KfK 4016 August 1986

Monte-Carlo-Simulation von 4π -Detektorsystemen

M. Kunze Institut für Kernphysik

Kernforschungszentrum Karlsruhe

KERNFORSCHUNGSZENTRUM KARLSRUHE

Institut für Kernphysik

KfK 4016

von Marcel Kunze

*) Von der Fakultät Physik der Universität Karlsruhe genehmigte Diplomarbeit

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

Als Manuskript vervielfältigt Für diesen Bericht behalten wir uns alle Rechte vor

Kernforschungszentrum Karlsruhe GmbH Postfach 3640, 7500 Karlsruhe 1

ISSN 0303-4003

ZUSAMMENFASSUNG

Für Experimente am LEAR (Low Energy Antiproton Ring) beim CERN wird ein Detektorsystem vorgeschlagen, das gleichzeitig geladene und neutrale Annihilationsprodukte mit guter Energieauflösung und nahezu 4π-Geometrie nachweisen kann. Hauptziele der Messungen sind das Verständnis der Proton-Antiproton Annihilation auf dem Quark-Gluon-Niveau und neue Beiträge zur Mesonenspektroskopie sowie eine hochempfindliche Suche nach exotischen Zuständen (Glue-Balls,Hybrids,Baryonium, etc.). Die neutralen Komponenten sollen in einem kugelförmigen modularen CsI-Detektor (ca. 1500 Module), die geladenen Teilchen in einer Vertexkammer hoher Ortsauflösung in einem Magnetfeld gemessen werden.

MONTE-CARLO-SIMULATION OF 4π - DETECTORSYSTEMS

For experiments at LEAR (Low Energy Antiproton Ring) at CERN a detection system is proposed, which allows to measure charged and neutral annihilation products with nearly full solid angle. The main physic's items are the understanding of proton-antiproton annihilation on the quark-gluon level and new contributions to meson spectroscopy; furthermore, sensitive search for exotic states (glueballs,hybrids,baryonia, etc.) is possible. The neutral components are measured in a spherical modular CsI-detector (1500 modules), the charged particles are measured in a vertex chamber with high spatial resolution in a magnetic field.

KAPITEL 1. DIE ERZEUGUNG DER ANNIHILATIONSKINEMATIK	1
1.1. Die Proton - Antiproton Annihilation	1
1.2. Phasenraumbetrachtungen	4
1.2.1.Der Phasenraum	4
1.2.2. Das Phasenraumgewicht	5
1.2 3 Zerfallssnektren	6
1.2.3 Berechnung des Phasenraumintegrales	7
1.2. / Fohlorbotrachtung	11
1.3 Monte - Carlo Computersimulation	10
1. S. Honte - Carlo Computersimulation	12
1.4. Intergrespektren des Summenkanars	10
1.4.1.Energiespektrum der gelädenen Pionen	13
1.4.2.Energiespektrum der neutralen Pionen	14
1.4.3.Energiespektrum der Gammas	15
KAPITEL 2 DIE SIMULATION	16
$2 1 \text{Dag} ^{1} \text{CTANDADD_DETEVTOD_SVCTEM}^{1}$	16
2.1. Das STANDARD-DETERIOR-SISTER	16
2,1,1, randmetristerung $2,1,2,$ $3,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3$	10
2.1.2. Programmtechnische Kealisierung	20
2.2. Rekonstruktion von Invarianten Massen	24
2.3.Inklusive Energiespektren	27
2.3.1.Reduktion des Untergrundes	29
2.4. Exklusive Energiespektren	31
2.4.1.Nachweis resonanter Zerfälle	31
2.4.1.1.Radiativ zerfallende Resonanzen	32
2.4.1.2.In geladene Teilchen zerfallende Resonanzen	34
2.4.2.Nachweis exotischer Zerfälle	36
2.4.2.1.Baryonium	36
2.4.2.2.Glue - Balls	38
2.5.Variation der Parameter	42
2.5.1.Gammadetektor	42
2.5.1.1.Variation der Modularität	42
2.5.1.2.Variation der Energieauflösung	45
2.5.1.3.Variation des Raumwinkels	46
2.5.2.Driftkammer	48
2.5.2.1.Variation der Impulsauflösung	48
2.6.Alternative Lösungen	49
2.6.1.Detektorsystem ohne Magnetfeld	49
2.7.Schlusswort und Ausblick	52
ANHANG A. PROGRAMMPAKET BIGBANG	54
Programmablauf	54
Eingabedaten	55
Namelist 'INPUT'	55
Einfügen und Ändern von Annihilationskanälen	57
Eventdump	58
Ablaufdiagramm	59
Ouellprogramm	60
	00
ANHANG B. PROGRAMMPAKET DETEKTOR	91
Programmablauf	91
Eingabedaten	92
Namelist 'INPUT'	92
	95
Ablaufdiagram	96
Ouellprogramm	97
· · · · · · · · · · · · · · · · · · ·	

ABBILDUNGSVERZEICHNIS	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	159
LITERATURVERZEICHNIS	•		•							•		•	•	•	•		•		•	•	•			160

EINLEITUNG

Die Untersuchung der Annihilation des Nukleon-Antinukleon-Systems ist für die Überprüfung von Aussagen der Quarktheorie (Das Nukleon besteht aus 3 Quarks, das Antinukleon aus 3 Antiquarks) von großer Bedeutung.

So ist zum Beispiel bislang ungeklärt, ob die Nukleon – Antinukleon Annihilation in drei Mesonen als Umordnung der beteiligten Quarks oder als Vernichtung und Wiedererzeugung von Quark-Antiquark-Paaren erklärt werden kann:

Rearrangement-Modell

Annihilations-Modell

Abbildung 1. Bild der Annihilation im Quarkmodell

Damit man Aussagen verschiedener Quarkmodelle miteinander vergleichen kann, ist es nötig, die Verzweigungsverhältnisse bzw. die Wirkungsquerschnitte für möglichst viele Annihilationskanäle experimentell zu bestimmen. Hier sind quantitative Vergleiche bisher nicht möglich, da nur ein Bruchteil der auftretenden Annihilationskanäle untersucht werden konnte.

Um zu einem tieferen Verständnis der Nukleon – Antinukleon Annihilation zu gelangen, ist vor allen Dingen der Nachweis der Annihilationskanäle interessant, in denen direkt erzeugte mesonische Zwischenzustände auftreten $(\rho, \omega, f, \eta, ...)$.

Daraus ergibt sich die Forderung, ein Detektorsystem zu entwickeln, das den Nachweis neutraler wie geladener Teilchen in einem großen Raumwinkelbereich mit guter Energie- und guter Ortsauflösung erlaubt.

Die vorliegende Arbeit beschäftigt sich mit dem Entwurf und der Optimierung eines solchen Detektorsystems zur Durchführung eines kinematisch vollständigen Experimentes. Durch Monte - Carlo Computersimulation sollten vor allen Dingen folgende Fragen geklärt werden:

- 1. Untersuchung des zu erwartenden Untergrunds in inklusiven und exklusiven Spektren
- 2. Entwicklung von Methoden zur Herabsetzung des Untergrunds
- 3. Untersuchung des Auftretens künstlicher, durch geometrische Effekte erzeugter Strukturen im Annihilationsspektrum
- 4. Untersuchung der zu erwartenden Sensitivität beim Nachweis komplizierter Zerfallsprozesse

KAPITEL 1. DIE ERZEUGUNG DER ANNIHILATIONSKINEMATIK

Die Erzeugung der Annihilationskinematik mit dem Computer wird ermöglicht durch das Programmpaket 'BIGBANG' (siehe Anhang A).

— 1 —

1.1.DIE PROTON - ANTIPROTON ANNIHILATION

In diesem Kapitel soll ein Abriss über die bisher bestehenden Vorstellungen von der Proton – Antiproton Annihilation gegeben werden.

Die Annihilation des Proton - Antiproton Systems wurde experimentell bisher vornehmlich in Blasenkammern untersucht (ca. 100 000 Annihilationen) /BUR70/.

Ein Behälter mit niedriger Geschwindigkeit in einen mit Flüssigwasserstoff einlaufendes Antiproton wird von einem Wasserstoffkern eingefangen, wobei es den Platz des den Wasserstoffkern umkreisenden Elektrons einnimmt. Das System regt sich durch Aussenden von Roentgenstrahlen und durch Augereffekt ab, wobei das Antiproton auf niedrigere atomare Bahnen herabfällt. Von allen Zuständen ist die Annihilation möglich, in flüssigem Wasserstoff jedoch bevorzugt aus den S-Niveaux.

Einen Überblick über die bisher bekannten Annihilationskanäle gibt Abbildung 2. Wie daraus hervorgeht, ist eine Aufschlüsselung über resonante Zwischenzustände nur für den Fall möglich, in dem im Endzustand ein einzelnes oder gar kein neutrales Pion auftritt. In der Mehrzahl der Fälle (ca. 60%) sind die Zwischenzustände noch unbekannt.

Weiterhin sind in dieser Tabelle auch solche Annihilationskanäle aufgeführt, deren Evidenz experimentell nur schwach gesichert ist /BKS78/ . Es sind dies tiefgebundene Zustände unterhalb der Schwelle des Proton -Antiproton Systems, deren Bildung in Ruhe und unter Aussendung eines monoenergetischen Teilchens geschieht (ID=54-64).

Es folgen rein radiative Kanäle, in denen kein geladenes Teilchen im Endzustand auftritt (ID=65,66,67).

Den Abschluß der Liste bilden rein hypothetische Annihilationskanäle, deren Existenz von der Theorie vorausgesagt wird, für die aber bislang noch keine experimentelle Evidenz besteht. Es sind dies die Annihilation über einen glyonischen Zwischenzustand (ID=68,69) und die Annihilation über das E⁰, hinter dem ein Glueball vermutet wird.

PROTON-ANTIPROTON-ANNIHILATION

ID	ENDZUSTAND	ZWISCHENZUSTAND	VERZWEIGUNGSVERHÄLTNIS
01	π ⁺ π ⁻ 2π°		9.3%
02	π ⁺ π ⁻ 3π ⁰		23.3%
03	π ⁺ π ⁻ 4π°		2.8%
04	2π ⁺ 2π ⁻ 2π ⁰		16.6%
05	2π ⁺ 2π ⁻ 3π⁰		4.2%
06 07	$2\pi^{0}$		~0.04%
08	"+ " ^m "0		0.86%
09	11 11 11	ρ ^ο π ^ο	5.8%
10	<u>ــــــــــــــــــــــــــــــــــــ</u>	f ^ο π ^ο	0.24%
11	2π 2π		2.38%
12		$A_2^{+/-\pi^{-/+}}$	2.0%
13		ρ ⁰ f ⁰	0.9%
14 15		ρ ^ο π ⁻ π ⁻ _ ο _ ο	1.5%
12	2 ~ ⁺ 2 ~ [−] − ⁰	ρρ +	0.12%
17	211 211 11	ωπ π ωρ ⁰	2.1%
18		ωf ^o	1.7%
19		┍°π ⁺ π [−] π°	3.7%
20		$B^{+/-}\pi^{-/+}$	0.7%
21		ηπ ⁺ π ⁻	0.35%
22		$A_2^{+/-}\pi^{-/+}$	0.13%
23	3π ⁺ 3π ⁻		2.1%
24	3π ⁺ 3π ⁻ π⁰		0.39%
25		$\omega 2\pi^{+}2\pi^{-}$	1.3%
26		η 2π ⁺ 2π ⁻	0.17%
27		η'2π ⁺ 2π ⁻	0.04%
28	π π π α	ρ	2.7%
29	2π ⁺ 2π ⁻ π ⁰	ρ ^{+/-} 2π ^{-/+} π ^{+/-}	6.4%
30	к+ к-		0.096%
31	$K_{1} K_{1} + K_{2} K_{2}$		0.0008%
32	K ₁ K ₂		0.071%
33	$K_{1} K_{1} \pi^{0} + K_{2} K_{2} \pi^{0}$		0.146%
34	K ₁ K ₂ π ^ο	K° K°*	0.035%
35	K ₁ K ₂ nπ ⁰ ,n>1		0.064%
36		K ₁ K ₁ η	0.0155%
37		K ₁ K ₁ ω	0.0089%

38	K [°] K ^{+/-} π ^{-/+}		0.425%
39		К° К ^{*°}	0.085%
40		к ^{+/-} к ^{*-/+}	0.057%
Δ1		x+//+	0.064%
- 1 T		^A 2	0.004%
42		$A^{+/-}\pi^{-/+}$	0.025%
43	κ ₁ κ ₁ π ⁺ π ⁻		0.201%
44	κ ₁ κ ₂ π ⁺ π ⁻		0.241%
45		Φ π ⁺ π ⁻	0.018%
46	K ₁ K ^{+/-} π ^{-/+} π ⁰		0.447%
47	к, к, π ⁺ π ⁻ π ⁰		0.149%
48	1 1	Κ, Κ, ω	0.0836%
49		1 1 K. K. ŋ	0.0059%
50			0.01/9
51	K. $K^{+/-} 2\pi^{-/+} \pi^{+/-}$	15 H H	0.059%
	1	<u> </u>	
52	<u>н</u>	Εσπ΄π	0.071%
53	Κ ₁ Κ ⁺ π ⁻ 3π		~0.0%
54	X X(1694)		0.16%
55	γ X(1638)		0.3%
56	8 X(1421)		0.06%
57	8 X(1383)		0.1%
58	X X(1210)		0.09%
59	$\pi^{+/-}$ X(1638) ^{-/+}		0.5%
60	π ^{+/-} X(1561) ^{-/+}		0.5%
61	$\pi^{+/-}$ X(1447) ^{-/+}		0.5%
62	π^{0} X(1638)		0.5%
63	π^{0} X(1561)		0.5%
64	π^{0} X(1447)		0.5%
65	$2\pi^0 \chi$	т ⁰ (л)	2 38%
66	π ⁰ 2%	" w "	0.82%
67	$\pi^0 \chi$	11 1	0.015%
68	2π ⁰ δ	Gluonium X	0.1%
69	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Gluonium T	0.1%
70	∠ ແ 3 π ⁰ 01∕		0.1%
70 71	J11 ∠.0 /.m.0 J17	с II г ⁰ од ⁰	U.1% 0.1%
11	411 20 1 -		U.1%
72	π່π 2π⁰ 2.૪	Ε° π [™] π [™]	0.2%

Abbildung 2. Annihilationskanäle des Proton - Antiprotonsystems

Kapitel 1. Die Erzeugung der Annihilationskinematik

1.2. PHASENRAUMBETRACHTUNGEN

Bevor die Durchführung der Monte - Carlo Computersimulation der Proton -Antiproton Annihilation beschrieben wird, soll zunächst der Übergang eines Vielteilchen-Systems von einem Zustand in einen anderen betrachtet werden.

1.2.1.Der Phasenraum

Die Wahrscheinlichkeit W für den Übergang eines n-Teilchensystems vom Anfangszustand i in den Endzustand f ist in lorentzinvarianter Form /PER72/ gegeben durch

(1)
$$W = \frac{2\pi |M.E.|^2}{\pi \prod_{i=1}^{n} 2E_i} R_n$$

Hier ist M.E. ein Matrixelement, welches die Dynamik des Überganges beschreibt. Der Faktor R_n beschreibt die Zahl der möglichen Zustände der n Teilchen der Anfangsenergie E_i im Impulsraum der Endzustände pro Einheitsintervall der Gesamtenergie (Phasenraumfaktor).

Dieser Phasenraumfaktor ist für ein Teilchen gegeben durch $d^3\vec{p}=p^2dpd\bar{\Omega}$ und gibt die Wahrscheinlichkeit an, das Teilchen im Raumwinkelbereich Ω mit einem Impuls p vorzufinden.

Unter Vernachlässigung eines Normierungsvolumens ist dieser Phasenraumfaktor für ein Ensemble aus n Teilchen¹

$$R_{n} = \frac{dN}{dE} = \frac{\int d^{3} \vec{p} d^{3} \vec{p} \dots d^{3} \vec{p} \delta^{4} (P - \Sigma p_{\vec{p}})}{\prod 2E_{f}}$$

Hier ist E_f die Energie eines Teilchens im Endzustand , P der Gesamtvierervektor des Anfangszustandes, p_f sind die Vierervektoren der Einzelteilchen im Endzustand. Die δ -Funktion gewährleistet die Viererimpulserhaltung.

¹ Die verwendete Metrik ist $P=(\vec{p}, iE)$ mit c=1.

$$J\frac{d^{3}\vec{p}}{2E} = Jd^{3}\vec{p} J \frac{1}{2E} \delta(\vec{p}^{2} + m^{2} - E^{2}) d(E^{2})$$
$$= Jd^{3}\vec{p} J \delta(\vec{p}^{2} + m^{2} - E^{2}) dE$$
$$= Jd^{4}p \delta(p^{2} + m^{2})$$

ergibt sich die folgende Formulierung des lorentzinvarianten Phasenraumintegrals:

____5 ____

(2)
$$R_n(P, m_i) = \frac{dN}{dE} = \int \int \delta^4 (P - \sum_{i=1}^n p_i) \prod_{i=1}^n \delta(p_i^2 + m_i^2) d^4 p_i$$

wobei P der Gesamtvierervektor des n - Teilchensystems, p, der Vierervektor eines Einzelteilchens und m, dessen Masse ist.

Die physikalischen Erhaltungssätze der Energie und des Impulses finden in dieser Formulierung des Phasenraumes ihre Entsprechung in δ -Funktionen, die physikalisch nicht zugängliche Gebiete des Phasenraumes ausschließen.²

1.2.2.Das Phasenraumgewicht

Im Phasenraum sind alle physikalisch möglichen Zustände des Systems enthalten. Die Zustandsdichte des Phasenraums ist aber i.a. nicht isotrop. Dies bedeutet für das Beispiel des n-Körperzerfalls , daß kinematisch verschiedene Zerfälle eines Systems, die zur selben Teilchenzusammensetzung des Endzustandes führen, mit unterschiedlichen Wahrscheinlichkeiten auftreten:

Jeder Zerfall ist mit einem Phasenraumgewicht versehen, das der Wahrscheinlichkeit für das Auftreten des jeweiligen Prozesses entspricht.

² Weitere Erhaltungssätze, wie z.B die Erhaltung der Leptonenzahl, Erhaltung der Baryonenzahl, Erhaltung des Isospins usw. werden durch die Beschränkung auf die Simulation experimentell beobachtbarer Annihilationsreaktionen des Proton - Antiproton Systems implizit erfüllt.

1.2.3.Zerfallsspektren

Durch den Phasenraum wird nur die <u>Kinematik</u> des Übergangs des Systems von einem Zustand in einen anderen beschrieben.

Eine vollständige Beschreibung der Spektren einer Größe α (Energie,Impuls,Winkel,etc.) des zerfallenden Systems ist gegeben durch

(3)
$$f(\alpha) = \frac{d}{d\alpha} (|M.E.|^2 R_n)$$

wobei M.E. ein Matrixelement ist, das die <u>Dynamik</u> des Zerfallsprozesses beinhaltet. Besteht keine Wechselwirkung zwischen den ausgehenden Teilchen, so ist M.E.=1, und alle Spektren sind nur durch den Phasenraum bestimmt.

Ein Beispiel für ein nur aus dem Phasenraum abgeleitetes Spektrum ist in Abbildung 3 gegeben für den Fall der Annihilation des Proton – Antiproton Systems in drei Pionen (ID=8,9,10). Es handelt sich hierbei um einen sog. 'Dalitz-Plot', bei dem die kinetische Energie des π° gegen die Differenz der kinetischen Energien der beiden geladenen Pionen aufgetragen ist. Die breite p-Resonanz (ID=9,10) führt zu den dicken Balken über einem Untergrund der isotropen Annihilation (ID=8).

DALITZ-PLOT FUER KANAL PI+ PI- PIO

Abbildung 3. Dalitz-Plot eines Systems aus drei Pionen

1.2.3.Berechnung des Phasenraumintegrales

Zur Erzeugung der Zerfallsspektren des n-Körperzerfalls ist es erforderlich, den lorentzinvarianten Phasenraum (2) zu berechnen. Die analytische Integration des Phasenraumintegrals ist aber äußerst kompliziert und kann im besten Fall auf die Behandlung von Dreikörperproblemen angewendet werden. Für die Berechnung von n-Körperzerfällen (n>3) reicht nur eine Entwicklung des Integrals mit Monte-Carlo-Methoden in den Bereich des Möglichen.³

Im folgenden soll eine Monte-Carlo-Methode zur Berechnung des Phasenraumintegrals beschrieben werden, die mit invarianten Massen als kinematischen Parametern arbeitet /JAM68/.

Aus der Lorentz-Invarianz der Formulierung des Phasenraumintegrals (2) läßt sich eine Beschreibung des n-Körperzerfalls als Abfolge einzelner Zweikörperzerfälle herleiten:

(4)
$$R_{n} = \frac{1}{M_{1}} \int \int \frac{1}{M_{1}} \frac{1}{M_{1}} \left\{ 2M_{1}R_{2}(M_{1+1};M_{1},m_{1+1}) \right\} dM_{n-1} \dots dM_{2}$$

$$R_{2}(M_{1+1};M_{1},m_{1+1}) = \frac{2\pi}{M_{1+1}} \sqrt{M_{1+1}^{2} + (\frac{M_{1}^{2} - m_{1+1}^{2}}{M_{1+1}})^{2} - 2(M_{1}^{2} + m_{1+1}^{2})}$$

wobei R_a dem invarianten Zwei-Körper-Phasenraum beim Zerfall der Masse M_{i+1} in die beiden Tochtermassen M_i und m_{i+1} entspricht.

Abbildung 2. Annihilation als Abfolge von Zweikörperzerfällen

Zunächst wird der Zweikörperphasenraum nur im ersten Vertex (A) berechnet, danach wird über alle möglichen Zwischenmassen M_{n-1} integriert.

Da die 'Anfangsenergie' in B nun ebenfalls variabel ist, usw., wählt man dasselbe Vorgehen für den Punkt B, indem man über alle möglichen Zwischenmassen M_{n-2} und alle möglichen Zwischenmassen M_{n-1} integriert.

³ Für die Entwicklung eines 16-fach Integrals (n=4) nach einer anderen numerischen Methode (z.B.Simpson-Integration) mit jeweils 10 Stützstellen ergäbe sich eine Summe über 10¹⁶ Stützstellen insgesamt.

Eine Randbedingung hierbei ist, daß alle Teilreaktionen exotherm ablaufen müssen: An jedem Vertex muß mindestens soviel Energie bereitgestellt werden, wie zur Bildung der nachfolgenden invarianten Zwischenmasse und der Tochtermasse benötigt wird. Daher sind die Integrationsgrenzen für die Bildung der invarianten Zwischenmassen festgelegt durch die Bedingung

(5)
$$M_{j-1} + m_j < M_j < M_{j+1} - m_{j+1}$$

Unglücklicherweise stehen die so gewählten Integrationsgrenzen über den Integranden in direkter Beziehung zueinander. Eine solche Abhängigkeit muß aber bei Anwendung einer Monte-Carlo-Methode aus Gründen einer konstanten Integrationsdichte vermieden werden.

Die invarianten Zwischenmassen M müssen unabhängig voneinander gebildet werden. Dies gewährleistet die schwächere Bedingung

(6)
$$\sum_{i=1}^{j} m_{i} < M_{j} < M_{n} - \sum_{i=i+1}^{n} m_{i}$$

Hier ist M_n die Gesamtenergie im Ruhesystem der Muttermasse, so daß nur Konstanten in die Wahl der Zwischenmasse M_j eingehen. Diese ist dann mindestens so groß, daß noch alle folgenden Tochtermassen m_j gebildet werden können, aber kleiner als die in diesem Vertex zur Verfügung stehende gesamte freie Energie. Solange allerdings nicht auch die stärkere Bedingung (5) erfüllt ist, genügt der Zerfall nicht notwendig den Erhaltungssätzen der Physik.

Einen Weg, beide Bedingungen zu erfüllen, bietet

(7)
$$M_j = r_j (M_n - \sum_{i=1}^n m_i) + \sum_{i=1}^j m_i$$

wobei r_j eine Zufallszahl zwischen 0 und 1 ist, mit der die gesamte kinetische Energie auf die invarianten Zwischenmassen verwürfelt wird.

Die notwendige und hinreichende Bedingung, (5) und (6) zu erfüllen, ist, die Zufallszahlen r, in aufsteigender Reihenfolge zu sortieren:

 $0 < r_1 < \ldots < r_j < \ldots < r_{n-1} < 1$

Auf diese Weise ist es möglich, einen Zerfallsgenerator für n-Körperzerfälle zu konstruieren, bei dem jeder Zerfall unabhängig vom anderen generiert wird, und jeder Zerfall in ein Gebiet des Phasenraums fällt, das physikalisch zugänglich ist.

Da an jedem Zweikörper-Vertex nur eine Energievariation durchgeführt wird, stehen zur vollständigen Beschreibung des physikalischen Vorganges an jedem Vertex zwei weitere frei wählbare kinematische Parameter zur Verfügung. Es sind dies zwei Winkel, die im <u>Ruhesystem</u> jedes Vertex isotrop gewählt werden können, da jeder Zweikörperphasenraum isotrop ist.

Um allerdings zu einer Beschreibung des Gesamtsystems zu gelangen , müssen nacheinander alle Zweikörperzerfälle in das Ruhesystem der Teilchengruppe lorentztransformiert werden, die dem jeweiligen Zerfall vorangeht.

Eine Umsetzung des obigen Zerfallsalgorithmus in die höhere Programmiersprache FORTRAN steht als Unterprogramm GENBOD (W505) in der CERN Programmbibliothek zur Verfügung.

Bei der Verwendung dieses Unterprogramms zur Simulation der Proton -Antiproton Annihilation besteht ein größes Problem darin, daß die über die Entwicklung des Phasenraumintegrals erhaltenen Zerfälle bei der Simulation eines bestimmten Zerfallskanals bezüglich der Verzweigungsverhältnisse der verschiedenen anderen Annihilationsreaktionen unnormiert sind:

Denn jeder Zerfall ist durch ein Phasenraumgewicht gewichtet, das der Wahrscheinlichkeit für das Auffinden eines bestimmten Ensembles von invarianten Zwischenmassen entspricht. Dieses Phasenraumgewicht erhält man durch Differenzieren des Phasenraumes (4) nach allen auftretenden Zwischenmassen

(8)
$$w(M_{i}, m_{i}) = \frac{d^{n-2}}{dM_{n-1} \cdots dM_{2}} \{ R_{n} \}$$

 $\sim \frac{1}{M_{1}} \prod_{i=1}^{n-1} \{ M_{i}R_{2}(M_{i+1}; M_{i}, m_{i+1}) \}$

Nur für einen Zweikörperzerfall besitzt dieses Gewicht immer den Wert 1, bei einem Zerfall in mehr als zwei Teilchen gehorchen die Phasenraumgewichte einer endlichen statistischen Verteilung.

Da in diesem Falle dann ein ein Ereignis mit Maximalgewicht existiert, können unter Kenntnis dieses Maximalgewichtes durch die folgende Vorgehensweise ungewichtete Zerfälle aus gewichteten Zerfällen erzeugt werden:

Für jeden Zerfall wird eine gleichverteilte Zufallszahl zwischen Null und dem Maximalgewicht gewürfelt. Ist das Gewicht des Zerfalles kleiner als diese Zufallszahl, so wird das Ereignis verworfen, anderenfalls wird es akzeptiert. Dies bedeutet, daß ein Ereignis mit der Wahrscheinlichkeit seines Phasenraumgewichts relativ zum Maximalgewicht übernommen wird (Hit-or-Miss-Monte-Carlo).⁴

Auf diese Weise wird die Erzeugung von Ereignissen möglich, die alle dasselbe Phasenraumgewicht (exakt 1) besitzen und damit im Bezug auf die verschiedenen Annihilationskanäle normiert sind.

⁴ Es hat sich gezeigt, daß im Falle der Simulation der Proton -Antiproton Annihilation ca. 50% aller erzeugten Zufallsereignisse verworfen werden.

Eine Schwierigkeit bei der Anwendung dieses Verfahrens besteht darin, daß zu Beginn der Simulation der Annihilationskinematik des Proton – Antiproton Systems die Maximalgewichte für die einzelnen Annihilationskanäle nicht bekannt sind. Aus diesem Grunde wurde das folgende approximative Verfahren entwickelt:

Zu Beginn werden die Maximalgewichte aller zu simulierenden Annihilationskanäle auf Null gesetzt. Daraufhin werden im Verlauf der Simulation diese Maximalgewichte dem jeweils größten auftretenden Phasenraumgewicht angepaßt, wodurch man sich Schritt für Schritt an das globale Maximalgewicht jeden Annihilationskanales annähert.

Die Verwirklichung dieses Verfahrens bringt zu Beginn der Simulation Fehler in der Normierung mit sich, es hat sich aber gezeigt, daß diese Methode der 'sukzessiven Annäherung' relativ schnell konvergiert: Nach ca. 100 erzeugten Zufallsereignissen beträgt die Abweichung vom globalen Maximalgewicht pro Annihilationskanal nur ungefähr 1%.

1.2.4.Fehlerbetrachtung

Im folgenden soll untersucht werden, wie groß der zu erwartende statistische Fehler bei Anwendung der Monte-Carlo-Methode zur Berechnung des Phasenraumintegrals ist.

Es soll zunächst ein kleiner Bereich des Phasenraumes betrachtet werden:

In einer Folge von N Ereignissen besitzt das i-te Ereignis das Phasenraumgewicht w_i . Dieses Phasenraumgewicht wird Null, wenn das Ereignis nicht in das gewünschte Gebiet des Phasenraumes fällt.

Repräsentiert dieses Phasenraumgebiet einen Kanal im Histogramm eines Zerfallsspektrums, so ist der Mittelwert für die Einträge in diesem Kamal

$$(9) \quad W = \frac{1}{N} \sum_{i=1}^{N} w_i$$

Man erhält eine Abschätzung für den Fehler (σ ist die Standardabweichung) durch

(10)
$$\Delta W = \sqrt{\frac{\sigma^2}{N}} = \sqrt{\frac{\Sigma(w_i - W)^2}{N(N-1)}}$$

= $\sqrt{\frac{\Sigma(w_i)^2 - NW^2}{N(N-1)}}$
= $\sqrt{\frac{1}{N(N-1)}} [\Sigma(w_i)^2 - \frac{1}{N}(\Sigma w_i)^2]$

Für N>>1 verschwindet der Term $1/N(\Sigma w_i)^2$ und der Vorfaktor $\sqrt{1/N(N-1)}$ wird ungefähr 1/N (Dieser Vorfaktor stellt lediglich einen Skalierungsfaktor dar). Somit erhält man aus (9) und (10) für den Inhalt eines Kanals im Histogramm eines Spektrums

(11)
$$W \sim \sum_{i=1}^{N} w_i \pm \sqrt{\Sigma w_i^2}$$

Der Fehler erreicht einen Minimalwert $\Delta W = \sqrt{N}$ für den Fall, in dem alle Phasenraumgewichte gleich sind und entspricht dann dem Fehler einer Poissonverteilten Größe.

Dies ist bei Anwendung der Hit-or-miss Monte-Carlo Methode der Fall, da Ereignisse erzeugt werden, die alle dasselbe Phasenraumgewicht besitzen.

1.3.MONTE - CARLO COMPUTERSIMULATION

Zur Erzeugung der Annihilationskinematiken mit dem Computer wurde das Unterprogramm GENBOD (CERN Programmbibliothek W505) von F.James verwendet, das den Zerfall von Teilchen in ihrem Ruhesystem in andere Teilchen berechnet. Bei Vorgabe der Ruheenergie des zerfallenden Teilchens und der Massen der entstehenden Teilchen würfelt ein Aufruf von GENBOD

- o Die drei Impulskomponenten
- o Die Gesamtenergie
- o Den Gesamtimpuls

für jedes entstehende Teilchen sowie für das gesamte Ereignis ein Phasenraumgewicht, das der Wahrscheinlichkeit für das Zustandekommen des jeweiligen Ereignisses entspricht.

Mit dem Programmpaket BIGBANG (siehe Anhang A) ist es möglich, die einzelnen Annihilationskanäle unter Zuhilfenahme der Hit-or-Miss Monte-Carlo Methode in quasi zufälliger Reihenfolge zu erzeugen.

Die neutralen Pionen besitzen eine Lebensdauer von ca. 10⁻¹⁶ Sekunden. Da dies so kurz ist, daß die neutralen Pionen praktisch wieder am Ort ihres Entstehens in zwei Gammas zerfallen, wurde deren Kinematik durch die Kinematik ihrer Zerfallsgammas ersetzt.

Bei den Resonanzen wurde so verfahren, daß zunächst die Kinematik der Proton - Antiproton Annihilation in die Resonanz und die restlichen Teilchen berechnet wurde, im Anschluss daran der Zerfall der Resonanz in deren Ruhesystem. Nach Lorentztransformation der Kinematik der aus der Resonanz hervorgehenden Teilchen in das Proton - Antiproton Ruhesystem standen alle Teilchen des Endzustandes zur Verfügung. Das gesamte Phasenraumgewicht dieses Ereignisses ergab sich als Produkt aus dem Gewicht der Proton - Antiproton-Annihilation und dem Gewicht des resonanten Zerfalls.

Auf diese Art und Weise wurden jeweils 800.000 Annihilationen erzeugt und auf je eine Magnetbanddatei geschrieben.

Diese Magnetbanddatei war in Sätze zu 25 Bytes Länge eingeteilt. Jedem Ereignis wurde ein Kennsatz vorangestellt, der die Ereignisidentifikation (ID), die Anzahl der Teilchen, die Gesamtenergie der Annihilation in ihrem Schwerpunktsystem und die Nummer des laufenden Ereignisses enthielt. Für jedes Teilchen des Ereignisses gab es einen 'Teilchen-Kinematik-Satz', der die drei Impulskomponenten, die Gesamtenergie, den Gesamtimpuls und den Teilchennamen enthielt.

1.4.ENERGIESPEKTREN DES SUMMENKANALS

In die Energiespektren des Summenkanals sind die Energien sämtlicher im Endzustand der Annihilation auftretenden Teilchen einsortiert, wobei die Statistik jeweils 800.000 Ereignissen entspricht.

1.4.1.Energiespektrum der geladenen Pionen

Abbildung 5. Energiespektrum der geladenen Pionen

Interessant sind bei diesem Energiespektrum der geladenen Pionen die beiden Stufen bei 800 MeV und 900 MeV. Die beiden Stufen werden durch die Pionen (ID=28) bewirkt, die vom Zweikörperzerfall des geladenen ρ -Mesons stammen (Kastenverteilung von 200-900 MeV) und den monoenergetischen Pionen von der Annihilation (800 MeV).

Die monoenergetischen Pionen bei 229 MeV,294 MeV und 386 MeV rühren von der Zweikörperannihilation des Proton - Antiprotonsystems in einen tiefgebundenen Zustand her, dessen Bildung unter Aussendung eines geladenen Pions geschieht (ID=59,60,61).

Die monoenergetischen geladenen Pionen bei 475 MeV und 533 MeV stammen aus der Zweikörperannihilation in das A_2 (ID=12) bzw. das B (ID=20) und ein Pion.

1.4.2. Energiespektrum der neutralen Pionen

Abbildung 6. Energiespektrum der neutralen Pionen

Ins Auge springen in diesem Energiespektrum die monoenergetischen Pionen bei 228 MeV, 294 MeV und 385 MeV, die bei der Bildung eines tiefgebundenen Zustands ausgesendet werden (ID=62,63,64).

Auffallend sind die Höcker bei 780 MeV (ID=9,65), bei 862 MeV (ID=66) und 943 MeV (ID=67) .

Diese entstehen bei den Annihilationskanälen , in denen die Annihilation unter Bildung eines breiten resonanten Zwischenzustands und eines neutralen Pions vor sich geht.

1.4.3.Energiespektrum der Gammas

Abbildung 7. Energiespektrum der Gammas

Die Gestalt des Energiespektrums der Gammas wird hauptsächlich durch Kanäle mit vielen zerfallenden neutralen Pionen bestimmt.

Der Höcker bei 770 MeV und die in diesem Maßstab kaum sichtbaren Stufen bei 850 MeV und 933 MeV kommen durch die radiativen Zerfälle des ω (ID=65), des η (ID=66) und der Proton – Antiproton Annihilation in π° und χ (ID=67) zustande.

Auch hier sieht man Hinweise auf die Existenz tiefgebundener Zustände in Form monoenergetischer Gammas, die im Spektrum bei 173 MeV,223 MeV,400 MeV,429 MeV und 548 MeV deutlich sichtbar sind (ID=54,55,56,57,58).

KAPITEL 2. DIE SIMULATION

Zur Monte - Carlo Computer
simulation des Detektorsystems wurde das Programmpaket 'DETEKTOR' entwickelt (siehe Anhang B) .

2.1.DAS 'STANDARD-DETEKTOR-SYSTEM'

2.1.1.Parametrisierung

Das Programmpaket 'DETEKTOR' simuliert ein Detektorsystem, dessen Geometrie in Abbildung 8 dargestellt ist:

Abbildung 8. Standard Detektor System

Durch eine schmale Öffnung treten Antiprotonen mit niedrigem Impuls (100 MeV/c) in das Detektorsystem ein und treffen in der Mitte auf das Target (T). Die Antiprotonen werden im Target gestoppt und annihilieren mit den Protonen des Targetmaterials, wobei die Stopdichten der Antiprotonen um den Targetmittelpunkt in jede Raumrichtung einer Gaussverteilung gehorchen.

Kapitel 2. Die Simulation

Ausgehend von dem Wechselwirkungspunkt (Vertex) der Antiprotonen mit den Protonen des Targetmaterials breiten sich die Annihilationsprodukte isotrop aus :

Die Richtung der geladenen Teilchen (π, K) wird in einer Driftkammer (DC) gemessen, die das Target in Strahlrichtung zylindrisch umgibt. Um dabei auch deren Impuls bestimmen zu können, ist die gesamte Anordung von einem homogenen Magnetfeld durchsetzt, das durch die Magnetspulen (C) erzeugt wird.

Strahlkammern (BC) vor und hinter der Driftkammer dienen zur Identifikation der einlaufenden Antiprotonen bzw. als Antizähler für geladene Annihilationsprodukte, die die Driftkammer verfehlen.

Die neutralen Teilchen (४) werden in einem modular aufgebauten Kristalldetektor (GD) nachgewiesen, dessen Einzelkristalle kugelförmig um die Driftkammer angeordnet sind.

Trifft nun ein neutrales Teilchen ein Kristallmodul, so konvertiert dessen Energie in Elektronen und Positronen, die sich längs der Kristallachse ausbreiten (Schauerbildung). Die Richtung eines neutralen Teilchens lässt sich hierbei aus der Lage des getroffenen Kristallmoduls bestimmen, dessen Energie aus der Stärke des elektromagnetischen Schauers.

Wahlweise können vor jedem Einzelmodul Plastikszintillatoren als Antizähler (AC) angebracht werden, die ein einlaufendes geladenes Teilchen von einem neutralen Teilchen unterscheiden. Zur Durchführung der Computersimulation wurden für das betrachtete Detektorsystem folgende Annahmen getroffen:⁵

Koordinatensystem

- o Nullpunkt in Targetmitte
- o z Achse in Strahlrichtung
- o x,y Achse senkrecht zur Strahlrichtung

Target

- o Flüssigwasserstoff,Dichte: 0.0708 g/cm³
- o Länge: 3 cm, Durchmesser: 3 cm
- o Breite der Antiprotonen-Stoppverteilung: 1 cm

Driftkammer

- o Länge: 40 cm, Durchmesser: 40 cm
- o Räumliches Auflösungsvermögen in Strahlrichtung: 5000 µm
- o Räumliches Auflösungsvermögen senkrecht zum Strahl: 250 µm
- o Stärke des Magnetfeldes: 1 T
- o Impulsauflösung: 5% (FWHM) bei 300 MeV/c, unterhalb const., oberhalb prop. zu $\mathbf{p}_{\mathbf{k}}$
- o Nachweisuntergrenze: 50 MeV/c

Gammadetektor

- o Innenradius: 34.4 cm
- o Anzahl der Module: 1647
- o Bedeckter Raumwinkel: 99.7%
- o Winkelauflösung: 5°
- o Energieauflösung: 7% (FWHM) bei 100 MeV, sonst prop. zu 1/4√E
- o Nachweisuntergrenze: 10 MeV

Dieser Satz von Parametern charakterisiert das im Programmpaket 'DETEKTOR' realisierte 'STANDARD-DETEKTOR-SYSTEM', von dem im folgenden die Rede sein soll.

⁵ Alle Auflösungen sind FWHM.

Bei der technischen Realisierung eines solchen Detektorsystems wird man aus Gründen der besseren Raumausnutzung allerdings von einer Kugelgeometrie des Gammadetektors zu einer Zylindergeometrie übergehen.

Wie ein solches Detektorsystem aussehen könnte, zeigt Abbildung 9.

Abbildung 9. Detektor-System (praxisnahe Geometrie)

2.1.2. Programmtechnische Realisierung

Mit den erzeugten Annihilationskinematiken wurde nun eine Monte – Carlo Computersimulation des 'STANDARD-DETEKTOR-SYSTEMS' durchgeführt: Dazu wurden für jeden Durchlauf 3.200.000 Annihilationen von der Magnetbanddatei wieder eingelesen und wie folgt verarbeitet.

In dem zylinderförmigen Target wurden zunächst Wechselwirkungspunkte für die Proton – Antiproton Annihilation gewürfelt, deren Verteilung in Abbildung 10 dargestellt ist. Die Breite der Gaussverteilung wurde mit 1 cm so gewählt, daß sie der Stopdichtenverteilung von niederenegetischen Antiprotonen in flüssigem Wasserstoff entsprach.

Abbildung 10. Stopdichtenverteilung der Antiprotonen im Target

Ausgehend vom jeweiligen Vertex wurden die aus der Annihilation hervorgehenden Teilchen auf ihrer Bahn durch das Detektorsystem weiterverfolgt.

Nun gibt es aber Reaktionen der Sekundärteilchen mit dem Targetmaterial, die ihrerseits wiederum neue Teilchen produzieren. Es sind dies vor allen Dingen die Reaktionen der negativ geladenen Pionen mit dem Target-Wasserstoff, wenn diese im Target zur Ruhe kommen /SPU77/:

$$\pi^{-} p \rightarrow n \delta$$
$$\pi^{-} p \rightarrow n \pi^{0}$$

Das Häufigkeitsverhältnis der beiden Reaktionen zueinander ist ungefähr 1/1.55.

Im ersten Fall entsteht ein monoenergetisches Gamma, dessen Energie 129.4 MeV beträgt, im zweiten Fall ein monoenergetisches neutrales Pion, das beim Zerfall ein Gamma-Kastenspektrum von 56 MeV bis 86 MeV erzeugt. Kam nun im Verlauf der Simulation ein geladenes Pion im Wasserstoff des Targets zur Ruhe, so wurde es aus der Liste der Teilchen gestrichen und im Falle des negativen Pions durch die entstehenden neuen Teilchen ersetzt (Unterprogramm 'PISTOP').

Abbildung 11 zeigt die Stopverteilung der geladenen Pionen im Target Abbildung 12 deren Energiespektrum .

Wie daraus hervorgeht, kommt aufgrund der geringen Targetabmessungen nur ein geringer Anteil der geladenen Pionen im Gesamtenergiebereich von 139 MeV bis 147 MeV im Target zur Ruhe.

Abbildung 12. Energiespektrum der stoppenden geladenen Pionen

Die Bahnen der geladenen Teilchen wurden außerhalb des Targets weiterverfolgt und im Falle des Auftreffens auf die Targethalterung (Unterprogramm 'PARDET') oder des Verfehlens der Driftkammer in Strahlrichtung getilgt (Unterprogramm 'CHAMBR').

Die übrig gebliebenen geladenen Teilchen durchquerten die Driftkammer, in der ihr Impuls gemessen wurde (Unterprogramm 'MOMMES').⁶

Als Abhängigkeit der Impulsauflösung vom Impulsbetrag wurde dabei folgender Zusammenhang zugrunde gelegt /WAG80/:

$$\frac{\Delta P}{P} \sim \text{const. 5\% für 50 MeV/c} < P < 300 MeV/c (FWHM)$$

$$\frac{\Delta P}{P} \sim \frac{P_{b}}{P} \text{ sonst, } \frac{\Delta P}{P} = 5\% \text{ bei } P_{o} = 300 \text{ MeV/c} (FWHM)$$

Auch wurde die Raumwinkelabhängigkeit der Impulsauflösung durch folgenden Zusammenhang berücksichtigt:

> $\Gamma(\Theta) \sim \sin(\Theta)$ $\Gamma(\Phi) \sim 1 / \sin(\Theta)$

Hier ist 0 der Winkel der Teilchenbahn zur Strahlachse und ∮ der Meridianwinkel. Γ stellt die Breite der Gaussverteilung dar, nach der die Impulsauflösung für die geladenen Teilchen gewürfelt wurde.

. ...

⁶ Die kaonischen Annihilationskanäle wurden zwar erzeugt, der Nachweis der Kaonen wurde aber bislang noch nicht in die Detektorsimulation mit einbezogen.

Zum Nachweis der Gammaquanten wurde ein ähnliches Verfahren herangezogen:

Aufgrund ihres hohen Durchdringungsvermögens für Materie blieb eine evtl. Konversion von Gammaquanten im Target und im Material der Driftkammer unberücksichtigt. Auf ihrem weiteren Weg wurde untersucht, ob sie durch eine Öffnung unentdeckt aus der Kristallkugel entwichen.

Notwendige, in der Simulation berücksichtigte Öffnungen sind z.B. Targethalterung (5°), Strahlzuführung (5°) und Driftkammerauslese (10°).

Drang ein Gammaquant in ein Kristallmodul ein, wurde die deponierte Energie gemessen (Unterprogramm 'ENEMES')⁷, wobei die Energieauflösung des Gammadetektors nach folgender Abhängigkeit gebildet wurde:

 $\frac{\Delta E}{E}$ ~ $\frac{4\sqrt{E}_{o}}{4\sqrt{E}}$, $\frac{\Delta E}{E}$ = 7% bei E_{o} = 100 MeV (FWHM)

Hier ist ∆E die Gaussbreite der Verteilung zum Würfeln der Energieauflösung eines Kristallmoduls beim Nachweis eines Gammaquants.

Im Anschluß daran wurden die nachgewiesenen Teilchen ihren Namen nach sortiert, in einer Liste zusammen mit den zugehörigen Meßwerten festgehalten (Unterprogramm 'PSORT') und das so erhaltene Ereignis auf die Gültigkeit der physikalischen Erhaltungssätze (Ladung, Impuls, Energie) überprüft (Unterprogramm 'CONLAW').

Handelte es sich um ein kinematisch vollständig erfaßtes Ereignis, wurden auf die in der Liste abgelegten Teilchen Masken der Annihilationskanäle aus Abbildung 2 aufgelegt und getestet, ob ein bekanntes Ereignis nachgewiesen werden konnte (Unterprogramm 'TESTID'). In diesem Falle wurden für spezielle Annihilationskanäle invariante Massen berechnet und in Histogramme eingetragen.

Waren alle Annihilationsereignisse der Magnetbanddatei abgearbeitet , oder stand zur Bearbeitung weiterer Ereignisse keine Rechenzeit mehr zur Verfügung, wurde die Programmausführung durch Ausdrucken eines Abschlussberichts beendet (siehe Anhang B).

⁷ Anm.: Auf eine Simulation der Entwicklung des elektromagnetischen Schauers wurde aus Rechenzeitgründen verzichtet.

2.2.REKONSTRUKTION VON INVARIANTEN MASSEN

Unter der Annahme, daß ein Teilchen in n weitere Teilchen zerfällt, deren Gesamtenergien und Impulskomponenten gemessen werden können, läßt sich die invariante Ruhemasse des ursprünglichen Teilchens über die Umkehrung des relativistischen Impuls-Energie-Satzes gewinnen:

(12) M =
$$\frac{1}{c^2} \sqrt{(\Sigma E_i)^2 - (\Sigma P_i)^2 c^2}$$

Speziell für die Bildung der invarianten Masse von Gammapaaren gilt wegen der verschwindenden Ruhemasse der Gammas

(13)
$$M = \frac{1}{c^2} \sqrt{2E_1 E_2} \cos(1 - \langle \langle \chi_1, \chi_2 \rangle)$$

wobei E_i die gemessenen Gamma-Energien sind und $*({}^{\prime}_1, {}^{\prime}_2)$ der gemessene Zwischenwinkel zwischen zwei Gammas.

Werden nun je zwei nachgewiesene Gammas zur invarianten Masse rekombiniert, so ergibt sich unter Berücksichtigung aller Annihilationsereignisse das folgende Bild:

Abbildung 13. Spektrum der invarianten Masse der rekonstruierten neutralen Pionen

Man erkennt deutlich, daß die meisten Gammapaare um eine invariante Masse von 135 MeV gaussverteilt die Masse des kurzlebigen neutralen Pions ergeben. Die Breite der Verteilung ist dabei bestimmt durch die Energie- und die Ortsauflösung des Gammadetektors.

Kapitel 2. Die Simulation

Ein neutrales Pion gilt dabei als mit großer Wahrscheinlichkeit erkannt, wenn die rekonstruierte Masse in einen Bereich von ±50 MeV um die wirkliche Pionenmasse fällt.

Die Abhängigkeit der Rekonstruktionsrate für neutrale Pionen von den Detektorgrößen Energieauflösung und Ortsauflösung ist für den Fall einer Raumwinkelbedeckung von Ω=99% in der folgenden Tabelle wiedergegeben:

$\Delta E/E$ (FWHM) $\Delta \phi$ (FWHM)	0%	4%	8%	12%	25%	40%
0°	99%	97%	90%	85%	77%	75%
2°	98%	96%	89%	84%	76%	74%
4°	96%	[`] 93%	86%	82%	75%	73%
6°	91%	88%	82%	78%	72%	70%
8°	85%	83%	78%	74%	68%	66%
10°	80%	78%	74%	70%	65%	63%
12°	75%	73%	69%	67%	62%	60%

Rekonstruktionsvermögen des Detektorsystems für neutrale Pionen

Bei der Rekonstruktion der neutralen Pionen treten aufgrund von zufällig zueinander passenden Gammas allerdings auch Fehlrekonstruktionen auf: Dies trifft im besten Fall ($\Delta E/E=0\%$, $\Delta \phi=0^{\circ}$) für ca. 0.5% aller nachgewiesenen Gammas zu, im schlechtesten Fall ($\Delta E/E=40\%$, $\Delta \phi=12^{\circ}$) für ca. 12% aller Gammas.

Ein weiterhin bemerkenswertes Ergebnis ist die Tatsache, daß aufgrund von Fehlrekonstruktionen rund 10% der auftretenden monoenergetischen Gammas, die ja nachgewiesen werden sollen, zu 'falschen' neutralen Pionen wegrekonstruiert werden.

Ein Gesamenergiespektrum der aus den mit dem 'STANDARD-DETEKTOR-SYSTEM' gemessenen Gammas rekonstruierten neutralen Pionen ist in Abbildung 14 wiedergegeben:

Es entspricht dem Gesamtenergiespektrum der neutralen Pionen in Abbildung 6, allerdings sind hier aufgrund des endlichen Auflösungsvermögens des 'STANDARD-DETEKTOR-SYSTEMS' die Linien der monoenergetischen Pionen stark verbreitert.

Abbildung 14. Inklusives Gesamtenergiespektrum der rekonstruierten neutralen Pionen

2.3. INKLUSIVE ENERGIESPEKTREN

Im folgenden soll eine Diskussion der Ergebnisse der Monte – Carlo Computersimulation des 'STANDARD-DETEKTOR-SYSTEMS' an willkürlich herausgegriffenen Beispielen erfolgen.

So wurde z.B in den inklusiven Gesamtenergiespektren (D.h. alle auftretenden Teilchen einer Sorte wurden in ein Histogramm einsortiert) der Gammaquanten und der geladenen Pionen nach Reaktionen der folgenden Art gesucht:

 $\begin{array}{c} \overline{p} p \rightarrow X + \delta \\ \overline{p} p \rightarrow X + \pi \end{array}$

Das Auftreten eines monoenergetischen Gammaquants oder eines monoenergetischen Pions der Gesamtenergie $E_{\chi,\pi}$ weist auf die Existenz langlebiger Zustände mit der Masse

(14) $M_x = \frac{1}{c^2} \sqrt{E_T^2 - 2E_T E_{\chi,\pi}}$, $E_T = 1876 \text{ MeV}$

hin (E_{T} ist die Schwellenenergie des Proton-Antiproton-Systems).

Die Energien der bei der Annihilation entstehenden geladenen Pionen und der Gammaquanten wurden wie beschrieben mit dem 'STANDARD-DETEKTOR-SYSTEM' gemessen.

Das so erhaltene Gesamtenergiespektrum der geladenen Pionen ist in Abbildung 15 wiedergegeben, das Energiespektrum der Gammaquanten in Abbildung 16 . Beim Vergleich mit den direkt erzeugten Energiespektren der geladenen und der neutralen Teilchen (Abbildung 5 und Abbildung 7 ,Detektor unendlich guter Auflösung) fällt insbesondere eine Verschmierung der dort gut sichtbaren Linien monoenergetischer Gammas auf.

Diese Verschmierung wird durch die endliche Energieauflösung des Detektorsystems bewirkt.

Um nun die so erhaltenen inklusiven Gesamtenergiespektren von dem hohen Untergrund zu reinigen, muß man einiges an physikalischem Wissen in die Aufbereitung der inklusiven Spektren investieren.

Kapitel 2. Die Simulation

Abbildung 16. Gemessenes Energiespektrum der Gammas

Kapitel 2. Die Simulation

- 28 -

2.3.1.Reduktion des Untergrundes

Es bietet sich den inklusiven Gesamtenergiespektren an, in nach Teilchenkombinationen zu suchen, die die Rekonstruktion der invariante Masse eines bekannten resonanten Zwischenzustandes erlauben. Diese Teilchen können dann aus dem inklusiven Gesamtenergiespektrum aussortiert werden, denn ihr Ursprung ist bekannt und sie tragen zur Untergrundbildung bei.

Auf diese Weise gelingt es z.B., mit dem 'STANDARD-DETEKTOR-SYSTEM' ungefähr 85% der nachgewiesenen Gammas als zu neutralen Pionen gehörig aus dem inklusiven Energiespektrum der Gammas zu entfernen. Abbildung 17 zeigt, daß sich der Untergrund im inklusiven Energiespektrum der Gammas um fast eine Größenordnung verringert und die Linien monoenergetischer Gammas vor allem im niederenergetischen Bereich des Spektrums klarer hervortreten.

Abbildung 17. Inklusives Energiespektrum der Gammas nach Rekonstruktion der neutralen Pionen

Deutlich sichtbar ist ein Hinweis auf die Existenz eines hypothetischen, breiten 'Gluonium'-Zustands (800 MeV,F=20MeV,ID=68). Dieser Zustand war bislang im Untergrund verborgen und wird unter Aussendung eines Gammaquants einer Energie bei 768 MeV gebildet.

Eine Verbesserung der Unterdrückung des Untergrundes in noch höherem Maße wird erreicht durch die Beschränkung auf Annihilationskanäle, in denen eine nur ungerade Zahl von Gammas auftritt.

Zusätzlich wird durch Anwendung der Energieerhaltung ($\Sigma E = 1877\pm50$ MeV) und der Impulserhaltung ($\Sigma P = \pm 50$ MeV/c) mit hoher Wahrscheinlichkeit sichergestellt, daß alle zur Annihilation gehörigen Teilchen nachgewiesen wurden.

Kapitel 2. Die Simulation

In diesem Falle wurde dann eines der Gammas mit großer Gewißheit bei der Bildung eines tiefgebundenen langlebigen Zustandes freigesetzt.

Durch die Anwendung der Methode der 'ungeraden Gammazahlen' gelingt es, den Untergrund unter den Linien der monoenergetischen Gammaquanten entscheidend zu reduzieren. Der verbleibende Untergrund ist dadurch zu erklären, daß durch Öffnungen im Gammadetektor ein niederenergetisches Gamma (E<50 MeV) entweicht, das aus dem Zerfall eines neutralen Pions stammt, und somit eine ungerade Zahl an Gammas übrigbleibt.

Abbildung 18. Inklusives Energiespektrum der Einzelgammas nach Rekonstruktion der neutralen Pionen

Wie das gegebene Beispiel zeigt, erlaubt das 'STANDARD-DETEKTOR-SYSTEM' z.B. in inklusiven Gammaspektren den Nachweis von Zuständen mit Wahrscheinlichkeiten bis zu 10⁻⁴ bei einer Statistik von nur 3.2 Millionen Annihilationsereignissen.

2.4. EXKLUSIVE ENERGIESPEKTREN

Durch die fast vollständige Überdeckung des Raumwinkels wird durch das vorgestellte Detektorsystem ein kinematisch vollständiges Experiment ermöglicht:

Indem alle Reaktionsprodukte nachgewiesen werden, die aus einer Proton -Antiproton Annihilation hervorgehen, gelingt die Bestimmung der Quantenzahlen eines evtl. gebildeten Zwischenzustandes. Die Überprüfung der Vollständigkeit der Messung wird über die Überprüfung der physikalischen Erhaltungssätze erreicht (Impulssatz, Energiesatz).

2.4.1.Nachweis resonanter Zerfälle

Unter resonanten Zerfällen sind solche Zerfälle zu verstehen, bei denen die Proton – Antiproton Annihilation unter Bildung eines resonanten Zwischenzustandes abläuft.

Im folgenden wird mit dem 'STANDARD-DETEKTOR-SYSTEM' in einigen ausgewählten Annihilationskanälen nach solchen Resonanzen gesucht.

2.4.1.1.RADIATIV ZERFALLENDE RESONANZEN

Als Beispiel für die wichtigen radiativen Zerfälle von Mesonen wurden die Prozesse $\omega \rightarrow \pi^{\circ}$ % und $\eta \rightarrow \%$ % betrachtet. Sie tauchen in den Annihilationskanälen im Endzustand $2\pi^{\circ}$ % bzw. π° 2% mit 2.4% bzw. 0.9% Verzweigungsverhältnis auf.

Ihre Invarianten-Massen-Spektren (Abbildung 19,Abbildung 20) demonstrieren in anschaulicher Weise die gute Separation evtl. störender Kanäle und die hohe Sensitivität der Meßapparatur für alle radiativen Prozesse.

Abbildung 19. Invariante Masse des radiativ zerfallenden Omega

— 32 —

2.4.1.2. IN GELADENE TEILCHEN ZERFALLENDE RESONANZEN

In den Kanälen mit dem Endzustand $\pi^+ \pi^- \pi^0$ (ID=8-10) und $2\pi^+ 2\pi^- \pi^0$ (ID=16-22) wurde nach invarianten Massen gesucht. Die Ergebnisse sind in Abbildung 21 und Abbildung 22 dargestellt. Im Kanal (ID=9) dominiert wie erwartet das 154 MeV breite ρ^0 (769 MeV) neben dem im Verhältnis dazu seltenen f⁰ (1273 MeV) (ID=10). Im Kanal (ID=16) erscheint das nur 9.9 MeV breite ω (782 MeV) und das η (548 MeV) (ID=21), die deutlich über dem nicht in ω 's und η 's zerfallenden Kontinuum auftauchen.

Aus der Breite dieser Resonanzen läßt sich die Massenauflösung des betrachteten Detektorsystems für den Nachweis in geladener Teilchen zerfallender Resonanzen mit ca. 20 MeV abschätzen.

Abbildung 21. Invariante Masse des neutralen Rho

Abbildung 22. Invariante Masse des Omega

2.4.2.Nachweis exotischer Zerfälle

2.4.2.1.BARYONIUM

Hinweise auf exotische Zustände im Proton – Antiproton System wurden in den inklusiven \mathcal{F} -Energiespektren gefunden (ID=54 ff.). Die schmale Breite der \mathcal{F} -Linien weist auf langlebige Zustände hin, die in einem einfachen (q \bar{q})-Bild nicht zu erklären sind, wohl aber als (qq)($\bar{q}\bar{q}$)-Quark-Moleküle mit einem von Null verschiedenen Drehimpuls zwischen den Quarkpaaren.

Ein solcher Zustand wird als Baryoniumzustand bezeichnet und zerfällt mit großer Wahrscheinlichkeit in Mesonen mit $L_{q\bar{q}} > 0$.

Der Endzustand π^+ $\pi^ \pi^0$ χ , wo der in π^+ $\pi^ \pi^0$ zerfallende Anteil aus einem hypothetischen Baryoniumzerfall hervorgeht, ist ein Beispiel für einen solchen seltenen exotischen Kanal:

$$\begin{array}{ccc} \overline{p} & p & \rightarrow & X(L=1) + \mathcal{X} \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \end{array}$$

Bei exklusiver Messung sollte dieser Anteil im invarianten Massenspektrum auftauchen. Wie Abbildung 23 zeigt, ist dies in beeindruckender Weise der Fall.

Selbst so seltene Prozesse wie $X(1421) \rightarrow \pi^+ \pi^- \pi^0$ mit einem Verzweigungsverhältnis von insgesamt nur 4×10^{-5} erscheinen auf sehr kleinem Untergrund.

Der geringe Untergrund zeigt das große Separationsvermögen der Apparatur für verschiedene Annihilationskanäle .

Abbildung 24. Invariante Masse des radiativ zerfallenden Glueballs

Wie aus dem invarianten Massenspektrum des hypothetischen Glueballzerfalls (800MeV, Γ =20MeV) in zwei neutrale Pionen (ID=68) ersichtlich ist, erlaubt ein Detektorsystem der hier vorgeschlagenen Art auch den Nachweis seltener breiter Resonanzen (Abbildung 24).

Einige Kandidaten für solche Zustände sind im Massenbereich zwischen 1400-2200 MeV vorwiegend in radiativen Ψ -Zerfällen gefunden worden, wie z.B. $i/E^{\circ}(1418,\Gamma=52 MeV)$ /FRAN83/.

Der komplizierteste simulierte Prozess ist der Zerfall des E⁰ (ID=70,71,72), welches aus der Proton – Antiproton Annihilation unter Aussendung eines oder mehrerer geladener bzw. neutraler Pionen hervorgeht:

1.)
$$\overline{pp} \rightarrow E^{0} \pi^{0}$$

 $\downarrow \delta \pi^{0}$
 $\downarrow \gamma \gamma^{0}$
2.) $\overline{pp} \rightarrow E^{0} \pi^{0} \pi^{0}$
 $\downarrow \delta \pi^{0}$
 $\downarrow \gamma \gamma^{0}$
3.) $\overline{pp} \rightarrow E^{0} \pi^{+} \pi^{-}$
 $\downarrow \delta \pi^{0}$
 $\downarrow \gamma \gamma^{0}$
 $\downarrow \gamma \gamma^{0}$

Im rein radiativen Fall (2) mit zehn Gammas im Endzustand zeigt Abbildung 26 ,daß selbst hier über einem kombinatorischen Untergrund das breite E⁰ im Spektrum der invarianten $\delta \pi^0$ Masse sehr deutlich zu sehen ist.

Der kombinatorische Untergrund rührt daher, daß Kombinationen der neutralen Pionen, die ausschließlich vom zerfallenden resonanten Teilchen stammen, ununterscheidbar sind von Kombinationen mit neutralen Pionen, die die Annihilation direkt beiträgt.

Der rein radiative Zerfall (1) des E⁰ mit acht Gammas im Endzustand ist um einiges schwieriger nachzuweisen, da unglücklicherweise das Maximum des kombinatorischen Untergrunds im Spektrum der invarianten $\delta \pi^0$ Masse mit dem gesuchten Teilchen zusammenfällt (Abbildung 25).

Zum Nachweis am besten geeignet erscheint der Zerfall des E⁰ (3) mit geladenen Pionen im Endzustand. Hier ist im Spektrum der invarianten $\delta \pi^0$ Masse kein kombinatorischer Untergrund zu erwarten, was auf Abbildung 27 deutlich zu sehen ist.

Abbildung 25. Invariante Masse des E(1418) im Kanal ID=70

Abbildung 26. Invariante Masse des E(1418) im Kanal ID=71

2.5. VARIATION DER PARAMETER

Das hier vorgestellte Detektorsystem stellt das Ergebnis von mit dem Monte – Carlo Computersimulationsprogrammpaket 'DETEKTOR' durchgeführten Optimierungsrechnungen unter Berücksichtigung der technischen Realisierbarkeit dar.

Parallel hierzu wurden Rechnungen angestellt, in denen die Auswirkungen systematischer Veränderungen der optimalen Detektorparameter auf das Nachweisvermögen des Systems studiert wurden:

2.5.1.Gammadetektor

2.5.1.1.VARIATION DER MODULARITÄT

Die Modularität des 'STANDARD-DETEKTOR-SYSTEMS' war festgesetzt auf 1647 Kristallmodule, die zur Kugel zusammengefügt den Gammadetektor bildeten.

Das Zusammenfügen eines Detektorsystems aus Einzelmodulen entspricht einer Quantelung des Raumwinkels beim Nachweis von Gammas.

Da nun in die Bildung der invarianten Massen der neutralen Pionen die gemessenen Zwischenwinkel zwischen den Gammas eingehen, sollte eine Änderung der Modularität des Gammadetektors z.B. auf das Gesamtenergiespektrum der rekonstruierten neutralen Pionen Auswirkungen zeigen.

Bei einer sukzessiven Verringerung der Modularität tritt eine zunehmende Entstellung des Gesamtenergiespektrums der neutralen Pionen auf,von einer leichten Welligkeit bei 1000 Einzelmodulen bis zur völligen Deformation bei nur 45 Einzelmodulen, wie Abbildung 28 bis Abbildung 31 auf eindrückliche Weise belegen.

Verschlechterungen der Ergebnisse treten in gleicher Weise auch in den Spektren der invarianten Massen auf, bei deren Rekonstruktion eines oder mehrere Gammas beteiligt sind.

Um eine aus Gründen zu geringer Modularität evtl. auftretende Welligkeit der Spektren auszugleichen, kann man daran denken, die Quantelung des Raumwinkels durch die Anwendung einer 'stochastischen Verschmierung' der Winkel aufzuheben, wobei die diskreten Winkel nach einer stochastischen Verteilungsfunktion verwürfelt werden.

Abbildung 28. Energiespektrum der rekonstruierten neutralen Pionen (Modularität: 1000)

Abbildung 29. Energiespektrum der rekonstruierten neutralen Pionen (Modularität: 600)

Abbildung 30. Energiespektrum der rekonstruierten neutralen Pionen (Modularität: 150)

Abbildung 31. Energiespektrum der rekonstruierten neutralen Pionen (Modularität: 45)

2.5.1.2.VARIATION DER ENERGIEAUFLÖSUNG

Würde anstelle der Energieauflösung für Gammas von 7% bei 100 MeV ein Wert von 25% bei 100 MeV angesetzt,was in etwa dem Auflösungsvermögen von Bleiglas entspricht, so würde aufgrund der größeren erfolgreiche Energieverschmierung der gemessenen Gammas eine Energiesatzüberprüfung erschwert und damit das sichere Erkennen eines vollständigen Annihilationskanals unmöglich.

Um die Auswirkungen einer schlechteren Energieauflösung für Gammas auf das Nachweisvermögen des 'STANDARD-DETEKTOR-SYSTEMS' zu untersuchen, wurde das Beispiel eines hypothetischen Baryoniumzerfalls gewählt:

 $\begin{array}{c} \overline{p} p \rightarrow X + \delta \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ \end{array}$

Für den Nachweis dieser seltenen Reaktion bedeutet eine Verschlechterung der Energieauflösung eine Verbreiterung der Linien.

Außerdem trägt der Annihilationskanal $\pi^{T} \pi^{-} 2\pi^{0}$ (ID=1) in verstärktem Maße zur Untergrundbildung bei (Abbildung 32).

Abbildung 32. Verringerung der Energieauflösung auf 25%

2.5.1.3. VARIATION DES RAUMWINKELS

Eine Verringerung der Flächenbedeckung des Gammadetektors hat zur Folge, daß nur noch ein Bruchteil der aus der Proton – Antiproton Annihilation hervorgehenden Gammas nachgewiesen werden kann.

Um die Auswirkungen einer geringeren Flächenbedeckung auf das Nachweisvermögen des 'STANDARD-DETEKTOR-SYSTEMS' zu untersuchen, wurde wiederum das Beispiel des hypothetischen Baryoniumzerfalls gewählt:

$$\overline{p} p \rightarrow X + \delta$$

 $\mapsto \pi^+ \pi^- \pi^0$

Auch in diesem Fall trägt der Annihilationskanal $\pi^{\top} \pi^{-} 2\pi^{0}$ (ID=1) aufgrund der größeren Wahrscheinlichkeit des Entweichens eines niederenergetischen Gammaquants in verstärktem Maße zur Untergrundbildung bei (Abbildung 33,Abbildung 34).

Aus den betrachteten Beispielen kann man schließen, daß die Erfassung eines möglichst großen Raumwinkelbereichs ($\Omega > 90\%$) für die Durchführung eines kinematisch vollständigen Experimentes hoher Sensitivität grundlegend wichtig ist.

Abbildung 33. Verringerung der Flächenbedeckung auf 95%

2.5.2.1.VARIATION DER IMPULSAUFLÖSUNG

Eine Verringerung der Impulsauflösung für geladene Teilchen führt prinzipiell dieselben Änderungen in den exklusiven Spektren der invarianten Masse mit sich, wie dies bei der Verringerung der Energieauflösung für neutrale Teilchen der Fall war. Für das Spektrum der invarianten Masse des hypothetischen Baryoniumzerfalls gilt auch hier das dort gesagte (Abbildung 35).

Abbildung 35. Verringerung der Impulsauflösung auf 15%

2.6.ALTERNATIVE LÖSUNGEN

2.6.1.Detektorsystem ohne Magnetfeld

Alternativ zu dem hier vorgestellten 'STANDARD-DETEKTOR-SYSTEM' wurde untersucht, welche Eigenschaften ein entsprechendes Detektorsystem ohne Magnetfeld besitzt. Als Parametersatz wurden die Größen des 'STANFORD-CRYSTAL-BALL' gewählt. Dieser Detektor besteht aus ca. 700 NaJ(T1)-Modulen, bedeckt einen Raumwinkel von ca. 93% - 95% und hat zur Zeit eine Energieauflösung von 10.3% (FWHM) bei 130 MeV.

Wegen der Lichtauslese mit Photomultipliern (Diese können aus Gründen der Lichtintensität nicht durch Photodioden ersetzt werden) läßt er sich nicht in einem Magnetfeld betreiben.

Es wurde dieselbe Driftkammer 'installiert', wie dies bei den Simulationen des 'STANDARD-DETEKTOR-SYSTEMS' der Fall war, doch sind von den geladenen Teilchen wegen des fehlenden Magnetfeldes nur die Richtungskosinusse meßbar, nicht aber Ladungsvorzeichen und der Impulsbetrag.

Die fehlenden Impulsbeträge können für maximal vier geladenen Teilchen aus der Forderung nach Erfüllung der Energieerhaltung und der Impulserhaltung gewonnen werden:

(15)
$$\sum_{n=1}^{n \rightarrow} P_{i} = 0$$

(16) $\sum_{n=1}^{n} E_{i} = 1877 \text{ MeV}$

Sind cx, cy und cz die aus der Messung bekannten Richtungskosinusse des i-ten geladenen Teilchens im Bezug auf die x,y und z-Achse, so erhält man aus (15) und (16) ein Gleichungssystem zur Bestimmung der Impulsbeträge:

III) $cz_1|P_1| + cz_2|P_2| + cz_3|P_3| + cz_4|P_4| = 0$

IV)
$$\left[m_{\pi}^{2}c^{2}+|P_{1}^{2}|\right]^{\frac{1}{2}}+\left[m_{\pi}^{2}c^{2}+|P_{2}^{2}|\right]^{\frac{1}{2}}+\left[m_{\pi}^{2}c^{2}+|P_{3}^{2}|\right]^{\frac{1}{2}}+\left[m_{\pi}^{2}c^{2}+|P_{4}^{2}|\right]^{\frac{1}{2}}=1877 \text{ MeV/c}$$

Die Lösungen dieses nicht linearen Gleichungssystems werden durch Anwendung eines iterativen Verfahrens im Unterprogramm 'MOMENT' ermittelt /AMS84/. Abbildung 36 zeigt die der Abbildung 21 entsprechende Situation:

Während im Kanal mit zwei geladenen Pionen $(\pi^{T} \pi^{T} \pi^{0})$ die ρ^{0} -Rekonstruktion weiterhin recht gut funktioniert, werden die Ergebnisse für Annihilationskanäle, in denen vier geladene Pionen auftreten sehr viel schlechter.

Die ω -Resonanz (Abbildung 37) wird wesentlich breiter und liegt auf einem höheren Untergrund. Das liegt daran, daß hier alle vier kinematischen Gleichungen zur Bestimmung der vier fehlenden Impulse ausgenutzt werden und auf diese Art und Weise keiner der Erhaltungssätze mehr zur Vollständigkeitsüberprüfung für das betrachtete Ereignis herangezogen werden kann.

Wie Abbildung 38 zeigt (entspricht Abbildung 23 auf Seite 37) wird selbst für den Fall der Rekonstruktion nur zweier geladener Pionen bei sehr seltenen Kanälen die Massenrekonstruktion gegenüber dem 'STANDARD-DETEKTOR-SYSTEM' mit Magnetfeld zur Impulsmessung der geladenen Teilchen wesentlich schlechter.

Abbildung 36.

5. Invariante Masse des neutralen Rho (Detektor ohne Magnetfeld)

Abbildung 37. Invariante Masse des Omega (Detektor ohne Magnetfeld)

Abbildung 38. Invariante Masse des hypothetischen Baryoniums (Detektor ohne Magnetfeld)

2.7. SCHLUSSWORT UND AUSBLICK

In der vorliegenden Arbeit wird die Monte - Carlo Computersimulation eines Detektorsystems an einer Rechenanlage beschrieben und deren Ergebnisse diskutiert.

Durch Variation der Parameter der verschiedenen Detektorkomponenten (modularer Cs-J-Detektor,zylindrische Driftkammer) im Rahmen technisch realisierbarer Grenzen wurde die Geometrie des Detektorsystems dahingehend optimiert, daß ein kinematisch vollständiges Experiment zur Untersuchung der Proton - Antiproton Annihilation durchgeführt werden kann.

Insbesondere zeigte sich bei Durchführung der Computersimulationen , daß seltene hypothetische Zwischenzustände, wie z.B. Glueballs, Baryoniumzustände usw. mit sehr hoher Empfindlichkeit nachgewiesen werden können.

Die hier beschriebenen Rechnungen bildeten die Grundlage zur Erstellung eines 'Letter of Intent' für den Bau eines 4π -Detektorsystems zur Untersuchung der Proton - Antiproton Wechselwirkung am LEAR im CERN.

Selbstverständlich kann ein Monte - Carlo Computersimulationsprogramm die experimentelle Wirklichkeit nur näherungsweise nachbilden, da die programmtechnische Verwirklichung eines reellen Parameters Rechenzeit kostet und bei jedem Programmlauf mehrere Millionen Ereignisse verarbeitet werden müssen.

Das Programm-Modell 'DETEKTOR' benötigt in der vorliegenden Version bei der Simulation des 'STANDARD-DETEKTOR-SYSTEMS' (Statistik: 3.2 Millionen Annihilationsereignisse) ca. 1.5 Stunden Rechenzeit auf einer IBM 3081/Siemens 7890 Rechenanlage. Die Statistik ist hierbei zum einen begrenzt durch die Rechenzeit, zum andern durch die Bereitschaft des Bedienungspersonals, Magnetbänder zu montieren.⁸

⁸ Die Datenmenge für 3.200.000 Proton - Antiproton Annihilationen beträgt ca. 700 Megabyte und füllt 4 Magnetbänder (6250 BpI).

Aufgrund der konsequenten Einhaltung des Prinzips der 'Strukturierten Programmierung' sind die Programmpakete modular aufgebaut, so daß es keine Schwierigkeiten bereiten sollte, Ergänzungen und Programmerweiterungen durchzuführen:

- So ist zum Beispiel daran gedacht, die Annihilationsmechanismen zu erweitern und die Proton - Antiproton Annihilation im Fluge zuzulassen, was die Vielzahl der Annihilationskanäle nicht unbeträchtlich bereichern würde.
- Das Separationsvermögen des Detektorsystems für Kaonen könnte getestet werden (π/K-Separation)
- Eine weitere Verbesserung des Programmpakets 'DETEKTOR' könnte darin bestehen, wie bei der Auswertung von experimentellen Daten üblich, einen kinematischen Fit der Meßwerte durchzuführen.
- Wenn das Aufzeichnungsformat der im späteren Experiment anfallenden Daten bekannt wäre, könnten noch vor Beginn des Experimentes Computersimulationen durchgeführt werden, mit dem Ziel, Auswerteprogramme zu erstellen.

Abschließend sei bemerkt, daß trotz einiger Vereinfachungen der physikalischen Realität das vorliegende Modell es nicht nur erlaubt, die Leistungsfähigkeit eines modernen realen Detektorsystems abzuschätzen, sondern sogar bei der Konzeption und der Auswertung von Experimenten eingesetzt werden kann.

ANHANG A. PROGRAMMPAKET BIGBANG

Das Programmpaket 'BIGBANG' wurde in der höheren Programmiersprache FORTRAN77 geschrieben und an der IBM 3081/Siemens 7890 Grossrechenanlage des Rechenzentrums im Kernforschungszentrum Karlsruhe getestet. Es generiert die Annihilationskinematiken der Proton – Antiproton Annihilation im Proton – Antiproton Ruhesystem.

PROGRAMMABLAUF

Im Hauptprogramm 'CREATE' werden zunächst Variablen deklariert und mit Default- bzw. Startwerten versehen. Im Anschluß daran erfolgt die Initialisierung der Histogramme (Verwendung des Unterprogrammpakets HBOOK (CERN)).

In der Hauptschleife, die so oft durchlaufen wird, bis entweder die gewünschte Anzahl der Zerfälle errreicht ist oder keine Rechenzeit mehr zur Verfügung steht, wird das Unterprogramm 'EVENT' aufgerufen, welches in quasi zufälliger Reihenfolge die Kinematik der verschiedenen Annihilationskanäle produziert.

Daraufhin wird untersucht, ob es sich bei dem erzeugten Ereignis um einen sog. Baryoniumzustand handelt. Ist dies der Fall, so wird die Kinematik Annihilation einer weiteren bereitgestellt .eine Lorentztransformation (Unterprogramm 'LORTRN') der Daten vom Ruhesystem des Baryoniums ins Ruhesystem der Proton - Antiproton Annihilation durchgeführt, und das Baryonium durch diese Teilchen ersetzt. Da sich die Wahrscheinlichkeiten der Zerfälle bei Anwendung dieses Verfahrens auf diese Art und Weise äußerst seltene multiplizieren, werden hypothetische Zerfälle von tiefgebundenen Zuständen simuliert.

Im Anschluß daran werden die erzeugten Teilchen sortiert, die Ergebnisse ausgedruckt, die Histogramme gefüllt und die Daten in eine Magnetbanddatei ausgegeben.

Wird die Hauptschleife verlassen, erfolgt die Ausgabe und das Abspeichern der Histogramme, sowie das Ausdrucken eines Abschlußberichts.

EINGABEDATEN

Mit dem Programmpaket 'BIGBANG' ist es dem Benutzer möglich, die Kinematik von Zerfällen beliebiger Art zu erzeugen. So kann z.B. auch eine beliebige Kette ineinander zerfallender Resonanzen berechnet werden, vorausgesetzt, diese Kette terminiert (Oszillationen z.B. können nicht berechnet werden). Nicht berücksichtigt bleiben im Programmpaket auch spinabhängige Vorgänge.

Unter Berücksichtigung dieser Tatsachen erstreckt sich die Kontrolle des Benutzers auf folgende Eingabedaten:

Namelist 'INPUT'

Die Parameter zur Steuerung des Programmablaufs werden durch die Namelist 'INPUT' übergeben. Folgende Parameter sind definiert:

TECM Gesamtenergie der Annihilation im Ruhesystem (MeV)

BARDEC Baryoniumzerfall soll gerechnet werden (Logical)

MAXGEN Anzahl der zu erzeugenden Annihilationen

LOOP Startwert für den Zufallszahlengenerator

ISTORE Dateinummer unter der die Histogramme abgelegt werden

LUNOUT Dateinummer der Magnetbanddatei

NLIST Zahl der zu listenden Ereignisse ('Event-Dump')

Es schließt sich die Eingabe der einzelnen Annihilationskanäle sowie deren Häufigkeiten an. In freiem Format werden die Kenn-Nummer des Kanals und dessen Verzweigungsverhältnis angegeben. Auf der nächsten 'Karte' folgen die Namen der beteiligten Teilchen im Format (16A5). Hierbei können die einzelnen Annihilationskanäle in beliebiger Reihenfolge aufeinanderfolgen. Tritt im Laufe der Programmausführung der Fall ein, daß ein Teilchen nicht erkannt wird, wird ein Hinweis darauf ausgedruckt. Ein Beispiel für eine Benutzereingabe könnte folgendermaßen aussehen:

&INPUT TECM=1876., BARDEC=.TRUE., MAXGEN=100000, LUNOUT=1,NLIST=50 &END 1 9.3 PI+ PI- PIO PIO 2 23.3 PI+ PI- PIO PIO PIO ... 72 0.2 E0 PI+ PI-

Folgende Teilchennamen werden bislang vom Programm erkannt und im Rahmen dessen richtig weiterverarbeitet:

GAMMA, PIO, PI+, PI-, RHOO, RHO-, RHO+, FO, OMEGA, ETA, ETA", KO, K+, K-, K1, K2, KO*, K*O, K*+, K*-, A1-, A2+, A2-, B+, PHI, EO, DELTA, GLUE, B1694, B1638, B1561, B1447, B1421, B1383, B1210

Einfügen und Ändern von Annihilationskanälen

Das Einfügen oder Ändern von Annihilationskanälen kann beim jetzigen Stand des Programmpakets nur über eine Programmänderung vorgenommen werden. Die Annihilationskanäle sind im Unterprogramm 'GETDAT' definiert und können auf einfache Art und Weise ergänzt werden:

Am Beispiel des Zerfalls des neutralen Pions soll dies gezeigt werden:

IF (TYP(I).EQ.'PIO ') THEN	
BARYON(I) = .FALSE.	; Kein Baryoniumzustand
AMASS(I) = 134.9645	; Masse des neutralen Pions in MeV
GAMMA(I) = 0.0	; Breite des neutralen Pions in MeV
NRES(I) = 2	; Zahl der resonanten Teilchen
RTYP(1,I) = 'GAMMA'	; Erstes Teilchen ist ein Gamma
RESPAR(1,I) = 0.0	; Dessen Breite ist Null
RTYP $(2, I) = 'GAMMA'$; dto.
RESPAR(1, I) = 0.0	, dto.
ENDIF	

Selbstverständlich muß dafür Sorge getragen werden, daß alle auftretenden Teilchen definiert sind.

Anhang A. Programmpaket BIGBANG

EVENTDUMP

Beim Entwurf des Programmpakets 'BIGBANG' wurde darauf Wert gelegt, den Verlauf der Generierung der Annihilationskanäle für den Benutzer übersichtlich darzustellen. Durch Angabe des 'NLIST'-Parameters erhält man die folgende Druckerliste:

N#****** N EVENT N######	икиминикини NO. 7 иннокиницият	8 6 8 6 8 6 8 9 9 6 6 6 6 8 9 8 8 8 9	8 H H H H H	ннкихиннкихинк Channel ND. 71 Нахиннки ингич	****** NUM ******	няныныныныныныны BER OF PARTICLE ымынынынынынынын	книппт 2: 3 диййййй	**************************************	няяя , W): мяяяя	нинниннинини 1876.56 Канкалыканы	***	*****	龙志玉金王老永长乐名氏氏 李 华林波察察察察察察察察察察
EO	1516 189	18 I DY	-	71 7710107	t ov -	107 91(3919	1 07 -		-	1621 1162107	1 0	-	147 7955787
pin	116 544		-	E1, 22 J7177	1	-107.0362010	1 72 -	-120,0767014 I E	-	1525.1142397	1 -		182.7735287
810	134.964	47 PX	-	54.20300/9	I PY =	12.4163745	1 2 =	83.1161891 E	2	168,0018513	I P	3	100.0460231
F 1 0	134.964	49 PX	5	-75.5078088	I PY ⊐	95.4199089	PZ =	36.9807129 E		185.4437264	1 P	3	127.1768899
SUHT				-0.0000012		0.0000015		0.0000006		1876.5598174			
RESONAN Decays	T PARTICLE DI Into: delta	ETECTED PIO	1	EQ									
RESONAN Decays	F PARTICLE DI Into: Gamma	ETECTED GANMA	1	P I 0		•							
RESONAN Decays	FPARTICLE D Into: Gamma	ETECTED GAMMA	:	P10									
PCAN NO													
DELTA		nn I											
DELIA	y83.000	UO I PX	=	-16.0080530	IPY =	-459.7037451	PZ =	91.7824939 E	=	1089.1725379	I P	=	469.0499091
P10	134.964	49 PX	3	37.2319699	PY =	351.8674775	PZ =	-211.8793795 E	-	433.9415019	I P	8	412.4194621
GANNA	0.0	I PX	=	24.9192253	PY ≈	-52.8762664	PZ =	0.1990608 E	=	58.4543152	1 P	3	58.4543152
GAMMA	0.0	PX		29.3646622	P.Y. ≂	65.2926408	P.Z = .	82.9171277		109.5475349	P		109.5475349
GAMMA	0.0	I PX	=	-62.0021991	PY =	74.2751879	PZ =	86.5956935 E	=	129.8456405	I P	3	129.8456405
GAMMA	0.0	1 PX	7	-13,5056092	PY =	21.1447203	PZ =	-49.6149809 E	=	55.5980845	I P		55.5980845
SUM				-0,0000039		0.0000149		0.0000155		1876.5596150			
RESONANI Decays	FPARTICLE DI Into: Etau	ETECTED PIO	:	DELTA									
RESONANT Decays	Í PARTICLE DI Into: Gamma	ETECTED GANMA	: 1	P I 0				н 					
	1												
CIMMA													
CAMMA	0.0	I PX	=	24.9192253	1 PY =	-52.8762664	PZ =	0.1990608 E	=	58.4543152	I P	=	58.4543152
CAMMA	0.0	I PX	=	29.3646622	I PY ≍	65.2926408	PZ =	82.9171277 E	3	109.5475349	I P	Ξ	109.5475349
GANNA	0.0	I PX	=	-62.0021991	PY =	74.2751879	PZ =	86.5956935 E	= .	129.8456405	I P	=	129.8456405
GAMMA	0.0	I PX	*	-13.5056092	PY =	21.1447203	PZ =	-49.6149809 E	=	55.5980845	I P		55.5980845
EIAU	548.8000	05 PX	3	235,1848873	I PY ⇒	-359.2014267	PZ =	259.3528354 E	=	743.4937679	I P	=	501.5989328
P10	134.9640	49 PX	=	-251.1929410	PY =	-100.5023393	PZ =	-167.5703373 E	=	345.6738192	I P	=	318.2427246
GAMMA	0.0	I PX	Ħ	-33.2706360	PY =	222.1058704	PZ =	-88.0851646 E	=	241.2404384	I P	-	241.2404384
GAMMA	0.0	I PX		70,5026056	PY =	129.7616046	PZ =	-123.7942134 E	=	192.7010605	P	=	192.7010605
SUM:				-0.0000048		-0.0000083		0.0000212		1876.5596613			
RESONANT Decays I	PARTICLE DE NTO: GAMMA	ETECTED GAMMA	:	ETAO									
RESONANT Decays I	PARTICLE DE NTO: GAMMA	ETECTED GAMMA	1	P10									
SCAN NO.	4												
GAMMA	0.0	I PX	=	24.9192253	PY ≃	-52.8762664	PZ =	0.1990608 E	=	58.4543152	1 P	=	58.4543152
GAMMA	0.0	I PX	=	29.3646622	PY =	65.2926408	PZ =	82.9171277 E	=	109.5475349	1 P	=	109.5475349
GAMMA	0.0	I PX	=	-62.0021991	PY =	74.2751879	PZ =	86.5956935 E	=	129.8456405	ΙP	=	129.8456405
GAMMA	0.0	I PX	2	-13.5056092	PY =	21.1447203	PZ =	-49.6149809 E	=	55.5980845	ĺΡ	=	55.5980845
GAHHA	0.0	PX		-33.2706360	PY =	222.1058704	IPZ ≂	-88.0851646 E	7	241.2404384	P	-	241.2404384
GANNA	0.0	PX	=	70.5026056	PY =	129.7616046	PZ =	-123.7942134 E	=	192.7010605	I P		192.7010605
GAMMA	0.0	PX	3	-113.0463162	PY =	70.3960011	PZ =	1.1546643 I F	=	133.1780756	Í P	=	133.1780756
GAMMA	0.0	PX	=	348,2311815	PY =	-429,5973943	I P7 =	258,1981464 F	=	610.3156231	1 P	=	610.3156231
GAMMA	0.0	I PY		-142,9750917	PY =	-110.6110461	1 97 -	-151, 3938562 F	-	235.7935473	i P	-	235.7935473
GAHHA	0.0	I PY	æ	-108.2178454	PY =	10.1087054	1 97 -	-16 1706739 5	-	109.8852695	I P	=	109.8852695
5UM 1				-0.0000250		0.0000258		-0.000013		1876.5575876			

ABLAUFDIAGRAMM

— 59 —

14

Anhang A. Programmpaket BIGBANG

PROGRAM CREATE C** *********** ** C** ** C** ** THIS IS THE PROGRAM TO CREATE A SAMPLE OF DECAY CHANNELS C** ** FROM PROTON-ANTIPROTON-ANNIHILATION AT REST ON LINE. C** THE EVENTS ARE RANDOMIZED ACCORDING TO THE BRANCHING RATIOS ** C** DEFINED IN ROUTINE 'GETID'. ** C**** C** VERSION: DOUBLE PRECISION >>>> <<<< ** C** ** USE OF SUBROUTINE 'TOTAPE' TO WRITE ON TAPE. C** *** ==> ** C** DCB:BLKSIZE=32500,LRECL=25,DEN=4 (6250 BPI) C** ** C** ** OUTPUT SWITCHED TO FORTRAN UNIT #LUNOUT. ==> C** ** C** LANGUAGE : FORTRAN77 ** C** ** PROGRAMMER: MARCEL KUNZE/KFK C^{**} ** VERS.4.0 :01-FEB-85 C** ** C** EXTENDED VERSION : ** C*** ** ----C** PROGRAM 'CREATE' NOW ENABLES 'BARYONIUM-DECAY'. *** C* C****************************** C* TYPE DECLARATIONS * C***************** C*IMPLICIT REAL*8 (A-H,O-Z) C* COMMON /STATIS/ WTMAX, FWT, KNT, NEV COMMON /RESNC/ YIELD, AMASS, GAMMA, NRES, RESPAR, EMIN COMMON /FLAGOP/ LIST, BARYON C* LOGICAL LIST, TIMOUT, BARDEC, BARYON(50) C* CHARACTER TYP(50)*5, INPTYP(50, 100)*5 CHARACTER TYPB(50)*5 C* DIMENSION YIELD(100), AMASS(50), BMASS(50), GAMMA(50) DIMENSION NRES(100) , RESPAR(50, 100), EMIN(100) DIMENSION PCM(5,50), PCMB(5,50), WTMAX(100), IDNUM(100) C* NAMELIST / INPUT / TECM, MAXGEN, LOOP, ISTORE, LUNOUT, BARDEC, & NCHAN, NLIST C* DATA IDNUM/100*0/ DATA PCM/250*0.D0/ '/,TYPB/50*' DATA TYP/50*' '/, INPTYP/5000*' '/ C* C* SET DEFAULT VALUES C* C* TECM = 1876.56= 1 LOOP MAXGEN = 100000

Anhang A. Programmpaket BIGBANG

ISTORE = 0LUNOUT = 0BARDEC = .FALSE. NCHAN = 200NLIST = 100C* FWT = 1.00KNT = 0 C* C* INITIALIZE HBOOK С* C* CALL HBOOK (NCHAN) C* C* ADJUST TIME PARAMETER C* C* TOSTRT = ZEIT(0)TIMOUT = .FALSE.C* C* START EXECUTION C* C* PRINT 100 100 & ***** & & & C* C* READ INPUT DATA C* C* READ (5, INPUT) C* NCHAN = 0C* 200 READ (5,*,END=400) ID,YIELD(ID) READ (5,300) (INPTYP(I,ID),I=1,16,1) 300 FORMAT(16A5) NCHAN = MAX(NCHAN, ID)GOTO 200 C* 400 CONTINUE DO 700 ID=1,NCHAN,1 PRINT 500, ID, TECM, YIELD(ID) FORMAT ('0', 'CHANNEL NO.', 13,/, '', 'TOTAL CM - ENERGY :', F10.5, 5X, 'YIELD :', F10.5,' %') 500 & PRINT 600,(INPTYP(I,ID),I=1,16,1) FORMAT ('','PARTICLES :',16A7) 600 700 CONTINUE C* PRINT 800 FORMAT('1',125('*'),/, 800 ' ',55X, 'PARTICLES'' KINEMATICS:',/, ' ',125('*')) & & C* C* ADJUST RANDOM GENERATOR

```
C*
      C*
      DO 900 I=1,LOOP,1
      X = RNDM2(I)
900
      CONTINUE
С*
C********************************
C**
       GRAND PARTICLE LOOP
                              **
C*
      DO 2200 WHILE (NEV.LT.MAXGEN.AND.(.NOT.TIMOUT))
C*
C*
      COUNT EVENTS ...
C*
      NEV = NEV + 1
C*
C*
      SET LIST FLAG
C*
           = ((NEV.LE.NLIST).OR.(MOD(NEV,20000).EQ.0))
      LIST
C*
      CALL EVENT (ID, NPTOT, PCM, TYP, INPTYP, TECM, NCHAN)
C*
C*
      COUNT THE CHANNELS' FREQUENCY ...
C*
      IDNUM(ID) = IDNUM(ID) + 1
C*
C*
C*
      IS THERE BARYONIUM?
C*
      . . . . . . . . . . . . . . . . . . .
C*
      IF (BARDEC) THEN
C*
C*
      LET THE BARYONIUM STATES DECAY ...
C*
      I = 0
      DO 1500 WHILE (I.LT.NPTOT)
      I = I + 1
C*
      IF (BARYON(I)) THEN
C*
        IF (LIST) PRINT 1100, AMASS(I)
        FORMAT('0', 'BARYONIUM (', F6.1, ') DECAYS :')
1100
C*
        DO 1200 J=1,NPTOT,1
        BMASS(J) = AMASS(J)
1200
        CONTINUE
C*
        BARMAS = AMASS(I)
C*
        CALL EVENT (IDB, NPTOTB, PCMB, TYPB, INPTYP, BARMAS, NCHAN)
C*
        DO 1300 J=1,NPTOTB,1
        TYP(NPTOT+J)
                       = TYPB(J)
        PCM(1,NPTOT+J) = PCMB(1,J)
        PCM(2,NPTOT+J) = PCMB(2,J)
        PCM(3,NPTOT+J) = PCMB(3,J)
        PCM(4, NPTOT+J) = PCMB(4, J)
        PCM(5, NPTOT+J) = PCMB(5, J)
```

Anhang A. Programmpaket BIGBANG
1300 C*	BMASS(NPTOT+J) = AMASS(J) CONTINUE
С* С*	LORENTZ - TRANSFORMATION
C*	CALL LORTRN (BARMAS, PCM(1, I), NPTOTB, PCM(1, NPTOT+1))
C*	NPTOT = NPTOT + NPTOTB
1400 C*	DO 1400 J=1,NPTOT,1 AMASS(J) = BMASS(J) CONTINUE
C *	TYP(I) = 'PURGE' CALL PSORT (NPTOT, PCM, TYP)
0	ENDIF
C* C*	(* BARYON *)
1500 C*	CONTINUE
_ .	ENDIF
C* C*	(* BARDEC *)
C*	PRINT FINAL EVENT DATA
し^ C*	
	IF (LIST) THEN PRINT * PRINT *,'FINAL DATA:' CALL OUTPUT (ID,NPTOT,PCM,TYP,TECM) ENDIF
C* C*	FILL THE HISTOGRAMS
C*	• • • • • • • • • • • • • • • • • • • •
C*	DO 1600 I=1,NPTOT,1
•	IF (TYP(I).EQ.'PI+ '.OR.TYP(I).EQ.'PI- ')
a.l.	&CALL HFILL (01,PCM(4,I),0.,FWT)
C.×	IF (TYP(I).EQ.'GAMMA')
C*	acall AFILL (02,FCM(4,1),0.,FWI)
	IF (TYP(I).EQ.'K+ '.OR.TYP(I).EQ.'K- ') THEN CALL HFILL (04,PCM(4,I),0.,FWT)
	ELSE IF (TYP(I)(1:1).EQ.'K') CALL HFILL (03,PCM(4,I),0.,FWT) ENDIE
C*	
1600 C*	CONTINUE
C*	SAVE EVENT DATA ON FORTRAN UNIT #LUNOUT
C* C*	
C*	IF (LUNOUT.GT.0) CALL TOTAPE (ID,NPTOT,PCM,TYP,TECM,LUNOUT)
C*	RUN TIME CHECK

```
C*
      •••••
C*
      CALL TIMEL (TLEFT)
      TIMOUT = (TLEFT.LE.5)
C*
2200
      CONTINUE
C*
C*
      CLOSE FILE ON FORTRAN UNIT #LUNOUT
C*
      C*
      IF (LUNOUT.GT.O) END FILE LUNOUT
C*
C*
      PRINT A FINAL REPORT
C*
      C*
      ITIME = INT(ZEIT(TOSTRT))
      MIN = ITIME/60
      ISEC = MOD(ITIME, 60)
      PRINT 2300, MIN, ISEC, KNT, NEV
2300 FORMAT('0',///,
             ' EXECUTION TIME :',I3,' MINUTES ',I3,' SECONDS .',/,
' CREATED EVENTS :',I10,/,
' GOOD EVENTS :',I10,/)
     &
     &
     &
      PRINT 2400
2400 FORMAT('1',25X,'FINAL REPORT :')
      DO 2600 ID=1,NCHAN,1
      PERCTG = IDNUM(ID)/FLOAT(NEV) * 100.0
      PRINT 2500, ID, IDNUM(ID), PERCTG, WTMAX(ID)
     FORMAT(' ',5X,'CHANNEL NO.',I3,':',I8,' EVENTS.',
& '==>',F9.4,'% MAX.WEIGHT:',F20.15)
2500
     &
2600 CONTINUE
C*
C*
      PRINT THE HISTOGRAMS
C*
      C*
      CALL HSTAR(0)
      CALL HISTDO
      IF (ISTORE.GT.0) THEN
        CALL HWRITE(0, ISTORE)
        PRINT 2700, ISTORE
2700
        FORMAT ('0','>>>> HISTOGRAMMS STORED ON FORTRAN UNIT #',I3)
      ENDIF
C*
      STOP
      END
```

C* SUBROUTINE HBOOK (NCHAN) C* ***** C* C* THIS ROUTINE SETS UP HISTOGRAM - BOOKING. C* C* PROGRAMMER : MARCEL KUNZE C* : FORTRAN 77 LANGUAGE C* VERSION 1.0: 22-AUG-84 C* IMPLICIT REAL*8 (A-H,O-Z) C* COMMON / / HMEMOR(16000) C* C* INITIALIZE HBOOK C* С* IF (NCHAN.LE.O) NCHAN = 100C* CALL HLIMIT (16000) C* C* NAME THE HISTOGRAMS ... C* CALL HBOOK1 (01, 'ENERGIE-SPEKTRUM DER GELADENEN PIONEN\$', & NCHAN, 0., 1000., 0.) CALL HBOOK1 (02, 'ENERGIE-SPEKTRUM DER GAMMAS\$', & NCHAN, 0., 1000., 0.) CALL HBOOK1 (03, 'ENERGIE-SPEKTRUM DER NEUTRALEN KAONEN\$', & NCHAN, 0., 1000., 0.) CALL HBOOK1 (04, 'ENERGIE-SPEKTRUM DER GELADENEN KAONEN\$', & NCHAN, 0., 1000., 0.) C* C* DRAW ERROR BARS С* CALL HBARX(0) C* RETURN END

C*	***************************************
	SUBROUTINE EVENT (ID, NPTOT, PCM, TYP, INPTYP, TECM, NCHAN)
C*	*********************
C*	
C*	THIS POUTINE PROVIDES KINEMATIC DATA (MOMENTA AND ENERGY)
0.%	FOR A SINCLE FUENT
0	FOR A SINGLE EVENI.
0.4	
U**	LANGUAGE : FURTRAN //
()77 ()7	PROGRAMMER: MARCEL KUNZE/KFK
C*	VERS.2.0 : 15-JAN-84
C*	
	IMPLICIT REAL*8 (A-H,O-Z)
C*	
	COMMON /RESNC/ YIELD, AMASS, GAMMA, NRES, RESPAR, EMIN COMMON /STATIS/ WTMAX, FWT, KNT, NEV
	COMMON /FLAGOP/ LIST BARYON
C*	Sounda / HEROOT/ HIDT, BIRTON
U	DIMENSION VIETD(100) AMASS(50) $CAMMA(50)$
	DIMENSION NEE(100), $AMASS(50)$, $GAMMA(50)$
	DIMENSION NRES(100), RESPAR(S0, 100), EMIN(100) DIMENSION OLDNAS(SO) NDESO(100)
	DIMENSION ULDMAS(SU), NRESU(100)
71.L	DIMENSION $PGM(5, 50)$, $RPGM(5, 50)$, $WIMAX(100)$
<u>ل</u> م ا	
	CHARACTER TYP(50)*5, RTYP(50, 50)*5
a.	CHARACTER INPTYP(50,100)*5
C.×	
	LOGICAL MISS,NOID,BADMAS,VETO,MAXTRY,RESONA,LIST,BARYON(50)
C*	
C*	GET AN EVENT-ID ACCORDING TO THE BRANCHING RATIOS
C*	
C*	
	NOID = .TRUE.
	DO 100 WHILE (NOID)
	CALL GETID(ID, NCHAN, YIELD)
	NOID = $(INPTYP(1, ID), EQ, ' ')$
100	CONTINUE
C*	
C*	EVALUATE EVENT DATA
C*	
C*	
U	<u>CALL GETINAT (IN NETOT INETVE(1 IN) RTVE</u>)
C*	onde oerbar (ib, artor, im in (i, ib), arti)
0	
C*	
0	DO 200 I-1 NDOID 1
	DU 200 I=1, NPOLD, I
	ULDMAS(1) = AMASS(1)
000	NRESU(1) = NRES(1)
200	CONTINUE
C.**	· · · · · · · · · · · · · · · · · · ·
C.**	START CREATING EVENT DATA (HIT-OR-MISS-MONTE-CARLO)
C*	• • • • • • • • • • • • • • • • • • • •
C*	
	MISS = .TRUE.
	DO 2400 WHILE (MISS)
	KNT = KNT + 1
C*	
C*	RESTORE INITIAL VALUES
C*	
	FWT = 1.D0
	NPTOT = NPOLD

C*	
	DO 400 I=1,NPTOT,1
	AMASS(I) = OLDMAS(I)
	TYP(I) = INPTYP(I, ID)
	NRES(I) = NRESO(I)
400	CONTINUE
-+00 C*	
0	
	MAXTER = 0
500	METTO - TALDE,
500	VEIU = .IRUE.
C ^{**}	
~ .	DO 1100 WHILE (VETO)
C**	
C ³⁴	AFTER TRYING TOO MANY TIMES, CHOOSE ANOTHER EVENT-ID
C*	
	IF (MAXTRY) THEN
	FWT = 1.DO
	NTRY = 0
	NSCAN = 0
	NOID = .TRUE.
	DO 600 WHILE (NOID)
	CALL GETID(ID.NCHAN, YIELD)
	NOID = (INPTYP(1, ID), EO, ' ')
600	CONTINUE
000	IF (LIST) PRINT $*$ 'NO CONVERGENCE NEW ID CHOSEN' ID
Cš	II (HIDI) ININI , NO CONVENCENCE. NEW IE CHOELN, JE
C*	FVATUATE FVENT DATA
C*	EVENORIE EVENI DAIR
C*	
0	
C*	GRED GEIDRI (ID, MEIOI, IMEIII (I, ID), KIII)
0	
C*	NFOLD - NFIOI
0	DO ZOO I-1 NDOID 1
	DU / UU I = 1, NFULD, I
	OLDMAS(I) = AMASS(I)
	NRESU(1) = NRES(1)
700	TYP(1) = INPTYP(1, ID)
/00	CONTINUE
~ •	ENDIF
C**	
C*	RESONANT INTERMEDIATE STATE (GAMMA>0) ?
C*	• • • • • • • • • • • • • • • • • • • •
C*	
	DO 900 I=1,NPTOT,1
Сж	
	IF (GAMMA(I).GT.0.0) THEN
	BADMAS = .TRUE.
	DO 800 WHILE (BADMAS)
	CALL LORDIS (OLDMAS(I), GAMMA(I), AMASS(I))
	BADMAS = (AMASS(I).LE.EMIN(I))
800	CONTINUE
	ENDIF
C*	
900	CONTINUE
C*	
- C*	CHECK ENERGY CONSERVATION
 C*	
C*	
0.	FSUM - 0 0
	1500 - 0.0

	DO 1000 I = 1 NPTOT 1
	ESUM = ESUM + AMASS(T)
1000	CONTINIF
1000 C*	GONTINGE
0.0	$\lambda \mu \nu D V - \lambda \nu \mu D V \pm 1$
	MAXTDY = (MTDY CT 100)
	MAXIRI = (NIRI.GI.100)
1100	VEIU = (ESUM.GE.IEUM)
1100	CONTINUE
C * ·	
U**	GO ONDO GENBOD
C.4	
	CALL GENBOD (ID, NPTOT, PCM, TYP, TECM, AMASS, WT)
O.I.	FWT = FWT * WT
C.a	
	RESONA = .TRUE.
<u></u>	NSCAN = 0
U n .	DO 2200 VILLE (DECOMA)
	$\frac{1}{1}$
C*	NOCAN - NOCAN + I
0	TE (TIST) THEN
	$\frac{1}{1} \frac{1}{1} \frac{1}$
	CALL OUTPUT (ID NETOT ECM TYP TECM)
	ENDIF
C*	
C*	RESONANT STATE ?
C*	·····
C*	
	NDEC $= 0$
	NPNEW = NPTOT
	DO 1800 I=1,NPTOT,1
C*	
	IF (NRES(I).GT.0) THEN
С*	
	IF (LIST) THEN
	PRINT*
	PRINT, RESONANT PARTICLE DETECTED : ,TYP(1)
1600	PRINT 1600, (RTYP(J, I), J=I, NKES(I), I)
1000	FURMAT(, DECAYS INTU: ,16A/)
C*	FUDTL
0	NDEC $-$ NDEC \pm 1
C*	MDEC = MDEC + I
0	CALL RESDEC
S	(ID NRES(I) RPCM RTVP(1 I) AMASS(I) PCM(1 I) RESPAR(1 I) RWT)
C*	
C*	FINAL WEIGHT
C*	
	FWT = FWT * RWT
C*	
C*	TRANSFER RESONANCE DATA IN ARRAY PCM
C*	
C*	1)PURGE RESONANT PARTICLE
C*	
	TYP(I) = 'PURGE'
C.**	
C.22	2)TRANSFER RESONANCE DATA IN 'PCM'
U?	

1700	DO 1700 J=1,NRES(I),1 TYP(NPNEW+J) = RTYP(J,I) DO 1700 L=1,5,1 PCM(L,NPNEW+J) = RPCM(L,J)	
C*	CONTINUE	
C*	NPNEW = NPNEW + NRES(1)	
C*	ENDIF	
1800 C* C*	CONTINUE (* TEST PARTICLES *)	
a 1	IF (NDEC.GT.0) THEN NPTOT = NPNEW	
C* C*	SORT THE PARTICLES	
C .*	CALL PSORT (NPTOT, PCM, TYP)	
C* C*	EVALUATE RESONANCE DATA	
C*	CALL GETDAT (ID,NPTOT,TYP,RTYP)	
- ·	DO 2200 WHILE (VETO)	
C* C*	AFTER TRYING TOO MANY TIMES, CHOOSE ANOTHER EVENT-ID	
с.ч.	IF (MAXTRY) GOTO 500	
C*	RESONANT INTERMEDIATE STATE (GAMMA>0) ?	
C* C*	••••••	
C*	DO 2000 I=1,NPTOT,1	
	<pre>IF (GAMMA(I).GT.0.0) THEN BADMAS = .TRUE. DO 1900 WHILE (BADMAS) CALL LORDIS (OLDMAS(I),GAMMA(I),AMASS(I)) BADMAS = (AMASS(I).LE.EMIN(I))</pre>	
1900	CONTINUE ENDIF	
C* 2000 C*	CONTINUE	
C*	CHECK ENERGY CONSERVATION	
C*		
2100 C*	ESUM = 0.0 DO 2100 I=1,NPTOT,1 ESUM = ESUM + PCM(4,I) CONTINUE	
2200	NTRY = NTRY + 1 MAXTRY = (NTRY.GT.100) VETO = (ESUM.GE.TECM) CONTINUE	
С*	ELSE	

```
RESONA = .FALSE.
         ENDIF
C*
2300
       CONTINUE
C*
        (* RESONA *)
C*
C*
       HIT OR MISS - MONTE CARLO
С*
        C*
C*
       ADJUST THE CHANNELS' MAXIMUM WEIGHTS ...
C*
       IF (FWT.GT.WTMAX(ID)) WTMAX(ID) = FWT
C*
           = DRNDM(I) * WTMAX(ID)
       RN
       MISS = (FWT.LT.RN)
       IF (LIST.AND.MISS) PRINT*, 'EVENT MISSED: TRY AGAIN.'
C*
2400
     CONTINUE
C*
C*
      SET WEIGHT OF THIS EVENT TO ONE...
C*
     FWT = 1.D0
C*
     RETURN
     END
С*
     ***********************
     FUNCTION DRNDM(DUMMY)
C*
     *****
C*
      THIS ROUTINE ADAPTS RANDOM NUMBERS FOR REAL*8 USE.
C*
      IMPLICIT REAL*8 (A-H,O-Z)
     DRNDM = (RNDM2(DUMMY)*1.E8 + RNDM2(DUMMY))/1.E8
     RETURN
```

END

```
C*
     SUBROUTINE GETID(ID, NCHAN, YIELD)
C*
     *****
C*
С*
     THIS SUBROUTINE CREATES ID-NUMBERS ACCORDING TO THE
C*
     BRANCHING RATIOS FOR THE PBP-ANNIHILATION CHANNELS
     SPECIFIED IN 'YIELD' .
C*
C*
C*
     LANGUAGE : FORTRAN 77
C*
     PROGRAMMER : MARCEL KUNZE/KFK
C*
     VERS.2.0
                : 01-FEB-85
C*
     IMPLICIT REAL*8 (A-H,O-Z)
C*
     DIMENSION YIELD(100)
C*
     LOGICAL SETUP
C*
     DATA SETUP /.TRUE./
C*
     IF (SETUP) THEN
       SUM = 0.D0
       DO 50 I=1,NCHAN,1
       SUM = SUM + YIELD(I)
50
       CONTINUE
C*
       SETUP = .FALSE.
C*
     ENDIF
C*
     CREATE A RANDOM NUMBER BETWEEN 0% AND SUM%
C*
C*
     X = RNDM2(DUMMY) * SUM
C*
C*
     LOOK FOR THE ID'S PERCENTAGE
C*
     BRSUM = 0.D0
     ID
           = 0
     DO 100 WHILE (ID.LE.NCHAN.AND.BRSUM.LT.X)
     ID
           = ID + 1
     BRSUM = BRSUM + YIELD(ID)
100
     CONTINUE
C*
     RETURN
     END
```

```
C*
      SUBROUTINE GETDAT (ID, NPTOT, TYP, RTYP)
C*
      *****************
C*
С*
      THIS ROUTINE PROVIDES PARTICLE DATA FOR A SINGLE EVENT.
C*
C*
               : FORTRAN 77
      LANGUAGE
C*
      PROGRAMMER: MARCEL KUNZE/KFK
C*
      VERS.1.0 : 01-FEB-85
C*
      IMPLICIT REAL*8 (A-H,O-Z)
C*
      COMMON /RESNC/ YIELD, AMASS, GAMMA, NRES, RESPAR, EMIN
      COMMON /FLAGOP/ LIST, BARYON
C*
      DIMENSION YIELD(100), AMASS(50), GAMMA(50)
      DIMENSION NRES(100), RESPAR(50, 100), EMIN(100)
C*
      CHARACTER TYP(50)*5, RTYP(50, 50)*5
C*
      LOGICAL NOMORE, LIST, BARYON (50)
C*
С*
      EVALUATE EVENT DATA
C*
      . . . . . . . . . . . . . . . . . . . .
C*
      Ι
             = 0
      NOMORE = .FALSE.
      DO 200 UNTIL (NOMORE)
        I
               = I + 1
                                              ')
        NOMORE = (I.GE, 50.OR.TYP(I).EQ.')
C*
C*
        LOOK FOR THE PARTICLES
C*
        IF (.NOT.NOMORE) THEN
C*
         IF (TYP(I).EQ. 'PURGE') THEN
           BARYON(I) = .FALSE.
           AMASS(I)
                        = 0.0
                        = 0.0
           GAMMA(I)
                        = 0
           NRES (I)
         ELSEIF (TYP(I).EQ.'GAMMA') THEN
            BARYON(I)
                       = .FALSE.
                        = 0.0
           AMASS(I)
                        = 0.0
           GAMMA(I)
           NRES (I)
                        = 0
         ELSEIF (TYP(I).EQ. 'PIO ') THEN
            BARYON(I)
                       = .FALSE.
                        = 134.9645
           AMASS(I)
                        = 0.0
           GAMMA(I)
           NRES (I)
                        = 2
                      = 'GAMMA'
           RTYP(1,I)
                       = 'GAMMA'
           RTYP(2,I)
           \operatorname{RESPAR}(1,I) = 0.0
           \operatorname{RESPAR}(2,I) = 0.0
         ELSEIF (TYP(I).EQ.'PI+
                                  ') THEN
                       = .FALSE.
            BARYON(I)
                        = 139.5688
            AMASS(I)
           GAMMA(I)
                        = 0.0
           NRES (I)
                        = 0
```

— 73 —

```
ELSEIF (TYP(I).EQ. 'PI- ') THEN
  BARYON(I)
              = .FALSE.
              = 139.5688
  AMASS(I)
  GAMMA(I)
              = 0.0
  NRES (I)
              = 0
ELSEIF (TYP(I).EQ. 'RHOO ') THEN
  BARYON(I)
              = .FALSE.
  AMASS(I)
              = 769.0
  GAMMA(I)
              = 154.0
  NRES (I)
              = 2
              = 'PI+
  RTYP(1,I)
              = 'PI-
                       t
  RTYP(2,I)
  RESPAR(1, I) = 139.5688
  RESPAR(2, I) = 139.5688
ELSEIF (TYP(I).EQ. 'RHO- ') THEN
  BARYON(I)
             = .FALSE.
  AMASS(I)
              = 769.0
  GAMMA(I)
              = 154.0
  NRES (I)
              = 2
              = 'PI-
  RTYP(1,I)
                       t
              = 'PIO
  RTYP(2,I)
  RESPAR(1,I) = 139.5688
  RESPAR(2, I) = 134.9645
ELSEIF (TYP(I).EQ. 'RHO+ ') THEN
  BARYON(I) = .FALSE.
              = 769.0
  AMASS(I)
  GAMMA(I)
              = 154.0
  NRES (I)
              = 2
  RTYP(1,I)
              = 'PI+
              = 'PIO
                       t
  RTYP(2, I)
  RESPAR(1, I) = 139.5688
  RESPAR(2, I) = 134.9645
                         ') THEN
ELSEIF (TYP(I).EQ.'FO
  BARYON(I)
              = .FALSE.
  AMASS(I)
              = 1273.
  GAMMA(I)
              = 179.
  NRES (I)
              = 2
              = 'PI+
  RTYP(1,I)
                       ŧ
              = 'PI-
  RTYP(2,I)
  RESPAR(1,I) = 139.5688
  RESPAR(2, I) = 139.5688
ELSEIF (TYP(I).EQ.'OMEGA') THEN
  BARYON(I) = .FALSE.
  AMASS(I)
              = 782.6
  GAMMA(I)
              = 9.9
  NRES (I)
              = 3
              = 'PI+
  RTYP(1,I)
                       ł
              = 'PI-
  RTYP(2,I)
              = 'PIO
                       t
  RTYP(3,I)
  RESPAR(1,I) = 139.5688
  RESPAR(2, I) = 139.5688
  RESPAR(3, I) = 134.9645
ELSEIF (TYP(I).EQ.'OMEGO') THEN
  BARYON(I)
              = .FALSE.
  AMASS(I)
              = 782.8
              = 9.9
  GAMMA(I)
  NRES (I)
              = 2
              = 'PIO
  RTYP(1,I)
              = 'GAMMA'
  RTYP(2, I)
```

```
RESPAR(1, I) = 134.9645
  \operatorname{RESPAR}(2,I) = 0.0
ELSEIF (TYP(I).EQ.'ETA ') THEN
             = .FALSE.
  BARYON(I)
              = 548.8
  AMASS(I)
  GAMMA(I)
              = 0.00083
  NRES (I)
              = 3
              = 'PI+
  RTYP(1,I)
              = 'PI-
  RTYP(2,I)
                       t
              = 'PIO
  RTYP(3,I)
  RESPAR(1,I) = 139.5688
  RESPAR(2, I) = 139.5688
  RESPAR(3, I) = 134.9645
ELSEIF (TYP(I).EQ. 'ETAO ') THEN
  BARYON(I)
             = .FALSE.
  AMASS(I)
              = 548.8
  GAMMA(I)
              = 0.00083
              = 2
  NRES (I)
              = 'GAMMA'
  RTYP(1,I)
  RTYP(2, I)
             = 'GAMMA'
  \operatorname{RESPAR}(1,1) = 0.0
  RESPAR(2,I) = 0.0
ELSEIF (TYP(I).EQ. 'ETA" ') THEN
  BARYON(I) = .FALSE.
  AMASS(I)
              = 957.57
  GAMMA(I)
              = 0.28
  NRES (I)
              = 3
              = 'PI+
  RTYP(1,I)
              = 'PI-
  RTYP(2,I)
              = 'PIO
  RTYP(3,I)
  RESPAR(1, I) = 139.5688
  RESPAR(2, I) = 139.5688
  RESPAR(3, I) = 134.9645
                        ') THEN
ELSEIF (TYP(I).EQ. 'KO
  BARYON(I)
              = .FALSE.
  AMASS(I)
              = 497.67
  GAMMA(I)
              = 0.0
  NRES (I)
              = 0
ELSEIF (TYP(I).EQ. 'K+
                         ') THEN
  BARYON(I)
              = .FALSE.
              = 493.667
  AMASS(I)
  GAMMA(I)
              = 0.0
  NRES (I)
              = 0
ELSEIF (TYP(I).EQ. 'K-
                         ') THEN
  BARYON(1) = .FALSE.
              = 493.667
  AMASS(I)
  GAMMA(I)
              = 0.0
  NRES (I)
              = 0
ELSEIF (TYP(I).EQ. 'K1
                         ') THEN
  BARYON(I)
             = .FALSE.
  AMASS(I)
              = 497.67
  GAMMA(I)
              = 0.0
  NRES (I)
              = 0
ELSEIF (TYP(I).EQ.'K2
                         ') THEN
  BARYON(I)
              = .FALSE.
  AMASS(I)
              = 497.67
              = 0.0
  GAMMA(I)
  NRES (I)
              = 0
ELSEIF (TYP(I).EQ. 'KO* ') THEN
```

```
BARYON(I)
              = .FALSE.
  AMASS(I)
              = 891.8
              = 50.8
  GAMMA(I)
  NRES (I)
              = 2
              = 'K2
  RTYP(1,I)
              = 'PIO
  RTYP(2, I)
  RESPAR(1, I) = 497.67
  RESPAR(2, I) = 134.9645
                         ') THEN
ELSEIF (TYP(I).EQ. 'K*0
  BARYON(I)
              = .FALSE.
  AMASS(I)
              = 891.8
              = 50.8
  GAMMA(I)
  NRES (I)
              = 2
              = 'K+
  RTYP(1,I)
              = 'PI-
                       ł
  RTYP(2,I)
  RESPAR(1, I) = 493.667
  RESPAR(2, I) = 139.5688
ELSEIF (TYP(I).EQ.'K*+ ') THEN
  BARYON(I)
              = .FALSE.
  AMASS(I)
              = 885.1
  GAMMA(I)
              = 50.8
              = 2
  NRES (I)
              = 'K0
  RTYP(1,I)
              = 'PI+
                       t
  RTYP(2,I)
  RESPAR(1,I) = 497.67
  RESPAR(2, I) = 139.5688
ELSEIF (TYP(I).EQ. 'K*- ') THEN
  BARYON(I)
              = .FALSE.
  AMASS(I)
              = 885.1
  GAMMA(I)
              = 50.8
  NRES (I)
              = 2
  RTYP(1,I)
              = 'KO
              = 'PI-
  RTYP(2,I)
  RESPAR(1, I) = 497.67
  RESPAR(2, I) = 139.5688
ELSEIF (TYP(I).EQ. 'A1- ') THEN
  BARYON(I)
              = .FALSE.
  AMASS(I)
              = 1275.
  GAMMA(I)
              = 315.
  NRES (I)
              = 2
              = 'KO
  RTYP(1,I)
              = 'K-
  RTYP(2, I)
  RESPAR(1,I) = 497.67
  RESPAR(2, I) = 493.667
                         ') THEN
ELSEIF (TYP(I).EQ. 'A2+
  BARYON(I)
              = .FALSE.
  AMASS(I)
              = 1318.
              = 110.
  GAMMA(I)
  NRES (I)
              = 2
              = 'OMEGA'
  RTYP(1,I)
              = 'PI+
  RTYP(2, I)
  RESPAR(1, I) = 782.6
  RESPAR(2, I) = 139.5688
                         ') THEN
ELSEIF (TYP(I).EQ.'A2-
  BARYON(I) = .FALSE.
  AMASS(I)
              = 1318.
  GAMMA(I)
              = 110.
  NRES (I)
              = 2
  RTYP(1,I)
              = 'KO
```

```
= 'K -
  RTYP(2,I)
  RESPAR(1, I) = 497.67
  RESPAR(2, I) = 493.667
ELSEIF (TYP(I).EQ.'B+
                         ') THEN
  BARYON(I)
             = .FALSE.
  AMASS(I)
              = 1233.
  GAMMA(I)
              = 137.
  NRES (I)
               = 2
               = 'OMEGA'
  RTYP(1,I)
              = 'PI+
  RTYP(2,I)
  RESPAR(1, I) = 782.6
  RESPAR(2, I) = 139.5688
ELSEIF (TYP(I).EQ. 'PHI ') THEN
  BARYON(I)
              = .FALSE.
              = 1019.61
  AMASS(I)
               = 4.21
  GAMMA(I)
  NRES (I)
               = 2
               = 'K1
  RTYP(1,I)
  RTYP(2,I)
              = 'K2
  RESPAR(1, I) = 497.67
  RESPAR(2, I) = 497.67
                          ') THEN
ELSEIF (TYP(I).EQ. 'EO
              = .FALSE.
  BARYON(I)
              = 1418.
  AMASS(I)
  GAMMA(I)
               = 52.
  NRES (I)
               = 2
              = 'DELTA'
  RTYP(1,I)
              = 'PIO
  RTYP(2,I)
  RESPAR(1, I) = 983.
  RESPAR(2, I) = 134.9645
ELSEIF (TYP(I).EQ. 'DELTA') THEN
              = .FALSE.
  BARYON(I)
               = 983.
  AMASS(I)
  GAMMA(I)
               = 54.
  NRES (I)
              = 2
  RTYP(1,I)
              = 'ETA0 '
              = 'PIO
  RTYP(2, I)
  RESPAR(1, I) = 548.8
  RESPAR(2, I) = 134.9645
ELSEIF (TYP(I).EQ.'GLUE ') THEN
  BARYON(I)
             = .FALSE.
  AMASS(I)
               = 800.
  GAMMA(I)
               = 20.
  SELECT DECAY MODE OF GLUEBALL
  X = RNDM2(I)
  IF ((X.GT.0.).AND.(X.LE.0.33)) THEN
    NRES (I)
                = 2
                 = 'PIO
    RTYP(1,I)
                = 'PIO
    RTYP(2, I)
    RESPAR(1,I) = 134.9645
    RESPAR(2, I) = 134.9645
  ELSEIF ((X.GT.0.33).AND.(X.LE.0.66)) THEN
    NRES (I)
                 = 2
                 = 'GAMMA'
    RTYP(1,I)
                = 'GAMMA'
    RTYP(2,1)
    \operatorname{RESPAR}(1, I) = 0.0
```

C*

C*

C*

```
C*
```

```
ELSEIF ((X.GT.0.66).AND.(X.LT.1.0)) THEN
    NRES (I)
              = 2
                = 'ETAO '
    RTYP(1,I)
              = 'ETAO '
    RTYP(2,I)
    RESPAR(1,I) = 548.8
    RESPAR(2, I) = 548.8
  ENDIF
ELSEIF (TYP(I).EQ. 'B1694') THEN
  BARYON(I) = .TRUE.
              = 1694.
  AMASS(I)
  GAMMA(I)
              = 0.
  NRES (I)
              = 0
ELSEIF (TYP(I).EQ. 'B1638') THEN
            = . TRUE .
  BARYON(I)
  AMASS(I)
              = 1638.
  GAMMA(I)
              = 0.
             = 0
  NRES (I)
ELSEIF (TYP(I).EQ. 'B1561') THEN
  BARYON(I) = .TRUE.
              = 1561.
  AMASS(I)
              = 0.
  GAMMA(I)
  NRES (I)
              = 0
ELSEIF (TYP(I).EQ. 'B1447') THEN
  BARYON(I) = .TRUE.
              = 1447.
  AMASS(I)
  GAMMA(I)
              = 0.
  NRES (I)
             = 0
ELSEIF (TYP(I).EQ. 'B1421') THEN
  BARYON(I) = .TRUE.
              = 1421.
  AMASS(I)
  GAMMA(I)
              = 0.
  NRES (I)
             = 0
ELSEIF (TYP(I).EQ.'B1383') THEN
  BARYON(I) = .TRUE.
  AMASS(I)
              = 1383.
  GAMMA(I)
              = 0.
              = 0
  NRES (I)
ELSEIF (TYP(I).EQ. 'B1210') THEN
  BARYON(I) = .TRUE.
  AMASS(I)
              = 1210.
  GAMMA(I)
              = 0.
              = 0
  NRES (I)
ELSE
  PRINT*, 'CHANNEL NO.', ID
  PRINT*, 'PARTICLE NOT RECOGNIZED: ', TYP(I)
  BARYON(I) = .FALSE.
  AMASS(I) = 0.
  GAMMA(I) = 0.
            = 0
  NRES(I)
ENDIF
(* TEST PARTICLES *)
CALCULATE MINIMUM ENERGY FOR RESONANCES
EMIN(I) = 0.0
DO 300 J=1,NRES(I),1
```

RESPAR(2,I) = 0.0

C*

C*

C*

C*	*****************
	SUBROUTINE LORDIS(EO,GAMMA,E)
C*	******
C*	
C*	THIS IS THE SUBROUTINE 'LORDIS' TO CREATE
C*	LORENTZ DISTRIBUTED ENERGIES AROUND THE
C*	ENERGIE EO.
C*	(VIA INTEGRAL-TRANSFORMATION)
С'n	1) $X = INTEGRAL(-00/E)(L(E)*DE)$
C*	X: EOUAL DISTRIBUTED RANDOM NUMBER
 C*	E: LORENTZ DISTRIBUTED RANDOM ENERGIE
C*	$L(E) = GAMMA/(2) \times ((EO - E) \times 2 + (GAMMA/2) \times 2) \times (-1)$
C*	(LORENTZ - DISTRIBUTION)
Č*	SOLVING THE INTEGRAL FOLIATION 1) FOR F LEADS TO
С*	F = GAMMA/2 + TAN(PI*(X=0.5)) + FO
С*	H = Omm/2, W m((1.0(X 0.5))) + L0
C*	
C*	=======
C*	EO : MAXIMUM OF THE DISTRIBUTION
C*	GAMMA: FULL WIDTH AT HALF MAXIMUM ENERGY
C*	
C*	ON EXIT :
C*	
C*	E : LORENTZ DISTRIBUTED RANDOM ENERGY
C*	
C*	LANGUAGE : FORTRAN 77
C*	PROGRAMMER: MARCEL KUNZE/KFK
C*	VERS.1.0 : 10-JAN-84
C*	
	IMPLICIT REAL*8 (A-H,O-Z)
C*	
	PARAMETER (PI = 3.1415962653589793)
С*	
	X = RNDM2(I)
	E = GAMMA/2. * TAN(PI*(X-0.5)) + E0
C*	
	RETURN
	END
C*	** >* >* >* >* >* >* >* >* >* >* >* >* >
	FUNCTION TAN(X)
C*	><>><>><>><>><>><>><>><>><>><>><>><>><>
C*	
	IMPLICIT REAL*8 (A-H,O-Z)
C*	,
	TAN = DSIN(X) / DCOS(X)
C*	
	RETURN
	END

C*	************************
	SUBROUTINE RESDEC (ID, NRES, RPCM, RTYP, RESMAS, RKIN, RESPAR, RWT)
C*	***************************************
C*	
C*	THIS IS A SUBROUTINE TO CREATE PARTICLES' KINEMATICS
C*	FROM RESONANT STATE.
C*	
C*	ON ENTRY:
C*	NRES - NUMBER OF RESONANT PARTICLES
C*	RESMAS - RESONANT MASS
C*	RESPAR(50) - ARRAY WITH MASSES OF RESONANT PARTICLES
C*	RKIN(5) - KINEMATIC PARAMETERS OF RESONANT MASS
C*	
C*	ON EXIT:
C*	RPCM(5,50) - KINEMATIC PARAMETERS
C*	RWT - WEIGHT OF THIS
C*	
С*	LANGUAGE : FORTRAN 77
C*	PROGRAMMER : MARCEL KUNZE/KFK
C*	VERS.1.0 : 07-DEC-83
C*	
	IMPLICIT REAL*8 (A-H,O-Z)
C*	
	DIMENSION RESPAR(50), RKIN(5)
	DIMENSION RPCM(5,50)
C*	
	CHARACTER RTYP(50)*5
C*	
	CALL GENBOD (ID, NRES, RPCM, RTYP, RESMAS, RESPAR, RWT)
C*	
C*	NOW WE'VE TO DO THE LORENTZ TRANSFORMATION FROM CMS
C*	OF RESONANT STATE TO LAB-SYSTEM.
C*	
	CALL LORTRN (RESMAS, RKIN, NRES, RPCM)
С*	
	RETURN
	END

C* SUBROUTINE GENBOD (ID, NPTOT, PCM, TYP, TECM, AMASS, WT) C* C* C* SUBROUTINE TO GENERATE N-BODY EVENT С* ACCORDING TO FERMI LORENTZ-INVARIANT PHASE SPACE C* ADAPTED FROM FOWL (CERN W505) SEPT. 1974 BY F. JAMES C* EVENTS ARE GENERATED IN THEIR OWN CENTER-OF-MASS, C* BUT MAY BE TRANSFORMED TO ANY FRAME USING LOREN4 C* INPUT TO SUBROUTINE IS C* C* = NUMBER OF OUTGOING PARTICLES (.LT. 50) NPTOT C* TECM = TOTAL ENERGY IN CENTER-OF-MASS C* AMASS(I) = MASS OF ITH OUTGOING PARTICLE C* С* OUTPUT FROM SUBROUTINE IS PCM(1,I) = X-MOMENTUM IF ITH PARTICLE C* C* PCM(2,I) = Y-MOMENTUM IF ITH PARTICLEC* PCM(3, I) = Z-MOMENTUM IF ITH PARTICLE C* PCM(4,I) = ENERGY OF ITH PARTICLEС* PCM(5,I) = MOMENTUM OF ITH PARTICLEC* = WEIGHT OF EVENT WΤ C* IMPLICIT REAL*8 (A-H,O-Z) C* DIMENSION PCM(5,50), AMASS(50) DIMENSION EMM(50) DIMENSION RNO(100) DIMENSION PD(50), EMS(50), SM(50) C* CHARACTER TYP(50)*5 C* PARAMETER (TWOPI = 6.2831925307179586) C* C* INITIALIZATION C* IF (NPTOT .LT. 2) GO TO 1001 IF (NPTOT .GT.50) GO TO 1002 NPM1=NPTOT-1 NPM2=NPTOT-2 NPNM4 = 3*NPTOT - 4 EMM(1) = AMASS(1)TM=0.0DO 200 I=1,NPTOT EMS(I) = AMASS(I) **2TM=TM+AMASS(I)200 SM(I)=TMС* C* CONSTANTS DEPENDING ON TECM C* TECMTM=TECM-TM IF (TECMTM .LE. 0.0) GO TO 1000 EMM(NPTOT)=TECM C* C* CONSTANT MATRIX ELEMENT AS FUNCTION OF TECM C* EMMAX=TECMTM+AMASS(1) EMMIN=0.0 WTMAX=1.0

```
DO 350 I=2,NPTOT
      EMMIN=EMMIN+AMASS(I-1)
      EMMAX=EMMAX+AMASS(I)
  350 WTMAX=WTMAX*PDK(EMMAX,EMMIN,AMASS(I))
      WTMAXQ=1.0/WTMAX
C*
C*
      FILL RNO WITH 3*NPTOT-4 RANDOM NUMBERS,
С*
      OF WHICH THE FIRST NPTOT-2 ARE ORDERED.
C*
      DO 457 I = 1, NPNM4
  457 \text{ RNO}(I) = \text{RNDM2}(I)
      IF(NPM2) 900,509,460
  460 CONTINUE
      CALL FLPSOR(RNO, NPM2)
      DO 508 J=2,NPM1
  508 EMM(J)=RNO(J-1)*(TECMTM)+SM(J)
  509 WT=WTMAXQ
      IR=NPM2
      DO 530 I=1,NPM1
      PD(I)=PDK(EMM(I+1),EMM(I),AMASS(I+1))
  530 WT=WT*PD(I)
C*
C*
      COMPLETE SPECIFICATION OF EVENT (RAUBOLD-LYNCH METHOD)
C*
      PCM(1,1)=0.0
      PCM(2,1)=PD(1)
      PCM(3,1)=0.0
      DO 570 I=2,NPTOT
      PCM(1,1)=0.0
      PCM(2,I) = -PD(I-1)
      PCM(3, I) = 0.0
      IR=IR+1
      BANG=TWOPI*RNO(IR)
      CB=DCOS(BANG)
      SB=DSIN(BANG)
      IR=IR+1
      C=2.0*RNO(IR)-1.0
      S=SQRT(1.0-C*C)
      IF(I.EQ.NPTOT) GO TO 1567
      ESYS=SQRT(PD(I)**2+EMM(I)**2)
      BETA=PD(I)/ESYS
      GAMA=ESYS/EMM(I)
      DO 568 J=1,I
      AA = PCM(1,J)**2 + PCM(2,J)**2 + PCM(3,J)**2
      PCM(5, J) = SQRT(AA)
      PCM(4,J) = SQRT(AA+EMS(J))
      CALL ROTES2(C,S,CB,SB,PCM,J)
      PSAVE = GAMA*(PCM(2,J)+BETA*PCM(4,J))
 568 PCM(2,J)=PSAVE
      GO TO 570
1567 DO 1568 J=1,I
      AA=PCM(1,J)**2 + PCM(2,J)**2 + PCM(3,J)**2
      PCM(5, J) = SQRT(AA)
      PCM(4, J) = SQRT(AA + EMS(J))
      CALL ROTES2(C,S,CB,SB,PCM,J)
1568 CONTINUE
  570 CONTINUE
  900 CONTINUE
```

- 83 ---

RETURN С ERROR RETURNS 1000 PRINT 1100 GO TO 1050 1001 PRINT 1101 GO TO 1050 1002 PRINT 1102 1050 PRINT*, 'ID =', ID, ' NPTOT =', NPTOT, ' TECM =', TECM CALL OUTPUT (ID,NPTOT,PCM,TYP,TECM) STOP 1100 FORMAT (28H0 AVAILABLE ENERGY NEGATIVE) 1101 FORMAT (33HO LESS THAN 2 OUTGOING PARTICLES) 1102 FORMAT (34H0 MORE THAN 50 OUTGOING PARTICLES) END C* ******************* SUBROUTINE FLPSOR(A,N) C* C* C* SORT THE ONE-DIMENSIONAL FLOATING POINT ARRAY A(1),...,A(N) C* BY INCREASING VALUES C* IMPLICIT REAL*8 (A-H,O-Z) DIMENSION A(N) DIMENSION LT(20), RT(20) INTEGER R,RT C* LEVEL=1 LT(1)=1RT(1)=N10 L=LT(LEVEL) R=RT(LEVEL) LEVEL=LEVEL-1 20 IF(R.LE.L) IF(LEVEL) 50,50,10 C* C* SUBDIVIDE THE INTERVAL L,R C* L : LOWER LIMIT OF THE INTERVAL (INPUT) C* R : UPPER LIMIT OF THE INTERVAL (INPUT) C* J : UPPER LIMIT OF LOWER SUB-INTERVAL (OUTPUT) C* I : LOWER LIMIT OF UPPER SUB-INTERVAL (OUTPUT) C* I=LJ=R M=(L+R)/2X=A(M)220 IF(A(I).GE.X) GO TO 230 I=I+1GO TO 220 230 IF(A(J).LE.X) GO TO 231 J=J-1GO TO 230 C* 231 IF(I.GT.J) GO TO 232 W=A(I)A(I)=A(J)A(J)=WI=I+1J=J-1 IF(I.LE.J) GO TO 220 C*

```
Anhang A. Programmpaket BIGBANG
```

```
232 LEVEL=LEVEL+1
     IF((R-I).GE.(J-L)) GO TO 30
     LT(LEVEL)=L
     RT(LEVEL)=J
     L=I
     GO TO 20
   30 LT(LEVEL)=I
     RT(LEVEL)=R
     R=J
     GO TO 20
   50 RETURN
     END
C*
     SUBROUTINE ROTES2(C,S,C2,S2,PR,I)
C*
     C*
C*
     THIS SUBROUTINE NOW DOES TWO ROTATIONS (XY AND XZ)
C*
     IMPLICIT REAL*8 (A-H,O-Z)
C*
     DIMENSION PR(50)
     K1 = 5*I - 4
     K2 = K1 + 1
     SA = PR(K1)
     SB = PR(K2)
            = SA*C - SB*S
     A
     PR(K2) = SA*S + SB*C
     K2 = K2 + 1
     B = PR(K2)
     PR(K1) = A*C2 - B*S2
     PR(K2) = A*S2 + B*C2
     RETURN
     END
C*
     *****
     FUNCTION PDK(A, B, C)
C*
     C*
C*
     PDK = SQRT(A*A+(B*B-C*C)**2/(A*A) - 2.0*(B*B+C*C))/2.0
C*
     REAL*16 A2, B2, C2, SQ
     REAL*8 PDK
C*
     A2 = QEXT (A*A)
     B2 = QEXT (B*B)
     C2 = QEXT (C*C)
     SQ = QSQRT(ABS(A2 + (B2-C2)**2/A2 - 2.0*(B2+C2)))
     PDK = 0.5 * SQ
     RETURN
     END
```

C* SUBROUTINE LORTRN (RESMAS, PCMR, NPAR, PCM) C* ****** C* C* THIS ROUTINE DOES THE LORENTZ-TRANSFORMATION OF A DECAY IN FLIGHT C* FROM CM-SYSTEM OF THE DECAYING PARTICLE INTO LAB-SYSTEM C* VER. 1.0/21-JAN-80(TK) C* C* C* ON ENTRY: C* _____ C* C* MASS OF DECAYING PARTICLE **RESMAS:** C* PCMR(1):X-MOMENTUM OF DECAYING PARTICLE IN LAB-SYSTEM C* PCMR(2):Y-MOMENTUM OF DECAYING PARTICLE IN LAB-SYSTEM C* PCMR(3):Z-MOMENTUM OF DECAYING PARTICLE IN LAB-SYSTEM C* ENERGY OF DECAYING PARTICLE IN LAB-SYSTEM PCMR(4):C* * PCMR(5): TOTAL MOMENTUM OF DECAYING PARTICLE IN LAB-SYSTEM C* NPAR: NO OF SECONDARY-PARTICLES C* PCM(1,I): X-MOMENTUM OF ITH PARTICLE IN CM-SYSTEM C* PCM(2,I): Y-MOMENTUM OF ITH PARTICLE IN CM-SYSTEM C* PCM(3,I): Z-MOMENTUM OF ITH PARTICLE IN CM-SYSTEM C* PCM(4,I): ENERGY OF ITH PARTICLE IN CM-SYSTEM C* * PCM(5,I): TOTAL MOMENTUM OF ITH PARTICLE IN CM-SYSTEM C* C* (*: VALUE NOT USED, BUT ARRAY-DIMENSIONS MUST BE AS SHOWN) C* C* C* ON EXIT: C* _____ C* C* PCM(1,I): X-MOMENTUM OF ITH PARTICLE IN LAB-SYSTEM C* PCM(2,I): Y-MOMENTUM OF ITH PARTICLE IN LAB-SYSTEM C* PCM(3,I): Z-MOMENTUM OF ITH PARTICLE IN LAB-SYSTEM C* PCM(4,I): ENERGY OF ITH PARTICLE IN LAB-SYSTEM C* PCM(5,I): TOTAL MOMENTUM OF ITH PARTICLE IN LAB-SYSTEM C* IMPLICIT REAL*8 (A-H,O-Z) C* DIMENSION PCMR(5), PCM(5, NPAR) C* RSMAS1 = 1./RESMASC* = PCMR(1)*RSMAS1ETA1 ETA2 = PCMR(2)*RSMAS1ETA3 = PCMR(3)*RSMAS1GAMMA = PCMR(4)*RSMAS1GAMP1 = GAMMA+1.C* C* LOOP THROUGH NPAR PARTICLES C* DO 1000 I=1,NPAR,1 C* C۴ LORENTZ-TRANSFORMATION OF PARTICLE-ENERGY FROM CM- TO LAB-SYS. C* FACT = ((ETA1*PCM(1,I))+(ETA2*PCM(2,I))+(ETA3*PCM(3,I)))ELAB = GAMMA*PCM(4,I)+FACTC* C* LORENTZ-TRANSFORMATION OF PARTCLE-MOMENTA FROM CM- TO LAB-SYS.

C*

C*

C*

-	EACT = (BCN(4, I)) EIAD) / CAND1
ርጵ	FACI = (FCR(4, I) + ELAB)/GAMPI
0	DOM(1, T) = DOM(1, T) + DOM(1, T) + DOM(1, T)
	$PCM(1,1) = PCM(1,1) + ETA1^{A}FACT$
	PCM(2,I) = PCM(2,I) + ETA2 + FACT
	PCM(3,I) = PCM(3,I) + ETA3 + FACT
	PCM(4,I) = ELAB
	PCM(5,I) = SQRT((PCM(1,I)*PCM(1,I))+(PCM(2,I)*PCM(2,I))+
+	(PCM(3,I)*PCM(3,I)))
1000 CO	NTINUE
7. L	

C* RETURN TO CALLING PROGRAM C*

RETURN

C* ====

END

.

```
C*
     SUBROUTINE PSORT(NPTOT, PCM, TYP)
C*
     C*
C*
     THIS ROUTINE SORTS AND REARRANGES KINEMATIC DATA (ARRAY 'PCM').
C*
C*
     PROGRAMMER : MARCEL KUNZE/KFK
C*
              : FORTRAN 77
     LANGUAGE
C*
     VERSION 1.0: 10-OCT-84
C*
     IMPLICIT REAL*8 (A-H,O-Z)
C*
     COMMON /RESNC/ YIELD, AMASS, GAMMA, NRES, RESPAR, EMIN
C*
     DIMENSION YIELD(100), AMASS(50), GAMMA(50)
     DIMENSION NRES(100), RESPAR(5,100), EMIN(100)
     DIMENSION PCM(5,50), PCMS(5,50), BMASS(50)
C*
     CHARACTER*5 TYP(50), TYPS(50)
C*
C*
     1.) SORT THE PARTICLES BY USE OF NAME
С*
      C*
     N = 0
C*
     DO 100 I=1,NPTOT,1
C*
     IF (TYP(I).NE.'PURGE') THEN
                  = N + 1
        Ν
        BMASS(N)
                  = AMASS(I)
        PCMS(1,N) = PCM(1,I)
        PCMS(2,N) = PCM(2,I)
        PCMS(3,N)
                  = PCM(3,I)
        PCMS(4,N)
                  = PCM(4, I)
                  = PCM(5,I)
        PCMS(5,N)
        TYPS (N) = TYP (I)
     ENDIF
C*
100
     CONTINUE
C*
C*
     2.REARRANGE ARRAY 'PCM'
C*
      C*
     NPTOT = N
     DO 300 I=1,NPTOT,1
        AMASS(I) = BMASS(I)
        PCM(1,I) = PCMS(1,I)
        PCM(2,I) = PCMS(2,I)
        PCM(3,I) = PCMS(3,I)
        PCM(4,I) = PCMS(4,I)
        PCM(5,I) = PCMS(5,I)
        TYP (I) = TYPS (I)
300
     CONTINUE
C*
     TYP(NPTOT+1) = '
C*
     RETURN
     END
```

```
C*
     SUBROUTINE TOTAPE (ID, NPTOT, PCM, TYP, TECM, LUNOUT)
C*
     ****
C*
     WRITE EVENT-DATA GENERATED BY CRETAP/HITMISS/DECAY ON TAPE
C*
     ==> OUTPUT SWITCHED TO FORTRAN UNIT #LUNOUT
C*
C*
     >>>>
                      SINGLE PRECISION
                                       <<<<
            VERSION:
C*
            DCB: BLKSIZE=32500, LRECL=25
C*
C*
     (IN IBM-INTERNAL BINARY FLOATING-POINT-FORMAT: 4 BYTES)
C*
     C*
C*
     LANGUAGE
              : FORTRAN 77
C*
     PROGRAMMER : MARCEL KUNZE/KFK
C*
              : 10-APR-84(MK)
     VERS.2.0
C*
     DIMENSION PCMS(5,25)
     REAL*8
              PCM (5,25), TECM
C*
     CHARACTER TYP(25)*5
C*
     DATA NCALL/0/
C*
     NCALL = NCALL + 1
C*
C*
     WRITE THE EVENT-DESCRIPTOR-RECORD...
C*
     TECMS = SNGL(TECM)
     WRITE (LUNOUT, 1010) NCALL, ID, NPTOT, TECMS
 1010 FORMAT (A4,A4,A4,A4)
C*
     DO 1025 J=1,NPTOT,1
C*
C*
        WRITE THE PARTICLE-KINEMATIC-RECORD
C*
        PCMS(1,J) = SNGL(PCM(1,J))
        PCMS(2,J) = SNGL(PCM(2,J))
        PCMS(3,J) = SNGL(PCM(3,J))
        PCMS(4,J) = SNGL(PCM(4,J))
        PCMS(5,J) = SNGL(PCM(5,J))
C*
        WRITE (LUNOUT, 1015)
    &
        PCMS(1,J), PCMS(2,J), PCMS(3,J), PCMS(4,J), PCMS(5,J),
    &
        TYP(J)
 1015
        FORMAT (5A4,A5)
C*
 1025 CONTINUE
     RETURN
     END
```

```
C*
      SUBROUTINE OUTPUT (ID,NPTOT,PCM,TYP,TECM)
C*
      C*
C*
      THIS ROUTINE PROVIDES OUTPUT DATA (MASSES, MOMENTA AND ENERGY)
C*
      FOR A SINGLE EVENT.
C*
C*
      LANGUAGE : FORTRAN 77
C*
      PROGRAMMER: MARCEL KUNZE/KFK
C*
      VERS.2.0 : 15-JAN-84
C*
      IMPLICIT REAL*8 (A-H,O-Z)
C*
      COMMON /RESNC/ YIELD, AMASS, GAMMA, NRES, RESPAR, EMIN
      COMMON /STATIS/ WTMAX, FWT, KNT, NEV
C*
      DIMENSION YIELD(100), AMASS(50), GAMMA(50)
      DIMENSION NRES(100), RESPAR(50,100), EMIN(100)
      DIMENSION PCM(5,50), WTMAX(100)
C*
      CHARACTER TYP(50)*5
C*
      IF (NEVOLD.NE.NEV) THEN
        NEVOLD = NEV
        PRINT 300, NEV, ID, NPTOT, TECM
        FORMAT ('0',131('*'),/,
300
                    '* EVENT NO.', I8, 10X, 'CHANNEL NO.', I3, 5X,
     &
                   'NUMBER OF PARTICLES: ',13,5X,
     &
                    'TOTAL ENERGY (CM):',F10.2,25X,' *',/,
     &
                 ' ',131('*'))
     &
      ENDIF
C*
      PXSUM = 0.0
      PYSUM = 0.0
      PZSUM = 0.0
      ESUM = 0.0
      DO 1300 I=1,NPTOT,1
      PXSUM = PXSUM + PCM(1, I)
      PYSUM = PYSUM + PCM(2,I)
      PZSUM = PZSUM + PCM(3, I)
      ESUM = ESUM + PCM(4, I)
      PRINT 1200,TYP(I),AMASS(I),(PCM(J,I),J=1,5)
                 ,A5,F16.5,' | PX =',F15.7,' | PY =',F15.7,
' | PZ =',F15.7,' | E =',F15.7,
' | P =',F15.7)
1200 FORMAT ('
     &
     &
1300 CONTINUE
      PRINT 1400, PXSUM, PYSUM, PZSUM, ESUM
      FORMAT (' ',131('-'),/,
1400
                  , 'SUM: ', 24X, F15.7, 7X, F15.7, 7X, F15.7, 7X, F15.7)
     &
C*
      RETURN
```

```
END
```

ANHANG B. PROGRAMMPAKET DETEKTOR

Das Programmpaket 'DETEKTOR' wurde in der höheren Programmiersprache FORTRAN77 geschrieben und an der IBM 3081/Siemens 7890 Grossrechenanlage des Rechenzentrums im Kernforschungszentrum Karlsruhe getestet. Es simuliert ein 4π -Detektorsystem zum Nachweis geladener und neutraler Teilchen, die bei der Proton - Antiproton Annihilation entstehen.

PROGRAMMABLAUF

Im Hauptprogramm 'FOURPI' werden zunächst Variablen deklariert und mit Default- bzw. Startwerten versehen.⁹

Im Anschluß daran erfolgt die Initialisierung der Histogramme (Unterprogramm HBOOK). Zur weiteren Beschreibung sei auf den Abschnitt 'Programmtechnische Realisierung' dieser Arbeit verwiesen.

⁹ Ohne Zutun des Benutzers ist als Default das 'STANDARD-DETEKTOR-SYSTEM' implementiert.

EINGABEDATEN

Mit dem Programmpaket 'DETEKTOR' ist es dem Benutzer möglich, weitreichende Änderungen in der Geometrie des simulierten Detektorsystems vorzunehmen und deren Auswirkungen auf das Nachweisvermögen des Detektorsystems zu testen.

Die Kontrolle des Benutzers erstreckt sich auf folgende Eingabedaten:

Namelist 'INPUT'

Die Parameter zur Steuerung des Programmablaufs werden durch die Namelist 'INPUT' übergeben. Folgende Parameter sind definiert:

Gammadetektor

- DMODUL Durchmesser eines Moduls (cm)
- NMODUL Zahl der Module
- RADIUS Innenradius der Kristallkugel (cm)
- SIZE Oberfläche (Grad)
- BSIZE Strahleinlaß(Grad)
- MEDIUM Name des verwendeten Materials
- ERESOL Energieauflösung (FWHM) (%)
- E0 Gültig bei dieser Energie (MeV)
- EXPONT Exponent der Energieabängigkeit
- ANGRES Räumliches Auflösungsvermögen (Grad)
- ETHRSH Nachweisschwelle (MeV)

Driftkammer

- CHMLEN Länge der Kammer (cm)
- CHMDIA Durchmesser der Kammer (cm)
- SUPPLY Öffnung für Kabel etc. (Grad)
- PRESOL Impulsauflösung (FWHM) (%)
- PO Gültig bei diesem Impuls (MeV/c)
- PTHRSH Nachweisschwelle (MeV/c)
- BFIELD Stärke des Magnetfeldes (Tesla)
- RESLEN Ortsauflösung in Strahlrichtung (FWHM) (cm)
- RESDIA Ortsauflösung senkrecht (x,y) (FWHM) (cm)

	Target
TGTDIA	Durchmesser (cm)
TGTLEN	Länge (cm)
TGTDEN	Dichte (g/cm ³)
TGTHOL	Größe der Targethalterung (Grad)
BMEANX	Maximum der Stopverteilung in x-Richtung (cm)
FWHMX	Breite der Stopverteilung in x-Richtung (cm)
BMEANY	Maximum der Stopverteilung in y-Richtung (cm)
FWHMY	Breite der Stopverteilung in y-Richtung (cm)
BMEANZ	Maximum der Stopverteilung in z-Richtung (cm)
FWHMZ	Breite der Stopverteilung in z-Richtung (cm)
	Optionen
PIWIN	Breite des Fensters für die Rekonstruktion der neutralen Pionen (MeV)
ENECUT	Breite des Energiefensters (Energiesatzüberprüfung)
MOMCUT	Breite des Impulsfensters (Impulssatzüberprüfung)
MAXEVT	Zahl der zu verarbeitenden Annihilationen
NTAPE	Zahl der verwendeten Magnetbänder
LUNIN	Dateinummer der Magnetbanddatei
NLIST	Anzahl auszudruckender Ereignisse (Event-Dump)
HISPRT	Ausdrucken der Histogramme
NCHAN	Anzahl der Kanäle pro Histogramm
ISTORE	Dateinummer zum Ablegen der Histogramme
ID	Untersuchung eines spezifischen Kanals (O : Alle Kanäle)

.

Anhang B. Programmpaket DETEKTOR

— 93 —

Ein Beispiel für eine Benutzereingabe könnte folgendermaßen aussehen:

ن

· .

$$\begin{split} &\& \text{INPUT} \\ &\text{MEDIUM} = '\text{NA} - \text{JODID',} \\ &\text{RESLEN} = 0.46, \\ &\text{RESDIA} = 0.1725, \\ &\text{BFIELD} = 0.0, \\ &\text{ERESOL} = 10.2, \\ &\text{EO} = 130., \\ &\text{EXPONT} = 0.25, \\ &\text{NMODUL} = 700, \\ &\text{NTAPE} = 2, \\ &\text{NCHAN} = 200, \\ &\text{ISTORE} = 10 \\ &\& &\text{END} \end{split}$$

Soll das 'STANDARD-DETEKTOR-SYSTEM' simuliert werden, so genügt als Eingabe:

&INPUT &END

da alle Detektorparameter mit den Werten des 'STANDARD-DETEKTOR-SYSTEMS' vorbelegt sind (siehe Quelltext 'Program FOURPI').

Anhang B. Programmpaket DETEKTOR

EVENTDUMP

Beim Entwurf des Programmpakets 'DETEKTOR' wurde darauf Wert gelegt, daß der Verlauf der Verarbeitung eines einzelnen Ereignisses durch den Benutzer leicht nachvollzogen werden konnte. Durch Angabe des 'NLIST'-Parameters erhält man folgende Druckerliste:

****	****	нннннн	*******	*******	*******	* * * *	*******	* * * * * * * * * *	¥					
* EVEN	r NO.	30	CHAI	NNEL NO.	2 NUM	BER	OF PARTI	CLES: 8	¥					
******	******	***	********	******	*********	***	*****	********	¥					
P1+	PX =	-223.22	13440 PY	= -67	.8496704	ΡZ	= 118	8237610	I E	=	296.	6982422	P =	261.8212891
г.1 Самма		384,02	U2637 PY	= -103	.4294739	PZ	= 333	1965332	1 2	=	537.	2788086	1 P =	518.8344/2/
GAMMA		-0.00	10695 PY AENDE DV	= 85	1979675	PZ	= -94	41041543		-	131.	3493298		131,3443270
GAMMA	PX =	36.79	42002 FT 53033 PV	= 102	-10/9423 -5496676	PZ P7	= 57	3807220		=	94.	3259583		96.3259583
GAMMA	PX =	33.95	96710 PY	= 143	3078918	P7	49	4068451	ÌÈ	=	155.	3430023	I P =	155.3430023
GAMMA	PX =	-69,01	49994 PY	= -139	.9760284 1	PZ	= -162	0298157	ΪĒ	=	224.	9667053	1 P =	224.9667053
GAMMA	PX =	-196.12	64191 PY	= -73	.0120544	PZ	= -252	2785187	Ì E	=	327.	7814941	IP =	327.7814941
VERTEX	OF THIS	EVENT:	0.006	0.176	-0.608	(см)							
A) FOL	OW THE	CHARGED	PARTICLES											
*****	*****	****	****											
	I DIR'C	OSINES	-0.862	-0.256	0.437	. !	PASSES	AT POINT	1	-24.38	3	-7.237	12.374	(CM)
¥ 1 8 2			-222.109	-66.050	117.448	1	DARCER	ENERGY		294.90	4	DELTA:	0.11 DEG.	(0 11)
* C & 7		TIIM .	U./51	-100.196	10.630		PASSES	AL PUINT	;	21.25	יי	~5.545		(CM)
" - B) FOLI	OW THE	GAMMASI	577.819	-100.441	367.161	1		ENERGI	•	527.70	4 1	DELTAT	0.77 DEG.	
*****	****	****												
# 3	DIR.C	OSINES:	0.252	0.644	-0.723	1	HITS DE	TECTOR AT	:	8.68	3	22.130	-24.848	(CM)
₽ 3	DIR.C	OSINES:	0.233	0.668	-0.707	1	DELTA:	1.97 DEG	э.	ENERGY	:	130.039		
4	DIR.C	OSINESI	-0.001	0,945	0.326		HITS DE	TECTOR AT	:	-0,02	4	32.504	11.227	(CM)
\$ 4 8 F	I DIR.C	OSINES	-0.008	0.940	0.342		DELTA:	1.02 DEG	; .	ENERGY	:	113.466		
7 5 8 6		USINESI	0.394	0.578	0.714		HITS DE	TECTOR AT	[:	13.55	1	19.889	24.564	(CM)
8 6		0518651	0.389	0.590	0.707			0.84 DEG	;, ,,	ENERGY	; E	93.107 31 E47	-11 611	(CM)
¥ 6	DIR.C	DSINES	0.210	0.710	-0.352			2 18 DEG		ENERGY	9 1	161 293	-11.431	CONV
ŧ 7	DIR.C	OSINES:	-0.304	-0.611	-0.731		HITS DE	TECTOR AT	r :	-10.44	2	-21.014	-25.138	(CM)
\$ 7	DIR.C	OSINES:	-0.348	-0.615	-0.707	· 1	DELTA	2.91 DEG	÷.	ENERGY	:	217.790		
₿ 8	DIR.C	OSINES:	-0.591	-0.215	-0.778	i 1	HITS DE	TECTOR AT	r :	-20.31	4	-7.388	-26.746	(CM)
\$ 8	DIR.C	OSINES:	-0.595	-0.244	-0.766	Í	DELTA:	1.83 DEG	э.	ENERGY	:	321,904		
INVARIA WINDOW 138.691 REC. M/ 142.440 REC. MA 24.9813	NT MASS SET FRO 4304006 SS SORT 8968403 SS SORT 7964103	OF:GAMM M:85.000 55616 ED INTO: 69852 ED INTO: 87781	AGAMMA 0000000000 10 10	000 TO 1	85.0000000	0000	0000							
D) RECO	NSTRUCT	ION OF C	HARGED PIO	NSt										
MOMENTU	M MEASU	******** Rement i	N CHAMBER.	¥ ¥ ¥										
E) SORT	THE PA	RTICLES	AND TEST E	VENTI										
PIO I	PX =	29.85	A4888888888888888888888888888888888888	ниняй = 190	9273679 1	P7		6559770		-	263	5056321		200.1689011
PI0	PX =	75.74	99164 1 PY	= 196	.3371511	P7	= 13	.5677514		=	254.	4795074	P =	210.8800859
PI-	PX ≕	377.61	54280 PY	= -100	.4414726	PZ	= 329	7267468	İΕ	=	529.	9821496	P =	511.2745138
PI+	PX ≃	-222.10	86270 PY	= -66	.0500036	ΡZ	= 117	.4476778	İΕ	=	294.	9038023	P =	259.7860700
GAMMA	PX =	-78.34	79492 PY	= -138	.4430827	ΡZ	= -159	.0758631	E	=	217.	7899170	P =	224,9667053
GAMMA I	PX ≒	-194.88	48631 PY	= - 80	.0720940	ΡZ	= -251	.0957144	Ε	=	321.	9042969	P =	327.7814941
MISSING	PX =	-12.15	00398 PY	= 1	.2578561	PZ	= -5	.0853785	E	=	13.	9949532		
PATTERN	RECOGN	ITION :	ID NO.72 F				•							
F) CALC	ULATE I	NVARIANT	MASSES :											
10=72	=> E0													
INVARIA	NT MASS	OF:GAMM	AGAMMA											
WINDOW	SET FRO	M:518.80	0112906564	038 TO 5	78.8001129	0656	4038							
24.9813	7964103	87781												
	NT MASS	OFIPIO	ETAO											
ANAVADAV MTUAAN	SEL FRO	m:923.00	00000000000	000 TO 1	043.000000	0000	0000							
	557 EBA	0FiP10 Min n	DELIA D 3000 000	000000000	0.0									
	SET FRU		0 2000.000	0000000000	0.0									

ABLAUFDIAGRAM

— 96 —

HWRITE NOT FOUND HISTDO NOT FOUND HPREAA NOT FOUND НРАКЕ NOT FOUND KNOENT NOT FOUND TESTIO CONLAW PSORT HOMENT NOT IN2 NOT FOUND HEILL NOT FOUND INVHAS PSORT ENEMES GAUSS NOT FOUND MHIN GAUSS HONHES NOT FOUND CHAH8A QUANTI PARDET TRAFO HFILL NOT FOUND PISTOP GAMCOS VERTEX GRUSS NOT FOUND HFILL NOT FOUND TINEL NOT FOUND HSTAR NOT FOUND GETEVT HERROR NOT FOUND HBOOK **FR**∂GAAM FOUAPI 85-04-18 HBOOK 1 NOT FOUND GEOMET HLINIT NOT FOUND

Anhang B. Programmpaket DETEKTOR

Anhang B. Programmpaket DETEKTOR

ር›ጵጵጵን	やったったったったっ	*****	*********	たったったったった
C*****	, ארארארארארא	* ** ** ** ** ** ** ** ** ** ** ** ** *	*****	*****
		PROGRAM FOURPI		
C**		אראר אראר איז איז איז איז איז איז איז איז איז איז		**
C**		>>>> VERSION: DOUBLE PRECISION <<<<		**
C**		LANGUAGE: FORTRAN 77		ったった
C**		PROGRAMMER:MARCEL KUNZE/KFK		ットット
ር**		VERS 8.0/05-JAN-85(MK)		**
C**				**
C**	THIS I	IS A PROGRAM TO SIMULATE A 4-PI DETECTOR (CRYST	'AL-BALL) .	**
ር**	ONE BI	EAM INJECTION HOLE (Z-AXIS) RECTANGULAR TO THE	SLOT FOR	**
C**	CHAMBI	ER SUPPLY .		ホホ
C**				***
C**	==>	DETEKTOR-PARAMETERS: VIA NAMELIST 'INPUT' :		**
C**				**
C**				**
C**		DETECTOR SIZE		***
C**		********		***
C**		DMODUL : DIAMETER OF MODUL	(CM)	**
C**		NMODUL : NUMBER OF MODULES	(-)	**
C**		RADIUS : INNER RADIUS OF DETECTOR SYSTEM	(CM)	**
C**		SIZE : SIZE OF DETEKTOR AREA	(DEGREES)	**
C**		BSIZE : SIZE OF BEAM INJECTION HOLE	(DEGREES)	**
C**				**
C**				**
C**		GAMMA DETECTOR		**
C**		*******		**
C**		MEDIUM : MEDIUM	(NAME)	ンシン
C**		ERESOL : ENERGY RESOLUTION (FWHM)	()	**
C**		EO : VALID FOR THIS ENERGY	(MEV)	***
C**		EXPONT : EXPONENT FOR ENERGY DEPENDENCE	(-)	7676
C**		ANGRES : ANGLE RESOLUTION	(DEGREES)	**
C**		ETHRSH : ENERGY THRESHOLD	(MEV)	7030
Cww				***
Cas				26.26
C2222		CHARGED PARTICLE DRIFT CHAMBER		2626
Cuu				7777
Curr		CHMLEN : LENGTH OF CHAMBER	(CM)	777
C~~		CHMDIA : DIAMETER OF CHAMBER	(UM)	~~~ .b.b
0		SUPPLY : SLUI FUR CABLES EIC	(DEGREES)	م م ماريان
0.4.4		PRESOL : MOMENTUM RESOLUTION FOR PIONS (FWHM)		alaala
C		PU : VALID FUR INIS MUMENIUM	(MEV/C)	، ، ، ، باد باد
0**		PIRKSA : MUMENIUM IRRESHULD FOR PIONS		,, , , , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
C**		DESTEND: SIRENGIN OF HAGNEIIC FIELD \dots	(TESLA)	***
C**		$result \cdot resolution in Z - Direction (FWMM)$		
C**		RESDIA: RESOLUTION IN A,1 - DIRECTION (FWIRT)	(OH)	**
0 C**				**
C**		REAM DIMENSION		**
C**				**
ር**		BMEANX · MEAN VALUE OF GAUSS DISTRIBUTION(X)	(CM)	**
C**		FWHMX \cdot FWHM (X)	(CM)	**
C**		BMEANY : MEAN VALUE OF GAUSS DISTRIBUTION(Y)	(CM)	**
_ C**		FWHMY : FWHM (Y)	(CM)	**
C**		BMEANZ : MEAN VALUE OF GAUSS DISTRIBUTION(Z)	(CM)	**
 C**		FWHMZ : FWHM (Z)	(CM)	***
C**			(3.4)	**
 C***7	*****	******		*****
C****	****	*****	****	*****

C**		**
C**	CYLINDRICAL TARGET	**
C**	****	**
C**		**
0 C**	TCTIFN + IFNCTH (CM)	**
C**	TOTDEN , DENGIN , $TADCET MEDIUM (C/CM++2)$	
0	TOTION : DENSITI OF TARGET-MEDIUM	
0 A.L.L	IGIHOL : DIMENSION OF TARGET-HOLDER (DEGREES)	
0.1.1.1		7676
Cun	OPTIONS	**
Cun	******	**
C**	PIWIN : WINDOW FOR PIO-MASS (MEV)	**
C**	ENECUT : WIDTH OF ENERGY CUT (MEV)	**
C**	MOMCUT : WIDTH OF MOMENTUM CUT (MEV/C)	ホホ
C**	MAXEVT : NUMBER OF EVENTS TO BE PROCESSED .	**
C**	NTAPE : NUMBER OF TAPES TO BE PROCESSED	**
C**	LUNIN : FORTRAN UNIT FOR DATA INPUT	**
C**	NLIST : NUMBER OF EVENTS TO BE DUMPED	**
C**	HISPRT · PRINT HISTOGRAMS ON LINE PRINTER	**
C**	NCHAN \cdot NUMBER OF RING FOR THE HIGTOCRAMS	**
0 C**	NOTAR . NOT DING FOR THE HISTOGRAMS. TCTOPE . UNIT FOR GAUTNO THE HISTOGRAMS (0 . NOP)	ماره ماره
0	ISTORE : UNIT FOR SAVING THE RESTORARDS (0 : NOP)	stasta
() ^ ^	ID : SELECT SPECIAL CHANNEL	~~~
C n n		26.26
C**		***
Current	*******	***
C**	THE FOLLOWING COMPUTATIONAL MODI ARE POSSIBLE :	**
C**	A) ANGLE RESOLUTION ==> RADIUS + NUMB. OF MODULES	**
C**	B) RADIUS ==> ANGLE RES. + NUMB. OF MODULES	**
C**	C) NUMB. OF MODULES ==> ANGLE RES. + RADIUS	**
C*****	***************************************	***
~ L		
C ²⁴	VARIABLE TABLE	*
C******	VARIABLE TABLE	* ***
C* C*****	VARIABLE TABLE	* ***
C** C****** C* C* A)	VARIABLE TABLE	*
C* C***** C* C* A) C*	VARIABLE TABLE *******************************	* ***
C** C****** C* C* A) C* C*	VARIABLE TABLE *******************************	* ***
C** C****** C* C* A) C* C* C* C*	VARIABLE TABLE ********************************	* ***
C******* C** C* A) C* C* C* C* C* C*	VARIABLE TABLE ********************************	*
C** C****** C* C* A) C* C* C* C* C* C* C* C*	VARIABLE TABLE WARNA - COUNTERS NGATOT : NUMBER OF GAMMAS FROM TAPE (TOTAL) NGAMMA : NUMBER OF GAMMAS FOR CURRENT EVENT NPIGAM : NUMBER OF GAMMAS FROM : PI- + P -> N + GAMMA NPIFIO : NUMBER OF GAMMAS FROM : PI- + P -> N + DIO	*
C* C****** C* C* C* C* C* C* C* C* C* C*	VARIABLE TABLE WARNA - COUNTERS NGATOT : NUMBER OF GAMMAS FROM TAPE (TOTAL) NGAMMA : NUMBER OF GAMMAS FOR CURRENT EVENT NPIGAM : NUMBER OF GAMMAS FROM : PI- + P -> N + GAMMA NPIPIO : NUMBER OF GAMMAS FROM : PI- + P -> N + PIO NGADEV : NUMBER OF GAMMAS PETECTED FOR CURRENT EVENT	*
C* C****** C* C* C* C* C* C* C* C* C* C*	VARIABLE TABLE GAMMA - COUNTERS NGATOT : NUMBER OF GAMMAS FROM TAPE (TOTAL) NGAMMA : NUMBER OF GAMMAS FOR CURRENT EVENT NPIGAM : NUMBER OF GAMMAS FROM : PI- + P -> N + GAMMA NPIPIO : NUMBER OF GAMMAS FROM : PI- + P -> N + PIO NGADEV : NUMBER OF GAMMAS DETECTED FOR CURRENT EVENT NCADET : NUMBER OF GAMMAS DETECTED FOR CURRENT EVENT	*
C* C****** C* C* C* C* C* C* C* C* C* C*	VARIABLE TABLE GAMMA - COUNTERS NGATOT : NUMBER OF GAMMAS FROM TAPE (TOTAL) NGAMMA : NUMBER OF GAMMAS FOR CURRENT EVENT NPIGAM : NUMBER OF GAMMAS FROM : PI- + P -> N + GAMMA NPIPIO : NUMBER OF GAMMAS FROM : PI- + P -> N + PIO NGADEV : NUMBER OF GAMMAS DETECTED FOR CURRENT EVENT NGADET : NUMBER OF GAMMAS DETECTED (TOTAL) NORDECA : NUMBER OF GAMMAS THAT COULD NOT BE DECONSTRUCTED	*
C******* C** A) C** C* C* C* C* C* C* C* C* C* C* C* C*	VARIABLE TABLE WARKAWAYAYAYAYAYAYAYAYAYAYAYAYAYAYAYAYAYAYA	*
C******* C** A) C** C* C* C* C* C* C* C* C* C* C* C* C*	VARIABLE TABLE WARKAWAYAYAYAYAYAYAYAYAYAYAYAYAYAYAYAYAYAYA	*
C******* C** A) C** C** C* C* C* C* C* C* C* C* C* C* C	VARIABLE TABLE WARKAWAYAYAYAYAYAYAYAYAYAYAYAYAYAYAYAYAYAYA	*
C******* C** A) C** C** C* C* C* C* C* C* C* C* C* C* C	VARIABLE TABLE WARNA - COUNTERS NGATOT : NUMBER OF GAMMAS FROM TAPE (TOTAL) NGAMMA : NUMBER OF GAMMAS FOR CURRENT EVENT NPIGAM : NUMBER OF GAMMAS FROM : PI- + P -> N + GAMMA NPIPIO : NUMBER OF GAMMAS FROM : PI- + P -> N + PIO NGADEV : NUMBER OF GAMMAS DETECTED FOR CURRENT EVENT NGADET : NUMBER OF GAMMAS DETECTED (TOTAL) NOREGA : NUMBER OF GAMMAS THAT COULD NOT BE RECONSTRUCTED NSIGAR : NUMBER OF SINGLE GAMMAS AFTER RECONSTRUCTION INHOLE : NUMBER OF LOST GAMMAS	*
C******* C** C* C* A) C* C* C* C* C* C* C* C* C* C* C* C* C*	VARIABLE TABLE GAMMA - COUNTERS NGATOT : NUMBER OF GAMMAS FROM TAPE (TOTAL) NGAMMA : NUMBER OF GAMMAS FOR CURRENT EVENT NPIGAM : NUMBER OF GAMMAS FROM : PI- + P -> N + GAMMA NPIPIO : NUMBER OF GAMMAS FROM : PI- + P -> N + PIO NGADEV : NUMBER OF GAMMAS DETECTED FOR CURRENT EVENT NGADET : NUMBER OF GAMMAS DETECTED (TOTAL) NOREGA : NUMBER OF GAMMAS THAT COULD NOT BE RECONSTRUCTED NSIGAR : NUMBER OF SINGLE GAMMAS AFTER RECONSTRUCTION INHOLE : NUMBER OF LOST GAMMAS IBARGA : NUMBER OF MONOENERGETIC GAMMAS (BARYONIUM)	*
C* C****** C* C* C* C* C* C* C* C* C* C*	VARIABLE TABLE GAMMA - COUNTERS NGATOT : NUMBER OF GAMMAS FROM TAPE (TOTAL) NGAMMA : NUMBER OF GAMMAS FOR CURRENT EVENT NPIGAM : NUMBER OF GAMMAS FROM : PI- + P -> N + GAMMA NPIPIO : NUMBER OF GAMMAS FROM : PI- + P -> N + PIO NGADEV : NUMBER OF GAMMAS DETECTED FOR CURRENT EVENT NGADET : NUMBER OF GAMMAS DETECTED (TOTAL) NOREGA : NUMBER OF GAMMAS THAT COULD NOT BE RECONSTRUCTED NSIGAR : NUMBER OF SINGLE GAMMAS AFTER RECONSTRUCTION INHOLE : NUMBER OF LOST GAMMAS IBARGA : NUMBER OF MONOENERGETIC GAMMAS (BARYONIUM)	*
C******* C** A) C** C** C* C* C* C* C* C* C* C* C* C* C	VARIABLE TABLE WARKAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAW	*
C******* C** A) C** C** C* C* C* C* C* C* C* C* C* C* C	VARIABLE TABLE GAMMA - COUNTERS NGATOT : NUMBER OF GAMMAS FROM TAPE (TOTAL) NGAMMA : NUMBER OF GAMMAS FOR CURRENT EVENT NPIGAM : NUMBER OF GAMMAS FROM : PI- + P -> N + GAMMA NPIPIO : NUMBER OF GAMMAS FROM : PI- + P -> N + PIO NGADEV : NUMBER OF GAMMAS DETECTED FOR CURRENT EVENT NGADET : NUMBER OF GAMMAS DETECTED (TOTAL) NOREGA : NUMBER OF GAMMAS THAT COULD NOT BE RECONSTRUCTED NSIGAR : NUMBER OF SINGLE GAMMAS AFTER RECONSTRUCTED NSIGAR : NUMBER OF LOST GAMMAS (CURRENT EVENT) ILOST : NUMBER OF LOST GAMMAS IBARGA : NUMBER OF MONOENERGETIC GAMMAS (BARYONIUM) EVENT - COUNTERS	*
C******* C** A) C** C** C* C* C* C* C* C* C* C* C* C* C	VARIABLE TABLE GAMMA - COUNTERS NGATOT : NUMBER OF GAMMAS FROM TAPE (TOTAL) NGAMMA : NUMBER OF GAMMAS FOR CURRENT EVENT NPIGAM : NUMBER OF GAMMAS FROM : PI- + P -> N + GAMMA NPIPIO : NUMBER OF GAMMAS FROM : PI- + P -> N + PIO NGADEV : NUMBER OF GAMMAS DETECTED FOR CURRENT EVENT NGADET : NUMBER OF GAMMAS DETECTED (TOTAL) NOREGA : NUMBER OF GAMMAS THAT COULD NOT BE RECONSTRUCTED NSIGAR : NUMBER OF SINGLE GAMMAS AFTER RECONSTRUCTION INHOLE : NUMBER OF LOST GAMMAS IBARGA : NUMBER OF LOST GAMMAS IBARGA : NUMBER OF MONOENERGETIC GAMMAS (BARYONIUM) EVENT - COUNTERS KNT : NUMBER OF EVENTS	*
C******* C** A) C** C** C** C** C** C** C** C** C** C*	VARIABLE TABLE GAMMA - COUNTERS NGATOT : NUMBER OF GAMMAS FROM TAPE (TOTAL) NGAMMA : NUMBER OF GAMMAS FOR CURRENT EVENT NPIGAM : NUMBER OF GAMMAS FROM : PI- + P -> N + GAMMA NPIPIO : NUMBER OF GAMMAS FROM : PI- + P -> N + PIO NGADEV : NUMBER OF GAMMAS DETECTED FOR CURRENT EVENT NGADET : NUMBER OF GAMMAS DETECTED (TOTAL) NOREGA : NUMBER OF GAMMAS THAT COULD NOT BE RECONSTRUCTED NSIGAR : NUMBER OF SINGLE GAMMAS AFTER RECONSTRUCTION INHOLE : NUMBER OF LOST GAMMAS IBARGA : NUMBER OF MONOENERGETIC GAMMAS (BARYONIUM) EVENT - COUNTERS KNT : NUMBER OF EVENTS NOTRIG : NUMBER OF EVENTS WITHOUT TRIGGER	*
C******* C** A) C** C** C** C** C** C** C** C** C** C*	VARIABLE TABLE WARIABLE TABLE GAMMA - COUNTERS NGATOT : NUMBER OF GAMMAS FROM TAPE (TOTAL) NGAMMA : NUMBER OF GAMMAS FOR CURRENT EVENT NPIGAM : NUMBER OF GAMMAS FROM : PI- + P -> N + GAMMA NPIPIO : NUMBER OF GAMMAS FROM : PI- + P -> N + PIO NGADEV : NUMBER OF GAMMAS DETECTED FOR CURRENT EVENT NGADET : NUMBER OF GAMMAS DETECTED (TOTAL) NOREGA : NUMBER OF GAMMAS THAT COULD NOT BE RECONSTRUCTED NSIGAR : NUMBER OF SINGLE GAMMAS AFTER RECONSTRUCTION INHOLE : NUMBER OF LOST GAMMAS (CURRENT EVENT) ILOST : NUMBER OF LOST GAMMAS IBARGA : NUMBER OF MONOENERGETIC GAMMAS (BARYONIUM) EVENT - COUNTERS KNT : NUMBER OF EVENTS NOTRIG : NUMBER OF EVENTS WITHOUT TRIGGER IBARST : NUMBER OF BARYONIUM STATES (NEUTRAL+CHARGED)	*
C******* C** A) C** C** A) C** C** C** C** C** C** C** C** C** B) C** C** B) C** C** C** C** C** C** C** C** C** C** C** C**	VARIABLE TABLE GAMMA - COUNTERS NGATOT : NUMBER OF GAMMAS FROM TAPE (TOTAL) NGAMMA : NUMBER OF GAMMAS FOR CURRENT EVENT NPIGAM : NUMBER OF GAMMAS FROM : PI- + P -> N + GAMMA NPIPIO : NUMBER OF GAMMAS FROM : PI- + P -> N + GAMMA NPIPIO : NUMBER OF GAMMAS DETECTED FOR CURRENT EVENT NGADEV : NUMBER OF GAMMAS DETECTED (TOTAL) NOREGA : NUMBER OF GAMMAS THAT COULD NOT BE RECONSTRUCTED NSIGAR : NUMBER OF GAMMAS THAT COULD NOT BE RECONSTRUCTED NSIGAR : NUMBER OF GAMMAS THAT COULD NOT BE RECONSTRUCTED NSIGAR : NUMBER OF GAMMAS THAT COULD NOT BE RECONSTRUCTED NSIGAR : NUMBER OF GAMMAS (CURRENT EVENT) ILOST : NUMBER OF LOST GAMMAS (CURRENT EVENT) ILOST : NUMBER OF LOST GAMMAS IBARGA : NUMBER OF MONOENERGETIC GAMMAS (BARYONIUM) EVENT - COUNTERS KNT : NUMBER OF EVENTS NOTRIG : NUMBER OF EVENTS WITHOUT TRIGGER IBARST : NUMBER OF BARYONIUM STATES (NEUTRAL+CHARGED)	*
C******** C******** C****************	VARIABLE TABLE GAMMA - COUNTERS NGATOT : NUMBER OF GAMMAS FROM TAPE (TOTAL) NGAMMA : NUMBER OF GAMMAS FOR CURRENT EVENT NPIGAM : NUMBER OF GAMMAS FROM : PI- + P -> N + GAMMA NPIPIO : NUMBER OF GAMMAS FROM : PI- + P -> N + PIO NGADEV : NUMBER OF GAMMAS DETECTED FOR CURRENT EVENT NGADET : NUMBER OF GAMMAS DETECTED (TOTAL) NOREGA : NUMBER OF GAMMAS THAT COULD NOT BE RECONSTRUCTED NSIGAR : NUMBER OF SINGLE GAMMAS AFTER RECONSTRUCTION INHOLE : NUMBER OF LOST GAMMAS (CURRENT EVENT) ILOST : NUMBER OF LOST GAMMAS IBARGA : NUMBER OF MONOENERGETIC GAMMAS (BARYONIUM) EVENT - COUNTERS KNT : NUMBER OF EVENTS NOTRIG : NUMBER OF EVENTS WITHOUT TRIGGER IBARST : NUMBER OF BARYONIUM STATES (NEUTRAL+CHARGED) PION - COUNTERS	*
C******* C******** C*****************	VARIABLE TABLE GAMMA - COUNTERS NGATOT : NUMBER OF GAMMAS FROM TAPE (TOTAL) NGAMMA : NUMBER OF GAMMAS FOR CURRENT EVENT NPIGAM : NUMBER OF GAMMAS FROM : PI- + P -> N + GAMMA NPIPIO : NUMBER OF GAMMAS FROM : PI- + P -> N + PIO NGADEV : NUMBER OF GAMMAS DETECTED FOR CURRENT EVENT NGADET : NUMBER OF GAMMAS DETECTED (TOTAL) NOREGA : NUMBER OF GAMMAS THAT COULD NOT BE RECONSTRUCTED NSIGAR : NUMBER OF GAMMAS THAT COULD NOT BE RECONSTRUCTED NSIGAR : NUMBER OF SINGLE GAMMAS AFTER RECONSTRUCTION INHOLE : NUMBER OF LOST GAMMAS (CURRENT EVENT) ILOST : NUMBER OF LOST GAMMAS IBARGA : NUMBER OF MONOENERGETIC GAMMAS (BARYONIUM) EVENT - COUNTERS KNT : NUMBER OF EVENTS NOTRIG : NUMBER OF EVENTS WITHOUT TRIGGER IBARST : NUMBER OF BARYONIUM STATES (NEUTRAL+CHARGED) PION - COUNTERS	*
C*************************************	VARIABLE TABLE GAMMA - COUNTERS NGATOT : NUMBER OF GAMMAS FROM TAPE (TOTAL) NGAMMA : NUMBER OF GAMMAS FOR CURRENT EVENT NPIGAM : NUMBER OF GAMMAS FROM : PI- + P -> N + GAMMA NPIPIO : NUMBER OF GAMMAS FROM : PI- + P -> N + PIO NGADEV : NUMBER OF GAMMAS DETECTED FOR CURRENT EVENT NGADET : NUMBER OF GAMMAS DETECTED (TOTAL) NOREGA : NUMBER OF GAMMAS DETECTED (TOTAL) NOREGA : NUMBER OF GAMMAS THAT COULD NOT BE RECONSTRUCTED NSIGAR : NUMBER OF SINGLE GAMMAS AFTER RECONSTRUCTION INHOLE : NUMBER OF LOST GAMMAS (CURRENT EVENT) ILOST : NUMBER OF LOST GAMMAS IBARGA : NUMBER OF LOST GAMMAS IBARGA : NUMBER OF MONOENERGETIC GAMMAS (BARYONIUM) EVENT - COUNTERS KNT : NUMBER OF EVENTS NOTRIG : NUMBER OF EVENTS WITHOUT TRIGGER IBARST : NUMBER OF BARYONIUM STATES (NEUTRAL+CHARGED) PION - COUNTERS NDITAD : NUMBER OF DIO'S ON TAPE	*
C*************************************	VARIABLE TABLE GAMMA - COUNTERS NGATOT : NUMBER OF GAMMAS FROM TAPE (TOTAL) NGAMMA : NUMBER OF GAMMAS FOR CURRENT EVENT NPIGAM : NUMBER OF GAMMAS FROM : PI- + P -> N + GAMMA NPIPIO : NUMBER OF GAMMAS FROM : PI- + P -> N + PIO NGADEV : NUMBER OF GAMMAS DETECTED FOR CURRENT EVENT NGADET : NUMBER OF GAMMAS DETECTED (TOTAL) NOREGA : NUMBER OF GAMMAS DETECTED (TOTAL) NOREGA : NUMBER OF GAMMAS THAT COULD NOT BE RECONSTRUCTED NSIGAR : NUMBER OF SINGLE GAMMAS AFTER RECONSTRUCTION INHOLE : NUMBER OF SINGLE GAMMAS (CURRENT EVENT) ILOST : NUMBER OF LOST GAMMAS IBARGA : NUMBER OF LOST GAMMAS IBARGA : NUMBER OF MONOENERGETIC GAMMAS (BARYONIUM) EVENT - COUNTERS KNT : NUMBER OF EVENTS NOTRIG : NUMBER OF EVENTS WITHOUT TRIGGER IBARST : NUMBER OF BARYONIUM STATES (NEUTRAL+CHARGED) PION - COUNTERS NPITAP : NUMBER OF PIO'S ON TAPE NPITAP : NUMBER OF PIO'S ON TAPE NUMBER OF DIO'S ON TAPE	* ***
C*************************************	VARIABLE TABLE WARKAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAW	* ***
C*************************************	VARIABLE TABLE WARKAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAW	* ***
C*************************************	VARIABLE TABLE KARMAA - COUNTERS NGATOT : NUMBER OF GAMMAS FROM TAPE (TOTAL) NGAMMA : NUMBER OF GAMMAS FOR CURRENT EVENT NPIGAM : NUMBER OF GAMMAS FROM : PI - + P -> N + GAMMA NPIPIO : NUMBER OF GAMMAS FROM : PI - + P -> N + GAMMA NPIPIO : NUMBER OF GAMMAS DETECTED FOR CURRENT EVENT NGADET : NUMBER OF GAMMAS DETECTED (TOTAL) NOREGA : NUMBER OF GAMMAS DETECTED (TOTAL) NOREGA : NUMBER OF SINGLE GAMMAS AFTER RECONSTRUCTED NSIGAR : NUMBER OF LOST GAMMAS (CURRENT EVENT) ILOST : NUMBER OF LOST GAMMAS IBARGA : NUMBER OF LOST GAMMAS IBARGA : NUMBER OF EVENTS NOTRIG : NUMBER OF EVENTS NOTRIG : NUMBER OF EVENTS WITHOUT TRIGGER IBARST : NUMBER OF BARYONIUM STATES (NEUTRAL+CHARGED) PION - COUNTERS NPITAP : NUMBER OF PIO'S ON TAPE NPITOT : NUMBER OF PIO'S FROM 'TRIGGER - EVENTS' NPIREC : NUMBER OF RECONSTRUCTED PIO'S IN TOTAL	* ***

Anhang B. Programmpaket DETEKTOR

,
- 100 -

C* C*

C*

OFF

<pre>C* MAXIMO : MAXIMUM NUMBER OF EVENTS PROCESSED C* MIXEVT : EVENT WITH IDENTIFIER MISMATCH C* GOTID : EVENT WITH IDENTIFIER MISMATCH C* GOTID : EVENT WITH TRUE IDENTIFIER FOUND C* C* UETO : A CHARGED PARTICLE WENT OFF THE CHAMBER C* DETET : A GAMAM HAS BEEN DETECTED C* TRIGGR : THE DETECTOR IS TRIGGERED C* TRIGGR : THE DETECTOR IS TRIGGERED C* OAAAA CONTRACTION OF CHARGED PARTICLES C* CALCUL : RECONSTRUCTION OF CHARGED PARTICLES C* OACUL : RECONSTRUCTION OF CHARGED PARTICLES C* TARGET IS TOO LAKGE C* NOCHAM : DO CHAMBER INSTALLED (ONLY ANTI-COUNTERS) C* FIELD : MAGNETIC FIELD TURNED ON (MOMENTUM MEASUREMENT) C* TYPE DECLARATIONS</pre>	C* TIMOUT : RUNTIME LIMIT REACHED						
<pre>C* NIXEVT : EVENT WITH IDENTIFIER OUT OF RANGE C* MISMAT : EVENT WITH TIDENTIFIER MISMATCH C* VETO : A CHARGED PARTICLE WENT OFF THE CHANBER C* DETECT : A GAMMA HAS BEEN DETECTED C* TRIGGR : THE DETECTOR IS TRIGGERED C* BARYON : EVENT WITH BARYONIUM STATE (NEUTRAL + CHARGED) C* MOGABA : EVENT WITH BARYONIUM STATE (NEUTRAL ONLY) C* NOCHAR : EVENT WITH BARYONIUM STATE (NEUTRAL ONLY) C* CALCUL : RECONSTRUCTION OF CHARGED PARTICLES C* SUTGT : TARGET IS TOO LARGE C* NOCHAM : NO CHANGER INSTALLED (ONLY ANTI-COUNTERS) C* FIELD : MAGNETIC FIELD TURNED ON C* LIST : EVENT DUMP TURNED ON C* LIST : EVENT DUMP TURNED ON C* TYPE DECLARATIONS ** C****************************</pre>	C* MAXIMO : MAXIMUM NUMBER OF EVENTS PROCESSED						
<pre>C* MISMAT : EVENT WITH IDENTIFIER MISMATCH C* GOTID : EVENT WITH TRUE IDENTIFIER FOUND C* C* UETO : A CHARGED PARTICLE WENT OFF THE CHAMBER C* DETECT : A GAMA HAS BEEN DETECTED C* TRIEGR : THE DETECTOR IS TRIGERED C* MOGABA : EVENT WITH BARYONIUM STATE (NEUTRAL + CHARGED) C* MOGABA : EVENT WITH BARYONIUM STATE (NEUTRAL ONLY) C* MOGABA : EVENT WITH BARYONIUM STATE (NEUTRAL ONLY) C* MOGABA : EVENT WITH BARYONIUM STATE (NEUTRAL ONLY) C* MOGABA : EVENT WITH NO CHARGED PARTICLES C* CALCUL : RECONSTRUCTION OF CHARGED PARTICLES KINEMATICS C* C* DITGT : TARGET IS POINT-LIKE C* SUIGT : TARGET IS TOO LARGE C* NOCHAM : NO CHAMBER INSTALLD (ONLY ANTI-COUNTERS) C* FIELD : MAGNETIC FIELD TURNED ON C* HISPRT : PRINT THE CREATED HISTOGRAMS ON LINE PRINTER C* C* C* C* C* C* C* C* C* C* C* C* C*</pre>	C* NIXEVT : EVENT WITH IDENTIFIER OUT OF RANGE						
<pre>GVID : EVENT WITH TRUE IDENTIFIER FOUND C* GVID : A CHARGED PARTICLE WENT OFF THE CHAMBER C* DETECT : A GAMMA HAS BEEN DETECTED C* DETECT : A GAMMA HAS BEEN DETECTED C* DETECT : A GAMMA HAS BEEN DETECTED C* TRIGGR : THE DETECTOR IS TRIGGERED C* DATA MOGABA : EVENT WITH BARYONIUM STATE (NEUTRAL + CHARGED) C* MOCHAR : EVENT WITH BARYONIUM STATE (NEUTRAL ONLY) C* CALCUL : RECONSTRUCTION OF CHARGED PARTICLES C* CALCUL : RECONSTRUCTION OF CHARGED ON CHARGED PARTICLES C* USING CONTON : CHARGED INSTALLED (ONLY ANTI-COUNTERS) C* FIELD : MAGNETIC FIELD TURNED ON (MOMENTUM MEASURENENT) C* C* LIST : EVENT DUMP TURNED ON C* HISPRT : PRINT THE CREATED HISTOGRAMS ON LINE PRINTER C* C* C* C* C* C* C* C* C* C* C* C* C*</pre>	C* MISMAT : EVENT WITH IDENTIFIER MISMATCH						
C* VETO : A CHARGED PARTICLE WENT OFF THE CHAMBER C* UETCT : A GAMMA HAS BEEN DETECTD C* TRIGGR : THE DETECTOR IS TRIGGERED C* MCGABA : EVENT WITH BARYONIUM STATE (NEUTRAL + CHARGED) C* MCGABA : EVENT WITH BARYONIUM STATE (NEUTRAL + CHARGED) C* MCGABA : EVENT WITH BARYONIUM STATE (NEUTRAL + CHARGED) C* MCGABA : EVENT WITH BARYONIUM STATE (NEUTRAL + CHARGED) C* MCGABA : EVENT WITH BARYONIUM STATE (NEUTRAL + CHARGED) C* MCGABA : EVENT WITH BARYONIUM STATE (NEUTRAL + CHARGED) C* MCGABA : EVENT WITH BARYONIUM STATE (NEUTRAL + CHARGED) C* MCGABA : EVENT WITH BARYONIUM STATE (NEUTRAL + CHARGED) C* CALCUL : RECONSTRUCTION OF CHARGED PARTICLES KINEMATICS C* PTTGT : TARGET IS POINT-LIKE C* SUTGT : TARGET IS TOO LARGE C* NOCHAM : NO CHAMBER INSTALED (ONLY ANTI-COUNTERS) C* FIELD : MAGNETIC FIELD TURNED ON C* HISTFT : PRINT THE CREATED HISTOGRAMS ON LINE PRINTER C* TYPE DECLARATIONS * C* INPLICIT REAL*8 (A-H, O-2) REAL*8 MOMCUT REAL*4 TRIGNO, BRRID C* COMMON /FLAGOP/ LIST COMMON /FLAGAP, ANDINA, NERTH C* C* INTEGER FILOST, PART(4) C* INTEGER FILOST, PART(4) C* CHARACTER TYP(50)*5, PARTIC(3)*5, MEDIUM*20 C* DIMENSION FRIGO(6:100) DIMENSION FRIGO(6:100) DIMENSION FRIGO(0:100) DIMENSION FRID (0:100) C*	C* GOTID : EVENT WITH TRUE IDENTIFIER FOUND	GOTID : EVENT WITH TRUE IDENTIFIER FOUND					
<pre>G* VETO : A CHARGED PARTICLE WENT OFF THE CHAMBER C* DETECT : A GAMMA HAS BEEN DETECTED C* TRIGGR : THE DETECTOR IS TRIGGERED C* DARYON : EVENT WITH BARYONIUM STATE (NEUTRAL + CHARGED) C* MOCHAR : EVENT WITH BARYONIUM STATE (NEUTRAL ONLY) C* NOCHAR : EVENT WITH NO CHARGED PARTICLES C* CALCUL : RECONSTRUCTION OF CHARGED PARTICLES KINEMATICS C* C* TITET : TARGET IS POINT-LIKE C* SUTGT : TARGET IS TOO LARGE C* NOCHAM : NO CHAMBER INSTALLED (ONLY ANTI-COUNTERS) C* FIELD : MACNETIC FIELD TURNED ON (MOMENTUM MEASUREMENT) C* C* LIST : EVENT DUMP TURNED ON C* HISPRT : PRINT THE CREATED HISTOGRAMS ON LINE PRINTER C* C* TYPE DECLARATIONS * C* IMPLICIT REAL*8 (A-H,O-Z)</pre>	C*						
C* DETECT : A GAMMA HAS BEEN DETECTED C* TRIGGR : THE DETECTOR IS TRIGGERED C* HARNON : EVENT WITH BARYONIUM STATE (NEUTRAL + CHARGED) C* MOGABA : EVENT WITH BARYONIUM STATE (NEUTRAL ONLY) C* NOCHAR : EVENT WITH NO CHARGED PARTICLES C* CALCUL : RECONSTRUCTION OF CHARGED PARTICLES C* ALCUL : RECONSTRUCTION OF CHARGED PARTICLES C* NOCHAM : NO CHAMBER INSTALLED (ONLY ANTI-COUNTERS) C* FIELD : MAGNETIC FIELD TURKED ON C* LIST : EVENT DUMP TURNED ON C* LIST : EVENT DUMP TURNED ON C* TYPE DECLARATIONS ** C* TYPE DECLARATIONS ** C* TYPE DECLARATIONS ** C* C* IMPLICIT REAL*8 (A-H, O-2)	C* VETO : A CHARGED PARTICLE WENT OFF THE CHAMBER						
C* TRIGG : THE DETECTOR IS TRIGGERED C* DARYON : EVENT WITH BARYONIUM STATE (NEUTRAL + CHARGED) C* MOGAAS : EVENT WITH BARYONIUM STATE (NEUTRAL ONLY) C* NOCHAR : EVENT WITH NO CHARGED PARTICLES C CALCUL : RECONSTRUCTION OF CHARGED PARTICLES C* CALCUL : RECONSTRUCTION OF CHARGED PARTICLES C* CALCUL : RECONSTRUCTION OF CHARGED PARTICLES C* TARGET IS POINT-LIKE C* SUTGT : TARGET IS TOO LARGE C* NOCHAM : NO CHAMBER INSTALLED (ONLY ANTI-COUNTERS) C* FIELD : MAGNETIC FIELD TURNED ON (MOMENTUM MEASUREMENT) C* C* LIST : EVENT DUMP TURNED ON C* HISPRT : PRINT THE CREATED HISTOGRAMS ON LINE PRINTER C* C* C* C* C* C* C* C* C* C*	C* DETECT : A GAMMA HAS BEEN DETECTED						
C* DARYON : EVENT WITH DARYONIUM STATE (NEUTRAL + CHARGED) C* MOGABA : EVENT WITH BARYONIUM STATE (NEUTRAL + CHARGED) C* MOGABA : EVENT WITH BARYONIUM STATE (NEUTRAL ONLY) C* MOCHAR : EVENT WITH NO CHARGED PARTICLES C* CALCUL : RECONSTRUCTION OF CHARGED PARTICLES C* CALCUL : RECONSTRUCTION OF CHARGED PARTICLES C* CALCUL : RECONSTRUCTION OF CHARGED PARTICLES C* SUTGT : TARGET IS POINT-LIKE C* SUTGT : TARGET IS TOO LARGE C* NOCHAM : NO CHARGEN INSTALLED (ONLY ANTI-COUNTERS) C* FIELD : MAGNETIC FIELD TURNED ON C* LIST : EVENT DUMP TURNED ON C* HISPRT : PRINT THE CREATED HISTOGRAMS ON LINE PRINTER C* C* TYPE DECLARATIONS * C* IMPLICIT REAL*8 (A-H, O-Z) REAL*8 MOMOUT REAL*8 MOMOUT REAL*8 MOMOUT COMMON /FLAGOP/ LIST COMMON /FARGET/ BMEANX, FWHMX, BMEANY, FWHMY, BMEANZ, FWHMZ, & RATIUS, ANGRES, NMOUL COMMON /TARGET/ BMEANX, FWHMX, BMEANY, FWHMY, BMEANZ, FWHMZ, & TGTRAD, TGTHLF, TGTDEN C* CMMON /TARGET, DETECT, MISMAT, GOTID LOGICAL INTOGR, DETECT, MISMAT, GOTID LOGICAL LIST, SELECT, VETO, MISPET LOGICAL LIST, SELECT, VETO, MISPET LOGICAL LIST, SUTGT, NOCHAM, FIELD LOGICAL LIST, SELECT, VETO, MISPET LOGICAL LIST, SELECT, VETO, MISPET LOGICAL LIST, SELECT, VETO, MISPET LOGICAL INVOX, NVMOY, INVMOZ LOGICAL INVOX, NVMOY, INVMOZ LOGICAL INVOX, NVMOM LOGICAL INVOX, NVMOM LOGICAL INVON, NVMOM LOGICAL INVON, NVMOM LOGICAL HARYON, MOGABA C* CHARACTER TYP(SO)*5, PARTIC(3)*5, MEDIUM*20 C*	C* TRIGGR : THE DETECTOR IS TRIGGERED						
C* MOGABA : EVENT WITH BARYONIUM STATE (NEUTRAL ONLY) C* NOCHAR : EVENT WITH NO CHARGED PARTICLES CALCUL : RECONSTRUCTION OF CHARGED PARTICLES KINEMATICS C* PITGT : TARGET IS POINT-LIKE C* NOCHAM : NO CHANBER INSTALLED (ONLY ANTI-COUNTERS) C* FIELD : MAGNETIC FIELD TURNED ON (MOMENTUM MEASUREMENT) C* C* LIST : EVENT DUMP TURNED ON C* HISPRT : PRINT THE CREATED HISTOGRAMS ON LINE PRINTER C* C* MULLIST : EVENT DUMP TURNED ON C* IMPLICIT REAL*8 (A-H, 0-2) REAL*8 MOMCUT REAL*8 MOMCUT REAL*4 TRIGNO, ERRID C* COMMON /FLAGOP/ LIST COMMON /FLAGOP/ MEAN, FWHNY, BMEANZ, FWHMZ, &	C* BARYON : EVENT WITH BARYONIUM STATE (NEUTRAL + CHARGED)						
<pre>C* NOCHAR : EVENT WITH NO CHARGED PARTICLES C* CALCUL : RECONSTRUCTION OF CHARGED PARTICLES KINEMATICS C* C* C* C* C* C* C* C* C* C* C* C* C*</pre>	C* MOGABA : EVENT WITH BARYONIUM STATE (NEUTRAL ONLY)						
C* CALCUL : RECONSTRUCTION OF CHARGED PARTICLES KINEMATICS C* C* C* PTTGT : TARGET IS POINT-LIKE C* SUTGT : TARGET IS TOO LARGE C* NOCHAM : NO CHANBER INSTALLED (ONLY ANTI-COUNTERS) C* FIELD : MAGNETIC FIELD TURNED ON (MOMENTUM MEASUREMENT) C* C* LIST : EVENT DUMP TURNED ON C* HISPRT : PRINT THE CREATED HISTOGRAMS ON LINE PRINTER C* TYPE DECLARATIONS * C* IMPLICIT REAL*8 (A-H, O-Z) REAL*8 MOMCUT REAL*8 MOMCUT REAL*4 TRIGNO, ERRID C* COMMON /FLAGOP/ LIST COMMON /FLAGOP/ LIST COMMON /FLAGOP/ LIST COMMON /FLAGOP/ LIST COMMON /FLAGOF/ DNODUL, CZDETE, CZBEAM, CZTARG, CZCHAM, CYSUPP, & REAL*4 TRIGNO, ERRID C* INTEGER FILOST, PART(4) C* INTEGER FILOST, PART(4) C* CHARACTER TYP(50)*5, PARTIC(3)*5, MEDIUM*20 C* CHARACTER TYP(50)*5, PARTIC(3)*5, MEDIUM*20 C* DIMENSION PCM(5, 50) DIMENSION FCM(5, 50) DIMENSION ERRID (0:100) C*	C* NOCHAR : EVENT WITH NO CHARGED PARTICLES						
C* PTTGT : TARGET IS POINT-LIKE C* PTTGT : TARGET IS POINT-LIKE C* SUTGT : TARGET IS TOO LARGE C* NOCHAM : NO CHAMBER INSTALLED (ONLY ANTI-COUNTERS) C* FIELD : MAGNETIC FIELD TURNED ON (MOMENTUM MEASUREMENT) C* C* LIST : EVENT DUMP TURNED ON C* HISPRT : PRINT THE CREATED HISTOGRAMS ON LINE PRINTER C* C* IMPLICIT REAL*8 (A-H,O-Z) REAL*4 TRIGNO,ERRID C* COMMON /FLAGOP/ LIST COMMON /FLAGOP/ LIST COMMON /FLAGOP/ LIST COMMON /FLAGOP/ LIST COMMON /FLAGOP/ LIST COMMON /FLAGOP/ LIST COMMON /TARGET/ BMEANX,FWHMX,BMEANY,FWHMY,BMEANZ,FWHMZ, & TGTRAD,TGTHLF,TGTDEN C* INTEGER PILOST,PART(4) C* CM CM CGICAL TIMOUT,OFF,EOF,MAXIMO,NIXEVT LOGICAL TRIGGR,DETECT,MISMAT,GOTID LOGICAL DYTGT,SUTGT,NOCHAM,FIELD LOGICAL DYTGT,SUTGT,NOCHAM,FIELD LOGICAL INVOX,INVMOY,INVMOZ LOGICAL INVENE,INVMOM LOGICAL INVENE,INVMOM LOGICAL BARYON,MOGABA C* CMARACTER TYP(50)*5,PARTIC(3)*5,MEDIUM*20 C*	C* CALCUL : RECONSTRUCTION OF CHARGED PARTICLES KINEMATICS						
<pre>C* PTTGT : TARGET IS POINT-LIKE C* SUTGT : TARGET IS TOO LARGE C* NOCHAM : NO CHAMBER INSTALLED (ONLY ANTI-COUNTERS) C* FIELD : MAGNETIC FIELD TURNED ON (MOMENTUM MEASUREMENT) C* C* LIST : EVENT DUMP TURNED ON C* HISPRT : PRINT THE CREATED HISTOGRAMS ON LINE PRINTER C* C* C* C* C* C* C* C* C* C* COMMON /FLAGOP/ LIST C COMMON /FLAGOP/ LIST LOGICAL TRIGOR, DETECT, MIST, BUEAN, FWHMX, BMEANY, FWHMY, BMEANZ, FWHMZ, & C C LOGICAL LIST, SELECT, VETO, HISPRT LOGICAL LIST, SELECT, NISMAT, GOTID LOGICAL LIST, SELECT, VETO, HISPRT LOGICAL LIST, SELECT, NISMAT, GOTID LOGICAL LIST, SELECT, VETO, HISPRT LOGICAL LIST, SELECT, VETO, HISPRT LOGICAL LIST, SELECT, NICHAN, HISPRT LOGICAL LIST, SELECT, VETO, HISPRT LOGICAL LIST, SELECT, VETO, HISPRT LOGICAL LIST, SELECT,</pre>							
<pre>C* SUTGT : TARGET IS TOO LARGE C* NOCHAM : NO CHAMBER INSTALLED (ONLY ANTI-COUNTERS) C* FIELD : MAGNETIC FIELD TURNED ON (MOMENTUM MEASUREMENT) C* C* LIST : EVENT DUMP TURNED ON C* HISPRT : PRINT THE CREATED HISTOGRAMS ON LINE PRINTER C* C* C* C* C* C* C* C* C* C* C* C* C*</pre>	C* PTTGT · TARGET IS POINT-LIKE						
<pre>C* DOCHAM : NO CHAMBER INSTALLED (ONLY ANTI-COUNTERS) C* FIELD : MAGNETIC FIELD TURNED ON (MOMENTUM MEASUREMENT) C* LIST : EVENT DUMP TURNED ON C* HISPRT : PRINT THE CREATED HISTOGRAMS ON LINE PRINTER C* C* C* C* C* C* C* C* C* C* C* C* C*</pre>	C* SUTGT TARGET IS TOO LARGE						
<pre>C* FIELD : MGGNETIC FIELD TURNED ON (MOMENTUM MEASUREMENT) C* LIST : EVENT DUMP TURNED ON C* HISPRT : PRINT THE CREATED HISTOGRAMS ON LINE PRINTER C* C* IMPLICIT REAL*8 (A-H,O-Z)</pre>	C* NOCHAM : NO CHAMBER INSTALLED (ONLY ANTI-COUNTERS)						
<pre>C* INSUMPTION THEORICAL STATES FOR (INTERCITED STATES OF (INTEGER STATES OF (INTEGER STATES</pre>	C_{\star} FIFLD · MACNETIC FIFLD TURNED ON (MOMENTIM MEASUREMENT)						
<pre>C* LIST : EVENT DUMP TURNED ON C* HISPRT : PRINT THE CREATED HISTOGRAMS ON LINE PRINTER C* C* C* TYPE DECLARATIONS * C* IMPLICIT REAL*8 (A-H,O-Z) REAL*8 MOMCUT REAL*8 MOMCUT REAL*4 TRIGNO,ERRID C* COMMON /FLAGOP/ LIST COMMON /FLAGOP/ LIST LOGICAL TIMOUT, OFF, FOF, MAXIMO, NIXEVT LOGICAL LIST, SELECT, VETO, HISPAT LOGICAL INVENE, INVMOM LOGICAL INVENE, INVMOM LOGICAL INVENE, INVMOM LOGICAL BARYON, MOGABA C* CHARACTER TYP(50)*5, PARTIC(3)*5, MEDIUM*20 C* C* C* C* C* C* C* C* C* C* C* C* C*</pre>							
<pre>C* HISPT : PRINT THE CREATED HISTOGRAMS ON LINE PRINTER C* C* C* C* C* C* C* C* C* C* C* C* C*</pre>	רא דוכיד דעבאיד אואס דוופאודה האו						
<pre>C* HISTAL . FAINT THE CREATED HISTOGRAMS ON FINE FAINTER C* C* C* IMPLICIT REAL*8 (A-H, O-2)</pre>							
<pre>C************************************</pre>	C* HISTRI : FRIMI THE CREATED HISTOGRAMS ON DIME FRIMIER						
<pre>C* TYPE DECLARATIONS * C* C* IMPLICIT REAL*8 (A-H, O-Z)</pre>	– – . A de de de de de de de de de de de de de						
<pre>C* TITE DECLARATIONS C* IMPLICIT REAL*8 (A-H,O-Z) REAL*4 TRIGNO,ERRID C* COMMON /FLAGOP/ LIST COMMON /FLAGOP/ LIST COMMON /FLAGOP/ LIST COMMON /FLAGOP/ LIST COMMON /PINDAT/ NPIGAM,NPIPIO COMMON /PINDAT/ NPIGAM,NPIPIO COMMON /TARGET/ BMEANX,FWHMX,BMEANY,FWHMY,BMEANZ,FWHMZ, & TGTRAD,TGTHLF,TGTDEN C* INTEGER PILOST,PART(4) C* LOGICAL TIMOUT,OFF,EOF,MAXIMO,NIXEVT LOGICAL TRIGGR,DETECT,MISMAT,GOTID LOGICAL LIST,SELECT,VETO,HISPRT LOGICAL LIST,SELECT,VETO,HISPRT LOGICAL INVMOX,INVMOY,INVMOZ LOGICAL INVENE,INVMOM LOGICAL BARYON,MOGABA C* CHARACTER TYP(50)*5,PARTIC(3)*5,MEDIUM*20 C*</pre>							
C* IMPLICIT REAL*8 (A-H,O-Z) REAL*8 MOMCUT REAL*4 TRIGNO, ERRID C* COMMON /FLAGOP/ LIST COMMON /GEO / DMODUL, CZDETE, CZBEAM, CZTARG, CZCHAM, CYSUPP, & RADIUS, ANGRES, NMODUL COMMON /PIMDAT/ NPIGAM, NPIPIO COMMON /TARGET/ BMEANX, FWHMX, BMEANY, FWHMY, BMEANZ, FWHMZ, & TGTRAD, TGTHLF, TGTDEN C* INTEGER PILOST, PART(4) C* LOGICAL TIMOUT, OFF, EOF, MAXIMO, NIXEVT LOGICAL TRIGGR, DETECT, MISMAT, GOTID LOGICAL INTGGR, DETECT, MISMAT, GOTID LOGICAL LIST, SELECT, VETO, HISPRT LOGICAL INVMOX, INVMOY, INVMOZ LOGICAL INVMOX, INVMOY, INVMOZ LOGICAL INVENE, INVMOM LOGICAL BARYON, MOGABA C* CHARACTER TYP(50)*5, PARTIC(3)*5, MEDIUM*20 C* DIMENSION PCM(5, 50) DIMENSION TRIGNO(0:100) C*							
<pre>IMPLICIT REAL*8 (A-H,O-Z) REAL*8 MOMCUT REAL*4 TRIGNO, ERRID C* COMMON /FLAGOP/ LIST COMMON /FLAGOP/ LIST COMMON /GEO / DMODUL, CZDETE, CZBEAM, CZTARG, CZCHAM, CYSUPP, & RADIUS, ANGRES, NMODUL COMMON /PIMDAT/ NPIGAM, NPIPIO COMMON /TARGET/ BMEANX, FWHMX, BMEANY, FWHMY, BMEANZ, FWHMZ, & TGTRAD, TGTHLF, TGTDEN C* INTEGER PILOST, PART(4) C* LOGICAL TIMOUT, OFF, EOF, MAXIMO, NIXEVT LOGICAL TRIGGR, DETECT, MISMAT, GOTID LOGICAL LIST, SELECT, VETO, HISPRT LOGICAL LIST, SELECT, VETO, HISPRT LOGICAL NOCHAR, CALCUL, NIXDO LOGICAL INVMOX, INVMOY, INVMOZ LOGICAL INVEKE, INVMOM LOGICAL BARYON, MOGABA C* CHARACTER TYP(50)*5, PARTIC(3)*5, MEDIUM*20 C* DIMENSION PCM(5,50) DIMENSION TRIGNO(0:100) DIMENSION ERRID (0:100) C*</pre>	C+	•					
<pre>IMPLICIT REAL*6 (A*A, 0*2) REAL*6 MOMCUT REAL*4 TRIGNO, ERRID C* COMMON /FLAGOP/ LIST COMMON /PIMDAT/ NPIGAM, NGRES, NMODUL COMMON /PIMDAT/ NPIGAM, NPIPIO COMMON /TARGET/ BMEANX, FWHMX, BMEANY, FWHMY, BMEANZ, FWHMZ, & TGTRAD, TGTHLF, TGTDEN C* LOGICAL TIMOUT, OFF, EOF, MAXIMO, NIXEVT LOGICAL TRIGGR, DETECT, MISMAT, GOTID LOGICAL TRIGGR, DETECT, MISMAT, GOTID LOGICAL LIST, SELECT, VETO, HISPRT LOGICAL NOCHAR, CALCUL, NIXDO LOGICAL INVENE, INVMOM LOGICAL INVENE, INVMOM LOGICAL BARYON, MOGABA C* CHARACTER TYP(50)*5, PARTIC(3)*5, MEDIUM*20 C* DIMENSION PCM(5,50) DIMENSION ERRID (0:100) C*</pre>							
<pre>REAL*6 HUFUCI REAL*4 TRIGNO, ERRID C* COMMON /FLAGOP/ LIST COMMON /GEO / DMODUL, CZDETE, CZBEAM, CZTARG, CZCHAM, CYSUPP, & RADIUS, ANGRES, NMODUL COMMON /PIMDAT/ NPIGAM, NPIPIO COMMON /TARGET/ BMEANX, FWHMX, BMEANY, FWHMY, BMEANZ, FWHMZ, & TGTRAD, TGTHLF, TGTDEN C* LOGICAL TIMOUT, OFF, EOF, MAXIMO, NIXEVT LOGICAL TRIGGR, DETECT, MISMAT, GOTID LOGICAL PTTGT, SUTGT, NOCHAM, FIELD LOGICAL LIST, SELECT, VETO, HISPRT LOGICAL LIST, SELECT, VETO, HISPRT LOGICAL INVMOX, INVMOY, INVMOZ LOGICAL INVENE, INVMOM LOGICAL BARYON, MOGABA C* CHARACTER TYP(50)*5, PARTIC(3)*5, MEDIUM*20 C* DIMENSION PCM(5,50) DIMENSION TRIGNO(0:100) DIMENSION RERID (0:100) C*</pre>	$\frac{1000}{1000}$						
C* Common /FLAGOP/ LIST COMMON /GEO / DMODUL, CZDETE, CZBEAM, CZTARG, CZCHAM, CYSUPP, & RADIUS, ANGRES, NMODUL COMMON /PIMDAT/ NPIGAM, NPIPIO COMMON /PIMDAT/ NPIGAM, NPIPIO COMMON /TARGET/ BMEANX, FWHMX, BMEANY, FWHMY, BMEANZ, FWHMZ, & TGTRAD, TGTHLF, TGTDEN C* INTEGER PILOST, PART(4) C* LOGICAL TIMOUT, OFF, EOF, MAXIMO, NIXEVT LOGICAL TRIGGR, DETECT, MISMAT, GOTID LOGICAL DIST, SELECT, VETO, HISPRT LOGICAL LIST, SELECT, VETO, HISPRT LOGICAL INVOX, INVMOY, INVMOZ LOGICAL INVENE, INVMOM LOGICAL BARYON, MOGABA C* CHARACTER TYP(50)*5, PARTIC(3)*5, MEDIUM*20 C* DIMENSION PCM(5, 50) DIMENSION PCM(5, 50) DIMENSION ERRID (0:100) C*							
<pre>C* COMMON /FLAGOP/ LIST CONMON /GEO / DMODUL,CZDETE,CZBEAM,CZTARG,CZCHAM,CYSUPP, & RADIUS,ANGRES,NMODUL COMMON /PINDAT/ NPIGAM,NPIPIO COMMON /TARGET/ BMEANX,FWHMX,BMEANY,FWHMY,BMEANZ,FWHMZ, & TGTRAD,TGTHLF,TGTDEN C* INTEGER PILOST,PART(4) C* LOGICAL TIMOUT,OFF,EOF,MAXIMO,NIXEVT LOGICAL TRIGGR,DETECT,MISMAT,GOTID LOGICAL PTTGT,SUTGT,NOCHAM,FIELD LOGICAL LIST,SELECT,VETO,HISPRT LOGICAL LIST,SELECT,VETO,HISPRT LOGICAL INVMOX,INVMOY,INVMOZ LOGICAL INVMOX,INVMOY,INVMOZ LOGICAL INVENE,INVMOM LOGICAL BARYON,MOGABA C* CHARACTER TYP(50)*5,PARTIC(3)*5,MEDIUM*20 C* DIMENSION PCM(5,50) DIMENSION TRIGNO(0:100) DIMENSION ERRID (0:100) C*</pre>	REAL^4 IRIGNU, ERRID						
COMMON /FLAGUP/ LIST COMMON /GEO / DMODUL, CZDETE, CZBEAM, CZTARG, CZCHAM, CYSUPP, & RADIUS, ANGRES, NMODUL COMMON /PIMDAT/ NPIGAM, NPIPIO COMMON /TARGET/ BMEANX, FWHNX, BMEANY, FWHMY, BMEANZ, FWHMZ, & TGTRAD, TGTHLF, TGTDEN C* INTEGER PILOST, PART(4) C* LOGICAL TIMOUT, OFF, EOF, MAXIMO, NIXEVT LOGICAL TRIGGR, DETECT, MISMAT, GOTID LOGICAL PTTGT, SUTGT, NOCHAM, FIELD LOGICAL LIST, SELECT, VETO, HISPRT LOGICAL LIST, SELECT, VETO, HISPRT LOGICAL INVMOX, INVMOY, INVMOZ LOGICAL INVENE, INVMOM LOGICAL INVENE, INVMOM LOGICAL BARYON, MOGABA C* CHARACTER TYP(50)*5, PARTIC(3)*5, MEDIUM*20 C* DIMENSION PCM(5, 50) DIMENSION TRIGNO(0:100) C*							
COMMON /GEO / DNODOL, CZDETE, CZBEAN, CZTARG, CZCHAM, CYSOPP, & RADIUS, ANGRES, NMODUL COMMON /PIMDAT/ NPIGAM, NPIPIO COMMON /TARGET/ BMEANX, FWHMX, BMEANY, FWHMY, BMEANZ, FWHMZ, & TGTRAD, TGTHLF, TGTDEN C* INTEGER PILOST, PART(4) C* LOGICAL TIMOUT, OFF, EOF, MAXIMO, NIXEVT LOGICAL TRIGGR, DETECT, MISMAT, GOTID LOGICAL TRIGGR, DETECT, MISMAT, GOTID LOGICAL LIST, SELECT, VETO, HISPRT LOGICAL LIST, SELECT, VETO, HISPRT LOGICAL INVENCY, INVMOY, INVMOZ LOGICAL INVENCY, INVMOY, INVMOZ LOGICAL INVENE, INVMOM LOGICAL BARYON, MOGABA C* CHARACTER TYP(50)*5, PARTIC(3)*5, MEDIUM*20 C* DIMENSION PCM(5, 50) DIMENSION TRIGNO(0:100) DIMENSION ERRID (0:100) C*	CUMMUN /FLAGUP/ LIST COMMON /CDO / DNODUL CEDERE CEDEAN CERTADO CECULAN CUCUED						
<pre> KADIUS, ANGRES, NNODUL COMMON /PIMDAT/ NPIGAM, NPIPIO COMMON /TARGET/ BMEANX, FWHMX, BMEANY, FWHMY, BMEANZ, FWHMZ, & TGTRAD, TGTHLF, TGTDEN C* INTEGER PILOST, PART(4) C* LOGICAL TIMOUT, OFF, EOF, MAXIMO, NIXEVT LOGICAL TRIGGR, DETECT, MISMAT, GOTID LOGICAL PTTGT, SUTGT, NOCHAM, FIELD LOGICAL LIST, SELECT, VETO, HISPRT LOGICAL INVENZ, INVMOY, INVMOZ LOGICAL INVENZ, INVMOM LOGICAL INVENZ, INVMOM LOGICAL BARYON, MOGABA C* CHARACTER TYP(50)*5, PARTIC(3)*5, MEDIUM*20 C* DIMENSION PCM(5, 50) DIMENSION TRIGNO(0:100) C* C* C* C* C* C* C* C* C* C* C* C* C*</pre>	COMMON / GEO / DMODUL, CZDETE, CZBEAM, CZTARG, CZCHAM, CYSUPP,						
COMMON //INDAT/ NPIGAN,NPIPIO COMMON /TARGET/ BMEANX,FWHMX,BMEANY,FWHMY,BMEANZ,FWHMZ, & TGTRAD,TGTHLF,TGTDEN C* INTEGER PILOST,PART(4) C* LOGICAL TIMOUT,OFF,EOF,MAXIMO,NIXEVT LOGICAL TRIGGR,DETECT,MISMAT,GOTID LOGICAL PTTGT,SUTGT,NOCHAM,FIELD LOGICAL LIST,SELECT,VETO,HISPRT LOGICAL NOCHAR,CALCUL,NIXDO LOGICAL INVMOX,INVMOY,INVMOZ LOGICAL INVENE,INVMOM LOGICAL BARYON,MOGABA C* CHARACTER TYP(50)*5,PARTIC(3)*5,MEDIUM*20 C* DIMENSION PCM(5,50) DIMENSION TRIGNO(0:100) DIMENSION ERRID (0:100) C*	& KADIUS, ANGRES, NMUDUL						
CUMMUN / TARGET / BREANX, FWHMX, BREANY, FWHMY, BMEANZ, FWHMZ, & TGTRAD, TGTHLF, TGTDEN C* INTEGER PILOST, PART(4) C* LOGICAL TIMOUT, OFF, EOF, MAXIMO, NIXEVT LOGICAL TRIGGR, DETECT, MISMAT, GOTID LOGICAL PTTGT, SUTGT, NOCHAM, FIELD LOGICAL LIST, SELECT, VETO, HISPRT LOGICAL LIST, SELECT, VETO, HISPRT LOGICAL NOCHAR, CALCUL, NIXDO LOGICAL INVMOX, INVMOY, INVMOZ LOGICAL INVENE, INVMOM LOGICAL BARYON, MOGABA C* CHARACTER TYP(50)*5, PARTIC(3)*5, MEDIUM*20 C* DIMENSION PCM(5,50) DIMENSION TRIGNO(0:100) DIMENSION ERRID (0:100) C*	COMMON /PIMDAI/ NPIGAM,NPIPIO						
<pre>c* TGTRAD,TGTHLF,TGTDEN C* INTEGER PILOST,PART(4) C* LOGICAL TIMOUT,OFF,EOF,MAXIMO,NIXEVT LOGICAL TRIGGR,DETECT,MISMAT,GOTID LOGICAL PTTGT,SUTGT,NOCHAM,FIELD LOGICAL LIST,SELECT,VETO,HISPRT LOGICAL LIST,SELECT,VETO,HISPRT LOGICAL INVMOX,INVMOY,INVMOZ LOGICAL INVENE,INVMOM LOGICAL BARYON,MOGABA C* CHARACTER TYP(50)*5,PARTIC(3)*5,MEDIUM*20 C* DIMENSION PCM(5,50) DIMENSION TRIGNO(0:100) C* C*</pre>	COMMUN /TARGET/ BMEANX, FWHMX, BMEANY, FWHMY, BMEANZ, FWHMZ,						
<pre>C* INTEGER PILOST,PART(4) C* LOGICAL TIMOUT,OFF,EOF,MAXIMO,NIXEVT LOGICAL TRIGGR,DETECT,MISMAT,GOTID LOGICAL PTTGT,SUTGT,NOCHAM,FIELD LOGICAL LIST,SELECT,VETO,HISPRT LOGICAL LIST,SELECT,VETO,HISPRT LOGICAL NOCHAR,CALCUL,NIXDO LOGICAL INVMOX,INVMOY,INVMOZ LOGICAL INVENE,INVMOM LOGICAL BARYON,MOGABA C* CHARACTER TYP(50)*5,PARTIC(3)*5,MEDIUM*20 C* DIMENSION PCM(5,50) DIMENSION TRIGNO(0:100) DIMENSION ERRID (0:100) C*</pre>	& TGTRAD, TGTHLF, TGTDEN						
C* LOGICAL TIMOUT, OFF, EOF, MAXIMO, NIXEVT LOGICAL TRIGGR, DETECT, MISMAT, GOTID LOGICAL PTTGT, SUTGT, NOCHAM, FIELD LOGICAL LIST, SELECT, VETO, HISPRT LOGICAL NOCHAR, CALCUL, NIXDO LOGICAL INVMOX, INVMOY, INVMOZ LOGICAL INVENE, INVMOM LOGICAL BARYON, MOGABA C* CHARACTER TYP(50)*5, PARTIC(3)*5, MEDIUM*20 C* DIMENSION PCM(5,50) DIMENSION TRIGNO(0:100) DIMENSION ERRID (0:100) C*							
C* LOGICAL TIMOUT, OFF, EOF, MAXIMO, NIXEVT LOGICAL TRIGGR, DETECT, MISMAT, GOTID LOGICAL PTTGT, SUTGT, NOCHAM, FIELD LOGICAL LIST, SELECT, VETO, HISPRT LOGICAL NOCHAR, CALCUL, NIXDO LOGICAL INVMOX, INVMOY, INVMOZ LOGICAL INVENE, INVMOM LOGICAL BARYON, MOGABA C* CHARACTER TYP(50)*5, PARTIC(3)*5, MEDIUM*20 C* DIMENSION PCM(5,50) DIMENSION TRIGNO(0:100) DIMENSION ERRID (0:100) C*	INTEGER PILOST, PART(4)						
LOGICAL TIMOUT, OFF, EOF, MAXIMO, NIXEVT LOGICAL TRIGGR, DETECT, MISMAT, GOTID LOGICAL PTTGT, SUTGT, NOCHAM, FIELD LOGICAL LIST, SELECT, VETO, HISPRT LOGICAL NOCHAR, CALCUL, NIXDO LOGICAL INVMOX, INVMOY, INVMOZ LOGICAL INVENE, INVMOM LOGICAL BARYON, MOGABA C* CHARACTER TYP(50)*5, PARTIC(3)*5, MEDIUM*20 C* DIMENSION PCM(5,50) DIMENSION TRIGNO(0:100) DIMENSION ERRID (0:100) C*	C*						
LOGICAL TRIGGR, DETECT, MISMAT, GOTID LOGICAL PTTGT, SUTGT, NOCHAM, FIELD LOGICAL LIST, SELECT, VETO, HISPRT LOGICAL NOCHAR, CALCUL, NIXDO LOGICAL INVMOX, INVMOY, INVMOZ LOGICAL INVENE, INVMOM LOGICAL BARYON, MOGABA C* CHARACTER TYP(50)*5, PARTIC(3)*5, MEDIUM*20 C* DIMENSION PCM(5,50) DIMENSION TRIGNO(0:100) DIMENSION TRIGNO(0:100) C* C*	LOGICAL TIMOUT, OFF, EOF, MAXIMO, NIXEVT						
LOGICAL PTTGT, SUTGT, NOCHAM, FIELD LOGICAL LIST, SELECT, VETO, HISPRT LOGICAL NOCHAR, CALCUL, NIXDO LOGICAL INVMOX, INVMOY, INVMOZ LOGICAL INVENE, INVMOM LOGICAL BARYON, MOGABA C* CHARACTER TYP(50)*5, PARTIC(3)*5, MEDIUM*20 C* DIMENSION PCM(5,50) DIMENSION TRIGNO(0:100) DIMENSION TRIGNO(0:100) C* C*	LOGICAL TRIGGR, DETECT, MISMAT, GOTID						
LOGICAL LIST, SELECT, VETO, HISPRT LOGICAL NOCHAR, CALCUL, NIXDO LOGICAL INVMOX, INVMOY, INVMOZ LOGICAL INVENE, INVMOM LOGICAL BARYON, MOGABA C* CHARACTER TYP(50)*5, PARTIC(3)*5, MEDIUM*20 C* DIMENSION PCM(5,50) DIMENSION TRIGNO(0:100) DIMENSION TRIGNO(0:100) C* C*	LOGICAL PTTGT, SUTGT, NOCHAM, FIELD						
LOGICAL NOCHAR, CALCUL, NIXDO LOGICAL INVMOX, INVMOY, INVMOZ LOGICAL INVENE, INVMOM LOGICAL BARYON, MOGABA C* CHARACTER TYP(50)*5, PARTIC(3)*5, MEDIUM*20 C* DIMENSION PCM(5,50) DIMENSION TRIGNO(0:100) DIMENSION TRIGNO(0:100) C* C*	LOGICAL LIST, SELECT, VETO, HISPRT						
LOGICAL INVMOX, INVMOY, INVMOZ LOGICAL INVENE, INVMOM LOGICAL BARYON, MOGABA C* CHARACTER TYP(50)*5, PARTIC(3)*5, MEDIUM*20 C* DIMENSION PCM(5,50) DIMENSION TRIGNO(0:100) DIMENSION TRIGNO(0:100) C* C*	LOGICAL NOCHAR, CALCUL, NIXDO						
LOGICAL INVENE, INVMOM LOGICAL BARYON, MOGABA C* CHARACTER TYP(50)*5, PARTIC(3)*5, MEDIUM*20 C* DIMENSION PCM(5,50) DIMENSION TRIGNO(0:100) DIMENSION TRIGNO(0:100) C* C*	LOGICAL INVMOX, INVMOY, INVMOZ						
LOGICAL BARYON, MOGABA C* CHARACTER TYP(50)*5, PARTIC(3)*5, MEDIUM*20 C* DIMENSION PCM(5,50) DIMENSION TRIGNO(0:100) DIMENSION ERRID (0:100) C* C*	LOGICAL INVENE, INVMOM						
C* CHARACTER TYP(50)*5,PARTIC(3)*5,MEDIUM*20 C* DIMENSION PCM(5,50) DIMENSION TRIGNO(0:100) DIMENSION ERRID (0:100) C* C********************************	LOGICAL BARYON, MOGABA						
CHARACTER TYP(50)*5, PARTIC(3)*5, MEDIUM*20 C* DIMENSION PCM(5,50) DIMENSION TRIGNO(0:100) DIMENSION ERRID (0:100) C* C*****	C*						
C* DIMENSION PCM(5,50) DIMENSION TRIGNO(0:100) DIMENSION ERRID (0:100) C* C********************************	CHARACTER TYP(50)*5,PARTIC(3)*5,MEDIUM*20						
DIMENSION PCM(5,50) DIMENSION TRIGNO(0:100) DIMENSION ERRID (0:100) C* C****	C*						
DIMENSION TRIGNO(0:100) DIMENSION ERRID (0:100) C* C*****	DIMENSION PCM(5,50)						
DIMENSION ERRID (0:100) C* C****	DIMENSION TRIGNO(0:100)						
C*************************************	DIMENSION ERRID (0:100)						
C*************************************	C*						
	C*************************************	k					

SET INITIAL VALUES C*

*

```
C*
     PARAMETER (PI
                    = 3.1415962653589793)
     PARAMETER (PIMASS = 139.5688)
C*
                  , IBARST/0/, PILOST/0/,
     DATA KNT/0/
    &
          NOTRIG/0/,NGATOT/0/,NSIGAR/0/,NOREGA/0/,
    &
          ILOST/0/ ,IBARGA/0/,
    &
          TRIGNO/101*0./,ERRID/101*0./,
          TRIGNU, 10, PCM/250*0.DO/,
    δ.
    &
                                   '/
    &
          MEDIUM/'
C*
     DATA PRCTG1/0./, PRCTG2/0./, PRCTG3/0./, PRCTG4/0./,
          PRCTG6/0./,PRCTG7/0./
    &
C*
               /.FALSE./
     DATA EOF
     DATA OFF
               /.FALSE./
C*
     NAMELIST / INPUT / SIZE, BSIZE,
                     MEDIUM, ANGRES, ERESOL, EO, EXPONT, ETHRSH,
    &
    &
                     CHMLEN, CHMDIA, PRESOL, SUPPLY, PO, PTHRSH,
    &
                     BFIELD, RESLEN, RESDIA, PIWIN,
    &
                     MAXEVT, ISTORE, ID, NTAPE, LUNIN,
    &
                     DMODUL, RADIUS, NMODUL,
    &
                     BMEANX, FWHMX, BMEANY, FWHMY, BMEANZ, FWHMZ,
    &
                     TGTDIA, TGTLEN, TGTDEN, TGTHOL,
    &
                     NLIST, NCHAN, ENECUT, MOMCUT, HISPRT
C*
     NPIGAM = 0
     NPIPIO = 0
C*
C*
      SET DEFAULT PARAMETERS FOR STANDARD DETECTOR SYSTEM ...
                                                               *
C*
C*
      GAMMA DETECTOR
C*
      . . . . . . . . . . . . . .
C*
      MEDIUM = 'CS - JODID'
            = 360.0
      SIZE
      BSIZE =
                 5.0
      ERESOL =
                 7.0
      EXPONT =
                0.25
      ΕO
            =
               100.0
      ETHRSH =
                10.0
      DMODUL =
                 3.0
      ANGRES =
                 5.0
      RADIUS =
                 0.0
      NMODUL =
                 0
C*
C*
      CHARGED PARTICLE CHAMBER
C*
      C*
      CHMLEN =
                40.0
      CHMDIA =
                40.0
      BFIELD =
                 1.0
      RESLEN =
                 0.5
      RESDIA =
                 0.025
```

```
PRESOL =
                 5.0
      P0
               200.0
          =
      PTHRSH =
                50.0
      SUPPLY =
                10.0
C*
C*
      TARGET
C*
      • • • • • • • ·
C*
      TGTDIA =
                 3.0
      TGTLEN =
                 3.0
      TGTDEN =
                 0.0708
      TGTHOL =
                 0.0
C*
C*
      BEAM
C*
      . . . .
C*
      BMEANX =
                 0.0
      FWHMX =
                 1.0
      BMEANY =
                 0.0
      FWHMY =
                 1.0
      BMEANZ =
                 0.0
      FWHMZ =
                 1.0
C*
C*
      PIO RECONSTRUCTION
C*
      . . . . . . . . . . . . . . . . . . .
C*
      PIWIN =
                50.0
C*
C*
      OPTIONS
C*
      . . . . . . .
C*
      MAXEVT =1600000
      NTAPE =
                   1
      LUNIN =
                   2
      ID
            =
                   0
      ISTORE =
                   0
      NLIST =
                  20
      NCHAN =
                 100
      ENECUT =
                  50.
      MOMCUT =
                  50.
      HISPRT =
               .TRUE.
C*
C*
     START THE SIMULATION PROGRAM ....
                                                                56
C*
C*
     RESET RUNTIME FLAG
C*
      . . . . . . . . . . . . . . . . . .
C*
     TOSTRT = ZEIT(0)
C*
C*
C*
     READ DETEKTOR PARAMETERS
C*
      С*
     READ(5, INPUT)
C*
C*
     TARGET DIMENSIONS
```

```
C*
     . . . . . . . . . . . . . . . . . .
C*
     IF (TGTDIA.GE.0.5.AND.TGTLEN.GE.0.5) THEN
       PTTGT = .FALSE.
       TGTRAD = TGTDIA/2.
       TGTHLF = TGTLEN/2.
     ELSE
       PTTGT = .TRUE.
       BMEANX = 0.
       HWHMX = 0.
       BMEANY = 0.
       FWHMY = 0.
       BMEANZ = 0.
       FWHMZ = 0.
       TGTHLF = 0.
       TGTRAD = 0.
     ENDIF
C*
     CZTARG = COS(TGTHOL/360.*PI)
C*
C*
C*
     CHARGED PARTICLE CHAMBER DIMENSIONS
C*
     C*
     FIELD = (BFIELD.GT.0.0)
     IF (.NOT.FIELD) PRESOL = 0.D0
C*
     IF (CHMDIA.EQ.0.0.OR.CHMLEN.EQ.0.0) THEN
       NOCHAM = .TRUE.
       CZCHAM = 1.D0
     ELSE
       NOCHAM = .FALSE.
        ALPHA = ATAN(CHMDIA/CHMLEN)
        CZCHAM = COS(ALPHA)
     ENDIF
C*
     CHMRAD = 0.5 * SQRT(CHMLEN**2 + CHMDIA**2)
     CYSUPP = COS(SUPPLY/360.*PI)
C*
C*
     PRINT SIMULATION PARAMETERS
C*
     C*
     PRINT 100
     FORMAT ('1',125('*'),/,
'0','*********
100
               &
            '', '***** PROGRAM FOURPI STARTED
                                              *****
    &
            &
            '0',125('*'))
    &
     PRINT 200
200
     FORMAT ('0', 'A 4-PI-DETECTOR-SYSTEM (CRYSTAL-BALL) IS SIMULATED '
              , 'ACCORDING TO THE FOLLOWING PARAMETERS:')
    &
C*
     PRINT 300, SIZE, BSIZE, TGTHOL, SUPPLY
C*
    300
    &
    &
    &
    &
```

,' ','SLOT FOR CHAMBER SUPPLY & READ OUT:', F9.4,' DEGREES') & C* PRINT 400, MEDIUM, ERESOL, E0, EXPONT, ETHRSH, ANGRES 400 FORMAT('0' U, GANMA DETECTOR',/, '','*************',/, ,'GAMMA DETECTOR' & 'MEDIUM ',A20,/, & 'ENERGY RESOLUTION (FWHM);',F9.4,' & 'AT ',F5.1,' MEV, PROP. TO 1/E**',F5.2,/, & & & C* PRINT 500, TGTLEN, TGTDIA, BMEANX, FWHMX, BMEANY, FWHMY, BMEANZ, FWHMZ, & TGTDEN 'TARGET',/, 500 FORMAT('0' 0, IARGEI 1 1 1 ******** & t t 'LENGTH & 'DIAMETER OF TARGET' DIAMETER OF TARGET', F9.4,' CM' MAIN VALUE OF VERTEX (X)', F9.4,' CM' ' CM' & ,/, t. 'FWHM (X)', F9.4, 'MAIN VALUE OF VERTEX (X)', F9.4, & ,/, ' CM' 1 'FWHM (X)',F9.4,' CM' 'MAIN VALUE OF VERTEX (Y):',F9.4,' CM' & ,/, 'MAIN VALUE OF VERTEX (Y)', F9.4, 'CM',/, 'FWHM (Y)', F9.4, 'CM',/, & ,F9.4,' CM ,/, 8 · · ' ,'MAIN VALUE OF VERTEX (Z);',F9.4,' CM',/, ,'FWHM (Z)',F9.4,' CM',/, ,'DENSITY OF TARGET MATERIAL',F9.4,' G/CM**3') & ۰ı' & 1 1 & C* IF (PTTGT) PRINT 600 FORMAT ('0', 'TARGET ASSUMED TO BE POINT-LIKE .') 600 C* PRINT 700, CHMLEN, CHMDIA, RESLEN, RESDIA, BFIELD, PRESOL, & PO, PO, PO, PTHRSH FORMAT('0' 'CHARGED PARTICLE DRIFT CHAMBER',/, 700 δ 'LENGTH & ,/, ' CM' 'RESOLUTION IN Z - DIRECTION:', F9.4, 'RESOLUTION IN X Y - DIRECTION:', F9.4, 'DIAMETER OF CHAMBER' 1 1 & ,/, ' CM' 'RESOLUTION IN Z - DIRECTION:',F9.4,' CM',/, 'RESOLUTION IN X,Y - DIRECTION:',F9.4,' CM',/, , , / , & & & 1 1 & ,'AT ',F5.1,' MEV/C PROP. TO 1/3. * (1 + P /',F5.1, ' + ',F5.1,'/ P).',/, & & ' ', 'MOMENTUM THRESHOLD', F9.4,' MEV/C') 8 C* PRINT* PRINT*, 'NOTE : ALL RESOLUTIONS ARE FWHM.' C* IF (NOCHAM) PRINT 800 FORMAT ('0', 'NO CHARGED PARTICLE CHAMBER INSTALLED .') 800 C* PRINT 900, PIWIN FORMAT('0 900 & 'WINDOW FOR PIO-MASS', F9.4,' MEV') δ C* PRINT 1000, MAXEVT, LUNIN, NTAPE, NLIST, ISTORE, NCHAN, ID, ENECUT, MOMCUT FORMAT('0', 'OPTIONS',/, 1000 & ' ', 'NUMBER OF EVENTS TO BE PROCESSED .: ', 18,/, & ' ', 'FORTRAN UNIT FOR DATA INPUT & ,18,/, 1 1 , 'NUMBER OF TAPES USED', 18,/, &

— 105 —

	<pre>& ' ','NUMBER OF EVENTS TO BE DUMPED:',I8,/, & ' ','UNIT FOR SAVING THE HISTOGRAMS:',I8,/, & ' ','NUMBER OF BINS FOR THE HISTOGRAMS :',I8,/, & ' ','SELECT SPECIAL CHANNEL:',I8,/, & ' ','WIDTH OF ENERGY CUT',F8.3,' MEV',/, & ' ','WIDTH OF MOMENTUM CUT',F8.3,' MEV/C')</pre>
C.*	
C**	
·C*	GET THE DETECTOR 5 GEOMETRY
C*	
	CZDETE = COS(SIZE/360.*PI) CZBEAM = COS(BSIZE/360.*PI)
C*	
	CALL GEOMET
64	
	CHMRAD = RADIUS
	SUPPLI - 0.0
C*	
	SUTGT = (TGTHLF.GT.RADIUS.OR.TGTRAD.GT.RADIUS) IF (SUTGT) THEN
1100	PRINT 1100 FORMAT ('0','>>> TARGET IS TOO LARGE TO FIT INTO DETECTOR .')
C*	ENDIF
C*	INITIALIZE HISTOGRAM BOOKING
C*	
C*	CALL HBOOK (NCHAN)
C**** C** C**	**************************************
1300	PRINT 1300 FORMAT ('1', 'PROCESSING THE EVENTS',/, & '','**********************************
C*	DO 3400 UNTIL (OFF)
C*	SELECT = $.TRUE$.
C*	DO 1400 WHILE (SELECT)
C*	KNTP1 = KNT + 1
C* C*	SET LIST-EVENT FLAG
C**	LIST = (KNT.LT.NLIST)
しべ C*	
C*	READ THE PARTICLES' KINEMATICS FROM FORTRAN UNIT #LUNIN
C*	ALAD INI IAKIIOLED KIMEMAIIOD FROM FORINAN UNII #LUNIN
<u> </u>	CALL GETEVT (IDEVNT,NPTOT,PCM,TYP,EOF,LUNIN) IF (EOF,AND.NTAPE.GT.1) THEN

```
EOF
              = .FALSE.
        NTAPE = NTAPE - 1
      ENDIF
C*
C*
C*
      TIMING
C*
      . . . . . .
C*
      CALL TIMEL (TLEFT)
      TIMOUT = (TLEFT.LE.5.)
      NIXEVT = (IDEVNT.LE.O)
     MAXIMO = (KNT.EQ.MAXEVT)
C*
             = (TIMOUT.OR.NIXEVT.OR.MAXIMO.OR.EOF)
      OFF
C*
C*
C*
      SELECT SPECIAL CHANNEL ???
C*
         C*
      SELECT = ((ID.GT.0).AND.(IDEVNT.NE.ID).AND.(.NOT.OFF))
1400
      CONTINUE
C*
      IF (.NOT.OFF) THEN
      KNT = KNTP1
C*
C*
      COUNT THE EVENTS ...
C*
      CALL HFILL(24, FLOAT(IDEVNT), DUMMY, 1.D0)
C*
C*
      CLASSIFY THE EVENT
C*
      . . . . . . . . . . . . . . . . . . .
С*
C*
      IS IT AN EVENT WITH BARYONIUM STATE ???
C*
      BARYON = (IDEVNT.GE.54.AND.IDEVNT.LE.64)
C*
C*
      IS IT AN EVENT WITH MONOENERGETIC BARYONIUM GAMMA ???
C*
      MOGABA = (IDEVNT.GE.54.AND.IDEVNT.LE.58)
C*
      IF (.NOT.PTTGT) THEN
C*
C*
         CHOOSE A VERTEX FOR THIS EVENT
C*
         C*
         CALL VERTEX (X,Y,Z)
         CALL HFILL (3,X,DUMMY,1.DO)
         CALL HFILL (4,Y,DUMMY,1.DO)
         CALL HFILL (5,Z,DUMMY,1.DO)
         IF (LIST) PRINT 1500,X,Y,Z
1500
         FORMAT('0', 'VERTEX OF THIS EVENT: ', 3F10.3, ' (CM)')
C*
      ENDIF
C*
C*
      EXAMINE THE CHARGED PARTICLES
C*
      С*
      IF (LIST) PRINT 1600
      FORMAT ('0', 'A) FOLLOW THE CHARGED PARTICLES: ',/,
1600
```

```
&
      IF (.NOT.PTTGT) CALL PISTOP(PCM,TYP,NPTOT,X,Y,Z)
C*
      Ι
             = 1
      NCHAR = 0
      VETO
             = .FALSE.
      DO 2000 UNTIL (I.GT.NPTOT.OR.VETO)
      IF (TYP(I).EQ.'PI- '.OR.TYP(I).EQ.'PI+ ') THEN
C*
         NCHAR = NCHAR + 1
C*
         IF (.NOT.(PTTGT))
     &
         CALL TRAFO (PCM(1,I),X,Y,Z,CHMRAD)
C۲
         IF (LIST) THEN
            CX
                    = PCM(1,I) / PCM(5,I)
            CY
                    = PCM(2,I) / PCM(5,I)
            CZ
                    = PCM(3,I) / PCM(5,I)
            XCHARG = CX * CHMRAD
            YCHARG = CY * CHMRAD
            ZCHARG = CZ * CHMRAD
            PRINT 1700, I, CX, CY, CZ, XCHARG, YCHARG, ZCHARG
FORMAT(' ', '#', I3, 3X, '| DIR.COSINES: ', 3F10.3, '
1700
                                                               &
                       , 'PASSES AT POINT : ', 3F10.3, ' (CM)')
         ENDIF
C*
         CALL PARDET (PCM(1,I), DETECT)
         IF (.NOT.DETECT) THEN
            TYP(I) = 'PURGE'
         ELSE
C*
            IF (NOCHAM) THEN
C*
C*
                ANGLE RESOLUTION DEFINED BY ANTI-COUNTER
C*
                CALL QUANTI (PCM(1,I), DELTA)
               DELTA = DELTA * 180./PI
C*
                IF (LIST) THEN
                CX = PCM(1,I)/PCM(5,I)
                CY = PCM(2,I)/PCM(5,I)
                CZ = PCM(3,I)/PCM(5,I)
                PRINT 1800, I, CX, CY, CZ, DELTA
               FORMAT(' ','#',13,3X,'| DIR.COSINES:',3F10.3,'
'DELTA:',F6.2,' DEG.')
1800
                                                                 &
               ENDIF
C*
            ELSE
C*
C*
                ANGLE RESOLUTION DEFINED BY CHAMBER
C*
                CALL CHAMBR (PCM(1, I), VETO)
C*
                IF (.NOT.VETO) THEN
C*
C*
                   MONTE - CARLO MOMENTUM MEASUREMENT
C*
                   C*
```

CALL MOMMES (PCM(1,I), PRESOL, PO, PTHRSH, BFIELD, CHMDIA,

```
&
                                   RESLEN, RESDIA, DELTA, DETECT)
C*
                     IF (.NOT.DETECT) TYP(I) = 'PURGE'
C*
                     IF (LIST)
                     PRINT 1900, I, PCM(1, I), PCM(2, I), PCM(3, I), PCM(4, I),
      &
      &
                                 DELTA*180./PI
                               ','#',I3,3X,'| MOMENTUM
1900
                    FORMAT('
                                                            :',3F10.3,'
                                                                          10X, 'ENERGY:', F10.3,' | DELTA:',
      &
                                 F6.2,' DEG.')
      &
C*
                 ENDIF
C*
                 (* OF .NOT.VETO *)
C*
              ENDIF
С*
              (* OF .NOCHAM *)
C*
          ENDIF
C*
           (* OF .NOT.DETECT *)
C*
       ENDIF
C*
       (* OF CHARGED PARTICLES *)
C*
       I = I + 1
2000
       CONTINUE
C*
       NOCHAR = (NCHAR.EQ.0)
       CALCUL = (NCHAR.EQ.2.OR.NCHAR.EQ.4)
       NIXDO = (.NOT.(NOCHAR.OR.CALCUL))
       IF (NOCHAM.OR.(.NOT.FIELD)) VETO = (NIXDO.OR.VETO)
C*
       IF (VETO) THEN
C*
         IF (LIST) THEN
             IF (NOCHAM.OR. (.NOT.FIELD). AND.NIXDO) THEN
                PRINT*, 'EVENT VETOED . NUMBER OF PARTICLES NOT 0,2 OR 4.'
            ELSE
                PRINT*, 'EVENT VETOED . CHARGED PARTICLE(S) LOST.'
            ENDIF
         ENDIF
C*
         PILOST
                          = PILOST + 1
         TRIGNO(IDEVNT) = TRIGNO(IDEVNT) + 1.
       ELSE
C*
C*
         EXAMINE THE GAMMAS
C*
         . . . . . . . . . . . . . . . . . . .
C*
       IF (LIST) PRINT 2100
      FORMAT ('0','B) FOLLOW THE GAMMAS:',/,

2 '','*******************************
2100
      &
C*
         NGADEV = 0
         NGAMMA = 0
         INHOLE = 0
         TRIGGR = .FALSE.
C*
         DO 2400 I=1,NPTOT,1
         IF (TYP(I).EQ.'GAMMA')
                                    THEN
```

C -4	NGAMMA = NGAMMA + 1
6.4	
&	IF (.NOI.PIIGI) CALL TRAFO(PCM(1,I),X,Y,Z,RADIUS) IF (LIST) THEN
	CX = PCM(1,I) / PCM(5,I)
	CY = PCM(2, I) / PCM(5, I)
	CZ = PCM(3,I) / PCM(5,I)
	XDETEC = CX * RADIUS
	IDETEC = CT + RADIUS
	PRINT 2200, I.CX.CY.CZ.XDETEC.YDETEC.ZDETEC
2200	FORMAT(' ','#',I3,3X,' DIR.COSINES:',3F10.3,' ',
&	,'HITS DETECTOR AT:',3F10.3,' (CM)')
C.*	ENDIF
U.v.	CALL PARDET (PCM(1 I) DETECT)
C*	
	TRIGGR = (TRIGGR.OR.DETECT)
C*	
	IF (.NOT.DETECT) THEN
	TYP(I) = 'PURGE'
	ELSE
C*	
C*	MONTE - CARLO ENERGY MEASUREMENT
C*	
C*	
	CALL ENEMES (PCM(4,I), ERESOL, E0, EXPONT, ETHRSH, DETECT)
C.*	TRIGCR = (TRICCR OR DETECT)
C*	$\mathbf{I}_{\mathbf{X}}^{\mathbf{U}} = (\mathbf{I}_{\mathbf{X}}^{\mathbf{U}} \mathbf{U}_{\mathbf{X}}^{\mathbf{U}}, \mathbf{U}_{\mathbf{X}}^{\mathbf{U}} \mathbf{U}_{\mathbf{U}}^{\mathbf{U}})$
	IF (.NOT.DETECT) THEN
	TYP(I) = 'PURGE'
C*	ELSE
C*	MONTE - CARLO ANGLE RESOLUTION
C*	•••••
C*	
	CALL QUANTI (PCM(1,I),DELTA) DEITA $=$ DEITA \div 180 /DI
	CALL HFILL(12.DELTA.DUMMY.1.DO)
C*	(,,,,,,,,,,,,,,,,,,,,,,,,,,
	IF (LIST) THEN
	CX = PCM(1, I) / PCM(5, I)
	CY = PCM(2,1)/PCM(5,1) $C7 = PCM(3,1)/PCM(5,1)$
	PRINT 2300, I, CX, CY, CZ, DELTA, $PCM(4, I)$
2300	FORMAT(' ','#',13,3X,' DIR.COSINES:',3F10.3,' ',
&	'DELTA:',F6.2,' DEG.',3X,'ENERGY:',F10.3)
C.M.	ENDIE
С*	ENDIE -
C*	GAMMA COUNTING AND HISTOGRAM BOOKING
C*	
	NGADEV = NGADEV + 1
	GALL HFILL (UI,PCM(4,I),DUMMY,1.DO)

·

C*	
	ENDIF
C* =>	(* .NOT.DETECT BY ENERGY MEASUREMENT *) ENDIF
C* =>	(* .NOT.DETECT BY SOLID ANGLE *)
C* =>	$($ \times NO GAMMA \Rightarrow)
2400	CONTINUE
C*	
C*	KEEP A RUNNING SUM OF
C*	• • • • • • • • • • • • • • • • • • • •
C*	THE GAMMAS IN TOTAL
C**	NGATOT = NGATOT + NGAMMA
C* C*	THE PIO'S IN TOTAL
C*	NPITAP = NPITAP + NGAMMA/2
C*	IF (TRIGGR.AND.NGADEV.GT.1) THEN
C*	RECONSTRUCTION OF NEUTRAL PIONS
C*	
Cu	TE (LIST) PRINT 2500
2500 &	FORMAT ('0','C) RECONSTRUCTION OF NEUTRAL PIONS:',/, ','********************************
C* C*	MAXIMUM NUMBER OF PIOS TO BE RECONSTRUCTED IS
	NPIO = NGADEV/2
С*	PARTIC(1) = 'GAMMA' PARTIC(2) = 'GAMMA' PARTIC(3) = ' CALL INVMAS (PCM TYP NPTOT 10 135 D0 PIWIN 'PLO ' PARTIC)
C*	ENDIF
C* C*	CALCULATE CHARGED PARTICLES' KINEMATICS
C*	
2600 &	IF (LIST) PRINT 2600 FORMAT ('0','D) RECONSTRUCTION OF CHARGED PIONS:',/, ' ','*********************************
C*	
C*	IF ((NOCHAM.OR.(.NOT.FIELD)).AND.CALCUL) THEN
C*	CALL MOMENT (PCM, TYP, NPTOT)
-	ELSE IF (LIST) PRINT*, 'MOMENTUM MEASUREMENT IN CHAMBER.'
C*	ENDIF (* CALCUL *)
C*	CHECK ENERGY CONSERVATION

```
C*
          С*
          IF (LIST) PRINT 2700
          2700
      &
C*
          CALL PSORT (PCM, TYP, NPTOT)
C*
          IF (LIST) THEN
              DO 2900 I=1,NPTOT,1
              PRINT 2800,TYP(I),(PCM(J,I),J=1,5)
             FORMAT('', A5, '| PX =', F15.7, '| PY =', F15.7,
'| PZ =', F15.7, '| E =', F15.7,
'| P =', F15.7)
2800
      &
      &
2900
              CONTINUE
          ENDIF
C*
C*
          TEST CONSERVATION LAWS
C*
          CALL CONLAW (PCM, NPTOT, DELTA, DELTAX, DELTAY, DELTAZ)
C*
          IF (LIST) PRINT 3000, DELTAX, DELTAY, DELTAZ, DELTA
FORMAT('', 115('-'),/,
''''MISSING PX ='.F15.7.' | PY ='.F15.7
3000
                       ,'MISSING PX =',F15.7,' | PY =',F15.7,
' | PZ =',F15.7,' | E =',F15.7,/)
      &
      &
C*
          CALL HFILL (20, DELTA , DUMMY, 1.DO)
          CALL HFILL (21, DELTAX, DUMMY, 1.DO)
          CALL HFILL (22, DELTAY, DUMMY, 1.DO)
          CALL HFILL (23, DELTAZ, DUMMY, 1.DO)
C*
C*
          CHECK ENERGY CONSERVATION
C*
          INVENE = (ABS(DELTA).GT.ENECUT)
C*
C*
          CHECK MOMENTUM CONSERVATION
C*
          INVMOX = (ABS(DELTAX).GT.MOMCUT)
          INVMOY = (ABS(DELTAY).GT.MOMCUT)
          INVMOZ = (ABS(DELTAZ).GT.MOMCUT)
          INVMOM = (INVMOX.OR.INVMOY.OR.INVMOZ)
C*
          VETO
                   = (INVENE.OR.INVMOM)
C*
          IF (VETO) THEN
C*
              IF (LIST) THEN
                  IF (INVENE) PRINT*, 'ENERGY CONSERVATION NOT VALID.'
                  IF (INVMOX) PRINT*, 'MOMENTUM CONSERVATION (X) NOT VALID.'
IF (INVMOY) PRINT*, 'MOMENTUM CONSERVATION (Y) NOT VALID.'
IF (INVMOZ) PRINT*, 'MOMENTUM CONSERVATION (Z) NOT VALID.'
              ENDIF
C*
          ELSE
C*
C*
              HISTOGRAM BOOKING
C*
              . . . . . . . . . . . . . . . . .
C*
              DO 3100 I=1,NPI0,1
```

3100 C*	CALL HFILL (25,FLOAT(IDEVNT),DUMMY,1.D0) CONTINUE
	PART(1) = 0 PART(2) = 0 PART(3) = 0 PART(4) = 0 DO 3200 I=1,NPTOT,1
C*	<pre>IF (TYP(I).EQ.'PI+ ') THEN CALL HFILL (32,PCM(4,I),DUMMY,1.D0) PART(1) = PART(1) + 1</pre>
С*	ELSEIF (TYP(I).EQ.'PI- ') THEN CALL HFILL (32, PCM(4, I), DUMMY, 1.DO) PART(2) = PART(2) + 1
С*	ELSEIF (TYP(I).EQ.'PIO ') THEN CALL HFILL (31,PCM(4,I),DUMMY,1.DO) CALL HFILL (26,FLOAT(IDEVNT),DUMMY,1.DO) PART(3) = PART(3) + 1
С*	ELSEIF (TYP(I).EQ.'GAMMA') THEN CALL HFILL (02,PCM(4,I),DUMMY,1.D0) PART(4) = PART(4) + 1 INXPOS = I
С*	ENDIF
C* 3200	CONTINUE
C* C* C*	BOOK THE SINGLE GAMMAS AFTER RECONSTRUCTION
Ū	<pre>IF (PART(4).EQ.1) THEN CALL HFILL (11,PCM(4,INXPOS),0.,1.D0) CALL HFILL (18,PCM(3,INXPOS)/PCM(5,INXPOS),DUMMY,1.D0) ENDIF</pre>
C*	TEST FUENT ID
C*	
C*	CALL TESTID (PART, IDFIX, IDEVNT, MISMAT)
C*	CALL HFILL (27,FLOAT(IDFIX),DUMMY,1.DO) IF (MISMAT) ERRID(IDFIX) = ERRID(IDFIX) + 1.DO GOTID = (.NOT.MISMAT) IF (LIST) PRINT*,'PATTERN RECOGNITION : ID NO.',IDFIX,GOTID
C*	
C*	CALCULATION OF INVARIANT MASSES
C*	
3300 &	IF (LIST.AND.IDFIX.GT.0) PRINT 3300 FORMAT ('0','F) CALCULATE INVARIANT MASSES :',/, '','*******************************
U.A.	<pre>IF (IDFIX.EQ.8) THEN IF (LIST) PRINT*,'ID=',IDFIX,' => RHO OR FO' PARTIC(1) = 'PI- ' PARTIC(2) = 'PI+ '</pre>

t

С*

C*

C*

C*

```
PARTIC(3) = '
          CALL INVMAS (PCM, TYP, NPTOT, 15, 0. D0, 0. D0, 'RHO ', PARTIC)
          IF (MISMAT)
&
         CALL HFILL (28, FLOAT(IDEVNT), DUMMY, 1.DO)
      ELSEIF (IDFIX.EQ.16) THEN
          IF (LIST) PRINT*, 'ID=', IDFIX, ' => ETA OR OMEGA'
          PARTIC(1) = 'PIO
          PARTIC(2) = 'PI -
         PARTIC(3) = 'PI+
          CALL INVMAS (PCM, TYP, NPTOT, 16, 0. D0, 0. D0, 'ETA ', PARTIC)
          IF (MISMAT)
&
          CALL HFILL (29, FLOAT(IDEVNT), DUMMY, 1.DO)
      ELSEIF (IDFIX.EQ.54) THEN
          IF (LIST) PRINT*, 'ID=', IDFIX, ' => BARYONIUM'
          PARTIC(1) = 'PIO
         PARTIC(2) = 'PI -
         PARTIC(3) = 'PI+
          CALL INVMAS (PCM, TYP, NPTOT, 19, 0. D0, 0. D0, 'BARYO', PARTIC)
          IF (MISMAT)
&
          CALL HFILL (30, FLOAT(IDEVNT), DUMMY, 1.DO)
      ELSEIF (IDFIX.EQ.65) THEN
          IF (LIST) PRINT*, 'ID=', IDFIX, ' => OMEGA '
          PARTIC(1) = 'PIO
          PARTIC(2) = 'GAMMA'
          PARTIC(3) = '
         CALL INVMAS (PCM, TYP, NPTOT, 13, 782.8d0, 100.D0, 'OMEGO', PARTIC)
          IF (LIST) PRINT*, 'ID=', IDFIX, ' => GLUON '
         PARTIC(1) = 'PIO
         PARTIC(2) = 'PIO
         PARTIC(3) = '
         CALL INVMAS (PCM, TYP, NPTOT, 33, 0. D0, 0. D0, 'GLUE ', PARTIC)
      ELSEIF (IDFIX.EQ.66) THEN
IF (LIST) PRINT*, 'ID=', IDFIX, ' => ETA '
         PARTIC(1) = 'GAMMA
         PARTIC(2) = 'GAMMA'
          PARTIC(3) = '
         CALL INVMAS (PCM, TYP, NPTOT, 14, 0. D0, 0. D0, 'ETA0 ', PARTIC)
      ELSEIF (IDFIX.EQ.69) THEN
         IF (LIST) PRINT*, 'ID=', IDFIX, ' => GLUON '
          PARTIC(1) = 'PIO
         PARTIC(2) = 'PIO
         PARTIC(3) = '
         CALL INVMAS (PCM, TYP, NPTOT, 34, 0.D0, 0.D0, 'GLUE ', PARTIC)
      ELSEIF (IDFIX.EQ.70) THEN
       IF (LIST) PRINT*, 'ID=', IDFIX, ' => E0'
         PARTIC(1) = 'GAMMA'
         PARTIC(2) = 'GAMMA'
         PARTIC(3) = '
         CALL INVMAS (PCM, TYP, NPTOT, 35, 548.8d0, 30.D0, 'ETA0 ', PARTIC)
         PARTIC(1) = 'PIO
         PARTIC(2) = 'ETAO '
         PARTIC(3) = '
```

Anhang B. Programmpaket DETEKTOR

C*

C*

C*

	CALL INVMAS (PCM.TYP.NPTOT.36,983.d0.60.D0, 'DELTA', PARTIC)
	PARTIC(1) = 'PIO'
	PARTIC(2) = 'DELTA'
	PARTIC(3) = '
	CALL INVMAS (PCM.TYP.NPTOT.37,0,D0,0,D0,'E0 ',PARTIC)
C*	
	ELSEIF (IDFIX.EO.71) THEN
	IF (LIST) PRINT*. 'ID='. IDFIX.' => EO'
	PARTIC(1) = 'GAMMA'
	PARTIC(2) = 'GAMMA'
	PARTIC(3) = '
	CALL INVMAS (PCM. TYP. NPTOT. 38, 548, 8d0, 30, D0, 'ETAO ', PARTIC)
	PARTIC(1) = 'PIO'
	PARTIC(2) = 'ETAO '
	PARTIC(3) = '
	CALL INVMAS (PCM, TYP, NPTOT, 39, 983. d0, 60. D0, 'DELTA', PARTIC)
	PARTIC(1) = 'PIO'
	PARTIC(2) = 'DELTA'
	PARTIC(3) = ' '
	CALL INVMAS (PCM, TYP, NPTOT, 40, 0. D0, 0. D0, 'E0 ', PARTIC)
C*	
	ELSEIF (IDFIX.EQ.72) THEN
	IF (LIST) PRINT*, 'ID=', IDFIX, ' => E0'
	PARTIC(1) = 'GAMMA'
	PARTIC(2) = 'GAMMA'
	PARTIC(3) = 1
	CALL INVMAS (PCM, TYP, NPTOT, 41, 548.8, 30.D0, 'ETAO', PARTIC)
	PARTIC(1) = PIO
	PARTIC(2) = ETAU
	$PARIIG(3) = \frac{1}{2} $
	CALL INVERS (PCH, IIP, NPIOI, 42, 965.0, 00. DO, DELIA, PARILO) DAPTIC(1) - DIO
	PARIIC(1) - PIO $PARIIC(2) - 'DEITA'$
	PARTIC(2) = 1
	CALL INVMAS (PCM TYP NPTOT 43 0 D0 0 D0 'F0 ' PARTIC)
С*	
0	ENDIF
C*	
C*	GAMMA STATISTICS
C*	
С*	
	IF (.NOT.TRIGGR) THEN
	TRIGNO(IDEVNT) = TRIGNO(IDEVNT) + 1.
C*	
	ELSE
C*	
C*	COUNT THE LOST GAMMAS
C*	
	1LOST = ILOST + INHOLE
C*	
C#	COUNT THE BARYONIUM STATES
64	TE (DADYON) IDADCT - IDADCT + 1
C*	1r (BARION) 1BAR51 = 1BAR51 + 1
0" C*	
0 C*	COOMI DAVIONION DIVIED MILU NONOFNEVGETIC CANNA
0	TF (MOGARA) TRARGA = TRARGA + 1
ርጵ	TE (HORDET (AUNDET) T
-	

```
ENDIF
C* =>
         (* .NOT.TRIGGR *)
С%
      ENDIF
C* =>
      (* OF TEST OF CONSERVATION LAWS *)
C*
     ENDIF
C* => (* VETO *)
     ENDIF
C* \Rightarrow (* OFF *)
3400 CONTINUE
C*
C*
    END OF GRAND PARTICLE LOOP ...
                               *
C*
      IF (TIMOUT) PRINT 3500
3500
     FORMAT ('0', '>>> RUNNING OUT OF TIME.....')
C*
С*
     PRINT A SIMULATION REPORT
С*
     C*
              *;,/,
     PRINT 3600
3600 FORMAT ('1', '**
    &
           &
      ITIME = INT(ZEIT(TOSTRT))
      MIN
           =
              ITIME/60
      ISEC = MOD(ITIME, 60)
C*
      PRINT 3700, MIN, ISEC
     3700
    &
               ,14,' MINUTES ',13,' SECONDS .')
    &
C*
     DO 3800 ID=1,70,1
     NOTRIG = NOTRIG + INT(TRIGNO(ID))
3800
     CONTINUE
     NTRG = KNT - NOTRIG
C*
     CALL HNOENT (01, NGADET)
     CALL HNOENT (02, NOREGA)
     CALL HNOENT (11,NSIGAR)
     CALL HNOENT (25, NPITOT)
     CALL HNOENT (26, NPIREC)
C*
     IF (KNT.GT.0) THEN
       PRCTG1 = (FLOAT(PILOST)/FLOAT(NOTRIG))*100.
       PRCTG2 = (FLOAT(NOTRIG)/FLOAT(KNT))*100.
       PRCTG3 = (FLOAT(NTRG) / FLOAT(KNT))*100.
     ENDIF
     IF (NGADET.GT.O) THEN
       PRCTG4 = (FLOAT(NOREGA)/FLOAT(NGADET))*100.
       PRCTG6 = (FLOAT(NSIGAR)/FLOAT(NGADET))*100.
     ENDIF
     IF (NOREGA.GT.O) THEN
       PRCTG7 = (FLOAT(NSIGAR)/FLOAT(NOREGA))*100.
     ENDIF
```

```
C*
```

```
PRINT 3900, KNT, NOTRIG, PRCTG2, PILOST, PRCTG1, NTRG, PRCTG3
C*
    3900
                                               ....:',I8,/,
              I8,'(',F5.1,'}',/,
    &
              , 'FROM THAT WITH LOSS OF CHARGED PIONS .....:'.
    &
              I8,'(',F5.1,'}',/,
,45X,'-----',/,
    &
           1 1
    &
              ,'EVENTS REMAINING ...
    &
    8
              I8, '(', F5.1, '}')
C*
     PRINT 4000, IBARST
4000
    &
               I8)
C*
     PRINT 4100,NGATOT
4100
    FORMAT ('0', 'PROCESSED GAMMAS ......',
    &
               I8)
C*
     PRINT 4200, NPIGAM, NPIPIO
4200
    FORMAT ('0', 'FROM THE REACTION ..... PI- + P -> N + GAMMA:',
    &
              I8,/,
             ', 'FROM THE REACTION ..... PI- + P -> N + PIO :',
    &
    &
              I8)
C*
     PRINT 4300, NGADET, NOREGA, PRCTG4, ILOST
     FORMAT ('0', 'GAMMAS FROM TRIGGER EVENTS IN TOTAL ...........
4300
              I8,/,
    &
              &
    &
              I8,'(',F5.1,'}',/,
              'LOST GAMMAS .....
    &
                                   &
              I8)
C*
     PRINT 4400, NSIGAR, PRCTG6, PRCTG7
     FORMAT ('0', 'SINGLE GAMMAS AFTER RECONSTRUCTION OF PIO ...:',
4400
              I8,'(',F5.1,'}',/,
    &
              , 'PERCENTAGE TO BACKGROUND
    &
                                       8X, '(', F6.2, '}')
    &
C*
     PRINT 4500, IBARGA
4500
    &
              I8,)
C*
C*
     PIO - STATISTICS
C*
     . . . . . . . . . . . . . . . .
C*
     IF (NPITOT.GT.O) THEN
      PRCTG1 = NPIREC/FLOAT(NPITOT)*100.
     ENDIF
C*
     PRINT 4700, NPITAP, NPITOT, NPIREC, PRCTG1
     4700
    &
              18,/,
              , 'NUMBER OF PIO''S (TRIGGER-EVENTS) .....'
    &
              I8,'(100.00}',/,
    &
              ,'NUMBER OF RECONSTRUCTED PIO''S ............
    &
              I8, '(', F6.2, '}')
    &
C*
```

CALL HPRERR(24, 'YES') CALL HPAKE (27, ERRID) CALL HPRERR(27, 'YES') PRINT AND SAVE THE HISTOGRAMS IF (HISPRT) &CALL HISTDO

PRINT 4800, ISTORE FORMAT ('0','>>>> HISTOGRAMS STORED ON FORTRAN UNIT #',14)

*

C*

C*

C* C*

C*

C*

C*

4800

C*

ENDIF

STOP END

HISTOGRAMS' OPERATIONS

CALL HPAKE (24, TRIGNO)

IF (ISTORE.GT.0) THEN CALL HWRITE (0,ISTORE)

```
C*
     SUBROUTINE HBOOK (NCHAN)
C*
     C*
C*
     THIS ROUTINE SETS UP HISTOGRAM - BOOKING.
C*
C*
     PROGRAMMER : MARCEL KUNZE
C*
     LANGUAGE
             : FORTRAN 77
C*
     VERSION 1.0: 22-AUG-84
C*
     IMPLICIT REAL*8 (A-H, O-Z)
C*
                  / HMEMOR(64000)
     COMMON /
     COMMON /GEO
                  / DMODUL,CZDETE,CZBEAM,CZTARG,CZCHAM,CYSUPP,
    &
                   RADIUS, ANGRES, NMODUL
     COMMON /TARGET/ BMEANX, FWHMX, BMEANY, FWHMY, BMEANZ, FWHMZ,
    &
                    TGTRAD, TGTHLF, TGTDEN
C*
     TGTDIA = 2. * TGTRAD
     TGTLEN = 2. * TGTHLF
C*
     IF (NCHAN.LE.O) NCHAN = 100
C*
C*
      INITIALIZE HBOOK ....
C*
     CALL HLIMIT (16000)
C*
C*
     NAME THE HISTOGRAMS ...
C*
     CALL HBOOK1 (01,
    & 'GAMMA-SPEKTRUM IM DETEKTORSYSTEM VOR PIO-REKONSTRUKTION$',
                 NCHAN, 0., 1000.)
    &
     CALL HERROR (01)
     CALL HSTAR (01)
C*
     CALL HBOOK1 (02,
    & 'GAMMA-SPEKTRUM IM DETEKTORSYSTEM NACH PIO-REKONSTRUKTION$',
    &
                 NCHAN, 0., 1000.)
     CALL HERROR (02)
     CALL HSTAR (02)
C*
     CALL HBOOK1 (03, 'VERTEX-VERTEILUNG IN X-RICHTUNG$',
    &
                 100, -TGTDIA, TGTDIA)
     CALL HERROR (03)
     CALL HSTAR (03)
C*
     CALL HBOOK1 (04, 'VERTEX-VERTEILUNG IN Y-RICHTUNG$',
    &
                 100, -TGTDIA, TGTDIA)
     CALL HERROR (04)
     CALL HSTAR (04)
C*
     CALL HBOOK1 (05, 'VERTEX-VERTEILUNG IN Z-RICHTUNG$',
    &
                 100, -TGTLEN, TGTLEN)
     CALL HERROR (05)
     CALL HSTAR (05)
C*
     CALL HBOOK1 (06, 'PI- STOP-VERTEILUNG X-RICHTUNG$',
```

```
&
                    100, -TGTDIA, TGTDIA)
      CALL HERROR (06)
      CALL HSTAR
                  (06)
C*
      CALL HBOOK1 (07, 'PI- STOP-VERTEILUNG Y-RICHTUNG$',
     &
                    100, -TGTDIA, TGTDIA)
      CALL HERROR (07)
      CALL HSTAR (07)
C*
      CALL HBOOK1 (08, 'PI- STOP-VERTEILUNG Z-RICHTUNG$',
     &
                    100, -TGTLEN, TGTLEN)
      CALL HERROR (08)
      CALL HSTAR
                  (08)
C*
      CALL HBOOK1 (09,
     & 'ENERGIESPEKTRUM DER GESTOPPTEN NEGATIVEN PIONEN$',
     8
                    100,130.,170.)
      CALL HERROR (09)
      CALL HSTAR (09)
C*
      CALL HBOOK1 (10,
     & 'MASSENSPEKTRUM DER REKONSTRUIERTEN NEUTRALEN PIONEN$',
     &
                    NCHAN, 0., 250.)
      CALL HERROR (10)
      CALL HSTAR (10)
C*
      CALL HBOOK1 (11,
     & 'ENERGIESPEKTRUM DER EINZELGAMMAS NACH REKONSTRUKTION$',
     &
                   NCHAN, 0., 1000., 0.)
      CALL HERROR (11)
      CALL HSTAR (11)
C*
      CALL HBOOK1 (12, 'WINKELAUFLOESUNG DES DETEKTORS$',
     &
                    100,0.,ANGRES,0.)
      CALL HERROR (12)
      CALL HSTAR (12)
C*
      CALL HBOOK1 (13,
     & 'PLOT DER INVARIANTEN MASSE : OMEGA (2 PIO
                                                         GAMMA )$',
                    NCHAN, 0., 2000., 0.)
     &
      CALL HERROR (13)
      CALL HSTAR (13)
C*
      CALL HBOOK1 (14,
     & 'PLOT DER INVARIANTEN MASSE : ETA
                                               (
                                                  PIO 2 GAMMA )$',
     &
                   NCHAN, 0., 2000., 0.)
      CALL HERROR (14)
      CALL HSTAR (14)
C*
      CALL HBOOK1 (15,
     & 'PLOT DER INVARIANTEN MASSE : RHO/FO ( PI+ PI- PIO )$',
     &
                    NCHAN, 0., 2000., 0.)
      CALL HERROR (15)
      CALL HSTAR (15)
C*
      CALL HBOOK1 (16,
     & 'PLOT DER INVARIANTEN MASSE : ETA/OMEGA ( 2 PI+ 2 PI- PIO )$',
     &
                    NCHAN, 0., 2000., 0.)
      CALL HERROR (16)
```

```
CALL HSTAR (16)
C*
C*
      CALL HBOOK1 (17,
     & 'RICHTUNGSKOSINUS DER NACHGEWIESENEN GAMMAS IN Z-RICHTUNG$',
     &
                    100, -1., 1., 0.)
C*
      CALL HBOOK1 (18,
     & 'RICHTUNGSKOSINUS DER EINZELGAMMAS IN Z-RICHTUNG$',
     &
                    100, -1., 1., 0.)
C*
      CALL HBOOK1 (19,
     & 'PLOT DER INVARIANTEN MASSE : BARYONIUM ( PI+ PI- PIO GAMMA )$',
     8
                    NCHAN, 0., 2000., 0.)
      CALL HERROR (19)
      CALL HSTAR
                  (19)
C*
      CALL HBOOK1 (20,
     & 'ERFUELLUNG DER ENERGIE-ERHALTUNG$',
                    100, -200., 800., 0.)
     &
      CALL HERROR (20)
      CALL HSTAR
                  (20)
C*.
      CALL HBOOK1 (21,
     & 'ERFUELLUNG DER IMPULS-ERHALTUNG IN X-RICHTUNG$',
                    100,-500.,500.,0.)
     £.
      CALL HERROR (21)
      CALL HSTAR
                  (21)
C*
      CALL HBOOK1 (22,
     & 'ERFUELLUNG DER IMPULS-ERHALTUNG IN Y-RICHTUNG$',
                    100,-500.,500.,0.)
      CALL HERROR (22)
      CALL HSTAR (22)
C*
      CALL HBOOK1 (23,
     & 'ERFUELLUNG DER IMPULS-ERHALTUNG IN Z-RICHTUNG$',
     δ.
                    100, -500., 500., 0.)
      CALL HERROR (23)
      CALL HSTAR
                  (23)
C*
      CALL HBOOK1 (24, 'ANZAHL DER EINGEGEBENEN ANNIHILATIONS-KANAELE$',
     &
                    100,0.,100.,0.)
C*
      CALL HBOOK1 (25, 'ANZAHL DER EINGEGEBENEN NEUTRALEN PIONEN$',
     &
                    100, 0., 100., 0.
C*
      CALL HBOOK1 (26, 'ANZAHL DER REKONSTRUIERTEN NEUTRALEN PIONEN$',
     8
                    100, 0., 100., 0.)
C*
      CALL HBOOK1 (27, 'ANZAHL DER ERKANNTEN ANNIHILATIONS-KANAELE$',
     &
                    100,0.,100.,0.)
C*
      CALL HBOOK1 (28, 'ID MISMATCHES : RHO/FO
                                                  ( PI+ PI- PIO)$',
                    100, 0., 100., 0.)
     &
C*
      CALL HBOOK1 (29, 'ID MISMATCHES : ETA/OMEGA( 2 PI+ 2 PI- PIO$',
     æ
                    100,0.,100.,0.)
C*
```

```
CALL HBOOK1 (30, 'ID MISMATCHES : BARYONIUM( PI+ PI- PIO GAMMA)$',
     &
                    100,0.,100.,0.)
С*
      CALL HBOOK1 (31, 'ENERGIE-SPEKTRUM DER NEUTRALEN PIONEN$',
                    NCHAN, 0., 1000., 0.)
     &
      CALL HERROR(31)
      CALL HSTAR (31)
C*
      CALL HBOOK1 (32, 'ENERGIE-SPEKTRUM DER GELADENEN PIONEN$',
                    NCHAN, 0., 1000., 0.)
     &
      CALL HERROR(32)
      CALL HSTAR (32)
C*
      CALL HBOOK1 (33,
     & 'PLOT DER INVARIANTEN MASSE : GLUEBALL (2 PIO GAMMA)$',
                    NCHAN, 0., 2000., 0.)
     8
      CALL HERROR (33)
      CALL HSTAR (33)
C*
      CALL HBOOK1 (34,
     & 'PLOT DER INVARIANTEN MASSE : GLUEBALL (2 PIO PI- )$',
                    NCHAN, 0., 2000., 0.)
     &
      CALL HERROR (34)
      CALL HSTAR (34)
C*
      CALL HBOOK1 (35,
     & 'PLOT DER INVARIANTEN MASSE : ETA
                                              (3 PIO 2 GAMMA)$',
                    NCHAN, 0., 2000., 0.)
     &
      CALL HERROR (35)
      CALL HSTAR
                   (35)
C*
      CALL HBOOK1 (36,
     & 'PLOT DER INVARIANTEN MASSE : DELTA (3 PIO 2 GAMMA)$',
     &
                    NCHAN, 0., 2000., 0.)
      CALL HERROR (36)
      CALL HSTAR (36)
C*
      CALL HBOOK1 (37,
     & 'PLOT DER INVARIANTEN MASSE : EO
                                              (3 PIO 2 GAMMA)$',
                    NCHAN, 0., 2000., 0.)
     &
      CALL HERROR (37)
      CALL HSTAR
                  (37)
C*
      CALL HBOOK1 (38,
     & 'PLOT DER INVARIANTEN MASSE : ETA
                                              (4 PIO 2 GAMMA)$',
     &
                    NCHAN, 0., 2000., 0.)
      CALL HERROR (38)
      CALL HSTAR (38)
C*
      CALL HBOOK1 (39,
     & 'PLOT DER INVARIANTEN MASSE : DELTA (4 PIO 2 GAMMA)$',
     8
                    NCHAN, 0., 2000., 0.)
      CALL HERROR (39)
      CALL HSTAR
                  (39)
C*
      CALL HBOOK1 (40,
     & 'PLOT DER INVARIANTEN MASSE : EO
                                              (4 PIO 2 GAMMA)$',
     &
                    NCHAN, 0., 2000., 0.)
      CALL HERROR (40)
```

```
CALL HSTAR (40)
C*
     CALL HBOOK1 (41,
    & 'PLOT DER INVARIANTEN MASSE : ETA (PI+ PI- 2 PIO 2 GAMMA)$',
    &
                  NCHAN,0.,2000.,0.)
     CALL HERROR (41)
      CALL HSTAR (41)
C*
     CALL HBOOK1 (42,
    & 'PLOT DER INVARIANTEN MASSE : DELTA (PI+ PI- 2 PIO 2 GAMMA)$',
     &
                  NCHAN,0.,2000.,0.)
     CALL HERROR (42)
      CALL HSTAR (42)
C*
     CALL HBOOK1 (43,
     & 'PLOT DER INVARIANTEN MASSE : EO
                                        (PI+ PI- 2 PIO 2 GAMMA)$',
     &
                  NCHAN,0.,2000.,0.)
      CALL HERROR (43)
      CALL HSTAR (43)
C*
      RETURN
      END
```

C* SUBROUTINE GEOMET C* C* C* THIS ROUTINE CALCULATES THE DETECTOR'S GEOMETRY. C* C* PROGRAMMER: MARCEL KUNZE/KFK C* LANGUAGE : FORTRAN 77 C* VERS.2.0/29-JUN-84 C* C* INPUT OUTPUT C* ***** ****** C* A) ANGLE RESOLUTION ==> RADIUS + NUMB. OF MODULES C* B) RADIUS ==> ANGLE RES. + NUMB. OF MODULES C* C) NUMB. OF MODULES ANGLE RES. + RADIUS ==> C* C* 'DMODUL' HAS A CONSTANT VALUE ... C* THE SINGLE MODULES HAVE HEXAGONAL FRONT SHAPE. C* C*.... C* IMPLICIT REAL*8 (A-H,O-Z) C* LOGICAL ASSUMP C* / DMODUL, CZDETE, CZBEAM, CZTARG, CZCHAM, CYSUPP, COMMON /GEO & RADIUS, ANGRES, NMODUL C* PARAMETER (PI = 3.1415962653589793) C* C* COMPUTE THE MODULE'S FRONT AREA ... C* RMODUL = DMODUL/2.AREA = DMODUL**2 C* C* COMPUTE DELTA OMEGA OF ... C* C* C* 1. DETEKTOR WITHOUT HOLES ODETE = 2. * PI * (1. - CZDETE) C* 2.BEAM INJECTION HOLE OBEAM = 2. * PI* (1. - CZBEAM) C* 3. CHAMBER SUPPLY & READ OUT OCHMB = 2. * PI* (1. - CYSUPP) C* 4.TARGET OTARG = 2. * PI* (1. - CZTARG) C* 5.DETECTOR OMEGA = ODETE - OBEAM - OCHMB - OTARG C* C* THE AVAILABLE DETECTOR SURFACE IS ... C* SURFAC = OMEGA * RADIUS**2 C* C* COMPUTE INNER RADIUS AND ANGLE RESOLUTION (NMODUL GIVEN) ??? C* IF (RADIUS.EQ.O.AND.ANGRES.EQ.O.O) THEN IF (OMEGA.GT.0.0) RADIUS = SQRT(NMODUL*AREA/OMEGA) IF' (RADIUS.GT.0.0) ANGRES = 2.* ASIN(RMODUL/RADIUS) * 180./PI ENDIF

C*	
C*	COMPUTE NUMBER OF MODULES AND ANGLE RESOLUTION (RADIUS GIVEN) ???
C*	IF (NMODUL.EQ.0.AND.ANGRES.EQ.0.0) THEN
	IF (AREA.GT.0.0) NMODUL = INT(SURFAC/AREA) IF (RADIUS.GT.0.0) ANGRES = 2.* ASIN(RMODUL/RADIUS) * 180./PI
C*	ENDIF
C*	COMPUTE INNER RADIUS AND NUMBER OF MODULES (ANGRES GIVEN) ???
C*	IF (RADIUS.EQ.0.0.AND.NMODUL.EQ.0) THEN
	IF (ANGRES.GT.0.0) RADIUS = RMODUL/DSIN(ANGRES*PI/360.) SURFAC = OMEGA * RADIUS**2
	IF $(AREA.GT.0.0)$ NMODUL = INT $(SURFAC/AREA)$ ENDIF
C*	CONDUME HOLE FOR MARCEM HOLDER
C* C*	COMPUTE HOLE FOR TARGET HOLDER
C*	ASSUMPTION: ONE MODULE HAS TO BE OMMITTED FOR HOLDING TARGET
C*	ASSUMD = (0.777ADC EO 1 O)
	IF (ASSUMP) THEN
	CZTARG = COS(ANGRES/360. * PI)
	OTARG = 2. * PI * (1 - CZTARG) $OMEGA = ODETE - OBEAM - OCHMB - OTARG$
	ENDIF
C*	
C*	PRINT RESULTS
C*	
50	$\frac{PRINT}{20} = \frac{1}{2} \frac{1}{$
50	
100	PRINT 100
100	FORMAT (0 , THE SYSTEM IS BUILT UP OF SEVERAL MODULES. ,/, & ' '.' +*
	$\& \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad $
	$\delta_{\mathbf{k}}$
	$ \frac{\alpha}{2} $
	δ
	δ_{2} 1 1 1 1 1 1 1 1 1 1
	&
	$ \frac{\alpha}{\delta_{c}} $, , , , , , , , , , , , , , , , , , ,
	& '',' +*+ ',/)
150	PRINT 150, DMODUL FORMAT ('0' ' $\leq d \leq d$ DMODUL=' F7 2 ' CM \rightarrow 2')
150	PRINT 200, AREA
200	FORMAT ('0', 'AREA OF THIS MODULE: ', F8.2,' CM**2')
300	FRINI 300, NHODOL, RADIUS, ANGRES FORMAT ('0', 'NUMBER OF MODULES' 18./.
•	& ','INNER DET. RADIUS:',F8.2,' CM',/,
	& '', 'ANGLE RESOLUTION:', F8.2, ' DEGREES')
	OBEAM = OBEAM/PI

	OCHMB = OCHMB/PI OTARG = OTARG/PI
	OMEGA = OMEGA/PT
	PRINT 400, ODETE, OBEAM, OCHMB, OTARG, OMEGA
400	FORMAT $('0' ')$ DETECTOR SURFACE \cdot ' F8 4 ' PI' /
	\mathcal{L} \mathcal{L}
	$\mathcal{L} = \frac{1}{2} - \frac{1}{2}$
	$\mathcal{L} = \frac{1}{2} \frac{1}{$
	$s_{1} = \frac{1}{1} \frac{1}$
	$\sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^$
	$\alpha \qquad , \text{ REMAINING SURFACE, ro.4, ri}$
	$\frac{1}{100}$
500	PRINT DUU, PERCIU
500	FORMAL (0, THIS IS, FS.I, % OF THE FOLL SPHERE.)
64	
	IF (UMEGA.LE.U) THEN
(00	PRINT 600, UNEGA
600	FORMAT ('U', >>>> AVAILABLE SOLID ANGLE NEGATIVE: ,F8.2)
	PRINT *, PROGRAM EXECUTION TERMINATED.
	STOP
G .1.	ENDIF
C.4	
700	IF (ASSUMP) PRINT /00
/00	FORMAT ('0', 'THE FOLLOWING ASSUMPTION WAS MADE:',/,
a .t	& , ONE MODULE HAS TO BE OMMITTED FOR HOLDING TARGET .)
C×	
	RETURN
	END

.

C* SUBROUTINE GETEVT (ID, NPTOT, PCM, TYP, EOF, LUNIN) C* ***** C* C* THIS IS A SUBROUTINE TO READ THE EVENT DATA WRITTEN BY USE OF C* SUBROUTINE TOTAPE FROM FORTRAN UNIT #LUNIN . C* C* LANGUAGE : FORTRAN 77 C* PROGRAMMER: MARCEL KUNZE/KFK C* VERS 2.0 : 24-MAY-84 C* С* TYPE DECLARATIONS С* C* C* IMPLICIT REAL*8 (A-H,O-Z) REAL*4 TECMS, PCMS(5,50) C* COMMON /FLAGOP/ LIST С* LOGICAL LIST, ILLEGL, HARDWA, UNIDEN, EOF C* CHARACTER TYP(50)*5 C* DIMENSION PCM(5,50) C* DATA KNT /0/ DATA NPERR, NRERR, NHERR /0,0,0/ C* C* C* CHECK STATUS C* C* IF (EOF) THEN ID = 0C* ELSE C* IF (KNT.EQ.0) PRINT 100, LUNIN FORMAT ('0', '>>> FORTRAN UNIT #', 12, ' OPENED FOR READING.') 100 С* C* C* READ ONE EVENT'S KINEMATICS С% C* READ (LUNIN, 200, IOSTAT=IOS, END=1100) NCALL, ID, NPTOT, TECMS 200 FORMAT (A4, A4, A4, A4)TECM = DBLE(TECMS)C* HARDWA = (IOS.GT.0)IF (HARDWA) THEN IF (NHERR.LT.100) PRINT 300,NCALL 300 FORMAT('0','>>> HARDWARE ERROR OCCURED AT CALL NO.', 18) NHERR = NHERR + 1GOTO 1300 ENDIF C* ILLEGL = (NPTOT.LE.O.OR.NPTOT.GT.50)IF (ILLEGL) THEN

```
IF (NRERR.LT.100) PRINT 400, NCALL, NPTOT
          FORMAT('0', '>>> EVENT NO.', 18, ' HAS INVALID LENGTH:', 18)
400
          NRERR = NRERR + 1
          GOTO 1300
      ENDIF
C*
      NUP = 0
      DO 600 I=1,NPTOT,1
     . READ (LUNIN, 500, END=1100) (PCMS(J,I), J=1,5), TYP(I)
500
      FORMAT (5A4,A5)
       PCM(1,I) = DBLE(PCMS(1,I))
       PCM(2,I) = DBLE(PCMS(2,I))
       PCM(3,I) = DBLE(PCMS(3,I))
       PCM(4,I) = DBLE(PCMS(4,I))
       PCM(5,I) = DBLE(PCMS(5,I))
                                    1)
       UNIDEN = (TYP(I).EQ.'
       IF (UNIDEN) THEN
          NPERR = NPERR + 1
          NUP
               = NUP + 1
       ENDIF
600
       CONTINUE
C*
       UNIDEN = (NUP.GT.O.AND.NPERR.LT.200)
       IF (UNIDEN) THEN
          PRINT 700, NUP, NCALL
          700
      &
       ENDIF
C*
C*
C*
       LIST EVERY 10000TH EVENT
C*
       C*
       KNT
             = KNT + 1
       LIST = (MOD(KNT, 10000).EQ.0)
C == >
       IF (LIST.OR.UNIDEN) THEN
          PRINT 800, KNT, ID, NPTOT
          FORMAT ('0',73('*'),/,
'','* EVENT NO.',18,10X,'CHANNEL NO.',13,5X,
800
      &
                       , * EVENT NO., 10, 10, 10, , 'NUMBER OF PARTICLES: ', 13, ' *',/,
      &
                   , NUMBER
'',73('*'))
      &
          DO 1000 I=1,NPTOT,1
          PRINT 900, TYP(I), (PCM(J,I), J=1,5)
FORMAT('', A5, ' | PX =', F15.7, ' | PY =', F15.7,
' | PZ =', F15.7, ' | E =', F15.7,
' | P =', F15.7)
900
      &
      &
1000
           CONTINUE
       ENDIF
C*
       GOTO 1300
C*
C*
C*
       CLOSE INPUT FILE
C*
       . . . . . . . . . . . . . . . .
C*
1100
       PRINT 1200, LUNIN, NCALL, NHERR, NRERR, KNT, NPERR
      FORMAT ('0','>>> END OF FILE ON FORTRAN UNIT #',18,/,
Se '',' NUMBER OF EVENTS ON FILE ...:',18,/,
1200
                                                           ',I8,/,
      &
                ۰ı'
                    t
                          &
```

	& & &	1 1 1 5 1 1 1 3 1 1 1 3	READ ERRORS OCCURED', 18,/, EVENTS READ', 18,/, UNIDENTIFIED PARTICLES', 18,/)
C*			
C* C*	RESET ST.	ATISTICS	••••
	EOF =	.TRUE.	
	NHERR =	0	
	NRERR =	0	
	NPERR =	0	
	KNT =	0	
C*			
	ENDIF		
C*			
1300	RETURN END		

C*	*******
	SUBROUTINE VERTEX (X,Y,Z)
C*	** ************************************
C*	
С*	THIS SUBROUTINE CALCULATES A VERTEX FOR ANTIPROTON-STOP IN
C*	A ZYLINDRICAL TARGET ACCORDING TO MONTE CARLO METHODS.
C*	
C*	PROGRAMMER: MARCEL KUNZE/KFK
C*	LANGUAGE : FORTRAN77
C*	VERS.1.0 : 26-JUN-84
C*	
	IMPLICIT REAL*8 (A-H,O-Z)
C*	
	LOGICAL NIXOUT
C*	
	PARAMETER (ISEED = 31332547)
C*	
	COMMON /TARGET/ BMEANX, FWHMX, BMEANY, FWHMY, BMEANZ, FWHMZ,
	& TGTRAD, TGTHLF, TGTDEN
C*	
C*	
C*	NOW CALCULATE THE VERTEX-COORDINATES
C*	
C*	
	NIXOUT = .FALSE.
	DO 100 UNTIL (NIXOUT)
	CALL GAUSS (ISEED,0.5*FWHMZ,BMEANZ,Z)
	NIXOUT = (ABS(Z), LT, TGTHLF)
100	CONTINUE
C*	
	NIXOUT = .FALSE.
	DO 200 UNTIL (NIXOUT)
	CALL GAUSS (ISEED,0.5*FWHMX,BMEANX,X)
	CALL GAUSS (ISEED,0.5*FWHMY,BMEANY,Y)
	XY = SQRT(X**2+Y**2)
	NIXOUT = (XY, LT, TGTRAD)
200	CONTINUE
C*	
	RETURN
	END

- 129 ---

```
C*
     SUBROUTINE TRAFO (PCM, X1, Y1, Z1, R)
C*
     C*
C*
     THIS SUBROUTINE WILL CALCULATE THE DIRECTIONAL COSINES
C*
     TO THE POINT OF INTERSECTION BETWEEN A LINE (CX,CY,CZ,X1,Y1,Z1)
C*
     AND A SPHERE .
C*
C*
                              |CX|
              |X1|
                                      ->
C*
                             CY
     LINE
           :
              |Y1|
                   +
                      SIGMA *
                                   =
                                     Х
C*
                              |CZ|
              |Z1|
C*
C*
                               2
                                     -> 2
C*
     SPHERE :
                              R
                                   = |X|
C*
C*
C*
     PROGRAMMER : MARCEL KUNZE/KFK
C*
             : FORTRAN77
     LANGUAGE
C*
     VERSION 1.0: 27-JUN-84
C*
C*....
C*
     IMPLICIT REAL*8 (A-H,O-Z)
C*
     COMMON /FLAGOP/ LIST
C*
     DIMENSION PCM(5)
C*
     LOGICAL LIST
C*
C*
     CALCULATE THE DIRECTIONAL COSINES
C*
     C*
     CX
           = PCM(1) / PCM(5)
     CY
           = PCM(2) / PCM(5)
     CZ
           = PCM(3) / PCM(5)
C*
     ATMSU = X1*CX + Y1*CY + Z1*CZ
           = X1*X1 + Y1*Y1 + Z1*Z1
     Α
     DISCRM = ATMSU^{**2} - (A - R^{**2})
C*
     IF (DISCRM.LT.0) THEN
        IF (LIST) PRINT 100
        FORMAT ('0', 'NO POINT OF INTERSECTION.')
100
     ELSE
        SIGMA = -ATMSU + SQRT(DISCRM)
C*
C*
        POINT OF INTERSECTION
C*
        Х
              = X1 + SIGMA * CX
        Y
              = Y1 + SIGMA * CY
        Ζ
              = Z1 + SIGMA * CZ
C*
C*
        NEW DIRECTIONAL COSINES
C*
             = X/R
        CXNEW
              = Y/R
        CYNEW
        CZNEW = Z/R
C*
```

PCM(1)		CXNEW	*	PCM(5)
PCM(2)	=	CYNEW	*	PCM(5)
PCM(3)	=	CZNEW	*	PCM(5)

C*

ENDIF

C*

RETURN END

Anhang B. Programmpaket DETEKTOR

•...

```
C*
     SUBROUTINE PISTOP (PCM, TYP, NPTOT, X, Y, Z)
C*
     C*
C*
     THIS ROUTINE SIMULATES A PI- STOPPING IN TARGET.
C*
C*
     PROGRAMMER: MARCEL KUNZE/KFK
C*
     LANGUAGE : FORTRAN 77
C*
     VERS.1.0 : 27-JUN-84
C*
C*
     ADAPTED FROM ROUTINE PIMSTP (TK).
C*
C*
     THE FOLLOWING STEPS ARE PERFORMED :
C*
     1. DECIDE WETHER THE REACTON PI- P -> N GAMMA OR PI- P -> N PIO
C*
        SHOULD BE SIMULATED (USE PANOFSKI-RATIO IN VARIABLE PANOFR)
C*
     2. FOR THE REACTION PI- P -> N GAMMA DO THE FOLLOWING:
C*
        NEGLECT THE NEUTRON AND
C*
     2.1 GENERATE A DIRECTION FOR THE GAMMA (USING 'GAMCOS')
C*
     2.2 SET THE ENERGY OF THIS GAMMA TO 129.41 MEV
C*
     3. FOR THE REACTION PI- P => N PIO DO THE FOLLOWING:
C*
        NEGLECT THE NEUTRON AND
C*
     3.1 GENERATE A DIRECTION FOR THE PIO
C*
     3.2 LET THE PIO DECAY INTO TWO GAMMAS IN ITS CENTER-OF-MASS-SYSTEM
C*
     3.3 TRANSFORM THE TWO GAMMAS INTO LAB-SYSTEM
C*
     IMPLICIT REAL*8 (A-H,O-Z)
C*
     COMMON /FLAGOP/ LIST
     COMMON /PIMDAT/ NPIGAM,NPIPIO
     COMMON /TARGET/ BMEANX, FWHMX, BMEANY, FWHMY, BMEANZ, FWHMZ,
                     TGTRAD, TGTHLF, TGTDEN
     &
C*
     CHARACTER TYP(50)*5
C*
     LOGICAL LIST
C*
     DIMENSION PCM(5,50)
     DIMENSION ETA(3), PPHOT1(3), PPHOT2(3)
C*
     PARAMETER (PANOFR = 0.608)
C*
     PARAMETER (HLFPIO = 67.48255 , PIOM1 = 0.7409353E-02 ,
     &
                EPIO
                       = 137.85
                               , PPI0 = 28.05)
C*
C*
     LOOK FOR THE REACTION : PI- STOP PROTON IN TARGET
C*
      C*
     NPART = NPTOT
     DO 200 J=1,NPART,1
     IF (TYP(J).EQ. 'PI-') THEN
      ENERGY = PCM(4, J) - 139.5688
      RANGE = PIRANG (ENERGY, TGTDEN)
      CXPI
             = PCM(1,J) / PCM(5,J)
      CYPI
             = PCM(2,J) / PCM(5,J)
      CZPI
             = PCM(3,J) / PCM(5,J)
      XSTOP = X + RANGE * CXPI
      YSTOP = Y + RANGE * CYPI
      ZSTOP = Z + RANGE * CZPI
      IF (ABS(ZSTOP).LT.TGTHLF)THEN
```

XY = SORT(XSTOP**2 + YSTOP**2)IF (XY.LT.TGTRAD) THEN C* C* PI- STOPS IN THE TARGET... C* IF (LIST) PRINT 100, J, TYP(J), ENERGY, RANGE, XSTOP, YSTOP, ZSTOP FORMAT('0','PARTICLE#',13,A7,' WITH KINETIC ENERGY', 100 F10.3,' MEV HAS A RANGE OF', F10.4,' CM',/, & ' AND STOPS AT POSITION :', 3F10.3,' (CM)') & C*C* PURGE PI- ... C* TYP(J) = 'PURGE'C* С* 1. SELECT THE REACTION C* DECPRB = RNDM2(DUMMY)IF (DECPRB.GE.PANOFR) THEN C* C* 2. SIMULATE THE REACTION P PI- => N GAMMA C* IF (LIST) PRINT *, 'STOPPED PI- DOES THE REACTION: N + GAMMA' C* NPIGAM = NPIGAM + 1 NPTOT = NPTOT + 1 TYP(NPTOT) = 'GAMMA'C* C* 2.1 GENERATE A DIRECTION FOR THE GAMMA C* CALL GAMCOS (XCOS, YCOS, ZCOS) C* C* 2.2 SET ENERGY TO 129.41 MEV C* PCM(1, NPTOT) = 129.41 * XCOSPCM(2, NPTOT) = 129.41 * YCOSPCM(3, NPTOT) = 129.41 * ZCOSPCM(4, NPTOT) = 129.41PCM(5, NPTOT) = 129.41C⊁ ELSE C* C* 3. SIMULATE THE REACTION P PI- => N PIO C* C* IF (LIST) PRINT *, 'STOPPED PI- DOES THE REACTION: N + PIO.' NPIPIO = NPIPIO + 2C* C* 3.1 CALCULATE KINEMATIC FOR PIO C* C* CALL GAMCOS (XCOS, YCOS, ZCOS) PCMX = XCOS * PPIOPCMY = YCOS * PPIOPCMZ = ZCOS * PPIO C* ETA(1) = PCMX * PIOM1ETA(2) = PCMY * PIOM1ETA(3) = PCMZ * PIOM1GAMMA = EPIO * PIOM1

GAMP1 = GAMMA + 1.C* C۲ 3.2 DECAY OF FLYING PIO IN PIO-CENTER-OF-MASS-SYSTEM C* C* CALL GAMCOS (XCOS, YCOS, ZCOS) C* XCOS * HLFPIO PPHOT1(1) =PPHOT1(2) = YCOS * HLFPIOPPHOT1(3) = ZCOS * HLFPIOC* PPHOT2(1) = -PPHOT1(1)PPHOT2(2) = -PPHOT1(2)PPHOT2(3) = -PPHOT1(3)C* A = (ETA(1)*PPHOT1(1)) + (ETA(2)*PPHOT1(2)) + (ETA(3)*PPHOT1(3))C* C* LORENTZ-TRANSFORMATION OF PHOTON MOMENTA ... C* C* FIRST PHOTON C* C* NPTOT = NPTOT + 1 TYP(NPTOT) = 'GAMMA'C* EPHOTN = GAMMA * HLFPIO + A FACTOR = (HLFPIO + EPHOTN) / GAMP1C* PCM(1, NPTOT) = PPHOT1(1) + ETA(1) * FACTORPCM(2, NPTOT) = PPHOT1(2) + ETA(2) * FACTORPCM(3, NPTOT) = PPHOT1(3) + ETA(3) * FACTORPCM(4, NPTOT) = EPHOTNPCM(5, NPTOT) = EPHOTNC* C* SECOND PHOTON C* C* NPTOT = NPTOT + 1 TYP(NPTOT) = 'GAMMA'C* EPHOTN = GAMMA * HLFPIO - A FACTOR = (HLFPIO + EPHOTN) / GAMP1C* PCM(1, NPTOT) = PPHOT2(1) + ETA(1) * FACTORPCM(2, NPTOT) = PPHOT2(2) + ETA(2) * FACTORPCM(3, NPTOT) = PPHOT2(3) + ETA(3) * FACTORPCM(4, NPTOT) = EPHOTNPCM(5, NPTOT) = EPHOTNC* ENDIF C* CALL HFILL (06,XSTOP,DUMMY,1.DO) CALL HFILL (07, YSTOP, DUMMY, 1.D0) CALL HFILL (08,ZSTOP,DUMMY,1.DO) CALL HFILL (09, PCM(4, J), DUMMY, 1.D0) C* ENDIF ENDIF

200 CONTINUE RETURN END

C*

ENDIF
```
C#
      *****
      FUNCTION PIRANG (EKIN, TGTDEN)
C*
      **********************
C*
C*
      THIS FUNCTION CALCULATES THE RANGE OF A PI- WITH ENERGY 'EKIN'
C*
      IN A TARGET WITH DENSITY 'TGTDEN'.
C*
      IMPLICIT REAL*8 (A-H,O-Z)
C*
      COMMON /FLAGOP/ LIST
C*
      DIMENSION A(70), B(70), C(70), D(70)
C*
      LOGICAL LIST
C*
      DATA A /0.0
                         ,0.1364E-01,0.4893E-01,0.1031E+00,0.1747E+00,
              0.2626E+00, 0.4832E+00, 0.7584E+00, 0.1083E+01, 0.1453E+01,
     &
     &
              0.1863E+01, 0.2312E+01, 0.2795E+01, 0.3310E+01, 0.3854E+01,
     &
              0.4425E+01,0.5961E+01,0.7629E+01,0.9409E+01,0.1128E+02,
     &
              0.1323E+02,0.1525E+02,0.1732E+02,0.1945E+02,0.2162E+02,
     8
              0.2382E+02,0.2606E+02,0.2832E+02,0.3061E+02,0.3292E+02,
     &
              0.3525E+02, 0.3995E+02, 0.4470E+02, 0.4949E+02, 0.5430E+02,
              0.5913E+02,0.6398E+02,0.6883E+02,0.7368E+02,0.7854E+02,
     &
     &
              0.8340E+02, 0.8825E+02, 0.9310E+02, 0.9795E+02, 0.1028E+03,
     &
              0.1076E+03,0.1124E+03,0.1172E+03,0.1221E+03,0.1269E+03,
     &
              0.1316E+03,0.1364E+03,0.1412E+03,0.1459E+03,0.1507E+03,
     &
              0.1554E+03,0.1601E+03,0.1648E+03,0.1695E+03,0.1742E+03,
     &
              0.1789E+03,0.1836E+03,0.1882E+03,0.1929E+03,0.1975E+03,
     8
              0.2022E+03,0.2068E+03,0.2114E+03,0.2160E+03,0.2206E+03/
      DATA B /0.3725E-08,0.1273E-01,0.2249E-01,0.3157E-01,0.3995E-01,
     &
              0.4781E-01, 0.6222E-01, 0.7519E-01, 0.8695E-01, 0.9769E-01,
              0.1075E+00,0.1165E+00,0.1248E+00,0.1325E+00,0.1396E+00,
     &
     £
              0.1461E+00,0.1605E+00,0.1727E+00,0.1827E+00,0.1912E+00,
              0.1987E+00,0.2048E+00,0.2102E+00,0.2148E+00,0.2188E+00,
     &
     &
              0.2222E+00, 0.2252E+00, 0.2278E+00, 0.2301E+00, 0.2319E+00,
              0.2336E+00,0.2364E+00,0.2385E+00,0.2400E+00,0.2411E+00,
     &
     &
              0.2419E+00,0.2424E+00,0.2427E+00,0.2429E+00,0.2429E+00,
     &
              0.2428E+00, 0.2426E+00, 0.2423E+00, 0.2423E+00, 0.2414E+00,
     &
              0.2412E+00, 0.2412E+00, 0.2400E+00, 0.2401E+00, 0.2395E+00,
     &
              0.2390E+00, 0.2386E+00, 0.2376E+00, 0.2376E+00, 0.2371E+00,
     &
              0.2361E+00, 0.2361E+00, 0.2356E+00, 0.2347E+00, 0.2342E+00,
     8
              0.2341E+00, 0.2336E+00, 0.2327E+00, 0.2322E+00, 0.2320E+00,
     &
              0.2316E+00,0.2306E+00,0.2306E+00,0.2300E+00,0.0
      DATA C /0.3867E-02,0.2497E-02,0.2383E-02,0.2160E-02,0.2028E-02,
     &
              0.1901E-02,0.1703E-02,0.1538E-02,0.1402E-02,0.1281E-02,
     &
              0.1179E-02,0.1072E-02,0.1004E-02,0.9138E-03,0.8538E-03,
              0.7902E-03,0.6470E-03,0.5761E-03,0.4208E-03,0.4264E-03,
     &
     δ.
              0.3221E-03,0.2954E-03,0.2368E-03,0.2279E-03,0.1725E-03,
     &
              0.1627E-03,0.1371E-03,0.1295E-03,0.9497E-04,0.9141E-04,
     &
              0.8042E-04,0.5850E-04,0.4577E-04,0.2879E-04,0.2662E-04,
     &
              0.1521E-04, 0.1025E-04, 0.4171E-05, 0.3395E-05, -.2444E-05,
     &
              -.7713E-06, -.9062E-05, -.7612E-05, 0.1004E-04, -.5459E-04,
     &
              0.4395E-04, -.4566E-04, -.1079E-04, 0.1443E-04, -.4637E-04,
     &
              0.2169E-04, -.3983E-04, -.1171E-04, 0.1242E-04, -.3727E-04,
     &
              -.1254E-04,0.1335E-04,-.3998E-04,-.2616E-05,-.2165E-04,
     &
              0.1568E-04, -.3994E-04, -.2833E-05, -.2111E-04, 0.1533E-04,
     &
              -.3776E-04, -.1248E-04, 0.1358E-04, -.4055E-04, 0.0
      DATA D /-.2283E-03,-.1892E-04,-.3728E-04,-.2196E-04,-.2113E-04,
     &
               -.1649E-04, -.1374E-04, -.1136E-04, -.1005E-04, -.8542E-05,
```

&	8948E-055646E-057496E-055006E-055294E-05.
&	4775E-052361E-055179E-05.0.1875E-063477E-05.
<u>&</u>	8906E-061954E-052968E-061847E-053267E-06.
&	8518E-062525E-061152E-051188E-063662E-06.
&	3653E-06,2122E-06,2830E-06,3605E-07,1903E-06
&	8269E-071013E-061294E-079731E-07.0.2788E-07.
<u>&</u>	1382E-06.0.2416E-07.0.2942E-061077E-05.0.1642E-05.
&	1493E-05.0.5812E-06.0.4204E-061013E-05.0.1134E-05
&	1025E-05,0.4687E-06,0.4022E-06,8282E-06,0.4121E-06
&	0.4315E-06,8888E-06, 0.6228E-06,3172E-06, 0.6222E-06
&	9271E-06,0.6185E-06,3047E-06,0.6073E-06,8848E-06
&	0.4214E-06,0.4343E-06,9022E-06,0.6759E-06,0.0
ELS H ELS H ELS H ELS	<pre>H = MOD(EKIN,2.) I = INT(EKIN/2.) + 1 SEIF (EKIN.GE.10.0.AND.EKIN.LT.50.0) THEN H = MOD(EKIN-10.,4) I = INT((EKIN-10.)/4.) + 6 SEIF (EKIN.GE.50.0.AND.EKIN.LT.200.0) THEN H = MOD(EKIN-50,10.) I = INT((EKIN-50.)/10.) + 16 SEIF (EKIN.GE.200.0.AND.EKIN.LT.1000.0) THEN H = MOD(EKIN-200.,20.) I = INT((EKIN-200.,20.) I = INT((EKIN-200.)/20.) + 31 SE IF (LIST) PRINT*, 'PI- : KINETIC ENERGY OUT OF RANGE:',EKIN</pre>
PTI	$\Delta NG = (D(I) + H + C(I) + H + R(I) + A(I)) / TGTDEN$
	$(D(1) \cap (D(1)) \cap (D$

C*

C›ኑ

C*

RETURN END C۲ THIS ROUTINE DETECTS THE CHARGED PARTICLES.

```
C*
C*
      LANGUAGE..: FORTRAN 77
```

C* PROGRAMMER: MARCEL KUNZE/KFK C* VERS 1.0/21-AUG-84(MK)

C*

C*

C*

C*

```
IMPLICIT REAL*8 (A-H,O-Z)
C*
```

DIMENSION PCM(5) C*

C*

LOGICAL VETO, LIST COMMON /FLAGOP/ LIST COMMON /GEO / DMODUL,CZDETE,CZBEAM,CZTARG,CZCHAM,CYSUPP, & RADIUS, ANGRES, NMODUL C* C* WENT THE CHARGED PARTICLE OFF THE CHAMBER ? C* CX = PCM(1) / PCM(5)CY = PCM(2) / PCM(5)

CZ = PCM(3) / PCM(5)

C*

C*

C*

C* WENT THE CHARGED PARTICLE OFF THE CHAMBER ?

VETO = (ABS(CZ).GT.CZCHAM)

IF (LIST.AND.VETO) &PRINT*, 'PARTICLE WENT OFF THE CHAMBER.'

C*

RETURN END

C*	***************************************
	SUBROUTINE MOMMES
C .4	& (PCM, PRESOL, PO, PTHRSH, BFIELD, CHMD1A, RESLEN, RESD1A, DELTA, DETECT)
C*	***************************************
C☆	THE DOUTTHE DOED THE MONTHIN MEASUREMENT FOR SUADORD DARTICLES
C*	INIS RUUTINE DUES THE HUMENTUM-MEASUREMENT FOR CHARGED PARTICLES
C*	PROCRAMMER MARCEL KINZE/KEK
C*	LANGHAGE · FORTRAN 77
C*	VERSION 3.0: 20-DEC-84
C*	
	IMPLICIT REAL*8 (A-H,M-Z)
C*	
	DIMENSION PCM(5)
C*	
~ .	LOGICAL DETECT
C*	
	PARAMETER (ISEED = 1236554153)
	PARAMETER (PIMASS = 139.5688)
C*	PARAMETER (PI = 5.1415962655569795)
C*	MOMENTUM - MEASUREMENT
C*	
C*	
	IF (BFIELD.GT.0.0) THEN
C*	
	PPURP = SQRT(PCM(1)) **2 + PCM(2) **2)
	GAMMA = 1./3. * (PPURP/PO + PO/PPURP + 1.) * PRESOL
C*	
	$100\ 200\ 1=1,3,1$
	$\frac{1}{1} = \frac{1}{1} $
200	CONTINUE
C*	56/11/01
	PCM(5) = SQRT(PCM(1)**2 + PCM(2)**2 + PCM(3)**2)
C*	
	ENDIF
C*	
C - L	DETECT = (ABS(PCM(5)).GT.PTHRSH)
C*	
C×	IF (DEIECI) IHEN
C*	CALCULATE DIRECTIONAL COSTNES
C*	CALCOLATE DIRECTIONAL COSTRED
-	CX = PCM(1) / PCM(5)
	CY = PCM(2) / PCM(5)
	CZ = PCM(3) / PCM(5)
C*	
C*	TRANSFORM TO SPHERICAL COORDINATES
C*	* * * * * * * * * * * * * * * * * * * *
C**	
C*	I) COMPUTE ANGLE THETA
0	TE (C7 CT 1 D0) C7 - 1 D0
	IF $(CZ, LT, -1, DO)$ $CZ = -1, DO$
	THETA = $ACOS(CZ)$
C*	
C*	2) COMPUTE ANGLE PHI
C*	

```
IF (CX.EQ.0.0) THEN
           IF (CY.GE.0.0) THEN
              PHI = PI / 2.
           ELSE
              PHI = 1.5 * PI
           ENDIF
        ELSE
           PHI = ATAN(CY/CX)
           IF (CX.LT.0.0) THEN
              PHI = PI + PHI
           ELSE
              IF (CY.LT.0.0) PHI = 2. * PI + PHI
           ENDIF
        ENDIF
C*
C*
        COMPUTE HWHM
C*
        . . . . . . . . . . . .
C*
C*
        1) THETA (Z - DIRECTION)
C*
        HWHMTH = RESLEN/CHMDIA * SIN(THETA)
C*
C*
        2) PHI (X,Y - DIRECTION)
C*
        HWHMPH = RESDIA/CHMDIA / SIN(THETA)
C*
        CALL GAUSS (ISEED, HWHMTH, THETA, THETA)
        CALL GAUSS (ISEED, HWHMPH, PHI, PHI)
C*
C*
        TRANSFORM TO DIRECTIONAL COSINES
С*
        C*
        CXNEW = SIN(THETA) * COS(PHI)
        CYNEW = SIN(THETA) * SIN(PHI)
        CZNEW = COS(THETA)
C*
        DIRCOS = CX*CXNEW + CY*CYNEW + CZ*CZNEW
        IF (DIRCOS.GT. 1.D0) DIRCOS = 1.D0
        IF (DIRCOS.LT.-1.D0) DIRCOS = -1.D0
C*
        DELTA = ACOS(DIRCOS)
C*
        CX = CXNEW
        CY = CYNEW
        CZ = CZNEW
C*
      ELSE
        PCM(5) = 0.0
      ENDIF
C*
      (* DETECT *)
C*
C*
      ENERGY AND MOMENTUM
C*
      . . . . . . . . . . . . . . . . . . .
C*
      PCM(1) = CX * PCM(5)
      PCM(2) = CY * PCM(5)
      PCM(3) = CZ * PCM(5)
      MOQUAD = PCM(1)**2 + PCM(2)**2 + PCM(3)**2
      PCM(4) = SQRT(MOQUAD + PIMASS**2)
```

PCM(5) = SQRT(MOQUAD)

RETURN END

C*

- 141 ---

```
C*
      SUBROUTINE MOMENT (PCM, TYP, NPTOT)
C*
     C*
     THIS ROUTINE DOES RECONSTRUCTION OF KINEMATICS OF
C*
      TWO OR FOUR CHARGED PARTICLES.
C*
С*
      LANGUAGE..: FORTRAN 77
C*
      PROGRAMMER: MARCEL KUNZE/KFK
C*
      VERS 1.0 :29-NOV-84(MK)
C*
      IMPLICIT REAL*8 (A-H,O-Z)
C*
      COMMON /FLAGOP/ LIST
C*
     DIMENSION PCM(5,50),CX(50),CY(50),CZ(50)
      DIMENSION A2(2,3), A4(4,5), A0(3,4), E(4), P(4), INDEX(4)
C*
      INTEGER PIPOS(10)
C*
      LOGICAL TWOPI, FORPI, IMPROV, NOERR, LIST
C*
      CHARACTER TYP(50)*5
C*
      PARAMETER (PIMASS = 139.56)
      PARAMETER (TECM
                      = 1876.56)
C*
      NOERR = .TRUE.
C*
      NCHAR = 0
C*
      PXSUM = 0.
      PYSUM = 0.
      PZSUM = 0.
     ENESUM = 0.
C*
      DO 100 I=1,NPTOT,1
C*
C*
      CALCULATE MOMENTUM AND ENERGY SUMS OF NEUTRALS
C*
      IF (TYP(I).EQ.'GAMMA'.OR.TYP(I).EQ.'PIO ') THEN
         PXSUM = PXSUM
                       + PCM(1,I)
         PYSUM = PYSUM + PCM(2, I)
         PZSUM = PZSUM + PCM(3, I)
         ENESUM = ENESUM + PCM(4, I)
      ENDIF
C*
C*
      LOCATE CHARGED PARTICLES POSITIONS (DIRECTIONAL COSINES)
C*
      IF (TYP(I).EQ.'PI+ '.OR.TYP(I).EQ.'PI- ') THEN
         NCHAR
                     = NCHAR + 1
         PIPOS(NCHAR) = I
                     = PCM(1,I) / PCM(5,I)
         CX(I)
                     = PCM(2,I) / PCM(5,I)
         CY(I)
                     = PCM(3,I) / PCM(5,I)
         CZ(I)
      ENDIF
C*
100
     CONTINUE
C*
      TWOPI = (NCHAR.EQ.2)
```

```
FORPI = (NCHAR.EQ.4)
C*
       IF (LIST) THEN
          PRINT*, 'GIVEN VALUES:'
          PRINT*, 'MOMENTUM SUM OF NEUTRALS IN X : ', PXSUM
PRINT*, 'MOMENTUM SUM OF NEUTRALS IN Y : ', PYSUM
          PRINT*, 'MOMENTUM SUM OF NEUTRALS IN Y : ', PYSUM
PRINT*, 'MOMENTUM SUM OF NEUTRALS IN Z : ', PZSUM
PRINT*, 'ENERGY SUM OF NEUTRALS : ', ENESUM
PRINT*
                                                   : ',PZSUM
: ',ENESUM
          PRINT*
          PRINT*, 'NUMBER OF CHARGED PARTICLES : ', NCHAR
          PRINT*
       ENDIF
C*
       PXSUM = -PXSUM
       PYSUM
              = -PYSUM
       PZSUM = -PZSUM
       ENESUM = TECM - ENESUM
C*
C*
       CALCULATE MOMENTUM OF TWO CHARGED PARTICLES
C*
       C*
       IF (TWOPI) THEN
C*
C*
          SOLVE KINEMATICS EQUATION
C*
          DO 200 J=1,2,1
          A2(1,J) = CX(PIPOS(J))
          A2(2,J) = CY(PIPOS(J))
200
          CONTINUE
C*
          A2(1,3) = PXSUM
          A2(2,3) = PYSUM
C*
          CALL MATIN2 (A2,2,2,MDIM,1,INDEX,NERROR,DETERM)
C*
          P(1)
                   = A2(1,3)
          P(2)
                   = A2(2,3)
C*
          NOERR
                 = (NERROR.LE.O)
C*
       ENDIF
C*
C*
       CALCULATE MOMENTUM OF FOUR CHARGED PARTICLES
C*
       C*
       IF (FORPI) THEN
          DO 300 J=1,4,1
          AO(1,J) = CX(PIPOS(J))
          AO(2,J) = CY(PIPOS(J))
          AO(3,J) = CZ(PIPOS(J))
                = ENESUM/4.
          E(J)
          IF(E(J).LT.PIMASS) E(J) = PIMASS
                 = SQRT(E(J)**2-PIMASS**2)
          P(J)
          A4(4,J) = P(J)/E(J)
300
          CONTINUE
C*
          IMPROV = .TRUE.
          ITERAT = 0
C*
```

400 Crit		DO I I I I (1000 WHILE (IMPROV.AND.NOERR.AND.ITERAT.LT.10) ECHARG = ENESUM DO 400 J=1,4,1 ECHARG = ECHARG - $E(J) + A4(4,J)*P(J)$ CONTINUE
			A4(1,5) = PXSUM A4(2,5) = PYSUM A4(3,5) = PZSUM A4(4,5) = ECHARG
C* C*		I	UNSAVE MATRIX A4
500]	DO 500 $I=1,3,1$ DO 500 $J=1,4,1$ A4(I,J) = A0(I,J) CONTINUE
C*		(CALL MATIN2 (A4,4,4,MDIM,1,INDEX,NERROR,DETERM)
C*		1	NOERR = (NERROR.LE.0)
600			IF (NOERR) THEN DO 600 J=1,4,1 P(J) = A4(J,5) E(J) = SQRT(P(J)**2 + PIMASS**2) A4(4,J) = P(J)/E(J) CONTINUE
C.*			PX = 0. PY = 0. PZ = 0. EN = 0. $DO \ 700 \ J=1,4,1$ PX = PX + P(J) * A0(1,J) PY = PY + P(J) * A0(2,J) PZ = PZ + P(J) * A0(3,J) EN = EN + SQRT(P(J)**2 + PIMASS**2)
700 C*			CONTINUE
C*	&		CHISQ = (PX-PXSUM)**2 + (PY-PYSUM)**2 + (PZ-PZSUM)**2 + (EN-ENESUM)**2 IMPROV = (CHISQ.GT.1.)
0.4		J	ITERAT = ITERAT + 1 ENDIF
1000		CON	ΓINUE
C*	&	IF PRII	(LIST.AND.ITERAT.EQ.10) NT*,'ITERATION DID NOT CONVERGE.'
C.	ENI	DIF	
C* C*	CAI	LCUL	ATE KINEMATICS
C*			••••••••••••
-	IF	(NOI	ERR.AND.(TWOPI.OR.FORPI)) THEN

		DO 1200 I=1,NCHAR,1 PCM(1,PIPOS(I)) = P(I) * CX(PIPOS(I)) PCM(2,PIPOS(I)) = P(I) * CY(PIPOS(I)) PCM(3,PIPOS(I)) = P(I) * CZ(PIPOS(I)) PCM(4,PIPOS(I)) = SQRT(PIMASS**2 + P(I)**2) PCM(5,PIPOS(I)) = P(I)
Сж		TE (TTCT) DETNT 1100 DEDCC(T)
	æ	PCM(1 PIPOS(I)) PCM(2 PIPOS(I)), PCM(3, PIPOS(I)).
	&	PCM(5, PIPOS(I)), PCM(4, PIPOS(I))
C*		
1100	&	FORMAT(' ','#',I3,3X,' MOMENTUM :',3F10.3,5X, ' P =',F10.3,' ENERGY:',F10.3)
C*		
1200		CONTINUE
Сж	ET	C.F.
C*	ԵԼ	5E
С*		IF (LIST) PRINT*, 'ERROR OCCURED.'
-		<pre>IF (TWOPI) THEN TYP(PIPOS(1)) = 'PURGE' TYP(PIPOS(2)) = 'PURGE'</pre>
C*		ENDIF
		<pre>IF (FORPI) THEN TYP(PIPOS(1)) = 'PURGE' TYP(PIPOS(2)) = 'PURGE' TYP(PIPOS(3)) = 'PURGE' TYP(PIPOS(4)) = 'PURGE' ENDLE</pre>
C*		FUDIC
0	EN	DIF
C*		
	RE'	TURN
	EN	D

.

```
C*
      SUBROUTINE PARDET (PCM, DETECT)
      C*
C*
C*
      THIS ROUTINE FOLLOWS THE PARTICLES' WAY AND A DECISION IS MADE
C*
      WHETHER THEY ARE DETECTED OR NOT DETECTED (LOGICAL:DETECT).
C*
C*
      LANGUAGE..: FORTRAN 77
C*
      PROGRAMMER: MARCEL KUNZE/KFK
C*
      VERS 1.0/21-AUG-84(MK)
C*
      IMPLICIT REAL*8 (A-H,O-Z)
C*
      DIMENSION PCM(5)
C*
      LOGICAL LIST
      LOGICAL BEAM, SUPP, TARG, DETECT
C*
      COMMON /FLAGOP/ LIST
      COMMON /GEO
                    / DMODUL, CZDETE, CZBEAM, CZTARG, CZCHAM, CYSUPP,
     &
                      RADIUS, ANGRES, NMODUL
C*
C*
      CALCULATE THE DIRECTIONAL COSINES
C*
      CX = PCM(1) / PCM(5)
      CY = PCM(2) / PCM(5)
      CZ = PCM(3) / PCM(5)
C*
C*
      WENT THE PARTICLE INTO THE BEAM INJECTION HOLE ????
C*
      BEAM = (CZ.GT.CZBEAM)
C*
C*
      WENT THE PARTICLE INTO THE CHAMBER SUPPLY ???
C*
      SUPP = (CY.GT.CYSUPP)
C*
C*
      WENT THE PARTICLE INTO THE TARGET HOLDER ???
C*
      TARG = (CZ.LT.(-CZTARG))
C*
      DETECT = (.NOT.(BEAM.OR.SUPP.OR.TARG))
C*
      IF (LIST) THEN
        IF (BEAM) PRINT *, 'PARTICLE WENT INTO BEAM INJ. HOLE.'
        IF (SUPP) PRINT *, 'PARTICLE WENT INTO CHAMBER SUPPLY.'
        IF (TARG) PRINT *, 'PARTICLE WENT INTO TARGET HOLDER.'
      ENDIF
C*
      RETURN
      END
```

C* SUBROUTINE ENEMES (ENERGY, ERESOL, EO, EXPONT, ETHRSH, DETECT) C* C* C* THIS ROUTINE DOES THE ENERGY-MEASUREMENT. C* C* PROGRAMMER : MARCEL KUNZE/KFK C* LANGUAGE : FORTRAN 77 С* VERSION 1.0: 21-AUG-84 C* IMPLICIT REAL*8 (A-H,O-Z) C* LOGICAL DETECT, NOGOOD C* PARAMETER (ISEED = 1236554153) C* C* ENERGY - MEASUREMENT C* C* IF (ENERGY.GT.0.0) THEN HWHM = 0.5 * (ERESOL/100.) * (E0/ENERGY)**EXPONT * ENERGY NOGOOD = (HWHM.GT.0.0)С* DO 100 WHILE (NOGOOD) CALL GAUSS (ISEED, HWHM, ENERGY, ENERGY) NOGOOD = (ENERGY.LE.0.0)100 CONTINUE ELSE ENERGY = 0.0ENDIF C* DETECT = (ENERGY.GT.ETHRSH)C* RETURN END

```
C*
     SUBROUTINE QUANTI (PCM, DELTA)
C*
     C*
C*
     THIS SUBROUTINE CALCULATES THE ANGLE RESOLUTION OF A DETECTOR.
C*
C*
     PROGRAMMER: MARCEL KUNZE/KFK
C*
     LANGUAGE : FORTRAN 77
C*
     VERS. 1.0 : 10-JUL-84
C*
     IMPLICIT REAL*8 (A-H,O-Z)
C*
                  / DMODUL,CZDETE,CZBEAM,CZTARG,CZCHAM,CYSUPP,
     COMMON /GEO
    &
                    RADIUS, ANGRES, NMODUL
C*
     DIMENSION THETAQ(361), PHIQ(361)
     DIMENSION PCM(5)
C*
     LOGICAL SETUP
C*
     PARAMETER (PI = 3.1415962653589793)
     DATA SETUP /.TRUE./
C*
     IF (SETUP) THEN
C*
        RMODUL = 0.5 \div DMODUL
        PIHALF = 0.5 * PI
        THRHLF = 1.5 * PI
        TWOPI = 2.0 * PI
C*
              = INT(180./ANGRES) + 1
        Ν
        ANGLE = ANGRES * PI/180.
        DO 100 I=1,N,1
         THETAQ(I) = (I-1) * ANGLE
                   = SIN(THETAQ(I)) * RADIUS
         R
         IF (R.GT.RMODUL) THEN
            PHIQ(I) = 2. * ASIN(RMODUL/R)
         ELSE
            PHIQ(I) = TWOPI
         ENDIF
100
        CONTINUE
        SETUP = .FALSE.
     ENDIF
C*
C*
     CALCULATE THE DIRECTIONAL COSINES
C*
      C*
     CX = PCM(1) / PCM(5)
     CY = PCM(2) / PCM(5)
     CZ = PCM(3) / PCM(5)
C*
C*
     TRANSFORM TO SPHERICAL COORDINATES
C*
     C*
C*
     1) COMPUTE ANGLE THETA ...
C*
     IF (CZ.GT. 1.D0) CZ = 1.D0
     IF (CZ.LT.-1.DO) CZ = -1.DO
     THETA = ACOS(CZ)
```

```
C*
C*
      2) COMPUTE ANGLE PHI ...
C*
      IF (CX.EQ.0.0) THEN
        IF (CY.GE.0.0) THEN
           PHI = PIHALF
        ELSE
           PHI = THRHLF
        ENDIF
     ELSE
        PHI = ATAN(CY/CX)
        IF (CX.LT.0.0) THEN
           PHI = PI + PHI
        ELSE
           IF (CY.LT.0.0) PHI = TWOPI + PHI
        ENDIF
     ENDIF
C*
C*
     COMPUTE DISCRETE ANGLE
C*
      C*
C*
      1) THETA
C*
      INDEX = INT(THETA/ANGLE + 0.5) + 1
     THETA = THETAQ(INDEX)
C*
C*
      2) PHI
C*
     MODPOS = INT(PHI/PHIQ(INDEX) + 0.5)
C*
      PHI
            = MODPOS * PHIQ(INDEX)
C*
C*
     TRANSFORM TO DIRECTIONAL COSINES
C*
      C*
     CXNEW = SIN(THETA) * COS(PHI)
     CYNEW = SIN(THETA) * SIN(PHI)
     CZNEW = COS(THETA)
C*
     DIRCOS = CX*CXNEW + CY*CYNEW + CZ*CZNEW
      IF (DIRCOS.GT. 1.D0) DIRCOS = 1.D0
      IF (DIRCOS.LT.-1.D0) DIRCOS = -1.D0
     DELTA = ACOS(DIRCOS)
C*
     PCM(1) = CXNEW * PCM(5)
     PCM(2) = CYNEW * PCM(5)
     PCM(3) = CZNEW * PCM(5)
C*
     RETURN
     END
```

```
C*
     SUBROUTINE GAMCOS (XCOS, YCOS, ZCOS)
C<sup>%</sup>
     C*
C*
     THIS ROUTINE GENERATES DIRECTIONAL COSINES.
C*
C*
     PROGRAMMER: MARCEL KUNZE
C*
     LANGUAGE : FORTRAN 77
۲'n
     VERS 1.0 : 27-JUN-84
C۰
C*
     ADAPTED FROM ROUTINE 'GAMCOS' (TK).
C*
     IMPLICIT REAL*8 (A-H,O-Z)
C*
     LOGICAL NOGOOD
C*
C*
     GENERATE A SET OF TWO RANDOM-NUMBERS
С*
         ÷
     NOGOOD = .TRUE.
     DO 100 WHILE (NOGOOD)
     R1 = 2. * RNDM(DUMMY) - 1.
     R2 = 2. * RNDM(DUMMY) - 1.
C*
С*
     CHECK THEM. IF NOT USEFUL TRY THE NEXT SET
C*
     S = (R1*R1) + (R2*R2)
     NOGOOD = (S.GE.1)
100
     CONTINUE
C*
C*
     CALCULATE ...
C*
     SQ = SQRT(1. - S)
     R12 = 2. * R1
     R22 = 2. * R2
C*
C*
      ... THE DIRECTIONAL COSINES
С*
     XCOS = R12 * SQ
     YCOS = R22 * SQ
     ZCOS = 1. - (2.*S)
C۰
     RETURN
C*
     END
```

```
C*
     SUBROUTINE INVMAS (PCM, TYP, NPTOT, IHIST, RMASS, WINDOW, RESNAM, PARTIC)
C*
     C*
C*
     THIS ROUTINE CALCULATES THE INVARIANT MASS OF THE PARTICLES
C*
     SPECIFIED BY PARTIC (E.G. DATA PARTIC /'PI+ ','PI- ',.../ ).
C*
C*
     PROGRAMMER: MARCEL KUNZE/KFK
C*
     LANGUAGE : FORTRAN 77
C*
     VERS.1.0/24-AUG-84
C*
     IMPLICIT REAL*8 (A-H,M,O-Z)
C*
     COMMON /FLAGOP/ LIST
C*
     DIMENSION PCM(5,50)
     DIMENSION PSUM1(3), PSUM2(3), PSUM3(3)
C*
     LOGICAL LIST, HIST
     LOGICAL ONEBOD, TWOBOD, THRBOD, EQUL12, EQUL23, GOON
C*
     CHARACTER*5
                 TYP(50)
     CHARACTER*5 RESNAM, PARTIC(3), PARTS
C*
C*
     1. SORT THE PARTICLES
C*
      C*
     CALL PSORT (PCM, TYP, NPTOT)
C*
     DO 100 J=1,2,1
     DO 100 I=1,2,1
C*
     IF (PARTIC(I).LT.PARTIC(I+1)) THEN
                   = PARTIC(I)
        PARTS
        PARTIC(I) = PARTIC(I+1)
        PARTIC(I+1) = PARTS
     ENDIF
C*
     CONTINUE
100
C*
C*
     2.SET FLAGS
C*
      . . . . . . . . . . .
C*
     IF (LIST) PRINT*, 'INVARIANT MASS OF: ', PARTIC
C*
     HIST
           = (IHIST.GT.0)
                                 ')
     ONEBOD = (PARTIC(1).NE.'
                                 ')
     TWOBOD = (PARTIC(2).NE.'
                                 ')
     THRBOD = (PARTIC(3).NE.'
     EQUL12 = (PARTIC(1).EQ.PARTIC(2))
     EQUL23 = (PARTIC(2), EQ, PARTIC(3))
C*
     IF (RMASS.LE.0.0) THEN
       WINMAX = 2000.D0
       WINMIN =
                  0.DO
     ELSE
       WINMAX = RMASS + WINDOW
       WINMIN = RMASS - WINDOW
     ENDIF
```

0.4	IF (LIST) PRINT*, 'WINDOW SET FROM: ', WINMIN, ' TO ', WINMAX
C*	2.CALCULATE THE INVARIANT MASS
C*	· · · · · · · · · · · · · · · · · · ·
C*	IF (ONEBOD) THEN
~ 1	IF (TWOBOD.ANDNOT.THRBOD) THEN
C* C*	TWO PARTICLES
C*	DO 300 $I=1$ NPTOT-1 1
	IF (TYP(I).EQ.PARTIC(1)) THEN
	PSUM1(1) = PCM(1, I) $PSUM1(2) = PCM(2, I)$
	PSUM1(2) = PCM(2,1) PSUM1(3) = PCM(3,1)
	ESUM1 = PCM(4, I)
	JMIN = I + 1
	ELSE
	SMIN = 1 ENDIF
	GOON = .TRUE.
	DO 200 J=JMIN,NPTOT,1 IF (TYP(J).EO.PARTIC(2).AND.GOON) THEN
	PSUM2(1) = PSUM1(1) + PCM(1,J)
	PSUM2(2) = PSUM1(2) + PCM(2, J) $PSUM2(3) = PSUM1(3) + PCM(3, J)$
	ESUM2 = ESUM1 + PCM(4, J)
	CMASS = MASS(ESUM2,PSUM2) IF (LIST) PRINT* CMASS
	IF (CMASS.GT.WINNIN.AND.CMASS.LT.WINNAX) THEN
	IF (HIST) CALL HFILL (IHIST,CMASS,DUMMY,1.DO) IF (LIST) PRINT% 'REC MASS SORTED INTO' THIST
	IF (WINDOW.GT.O.) THEN
	GOON = .FALSE. TVP(I) = 'PUPCE'
	TYP(J) = RESNAM
	PCM(1,J) = PSUM2(1)
	PCM(2,J) = PSUM2(2) PCM(3,J) = PSUM2(3)
	PCM(4, J) = ESUM2
	PCM(5,5) = SQR1(PCM(1,5)**2+PCM(2,5)**2+PCM(5,5)**2) ENDIF
	ENDIF
200	ENDIF CONTINUE
	ENDIF
300 C*	CONTINUE
Q.I.	ELSE
C*	THREE PARTICLES
C*	
	DU = 1, NPTUI - 2, 1 IF (TYP(I).EQ.PARTIC(1)) THEN
	PSUM1(1) = PCM(1, I)
	PSUM1(2) = PCM(2, I) $PSUM1(3) = PCM(3, I)$
	ESUM1 = PCM(4, I)

```
IF (EQUL12) THEN
             JMIN = I + 1
           ELSE
             JMIN = 1
           ENDIF
           GOON = .TRUE.
           DO 500 J=JMIN,NPTOT-1,1
           IF (TYP(J).EQ.PARTIC(2).AND.GOON) THEN
             PSUM2(1) = PSUM1(1) + PCM(1,J)
             PSUM2(2) = PSUM1(2) + PCM(2,J)
             PSUM2(3) = PSUM1(3) + PCM(3,J)
                     = ESUM1
                                 + PCM(4,J)
             ESUM2
             IF (EQUL23) THEN
               KMIN = J
             ELSE
               KMIN = 1
             ENDIF
             DO 400 K=KMIN,NPTOT,1
             IF (TYP(K).EQ.PARTIC(3).AND.GOON) THEN
               PSUM3(1) = PSUM2(1) + PCM(1,K)
               PSUM3(2) = PSUM2(2) + PCM(2,K)
               PSUM3(3) = PSUM2(3) + PCM(3,K)
                                   + PCM(4,K)
               ESUM3
                        = ESUM2
               CMASS
                        = MASS(ESUM3, PSUM3)
               IF (LIST) PRINT*, CMASS
               IF (CMASS.GT.WINMIN.AND.CMASS.LT.WINMAX) THEN
                 IF (HIST) CALL HFILL (IHIST, CMASS, DUMMY, 1.DO)
                 IF (LIST) PRINT*, 'REC. MASS SORTED INTO: ', IHIST
                 IF (WINDOW.GT.O.) THEN
                   GOON = .FALSE.
                   TYP(I) = 'PURGE'
                   TYP(J) = 'PURGE'
                   TYP(K) = RESNAM
                   PCM(1,K) = PSUM3(1)
                   PCM(2,K) = PSUM3(2)
                   PCM(3,K) = PSUM3(3)
                   PCM(4,K) = ESUM3
                   PCM(5,K) = SQRT(PCM(1,K)**2+PCM(2,K)**2+PCM(3,K)**2)
                 ENDIF
               ENDIF
             ENDIF
400
             CONTINUE
           ENDIF
500
           CONTINUE
        ENDIF
600
        CONTINUE
      ENDIF
C*
       (* TWOBOD.OR.THRBOD *)
      ENDIF
C*
       (* ONEBOD *)
C*
      RETURN
      END
```

С*	٢٠ ﭘﯘﺩ ﭘﯘﺩ ﭘﯘﺩ ﭘﯘﺩ ﭘﯘﺩ ﭘﯘﺩ ﭘﯘﺩ ﭘﯘﺩ ﭘﯘﺩ ﭘﯘﺩ			
	REAL FUNCTION MASS (ENERGY, MOMENT)			
C*	*******************************			
C*				
C*	THIS FUNCTION CALCULATES THE INVARIANT MASS			
C*	IF ENERGY AND MOMENTUM ARE GIVEN.			
C*				
	IMPLICIT REAL*8 (A-H,M-Z)			
C*				
	DIMENSION MOMENT(3)			
C*				
	MOQUAD = MOMENT(1)**2 + MOMENT(2)**2 + MOMENT(3)**2			
	MAQUAD = ENERGY **2 - MOQUAD			
C*				
	IF (MAQUAD.GT.0.0) MASS = $SQRT(MAQUAD)$			

C*

RETURN END

C*	***********************
	SUBROUTINE PSORT (PCM, TYP, NPTOT)
Cż	
0.4	
C*	THIS ROUTINE SORTS AND REARRANGES KINEMATIC DATA (ARRAY 'PCM').
C*	
C*	PROGRAMMER : MARCEL KUNZE/KFK
C*	
0.4	
<u>ل</u> ،	VERSION 1.0: 10-001-84
C*	
	IMPLICIT REAL*8 (A-H,O-Z)
C*	
	DIMENSION PCM(5,50) PCMS(5)
Cż	
0	
	CHARACTER*5 TYP(50), TYPS
С*	
	LOGICAL SORT
C*	
C*	
C*	I.) I OKOL TAKITOLLO
	· · · · · · · · · · · · · · · · · · ·
C*4	
	I = 0
	DO 200 WHILE (I.LT.NPTOT)
	T = T + 1
	TE (TYP(T) FO 'PURCE') THEN
	DO $100 J=1, NP10T, T$
	PCM(1,J) = PCM(1,J+1)
	PCM(2,J) = PCM(2,J+1)
	PCM(3,J) = PCM(3,J+1)
	PCM(4, I) = PCM(4, I+1)
	F(M(5,5)) = F(M(5,5+1))
	TYP(J) = TYP(J+1)
100	CONTINUE
	ENDIF
200	CONTINUE
C*	
C*	2) SODT THE DADTICIES BY USE OF NAME
0.4	2.) BORT THE FARTICLES DI ODE OF MALL
0.4	•••••
C.4	
	SORT = .TRUE.
	DO 400 WHILE (SORT)
C*	
	LASTCL = 0
C*	
0	
	DO 300 I=1,NPI0I-1,I
C*	
	IF (TYP(I).LT.TYP(I+1)) THEN
	LASTCL = I
C*	
U	PONC(1) = PON(1, 1)
	FOR(1) = FOR(1,1)
	PCMS(2) = PCM(2,1)
	PCMS(3) = PCM(3, I)
	PCMS(4) = PCM(4, I)
	PCMS(5) = PCM(5, I)
	TVPS = TVP (I)
0.5	
Un	
	PCM(1,1) = PCM(1,1+1)
	PCM(2,I) = PCM(2,I+1)

C*	PCM(3,I) = PCM(3,I+1) PCM(4,I) = PCM(4,I+1) PCM(5,I) = PCM(5,I+1) TYP(I) = TYP(I+1)
	PCM(1, T+1) = PCMS(1)
	PCM(2, I+1) = PCMS(2)
	P(1)(2,1+1) = P(1)(2)
	PCM(3, 1+1) = PCMS(3)
	PCM(4, I+1) = PCMS(4)
	PCM(5, I+1) = PCMS(5)
	TYP(I+1) = TYPS
	ENDIF
C*	
300 C*	CONTINUE
	SORT = (LASTCL, GT, 0)
C*	
400 C*	CONTINUE

RETURN END

ı

```
C*
     SUBROUTINE TESTID (PART, ID, IDEVNT, MISMAT)
С*
     C*
C*
     THIS ROUTINE SEARCHES FOR WELL-KNOWN DECAY-CHANNELS
C*
     VIA PATTERN-RECOGNITION.
C*
C*
     PROGRAMMER : MARCEL KUNZE
C*
             : FORTRAN 77
     LANGUAGE
C*
     VERSION 1.0: 10-OCT-84
C*
     IMPLICIT REAL*8 (A-H,O-Z)
C*
     INTEGER PART(4)
C*
     LOGICAL TEST, MISMAT
C*
     DIMENSION MASK(76)
C^*
     DATA MASK / 1120,1130,1140,2220,2230,0020,0030,1110,1110,1110,
    &
                2200, 2200, 2200, 2200, 2200, 2210, 2210, 2210, 2210, 2210,
                2210,2210,3300,3310,3310,3310,3310,1110,2210,9999,
    &
    &
                &
                9999,9999,9999,1111,1111,1111,1111,1111,1000,1000,
    &
    &
                0100,0010,0010,0010,0021,0012,0011,0021,0120,0032,
                0042,1122,0030,0040,0050,9999/
    &
C*
C*
     THE PATTERN TO SEARCH FOR IS ...
     NPATTN = 1000*PART(1)+100*PART(2)+10*PART(3)+PART(4)
C*
     ID
         = 0
     TEST = .FALSE.
C*
     DO 100 UNTIL (TEST.OR.ID.GT.75)
        ID
           = ID + 1
        TEST = (NPATTN.EQ.MASK(ID))
100
     CONTINUE
C*
C*
     CHECK EVENT - ID
C*
     MISMAT = (MASK(ID).NE.MASK(IDEVNT))
C*
     IF (ID.GT.75) THEN
             = 0
        ID
        MISMAT = .FALSE.
     ENDIF
C*
     RETURN
```

KE T END

С*	***************************************		
	SUBROUTINE CONLAW (PCM,NPTOT,DELTA,DELTAX,DELTAY,DELTAZ)		
C*	***************************************		
C*			
C*	THIS ROUTINE CALCULATES THE MISSING ENERGY AND THE MISSING		
C*	MOMENTUM OF AN EVENT.		
C*			
C*	PROGRAMMER : MARCEL KUNZE/KFK		
C*	LANGUAGE : FORTRAN 77		
C*	VERSION 2.0: 05-JAN-85		
C*			
	IMPLICIT REAL*8 (A-H,O-Z)		
C*			
	DIMENSION PCM(5,50)		
C*			
	PARAMETER (PBPMAS = 1876.56)		
C*			
C*	SUMMATION		
C*			
C*			
	DELTAX = 0.DO		
	DELTAY = 0.DO		
	DELTAZ = 0.DO		
	ENESUM = 0.DO		
C*			
	DO 100 I=1,NPTOT,1		
	DELTAX = DELTAX + PCM(1, I)		
	DELTAY = DELTAY + PCM(2, I)		
	DELTAZ = DELTAZ + PCM(3, I)		
	ENESUM = ENESUM + PCM(4, I)		
100	CONTINUE		
C*			
	DELTA = PBPMAS - ENESUM		
C*			
	RETURN		
	END		

ABBILDUNGSVERZEICHNIS

,

Abbildung	1.	Bild der Annihilation im Ouarkmodell
Abbildung	2.	Annihilationskanäle des Proton - Antiprotonsystems
Abbildung	3.	Dalitz-Plot eines Systems aus drei Pionen
Abbildung	4	Annihilation als Abfolge von Zweikörnerzerfällen 7
Abbildung	5	Fnergiesnektrum der geladenen Pionen 13
Abbildung	5.	Energiespektrum der gerädenen Fionen
Abbildung	7	Energiespektrum der Germag
Abbildung	· · ·	Standard Detakton Sustem
Abbildung	0.	Datakton-Swaten (neguianaba Coometria)
Abbildung	9. 10	Standichterwerteilung den Antigenstenen im Tenset
Abbildung	10.	Stopaichtenverteilung der Antiprotonen im Target 20
Abbildung	11.	Stopverteilung der geladenen Pionen im larget 21
Abbildung	12.	Energiespektrum der stoppenden gelädenen Pionen 22
ADDIIdung	13.	Spektrum der invarianten Masse der rekonstrulerten neu-
Abbildung	14	Inklucius Cosemtonorgiospoktrum dor rekonstrujerton
monitarilă	14 ·	neutralen Pionen 26
Abbildung	15	Gemessenes Energiespektrum der geladenen Pionen 28
Abbildung	16	Gemessenes Energiespektrum der Gammas 28
Abbildung	17	Inclusives Energiespektrum der Gammas nach
hositung	1/ ,	Rekonstruktion der neutralen Pionen
Abbildung	18.	Inklusives Energiespektrum der Einzelgammas nach
		Rekonstruktion der neutralen Pionen
Abbildung	19.	Invariante Masse des radiativ zerfallenden Omega 32
Abbildung	20.	Invariante Masse des radiativ zerfallenden Eta 33
Abbildung	21.	Invariante Masse des neutralen Rho
Abbildung	22.	Invariante Masse des Omega
Abbildung	23.	Invariante Masse hypothetischer Baryoniumzustände 37
Abbildung	24.	Invariante Masse des radiativ zerfallenden Glueballs 38
Abbildung	25.	Invariante Masse des E(1418) im Kanal ID=70 40
Abbildung	26.	Invariante Masse des E(1418) im Kanal ID=71 40
Abbildung	27.	Invariante Masse des E(1418) im Kanal ID=72 41
Abbildung	28.	Energiespektrum der rekonstruierten neutralen Pionen
0		(Modularität: 1000)
Abbildung	29.	Energiespektrum der rekonstruierten neutralen Pionen
		(Modularität: 600)
Abbildung	30.	Energiespektrum der rekonstruierten neutralen Pionen
		(Modularität: 150)
Abbildung	31.	Energiespektrum der rekonstruierten neutralen Pionen
		(Modularität: 45)
Abbildung	32.	Verringerung der Energieauflösung auf 25% 45
Abbildung	33.	Verringerung der Flächenbedeckung auf 95% 46
Abbildung	34.	Verringerung der Flächenbedeckung auf 85% 47
Abbildung	35.	Verringerung der Impulsauflösung auf 15% 48
Abbildung	36.	Invariante Masse des neutralen Rho (Detektor ohne
		Magnetfeld)
Abbildung	37.	Invariante Masse des Omega (Detektor ohne Magnetfeld) 51
Abbildung	38.	Invariante Masse des hypothetischen Baryoniums
		(Detektor ohne Magnetfeld)

LITERATURVERZEICHNIS

- AMS84 C.Amsler Private Mitteilung
- AST80 Asterix-Kollaboration A Study of Proton - Antiproton Interactions at rest in a H -Target at LEAR CERN PSCC 80-101 (1980)
- BKS78 Basel-Karlsruhe-Stockholm-Straßburg-Thessaloniki-Kollaboration Search for strongly bound states ... CERN PSCC 78-28/M 12
- BKS78 Basel-Karlsruhe-Stockholm-Straßburg-Thessaloniki-Kollaboration Proton-Antiproton Annihilations at rest into $\pi^{\circ} \ \omega, \pi^{\circ} \ \eta, \pi^{\circ} \ \chi, \pi^{\circ}$ π° and $\pi^{\circ} \ \eta$ Nuclear Physics B228 (1983) 424-438
- BUR70 E.H.S Burhop (Hrsg.) High Energy Physics IV Pure And Applied Physics 25-IV
- FRA83 M.E.B Franklin et al. SLAC-Pub-3092,LBL-15969 (1983)
- GRA84 Hans Graßmann Ein CsJ Testkalorimeter bei Energien zwischen 1 und 20 GeV Diplomarbeit Universität Erlangen-Nürnberg (1984)
- HB078 R.Brun, I.Ivanchenko, P.Palazzi HB00K - Histogramming, Fitting and Data Presentation Package (Vers.3.0) CERN - Data Handling Division DD/77/9
- IBM83 CERN User Support Group IBM User's Guide DD/US/4
- JAM68 F.James Monte-Carlo-Phase-Space CERN 68-15

KOC76 H.Koch Nuclear and Particle Physics at intermediate Energies Plenum Publishing Company, New York (1976)

KÖH80 Thomas Köhler Monte-Carlo-Simulation eines Detektorsystems Diplomarbeit, Universität Karlsruhe (1980)

KÖH82 Thomas Köhler XHBPACK, Programmbeschreibung KfK, unveröffentlichter Bericht

PAV78 P.Pavlopoulos Suche nach tiefgebundenen Zuständen im Proton -Antiproton-System Dissertation, Universität Karlsruhe (1978) erschienen als KfK-Ext. 3/78-4

- PER72 Donald H. Perkins Introduction to High Energy Physics Addison-Wesley Publishing Company (1972)
- REV82 Particle Data Group Review Of Particle Properties CERN (1982)
- RIC83 B.Richter Suche nach gebundenen Baryoniumzuständen in seltenen Annihilationskanälen mittels 7 - Spektroskopie Dissertation, Universität Karlsruhe (1983)
- SPU77 J.Spuller et al. A Measurement of the Panofsky-Ratio Phys.Let. 67B (1977) 479-482
- WAG80 A.Wagner Central Detectors DESY 80-83