktionsrate aus der SO₂-Abnahme wurden 7 Versuche ausgewertet und ein Mittelwert der Kapazität von 0.11 g_{SO4}²⁻ g_{Ae}⁻¹ berechnet.

<u>Abb. 27:</u> Vergleich der für den Kohlekraftwerksstaub K I (Tab. 7) gemessenen (•) Sulfatmasse als Funktion der Zeit mit den aus dem SO₂-Verschwinden berechneten Werten nach Haury et al. (1978) bei einer relativen Feuchte r. F. ≈ 80 % (<u>/</u>-SO_7 ≈ 4,5 mg m⁻³).

Die Geraden a) und b) entsprechen einer Variation der im Berechnungsverfahren benötigten Aerosolparameter um mittlere Werte, wie sie sich aus den veröffentlichten Daten (Jordan und Haury, 1975; Haury, 1976; Haury et al., 1978) und den unveröffentlichen Versuchsdaten ergeben.

Eine Erhöhung der mittleren Aerosolzugaberate von 0.8 mg_{Staub} $m^{-3}h^{-1}$ um 15 % erniedrigt die mittlere Reaktionskapazität von 0.11 $g_{S02}^2 - /g_{Ae}^a auf 0.093 g_{S02}^2 - /g_{Ae}^a$ (Kurve b)), eine Erniedrigung der mittleren Aerosolzugaberate um 10 % erhöht die mittlere Reaktionskapazität (Kurve a)). Da die _ einzelnen Ergebnisse der Sulfatanalyse nur einen Fehler von 🕇 6 🖇 besitzen, kann aus diesem Vergleich abgeleitet werden, daß beide Verfahren zur Bestimmung der Reaktionskapazität C bis auf eine Abweichung von ca. + 10 und - 25 % gleiche Werte ergeben (Dlugi et al., 1981 a). Für die einzelnen Versuche gemäß der Methode von Jordan und Haury (1975) bzw. Haury (1976) betragen die Abweichungen von den Ergebnissen der Sulfatbestimmung ca. + 25 und - 55 %. In jedem Fall jedoch nehmen die Kapazitäten beider Methoden etwa vergleichbare Werte an. Dies zeigt, daß die ursprünglich nur aus der SO₂-Abnahme im Reaktor A berechneten Kapazitäten Werte in der richtigen Größenordnung ergaben und die Kapazitäten, welche aus Versuchen in anderen Reaktortypen abgeleitet wurden, zu niedrig sind (Liberti et al., 1978; Judeikis et al, 1978).

Aus diesen Versuchen läßt sich jedoch auch ableiten, daß die Reaktionskapazität (und die Reaktionsrate) von der SO_2 -Konzentration abhängt. Die analytische Beziehung (34 a) beschreibt diese – allerdings nur geringfügige – Abhängigkeit, die für den Bereich 0.05 $\leq / SO_2 - 7_0 \leq 5 \text{ mg m}^{-3}$, $\Delta SO_2 \leq 5 \%$, relative Feuchten r. F. $\geq 50 \%$ und pH-Werte pH ≤ 8 für Kohlekraftwerksstäube gilt :

= C (r. F.
$$\geq$$
 50 %; $/ SO_2 - 7_0 = 5 \text{ mg m}^{-3}) / SO_2 - 7_0$ (34a)

mit $\alpha_1 = 0.045 \pm 0.007$, pH = 4,7; $\alpha_1 = 0.036 \pm 0.008$; pH = 6.35; $\alpha_1 = 0.018 \pm 0.006$, pH = 7,8.

С

Im Konzentrationsbereich $5 \leq / SO_2 - 7_0 \leq 80 \text{ mg m}^{-3}$ gilt für die gleichen übrigen Bedingungen:

 $C = C(r. F. > 50 \%; / SO_2 - 7_0 = 5 \text{ mg m}^{-3}) / SO_2 - 7_0^{\alpha} ^2$ (34b)

mit $\propto_2 = 0.035 \pm 0.007$, pH = 6.35; $\propto_2 = 0.028 \pm 0.008$, pH = 7.8. Die Kapazität der Zementstäube verändert sich bei einer Abnahme der SO₂-Konzentration $/ SO_2 / _0$ von 5 mg m⁻³ auf 0.1 mg m⁻³ im Mittel nur um ca. 2 % und liegt damit unterhalb des Fehlers der Einzelanalysen. Diese Abhängigkeit konnte für den Vulkanstaub nicht untersucht werden, da eine zu geringe Probenmenge zu Verfügung stand und deshalb nur einige Experimente im Reaktor B durchgeführt wurden. Für Aluminiumoxid liegen nur Ergebnisse von Versuchen im SO₂-Konzentrationsbereich 1 - 5 mg m⁻³ vor. Eine Abhängigkeit der Kapazität von der Gaskonzentration ist hier nicht feststellbar.

Der Kohlekraftwerksstaub K VII enthält vor Beginn der Versuche 0.9 % Sulfat, während im Staub K I nur 0.6 % Sulfat nachweisbar sind.

Die bei gleicher relativer Feuchte für K VII bestimmte Kapazität ist etwa dreimal größer als bei K I, während die Reaktionszeit (jeweils bei gleicher SO_2 -Anfangskonzen-tration / SO_7 \simeq 4,5 mg m⁻³) nur 60 Minuten anstatt 90 Minuten beträgt. Das Verhalten der Reaktionskapazität bei steigender relativer Feuchte ist sowohl für Kohlekraftwerksstäube (K II, pH = 6; K I, pH = 4,7), Zemente (pH = 10,6) als auch künstliche Partikeln ähnlich (Abb. 28). In das Bild fügen sich auch die Ergebnisse von Haury et al. (1978) ein, deren Meßwerte etwas unterhalb der Kurve für pH = 4,7 liegen. Für Aluminiumoxid (pH = 4.4) erhält man bei r. F. = 60 % C = 0.0077 $g_{S02}^2 - g_{Ae}^{-1}$ für r. F. = 80 % C = 0.0096 $g_{S02}^2 - g_{Ae}^{-1}$. Als ein Maß für die unterschiedliche Oxidationswirküng der Stäube kann offensichtlich der verschiedene Grad der Acidität bzw. Basizität ihrer Oberflächen-(-verbindungen) gelten. Die Abb. 29 zeigt den Verlauf der Reaktionskapazität bei gleichen relativen Feuchten und / S0₂_7 № 4,5 mg m⁻³ für Kohlekraftwerksstäube, Zemente und Vulkanstaub als Funktion des pH-Wertes. Der Unterschied

in den Reaktionskapazitäten wird gering für pH-Werte pH ≤ 4 und pH ≥ 8 (Dlugi, 1981). Die jeweils gemittelten Punkte mehrerer Versuche liegen auf einer Kurve, deren Maximum im Bereich pH ≈ 7 liegt. Eine einfache Korrelation zwischen neu gebildetem Sulfat und der Katalysatorkonzentration (Tab. 7) ist nicht nachweisbar. Wird zu Beginn der Reaktion ein gleichzeitig hoher Mangan- und Alkalimetallgehalt (Tab. 7) bei niedrigem Schwefelgehalt (£ 1 %) angetroffen, so ist der pH-Wert größer als 5,5. Die Proben mit pH < 5 haben oft einen höheren Sulfatgehalt von 2 - 15 % Massenanteil. Eine Ausnahme bildet K I mit nur 0,6 %. Die Probe mit pH = 5.5 ist aus der mit pH = 5.1 (K III₁) durch Waschen mit destilliertem Wasser und anschließendem Trocknen (5 h) bei 150 °C hergestellt. Eine weitere Probe aus dem Reingasstrom (pH = 4.5), die schon beträchtliche Mengen wasserlöslichen Sulfates enthielt (0,12 $g_{SO_4}^2 - /g_{Ae}$), zeigte besonders bei relativen Feuchten r. F. > 70 % einen Anstieg der Sulfatbildung bis zu Werten der Proben mit pH ~ 5.5. Dies zeigt, daß der Sulfatgehalt der Partikeln bzw. der Proben vor der Reaktion allein kein Maß für die Reaktionskapazität darstellt. An saurem Aluminiumoxid (pH = 4.4) wird bei einer relativen Feuchte von r. F. = 80 %eine Kapazität von $0.0096 g_{SO_L}^2 - g_{Ae}^{-1}$ bestimmt, die gleichfalls etwa in den Kurvenverlauf der Abb. 29 paßt.

<u>Abb. 28:</u> Die Abhängigkeit der Reaktionskapazität von der relativen Feuchte für Kohlekraftwerksstäube (pH = 4.7, pH = 6), Zementstaub (pH = 10.6) und künstliche Aerosolteilchen (Dlugi et al., 1981 b).

<u>Abb. 29:</u> Abhängigkeit der Reaktionskapazität (d. h. der <u>neu</u> gebildeten Sulfatmenge) vom pH-Wert an der Oberfläche der Kohlekraftwerksstäube zu Beginn der Reaktion mit SO₂

Diese Ergebnisse deuten darauf hin, daß offensichtlich eine SO₂-Oxidation sowohl auf den Partikeloberflächen, als auch in einer wäßrigen, sulfathaltigen Lösung auf den Teilchen ablaufen kann. Diese Ergebnisse besagen ferner, daß auch die Struktur der Teilchen – also z. B. ihr schichtenförmiger Aufbau – nicht allein die Menge des oxidierten Schwefeldioxids bestimmt. Vielmehr müssen offensichtlich Katalysatoren in einer geeigneten chemischen Umgebung oder reaktive Zentren auf den Partikeloberflächen vorhanden sein. Der Gehalt der Stäube an basischen Verbindungen (oder Zentren) erniedrigt für pH > 7 sehr stark die Reaktionskapazität. Dieser Vorgang könnte z. B. durch eine Inaktivierung vorhandener Katalysatoren wie Mangan oder Eisen durch Bildung von Hydroxiden in basischen Lösungen verursacht werden.

Bei höheren relativen Feuchten haben die Teilchen je nach dem Anteil löslicher Substanz eine gewisse Menge Wasser aufgenommen (Tab. 5). Diese Wasseraufnahme löst einen Teil der Partikelmasse (Tab. 9) und vergrößert merklich die Reaktionskapazität aller untersuchten Teilchen (und auch die Reaktionsrate (Abb. 5)). Der Anstieg von C vergrößert sich im gleichen Feuchtebereich (Abb. 29), in dem viele Salze, die untersuchten Proben (Tab. 5), aber auch Proben atmosphärischer Teilchen eine verstärkte Wasseraufnahme zeigen (z. B. Hänel, 1976; Lehmann, 1978; Schreiber, 1977; Winkler, 1970). Normiert man die Reaktionskapazität C für verschiedene relative Feuchten auf den Sulfatgehalt der Partikelproben vor der Reaktion, so erhält man für Kohlekraftwerksstäube und Zemente ähnliche Kurvenverläufe (Abb. 30).

Die experimentellen Kurven lassen sich mit einer durch Anpassung an die experimentellen Werte gefundenen Beziehung (35 a) bzw. (35 p) beschreiben:

$$C = C_{o}f(m_{w}/m_{o}) = C_{o} \exp(4 m_{w}/m_{o})$$
 (35 a)

mit $C_0 = \text{Masse} / SO_4^2 / Masse / Aerosol (r. F. = 0,t = 0) /$

Hierbei ist vorausgesetzt, daß die Wasseraufnahme der Partikeln entsprechend (13 a) und (13 b) bzw. (14) das reaktive Teilchenvo⊥umen vergrößert. Die Wasseraufnahme erhöht auch die insgesamt umsetzbare SO₂-Menge, da mehr Schwefelsäure benötigt wird, um im vergrößerten Wasservolumen den pH-Wert so zu erniedrigen, daß die Oxidation stoppt.

<u>Abb. 30:</u> Die auf den Sulfatgehalt vor Beginn der Reaktion mit SO₂ normierte Kapazität C für die Kohlekraftwerksstäube K I (pH = 4.7), K II (pH = 6), K VII (pH = 6.35) und den Zementstaub Z (pH = 10.6) im Vergleich mit Model1rechnungen (-, ---) gemäß Gleichung (35 a), (35 b)

Die Anwendung der phänomenologischen Theorie der Wasseraufnahme von Aerosolteilchen gestattet es/(13 a) bzw. 13 b) für relative Feuchten r. F $\geq 60 \%$ und $m_w/m_o = b$. a_w (b = const.) für r. F. < 60 % _7den Quotienten C/C_o zu berechnen. Die Gleichung hierfür lautet bei Verwendung des linearen Massenzuwachskoeffizienten für eine Mischung $\bar{\mu}$

$$C = C_{o} \exp \left\{ a_{w} / 1 + \bar{u} (1/1 - a_{w}) / 7 \right\}$$
(35 b)

Für $a_w \leq f$ (f = relative Feuchte) und b = 1, muß nur noch der Massenzuwachskoeffizient $\bar{\mu}$ numerisch angepaßt werden. Der

-120-

Term $m_w/m_o = b \cdot a_w$ berücksichtigt die Wasserdampfadsorption an unlöslichen Festkörpern und ist an die Meßkurven von Winkler (1970) angepaßt. Dieser Vorgang bestimmt nahezu allein die Wasseraufnahme der Proben für r. F. $\leq 60 \%$, während für r. F. $\geq 70 \%$ die Wasseraufnahme durch Salze und H_2SO_4 ($\bar{\mu}$) den Wert von m_w/m_o vergrößert. Der Wert von $\bar{\mu}$ bzw. $\bar{\eta}$ (Gleichungen (13) und (14)) läßt sich auch aus der Zusammensetzung des löslichen Anteils der Partikeln berechnen, um das Verhältnis C/C_o vorherzusagen. Der Vergleich der aus den Messungen berechneten, der vorhergesagten und direkt mit der Mikrowaagentechnik (Tab. 5) gemessenen Werte m_w/m_o ist in Tab. 15 für einige Partikelarten gezeigt.

<u>Tab. 15:</u> Die aus den Meßdaten (Abb. 31) berechnenten (Gleichung (35 a)), aus der Analyse der Ionen- und Elementzusammensetzung der Proben berechneten ((13), (14); nach Hänel (1976), Thudium (1978)) und die an Proben gemessenen m_w/m_o-Werte (Tab. 5).

a. W	K I (35a)	K I (13)(14)	K I (Tab.5)	KII (35a)	KII (13)(14)	KII (Tab.5)	KVII (35a)	Z (35a)
0.2	0.14			0.45	nne na hann dit i an dar gan dar gan da an		0.03	0.38
0.3	0.21			0.07			0.04	0.55
0.4	0.3			0.09			0.06	0.83
0.5	0.27			0.195			0.08	1.69
0.6	0.47	0.3 <u>+</u> 0.12		0.33	0.25 <u>+</u> 0.1		0.15	2.6
0.7	0.35	0.3 <u>+</u> 0.12	0.31	0.55	0.45 <u>+</u> 0.1	0.5	0.42	6.4
0.8	0.368	0.4 + 0.1	0.33	0.72	0.65+0.07		0.55	5.4
0.85						0.78		
0.9	0.9	0.8 + 0.08	0.69	0.91	0.9 +0.05	0.85	0.86	19.1
0.93	0.75	0.9		0.74	—		0.76	14.1
0.95	0.94	1.3	0.97		1.4	0.98		

Die Berechnung der Wasseraufnahme der löslichen Bestandteile der Partikelproben erfolgte für ein Sulfatgemisch aus Na_2SO_4 , K_2SO_4 , $MgSO_4$, $Al_2(SO_4)_3$, $FeSO_4$ und H_2SO_4 , wobei der jeweilige Anteil der Kationen aus dem Elementgehalt (Tab. 7) und dem Minimalwert der rechten Spalte von Tab. 9 bestimmt wurde. Für beide Proben ist der maximal mögliche CaSO, und BaSO, Anteil abgezogen, da anzunehmen ist, daß beide Verbindungen nur wenig zur Wasseraufnahme beitragen. Es bleibt für beide Proben ungebundenes Sulfat übrig, auch wenn der H₂SO₄-Anteil abgezogen ist. Der Schwefelsäureanteil in den Proben beträgt bei r. F. = 60 % für KI 0.013 $g_{H_2SO_4}g_{Ae}^{-1}$ und für KII 0.034 g_{Ae}^{-1} . Bei r. F. = 90 % ergab die Analyse für K I 0.026 $g_{H_2SO_4}g_{Ae}^{-1}$ und für KII 0.087 $g_{H_2SO_4}g_{Ae}^{-1}$. Diese Werte sind an Proben bestimmt, die sofort nach der Reaktion mit Diazomethan versetzt werden. Die m_w/m_o -Werte durch den Schwefelsäureanteil der Proben betragen m_w/m_o 0.02 (K I) und $m_w/m_o \simeq 0.05$ (K II) bei r. F. 60 % sowie $m_w/m_o \simeq 0.14$ (KI) und $m_{\rm u}/m_{\rm o} \simeq 0.45$ für r. F. = 90 %. Bei höheren relativen Feuchten beträgt also die Wasseraufnahme durch H_2SO_4 allein schon etwa 20 - 50 % der Werte aus Tab 5. Die gute Übereinstimmung der aus den Messungen und Rechnungen ermittelten Werte der Wasseraufnahme der Partike1proben läßt sich wegen des Vergleichs mit nur zwei Proben aus Mikrowaagemessungen nicht generell verallgemeinern. Der Abfall des nach (35a) berechneten Anstiegs der Wasseraufnahme für r.F.=93 % kann sowohl auf Analysefehlern als auch physico-chemischen Vorgängen beruhen. Bei einer Berücksichtigung aller Meßwerte für r.F. > 90 % läßt sich eher ein konstanter Wert mw/mo oder auch ein leichter Anstieg von $m_{\rm w}/m_{\rm o}$ im Bereich 0.9 \$\$ r.F. \$\$ 95 % vermuten.

Es ist nicht erstaunlich, daß die direkt gemessenen Werte der Wasseraufnahme in der Regel unter den berechneten liegen, da für die Rechnungen eine vollständige Dissoziation der Salze vorausgesetzt wird und auch Adsorptionsvorgänge der Ionen am festen Teilchenkern vernachlässigt sind. Da die Beziehung (35a) bisher nur durch Anpassung an die experimentellen Daten gefunden wurde, können diese Ergebnisse nicht theoretisch im Sinne einer Reaktionskinetik interpretiert werden. Die hohen Werte der Wasseraufnahme für den Zementstaub (Tab. 15) sind plausibel, da eine chemische Reaktion dieses Staubes mit Wasser stattfindet; der Zement bindet ab. B. Zankl (Hänel und Zanki, 1980) bestimmt für diesen Zementstaub Werte von $m_W/m_o = 15.2$ (nach 1 h) und 17,3 (nach 3 h) für r. F. \simeq 93 % bei einer Mikrowaagemessung.

Neben den beschriebenen Versuchen sind Experimente mit Kohlekraftwerksstäuben durchgeführt worden, bei denen mit Hilfe der Beleuchtungsanlage Licht mit sonnenähnlicher Spektralverteilung, wie sie am Boden in ca. 50 ° N gemessen wird, in die Reaktionskammer gestrahlt wurde. Als Ziel der Untersuchungen war festzustellen, ob z. B. durch Photoanregung von Metalloxiden im UV-Bereich auf den <u>Teilchenoberflächen</u> die Sulfatbildung verändert werden kann. Für derartige Reaktionen kämen z. B. ZnO und vermutlich auch TiO₂ in Frage. Es wurden die 4 Lampen an der Reaktionskammer mit zusammen 7200 cal m⁻² eingesetzt. Dies entspricht etwa der Globalstrahlung bei 8/8 Stratus im Frühjahr oder Herbst in Hamburg.

Bei den in Abb. 21 gezeigten Ergebnissen fällt auf, daß erst nach einer langen Anlaufzeit von ca. 1 Stunde eine merkliche SO2-Oxidation einsetzt, die erst nach ca. 170 Minuten zum Stillstand kommt. Dabei unterscheidet sich die lange Anlaufzeit nicht bei den beiden verschiedenen Versuchsbedingen. Offensichtlich bewirkt die Lichteinwirkung bei diesem Staub eine Verlangsamung der Reaktion und eine verstärkte Bildung reaktionshemmender Produkte oder den Zerfall reaktiver Zwischenprodukte. Im Gegensatz zu diesen Ergebnissen wurde für K III, (Tab. 7, pH = 5.1) eine Erhöhung der Reaktionskapazität um 18 % für solare Einstrahlung bei gleichen Versuchsbedingungen gefunden, wobei die gesamte Reaktionszeit von 70 auf 90 Minuten zunahm und die Reaktionsrate etwa konstant blieb. Allerdings liègen für K III₁ nur 7 experimentelle Daten vor, so daß die Genauigkeit des Ergebnisses nur bei etwa + 12 % liegt. Auf jeden Fall kann eine Erniedrigung der Reaktionskapazität durch die Einwirkung solarer Strahlung für K III, ausgeschlossen werden.

- 123-

<u>Abb. 31:</u> Der Einfluß solarer Strahlung auf die Reaktionskapazität des Kohlekraftwerksstaubes K VI ($250_2 - 7_0 \approx 4.5 \text{ mg m}^{-3}$)

Die Schwefelsäuremenge beträgt nach Beendigung der Reaktion mit Kohlekraftwerksstäuben, Zementen und dem Vulkanstaub etwa 3 - 15 % des Gesamtsulfatanteils (Tab. 16). Da sich H_2SO_1 mit den anwesenden Oxiden, Chloriden und Carbonaten zu Sulfaten umsetzt, hängt es vom Zeitpunkt der Zugabe von Diazomethan zu der Probe ab, welche H2S04-Menge gaschromatographisch nachgewiesen wird. Eine Versuchsreihe, bei der gleichartige Proben zu unterschiedlichen Zeiten (sofort nach der Probennahme; 1 h, 2 h, 18 h, 1 d, 3 d) mit Diazomethan versetzt und anschließend analysiert wurden zeigt, daß die Umwandlung zu Schwefelsäure offensichtlich schnel⊥ vor sich geht. Von der 2. Probe zur 6. Probe ist nur eine Abnahme der H₂SO₁-Konzentration um 7 % zu beobachten. Von der ersten Probe (sofort nach der Probenahme) zur zweiten Probe (1 h nach der Probenahme) ergibt sich eine Reduktion der nachgewiesenen Schwefelsäuremenge um 16 %.

Somit erfaßt man bei nicht sofortiger H₂SO₄-Analyse den über längere Zeit stabilen Säureanteil.

- 124 -

<u>Tab. 16:</u> Die Reaktionskapazität von Aerosolteilchenproben bei der SO₂-Oxidation (Tab. 7) (Die Schwefelsäurewerte gelten für Standzeiten der Proben von 2 h)

Aerosol	re⊥ative Feuchte %	Reaktionsl $g_{SO_4}^{2-/g}$ Ae	Reaktionskapazität g _{S04} /g _{Aerosol}	
austra Management		Sulfat	H ₂ SO ₄	
ΚĨ	32 88	0.062	0.004 0.021	
K II	40 80	U.14 0.25	U.U17 0.04	
K IV	40 78	0.146 0.24	U.UO6 0.016	
Z	59 83	0.023 0.039	0.0013 0.0045	
SH 2	80	0.06	0.002	
^{Al} 2 ⁰ 3 (sauer;pH=4,	80	0.0096		

Eindeutig ist, daß der stabile H2S04-Anteil mit steigender relativer Feuchte prozentual starker zunimmt, als der Gesamtsulfatanteil. Uber das Zeitverhalten der Schwefelsäurebildung liegen nur für die Kohlestäube in Tab. 15 Meßreihen vor. Demnach (Tab. 17) steigt die freie H₂SO₁-Menge schwächer als die Sulfatmasse an, bis sie am Ende der Reaktion einen konstanten Wert von 7-25 % des Sulfatanteils erreicht und somit höher ist, als die erst nach 2 Stunden bestimmten Werte. Es waren nur jeweils 5 bzw. 4 Proben für die Schwefelsäurebestimmung bei diesen Meßserien verfügbar, so daß eine Lokalisierung des Anstiegs der H_2SO_4 -Konzentration in der Zeitskala nur auf <u>+</u> 12 Minuten möglich ist. Diese Proben wurden jeweils sofort mit Diazomethan versetzt, so daß eine Umsetzung zu Sulfaten unterblieb.

Zeit(min)	ΚI	K II	K VII
20			0.007
30	0.0015	0.003	0.012
45	0.004	0.0087	0.024
65		0.012	0.074
85 [,]	0.008	0.036	
110	0.029		

<u>Tab. 17</u>: Die Schwefelsauremenge (g_{H2SO4} g_{Ae}¹⁻) als Funktion der Reaktionszeit für KI, KII, KVII bei r.F. ≈ 80 %

Berechnet man aus den näherungsweise richtigen Werten m_w/m_o und den Schwefelsäurekonzentrationen am Reaktionsende pH-Werte der einfach dissozierten Schwefelsäure (Tab. 1), so erhält man für alle analysierten Proben pH-Werte im Bereich $0.5 \leq pH < 2$. Allerdings dürfte der wahre Wert zum Reaktionsende wegen des noch weiterhin ablaufenden Umsatzes von Schwefelsäure zu Sulfaten etwa im Bereich 0.1 < pH < 1.5 liegen. Dieser Umsatz ist bei Zementen stärker als bei Kohlekraftwerksstäuben mit pH ≤ 7 vor der Reaktion. Diese niedrigen pH-Werte am Reaktionsende rechtfertigen den Reaktionsansatz gemäß Gleichung (9) mit einer Rate proportional der HSO_3^{-2} . Konzentration. Mit einer Reaktionsrate proportional $2SO_3^{-2}$.

Der Unterschied in den Kapazitäten und in den Reaktionszeiten bei Verwendung des Reaktors A und B ist aus der Tab. 18 ersichtlich.
<u>Tab. 18:</u> Die Reaktionskapazitäten und die Reaktionszeiten t_c bis zum Erreichen von C $(g_{SO}^{2-}g_{Ae}^{-1})$ für K VII (Abb.5) aus Experimenten im Reaktor ⁴A (jeweils für $SO_2 < 5 \%$) und im Reaktor B (V $\leq 5 \text{ cm s}^{-1}$) bei $(-SO_2 - J_0 = 4.5 \text{ mg m}^{-3})$

	, 		and the second		، مورد میرون می
r.F	Reakto: C	r A te	Reakt Massenbeleg	or B gung	t
%		(min)	(mg_cm-2)	, C	(min)
30	0.185	160	0.08	0.176	165
			0.12	0.169	175
			0.195	0.135	230
Ň			0.31	0.07	320
			0.83	0.018	130
	a a su a		5.83	0.007	80
60	0.285	125	0.09	0.274	135
			0.13	0.269	140
			0.21	0.173	190
	· · · · ·		0.306	0.09	275
82	0.365	60	0.086	0.34	70
			0.15	0.22	85
			0.32	0.14	150
	a se se se se	an An Angela	0.66	0.03	100

Dies zeigt, daß eine zu dichte Teilchenpackung sowohl die insgesamt abgebaute SO₂-Menge als auch die Reaktionszeit bis zum Erreichen der Kapazität beeinflußt. Diese Ergebnisse beweisen, daß bei einer zunehmenden Massenbelegung der Filter die Kapazität stark abnimmt. Die Erhöhung der Massenbelegung von 0.08 mg cm⁻² auf 5.83 mg cm⁻² erniedrigt die Kapazität um den Faktor 25. Liberti et al. (1978) ließen Kohlekraftwerksstaub bei Massenbelegung von ca. 127 mg cm⁻² mit SO₂ reagieren und erhielten um den Faktor 1666 niedrigere Werte der Kapazität als Haury et. al. (1978)

für den gleichen Kohlekraftwerksstaub bei Reaktionszeiten von ca. 15 - 20 Minuten bis zum Erreichen der Kapazität. Die Abnahme der insgesamt umgesetzten SO₂-Menge bei wachsender Massenbelegung läßt sich durch die Produktbildung und das gegenseitige Abdecken von reaktiven Oberflächenteilen nebeneinanderliegender Teilchen erklären. Die bei einer leichten Erhöhung der Massenbelegung ansteigende Reaktionszeit bei etwa gleicher Kapazität deutet auf eine Hemmung der Reaktion durch Diffusions- oder Massentransportvorgänge hin. Mit zunehmender Massenbelegung nimmt dann die insgesamt noch verfügbare Reaktionsfläche immer stärker ab, so daß die Reaktionszeit für die Bildung geringer Produktmengen in den Kanälen der Probenschichten kleiner wird als t. Die gleichen Vorgänge sollten auch die Produktbildung im Strömungsreaktor nach Judeikis et al. (1978) behindern. Diese Versuchsergebnisse zeigen die Richtigkeit der Uberlegungen in Abschnitt 2 und machen deutlich, welche verschiedenen Versuchsparameter die Ergebnisse von Laborexperimenten zur Untersuchung heterogener Reaktionen beeinflussen können. Ferner wird die Kritik (Britton und Clarke, 1979; Dlugi et al., 1981 a) an den Versuchen von Liberti et al. (1978) und Judeikis et al. (1978) aufgrund theoretischer Überlegungen auch experimentell untermauert.

5.1.2 Die Reaktionsraten

Für die Berechnung des heterogenen SO₂-Abbaus an Partikeln in der Atmosphäre muß nicht nur die insgesamt abbaubare SO₂-Menge sondern auch die Reaktionsrate selbst bekannt sein. Diese ist von den Partikeleigenschaften, der relativen Luftfeuchtigkeit (Abb. 5) und der solaren Einstrahlung (Abb. 31) abhängig. Alle Versuche zur Sulfatbildung an den oxidhaltigen Stäuben zeigten eine Zunahme der Sulfatbildungsrate bei steigender relativer Feuchte. Die Abb. 32 a, b zeigt als Beispiel den Vergleich der Meßdaten für die Probe KVII (siehe auch Abb. 5) mit den nach verschiedenen Modellen (Abschnitt 2) berechneten Raten und Kapazitäten. Die folgende Tab. 19 faßt die verschiedenen bei den Rechnungen verwendeten Parameter zusammen. <u>Tab. 19:</u> Die verschiedenen Parameter für die Anpassung der experimentellen Ergebnisse (0, +, .) mit den Gleichungen (2), (5) und (5a) unter Verwendung von (13) und (14) und (23) für $/ SO_2 / O \simeq 4.5 \text{ mg m}^{-3}$

Modellgleichung	Bemerkungen
(2) : Abb. 32 a $k_1 >> k_{-1} \xrightarrow{k} k = k_1$ $\frac{k_7}{k_7} = s^{-1}$	r.F. = 82 % r.F. = 60 % r.F. = 30 % $k = 2 \cdot 10^{-3} s^{-1} ()$ $k = 10^{-3} s^{-1} ()$ $k = 10^{-3} s^{-1} ()$ $k = 2 \cdot 10^{-2} s^{-1} ()$
(5), (5b): Abb. 32a Anfangs-pH-Wert = 6.35 End-pH-Wert = 0.8 $\frac{1}{k_{7}} = s^{-1}$ Voraussetzungen! (4/3) $\pi R^{3} = m_{W}$; k = const	Modell für D _w (t) nach Szekely et al.(1976) D _w = D _o exp $/ (t-t_x)/t_x = 7, t_x = const$ D _o = 10 ⁻⁵ cm ² s ⁻¹ ; r.F. = 82 %: t _x = 200 s, k = 10 s ⁻¹ m _w /m _o = 0.5
Sulfat = $Me_x(SO_4)_y + H_2SO_4;$ m_w/m_o nur für den <u>lös-</u> <u>lichen</u> Anteil berechnet nach (13) und (14)	r.F. = 60 %: $t_x = 300$, $k = 10 \text{ s}^{-1}$ $m_w/m_o = 0.29$ r.F. = 30 %: $t_x = 500$, $k = 10 \text{ s}^{-1}$ $m_w/m_o = 0.05$ Abb. 32 a: Zeichen jeweils ()
23: Abb. 32 b $\frac{1}{a_0} = \frac{7}{g_{S0}} = \frac{2}{g_{Ae}} = \frac{1}{min^1}$	r.F. = 82 %: $a_0 = 7.5 \cdot 10^{-3} g_{SO}^{2-} g_{Ae}^{-1} nin$ die gesamte Produktmenge hemmt die Reaktion (); nur 50 % der Produkt- menge hemmt die Reaktion () (nur H ₂ SO ₄ - Anteil hemmt: $a_0 = 4 \cdot 10^{-3}$ $g_{SO_4}^{2-} g_{Ae}^{-1} nin^{-1}$) r.F. = 60 %: $a_0 = 3.8 \cdot 10^{-3} g_{SO_4}^{2-} g_{Ae}^{-1} nin^{-1}$ ges. Produktmenge hemmt () nur 50 % hemmen () (nur H ₂ SO ₄ - Anteil hemmt: $a_0 = 1, 6 \cdot 10^{-3}$ $g_{SO_4}^{2-} g_{Ae}^{-1} nin^{-1}$) r.F. = 30 %: $a_0 = 1, 8 \cdot 10^{-3} g_{SO_4}^{2-} g_{Ae}^{-1} nin^{-1}$ ges. Produktmenge hemmt () nur 50 % hemmen () (nur H ₂ SO ₄ - Anteil hemmt: $a_0 = 8 \cdot 10^{-4}$ $g_{SO_4}^{2-} g_{Ae}^{-1} nin^{-1}$)

- 130-

Für die Auswertung der experimentellen Daten mit den Gleichungen (2) und (23) sind im Vergleich zu (5), (5b) keine zusätzlichen Voraussetzungen (bzw. Einschränkungen) und Probenanalysen notwendig! Die Gleichung (2) liefert direkt eine Ratenkonstante k für die Produktbildung gemäß einer Reaktion 1. Ordnung. Normiert man a_o nicht auf die Probenmasse sondern auf die reaktive Oberfläche von ca. $5m^2 g_{Ae}^{-1}$, so erhält man nahezu den Wert der Ratenkonstante der homogenen Reaktion 1. Ordnung, wie es aufgrund reaktionskinetischer Betrachtungen (z. B. Emmett, 1954, 1955; Laidler 1950) auch zu erwarten ist. Die Ratenkonstante k der Reaktionsgleichung (5) (/-k_7 = s⁻¹) läßt sich durch die Beziehung (36) in die Rate a_o umrechnen, wie es auch in (5) (bzw. (9), mit Tab. 1) selbst durchgeführt wird.

<u>Abb. 32 a:</u> Die nach den Gleichungen (2) bzw. (5) berechnete Sulfatbildung (Tab. 18) für die Probe K VII im Vergleich mit, den Meßdaten (0, +, o).

$$a_{o} \approx k \frac{K_{1}H pSO_{2}}{\sqrt{-H^{+}}7} \frac{m_{w}}{m_{o}}$$
 (36)
(0,4<

<u>Abb. 32 b:</u> Die mach der Gleichung (23) berechnete Sulfatbildung (Tab. 18) für die Probe K VII im Vergleich mit den Meßdaten (0, +, .).

Der Quotient m_w/m_o ist vor allem bei geringen Feuchten nur auf etwa 10-20 % genau bekannt. Diese Unsicherheit, die zusätzliche freie Wahl von k bzw. q in (5) sowie die Zeitabhängigkeit von q lassen eine Wahl von 🗴 im Bereich o.44041 zu. Die Beziehung (36) macht deutlich, daß die Rate proportional zum Wassergehalt der Proben ansteigt, bei steigender H⁺-Ionenkonzentration abnimmt und bei steigendem SO2-Partialdruck zunehmen sollte. Es ist zu beachten, daß die Wasseraufnahme $(m_{\rm w}/m_{\rm o})$ von der Masse und der Zusammensetzung des wasserlöslichen Anteils der Proben (Gleichung (13), (14)) abhängt. Alle drei Modellansätze zur Berechnung von Reaktionsraten der heterogenen SO2-Oxidation ergeben bis auf <u>+</u> 50 % die gleichen Raten, obwohl unterschiedliche Voraussetzungen bei der Ableitung der analytischen Beziehungen gemacht werden. Der größte Fehler ist bei derAuswertung gemäß (5) zu erwarten, da hier mehrere Resultate unterschiedlicher Meßmethoden eingehen. Allerdings zeigt die Modellrechnung, daß nur der Schwefelsäuregehalt der Proben als Funktion der Reaktionszeit, der lösliche Sulfatgehalt der Proben als Funktion der Zeit und die Wasseraufnahme einen großen Einfluß

auf die Genauigkeit der Anpassung besitzen. Der H_2SO_4 -Gehalt bestimmt den HSO_3^- -Gehalt der Probe zusammen mit m_w/m_o . Für die Wasseraufnahme wurde nach (5b) das Sulfat dazugerechnet, wobei erneut die Daten aus Tab. 7 und Tab. 9 (rechte Spalte, Minimalwerte) verwendet sind . Während die Auswertung der Meßdaten gemäß (2) und (23) nur Ratenkonstanten liefert, erlaubt es der parameterisierte Modellansatz (5) (und (5b), (13), (14), (36)) auch die Abhängigkeit der Reaktionsrate von den Partikeleigenschaften und dem, Wasserdampfgehalt der Partikelumgebung für ein konstantes k zu beschreiben bzw. vorherzusagen. Die Rechnung gemäß (5) und die gute Übereinstimmung der Messungen mit der berechneten Kurve ist jedoch <u>nur</u> deshalb möglich, weil für diese Proben auch die Zeitabhängigkeit der Schwefelsäurebildung bekannt ist (Tab. 17).

Aus (5) bzw. (36) ist ersichtlich, daß die Oxidationsrate bei höherem SO_2 -Partialdruck ansteigen muß. Die Abhängigkeit der Reaktionsrate von der SO_2 -Gaskonzentration $/ SO_7_0$ läßt sich für die Modellgleichung (23) durch die Beziehung (Dlugi et al., 1981 a, b)

$$a_{o} = k_{23} / S_{2} 7_{o}^{m}$$
 (37)

wiedergeben, mit m = 0.20 für r.F. $\simeq 30$ %,m = 0.35 für r.F. $\simeq 65$ % und m = 0.42 für r.F. $\gtrsim 80\%$ für einen pH-Wertbereich der Stäube 4.5 \lesssim pH $\lesssim 7$. Dies bedeutet gegenüber einer früheren Auswertung aller bisheriger Experimente (Dlugi et al., 1981 b) eine Reduzierung der Abhängigkeit der Rate von der SO₂-Gaskonzentration. Die Exponenten entsprechen etwa denen der Gleichungen (22) und (36).

Für die neue Auswertung sind nur Versuche mit Δ SO₂ < 5 % (Tab. 2) berücksichtigt worden.

Aus den Versuchen bei höheren SO_2 -Konzentrationen ließen sich Grenzwerte für die Reaktionsrate a_o ableiten (Tab. 20):

рH	<u>/</u> ^{SO} 2-7 ₀ (mg m ⁻³ g)	r.F. (%)	$(g_{S0_{l}}^{2-a_{og}}g_{Aerosol}^{g-1}-1min^{-1})$
6.35	20	30	$5 \cdot 10^{-3}$
11,2	15	<i>y</i> 0	10 ⁻³
6,35	25	60	$4 \cdot 10^{-2}$
11,2	20		$5 \cdot 10^{-3}$
6,35	40	90	0.1
11,2	30		0.01

<u>Tab. 20:</u> Näherungsweise berechnete Grenzwerte a_o bei entsprechenden SO₂-Konzentrationen $2^{-}SO_{2}-7_{o_{\sigma}}^{g}$

Oberhalb dieser $\frac{1}{50}2_{2}a_{g}$ -Werte ist $a_{0g} \simeq \text{const.}$, unterhalb nimmt a_{0} entsprechend $a_{0} = k \frac{1}{50}2_{2}a_{m}^{m}$ ab. Die Beziehung $a_{0} = k \cdot \frac{1}{50}a_{0}^{m}$ / SO₂/^m und das Erreichen eines Grenzwertes läßt sich interpretieren, wenn man einen vereinfachten SO2-Adsorptionsmechanismus an den Partikeloberflächen betrachtet (z. B. Abschnitt 2.4). Ist die Bedeckung der Oberflächen mit SO2 gering, so entspricht dies dem linear ansteigenden Bereich der Adsorptionsisotherme nachLangmuir. Bei einer Reaktion des Typs A $\stackrel{K}{\longrightarrow}$ B (K = Katalysator) ist die Konzentration K · A an der Oberfläche und damit die Reaktionsrate proportional zur Konzentration von A im Trägergas, d. h. die Reaktion ist von 1. Ordnung. Ist die Oberfläche der Partikeln völlig mit dem Ausgangsprodukt A belegt (oder der Wasseranteil mit A gesättigt), so entspricht dies dem Sättigungsbereich der Adsorptionsisotherme, d. h. die Reaktionsrate wird unabhängig von / A_7 und die 'overall' Reaktion ist von 0. Ordnung.

Der Modellansatz (23) unterschätzt sowohl die Sulfatbildungsrate als auch die Kapazität, wenn der gesamte Sulfatanteil bei der Bedeckung der reaktiven Zentren berücksichtigt wird (Abb. 32 b). Setzt man nur 50 % der Produktmasse ein, so wird die Anpassung insgesamt besser. Wird nur der H₂SO₄-Anteil berücksichtigt, so muß die kleinere Rate a_o (in 23) eingesetzt werden, um die experimentellen Ergebnisse zu approximieren. Das Modell ist aber geeignet (Abb. 32), die Sulfatproduktionsrate in Abhängigkeit von den Parametern "relative Feuchte" und "pH-Wert der Stäube" darzustellen (Dlugi et al., 1981).

<u>Abb. 33:</u> Die Abhängigkeit der Reaktionsrate a_o vom pH-Wert und der relativen Feuchte für Kohlekraftwerksstäube und Zemente.

Genauso wie für die Reaktionskapazität, läßt sich auch für die Reaktionsrate a ein Maximum für pH \approx 6.35 beobachten. Der Wert ist gegenüber pH \approx 7 (für die Kapazität) etwas zu kleineren Werten verschoben, da die Kurven in Abb. 31 erst nach einer Langen Anlaufphase der Reaktion einen merklichen Anstieg zeigen. Dieses Anlaufverhalten läßt sich unabhängig vom pH-Wert bei zwei weiteren Stäuben (pH = 4.9, pH = 9.2) nachweisen und könntez. B. durch Folgereaktion bei der Sulfatentstehung (Kehlen et al., 1974) oder – nur am Anfang dominierende – Rückreaktionen (k₁ \simeq k₁; Gleichung (23)) erklärt werden. Die Keaktionsraten steigen – unabhängig vom pH-wert der Stäube – bei zunehmender relativer Feuchte an (Dlugi et al., 1984 a, b).

Die Kurven <u>ohne</u> und <u>mit</u> Bestrahlung (Abb. 33) gehen für geringe relative Feuchten ineinander über. Möglicherweise beruht die geringere Zunahme von a_o, bei steigender relativer Feuchte auf einer Reduzierung der relativen Feuchte über den Teilchen infolge der Erwärmung durch die einfallende Strahlung. Der Kohlekraftwerksstaub, bei dem die Reduzierung der Kapazität und von a beobachtet wurde, hat eine braune Farbe und absorbiert merklich Strahlung der Wellenlänge $\lambda < 0.5 \,\mu\text{m}$ (Andre et al., 1981; Wyatt, 1980). Die lokale Feuchteerniedrigung würde eine höhere H⁺-Konzentration der Elektrolytlösung auf den Teilchenoberflächen zur Folge haben, so daß sowohl die SO2-Adsorption als auch die Produktion von Reaktionszwischenträgern reduziert wäre. Als Folge nimmt der pH-Wert stärker ab, so daß in diesem Fall sowohl die SO2-Aufnahme als auch die Produktion der Reaktionskettenträger (Abschnitt 2.1) reduziert ist. Es sind aber auch photochemisch induzierte Zerfallsreaktionen denkbar, die eine stärkere Produktbildung verhindern (Roberts and Thomas, 1978).

5.1.3 Die Analyse von Einzelteilchen

Die Analyse von Partikelproben, nachdem die Teilchen mit SO_2 reagiert haben, zeigte einige systematische Abhängigkeiten der Reaktionsrate und der Kapazität von der relativen Feuchte und einigen Partikeleigenschaften. Die Diskussion der Meßergebnisse an Einzelteilchen vor und nach der Reaktion in Abschnitt 4.4 (z. B. Abb. 23 - 25, Tab. 43) zeigte, daß speziell die Fartikeln aus Kohlekraftwerken schon vor der Reaktion mit SO_2 größere Unterschiede vor allem im Elementgehalt (Abb. 22) aufweisen und nach der Reaktion mit SO_2 (Tab. 13) keinesfalls einen annähernd gleich großen Schwefel- bzw. Sulfatgehalt besitzen.

Die Kapazität der Einzelteilchen hängt für Kohlekraftwerksstäube von der Größe der Teilchen, der relativen Feuchte und vom pH-Wert ab. Während für den Kohlekraftwerksstaub KIV bei niedrigen relativen Feuchten von den Partikeln mit D > 3 µm nur 30 % reagiert haben (Abb. 34), wächst dieser Anteil bei steigender Feuchte an. Der Elektrofilterstaub K V zeigt für alle Teilchengrößen D < 4 μ m, daß einegeringere Teilchenzahl reagiert hat als für den Staub K VI, obwohl die Kapazitäten der Stäube sich nicht sehr unterscheiden (Abb. 29). Tatsächlich zeigen auch die reagierten Teilchen bei der Analyse (EDS) einen höheren Schwefelgehalt als die Partikeln des Staubes K VI. Dies kompensiert den Effekt der geringen Reaktivität zahlreicher Partikeln. In vielen Fällen zeigen die größeren Teilchen nach der Reaktion nur wenig Schwefel, wie auch die Partikeln mit Durchmessern D > 4 μ m in Abb. 34.

<u>Abb. 34:</u> Die relative Anzahl der Partikeln, die mit SO₂ reagiert haben als Funktion der relativen Feuchte (Reingasstaub K VI, Elektrofilterstaub K V)

Dieses Analysenergebnis für Reingasstaub nach der Reaktion (360 Teilchen) stimmt mit Ergebnissen der Analyse des Staubes K I überein, bei dem bei r. F.≃80 % ca. 90 % aller Teilchen mit D < 3 μ m mit SO₂ reagiert haben. Betrachtet man jedoch die Ergebnisse für Teilchendurchmesser D ≲ 1 µm, so findet man bei allen analysierten Proben (K I, K II, K VI, K VKK, K V), daß auch für niedrige relative Feuchten ca. 80 - 95 % aller Teilchen relativ zu nichtreagierten Partikeln einen höheren Schwefelpeak zeigen. Offensichtlich steigt der Schwefelgehalt mit abnehmenden Teilchenradius an. Der pH-Wert einer Teilchen-Wasser-Suspension zeigt bei zunehmendem Teilchenradius einen pH-Wert-Anstieg (Abschnitt 4.5). Dieses Verhalten entspricht auch der Abnahme der Reaktivität (im pH-Bereich ph 🛵 7) von Proben (Abb. 29) und Einzelteilchen (Abb. 34) bei steigendem Radius, der auch einem steigenden pH-Wert entspricht. In der Tab. 21 sind die Analysenergebnisse für Partikeln des Staubes K I bei niedrigeren relativen Feuchten zusammengefaßt.

<u>Tab. 21:</u> Die relative Anzahl der Teilchen (K I), die mit SO₂ reagiert haben,für drei Größenklassen

Radiusbereich		r.F.	= 30 %	r.F. = 60	%	
			a and Street and Characterist	and a second	1993 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	owned and the second
0.1	0.25	лт		47	79	
0.25	0.5	μm		25	63	
0.5	1	иm		16	27	

Es wurden keine basischen Flugstäube aber Zementteilchen, Vulkanstaub und synthetische Partikeln <u>vor</u> und <u>nach</u> der Reaktion analysiert. Nach der Reaktion haben von diesen Teilchen mehr als 90 % mit SO₂ reagiert. Bei den Einzekteilchenanalysen fiel auf, daß bei niedrigen relativen Feuchten vor allem die Partikeln (0.85 \leq D \leq 1.5 µm) des Staubes K I und K II einen größeren Schwefelgehalt aufweisen, die auch einen größeren Eisen- und Übergangsmetallgehalt (Mn, V, Zn, Cu) zeigen. Dieses Ergebnis deutet auf die mögliche Katalysatorwirkung von Verbindungen dieser Elemente bei der SO₂-Oxidation hin. Während bei den Probenanalysen ein Zusammenhang des Spurenstoffgehalts der Partikelproben und der abgebauten SO₂-Menge nicht festgestellt werden konnte, deuten diese Ergebnisse auf den Einfluß dieser Verbindungen auf die heterogene SO₂-Oxidation hin. Allerdings enthalten die kleineren Teilchen oft nur wenig Eisen (Mn, Cr und Cu ist mit der energiedispersiven Analyse nicht mehr nachweisbar), so daß möglicherweise auch leicht saure Oberflächenzentren (Abschnitt 4.5) oder geringe Spuren an katalytisch wirksamen Metallverbindungen die SO₂-Oxidation beschleunigen.

Es ließ sich also als Ergebnis der Einzelteilchenanalysen für die untersuchten Partikelproben folgendes zusammenfassen:

- Die Anzahl der Kohlekraftwerksstaubteilchen, die mit SO₂ reagiert haben, steigt mit zunehmender relativer Feuchte an.
- Die kleineren Partikeln dieser Stäube besitzen eine größere Kapazität als die größeren Teilchen, die vermutlich oft basische Oberflächen haben
- Der Vergleich von Analysenergebnissen für Partikelproben und Einzelteilchen zeigt, daß im wesentlichen - vor allem bei niedrigen relativen Feuchten - die Partikeln mit Durchmesser D ≤ 2 µm die Sulfatmasse tragen.
- Das unterschiedliche Reaktionsverhalten einiger Teilchenarten entspricht dem Befund, daß speziell diese Partikeln einen recht unterschiedlichen Anteil von - bei der SO₂-Oxidation - als Katalysator wirkenden Elementen enthalten.

5.2 Die heterogene SO2-Oxidation an Salzteilchen

Die Versuche an Salzteilchen wurden zum einen durchgeführt, um für oft untersuchte Verbindungen (MnSO₄, MnCl₂, NaCl) die früheren Versuche von Jordan und Haury (1975), Haury (1976) bzw. Haury et al. (1978) und Cheng et al. (1971) für den SO₂-Abbau an Partikeln mit dem neuen Verfahren nachzuvollziehen. Zum anderen, um für eine hohe relative Feuchte (\ge 95 %) zu versuchen, eine Systematik in den Ratenkonstanten für die heterogene SO₂-Oxidation durch Mangansalz enthaltende Teilchen aufzufinden. Deshalb wurden nur die Reaktionskapazitäten für einige Werte der relativen Feuchte bestimmt und für MnSO₄ und MnCl₂ die Raten für eine relative Feuchte r. F. = 95 % gemessen. Die Kapazitäten für Salzteilchen sind in der Tab. 22 zusammengefaßt.

Tab. 22:	Reaktionsl	capaz	ital	ten von	katalytisch	wirksamen
	Aerosolen	bei	\mathtt{der}	S0 ₂ -0xi	Idation	

Aerosolzu- sammensetzung	Relative Feuchte	Reaktionskapazitäten / gSO ₄ ²⁻ / g _{Aerosol} /		
	%	Sulfat H ₂ SO ₄		
MnCl ₂	57	0.043 0.026		
FeSO	65	0.013		
MnSO	33	0.02		
MnSO	48	0.06		
MnSO	86	0.08		
NaC1 1:10	55	0.08		
+MnS0 ₄ 1:1	55	0.05		

Einige Versuche für MnSO₄ sind auch mit der Methode nach Jordan und Haury (1975) bzw. Haury (1976) ausgewertet worden. Die Analysen des Sulfatgehaltes der Proben sind für MnSO₄ schwierig, da eine geringe Änderung des Sulfatgehaltes genau erfaßt werden muß.

Zur Sulfatbestimmung mit der IVA müssen die Proben mit Wasser verdünnt werden. Durch die zusätzlichen Arbeitsschritte bedingt weichen die Einzelergebnisse bis zu 26 % voneinander ab. Die Mittelwerte liegen jedoch nahezu auf der gleichen Kurve, die auch Haury (1976) bzw. Haury et al. (1978) ermittelten (Abb. 28, Abschnitt 5.1.1). Einige Versuche mit MnCl₂-Partikeln ergaben gleiche Kapazitäten wie für MnSO₄-Teilchen. Die "Verdünnung" des Mangansulfates durch Mischen mit NaCl im Verhältnis 1 : 1 und 1 : 10 und Versprühen der Mischsalzlösung ergibt einen leichten Anstieg der Kapazität bei zunehmender Verdünnung. Diese Beobachtung kann nicht gedeutet werden, da nur wenige Versuche durchgeführt wurden. Es erscheint jedoch nach den Überlegungen von Clarke (1980) denkbar, daß bei Salzmischungen auch kinetische Salzeffekte die Reaktion beeinflussen. Einige Versuche zur Bestimmung einer Reaktionsrate für MnCl_o sind bei einer relativen Feuchte von r.F. 🗠 95 % durchgeführt worden. Dieses Ergebnis (D) ist zusammen mit anderen Literaturwerten in Abb. 35 aufgeführt. Für die jeweilige Aerosolteilchenzusammensetzung läßt sich (nach Gleichung (14)) bei einer relativen Feuchte r.F. = 95 % der Wassergehalt berechnen. Daraus ergibt sich (bei bekannter Teilchenmasse oder Teilchengröße) die Mangankonzentration pro Liter. Die Rate ist auf den Wassergehalt der Teilchen und nicht auf die Aerosolmasse (wie in Abb. 33) normiert.

<u>Abb. 35:</u> Die Reaktionsrate verschiedener manganhaltiger Aerosolteilchen bei r.F.295 % und 250_2_7 = 1.8 mg m⁻³ (A₁, A₂, B₁, B₂; D; E; H; G) im Vergleich mit dem Bereich der Raten von Kohlekraftwerksstäuben und Zementen (C) und Rußen (F). Zum weiteren Vergleich sind die Raten für MnCl2 in Wassertropfen (L) für $/ SO_2 - 7_0 = 1.8 \text{ mg m}^{23}$ und MnSO₄ für $/ SO_2 - 7_0 \simeq 110 \text{ g m}^{-3}$ (J) und den SO_2 -Abbau in MnSO₄-haltigen Lösungen bei / SO_2 - $7_0 \simeq 110 \text{ gm}^{-3}$ eingezeichnet. (A1, A2, B1, B2: Aerosole A und B von Runca-Köberich (1979). A_2 und B_2 sind die auf den tatsächlich chemisch wirksamen Mn-Gehalt korrigierten Werte; D: MnCl₂, eigene Ergebnisse; E: MnSO₁ + $(NH_{L})_{2}SO_{L}$, Kaplan et al. (1981); G: MnCl₂, Cheng et al. (1971); H: MnSO4, Haury et al. (1978) und eigene Werte; L: MnCL₂, Barrie (1975); J: MnSO₄, Hoather und Goodeve (1934); K: MnSO₄, Coughanowr und Krause (1965); C: Stäube, Bereich der eigenen Daten; F: Ruße, Bereich der eigenen Daten und Britton und Clarke (1980))

Aus diesem Datenvergleich kann man folgendes entnehmen:

Für zwei völlig unterschiedliche SO_2 -Konzentrationsbereiche erhält man einen gleichartigen Verlauf der Reaktionsrate (pro cm⁻³ Wasser) für manganhaltige Teilchen und Lösungen. Der Unterschied in den Daten (J) und (K) kann sowohl durch eine Reduzierung der Rate durch den Einfluß von Diffusionsprozessen (Schwartz und Freiberg, 1981) als auch den Unterschied zwischen der katalytischen Wirkung von MnSO₄ und MnCl₂ gegeben sein, wie er auch für Teilchen ((D), (G) und (H)) beobachtet wird. Die Werte von Barrie (1975) für MnCl₂-haltige Tropfen liegen etwa um den Faktor 5-7 über den interpolierten Werden für Partikeln (bei r.F. \simeq 95 %). Die Abhängigkeit der Reaktionsrate \checkmark von der SO₂-Konzentration für Mn-haltige Wassertropfen im betrachteten Konzentrationsbereich beträgt etwa

$$\boldsymbol{\nu} = \boldsymbol{\nu}_{o} / \mathbf{S} \mathbf{O}_{2} - \mathbf{7}_{o}^{\mathrm{m}}$$
(38)

)

mit m = 0.4 - 0.45. Dieses Ergebnis ähnelt sehr dem für Kohlekraftwerksstäube in einem anderen Konzentrationsbereich (Gleichung (37)).

Während der ansteigende Kurvenast (K, J) den Bereich beschreibt, in dem die Rate von der Mangankonzentration abhängt, gibt der Sättigungsverlauf der Kurve den Bereich wieder, in dem die Rate von der O_2 -Konzentration abhängt (Pasiuk et al., 1981). Für niedrige Mn-Konzentrationen findet man etwa eine Abhängigkeit der Rate gemäß einer Reaktion 2. Ordnung hinsichtlich MnSO₄, die für höhere Mn-Konzentrationen in eine Reaktion 1. Ordnung, dann in ein Verhalten 0. Ordnung (hinsichtlich Mn) übergeht. Für O_2 geht die Reaktionsordnung von 0. Ordnung in O_2 (ansteigender Ast) in eine Reaktionsordnung 1. Ordnung in O_2 (Sättigungswert) über. Für die hohen SO₂-Konzentrationen (K, J) wird eine Reaktion 0. Ordnung in SO₂ (Gas) gefunden (Coughanowr und Krause, 1965). Für die Lösungen erhält man annähernd folgende Ratengleichungen (39) (Pasiuk et al., 1981):

Mn-abhängiger Bereich:
$$V = \frac{\sqrt[]{Mn}7^2}{a' + b' \sqrt[]{H}2SO_4-7}$$
 (39a)

$$O_2$$
-abhängiger Bereich: $\mathcal{V} = \frac{\frac{10_2 7 \ \text{Mn} 7^2}{a'' \ \text{Mn} 7^2 + b' \ \text{O}_2 7 \ \text{H}_2 \text{SO}_4 7}$ (39b)

Weder für Lösungen noch für Partikeln ist die tatsächliche Reaktionskinetik bekannt (z. B. Pasiuk et al, 1981; Beilke, 1980). Es ist sowohl ein Reaktionsablauf gemäß dem Backströmmechanismus, als auch gemäß dem von Schmidkunz (1963) und Barrie und Georgii (1976) beschriebenen Mechanismus denkbar.

Beim Vergleich der Gleichungen (5) bzw. (36) mit (39a) fällt auf, daß im gleichen Mn-Konzentrationsbereich (K, J, L, A, B, C) jeweils etwa $V \sim / H^+ / T^-m$ ($1 \neq m^- \neq 2$) gilt. Die bei Hegg und Hobbs (1978) diskutierten Mechanismen der Mn-katalysierten SO₂-Oxidation zeigen einez. T. völlig verschiedene Abhängigkeit der Reaktionsraten vom Mn-Gehalt, der H⁺-Ionenkonzentration und der O₂-Konzentration der betrachteten Lösungen oder Teilchen. Auch für die durch Eisenionen katalysierte SO₂-Oxidation findet man diese großen Unterschiede im Oxidationsmechanismus (z. B. Hegg und Hobbs, 1978; Fuzzi, 1978).

Überträgt man die Kinetik entsprechend (39 a, b) für die Abhängigkeit der Reaktion von der Mn-Konzentration (<u>nicht</u> von der SO_2 -Konzentration) auch auf die Reaktionen an Partikeln bei $/ SO_2 / O \simeq 1.8 \text{ mg m}^3$, so kann man einige qualitative Aussagen machen. Die Raten für einen höheren Mangananteil pro Liter in den Teilchen sind – wie bei den Lösungen – nahezu konstant. Da in diesem Bereich – nach (39 b) – offensichtlich schon die O_2 -Diffusion (für die Reaktion $SO_2 + O_2 + M \Longrightarrow SO_4^{2-} + M$) die Rate kontrolliert, ist es nicht verwunderlich, daß Kaplan et al. (1981) für einen wesentlich niedrigeren Mn-Gehalt der Teilchen (E) etwa die Raten erhält, die auch die anderen Autoren (H, G, D) bestimmten. Der Reaktionsmechanismus von Pasiuk et al. (1981) läßt vermuten, daß die Reaktionsordnung der Mn-katalysierten SO_2 -Oxidation hinsichtlich der SO_2 -Konzentration bei sinkender Gaskonzentration (SO_2) von der O.Ordnung in eine Reaktionsordnung 0.3 bis 1. Ordnung übergeht, wie es auch beobachtet wird.

Die Kohlekraftwerksstäube und Zemente zeigen in diesem Bild etwa um den Faktor 10^4 höhere $SO_2Oxidationsraten pro cm^3$ Wasser gegenüber synthetischen Teilchen. Eine einfache Korrelation der Raten mit der Konzentration z. B. von Mn oder Fe konnte bei diesen komplex aufgebauten Stäuben nicht gefunden werden. Dies kann darauf hindeuten, daß das Oxidationsverhalten der Partikeln schon dem Sättigungsbereich zuzuordnen ist. Es ist jedoch wahrscheinlicher, daß zusätzlich noch andere Oxidationsmechanismen als die Mn-katalysierte Oxidation auf den Teilchen wirksam sind und/oder das Puffern der gebildeten Schwefelsäure durch die Reaktion von H_2SO_4 mit Oxiden die 'overall'-Reaktionsrate sehr stark beschleunigt, wie es dem Modellansatz (5), (5b) entspricht.

Aus diesem Vergleich läßt sich ablesen, daß es notwendig ist, die heterogene SO_2 -Oxidation an Partikeln auch durch Hinzufügen von Verbindungen, die H_2SO_4 binden, zu untersuchen, um zu einem allgemeinen Verständnis des Reaktionsmechanismus der Mn-katalysierten SO_2 -Oxidation zu kommen. Allerdings erweist es sich ebenso als notwendig, für die Untersuchung des heterogenen SO_2 -Abbaus an anthropogenen oder natürlichen Partikeln eigenständige Versuchsserien durchzuführen, jeweils unter Beachtung derjenigen Kriterien die für synthetische Teilchen gefunden werden. Diese Untersuchungsergebnisse zeigen aber auch, daß sich (siehe Abb. 34) durch Versuche mit synthetischen Teilchen nicht auf die SO_2 -Oxidationsraten an Partikeln aus anthropogenen und natürlichen Quellen schließen läßt.

5.3 Diskussion und Zusammenfassung

Obwohl die Zusammensetzung der Einzelteilchen von der mittleren Zusammensetzung einer Aerosolprobe abweicht, zeigen sich für die Sulfatbildung auf Proben und Partikeln Gemeinsamkeiten. Die durchgeführten Versuche zur H₂SO₄und Sulfatentstehung auf Kohlekraftwersstäuben und Zementen sowie Vulkanstaub und Al₂O₃ergeben zusammenfassend die folgenden Ergebnisse:

- Die theoretischen Überlegungen bei der Auswahl geeigneter chemischer Reaktoren zur Untersuchung der heterogenen SO₂-Oxidation auf verschiedenen Partikeln sind durch die experimentellen Ergebnisse (Abschnitt 5.1.1, Tab. 18) bestätigt.
- Es konnte gezeigt werden, daß die früheren Messungen der Reaktionskapazität (Jordan und Haury, 1975; Haury, 1976; Haury et al., 1978) für eine nicht vom Massentransport bestimmte Reaktion und ASO₂ 5 % mit den Ergebnissen der neuen Versuchsmethode gut übereinstimmen.
- Dies beweist, daß die Kapazitäten, die mit anderen Versuchsanordnungen gewonnen sind, wegen des Einflusses von Diffussionsprozessen zu niedrig sind.
- Die recht geringfügige Abhängigkeit der Reaktionskapazität der Kohlekraftwerksstäube von der Gaskonzentration läßt sich analytisch formulieren (Gleichung (34a, b)).
- Die Reaktionskapazitäten aller Stäube nehmen mit wachsender relativer Feuchte zu. Dieses Verhalten läßt sich unter Verwendung der phänomenologischen Theorie der Wasseraufnahme von Teilchen im Gleichgewicht mit ihrer Umgebung parametrisieren (Gleichung (35), Tab. 15).
- Die Reaktionsrate ist für alle Stäube gleichfalls abhängig von der relativen Feuchte. Auch dieses Verhalten läßt sich mit Hilfe der Gleichgewichtstheorie der Wasseraufnahme mit einem parametrisierten Ansatz beschreiben (Abschnitt 5.1.2, Gleichung (5), (36)).

- Der wasserlösliche Anteil der Teilchen und dessen Zusammensetzung beeinflußt nach diesen Ergebnissen die Reaktionsrate
- Solare Strahlung beeinflußt die heterogene SO₂-Oxidation auf Kohlekraftwerksstäuben.
- Die Reaktionsraten aller drei bei derAuswertung der experimentellen Daten angewendeten unterschiedlichen Modellansätze sind bis auf eine Abweichung von maximal ca. <u>+</u> 50 % gleich.
- Die Reaktionsraten für saure und neutrale Kohlekraftwerksstäube hängen von der SO₂-Konzentration ab.
- Aus dem Schwefelsäuregehalt der Partikeln und dem Wassergehalt lassen sich am Reaktionsende pH-Werte im Bereich pH 20.1 - 1.5 berechnen.
- Die Reaktionsraten erreichen im betrachteten S0₂-Konzentrationsbereich obere Grenzwerte.
- Die Analyse von Einzelteilchen aus Kohlekraftwerken zeigt, daß kleinere Teilchen stärker mit SO₂ reagieren als größere. Dieses Verhalten könnte auf den mit zunehmender Partikelgröße zunehmenden Anteil basischer Verbindungen oder Zentren auf den Oberflächen zurückzuführen sein.
- Es zeigt sich, daß die Kapazität einer Probe im wesentlich auf den Sulfatgehalt der Partikeln mit Durchmessern D ≤ 2 µm zurückzuführen ist. Dies bedeutet, daß das Partikelverhalten im Reaktor A kaum die Ergebnisse der Versuche beeinflußt. Die größeren Teilchen, welche frühzeitig abgelagert werden, reagieren geringer mit SO₂.
 Es erweist sich aber in diesem Zusammenhang als wichtig, daß von vornherein möglichst nur die kleineren Teilchen in den Reaktor A gelangen. Diese Bedingung ist durch die Verwendung geeigneter Aerosolteilchengeneratoren verwirklicht worden.

Sowohl die Reaktionsrate (Abb. 33) als auch die Reaktionskapazität (Abb. 28) steigen mit der relativen Feuchte an, wobei der Grad der Acidität bzw. der Basidität die Stärke der Zunahme bestimmt. Aus der gebildeten Schwefelsäuremenge und dem Wassergehalt der Teilchen lassen sich jeweils pH-Werte im Bereich pH = 0.1 - 1.5 bei Erreichen der Reaktionskapazität berechnen. Diese Werte liegen unterhalb pH = 2, bei dem eine katalytische Sulfatbildung in Lösungen gestoppt werden sollte (Junge und Ryan, 1958). Es ist im Bereich 8 $^{\circ}C \leq T \leq 35 ^{\circ}C$ keine Temperaturabhängigkeit der Oxidationsraten oder der Kapazitäten nachweisbar.

Vergleicht man die experimentellen Befunde mit den möglichen Oxidationsmechanismen in wässrigen Lösungen (z. B. Barrie and Georgii, 1976; Beilke und Gravenhorst, 1978; Beilke, 1980, Pasiuk et al, 1981; Hayon et al., 1972; Schmidkunz, 1963) und auf Festkörperoberflächen (z. B. Koballa und Dudukovic, 1977; Lin and Lunsford, 1975; Morrison, 1977; Pearce and Lundsford, 1978; Roberts und Thomas, 1978), so zeigen sich qualitative Gemeinsamkeiten in den unterschiedlichen Oxidationsmechanismen. Bei den unterschiedlichen Mechanismen treten jeweils die gleichen Zwischenträger der Reaktion 0_2 , $H0_2$, $S0_3$, $S0_4$, S_20_4 , $S_2 O_5$ sowie Metallkomplexverbindungen (Me^{+x}(Y)⁴₃)-(6-x)⁶ mit $Y = SO_3^2$ oder HSO_3 auf. Da jedoch die Bildungs- und Zerfallraten einzelner Reaktionszwischenträger in wässrigen konzentrierten Elektrolytlösung bzw. deren Verhalten an einer Lösungs-Festkörper-Grenzfläche nur ungenügend bekannt sind (z. B. Jnman und Lovering, 1981; Roberts und Thomas, 1978), lassen sich die experimentellen Ergebnisse nur qualitativ deuten. Folgt man der Argumentation von Barrie und Georgii (1976) bzw. Beilke (1980) gemäß den Ergebnissen für verdünnte Lösungen von Schmidkunz (1963), so läßt sich die Existenz eines Maximums der Reaktionskapazität und der Rate (Abb. 29, 33) durch die katalytische SO2-Oxidation von Sulfitionen in Mn (oder Fe)-haltigen wässrigen Lösungen deuten.

·

Der Oxidationsmechanismus verwendet die Radikalen HO_2 und SO₃ als Zwischenträger, die durch Reaktionen der Komplexe $(Me^{+x}(Y))^{-(6-x)}mit O_2$ und SO₃²⁻ (HSO₃⁻) entstehen. Die Oxidation stoppt für pH 🗲 2, da dort die Konzentration von HSO_3^- - vor allem aber SO_3^{2-} - sehr niedrig ist. Außerdem sinkt mit fallendem pH-Wert die SO2-Adsorptionsrate. Die Konzentration der für die Reaktion gemäß Barrie und Georgii (1976) notwendigen SO_3^{2-} -Ionen ist für pH < 5 sehr niedrig. Möglicherweise laufen in diesem Bereich auch Reaktionen analog dem Bäckstrom-Mechanismus (z. B. S05 + $HSO_3 \rightleftharpoons HSO_5 + SO_3$) ab, ebenfalls im Einklang mit dem Maximum der Raten bei pH ≈ 7 (Pasiuk et al., 1981). Bei niedrigen pH-Werten ist auch die Produktion von HO2 wegen der ebenfalls niedrigen Bildungsrate von 0_2^{-} aus 0_2^{-} minimal (die Löslichkeit von 0 bei pH = 2 ist nur um ca. 60 %erniedrigt). Für hohe pH-Werte von 13-14 sind die jeweiligen Kettenträger existent, jedoch verläuft die Bildung von HO2 sehr langsam. Deshalb muß im Bereich 2 < pH < 13 ein Maximum der Reaktionskapazität und von a bzw. k existieren. Zusätzlich werden in basischen Lösungen die als Katalysator wirksamen Metallionenkomplexe z. B. durch Ausfallen als Hydroxid deaktiviert, so daß z. B. der chemisch wirksame Mangangehalt eines Teilchens um mehr als eine Zehnerpotenz reduziert werden kann (z. B. Runca-Köberich, 1979).

In Abschnitt 5.2 wurden die SO_2 -Oxidationsraten verschiedener heterogener Systeme miteinander verglichen. Der Vergleich der verschiedenen Reaktionskapazitäten für gleichartige und verschiedene Aerosolteilchen bzw. Stäube gibt einen weiteren Aufschluß über den Einfluß verschiedener Versuchsanordnungen und Partikeleigenschaften auf die insgesamt oxidierte SO_2 -Menge (Abb. 36).

<u>Abb. 36:</u> Gemessene Reaktionskapazitäten verschiedener Aerosolsysteme K = Kohlekraftwerksstaub; Z = Zement P35;

- (1) Judeikis et a., 1978; (2) Haury et al., 1978;
- (3) Cheng et al., 1971; (4)
- (4) Lin u. Lunsford, 1975;
- (5) eigene Ergebnisse;
 - (Dlugi et al. 1981 b)
- (9) Runca-Köberich, 1979
- (6) Liberti et al., 1978;

In der Abb. 36 sind eigene Ergebnisse (5) der Feuchteabhängigkeit von Reaktionskapazitäten verschiedener Aerosolsysteme mit denen anderer Autoren verglichen.

Betrachtet man die künstlichen Partikeln NaCl und MnCl2, so fällt auf, daß die Werte (3) von Cheng et al. (1971) jeweils um den Faktor 10 niedriger sind, als eigene Messungen. In der Arbeit von Cheng et al. wurden die Teilchen auf inerten Filtern abgeschieden und einer SO2-haltigen feuchten Atmosphäre ausgesetzt. Wie einige eigene Versuche mit einer vergleichbaren geometrischen Anordnung zeigten, sind die Reaktionszeiten bei diesen Versuchen um ca. 10 - 15 % größer, die Kapazitäten gegenüber den Versuchen mit luftgetragenen Teilchen um den Faktor 7 - 12 kleiner, wenn nicht mit niedrigen Partikelkonzentrationen gearbeitet wird. Offensichtlich behindert schon das Filter die diffusionsbestimmte SO2-Aufnahme der Teilchen, von denen eine Teiloberfläche überhaupt nicht an der Reaktion teilnimmt. Sind die Partikeln zu dicht gepackt, so wird die Reaktion stärker behindert. Zum luftgetragenen Zustand vergleichbare- maximal um den Faktor 1.3 - 1.6 kleinere-Kapazitäten erhält man nur, wenn SO2-beladenes Gas durch dünn belegte Filter mit sehr geringer Geschwindigkeit hindurchgesaugt wird (abschnitt 5.1.1, Tab. 18).

Wegen der zu dichten Teilchenpackung erhielten Liberti et al. (1978) (K(6)) auch für den von Haury et al. (1978) untersuchten Kohlekraftwerksstaub K(2) um den Faktor 10^3 zu niedrige Werte. Bei den Versuchen von Judeikis et al. (1978) dürfte zum einen der verwendete Staub K(1) – es wurden Teilchenproben aus E-Filtern untersucht – wegen des möglicherweise hohen pH-Wertes (pH > 7) am Reaktionsanfang weniger SO₂ abbauen (Abb. 28, 29). Außerdem beeinflußt erneut die Geometrie der Versuchsapparatur die Ergebnisse. Die Proben werden jeweils auf der Wand eines Reaktionsrohres aufgetragen, das parallel zur Teilchenschicht von SO₂-haltigem Gas durchströmt wird. Dabei nehmen offensichtich nur die oberen Teilchen an der Reaktion mit SO₂

teil, so daß bei der Bestimmung der Kapazitäten auch nichtsulfathaltige Masse in den Quotienten eingeht und zu niedrige Werte berechnet werden. Vergleicht man die eigenen Ergebnisse für Al_2O_3 (Tab. 16) mit den Resultaten von Judeikis et al. (1978), so ist der Einfluß der gewählten Versuchsgeometrie deutlich sichtbar. Wegen der großen Teilchenradien der Al₂03-Partikeln ist die Diffusion in die Schicht nicht so stark behindert, wie bei den Kohlekraftwerksstäuben; daher ist die Kapazität nur um etwa den Faktor 2 niedriger als die eigenen Meßwerte. Der Einfluß von Puffersubstanzen von Runca-Köberich (1979) unterist deutlich für die suchten Aerosolteilchensystem zu sehen. Während für Aerosol B (= B_2 , Abb. 34: Gemisch aus NH_1NO_3 , NaCl, $MnCl_2$) wegen des schon zu Reaktionsbeginn niedrigen pH-Wertes von pH ≥ 3.7 eine Kapazität von weniger als 10⁻² g_{SO2} g⁻¹Ae gemessen bestimmt Runca-Köberich (1979) für Aerosoltyp A wird. (Mangan(II-)Acetat) mit einem Anfangs-pH-Wert pH 🗠 6.36 bei einer leicht höheren Reaktionsrate (Abb. 35) eine wesentlich größere Reaktionskapazität. Allerdings ist (wie auch Abb. 35 zeigt) die tatsächlich bei der Reaktion wirsame Mangankonzentration A2 wesentlich kleiner, als die vorhandene Mangankonzentration A1. Auch das Verhalten von M_{gO} Teilchen (Abb. 36) zeigt den Einfluß von Puffersubstanzen (4). Eine alkalisch vorbehandelte Substanz (MgO-Mg(OH),) hat hierbei eine größere SO2-Aufnahmekapazität, als eine nicht vorbehandelte Oberfläche. Dieses Verhalten bei einer Oberflächenre-

aktion durch aktive Zentren ist also genau umgekehrt zum Verhalten der neutralen und leicht sauren Stäube (5) gegenüber den basischen Stäuben (Z(5)). Dieses Ergebnis deutet erneut auf die Wirkung von Katalysatoren bei der SO_2 -Oxidation hin, die im alkalischen Medium deaktiviert werden können.

-151-

Nach Novakov et al. (1974) ist Kohlenstoff mit ca. 50 % der Gesamtpartikelemission das häufigste Element, wobei etwa 80 % davon als Ruß vorliegen sollen. Deshalb erschien es sinnvoll, mit den vorhandenen experimentellen Methoden den SO₂-Abbau auf verschiedenen Rußen zu untersuchen, zudem deren mögliche reaktive Oberfläche wesentlich größer ist als diejenige der Kohlekraftwerks- und Zementstäube.

Die Bildung von Schwefelsäure und Sulfaten wurde auf Rußen mit basischen Oberflächenverbindungen untersucht. In Abb. 37 ist die Oberfläche einer Rußschicht (Elftex, Tab. 7) vor der Reaktion mit SO₂ abgebildet. Die Abb. 38 zeigt eine Rußschicht, nachdem die Reaktion beendet ist. Es ist deutlich die Veränderung der Oberfläche durch die Sulfatbildung zu erkennen.

<u>Abb. 37:</u> Die Oberfläche einer mit Ruß (Elftex) bedeckten Trägerplatte vor der Reaktion mit SO₂

Der Ruß Elftex (pH = 7.0) hat eine Reaktionskapazität von 0.002 g_{S0}_4 / $g_{Aerosol}$ (Tab. 23). Die Sulfatbildung zweier Ruße mit verschiedenem pH-Wert (Tab. 4) ist in Abb. 39 in Abhängigkeit von der Zeit aufgetragen. Offensichtlich hat sowohl die Existenz basischer Oberflächenverbindungen als auch die Vorbehandlung der Ruße einen Einfluß auf die Sulfatbildungsrate; dieses Ergebnis finden auch Zuckmantel et al. (1979) für die S0₂-Oxidation von Rußen in wäßrigen Lösungen.

<u>Tab. 23</u> :	Die	Reaktio	nskapa	azität	für	Ruße
------------------	-----	---------	--------	--------	-----	------

Aerosoltyp			relative]	Feuchte	Reaktionskapazität g _{SO} , ^{2-/} g _{Aerosol}			
Logo gran and and and and		and the second		-*	%	eta a constante en activita de la constante en activita de la constante en activita de la constante de la const	Sulfat	H ₂ SO ₄
Ruß	(250 ⁰ C)	рH	=	7.5	35		0.005(3)	
Ruß	(250 ⁰ C)	pН	=	7.5	75		0.005(3)	0.0015
Ruß	(250 ⁰ C)	pН	=	9.5	35		0.0015	
Ruß	(250 ⁰ C)	рH	=	9.5	78		0.0015	
Ruß		рH	=	7.0	40		0.002	0.001
Ruß		рH	=	7.0	83		0.002	

<u>Abb. 38:</u> Die Oberfläche einer mit Ruß (Elftex) bedeckten Trägerplatte nach der Reaktion mit SO₂

<u>Abb. 39:</u> Bildung von Sulfat als Funktion der Zeit und der Vorbehandlung für zwei verschiedene Ruße (Tab. 4;7)

Eine Abhängigkeit der Reaktionskapazität von der relativen Feuchteist unterhalb r.F. = 95 % nicht feststellbar (Abb.40). Dies entspricht auch der geringen Wasseraufnahme der Partikeln in diesem Feuchtebereich (Tab. 5).

Die Oberflächen der untersuchten Ruße haben neutralen bis basischen Charakter (Tab. 4). Ihre Reaktionskapazität steigt offensichtich mit fallendem pH-Wert im Bereich $6.5 \le \text{pH} \le 10$. Eine Feuchteabhängigkeit der Reaktionen im Bereich 20 % < relative Feuchte ≤ 95 % ist nicht meßbar. Die entstandenen Sulfate dürften sich u. a. durch Reaktionen von H_2SO_4 mit Na, K, Mg, Ca und Al bilden, da die Ascherückstände vorwiegend auf den Teilchenoberflächen angelagert sind (Tab. 4, 7). Die erheblichen Unterschiede zwischen den Reaktionskapazitäten der Ruße S I und S II werden vermutlih durch die Formänderung der Partikeln bei der Schwefelsäurebildung mit beeinflußt, so daß die pH-Abhängigkeit der Reaktion nicht reell sein muß.

<u>Abb. 40:</u> Die Reaktionskapazität für verschiedene Ruße als Funktion der relativen Feuchte (R₁: Wertebereich von Cofer et al., 1980, 1981; R 2: Wertebereich für die HSO₃ -Oxidation in Lösungen von Chang et al. (1978); R 2₁ nach 1 h, R 2₂ nach 12 h, R 2₃ nach 24 h; R 3: Werte (O) von Britton und Clarke (1979); R 4: eigene Daten (pH = 7.5); R 5: eigener Wert (pH = 9.5))

Die spezifische Oberfläche verkleinert sich für S 1 von ca. $220m^2/g$ auf etwa 20 - 30 m $^2/g$ so daß nur ca. 9 - 14 % der BET-Oberfläche tatsächlich an der Sulfatbildung teilnehmen. Diese Ergebnisse besagen, daß möglicherweise auf der gesamten Oberfläche von S 1 etwa das 10-fache an Sulfat gebildet werden könnte, d. h. die tatsächliche Reaktionskapazität würde 0.05 $g_{SO_L^2}/g_{Aerosol}$ betragen. Dieser Effekt

der Reduzierung der reaktiven Oberfläche durch die Formänderung läßt sich auch für die Ruße (Elftex 5 (gemessene Kapazität von 2 \cdot 10⁻³ $g_{SO_4}^{2-/g_{Aerosol}}$) und Sterling MT (S 2) mit 2 \cdot 10⁻⁴ bzw. 1.5 10⁻³ $g_{SO_4}^{2-/g_{Aerosol}}$ (Tab.7, Abb. 39 und 40 berücksichtigen. Wie für den Ruß S 1, so erhält man aus den Elektronenmikroskopaufnahmen die Teilchen-(Agglomerat)größe und den ungefähren Anteil der reaktiven Oberfläche. Er beträgt für Elftex etwa 30 - 40 % und für Sterling MT 100 %. Somit berechnet sich die maximale Reaktionskapazität für Elftex zu ca. 56,6 · 10⁻³ g_{S0/}2-/g_{Ae} und für Sterling MT zu $2 \cdot 10^{-4}$ g $SO_4^{2-/g}$ Aerosol bzw. $1.5 \cdot 10^{-3} g_{SO_1}^2 - /g_{Aerosol}$ für 250°C. Normiert man die erhaltenen Werte auf 1m² reaktive Fläche, so erhält man folgende Werte für alle untersuchten Aerosole (K W-Staub: spez. Oberfläche 5 m² g⁻¹, Zement: spez. Oberfläche 10 m² g⁻¹): <u>Tab. 24:</u> Die Reaktionskapazität pro m² Kapazität pro m²/ g_{S0}²- g_{Aerosol}. m²-7 Aerosole $1.4 \cdot 10^{-2}$ KW Staub, pH = 4 $1.0 \cdot 10^{-1}$ KW Staub, pH = 78 • 10⁻³ KW Staub, pH = 9 $6 \cdot 10^{-3}$ Zement, pH = 10.6 $8.9 \cdot 10^{-5}$ Ruß, pH = 7.0 $2.2 \cdot 10^{-4}$ Ruß, pH = 7.52.8 $\cdot 10^{-5}$ pH = 9.5Ruß,

Offensichtich liegt ein Maximum der Reaktionskapazität pro m^2 für die untersuchten Ruße im gleichen pH-Wertebereich wie für die anderen Stäube (Abb. 29). Die Kapazität pro m^2 fällt mit dem Anteil an Na, K, Cl, Ca und Al für die drei Ruße (Tab. 7). Insgesamt ist die Reaktionskapzität pro m^2 für die untersuchten Ruße etwa um den Faktor 30 - 3500 kleiner, als für Kohlekraftwerksstäube und Zemente.

(Ruß,

pH = 5

 $5.3 \cdot 10^{-5}$)

Die maximale Sulfatmenge auf einzelnen Rußteilchen variiert nach den Versuchen etwa um den Faktor 5 - 8, so daß die pro Teilchen gebildete Sulfatmenge bei ca. 0.05 $g_{SO_4}^2-/g_{Ae}$ liegen kann. Dies entspricht etwa den Ergebnissen der Messungen an atmosphärischen Teilchenproben mit Hilfe von energiedispersiven oder wellenlängendispersiven Spektrometern (z. B. auch Russel, 1978; Andre et al. 1981). Die Feuchteabhängigkeit der Reaktion (Abb. 40) steht im Einklang mit der äußerst geringen Wasseraufnahme der Ruße (Tab. 5) unterhalb 90 % relativer Feuchte.

Als Beispiel für die An_{pa}ssung der experimentellen Daten der Sulfatbildung auf Rußteilchenoberflächen mit den drei Modellansätzen (Abschnitt 2) ist in Abb. 41 der Vergleich der Meßdaten für S 1 und S 2 (Vorbehandlung durch Heizen bei 250 ^oC) mit den Modelldaten (Tab. 25) dargestellt.

<u>Tab. 25:</u> Die verschiedenen Paramter für die Anpassung der experimentellen Ergebnisse für Ruße der Abb. 39 mit den Gleichungen (2), (5) und (5a) und (23)

Modellgleichung

Bemerkungen

(2):(Abb. 41),	S 1: (250 °C)	$k = 10^{-4}$ ()
$/[k_7 = S^{-1}]$	S 2: (250 ^o C)	$k = 2,5 \cdot 10^{-5}$ ()
	(für Stäube, die	bei 250 ^O C ausgeheizt sind.)

Modell für D_w (siehe Tab. 19) (5), (5a): $t_{\star} = 10^3$, $k = 0.15^{-1}$ S 1: (250 °C) (Abb. 41); An $m_{W}/m_{o} = 0.04$ (-----) fangs-pH siehe Tab. 4, Voraus-Da die Wasseraufnahme der Ruße sich für diese niedrigen m_w/m_o Werte nicht berechsetzungen wie in Tab. 19 nen, sondern nur abschätzen läßt (Hänel, 1976) $\frac{1}{k_{7}} = s^{-1}$ ist das Ergebnis mit einem großen Fehler (<u>+</u> 80 %) behaftet.

(23): (Abb. 41)	S 1: (250 °C) $a_{2} = 4.5 \cdot 10^{-7} g_{SO} 2 - g_{A2} - 1 s^{-1}$
$2^{-a_{0}} - 7 = g_{S0}^{2} - g_{S0}^{2}$	-1 Ae (die gesamte Produktmenge hemmt()
S	die Reaktion)

<u>Abb. 41:</u> Der Vergleich zwischen der gemessenen Sulfatbildung (siehe Abb. 38) und den Modellrechnungen für den Ruß S 1 (250 °C) und S 2 (250 °C)

Die Reaktionsraten für einen jeweiligen Ruß sind - offensichtlich wegen der konstant geringen Wasseraufnahme unterhalb r.F. = 90 % - unabhängig von der relativen Feuchte.

Die Rate a steigt linear mit zunehmender SO_2 -Konzentration von $/SO_2$, $7 = 2 \text{ mg/m}^3$ bis 5 mg/m⁻³ für Vulcan XC-72R von 2.8.10⁻⁵ auf 5.2.10⁻⁵g_{SO4}, $2 - g_{Aerosol}^{-1}$ min⁻¹an. Diese Zunahme ist etwas stärker als von Britton und Clarke (1980) gemessen, liegt aber im gleichen Größenbereich. Die Reaktionsrate a läßt sich nach den Versuch sergebnissen in Abhängigkeit von der SO₂-Konzentration darstellen

$$a_{o} = k / SO_{2} / O_{o}^{m}$$

$$(40)$$

mit k = $1.866 \cdot 10^{-5} g_{SO_4}^2 - g_{Ae}^{-1} \min^{-1} m^3 mg_{SO_2}^{-1}$ und m = 0.605, für / $SO_2^7 \simeq 1-5$ mg m⁻³. Es wurde in Übereinstimmung mitBritton und Clarke (1980) k<u>eine</u> Abhängigkeit der Kapazität von / $SO_2^7_0$ gefunden (Dlugi et al., 1981 b).

-158-

Den eigenen Werten aus Abb. 40 stehen die sehr hohen Werte von Cofer et al. (1980, 1981) aus Adsorptions-Desorptions-Messungen gegenüber, die für ein Ruß - $SO_2NO_2-O_3$ -System für $/SO_2-7_0 \gtrsim 50 \text{ mg m}^{-3}$ bestimmt sind. Die Ruße wurden vor den Versuchen chemisch aktiviert. Für niedrigere SO_2 -Konzentrationen $/SO_2-7_0 \lesssim 2 \text{ mg m}^{-3}$ sind bei diesen Experimenten Kapazitäten kleiner als $10^{-1} \text{ g}_{SO_2}/2 \text{ g}_{Ae}^{-1}$ bestimmt worden, wobei auch die Reaktionsraten stark abnehmen. Da für SO_2 -Konzentrationen größer als 5 mg m}^{-3} keine eigenen Ergebnisse vorliegen, lassen sich diese Ergebnisse nur insofern vergleichen, als bei niedrigen SO_2 -Gaskonzentrationen offensichtlich eine vergleichbare Größenordnung der Kapazität bestimmt wird.

Wegen der niedrigen Wasseraufnahme der Ruße liegen die auf die aufgenommene Wassermenge normierten Reaktionsraten (Abb. 4, F: Bereich für Ruße) in derselben Größenordnung wie die für Kohlekraftwerksstäube, während die auf die Masse normierten Raten $(g_{SO}^{2-}, g_{Ae}, s^{-1})$ etwa um den Faktor 10 - 10³ niedriger sind. Der sehr geringe Mangangehalt der Ruße (Tab. 7) sollte nach den Ergebnissen von Zuckmantel et al. (1979) nicht allein für die SO2-Oxidation verantwortlich sein. Vielmehr sollten die Stärke und Anzahl basischer und saurer Oberflächenzentren die Reaktionsrate und Kapazität der Ruße bestimmen. Das Modell in Abschnitt 24 beschreibt dieses Verhalten der Rußoberflächen. Danach sollten an den basischen Zentren SO₂ adsorbiert werden, während die sauren Zentren SO $_{L}^{2-2}$ binden. Bei den Versuchen in wäßrigen Lösungen wird jeweils eine Reaktion 1. Ordnung, O. Ordnung und O.7. Ordnung für die Abhängigkeit von der Rußkonzentration, der H2S03- und der 02-Konzentration gefunden. Damit unterscheidet sich die SO₂Oxidation an Rußen in wäßrigen Lösungen von der Reaktion an Rußteilchen für r.F. ≲ 95 %. Die Ergebnisse in Abb. 35 für Ruße zeigen also nicht, in welchem kinetischen Bereich die S02-Oxidation an Rußteilchen abläuft, sondern nur die auf die adsorbierte Wassermenge bezogenen Raten.

-159-

Die Ergebnisse für Rußteilchen sind - betrachtet man die Unterschiede zwischen den eigenen Ergebnissen (R4, R5) sowie den Werten (R1) und den Daten (R2) von Chang et al. (1978) für saure Ruße - sehr verschieden. Die quantitative Übereinstimmung der Kapazitäten für R3 (Flammruß und R4 thermischer Ruß) läßt sich aus der vergleichbaren chemischen Zusammensetzung, dem pH-Wert , den Teilchenformen und -größen sowie der spezifischen Oberflächen erklären. In <u>beiden</u> Fällen wurde die H₂SO₄- und Sulfatbildung auf den Rußteilchen im luftgetragenen Zustand untersucht.

Die Versuche von Chang et al. (1978) sind mitRußen (R(2)) großer spezifischer Oberfläche (520 m²/g) in wässrigen Lösungen bei pH = 1.5 - 7.5 durchgeführt worden. Die Reaktionskapazitäten sind etwa um den Faktor 10 oder mehr höher als bei den ebenfalls in wässrigen Lösungen durchgeführten Versuchen von Zuckmantel et al. (1979). Die beiden Versuchsgruppen in Abb. 40 unterschieden sich also durch den Bereich der relativen Feuchte (ca. 5 - 85 % und >100 %) und des pH-Wertes. Für basische Ruße erhalten Chang et al. (1978) jeweils um mehr als den Faktor 10 niedrigere Kapazitäten. Die hydrophilen Teilchenagglomerate ziehen sich in Wasser nicht zu klumpenförmigen Partikeln zusammen, wie dies z. T. im luftgetragenen Zustand beobachtet wird. Außerdem diffundieren die wasserlöslichen Reaktionsprodukte von der reaktiven Obefläche der Ruße in die wässrige Lösung, so daß die Sulfatbildung erst nach längerer Zeit durch die Adsorption von Produkten an den reaktiven Zentren oder durch andere reaktionshemmende Prozesse begrenzt wird. Die Unterschiede zwischen beiden Systemen lassen einen Vergleich des chemischen Verhaltens der Ruße ohne weitere ausführliche Untersuchungen nicht zu. Dabei muß auch beachtet werden, daß über das Auftreten atmosphärischer Rußteilchen, ihre chemische Zusammensetzung und ihre Oberflächeneigenschaften zu wenig bekannt ist, so daß die für Ruße vorliegenden Ergebnisse nicht in allgemeiner Weise auf die Atmosphäre übertragen werden können.

Es ist bekannt, daß Rußteilchen aus der Ölverbrennung einen höheren Anteil von möglicherweise bei der SO2-Oxidation als Katalysator wirkenden Elementen auf der Oberfläche tragen (Tab. 8). Ob diese Elemente jedoch als Katalysator bei der SO2-Oxidation in Rauchfahnen von Ölkraftwerken wirken, ist durch Rauchfahnenmessung bisher nicht geklärt worden (Newman, 1981). Da ein großer Anteil an Rußteilchen aus Verbrennungsvorgängen zusammen mit relativ niedrigen SO2-Konzentrationen in die Atmosphäre gelangt, kann man annehmen, daß wegen der Abnahme der Reaktionsrate mit fallender SO2-Konzentration auf Rußen nur wenig SO2 oxidiert wird. Dieser Annahme entsprechen auch die Analysenergebnisse von atmosphärischen Proben und Einzelteilchen (Abschnitt 4.4), nach denen Rußpartikeln wenig Sulfat enthalten und in den meisten untersuchten Fällen getrennt von den Sulfatteilchen auftreten (z. B. Andre et al., 1981; Russel, 1978; Puxbaum, 1979).

6. Die Bedeutung der heterogenen SO_2 -Oxidation für atmos-

phärische Prozesse

Die vorhergehenden Abschnitte haben gezeigt, daß bestimmte Prozesse – wie z. B. die Wasseraufnahme der Partikeln – an einigen Stäuben eine heterogene SO_2 -Oxidation stark beschleunigen können und auchdie insgesamt umgesetzte SO_2 -Menge vergrößern. Auch die Partikeleigenschaften selbst besitzen eine Einfluß auf die Reaktionsrate und die Kapazität. Da sich dieses Verhalten zum Teil systematisch zusammenfassen und durch Parametrisierung analytisch erfassen läßt, kann der Einfluß der heterogenen SO_2 -Oxidation auf einige Prozesse, die in der Atmosphäre ablaufen, abgeschätzt werden. Es kann sich bei dieser Betrachtung nur um eine näherungsweise Beschreibung der tatsächlichen atmosphärischen Vorgänge handeln, da schon für das hier

-161-

betrachtete vereinfachte System (SO₂-H₂O-Teilchen-Luft) der Einfluß z. B. von Stickoxiden auf die Reaktion nur unzureichend bekannt ist.

In der Folge sollen folgende Vorgänge an Hand von Beispielen diskutiert werden:

- Die Bedeutung der heterogenen SO₂-Oxidation für den SO₂-Abbau in Rauchfahnen ;
- Die Sulfatentstehung durch heterogene Oxidation im Vergleich mit der durch homogene Keimbildung und Koagulationsprozesse in Rauchfahnen gebildeten Sulfatmasse in bestimmten Partikelgrößenklassen
- Die Bedeutung der Sulfatbildung auf Partikeln für die Wasserdampfkondensation in der Atmosphäre
- Die Bedeutung der heterogenen SO₂-Oxidation auf Rußteilchen für den Strahlungshaushalt der Atmosphäre

6.1 Der SO₂-Abbau durch heterogene Reaktion in Rauchfahnen

Die Experimente haben gezeigt, daß auf Kohleflugascheteilchen stabile Schwefelsäure und Sulfatverbindungen durch heterogene Oxidation von SO_2 gebildet werden. Die mögliche Sulfatmenge auf Zementstäuben ist mit denen von Kohlekraftwerksstäuben vergleichbar. Die künstlichen Ruße zeigen eine geringere Reaktionskapazität. Die Reaktionskapazitäten sind schwach von der SO_2 -Konzentration, aber stark von der relativen Feuchte abhängig. In allen Fällen ist die Reaktionsrate eine Funktion von $2SO_2-7_0$ und dem pH-Wert.

Im allgemeinen kann eine Abschätzung des SO₂-Abbaues in Rauchfahnen wegen des Einflusses der turbulenten Ausbreitungs- und Verdünnungsvorgängen auf die Abbaurate nur mit Hilfe aufwendiger Modellrechnungen erfolgen. Da jedoch die Reaktionskapazität selbst nur eine geringe Abhängigkeit von der SO₂-Konzentration zeigt, kann die maximal abbaubare SO₂-Menge mit typischen Emissionswerten und den Ergebnissen

der Experimente (Abschnitt 4 und 5) abgeschätzt werden (Tab. 26).
Bei der Vorgabe einer bestimmten Partikelkonzentration ist die durch eine heterogene Reaktion abbaubare SO2-Menge durch die maximal erreichbare Kapazität begrenzt. Werden größere Teilchenkonzentrationen emittiert, so steigt der Anteil der Sulfatbildung durch eine heterogene Reaktion an. Die modernen Elektrofilter entfernen vor allem die Partikeln mit Durchmessern D > 4 - 5 µm, während die kleineren Teilchen im Bereich 0.05 ≲ D ≲ 5µm nur zu etwa 80 - 95 % zurückgehalten werden. Gerade diese Partikeln reagieren aber stärker mit SO2 als die größeren Teilchen. Die Abhängigkeit der Reaktionsrate von der SO₂-Konzentration für Kohlekraftwerksstäube (Gleichung (37)) zeigt, daß auch größere Änderungen der Gaskonzentration sich nicht stark in der Abbaurate der Teilchen bemerkbar machen müssen. Es ist offensichtlich, daß aus den Reaktionsraten und den Kapazitäten von synthetischen Partikeln (Tab. 22; Abb. 35, 36) nicht auf den Einfluß von anthropogenen Partikeln auf den SO2-Abbau in der Atmosphäre geschlossen

werden kann. Die alleinige Information über den Mangangehalt der Stäube (Tab. 7) reicht dafür nicht aus (Abb. 35, 36).

Im Bereich $5 \le pH \le 7.5$ ist bei hohen relativen Feuchten eine SO₂-Abnahme um mehr als 2 % durch heterogene Reaktion zu erwarten. Bei relativen Feuchten von $85 \le r.F. \le 95$ % können auch Werte von etwa 3 - 5 % erreicht werden. Betrachtet man die Ergebnisse für Zemente oder Ruße, so ist im Vergleich zu Kohlekraftwerksstäuben der SO₂-Abbau für Zemente nur oberhalb von r. F. = 80 - 90 % erwähnenswert, während Rußteilchen zur gesamten Sulfatbildung nur geringfügig beitragen. Nach den Ergebnissen von Britton und Clarke (1980) ändert daran auch nichts die zusätzliche Reaktion mit Stickoxiden in einer Rauchfahne. Die gefundenen Ergebnisse stehen im Einklang mit Rauchfahnenmessungen (z. B. Dittenhoefer, 1979; Dittenhoefer and de Pena, 1978), bei denen nur eine geringe Abbaurate (in % pro Stunde) bzw. eine geringe insgesamt abgebaute SO₂-Menge bei niedrigen relativen Feuchten zu beobachten war. Bei relativen Feuchten oberhalb von etwa 75 % steigt die SO₂-Oxidationsrate sehr stark an und erreicht beim Vermischen einer Rauchfahne mit einer Wolke (in einem anderen Fall mit einer Kühlturmfahne) Werte von 5 - 9 % h⁻¹. In Übereinstimmung mit Gillani et a. (1981) werden diese hohen Abbauraten auch bei geringerer solarer Einstrahlung gefunden. Allerdings treten die höchsten Werte bei gleichzeitiger stärkerer solarer Einstrahlung und relativen Feuchten größer als 80 % auf.

<u>Tab. 26:</u> Die maximal durch heterogene Oxidation abbaubare SO₂-Menge für niedrige Partikelkonzentrationen hinter modernen Elektrofiltern

Partikel- art	Partikelkonzen- tration(mg m ⁻³)	<u>/</u> _SO ₂ _7 (g m ⁻³)	relative Feuchte	abbaubare SO ₂ -Menge
		• • •	%	%
Kohlekraft-	150	3	90	1.0
werksstaub	150	3	60	0.65
	150	3	30	0.45
	150	1,5	90	2.0
pH = 5	100	3	90	0.66
	100	3	60	0.33
	100	1,5	90	1.3
	50	1,5	90	0.7
1000 1000 1000 1000 1000 1000 1000 100	50	1,5	60	0.4
pH = 6	100	3	90	2.7
	100	3	60	0.6
	100	3	30	0.66
pH = 8	100	1,5	90	0.55
	100	1,5	60	0.3
	100	1,5	30	0.18
Zement	100	3	90	0.33
pH = 10,6	100	3	60	0.33
Ruß ^{X)}	100	3	30-90	0.036
pH = 7,5	100	1	30-90	0.11

X) Der Ruß ist mit einer spezifischen Oberfläche von 50 m² g⁻¹ angenommen.

Da die Reaktionsrate der heterogenen SO2-Oxidation einen oberen Grenzwert erreicht (Tab. 20), kann die Sulfatbildung auf Teilchen zwar in Quellnähe schnell ablaufen, ist aber erst in größerer Entferung von der Quelle beendet. Es sollte nicht außer acht gelassen werden, daß z.B. 0.5 - 3 🖇 (in manchen Fällen auch mehr) des SO₂ im Rauchgaskanal von Kraftwerken in SO3 oxidiert werden kann (Brosset, 1973). Die Reaktion im Rauchgaskanal (bei 110 - 150 °C) ergibt bei r.F. < 4 % nur geringe Mengen H_2SO_4 und Sulfat auf den Partikeln. Die an Rauchgasaerosolen bestimmte H_2SO_4 -Menge beträgt ca. 5 \cdot 10⁻⁴ g_{H2SO4}g⁻¹ und entspricht damit den Ergebnissen von Ditl und Coughlin (1977) für Flugasche. Daraus berechnet man maximal etwa eine Bil-dungsrate $a_0 = 2 - 5 \cdot 10^{-3} g_{SO4}^{2-g-1} min^{-1} im$ Rauchgas (5 \leq pH \leq 7). Vergleicht man den Sulfatanteil in Rauchfahnen durch heterogene Reaktionen (Tab. 26) mit dem durch photochemische und physikalische Prozesse (Koaguund Kondensation mit sekundären Teilchen und lation Dämpfen) gebildeten Anteil (z. B. Eltgroth, 1978, Dittenhoefer, 1979, Gillani et al., 1981), so können bei r.F. 🛩 80 % in einer Rauchfahne etwa 1 - 3 % des vorhandenen SO₂ durch heterogene Oxidation abgebaut werden, während in mittleren geographischen Breiten etwa 5 - 15 % des emittierten SO2 durch photochemische Reaktionen oxidierbar sind. Der Rest wird offensichtlich durch physikalische Prozesse aus der Atmosphäre entfernt oder durch Reaktionen in Wolkentropfen bzw. heterogene Reaktionen bei relativen Feuchten um 100 % oxidiert. Legt man die Ergebnisse dieser Arbeit und größerer Untersuchungen (Husar et al., 1978) zugrunde, so werden bei relativen Feuchten bis. ca. 95 🖇 durch heterogene Oxidation an Partikeln maximal etwa 5 🖇 und durch photochemische Prozesse ca. 3 - 8 % des vorhandenen SO₂ abgebaut, wenn man annimmt, daß die photochemisch aktive solare Strahlung durch vorhandene Wolken geschwächt ist. Die einzelnen Bildungsraten für OH, HO2, RO₂ und damit der Oxidationsprodukte hängen stark von der Zusammensetzung der Rauchfahne, aber auch der Luftmasse, in der sich die Rauchfahne ausbreitet, ab. Reaktive

Spezies werden in wesentlichem Anteil durch turbulenten Austausch mit der umgebenden Luft in die Rauchfahne gemischt. Dies bedeutet, daß eine Sulfatproduktion in einer wenig durchmischten Rauchfahen in Quellnähe vor allem durch heterogene Reaktionen bewirkt werden sollte. Da in relativ sauberer Umgebungsluft einer Rauchfahne die Produktion von OH wesentlich von der Reaktion 0 (^{1}D)) + H₂0 \implies 2 OH bestimmt ist, sollte bei mittleren Feuchten ohne Schwächung der solaren Strahlung durch Wolken (also bei gleicher Produktionsrate von O(¹D))die OH-Konzentration ansteigen. In der Folge würde die SO2-Oxidationsrate durch OH-Radikale erhöht, sofern auch der Turbulenzgrad in der Atmosphäre derselbe ist (z. B. Cocks und Fletcher, 1979). Verstärkt sich bei diesen Bedingungen der Austausch, so steigt der SO_2 - (und NO_x)Abbau durch die erhöhte Durchmischung noch stärker an, als allein über eine erhöhte Produktion von OH. Bei höheren relativen Feuchten sollte demnach das S02-Konzentrationsfeld in einer Rauchfahne(vor allem in Quellnähe) in der gleichen Größenordnung durch eine heterogene Reaktion veränderbar sein, wie es durch homogene Reaktionen beeinflußt werden kann.

6.2 <u>Die Sulfatentstehung durch einen homogenen und einen</u> <u>heterogenen Oxidationsprozeß</u>

In der Atmosphäre und in Rauchfahnen von Kraftwerken lassen sich Sulfatteilchen in verschiedenen Bereichen der Größenverteilung finden. Die Anreicherung des SO_4^{2-} -Ions im Akkumulationsbereich (Abb. 3) läßt sich deuten, wenn man annimmt, daß Teilchen über homogene Keimbildung sowie nachfolgende Koagulations- und Kondensationsprozesse zu Teilchen im Größenbereich 0.03 $sr_{iq} \leq 0.3$ µm anwachsen (Abb. 1). Die Kenntnis über die Rate mit der unter definierten Bedingungen die H_2SO_4 - und Sulfatmasse in einem bestimmten Partikelgrößenbereich anwächst, ist von großer Bedeutung sowohl für atmosphärische Prozesse (Strahlungshaushalt, Wolkenbildung), als auch die Ablagerung von sauren partikelförmigen: Verbindungen aus einer Rauchfahne am Boden. Da ein großer Anteil des anthropogenen SO₂ bei der Verbrennung von Kohle und Öl erzeugt wird (Gullis und Hirschler, 1980), sollen im folgenden – wie auch in Abschnitt 6.1 – einige Beispiele für die Sulfatbildung auf Primärteilchen durch den Prozeß der Partikelbildung aus der Gasphase mit der Sulfatentstehung durch eine heterogene Reaktion verglichen werden. Die Ergebnisse von Modellrechnungen sind für drei Primärteilchengrößen ($r_{aq} = 0.1 \ \mu m$; 0.5 μm ; 1 μm ;) ausgewertet.

Das Modell zur Beschreibung des Ausbreitungsverhaltens eines Volumenelementes in x-Richtung ist stark vereinfacht und beschreibt mit dem von Seinfeld (1975) und Bassett et al. (1981) verwendeten Ansatz für eine dreidimensionale Gauss'sche Ausbreitung die Änderung eines kegelstumpfförmigen Volumenelementes einer Rauchfahne (Cocks und Fletcher, 1979). Damit ist vorausgesetzt, daß dieses Volumen zu allen Zeiten homogen durchmischt ist und sich nur gemäß dem Modell der Gauss'schen Ausbreitung vergrößert. Diese Vereinfachung muß gewählt werden, da sonst in der Berechnung der Koagulation räumliche Gradienten auftreten, was zu einer unverhältnismäßig großen Rechenzeit führt. Die Änderung des kegelstumpfförmigen Volumens läßt sich gemäß dem Ansatz (F = Querschnittsfläche; Höhe des Kegelstumpfes = const.)

(1/F) dt/dt = B/t (41)

beschreiben. Der Term B/t ist als Funktion der turbulenten Austauschkoeffizienten k_y , k_z ($k_x \ll k_y$, k_2) und deren Zeitableitungen darstellbar.

Die Rate der homogenen SO₂-Oxidation ist im Modell mit einer Reaktion 1. Ordnung (k = 4.63 · 10⁻⁶s⁻¹) nach Boulaud (1977) berechnet, wobei die abgebaute SQ-Menge als vollständig in partikelförmige Schwefelsäure umgewandelt betrachtetist.Diese weitere Vereinfachung hat ebenfalls den Vorteil einer wesentlichen Rechenzeitersparnis.

Es zeigte sich bei einigen Rechnungen mit einem kinetischen Ansatz der Bildung von Schwefelsäureteilchen aus der Gasphase nach Yue und Hamill (1980), daß es für die folgenden Betrachtungen unerheblich ist, ob man den kritischen Partikelradius auf 3 Å oder 6 Å ansetzt, da es nur darum geht, den ungefähren Sulfatmassenanteil pro Masseneinheit eines Kohlekraftwerksstaubteilchens durch Koagulation mit den Schwefelsäureteilchen zu berechnen. Schon die sehr vereinfachte Beschreibung der homogenen SO2-Oxidation bedeutet, daß eine gegenüber realen Verhältnissen zu hohe Partikelproduktion aus der Gasphase berechnet wird (Hov und Isaksen, 1981). Unabhängig vom kinetischen Ansatz stellt das Verhältnis der in einem bestimmten Teilchengrößenbereich durch die Koagulationsprozesse gebildeten Sulfatmasse beider Prozesse den ungünstigsten Fall für die heterogene Reaktion dar. Zur Berechnung des Verhaltens eines polydispersen Aerosolsystems in einem Volumenelement ist ein Modell zur Beschreibung des Aerosolverhaltens in einem Behälter (Bunz, 1980, 1981) verwendet worden, das für diese Anwendung modifiziertist und zusammen mit den Gleichungen (23) und (37) und der Ratengleichung gelöst wird. Für ein nichtexpandierendes Volumenelement mit fester Grenzfläche ist das Modell zur Beschreibung des Partikelverhaltens im Reaktor A verwendet worden (Abb. 8, Abb. 18).

Zur Lösung der aerosolphysikalischen Basisgleichung (42) wird das polydisperse Aerosolsystem durch eine Reihe monodisperser Fraktionen approximiert. Bei der Berechnung der Koagulation werden die neu gebildeten Teilchen auf die Größenklassen so aufgeteilt, daß die Erhaltung der Masse und der Teilchenzahlbilanz gewährleistet ist. Die Wechselwirkung der Partikeln mit leichtflüchtigen Bestandteilen oder auch Dämpfen mit niedrigerem Sättigungsdampfdruck wird entkoppelt von der Wechselwirkung der Partikeln untereinander als Größenwachstum durch Kondensation betrachtet. Damit erhält man folgende Modellgleichung für die zeitliche Entwicklung der Teilchenzahlkonzentration der Klasse k:

$$\frac{dn(\mathbf{r}_{k}, t)}{dt} = S(\mathbf{r}_{k}, t) - \underline{/} \alpha_{D}(\mathbf{r}_{k}) + \alpha_{s}(\mathbf{r}_{k}) + \alpha_{T}(\mathbf{r}_{k}) - 7 \cdot n(\mathbf{r}_{k}, t)
- \sum_{i=1}^{N} (1 - \frac{1}{2} \delta_{ik}) \cdot K(\mathbf{r}_{i}, \mathbf{r}_{k}) \cdot n(\mathbf{r}_{i}, t) \cdot n(\mathbf{r}_{k}, t)
+ \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} K(\mathbf{r}_{i}, \mathbf{r}_{k}) \beta_{ij}^{k} \cdot n(\mathbf{r}_{i}, t) \cdot n(\mathbf{r}_{j}, t)
+ (1 - \delta_{1k}) \frac{\dot{V}_{k-1}(t)}{V_{k} - V_{k-1}} \cdot n(\mathbf{r}_{k-1}, t)
- \frac{\dot{V}_{k}(t)}{V_{k+1} - V_{k}} \cdot n(\mathbf{r}_{k}, t) \qquad \text{für } k = 1, \dots, N \quad (42)$$

(Die Bezeichung der einzelnen Terme findet sich in Anhang A)

Die Aerosolquelle S (r_k , t) ist durch die produzierte Schwefelsäuremenge gegeben, wobei der kritische Radius r_k gemäß dem Modell von Yue und Hamill (1980) berechnet werden kann, bei diesen Rechnungen aber konstant (= 5 Å) gesetzt ist. Parallel dazu wird die Gleichung (23) zusammen mit Gleichung (37) für $/ SO_2 - 7_0 = 1800$ mg m⁻³ gelöst; d. h. bis zu einer Gaskonzentration von 20 mg m⁻³ ist die Rate nach oben begrenzt(Tab. 20).

Das Modell beschreibt somit die Sulfatentstehung auf einzelnen Teilchen verschiedener Größe in einem expandierenden homogen durchmischten Volumen durch zwei unterschiedliche Mechanismen.

Die Größenverteilungen der Primärteilchen sind in Abb. 42 dargestellt. Die Teilchenverteilung A 2 entspricht etwa den Ergebnissen der eigenen Messungen im Reingas eines Kohlekraftwerkes, während A 8 die Ergebnisse von Ondov und Biermann (1980) wiedergibt.

In Abb. 43 ist die Schwefelsäurebildung auf Primärteilchen verschiedener Größe ($r_{aq} = 0.1$; 0.5; 1.0 um) durch den Prozeß der homogenen Gasreaktion mit nachfolgender Teilchenbildung und der Koagulation von H_2SO_4 -Teilchen mit Primärpartikeln dargestellt. Die Rechnungen sind für die Größenverteilung A 8 und drei verschiedene Verdünnungsraten von 8,7 min⁻¹ (Modell 2), 60 min⁻¹ (Modell 3) und 174 min⁻¹ (Modell 4) durchgeführt. Dies entspricht in der Bezeichnung der Pasquill-Gifford'schen Stabilitätsklassen etwa den Kategorien D: neutrale Schichtung; C: schwach instabil; B: mittel instabil (z. B. Seinfeld, 1975).

<u>Abb. 43:</u> Die Schwefelsäurebildung auf Primärteilchen (A 8, Abb. 41) durch Koagulation mit Schwefelsäurepartikeln

Die Sulfatbildung durch die Koagulation von Primärteilchen mit den Schwefelsäureteilchen führt zu einer zunehmenden H_2SO_4 -Masse mit abnehmendem Partikelradius. Obwohl sich die Verdünnungsraten stark unterscheiden, lassen sich noch für die drei Radien jeweils eigene Klassen der Produktbildung finden. Je größer die Verdünnungsrate, um so weniger H_2SO_4 entsteht durch diesen Prozeß auf den größten Teilchen. Diese Systematik bleibt im Bereich der kleineren Teilchen nicht erhalten. Die Verdünnung erniedrigt alle Konzentrationen gleichermaßen, während die Koagulation die Partikelmasse zu größeren Teilchenradien verschiebt. Eine höhere Verdünnung bedeutet aber auch eine geringere $H_2SO_4^-$ Produktionsrate (bzw. eine kleinere Partikelproduktionsrate). Die Reduktion der insgesamt gebildeten H_2SO_4 -Masse bedeutet nicht gleichzeitig auch eine Erniedrigung der H_2SO_4 -Masse auf allen betrachteten Teilchengrößen, da der Prozeß durch den Verdünnungsvorgang und die näherungsweise Abhängigkeit der Koagulationsrate vom Produkt der Teilchenzahlen in verschiedenen Größenklassen zeitabhängig und nicht-linear abläuft. Wird noch zusätzlich der Einfluß der heteromolekularen Kondensation von H_2SO_4 betrachtet, so steigt der H_2SO_4 -Anteil auf den Partikeln mit Radien kleiner 0.5 µm an.

Die Abb. 44 zeigt den Vergleich der H_2SO_4 -Bildung auf den Primärteilchen der Größenverteilung A2 durch Koagulation mit Sekundärpartikeln im Vergleich mit der H_2SO_4 (bzw. SO_4^{2-} -) Bildung durch die heterogene SO_2 -Oxidation. Hierbei sind die drei Raten a_o (max) = a_o (pH = 6.5), a_o (mittl.) = a_o (pH = 7), a_o (min) = a_o (pH = 11.2) der Abb. 33 entnommen. Bis zu $2 \cdot 10^4$ sec wird mit den Werten für r.F. = 30 %, für längere Transportzeiten mit den Raten für r.F. = 60 % gerechnet. Die Raten sind nicht als von der Partikelgröße abhängig angesetzt sondern sind für alle drei Teilchengrößen gleich. Dies bedeutet eine Unterbewertung der Sulfatbildung auf kleineren Teilchen ($r_{aq} \approx 0.5 \ \mu m$), da bei geringeren relativen Feuchten besonders ein Teil der kleineren Partikeln eine größere Sulfatbildung zeigt (Abschnitt 5.1, Abb. 34).

Es ist zu erkennen, daß mit größer werdendem Teilchenradius die Produktmenge überwiegend durch eine heterogene Reaktion und nicht durch den homogenen Prozeß gebildet wird, wenn a_o (mittl.) oder a_o (max) als wahrscheinliche Raten angesehen werden. Es werden 0.5 - 3 % der insgesamt aus der Gasphase produzierten Sulfatmasse nach 10⁴ sec auf den Flugstaubteilchen im Bereich 0.1 $\leq r_{aq} \leq 1 \mu m$ gefunden. Die Sulfatmassenproduktion durch die heterogene Reaktion steigt mit der relativen Feuchte und abnehmender Vermischung (stabile Schichtung) in Quellnähe stark an.

<u>Abb. 44:</u> Die Schwefelsäurebildung auf den Primärteilchen durch eine heterogene Reaktion (•, +, o) und durch homogene Keimbildung und Koagulation für Modell 2 (4 :Werte von Mamane und Pueschel (1979)).

Da hier die für den Beitrag einer heterogenen Reaktion zur Sulfatbildung ungünstigen Fälle betrachtet werden, sollte auch noch bei Teilchenradien um 0.1 μ m der Beitrag heterogener Reaktionen zur Sulfatentstehung nicht vernachlässigbar sein. Bei höheren relativen Feuchten und geringer solarer Einstrahlung wird der Beitrag der homogenen Reaktion stark erniedrigt. Eine Rechnung mit k = 4.63 \cdot 10⁻⁸ s⁻¹ zeigt, daß auch für t = 10⁵ sec der Sulfatanteil der Teilchenradien um r_{äq} \cong 0.1 μ m unter den Werten für a₀ (mittl) für r.F. = 60 % liegt. Zum Vergleich sind die auf eine gleiche spezifische Teilchenoberfläche (5 m²g⁻¹) zurückgerechneten Ergebnisse von Mamane und Pueschel (1979) eingetragen. Deutlich ist der Anstieg der Produktmasse durch die heterogene SO₂-Oxidation bei einem Feuchteanstieg zu sehen. Ein vergleichbarer Anstieg der Sulfatmasse mit der

Zeit ist auch in den Werten m $(H_2SO_4)/m$ (Aerosol) von Mamane und Pueschel (1979) aus der Bestimmung der Sulfatmasse auf Einzelteilchen zu erkennen. Während der erste Meßpunkt 1,66 km von der Quelle entfernt ist, liegt der zweite bei ca. 18 km (2,5 h Transportzeit), der dritte bei ca. 90 km (12,5 h Transportzeit). Die Teilchen des Luftvolumens bei ca. 90 km sind also mit Sicherheit zu einer anderen Zeit unter völlig verschiedenen meteorologischen Bedingungen emittiert und bis zum Meßpunkt transportiert worden, als die der beiden übrigen Proben. Hier ist der Kurvenverlauf formal durch eine Feuchteänderung wiedergegeben, er kann aber auch durch ganz andere Effekte bewirkt worden sein. Allerdings spricht für die Sulfatbildung durch eine heterogene S02-Oxidation, daß - entsprechend den eigenen Ergebnissen (Abb. 35, Tab. 21) - die Zahl der Kohlekraftwerksstaubteilchen, die reagiert haben, nur 4 - 6 % beträgt. Der Einfluß von Strahlung auf den Reaktionsablauf kann sich ebenfalls durch eine geringe Reaktionsrate in Quellnähe und einen stärkeren Anstieg nach einer bestimmten Transportzeit bemerkbar machen, wenn die solare Einstrahlung gegen Abend reduziert ist und möglicherweise gleichzeitig die relative Feuchte ansteigt. Im Gegensatz zu diesen Ergebnissen sollte die Koagulation mit Sulfatteilchen oder eine Kondensation von H_2SO_4 -Dampf auf etwa gleich großen Primärteilchen etwa gleich dicke Sulfatschichten entstehen lassen, wenn nicht die unterschiedlichen Stoffeigenschaften verschiedener Teilchenarten die Koagulationsrate (bzw. die Haftung aneinander durch van der Waal'sche Kräfte) wesentlich beeinflussen (Schmitt-Ott und Federer, 1981).

Zieht man die Ergebnisse der Einzelteilchen in Betracht, so erscheint es möglich, daß einzelne Partikeln auch bei niedrigen relativen Feuchten große Kapazitäten und Reaktiosraten besitzen, um die bei Rauchfahnenmessungen beobachteten Sulfatmengen auf der Oberfläche bilden zu können. Diese Ergebnisse zeigen auch, daß verschiedene Reaktionsmechanismen des SO_2 -Abbaus in Rauchfahnen einen ähnlichen Verlauf der Produktmasse als Funktion der Transportzeit zeigen (z. B. Freiberg, 1978). In Übereinstimmung mit den Resultaten von Bassett et al. (1981) ist kein wesentlicher Unterschied in der Sulfatmasse in verschiedenen Teilchengrößenklassen durch eine heterogene und eine homogene Reaktion (mit Koagulation) aufzufinden; vor allem dann nicht, wenn die größere Reaktivität kleinerer Teilchen berücksichtigt wird. Der Beitrag zur Sulfatbildung auf Partikeln mit Radien $r_{aq} \approx 0.1$ µm durch eine heterogene Reaktion erscheint nach diesen Rechnungen nicht vernachlässigbar.

6.3 Die Wasserdampfkondensation auf Partikeln

Die heterogene SO₂Oxidation auf Aerosolteilchenoberflächen führt zur Bildung wasserlöslicher Produkte auf Partikeln, die vor der Reaktion nur wenig oder keine löslichen Bestandteile auf den Oberflächen enthielten. Dies bedeutet, daß die Teilchen nach der Reaktion bei einer niedrigeren kritischen Übersättigung aktiviert werden (d. h. zu Tropfen anwachsen können), als vor der Reaktion mit SO₂. Dieser Prozeß sollte in der Atmosphäre vor allem dann einen Beitrag zur Produktion von Kondensationskeimen liefern, wenn aus der Gasphase bei geringer solarer Einstrahlung wenig Partikeln entstehen.

Die kritische Übersättigung f_c ist entsprechend der Theorie von Hänel (1976), Thudium (1978) und Hänel und Lehmann (1981) für die löslichen Anteile der Partikeln entsprechend Abschnitt 5.1 (Tab. 15) mit einer paramterisierten Form der Kelvingleichung (Pruppacher und Klett, 1978; Hänel, 1976) berechnet worden (Dlugi und Jordan, 1981).

Die Abb. 45 zeigt die Ergebnisse für die verschiedenen Stäube.

<u>Abb. 45:</u> Die kritische Übersättigung für Kohlekraftwerksstäube, Zemente und Vulkanflugascheteilchen. Der Maximalwert ist gleich dem mittleren berechneten Wert f_c plus dem statistischen Fehler (+ 20 %). m_{s}/m_{o} gibt den löslichen Anteil (Gleichung (13), (14)). (Salze: NaCl, (NH₄)₂ SO₄)

Gegenüber den Werten vor der Reaktion mit SO₂ für Kohlekraftwerksstaub ($m_s/m_o \simeq 0.001 - 0.12 g_{SO_4^2} g_{Ae}^{-1}$), Zementen ($m_s/m_o \simeq 0.002 - 0.006 g_{SO_4^2} g_{Ae}^{-1}$) und Vulkanflugstaub ($m_s/m_o \simeq 0.01 g_{SO_4^2} g_{Ae}^{-1}$) erhöht die Sulfatbildung den Anteil löslicher Sübstanz und erniedrigt die Werte von f_c etwa um den Faktor 10-50. Beachtet man, daß die kritische Übersättigung in der Atmosphäre in vielen Fällen kleiner

oder gleich $f_c \simeq 0.1 \%$ sind und selten $f_c = 1 \%$ überschritten wird (Pruppacher und Klett, 1978), so zeigt diese Darstellung, daß die Bildung von Kondensationskeimen durch eine heterogene Reaktion besonders im Teilchenradienbereich r ≲ 0.6 µm wirksam ist. Von den durch homogene Reaktionen gebildeten Teilchen (H_2SO_4 oder Sulfate) sollten auch Partikeln mit r ≤ 0.1 µm noch aktiviert werden können. Die Darstellung zeigt ferner, daß auch die kritische Übersättigung für Partikeln aus atmosphärischen Experimenten im Bereich der Werte aus den Laborexperimenten liegt. Für diese Einzelteilchen ist der Sulfat- bzw. Schwefelgehalt bestimmt und nach dem gleichen Verfahren für dasselbe Gemisch der wasserlöslichen Salze einf_c-Wert abgeschätzt worden.

Die Abb. 46 zeigt nun dieselben Ergebnisse für Rußteilchen. Die heterogene SO_2 -Oxidation vermag auf Rußen (t = 0: m_s/m_o^{2t} 0.001 - 0.006) bei Gaskonzentrationen unter 5 mg m⁻³ nur etwa 5 % Massenanteil löslicher Substanz zu bilden. Nimmt man zu Emissionsbeginn höhere SO_2 -Konzentrationswerte und die zusätzliche katalytische Wirkung von Stickoxiden an (Britton und Clarke, 1979 ; Cofer et al., 1980, 1981), so läßt sich etwa der angegebene Bereich für f_c abschätzen. Deutlich ist zu erkennen, daß in vielen Fällen Rußteilchen in der Atmosphäre wenig Wasser aufnehmen werden (Tab.5) und auch erst bei hohen kritischen Übersättigungen als Kondensationskeime wirken können. Demnach sollten sie in vielen Fällen als 'nicht aktivierte' Teilchen im Nebel und Wolken neben den Tropfen vorhanden sein. Dafür gibt es mehrere Beweise:

Die Größenverteilung atmosphärischer Rußteilchen hat offensichtlich ein Maximum im Übergangsbereich vom Nuclei- zum Akkumulationsbereich (Abb. 3). Darauf deuten die Ergebnisse verschiedener Analysen atmosphärischer Teilchenproben hin (z. B. Andre et al., 1981; Russel, 1978; Puxbaum, 1979).

Bei hohen relativen Feuchten trennen Mehrstufenimpaktoren die Rußteilchenmassenverteilung von der Sulfatteilchenverteilung (z. B. Lürzer, 1979; Puxbaum, 1979). Dieses Verhalten ist aufgrund der erhöhten Wasseraufnahme der Sulfatteilchen gegenüber den Rußpartikeln und des Einflusses der Partikelform der Ruße (X>1) auf das Abscheideverhalten von Impaktoren interpretierbar (Ahlquist et al., 1978; Dlugi, 1978).

Diese Befunde besagen, daß Rußteilchen in der Atmosphäre in vielen Fällen offensichtlich <u>nicht</u> als Mischteilchen, sondern in einem Teilchengemisch neben Sulfatteilchen vorliegen. Da jedoch bei niedrigen relativen Feuchten (r.F. 5 75 %) beide Größenverteilungen (von Rußen und Sulfaten) aufgrund der Bildungsprozesse (Abb. 1-3) etwa gleich sind, wurde aus integralen Filteranalysen vermutet (Brosset, 1973; Novakov et al., 1975), daß Rußteilchen auf der Oberfläche große Mengen Sulfat bilden, d. h. daß diese Partikeln SO₂ durch eine heterogene Reaktion abauen. Dieser Befund läßt sich durch diese eigenen Untersuchungen als eine alleinige Folge der Aerosolbildungsprozesse interpretieren und ist wohl kaum durch eine heterogene Reaktion beeinflußt.

Diese Ergebnisse zeigen, daß nur bei hohen Werten von f_c Rußteilchen aktiviert werden und in Wassertropfen (Chang et al., 1978) einen SO₂-Abbau bewirken können.

6.4 Die Bedeutung der SO2-Oxidation auf Rüßteilchen für den Strahlungshaushalt

Neben der Wirkung als Kondensationskeim besitzen die atmosphärischen Aerosolteilchen auch einen Einfluß auf die Streuung und Absorption vor allem der solaren Strahlung. Einige Experimente (Andre et al., 1981; Weiss et al., 1978) haben gezeigt, daß vor allem die Zahl und Masse der Rußteilchen im Größenbereich $r_{aq} \leq 0.5 \ \mu m$ den Absorptionskoeffizienten bestimmt.

In der Abb. 47 ist die mittlere Volumenkonzentration Ruß dem mittleren komplexen Brechungsindex k (Absorptionsindex) gegenübergestellt (Dlugi und Schnatz, 1980). Bei einem komplexen Brechungsindex k > 0.01 zeigen die Strahlungsmodelle eine Erwärmung der Atmosphäre durch die Strahlungsabsorption der Partikeln (Grassl, 1979). In Quellnähe (Städten) ist die Rußkonzentration hoch und nimmt in ländlichen Regionen ab. Die kleinen Teilchen weisen einen höheren Anteil an Rußpartikeln und einen höheren Absorptionsindex auf. Die Proben nichtaktivierter Teilchen (12) enthalten prozentual den größten Rußanteil, wie es auch aus dem Verhalten der Teilchen bei der Wasserdampfkondensation wegen des geringen m_s/m_o - Wertes (Abb. 46) unmittelbar verständlich ist (Andre et al., 1981). In Wolkenwasser (13) und Regenwasserrückständen (14) finden sich entsprechend geringe Rußanteile (Andre et al., 1981).

Da nichtaktivierte Teilchen in der Atmosphäre eine längere Lebensdauer besitzen, als aktivierte Teilchen, werden die für die Strahlungsabsorption wichtigen Partikeln aus anthropogenen Quellen durch die Luftströmung weiter transportiert, als gleich große Salzteilchen. Somit können die Teilchen auch in größerer Entfernung vom Quellort eine signifikante Erwärmung der Atmosphäre bewirken.

-180-

7. Schlußbemerkungen

Als ein Beitrag zur Aufklärung der Bedeutung heterogener (katalysierter) Gas-Teilchen-Reaktionen in der Atmosphäre bzw. in Rauchfahnen ist die heterogene SO₂-Oxidation auf verschiedenen Aerosolpartikeln für das System SO₂-feuchte Luft-Teilchen untersucht worden. Es wurden speziell Kohlekraftwerksstäube, Zemente und Ruße als typische Primärteilchen in der Atmosphäre und in Rauchfahnen ausgewählt. Einige weitere Untersuchungen befaßten sich mit dem SO₂-Abbau an künstlichen Teilchen, vor allem um die Reaktionsrate und die insgesamt abgebaute Gasmenge mit den Ergebnissen für anthropogene Teilchen zu vergleichen. Dabei zeigte sich, daß sowohl die physikalischen und physicochemischen Teilcheneigenschaften als auch die Methode der Versuchsdurchführung die insgesamt abgebaute SO₂-Menge und die Reaktionsrate bestimmen können.

Die Untersuchung des Reaktionsablaufes in einer Versuchskammer (Reaktor A) zeigt, daß sich der Einfluß der partikelspezifischen Parameter auf den Reaktionsverlauf nur dann eindeutig bestimmen läßt, wenn die Partikelgrößenverteilung und deren zeitliche Veränderung bekannt sind. Ferner ist zu beachten, daß sich die SO₂-Gaskonzentration während des Versuches nur geringfügig ändert. Der Reaktionsablauf in.einem Strömungsreaktor (Reaktor B) kann durch eine zu dichte Teilchenpackung bei der Probenherstellung beeinflußt werden.

Für die Charakterisierung von Partikelproben und Einzelteilchen wurden verschiedene Methoden untersucht und miteinander kombiniert, um die physikalischen Eigenschaften (Größe, Materialdichte, aerodynamischer Formfaktor) und die – anfangs erwähnten – physico-chemischen Parameter (Elementzusammensetzung; Oberflächenverbindungen; wasserlöslicher Anteil und Zusammensetzung; Feuchtewachstum; saure und basische Eigenschaften) bestimmen zu können.

-181-

Als primäres Reaktionsprodukt ließ sich Schwefelsäure nachweisen, die sich durch Reaktion mit Oxiden, Chloriden und Carbonaten zu Sulfaten umsetzt. Neben den Teilcheneigenschaften besitzen die relative Feuchte und die solare Strahlung einen Einfluß auf den Reaktionsablauf. Die Analyse der Produktbildung auf Einzelteilchen und an Proben zeigt, daß speziell die Kohlekraftwerksstäube eine von den Partikelgrößen abhängige Reaktionsrate und Kapazität zeigen, während der Reaktionsablauf bei den übrigen Teilchenarten größenunabhängig ist.

Es konnte experimentell gezeigt werden, daß die nur aus der SO₂-Abnahme berechneten Werte der Reaktionskapazität von Haury (1976) und Haury et al. (1978) tatsächlich in der richtigen Größenordnung liegen. Ferner ließ sich in Übereinstimmung mit theoretischen Überlegungen zeigen, daß die Methode der Versuchsdurchführung anderer Autoren um Größenordnungen zu niedrige Kapazitäten ergibt. Auch die Reaktionsraten sind signifikant verändert, so daß sich die ermittelten Werte nicht auf das reaktive Verhalten einer großen Anzahl von Einzelteilchen in der Atmosphäre übertragen lassen.

Die Abhängigkeit der Produktbildung von der relativen Feuchte und der SO₂-Konzentration läßt sich näherungsweise mit drei verschiedenen Modellvorstellungen interpretieren. Die Ergebnisse der modellmäßigen Beschreibung der experimentellen Daten zeigen, daß die Wasseraufnahme der Teilchen bei einer festen relativen Feuchte aufgrund der chemischen Zusammensetzung der löslichen Bestandteile den Reaktionsablauf bestimmt. Erstmals ließ sich die Bedeutung der sauren und basischen Oberflächen(-verbindungen) der Partikeln für die Reaktionsrate und die Reaktionskapazität atmosphärischer Teilchen nachweisen.

Die systematische Abhängigkeit der Reaktionsraten und der Kapazität von der relativen Feuchte, der Gaskonzentration und den chemischen Eigenschaften der Teilchen ist durch parametrische Ansätze beschreibbar, in die nur meßbare Teilcheneigenschaften und thermodynamische Größen eingehen. Diese vereinfachten Formulierungen müssen jedoch durch weitere Experimente und theoretische Überlegungen überprüft werden.

Der Vergleich der Reaktionsraten und der Kapazitäten für Kohlekraftwerksstäube, Zemente, Vulkanstaub und Ruße mit den jeweiligen Werten für künstliche (katalytisch wirksame) Mangan- (oder eisenhaltige) Teilchen zeigt, daß möglicherweise die Pufferkapazität der anthropogenen Partikeln für H_2SO_{L} die z. T. wesentlich höheren Raten und Kapazitäten bei etwa gleichem Mn-Gehalt verursachen. Ein Vergleich mit der Sulfatbildung an synthetischen Al₂0₃-Teilchen zeigt jedoch auch, daß die sauren und basischen Oberflächenzentren der Partikeln katalytische Eigenschaften besitzen. Diese Ergebnisse besagen, daß die Raten und Kapazitäten von heterogenen Gasreaktionen an tatsächlich in der Atmosphäre vorkommenden Partikeln nur richtig erfaßt werden können, wenn Versuche für die speziellen Teilchenarten mit geeigneten chemischen Reaktoren und Analysetechniken durchgeführt werden. Eine Beschreibung der heterogenen SO₂-Oxidation an Partikeln nur allein durch eine Mangan-katalysierte Oxidation kann um einige Größenordnungen zu niedrige Raten und Kapazitäten ergeben.

Dér heterogene SO_2 -Abbau in Rauchfahnen hängt vom Verhältnis der Teilchenkonzentration zur Gaskonzentration, den Partikeleigenschaften, der relativen Feuchte und gegebenenfalls vom Einfluß anderer Gase ab, der in dieser Arbeit nicht untersucht wurde . Es können bei relativen Feuchten r.F \underline{N} 95 % maximal etwa 5 % des SO_2 durch die Reaktion an Teilchen zu H₂SO₄ und Sulfate umgewandelt werden. Wie sich eine weitere Wasseraufnahme der Teilchen oberhalb r.F. = 95 % auf den Gasabbau auswirkt, ist noch nicht experimentell untersucht. Vermuten läßt

sich ein weiterer Anstieg der Kapazität und der Reaktionsrate aufgrund der erhöhten Wasseraufnahme. Diese bedeutet gleichzeitig auch, daß eine größere H2SO1-Menge gebildet werden kann, bis ein die Reaktion begrenzender pH-Wert erreicht ist. Die ersten Modellrechnungen zum Partikelverhalten in Rauchfahnen unter Verwendung von-an Teilchen gemessenen Reaktionsraten-zeigen, daß im Vergleich mit der Sulfatbildung durch homogene Reaktionen die heterogene SO2-Oxidation für die Sulfatbildung auf Primärteilchen im Bereich 0.1 $\lesssim r_{\rm He} \lesssim$ 2 μm wichtig ist. Bei größeren Teilchenradien nimmt die Sulfatbildung zumindestens bei Kohlekraftwerksstäuben wegen der zunehmenden Basizität der Teilchen ab. Diese ersten Modellrechnungen zeigen nur einige Parameter auf, von denen die Sulfatmassenverteilung in einer Rauchfahne abhängen kann. Bei weiterführenden Untersuchungen sollte versucht werden, die Meßergebnisse an Proben durch Modellrechnungen realistisch wiederzugeben und auch die Resultate von Einzelteilchenanalysen der Rauchfahnenpartikeln nachzuvollziehen. Wichtig für die Wirkung der Teilchen in der Atmosphäre ist auch der Massenfluß einzelner - sekundär gebildeter Verbindungen - in einzelne Teilchengrößenklassen als Funktion der Zeit und der Ausbreitungsbedingungen.

Die Wirkung der Teilchen als Kondensationskeim wird u. a. von der Menge und Zusammensetzung der löslichen Substanz auf den Teilchenoberflächen bestimmt. Die Rußteilchen tragen nach der Reaktion mit SQ₂ wenig Sulfat auf der Oberfläche. Der Vergleich von Modellrechnungen und Analysen atmosphärischer Proben zeigt, daß die Rußteilchen in vielen Fällen bei der Wolken- und Nebelbildung als nichtaktivierte Teilchen neben den Wassertropfen oder gequollenen Salzteilchen existieren. Da die Tropfenbildung und das "Ausregnen"für die kleineren Teilchen im Akkumulationsbereich der wichtigste Entfernungsmechanismus aus der Troposphäre ist, werden die für die Absorption solarer Strahlung bedeutenden Rußteilchen im Vergleich zu gleich großen salzhaltigen Partikeln auch eine größere "Lebensdauer" besitzen.

Diese Ergebnisse zeigen beispielhaft, in welcher Weise die chemische Reaktivität und die Produktbildung auf atmosphärischen Aerosolteilchen durch eine heterogene Reaktion auch das physikalische Verhalten der Partikeln beeinflußt. Liste der in der Gleichung (42) verwendeten Symbole (Bunz et al., 1981; Bunz, 1980)

 $n(r_k, t)$ Konzentration von Partikeln der Klasse k zur Zeit t in P/cm³

 $S(r_k, t)$ Quelle von Partikeln der Klasse k zur Zeit t in P/cm₃ · sec

 (r_k) : Abscheidekoeffizient der Partikeln der Klasse k bzw. des Prozesses x in 1/sec.

> x = T, D, S, L T = Thermophorese D = Diffusion

S = Sedimentation

L = Leckrate (des Volumens V)

Koagulationswahrscheinlichkeit zwischen Partikeln der Größen r_i und r_k in cm⁻³sec⁻¹

Interpolationskoeffizient bei Koagulationsrechnungen

$$\beta_{ij}^{k} = \begin{cases} \frac{V_{k \pm 1} - (V_{i} + V_{j})}{V_{k \pm 1} - V_{k}} & + \text{ für } (V_{i} + V_{j}) & (V_{k}, V_{k+1}) \\ \hline V_{k \pm 1} - V_{k} & - \text{ für } (V_{i} + V_{j}) & (V_{k-1}, V_{k}) \\ \hline 0 & \text{ sonst} \end{cases}$$

 $K(r_i, r_k)$:

 β_{ii}^{k} :

Volumenwachstumsgeschwindigkeit der Partikeln der Klasse kaufgrund von Dampfkondensation in cm^3/sec .

Literaturverzeichnis

- AHLBERG, M.S., LESLIE, A.C.D., WINCHESTER, J.W. (1978): Characteristics of sulfur aerosol in Florida as determined by PIXE-analysis. Atmos.Environ. 12, 773-778
- ALDER,H.(1962):Über Diffusionsvorgänge in der heterogenen Gaskatalyse. Dissertation, ETH Zürich
- ANDRE,K.,DLUGI,R.,SCHNATZ,G.(1981):Absorption of visible radiation by atmospheric aerosol particles, fog and cloud water residues. J.Atmos.Sci. 38, 141-155
- ANDREA,M.(1979):Organic carbon and carbonaceous matter in the atmosphere. WMO-Bericht Nr.549,"Technical Conf. on Atmospheric Pollutions",Boulder 1979,WMO,Genf,131-139
- ARMSTRONG, J.Th. (1978): Quantitative electron microprobe analysis of airborne particulate material. Dissertation, Arizona State University
- ASTRARISTA,G.(1967):Mass transfer with chemical reactions. Elsevier Publ. Comp., New York
- BARBARAY,B.,CONTOUR,J.P.,MOUVIER,G.(1977):Sulfur dioxide oxidation over atmospheric aerosol-X-ray photoelectron spectra of sulfur dioxide adsorbed on V₂0₅ and carbon. Atmos.Environ. 11, 351-356
- BARRIE,L.A.(1975): An experimental investigation of the absorption of sulfur dioxide by cloud and rain drops containing heavy metals. Ber.Inst.f.Meteorologie und Geophysik d. Uni.Frankfurt,Nr.28
- BARRIE,L.A.,GEORGII,H.W.(1976): An experimental investigation of the absorption of sulfur dioxide by water drops containing heavy metal ions. Atmos.Environ. 10, 743-749

- BASSETT, M., GELBARD, F., SEINFELD, J.H. (1981): Mathematical model for multicomponent aerosol formation and growth in plumes. Atmos. Environ., 15, 2395-2406
- BEILKE, S., LAMB, D., MÜLLER, J. (1975): On the uncatalyzed oxidation of atmospheric SO₂ by oxygen in aquous systems. Atmos.Environ, 9, 1083-1090
- BEILKE,S.,GRAVENHORST,G.(1978):Heterogenous SO₂-oxidation in the droplet phase. Atmos.Environ., 12, 231-239
- BEILKE, S. (1980): Private Mitteilung
- BOEHM, H.P. (1974): Funktionelle Gruppen an Festkörperoberflächen. Chemie-Ing.Techn., 46, 716-719
- BOLT, G.H. (1979): Soil chemistry, B: Physico-chemical models. Elsevier Sci. Publ. Comp., New York
- BOULAUD, D. (1977): Contribution à l'étude des reactions en phase gazeuse de l'anhydride sulfureux. Thèse, Rapport CEA-R-4877
- BRITTON,L.G.,CLARKE,A.G.(1979):Heterogenous reactions of sulfur dioxide and nitrogen dioxide with carbon soot aerosol. Atmos.Environ., 14, 829-839

BROSSET, C. (1973): Air-borne acid. Ambio, 2, 2-9

- BROSSET, C. (1978): Water-soluble sulphur compounds in aerosols. Atmos.Environ., 12, 25-38
- BRÜMMER,O.(1980):Mikroanalyse mit Elektronen- und Ionensonden. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig
- BUNZ,H.,KOYRO,M.,SCHÖCK,W.(1981):NAUA-Mod 3-Ein Computerprogramm zur Beschreibung des Aerosolverhaltens in kondensierender Atmosphäre. KfK 3154

- BUNZ,H.(1980):PARDISEKO IIIb-Ein Computerprogramm zur Berechnung des Aerosolverhaltens in geschlossenen Behältern. KfK 2903
- CALABRESE, E.J., SORENSON, A. (1975): Comment on methylcyclopentadienyl manganese tricarbonyl as an antiknock: composition and fate of manganese exhaust products. J.Air Poll.Control Assoc., 25, 1254-1257
- CALVERT, J.G., SU, F., BOTTENHEIM, J.W., STRAUSZ, O.P. (1978): Mechanism of the homogeneous oxidation of sulfur dioxide in the troposphere.Atmos.Environ., 12, 197-226
- CARTER, W.J.III(1974): Quantitative X-ray photoelectron spectroscopy and application to air pollution. Thesis, Oak Ridge, National Laboratory, ORNL-TM-4669
- CHANG,S.-G.,BRODZINSKY,R.,TOOSSI,R.,MARKOWITZ,S.S., NOVAKOV,T.(1978):Catalytic oxidation of SO₂ on carbon in aqueous suspensions. Proceedings "Carbonaceous particles in the atmosphere" Ed. T.Novakov, Berkeley, CONF-7803101,UC-11, 122-133
- CHENG,R.T., CORN,M., FROHLINGER,J.O.(1971): Contributions to the reaction kinetics of water soluble aerosols and SO₂ in the air at ppm concentrations. Atmos.Environ., 5, 987-1008
- CHUN,K.C.,QUON,J.E.(1973): Capacity of ferric oxid particles to oxidize sulfur dioxide in air. Environ.Sci.Technol., 7, 532-538
- CLARKE, A.G. (1981): Electrolyte solution theory and the oxidation rate of sulfur dioxide in water. Atmos. Environ., 15, 1591-1595

- COCKS,A.T.,FLETCHER,I.S.(1979): A model of the gas-phase chemical reactions of power station plume constituents. CERL-Report RD/L/R 1999
- COFER III, W.R., SCHRYER, D.R., ROGOWSKI, R.S. (1980): The enhanced oxidation of SO₂ by NO₂ on carbon particulates. Atmos. Environ., 14, 571-575
- COFER III, W.J., SCHRYER, D.R., ROGOWSKI, R.S. (1981): The oxidation of SO₂ on carbon particles in the presence of O₃, NO₂ and N₂O. Atmos. Environ., 15, 1281-1286
- COUGHNOWR, D.R., KRAUSE, F.E. (1965): The reaction of SO_2 and O_2 in aqueous solutions of $MnSO_4$. I&EC Fundamentals 4, 61-66
- CRANK, J. (1975): The mathematics of diffusion. 2nd edition, Clarendon Press, Oxford
- CULLIS, C.F., HIRSCHLER, M.M. (1980): Atmospheric sulphur: Natural and man-made sources. Atmos. Environ. 14,1263-1278
- D'ALMEIDA,G.,JAENIKE,R.(1980):The size distribution of mineral dust. Aerosol in Science, Medicine and Technology, 8th conference, ed. W. Stöber and D. Hochrainer,14-17
- DENZINGER,H.(1975):Die Anwendung radiochemischer Tracermethoden zur Bestimmung einiger Spurenstoffe in der Atmosphäre. Dissertation, Universität Freiburg
- DITL,R.,COUGHLIN,R.W.(1977):Sorption and diffusion interactions with fly ash of SO₂ in air, SO₃ in air, H₂O in air, SO₂+H₂O in air, SO₃+H₂O in air. Environ. Sci. Technol., 11, 701-706
- DITTENHOEFER, A.C., DE PENA, R.G. (1978): A study of production and growth of sulfate particles in plumes from a coalfired power plant. Atmos. Environ., 12, 297-306
- DITTENHOEFER, A.C. (1979): The chemical transformation of sulfur-dioxide to sulfate in the plume of the coal burning Keystone power plant, Thesis, Penn. State University

- DLUGI,R.(1977):Untersuchung eines Verfahrens zur Bestimmung des mittleren Absorptionsindex k von Proben atmosphärischer Aerosolteilchen. Diplomarbeit, Universität Mainz
- DLUGI,R., JORDAN,S.(1978):Formation of sulfuric acid and sulfates on aerosol particles by catalytic reactions. J. Aerosol Sci., 10, 190-191
- DLUGI,R.(1978):Theoretical and experimental examination on the sampling efficiency of a two-stage impactor for nonspherical aerosol particles. J. Aerosol Sci., 10,225-226
- DLUGI,R.,SCHNATZ,G.(1980):Absorptionseigenschaften atmosphärischer Aerosolteilchen und Wolkenelemente im solaren Spektralbereich. Ann. Meteorol.(Neue Folge) Nr.15,33-36
- DLUGI,R., JORDAN, S., LINDEMANN, E. (1981a): The heterogeneous formation of sulfate aerosols in the atmosphere.J.Aerosol Sci., 12, 185-197
- DLUGI,R., JORDAN,S., LINDEMANN,E. (1981b): Experimentelle Untersuchungen zur Entstehung von schwefelhaltigen Aerosolen unter atmosphärischen Bedingungen. KfK 3187
- DLUGI,R., JORDAN,S.(1981):Heterogeneous SO₂-oxidation:Its contribution to the cloud condensation nuclei formation process. Symp. on Nucleation, IAMAP 1981, Hamburg, zur Veröffentlichung eingereicht bei "Idöjárás", Budapest
- DLUGI,R.(1981):Die Bildung von Schwefelsäure und Sulfaten auf anthropogenen Stäuben. Internat. Koll. "Schwebstoffe und Stäube", Nürnberg, VDI-Bericht (im Druck)
- EATOUGH, D.J. et al. (1978): The formation and stability of sulfite species in aerosols. Atmos. Environ., 12,263-272

- EATOUGH, D.J.et al. (1981): Sulfur chemistry in smelter and power plant plumes in the western U.S.. Atmos.Environ., 15, 2241-2254
- EBERIUS, E. (1954): Wasserbestimmung in Karl Fischer Lösung. Angew. Chemie, 66, 121-125
- ELTGROTH, M.W. (1978): A numerical model of particle interactions in the plumes from coal-fired power plants and comparisons with field measurements. Thesis, University of Washington
- EMMETT, P.H. (1954)ed.: Catalysis, Vol.I, Reinhold Publ.Corp., New York
- EMMETT, P.H. (1955) ed.: Catalysis, Vol.II, Reinhold Publ. Corp., New York
- ERIKSON, R.E. et al. (1977): The reaction of sulfur dioxide with ozone in water and its possible atmospheric significance. Atmos.Environ., 11, 813-817
- FISHER,G.L.et al.(1978):Physical and morphological studies of size-classified coal fly ash. Environ.Sci.Technol.,12, 447-451
- FORREST, J., GARBER, R., NEWMAN, L. (1979): Formation of sulfate, ammonium and nitrate in an oil-fired power plant plume. Atmos.Environ., 13, 1287-1297
- FUZZI,S.(1978):Study of iron(III) catalysed SO₂ oxidation in aqueous solution over a wide range of pH. Atmos. Environ., 12, 1439-1442
- FREIBERG,J.(1978):Conversion limit and characteristic time
 of SO₂ oxidation in plumes. Atmos.Environ., 12, 339-347

- FREIER,R.K.(1976):Wäßrige Lösungen, Bd.I-II, Walter de Gryter, Berlin
- FRUCHTER, J.S. et al. (1980): Mount St. Helens ash from the 18th may 1980 eruption: chemical, physical, mineralogical and biological properties. Science, 209, 1116-1124
- GELBARD, F., SEINFELD, J.H. (1979): Exact solution of the general dynamic equation for aerosol growth by condensation. J.of Coll.and Inter.Sci., 68, 173-183
- GEORGAKIS, C., CHANG, C.W., SZEKELY, J. (1979): A changing grain size model for gas solid reactions. Chem.Eng.Sci., 34, 1072-1078
- GEORGAKIS, C., TRINH, T., CHANG, C.W. (1977): Desulfurization component model. Report to the ERDA, USL/81/20801
- GEORGII, H.W., BALTRUSCH, M., BINGEMER, H. (1977): Interregionaler Transport von Luftverunreinigungen. Ber.d.Inst.f.Meteor. u.Geophys.d.Univ.Frankfurt, Nr.34
- GEORGII, H.W. (1978): Large scale spatial and temporal distribution of sulfur compounds. Atmos. Environ., 12,681-690
- GILLANI,N.V.et al.(1977):Project MIIST:Kinetics of particulate sulfur formation in a power plant plume out to 300 km. Atmos.Environ., 12, 589-598
- GILLANI, N.V., KOHLI, S., WILSON, W.E. (1981): Gas-to-particle conversion of sulfur in power plant plumes - I. Parametrization of the conversion rate for dry, moderately polluted ambient conditions. Atmos. Environ., 15, 2293-2314
- GRASSERBAUER, M. (1978): The present state of local analysis: analysis of individual small particles. Mikrochimica Acta, Wien, 1978I, 329-350

- GRASSL,H.(1979):Possible changes of planetary albedo due to aerosol particles. Developments in Atmos. Sci., 10, 229-242, Elsevier Sci. Publ. Comp.,New York
- HÄNEL,G.(1976):The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air. Adv. in Geophys., 19, 73-188
- HÄNEL,G.,LEHMANN,M.(1981):Equilibrium size of aerosol particles and relative humidity: New experimental data from various aerosol types and their treatment for cloud physics application, Beitr.Phys.Atmos.,54,57-71

HÄNEL, G., ZANKL, B. (1980): Private Mitteilung

- HAURY,G.,JORDAN,S.(1975): Über den Einfluß der Luftfeuchte und Temperatur auf die katalytische SO₂-Oxidation an atmosphärischen Aerosolen. Aerosole in Naturwissenschaft, Medizin und Technik, Jahreskongreß der GAF, 1975, Bad Soden/Ts., ed. V. Böhlau and H. Straubel, 46-48
- HAURY,G.(1976):Untersuchungen zur katalytischen Oxidation von Schwefeldioxid an Aerosolen unter atmosphärischen Bedingungen. KfK 2318 UF
- HAURY,G., JORDAN,S., HOFMANN,C.(1978): Experimental investigation of the aerosol-catalysed oxidation of SO₂ under atmospheric conditions. Atmos.Environ., 12, 281-287
- HAYON, E., TREININ, A., WILF, J. (1972): Electronic spectra, photochemistry, and autoxidation mechanism of the sulfitebisulfite-pyrosulfite systems. The SO₂, SO₄, and SO₅ radicals. J.Am.Chem.Soc., 94, 47-57
- HEGG,D.A.,HOBBS,P.V.(1978):Oxidation of sulfur dioxide in aqueous systems with particular reference to the atmosphere. Atmos.Environ., 12, 241-253

- HENRY, W.M., KNAPP, K.T. (1980): Compound forms of fossil fuel fly ash emissions. Environ.Sci.Technol., 14, 450-457
- HERING, S.V. et al. (1981): Characterization of the regional haze in the southwestern U.S.. Atmos. Environ., 15, 1999-2010
- HIDY, G.M., BROCK, J.R. (1970): The dynamic of aerocolloidal systems, Vol.I, Pergamon Press, Oxford
- HIDY,G.M., et al. (1975): Characterization of aerosols in California. Report SC 524.25 FR, California Air Resources Board, Rockwell Sci. Center, Thousands Oaks,Ca.
- HOATHER, R.C., GOODEVE, C.F. (1934): The oxidation of sulphurous acid: III, Catalysis by manganous sulphate. Trans. Faraday Soc., 30, 1149-1156
- HÖFKEN,K.D.(1981):Untersuchungen über die Deposition atmosphärischer Spurenstoffe an Buchen- und Fichtenwald. Diplomarbeit, Universität Frankfurt
- HULETT,L.D.et al.(1978):Some studies of chemical species in fly ash. Beitrag in: Adv. in particle sampling and measurement EPA-600/7-79-065
- HOV, O., ISAKSEN, I.S.A. (1981): Generation of secondary pollutants in a power plant plume: a model study. Atmos. Environ., 15, 2367-2376
- IN LEE,Y.,HANEL,G.,PRUPPACHER,H.R.(1980):A numerical determination of the evolution of cloud drop spectra due to condensation on natural aerosol particles. J.Atmos.Sci.,37, 1839-1853
- JAENIKE,R.(1980):Atmospheric aerosols and global climate. J.Aerosol Sci., 11, 577-588

- JOCKEL,W.(1980):Abschlußbericht des Forschungsvorhabens St. Sch. 695 "Radioaktive Emissionen aus konventionellen Kaftwerken". Anlagenband, BMI, März 1980
- JOCKEL,W.,GEIPEL,W.(1979)*Erste Betriebserfahrungen über den Einsatz von Impaktoren in Großkraftwerken. Staub, 39, 474-475
- JOHNSTONE, H.F., COUGHANOWR, D.R. (1958): Absorption of sulfur dioxode from air. Ind.Eng.Chem., 50, 1169-1172
- JOHNSTONE, H.F., MOLL, A.J. (1960): Formation of sulfuric acid in fogs. Ind.Eng.Chem., 52, 861-863
- JORDAN,S.(1973):Messungen der Permabilität einiger Kunststoffe gegenüber Schwefeldioxid. Staub, 33, 36-38
- JUDEIKIS, H.S., STEWART, T.B., WREN, A.G. (1978): Laboratory studies of heterogenous reactions of SO₂. Atmos.Environ.12, 1633-1641
- JUNGE, C.E., RYAN, T.G. (1958): Study of the SO₂-oxidation in solution and its role in atmospheric chemistry. Quart. J.R.Met.Soc., 84, 46-55
- KAPLAN, D.J., HIMMELBLAU, D.M. MANAOKA, C. (1981): Oxidation of sulfur dioxide in aqueous ammonium sulfate aerosols containing manganese as a catalyst. Atmos.Environ., 15, 763-773
- KAVANAUGH, M.C., LECKIE, J.O. (1980): Particulates in water. Adv. Chem. Ser., 189, Am. Chem. Soc.
- KEHLEN, H., KUSCHE, F., SACKMANN, H. (1974): Grundlagen der chemischen Kinetik. Vieweg, Braunschweig
- KITA,H.et al.(1981):Measurement of acid-base properties of metal oxide surfaces in aqueous solution. J.Chem.Soc., Faraday Trans.,1,77, 2451-2463

KLOSE,W.(1977):Zur Desaktivierung des katalytischen Einzelkornund Festbettreaktors. Verlag Chemie, Weinheim

- KOBALLA, T.E., DUDUKOVIC.M.P. (1977): Sulfur dioxide adsorption on metal oxides supported on aluminia. AIChE symp. ser.: No.165, 199-228
- KOPS, J.A.M.M.(1976): The aerodynamic diameter and specific surface area of branched chain - like aggregates. Netherlands Energy Research Foundation Report ECN-5, Petten, NL
- KORTÜM,G.(1972):Lehrbuch der Elektrochemie. Verlag Chemie, Weinheim
- KRIVAN,V.(1979):Entwicklungsstand und Bedeutung der Aktivierungsanalyse. Angew.Chem., 91, 132-155
- LAIDEER,K.J.(1950):Chemical kinetics. McGraw-Hill Comp. Inc., New York
- LEHMANN,M.(1978):Messungen des Flüssigwassergehaltes von Aerosolteilchenproben als Funktion der relativen Feuchte. Diplomarbeit, Universität Mainz
- LIBERTI, A., BROCCO, D., POSSANZINI, M. (1978): Adsorption and oxidation of sulfur dioxide on particles. Atmos.Environ., 12, 255-261
- LIN, M.J., LUNSFORD, J.H. (1975): Photooxidation of SO₂ on the surface of magnesium oxide. J.Phys.Chem., 79, 892-897
- LINDBERG, B.J. et al. (1970): Molecular spectroscopy by means of ESCA II sulfur compounds correlation of electron binding energy with structure. Physica Scripta, 1, 286-298
- LINTON, R.W., LOH, A., NATUSCH, D.F.S. (1976): Surface predominance of trace elements in airborne particles. Science, 191, 852-854

- LOW,R.D.H.(1969): A theoretical study of nineteen condensation nuclei. J.Rech.Atmos., 4, 65-78
- LÜRZER, C. (1979): Messung trimodaler Massen-Größen-Verteilungen urbanen Aerosols mit Kaskadenimpaktoren.GAF: Aerosols in science, medicine, and technology, I. conference 1979 ed.W. Stöber and R. Jaenike, Mainz 253-258
- MACIAS, E.S. et al. (1978): The determination, specification and behavior of particulate carbon, Proceedings" Carbonaceous particles in the atmosphere", Berkeley, CONF-7803101, UC-11, 70-78
- MALISSA,H.(1978):Some analytical approaches to the chemical characterisation of carbonaceous particulates. ibid. 3-9

MAINKA, E. (1981): Private Mitteilung

- MAMANE,Y.(1977):A quantitative method for the detection of individual submicron sulfate particles. Dissertation, Penn. State University
- MAMANE,Y., DE PENA,R.G. (1978): A quantitative method for the detection of individual submicrometer size sulfate particles. Atmos.Environ., 12, 69-82
- MAMANE,Y.,PÜSCHEL,R.F.(1979):Oxidation of SO₂ on the surface of fly ash particles under low relative humidity conditions. Geophys.Res.Lett., 6, 109-112
- McMURRY,P.H.(1977):On the relationship between aerosol dynamics and the rate of gas-to-particle conversion. Thesis,California Inst.Technol., Pasadena
- McMURRY,P.H.,RADER,D.J.,STITH,J.L.(1981):Studies of aerosol formation in power plant plumes.-I.Growth laws for secondary aerosols in power plant plumes:implications for chemical conversion mechamism. Atmos.Environ., 15, 2315-2328
- MENOTTI,F. et al.(1978):Catalytic reactivity of airborne particulate material.Proceedings"Carbonaceous particles in the atmosphere",Berkeley, CONF-7803101, UC-11,155-160
- MIDDLETON, P., KIANG, C.S. (1978): Experimental and theoretical examination of the formation of sulfuric acid particles. Atmos.Environ., 12, 179-185
- MIDDLETON, P., KIANG, C.S., MOHNEN.V.A. (1980): Theoretical estimates of the relative importance of various urban sulfate aerosol production mechanism. Atmos. Environ., 14,463-472
- MORGAN, W., STUMM, W. (1970): Aquatic chemistry. Wiley-Interscience, New York
- MORRISON, S.R. (1977): The chemical physics of surfaces. Plenum Press, New York
- NEFF,R.V.(1980):Untersuchungen über das Röntgenemissiomsverhalten aus Metallaufdampfschichten zur Bestimmung der Dicke und Zusammensetzung von Dünnfilmen mit der Elektronenstrahl-Mikrosonde. Dissertation, Universität Karlsruhe

NEFF, R.V., ECK, A. (1980): Private Mitteilung

- NEWMAN,L.(1981):Atmospheric oxidation of sulfur dioxide: a review as reviewed from power plant and smelter plume studies. Atmos.Environ., 15, 2231-2240
- NORDLING, C. (1972): Elektronen-Spektroskopie für chemische Analyse. Angew. Chem., 84, 144-153
- NOVAKOV, T., CHANG, S.G., HARKER, A.B. (1974): Catalytic formation on carbon (soot) particles. Science, 186, 259-261
- OKITA,T.(1967):Adsorption and oxidation of sulfur dioxide at ordinary temperature. Inst.Publ.Health, Tokio,Res. Rep.16, No.2

- ONDOV, J.M., BIERMANN, A.M. (1980): Physical and chemical characterization of aerosol emissions from coal-fired power plants. in "Environmental and climatic impact of coal utilization" ed.J.J.Singh and A.Deepak, Academic Press, New York, 1-20
- ONO,A.,OHTANI,T.(1981):The extent of inactivation of atmospheric aerosol particles as condensation nuclei in an urban area. J.Meteorol.Soc.of Japan, 59,452-461
- PANTER,R.,PENZHORN,R.-D.(1979):On the determination of sulfurcontaining acids in the atmospheric aerosol. in: Proceedings 1st European Symp. "Physical-chemical behavior of atmospheric pollutants",Ispra, ed. B.Versino and H.Ott,EG,80-87
- PARUNGO, F. et al. (1978): Nucleation properties of fly ash in a coal-fired power plant plume. Atmos. Environ., 12,929-935
- PASIUK-BRONIKQWSKA,W.,BRONIKOWSKI,T.(1981):The rate equation for SO₂ autoxidation in aqueous MnSO₄ solutions containing H₂SO₄. Chem.Eng.Sci.,36, 215-219
- PEARCE, J.R., LUNSFORD, J.H. (1978): The oxidation of SO₂ with O₂ on MnY zeolite. J.Coll.Inter.Sci., 66, 33-42
- PENKETT, S.A. (1979): Oxidation of SO₂ in the liquid phase. VDI-Bericht 314, 41-52
- PERRIN, M.-L. (1980): Etude de la dynamique d'aérosols fins produits artificellement. Application à l'atmosphère. Thèse de Doctorat d'Etat, Univ. P. et M. Curie, Paris

- PENZHORN, R.-D., FILBY, W.G. (1976): Eine Methode zur spezifischen Bestimmung von schwefelhaltigen Säuren im atmosphärischen Aerosol. Staub, 36, 205-207
- PETERSON, T.W., SEINFELD, J.H. (1979): Calculations of sulfate and nitrate levels in a growing reacting aerosol. AIChE J., 25, 831-838
- PIVER,W.T.(1974):Potential Dilemma:The methods of meeting automotive exhaust emission standards of the clean air act of 1970. Environ.Health Perspect 8,165-173
- POTZL,K.(1974):Zur chemischen Analyse atmosphärischer Aerosole. Inst.f.Atmos.Umweltforschung,Garmisch-Partenkirchen,Wiss. Mitteilung Nr.8
- POURBAIX, M. (1966): Atlas of electrochemical equilibria in aqueous solutions. Pergamon Press, Oxford
- PRUPPACHER, H.R., KLETT, J.D. (1978): Microphysics of clouds and precipitation. D.Reidel Publ. Comp.
- PUXBAUM,H(1979):Thermo-Gasanalysator zur Charakterisierung von Kohlenstoff- und Schwefelverbindungen in luftgetragenen Stäuben. Fresenius Z. Anal. Chem., 298, 250-259
- RASCH,R.(1978):SO₂ und SO₃ in den Abgasen von Verbrennungsanlagen. Proceedings: GAF-Tagung 1977 in Karlsruhe, ed. R.Jaenike, Mainz ,311-316
- ROBERTS, D.L. (1979): Sulfur dioxide transport through aqueous solutions. Thesis, California Inst. Technol., Pasadena
- ROBERTS, M.W., THOMAS, J.M. (1978): Chemical physics of solids and their surfaces. The Chem. Soc., Burlington House, London
- ROEDEL,W.(1979):Measurement of sulfuric acid saturation vapor pressure; implications for aerosol formation by heteromolecular nucleation. J.Aerosol Sci., 10, 375-386

- ROEDEL,W.(1981):Deposition of aerosols. Advanced Study Institute on "Chemistry of the unpolluted and polluted troposphere", Korfu, NATO-Summer-School
- ROBINSON, R.A., STOKES, R.H. (1959): Electrolyte solutions, Butterworth, London
- RUNCA-KÖBERICH, D.-R. (1979): Reaktionen von Schwefeldioxid an Aerosolpartikeln unter atmosphärischen Bedingungen. Ber.Inst.f.Meteor.u.Geophys., Universität Frankfurt, Nr.37
- RUSSEL,P.A.(1978):Carbonaceous particulates in the atmosphere: Illumination by electron microscopy. Proceedings "Carbonaceous particles in the atmosphere",Berk@ley,CONF-7803101, UC-11, 133-140
- SATTERFIELD, C.N. (1980): Heterogeneous catalysis in practice. McGraw-Hill, New York
- SCHMIDKUNZ,H.(1963):Chemilumineszenz der Sulfitoxidation. Dissertation, Universität Frankfurt
- SCHMITT-OTT,A.,FEDERER,B.(1981):Characterization of aerosols by photoelectron emission from particles. 10th Int. Conf. on Condensation and Ice Nuclei, IAMAP, Hamburg,
- SCHREIBER,B.(1977):Überprüfung einer semiempirischen Regel für die Wasseraufnahme von Salzmischungen. Diplomarbeit, Universität Mainz
- SCHÜTZ,L.(1977):Die Saharastaub-Komponente über dem subtropischen Nordatlantik. Dissertation,Universität Mainz
- SCHWARTZ, S.E., FREIBERG, J.E. (1981): Mass-transport limitation to the rate of reaction of gases in liquid droplets: Application to oxidation of SO₂ in aqueous solutions. Atmos.Environ., 15, 1129-1144

SEINFELD, J.H. (1975): Air pollution. McGraw-Hill, New York

- SEINFELD, J.H. (1976): Review and analysis. Int. Conf. on oxidants analysis of evidence and viewpoints. EPA-600/3-77-110
- SIEGBAHN,K.et al.(1967):ESCA-atomic, molecular and solid state structure studied by means of electron spectroscopy. Nova Acta Regiae Soc. Scien. Upsaliensis ,Ser.IV,Vol.20
- SMITH,R.D.,CAMPBELL,J.A.,NIELSON,K.K.(1979):Characterization and formation of submicron particles in coal-fired plants. Atmos.Environ.,13, 607-617
- SPRUNG,S.(1966):Die chemische und mineralogische Zusammensetzung von Zementofenstaub. Tonindustrie Zeitung,90, 441-449
- STAUFFER, D., MOHNEN, V.A., KIANG, C.S. (1973): Heteromolecular condensation theory applied to gas-to-particle conversion. J.Aerosol Sci., 4, 461-471
- STEVENS, R.K.et al. (1978): Sampling and analysis of atmospheric sulfates and related species. Atmos.Environ., 12, 55-68
- STRAUSS,W.(1977):Air pollution control III:Measuring and monitoring air pollutants. Wiley, New York

STRAUSS,W.(1972):Air pollution control II. Wiley,New York

- SUMMERS, J.C. (1979): Reaction of sulfur oxides with alumina and platinum/alumina. Environ.Sci.&Technol., 13, 321-325
- SZEKELY, J., EVANS, J.W., SOHN, H.Y. (1976): Gas-solid reactions. Academic Press, New York
- TANABE,K.(1970):Solid acids and bases. Academic Press,New York

-203-

- THUDIUM, J. (1978): Water uptake and equilibrium sizes of aerosol particles at high relative humidities: Their dependence on the composition of the water-soluble material. Pageoph, 116, 130-148
- TRASATTI,S.(1980):Electrodes of conductive metallic oxides, part A+B. Elsevier Sci.Publ.Comp.,New York
- VOGG,H.,HARTEL,R.(1977):Experience in the analysis of atmospheric aerosols at the Karlsruhe Nuclear Research Center. J.Radioanal.Chem., 37, 857-866
- WADDEN, P.A., QUON, J.E., HURLBURT, H.M. (1974): Model of growing coagulation aerosol. Atmos.Environ., 8,1009-1028
- WEISS,R.E.et al.(1978):Studies of the optical, physical, and chemical properties of light absorbing aerosols. Proceedings "Carbonaceous particles in the atmosphere", Berkeley, CONF-7803101, UC-11,257-262
- WHITBY,K.T.(1978a): The physical characteristics of sulfur aerosols. Atmos.Environ., 12, 135-160
- WHITBY,K.T.(1978b): Size distribution and physical properties of combustion aerosols. Proceedings"Carbonaceous particles in the atmosphere", Berkeley, CONF-7803101, UC-11, 201-208
- WINKLER, P. (1970): Zusammensetzung und Feuchtewachstum von atmosphärischen Aerosolteilchen. Dissertation, Universität Mainz
- WINKLER, P., JUNGE, C. (1972): The growth of atmospheric aerosol particles as a function of relative humidity. Part I: Method and measurements at different locations. J.Rech. Atmos., 617-638

- WYATT, P.J. (1980): Some chemical, physical, and optical properties of fly ash particles. Appl.Optics, 19, 975-983
- YUE,G.K.,HAMILL,P.(1980):The formation of sulfate aerosols through heteromolecular nucleation process. in:"Environmental and climatic impact of coal utilisation", ed. J.J.Singh and A.Deepak, Academic Press, New York, 49-82
- ZUCKMANTEL, M., KURTH, R., BOEHM, H.P. (1979): Kohlenstoffe als Katalysatoren für die Oxidation von schwefliger Säure. Z. Naturforschung, 34b, 188-196