KfK 4269 Mai 1987

Struktur der menschlichen Kollagenase und ihre Regulation durch Karzinogene und Tumorpromotoren

P. Angel Institut für Genetik und für Toxikologie von Spaltstoffen

Kernforschungszentrum Karlsruhe

KERNFORSCHUNGSZENTRUM KARLSRUHE

Institut für Genetik und für Toxikologie von Spaltstoffen

KfK 4269

STRUKTUR DER MENSCHLICHEN KOLLAGENASE UND IHRE REGULATION DURCH KARZINOGENE UND TUMORPROMOTOREN

Peter Angel

Dissertation genehmigt von der Fakultät für Bio- und Geowissenschaften der Universität Karlsruhe

Kernforschungszentrum Karlsruhe G.m.b.H., Karlsruhe

Als Manuskript vervielfältigt Für diesen Bericht behalten wir uns alle Rechte vor

Kernforschungszentrum Karlsruhe GmbH Postfach 3640, 7500 Karlsruhe 1

ISSN 0303-4003

ZUSAMMENFASSUNG

Tumorpromotoren wie der Phorbolester 12-0-Tetradecanoyl-Phorbol-13-Acetat (TPA) sind Substanzen, die in der Lage sind, die tumorgene Eigenschaft von Karzinogenen zu verstärken. Es wird angenommen, daß sie ihre biologische Wirkung durch die Induktion eines veränderten Programms der Genexpression ausüben. Ziel dieser Arbeit war es, den Mechanismus der Genregulation durch Tumorpromotoren aufzuklären.

Durch cDNA Klonierung ist es gelungen, sechs cDNA Sequenzen von menschlichen Genen zu isolieren, deren Expression durch TPA verändert wird. Die Sequenz einer dieser Klone kodiert für das Metallothionein IIa Gen; drei Klone enthalten Teilsequenzen des sezernierten Proteins XHF1.

Die Klonierung und Sequenzierung der vollständigen XHFl-cDNA ermöglichte es, XHFl als menschliche Kollagenase zu identifizieren. Dadurch konnte erstmals die Primärstruktur dieser Kollagen-abbauenden Protease aufgeklärt werden.

Die Kinetik der Induktion des Kollagenase Gens durch TPA ist schnell (nach 1 Stunde sichtbar) und transient, wobei die maximale Menge an spezifischen Transkripten zwischen 10 und 16 Stunden nach Behandlung der Zellen erreicht wird. Für die maximale Induktion des Gens durch TPA ist fortlaufende Proteinsynthese in der Zelle notwendig. Die Menge an Kollagenase-mRNA wird auch durch Interleukin 1, durch Karzinogene wie UV-Licht oder Mitomycin C und durch den UV-induzierbaren Faktor EPIF gesteigert.

Unter Verwendung der vollständigen Kollagenase-cDNA Sequenz war es möglich, genomische Sequenzen aus einer menschlichen Genbank zu isolieren. Durch die Herstellung von chimären Genkonstrukten, bestehend aus Sequenzen der 5'flankierenden Region des Kollage-

nase Gens und einem Indikatorgen, und transienter Transfektion dieser Konstrukte in menschliche Zellen konnte das cis-wirkende DNA Element definiert werden, das TPA Induzierbarkeit vermittelt. Dieses Element ist nur 9 bp lang. Es ist zwischen Position -73 und -65 des Kollagenase Gens lokalisiert und hat die Eigenschaften eines induzierbaren Enhancers. Die identische, oder um ein oder 2 Basen veränderte Sequenz dieses "TPA resposive elements" (TRE, 5'ATGAGTCAG 3') ist auch in anderen TPA regulierbaren Genen (MT IIa, Proenkephalin, Stromelysin, SV40) zu finden. Jüngste Ergebnisse zeigen, daß das TRE von TPA regulierbaren Genen als spezifische Erkennungssequenz eines gemeinsamen trans-wirkenden DNA Bindungsprotein (AP1) dient. Dieses Protein, dessen Aktivität durch TPA 3-4 fach gesteigert wird, ist damit das Bindeglied zwischen dem postulierten "TPA Rezeptor" Proteinkinase C und der vermehrten Transkription spezifischer Gene.

ABSTRACT

Structure of the human collagenase and its regulation by carcinogens and tumor promoters

Tumor promoters, such as the phorbol ester 12-0-Tetradecanoylphorbol-13-acetate (TPA) are substances which can augment the tumorous properties of carcinogens. It is thought that tumor promoters exert their biological effects by inducing an altered program of gene expression. The aim of this paper was to characterize the mechanism of gene regulation by tumor promoters.

Using cDNA cloning techniques it was possible to isolate six cDNA clones containing sequences of human genes whose expression is altered by TPA. The DNA sequence of one clone encodes the metallothionein IIa gene; three clones contain parts of the sequence for the secreted protein XHF1.

By cloning and sequencing the full-length XHFl-specific cDNA clone, it was possible to identify XHFl as human collagenase and to determine the primary structure of this collagen-degrading protease.

The kinetics of induction of the collagenase gene by TPA are rapid (visible after 1 hour treatment) and transient. The maximum level of induction is reached between 10 and 16 hours after treatment. Protein synthesis in the cell is required for maximum induction of the gene by TPA. Collagenase mRNA levels are also increased after treatment with interleukin-1, by carcinogens such as UV-light and Mitomycin C, and by the UV-induced factor EPIF. Using the full-length collagenase cDNA clone genomic sequences were isolated from a human gene library. Chimeric genes containing the 5' flanking region of the collagenase gene and the

coding sequences of an indicator gene were constructed. These constructs were analysed by transient transfection experiments in cells in order to identify DNA element(s) responsible for human gene regulation by TPA. A cis-acting "TPA responsive element" (TRE) of only 9 bp was identified. It is located between position -73and -65 of the collagenase gene and has properties of an inducible enhancer. Sequences either identical to the TRE (5'ATGAGTCAG 3') with one or two substitutions are found in or other TPA regulated genes (MT IIa, proenkephalin, stromelysin, SV40). Recent results show that the TRE of TPA regulated genes is the specific recognition sequence of a common trans-acting DNA binding protein (AP1). Therefore this protein, whose activity is induced 3-4 fold by TPA, is at least part of the link between the postulated "TPA receptor", protein kinase C, and enhanced transcription of specific genes.

INHALTSVERZEICHNIS

ABKÜRZUNGEN	5
EINLEITUNG	7
MATERIALIEN	15
l.Chemikalien und Arbeitsmittel	15
2.Zellen	17
3.Kulturmedien	18
METHODEN	19
l.Zellkultur	19
2.Phenol/Chloroform Extraktion	19
3.Fällung von Nukleinsäuren mit Äthanol	19
4.Isolierung von RNA aus eukaryontischen Zellen	20
5.Klonierung von DNA	20
Isolierung von Plasmid DNA	20
Restriktionsverdau von Plasmid DNA	21
Isolierung von DNA Fragmenten aus Acrylamid Gelen	22
Herstellung von Bal 31 Deletionen	22
"Fill in"-Reaktion	22
Ligation von DNA Fragmenten	23
Dephosphorylierung von DNA Fragmenten	23
Transformation von Bakterienzellen	23
6.Elektrophoretische Auftrennung von Proteinen und	
Nukleinsäuren	24
SDS Polyacrylamid Gelelektrophorese von Proteinen	24
Auftrennung von RNA in Agarose-Formaldehyd Gelen	25
Auftrennung von DNA in Agarose Gelen	25
Auftrennung von DNA in Acrylamid Gelen	25
Auftrennung von DNA in Acrylamid-Harnstoff Gelen	26
Auftrennung von DNA in alkalischen Agarose Gelen	26

7.Herstellung von radioaktiv markierter DNA	27
- Nick Translation von DNA	27
Markierung von DNA Fragmenten am 5'Ende	27
8.Herstellung von radioaktiv markierter RNA	27
9.Gelfiltration	28
10.Southern Blot	28
ll.Northern Blot	29
12.RNA Dot Blot	30
13.Koloniehybridisierung	30
14.Hybridisierung von DNA und RNA an NC-Filter mit	
nick translatierter Plasmid DNA	31
15.SI-Kartierung von RNA	32
16.SP6-Kartierung von RNA	32
17.Sequenzierung von DNA nach Maxam und Gilbert	33
18.Sequenzierung von DNA nach Sanger	35
19.Transiente Transfektion von DNA in eukaryontische	
Zellen	36
20.Bestimmung der Chloramphenicol-Acetyltransferase-	
Aktivität (CAT Assay)	37
21.Herstellung einer cDNA Bank	38
22.in vitro Translation	39
23.in vitro Transkription mit SP6 Polymerase	39
24."Hybrid selected translation"	40
25.Limitierter Verdau von Proteinen	40
ERGEBNISSE	43
Klonierung und Charakterisierung von cDNAs TPA regu-	
lierbarer Gene	43
l.Isolierung von cDNA Kopien für durch TPA induzierte	
RNA Spezies	43

<u> </u>	
2.Charakterisierung der cDNA Klone Kl-K7	46
Bestimmung der Länge der cDNA Sequenzen	46
Bestimmung der cDNA-spezifischen Transkripte	47
Sequenzanalyse	48
"Hybrid selected translation"	49
Identifizierung von XHF1 als menschliche Kollagenase	54
l.Isolierung des vollständigen XHFl-cDNA Klons	55
Vorbedingungen	55
Herstellung der cDNA Bank	56
Isolierung von XHFl-spezifischen Klonen	59
2.Sequenzanalyse des vollständigen XHFl-cDNA Klons	66
3.Aufklärung der Identität von XHFl durch Protein-	
sequenzvergleich	72
4.Strukturmerkmale der menschlichen Kollagenase	73
Regulation der Expression des Kollagenase Gens	76
l.Induktion des endogenen Kollagenase Gens durch Kar-	
zinogene und Tumorpromotoren	76
Kinetik der Induktion durch TPA	76
Induktion durch TPA in Gegenwart eines Inhibitors	
der Proteinsynthese	77
Induktion durch TPA in wachsenden und in Ruhe-	
zellen	78
Induktion durch UV-Licht, Mitomycin C, Interleu-	
kin l und den Faktor EPIF	79
2.Charakterisierung von DNA Abschnitten im Kollage-	
nase Gen, die Induzierbarkeit durch TPA vermitteln	81
Der genomische Cosmidklon pCllase 2	81
Sequenzanalyse des 5'flankierenden Bereichs	82
Nachweis von Sequenzen in der 5'flankierenden Re-	
gion, die TPA Induzierbarkeit vermitteln	86

Das	Nonanukl	leotid 5'A	TGAG'	FCAG 3'als	TRE ("TPA	res-	
	ponsive	element")	der	menschlic	hen Kollage	enase	99
DISKUSSIC	DN						104
LITERATURVERZEICHNIS				117			

ABKÜRZUNGEN

Арр	Abbildung
APS	Ammoniumperoxodisulfat
АТР	Adenosintriphosphat
b p	Basenpaare
BPB	Bromphenolblau
cpm	counts per minute
dATP	Desoxyadenosin-5'-triphosphat
DC	Dünnschicht-Chromatographie
dCTP	Desoxycytidin-5'-triphosphat
ddNTPs	Dideoxynukleotidtriphosphate
DEAE	Diethylaminoethyl
dGTP	Desoxyguanosin-5'-triphosphat
DMS	Dimethylsulfat
DMSO	Dimethylsulfoxid
DNA	Desoxyribonucleinsäure
DNase	Desoxyribonuklease
dNTPs	Desoxynukleotidtriphosphate
DTT	Dithiothreitol
dTTP	Desoxythymidin-5'-triphosphat
EDTA	Ethylendinitrilotetraessigsäure Dinatriumsalz
EPIF	extrazellulärer Proteinsynthese-induzierender Faktor
FCS	Fötales Kälberserum
GTP	Guanosintriphosphat
I1-1	Interleukin l
kb	Kilobasen
k D	Kilodalton
MES	2-N-Morpholinoethan-Sulfonsäure
MMC	Mitomycin C
MOPS	Morpholin-Propan-Sulfonsäure

1

NC	Nitrozellulose
PEG	Polyethylenglycol
PIPES	Piperazin-N,N'-bis(2-Ethansulfonsäure)
PVP	Polyvinylpyrrolidon
RNA	Ribonukleinsäure
RNase	Ribonuklease
RNasin	Ribonuklease-Inhibitor
R.T.	Raumtemperatur
RSV	Rous Sarcoma Virus
SDS	Natriumdodezylsulfat
SV40	Simian Virus 40
TCA	Trichloressigsäure
TEMED	N, N, N', N'-Tetramethylethylendiamin
tk	Thymidinkinase
Tris	Tris(hydroxymethyl)aminomethan
TTP	Thymidintriphosphat
U	Enzymeinheit
UV	ultraviolettes Licht
TPA	12-0-Tetradecanoyl-Phorbol-13-Acetat
XP	Xeroderma pigmentosum

Es ist heute allgemein akzeptiert, daß Veränderungen in der DNA die Ursache für den über einen langen Zeitraum ablaufenden Prozeß der Entwicklung und Etablierung von Tumoren sind (Cairns, 1981; Weinberg, 1982; Bishop, 1987).

— 7 —

Neben endogenen Faktoren (z.B. fehlerhafte Reparatur von Schäden in der DNA: Setlow, 1978; Arlett und Lehmann, 1978) sind vor allem äußere Faktoren für die Veränderungen in der DNA verantwortlich. Am Modellsystem der induzierten Tumorgenese in der Haut von Mäusen war es gelungen, zwei relevante Substanzgruppen zu klassifizieren: Karzinogene und Tumorpromotoren (Boutwell, 1964; Van Duuren, 1969).

Als Karzinogene, die schon in sehr niedrigen Konzentrationen Mutationen in der DNA erzeugen, wurden eine Reihe von chemischen polycycl. aromat. Kohlenwasserstoffe) Substanzen (z.B. und verschiedene Arten von Strahlung (y-, Röntgen-, UV Licht) identifiziert (Slaga et al., 1978).

Tumorpromotoren sind Substanzen, die die Rate der durch Karzinogene verursachten Tumore stark erhöhen, und die Latenzzeit zwischen Applikation des Karzinogens und Auftreten von Tumoren verkürzen 1980). (Boutwell, 1974; Slaga et al.,1978; Tumorpromotoren sind in unterschiedlichen Substanzklassen (Indolalkaloide, Polyacetate, Phorbolester) nachgewiesen worden (Hecker, 1978; Fujiki et al., 1983).

Der am häufigsten verwendete stärkste und experimentell Tumorpromotor ist der natürlicherweise vorkommende Phorbolester 12-0-Tetradecanoyl-Phorbol-13-Acetat (TPA), der aus dem Samen des tiglium südostasiatischen Baumes Croton isoliert wurde (Hecker, 1967), und dessen Eigenschaft sowohl in vivo am Tier (Berenblum, 1969; Boutwell, 1974) als auch in Zellkultur nachge-

wiesen wurde (Mondal et al., 1976; Weinstein et al., 1977). Obwohl Tumorpromotoren anscheinend nicht direkt mit der DNA interagieren, wurde auch für diese Substanzen eine DNA Wirkung (DNA-Strangbrüche, Schwesterchromatidausschädigende tausche) plausibel gemacht (Kinsella und Radmann,1978; Dzarlieva und Fusenig, 1982). Die Ursache dafür liegt wahrscheinlich in der stark erhöhten Menge an Peroxid Anionen und OH-Radikalen, die nach Behandlung von Zellen mit TPA entsteht(Emerit et al., 1983; Cerutti, 1985).

Analog zu bakteriellen Systemen reagiert auch eine höhere Zelle aktiv auf diese äußeren "Stressfaktoren", indem die Aktivität einzelner Gene oder Genprodukte verändert wird (Herrlich et al., 1984: 1986). Beispiele für eine veränderte Genexpression durch TPA ist die erhöhte Transkription der Proto-Oncogene c-myc und c-fos (Greenberg und Ziff, 1984), die erhöhte Aktivität der beiden Proteasen Plasminogen Aktivator (Wigler und Weinstein, 1976) und Kollagenase (Aggeler et al., 1984), und die verminderte Synthese von Kollagen und Fibronectin (Aggeler et al., 1984). Gleichzeitig TPA auch ein breites Spektrum an sehr komplexen Vorgängen löst indem es, abhängig vom Zelltyp und Wachstumszustand, in die aus, Differenzierung (Rovera et al., 1977; Huberman und Callaham, 1979) und Proliferation (Dicker und Rozengurt, 1980; Kinzel et al., 1981) von Zellen eingreift.

Die Aufklärung der Vorgänge, die nach Behandlung von Zellen mit solchen Stressfaktoren ein an sich schädliches Ereignis in eine produktive Leistung umsetzen, die Frage, was das primäre und Signal ist und wie eine kleine Auswahl Genen höchst von spezifisch reagiert, sind von generellem Interesse für das Verständnis zellulärer Regulation.

--- 8 ---

Die vorliegende Arbeit hat das Ziel, den Weg der Signalkette aufzuklären, durch den Tumorpromotoren die Expression einzelner Gene beeinflussen.

Als ein primäres Ereignis in der Reaktion von Zellen auf TPA wird seine Bindung an den "TPA Rezeptor" Proteinkinase C angesehen (Nishizuka, 1984; 1986; Ashendel, 1985; Parker et al., 1986). Die Aktivität dieses Ca²⁺-abhängigen Enzyms wird durch die Bindung von Diacylglycerol reguliert, das als Spaltprodukt von Phosphatidyl-inositol die Funktion eines "second messenger" in der Vermittlung extrazellulärer Signale (Hormone, Wachstumsfaktoren) hat (Nishizuka,1984; Bell,1986).

Als hydrophobe Substanz kann TPA in die Zellmembran eindringen. Durch seine Diacylglycerol-ähnliche Struktur kann es an dieselbe Domäne der Proteinkinase C binden wie der physiologische Ligand (Sharkey et al., 1984; Knopf et al., 1986) und dadurch das Enzym aktivieren. Spezifische Proteinkinase C Inhibitoren (Kawamoto und Hidaka, 1984) hemmen die TPA vermittelte Induktion des c-fos Gens, während ein Inhibitor von cAMP-abhängigen Proteinkinasen (Asano und Hidaka, 1984) keinen Einfluß hat (H.J.Rahmsdorf, unveröffentlicht). Obwohl die Aktivierung von Proteinkinase C als Mechanismus der TPA-Wirkung postuliert wurde, können zusätzliche "TPA-Rezeptoren" nicht ausgeschlossen werden (Shoyab,1984).

Die aktivierte Proteinkinase C könnte in der Signalkette von äußerem Faktor zur Induktion spezifischer Gene eine gezielte Funktion erfüllen. In vitro vermag Proteinkinase C, von der bis heute drei verschiedene, jedoch eng miteinander verwandte Spezies nachgewiesen wurde (Knopf et al., 1986), Proteine an Serin und Threonin, nicht aber an Tyrosin zu phosphorylieren (Nishizuka, 1984). In vivo lassen sich nach Aktivierung des Enzyms (durch Behandlung mit Wachstumsfaktoren oder Diacylglycerol) Phospho-

— 9 —

rylierungsprodukte nachweisen, die auch nach TPA Behandlung auftreten: z.B. die Rezeptoren für Insulin und Epidermal Growth Factor (Davis und Czech, 1984), die α -Untereinheit von Transducin (Zick et al., 1986) oder das 40kD anti-Phospholipase A2 Protein (Touqui et al., 1986) könnten physiologische Substrate der Proteinkinase C sein.

Ausgehend von der aktivierten Proteinkinase C, bzw. ihren bekannten Substraten, ist es bisher nicht gelungen, die weiteren Schritte zu charakterisieren, die für die Aktivierung spezifischer Gene verantwortlich sind.

Die Aktivität eines Gens wird primär durch die Regulation der Transkription gesteuert. In eukaryontischen Zellen wird die Synthese spezifischer Transkripte durch zelluläre Proteine (transwirkende Faktoren) reguliert, die durch Bindung an spezifische DNA Sequenzen (cis-wirkende DNA Elemente) den RNA Polymerase II/ Transkriptionskomplex in seiner Effizienz und Selektivität dirigieren (Schöler und Gruss, 1985; Dynan und Tjian, 1985; Sassone-Corsi und Borrelli, 1986). Manche Faktoren scheinen die Basalaktivität eines Gens zu regulieren (z.B. der Faktor SP l oder das CCAAT-Bindeprotein, McKnight und Tjian, 1986); andere steuern die Aktivierung spezifischer Gene in Abhängigkeit von äußeren Signalen. Die Spezifität, mit der trans-wirkende Faktoren einzelne Gene aktivieren, wird dabei durch Binden an Bereiche von streng konservierten Erkennungs-Sequenzen innerhalb dieser Gene vermittelt.

Diese trans-wirkenden Faktoren sind das potentielle Bindeglied zwischen aktivierter Proteinkinase C und Induktion von TPA regulierbaren Genen; entweder indem die Produktion dieser Faktoren gesteigert wird, oder, indem Proteinkinase C (oder ihre Substrate) diese Faktoren in einer Art und Weise modifiziert, daß

ihre DNA-oder Protein/Protein-Bindungseigenschaften verändert werden, und es dadurch zur vermehrten Transkription des Gens kommt.

Ein Modell für Geninduktion mittels der Veränderung der DNA-Bindungseigenschaften trans-wirkender Faktoren liefern die bereits gut charakterisierten Steroidhormon-Rezeptoren (Yamamoto, 1985; Godowski et al., 1987).

Ziel meiner Arbeit war es, ein TPA induzierbares Gen zu isolieren, und zu zeigen, wie der Weg der Signalkette von der Aktivierung der Proteinkinase C über einen trans-wirkenden Faktor bis zur Interaktion mit dem cis-wirkenden DNA Element des Gens verläuft.

Neben der Aufklärung des Mechanismus, über den Stressfaktoren die Genexpression beeinflussen, ist es auch für das allgemeine Verständnis der Wirkungsweise trans-wirkender Faktoren von größtem Interesse, die Vorgänge an der DNA aufzuklären, die zu einer erhöhten Genaktivität nach Behandlung von Zellen mit TPA führen.

Ein zur Klonierung TPA regulierbarer Gene geeignetes und gut analysiertes System sind primäre menschliche Hautfibroblasten, in denen als zelluläre Antwort der TPA Behandlung innerhalb von 2 bis 3 Stunden eine stark erhöhte Synthese eines Sets von acht dominanten Proteinen (XHFl, a-g) gefunden wurde (Mallick et al., 1982). Dies wurde durch Pulsmarkierung der Zellproteine und anschließender Auftrennung in einer zwei-dimensionalen Gelelektrophorese nachgewiesen gleiche Set (Abb.l). Der von Proteinen wird durch Karzinogene wie UV Licht oder Mitomycin C und dem UV-induzierbaren Faktor EPIF induziert (Schorpp et al.,1984).

<u>Abb.l</u> UV Licht und TPA induzieren in primären menschlichen Hautfibroblasten den gleichen Set an Proteinen

- Mit ³⁵S-Methionin markierte Gesamtzellproteine aus primären menschlichen Hautfibroblasten wurden in einer 2-dimensionalen Gelelektrophorese aufgetrennt. Die erste Dimension ist eine isoelektrische Dimension Fokusierung, die zweite eine (10-20% SDS-Polyacrylamid Gelelektrophorese lineares Gradientengel). Die Kalibrierung in der Horizontalen ist in pH Werten, in der Vertikalen in kD. Die Pfeile zeigen auf die induzierten Proteine, der Kreis kennzeichnet ein Protein, dessen Synthese nach TPA-und UV Behandlung reprimiert wird.
- UV: das obere Autoradiogramm zeigt die Gesamtzellproteine von unbehandelten Zellen, das untere die von UV bestrahlte Zellen (2J/m²). Die Zellen wurden 48 Stunden nach der Bestrahlung pulsmarkiert.
- TPA:das obere Autoradiogramm zeigt das Proteinmuster von unbehandelten Zellen, darunter das von Zellen, die für 8 Stunden mit TPA (20ng/ml) behandelt wurden.

aus: Schorpp et al., 1984

Die Proteine a-g (Molekulargewicht von 30 kD bis 65 kD) sind im Cytoplasma lokalisiert, während das 54 kD Protein XHFl ins Kulturmedium sezerniert wird. XHFl als Hauptprotein der induzierten Fibroblastenzelle ist nicht identisch mit dem ebenfalls durch TPA und UV Licht induzierbaren Plasminogen Aktivator oder Urokinase, deren Größe im gleichen Molekulargewichtsbereich liegt (M.Schorpp, unveröffentlicht).

Die Strategie, die ich zur Genisolierung verfolgt habe, war die Herstellung einer cDNA Bank aus TPA behandelten Fibroblasten und die Isolierung von sechs cDNA Sequenzen TPA regulierbarer Gene. Drei dieser Klone konnten als Teilsequenzen des XHF1-Gens identifiziert werden.. Durch Isolierung und Sequenzierung der vollständigen XHFl als menschliche cDNA möglich, war es Kollagenase identifizieren, und damit erstmals die zu Primärstruktur dieses Proteins aufzuklären. Die cDNA Probe wurde benutzt um:

- a.den Verlauf der Induktion der Kollagenase durch Karzinogene und Tumorpromotoren zu untersuchen
- b.genomische Kollagenase Sequenzen zu isolieren und durch Transfektion von chimären Genkonstrukten ein 9 bp cis-wirkendes DNA Element in der Kontrollregion des Kollagenase Gens zu definieren, das die Regulation durch Tumorpromotoren vermittelt.

— 13 —

,

<u>l.Chemikalien und Arbeitsmittel</u>

Acetyl CoEnzym A	Pharmacia, Freiburg
Acrylamid	Serva, Heidelberg
Actinomycin D	Sigma, Deisenhofen
Äthanol	Roth, Karlruhe
Agarose	Sigma, Deisenhofen
Ammoniumperoxodisulfat	Bio-Rad, München
Ampicillin	Sigma, München
Biogel P60	Bio-Rad, München
ß-Mercapto-Äthanol	Roth, Karlsruhe
Chloroquin	Sigma, Deisenhofen
Cycloheximid	Sigma, Deisenhofen
Dimethyldichlorsilan	Fluka, Neu-Ulm
Dithiotreitol	BRL Inc., Neu-Isenburg
DEAE-Dextran	Pharmacia, Freiburg
DMSO	Fluka, Neu-Ulm
DNA Sequencing Kit	New England Nuclear, Dreieich
Ethidiumbromid	Sigma, München
Ficoll	Serva, Heidelberg
Haftsilan	Wacker Chemie, München
Harnstoff	Bio-Rad, München
Kaninchen Retikulocyten System	Amersham Buchler, Braunschweig
Kieselgel DC Platten	Macherey und Nagel, Düren
Lachs-Spermien DNA, TypIII	Sigma, München
Lambda-DNA	Boehringer, Mannheim
Linker-DNA	Biolabs, Schwalbach
Lysozym	Boehringer, Mannheim
Mitomycin C	Sigma, Deisenhofen
MOPS	Sigma, Deisenhofen

NACS Prepac Säule BRL Inc., Neu-Isenburg Nick Translation Kit Amersham Buchler, Braunschweig Schleicher und Schüll, Dassel Nitrozellulose Filter N, N'-Methylenbisacrylamid Bio-Rad, München Nukleotid-Triphosphate Boehringer, Mannheim Oligo dT Cellulose TypIII Collaborative Research, Frankfurt Oligo dT12-18 Collaborative Research, Frankfurt PEG Sigma, Deisenhofen PIPES Sigma, Deisenhofen PVP Sigma, Deisenhofen RNasin Promega Biotec, Heidelberg SDS Serva, Heidelberg Biolabs, Schwalbach Sequenzierprimer TEMED Bio-Rad, München TPA Sigma, Deisenhofen Tris Sigma, Deisenhofen Whatman 3MM Papier Bender und Hobein, Karlsruhe Zeta Blotting Membrane Bio-Rad, München

Alle Chemikalien zur Transformation von Bakterien wurden von der Firma Fluka, Neu-Ulm bezogen.

Die Trockenmedien für die Kultur von Bakterien wurden von der Firma Difco Laboratories, Detroit, die für die Kultur eukaryontischer Zellen von der Firma Gibco, Karlsruhe geliefert. Alle anderen Chemikalien wurden p.A. der Firma von Merck, Darmstadt bezogen.

Alle Plastik-Zellkulturartikel wurden von der Firma Nunc über Gibco, Europe, Karlsruhe bezogen.

Alle radioaktiv markierten Substanzen wurden von der Firma Amersham Buchler, Braunschweig bezogen.

Restriktionsenzyme sowie DNA und RNA modifizierende Enzyme wurden

— 16 —

von den Firmen Boehringer, Mannheim; BRL Inc., Neu-Isenburg; Promega Biotec, Heidelberg und Biolabs, Schwalbach bezogen.

2. Zellen

NF München	Primäre Hautfibroblasten eines gesunden Menschen
	erhalten von K. Sperling, Berlin
Berlin-2	Primäre menschliche Hautfibroblasten einer
	gesunden Person; erhalten von K.Sperling, Berlin
GM 2994	Primäre menschliche Hautfibroblasten eines
	Patienten mit der Krankheit Xeroderma
	pigmentosum Komplementationsgruppe A; erhalten
	von der Human Genetic Mutant Cell Repository,
	Camden, New Jersey
GM 637	mit Simian Virus (SV40) transformierte Haut-
	fibroblasten eines gesunden Individuums;
	erhalten von J.E. Cleaver, Universtiy of
	California, San Francisco
Hela tk-	menschliche Cervix-Carcinomzellen mit Defizienz
	im Thymidin-Kinase Gen; erhalten von Dr. Yung-
	Chi-Cheng, Durham.
E.coli C600	(F ⁻ ,thi-1, leu B6, lac Yl, ton A21, sup E44, λ^-)
E.coli RRl M15	(F ⁻ ,hsd S20, ara-14, pro A2, lac Yl, gal K2,
	mtl-1, sup E44, M15, λ^-)
	erhalten von U. Rüther, Heidelberg
E.coli 71/18	(F', lacJ lac z, Ml5, pro ⁺ , sup E), erhalten
	von R.Cortese, Heidelberg
Phage IRI	erhalten von R.Cortese, Heidelberg

3. Kulturmedien

a) Fibroblasten-Kulturmedium:

Dulbecco's Modified Essential Medium (DMEM)

10% Foetales Kälberserum (FCS)

Penicillin (100 E/ml)

Streptomycin (100 µg/ml)

b) Hela-Kulturmedium:

Earle's Minimal Essential Medium

10% FCS

Penicillin (100 E/ml)

Streptomycin (100 μ g/ml)

c) L-Broth

- 1% Bactotrypton
- 0,5% Hefeextrakt
- 0,5% NaCl
- d) SOB-Medium
 - 2% Bactotrypton
 - 0,5% Hefeextrakt
 - 10 mM NaCl
 - 2,5 mM KC1
 - 10 mM MgCl₂
 - 10 mM MgSO₄

e) SOC-Medium

SOB + 20 mM Glucose (steril filtriert)

f) Bakterien Selektiv-Medium:

LB, SOB, SOC + 50 μ g/ml Ampicillin

METHODEN

<u>l. Zellkultur</u>

Die menschlichen Hautfibroblasten und Hela tk- Zellen wurden in Falcon-Gewebekulturflaschen mit Schraubverschluß (75 cm² Wachstumsfläche) in einem 37°C Brutschrank, der 6% CO2 enthält, gezogen. Pro Flasche wurden 15 ml Kulturmedium verwendet, das im Abstand von 2 Tagen gewechselt wurde. Vor Erreichen der stationären Phase wurden die Zellen trypsiniert und rekultiviert. Zur Durchführung der Experimente wurden, falls nicht anders angegeben, 5x10⁵ Zellen pro Petrischale (10 cm Durchmesser) in 10 ml Kulturmedium ausgesät und 24-48 Std. später verwendet.

2. Phenol/Chloroform-Extraktion

Um Nukleinsäuren von Proteinen abzutrennen, wurde zur Probe ein gleiches Volumen Phenol (gesättigt in 100 mM NaCl; 10 mM Tris-HCl, pH 7.5; 1 mM EDTA) und ein gleiches Volumen Chloroform zugegeben. Das Gemisch wurde kräftig geschüttelt und 5 Min. bei 4100xg zentrifugiert. Anschließend wurde die obere wäßrige Phase noch 2x mit gleichem Volumen Chloroform/Isoamylalkohol (24:1) extrahiert.

<u>3. Fällung von Nukleinsäuren mit Äthanol</u>

Die Nukleinsäure-haltige Lösung wurde mit 3 M Natrium-Acetat pH 4.8 auf eine Endkonzentration von 0.2 M gebracht und mit 2.5 Vol. Äthanol (-20°C) versetzt. Nach der Fällung (1 Stunde bei -80°C oder über Nacht bei -20°C) wurde die DNA oder RNA abzentrifugiert (10 Min., 8700xg), mit 80% Äthanol gewaschen, erneut zentrifugiert und nach dem Trocknen im Wasserstrahlvakuum in H2© aufgenommen.

4. Isolierung von RNA aus eukaryontischen Zellen

Je 5 Gewebekulturschalen wurden gleichzeitig aufgearbeitet. Nach dem Absaugen des Mediums wurden die Zellen mit 5 ml eiskaltem PBS (0.14 M NaCl; 2.7 mM KCl; 6.5 mM Na2HPO4; 1.5 mM KH2PO4; 0.7 mM CaCl₂; 0.6 mM MgCl₂) gewaschen. Auf die 1. Petrischale wurden 5 ml RNA Lysis-Puffer (7 M Harnstoff; 2% SDS; 0.35 M NaCl; 1 mM EDTA; 10 mM Tris-HCl,pH 8.0) gegeben, die Zellen mit einem Gummispatel abgeschabt und auf die nächste Petrischale transferiert. In dieser Weise wurde bis zur 5. Petrischale verfahren und anschließend das Lysat mit Phenol/Chloroform extrahiert. 0.4 g/ml CsCl wurde zur Lösung zugegeben und damit in einem SW40 Zentrifugenröhrchen ein CsCl-Kissen (2 ml 5.7 M CsCl; 0.1 M EDTA; pH 7.5) überschichtet. Durch Zentrifugation in einer Beckman Ultrazentrifuge (16 Stunden bei 20°C und 32 000rpm) wurde die RNA von der DNA abgetrennt: die RNA wird pelletiert, während die hochmolekulare dem CsCl-Kissen sitzt. DNA auf Nach vorsichtigem Abnehmen des Überstandes wurde der RNA-Niederschlag in 2 ml 10 mM Tris-HCl, pH 7.5 gelöst und mit Äthanol gefällt. Nach der Zentrifugation (30 Min., 8200xg, 4°C) wurde mit 80% Äthanol gewaschen, im Wasserstrahlvakuum getrocknet und in 500 μl -l ml H2 0 Zur Isolierung von polyA+RNA wurde die aufgenommen. Gesamt-RNA über eine Oligo-dT-Cellulose Säule (Aviv und Leder, 1972) gereinigt und in H2O aufbewahrt. Zur Konzentrationsbestimmung der RNA wurde die optische Dichte der Lösung bei 260 nm gemessen. 1 OD₂₆₀ entspricht 40 μ g/ml RNA.

5. Klonierung von DNA

a) Isolierung von Plasmid-DNA

Bakterien mit Plasmiden, die das Ampicillin-Resistenzgen tragen (pUC 9, pSP64, pEMBL), wurden in 200 ml LB-Selektionsmedium bei 37°C bis zur stationären Phase wachsen gelassen. Nach der

Zentrifugation (5 Min., 3500xg, 4°C) wurden die Zellen in 10 ml Lysozymlösung (50 mM Glucose; 10 mM EDTA; 25 mM Tris-HCl,pH 8.0; 2 mg/ml Lysozym) resuspendiert und 30 Min. bei 4°C inkubiert. Nach Zugabe von 20 ml 0.2 N NaOH, 1% SDS und 5 min. Inkubation bei 4°C wurden 15 ml 3 M NaAcetat, pH 4.8 zugegeben und weitere 60 Min. bei 4°C inkubiert. Die Zellfragmente und hochmolekulare DNA wurden durch Zentrifugation (20 Min., 16.000xg, 4°C) pelletiert und die DNA im Überstand mit 100 ml Äthanol gefällt. Nach der Zentrifugation (10 Min., 16.000xg, 4°C) wurde die DNA in 10 ml 0.1 М NaAcetat; 50 mM Tris-HCl, pH 8.0 aufgenommen und mit 25 ml Athanol erneut gefällt. Die abzentrifugierte DNA wurde in 5 ml 50 mМ Tris-HCl, pH 8.0; 1 mM EDTA aufgenommen, die Lösung auf eine Endkonzentration von 4.2 M CsCl; 0.75 mg/mlEthidiumbromid gebracht und im Beckman Vertikalrotor Typ 65 in einer Ultrazentrifuge 16 Std bei 55.000 rpm und 20°C zentrifugiert. Die Plasmidbande wurde abgezogen, die Lösung mit 4.2 M CsCl; 0.75 mg/ml Ethidiumbromid verdünnt und für weitere 6 Std wie oben angegeben zentrifugiert. Die Plasmid-haltige Lösung wurde 1:3 mit H20 verdünnt, 3 x mit Chloroform extrahiert, ohne Salzzugabe mit Äthanol gefällt und anschließend in H_2O aufgenommen. Die Konzentration der DNA wurde durch Messen der optischen Dichte bei 260 nm bestimmt. 1 0D260 entspricht 50µg/ml DNA.

b) Restriktionsverdau von Plasmid-DNA

Eine Enzymeinheit verdaut, falls vom Hersteller nicht anders angegeben, 1 µg DNA in einer Stunde. In der Regel erfolgte der Verdau mit 2-3 fachem Enzymüberschuß bei 37°C in O'Farrells Universalpuffer (3 mM Tris-Acetat, pH 7.9; 6.6 mM K-Acetat; 1 mM Mg-Acetat; 50 µM DTT; 10 µg/ml Rinderserumalbumin). Das Reaktionsvolumen sollte mindestens 10 µl/µg DNA betragen.

- 21 ---

c) Isolierung von DNA Fragmenten aus Acrylamid Gelen

Die gewünschten DNA Fragmente wurden aus dem Gel ausgeschnitten, zerkleinert und in 10 mM Tris-HCl, pH 7.2; 1mM EDTA (TE); 0.2 M NaCl (bei DNA Fragmenten kleiner 1kb) bzw. TE, 0.5 M NaCl (größer lkb) über Nacht bei 50°C inkubiert. Anschließend wurde die DNA Lösung auf eine NaCS-Prepac-Säule gegeben, die vor dem Probenauftrag mit 2 M NaCl/TE hydratisiert und anschließend mit 0.2 bzw. 0.5 M NaCl in TE äquilibriert worden war. Die mit DNA beladene Säule wurde mit 4 ml 0.2/0.5 M NaCl in TE gewaschen. Durch Auftragen von $4 \times 100 \ \mu l$ l M NaCl in TE (Fragm. kl. lkb) bzw. 2 M NaCl in TE (gr. 1kb) wurde die DNA von der Säule eluiert und anschließend durch Zugabe von 1 ml Äthanol ausgefällt.

d) Herstellung von Bal 31 Deletionen

0.2 Einheiten der Exonuklease Bal 31 wurde pro µg geschnittene Plasmid DNA eingesetzt. Das Reaktionsvolumen betrug 10 µl/µg DNA in 12 mM CaCl₂; 12 mM MgCl₂; 0.2 M NaCl; 20 mM Tris-HCl,pH 8.0; 1 mM EDTA. Zum Abstoppen der Reaktion wurde EDTA in einer Endkonzentration von 20 mM zugegeben und die DNA durch Phenol/ Chloroform Extraktion und Äthanol-Fällung gereinigt und in kleinem Volumen konzentriert.

e) "Fill in"-Reaktion

1 μ g gereinigte Plasmid DNA wurde in Gegenwart von 7 mM Tris-HCl,pH 7.5; 7 mM MgCl₂; 50 mM NaCl; 1 mM DTT; 1 mM dNTPs und 5 U DNA Polymerase I (Klenow Fragment) in einem Endvolumen von 10 μ l 30 Min. bei 30°C inkubiert. Die DNA wurde durch Phenol/ Chloroform Extraktion gereinigt und mit Athanol ausgefällt.

f) Ligation von DNA Fragmenten

Zur Ligation von DNA Fragmenten wurde T4 Ligase in 60 mM Tris-HCl,pH 7.2; 7 mM MgCl₂; 10 mM DTT und 1 mM ATP verwendet. Die Reaktion (0.5-lµg DNA in 20µl Reaktionsvolumen) wurde über Nacht bei 15° C durchgeführt. Zur Ligation von Linker Sequenzen an DNA Enden wurde 1 µg Plasmid DNA mit 200 ng Linker DNA in 70 mM Tris-HCl,pH 7.5; 7 mM MgCl₂; 1 mM ATP und einer Einheit T4 Ligase (Endvol. 10 µl) über Nacht bei 15° C inkubiert.

g) Dephosphorylierung von DNA Fragmenten

Die gereinigte DNA wurde in 44 μ l H₂O aufgenommen und nach Zugabe von 5 µl l0xCIP-Puffer (0.5 M Tris-HCl,pH 9.0; l0 mM MgCl₂; l mM $ZnCl_2$; 10 mM Spermidin) und 1 µl alkalischer Phosphatase (0.01 U) bei 37°C inkubiert. Nach 30 Min. wurde erneut Enzym zugegeben, und weitere 30 Min. bei 37°C inkubiert. Nach Zugabe von 40 µl H₂O; 10µl 10xTNE (100 mM Tris-HCl,pH 7.5; 1 M NaCl; 50 mM EDTA) 5 µl 10% SDS wurde die Reaktion durch 15 min. Inkubation bei und 68°C abgestoppt. die DNA durch Anschließend wurde Phenol/Chloroform mit Äthanol Extraktion gereinigt und ausgefällt.

h) Transformation von Bakterienzellen (Hanahan, 1983)

0.1 mleiner Übernachtkultur von RR1 M15 Zellen wurden in 50 ml SOB-Medium verdünnt und bei 37°C in einem Schüttelwasserbad bis zu einer 0.D.550 von 0.45-0.55 wachsen gelassen. Je 10 ml der Kultur 50 ml Plastikröhrchen 10 Min. bei 670xg (4°C) wurden in zentrifugiert. Das Zellpellet wurde in 3.3 ml TFB (10 mM K-MES, pH 6.2; 100 $\mathbf{m}\mathbf{M}$ RbCl: 45 шΜ MnCl₂; 10 mM CaCl₂; 3 mM HACoCl₃) resuspendiert und 10-15 Min. auf Eis gehalten. Nach erneutem Abzentrifugieren und Aufnehmen in 0.8 ml TFB wurde die Suspension mit 28 μ l DMSO versetzt. Die Zellen wurden auf Eis gestellt, und

- 23 ---

in 5 min. Abstand wurde nacheinander 28 μ l 2.25 M DTT und 28 μ l zugegeben. 210 μ l dieser Zellen wurden mit 2-4 μ l eines DMSO Ligationsansatzes (20 μ l, 50-200 ng DNA) versetzt, 30 Min. auf gestellt, 90 Sekunden bei 42°C und 1-2 Min. Eis auf Eis inkubiert. 0.8 ml SOB-Lösung wurde zugegeben und die Zellen 1 Std Schüttelwasserbad bei 37°C inkubiert. Anschließend in einem wurden 2 ml SOC-Lösung zugegeben, die Zellen abzentrifugiert (5 Min., 670xg, 20°C), und nach Resuspendieren in 0.2 ml SOB auf Selektivagarplatten plattiert und über Nacht bei 37°C inkubiert.

6. Elektrophoretische Auftrennung von Proteinen und Nukleinsäuren

a) SDS Polyacrylamid Gelelektrophorese von Proteinen (Laemmli,1970)

Für die eindimensionale Auftrennung von Proteinen wurde ein 10% SDS Polyacrylamid Gel verwendet. Das Trenngel und das Sammelgel wurden unter Verwendung einer Stammlösung (30% Acrylamid:0.8% N,N'-Methylenbisacrylamid) hergestellt. Die Endkonzentration im Trenngel betrugen: 10% Acrylamid/Bis; 0.375 M Tris-HCl,pH 8.8; 0.1% SDS; 0.025% TEMED und 0.02% APS. Das Sammelgel enthielt 5% Acrylamid/Bis; 0.125 M Tris-HCl,pH 6.8; 0.1% SDS; 0.1% TEMED und 0.05% APS. Als Elektrodenpuffer wurde 0.192 M Glycin; 0.1% SDS; 0.025 M Tris-HCl, pH 8.3 verwendet. Vor dem Auftragen wurden die Proben 3 Min. in lxProbenpuffer (0.06 M Tris-HCl, pH 6.8; 2% SDS; 10% Glycerol; 0.01% Bromphenolblau; 2.5% B-Mercapto-Athanol) aufgekocht. Die Elektrophorese erfolgte bei 50 mA und 4° C. Anschließend wurde das Gel 5 Min. in 50% TCA fixiert, 2x5 Min. in H2 0 gewaschen, auf Whatman 3MM Papier getrocknet und autoradiographiert.

 b) Auftrennung von RNA in Agarose-Formaldehyd Gelen (Lehrach et al., 1977)

Die entsprechende Menge RNA wurde in einer Vakuumzentrifuge getrocknet, in 20 μ l 50% Probenpuffer (50% Formamid; 6.5% Formaldehyd; 40 mM MOPS; 10 mM NaAcetat; 1 mM EDTA;pH 7.0) aufgenommen und nach 15 min. Inkubation bei 55°C auf ein horizontales Formaldehyd-Agarose Gel geladen und elektrophoretisiert (14 Std, 30 V). Die Gellösung bestand aus 1.2% Agarose; 6.5% Formaldehyd in RNA Laufpuffer (40 mM MOPS; 10 mM NaAcetat; 1 mM EDTA;pH 7.0).

c) Auftrennung von DNA in Agarose Gelen

Die DNA Probe wurde in Probenpuffer (10% Glycerol; 10 mM EDTA; 0.1% SDS; 0.02% BPB) durch Unterschichten auf das 0.8-1.5% Agarose Gel aufgetragen. Als Elektrophoresepuffer wurde 40 mM Tris-Acetat; 20 mM NaAcetat; 2 mM EDTA; pH 8.1 verwendet. Die aufgetrennten DNA Fragmente wurden durch Ethidiumbromid-Färbung (1 μ g/ml H₂0; 15 Min. bei 20°C) unter UV-Licht sichtbar gemacht.

d) Auftrennung von DNA in Acrylamid Gelen

Als Gellösung wurde 6% Acrylamid/Bis; 1xTBE (90 mM Tris-HCl; 90 mM Borsäure; 2.5 mM EDTA; pH 8.3); 0.03% TEMED; 0.07% APS verwendet, das zwischen zwei Glasplatten (15x14cm, 1 mm Abstand) gegossen wurde. Nach der Polymerisation wurden die Platten vertikal in einer Gelapparatur fixiert und die DNA Proben (in Probenpuffer, Meth.6c) aufgetragen. Als Laufpuffer wurde 1xTBE verwendet. Die Elektrophorese wurde bei 100 V durchgeführt. Die Gele wurden danach 15 Min. in H20 mit 1 µg/ml Ethidiumbromid gefärbt, um die DNA im UV Licht sichtbar zu machen.

e) Auftrennung von DNA in Acrylamid-Harnstoff Gelen

30 ml einer 6 % Acrylamid-Harnstoff Stammlösung (288g Harnstoff; 34.2 g Acrylamid; 1.8 g N, N-Bisacrylamid in 600 ml lxTBE, pH 8.3) wurden mit 250 μ l 10% APS und 15 μ l TEMED versetzt und in eine Gelkammer (20x40 cm, 0.2 mm Abstand) gegossen. Eine der beiden Glasplatten wurde vor Gebrauch mit einer Silanlösung (0.3%)Haftsilan in Äthanol) beschichtet, wodurch das Gel an dieser Glasplatte haftet. Die andere Glasplatte wurde mit einer 5%igen Lösung von Dimethyl-dichlorsilan in CCl4 silikonisiert, um das Abnehmen dieser Platte zu erleichtern. Das Gel wurde 20 Min. bei 1800 V vorlaufen gelassen. Die Proben (in 95% Formamid; 20 mM EDTA; 0.03% 0.03% Xylencyanol) wurden vor dem Auftragen 3 BPB; Min. gekocht. Die Elektrophorese erfolgte bei 1800 ۷. Der Laufpuffer war lxTBE. Nach der Elektrophorese wurde das an die Glasplatte haftende Gel 10 Min. in 10% Essigsäure fixiert, anschließend getrocknet und mit einem Kodak X-AR Film unter Verwendung einer Verstärkerfolie autoradiographiert.

f) Auftrennung von DNA in alkalischen Agarose Gelen

verwendete Gellösung (1.4% Agarose in 50 mM NaCl; 1 mM EDTA) Die wurde in der horizontalen Gelapparatur polymerisieren lassen und anschließend durch Überschichten mit alkalischem Laufpuffer (30 mМ NaOH; l mM EDTA) äquilibriert. Die radioaktive Probe wurde in 50 mМ Ficoll; 0.025% Bromcresolgrün) NaOH; 1 mМ EDTA; 2.5% aufgenommen, Unterschichten die Geltaschen und durch in transferiert. Die Laufzeit betrug 13 Std bei 50 V. Das Gel wurde 30 Min. 5% TCA geschüttelt, 2x5 Min. mit H₂O gewaschen, auf in Whatman 3MM Papier getrocknet und mit einem Kodak X-AR Film unter Verwendung einer Verstärkerfolie autoradiographiert.

-- 26 ---

7. Herstellung von radioaktiv markierter DNA

a) Nick Translation von DNA (Rigby et al., 1977)

Zur radioaktiven Markierung von Plasmid DNA wurde ein Nick Translations Kit (Fa. Amersham) benutzt. Zu jeweils 500 ng DNA (in 28.5 µl H₂O) wurden 6.5 µl α^{32} P-dCTP (spez. Akt. 400 Ci/ 10mCi/ml), 10 µl Lösung I (je 100 µM dATP, dGTP, dTTP in mmol; Tris-HCl,pH 7.5; MgCl2; B-Mercapto-Athanol) und 5 µl Lösung II (2.5 U DNA Polymerase I und 100 pg DNase I) gegeben und 3 Std bei 15°C inkubiert. Die Reaktion wurde durch Zugabe von 45 µl TNE (100)mМ NaCl; 10 mM Tris-HCl,pH 7.5; 1 mM EDTA), 2 µl Lachs-Spermien DNA (10 mg/ml), 1 μ l 0.5 M EDTA und 2 μ l 20% SDS gestoppt und die DNA anschließend durch Gelfiltration von nicht eingebauten Nukleotiden abgetrennt.

b) Markierung von DNA Fragmenten am 5'Ende

0.5-1µg dephosphorylierte DNA wurde in einer Vakuumzentrifuge getrocknet, in 11 µl H₂O resuspendiert und mit 3 µl 10x Kinase Puffer (0.5 M Tris-HCl,pH 7.6; 0.1 M MgCl₂; 50 mM DTT; 1 mM Spermidin; 1 mM EDTA) und 15 µl χ -³²P-ATP (spez. Akt. ca.5000 Ci/mmol; 10 mCi/ml) gemischt. Nach Zugabe von 5 U T4 Polynukleotid Kinase wurde die Reaktion 30 Min. bei 37°C inkubiert, und anschließend die radioaktiv markierte DNA durch Gelfiltration von nicht eingebauten Nukleotiden abgetrennt.

8. Herstellung von radioaktiv markierter RNA

(Melton et al., 1984)

Für die Herstellung radioaktiv markierter RNA wurde das in Meth.23 beschriebene Protokoll verwendet, außer daß 500 ng Plasmid DNA in einem Volumen von 20 µl in vitro transkribiert wurde. GTP wurde in einer Konzentration von 12.5 µM plus 250 pmol $\alpha^{-32}P$ -GTP (400 Ci/mmol; 10 mCi/ml; 12.5 µM) eingesetzt. Die mit Äthanol ausgefällte RNA wurde in 80% Formamid; 400 mM PIPES, pH 6.4; 1 mM EDTA; pH 7.8) in einer Konzentration von $1-2\times10^5$ cpm/ µl aufgenommen.

9. Gelfiltration

Nicht eingebaute Nukleotide wurden über eine Biogel P60 Säule (Trennbereich von 3-60 kD) von der radioaktiv markierten DNA abgetrennt. Als Säule wurde eine mit Glaswolle gestopfte Pasteurpipette verwendet, in die das Säulenmaterial (in 50 mM NaCl; 0.5 mM EDTA aufgeschwemmt) eingefüllt wurde. Nach dem Auftragen der radioaktiven Probe wurde mit 50 mM NaCl; 0.5 mM gewaschen und dabei 100 µl Fraktionen EDTA gesammelt. Die Fraktionen, die die DNA enthalten, wurden durch Cerenkow-Zählung identifiziert und anschließend vereinigt.

10. Southern Blot (Southern, 1975)

Je 10 µg DNA wurden mit dem entsprechenden Restriktionsenzym verdaut und auf einem 0.8% Agarose Gel (160 ml Gellösung; Fläche 26x13 cm) solange elektrophoretisch aufgetrennt, bis der Farbstoff des Probenpuffers ca.12 cm von der Auftragstasche entfernt war. Das Gel wurde 2 cm hinter der Farbstoffront abgeschnitten, mit Ethidiumbromid gefärbt, und unter UV Licht photographiert. Durch 40 min. Schütteln in 250 ml 1 M NaOH wurde die DNA im Gel denaturiert. Nach Zugabe desselben Volumens 1 M Tris-Base; 1 M HCl wurde l Std neutralisiert und das Gel anschließend 30 Min. in 250 ml 20xSSC (3 M NaCl; 0.3 M NaCitrat, pH 6.5) gegeben. Ein Nitrozellulose Filter (13x14 cm) wurde durch jeweils 20 min. Behandlung mit 6xSSC und 20xSSC für das Blotten vorbereitet. Die Apparatur für den Transfer der DNA auf den Filter wurde entsprechend Maniatis et al., 1982 verwendet. Nach dem Blotten wurde der Filter 10 Min. in 6xSSC/ 0.05% SDS
gewaschen, auf Whatman 3MM Papier an der Luft getrocknet und 2 Std bei 80°C im Vakuumofen gebacken.

<u>11. Northern Blot</u>

Die benötigte Menge an RNA wurde in einer Vakuumzentrifuge getrocknet, in Probenpuffer aufgenommen, und auf einem Agarose-Formaldehyd Gel aufgetrennt. Die Markerspur (18S und 28S RNA) wurde vom restlichen Gel abgeschnitten, 15 Min. in 4xSSC (0.6 M 0.06 M NaCitrat, pH 6.5); 12.5 µg/ml Ethidiumbromid gefärbt NaCl; und 2 Std in H2O entfärbt. Die Markerbanden wurden unter UV Licht sichtbar gemacht und photographiert. Das restliche Gel wurde 30 Min. in lxTAE (40 mM Tris-HCl,pH 8.1; 250 mM NaAcetat; 2 mM EDTA) gelegt. Als speziellen Filter für den Elektroblot wurde eine positiv geladene Nylon Membran (Zeta Blotting Membrane, Bio Rad) Min. in lxTAE ägilibriert wurde. Für den RNA verwendet, die 10 Transfer wurde eine E-C Elektroblot Apparatur verwendet, wobei das Gel und die Membran mit 1xTAE getränktem 3MM Papier und einem Schwammstoff zwischen den Elektroden fixiert wurden. Als Elektrodenpuffer wurde 1xTAE verwendet. Die Laufzeit betrug 30 V, anschließend 3 Std bei 15 V. Danach wurde die Min. bei 6 Membran 2 Min. in lxTAE gewaschen und wie unter 10 beschrieben getrocknet und gebacken.

12. RNA Dot Blot

Die gewünschte Menge an RNA wurde in einer Vakuumzentrifuge eingedampft und in 20 μ l FF (50% Formamid; 6%Formaldehyd in 1xTBE) aufgenommen. Nach 15 min. Inkubation bei 37°C, gefolgt von einer 3 min. Inkubation bei 65°C wurde die Probe mit 180 μ l 10xSSC (1.5 M NaCl; 0.15 M NaCitrat,pH 6.5) gemischt und die RNA mit Hilfe einer Hybri-Dot Blot Apparatur (BRL) an ein Nitrozellulose Filter (mit 10xSSC gesättigt) gebunden. Der Filter wurde anschließend 5 Min. in 6xSSC; 0.05% SDS gewaschen und wie unter 10 beschrieben getrocknet und gebacken.

<u>13. Koloniehybridisierung</u>

a) Bakterientransfer auf Nitrozellulose Filter

Auf eine 25x25 cm Bakterienplatte (Größe der Bakterien:0.5-1 mm) wurde ein 20x20 cm Nitrozellulose Filter aufgelegt, und durch Einstechen mit einer Nadel die Lage des Filters auf der Platte eindeutig markiert. Nachdem der Filter vollständig befeuchtet war, wurde er sofort abgezogen und vor der weiteren Behandlung zunächst (mit den Kolonien nach oben) auf trockenes Whatman 3MM Papier gelegt. Die Bakterienplatte wurde 3-4 Std im Brutschrank inkubiert (37°C), um die Bakterien wieder hochwachsen zu lassen. Danach wurde sie als Musterplatte bei 4°C aufbewahrt.

b) Fixierung der DNA auf dem Filter

Die nachfolgenden Behandlungen des Filters wurden entsprechend der Methode von Maniatis et al.,1982 durchgeführt. Die Bakterienlyse erfolgte durch 3 min. Behandlung mit 10% SDS. Zur Denaturierung der DNA wurde der Filter 5 Min. in 0.5 M NaOH; 1.5 M NaCl inkubiert, und zur Neutralisierung anschließend 5 Min. in 1.5 M NaCl; 0.5 M Tris-HCl,pH 8.0 und 5 Min. in 2xSSPE (360 mM NaCl; 20 mM Na₂HPO₄,pH 7.4; 2 mM EDTA). Danach wurde der Filter wie unter 10 beschrieben getrocknet und gebacken.

14. Hybridisierung von DNA und RNA auf NC-Filter mit nick-

- 31 -

translatierter Plasmid DNA (Denhardt, 1966)

a) Vorhybridisierung

Der nach Meth. 10-13 präparierte Filter wurde 1 Std in 200 ml einer Lösung aus 4xSSC (0.6 M NaCl; 0.06 M NaCitrat, pH 6.5), je 0.02% BSA, Ficoll, PVP und 3.3% PiPPi (0.2 M NaH₂PO₄; 0.3 M Na₂HPO₄; 1.5% Na₄P₂O₇) in einem Schüttelwasserbad bei 65°C inkubiert. Zur Absättigung unspezifischer DNA Bindungsstellen wurde nach 1 Std Lachs-Spermien DNA (20µg/ml) zugegeben und weitere 60 Min. bei 65°C inkubiert.

Bei der Koloniehybridisierung (13) wurde der Filter vor der Vorhybridisierung 2 Std bei 65°C in 50 mM Tris-HCl,pH 8.0; 1 M NaCl; 1 mM EDTA; 0.1% SDS geschüttelt, um sämtliche bakteriellen Reste vom Filter zu entfernen.

b) Hybridisierung

Die Hybridisierungslösung setzte sich zusammen aus: 4xSSC; 10 mM EDTA; 0.1% SDS; 20 µg/ml Lachs-Spermien DNA und 20-50 ng/ml radioaktiv markierter DNA (spez.Akt.:0.5-4x10⁸cpm/µg). Das Volumen der Hybridisierungslösung errechnet sich aus der Fläche des Filters in cm^2xl3 µl (Volumen zum Benetzen von 1 cm^2) plus 30% Überschuß. Das Wasser, die Lachs-Spermien DNA und die radioaktive Probe wurden gemischt, 10 Min. gekocht, auf Eis abgekühlt und die restlichen Lösungen zugegeben. Der vorhybridisierte Filter wurde an 3 Plastikfolie eingeschweißt, die Seiten in Hybridisierungslösung zugegeben, und nach Zuschweißen der 4. Seite ca.20 Std bei 65°C inkubiert.

c) Waschen der Filter

Die Filter wurden jeweils 30 Min. in 200 ml der folgenden Lösungen bei 65°C unter leichtem Schütteln gewaschen:

2xSSC; 0.1% SDS; 3.3% PiPPi lxSSC; 0.1% SDS; 3.3% PiPPi lxSSC; 0.1% SDS; 3.3% PiPPi

0.5xSSC; 0.1% SDS; 3.3% PiPPi

Die getrockneten Filter wurden auf Whatman 3MM Papier fixiert, in Haushaltsfolie eingewickelt, und mit einem Kodak X-AR Film unter Verwendung einer Verstärkerfolie autoradiographiert.

15. SI-Kartierung von RNA (Berk und Sharp, 1977)

Die benötigte Menge an RNA (20-50 μ g) wurde mit 0.01-0.05 pmol endmarkierter DNA zusammen mit Äthanol gefällt. Das abzentrifugierte Pellet wurde getrocknet und in 10 µl Hybridisierungspuffer (70% Formamid; 0.3 M NaCl; 10 mM Tris-HCl, pH 8.5; 1 mM EDTA) aufgenommen. Anschließend wurde die Probe 10 Min. auf 85°C erhitzt und über Nacht bei 48°C hybridisiert. Danach wurde 100 µl Nuklease SI Puffer zu einer Endkonzentration von 250 mM NaCl; 30 mΜ NaAcetat und 1 mM ZnSO4 zugegeben und die Lösung nach Zugabe von 60 U Nuklease SI für 40 Min. bei 30°C inkubiert. Nach der Extraktion mit Phenol/Chloroform und Zugabe von 8 µg Hefe RNA wurde die Probe mit Äthanol ausgefällt. Das abzentrifugierte Pellet wurde getrocknet, in 3.5 µl Probenpuffer aufgenommen und auf einem Acrylamid-Harnstoff Gel aufgetrennt.

16. SP6-Kartierung von RNA (Melton et al., 1984)

20 µg RNA wurden in 50 µl 50 mM Tris-HCl,pH 7.5; 5 mM MgCl₂ in Gegenwart von 40 U RNasin 10 Min. bei 37°C mit DNase I (20 µg/ml) behandelt. Anschließend wurde die RNA durch Phenol/Chloroform Extraktion gereinigt, mit Äthanol ausgefällt, und in 17 µl 80%

Formamid; 400 mM NaCl; 40 mM PIPES, pH 6.4; 1 mM EDTA aufgenommen. 3µ1 der im gleichen Puffer gelösten, radioaktiv markierten RNA Probe (1-2x10⁵cpm/µl) wurde zugegeben, das Gemisch 5 Min. auf 85°C erhitzt und anschließend über Nacht bei 45°C hybridisiert. Dann wurde 300 µl 0.3 M NaAcetat, pH 7.0; l0 mM Tris-HCl, pH 7.6; 5 mM EDTA; RNase A (40 µg/ml); RNase Tl (600 U/ml) zugegeben und 30 Min. bei 30°C inkubiert. Anschließend wurden 2.5 µl Proteinase K (10 mg/ml) und 3.2μ l 20% SDS zugegeben, 15 Min. bei 37°C inkubiert und das Gemisch Phenol/Chloroform extrahiert. Die Nukleinsäuren wurden nach Zugabe von 5 µg t-RNA mit Äthanol ausgefällt, in 3 μ l Probenpuffer aufgenommen und auf einem Polyacrylamid-Harnstoff Gel elektrophoretisch aufgetrennt.

17. Sequenzierung von DNA nach Maxam und Gilbert

20 pmol DNA Fragmente, die an einem Ende radioaktiv markiert waren, wurden in 40 μ l H₂O aufgenommen, auf die 5 Sequenzier-Reaktionen aufgeteilt und jeweils 8 μ g Carrier (Lachs-Spermien DNA) zugegeben. Die Reaktionen wurden mit einem DNA Sequenzierungskit (Fa.NEN) durchgeführt.

a) G-Reaktion

5 μ l der DNA Lösung wurden mit 200 μ l G-Reaktionspuffer und l μ l DMS vermischt und 2 Min. bei R.T. inkubiert. Die Reaktion wurde durch Zugabe von 50 μ l G-Stop-Lösung beendet und die DNA mit 750 μ l Äthanol gefällt.

b) G+A Reaktion

10 μ l der DNA Lösung wurden mit 13 μ l H₂O und 2 μ l Piperidinformiat versetzt und 30 Min. bei 37°C inkubiert. Danach wurde das Reaktionsgemisch auf -70°C abgekühlt, in einer Vakuumzentrifuge eingeengt, in 20 μ l H₂O aufgenommen und nach erneutem Abkühlen noch einmal zur Trockne eingeengt. c) A+C Reaktion

10 μ l DNA Lösung wurden mit 100 μ l 1.2N NaOH; 1 mM EDTA vermischt, 10 Min. auf 90°C erhitzt, und dann mit 150 μ l 1N Essigsäure neutralisiert. Nach Zugabe von 4 μ g t-RNA und 750 μ l Äthanol wurde die DNA bei -70°C gefällt.

d) C Reaktion

5 μ l DNA Lösung wurden mit 15 μ l 5 M NaCl und 30 μ l Hydrazin versetzt, 10 Min. bei R.T. inkubiert, und anschließend die Reaktion durch Zugabe von 200 μ l Hydrazin-Stop-Lösung und 750 μ l Äthanol abgebrochen.

e) C+T Reaktion

10 μ l DNA Lösung wurden mit 10 μ l H₂O und 30 μ l Hydrazin vermischt und 10 Min. bei R.T. inkubiert. Durch Zugabe von 200 μ l Hydrazin-Stop-Lösung wurde die Reaktion beendet, und die DNA mit Äthanol gefällt.

Die Reaktionen a,c,d und e wurden 10 Min. bei 8700xg zentrifugiert, die Niederschläge in 250 μ l 0.3 M NaAcetat,pH 4.8 resuspendiert und erneut mit 750 μ l Äthanol gefällt. Nach der Zentrifugation wurde der Niederschlag 2x mit 80% Äthanol gewaschen und das Pellet getrocknet.

Die DNA aller Reaktionen wurde in jeweils 100 μ l 1 M Piperidin aufgenommen, 30 Min. bei 90°C inkubiert, und über Nacht in einer Vakuumzentrifuge eingedampft. Die Niederschläge wurden noch 2x in 30 μ l H₂O aufgenommen und bis zur Trockne eingeengt. Die Aktivität der einzelnen Proben wurde durch Cerenkov-Zählung im Szintillationszähler bestimmt. Die Proben wurden in Probenpuffer aufgenommen und dabei das Volumen so gewählt, daß die 5 Einzelreaktionen dieselbe spezifische Aktivität besitzen. Dann wurden die Proben auf einem Acrylamid-Harnstoff Gel aufgetrennt.

18. Sequenzierung von DNA nach Sanger

a) Präparation der einzelsträngigen Matritzen DNA

Die Plasmide, die pEMBL 8⁺/9⁺ als Vektorsequenzen enthalten, wurden 71/18 transformiert. Von der in Bakterien des Stammes Übernachtkultur eines positiven Einzelklons wurden 0.1 ml in 5 ml LB-Selektivmedium angeimpft, und bis zu einer O.D.600 von 0.3 wachsen gelassen. Es wurden 1x10¹² Phagen des Stammes IR-I zugegeben und für weitere 6 Std im Schüttelwasserbad bei 37°C inkubiert. 1.5 ml Suspension wurde in ein Eppendorf-Gefäß überführt. die Bakterien abzentrifugiert (10 Min., 8700xg), und die Phagen im Überstand durch Zugabe von 150 µl 20% PEG; 14,6% NaCl ausgefällt (10 Min., R.T.). Nach der Zentrifugation (5 Min. 8700xg) wurde der Überstand sorgfältig entfernt, und das Pellet in 100 µl TE (10 mM Tris-HCl,pH 8.0; 1 mM EDTA) aufgenommen. Nach der Extraktion mit 100 μ l Phenol (gesättigt in 0.1 M Tris-HCl,pH 9.0; 10 mM EDTA) wurde die DNA noch 2x mit Chloroform extrahiert, anschließend mit Äthanol ausgefällt und in 30 μl H2 0 aufgenommen.

b) Sequenzierung

7.5 einzelsträngige Matritzen DNA wurden mit 5 µl Primer Mix μl (50 mM Tris-HCl,pH 8.5; 25 mM MgCl₂; 6 ng Ml3 Sequenzier-Primer) vermischt, 1 Std bei 60°C inkubiert, und anschließend auf R.T. Je 2 µl dieses Ansatzes wurde für die 4 Sequenzierabgekühlt. reaktionen (G,A,C,T) verwendet. Die 2 µl wurden in eine Mikrotiterplatte (Fa.Falcon) pipettiert. Danach wurden 2 μl vom zugegeben und 20 Min. bei 30°C jeweiligen dNTP/ddNTP-Mix inkubiert. Der dNTP/ddNTP-Mix setzt sich wie folgt zusammen:

Go-Lösung:	12.5	μM	dGTP	+	250	μМ	dCTP	+	250	μM	dTTP
Ao-Lösung:	250	μМ	dGTP	÷	250	μМ	dCTP	÷	250	μМ	dTTP
Co-Lösung:	250	μМ	dGTP	+	12.5	μМ	dCTP	+	250	μM	dTTP
To-Lösung:	250	μM	dGTP	+	250	μM	dCTP	+	12.5	μМ	dTTP

Die verwendeten ddNTP-Stocklösungen waren:

ddGTP:	0.32	mМ	ddATP:	0.02	mМ
ddCTP:	0.16	mM	dd፹፹₽:	0.5	mМ

Für den dNTP/ddNTP-Mix (z.B. für die A Reaktion) wurden gemischt (ausreichend für 5 Ansätze):

5 µl Ao-Lösung

5 µl ddATP-Lösung

1 μl ³⁵S-dATP (spez. Akt. 600 Ci/mmol)

l µl E. coli DNA Polymerase I Klenow Fragment (5 U/µl)

Danach wurden 2 μ l einer Lösung zugegeben, die alle Desoxynukleotide in einer Konzentration von 25 mM enthalten, und weitere 20 Min. bei 30°C inkubiert. Die Reaktion wurde durch Zugabe von 4 μ l Probenpuffer beendet und anschließend 2 μ l der Probe auf einem Acrylamid-Harnstoff Gel aufgetrennt.

<u>19. Transiente Transfektion von DNA in eukaryontische Zellen</u>

(Kawai und Nishizaku, 1984; Luthman und Magnusson, 1983) 8x105 Zellen wurden pro 10 cm Petrischale ausgesät und 24-36 Std später für die Transfektion verwendet. Das Kulturmedium wurde abgesaugt und die Zellen 2x mit 10 ml 1xTBS (25 mM Tris-HCl,pH 7.4; 137 mM NaCl; 5 mM KCl; 0.7 mM CaCl₂; 0.5 mM MgCl₂; 0.6 mM Na2HPO4) gewaschen. Anschließend wurde 1 ml Transfektionslösung (10) μ g Plasmid DNA und 500 μ g DEAE-Dextran in lxTBS) auf die Petrischale gegeben, 30 Min. bei R.T. stehen gelassen, und danach wieder abgesaugt. Die Zellen wurden mit 10 ml 1xTBS gewaschen, und 10 Std in Kulturmedium, das 0.1 mM Chloroquin-diphosphat enthielt, inkubiert. Für die Transfektion von GM 637-Zellen wurde Kulturmedium ohne Chloroquin-diphosphat verwendet. Die Zellen wurden danach 2x mit 5 ml 1xTBS gewaschen und für 48 Std in Kulturmedium mit oder ohne TPA (60ng/ml) inkubiert. Anschließend wurde das Medium abgesaugt, die Zellen 2x mit 5 ml lxTBS

gewaschen, und mit Hilfe eines Gummispatels von der Petrischale abgeschabt. Die Zellsuspension (in 1 ml lxTBS) wurde in ein Eppendorf-Gefäß transferiert, die Zellen abzentrifugiert, und nach dem Resuspendieren in 100 μ l 0.25 M Tris-HCl,pH 7.8 durch dreimaliges Einfrieren (Trockeneis-Methanol Bad) und Auftauen (37°C) aufgebrochen. Die Extrakte wurden 10 Min. bei 4°C zentrifugiert (8700xg) und die Proteinkonzentration im Überstand nach der Methode von Lowry, 1951 bestimmt.

<u>20. Bestimmung der Chloramphenicol Acetyltransferase Akti-</u>

vität (CAT Assay) (Gorman et al., 1982)

2 µl ¹⁴C-Chloramphenicol (53 mCi/mmol; 200µCi/ml) wurden in einer Vakuumzentrifuge eingedampft, und in 80 ul lxTBS (19)aufgenommen, das die gewünschte Menge Proteinextrakt enthielt. Nach Zugabe von 20 µl Acetyl-CoEnzym A (3.52 mg/ml lxTBS) wurde die Reaktion 2 Std bei 37°C inkubiert und anschließend mit 1 ml Ethylacetat Phase wurde in einer extrahiert. Die obere Vakuumzentrifuge bis zur Trockne eingeengt, in 20 µl Ethylacetat aufgenommen, und auf eine DC-Platte aufgetragen. Als Laufmittel wurde ein Chloroform-Methanol Gemisch (9:1) verwendet. Nach der Chromatographie wurde die Platte an der Luft getrocknet und mit einem Kodak X-AR Film autoradiographiert. Zur Bestimmung der spezifischen Aktivität (pmol acetyliertes Chloramphenicol pro mg Proteinextrakt pro Min.) wurden die radioaktiven Flecken der DC-Platte ausgeschnitten und die Radioaktivität in einem Szintillationszähler bestimmt. Die CAT-Aktivität berechnet sich aus:

7600 pmol Chloramphenicol x cpm acetyl. Chloramphenicol 120 Min. x mg Proteinextrakt x cpm einesetztes Chloramph.

— 37 —

21. Herstellung einer cDNA Bank

Für die Herstellung der cDNA Bank wurde das Protokoll von Heidecker und Messing,1883 verwendet, das in den folgenden Schritten modifiziert wurde:

a) Die Lösung für die Einzelstrangsynthese (40 µl Gesamtvolumen) enthielt: 5 µg poly A⁺ RNA; 100 mM Tris-HCl,pH 8.3; 100 mM KCl; 8 mM MgCl₂; 40 U RNasin; 30 µCi α^{-32} P-dCTP; je l mM dNTPs; 25 µg/ml Actinomycin D; 2 mM DTT und 2 µg dT-"getailtes" Plasmid pSP64. Nach Zugabe von 30 U Reverse Transkriptase wurde die Reaktion 90 Min. bei 37°C inkubiert.

b) Die Lösung für die Tailing-Reaktion (Endvolumen 25 μ l) enthielt: 140 mM Kakodylat; 100 μ M DTT; 30 mM Tris (mit KOH auf pH 7.6 eingestellt); 1 mM CoCl₂ (für dT-und dC-Tailing) oder 2 mM MnCl₂ (dG-Tailing); 100 μ M des entsprechenden dNTPs und 10 U Terminale Transferase.

c) Für den Denaturierung-und Annealing Schritt wurden 3 µg des dC-"getailten" Plasmids pSP64 mit den cDNA-enthaltenden Fraktionen des alkalischen Sucrosegradienten gemischt, und die Lösung 48 Std bei 4°C gegen 10 mM Tris-HCl,pH 7.6; 10 mM NaCl; 1 mM EDTA dialysiert. Nach Zugabe von 10 μ g t-RNA wurde die DNA mit Äthanol ausgefällt und in 380 µl 100 mM NaCl; 10 mM Tris-HCl,pH 8.0; 1 mM EDTA aufgenommen. Die Lösung wurde 5 Min. bei 65°C und 90 Min. bei 57°C inkubiert. Nach langsamen Abkühlen auf R.T. die DNA mit Äthanol ausgefällt, in H2O aufgenommen und in wurde die "Fill in"-Reaktion eingesetzt.

22. in vitro Translation (Ligappa et al., 1979)

l µl RNA Lösung (0.5 µg) wurde zusammen mit 3 µl 35 S-Methionin (1350 Ci/mmol; 14.19 mCi/ml) in 10 µl eines Kaninchen Retikulocyten Systems gegeben und 1 Std bei 30°C inkubiert. 15 µl 2x Probenpuffer und 20 µl 1xProbenpuffer (6a) wurden zugegeben, und das Gemisch auf einem SDS-Polyacrylamid Gel aufgetrennt.

23. in vitro Transkription mit SP6 Polymerase

(Melton et al., 1984)

5 μ g Plasmid DNA wurde mit einem Restriktionsenzym linearisiert, dessen Erkennungssequenz im Polylinker liegt, jedoch nicht zwischen inserierter Sequenz und dem SP6 Promotor. Durch Phenol/ Chloroform Extraktion wurde die DNA gereinigt, anschließend mit Äthanol ausgefällt und in 26.5 μ l H₂O aufgenommen. In einem sterilen Eppendorf-Gefäß wurden bei R.T. gemischt:

10 μl 200 mM Tris-HCl,pH 7.5; 30 mM MgCl2; 10 mM Spermidin 0.5 μl 1 M DTT

- 2 μ l RNasin (25 U/ μ l)
- 10 μ l je 2.5 mM ATP, CTP, GTP, TTP
- 26.5 µl DNA
 - l µl SP6 Polymerase (9 U/µl)

Die Reaktion wurde 1 Std bei 40°C inkubiert. Anschließend wurde DNase I in einer Endkonzentration von 10 μ g/ml zugegeben und das Gemisch 10 Min. bei 37°C inkubiert. Durch eine Phenol/Chloroform Extraktion wurde die synthetisierte RNA gereinigt, mit 2 μ g t-RNA versetzt, in Gegenwart von 2 M NH₄Acetat mit Äthanol ausgefällt, und anschließend in vitro translatiert. 24. "Hybrid selected Translation" (Cochran et al., 1983)

Plasmid DNA wurde durch Restriktionsverdau linearisiert, 10 μg durch Phenol/Chloroform Extraktion gereinigt, mit Äthanol ausgefällt und in 50 μ l H₂O aufgenommen. Zur vollständigen Denaturierung wurde die Probe 10 Min. gekocht, in Eis abgekühlt, nach Zugabe von 50 µl 1 M NaOH 20 Min. bei R.T. inkubiert. und Durch Zugabe von 15 µl 4.5 M NaAcetat, pH 5.5 wurde die Lösung neutralisiert und anschließend die DNA mit Hilfe einer Dot Blot Apparatur (vergl.l2) an ein Nitrozellulose Filter fixiert. Der an der Luft getrocknet und 2 Std bei 80°C unter Filter wurde Vakuum gebacken. Der Bereich des Filters, an den die DNA gebunden (0.5 cm 0), wurde ausgeschnitten, in ein Eppendorf-Gefäß war transferiert, und nach Zugabe von 300 µl H2O l Min. gekocht. Nach Absaugen des Wassers wurde der Filter in 50 $\mu 1$ Hybridisierungslösung (50% Formamid; 0.4 M NaCl; 10 mM PIPES, pH SDS; 5 U RNasin; 30 µg poly A⁺ RNA) 24 Std bei 42°C 6.4; 0.2% Danach wurde die Hybridisierungslösung abgesaugt und inkubiert. Filter 10x mit 1 ml 1xSSC; 0.5% SDS bei 65°C und 3x mit 1 ml der 10 Tris-HCl,pH 7.0; 1 mM EDTA bei R.T. gewaschen. Es wurden mМ 300 zugegeben und durch 2 min. Kochen die gebundene RNA µl H₂O Filter eluiert. Anschließend wurde der Filter entfernt, die vom RNA nach Zugabe von 5 μ g t-RNA mit Äthanol ausgefällt, in 2 μ l aufgenommen, und nach Zugabe von 2 U RNasin in einem Retiku- H_2O locyten-System in vitro translatiert.

25. Limitierter Verdau von Proteinen (Cleveland et al., 1977)

Die radioaktiv markierten Proteine wurden aus dem Polyacrylamid Gel ausgeschnitten und in die Auftragstaschen eines 15% SDS Polyacrylamid Gels (mit 1 mM EDTA im Trenngel) transferiert. Die Taschen wurden mit Probepuffer (6a), der 1 μ g/ml Staphylococcus aureus V8 Protease enthielt, aufgefüllt, und die Gelstückchen 30

— 40 —

Min. bei R.T. quellen lassen. Die anschließende Elektrophorese wurde unterbrochen, als die Farbstoffront die Grenze zwischen Kammgel und Trenngel erreicht hatte. Nach 30 Min. wurde die Elektrophorese fortgesetzt, bis die Farbstoffront den unteren Rand des Gels erreicht hatte.

ERGEBNISSE

K	L	0	N	Ι	E	R	U	N	G		U	N	D		С	Η	A	R	A	K	Т	E	R	Ι	S	Ι	Е	R	U	N	G
V	0	N		с	D	N	A	s		T	Р	A		R	E	G	U	L	I	E	R	В	A	R	E	R		G	E	N	E

Durch in vitro Translation von poly A⁺ RNA aus unbehandelten und TPA behandelten menschlichen Hautfibroblasten und anschließender Auftrennung Produkte zweidimensionalen der in einer Gelelektrophorese konnte nachgewiesen werden, daß die Induktion der 8 Proteine XHFl und a-g (Abb.1) auf einer stark erhöhten Menge der translatierbaren mRNA dieser Proteine beruht (Schorpp et al., 1984). Dies war die Voraussetzung dafür, um nach Anlegen einer cDNA Bibliothek aus TPA behandelten Zellen (Angel, 1983) durch differentielle Koloniehybridisierung (Maniatis et al., 1982) CDNA Sequenzen von solchen Genen zu isolieren, deren Expression nach TPA Behandlung verändert ist.

1. <u>ISOLIERUNG VON cDNA KOPIEN FÜR DURCH TPA INDUZIERTE RNA</u> SPEZIES

Mit des Enzyms Reverse Transkriptase wurde an poly A* RNA Hilfe aus TPA behandelten primären menschlichen Hautfibroblasten (8 Std, 20 ng/ml) durch reverse Transkription einzelsträngige cDNA synthetisiert. Als Primer der Synthese wurde Oligo-dT12-18 verwendet, der an das poly A-Ende der mRNA bindet. Die während derEinzelstrang cDNA Synthese gebildete Haarnadelstruktur am 3'OH Ende der cDNA wird von der E.coli Polymerase 1 als Startpunkt für die Doppelstrangsynthese benutzt. Die durch die die beiden cDNA Stränge kovalent Haarnadelstruktur, miteinander verbunden sind, wurde anschließend durch Behandlung mit einzelstrangspezifischer Nuklease SI abgebaut.

<u>Abb.2</u> Schematische Darstellung der Klonierung von cDNA Sequenzen aus: Maniatis et al.,1982

Ausgehend von 30ng rekombinanter Plasmide konnten ca. 1200 ca. Klone isoliert werden. Die Transformationseffizienz der Zellen betrug 4x10⁶ Kolonien/µg zirkuläres Plasmid pBR 322. Durch differentielle Koloniehybridisierung wurde diese cDNA Bank auf solche Kolonien untersucht, deren Plasmid DNA Sequenzen von TPA regulierten Genen tragen. Als radioaktiv markierte Hybridisierungsprobe wurden einzelsträngige cDNAs verwendet, die von poly A* RNA aus

a. unbehandelten

b. TPA behandelten(8 Std, 20ng/ml) Fibroblasten synthetisiert wurden (Angel,1983).

Aus diesen ca. 1200 Transformanten konnte ich 16 Klone isolieren, die mit den beiden Proben unterschiedlich stark hybridisieren (nicht gezeigt). Diese wurden zusammen mit einem Klon, der nur das Vektorplasmid pBR 322 enthielt und einem Klon der kein unterschiedliches Hybridisierungssignal zeigte (Klon 7) unter den gleichen Bedingungen rehybridisiert (Abb.3).

<u>Abb.3</u> Isolierung von cDNAs TPA regulierbarer Gene durch differentielle Koloniehybridisierung.

Die 16 mit einem Punkt oder Zahl markierten Bakterienklone aus einer cDNA Bank von TPA behandelten menschlichen Hautfibroblasten (8 Std.,20ng/ml) wurden mit einem sterilen Zahnstocher auf die Agarplatte übertragen, bis zu einer Größe von 1 mm Ø hochwachsen gelassen, und als Duplikat auf zwei Nitrozellulose Filter transferiert. Nach der Lyse der Zellen und Fixierung der Plasmid DNA wurden die Filter mit 32P-markierten einzelsträngigen cDNAs hybridisiert, die von poly A+ RNA aus unbehandelten (-) oder TPA behandelten Zellen (+, 8 Std., 20ng/ml) synthetisiert wurden. Die Klone 1-7 wurden für die weitere Analyse verwendet (siehe Text). Der mit einem Stern markierte Klon enthält das Vektorplasmid pBR 322 ohne cDNA Sequenzen. Die mit einem Punkt markierten Kolonien wurden nicht weiter analysiert.

Der Standardklon Nr.7 hybridisierte mit beiden Proben gleich stark, was nachweist, daß gleiche Mengen an radioaktiver Probe eingesetzt wurden. Der pBR 322-Klon zeigt, daß unter den verwendeten Reaktionsbedingungen keine unspezifische Hybridisierung auftrat.

Klon Nr.3 zeigt ein etwas stärkeres Signal mit der Probe aus TPA behandelten Zellen, während der Unterschied im Falle der Klone 1,2,4 und 5 sehr viel stärker ist. Im Gegensatz dazu ist bei Klon 6 ein vermindertes Signal mit cDNA aus TPA behandelten Zellen zu erkennen.

Diese 6 cDNA Klone wurde für die weitere Charakterisierung ausgewählt. Die restlichen Klone, die zum Teil leichte Unterschiede in der Hybridisierung zeigten, wurden nicht weiter analysiert.

2. CHARAKTERISIERUNG DER CDNA KLONE 1-7

Bestimmung der Länge der cDNA Sequenzen

Ein Vorteil der Insertion der cDNAs in pBR 322 durch "homopolymeres Tailing" ist die Aufrecherhaltung der PstI Schnittstelle, wodurch die cDNA Sequenz wieder komplett aus dem Plasmid ausgeschnitten werden kann (Abb.2). Die Insertgröße der TPA regulierten cDNA Klone 1-6 reicht von ca.100bp bis ca.1200bp (Tabelle 1). Das 850 bp lange cDNA Insert von K4 enthält eine interne PstI Schnittstelle. Beim Verdau dieses Plasmids mit PstI entsteht ein 0.6 kb und ein 0.25 kb Subfragment.

Klon	Insert-Größe (bp) _a	Größe der mRNA (Basen) _a	Induktion/Reduktions- faktor durch TPA _b
1	127	2200	10-15
2	700	2200; 2400	4,8
3	265	600	3,0
4	850	2400	16,5
5	125	2300	12,1
6	1000	2300	2,1
7	1200	2000	1,0

Tabelle 1 Eigenschaften der isolierten cDNA Klone 1-7

a: Insert- und mRNA Größen sind nach ihrer elektrophoretischen Auftrennung berechnet, außer der Größe der cDNA der Klone 1,3 und 5, die vollständig sequenziert wurden.

b: Induktions- und Reduktionsfaktoren sind aus der densitometrischen Auswertung von Fig.4 berechnet.

Bestimmung der cDNA spezifischen Transkripte

Um die relative Menge und die Größe der spezifischen mRNA dieser Klone in unbehandelten und TPA behandelten Zellen zu bestimmen, wurde eine Northern Blot Analyse durchgeführt. Dabei wurden die beiden poly A*RNA Präparationen unter denaturierenden Bedingungen in einem Agarosegel nach ihrem Molekulargewicht aufgetrennt, auf eine Nylon Membran transferiert, daran fixiert und mit einer radioaktiv markierten cDNA Probe der Klone 1-7 hybridisiert (Abb.4)

Abb.4 TPA induzierbare mRNA Spezies

Poly A⁺ RNA aus nicht behandelten (A) und TPA behandelten (B, 8 Std,20ng/ml) menschlichen Fibroblasten (Berlin-2) wurden in einem 1.2% Agarose-6.5% Formaldehyd Gel aufgetrennt und elektrophoretisch auf eine geladene Nylon Membran transferiert. Diese Membran wurde mit nick translatierter cDNA der Klone 1-7 hybridisiert. Als Größenmarker wurde 28S-(4.8kb) und 18S RNA (2.1kb) verwendet, die in den gleichen Gelen aufgetrennt, und durch Ethidiumbromid Färbung sichtbar gemacht wurde.

Mit einer Ausnahme (Klon 2) hybridisieren alle Klone mit einer mRNA Spezies. Die Klon 3-spezifische mRNA hat das kleinste Molekulargewicht (ca.600 Basen). Die Größe der anderen RNAs liegt zwischen 2.0 und 2.4 kb (Tabelle 1). Der Größenvergleich des cDNA Inserts mit der korrespondierenden mRNA zeigt, daß kein cDNA Klon die jeweils vollständige Transkriptlänge enthält.

Der cDNA Klon 2 hybridisiert mit zwei mRNA Spezies. Die kleinere

mRNA (ca.2.2 kb) wird TPA unabhängig, konstitutiv exprimiert. Die 2.4 kb Spezies ist in unbehandelten Zellen sehr schwach jedoch ist die Menge dieser exprimiert; nach TPA Behandlung Spezies ca.5 fach erhöht. Die Menge von Kl-,4- und 5-spezifischer ist durch 8 stündige TPA Behandlung 10-15 fach induziert, mRNA während die Menge an KЗ spezifischen Transkripten nur 3 fach erhöht wird. Die gleiche Behandlungsdauer führt zu einer ca. 50% igen Reduktion von K6 spezifischen Transkripten. Wie erwartet zeigt der Kontrollklon K7 keine unterschiedliche Hybridisierung, was nachweist, daß jeweils gleich Mengen an RNA eingesetzt wurden.

Sequenzanalyse

Die cDNA Sequenzen wurden vollständig (Kl,3,5) bzw. teilweise (K2,4,6) sequenziert (Pöting,1985). Der Vergleich dieser Sequenzen in einer Computer Datenbank mit bereits bekannten Genen zeigte, daß K3 100% homolog ist zum menschlichen Metallothionein IIa Gen (Karin und Richards,1982). Die cDNA Sequenz enthält das poly A-Additionssignal (5'AATAAA 3') und einen Teil der poly A Sequenz. Die Größe der K3-spezifischen RNA stimmt mit bereits veröffentlichen Daten überein (Karin und Richards,1982).

K6 enthält ebenfalls ein poly A-Additionssignal und eine poly A Sequenz. Der sequenzierte Bereich weist jedoch keine Sequenzhomologie zu einem bereits charakterisierten Gen auf.

Das ca. 700 bp Insert von K2 besteht zu ca. 80% aus Sequenzen des bakteriellen Transposons IS-1 (Johnsrud, 1979). Da IS-Elemente in menschlicher DNA nicht vorkommen, wurde diese Sequenz wahrscheinlich nach der Transformation der cDNAs in Bakterien aufgenommen. Die Mensch-spezifischen Sequenzen von K2 haben eine Länge 122 bp (Dürr, 1986). Der hohe A/T-Gehalt läßt darauf von schließen, diese Sequenz vom 3'Ende der K2 RNA stammt. Ein daß

- 48 ---

poly A-Additionssignal und eine poly A Sequenz ist jedoch nicht enthalten. Homologie zu einem bereits bekannten Gen wurde nicht gefunden.

Im Fall von Kl,4 und 5 fiel der Computer Sequenzvergleich negativ aus. K5 enthält ein poly A-Additionssignal und eine poly A Sequenz kodiert daher für das 3'Ende dieser TPA induzierund baren mRNA. Kl zeigt eine 15 bp Homologie zum 5'Ende von K5. Möglicherweise repräsentieren daher Kl und K5 das 3'Ende der gleichen mRNA Spezies. Da die Orientierung der Kl Sequenz auf dem Transkript nicht bekannt ist, kann dies jedoch nur vermutet werden. Die Sequenz von K4 enthält weder ein poly A-Additionssignal und poly A Sequenz, noch zeigt sie Homologie zu den anderen cDNA Sequenzen. Dadurch ist eine Lokalisierung dieser Sequenz auf dem komplementären Transkript nicht möglich. Mit Ausnahme von K3 (=MT IIa) handelt es sich bei den isolierten CDNA Klonen also um Sequenzen von bisher nicht charakterisierten Genen.

Kodierungspotential der RNAs, welche an die Klone 1, 4, 5 und 6 hybridisieren: "Hybrid selected Translation"

Neben der Verwendung als Hybridisierungsprobe zur Sichtbarmachung der spezifischen Transkripte können die cDNA Klone auch dazu verwendet werden, um durch eine "hybrid selected Translation"-Analyse das Translationsprodukt dieser spezifischen mRNAs zu bestimmen.

Dazu wurde Plasmid DNA der verschiedenen Klone an ein Nitrozellulose Filter fixiert und mit poly A⁺ RNA aus TPA behandelten Zellen (8 Std, 20ng/ml) hybridisiert. Im Fall des durch TPA negativ regulierten Klons K6 wurde poly A⁺ RNA aus unbehandelten Zellen verwendet. Zur Bestimmung unspezifischer Hybridisierung von RNA an Plasmid DNA wurde DNA der Vektoren pBR

— 49 —

<u>Abb.5</u> "Hybrid selected translation" der cDNA Klone Kl,4,5,6 (Identifizierung von XHFl-spezifischen Klonen)

A,B: Je 10 µg Plasmid DNA der cDNA Klone 1,4,5 und 6 und der Kontrollplasmide pBR 322 und pUC 9 wurden linearisiert und an ein Nitrozellulose Filter gebunden (\emptyset 0.5cm). Der Filter, der K6 DNA enthielt, wurde mit 30 µg poly A* RNA aus Kontrollzellen (Co) hybridisiert. Für die restlichen Filter wurde poly A* RNA aus TPA behandelten Fibroblasten (8 Std, 20ng/ml) verwendet. Nach der Elution der spezifisch hybridisierenden mRNAs wurden diese in Anwesenheit von ³⁵S-Methionin in einem Retikulocyten-System in vitro translatiert, und die Proteine in einem 10% Polyacrylamid Gel aufgetrennt. Die Verwendung von Gesamt-poly A* RNA (0.3µg) und Hundemikrosomen (-,+) ist angegeben.

C: In vivo markiertes XHF1 wurde aus einer 2-dimensionalen Gelelektrophorese (vergl.Abb.1) ausgeschnitten und einer zeitlich limitierten Proteolyse mit Staphylococcus aureus V8 Protease unterworfen. Gleichzeitig wurde das 54kD-(Spurl),43kD- (2) und 38kD-(3) in vitro Translationsprodukt der K4 spezifischen mRNA ausgeschnitten, und eine limitierte Proteolyse durchgeführt. Die dadurch erzeugten Peptide wurden in einem 15% Polyacrylamid Gel aufgetrennt. Die Pfeile markieren die Position der nicht verdauten Proteine. Die Größenangabe des Molekulargewichtstandards ist in kD. 322 und pUC 9 unter den gleichen Bedingungen analysiert. Nach der Hybridisierung wurde die nicht gebundene RNA vom Filter abgewaschen und die spezifisch hybridisierende RNA anschließend vom Filter eluiert und in einem Retikulocyten-System in vitro translatiert (Abb.5).

Unter den gewählten Bedingungen tritt keine unspezifische Hybridisierung an Plasmid DNA auf. Beim Vergleich der Analyse der

Vektor DNA mit dem in vitro Translationsansatz, in den neben ³⁵S-Methionin nur H₂O zugegeben wurde, tritt kein zusätzliches Produkt auf. Bei den markierten Proteinen dieses Ansatzes handelt sich um Translationsprodukte von Retikulocyten-spezifischen es mRNAs, die während der Analyse gleichfalls translatiert wurden. Klon K6 selektioniert eine mRNA, die für ein Protein mit einem Molekulargewicht von 45 kD kodiert. Dieses Protein ist auch in der Auftrennung von in vitro translatierter poly A* RNA aus unbehandelten Zellen sichtbar. Die Menge dieses Proteins ist nach Verwendung von poly A⁺ RNA aus TPA behandelten Zellen vermindert.

Die cDNA Klone 1,4 und 5 selektionieren die gleiche mRNA Spezies, die für ein Protein mit einem Molekulargewicht von ca. 54 kD kodiert. Daneben treten zwei weitere Translationsprodukte mit einem Molekulargewicht von 43 kD und 38 kD auf. Das 54 kD Protein hat die gleichen elekrophoretischen Eigenschaften wie das bereits beschriebene Protein XHFL. Dieses Protein ist als in vitro Translationsprodukt von poly A⁺ RNA aus Kontrollzellen kaum sichtbar; bei Verwendung von poly A⁺ RNA aus TPA behandelten Zellen jedoch stark induziert (Abb.5 und Schorpp et al., 1984). Als sezerniertes Protein wird XHFl in einer Vorstufe als 54 kD Protein synthetisiert, von dem das für sezernierte Proteine typische Signalpeptid abgespalten wird ("processing"). Dieses ca. 52 kD Protein ist erhöhten Mengen im Medium von TPA und in UV-behandelten Zellen nachweisbar (Abb.l und Herrlich etal., 1986). Im in vitro Translationssystem wird dieses Processing nicht durchgeführt. Durch Zugabe von Mikrosomen kann jedoch auch dieser Schritt nachvollzogen werden (Schorpp et al., 1984). Abb.5b zeigt, daß durch Zugabe von Mikrosomen XHFl in seine reife Form umgewandelt wurde. Der gleiche proteolytische Vorgang (wenn auch unvollständig) ist bei dem in vitro Translationsprødukt der K4

--- 52 ---

spezifischen mRNA nachweisbar. Die Wanderung der beiden kleineren Proteine ist durch Mikrosomen nicht beeinflußt.

Dieses Ergebnis ist ein starker Hinweis dafür, daß es sich bei den Klonen Kl,4 und 5 um XHFl spezifische Sequenzen handelt. Um diese Vermutung sicher zu machen, wurden die radioaktiv markierten Proteinflecke von

a. XHFl (als Mediumprotein, aufgetrennt in einer 2-dimensionalen Gelelektrophorese; Abb.l)

b. den 54, 43 und 38 kD in vitro Translationsprodukten aus dem Proteingel ausgeschnitten, zeitlich limitiert mit Staphylococcus aureus V8 Protease verdaut und die proteolytischen Spaltprodukte in einer l-dimensionalen Gelelektrophorese aufgetrennt (Abb.5c).

XHF1 und das K4 spezifische 54 kD in vitro Translationsprodukt proteolytische Subfragmente. Kl,4 und 5 sind bilden identische daher Teilsequenzen des XHFl Transkripts, wobei die CDNA Sequenzen von Kl und K5 das 3'Ende der RNA repräsentieren. Die Abbauprodukte des 43 kD und 38 kD Proteins sind identisch mit den niedermolekularen proteolytischen Fragmenten von XHFl bzw. des 54 kD Proteins. Es handelt sich daher bei diesen beiden Proteinen wahrscheinlich Teilsequenzen des 54 kD Proteins, die durch um proteolytische Spaltung während der in vitro Translation generiert wurden.

Die Translationsprodukte der K2 spezifischen mRNAs konnten durch diese Analyse nicht bestimmt werden (nicht gezeigt). Möglicherweise war die eukaryontischen Sequenz in Länge der diesem kurz, Klon zu um unter den gewählten Bedingungen eine spezifische Hybridisierung zu erreichen.

-- 53 ---

<u>I D E N T I F I Z I E R U N G V O N X H F 1 A L S</u> <u>M E N S C H L I C H E K O L L A G E N A S E</u>

Die Isolierung der unvollständigen XHFl-cDNA Klone Kl,4 und 5 bietet zwar die Möglichkeit, die Expression dieses Gens unter verschiedenen Bedingungen zu studieren (durch RNA Dot Blot-oder Northern Blot Analyse). Sie erlauben jedoch nicht, 2 entscheidende Fragestellungen zu beantworten:

1. Welche Primärstruktur hat das XHF1 Protein?

Die Kenntnis darüber ist die Voraussetzung, um aus dem Vergleich der Aminosäuresequenz mit anderen, bereits bekannten Proteinen möglicherweise etwas über die Funktion von XHFl aussagen zu können. Kl und K5 repräsentieren das 3'Ende der mRNA und gehören daher in einen Bereich, der nicht in Protein translatiert wird. Da Kl,4 und 5 zusammen ca. 50% der Länge der mRNA abdecken, kodiert die K4 Sequenz zumindest teilweise für XHFl Protein. Es ist jedoch nicht bekannt, welches Leseraster für die Translation benutzt wird. Außerdem kann auch keine Aussage über die Orientierung der K4 Sequenz getroffen werden, da keine Überlappung mit Kl nachzuweisen ist. Das Auftreten von Stopcodons in allen 3 Leseraster in beiden Orientierungen (Pöting,1985) ist ein zusätzlicher Hinweis darauf, daß Teile der K4 Sequenz zur nicht-translatierten Region der XHFl mRNA gehören. Da das authentische Stopcodon nicht bestimmt werden kann, ist es daher auch das COOH-terminale Ende nicht möglich, zumindest des Proteins zu bestimmen.

2. Durch Verwendung von Kl,4 und 5 war es nicht möglich, genomiische Sequenzen aus einer menschlichen Genbank zu isolieren (Baumann,1986). Die Isolierung dieser Sequenzen ist jedoch Vorraussetzung, um mögliche regulatorische Bereiche dieses Gens zu charakterisieren.

1. ISOLIERUNG DES VOLLSTÄNDIGEN XHF1-cDNA KLONS

Um die gesamte Primärstruktur des Proteins zu bestimmen, ist es notwendig. die vollständige cDNA Sequenz zu isolieren. Dieser außerdem Klon würde eine geeignetere Probe zur Isolierung genomischer Sequenzen darstellen. Diese könnten dann sehr viel einfacher und schneller charakterisiert werden (z.B. Lokalisierung der Transkriptionsstartstelle, Intron/Exon zunächst eine zweite, umfangreichere Grenzen). Ich habe daher cDNA Bank aus TPA behandelten Fibroblasten hergestellt, um dann daraus unter Verwendung der bereits isolierten XHFl-spezifischen Klone die vollständige cDNA Sequenz dieses Gens zu isolieren.

Vorbedingungen

Wichtigstes Kriterium für die Herstellung dieser 2. cDNA Bank war die Klonierung von vollständigen cDNA Sequenzen. Heidecker und Messing hatten 1983 eine Methode entwickelt, mit der es ihnen gelungen war, einen hohen Anteil an vollständigen Sequenzen zu isolieren.

<u>Abb.6</u> schematische Darstellung der Klonierung von vollständigen cDNAs.

Die einzelnen Schritte sind im Text erläutert. E,B,S und H symbolisieren die Restriktionsschnittstellen von Eco RI,Bam HI, Sal I und HindIII in der Polylinkerregion (multiple cloning site MCS) des Plasmids pSP64.

aus: Heidecker und Messing, 1983

Die Methode (Abb.6) hat im Unterschied zur konventionellen cDNA Klonierung (Abb.2) drei entscheidende Vorteile:

- 1.Die cDNAs werden direkt in den Vektor kloniert. Dadurch entfällt der Insertionsschritt der cDNAs in den Vektor.
- 2.Das Protokoll enthält einen Schritt (dG-Tailing) der auf Vollständigkeit der einzelnen cDNAs selektioniert.
- 3.Die Doppelstrangsynthese wird als letzter Schritt am rezirkulierten Plasmid durchgeführt. Es wird daher die Bildung der Haarnadelstruktur nicht benötigt, wodurch auch das 5'Ende der cDNA erhalten bleibt, das während der Beseitigung dieser Struktur durch Nuklease SI verloren geht.

Die Vektors, in den die cDNAs kloniert werden, bietet Wahl des die Möglichkeit, nach Selektion eines positiven XHFl-Klons dessen Vollständigkeit schnell zu überprüfen. Das Plasmid pSP64 besitzt in unmittelbarer Nachbarschaft zur Polylinkerregion, in die die SP6 cDNAs inseriert werden, die Promotorsequenz des Phagen (Abb.6, Abb.11). Dieser Promotor wird spezifisch von der SP6 Polymerase erkannt, wodurch es möglich ist, in einem in vitro Transkriptionsansatz vom SP6 Promotor aus, die cDNA Sequenz in dann in einem in vitro RNA umzuschreiben. Diese RNA kann Translationssystem überprüft werden, ob sie für das komplette 54 kD Protein kodiert.

Herstellung der cDNA Bank

Um aus der cDNA Bank eine große Anzahl XHFl-spezifischer Klone isolieren zu können, wurde als Matritze für die Einzelstrang-Synthese poly A⁺ RNA aus Fibroblasten verwendet, die für 12 Std mit TPA (20ng/ml) behandelt wurden; einem Zeitpunkt, bei dem die maximale Menge an XHFl-spezifischer mRNA nachgewiesen worden war (Pöting,1985). Zur Herstellung des Primers wurde das Plasmid pSP64 mit PstI geschnitten, und durch Terminale Transferase ca.50-80 dT-Reste an die 3'0H Enden angehängt.

Da nach der Einzelstrangsynthese die cDNA kovalent mit dem Vektor verbunden ist, wird nach Auftrennung in einem denaturierenden Gel die Länge der radioaktiv markierten cDNA als Größenzunahme des Vektors (3 kb) sichtbar. Die Größe der cDNAs liegt zwischen 0.5 und 2.0 kb. Ein kleiner Anteil hat eine Größe bis zu 3.5 kb (Abb.7).

<u>Abb.7</u> Größenbestimmung und Reinigung der einzelsträngigen cDNAs

Jе 10000cpm von einzelsträngigen cDNAs, synthetisiert von poly A+RNA aus TPA behandelten menschlichen Fibroblasten (München, 12 Std ,20ng/m1), wurde durch Elektrophorese in einem 1.2% alkalischen Agarosegel aufgetrennt. a:cDNAs vor dem alkalischen Sucrosegradient b:cDNAs, die nach dem Sucrosegradient für die weitere Klonierung verwendet wurden. Die Länge der cDNAs entspricht der Größenzunahme des Vektors pSP64 (3kb). Der Längenstandard ist in kb angegeben.

Die synthetisierten cDNAs wurden dann als cDNA/RNA Hybrid in die folgende "Tailing"-Reaktion eingesetzt. Das Enzym Terminale Transferase erkennnt jedoch nur solche 3'OH Enden der cDNA als Substrat, die gegenüber dem 5'Phosphatende der mRNA stumpfendig oder um wenige Basen zurückversetzt sind. Da das Ansynthetisieren einer poly-G Sequenz für die weitere Klonierung essentiell ist, werden unvollständige Sequenzen nicht kloniert.

Danach wurde das Nukleinsäuregemisch durch einen alkalischen Sucrosegradienten zentrifugiert und die cDNA haltigen Fraktionen gesammelt. Dieser Zentrifugationsschritt erfüllt 4 Aufgaben:

- 1. Anreicherung der Moleküle, die länger sind als der Vektor. Dadurch werden solche Moleküle abgetrennt, die während der Einzelstrangsynthese nicht als Primer benutzt wurden, während der dG-Tailingreaktion jedoch ebenfalls als Substrat benutzt wurden. Das Mitschleppen dieser Spezies resultiert in der Herstellung von Klonen, die als Insert nur eine polyT/polyG Sequenz enthalten.
- 2.Abtrennung der niedermolekularen DNAs die kleiner als der Vektor selbst sind (Abb.7b).
- 3.Entfernen der RNA durch alkalische Hydrolyse
- 4.Da der eingesetzte Primer an beiden 3'OH Enden poly T-Sequenzen enthält, sind nach der Synthese verschiedene cDNA Sequenzen mit dem gleichen Vektormolekül verbunden. Unter alkalischen Bedingungen werden die beiden Stränge voneinander getrennt, wodurch man Plasmidmoleküle mit einer einzelnen cDNA Sequenz erhält.

Im nächsten Schritt wurde zu der cDNA PstI geschnittenes Plasmid pSP64 zugegeben, an dessen 3'OH Enden ca.50 dC-Reste angehängt worden waren. Durch den anschließenden Dialyseschritt kommt es zu einer Rehybidisierung der Vektorsequenzen. Dadurch entstehen Mischplasmide, wobei der eine Strang am 3'OH Ende eine polyC-Sequenz und der andere Strang am 3'Ende die cDNA und eine poly-G Sequenz enthält (Abb.6).

Nach der Rezirkulierung der linearen Moleküle durch Hybridisierung der poly-C/poly-G Sequenzen folgte als letzter

Schritt der Synthese das Auffüllen des zweiten Stranges der cDNA durch DNA PolymeraseI.

Diese chimären DNAs wurden durch Transformation in Bakterien (E.coli RRl) als Einzelklone etabliert. Insgesamt konnten ca. 50 000 rekombinante Klone isoliert werden, wobei die Transformationseffizienz der Bakterien zwischen 8x10⁷ und 2x10⁸/µg zirkuläres Plasmid pSP64 lag.

Isolierung von XHFl-spezifischen cDNA Klonen

Ausgehend von ca. 5000 Kolonien konnte ich durch Koloniehybridisierung 12 Klone isolieren, die ein sehr starkes Hybridisierungssignal mit der radioaktiv markierten K4 Sequenz zeigen (Signal a-m, Abb.8).

Abb.8 Isolierung von XHFl-spezifischen cDNA Klonen

ca. 5000 Kolonien der cDNA Bank von TPA behandelten menschlichen Fibroblasten (12 Std, 20ng/ml) wurden ausplattiert, auf ein Nitrozellulose Filter transferiert, lysiert, und die Plasmid DNA an das Filter fixiert. Die Filter wurden mit radioaktiv markierter cDNA von K4 hybridisiert. Die Pfeile markieren die spezifischen Hybridisierungssignale a-m.

Ιn 4 Fällen (Signal a,b,f,k) konnte dem Signal der korrespondierende Bakterienklon zweifelsfrei zugeordnet werden. Diese Klone wurden vermehrt und die Plasmid DNA präpariert. Die restlichen Signale konnten nicht zweifelsfrei zugeordnet werden. Fall wurden die jeweils in Frage kommenden Kandidaten In diesem als Einzelklone vermehrt und die Plasmid DNA präpariert. Diese DNAs wurden verwendet um:

- a.durch Restriktionsverdau die Länge der cDNA Sequenzen zu bestimmen
- b.durch anschließende Southern Blot Analyse die cDNA Klone zu identifizieren, die XHF1-spezifische Sequenzen enthalten.

Die PstI Schnittstelle, über die die cDNA Bank in pSP64 kloniert wurde (und dadurch verlorengegangen ist) wird zum einen von der Erkennungssequenz des Enzyms HindIII, zum anderen von einer Reihe von Restriktionsschnittstellen (XbaI...Eco RI) flankiert (Abb.ll). Durch Doppelverdau der Plasmid DNA mit HindIII und Eco RI wird die gesamte cDNA Sequenz aus dem Vektor ausgeschnitten, wodurch sich die Länge der cDNAs leicht bestimmen läßt (Tabelle 2). In jeder Gruppe von DNAs, die ein Hybridisierungssignal repräsentiert, befindet sich ein Klon, der neben dem 3 kb Vektorfragment ein 1.8 kb und ein 0.3 kb cDNA Insert liefert (außer Signal b und h). Der DNA Verdau dieser Klone mit HindIII führt zur Linearisierung des Plasmids (nicht gezeigt). Die Länge der übrigen cDNA Inserts liegt zwischen 0.1 kb und 2.0 kb. Einige Klone enthalten keine cDNA (oder möglicherweise nur eine poly-T/poly-G Sequenz).

Signal	Klon	Insert-Größe (bp)	Signal	Klon	Insert-Größe (bp)	Signal	Klon	Insert-Größe (bp)
a	1	1,8; 0,3	f	13	1,8; 0,3	k	25	1,8; 0,3
b	2	1,0		14	0,7		26	
1	3	1,8; 0,3	g	15	1,8; 0,3	,	27	
с	4	* ~		16		I	28	
	5	0,1		∫ 17	1,1		29	1,7
	6	1,6	ħ	18	1,2		[30	
L	7	1,8; 0,3	n	19		m	31	1,8; 0,3
۵	8			20	0,5		32	
	9			21	1,5			
	(10	0,2		22				
е	{11		i	23	1,8; 0,3			
	12	1,8; 0,3		24	2,0			

<u>Tabelle 2</u> Insert Größe der möglichen XHFl-spezifischen cDNA Klone pX1-pX32

berechnet durch die elektrophoretische Auftrennung von HindIII/Eco RI verdauter Plasmid DNA. In allen Fällen tritt zusätzlich das 3 kb Vektorfragment (pSP64) auf.

Die Southern Blot Analyse der Klone (Abb.9) zeigt, daß der XHFl spezifische Subklon K4 mit dem 1.8 kb Fragment hybridisiert. Das 0.3 kb Fragment zeigt in keinem Fall Hybridisierung. Daneben treten zwei Klone auf (Nr.2,18), die eine unvollständige XHFl Sequenz enthalten (1.2 kb bzw. 1.0 kb).

Abb.9 Nachweis von XHF1-spezifischen cDNA Sequenzen

Je 500ng Plasmid DNA der Klone 1-32 wurde mit den Restriktionsenzymen HindIII und Eco RI verdaut und in einem 0.8% Agarose Gel elektrophoretisch aufgetrennt. Nach Transfer und Fixierung der DNA wurden die Nitrozellulose Filter mit radioaktiv markierter cDNA von K4 hybridisiert. Die Zuordnung der Klone 1-32 zu den Hybridisierungssignalen a-m ist durch Klammern am unteren Rand angegeben. Als Größenmarker wurde Hind III- verdaute DNA des Phagen & verwendet; die Länge der Fragmente ist in kb angegeben.

Die klonierte cDNA Sequenz im pSP64 Plasmid kann in zwei Orientierungen vorliegen (Abb.6). Für das Herstellen einer Restriktionskarte und für die in vitro Transkription ist es jedoch notwendig, Kenntnis über die Orientierung der cDNA in Bezug auf die Polylinkerregion bzw. auf den SP6 Promotor zu haben.

Der Verdau der XHFl-positiven Plasmide mit PstI führte in allen Fällen zu einer Linearisierung der DNA (nicht gezeigt). Diese Schnittstelle liegt in der cDNA in einem Bereich, der homolog zur K4 Sequenz ist. Ein zusätzlicher Verdau mit HindIII resultiert im Ausschneiden einer XHFl Teilsequenz, die, abhängig von der Orientierung, 1.5 kb oder 0.6 kb lang ist (Abb.11). Durch Hybridisierung mit dem XHFl Subklon K5, der das 3'Ende der mRNA repräsentiert, wurde geprüft, ob die ausgeschnittene oder die noch mit dem Vektor verbundene cDNA Sequenz für das 3'Ende der mRNA kodiert (Abb.10).

<u>Abb.10</u> Bestimmung der Orientierung der XHFl-spezifischen cDNA Sequenzen im Plasmid pSP64

Je 500ng Plasmid DNA der angegebenen wurde mit den Restriktions-Klone enzymen HindIII und PstI verdaut und in Gel 0.8% Agarose elektroeinem phoretisch aufgetrennt. Nach Transfer Fixierung der DNA an ein und Nitrozellulose Filter wurde dieser mit markierter K5-DNA hybriradioaktiv disiert. Als Negativkontrolle wurde Plasmid DNA von pX4 (Abb.9) verwendet. Als Größenmarker wurde HindIII verdaute DNA des Phagen & aufgetragen. Die Länge der Fragmente ist in kb.

K5 hybridisiert im Fall von Klon 1 und 15 mit dem 3.6 kb Fragment. Die beiden unvollständigen cDNA Klone 2 und 18 zeigen das gleiche Verhalten. Die cDNA Sequenzen der Klone 3,7,12,13 und 31 liegen in der umgekehrten Orientierung vor. Bei diesen Klonen enthält das ausgeschnittene 0.6 kb HindIII/PstI Fragment die Sequenzen des 3'Endes der mRNA. Das Arrangement der verschiedenen Klone ist in Abb.11 zusammengefaßt.

Abb.11 Anordnung der XHF1-spezifischen cDNA Klone in pSP64

links: Restriktionskarte des Vektors pSP64 (Melton et al.,1984). Das schwarze Dreieck gibt die Insertionsstelle der cDNAs an. Der Pfeil symbolisiert den Startpunkt und die Orientierung der SP6 Polymerase.

Mitte, rechts: XHFl-spezifische cDNA Klone in pSP64. Der ausgeschnittene Bereich gibt das HindIII/PstI Subfragment der XHFl Sequenz an (vergl.Abb.10). Der schraffierte Abschnitt symbolisiert den Hybridisierungsbereich des XHFl spezifischen Subklons K5. MCS= M13 Polylinkerregion.

Um zu beweisen, daß die XHFl-spezifischen Klone die vollständige cDNA Sequenz enthalten (außer Klon 2 und 18), wurde die in vitro Transkription/in vitro Translationsanalyse durchgeführt. Für die Synthese der RNA kann jedoch nur diejenige Orientierung verwendet werden, bei der der SP6 Promotor in Nachbarschaft zum 5'Ende der cDNA liegt (Abb.11). Nur in diesem Fall wird eine RNA synthetisiert, die mit der XHFl-mRNA identisch ist. Die umgekehrte Orientierung führt zur Synthese von "anti-sense" RNA. Daher wurde der Klon pX15 für die in vitro Transkription verwendet.

<u>Abb.12</u> in vitro Translation von in vitro transkribierter XHF1-spezifischer cDNA

Das Plasmid DNA des Klons pX15 (Abb.11) wurde linearisiert und als Matritze zur Herstellung von in vitro transkribierter RNA (mit SP6 Polymerase) benutzt. Diese wurde in einem Retikulocyten-System in vitro translatiert und auf einem 10% SDS-Polyacrylamid Gel aufgetrennt (3). Die Pfeile markieren die spezifischen Translationsprodukte dieser RNA. In (1) wurde 0.5µg tRNA; in (2) 0.3µg poly A* RNA aus TPA menschlichen behandelten Fibroblasten (20ng/ml, 8Std) in vitro translatiert. Der Längenstandard ist in kD angegeben.

Die synthetisierte RNA kodiert für ein 54 kD Produkt, das die gleichen elektrophoretischen Laufeigenschaften wie in vitro translatiertes XHFl besitzt (Abb.12). Gleichzeitig treten die 43 kD und 38 kD Proteine auf, die bereits als proteolytische Spaltprodukte des 54 kD Proteins identifiziert wurden (Abb.5). Das Ergebnis zeigt, daß die pX15 Sequenz die komplette translatierte und 3'nicht translatierte Region der XHF1-mRNA enthält. Der Nachweis Vollständigkeit 5'nicht der der translatierten läßt sich aus dieser Analyse nicht Region ableiten. Mit Sicherheit erlaubt jedoch die DNA Sequenzierung dieses Klons durch Umschreibung der DNA Sequenz in die Aminosäuresequenz die Primärstruktur von XHFl zu bestimmen.

2. SEQUENZANALYSE DES VOLLSTÄNDIGEN XHF1-cDNA KLONS

Die beiden etablierten Methoden der DNA Sequenzierung (Sanger, 1977; Maxam und Gilbert,1980) ermöglichen maximal zwischen 250 und 350 bp einer DNA Sequenz zu bestimmen. Um die gesamte XHF1 Sequenz abdecken zu können, war es notwendig, sie in kleinere Subfragmente zu zerlegen, und diese getrennt zu analysieren. Es wurde daher zuerst eine Restriktionskarte der XHF1 cDNA erstellt, um anhand dessen geeignete Restriktionsfragmente in die Sequenzierungsvektoren pEMBL 8+ und pEMBL 9+ (Dente et al.,1983) unterklonieren zu können.

Die Insertion der cDNA Sequenzen in den Polylinker von pSP64 bietet die Möglichkeit, durch Verdau mit einem Restriktionsenzym, dessen Erkennungssequenz im Polylinker liegt (und im Vektor nicht vorkommt), eine weitere Schnittstelle in der cDNA nachzuweisen (Tabelle 3).

Restriktionsenzym	Fragmentgröße (kb)a					
	рХ7			pX15		
XbaI	3,4; 1,5;	0,2	3,2;	1,5;	0,4	
Eco RI	4,8; 0,3		3,3;	1,8		
SacI	4,0; 1,1		4,1;	1,0		
Bam HI	3,8; 1,3		4,3;	0,8		
HindII	2,0; 3,1		5,0;	0,2		
HindIII/PstI	4,5; 0,6		3,6;	1,5		
HindIII/Bg] II	4,8; 0,3		3,3;	1,8		
	1					

<u>Tabelle 3</u> Kartierung der XHFl-spezifischen cDNA Klone pX7 und pX15

a: Berechnet durch elektrophoretische Auftrennung von Plasmid DNA, die mit den angegebenen Restriktionsenzymen verdaut wurde.

Beim Klon pX15 gibt die Länge des ausgeschnittenen Fragments die Distanz der Schnittstelle vom 3'Ende der XHFl Sequenz an. Beim umgekehrt inserierten Klon pX7 gibt sie die Distanz vom 5'Ende bis zur Schnittstelle an. Die sich daraus abgeleitete Restriktionskarte und die Subklonierung in die Vektoren pEMBL ist in Abb.13 zusammengefaßt. Im Bereich zwischen der 8+,9+ Eco RI und der SacI Schnittstelle liegt keine geeignete Restriktionsschnittstelle, die einfache Subklonierung eine ermöglicht. Um diesen Bereich abdecken zu können, wurde, ausgehend von der Eco RI Schnittstelle, durch Verdau mit der Exonuklease Bal 31 eine Reihe von überlappenden Deletionsmutanten erzeugt (Abb.13).

Die Sequenzierung der Konstrukte nach der Kettenabbruchmethode (Sanger,1977, Dente et al.,1983) erlaubte es, die gesamte XHFl Sequenz bis auf zwei kurze, je ca.100 bp lange Abschnitte am 5'Ende zu sequenzieren (Abb.14).

Zur Sequenzierung dieser Bereiche (- \rightarrow in Abb.14) wurde a.der vollständige cDNA Klon pX15

b.der Eco RI Subklon (1.8 kb Insert) in pEMBL 8+ (Abb.13)

mit HindIII linearisiert, dephosphoryliert und mit Bgl II verdaut. Das 1.8 kb Fragment (a) bzw. das 1.5 kb Fragment (b) wurden gereinigt, spezifisch an der HindIII Schnittstelle radioaktiv markiert, und mit Hilfe der Basenmodifikationsmethode (Maxam und Gilbert, 1980) analysiert. <u>Abb.13</u> Klonierung des XHFl-spezifischen cDNA Klons (pX15) in pEMBL 8*,9*

oben links: Restriktionskarte des Plasmids pEMBL 8⁺ (Dente et al.,1983). Die Orientierung des Polylinkers ist vergrößert dargestellt.

oben rechts: Sequenz des Polylinkerbereichs in pEMBL 8*,9*. Die eingerahmte Sequenz zeigt die Bindungsstelle des M13 Sequenzierprimers (13mer). Der Pfeil gibt die Richtung der Sequenzierreaktion an.

unten: Restriktionskarte von pX15 (aus Tab.3 berechnet) und Subklonierung der cDNA Fragmente in pEMBL 8⁺,9⁺. Der schraffierte Bereich gibt die Sequenz des Polylinkers an (nicht maßstabsgetreu). Der Pfeil markiert die Bindungsstelle des Sequenzierprimers und die Richtung der Sequenzierung. Das schwarze Dreieck symbolisiert die HindIII Schnittstelle.

Abb.14 Sequenz des XHF1-spezifischen cDNA Klons pX15

a: Restriktionskarte von pX15. Die Pfeile darüber geben die Richtung und die Länge des sequenzierten Bereiches an. Die Sterne kennzeichnen die Startstelle der Sequenzierung von Bal 31 Deletionsmutanten. \longrightarrow =Sequenzierung nach Sanger, - - > =Sequenzierung nach Maxam und Gilbert. Die schraffierten Bereiche am 5'und 3'Ende der cDNA kennzeichnen polyC/polyA Sequenzen. MCS =Polylinkerregion in pSP64. Die begrenzte Linie unterhalb der Restriktionskarte gibt den für XHF1 Protein kodierenden Bereich der cDNA an. Darunter ist die Lage der XHF1 Subklone K1,4 und 5 angegeben.

b: Nukleotidsequenz und die davon abgeleitete Aminosäuresequenz von XHF1. Die Numerierung bezieht sich auf die Nukleotidsequenz. Die Konsensussequenz der Ribosomenbindungsstelle und des poly A-Additionssignals sind unterstrichen. Die Pfeile markieren die Grenzen der XHF1 Subklone K1,4 und 5.

1470 AAAGCTANTAGCTGGTTCAACTGCAGGAAAAATTGGAACATTACTAATTTGAATGGAAAACACATGGTGTGGAGTCCAAAGAAGGTGTTTTCCTGAAGAACTGTCATTTICTCAGTCATTT K A N S W F N C R K N 1570 TTAACCTCTAGAGICACTGATACACAGAGATATAAATC<u>TTATTAT</u>ACCTCAGTTIGCATATTTATACTATTTAGAATGIAGCCCTTTTTUGACTGATATAATTTAGTTCCACAAAIGGT 1710 1740 1770 1800 GGGTACAAAABTCAAGTTGTGGGCTTATGGATTCATATAGGCCAGAGTTGCAAAGATTCTTTCCAGAGTAGCACCTCTGACGTTGACGAGAGCAGCCTTCAGTGACAAACATATC 1870 1820 CTTTCANGACAGBAAAGAGACATGAGTCTTTGCCGGAGGAAAAGCAGCTCAAGAACACACAGGTCACTGGTGTCACCCCIGGATAGGCAAGGGATAACTCTTCTAACACAAA L 1 2010 AUUA

Die gesamte XHF1 Sequenz hat eine Länge von 2054 bp. Sie wird am 5'Ende von 18 dC-Resten flankiert, die während des Selektionsschrittes der cDNA Klonierung (dG-Tailing) angehängt wurden (in Abb.14b nicht eingezeichnet). Das XHF1 Transkript enthält nicht-translatierte 5'Region eine 66 die zwischen von bp, Position 26 und 30 (5'CCATC 3') die Konsensussequenz einer

а

b

Ribosomenbindungsstelle (Kozak, 1984) enthält. Daran schließt sich ein offenes Leseraster von ca. 1.4 kb an (Position 67 bis 1473), das 469 für Protein von Aminosäuren mit ein einem Molekulargewicht von 51910 Dalton kodiert. Die 3'nichttranslatierte Region der RNA hat eine Länge von 491 bp. Sie enthält neben dem poly A-Additionssignal und einer poly A Sequenz das Motiv 5'TTATTTAT 3', das in mehreren Kopien in der 3'nicht translatierten Region von RNAs gefunden wurde, die für tumor factor, colony stimulating factor, Interleukin necrosis 1, Fibronectin und verschiedene Interferone kodieren (Caput et al.,1986).

Die Positionen der XHFl-Subklone Kl,4 und 5 konnten festgelegt werden. Kl (Pos. 1741 bis 1877) und K5 (Pos. 1863 bis 1987) sind in der 3'nicht translatierten Region lokalisiert. K4 (Pos. 831 bis 1703) enthält die Sequenz für das COOH-terminale Ende des Proteins und einen Teil der 3'nicht translatierten Region.

3. AUFKLÄRUNG DER IDENTITÄT VON XHF1 DURCH PROTEINSEQUENZ-

VERGLEICH

Der der DNA-und Proteinsequenz von XHFl mit bereits Vergleich bekannten Sequenzen in einer Computer Datenbank war negativ. Ein Vergleich der Aminosäuresequenz mit unveröffentlichen Proteinsequenzdaten von menschlicher-und Kaninchen Kollagenase (G. Murphy und A. Docherty, pers. Mitteilung) zeigte jedoch, daß der sequenzierte amino-terminale Bereich der menschlichen l bis 19) 100% Kollagenase (Aminosäure homolog zur XHF1 Proteinsequenz von Aminosäure 20 bis 38 war (Abb.15).

1 MHSFPPLLLLLFWGVVSHSFPATLETQEQDVDLVQKYL FPATLETQEQDVDLVQKYL 1 KOLLAGENASE

<u>Abb.15</u> Vergleich der aminoterminalen Proteinsequenz von XHF1 und menschlicher Kollagenase

Da die Proteinsequenzierung der Kollagenase an gereinigtem Protein aus dem Kulturmedium von Fibroblasten vorgenommen wurde, stellen die Aminosäuren l bis 19 der XHFl Sequenz das Signalpeptid dar, das beim Sezernierungsprozeß abgespalten wird. Dieses Signalpeptid mit einem Molekulargewicht von 2200 Dalton hat die typischen hydrophoben Eigenschaften (Watson et al., 1984), und die Spaltstelle zwischen Signalpeptid und sezerniertem Protein stimmt mit der beschriebenen Konsensussequenz (Von Heijne, 1986) überein. Das ins Medium sezernierte Protein besteht aus 450 Aminosäuren mit einem Molekulargewicht von 51750 Dalton, und stimmt somit mit der Größe von XHFl im Kulturmedium von TPA-und UV behandelten Zellen überein.

4. STRUKTURMERKMALE DER MENSCHLICHEN KOLLAGENASE

Das Enzym Kollagenase gehört zu der Familie der Metalloproteasen und spielt die entscheidende Rolle beim Abbau von Kollagen in der extrazellulären Matrix (Murphy und Reynolds, 1985). Gleichzeitig zur Isolierung des Kollagenase cDNA Klons waren cDNAs von einer weiteren Metalloprotease, Stromelysin, aus Ratte (Matrisian et al., 1985), Kaninchen und Mensch (G.Murphy und A. Docherty, per. Mitteilung) isoliert worden. Durch Vergleich der Primärstruktur von menschlicher Kollagenase mit den Stromelysin-Ssequenzen der verschiedenen sich einige Spezies (Abb.16) lassen Strukturmerkmale der Kollagenase ableiten:

— 73 —

003	T T L S DA T G V W T S H S.E AG MKSLPILLLLCVAVCS.A YPLDGAARGEDTS	30
d	MHSFPPLLLLLFWQVVSHS FPATLETQEQDVD	32
а b 0	N D . L Q N E K S E. L G E TKK S . MNLV.QKYLENYYDLKKDVKQFVTRKDSGPVVKK	63
ત	LV.QKYLEKYYNLKNDGRQVEKRRNSGPVVEK	63
ар	Q KM N M L H REMOKFLALIVTAKLDSDTLEVMRKPRCGVPDVG	98
a	IIIIIIIIIIIIIIIIIIIIIIIIII LKQMQEFFGLKVTGKPDAETLKVMKQPRCGVPDVA	89
a b		
a	G FVLTEGNPRWEGTHLTYRIE <u>NYT</u> PDLPRADVDH	132
~	I K G G	
0 0.	I R IS	188
d	LILL LILL LILLILL LILLILL LI AIEKAFQLWS <u>NVT</u> PLTFTKVSEGQADIMISF.VRG	166
8	NS	
0	EHODFYPFDGPGNYLAHAYAFGPGINGDAHFDDDE	201
d	DHRÓNSPFÓGPGGNLÁHÁFQPGPGÍGGÓÁHFÓEHE	201
οđ	R D V L A QWTKDTTGTNLFLVAAHEIGHSLGLFHSANTEALM	236
d	RWTNNFTEYNLHRYAAHELGHSLGLSHSTDIGALM	236
£	TETHEIGHALGLSH	
α	V K S A H [.] VD TE D Yplyhsltdltrfrlsqddingiqslygpppdspe	271
ત	YPSYTFSODVQLAQDDIDGIQAIYGRSQN	265
рđ	VLV KSNSLD E LPM SS V TPLVPTEPVPPEPGTPANCDPALSFDAVSTLRGEI	308
a	. PVQP IGPQTPKACDSKLTFDAITTIRGEV	294
ь	F TF GFY NM	
a	LIFKDRHFWRKSLRKLEPELHLISSFWPSLPSGVD	341
a	MFFKDRFYMRTNPFYPEVELNFISVFWPQLPNGLE	329
0	AAYEVTSKDLVFIFKGNQFWAIRGNEVRAGYPRGI	376
d	<i>ĂĂŶ</i> ĖFADRĎEŸRFĖŔĠŇKYŴĂŸQĠQNŸĿHĠŶĖKDĬ	364
р	L E Q L DQK F . HTLGFPPTVRKIDAAISDKEK <u>NKT</u> YFFVEDKYWR	410
a	.YSSFGFPRTYKHIDAALSEENTGKTYFFYANKYWR	399
ъ	KQ DE RK N GT V A FDEKRNSMEPGEPKQIAEDFPGIDSKIDAVFEEFG	445
a	11 11 11 11 11 11 11 11 11 11 1 Ydeykrsmdpgyfkmiahdffgighkydavfmkdg	434
ь	L S G IL F	477
-	FFIFFIGSGLEFDPNAKKVTHTL.KSNSWLNC	
a	JE IEFNGIRGIKEDE, KTRRIGTGGRANBWENCRRN	

<u>Abb.16</u> Primärstruktur von Säuger Metalloproteasen

abgeleitete Aminosäuresequenz von Von der cDNA Sequenz menschlichem Stromelysin (c) und menschlicher Kollagenase (d). Die speziesspezifischen Aminosäureaustausche im Kaninchen- (a, aminoterminale Hälfte) und Ratten-Stromelysin (b) sind angegeben. Das ausgefüllte Dreieck markiert die Spaltstelle des Signalpeptids in der Kollagenase. Die Pfeile markieren die Spaltstelle der in vitro Aktivierung. Die umrahmten Sequenzen markieren die vermutliche Zink-bindende Region der Kollagenase und Stromelysin; außerdem die homologe Sequenz im Thermolysin (e) Serratia-Metalloproteinase (f). und Die potentiellen Glykosilierungsstellen sind unterstrichen. Die Cysteine sind mit einem Stern gekennzeichnet.

a) Die Aminosäuresequenz von Metalloproteasen ist sehr konserviert. Die Homologie zwischen Stromelysin und Kollagenase beim Mensch beträgt 55%. Darin enthalten sind die Positionen der 3 Cysteine (Aminosäure 92, 278 und 466 bei der Kollagenase) und eine der beiden potentiellen Glykosilierungsstellen (Winzler, 1973) am Asparagin in Position 120.

b) Ein stark konservierter Bereich befindet sich zwischen Aminosäure 215 und 228. Die Sequenz hat starke Ähnlichkeit mit der Zink-bindenden Region der bakteriellen Metalloprotease Thermolysin und einer Metalloprotease aus Serratia (Nakahama et al.,1986).

c) Die sezernierte Form der Kollagenase (Proenzym) wird erst durch Abspaltung von Aminosäuren am amino-terminalen Ende in seine aktive Form überführt (Valle und Bauer, 1979). Dieser Schritt kann in vitro durch Behandlung des Proenzyms mit 4-Aminophenyl-Quecksilberacetat (APMA) nachvollzogen werden (Cawston und Murphy, 1981). Die Proteinsequenzierung dieser aktivierten Form der Kollagenase zeigt, daß das amino-terminale Ende mit der Aminosäure 100 der XHF1 Sequenz identisch ist (G.Murphy und A.Docherty, pers. Mitteilung). Dies bedeutet, daß von sezernierten Protein die Aminosäuren 20 bis dem 99 abgespalten werden, und es dadurch in die aktive Form mit einem Molekulargewicht 42550 Dalton überführt von wird. In unmittelbarer Schnittstelle befindet Nachbarschaft zur sich zwischen Position 90 und 97 eine Sequenz von 8 Aminosäuren, die 100% Homologie zwischen Kollagenase und Stromelysin der verschiedenen Spezies aufweist.

<u>REGULATION DER EXPRESSION DES</u> <u>KOLLAGENASE GENS</u>

1. <u>INDUKTION DES ENDOGENEN KOLLAGENASE GENS DURCH KARZINOGENE</u> UND TUMORPROMOTOREN

Die Induktion der Kollagenase durch TPA und Karzinogene war durch die erhöhte Menge an XHFl Protein nachgewiesen worden (Mallick et al.,1982; Schorpp et al.,1984). Um den Verlauf der Induktion auf mRNA Ebene zu untersuchen, wurden zu verschiedenen Zeiten nach Behandlung der Zellen die RNA präpariert und die Menge der Transkripte durch Hybridisierung mit einer radioaktiv markierten Kollagenase Probe bestimmt. Gleichzeitig wurde unter den gleichen Bedingungen untersucht, wie sich die Expression des MT IIa Gens verändert.

Kinetik der TPA Induktion

Abb.17 Kinetik der TPA Induktion

wachsende Logarithmisch menschliche Hautfibroblasten (Berlin-2) wurden mit TPA behandelt (20ng/ml) und zu den markierten Zeitpunkten (o,x) nach TPA Zugabe die RNA Zellen isoliert. Die der Menge an spezifischen Kollagenase-und MT IIa Transdurch RNA Dot Blot und kripten wurde Hybridisierung mit nick translatierter cDNA dieser Gene bestimmt. Die Intensität der Hybridisierungssignale wurde mit einem Densitometer (Joyce Loebel) gemessen und als Prozent des Maximalwertes des jeweiligen Gens berechnet.

Der zeitliche Verlauf der TPA induzierten Änderung der Menge an Kollagenase-spezifischer mRNA (Abb.17) zeigt, daß eine lag-Phase zwischen 30 Minuten und 1 Stunde auftritt; eine leicht erhöhte Menge an Transkripten ist erst eine Stunde nach TPA Behandlung nachzuweisen (siehe auch Abb.23), die in der Folgezeit bis 10 Stunden nach TPA Behandlung zunimmt und zwischen 10 und 16 Stunden ein Plateau erreicht. Die Induktion ist transient. 36 bis 48 Stunden nach TPA Zugabe entspricht die Menge an Transkripten wieder dem Wert von unbehandelten Zellen erreicht (Pöting,1985).

Dagegen weist die Induktion des MT IIa Gens keine lag-Phase auf (Abb.17). Schon nach 30 Minuten ist eine erhöhte Menge an MT IIa mRNA nachweisbar (nicht gezeigt), dessen Maximum bei 8 Stunden nach TPA Behandlung liegt. Nach etwa 24 Stunden entspricht die Menge der spezifischen Transkripte wieder dem Ausganswert (Pöting,1985).

Induktion durch TPA in Gegenwart eines Inhibitors der

Proteinsynthese

Das Auftreten einer lag-Phase könnte ein Hinweis darauf sein, daß zur Induktion der Kollagenase die Synthese von zellulären Proteinen nötig ist. Um dies zu prüfen, wurde während der TPA Behandlung Proteinsynthese-Inhibitor gleichzeitig der Cycloheximid in einer Konzentration die zugegeben, die Proteinsynthese in der Zelle auf weniger als 10% reduziert. Abb.18a zeigt, daß die TPA vermittelte Induktion der Kollagenase in Gegenwart von Cycloheximid stark reduziert wird (siehe auch Abb.23). Dagegen wird die Induktion des MT IIa Gens durch Cycloheximid nicht reduziert; vielmehr kommt es zu einer leichten Verstärkung (ca.2 fach) der TPA Induktion. Allein zugegeben hat

Cycloheximid keinen Einfluß auf die Expression der beiden Gene.

A: Einfluß von Cycloheximid auf die TPA vermittelte Induktion von Kollagenase und MT IIa

Logarithmisch wachsende primäre menschliche Hautfibroblasten (München) wurden mit TPA (b, 20ng/ml), Cycloheximid (c, 10µg/ml) oder TPA plus Cycloheximid (d) behandelt. a:nicht behandelte Zellen. Die Behandlungsdauer betrug jeweils 6 Std.

B: TPA vermittelte Induktion von Kollagenase in Ruhezellen. Logarithmisch wachsende menschliche Fibroblasten (München) wurden durch 48-stündige Inkubation in serumfreiem Medium in der Go-Phase des Zellzyklus arretiert (a) und anschließend für 6 Std mit TPA (d, 20ng/ml) oder frischem Kulturmedium (e) behandelt.

A,B: Die angegebene Menge an RNA wurde durch Dot Blot an ein Nitrozellulose Filter fixiert und mit nick translatierter cDNA von MT IIa (K3) oder Kollagenase (K4) hybridisiert.

Induktion durch TPA in wachsenden und in Ruhezellen

Um zu überprüfen, ob der Wachstumszustand der Zellen einen Einfluß auf die TPA vermittelte Induktion der Kollagenase (und MT IIa) hat, wurde die Menge an spezifischen Transkripten nach TPA Behandlung in wachsenden Zellen, und in Zellen, die durch 48 stündiges Kultivieren in Medium ohne Serum in der Go-Phase des Zellzyklus arretiert wurden, durch RNA Dot Blot Hybridisierung bestimmt (Abb.18).

Sowohl für die Kollagenase als auch für MT IIa verläuft die

-- 78 ---

Induktion durch TPA unabhängig vom Wachstumszustand und Zellzyklusphase. Infolge der niedrigeren Basalexpression in Ruhezellen liegt der Induktionsfaktor der Kollagenase nach 6 stündiger TPA Behandlung in Ruhezellen (40 fach) etwas über dem in wachsenden Zellen (25 fach). Serumbehandlung der Go arretierten Zellen über den gleichen Zeitraum erhöht die mRNA Menge 3 fach (Kollagenase) bis 4 fach (MT IIa), wodurch etwa die Menge an Transkripten in wachsenden Zellen erreicht wird.

Induktion durch UV-Licht, Mitomycin C, Interleukin 1 und

<u>den Faktor EPIF</u>

Frühere Untersuchungen hatten gezeigt, daß die Menge an Kollagenase Protein (bzw.XHF1) durch Mitomycin C und UV-Licht (Schorpp et al.,1984), durch den UV-induzierbaren Faktor EPIF (Schorpp et al.,1984) und Interleukin 1 (II-1, McCroskery et al.,1985) gesteigert wird. Um die Wirkung der verschiedenen Substanzen auf die Menge an spezifischen Kollagenase Transkripten zu untersuchen, und um nachzuprüfen, ob parallel dazu auch die Expression vom MT IIa Gen durch diese Agentien beeinflußt wird, wurde nach Behandlung der Zellen die Menge an spezifischer mRNA des jeweiligen Gens durch Dot Blot-und Northern Blot Analyse bestimmt (Abb.19).

Alle verwendeten Substanzen führen zu einer deutlichen Steigerung der Menge an Kollagenase-und MT IIa spezifischen Transkripten. Die Kinetik der Induktion beider Gene zeigt jedoch Unterschiede zwischen den einzelnen Substanzen. Il-1 oder EPIF führen schon innerhalb von 4 Stunden zu einer sichtbaren Erhöhung der spezifischen Transkripte (nicht gezeigt), die 6 Stunden nach Induktorzugabe noch weiter gesteigert ist (Abb.19). Während diese Substanzen eine ähnliche Induktionskinetik wie TPA aufweisen, ist sie nach UV Bestrahlung oder Behandlung mit Mitomycin C deutlich

— 79 —

A 1. 4 5 3 7 3 10 3 10 3 10 3 10 3 10 μg a b c c d

1.1.1

<u>Abb.19</u> Induktion von Kollagenase und MT IIa durch UV, MMC, Il-1 und EPIF

A : Logarithmisch wachsende menschliche XP-Hautfibroblasten (GM 2994) wurden mit UV bestrahlt (b, 2J/m²) und 48 Stunden später daraus die RNA präpariert. In (a):unbestrahlte Zellen. Logarithmisch wachsende menschliche Fibroblasten (München) wurden nicht behandelt (c) oder mit Mitomycin C behandelt (d, lµg/ml) und 48 Stunden später die RNA präpariert. Die daraus angegebene RNA Menge wurde durch Dot Blot an den Nitrozellulose Filter fixiert und mit nick translatierter cDNA der Kollagenase (K1,4,5), MT IIa (K3) und des Kontrollklons K7 hybridisiert.

wachsende Logarithmisch B : menschliche Fibroblasten (München) wurden mit den folgenden Agentien behandelt und nach 6 Std die RNA präpariert: unbehandelt,1; 4.2 mM Hydrochlorid (als Guanidium das Lösungsmittelkontrolle für 1000 rekombinante Il-la),2; Einheiten Interleukin l₃/ml Medium (erhalten von Dr.Lomedico) 3; 0.3 Interleukin 16/ml Einheiten Kulturmedium (erhalten von Genzyme) 4; Kulturmedium von unbehandelten Fibroblasten (München) 5; Medium von Fibroblasten (München), die 48 Std zuvor mit UV (30J/m²) bestrahlt wurden(EPIF, Schorpp et al,1984) 6; 10µg RNA dieser Zellen wurden durch Blot an Filter den Northern nick und mit gebunden translatierter cDNA der Kollagenase (K4) und MT IIa (K3) hybridisiert.

verzögert. Das Maximum liegt dabei zwischen 24 und 48 Stunden, um nach 72 bis 84 Stunden wieder den Ausgangswert zu erreichen (nicht gezeigt und Pöting,1985).

2. <u>CHARAKTERISIERUNG VON DNA ABSCHNITTEN IM KOLLAGENASE GEN,</u> <u>DIE INDUZIERBARKEIT DURCH TPA VERMITTELN</u>

der genomische Kollagenase Cosmidklon pCllase 2

Mit Hilfe des vollständigen Kollagenase cDNA Klons pXl5 (=pCllase 1) war es möglich, durch Koloniehybridisierung zwei nichtüberlappende genomische Kollagenaseklone (pCllase 2 und pCllase 3) aus einer menschlichen Cosmidgenbank zu isolieren (Baumann, 1986). Die Klone wurden durch Restriktionsverdau und Hybridisierung mit Subfragmenten der vollständigen cDNA kartiert und die genaue Lage der Kollagenase-Sequenzen in den Cosmiden bestimmt. pCllase 3 kodiert für das äußerste 3'Ende der mRNA und enthält ca. 28 kb 3'flankierende Sequenzen. pCllase 2 enthält das 5'Ende des Gens. Der Klon kodiert für ca. 1.2 kb des Kollagenase Transkripts und enthält ca. 28 kb 5'flankierende Sequenzen (Baumann, 1986). Durch die elektronenmikroskopische Analyse der Heteroduplexbildung zwischen dem cDNA Klon pCllase 1 und dem genomischen Klon pCllase 2 wurden die Intron-und Exonbereiche des Gens bestimmt (Abb.20). Die 1.2 kb lange kodierende Sequenz ist über eine Länge von ca. 7 kb in 7 Exons mit einer Länge zwischen 113 und 327 bp aufgeteilt (Baumann, 1986).

<u>Abb.20</u> Struktur des genomischen Kollagenase-Cosmidklons pCllase2

ein genomischer Klon, der mit Hilfe des pCllase 2 ist vollständigen Kollagenase cDNA Klons pCllase 1 (pX15 in Abb.14) einer menschlichen Cosmid durch Koloniehybridisierung aus Bibliothek isoliert wurde. Die Restriktionskarte wurde durch Restriktionsenzymen und Einfach- und Doppelverdau mit Hybridisierung mit Subfragmenten von pCllase 1 erstellt. In der zweiten Reihe ist ein Subfragment von pCllase 2 (11kb HindIII Fragment) vergrößert dargestellt. Die schraffierten Kästchen markieren die Exonbereiche, die durch Sequenzierung (l. Exon) oder durch elektronenmikroskopische Analyse der Heteroduplexbildung zwischen pCllase 1 und pCllase 2 bestimmt wurden. Die Positionen der XbaI und Eco RI Schnittstellen in beiden Klonen sind durch gestrichelte Linien dargestellt. Die Nummern unter den Klonen sind Basenpaare x 1000. B=Bam HI, H=HindIII, P=PstI,R=Eco RI, X=XbaI. Zur Organisation von pCllase 1 siehe Abb.ll.

Sequenzanalyse des 5'flankierenden Bereichs

Da das primäre Interesse in der Charakterisierung von möglichen regulatorischen Sequenzen in der 5'flankierenden Region des Gens lag, habe ich den Bereich zwischen der XbaI Schnittstelle im ersten Exon und der Eco RI Schnittstelle (ca. 3 kb vor der Start-

- 82 ---

stelle der Transkription) in das Plasmid pSP64 unterkloniert und für die weitere Analyse verwendet (Abb.21).

Verdav mit Xba1, Bal 31 Verdav, Fill in, HindIII-Linker Ligation

<u>Abb.21</u> Klonierung von Bal 31 Deletionsmutanten des Kollagenase Promotorbereichs

Ausgangskonstrukt ist der llkb HindIII Subklon aus pCllase 2 (Abb.20). Das Fragment in pSP64 umfaßt den Bereich von der XbaI Schnittstelle im ersten Exon bis zur Eco RI Schnittstelle, die ca. 3kb 5'vom ersten Exon liegt (Abb.20). Die einzelnen Klonierungsschritte sind angegeben. Zur Organisation von pEMBL 8⁺ siehe Abb.13. Der Pfeil in pEMBL 8⁺ symbolisiert den Startpunkt und die Richtung der Sequenzierungsreaktion. H=HindIII, B=Bam HI, R=Eco RI, X=XbaI

Der erste Schritt war die DNA Sequenzierung dieses Bereichs. Zu diesem Zweck wurden, ausgehend von der XbaI Schnittstelle, durch Verdau mit der Exonuklease Bal 31, überlappende Deletionsmutanten hergestellt, und diese in den Vektor pEMBL 8⁺ kloniert (Abb.21). Mit Hilfe dieser Klone wurde dann durch die Kettenabbruchmethode (Sanger,1977; Dente et al.,1983) der Bereich zwischen der XbaIund der KpnI Schnittstelle vollständig sequenziert (Abb.22).

-520 -510 -500 -490 AATAG<u>GG TACC</u>AGGCAG CTTAACAAAG GCAGAAGGGA ACCTCAGAGA Kpnl -480 -470 -450 -440 -430 -460 ACCCCGAAGA GCCACCGTAA AGTGAGTGCT GGGGGAGCTG AACTTCAGTC AGTACAGGAG -410 ~420 -390 -380 ~400 -370CCGAACAGCC ATCAGGTGCG CAGTGTTAGT AATTCCACCC TCTGCCCTGG GAGCAAGGTG Aosl -360 -350 -340 -330 -320 -310 TGTGGAGAAA CCTGTAGCAC TTTATGACCA TCAGAACCAG CCTTTTTCAA AAAGACCATG -260 -290 -280 -270 -250 -300 GAGTACTCTT TGACCTGTGT ATATAACAAG AACCTTTCTC AAATAGGAAA GAAATGAATT Scal -240 -230 -220 ~210 ~200 -190GGAGAAAACC ACTGTTTACA TGGCAGAGTG TGTCTCCTTC GCACACATCT TGTTTGAAGT ~180 -170-160 ~150 -140 -130TAATCATGAC ATTGCAACAC CAAGTGATTC CAAATAATCT GCTAGGAGTC ACCATTTCTA HphI -170 -110 -100-90 -80 -70 ATGATTGCCT AGTCTATTCA TAGCTAATCA AGA<u>GGATG</u>TT ATAAAGCATG AGTCAGACAC FokI -30 -50 -40 -20 -10-60 CTCTGGCTTT CTGGAAGGGC AAGGACTCTA TATATACAGA GGGAGCTTCC TAGCTGGGAT 10 20 30 40 50 60 X 10 20 30 70 20 ATTEGAECAE CAABAGECTE GGAAGCCATC ACTTACCTTE CACTGAGAAA GAAGACAAAG 70 80 90 100 110 120 GCCAGTATGC ACAGCTTTCC TCCACTGCTG CTGCTGCTGT TCTGGGGTGT GGTGTCTCAC 130 140 150 160 170 AGCTTCCCAG CGACTCTAGA AACACAAGAG CAAGATGTGG ACTTAGTCCA G Xbal

<u>Abb.22</u> Nukleotidsequenz der 5'flankierenden Region und des ersten Exons des Kollagenase Gens

Die TATA Box und die Startstelle der Translation sind unterstrichen. Die Hauptstartstelle der Transkription ist mit einem großen Stern und einem großen Pfeil gekennzeichnet; der Nebenstart mit kleinen Symbolen (vergl.Abb.23). Die angegebenen Restriktionsschnittstellen wurden für die Herstellung von 5'und 3'Deletionsmutanten verwendet (vergl.Abb.24).

Transkription eindeutig festlegen zu Um die der Startstelle wurde eine Nuklease SI Analyse mit RNA aus Fibroblastenkönnen, durchgeführt. Als Hybridisierungsprobe wurde das sequenzellen an der Xbal Schnitt-KpnI/XbaI-Fragment verwendet, das zierte radioaktiv markiert worden war. Die Länge des Nuklease SI stelle somit den Abstand zwischen der geschützten Fragmentes gibt Transkriptionsstartstelle und der XbaI Schnittstelle an.

— 84 —

Abb.23 SI Kartierung von RNA aus menschlichen Fibroblasten

20µg RNA von menschlichen Fibroblasten (München) wurde mit einem Überschuß an endmarkierter DNA Probe hybridisiert.

Zur Herstellung der Probe wurde der Eco RI/XbaI Subklon in pSP64 (Abb.21) mit XbaI linearisiert, dephosphoryliert und mit KpnI nachgeschnitten. Das gereinigte 656bp KpnI/XbaI Fragment wurde dann in einer Kinase Reaktion an der XbaI Schnittstelle endmarkiert.

l:endmarkiertes pBR 322 (mit HaeIIII geschnitten); 2-7: RNA von logarithmisch wachsenden Zellen die für 0, 0.5, 1, 2, 4 oder 6 Std mit TPA (20ng/ml) behandelt wurden; 8: RNA von Zellen, die für 6 Std mit Cycloheximid (10µg/ml) behandelt wurden; 9: wie 8, jedoch in Gegenwart von TPA (20ng/ml); 10: RNA von Ruhezellen (durch 48 Std Serumentzug); 11: wie 10, jedoch in Gegenwart von TPA (20ng/ml, 6 Std); 12: RNA von unbestrahlte Zellen; 13: RNA von Zellen, die 48 Std zuvor mit UV (30J/m²) bestrahlt wurden; 14: RNA von Zellen, die für 6 Std mit Medium von unbestrahlten Zellen behandelt wurden; 15: wie 14, jedoch mit Medium von UV bestrahlte Zellen (EPIF); 16: Hefe RNA; 17: lµg poly A⁺ RNA von TPA behandelten Zellen; 18,19: Sequenz eines bekannten Bereiches des LTR von MMTV (Hynes et al.,1983) als exakter Längenstandard (A+G und C+T Sequenzierungsreaktion nach Maxam und Gilbert, 1980). Die Zahlen auf beiden Seiten sind Länge in bp.

Die Graphik auf der rechten Seite ist eine densitometrische Berechnung der Kinetik der TPA vermittelten Induktion der Kollagenase (Spur 2-5). aus:Angel et al.,1987

Abb.23 zeigt, daß 2 Signale auftreten: eine Hauptbande mit einer Länge von 139 bp und eine Nebenbande mit einer Länge von 144 bp. Dies bedeutet, daß die bevorzugte Startstelle der Transkription 139 bp vor der XbaI Schnittstelle liegt, und damit exakt mit der ersten Base der cDNA Sequenz von pCllase 1 (pX15) übereinstimmt (Abb.14). Die zweite Startstelle liegt 5 bp vor dem Hauptstart (Pos. -5 in Abb.22). Beide Startstellen werden koordiniert reguliert: Sowohl nach TPA-und EPIF Behandlung, als auch nach UV Bestrahlung wird von beiden Startstellen aus vermehrt RNA transkribiert. Zwischen Position -32 und -25 befindt sich die Konsensussequenz einer TATA-Box (Serfling, 1985). Der sequenzierte Bereich enthält jedoch weder das Motiv einer CCAAT-Box (Efstradiatis et al., 1980) noch einer GC-Box (Dynan und Tjian,1985; Briggs et al.,1986).

<u>Nachweis von Sequenzen in der 5'flankierenden Region, die</u> <u>Induzierbarkeit durch TPA vermitteln</u>

Die regulatorischen Eigenschaften eines DNA-Abschnitts werden durch seine Fähigkeit nachgewiesen, die Expression eines fusionierten Indikatorgens nach Transfektion in eukaryontische Zellen in Gegenwart des Induktors zu verändern.

Als Indikatorgene, die selbst nicht durch den Induktor reguliert werden, wurden bisher sowohl virale und prokaryontische Gene wie z.B. das Thymidinkinase Gen von Herpes simplex Virus (Chandler et al.,1983; Hynes et al.,1983) oder das bakterielle Chloramphenicol-Acetyl-Transferase Gen (CAT, Gorman et al.,1982) als auch eukaryontische Gene wie α -und B-Globin aus Kaninchen, Maus oder Mensch (Treisman et al.,1983; Banerji et al.,1983; Ponta et al.,1985) verwendet.

Für die Analyse der 5'flankierenden Region der Kollagenase habe ich die kodierende Region des CAT Gen benutzt. Die Verwendung

eines Fusionsgen aus Kollagenase-und CAT Sequenzen bietet den Transfektion durch einen Vorteil, daß die Genexpression nach schnell und leicht durchführbaren Enzymtest (CAT Assay) nachweisbar ist (Gorman et al., 1982). Die zur Verfügung stehende CAT Sequenz enthält keine Promotorsequenzen und kann daher nur mit Hilfe des fusionierten eukaryontischen Promotors in höheren Zellen exprimiert werden. Die Signalsequenzen, die für eine korrekte Polyadenylierung der RNA notwendig sind, werden durch Sequenzen des SV40 Virus geliefert, die an das 3'Ende der CAT Sequenz kloniert sind (Gorman et al., 1982; Abb.24).

Zum Nachweis von regulatorischen DNA Bereichen im Kollagenase Gen habe ich eine Bal 31 Deletionsmutante gewählt, die 63 bp der nicht translatierten Region (Pos. +1 bis +63 in Abb.22), den vollständigen Promotor und weitere 5'flankierende Sequenzen bis zur Bam HI Schnittstelle bei Pos. -1200 enthielt. Dieses Fragment wurde 5'von der CAT Sequenz inseriert (Abb.24). Die Wahl dieser Deletionsmutante hatte Zweck, die authentische Startstelle den der Kollagenase Gen (Pos. +67 bis +69) Translation im zu eliminieren, da sie in einem Kollagenase/CAT Transkript mit dem Translationsstart im CAT Gen interferieren würde.

Parallel dazu wurde ein Konstrukt kloniert, bei dem die Promotorsequenzen der Kollagenase durch den Promotor des tk Gens Herpes simplex Virus ersetzt wurde. Dazu wurde der Bereich von von -1200 bis -42 der Kollagenase mit einem Abschnitt des tk Gens (Position -105 bis +56; McKnight und Kingsbury, 1982) fusioniert. Dieser Abschnitt, der eine TATA Box und eine CCAAT-Box, flankiert von GC-Boxen enthält (McKnight und Tjian, 1986), wurde bereits in anderen Systemen als funktioneller Promotor verwendet (Miksicek et al., 1986; Klein-Hitpaß et al., 1986). Durch die Analyse dieses Konstrukts sollte die Frage geklärt werden, ob mögliche vorhandene regulatorische Elemente spezifisch auf den eigenen Promotor

Die Ausgangskonstrukte zur Herstellung der Kollagenase-Deletionsmutanten in pBL CAT2 und pBL CAT3 (Luckow und Schütz, unv., Miksicek et al., 1986) sind zwei Bal 31 Deletionen, kloniert in pEMBL 8* (Abb.21). Die Zahlen neben den verschiedenen Konstrukten geben die 5'und 3'Grenze der verwendeten Kollagenase Sequenzen an (vergl. Abb.22). Die einzelnen Klonierungsschritte sind angegeben. tk= Promotorsequenz des Thymidinkinase Gens von Herpes simplex Virus, die den Bereich von Position -105 bis +56 umfaßt.

aus: Angel et al.,1987

wirken, oder ob diese Eigenschaft auch auf fremde Promotoren übertragbar ist.

Zur funktionellen Analyse dieser beiden Konstrukte wurde die Plasmid DNA in menschliche Fibroblasten-und Hela tk- Zellen transfiziert, und 48 Stunden nach TPA Behandlung der Zellen ein Proteinextrakt daraus präpariert. Nach Bestimmung der Proteinkonzentration wurde jeweils die gleiche Menge Extrakt zusammen mit Acetyl-Coenzym A und radioaktiv markiertem Chloramphenicol inkubiert, und anschließend das Reaktionsgemisch durch Dünnschichtchromatographie aufgetrennt (CAT Assay). Die prozentuale Umsetzung von Chloramphenicol in die acetylierte Form (l-Acetyl-, 3-Acetyl- und 1,3 Diacetyl-Chloramphenicol) gibt die Menge an CAT Protein im Extrakt an, und ist somit ein Maß für die Menge an synthetisierter CAT mRNA in transfizierten Zellen, die mit oder ohne TPA kultiviert wurden.

Parallel zur Transfektion der beiden Konstrukte wurden die beiden Vektoren, in die die Kollagenase-Sequenzen kloniert wurden (pBL CAT2, pBL CAT3) unter den gleichen Bedingungen analysiert.

Die Analyse der Konstrukte in Hela tk⁻ Zellen (Abb.25, Tabelle 4) zeigt, daß in Abwesenheit von TPA die CAT Expression vom Kollagenase Promotor aus sehr niedrig ist. Die Expression vom tk Promotor aus ist 3 fach höher. Sie ist damit knapp 2 fach höher als die Expression des tk/CAT Konstrukts ohne Kollagenase Sequenzen (pBL CAT2).

Im Gegenwart von TPA vermittelt der verwendete Bereich eine stark erhöhte Expression des CAT Gens. Die Induktion durch TPA beim -1200/+63 Konstrukt ist 200 fach, während das -1200/-42/tk Konstrukt etwa 100 fach induziert wird (Abb.25, Tabelle 4). Dieser Unterschied im Induktionsfaktor resultiert aus der etwas niedrigeren Basalaktivität des Kollagenase Promotors.

- 89 --

<u>Abb.25</u> Analyse der Kollagenase-CAT Konstrukte in menschlichen Hela tk⁻Zellen

menschliche Hela tk-Zellen wurden transient mit 10µg DNA der angegebenen Plasmide transfiziert, und in Gegenwart oder Abwesenheit von TPA (60ng/ml) kultiviert. 48 Std später wurde von diesen Zellen ein Proteinextrakt hergestellt. Zur Bestimmung der Menge an CAT Protein wurde ein Enzymtest (CAT Assay) durchgeführt. Die Angaben über den Klammern verweisen auf die Sequenzen, die vor das CAT Gen inseriert wurden (vergl.Abb.24). — =pBL CAT3; tk = Promotor des HSV tk Gens von Position -105 bis +56; -1200/+63 = Kollagenase Sequenzen von Position -1200 bis +63. In der jeweils ersten Reihe wurde ein Proteinextrakt aus nicht-transfizierten Zellen verwendet (-). Die CAT Enzymaktivität ist in pmol acetyliertes Chloramphenicol pro mg Protein pro Minute berechnet (siehe Methoden). CA=Chloramphenicol; MO=monoacetyliertes (l,acetyl-, 3,acetyl-) Chloramphenicol; Di=1,3,-Diacyl-Chloramphenicol

Die TPA Induktion dieser Plasmide ist nicht spezifisch für Hela Zellen: In Fibroblasten (GM 637) sind beide Konstrukte ebenfalls durch TPA induzierbar (Abb.26).

<u>Abb.26</u> Analyse der Kollagenase-CAT Konstrukte in menschlichen Fibroblasten

SV40 transformierte menschliche Hautfibroblasten (GM637) wurden transient mit l0μg der angegebenen Plasmid DNA transfiziert und in Gegenwart (+) oder Abwesenheit (-) von TPA (60ng/ml) kultiviert. 48 Std später wurde von diesen Zellen ein Proteinextrakt hergestellt und die Menge an CAT Protein durch einen CAT Assay bestimmt. Die Beschriftung ist entsprechend Abb.25.

Der Induktionsfaktor in diesen Zellen ist jedoch wesentlich niedriger (26 fach bzw. 8 fach, Tabelle 4). Die Expression des Vektors pBL CAT2 (mit tk Promotor) wird in diesen Zellen durch TPA nicht beeinflußt, während in Hela tk⁻ Zellen die CAT Expression dieses Plasmids 5 fach gesteigert wird. Wie erwartet zeigen Zellen, die mit dem Vektor pBL CAT3 (ohne Promotor) transfiziert wurden, keine CAT Aktivität.

Das Ergebnis dieser Analyse macht deutlich, daß sich in dem Bereich von -1200 bis -42 des Kollagenase Gens DNA Elemente befinden, die für die TPA induzierte Expression des Gens verantwortlich sind. Diese Eigenschaft ist nur in diesem Abschnitt der 5'flankierenden Region des Gens zu finden: der Bereich von -4.3 kb bis -1.2 kb enthält keine DNA Sequenzen, die TPA Induzierbarkeit vermitteln (Abb.25, Tabelle 4).

transfiziertes Konstrukt	Kontrolle_ pmol·min	TPA n ⁻¹ .mg ⁻¹	Induktions- faktor
a) in Hela Zellen			
n.t pBL CAT 3 -1200/+63 (in pBL CAT 3) - 517/+63 " pBL CAT 2 (tk promotor) -4300/-1200 (in pBL CAT 2) -1200/-42 " - 517/-42 " - 401/-42 " - 296/-42 " - 139/-42 "	6 6 16 23 41 32 11 47 63 112 94 189 61	6 2001 3811 1569 139 24 4316 3938 4599 4057 9293 1144	1 200 224 45 5 4 105 69 43 46 51 21
n.t. -131/-42 (in pBL 8 ⁺ CAT 2) - 91/-42 " " - 90/-42 " " - 66/-42 " " - 61/-42 " " - 56/-42 " " - 47/-42 " "	5 19 20 16 9 11 11 11 9 8	5 1323 893 935 28 24 34 35 22	94 60 84 6 3 5 7 6
n.t. pBL CAT 2 - 73/-42 (in pBL CAT 2) - 73/-65 (")a - 73/-65 (")b	9 12 16 23 16	9 36 445 485 396	9 61 34 55
b) in GM 637 Zellen			·
pBL CAT 3 -1200/+63 (in pBL CAT 3) pBL CAT 2 -1200/-42 (in pBL CAT 2)	2 2 9 25 63	2 2 186 16 461	1 26 0,6 8

<u>Tabelle 4</u> TPA Induzierbarkeit der verschiedenen Kollagenase-CAT Konstrukte

n.t. Proteinextrakt aus nicht transfizierten Zellen

— 93 —

Um diese cis-wirkenden DNA Elemente definieren zu können, war es notwendig, diesen Bereich einzugrenzen. Unter Verwendung der in Abb.22 markierten Restriktionsschnittstellen wurden eine Reihe von 5'Deletionsmutanten hergestellt (Abb.24), die durch transiente Transfektion in Hela tk- Zellen auf ihre durch TPA induzierbare Eigenschaft analysiert wurden (Abb.25).

Das Deletieren von Kollagenase-Sequenzen bis Position -139 hat keinen Einfluß auf die Induzierbarkeit des CAT Gens. Diese Reihe von Mutanten ist zwischen 50 und 70 fach induzierbar (Tabelle 4). Weiteres Deletieren bis zur Base -73 führt zu einer 2 fachen Verminderung des Induktionsfaktors. Dieses Fragment (-73 bis -42) vermittelt jedoch nach wie vor eine deutliche TPA Induktion (21 fach). Infolge der niedrigeren Basalaktivität des Kollagenase Promotors ist die Expression des -73/+63 Konstrukts sogar 45 fach durch TPA gesteigert.

Um die 5'Grenze des Elements festlegen zu können, wurden, ausgehend vom -139/-42/tkCAT Konstrukt eine Reihe von Bal 31 Deletionen erzeugt, und diese in den Vektor pBL 8+CAT2 (Klein-Hitpaß et al., 1986) kloniert (Abb. 27). Dieser Vektor, bei dem die pUCl8 Plasmidsequenzen durch pEMBL 8⁺ ersetzt sind, bietet die Möglichkeit, die Endpunkte der Deletionsmutanten durch Sequenzierung (Sanger, 1977; Dente et al., 1983) schnell zu bestimmen. Die ausgewählten Mutanten wurden in Hela tk- Zellen transfiziert und die CAT Expression in unbehandelten und TPA behandelten Zellen bestimmt (Abb.27, Tabelle 4).

<u>Abb.27</u> Analyse der Bal 31 Deletionsmutanten des -139/-42 tkCAT Konstruktes

oben: Herstellung und Klonierung der Deletionsmutanten. Das Ausgangsplasmid enthält den Bereich der Kollagenase von Position -139 bis -42 (vergl.Abb.24). Die einzelnen Klonierungsschritte sind angegeben. Beim Plasmid pBL 8+CAT 2 sind die pUC 18 Sequenzen von pBL CAT2 durch pEMBL 8+ (Abb.13) ersetzt worden (Klein-Hitpaß et al.,1986). Das schwarze Rechteck symbolisiert die Bindungsstelle für den M13 Sequenzierungsprimer. unten: Die Analyse der ausgewählten Mutanten wurde entsprechend

Abb.25 durchgeführt.

Durch Deletion der DNA über die Position -73 hinaus wird die TPA regulierbare Eigenschaft der Kollagenase-Sequenz zerstört. Alle Konstrukte, deren 5'Grenze zwischen -66 und -44 liegt, zeigen nur noch die Basalinduktion von pBL CAT2 durch TPA. Die Induktion der Konstrukte, deren 5'Grenze vor -73 liegt (60 bis 94 fach), ist vergleichbar mit dem Induktionsfaktor des -139/-42/tkCAT Konstrukts (51 fach).

Das Ergebnis dieser Analyse engt das Element, das die TPA Wirkung auf das Indikatorgen vermittelt, auf eine Länge von 32 bp ein: Von Position -73 bis zur vorläufigen 3'Grenze bei Position -42.

Das Nonanukleotid 5'ATGAGTCAG 3' als TRE ("TPA responsive

<u>element") der menschlichen Kollagenase</u>

der DNA Sequenz des -73/-42 Elements der Kolla-Beim Vergleich der 5'flankierenden Sequenz des Stromelysin Gens der genase mit Ratte et al., 1986) konnte eine Sequenz von 9 bp (Matrisian 100% Homologie zwischen den beiden Genen gefunden werden, die Dieses Motiv (5'ATGAGTCAG 3') liegt in beiden Genen an aufweist. fast identischer Position: In der Kollagenase zwischen Position -73 -65 und beim Stromelysin zwischen Position -72 und -64. und Da auch beim Stromelysin die Induzierbarkeit durch TPA nachgewiesen worden war (Matrisian et al., 1985), ließ diese Homo- logie vermuten, daß diese 9 bp lange Sequenz für die TPA Wirkung verantwortlich sein könnte. Diese Annahme wurde durch die Analyse der Bal 31 Deletionsmutanten bekräftigt, die zeigte, daß schon dieses Motivs die TPA Induzierbarkeit eine partielle Deletion aufhebt.

Mit Hilfe einer Oligonukleotid-Synthesemaschine wurde diese 9 bp Sequenz (flankiert von geeigneten Linker Sequenzen) synthetisch hergestellt und vor den tk Promotor in das Plasmid pBL CAT2 kloniert (Abb.28). Dieses Konstrukt wurde dann durch transiente <u>Abb.28</u> Ein synthetisches Nonanukleotid vermittelt Induzierbarkeit durch TPA

oben: Klonierung des synthetischen Oligonukleotids. Die Kollagenase Sequenz von Position -73 bis -65 plus flankierende Linker Sequenzen wurden als einzelsträngige DNA mit Hilfe eines "Oligonukleotidsynthesizer" hergestellt und in der angegebenen Weise in pBL CAT2 kloniert.

unten: Die Analyse der Konstrukte in Hela tk-Zellen wurde entsprechend Abb.25 durchgeführt. -73/-65a und -73/-65b bezeichnen die Analyse von Plasmid DNA aus zwei unabhängigen Klonen.
Transfektion in Hela tk⁻ Zellen und Bestimmung der Menge an CAT Protein auf seine TPA regulierbare Expression untersucht.

Abb.28 zeigt, daß diese 9 bp lange Sequenz ausreicht, um die Wirkung von TPA zu vermitteln. Die Induktion des -73/-65 tk- und des -73/-42/tk Konstrukts ist etwa gleich stark (zwischen 34 und 61 fach, Tabelle 4). Um nachzuweisen, daß die erhöhte Menge an CAT Protein in TPA behandelten Zellen auf einer gesteigerten Menge an CAT mRNA basiert, und daß dabei der gleiche Transkriptionsstart wie im authentischen Gen benutzt wird, wurde eine Sp6 Analyse mit RNA von Zellen durchgeführt, die mit dem -139/-42/tkCAT-, dem -73/-65 tkCAT Konstrukt oder pBL CAT2 transfiziert und in Gegenwart oder Abwesenheit von TPA kultiviert wurden (Abb.29). Als interne Kontrolle wurde RSV-CAT DNA (Gorman et al.,1982a) cotransfiziert, dessen Expression (gemessen im CAT Assay) durch TPA nicht verändert wird (nicht gezeigt).

Die Länge der geschützten Fragmente (210 und 207 Nukleotide) zeigt, daß TPA die Synthese einer mRNA induziert, die amauthentischen Transkriptionsstart im tk Promotor beginnt. Dabei wird das Ergebnis des CAT Assays bestätigt: Die Region -139 bis -42 vermittelt eine 2 bis 3 fach stärkere Induzierbarkeit durch TPA als der Bereich von -73 bis -65. Zu einem geringen Teil werden die Transkripte unspezifisch 5'von Position -105 des tk Promotors initiiert (geschütztes Fragment von 298 Nukleotiden), die jedoch ebenfalls TPA Regulation zeigen. Die durch CAT Assay gemessene Induktion von pBL CAT2 ist nicht nachweisbar. Die Expression des cotransfizierten Plasmids RSV-CAT (geschütztes Fragment von 150 Nukl.) ist in unbehandelten und TPA behandelten Zellen gleich stark.

В.

104 -

RSV CAT +> 124 =

1 2 3 4 5 6 7 8 9

Abb.29 Nachweis von korrekt initiierter tkCAT Transkripte durch SP6 Kartierung

Struktur transfizierten Α. der tkCAT Konstrukte. Als TRE wurde der Bereich von -139 -42 des Kollagenase Gens, oder das bis synthetische Oligonukleotid (=Position -73 bis -65, TREcol) verwendet. Die SP6 Probe (347 bp) entstand durch in vitro Transkription eines Plasmids, das das 298 bp Eco RI/Pvull Fragment aus pBL CAT2 enthält (Miksicek et al.,1986). Korrekt initiierte tkCAT Transkripte hybridisieren über eine Länge von 210 (und 207) Nukleotiden. Die Transkripte des cotransfizierten RSV-CAT Konstrukts hybridisieren mit der Probe über eine Länge von 150 Nukleotiden, was der Länge der CAT Sequenzen in beiden Plasmiden entspricht.

Β. SP6 Analyse RNA aus transient von transfizierten Hela tk- Zellen. Je 20µg DNase I behandelte RNA aus Zellen, die mit den angegebenen Konstrukten transfiziert, und 12 mit (+) oder ohne (-) TPA (60ng/ml) Std kultiviert wurden, wurde mit 5x10⁵cpm der Probe hybridisiert, und anschließend mit RNase behandelt. Die geschützten Fragmente wurden auf einem 6% Polyacrylamid-8.3 M Harnstoff Gel aufgetrennt. Als Längenstandard wurde endmarkiertes pBR 322 (HaeIII verdaut) verwendet. Die Zahlen auf der linken Seite der Abbildung sind Fragmentlängen in bp.

aus: Angel et al.,1987a

DISKUSSION

Phorbolester wie 12-0-Tetradecanoyl-Phorbol-13-Acetat (TPA) sind starke Tumorpromotoren, die in der Lage sind, die tumorgene Wirkung von Karzinogenen zu verstärken (Slaga et al., 1978). Es wird angenommen, Tumorpromotoren ihre biologischen Effekte daß durch eines die Induktion veränderten Programmes der Genexpression ausüben (Weinstein et al., 1984).

Den Mechanismus der Regulation durch diese Substanzen galt es aufzuklären.

Die vorliegende Arbeit klärt den Verlauf der Signalkette auf, durch den Tumorpromotoren die Expression spezifischer Gene beeinflussen.

Der Weg führte über die cDNA Klonierung einer Reihe von menschlichen Genen, deren Expression durch den Tumorpromotor TPA und Karzinogene reguliert wird. Durch Sequenzierung der isolierten cDNA Sequenzen war es möglich, zwei dieser Klone zu identifizieren: a.das Metallothionein IIa Gen und b.die menschliche Kollagenase

Durch die Isolierung des Kollagenase Gens und Charakterisierung seiner 5'flankierenden Region ist es gelungen, ein 9 bp DNA Element zu definieren, das TPA Induzierbarkeit vermittelt. Neben der Regulation brachte die Genisolierung auch Erkenntnisse zur Rolle der Kollagenase, einem bisher unbekannten Gen, in Physiologie und Krankheit. Diese Eigenschaften des Gens Kollagenase werden vorweg besprochen.

Struktur und Funktion der Kollagenase

Kollagen, als Hauptbestandteil der Interzellularsubstanz (extrazelluläre Matrix) des Bindegewebes, macht etwa 50% der Proteine eines Vertebraten aus (Bornstein und Sage,1980). Abhängig von der Funktion des Gewebes unterscheidet man 10 verschiedene Typen von Kollagen; ca. 90% des Kollagen wird als Typ I klassifiziert, das im Knochen, Sehnen und der Haut vorkommt (Martin et al.,1985).

Kollagenase ist als einziges Enzym in der Lage, in Gegenwart von Zink²⁺ natives Kollagen spezifisch in 3/4 und 1/4 des Gesamtproteins zu spalten, und dadurch den weiteren Abbau dieser Bruchstücke durch andere proteolytische Enzyme zu ermöglichen (Murphy und Reynolds, 1985).

Die Klonierung der vollständigen cDNA und die Aufklärung der Aminosäuresequenz erlaubt es, durch Sequenzvergleich mit einer weiteren Metalloprotease, Stromelysin (Matrisian et al.,1985; Whitham et al.,1986) eine Reihe von charakteristischen Strukturmerkmalen der Kollagenase zu definieren.

Kollagenase wird als Prä-Proenzym synthetisiert. Diese Form des Proteins besteht aus 469 Aminosäuren mit einem Molekulargewicht von 53910 Dalton. Die Aminosäurezusammensetzung läßt darauf Protein wasserlöslich ist, schließen. daß außer dem das Signalpeptid (Aminosäure 1 bis 19) am amino-terminalen Ende, das typische hydrophobe Eigenschaften besitzt (Watson et al., 1984). sezernierte Proenzym (Molekulargewicht 51750 Dalton) besitzt Das (Stricklin et al.,1977). Durch noch keine Enzymaktivität Aminosäuren 20 bis 99 wird das Enzym (Molekular-Abspaltung der gewicht 42550 reife Form überführt. Dalton) in seine Wahrscheinlich spielt dabei die streng konservierte Sequenz der acht Aminosäuren zwischen Position 90 und 97 eine wichtige Rolle. Diese, vitro Aktivierungsexperimenten abgeleitete Form aus in der ungefähren Größe von in vivo aktivierter stimmt mit Kollagenase überein (Stricklin et al., 1977; Valle und Bauer, 1979).

Die Kollagenase enthält zwei potentielle Glykosilierungsstellen (Asparagin in Position 120 und 143) wovon eine (Pos. 120) an identischer Position im Stromelysin vorkommt. Tatsächlich wird in Fibroblasten ein kleiner prozentualer Anteil des Proenzyms an einer oder beiden Positionen glykosiliert (Wilhelm et al., 1986). jedoch weder Diese Modifikation hat einen Einfluß auf die Aktivierung des Proenzyms, noch scheint sie die proteolytischen Eigenschaften des Enzyms zu beeinflussen (Wilhelm et al.,1986). Möglicherweise haben beide, glykosilierte und nichtglykosilierte Form unterschiedliche Funktionen, indem sie verschiedene Substrate der extrazellulären Matrix benutzen. Enzyms sind Zn²⁺ Ionen notwendig (Valle und Zur Aktivität des Bauer, 1979). Die Metallbindungsstelle im Kollagenase-Protein wird wahrscheinlich von den Aminosäuren zwischen Position 215 und 226 gebildet. Dieser konservierte Abschnitt liegt im Stromelysin an identischer Position und eine ähnliche Sequenz befindet sich in Serratia und in der Zink-bindenden einer Metalloprotease aus Region bakteriellen Metalloprotease Thermolysin und der der

neutralen Protease aus Bazillus subtilis (Nakahama et al.,1986).

Für den planmäßigen Ablauf verschiedener physiologischer Prozesse (z.B. Gewebeumbau während der Embryonalentwickung, Wanderung von Zellen durch Gewebe, Wundheilung) ist eine modulierte Kollagenase-Aktivität notwendig (Murphy und Reynolds, 1985), die durch Regulation der Transkription des Gens und der Wirkung die von Kollagenase-Inhibitoren (Docherty et al., 1985; Stricklin und kontrolliert wird. Wahrscheinlich tritt Welgus, 1983) kollagenolytische Aktivität dann auf, wenn durch stark vermehrte die lokale Konzentration an Kollagenase höher ist Transkription als die des Inhibitors, da das aktive Enzym durch Bindung des Inhibitors rasch inaktiviert wird (Docherty et al., 1985).

Eine außerplanmäßig hohe Aktivität des Enzyms ist die Ursache für eine Reihe von pathologischen Vorgängen, die als typisches Krankheitsbild (rheumatische Arthritis, "rezessive dystrophile Epidermolysis bullosa") diagnostiziert werden. können (Harris, 1981; Lazarus, 1972; Bauer et al., 1977). Außerdem ist eine erhöhte kollagenolytische Aktivität als Voraussetzung für die Metastasierung von Krebszellen nachgewiesen worden (Woolley,1984; Liotta, 1986; Mignatti et al., 1986). Die erhöhte Menge an Kollanicht zwangsläufig von der Tumorzellen genase muß dabei produziert werden. In einigen Fällen wurde nachgewiesen, daß diese Zellen bisher nicht näher charakterisierte Faktoren synthetisieren und sezernieren, die die normalen Zellen in der Nachbarschaft zu einer vermehrten Produktion an Kollagenase induzieren (Biswas, 1982; 1984;). Die Produktion solcher aktivierenden Proteine kann in normalen Zellen durch Karzinogene induziert werden (der durch UV Licht induzierbare Faktor EPIF, Schorpp et al., 1984).

Die Klonierung der vollständigen Kollagenase cDNA in einen Expressionsvektor und Transfektion dieses Konstrukts in nichttumorgene und tumorgene Zellen wird dazu beitragen, die Frage zu klären, ob erhöhte Kollagenaseproduktion den Zellen metastasierende Eigenschaften verleiht, und ob für diesen Schritt die tumorgenen Eigenschaften der Zelle notwendig sind.

Regulation der Transkription

Anbetracht der vielfältigen interessanten Funktionen, welche für die Kollagenase in Differenzierung und Pathologie diskutiert werden, möchte man unbedingt die regulatorischen Faktoren kennenlernen, die die Transkription des Gens kontrollieren.

Wie aus der Rolle der Kollagenase in Entzündung man und Fibroblasten oder Wundheilung vermuten konnte, wird in Chondrocyten mehr Enzym hergestellt, wenn diese in konditioniertem Medium von Zellen des Immunsystems (Makrophagen, Monocyten) kultiviert werden (Dayer et al., 1984; McCroskery et al.,1985). Die Induktion durch rekombinantes Interleukin l in Fibroblasten (diese Arbeit) und in Chondrocyten (Stephenson et al.,1987) weist darauf hin, daß es sich bei den induzierenden Substanzen Immunzellen um Interleukin l oder $\mathbf{u}\mathbf{m}$ der eine Interleukin 1 ähnliche Substanz handelt.

Neben Hormonen (Sakamoto et al., 1985; Murphy und Reynolds, 1985) und anderen, bisher nicht näher charakterisierten Faktoren aus Fibroblasten und Epithelzellen (Johnson-Wint und Gross, 1984; Schorpp et al., 1984; Brinckerhoff et al., 1985; Johnson-Wint und durch eine Reihe von Streßfaktoren Bauer, 1985) das Gen wird induziert (Herrlich et al., 1986), darunter der Tumorpromotor TPA (Mallick et al., 1982), UV Licht (Schorpp et al., 1984), Mitomycin C (Schorpp et al., 1984) oder Cytochalasin B (Aggeler et sich mit al.,1984). befaßt dem Die vorliegende Arbeit Wirkungsmechanismus eines dieser Streßfaktoren: TPA.

Das TPA regulierbare Element (TRE)

Durch die Klonierung des Kollagenase Gens und der Analyse seiner 5'flankierenden Region durch Transfektion verschiedener chimärer Kollagenase-CAT Konstrukte in menschlichen Zellen war es möglich, das cis-wirkende Element zu definieren, das für die Induktion des Kollagenase Gens durch TPA verantwortlich ist.

Dieser kurze, nur 9 Nukleotide lange Abschnitt, der zwischen Position -73 und -65 im Kollagenase Gen lokalisiert ist (5-ATGAGTCAG-3), reicht aus, um zusammen mit einem funktionellen Promotor TPA Induzierbarkeit auf ein Indikatorgen zu vermitteln. Dieses "TPA responsive Element" (TRE) weist einige Charakteristika auf:

- l.Das TRE hat alle Eigenschaften eines Enhancers (Serfling et al., 1985): Es wirkt sowohl auf den eigenen-als auch auf fremde Promotoren wie z.B. dem Promotor des tk Gens von Herpes Simplex Virus, wobei die synthetisierten Transkripte von der gleichen Transkriptionsstartstelle wie im authentischen Gen aus synthetisiert werden. Gleichzeitig wirkt das Element unabhängig von der Orientierung und vom Abstand zum Promotor (Angel et al., 1987; Stein, 1987). Da das TRE nur in Gegenwart von TPA aktiv ist, gehört es in die Klasse der induzierbaren Enhancern wie sie auch im Maus Mamma Tumor Virus (Ponta et al., 1985) und Moloney Maus-Sarcom-Virus (Miksicek et al., 1986), im MT IIa-(Karin et al., 1987), B-Interferon-(Goodbourn et al., 1985) und Vitellogenin Gen (Klein-Hitpaß et al., 1986) nachgewiesen im wurden.
- 2.Sowohl in Hela tk- Zellen als auch in Fibroblasten bewirken die Kollagenase-Sequenzen in Abwesenheit von TPA nur eine leichte Steigerung der Basalaktivität des Kollagenase-bzw. des tk Promotors. Dies ist im Unterschied zum MT IIa Gen, dessen regulatorischer Bereich eine starke "basal level enhancer" Aktivität vermittelt (Haslinger und Karin 1985).
- 3.Das schrittweise Entfernen von Kollagenase-Sequenzen zwischen -1200 und -73 bzw. zwischen -65 und -42 hat keinen Einfluß auf die basale Transkriptionsrate. Dies bedeutet, daß in der 5' flankierenden Region kein negativ wirkendes Element vorkommt, wie dies für das ß-Interferon-(Goodbourn et al., 1986) oder Insulin Gen (Laimins et al., 1986) postuliert wurde.
- 4.Im Gegensatz zur redundanten oder tandemartigen Struktur der meisten Enhancer (Sassone-Corsi et al., 1985; Herr und Clark, 1986) kann das TRE als einzelnes Nonanuleotid wirken. Obwohl in

der 5'flankierenden Region der Kollagenase (bis Position -517) keine Duplikation des TRE vorkommt, kann man die Existenz eines ausschließen: alle chimären Konstrukte, weiteren TRE nicht 5'Grenze deren vor -73liegt, zeigen eine ca. 2 fach höhere Induzierbarkeit als Konstrukte, die das TRE oder die Region -73/-42 enthalten. Eine zweite Möglichkeit wäre, daß die direkte Nachbarschaft der bakteriellen Vektorsequenzen zum TRE einen inhibitorischen Effekt hat.

Spezifisch in Hela tk⁻ Zellen wird auch die Aktivität des tk Promotors selbst durch TPA ca.4 bis 7 fach gesteigert, obwohl dieser die TRE Sequenz nicht enthält. Möglicherweise übt TPA einen bisher ungeklärten Einfluß auf den SP 1-Faktor oder den CCAAT-Transkriptionsfaktor (McKnight und Tjian,1986) aus. Dieser Effekt ist jedoch weder in menschlichen Fibroblasten, noch in der menschlichen Hepatomazellinie Hep G2 (Stein,1987) oder in Maus L tk⁻ Zellen (P.Angel, unveröffentlicht) nachweisbar.

Das TRE Kollagenase Gens zeigt starke Homologie zu DNA des Bereichen anderer TPA regulierbarer Gene (Greenberg und Ziff, und Karin,1986 und Ref. in Abb.30), darunter das 1984; Imbra Stromelysin Gen der Ratte (Matrisian et al., 1986), wo die gleiche Basensequenz in Bezug auf die Transkriptionsstartstelle an fast identischer Position vorkommt. Ein um ein oder zwei Basen verändertes TRE Motiv befindet sich am 3'Ende des SV40 Enhancers (Gruss et al., 1981) und im MT IIa Gen (Karin et al., 1984).

	-79	-73	-65 -62		-54	-50	
Kollagenase (Mensch)	-'l'AA	AGC ATG AG	GT CAG ACA	CCT CT	G GCT	TTC-	diese Arbeit
	-78	-72	-64			-49	
Stromelysin (Ratte)	-GCA	ATT ATG A	GT CAG TTT	GCG GG	T GAC	TCT-	Matrisian et al., 1986
	-108	-102	- 94			-79	
Metallothionein II a (Mensch)	-CCG	CAA GTG A	CT CAG CGC	GGG GC	G TGT	GCA-	Karin et al., 1984
	-127	-121	-1 1 3			-98	
SV40 Enhancer	-ATC	TCA ATT AC	GT CAG CAA	CCA TA	G TCC	CGC-	Gruss et al., 1981
	-199	-193	-105			-170	
SV40 Enhancer	-ATC	TCA ATT AC	GT CAG CAA	CCN GG	T GTG	GAA-	n n
	-306	-300	-292			-277	
c-fos (Mensch)	-GGA	CAT CTG C	GT CAG CAG	GTT TC	C ACG	GCC-	van Straaten et al., 1983
	-218	-212	- 204			-109	
c-fos (Mensch)	-AGA	CCT CTG A	GÀ CAG GAA	CTG CG	זיאא א	GCT-	17 ti
	- 99	-93	- 8 5			-71	
Proenkephalin (Mensch)	-TAG	GGC CTG C	GT CAG CTG	CAG CC	c ccc	GG -	Comb et al., 1986
	- 5 5	-49	- 40			- 2 5	
Somatostatin (Ratte)	-cct	TGG CTGAC	G'I CAG AGA	GAG AG	а'гт т	AAA-	Montminy et al., 1986

Literatur

<u>Abb.30</u> Vergleich der Nukleotidsequenz des TRE der Kollagenase mit der Kontrollregion anderer TPA regulierbarer Gene.

der schwarze Punkt markiert die Unterschiede einzelner Nukleotide.

Kürzlich wurde für beide nachgewiesen, daß diese Sequenzen, als Nonanukleotid synthetisiert, die gleiche TPA Induzierbarkeit wie das Kollagenase TRE vermitteln (Angel et al., 1987a; Stein, 1987). Ein 29 bp Bereich des menschlichen Proenkephalin Gens (Position -100 bis -71), der das TRE Motiv enthält (das mit einem der beiden TRE des c-fos Gens identisch ist, van Straaten, 1983), vermittelt ebenfalls Induzierbarkeit durch TPA (Comb еt al.,1986).

Trotz des Austausches einzelner Basen sind die meisten Positionen des TRE konserviert: Während eine Veränderung der Position 1 des TRE keinen Einfluß auf die Wirkung dieses Elementes hat, führt eine Veränderung der streng konservierten Base Thymin in Position 2 zum Verlust der Induzierbarkeit durch TPA. Eine Mutation in Position 8 und 9 resultiert in einer starken Reduktion der Induzierbarkeit (Stein, 1987; Angel et al, 1987a).

- 111 -

Da das TRE nur in TPA behandelten Zellen aktiv ist, stellt sich die Frage, wie dieses cis-wirkende DNA Element die Anwesenheit von TPA erfährt, und wie der Mechanismus der Aktivierung verläuft.

Durch in vitro Bindungsstudien ("DNA footprinting") ist es gelungen, den trans-wirkenden Faktor nachzuweisen, der an den DNA Abschnitt des TRE bindet (Herrlich et al., 1987). Außerdem zeigen in vitro Kompetitionsexperimente, daß dieses Protein (AP1), das kürzlich als DNA-Bindungsprotein im "basal level enhancer" von MT IIa und im SV40 Enhancer beschrieben wurde (Lee et al., 1987), sowohl das TRE des Kollagenase Gens als auch das Motiv aus SV40 oder MT IIa als Bindungsstelle benutzt (Angel et al., 1987a).

Die in vitro Bindungseigenschaft von APl korreliert mit der in vivo Aktivität des TRE: Die Punktmutation in Position 2, die die Aktivität des Elements zerstört, verhindert auch die Bindung von APl. Während die Mutationen in Position 8 und 9 mit einer reduzierten Bindung des Proteins einhergeht, hat die Veränderung in Position 1 des TRE keinen Einfluß darauf (Angel et al., 1987a). Man kann daher annehmen, daß die Bindung von APl für die Aktivität des TRE verantwortlich ist.

Mechanismus der TPA Wirkung

Durch die Isolierung eines konservierten cis-Elementes, das TPA Wirkung vermittelt, und dem Nachweis, daß dieses Element als Erkennungssequenz für das trans-wirkende DNA Bindungsprotein AP1 dient, ist es erstmals gelungen, das gemeinsame Bindeglied der Aktivierung von zellulären Genen durch TPA zu definieren.

Die Aktivität von API bzw. des TRE wird nur durch Phorbolester, die die Proteinkinase C aktivieren (z.B. TPA), nicht jedoch durch inaktive Phorbolester (z.B. 4-Phorbol-12,13-didecanoat) reguliert

— 112 —

(M. Karin, unveröffentlicht). Es ist daher wahrscheinlich, daß Proteinkinase C durch Phosphorylierung die Aktivität von APl verändert.

DNA footprinting Analysen mit Proteinextrakt aus TPA behandelten Zellen, die in Gegenwart oder Abwesenheit von Cycloheximid kultiviert wurden, zeigen, daß APl eine lange Halblebenszeit hat (mind.12 Stunden) und nach TPA Behandlung von Zellen nicht vermehrt synthetisiert wird (P. Herrlich, unveröffentlicht).

Die Phosphorylierungsaktivität der Proteinkinase C könnte daher a. die Bindung von APl an die DNA erhöhen b. die Aktivität von bereits an DNA gebundenem Protein verändern, oder c. die Wechselwirkung mit weiteren Proteinen verändern.

Eine oder mehrere dieser Möglichkeiten könnten die Ursache dafür sein, daß in Hela tk- oder Hep G2 Zellen die Aktivität von APl durch TPA 3 bis 4 fach erhöht wird (Angel et al,1987a). Es bleibt jedoch zu klären, ob diese in vitro gemessenen Veränderungen für die 5 bis 10 fache Induktion des TRE in vivo verantwortlich ist.

In vivo ist die Induktion der Kollagenase durch TPA in Gegenwart von Cycloheximid reduziert. Wegen der Stabilität von APl ist es wahrscheinlich. daß ein zweiter zellulärer Faktor für die maximale Induktion der Kollagenase durch TPA verantwortlich ist. Vielleicht wird dieses Protein nach TPA Behandlung vermehrt produziert. Eine zweite Möglichkeit wäre, daß es sich um ein bereits in der Zelle existierendes Protein mit einer sehr kurzen Halblebenszeit handelt, dessen Konzentration durch Cycloheximid reduziert wird. Dieser Faktor könnte durch Bindung an die rasch DNA (5'von Position -73 im Kollagenase Gen) seine Wirkung ausüben. Die in vitro footprinting Analyse der Wirkung von TPA behandelten Zellen favorisiert jedoch die Cycloheximid in Möglichkeit einer Protein-Protein Interaktion dieses Faktors mit

AP1 (P. Herrlich unveröffentlicht).

Dieses hypothetische Protein scheint für die maximale Induktion des MT IIa Gens jedoch nicht notwendig zu sein; hier hat Cycloheximid keinen Einfluß auf die erhöhte Expression des Gens.

DNA footprinting Analysen der 5'flankierenden Sequenzen von Kollagenase (Herrlich et al., 1987), MT IIa (Lee et al., 1987), cfos (Treisman, 1986; Gilman et al., 1986) und dem SV40 Enhancer (Wildeman et al., 1986) zeigen, daß noch andere Faktoren an die DNA binden. Sie sind wahrscheinlich verantwortlich für die Unterschiede Induktionskinetik oder Basalaktivität in der zwischen den verschiedenen TPA regulierbaren Genen.

<u>Wirken Karzinogene und Tumorpromotoren über den gleichen</u> Mechanismus?

Es gibt starke Hinweise, daß die Schädigung der DNA durch Bildung Thymin-Dimere eine entscheidende Rolle in der Induktion der von Kollagenase (und MT IIa) durch UV Licht spielt (Herrlich et al.,1986). In Fibroblasten Patienten mit Xeroderma von pigmentosum wird nur 1/10 der Dosis benötigt, die für die Induktion in Normalzellen notwendig ist (Schorpp et al., 1984;). Während TPA sehr schnell die Aktivität von APl verändert, weist die deutlich verzögerte Induktion der Kollagenase und MT IIa nach UV Bestrahlung und Mitomycin C darauf hin, daß es sich bei der Aktivierung um keinen direkten Effekt der Behandlung der Zellen handelt. Vielmehr könnte UV (und Mitomycin C) durch die induzierte Produktion von EPIF (Schorpp et al., 1984) oder/und anderer dazwischengeschalteter Genprodukte das Kollagenase-und MT IIa Gen aktivieren.

Da Interleukin 1 und EPIF die Kollagenase mit ähnlich schneller Kinetik wie TPA induzieren, könnten beide Substanzen über den

— 114 —

gleichen Mechanismus wie TPA wirken. Es gibt bisher jedoch noch keine Hinweise, daß Interleukin 1 oder EPIF die Proteinkinase C aktivieren. Vielmehr haben beide Substanzen, im Gegensatz zu TPA, keinen Einfluß auf die durch Aktivierung der Proteinkinase C regulierte Expression des c-fos Gens (Angel et al., 1985a und unveröffentlicht).

Durch die Analyse der Expression der verschiedenen Kollagenase-CAT Konstrukte wird es in Zukunft jedoch möglich sein, zu entscheiden, ob diese Substanzen die gleiche Kette von Ereignissen wie TPA aktivieren.

In Fibroblasten von Patienten, die am Bloom Syndrom, einer rezessiven Erbkrankheit mit hoher Tumorinzidenz leiden, wurde eine spontan erhöhte Syntheserate an Kollagenase nachgewiesen selbst (Mallick et al.,1982). Die Zellen sind nicht transformiert; sie könnten sich jedoch in einer prä-tumorgenen befinden, in der eine vermehrte Produktion an Kollagenase Phase abläuft. Ein Hinweis auf diesen Status der Zellen gibt die spontan erhöhte Synthese von weiteren zellulären Proteinen, die in Zellen durch Karzinogene oder Tumorpromotoren normalen induziert werden (Mallick et al., 1982). Es wird in Zukunft interessant sein, zu untersuchen, ob in diesen Zellen die stark erhöhte Produktion an Kollagenase auf die Aktivierung von APl zurückzuführen ist, und wie dies mit dem Primärdefekt in Bloom's Zellen in Zusammenhang steht.

Die gleiche Fragestellung einer erhöhten Aktivität von API stellt sich auch in anderen Kollagenase-überproduzierenden Zellen wie primäre menschliche Fibroblasten, die durch Karzinogene (Strahlung, chemische Substanzen) transformiert wurden (Sheela und Kennedy, 1986), und in Fibroblasten, die eine stark erhöhte Menge an c-fos Protein synthetisieren (Büscher und Schönthal, unveröffentlicht).

Außerdem ist es durch die Isolierung des TRE möglich geworden, APl in größeren Mengen zu reinigen, um Antikörper gegen dieses Protein herzustellen. Diese Antikörper könnten dann benutzt werden, spezifische cDNA Klone zu isolieren, um die Expression von APl zu studieren. Die Kenntnis über die Regulation dieses Proteins wäre nicht nur ein Schritt weiter im Verständnis der Regulation der Kollagenase während physiologischer und pathologischer Vorgänge, sondern würde neben dem Verständnis der Wirkungsweise von Tumorpromotoren einen Einblick geben in den allgemeinen Mechanismus der koordinierten Genkontrolle in eukaryontischen Zellen.

- Aggeler J., Frisch S., Werb Z. (1984) J. Cell. Biol. 98, 1656 -1661
- Angel P. (1983) Diplomarbeit, Universität Karlsruhe
- Angel P., Rahmsdorf H.J., Pöting A., Lücke-Huhle C., Herrlich P. (1985) J. Cell. Biochem. 29, 351-360
- Angel P., Rahmsdorf H.J., Pöting A., Herrlich P. (1985a) in "Cancer Cells", Feramisco J. et al., Eds., Cold Spring Harbor Laboratory 3, 315-319
- Angel P., Baumann I., Stein B., Delius H., Rahmsdorf H.J. Herrlich P. (1987) Mol. Cell. Biol. im Druck
- Angel P., Imagawa M., Chiu R., Stein B., Imbra R., Rahmsdorf H.J., Jonat C., Herrlich P., Karin M. (1987a) Cell, einger.
- Arlett C. und Lehmann A. (1978) Ann. Rev. Genet. 12, 95-115
- Asano T. und Hidaka H. (1984) J. Pharmacol. Exp. Ther. 231, 141-148
- Ashendel C. (1985) Biochim. Biophys. Acta 822, 219-242
- Aviv H. und Leder P. (1972) Proc. Natl. Acad. Sci. USA 69, 1408-1412
- Banerji J., Olson L., Schaffner W. (1983) Cell 33, 729-740
- Bauer E., Gedde-Dahl T., Eisen A. (1977) J. Invest. Dermatol. 68, 119-124
- Baumann I. (1986) Diplomarbeit, Universität Karlsruhe

Bell R. (1986) Cell 45, 631-632

Berenblum J. (1969) Prog. Exp. Tumor Res. 11, 21

- Berk A. und Sharp P. (1977) Cell 12, 721-732
- Bishop J. (1987) Science 235, 305-311
- Biswas C. (1982) Biochem. Biophys. Res. Com. 109, 1026-1034

Biswas C. (1984) Cancer Letters 24, 201-207

Bornstein P. und Sage H. (1980) Annu. Rev. Biochem. 49, 957-1003

- Boutwell R. (1964) Prog. Exptl. Tumor Res. 4, 207-250
- Boutwell R. (1974) Critical Rev. Toxicol. 2, 419-443
- Briggs M., Kadonaga J., Bell S., Tjian R. (1986) Science 234, 47-52
- Brinckerhoff C., Benoit M., Culp W. (1985) Proc. Natl. Acad. Sci. USA 82, 1916-1920
- Cairns J. (1981) Nature 289, 353-357
- Caput D., Beutler B., Hartog K., Thayer R., Brown-Shimer S., Cerami A. (1986) Proc. Natl. Acad. Sci. USA 83, 1670-1674
- Cawston T. und Murphy G. (1981) Meth. in Enzymology 80, 711-722 Cerutti P. (1985) Science 227, 375-381
- Cleveland D., Fischer S., Kirschner M., Laemmli U. (1977) J.

Biol. Chem. 252, 1102-1106

Cochran B., Reffel A., Stiles C. (1983) Cell 33, 939-947

Chandler V., Maler B., Yamamoto K. (1983) Cell 33, 489-499

- Comb M., Birnberg N., Saesholtz A., Herbert E., Goodman H.(1986) Nature 323, 353-356
- Davis R. und Czech M. (1985) in "Cancer Cells", Feramisco J. et al., Eds., Cold Spring Harbor Laboratory 3, 101-108
- Dayer J., Zavadil-Grob C., Ucla C., Mach B. (1984) Eur. J. Immunol. 14, 898-901
- Denhardt D. (1966) Biochem. Biophys. Res. Com. 23, 641-646
- Dente L., Cesareni G., Cortese R. (1983) Nucl. Acids Res. 11, 1645-1655
- Dicker P. und Rozengurt E. (1980) Nature 287, 607-612

Docherty A., Lyons A., Smith B., Wright E., Stephens P., Harris

T., Murphy G., Reynolds J. (1985) Nature 318, 66-69 Dürr I. (1986) Diplomarbeit, Universität Karlsruhe Dynan W. und Tjian R. (1985) Nature 316, 774-778 Dzarlieva R. und Fusenig N. (1982) Cancer Lett. 16, 7 Efstratiatis A., Posakony J., Maniatis T., Lawn R., O'Connel C. Spritz R., De Riel J., Forget B., Weissman S., Slightom J., Blechl A., Smithies O., Barelle F., Schoulders C., Proudfoot N. (1980) Cell 21, 653-668

Emerit J., Levy A., Cerutti P. (1983) Mutat. Res. 110, 327-335

- Fujiki H., Sugimura T., Moore R. (1983) Envirom. Health Persp. 50, 85-90
- Gilman M., Wilson R., Weinberg R. (1986) Mol. Cell. Biol. 6, 4305-4316
- Godowski P., Rusconi S., Miesfeld R., Yamamoto K. (1987) Nature 325, 365-368
- Goodbourn S., Zinn K., Maniatis T. (1985) Cell 41, 509-520
- Goodbourn S., Burstein H., Maniatis T. (1986) Cell 45, 601-610
- Gorman C., Moffat L., Howard B. (1982) Mol. Cell. Biol. 2, 1044-1051
- Gorman C., Merlino G., Willingham M., Pastan I., Howard B. (1982a) Proc. Natl. Acad. Sci. USA 79, 6777-6781

Greenberg M. und Ziff E. (1984) Nature 311, 433-437

- Gruss P., Dhar R., Khoury G. (1981) Proc. Natl. Acad. Sci. USA 78, 943-947
- Hanahan D. (1983) J. Mol. Biol. 166, 557-580
- Harris E. Jr. (1981) in "Textbook of Rheumatology", eds. W.N. Kelley et al., Saunders, Philadelphia, 896-927
- Haslinger A. und Karin M. (1985) Proc. Natl. Acad. Sci. USA 82, 8572-8576

Hecker E. (1967) Naturwissenschaften 54, 282-284

- Hecker E. (1978) in "Mechanisms of Tumor Promotion and Cocarcinogenesis", eds. Slaga, T.J., Sivak, A.J., Boutwell, R.K. (Raven New York) 11-49
- Heidecker G. und Messing J. (1983) Nucl. Acids Res.11, 4891-4906 Herr W. und Clarke J. (1986) Cell 45, 461-470
- Herrlich P., Mallick U., Ponta H., Rahmsdorf H.J. (1984) Hum.

Gen. 67, 360-368

- Herrlich P., Angel P., Rahmsdorf H.J., Mallick U., Pöting A., Hieber L., Lücke-Huhle C., Schorpp M. (1986) Adv. in Enzyme Regulation 25, 485-504
- Herrlich P., Imagawa M., Maher V., Sato K., McCormick J., Angel P., Karin M., Baumann I., Lücke-Huhle C., Rahmsdorf H.J. (1987) in "Accomplishments in Oncology" Verl. J.B. Lippincott im Druck
- Huberman E. und Callaham M. (1979) Proc. Natl. Acad. Sci. USA 76, 1293-1297
- Hynes N., van Ooyen A., Kennedy N., Herrlich P., Ponta H., Groner B. (1983) 80, 3637-3641
- Imbra R. und Karin M. (1986) Nature 323, 555-558
- Johnson-Wint B. und Gross J. (1984) J. Cell. Biol. 98, 90-96
- Johnson-Wint B. und Bauer E. (1985) J. Biol. Chem. 260, 2080-2085
- Johnsrud L. (1979) Mol. Gen. Genet. 169, 213-218
- Karin M. und Richards R. (1982) Nature 299, 797-802
- Karin M., Haslinger A., Holtgreve H., Richards R., Krauter P., Westphal H., Beato M. (1984) Nature 308, 513-519
- Karin M., Haslinger A., Heguy A., Deitlin T., Cooke T. (1987) Mol. Cell. Biol. im Druck
- Kawai S. und Nishizaka M.(1984) Mol. Cell. Biol. 4, 1172-1174
- Kawamoto S. und Hidaka H. (1984) Biochem. Biophys. Res. Com. 125, 258-264

Kinzel V., Richards J., Stöhr M. (1981) Cancer Res. 41, 300-305
Kinzella A. und Radman M. (1978) Proc. Natl. Acad. Sci. USA 75,
6149-6153

- Klein-Hitpaß L., Schorpp M., Wagner U., Ryffel G. (1986) Cell 46, 1053-1061
- Knopf J., Lee M., Sultzman L., Kriz R., Loomis C., Hewick R., Bell R. (1986) Cell 46, 491-502

- Kozak M. (1984) Nucl. Acids Res. 12, 857-872
- Laemmli U. (1970) Nature 227, 680-685
- Laimins L., Holmgren-König M., Khoury G. (1986) Proc. Natl. Acad. Sci. USA 83, 3151-3155
- Lazarus G.(1972) J. Invest. Dermatol. 58, 242-248
- Lee W., Haslinger H., Karin M., Tjian R. (1987) Nature 325, 368-372
- Lehrach H., Diamond D., Wozney J., Boedtker H. (1977) Biochemistry 16, 4743-4751
- Ligappa V., Cunningham B., Jazwinski S., Hopp T., Blobel G.(1979) Proc. Natl. Acad. Sci. USA 76, 3651-3655

Liotta L. (1986) Cancer Res. 46, 1-7

- Lowry O., Rosebrough N., Farr A., Randall R. (1951) J. Biol. Chem. 193, 265-275
- Luthman H. und Magnusson G. (1983) Nucl. Acids Res.11, 1295-1308 Mallick U., Rahmsdorf H.J., Yamamoto N., Ponta H., Wegner R.-D.,
- Herrlich P. (1982) Proc. Natl. Acad. Sci. USA 79, 7886-7890 Maniatis T., Fritsch E., Sambrook J. (1982) "Molecular Cloning, A
- Laboratory Manual" Cold Spring Harbor, New York Martin G., Timpl R., Müller D., Kühn K. (1985) TIBS 10, 285-287 Matrisian L., Glaichenhaus N., Gesnel M., Breathnach R. (1985) EMBO J. 4, 1435-1440
- Matrisian L., Leroy P., Ruhlmann C., Gesnel M., Breathnach R. (1986) Mol. Cell. Biol. 6, 1679-1686

Maxam A. und Gilbert W. (1980) Meth. in Enzymology 65, 499-560 McCroskery P., Arai S., Amento E., Krane S.(1985) FEBS 191, 7-12 Mc Knight S. und Kingsbury R. (1982) Science 217, 316-324 Mc Knight S. und Tjian R. (1986) Cell 46, 795-805 Melton D., Krieg P., Rebagliati M., Maniatis T., Zinn K., Green

M. (1984) Nucl. Acids Res. 12, 7035-7056 Mignatti P., Robbins E., Rifkin D. (1986) Cell 47, 487-498

- Miksicek R., Heber A., Schmid W., Danesch U., Posseckert G., Beato M., Schütz G. (1986) Cell 46, 283-290
- Mondal S., Brankow D., Heidelberger C. (1976) Cancer Res. 36, 2254-2260
- Montminy M., Sevarino K., Wagner J., Mandel G., Goodman H. (1986) Proc. Natl. Acad. Sci. USA 83, 6682-6686
- Murphy G. und Reynolds J. (1985) Bio Essays 2, 55-60
- Nakahama K., Yoshimura K., Marumoto R., Kikuchi M., Lee I., Hase
 - T., Matsubara H. (1986) Nucl. Acids Res. 14, 5843-5855
- Nishizuka Y. (1984) Nature 308, 693-698
- Nishizuka Y. (1986) Science 233, 305-312
- Pöting A. (1985) Dissertation, Universität Karlsruhe
- Ponta H., Kennedy N., Skroch P., Hynes N., Groner B.(1985) Proc. Natl. Acad. Sci. USA 80, 7428-7432
- Rigby P., Dieckmann M., Rhodes C., Bug P. (1977) J. Mol. Biol. 113, 237-251
- Rovera G., O'Brien T., Diamond L. (1977) Proc. Natl. Acad. Sci. USA 74, 2894-2898
- Sakamoto S., Baird S., Sakamoto M. (1985) Biochim. Biophys. Res. Com. 133, 709-716
- Sanger F., Nicklen S., Coulsen A. (1977) Proc. Natl. Acad. Sci. USA 74, 5463-5467
- Sassone-Corsi P., Wildeman A., Chambon P. (1985) Nature 313, 458-463
- Sassone-Corsi P. und Borrelli E. (1986) TIG 2, 215-219
- Schöler H. und Gruss P. (1985) EMBO J. 4, 3005-3013
- Schorpp M., Mallick U., Rahmsdorf H.J., Herrlich P. (1984) Cell 37, 861-868
- Serfling E., Jasin M., Schaffner W. (1985) TIG 1, 224-230 Setlow R. (1978) Nature 271, 713-717
- Sharkey N., Leach K., Blumberg P. (1984) Proc. Natl. Acad. Sci.

- Sheela S. und Kennedy A. (1986) Carcinogenesis 7, 201-205
- Shoyab M. (1984) in "Cancer Cells" Levine et al., Eds., Cold Spring Harbor Laboratory 1, 253-262
- Slaga T., Sivak A., Boutwell R. (1978) in "Mechanisms of Tumor Promotion and Cocarcinogenesis" (Raven, New York) 2, 1-588
- Slaga T., Fischer S., Nelson K., Gleason G. (1980) Proc. Natl. Acad. Sci. USA 77, 3659-3663
- Southern E. (1975) J. Mol. Biol. 98, 503-517
- Stein B. (1987) Diplomarbeit, Universität Karlsruhe
- Stephenson M., Goldring M., Birkhead J., Rahmsdorf H.J., Angel P. (1987) Biochem. Biophys. Res. Com., eingereicht
- Stricklin G., Bauer E., Jeffrey J., Eisen A. (1977) Biochemistry 16, 1607-1615
- Stricklin G. und Welgus H.(1983) J. Biol. Chem. 258, 12252-12258 Tjian R. (1978) Cell 13, 165-179
- Touqui L., Rothhut B., Shaw A., Fradin A., Vargaftig B. Russo-Marie F. (1986) Nature , 177-180
- Treisman R., Green M., Maniatis T. (1983) Proc. Natl. Acad. Sci. USA 80, 7428-7432
- Treisman R. (1986) Cell 46, 567-574
- Valle K. und Bauer E. (1979) J. Biol. Chem. 254, 10115-10122
- Van Duuren B. (1969) Progr. Exptl. Tumor Res. 11, 31-68
- Van Straaten F., Müller R., Curren T., Van Beveren C., Verma I. (1983) Proc. Natl. Acad. Sci. USA 80, 3183-3187

Von Heijne G. (1986) Nucl. Acids Res. 14, 4683-4690

Watson M. (1984) Nucl. Acids Res. 12, 5143-5164

- Weinberg R. (1982) Adv. Cancer Res. 36, 149-163
- Weinstein I., Wigler M., Pietropaolo C. (1977) in "Origins of Human Cancer, Book B", Hiat, H. et al., Eds., Cold Spring Harbor Conferences on Cell Proliferation 4, 751-772

- Weinstein I., Gattoni-Celli S., Kirschmeier P., Lambert M., Hsiao W., Backer J., Jeffrey A.(1984) in "Cancer Cells", Levine et al., Eds., Cold Spring Harbor Laboratory 1, 229-237
- Whitham S., Murphy G., Angel P., Rahmsdorf H.J., Smith B., Lyons A.,Harris T., Reynolds J., Herrlich P., Docherty A. (1986) Biochem. J. 240, 913-916
- Wigler M. und Weinstein J. (1976) Nature 259, 232-233
- Wildeman A., Zenke M., Schatz C., Wintzerith M., Grundström T., Matthes H., Takahashi K., Chambon P. (1986) Mol. Cell. Biol. 6, 2098-2105
- Wilhelm S., Eisen A., Teter M., Clark S., Kronberger A. Goldberg G. (1986) Proc. Natl. Acad. Sci. USA 83, 3756-3760
- Winzler R. (1973) in "Hormonal Proteins and Peptides", Li C., Eds., (Academic, New York) 1-15
- Woolley D. (1984) Cancer Metastasis Rev. 3, 361-372
- Yamamoto K. (1985) Ann. Rev. Genet. 19, 209-252
- Zick Y., Sagi-Eisenberg R., Pines M., Gierschick P. Spiegel A.

Proc. Natl. Acad. Sci. USA 83, 9294-9297