KfK 4437 September 1988

Explosion und Detonation von Ozon in Gemischen mit kerntechnisch bedeutenden Trägergasen

M. M. L. Weh Institut für Radiochemie

Kernforschungszentrum Karlsruhe

KERNFORSCHUNGSZENTRUM KARLSRUHE

Institut für Radiochemie

KfK 4437

PWA 36/88

Explosion und Detonation von Ozon in Gemischen mit kerntechnisch bedeutenden Trägergasen

Michaela Martha Luise Weh

* Von der Fakultät für Chemie der Universität (TH) Karlsruhe genehmigte Dissertation

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

Als Manuskript vervielfältigt Für diesen Bericht behalten wir uns alle Rechte vor

Kernforschungszentrum Karlsruhe GmbH Postfach 3640, 7500 Karlsruhe 1

ISSN 0303-4003

Explosion und Detonation von Ozon in Gemischen mit kerntechnisch bedeutenden Trägergasen

Zusammenfassung

Da Radiolyse von Sauerstoff bei tiefen Temperaturen das explosive Ozon bildet, sind für die Sicherheitsbetrachtung kerntechnischer Anlagen zur kryogenen Abtrennung des ⁸⁵Krypton aus den Auflöserabgas einer Wiederaufarbeitungsanlage umfangreiche Kenntnisse über das Explosions- und Detonationsverhalten von Ozon erforderlich.

Das Explosionsverhalten des gasförmigen Ozons wurde in Gemischen mit Sauerstoff, Stickstoff, Helium, Argon, Krypton, Xenon und Dichlordifluormethan in Abhängigkeit von der Ozonkonzentration, dem Initialdruck und der Geometrie des Reaktionsgefäßes untersucht.

Für Mischungen von Ozon mit Sauerstoff, Argon, Krypton und Xenon wurde Detonationsgeschwindigkeit als Funktion die der Ozonkonzentration Ozon-Xenon-Gemischen und in zusätzlich in Abhängigkeit vom Initialdruck bestimmt. Ferner wurde der Einfluß einer Füllkörperpackung, wie sie in der im KfK erprobten Anlage zur kryogenen Spaltedelgasabtrennung "KRETA" eingesetzt wurde, auf die Detonation des Ozons im System Ozon-Xenon untersucht.

Darüber hinaus wurde der Einfluß geringer Mengen an Kohlenmonoxid, Methan und Sickstoffdioxid auf die Explosion (O_3/Ar) bzw. Detonation (O_3/Xe) eines Ozon-Edelgas-Gemisches bestimmt. Explosion and Detonation of Ozone in Mixtures with Carrier Gases Employed in Nuclear Technology

Abstract

Explosive ozone is known to be formed during low temperature radiolysis of oxygen. Detailed knowledge on the explosion and the detonation of ozone is therefore required for safety considerations of nuclear installations such as proposed for the cryogenic separation of ⁸⁵krypton from the head end off gas of a reprocessing plant.

The explosion properties of gaseous ozone in mixtures with oxygen, nitrogen, helium, argon, krypton, xenon and difluorodichloromethane were studied by varying the ozone concentration, the initial pressure and the shape of the vessel containing the gas.

Detonation velocities were determined for gaseous mixtures of ozone with oxygen, argon, krypton or xenon as functions of the ozone concentration. In addition, the initial pressure was varied for ozonexenon mixtures. The effect of a packing such as used in the ⁸⁵Krseparation plant 'KRETA' in KfK on ozone-xenon detonation was investigated.

In addition, the effect of low amounts of carbon monoxide, methane and nitrogen dioxide on the explosion (O_3/Ar) and the detonation (O_3/Xe) of an ozone-noble gas mixture was determined.

Inhalt

1. Einleitung	1
2. Theoretische Betrachtung des thermischen Ozonzerfalls, sowie der laminaren Flamme, der Detonation und der Explosion von Gasen	5
2.1. Der thermische Ozonzerfall	5
2.1.1. Der Mechanismus des thermischen Ozonzerfalls	6
2.1.2. Einfluß einiger WAA-typischer Verunreinigungen	8
auf den thermischen [.] Ozonzerfall	
2.2. Die Rankine-Hugoniot Gleichungen	12
2.3. Die eindimensionale laminare Flamme	16
2.3.1. Modell der eindimensionalen laminaren Flamme	17
2.3.2. Die laminare Ozonflamme	20
2.3.3. Zündgrenzen	28
2.4. Detonation	30
2.4.1. Die Chapman-Jouguet-Theorie	31
2.4.2. Die Zeldovich-v.Neumann-Döring-Theorie	33
2.4.3. Nicht-ideale Detonationen	35
2.4.4. Das Entstehen von Detonationen	38
2.4.5. Die Detonation ozonhaltiger Gasgemische	39

2.5. Adiabatische Explosionen in geschlossenen Gefäßen	43		
2.5.1. Modell von Flamm und Mache	43		
2.5.2. Die Explosion ozonhaltiger Gasgemische	45		
3. Experimentelle Untersuchungen	47		
3.1. Aufbau und Durchführung der Versuche	50		
3.1.1. Herstellung der Gasgemische	50		
3.1.2. Reaktionsgefäße	51		
3.1.3. Druckmessung	54		
3.1.4. Gasanalyse	56		
3.2. Ergebnisse	57		
3.2.1. Versuche zur Ozonexplosion	57		
3.2.2. Versuche zur Ozondetonation	86		
4. Interpretation und Diskussion der Ergebnisse	97		
4.1. Ozonexplosion	97		
4.1.1. Explosionsdrücke	98		
4.1.2. Übergang von der Explosion zur Detonation	114		
4.1.3. Zündgrenzen	119		
4.1.4. Einfluß WAA-typischer Verunreinigungen	125		
4.2. Ozondetonation	127		
4.2.1. Detonationsgeschwindigkeiten	128		
.2.2. Einfluß von Knallgas und WAA-typischer Verunreinigungen			
4.2.3. Füllkörperpackungen			

Zusammenfassung	136	
Literatur	139	
Anhang	145	
Laminare Flammen verschiedener Ozon/Trägergas-Gemische	145	
Chapman-Jouguet-Detonation verschiedener	148	
Ozon/Trägergas-Gemische		
Adiabatische Explosion verschiedener	168	
Ozon/Trägergas-Gemische		
Ergebnisse der Versuche zur Ozon-Explosion	170	
Ergebnisse der Versuche zur Ozon-Detonation	186	
Berechnung der Nicht-adiabatischen Explosion	190	
verschiedener Ozon/Trägergas-Systeme		
	Zusammenfassung Literatur Anhang Laminare Flammen verschiedener Ozon/Trägergas-Gemische Chapman-Jouguet-Detonation verschiedener Ozon/Trägergas-Gemische Adiabatische Explosion verschiedener Ozon/Trägergas-Gemische Ergebnisse der Versuche zur Ozon-Explosion Ergebnisse der Versuche zur Ozon-Detonation Berechnung der Nicht-adiabatischen Explosion verschiedener Ozon/Trägergas-Systeme	Zusammenfassung136Literatur139Anhang145Laminare Flammen verschiedener Ozon/Trägergas-Gemische145Chapman-Jouguet-Detonation verschiedener148Ozon/Trägergas-Gemische168Adiabatische Explosion verschiedener168Ozon/Trägergas-Gemische170Ergebnisse der Versuche zur Ozon-Explosion170Ergebnisse der Versuche zur Ozon-Detonation186Berechnung der Nicht-adiabatischen Explosion190verschiedener Ozon/Trägergas-Systeme139

.

1. Einleitung

Durch die weltweite Nutzung der Kernenergie ist die Wiederaufarbeitung von Kernbrennstoffen und in diesem Zusammenhang die Entsorgung radioaktiver Abfälle von Bedeutung.

Zu den während des Reaktorbetriebes erzeugten Spaltprodukten zählen radioaktive und nichtradioaktive Isotope der Edelgase Krypton und Xenon, die während des Zerkleinerns und Auflösens der Reaktorbrennstäbe freigesetzt werden. Das wesentliche Problem ist hier das Isotop ⁸⁵Kr ($t_{\frac{1}{2}}$ = 10.8 a, $E_{max}(\beta)$ = 0.7 MeV) - alle anderen Spaltedelgasnuklide sind entweder inaktiv oder so kurzlebig, daß sie während der üblichen Abklingzeit für genutzte Brennelemente (1 Jahr) zerfallen. In einer 350 Jato Wiederaufarbeitungsanlage (WAA) müssen ca. 350 m³ inaktives Xenon und ca. 35 m³ Krypton mit einer ⁸⁵Kr-Aktivität von 1.3×10¹⁷ Bq (3 MCi) entsorgt werden [1,2]. Obwohl die ⁸⁵Kr-Emission den von der Strahlenschutzkommission empfohlenen Grenzwert in naher Zukunft nicht überschreiten wird [3], wird aus ökologischen Gründen bereits die Rückhaltung des Kryptons erwogen. Krypton ist in der Atmosphäre zu etwa 1 vpm enthalten. Bedingt durch Kernwaffenversuche und die Emission aus Wiederaufarbeitungsanlagen (gegenwärtig wird ⁸⁵Kr in die Atmosphäre abgegeben) beträgt die auf ⁸⁵Kr zurückzuführende Aktivität bereits 740 kBq (20 µCi) pro m³ atmosphärischen Kryptons [2,4]. Ohne Kryptonrückhaltung würde sich dieser Anteil bei weltweiter Nutzung der Wiederaufarbeitung in wenigen Jahren verdoppeln.

Zur Abtrennung und Aufarbeitung der Spaltedelgase sind zwei unterschiedliche Verfahren technisch weitgehend erprobt:

- 1) Die drucklose Edelgaswäsche; sie basiert auf der guten Löslichkeit der Edelgase in Dichlordifluormethan. Nach Reinigung des Prozeßgases von nitrosen Gasen mit Salpetersäure oder Salpetersäure/Wasserstoffperoxid werden in zwei Reinigungszyklen zunächst Xenon, dann Krypton mit Dichlordifluormethan aus dem Gasstrom herausgelöst [5,6].
- 2) Die Tieftemperaturrektifikation (TTR); hier werden die verflüssigten Gase unter Druck bei tiefen Temperaturen destillativ getrennt. Nach katalytischer Entfernung der Prozeßgaskomponenten Sauerstoff (18 Vol-%), Stickstoffoxide (5Vol-%), Kohlenwasserstoffe (10 vpm), sowie kryogener Abtrennung von Kohlendioxid (330 vpm) und Wasser wird das Gas auf 5 bar komprimiert. Krypton und Xenon werden in einer ersten Rektifikationssäule gemeinsam vom Trägergas (N₂) abgetrennt. In einer weiteren Kolonne erfolgt bei 3 bar die Separierung der Edelgase voneinander [5-7].

Ein möglicher Nachteil der TTR gegenüber der Edelgaswäsche ist die in Gegenwart einer Restmenge Sauerstoff erfolgende radiolytische Bildung von Ozon in den Rektifikationskolonnen. Daher soll die Problematik dieses Verfahrens hier eingehender diskutiert werden:

Als wichtiger Schritt vor der Rektifikation ist die bereits erwähnte Sauerstoffentfernung zu sehen. Sie ist notwendig, da besonders bei tiefen Temperaturen - durch die Einwirkung der von ⁸⁵Kr ausgesandten β -Strahlung aus Sauerstoff Ozon gebildet wird: Während sich der G-Wert (Anzahl der gebildeten Teilchen pro 100 eV absorbierte Strahlung) für die Ozonbildung nur geringfügig mit der Temperatur ändert (G(O₃) = 13-16 für 300 K und G(O₃) = 6-15 für 77 K), nimmt der G-Wert für die Ozonzersetzung stark mit der Temperatur ab $(G(-O_3) = 10^3 - 10^4$ für 300 K und $G(-O_3) \approx 25$ für 77 K) [8-21]. Wegen der langen Verweilzeit der Gase in der TTR-Anlage ist daher mit der Bildung und Akkumulation von Ozon in Sumpf und Böden der Kolonnen zu rechnen, obgleich im Normalbetrieb nicht mehr als 10 ppm Sauerstoff im vorgereinigten Speisegas zu erwarten sind.

Ozon ist thermodynamisch instabil und in höheren Konzentrationen sowohl in festem und flüssigem Zustand als auch in der Gasphase explosiv [22].

Im Speisegas sind ferner Spuren von Methan, Kohlenmonoxid und Stickstoffoxiden enthalten [6]. Diese Substanzen können entweder durch Radikalbildung die Explosionsreaktion initiieren oder durch einen zusätzlichen Beitrag zur Radikalkonzentration bzw. zur Reaktionswärme eine Explosion fördern.

Bedingt durch die geringe Differenz zwischen Schmelz- und Siedepunkt des Xenons (161 K und 165 K) ist dessen kryogene Handhabung keineswegs trivial. Bei dem hohen Xenonanteil von über 90 % am Spaltedelgas sind Ausfrierungen in den Kolonnen möglich. Daher sehen einige TTR-Varianten zur Erhöhung der Xenonlöslichkeit die Verwendung von Argon [23] oder sogar Sauerstoff als Prozeßgaskomponente vor. Im letzten Fall wurden besonders hohe Ozonkonzentrationen - bis über 30 Mol-% in der Gasphase - beobachtet [24]. Auch die oben beschriebene Edelgaswäsche mit Dichlordifluormethan kann von der Möglichkeit der Ozonexplosion nicht freigesprochen werden.

Über das Explosions- und Detonationsverhalten von Ozon/Sauerstoff-Gemischen liegt bereits eine Reihe von Arbeiten vor. Zu beachten sind vor allem die Messungen der Explosionsgrenzen von Schumacher [25], von Cook et al.[26] sowie von Raffel, Warnatz und Wolfrum [27], die Untersuchung der Ozon-Explosion von Lewis und v.Elbe [28-30], ferner die Experimente von Streng et al.[31], Miller [32], Harper und Gordon

-3-

[33] sowie Getzinger et al.[34] zur Ozon-Detonation. Dagegen ist über das Verhalten der Systeme Ozon/Stickstoff, Ozon/Edelgas und Ozon/Dichlordifluormethan bisher nur wenig bekannt. Zu zitieren in diesem Zusammenhang wäre lediglich die Arbeit von Yastrebov und Kobozev, die die Explosionsgrenzen für Ozon in verschiedenen Trägergases bestimmten [35].

Ziel der vorliegenden Arbeit ist die Erfassung des Explosions- und Detonationsverhaltens des Ozons unter Bedingungen, die den im Hinblick auf den technischen Einsatz diskutierten Verfahrensvarianten zur Spaltedelgasrückhaltung (TTR und Freonwäsche) Rechnung tragen. Daher sollen die Explosion und die Detonation des gasförmigen Ozons in Gemischen mit den Spaltedelgasen Krypton und sowie den Trägergasen Sauerstoff, Stickstoff, Argon und Xenon, Dichlordifluormethan experimentell untersucht werden. Besonderes Gewicht kommt dabei dem System Ozon/Xenon zu, da wegen der Ähnlichkeit der Siedepunkte beider Gase (Ozon: 162 K, Xenon: 165 K) eine Anreicherung des Ozons im Xenon zu erwarten ist. Durch den Vergleich der experimentellen Ergebnisse mit den Aussagen einiger Modelle zur Berechnung von Flammen, Explosionen und Detonationen soll die Anwendbarkeit dieser Modelle auf das Ozonproblem untersucht werden. Darüber hinaus sollen die erzielten Ergebnisse zur Beurteilung der Sicherheit der Spaltedelgasabtrennung beitragen und Entscheidungskriterien zur Verfahrenswahl liefern.

2. Theoretische Betrachtungen des thermischen Ozonzerfalls, sowie der laminaren Flamme, der Detonation und der Explosion von Gasen

Die zur Beurteilung und Diskussion der experimentellen Ergebnisse wichtigen theoretischen Grundlagen sollen nachfolgend diskutiert werden. Wesentlich ist die Kinetik des thermischen Ozonzerfalls. Ozon ist thermodynamisch nicht stabil und zerfällt bei Raumtemperatur langsam, bei höheren Temperaturen oder in Gegenwart einer Vielzahl katalytisch wirkender Stoffe rasch. In dieser Arbeit sind hier vor allem die WAA-typischen Verunreinigungen Wasser, Kohlenmonoxid, Stickstoffoxide und Methan interessant. Die Prozesse Flamme bzw. Verbrennung, Detonation und Explosion sollen definiert, ihr Entstehen und ihre Eigenschaften sowohl qualitativ als auch anhand einiger wichtiger Modelle quantitativ beschrieben werden. Während Explosionen allein durch die Geschwindigkeit der Wärmeentwicklung und damit durch die Thermodynamik und die Kinetik der chemischen Reaktion erklärt werden, sind für Flammen und Detonationen zudem ihr Fortschreiten im Raum charakteristisch. Das einfachste hydrodynamische Modell zur Beschreibung von Flammen und Detonationen führt zu den Rankine-Hugoniot-Gleichungen, die in Kapitel 2.2. diskutiert werden.

2.1. Der thermische Ozonzerfall

Ozon zerfällt bei Raumtemperatur langsam und bei Temperaturen oberhalb von 70°C rasch zu Sauerstoff mit einer Tendenz zur Explosion bei ozonreichen Gemischen. Der Ozonzerfall wird durch zahlreiche Substanzen, wie Metalle, deren Oxide, Spuren von Peroxiden und Stickstoffoxiden, sowie organische Verbindungen katalysiert [36]. Im folgenden sollen der Ozonzerfall in einem binären Gemisch und der Einfluß einiger katalytisch wirksamer Verbindungen beschrieben werden. 2.1.1. Der Mechanismus des thermischen Ozonzerfalls

Der thermische Ozonzerfall wurde sowohl bei vergleichsweise niederen Temperaturen von 300 K bis 400 K (erwähnenswert sind hier besonders die Arbeiten von Benson und Axworthy [37]), als auch bei hohen Temperaturen von 800 K bis 3000 K (Schockwellenexperimente) untersucht. Hier sind vor allem die Arbeiten von Jones und Davidson [38], Michael [39], Wray [40] und Center und Kung [41] zu nennen.

Der thermische Ozonzerfall bei mäßigen Temperaturen wird durch den erstmals von Benson und Axworthy formulierten Reaktionsmechanismus beschrieben [37]. Dieser sieht folgende Reaktionsschritte vor:

$$O_3 + M \rightarrow O_2 + O + M \tag{1}$$

$$0 + O_2 + M \to O_3 + M \tag{2}$$

$$0 + 0_3 \rightarrow 20_2 \tag{3}$$

Der Stoßpartner 'M' kann sowohl O_3 , O_2 und O, oder ein anderes, dem Ozon beigemischtes Gas sein, z.B. Stickstoff oder ein Edelgas.

Der Zerfall des Ozons bei hohen Temperaturen (> 2000 K) ist deutlich langsamer, als eine Extrapolation der Daten für die Reaktionsgeschwindigkeit bei mäßigen Temperaturen vermuten läßt [41]. Warnatz [42] erklärt dies durch eine starke Temperaturabhängigkeit des präexponentiellen Faktors der Reaktionsgeschwindigkeit für den geschwindigkeitsbestimmenden Schritt:

(2.1)
$$k_1 = A \times T^{-1 \cdot 25} \exp(-E/RT).$$

Bei Temperaturen oberhalb von 1300 K und Drücken oberhalb von 0.5 bar zerfällt Ozon innerhalb von 1 bis 2 µs nahezu vollständig [40,43]. Die Rekombination des atomaren Sauerstoffs erfolgt durch

$$0 + 0 + M \rightarrow 0_2 + M \tag{4}$$

Ferner tritt bei Temperaturen oberhalb 1700 K zu merklichen Anteilen Dissoziation des Sauerstoffs ein [44-52]:

$$O_2 + M \rightarrow O + O + M \tag{5}$$

Der Verlust von Sauerstoffatomen durch Wandreaktion ist hier dagegen ohne Bedeutung: Nach Kaufman und Kelso [53,54] ist die Geschwindigkeitskonstante k_u für diesen Prozeß zu berechnen nach:

$$k_{\rm W} = \frac{1}{2}\sigma\bar{\rm u}/r \quad ,$$

wobei \overline{u} die mittlere Geschwindigkeit des atomaren Sauerstoffes, r der Gefäßradius und σ eine Funktion des Materials und der Temperatur des Gefäßes bedeuten. Da in Ozonexplosionen oder Ozonflammen keine signifikante Erhöhung der Gefäßtemperatur eintritt ($\Delta T \leq 5$ K), beträgt σ für Pyrexglas $\sigma = 10^{-5}$ [53,54] bzw. $\sigma = 1.2 \times 10^{-4}$ [55]. Somit ist für jede Flammen- oder Explosionstemperatur und jede Ozonkonzentration die Änderung der O-Konzentration durch Wandreaktion sehr viel geringer als die durch eine der Reaktionen (1) bis (4).

Durch die thermische Zersetzung des Ozons entstehen intermediär ausschließlich Sauerstoffatome der Konfiguration O(³P). Die Bildung von O(¹D) ist aufgrund der hohen Aktivierungsenergie von 386 kJ/Mol durch thermische Anregung nicht möglich und tritt erst bei der photolytischen Ozonzersetzung bei Wellenlängen $\lambda < 310$ nm ein [56,57]. Im Gegensatz zu O(¹D) ist O(³P) nicht als Kettenträger wirksam.

2.1.2. Einfluß einiger WAA-typischer Verunreinigungen auf den thermischen Ozonzerfall

Ozon reagiert ebenso wie der intermediär entstehende $O(^{3}P)$ bei Raumtemperatur nicht mit <u>Wasser</u> [58,59]:

$$O_3 + M \neq O_2 + O({}^{3}P) + M, \quad \Delta H_{298} = 106.5 \text{ kJ/Mol} (1)$$

 $O({}^{3}P) + H_2O \neq 20H, \qquad \Delta H_{298} = 70.3 \text{ kJ/Mol} (6)$

Tritt bei höheren Temperaturen, z.B. in Flammen oder Explosionen, Reaktion (6) jedoch ein und wird die Reaktionsgeschwindigkeit k_6 genügend groß, so daß Reaktion (6) in Konkurrenz tritt zu den O-Rekombinationsreaktionen (3) oder (4)

$$O(^{3}P) + O_{3} \rightarrow 2O_{2}$$
(3)

$$O(^{3}P) + O(^{3}P) + M \neq O_{2} + M$$
 (4)

so ist eine Kettenreaktion möglich der Form:

$$OH + O_3 \rightarrow HO_2 + O_2 \tag{7}$$

$$HO_2 + O_3 \rightarrow OH + 2O_2 \tag{8}$$

Tab.2.1 zeigt eine Abschätzung der Temperaturabhängigkeit für die Reaktionsgeschwindigkeiten der O(³P)-verbrauchenden Reaktionen (2), (3), (4) und (6). Dabei wurden folgende Daten für die Berechnung der Reaktionsgeschwindigkeiten herangezogen:

(2.3)
$$k_1 = 1.5 \times 10^{18} \text{T}^{-1 \cdot 25} \exp(-96.2 \text{kJ/RT}) \text{cm}^3 \text{Mol}^{-1} \text{s}^{-1} \text{ für } \text{M=O}_2$$
 [42]
(2.4) $k_2 = 1.7 \times 10^{13} \exp(8.8 \text{kJ/RT}) \text{ cm}^6 \text{Mol}^{-2} \text{s}^{-1} \text{für } \text{M=O}_2$ [42]

(2.5) $k_3 = 2.3 \times 10^{13} \exp(-21.8 \text{kJ/RT}) \text{ cm}^3 \text{Mol}^{-1} \text{s}^{-1} [42]$

(2.6)
$$k_4 = 1.4 \times 10^{18} \text{T}^{-1} \exp(-1.4 \text{kJ/RT}) \text{ cm}^6 \text{Mol}^{-2} \text{s}^{-1} \text{ für } \text{M}=0_2 [42]$$

(2.7)
$$k_5 = 9.8 \times 10^{24} T^{-2.5} exp(-493.7 kJ/RT cm^3 Mol^{-1} s^{-1} für M=0_2$$
 [58]

(2.8)
$$k_{\rm g} = 1.5 \times 10^{10} {\rm T}^{1.14} \exp(-72 {\rm kJ/RT}) {\rm cm}^3 {\rm Mol}^{-1} {\rm s}^{-1}$$
 [60].

Die O_2 -Konzentration wurde gleich 1.6×10^{-5} Mol/cm³ gesetzt, ein Wert, der der O_2 -Konzentration bei einem Initialdruck von $p_0 = 0.40$ bar entspricht. Für die Konzentrationen an Ozon und Wasser wurden jeweils 10 % der Sauerstoffkonzentration angenommen, was einen relativ geringen Ozongehalt, aber einen hohen Wassergehalt bedeutet.

Tab.2.1 Temperaturabhängigkeit der O(³P)-Reaktionen

$\frac{k_{6}[H_{2}O]}{k_{2}[O_{2}][M]+k_{3}[O_{3}]+k_{4}[O][M]}$
3.0×10 ⁻¹¹
3.7×10 ⁻⁶
4.0×10^{-3}
0.05
0.16
0.30

Wie Tab.2.1 zeigt, hat Reaktion (6) erst bei Temperaturen oberhalb von 1500 K einen nennenswerten Anteil an der Gesamtreaktion. Wasser wird daher die Zündgrenze des Ozons nicht beeinflussen.

Ozon reagiert bei Raumtemperatur nicht mit hochreinem <u>Kohlen-monoxid</u> [61]: Die Reaktionsgeschwindigkeit für Reaktion (9) beträgt $k_9 \leq 0.24 \text{ cm}^3 \text{Mol}^{-1} \text{s}^{-1}$. Es kommt i.allg. jedoch unmittelbar nach dem Kontakt von gasförmigen Ozon und Kohlenmonoxid zu einer spontanen, unvollständigen Umsetzung von CO zu CO₂, deren genaue Ursache noch ungeklärt ist [61,62]. Dabei werden innerhalb einer Minute je nach Konzentration der Reaktionspartner bis zu 70% des Kohlenmonoxids

umgesetzt, anschließend erfolgt die Reaktion mit der oben angegebenen Geschwindigkeit [62].

$$\mathrm{CO} + \mathrm{O}_3 \to \mathrm{CO}_2 + \mathrm{O}_2 \tag{9}$$

Die Reaktion zwischen Ozon und Kohlenmonoxid bei höheren Temperaturen wird durch einen Mechanismus erklärt, der als geschwindigkeitsbestimmenden Schritt die thermische Ozonzersetzung und darauffolgend die Oxidation des Kohlenmonoxids durch O(³P) ansieht [63].

$$O_3 + M \to O_2 + O({}^3P) + M$$
 (1)

$$O(^{3}P) + O_{2} + M \neq O_{3} + M$$
 (2)

$$O(^{3}P) + O_{3} \rightarrow 2O_{2} \tag{3}$$

$$O(^{3}P) + CO + M \rightarrow CO_{2} + M$$
(10)

Ozon reagiert bereits bei tiefen Temperaturen spontan mit den Stickstoffoxiden <u>NO und NO₂</u> [64,65]. Die Reaktion mit NO verläuft bei Raumtemperatur und genügend hoher Konzentration der Reaktionspartner explosionsartig [66] und führt zur Bildung von NO₂. Durch NO₂ wird Ozon unter Bildung von NO₃ und N₂O₅ als Zwischenprodukte katalytisch zersetzt [67-69].

$$O_3 + NO_2 \rightarrow O_2 + NO_3 \tag{11}$$

$$NO_3 + NO_2 + M \rightarrow N_2O_5 + M \tag{12}$$

$$N_2O_5 + M \rightarrow NO_3 + NO_2 + M \tag{13}$$

$$NO_3 + NO_2 \rightarrow NO_2 + NO + O_2$$
(14)

$$NO + NO_3 \rightarrow 2NO_2$$
(15)

$$NO + O_3 \rightarrow NO_2 + O_2 \tag{16}$$

Ozon reagiert mit <u>Methan</u> bei Temperaturen oberhalb 450 K unter Bildung einer Vielzahl von Produkten. Nachgewiesen wurden neben H_2O , CO und CO₂ auch CH₂O, CH₃OH, CH₃OOH und H_2O_2 . Rotzoll [70] formulierte einen Mechanismus für die Methanoxidation durch Ozon, der 47 Elementarreaktionen mit insgesamt 21 Spezies vorsieht. Initiiert wird die Methanoxidation durch den thermischen Ozonzerfall, gefolgt von der Reaktion des atomaren Sauerstoffs mit Methan. Als weitere wichtige Reaktionsschritte sind die Sekundärreaktionen von Ozon mit Methylradikalen und Wasserstoffatomen zu sehen.

$$O_3 + M \rightarrow O + O_2 + M \tag{1}$$

$$0 + 0_3 \rightarrow 20_2 \tag{3}$$

$$0 + CH_4 \rightarrow OH + CH_3 \tag{17}$$

$$O_3 + CH_3 \rightarrow O_2 + CH_2O + H$$
 (18)

$$0_3 + H \rightarrow 0_2 + OH \tag{19}$$

Ozon wird durch Stickstoffoxide, aber auch durch Methan und in Verbindung mit einer noch nicht identifizierten Spezies durch Kohlenmonoxid katalytisch zersetzt, d.h. es kommt zu einem deutlichen Anstieg der Reaktionsgeschwindigkeit für den in exothermer Reaktion ablaufenden Ozonzerfall. Gleichzeitig können sowohl Methan, als auch Kohlenmonoxid mit einem sauerstoffhaltigen Oxidationsmittel in exothermer Reaktion umgesetzt werden. Aus diesen Gründen werden die hier diskutierten Verbindungen das Einsetzen des explosiven Ozonzerfalls fördern.

2.2. Die Rankine-Hugoniot-Gleichungen

Verbrennungsvorgänge wurden bereits im vorigen Jahrhundert intensiv experimentell untersucht [71,72]. Dabei fand man zwei unterschiedliche, stabile Prozesse, für die jeweils eine konstante Flammengeschwindigkeit charakteristisch ist: die <u>Detonation</u>, deren Geschwindigkeit weit größer als die normale Schallgeschwindigkeit c_0 ist, und die <u>normale Verbrennung</u>, die mit einer deutlich langsameren Geschwindigkeit als c_0 fortschreitet. Mallard und Le Chatelier [72] prägten für diesen Prozeß zur Unterscheidung von der Detonation den Begriff "Deflagration". Generell wird jedoch die "normale Verbrennung" zur Unterscheidung von anderen Prozessen, insbesondere turbulenten Flammen, als <u>laminare Flamme</u> bezeichnet. Im folgenden Kapitel soll anhand eines einfachen Modells, welches zu den Rankine-Hugoniot-Gleichungen führt, die charakteristischen Eigenschaften laminarer Flammen und Detonationen beschrieben und erklärt werden.

Abb.2.1 Schematische Darstellung einer eindimensionalen, planaren, stationären Flammenfront

$$\begin{array}{c} \varepsilon_{\infty}, T_{\infty}, p_{\infty}, \rho_{\infty} \\ \leftarrow v_{\infty} \end{array} \qquad \begin{array}{c} \varepsilon_{0}, T_{0}, p_{0}, \rho_{0} \\ \leftarrow v_{0} \end{array}$$

→x

Die Verbrennung eines Gases erfolge adiabatisch in einer schmalen Zone, der Flammenfront. Unter der Annahme einer eindimensionalen, planaren Flammenfront, die stetig durch das Medium fortschreitet, läßt sich dieses System durch die hydrodynamischen Funktionen (Erhaltungssätze für Masse, Impuls und Energie) für den eindimensionalen, stetigen Fluß beschreiben. Die Flammenfront sei so schmal, daß sie sich als Unstetigkeitstelle in diesem Gleichungssystem behandeln läßt. Die Flamme sei stationär (Abb.2.1). Dann erhält man durch Integration der hydrodynamischen Funktionen die Rankine-Hugoniot-Gleichungen, die die Relation zwischen den physikalischen Größen vor und hinter der Flammenfront angeben [73-75].

Seien ρ , v, p, ϵ und T Dichte, Strömungsgeschwindigkeit, Druck, spezifische Energie und Temperatur des Gases. Dann gelten für ein eindimensionales, strömendes Medium nach den Gesetzen für die Erhaltung von Masse, Impuls und Energie die Beziehungen:

(2.9)
$$\frac{\mathrm{d}\rho}{\mathrm{d}t} + \rho \frac{\partial v}{\partial x} = 0$$

(2.10)
$$\frac{\mathrm{d}v}{\mathrm{d}t} + \frac{1}{\rho} \frac{\partial}{\partial x} (p - \eta \frac{\partial v}{\partial x}) = 0$$

$$(2.11) \qquad \frac{\mathrm{d}}{\mathrm{d}t}(\epsilon + \frac{1}{2}v^2) + \frac{1}{\rho} \left\{ \frac{\partial}{\partial x}(p - \eta \frac{\partial v}{\partial x})v - \frac{\partial}{\partial x}(\lambda \frac{\partial T}{\partial x}) \right\} = 0$$

wobei η ein Reibungskoeffizient und λ die Wärmeleitfähigkeit bedeutet. Durch Lösen dieses Systems partieller Differentialgleichungen mit den Ausgangsgedingungen ρ_0 , v_0 , p_0 , ε_0 , T_0 für das unverbrannte Gas (Frischgas) vor der Flammenfront und ρ_{∞} , v_{∞} , p_{∞} , ε_{∞} , T_{∞} für das verbrannte Gas (Schwaden) hinter der Flammenfront erhält man:

(2.12)
$$v_0 = v_0 \sqrt{\frac{p_{\infty} - p_0}{v_0 - v_{\infty}}}$$

(2.13)
$$\varepsilon_{\infty} - \varepsilon_{0} = \frac{1}{2}(p_{\infty} + p_{0})(v_{0} - v_{\infty})$$

wobei v=1/p das spezifische Volumen bedeutet. In diesen Gleichungen treten keine Terme mehr auf, die die Viskosität oder die Wärmeleitung enthalten. Diese Prozesse sind für die Vorgänge innerhalb der Flammenfront zwar von großer Bedeutung, haben aber, wie aus den Gleichungen (2.12) und (2.13) unmittelbar folgt, keinen Einfluß auf die makroskopischen Eigenschaften der Flamme. Gleichung (2.12), welche die Flammengeschwindigkeit angibt, wird im p-v-Diagramm Rayleigh-Gerade genannt. Gleichung (2.13) ist die Hugoniot-Gleichung [76], die in Verbrennungsprozessen an die Stelle der Poisson'schen Adiabatengleichung tritt. Da die Flammengeschwindigkeit nicht mehr in ihr enthalten ist, gibt sie allein die thermodynamischen Eigenschaften des verbrannten und unverbrannten Gases vor bzw. hinter der Flammenfront an. Abb.2.2. zeigt den Verlauf der Hugoniot-Kurve in der p-v-Ebene.

Abb.2.2 Graphische Darstellung der Hugoniot-Kurve

Zu jedem Punkt (p_{ω},v_{ω}) der Hugoniot-Kurve muß es eine Geschwindigkeit v_0 geben, die durch die Steigung der Rayleigh-Geraden durch den Ursprung (p_0,v_0) des Systems und diesen Punkt bestimmt ist. Für den Bereich $(p_{\omega}>p_0,v_{\omega}>v_0)$ existiert keine reelle Lösung der Rayleigh-Geraden, da $(p_{\omega}-p_0)/(v_0-v_{\omega}) < 0$ wird; also kann diesem Bereich der Hugoniot-Kurve kein physikalischer Vorgang entsprechen. Die Hugoniot-Kurve besteht demnach aus zwei völlig verschiedenen und voneinander getrennten Zweigen:

- 1) der <u>Detonation</u> mit großer Fortschreitungsgeschwindigkeit v_0 , i.allg. Detonationsgeschwindigkeit D genannt, Druckanstieg und Verdichtung in der Flammenfront ($v_0 - v_1 > 0$), und
- 2) der <u>laminaren Flamme</u> mit geringer Fortschreitungsgeschwindigkeit v_0 , Druckabfall und Expansion in der Flammenfront $(v_0 - v_{\infty} < 0)$.

In den Arbeiten von Becker [73] und Döring [77] wurde bewiesen, daß die Detonation nur in einem Punkt der Hugoniot-Kurve, dem Chapman-Jouguet-Punkt (CJ-Punkt), stabil sein kann, in dem die Rayleigh-Gerade die Tangente zur Hugoniot-Kurve bildet, also wenn gilt:

(2.14)
$$\frac{\mathbf{p}_{\infty} - \mathbf{p}_{0}}{\mathbf{v}_{0} - \mathbf{v}_{\infty}} = -\left(\frac{\mathrm{d}\mathbf{p}_{\infty}}{\mathrm{d}\mathbf{v}_{\infty}}\right)_{\mathrm{S}}$$

Diese Beziehung ist identisch mit der von Jouguet [78] geforderten Bedingung für das Entstehen einer Detonation. Im CJ-Punkt wird die Fortschreitungsgeschwindigkeit zur "normalen Detonationsgeschwindigkeit" $\mathtt{D}_{o}^{\textbf{CJ}}.$ Übereinstimmend mit dem experimentellen Befund einer inhärenten Detonationsgeschwindigkeit D wird von Jouguet eine solche D^{CJ} Geschwindigkeit gefordert und berechnet. Detonationen mit Geschwindigkeiten $D > D_0$ (Punkt A der Hugoniot-Kurve) sind instabil und gehen in die normale Detonation über. Detonationen mit D < D $_0$ widersprechen dem 2.Hauptsatz der Thermodynamik und sind nicht möglich. Dies stimmt mit den Ergebnissen späterer Experimente überein, in denen stets ein Einsetzen der Detonation mit einer Geschwindigkeit D > D $_{o}$ beobachtet wurde, die sich im CJ-Zustand stabilisierte.

Durch die Rankine-Hugoniot-Beziehungen in Verbindung mit dem Jouguet-Postulat wird die Existenz stabiler Detonationen und Flammen vorhergesagt. Fordert man jedoch analog zum CJ-Zustand der Detonation den entsprechenden CJ-Zustand der Verbrennung (Punkt E der H-Kurve), so findet man, daß dieses einfache, die Vorgänge innerhalb der Flammenfront nicht berücksichtigende Modell zur quantitativen Beschreibung der laminaren Flamme ungeeignet ist. Während für Detonationen, insbesondere für detonierende Gase, eine sehr gute Übereinstimmung der experimentellen und der nach diesem, als Chapman-Jouguet-Theorie bekannten Modell berechneten Detonationsgeschwindigkeit beobachtet wurde, sind stabile Flammem mit CJ-Geschwindingkeit v_0^{CJ} unbekannt. Also müssen im Gegensatz zur Detonation für das Fortschreiten der Flamme die Prozesse innerhalb der Flammenfront von fundamentaler Bedeutung sein. Wie in den beiden folgenden Kapiteln gezeigt wird, erfolgt in der Detonation das Erhitzen des Gases und damit das Einleiten der chemischen Reaktion durch Kompression des Gases in einer Schockwelle, während in der laminaren Flamme neben der Kinetik der chemischen Reaktion der Wärmetransport und der Transport reaktiver Spezies in das Frischgas maßgebend sind.

2.3. Die eindimensionale laminare Flamme

Die experimentellen Untersuchungen zur Ozon/Sauerstoff-Verbrennung von Streng und Grosse [79,22] zeigten, daß es möglich ist, konzentrierte ozonhaltige Gasgemische und sogar reines Ozon in einer stetigen Flamme zu verbrennen, ohne daß ein Übergang zur Explosion oder zur Detonation eintritt.

Durch das Vorliegen experimenteller Werte für die Geschwindigkeit der Ozon/Sauerstoff-Flamme und die einfache Kinetik der thermischen Ozonzersetzung (wie in Kapitel 2.1.1. gezeigt wurde, kann der Reaktionsmechanismus durch nur wenige, i.allg. drei Elementarreaktionen beschrieben werden) ist die Ozonflamme für die Entwicklung und Erprobung von Modellen für die laminare Flamme von großem Interesse. So liegen zahlreiche Arbeiten vor, in denen Flammengeschwindigkeit und Struktur der Flammenfront, d.h. die Zeitabhängigkeit der Temperatur und Konzentration der Reaktanten, für den Fall der der laminaren Ozon/Sauerstoff-Flamme berechnet wurde [42,80-89]. Grundlage dieser

theoretischen Betrachtungen der Ozonflamme ist das Modell der eindimensionalen, planaren und stetigen laminaren Flamme vorgemischter, idealer Gase.

Mit Hilfe eines von Warnatz [42] entwickelten Rechenprogramms für diesen Flammentyp, der im folgenden Kapitel beschrieben werden soll, wurden Geschwindigkeit und Struktur der Flamme für Mischungen von Ozon mit Sauerstoff, Stickstoff und den Edelgasen Argon, Krypton und Xenon berechnet.

2.3.1. Modell der eindimensionalen laminaren Flamme

Eine Flamme ist charakterisiert durch eine Zone δ erhöhter Temperatur, in der die chemische Reaktion erfolgt, und der Geschwindigkeit, mit der diese in das unverbrannte Medium fortschreitet, bzw. im Fall der stationären Flamme, die Geschwindigkeit, mit der das unverbrannte Gas in die Flammenfront eintritt. Dabei wird das Frischgas durch Wärmeleitung erwärmt, gleichzeitig diffundieren aktive Spezies, die in der Flammenfront erzeugt wurden, in das Frischgas hinein. Durch diese Prozesse wird die Reaktionsgeschwindigkeit ansteigen und, da die Reaktanten verbraucht werden, ein Maximum durchlaufen. Hinter der Flammenfront existiert ein Gleichgewicht. Die Breite δ der Flammenfront ist daher abhängig von der Reaktionsgeschwindigkeit, und somit von der Temperatur und der Konzentration der Reaktanten. Letztere ist eine Funktion der Dichte ρ und damit des Initialdruckes p_0 .

Das von Warnatz [42] entwickelte Modell beschreibt eine eindimensionale, stetige, laminare Flamme mit planarer Flammenfront senkrecht zur Fortpflanzungsrichtung. Für diesen Flammentyp sind folgende Eigenschaften charakteristisch: Die Flamme schreitet mit konstanter Geschwindigkeit v₀ fort, für die Werte von 1 bis 1000 cm/s gefunden wurden. Da die Flammengeschwindigkeit deutlich kleiner als die normale Schallgeschwindigkeit c_0 ist, erfolgt die chemische Reaktion in der Flammenfront bei konstantem Druck, die Reaktionspartner befinden sich im Gleichgewicht. Die mittlere freie Weglänge der beteiligten Spezies ist klein gegen die Flammendicke δ . Es wirken keine äußeren Kräfte auf die Flamme ein. Thermodiffusion, Diffusion durch Druckgradienten, Wärmeverluste durch Strahlung sowie Effekte durch die Viskosität des Gases sind vernachlässigbar. Der Zustand des Gases ist durch das Gesetz für ideale Gase gegeben [90].

Die folgenden Abschätzungen sollen eine grobe Charakterisierung der Flammengeschwindigkeit vo und der Flammendicke δ liefern [90]: Seien ρ_0 , $\overline{\lambda}$, \overline{c}_p die ursprüngliche Dichte, die mittlere Wärmeleitfähigkeit und die mittlere spezifische Wärmekapazität des Gases, sei ferner $r = d\rho/dt$ die Reaktionsgeschwindigkeit, so gelten für die Breite δ der Flammenfront und und die Flammengeschwindigkeit vo Näherungen:

(2.15)
$$\delta \simeq \frac{\overline{\lambda}}{\overline{c}_{p} \rho_0 v_0}$$

(2.16)
$$v_0 \simeq \frac{1}{\rho_0} \sqrt{\frac{\bar{\lambda}r}{\bar{c}_p}}$$

Die normale Flammengeschwindigkeit v_0 ist also im Gegensatz zur normalen Detonationsgeschwindigkeit D_0 , die nur von den thermodynamischen Größen und der Komposition des Gases vor und hinter der Flammenfront bestimmt ist, eine Funktion der Kinetik der chemischen Reaktion und der Transportvorgänge in der Flamme. Für eine Reaktion nter Ordnung in einem idealen Gas ist die Reaktionsgeschwindigkeit proportional der n-ten Potenz des Druckes. Nimmt man eine Temperaturabhängigkeit in Arrheniusform an, so erhält man für die Druck- und Temperaturabhängigkeit der Flammengeschwindigkeit:

(2.17)
$$v_0 \propto p^{\frac{1}{2}n-1} \exp(-\frac{1}{2}E/RT_{\infty})$$
.

Ist für die Verbrennung eine Reaktion zweiter Ordnung geschwindigkeitsbestimmend, so wird die Flammengeschwindigkeit unabhängig vom Druck.

Den genauen Wert der Flammengeschwindigkeit erhält man als Eigenwert durch Lösen der Erhaltungsgleichungen, durch die chemische Reaktionen im eindimensionalen, stetigen Fluß beschrieben werden. Für die Kontinuität gilt:

(2.18)
$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x}(\rho v) = 0$$

Sei N die Anzahl der an chemischen Reaktionen in der Flammenfront beteiligten Spezies, $Y_i = m_i/m$ die Massenfraktion und D. die Diffusionskonstante für eine Spezies i mit i=1...N, j = 1...N, i[‡]j, dann gilt für diese Spezies:

(2.19)
$$\rho \frac{\partial Y_{i}}{\partial t} + \rho v \frac{\partial Y_{i}}{\partial x} = r_{i} + \frac{\partial}{\partial x} \left(\rho D_{ij} \frac{\partial Y_{i}}{\partial x} \right)$$

Führt man durch $c_p = (\partial h/\partial T)_p$ und $h = \varepsilon + p/\rho$ die Temperatur als abhängige Variable ein, so erhält man unter Berücksichtigung der chemischen Reaktion und der Diffusion in der Flammenfront aus Gleichung (2.11) für die Erhaltung der Energie:

(2.20)
$$\frac{\partial T}{\partial t} + v \frac{\partial T}{\partial x} = \frac{1}{\rho c_p} \frac{\partial}{\partial x} (\lambda \frac{\partial T}{\partial x}) - \frac{1}{\rho c_p} \sum_{i=1}^{N} r_i h_i + \sum_{i=1}^{N} \frac{c_{p,i}}{c_p} D_{ij} \frac{\partial Y_i}{\partial x} \frac{\partial T}{\partial x}$$

Warnatz [42] ersetzte in diesen Gleichungen den Diffusionsterm, der die Diffusion in einem binären System beinhaltet, durch den exakten Diffusionsfluß für ein Mehrkomponenten-System. Quellenterm Ιm werden der Annahme $(1/\rho c_{\rm p})\Sigma r_{\rm i}h_{\rm i}$ unter Vermeidung stationärer Konzentrationen die Reaktionen (1),(2),(3) und (4) berücksichtigt. Reaktion (5) und die Rückreaktion zu (3), $20_2 \rightarrow 0+0_3$, sind zu langsam

und daher ohne Bedeutung. Nach Einführung der zeitunabhängigen Ortsvariablen ψ erhält man durch Lösen der nun stationären Erhaltungsgleichung die Struktur der Flammenfront und, in guter Übereinstimmung mit experimentellen Werten [79,22], die Flammengeschwindigkeit für die Ozon/Sauerstoff-Flamme.

2.3.2. Die laminare Ozonflamme

Mit Hilfe des von Warnatz entwickelten Programms zur Berechnung eindimensionaler, laminarer Flammen vorgemischter Gase wurden Geschwindigkeit und Struktur der Ozonflamme für Mischungen von Ozon mit Sauerstoff, Stickstoff, sowie den Edelgasen Argon, Krypton und Xenon in Abhängigkeit von Ozonkonzentration und Druck bei einer Initialtemperatur von $T_0 = 298 K$ berechnet. Zusätzlich wurden Ozonflammen für Ozon/Xenon-Gemische mit willkürlich gewählten Ozonkonzentrationen von 40 und 60 Mol-% Ozon unter TTR-typischen Bedingungen (p = 3 bar, $T_0 = 165$ K) berechnet. Die Ergebnisse sind vollständig in Anhang 7.1. tabellarisch wiedergegeben.

Abb.2.3 zeigt die Flammentemperatur, Abb.2.4 die Flammengeschwindigkeit für einen gewählten Druck von 0.45 bar als Funktion der Ozonkonzentration und der inerten Komponente. Die Flammentemperatur wird im wesentlichen durch den in der Energiegleichung (2.20) enthaltenen Quellenterm $(1/\rho_c)\Sigma_{ih}$ bestimmt. Da die Wärmekapazitäten der Edelgase nur geringfügig von dem Wert eines einatomigen, idealen Gases abweichen und die Reaktionsgeschwindigkeiten der Ozonzersetzung mit Argon, Krypton oder Xenon als dritten Stoßpartner sich für gleiche Ozonkonzentrationen nur unwesentlich voneinander unterscheiden [58], ist der Quellenterm nahezu unabhängig von der Art des Edelgases. Daher erreichen Ozon/Edelgas-Flammen bei gleicher Ozonkonzentration etwa gleiche Temperaturen. Bedingt durch die höheren Wärmekapazitäten

Gemischen niedrigere Flammentemperaturen als in den entsprechenden Gemischen mit Edelgasen erreicht. Ozon/Sauerstoff- und Ozon/Stickstoff-Gemische unterscheiden sich voneinander nur minimal durch geringfügig höheren Werte für die Wärmekapazität des Sauerstoffes [91], während die Reaktionsgeschwindigkeiten in beiden Systemen nahezu identisch sind [58]. Daher erreichen Ozon/Stickstoff-Flammen etwas höhere Temperaturen. Sauerstoff wird sowohl als Reaktionsprodukt des Ozonzerfalls gebildet als auch als Trägergas eingesetzt. Bei Temperaturen oberhalb 1700 K tritt Dissoziation des Sauerstoffs ein. Diese erfolgt endotherm und beeinflußt den Quellenterm negativ, so daß sich für höhere Ozonkonzentrationen der Temperaturanstieg verringert.

Die Flammengeschwindigkeit wird neben der Energiequelle durch Wärmetransport und Diffusion der Teilchen beeinflußt. Während die Wärmekapazität ρ_{c} unabhängig von der Art des Edelgases ist, nehmen die Wärmeleitfähigkeit λ und der Diffusionskoeffizient D und folglich auch die Flammengeschwindigkeit für Ozon/Edelgas-Gemische gleicher Ozonkonzentration in der Reihenfolge Ar > Kr > Xe ab. In Gemischen hoher Ozonkonzentration (X_{Og} > 0.4) beeinflußt der steigende Anteil an dissoziiertem Sauerstoff sowohl den Wärmetransport durch den deutlichen Anstieg der Wärmeleitfähigkeit bei nahezu unveränderter Wärmekapazität [93] als auch die Diffusion durch den höheren Diffusionskoeffizienten des atomarem Sauerstoffs und bewirkt einen signifikanten Anstieg der Flammengeschwindigkeit. Dieser Effekt zeigt besonders im System Ozon/Sauerstoff.

Wie Tab.2.2 anhand einer gewählten Ozonmischung von 25 Mol-% Ozon in Argon verdeutlicht, zeigen Geschwindigkeit und Temperatur der Ozonflamme eine nur geringfügige Abhängigkeit vom Initialdruck. In den Abbildungen 2.5 und 2.6 ist für verschiedene Ozongemische die Breite δ der Flammenfront als Funktion der Flammengeschwindigkeit und des Druckes graphisch dargestellt. Die Flammendicke δ ist umgekehrt proportional zu Flammengeschwindigkeit und Druck, wie für die in einer Reaktion zweiter Ordnung erfolgende Ozonzersetzung zu erwarten ist.

Abb.2.3 Flammentemperaturen v₀ für laminare Ozonflammen bei T₀ = 298 K und p = 0.45 bar

Flammengeschwindigkeit v_o [cm/s]

Tab.2.2 Flamme eines Ozon/Argon-Gemisches von 25 Mol-% Ozon bei T_0 = 298 K

p	[hPa]	v₀ [cm/s]	T [K]	δ [cm]
1	50 100 200 450 L000	106.3 106.2 106.2 106.2 106.1	1468 1468 1468 1469 1471	1.01 0.511 0.256 0.113 0.051

Abb.2.5 Abhängigkeit der Flammendicke δ von der Flammengeschwindigkeit

In den Abbildungen 2.7 sind exemplarisch einige der berechneten Flammenprofile der reinen Ozonflamme und der Ozon/Xenon-Flammen für Ausgangsbegingungen p = 0.45 bar und $T_0 = 298$ K, sowie p = 3 bar und $T_0 = 165$ K in Abhängigkeit von der Ozonkonzentration wiedergegeben. Für gleiche Ausgangsbedingungen (Ozonkonzentration, Druck, Initialtemperatur) sich die Profile der Ozon/Argon-, Ozon/Krypton- und Ozon/Xenon-Flammen identisch. Die Profile der Ozon/Stickstoff- und Ozon/Sauerstoff-Flammen unterscheiden sich von ihnen nur gerinfügig in der Flammendicke und Flammentemperatur aufgrund der höheren Wärmekapazität des Stickstoffs und des Sauerstoffs.

Abb.2.7 Flammenprofile für Ozon- und Ozon/Xenon-Flammen

2.3.3. Zündgrenzen

Die Bezeichnung 'Zündgrenze' wird gebraucht im Zusammenhang mit der Ausbildung laminarer Flammen in vorgemischten Gasen, die nicht zur Selbstzündung fähig sind, sondern einer externen Zündquelle bedürfen. Bei schwacher Zündung entsteht eine nicht-stationäre Flamme, deren Geschwindigkeit und Temperatur sich verringern werden, so daß die Reaktion zum Erliegen kommt. Bei genügend starker Zündung hingegen schreitet die Flamme mit konstanter Geschwindigkeit fort. Die Zündgrenze ist definiert als die Grenzkonzentration X an Brennstoff; in einem brennbaren Gemisch führt eine Konzentrationsänderung über die Zündgrenze hinaus zu Gemischen, in denen keine stabile Flamme mehr möglich ist. Da ein brennbares Gemisch i.allg. aus dem Brennstoff und einem Oxidationsmittel besteht, existieren zwei Zündgrenzen: Unterschreiten der unteren Grenze führt zu Gemischen, die wegen Brennstoffmangel keine stabile Flamme erlauben, Überschreiten der oberen Grenze führt zu Gemischen, die wegen Mangels an Oxidationsmittel nicht brennbar sind. Darüber hinaus sind, wie am Beispiel der Ozonflamme gezeigt wurde, stabile Flammen in Gemischen möglich, in denen <u>ein</u> Stoff thermodynamisch instabil ist und ohne chemische Umsetzung mit einem anderen Stoff in exothermer Reaktion zerfällt. Für einen solchen Prozeß existiert nur eine Zündgrenze.

Zündgrenzen sind abhängig von Druck, Ausgangstemperatur, Zündenergie, Verdünnung durch ein inertes Medium (Stickstoff oder Edelgase), der Anwesenheit chemischer Inhibitoren sowie von Wandeffekten, d.h. der Geometrie des Gefäßes, welches das Gas einschließt: Betrachtet man ein zylindrisches Gefäß, so nimmt der Konzentrationsbereich, in dem ein Gemisch brennbar ist, mit wachsendem Durchmesser zu, wobei die Änderung bei geringen Durchmessern deutlich, bei größeren ($d \ge 5$ cm) nur noch gering ist. Bei Verminderung des Druckes steigt die (untere) Zündgrenze an; für ein Gemisch gegebener Zusammensetzung existiert für eine gewählte Gefäßdimension ein kritischer Wert p_{or} , unterhalb dessen

-28-

keine stationäre Flamme möglich ist. Durch Temperaturerhöhung wird die Grenze gesenkt, da dem System weniger Energie zum Erreichen der Zündenergie zugeführt werden muß. Man findet eine lineare Abhängigkeit der Zündgrenze X von der Temperatur T₀. Chemische Inhibitoren verringern die Reaktionsgeschwindigkeit und damit Flammentemperatur und Flammengeschwindigkeit und bewirken ein Ansteigen der Zündgrenze [94].

In den vorherigen Kapiteln wurden stets adiabatische Prozesse betrachtet. In Wirklichkeit verursacht z.B. Wärmeübertragung auf die kalte Gefäßwand einen Energieverlust, so daß das Gas nicht zur adiabatischen Flammentemperatur T_{af} , sondern bei verminderter Brenngeschwindigkeit m = ρv zur geringeren Flammentemperatur T verbrennt. In der Erhaltungsgleichung für die Energie (2.20) ist daher ein Verlustterm L zu berücksichtigen [95]. Betrachtet man eine planare, stationäre Flamme und berücksichtigt man einen Energieverlust, der ausschließlich durch Wärmeleitung erfolgt, so ist der Verlustterm gegeben durch die Näherung L $\simeq b\overline{\lambda}(T-T_0)/d^2$, wobei der Wert b für ein zylindrisches Gefäß ca. 15 beträgt. Korrigiert man die Energiegleichung um diesen Term, so erkennt man, daß es für das Fortschreiten der Flamme einen minimalen Gefäßdurchmesser geben muß, dessen Unterschreiten zum Auslöschen (Quenching) der Flamme führt. Für diesen kritischen Durchmesser d. (Quenchingdurchmesser) ergibt ergibt sich mit $\beta = \frac{E}{RT_{af}}^2(T_{af}-T_0)$ die Näherung [95]

(2.21)
$$d_o \simeq \sqrt{2e\beta b} \delta$$

In ihren experimentellen Untersuchungen der Ozon/Sauerstoff-Flamme fanden Streng und Grosse [96] für den Quenchingdurchmesser do eines Rohres die empirischen Beziehungen:

(2.22)	$d_o/\mu m = 10^{1.953} X_{0_3}^{-2.118}$	für $T_0 = 298$ K und $p = 1$ atm
(2.23)	$d_o/\mu m = 10^{1.953} (p/atm)^{-1.111}$	für $T_0 = 298$ K und $X_{0_3} = 1$

Nach einem einfachen Modell kann die Zündung eines Gases nur erfolgen, wenn ein Volumen, gegeben durch die Flammendicke δ und die durch den Quenchingabstand do gegebene Fläche A, auf die adiabatische Flammentemperatur T_{af} erhitzt wird. D.h. es ist eine Mindestzündenergie

(2.24)
$$h_{\min} = (\delta A) \rho_0 \overline{c}_p (T_{af} - T_0)$$

erforderlich. Die genauesten Bestimmungen der Zündenergie für Ozon/Sauerstoff-Gemische wurden von Raffel et al. [27] durchgeführt: Übereinstimmend mit theoretischen Berechnungen wurden für Ozonkonzentrationen von 20 bis 50 Mol-% bei einem Initialdruck von 0.35 bzw. 0.7 bar Zündenergien von 0.1 bis 0.2 J/cm³ (absorbierte Energiedichte) experimentell bestimmt. Für geringere Ozonkonzentrationen stieg die Zündenergie bis zu einem Wert von 1 J/cm³ für 10 Mol-% Ozon an. Gemische mit einem Ozongehalt unter 10 Mol-% konnten auch durch Einstrahlung höherer Energien (bis zu 40 J/cm²) nicht mehr gezündet werden.

2.4. Detonation

Die Detonation ist definiert als eine mit einer Schockwelle zündfähigen Gas gekoppelte chemische Reaktion. In einem können Schockwellen mechanisch erzeugt werden, oder von einer Flamme ausgesandte Kompressionswellen können sich zu einer Schockwelle versteifen. Schockwellen sind gekennzeichnet durch eine unstetige Änderung von Dichte, Druck und Temperatur des Gases und eine die normale Schallgeschwindigkeit übersteigende Fortschreitungsgeschwindigkeit. Erreicht die Temperatur in der Schockwelle einen Wert, bei dem sich das Gas nach kurzer Induktionszeit spontan entzündet, tritt Detonation ein. Für Detonationen sind folgende Eigenschaften charakteristisch: Eine stabile Detonation schreitet mit konstanter Geschwindigkeit fort und erreicht Werte bis über 3000 m/s. Die Detonationsgeschwindigkeit wird nur von der chemischen Zusammensetzung der detonierenden Substanz bestimmt. Sie ist unabhängig von der Geschwindigkeit der chemischen Reaktion, sofern diese nur hinreichend hoch ist. Sie ist unabhängig von Initialdruck und -temperatur, unabhängig von ihrem Enstehungsort und der Art ihrer Erzeugung (Zündung durch Flammen, Funken, mechanisch erzeugte Schockwellen) und unabhängig von Material und Durchmesser des Gefäßes, sofern dieser einen Mindestwert überschreitet.

Die erste zufriedenstellende Theorie zur Berechnung von Detonationsgeschwindigkeiten wurde von Chapman und Jouguet (CJ) entwickelt [78,99] und später durch das Modell von Zeldovich, von Neumann und Döring (ZND) über die Struktur der Detonationswelle erweitert [77,100,101]. In den folgenden Abschnitten sollen beide Modelle, sowie einige wesentliche Erscheinungen, die durch diese einfachen Theorien nicht erklärt werden, wie die Existenz von Detonationsgrenzen, Wirkung von Grenzschichten, Abkühlungseffekte und Detonations-"Spin", diskutiert werden. Ferner werden Detonationsgeschwindigkeit, -druck und -temperatur für stationäre Detonationen von gasförmigen Ozon-Sauerstoff- und Ozon-Edelgas-Mischungen nach der CJ-Theorie berechnet.

2.4.1. Die Chapman-Jouguet-Theorie

Die wesentlichen Grundzüge der Chapman-Jouguet-Theorie wurden bereits in Kapitel 2.2. diskutiert. Die CJ-Theorie beschreibt streng eindimensionale, planare, stationäre Detonationen und erlaubt nur durch Anwendung hydrodynamischer und thermodynamischer Funktionen die Berechnung der stationären Detonationsgeschwindigkeit D_0^{CJ} , sowie Druck und Temperatur des CJ-Zustandes, ausgehend von den Rankine-Hugoniot-Gleichungen und dem Chapman-Jouguet-Kriterium für die Existenz stationärer Detonationen. Dieses Kriterium besagt, daß die stationäre Detonationsgeschwindigkeit gleich der Summe aus Schallgeschwindigkeit c und Fließgeschwindigkeit v des Gases ist. Da $c_0 = (\partial p/\partial \rho)_S$, folgt:

(2.14)
$$\frac{{}^{p}CJ^{-p}{}_{o}}{{}^{\upsilon}{}_{o}^{-\upsilon}CJ} = -\left(\frac{dp}{d\upsilon}\right)_{S,CJ}$$

Die Indices CJ und o bezeichnen den Chapman-Jouguet-Zustand bwz. den Ausgangszustand des Gases. Für adiabatische Zustandsänderungen gilt $(dp/dv)_{\rm S} = -\Im(p/v)$. Es gelten die Rankine-Hugoniot-Gleichungen; ferner gilt für ideale Gase pv = nRT, wobei \Im den Adiabatenkoeffizienten und n die Anzahl der Mole pro Gramm bedeuten (per Definition ist $v = 1/\rho$). Sei q die in der chemischen Reaktion pro Gramm der Gasmenge freigesetzte Wärmemenge, so ist die Änderung der spezifischen inneren Energie des Gases gegeben durch:

(2.25)
$$\varepsilon_{CJ} - \varepsilon_{o} = \overline{c}_{V}(T_{CJ} - T_{o}) - q$$

Mit der Verdichtung μ = $\rho_{CJ}^{}/\rho_{o}^{}$ und Umformen der oben genannten Gleichungen erhält man:

(2.26)
$$\mu^2 - (1 + \frac{1}{\chi_{CJ}})\mu + \frac{n_0 T_0}{n_{CJ} T_{CJ} \chi_{CJ}} = 0$$

(2.27)
$$\overline{c}_{v}(T_{CJ}^{-}T_{0}) - q - \frac{R}{2}(\mu - 1)(n_{CJ}^{-}T_{CJ}^{-} + \frac{1}{\mu}n_{0}^{-}T_{0}) = 0$$

$$(2.28) \qquad D_0^{CJ} = \mu \sqrt{\varkappa_{CJ}^n CJ^R T_{CJ}}$$

(2.29)
$$\frac{P_{CJ}}{p_0} = \mu \frac{n_{CJ}T_{CJ}}{n_0T_0}$$

Aus diesem Gleichungssystem lassen sich alle Größen berechnen, die die makroskopischen Eigenschaften der Detonationswelle beschreiben.

2.4.2. Die Zeldovich-von Neumann-Döring-Theorie

Nach Zeldovich, von Neumann und Döring besteht eine Detonationswelle aus einer schmalen Wellenfront, der Schockwelle, in der sich die Zustandsgrößen des Gases unstetig ändern, gefolgt von einer Zone, in der die Umsetzung der zuvor komprimerten und erhitzten Gase genau wie in einer homogenen Gasreaktion erfolgt [77,100,101]. Diese in Abb.2.8 skizzierte Struktur folgt unmittelbar aus dem für die Breite einer Schockwelle typischen Wert von etwa 10^{-4} mm [102], welcher der mittleren freien Weglänge eines Teilchens entspricht [73,97]. Die Reaktion setzt ein, nachdem das Gas in der Schockwelle komprimiert und erhitzt wurde. Während die Reaktion fortschreitet, steigt die Temperatur bis zur Detonationstemperatur an. Gleichzeitig sinkt der Druck ab, da das Gas in der Reaktionszone expandiert, bis schließlich

Abb.2.8 Schematische Darstellung einer Detonationswelle und der Druckänderung in einer Detonation

Abb.2.9 Hugoniot-Kurven für die Detonation eines Gemisches von 10 Mol-% Ozon in Sauerstoff

spezifisches Volumen v/vo

im CJ-Punkt der Gleichgewichtszustand erreicht wird. Dabei beeinflußt die Geschwindigkeit der chemischen Reaktion nicht die Detonationsgeschwindigkeit, welche allein vom CJ-Zustand bestimmt wird, aber sie bestimmt die Länge δ der Reaktionszone. Bezeichnet man mit ξ das Fortschreiten der Reaktion, so läßt sich für jeden Wert ξ mit $0 \le \xi \le 1$ eine Hugoniot-Kurve zeichnen, wie dies in Abb.2.9 für $\xi=0$ (reine Schockwelle) und $\xi=1$ (Gleichgewicht) für ein 10%iges Ozon/Sauerstoff-Gemisch dargestellt ist. Der Zustand des Gases in der Schockwelle (von Neumann-Spitze) ist gegeben durch den Schnittpunkt der Hugoniot-Kurve für $\xi=0$ mit der Rayleigh-Geraden. Die Rayleigh-Gerade, welche die Detonationsgeschwindigkeit bestimmt, bildet im CJ-Punkt die Tangente zur Hugoniot-Kurve für ξ =1. Der CJ-Zustand beschreibt also die rückwärtige Grenzschicht der Detonationswelle und damit den Beginn einer isentropen, nicht-stationären Verdünnungswelle, in der das Gas (Schwaden) expandiert und die Geschwindigkeit des Gases von der stationären Detonationsgeschwindigkeit auf Null absinkt [103,104]. Ausgelöst von dem ZND-Modell für stationäre Detonationen wurde die Struktur der Detonationswelle in zahlreichen experimentellen Arbeiten untersucht. Dabei wurde die von Zeldovich, v.Neumann und Döring geforderte Struktur bestätigt: Schockwelle und Reaktionszone lassen sich auf Grund ihrer unterschiedlichen Dichtegradienten voneinander unterscheiden. Ferner wurde das Absinken des Druckes um einen Faktor von ca. 2 von der "von Neumann-Spitze" zur CJ-Ebene (p_s \simeq 2p_{CJ}) und hinter der CJ-Ebene das Einsetzen der nicht-stationären Verdünnungswelle beobachtet [105-108].

2.4.3. Nicht-ideale Detonationen

Sowohl die CJ-Theorie als auch das ZND-Modell liefern keine Aussagen über die Detonationsfähigkeit eines Stoffes. Analog zu den Zündgrenzen in Flammen werden jedoch Detonationsgrenzen, abhängig von Brennstoffkonzentration, Initialdruck und Gefäßdurchmesser, beobachtet. Für die planare Detonation im System Ozon/Sauerstoff wird die Grenzkonzentration mit ca. 9 Mol-% Ozon angegeben [109]. Ferner werden im Gegensatz zur CJ-Detonation stabile Detonationen mit einer geringeren stationären Detonationsgeschwindigkeit $D_0 < D_0^{CJ}$ beobachtet [33,34,77,110-114]. Das Auftreten solcher Detonationen zeigt mehrere Mängel der CJ-Theorie und auch des ZND-Modells auf:

Die ZND-Theorie definiert die CJ-Ebene gleichzeitig als die Grenzschicht zwischen stationärer Detonationswelle und nicht-statonärer Verdünnungswelle und als den Zustand chemischen Gleichgewichtes. Da die Breite δ einer Detonationswelle stets endlich ist (sie ist i.allg. kleiner als 1 mm, nahe der Detonationsgrenze beträgt sie einige mm), eine chemische Reaktion sich dagegen asymptotisch dem Gleichgewicht nähert, kann folglich der Zustand des Gases an der CJ-Ebene nur ungefähr dem Gleichgewichtszustand entsprechen. Diese Abweichung muß sich mit zunehmender Reaktionsgeschwindigkeit verringern, so daß nur für hinreichend schnelle Reaktionen die CJ-Theorie in Verbindung mit dem ZND-Modell eine genaue Berechnung der stationären Detonationsgeschwindigkeit erlaubt [115-117].

Die Detonationswelle wird in beiden Modellen als streng eindimensional, die Wellenfront als planar angesehen. Wärmeleitung und Viskosität werden nicht berücksichtigt. Diese Prozesse bedingen aber bei Detonationen in Rohren einen zweidimensionalen Fluß der Gase und bewirken eine Krümmung der Wellenfront und innerhalb der Reaktionszone die Ausbildung einer Grenzschicht, die durch einen Temperaturgradienten vom Rohrinneren zur Wand hin gekennzeichnet ist und deren Breite mit wachsender Länge δ der Reaktionszone zunimmt. Der resultierende Energieverlust führt zu einer Verringerung der stationären Detonationsgeschwindigkeit um einen Betrag ΔD_0 . Diese Schwächung der Detonation nimmt bei Verringerung des Rohrdurchmessers und fallendem Initialdruck p_0 zu, bis schließlich eine stabile Detonation unmöglich wird. Daraus folgt unmittelbar, daß für Detonationen in Rohren eine Detonationsgrenze (gegeben durch einen minimalen Rohrdurchmesser und minimalen Initialdruck bei gegebener chemischer Zusammensetzung des detonierenden Stoffes) existieren muß [77]. Tsugé [118] berechnete erstmals Werte ΔD_0 für die Ozondetonation in Rohren in guter Übereinstimmung mit experimentell ermittelten Werten [34] und lieferte ferner einen mathematischen Beweis für die Existenz von Detonationsgrenzen: Mit Hilfe von Näherungsverfahren ergibt sich ΔD_0 als Eigenwert für ein System partieller Differentialgleichungen, die unter Einbeziehung von Viskostät, Wärmeleitung und Diffusion (Gesetze von Navier-Stokes, Fourier und Fick) den Fluß des Gases in der Detonationswelle beschreiben. Unterschreitet entweder die Ozonkonzentration oder das Druck-Durchmesser-Verhältnis einen kritischen Wert, so existiert kein

Eigenwert ΔD_0 , d.h. es gibt keine Lösung für das Gleichungsystem, durch das eine Detonation beschrieben wird. Für kleine Werte ΔD_0 , d.h. für Detonationen mit einer Geschwindigkeit nahe der CJ-Geschwindigkeit, ergibt sich übereinstimmend mit experimentellen Befunden eine umgekehrt proportionale Abhängigkeit von p₀ und d:

(2.30)
$$\Delta D_0 / D_0^{CJ} \propto (p_0 d)^{-1}$$

Befinden sich Gasgemische nahe der Detonationsgrenze in dünnen Rohren oder betrachtet man Gemische, die nur schwer zur Detonation zu bringen sind, so werden Detonationen mit pulsierender Druckwelle beobachtet [33,98,108,113,119–126,]. Für diese Schwingungen sind folgende Eigenschaften charakteristisch: Die Amplitude dieses als <u>Detonationsspin</u> bezeichneten Prozesses steigt mit sinkender Brennstoffkonzentration an. Die Frequenz v nimmt mit abnehmendem Rohrdurchmesser d zu. Die mit der Detonation verbundene Leuchterscheinung pflanzt sich schraubenförmig durch das Rohr fort. Die Detonationsgeschwindigkeit entspricht der CJ-Geschwindigkeit D_0^{CJ} . Fay gelang die theoretische Berechnung des Detonationsspins, wobei er annahm, daß die Schwingungen sich wie normale Schallwellen verhalten [127]. Ausgehend von Rayleighs Behandlung der Ausbreitung von Schallwellen in einem strömenden Medium [128] erhielt Fay die Beziehung

(2.31)
$$D_0^{CJ}/\nu = d [\pi(\ell+1)/\ell k_n],$$

wobei \mathcal{X} der Adiabatenkoeffizient des Gases im CJ-Zustand und k_n ein Koeffizient der Besselfunktion ist. Für n=1 und k_n=1.841 erhält man

$$(2.32) \qquad D_0^{CJ}/v \simeq 3d.$$

in Übereinstimmung mit experimentellen Beobachtungen.

2.4.4. Das Entstehen von Detonationen

Prinzipiell gibt es zwei Möglichkeiten für das Enstehen von Detonationen[129]:

1) Der Übergang vom Verbrennungsprozeß zur Detonation erfordert turbulente Flammen. Schreitet eine laminare Flamme durch ein Gefäß, i.allg. ein Rohr, fort, wird die Oberfläche der Flammenfront durch Wechselwirkung ihrer Randzone mit der Gefäßwand oder Wechselwirkung mit reflektierten Druckwellen oder Hindernissen in Fortpflanzungsrichtung gestört. Die Oberfläche der Flamme, die Brennfläche, wird sich vergrößern und falten: Die Flamme wird turbulent. Diese Vergrößerung der Brennfläche führt zur einer drastischen Steigerung der Flammengeschwindigkeit. Die von der Flammenfront ausgesandte Kompressionswelle versteift sich zur Schockwelle. Das Einsetzen der Detonation selbst "plötzlich", erfolgt d.h. läßt es sich nicht durch einen kontinuierlichen Übergang von der Flamme zur Detonation beschreiben. Dies stimmt mit experimentellen Beobachtungen überein [119] und folgt auch aus der Betrachtung der Hugoniot-Kurve, die aus zwei völlig von einander getrennten Zweigen für die Verbrennung und die Detonation besteht (Kap.2.2.).

2) Das <u>direkte Auslösen der Detonation</u> erfordert eine externe Zündquelle, die geeignet ist, im detonationsfähigen Medium eine Schockwelle zu erzeugen, die mit einer ihr folgenden chemischen Reaktion gekoppelt ist. Für eine solche Zündquelle, Funken oder mechanische Schocks, ist eine Mindestenergie erforderlich. Wird diese unterschritten, kommt es zur Entkopplung von Schockwelle und Reaktionszone, die Detonation wird nicht-stationär und geht in einen Verbrennungsprozeß über.

Unabhängig von der Art ihres Entstehens sind einsetzende Detonationen nicht-stationär. Sie weisen eine höhere als die stationäre Detonationsgeschwindigkeit auf, die sich zunehmend verringert, bis sich die Detonation im stationären Zustand stabilisiert [105,120,130].

2.4.5. Die Detonation ozonhaltiger Gasgemische

Wie in früheren Arbeiten bereits am System Ozon/Sauerstoff gezeigt wurde, läßt sich die CJ-Theorie auf die Detonation ozonhaltiger Gasgemische und Flüssigkeiten anwenden [31,32,33]. Zum Vergleich mit den hier ermittelten experimentellen Daten wurden nachfolgend die Detonationen von Mischungen aus Ozon und Sauerstoff oder den Edelgasen Argon, Krypton und Xenon, sowie Ozon/Xenon-Gemischen mit geringen Anteilen an Methan, Kohlenmonoxid oder Stickstoffdioxid berechnet:

Bekannt seien Initialdruck und -temperatur sowie die Zusammensetzung des Frischgases. Wegen der perdefinitionem vollständigen Umsetzung des Gases in der Detonationswelle ist die Zusammensetzung des verbrannten Gases ebenfalls bekannt. Damit läßt sich die Detonationstemperatur $T_{C,J}$ aus den Gleichungen (2.26) und (2.27) durch Iteration bestimmen (S.32), wobei hier eine Genauigkeit von 3 K gewählt wurde. q ist die Wärmetönung der Gesamtreaktion pro Gramm des Gasgemisches. Für die Detonation eines reinen Ozon/Sauerstoff- oder reinen Ozon/Edelgas-Gemisches tragen zwei Reaktionen zur Wärmetönung q bei: 1) die Zersetzung des Ozons mit einer Reaktionswärme $\Delta H_{O_g \rightarrow 1\frac{1}{2}O_z} = -142.7 \text{ kJ/Mol}$ [58] und 2) die Dissoziation des Sauerstoffs, die bei Temperaturen oberhalb 1700 K zu merklichem Anteil α erfolgt, mit $\Delta H_{O_2 \rightarrow 20} = + 498.5 \text{ kJ/Mol}$ [58]. Dabei ergibt sich bei bekanntem Molenbruch des Ozons X_{0_3} und des Sauerstoffs X_{0_2} :

(2.33)
$$q = n_0 X_{0_3} (-\Delta H_{0_3 \rightarrow 1\frac{1}{2}0_2}) + n_{CJ} X_{0_2} \alpha (-\Delta H_{0_2 \rightarrow 20})$$

Der Dissoziationsgrad α ergibt sich aus:

(2.34)
$$\alpha = \sqrt{\frac{K_p}{(k_p + 4p)}}.$$

Enthält das Gemisch neben Ozon Kohlenmonoxid, Methan oder Stickstoffdioxid, so sind die Reaktionen

$CO + \frac{1}{2}O_2 \rightarrow CO_2$	$\Delta H = -283.1 \text{ kJ/Mol}$
$CH_4 + 1\frac{1}{2}O_2 \rightarrow CO + 2H_2O$	$\Delta H = -519.5 \text{ kJ/Mol}$
$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$	$\Delta H = -802.5 \text{ kJ/Mol}$
$N_2O_5 \rightarrow 2NO_2 + \frac{1}{2}O_2$	$\Delta H = 55.1 \text{ kJ/Mol}$

zu berücksichtigen [131]. Die Werte für die Wärmekapazitäten und Adiabatenkoeffizienten wurden Tabellenwerken entnommen [92]. Für Edelgase wurden die Werte für ein einatomiges, ideales Gas eingesetzt. Aus den berechneten Werten für μ und T_{CJ} lassen sich nach den Gleichungen (2.28) und (2.29) die Geschwindigkeit D₀ und das Druckverhältnis p_{CJ}/p₀ berechnen (S.32).

Die Ausgangsbedingungen für die Rechnungen waren $p_0 = 0.4$ bar, $T_0 = 300$ K und Ozonkonzentrationen bis 100 Mol-%. Die Ozonkonzentration wurde in Schritten von 1 Mol-% variiert. Die Ergebnisse sind in den Abbildungen 2.10, 2.11 und 2.12 für binäre Gemische zusammen mit den Werten von Stieng et al. [31] und Harper und Gordon [33], sowie in Anhang 7.2 tabellarisch wiedergegeben.

Die Darstellung der Detonationstemperatur als Funktion der Ozonkonzentration gleicht prinzipiell den entsprechenden Diagrammen für die laminare Flamme (s.S.22), wobei jedoch in der Detonation durch die Kompression μ höhere Temperaturen erreicht werden. Die hier berechneten Werte stimmen sehr gut mit denen von Streng et al. [31] überein, während sie im Bereich hoher Ozonkonzentrationen deutlich von den Ergebnissen von Harper und Gordon [33] abweichen. Harper und Gordon nahmen für den Dissoziationsgrad α des Sauerstoffs eine Größenordnung niedrigere als die hier eingesetzten Werte an und errechneten folglich höhere Temperaturen. Mit der Detonationstempertur steigt gemäß Gleichung (2.29) auch der Detonationsdruck.

Abb.2.11 Detonationstemperaturen ozonhaltiger Gasgemische

Die Detonationsgeschwindigkeit wird zusätzlich von der Dichte des Gases, hier ausgedrückt durch die Molzahl pro Masseneinheit, beeinflußt. Im $D_0^{CJ}-X_{O_3}$ -Diagramm lassen sich die Kurven für Ozon/Argon- und Ozon/Sauerstoff-Gemische ähnlichen Dichten direkt wegen ihrer miteinander vergleichen: Gemäß der höheren Werte für den Adiabatenkoeffizienten %, der Kompression μ und der Detonationstemperatur $T_{C.I}$ werden im System Ozon/Argon höhere Detonationsgeschwindigkeiten erreicht. Ozon/Edelgas-Gemische unterscheiden sich voneinander nur durch die Dichte; entsprechend nimmt die Detonationsgeschwindigkeit in

der Reihenfolge He > Ar > Kr > Xe ab. Der Einfluß der Dichte wird besonders deutlich im System Ozon/Helium: Für niedrige Ozonkonzentrationen steigt die Detonationsgeschwindigkeit sehr rasch auf einen hohen Wert an; bei steigender Ozonkonzentration bewirkt die zunehmende Dichte des Gases, daß sich die Steigung der Kurve trotz der Zunahme der Reaktionsenthalpie und der Temperatur derartig verringert, daß die Detonationsgeschwindigkeit nach Erreichen eines Maximalwertes zu dem Wert für reines Ozon abfällt.

2.5. Adiabatische Explosionen in geschlossenen Gefäßen

Unter einer Explosion versteht man das spontane Einsetzen einer raschen Wärmeentwicklung durch eine chemische Reaktion, hervorgerufen durch eine drastische Steigerung der Reaktionsgeschwindigkeit. Das Entstehen einer Druckwelle ist eine Folge der Explosion. Man unterscheidet zwei Explosionsarten:

- die Kettenexplosion; sie tritt ein, wenn bei einer Kettenreaktion durch Kettenverzweigung die Zahl der Kettenträger und damit die Reaktionsgeschwindigkeit ansteigt (z.B. Knallgasreaktion);
- 2) die Wärmeexplosion (thermische Explosion); sie liegt vor, wenn die Wärmeentwicklung einer exothermen Reaktion die Reaktionsgeschwindigkeit beschleunigt, was zu erhöhter Wärmeentwicklung und somit zu einer weiteren Steigerung der Reaktionsgeschwindigkeit führt.[132]

Die Ozonexplosion ist eine Wärmeexplosion, denn wie bereits in 2.1.1. gezeigt wurde, wird bei der thermischen Zersetzung des Ozons ausschließlich das nicht als Kettenträger wirksame O(³P) gebildet.

2.5.1. Modell von Flamm und Mache

Wird ein zündfähiges Gas in einem geschlossenen Behälter zur Explosion gebracht, so erfolgt die Verbrennung des Gases in einer schmalen Zone, der Flammenfront, die sich, beginnend an der Zündquelle, durch das gesamte Volumen fortpflanzt. Dabei wird das Gas in der Reaktionszone infolge der Temperaturerhöhung in Fortpflanzungsrichtung der Flamme adiabatisch expandieren, während das Gas außerhalb der Flamme komprimiert wird, so daß die Verbrennung nur zu Beginn bei konstantem Druck erfolgt. Sei ξ der Anteil des verbrannten Gases an der Gesamtmenge. Die Verbrennung erfolge in einer dünnen Schicht d ξ . Die Indices u und b bezeichnen das unverbrannte bzw. das verbrannte Gas. Seien $p_0 = p(\xi=0)$ der ursprüngliche Druck und $T_0 = T_{i_1}(\xi=0)$ die ursprüngliche Temperatur des unverbrannten Gases (Frischgas). Dann verbrennt die erste Schicht d ξ bei dem Druck p₀ und zu der Temperatur T_h(ξ =0). Alle weiteren Schichten werden auf den Druck $p = p(\xi)$ komprimiert, nehmen dabei Temperaturen $T_{\mu}(\xi)$ an und verbrennen zu höheren Drücken und Temperaturen $T_b(\xi)$, bis schließlich nach dem Verbrennen der letzten Schicht d& und gleichzeitiger Kompression des Gases die Maximalwerte $p_e = p(\xi=1)$ und $T_e = T_b(\xi=1)$ erreicht werden. Durch die chemische Reaktion ändert sich die Molzahl um den Faktor $\mu = \Sigma n_b / \Sigma n_u$. Anwendung der Poisson'schen Adiabatengleichung auf das Frischgas und auf das verbrannte Gas und Integration der Gleichungen über alle Werte von ξ führt zu:

(2.35)
$$\frac{\mathbf{p}_{\mathbf{e}}}{\mathbf{p}_{\mathbf{0}}} = \frac{K}{RT_{\mathbf{0}}} (\overline{\delta}_{\mathbf{b}} - 1) - \frac{\overline{\delta}_{\mathbf{u}} - \overline{\delta}_{\mathbf{b}}}{\overline{\delta}_{\mathbf{u}} - 1} + 1$$

(2.36)
$$T_{e} = \left(\frac{K}{R} + \frac{\overline{\mathfrak{r}}_{u}}{\overline{\mathfrak{r}}_{u}-1} \left(\frac{p_{e}}{p_{0}}\right)^{(\mathfrak{r}_{u}-1)/\mathfrak{r}_{u}} T_{0}\right) - \frac{\overline{\mathfrak{r}}_{b}-1}{\overline{\mathfrak{r}}_{b}} \frac{1}{\mu}$$

mit

(2.37)
$$K = \mu \overline{C}_{p,b} T_b(\xi=0) - \overline{C}_{p,u} T_o,$$

wobei $\overline{\mathfrak{F}}_{u}$ bzw. $\overline{C}_{p,u}$ der mittlere Adiabatenkoeffizient bzw. den mittlere molare Wärmeleitfähigkeit des Frischgases zwischen den Temperaturen T₀ und T_u(ξ =1), und $\overline{\mathfrak{F}}_{b}$ und $\overline{C}_{p,b}$ die entsprechenden Größen des verbrannten Gases zwischen den Temperaturen T_b(ξ =1) und T_e bedeuten. Ferner gilt:

(2.38)
$$\xi = (p(\xi) - p_0)/(p_e - p_0).$$

Aus diesen Gleichungen lassen sich für bekannte Werte p_0 , T_0 , sowie bekannter chemischer Zusammensetzung des unverbrannten, wie des verbrannten Gases der Explosionsdruck p_e und die Explosionstemperatur T_e berechnen [133].

2.5.2. Explosionsdrücke und -Temperaturen für ozonhaltige Gasgemische

Die in Ozonexplosionen in geschlossenen Gefäßen erreichten Maximalwerte des Druckes pe und der Temperatur Te wurden für Gemische von Ozon mit Sauerstoff, Stickstoff und Edelgasen nach dem Modell von Flamm und Mache berechnet. Die hierfür gemachten Annahmen und Vereinfachungen sollen im folgenden Text kurz erläutert werden: Die Verbrennung der ersten Gasschicht ist noch nicht durch Kompression beeinflußt. Die hier erreichte Temperatur $T_{b}(\xi=0)$ muß daher der Temperatur T der adiabatischen, laminaren Flamme, die sich nach dem in 2.3.2.diskutierten Modell berechnen läßt, entsprechen. Für ein Gemisch von 50 Mol-% Ozon in Sauerstoff bei den Ausgangsbedingungen T_0 = 300 K und $p_0 = 0.45$ bar erhält man nach Warnatz [42] $T_{af} = 1778$ K. Aus den Gleichungen (2.35), (2.36) und (2.37) erhält man durch Iteration die Temperaturen $T_{\mu}(\xi=1) = 468$ K und $T_{\rho} = 1911$ K, sowie die Konstante K und den Explosionsdruck $p_{\rho}/p_{0} = 9.11$. Ersetzt man die mittleren Wärmekapazitäten \overline{C} und \overline{C} , sowie die mittleren Adiabatenkoeffizienten $\overline{\mathfrak{F}}_{u}$ und $\overline{\mathfrak{F}}_{b}$ durch die Werte $C_{p,u} = C_{p,u}(T_{0}), C_{p,b} = C_{p,b}(T_{af})$ und $\mathscr{X}_{u} = \mathscr{X}_{u}(T_{0}), \ \mathscr{X}_{b} = \mathscr{X}_{b}(T_{af}),$ so wird die Rechnung erheblich vereinfacht. Die Konstante K ist dann gegeben durch:

(2.39)
$$K = \mu C_{p,b} T_{af} - C_{p,u} T_{0}.$$

Aus den Gleichungen (2.35) und (2.36) erhält man durch Iteration die Werte $T_e = 1905$ K und $p_e = 9.07$. Diese Ergebnisse unterscheiden sich nur unwesentlich von den unter Verwendung mittlerer Wärmekapazitäten und mittlerer Adiabatenkoeffizienten berechneten Werten. Für Gemische mit Ozonkonzentrationen unterhalb von 50 Mol-% werden die Abweichungen noch geringer sein. Diese Vereinfachung, die zu einer bedeutenden Erleichterung der Iteration führt, ist also erlaubt.

Die Ausgangsbedingungen für die Rechnung waren $p_0 = 0.45$ bar, $T_0 = 300$ K und Ozonkonzentrationen bis 50 Mol-%. Die Ozonkonzentration wurde in Schritten von 1 Mol-% variiert. Für den Adiabatenkoeffizienten δ des Ozons wurde der Wert für ein dreiatomiges, ideales Gas, $\delta = 1.29$, angenommen [134]. Für Edelgase wurden die Werte einatomiger, idealer Gase, $\delta = 1.67$ und $C_p = 5/2$ R, eingesetzt. Die Werte δ , C_p aller übrigen Komponenten wurden Tabellenwerken entnommen ($C_p(0_3)$: [135], sonstige: [92]). Die Ergebnisse sind in Abb.2.13 und Abb.2.14 dargestellt. Ihre vollständige tabellarische Wiedergabe befindet in Anhang 7.3.

Abb.2.13 Explosionsdrücke ozonhaltiger Gasgemische Abb.2.14 Explosionstemperaturen ozonhaltiger Gasgemische

Die Darstellung der Explosionstemperatur als Funktion der Ozonkonzentration gleicht prinzipiell den entsprechenden Diagrammen für die laminare Flamme (s.S.22), wobei jedoch für die Explosion die adiabatische Kompression des Frischgases zu höheren Temperaturen führt. Mit der Temperatur steigt der Explosionsdruck, wobei im wesentlichen der Adiabatenkoeffizient des Trägergases ($\mathcal{X} \simeq 1.67$ für einatomige Gase und $\mathcal{X} \simeq 1.4$ für zweiatomige Gase) die Höhe der erreichten Werte bedingt.

3. Experimentelle Untersuchungen

Das Explosionsverhalten des gasförmigen Ozons wurde in Gemischen mit Sauerstoff, Stickstoff, Helium, Argon, Krypton, Xenon und Dichlordifluormethan in Abhängigkeit von der Ozonkonzentration, dem Initialdruck und der Geometrie des Reaktionsgefäßes untersucht. Die Ergebnisse der Ozon/Sauerstoff-Experimente dienen in erster Linie dem Vergleich mit den Ergebnissen früherer Arbeiten [23,26-30]. Aus den Ozon/Helium-Versuchen können zusätzliche Informationen über den Mechanismus der Explosionen erhalten werden, da sich Helium durch seine Wärmeleitfähigkeit stark von den schweren Edelgasen sehr hohe unterscheidet ($\lambda_{He} \simeq 10 \lambda_{Ar}$).

Für Mischungen von Ozon mit Sauerstoff und den Edelgasen Argon, Krypton und Xenon wurden die Detonationsgeschwindigkeiten als Funktion der Ozonkonzentration und in Ozon/Xenon-Gemischen zusätzlich in Abhängigkeit vom Initialdruck experimentell bestimmt. Ferner wurde der Einfluß einer Füllkörperpackung, wie sie in der im KfK erprobten Anlage zur kryogenen Spaltedelgasabtrennung "KRETA" eingesetzt wird, auf die Detonation des Ozons im System Ozon/Xenon untersucht. Darüber hinaus wurde der Einfluß geringer Mengen an CO, CH₄ und NO₂ auf die Explosion (O₃/Ar) bzw. Detonation (O₃/Xe) eines Ozon/Edelgas-Gemisches bestimmt.

3.1. Aufbau und Durchführung der Versuche

Die zur Untersuchung von Ozon-Explosionen und Ozon-Detonationen entwickelten Versuchsanordnungen sind in den Abb.3.1 und 3.2 (S.48 f) schematisch dargestellt. Wesentliche Bestandteile sind die Anordnung zur Herstellung der Gasgemische, das Reaktionsgefäß und Systeme zur Druckmessung und Gasanalytik.

3.1.1. Herstellung der Gasgemische

Die heute gebräuchlichste Methode zur Ozondarstellung ist die Umsetzung von reinem Sauerstoff durch stille Entladung in einem aus der "Siemens'schen Röhre" [136,137] entwickeltem Ozonisator. Das hier eingesetzte Gerät (Modell OZT-504, Fa.Fischer, Bonn-Bad Godesberg) liefert Ozon bis zu einer Konzentration von 4 Mol-% in Sauerstoff.

Dieses Gemisch wurde in dem geeichten Rohr des kugelförmigen Mischungsgefäßes mit flüssigem Stickstoff auskondensiert. Der Sauerstoff wurde vollständig verdampft und abgepumpt. Nach Zugabe des Inertgases aus einem 20-Liter-Vorratsbehälter wurde das Ozon verdampft und das Gemisch in das vorher evakuierte Reaktionsgefäß überführt. (Zur Herstellung konzentrierter O_3/O_2 -Gemische wurde der Sauerstoff nur zum Teil entfernt und das verbliebene Gemisch verdampft.) Die Prozesse wurden durch Druckmessung (MKS-Baratron Druckmeßsystem, MKS Instruments) genau kontrolliert.

Durch Belüftungs- und Abgasleitungen, die mit einem ozonzersetzendem Kupfer-Katalysator (BASF-Katalysator R3-11 (=BTS-Katalysator), BASF, Ludwigshafen) versehen waren, konnte die Freisetzung von Ozon an die Laborluft verhindert werden.

3.1.2. Reaktionsgefäße

Zur Untersuchung der Ozon-Explosion und -Detonation wurden Glasgefäße unterschiedlicher Geometrie eingesetzt.

Adapter aus Edelstahl für Gaseinlaß, Probenahme, Druck- und Temperaturmeßinstrumente waren durch mit Kollodin gedichtete Normschliffe mit dem Gefäß verbunden. Die Temperatur wurde mit einem Eisen/Konstantan-Thermoelement von 0.5% Genauigkeit gemessen. Die Zündung erfolgte elektrisch (3V,2A) mit einem 40 mm langen, 0.1 mm starken Pt-Draht, der mit einer speziellen Durchführung im Zentrum einer Kugel oder am Ende eines zylindrischen Gefäßes angebracht war. Abb.3.3 zeigt Zündmechanismus und Adapter für ein zylindrisches Reaktionsgefäß. Die Abmessungen der Gefäße, die zur Untersuchung der Ozon-Explosion eingesetzt wurden, sind in Tab.3.1. zusammengefaßt.

Abb.3.3 Zündung und Adapter mit Druck- und Temperaturmeßinstrumenten eines zylindrischen Reaktionsgefäßes

Gefäß	d[cm]	1[cm]	V[cm³]	
Kugel	12.4	-	1000	
Zylinder	2.0	50	160	
Zylinder	3.5	50	500	
Zylinder	5.0	50	1000	
Zylinder	5.0	100	2000	
Zylinder	7.5	50	2200	

Tab.3.1 Reaktionsgefäße zur Untersuchung von Explosionen

Zylindrische Gefäße wurden horizontal ausgerichtet. In der Kugel befanden sich Zündmechamismus und Druckaufnehmer (Erfassung des Explosionsdruckes, s.S.54) ebenfalls in der Waagrechten. Durch diese Anordnung wurde ein Einfluß der Wärmekonvektion auf das Meßergebnis ausgeschlossen.

Die Untersuchung von Ozon-Detonationen erfolgte in einem Glasrohr von 535 cm Länge und 2 cm Innendurchmesser. Das Rohr war durch eine 0.1 mm starke Polyethylenmembran in eine 65 cm lange Zündkammer und einen 470 cm langen Meßteil getrennt. Um Reflexionen der Schockwelle zu vermeiden, wurde das Rohrende ebenfalls mit einer Membran verschlossen. (Bei dem Einsatz einer 50 cm langen Füllkörperpackung mußte das Rohr verkürzt werden: Wie in Abb.3.4 gezeigt wird, war das Rohr in Höhe des letzten Druckaufnehmers durch einen Adapter fest verschlossen.)

Die Detonation des Ozons wurde durch Explosion eines bezogen auf die Wasserbildung stöchiometrischen Knallgasgemisches in der Zündkammer eingeleitet. Die Zündung des Knallgases, das aus einem 500ml-Behälter eingespeist wurde, erfolgte wiederum elektrisch. Wegen der hohen Wärmetönung der Knallgasreaktion (58 kJ/Mol H₂O) und wegen der hohen Wärmeleitfähigkeit des Wasserstoffs (1812 μ J/cmsK bei 25°C) waren ein stärkerer Pt-Draht (0.3 mm) und eine höhere elektrische Leistung (8V,6A) erforderlich. In der Mitte des Rohres konnten unterschiedlich lange Füllkörperpackungen eingebaut werden. Eine solche Packung bestand aus einem Rohrstück, welches zwischen zwei Siebböden aus Edelstahl mit 1 mm Porengröße Edelstahlwendeln vom Durchmesser 3×3 mm ("Braunschweiger Wendeln") enthielt. Das Fortschreiten der Druckwelle wurde an mehreren Positionen, u.a. unmittelbar vor und hinter der Füllkörperpackung, gemessen (Tab.3.2). Abb.3.4 zeigt das Detonationsrohr mit Füllkörperpackung.

Tab.3.2 Abmessung des Detonationsrohres und Abstand der Meßpositionen von der Zündkammer

Gesamt-	Länge der		Meßpos	ition[c	:m]
Länge[cm]	Packung[cm]	Ι	II	III	IV
535	_	50	250	450	_
545	10	50	250	260	460
568	50	50	250	300	503

Abb.3.4 Detonationsrohr mit Füllkörperpackung

3.1.3. Druckmessung

Die Bestimmung der Ozonkonzentration erfordert eine möglichst genaue Messung des Initialdruckes, während das Registrieren des Explosionsdruckes bzw. der Detonationswelle eine möglichst schnelle Methode verlangt.

Der Druck vor der Explosion bzw. Detonation wurde mit einem "DPI-100"-Druckmeßgerät (Druck Ltd., Groby, Leicestershire, England) für einen Meßbereich von 0-10 bar Absolutdruck 'A' und mit einer Genauigkeit von \pm 0.5 % bzw. mit einem "MKS-Baratron"-Druckmeßsystem (s.S.48), bestehend aus Meßkopf (Typ 310HS-1000SP, Meßbereich: 0-10 bar A), Spannungsversorgungs-, Verstärker- und Heizungselement (Typ 170M-6C) und Anzeigegerät (Typ 170M-25D), registriert. Die Genauigkeit dieses Systems beträgt \pm 0.08 % der Anzeige und zusätzlich \pm 0.001 % des Vollausschlages 'FS'. Ferner ist eine Temperaturabhängigkeit von \pm 5 ppm/°C zu berücksichtigen.

Der Maximaldruck während der Explosion wurde mit einem "SENSOTEC"-Subminiatur-Druckaufnehmer (Fa.Burster, Gernsbach) in Verbindung mit einem "SEMMEC-9000"-Meßsystem (Burster, Gernsbach), bestehend aus Spannungsversorgung, Verstärker, Spitzenwertspeicher und Anzeigegerät registriert. Die Funktionsweise des Druckaufnehmers ist die der Wheatstone'schen Brücke, wobei die druckempfindliche Membran den variablen Widerstand, einen Dehnungsmeßstreifen, beeinflußt. Eingesetzt wurde ein korrosionsbeständiger Aufnehmer des Typs "S" (Eigenfrequenz: 20 kHz, Linearität α: 0.2729 mV/bar, Absolutdruck: 0-10 bar) mit aufgeschweißter Edelstahlmembran von 4.75mm Durchmesser (Abb.3.5). Die Genauigkeit des Aufnehmers beträgt $\delta = \pm 1/75$, hinzu kommt eine Temperaturabhängigkeit von ± 0.05 %/°C der Linearität und \pm 1/3000/°C des Vollausschlages bezogen auf die Differenz Δ 0 zwischen aktueller Temperatur 0 minus 23°C. Die Genauigkeit des SEMMEC-9000 Systems wird mit den Werten ± 0.05 % (Spannungsversorgung), ± 0.005 %

und \pm 0.25 % (Verstärker), \pm 0.1 % des Vollausschlags (Spitzenwertspeicher) und \pm 0.05 % (Anzeigegerät) und die Anstiegszeit des Spitzenwertspeichers mit 1 ms/V angegeben.

Abb.3.5 Bau des "SENSOTEC-S"-Subminiatur-Druckaufnehmers

Zur Messung der zeitlichen Druckänderung während der Detonation wurden 3 bzw. 4 "SENSOTEC-S"-Subminiatur-Druckaufnehmer (Linearität in mV/bar: $\alpha_1=0.2729$, $\alpha_2=0.2629$, $\alpha_3=0.2059$, $\alpha_4=0.2741$) in Verbindung mit den Speise- und Verstärkereinheiten des SEMMEC-9000 Meßsystems und einem Transienten-Rekorder (Modell TR-4000, Krenz-Electronics GmbH., Hirzenhain), bestehend aus einem Controller und 4 schnellen Analog-Digital-Convertern (2K Speicherplätze, 8 bit Auflösung, 200kHz), eingesetzt. Die gewählte Abtastrate betrug 50 bzw. 100µs. Das Meßsystem wurde mit dem Signal des dem Ort der Zündung nächsten Druckaufnehmers getriggert. Auswertung und Abspeichern der Meßdaten erfolgte durch einen HP-87XM Computer (Hewlett-Packard S.A.).

3.1.4. Gasanalyse

Die vor und nach der Zündung im Reaktionsgefäß vorhandene Ozonmenge wurde durch Messung der UV-Absorption (ACTA-M VII Spektralphotometer, Modell 5270, Beckman Instruments GmbH.) bei einer Wellenlänge von $\lambda = 253.65$ nm bestimmt. Für diese Wellenlänge beträgt der Extinktionskoeffizient ε des Ozons $\varepsilon = 131.8$ cm⁻¹ [138]. Verwendet wurde eine Quarzküvette von 0.1 cm optischer Länge. Der Partialdruck des Ozons p_{O2} in bar ergibt sich aus

(3.1)
$$p_{0_3} = E \frac{1}{\epsilon \ell} T \frac{1.0133 \text{ bar}}{273.2 \text{ K}}$$

mit E = gemessene Extinktion, T = gemessene Temperatur, ℓ = Absorptionsweg in cm. Die Genauigkeit der gemessenen Extinktion beträgt ΔE = 0.003 für 0 \leq E < 1, ΔE = 0.01 für 1 \leq E < 2 und ΔE = 0.03 für 2 \leq E < 3.

Die aus NO₂ durch Reaktion mit Ozon gebildeten Stickstoffverbindungen wurden vor und nach der Zündung durch Messung der IR-Absorption (IR-Spektrophotometer, Modell 599, Perkin-Elmer, Überlingen) in einer 10cm breiten Küvette mit AgCl-Fenster nachgewiesen.

Die Konzentration an CH_4 , CO und CO_2 wurde mit einem Gaschromatographen (Modell HP5890, Hewlett-Packard) unter Verwendung von Helium als Trägergas mit einer Strömungsgeschwindigkeit von 20ml/min) bestimmt. Die Gasgemische wurden mit zwei Trennsäulen (Porapak Q 10 ft und Molekularsieb 5A 10 ft) anlysiert.

3.2. Ergebnisse

In den folgenden beiden Kapiteln sind die Ergebnisse der Versuche zur Ozonexplosion und zur Ozondetonation beschrieben. Die Meßdaten sind graphisch wiedergegeben, wobei als gemessene, charakteristische Größen für die Explosion das Verhältnis von Maximaldruck zu Initialdruck und für die Detonation deren Fortschreitungsgeschwindigkeit als Funktion der experimentell bestimmten Ozonkonzentration aufgetragen sind.

Die Beobachtungen bezüglich der Zündgrenzen, Detonationsgrenzen, des Überganges von der Explosion zur Detonation, sowie des Einflusses von Kohlenmonoxid, Methan und Stickstoffdioxid sind zusätzlich in Tabellenform wiedergegeben. Auf die vollständige, tabellarische Wiedergabe aller Meßdaten innerhalb des Textes wurde wegen deren Vielzahl bewußt verzichtet. Sie findet sich in Anhang 7.4 (Ozonexplosion) und Anhang 7.5 (Ozondetonation).

3.2.1. Versuche zur Ozonexplosion

Die Abhängigkeit der Ozonexplosion vom Trägergas, welche bei einem Initialdruck von 0.45 bar in einem Rohr von 5 cm Durchmesser und 50 cm Länge untersucht wurde, ist in Abb.3.6 dargestellt.

Bei allen untersuchten Trägergasen wurden für die Ozonexplosion Zündgrenzen beobachtet, welche als Sprung in der p_{max}/p_0 vs X_{0_3} -Kurve erscheinen und, wie Abb.3.7 zeigt, durch den Übergang von der unvollständigen zur vollständigen Umsetzung Y(-O₃) des Ozons gekennzeichnet sind. Ozon/Edelgas-Gemische zeigen die niedrigste Zündgrenze, hier ausgedrückt als Molenbruch X_{gr} an Ozon, bei innerhalb der Meßgenauigkeit identischen Werten für die Trägergase Argon (X_{gr} = 7.9 ± 0.2 %), Krypton (X = 7.7 \pm 0.3) und Xenon (X = 7.7 \pm 0.4 %). Die Zündgrenzen steigen in der Reihenfolge Xe = Kr = Ar < He < N₂ < O₂ < CCl₂F₂ an und sind zunehmend weniger scharf definiert.

Abb.3.6 Explosion von Gemischen des Ozons mit verschiedenen Trägergasen

Abb.3.7 Umsetzungsgrad Y(-O3) des Ozons nach der Zündung

Oberhalb der Zündgrenze erfolgt ein linearer Anstieg des Maximaldruckes mit der Ozonkonzentration, der in der Reihenfolge $Xe = Kr = Ar \simeq He > N_2 \simeq O_2 > CCl_2F_2$ abnimmt und für Gemische mit den Edelgasen Xenon, Krypton und Argon in einen exponentiellen Anstieg übergeht. Dieser Übergang zu exponentiellem Druckanstieg erfolgt in Gemischen mit Xenon bei einem Ozongehalt von $X_{O_3} > 0.13$, mit Krypton bei $X_{O_3} > 0.14$ und Argon bei $X_{O_3} > 0.16$. Explosionen solcher Gemische waren i.allg. von einer Leuchterscheinung, die sich als das Gefäß durcheilende Lichtpunkte beschreiben läßt, und Geräuschentwicklung begleitet. Lichtpunkte und Geräusch wurden auch in den Systemen Ozon/Helium für $X_{O_2} \ge 0.2$, sowie Ozon/Sauerstoff und Ozon/Stickstoff für beobachtet. In zwei Versuchen wurde die zeitliche $X_{0_2} \ge 0.3$ Druckänderung während der Explosion eines Ozon/Xenon-Gemisches für Konzentrationen oberhalb 13 Mol-% Ozon mit Hilfe eines Oszilloskops (Hamec 802) bzw. eines Transientenrekorders aufgezeichnet (Abb.3.8 und 3.9). Wie Abb.3.9 zeigt, erfolgt nach einem zunächst stetigen Druckanstieg über 100 ms eine unstetige Druckänderung, mit der gleichzeitig eine pulsierende Druckwelle mit einer Frequenz von v = 0.5 kHz einsetzt.

Abb.3.8 p-t-Diagramm einer "Explosion" von 17.0 Mol-% Ozon in Xenon, aufgezeichnet mit einem Oszilloskop

Abb.3.9 p-t-Diagramm einer "Explosion" von 18.2 Mol-% Ozon in Xenon, aufgezeichnet mit einem Transientenrekorder

Zeit [ms]

Wie Tab.3.3 verdeutlicht, sind die in diesen beiden Versuchen gemessenen Maximaldrücke niedriger als die nach der CJ-Theorie berechneten Drücke p_{CJ}/p_0 für eine Detonation, überschreiten jedoch deutlich die nach Flamm und Mache berechneten Werte p_e/p_0 für eine Explosion.

Tab.3.3 Übergang von der Explosion zur Detonation

Versuch	Exp1*Xe-5-39	Exp1*Xe-5-43
p-t-messung	Uszilloskop	Iransientenrekorder
Ozonkonzentration	17.0 Mol-%	18.2 Mol-%
p _{max} /p _o :		
Meßwert	7.86	9.37
nach Flamm/Mache	5.93	6.18
nach Chapman/Jouguet	11.78	12.33
- ·		

Nach der Zündung stellt sich im Reaktionsgefäß ein Enddruck p_{end} ein, der durch die Reaktion $O_3 \rightarrow 1\frac{1}{2}O_2$ um den Wert $\Delta p = \frac{1}{2}p_{0,O_3} \times Y(-O_3)$ gegenüber dem Initialdruck erhöht ist. Im System Ozon/Dichlordifluormethan wurde ein höherer Enddruck $p_{end} > p_0 + \frac{1}{2}p_{0,O_3} \times Y(-O_3)$, sowie eine deutliche Rußentwicklung im Reaktionsgefäß beobachtet, was eine Zersetzung des Dichlordifluormethans anzeigt. Auf eine Analyse der Zersetzungsprodukte wurde verzichtet. Die Rußentwicklung führte dazu, daß nach Abschluß der Versuche mit Dichlordifluormethan das Reaktionsgefäß mit seinen Zuleitungen ersetzt werden mußte.

Die Abhängigkeit der Ozonexplosion von der Geometrie des Reaktionsgefäßes wurde für unterschiedliche Trägergase bei einem Initialdruck von ca. 0.45 bar untersucht. Die Meßwerte für Explosionen in einer Kugel und in horizontal ausgerichteten Rohren verschiedenen Durchmessers sind zusammen mit den nach der Theorie von Flamm und Mache berechneten Werten für adiabatische Explosionen (s.Kap.2.5.2.) in den Abbildungen 3.10, 3.11 und 3.12 wiedergegeben. Explosionen, die im Zentrum einer Kugel ausgelöst wurden, weisen die niedrigsten Zündgrenzen auf, gemessenen Maximaldrücke nähern die sich den theoretischen Werten an. Die Abweichungen der gemessenen

 p_{max}/p_0 vs X_{0_3} -Kurve von der berechneten Kurve ist hier am geringsten und beträgt ca. -20 % (Abb.3.10 und 3.11). Für Explosionen in Rohren erfolgt der Anstieg der gemessenen Maximaldrücke linear mit der Es Ozonkonzentration. treten deutliche Abweichungen von den theoretischen Kurven auf, die mit Verringerung des Rohrdurchmessers zunehmen. Die Zündgrenze verschiebt sich für engere Rohre geringfügig zu höheren Ozonkonzentrationen. Ferner verringern sich mit abnehmendem Rohrquerschnitt die Explosionsdrücke p_{max} und auch die Neigung zu detonationsartigem Verhalten der Ozon/Edelgas-Gemische, die sich im p_{max}/p_0 vs X_{0_3} -Diagramm durch exponentiellen Druckanstieg und Schneiden der theoretischen Kurven für Explosionen ausdrückt.

Abb.3.10 Explosionen des Ozons in Gemischen mit Sauerstoff in verschiedenen Gefäßen

Abb.3.12
Explosionen des Ozons
in Gemischen mit Xenon
in verschiedenen Gefäßen

Abb.3.13 Explosion von Ozon/Sauerstoff-Gemischen in verschiedenen Gefäßen bei unterschiedlichen Initialdrücken

Neben dem Trägergas und der Geometrie der Versuchsanordnung wurde der Initialdruck p_0 des Gases variiert. Abb.3.13 und Abb.3.14 zeigen die Meßwerte für Ozonexplosionen mit den Trägergasen Sauerstoff und Stickstoff in verschiedenen Gefäßen bei unterschiedlichen Initialdrücken zusammen mit den berechneten Werten für adiabatische Explosionen. Die entsprechenden Ergebnisse für die Systeme Ozon/Argon und Ozon/Xenon sind in den Abbildungen 3.15 und 3.16 zusammengefaßt. Abb.3.13 (Forts.)

Bei Explosionen in Rohren bewirkt die Verringerung des Initialdruckes ein Ansteigen der Zündgrenzen zu höheren Ozonkonzentrationen sowie eine Abnahme der Größe p_{max}/p_{o} und damit eine größere Abweichung der gemessenen von den berechneten Werten. Gleichfalls nimmt die Neigung der Ozon/Edelgas-Gemische zur Detonation mit fallendem Initialdruck ab. Bei Explosionen, die im Zentrum einer Kugel ausgelöst wurden, wurde keine Abhängigkeit des p_{max}/p_{o} -Verhältnisses vom Initialdruck beobachtet.

Abb.3.13 (Forts.)

Die für unterschiedliche Trägergase, Gefäßgeometrien und Initialdrücke bestimmten Zündgrenzen für die Ozonexplosion sind in Tab.3.4 für die Kugelgeometrie, in Tab.3.5 für Rohre unterschiedlichen Durchmessers wiedergegeben.

Tab.3.4 Zündgrenzen der Ozonexplosion in einer Kugel bei $T_0 \simeq 298$ K

Trägergas	d[mm]	p ₀ [bar]	X _{gr} [%]
Ar	124	0.45	7.6±0.2
O ₂	124	0.45	10.0±0.1

Abb.3.15 Explosion von Ozon/Argon-Gemischen in verschiedenen Gefäßen bei unterschiedlichen Initialdrücken

In einem Rohr von 20 mm Durchmesser wurde für keines der hier untersuchten Systeme eine scharf ausgeprägte Zündgrenze, sondern ein eher kontinuierlicher Übergang zur Explosion beobachtet. Abb.3.17 zeigt die Zündgrenzen für Ozonexplosionen in Rohren als Funktion des Initialdruckes und des Gefäßdurchmessers und illustriert den Anstieg der Zündgrenze bei fallendem Initialdruck und bei Verringerung des Durchmessers.

Wurde der zum Zünden des Gases verwendete Pt-Draht von 40 mm auf 25 mm verkürzt, konnte ein Ozon/Argon-Gemisch mit 8.7 Mol-% Ozon bei einem Druck von 0.45 bar in einem 50 mm breiten Rohr nicht mehr zur Explosion gebracht werden. Die Zündgrenze stieg hier von 7.9 \pm 0.2 Mol-% Ozon auf 8.8 \pm 0.2 Mol-% (vgl. Tab.3.5, S.73). Dagegen bewirkt eine Verlängerung des Pt-Drahtes über 40 mm hinaus kein Absinken der Zündgrenze.

Abb.3.16 Explosion von Ozon/Xenon-Gemischen in verschiedenen Gefäßen bei unterschiedlichen Initialdrücken

Trägergas	d [mm]	p₀ [bar]	X _{gr} [%]
02	75	0.200	≤ 12
$\begin{array}{c} O_2 \\ O_2 \\ O_2 \\ O_2 \\ O_2 \end{array}$	50	0.035	19.1±0.9
	50	0.220	12.3±0.5
	50	0.435	11.6±0.5
	50	1.000	10.2±0.3
$\begin{array}{c} O_2 \\ O_2 \\ O_2 \end{array}$	35	0.068	17.5±1.7
	35	0.200	13.2±1.0
	35	0.450	11.6±0.6
02	20	0.200	14.4±1.0
02	20	0.300	13.4±1.2
02	20	0.450	12.7±1.2
N 2	50	0.061	14.7±0.4
N 2	50	0.072	13.7±0.7
N 2	50	0.083	13.4±0.4
N 2	50	0.45	10.8±0.2
$CC1_2F_2$	50	0.43	22.5±2.5
He	50	0.45	8.9±0.2
Ar	50	0.063	12.7±0.5
Ar	50	0.135	10.7±2.2
Ar	50	0.300	8.5±0.4
Ar	50	0.45	7.9±0.2
Ar	50	0.535	8.1±0.3
Ar	35	0.20	10.3±0.7
Ar	35	0.25	9.6±0.1
Ar	35	0.60	8.6±0.9
Ar	20	0.75	8.5±0.4
Kr	50	0.45	7.7±0.3
Xe	50	0.45	7.7±0.4
Xe	35	0.184	≤ 9.3
Xe	35	0.60	7.8±2.1
Xe	20	0.30	10.1±1.6
Xe	20	0.525	8.6±0.1
Xe	20	0.60	8.5±0.3

Zuletzt wurde der Einfluß der WAA-typischen Verunreinigungen Kohlenmonoxid, Methan und Stickstoffdioxid auf die Explosion eines Ozon/Edelgas-Gemisches untersucht.

Als geeignetes Trägergas wurde Argon gewählt: Die Zündgrenzen, der Druckanstieg mit der Ozonkonzentration dp_{max}/dX_{0_3} und die Höhe der erreichten Maximaldrücke sind sehr ähnlich dem System Ozon/Xenon, welches für die Tieftemperaturrektifikation (TTR) von größtem Interesse ist. Dagegen ist die Tendenz zur Detonation im Vergleich zu den Systemen Ozon/Xenon und Ozon/Krypton am wenigsten stark ausgeprägt. Die Versuche wurden in einer Kugel von 124 mm Durchmesser durchgeführt, da für die Kugelgeometrie die Abweichungen vom Idealverhalten am geringsten sind.

Eingesetzt wurden Kohlenmonoxid in einer Konzentration von ca. 5 Mol-%, sowie Methan und Stickstoffdioxid in Konzentrationen von jeweils ca. 1 Mol-% bezogen auf das Trägergas. Die Meßergebnisse sind zusammen mit den Vergleichswerten für die Explosion reiner Ozon/Argon-Gemische in den Druck vs Konzentration-Diagrammen Abb.3.19, 3.20 und 3.21 dargestellt.

Bei Herstellung CO-haltiger Gemische wurde ein der beträchtlicher, aber nicht reproduzierbarer Anteil des Kohlenmonoxids durch spontane Reaktion mit Ozon zu Kohlendioxid umgesetzt. Um die aktuelle CO-Konzentration vor der Zündung genauer angeben zu können wurden zusätzliche Ozon/Edelgas/Kohlenmonoxid-Gemische hergestellt und analysiert (Blindversuche). Für die aktuelle CO-Konzentration ergibt sich als Mittel aus 13 Messungen ein Wert von 36.5 ± 17.5 % der ursprünglichen Konzentration, also hier 1.8 ± 0.9 Mol-%. Diese Zugabe von Kohlenmonoxid bewirkt eine nur geringfügige Verschiebung der Zündgrenze zu niedrigeren Ozonkonzentrationen. Sie beträgt hier $6.8 \pm 0.4 \text{ Mol-}\%$ Ozon gegenüber 7.5 ± 0.2 Mol-% 0zon im reinen Ozon/Argon-Gemisch. Es wird jedoch ein wesentlich steilerer Anstieg des Explosionsdruckes mit der Ozonkonzentration zu deutlich höheren Maximalwerten beobachtet (Abb.3.19).

Tab.3.6 zeigt für jeweils ein Gemisch unterhalb, oberhalb und im Bereich der Zündgrenze die Rate der Ozonzersetzung $Y(-O_3)$ und der CO_2 -Bildung $Y(CO_2)$.

Tab.3.6 Analyse einiger O₃/Ar/CO-Gemische unterschiedlicher Ausgangskonzentrationen X_{0.0} nach der Zündung

X _{0,03} [%]	Y(-0 ₃)[%]	x _{CO} [%]	X _{C02} [%]	Y(CO ₂) [%]
6.4	68.2	2.24	1.90	0
7.1	98.2	1.28	3.35	$0 \leq Y \leq 54$
9.1	98.5	0.02	4.00	98.5 \pm 1

Kohlenmonoxid wird in Gemischen oberhalb der Zündgrenze vollständig zu Kohlendioxid umgesetzt. Für Ozonkonzentrationen oberhalb 10 Mol-% brennt die O₃-CO-Flamme, wie Abb.3.18 für ein O₃/Ar/CO-Gemisch mit einer Ozonkonzentration von 12.3 Mol-% zeigt, mit intensiv blauer Flamme.

Abb.3.18 Explosion eines Gemisches von 12.3 Mol-% Ozon und 1.8 Mol-% Kohlenmonoxid in Argon bei einem Initialdruck von 0.28 bar

Abb.3.19 Einfluß geringer Konzentrationen an Kohlenmonoxid auf die Explosion von Ozon/Argon-Gemischen

Zusatz von 1 % Methan zu einem Ozon/Argon-Gemisch führt zu einer deutlichen Verringerung der Zündgrenze von 7.5 ± 0.2 Mol-% Ozon auf 5.2 ± 0.4 Mol-% Ozon und zu wesentlich höheren Explosionsdrücken (Abb.3.20). Explosionen in Gemischen mit einer Ozonkonzentration oberhalb 9 Mol-% sind von Leuchterscheinung und Geräuschentwicklung begleitet. Wie die in Tab.3.7 zusammengefaßten Ergebnisse der Gasanalyse zeigen, enthielt das eingesøtzte Methan keinen nachweisbaren

Anteil an Kohlenoxiden, auch trat vor der Zündung keine Bildung von CO oder CO_2 durch Reaktion des Methan mit Ozon ein. Für Mischungen unterhalb oder im Bereich der Zündgrenze wurde eine unvollständige Umsetzung des Methans zu CO_2 beobachtet. In Gemischen, deren Ozongehalt deutlich die Zündgrenze überschreitet, wurde Methan nahezu vollständig verbrannt. Kohlenmonoxid konnte als Endprodukt der Methanverbrennung nur einmal in signifikanter Konzentration nachgewiesen werden.

X _{0,03} [%]	Y(-0 ₃)[%]	X _{CH4} [%]	X _{CO} [%]	X _{CO2} [%]	Y(-CH ₄)[%]	Bemerkungen
0	-	0.96	0	0	-	Blindprobe
2.7	50.4	0.89	0	0.26	22.6	
5.1	80.1	0.63	0	0.44	41.1	
5.3	92.2	0.52	0.03	0.36	42.9	
5.6	98.0	0.60	0	0.30	33.3	
5.6	98.2	0.44	0.20	0.29	52.7	
9.6	98.7	0.016	0.002	0.87	98.0	

Tab.3.7 Analyse einiger $O_3/Ar/CH_4$ -Gemische unterschiedlicher Ausgangskonzentrationen X nach der Zündung

Bei der Herstellung von Gasgemischen mit Stickstoffdioxidzusatz verschwand die Braunfärbung des Gases durch Reaktion des Stickstoffdioxids mit Ozon. Das Produktgemisch neigt zu spontaner Explosion: Es wurden zwei spontane Explosionen im Mischungsgefäß und eine weitere im Reaktionsgefäß beobachtet. Während der Untersuchung des NO_2 -Einflusses auf die Ozondetonation (hier wurde Xenon als Trägergas eingesetzt, s.S.90), kam es im Mischungsgefäß zu zwei weiteren Selbstzündungen des Gases, die zur Detonation und zur Zerstörung der Versuchsanordnung führten.

Die Zündgrenze ist für Ozon/Argon-Gemische mit NO_2 -Zusatz deutlich zu niedrigeren Ozonkonzentrationen verschoben und nicht mehr scharf ausgeprägt. Für Ozonkonzentrationen oberhalb 8 Mol-% wurden nur geringfügig höhere Maximaldrücke als in reinen Ozon/Argon-Gemischen beobachtet (Abb.3.21). Für Ozonkonzentrationen oberhalb von 10 Mol-% ist die Explosion von Leuchterscheinung und Geräuschentwicklung begleitet. Nach der Explosion wird eine deutliche Braunfärbung, die die Rückbildung des Stickstoffdioxids anzeigt, beobachtet. Das vor der Explosion durch Reaktion von Stickstoffdioxid mit Ozon entstandene, farblose N_2O_5 konnte zunächst nicht durch IR-Spektroskopie nachgewiesen werden, da die eingesetzten Konzentrationen äußerst gering waren (unter den gewählten Bedingungen betrugen der Initialdruck 0.45 bar und folglich der N_2O_5 -Partialdruck ca. 0.002 bar) und das entstandene N_2O_5 - vermutlich in der Meßzelle - durch Hydrolyse vollständig zu HNO₃ umgesetzt wurde.

Abb.3.21 Einfluß geringer Konzentrationen an Stickstoffoxiden auf die Explosion von Ozon/Argon-Gemischen

Zum Nachweis des N_2O_5 wurden Ozon/Edelgas/Stickstoffdioxid-Gemische mit höherem Stickstoffdioxidgehalt (2.5 Mol-% NO_2/N_2O_4 in Argon und 7.4 Mol-% NO_2/N_2O_4 in Xenon) hergestellt und IRspektroskopisch analysiert. Einige der Spektren sind in Abb.3.22 wiedergegeben.

<u>Spektrum*1</u> zeigt das Ausgangsgemisch, bestehend aus Xenon mit 7.4Mol-% NO₂/N₂O₄. Mit Hilfe der Gleichgewichtsbedingung K = $p_{NO_2}/(p_{N_2O_4})^2$ und K₂₉₈ = 6.80 bar⁻¹[139] ergibt sich für einen Druck von 480 hPa folgende Zusammensetzung: p_{NO_2} = 29.6 hPa, $p_{N_2O_4}$ = 5.9 hPa und p_{Xe} = 44.5 hPa. Das Spektrum zeigt die Absorptionsbanden von NO₂ und N₂O₄: Eine Bande mittlerer Intensität bei einer Wellenzahl v von 2919 cm⁻¹, sowie starke und sehr starke Absorption bei 1750 cm⁻¹, 1620 cm⁻¹, 1265 cm⁻¹ und 750 cm⁻¹ [140,66].

<u>Spektrum*2</u> zeigt neben Ozon die durch Reaktion von NO₂ und N₂O₄ mit Ozon entstandenen Stickstoff-Sauerstoff-Verbindungen: In das Mischungsgefäß mit 98.8 hPa eines Ozon/Sauerstoff-Gemisches wurde das Xenon/NO₂/N₂O₄-Gemisch der oben beschriebenen Zusammensetzung eingeleitet, bis sich ein Druck von 450 hPa einstellte. Die braune Färbung des Stickstoffdioxids verschwand völlig, während die Blaufärbung durch Ozon erhalten blieb. Die Messung der UV-Absorption ergab eine Ozonkonzentration von 11 Mol-% im Produktgemisch. Aus diesen Angaben und der Annahme, daß NO₂ und N₂O₄ zunächst vollständig zu N₂O₅ umgesetzt wurden, d.h. die Hydrolyse des N₂O₅ zu Salpetersäure wird hier vernachlässigt, läßt sich die Zusammensetzung des Ausgangs- sowie des Produktgemisches berechnen. Tab.3.8 faßt die Partialdrücke der Komponenten zusammen.

Tab.3.8	Partialdrücke der Ausgangs- und Endstoffe für die Bildung v	von
	N_2O_5 aus NO_2 und N_2O_4	

Ausgangsstoff	p₀ [hPa]	Endstoff	p₀ [hPa]
03 02	63.4 35.4	03 02	50.0 48.8
NO 2 N 2 O 4	23.2 3.6	N ₂ O ₅	15.2
Xe	336.0	Xe	336.0
Summe	461.6	Summe	450.0

Das Produktgemisch wurde in die IR-Meßzelle überführt und und bei einem Druck von 385 hPa 10 Min nach seiner Herstellung zur Messung gebracht, die nach weiteren 12 Min abgeschlossen war. In <u>Spektrum*2</u> wurde neben Ozon (Absorptionsbanden bei 2105 cm⁻¹, 1110 u. 1042 cm⁻¹ [141,142]) Distickstoffpentoxid (1715 cm⁻¹, 1240 cm⁻¹, 740 cm⁻¹ [64]), sowie dessen Hydrolyseprodukt, die Salpetersäure (3550 cm⁻¹, 1712 u. 1706 cm⁻¹, 1331 u. 1325 cm⁻¹, 879 cm⁻¹, 762 cm⁻¹ [66,143]), nachgewiesen. Vergleich der Ozonabsorption mit einem Referenzspektrum (62 % Transmission T bei $\tilde{\nu} = 2105$ cm⁻¹ für $P_{O_3} = 100.7$ hPa) ergab, daß die Oxonkonzentration in dieser Zeit auf 4.6 Mol-% abgesunken war. Entsprechend ergab sich für N₂O₅ (Referenz: 27 % T bei $\tilde{\nu} = 1240$ cm⁻¹, 37 % T bei $\tilde{\nu} = 740$ cm⁻¹ für $P_{N_2O_5} = 4$ hPa [66]) ein Partialdruck von $P_{N_2O_5} = 1.6 \pm 0.4$ hPa, was ein Verlust von 87 % durch Hydrolyse bedeutet.

<u>Spektrum*3</u> ist typisch für die untersuchten Gasgemische nach der Explosion und wurde nach der Zündung eines Gemisches von 14.3 Mol-% Ozon in Argon mit einem ursprünglichen NO_2/N_2O_4 -Anteil von 2.5 Mol-% bei einem Druck von 355 hPa aufgenommen. Man erkennt deutlich die Rückbildung des NO_2 (3.8 hPa) neben einem geringen Anteil an Salpetersäure.

<u>Spektrum*4</u> ist ein Referenzspektrum und zeigt die IR-Absorption von Stickstoffdioxid bei geringen Konzentrationen. Hier wurden 370 hPa eines Gemisches von Argon mit einem Anteil von 1 Mol-% NO_2/N_2O_4 , entsprechend 3.6 hPa NO_2 und 0.1 hPa N_2O_4 , eingesetzt.

Die Beschreibung der Experimente, die zur Untersuchung der Ozonexplosion durchgeführt wurden, schließt mit der Betrachung der experimentellen Fehler. Aus Gründen der Übersichtlichkeit sind die Fehler der Druck- und Konzentrationsmeßwerte nicht in die p-X-Diagramme eingezeichnet. Sie sollen daher an dieser Stelle diskutiert werden. Die experimentellen Fehler der Meßgrößen (Ozonkonzentration, Explosionsdruck) wurden unter Verwendung der Herstellerangaben bezüglich der Genauigkeit der Meßsysteme nach dem Gauss'schen Gesetz für die Fortpflanzung mittlerer, quadratischer Fehler berechnet.

Der Fehler der gemessenen Ozonkonzentrationen beträgt i.allg. \pm 0.5 bis \pm 2.0 % des Ozon-Molenbruches X_{0_2} . Abweichungen ergeben sich sowohl für besonders niedrige als auch für besonders hohe Ozonkonzentrationen, sowie für Gemische bei niedrigem Initialdruck, da die Konzentration diesem umgekehrt proportional ist (X_{O_4} berechnet sich aus: $X_{O_3} = p_{o,O_3}/p_{o}$). Ferner wurden in Gemischen mit Helium bzw. Argon bei höherem Ozonanteil ($X_{0_3} > 0.16$), sowie Gemischen mit einem Zusatz ozonzersetzender Stoffe, Methan und Stickstoffdioxid, ein rascher Zerfall des Ozons in der UV-Meßzelle beobachtet. Die Ozonkonzentration wurde hier durch Extrapolation der Absorption vs Zeit-Kurve abgeschätzt. In einigen Versuchen war sogar eine Ozonbestimmung durch Messung der UV-Absorption nicht mehr möglich, sondern der Ozongehalt wurde aus der Differenz der Drücke vor und nach der Explosion bestimmt. Bei vollständiger Umsetzung des Ozons gemäß O₃ → 1.5 O₂ resultiert der ursprüngliche Partialdruck $p_{0,0_1}$ des Ozons aus $p_{0,0_1} = 2(p_{end} - p_0)$. Der Fehler ergibt sich hier aus der Genauigkeit der Druckmessung. Die Fehler der Ozonbestimmung, die den oben aufgeführten Wert von ± 2.0 % überschreiten, sind in Tab.3.9 zusammengefaßt.

Trägergas	Reaktionsgefäß	p ₀ [bar]	ΔX _{O3} [%]	Bermerkungen
0,2	Rohr 500×50 mm	0.112	≤ 2.1	
0,	Rohr 500×50 mm	0.058	≤ 2.9	
02	Rohr 500×50 mm	0.040	≤ 5.4	
0,	Rohr 500×35 mm	0.102	≤ 2.4	
02	Rohr 500×35 mm	0.067	< 3.2	
N ₂	Rohr 500×50 mm	0.112	≤ 2.3	
He	Rohr 500×50 mm	0.45	≤ 2.5	für X _o ≥0.24
Ar	Rohr 500×50 mm	0.45	≤ 3.2	für X ₀ ⁰ ₃≥0.18
Xe	Rohr 500×35 mm	0.45,0.20	≤ 2.2	U ₃
Ar+1%CH4	Kugel 124 mm	0.45	3.7	
Ar+1%NO2	Kugel 124 mm	0.45	4.0	

Tab.3.9 Fehler ΔX_{O_a} der Ozonbestimmung

Der prozentuale Fehler des gemessenen Maximaldruckes Δp_{max} und damit auch der Fehler des Druckverhältnisses $\Delta(p_{max}/p_0)$ fällt mit steigenden Werten p_{max} . Da der Maximaldruck eine Funktion der Ozonkonzentration, des Trägergases, der Geometrie des Reaktionsgefäßes, sowie des Initialdruckes ist, gilt:

- a) Der prozentuale Fehler der Druckmessung fällt mit steigender
 Ozonkonzentration (Tab.3.10).
 - Tab.3.10 Fehler der Druckmessung für die Explosion von Ozon/Krypton-Gemischen in einem 500×50 mm Rohr bei p₀ = 0.45 bar

- b) Für gleiche Ozonkonzentration, gleiche Gefäßgeometrie und gleichen Initialdruck ist der prozentuale Fehler des Explosionsdruckes für Ozon/Edelgas-Gemische am geringsten (Tab.3.11).
 - Tab.3.11 Fehler der Druckmessung für die Ozonexplosion in einem 500×50 mm Rohr bei p₀ \simeq 0.45 bar und X₀ \simeq 0.14

Trägergas Xe Kr Ar He N_2 O_2 $CCl_2F_2^{1}$ ΔP_{max} [%] 1.9 2.0 2.1 1.8 2.6 3.1 3.0

c) Für gleiches Trägergas und gleiche Werte der Ozonkonzentration und des Initialdruckes nimmt der prozentuale Fehler des Explosionsdruckes mit wachsendem Gefäßdurchmesser ab (Tab.3.12).

 1 , $X_{0_{3}} = 0.26$

Tab.3.12 Fehler der Druckmessung für die Explosion von Ozon/Argon-Gemischen bei $X_{O_g} = 0.13$ und $p_0 = 0.45$ bar in einem 500mm langen Rohr

> d [mm] 50 35 20 Δp_{max} [%] 2.2 4.9 6.7

- d) Für gleiche Ozonkonzentration, gleiches Trägergas und gleiche Gefäßgeometrie nimmt der prozentuale Fehler des Explosionsdruckes mit fallendem Initialdruck zu (Tab.3.13 und Tab.3.14).
 - Tab.3.13 Fehler der Druckmessung für die Explosion von Ozon/Argon-Gemischen bei $X_{O_n} = 0.16$ in einem 500×20 mm Rohr.

p ₀ [bar]	0.75	0.60	0.45	0.30	0.20
Apmax [%]	2.6	3.4	4.8	8.3	14.3

- Tab.3.14 Fehler der Druckmessung für die Explosion von Ozon/Sauerstoff-Gemischen bei $X_{O_n} \simeq 0.20$ in einem 500×35 mm Rohr.
- p₀ [bar] 0.833 0.546 0.446 0.358 0.236 0.155 0.103 0.068 Δp_{max} [%] 2.4 3.3 1.8 5.3 8.9 15.0 28.7 ≈ 50

Für detonationsartige Vorgänge treten bei Messung des Maximaldruckes mit dem Spitzenwertspeicher systematische Fehler auf, da, wie die Abbildungen 3.8 und 3.9 (s.S.60) zeigen, die Anstiegszeit des Spitzenwertspeichers von 1 ms/Volt für diese schnellen Prozesse zu langsam ist: In Versuch Expl*Xe-5-39 wurde die zeitliche Druckänderung mit einem Oszilloskop registriert (Abb.3.8). Die Auswertung des p-t-Diagramms ergab einen Maximaldruck von 3.54 bar. Die Abweichung des mit dem Spitzenwertspeichers gemessenen Wertes (2.83 bar) von diesem beträgt -20 %. In einem weiteren Versuch (Expl*Xe-5-43) wurde das Meßsignal mit einem Transientenrekorder aufgezeichnet und ein Maximaldruck von 4.22 bar gegenüber einem Wert von 3.04 bar, gemessen mit dem Spitzenwertspeicher, registriert. Die Abweichung beträgt hier -28 %. Für den Anstieg der ersten Druckschwingung ergibt sich dp/dt = 2.375bar/0.5ms bzw. dU/dt = 1.9V/0.5ms, d.h. der Anstieg des Meßsignals erfolgt um einen Faktor von Vier schneller als die vom Hersteller angegebene Zeit des Spitzenwertspeichers. Folglich sind die Meßwerte für detonationsartige Vorgänge deutlich zu niedrig. Nimmt man die beiden hier beschriebenen Versuche für die Explosion eines Ozon/Xenon-Gemisches mit Ozonkonzentrationen von 17.0 und 18.2 Mol-% zum Maßstab (die hier gemessenen Drücke sind die höchsten), beträgt die Abweichung der Meßwerte vom tatsächlichen Maximaldruck bis zu -30 %.

3.2.2. Versuche zur Ozondetonation

Die Detonation des Ozons im Gemisch mit Sauerstoff oder den Edelgasen Argon, Krypton und Xenon wurde experimentell bei einem Initialdruck von 0.4 bar untersucht. Die Gemische wurden durch die Explosion von 0.4 bar Knallgas gezündet. Im System Ozon/Xenon wurden sowohl der Initialdruck des Gemisches (0.15 bar bis 0.4 bar) als auch die Knallgasmenge (0.25 bar bis 0.4 bar) variiert.

Die Meßergebnisse für Gemische nahe der Detonationsgrenze sind in Tab.3.15 aufgeführt. Die Werte D_1 , D_2 bedeuten die im ersten bwz. zweiten Abschnitt der Meßstrecke registrierte Geschwindigkeit der Druckwelle. Bei einer Knallgasmenge von 0.4 bar wurde für die Ozon/Edelgas-Gemische eine Detonationsgrenze von ca. 7 Mol-% Ozon beobachtet. Bei Verringerung der Knallgasmenge steigt die Detonationsgrenze deutlich an und erreicht für Ozon/Xenon-Gemische Werte zwischen 11.1 und 15.5 Mol-% für 0.3 bar Knallgas und zwischen 17 und 28 Mol-% für 0.25 bar Knallgas.

Aus den Meßsignalen (p-t-Kurven) ergaben sich auch für Gemische nahe der Detonationsgrenze keine Hinweise auf das Auftreten des Detonatonsspins.

Tab.3.15	Detonationsgrenzen
----------	--------------------

Träger-	Po	Ozon	Knallgas	Y(-0 ₃)	D ₁	D 2	D_0^{CJ}	Detona-
gas	[bar]	[Mo1-%]	[bar]	[%]	[m/s]	[m/s]	[m/s]	tion
				- Next He				
02	0.4006	7.3	0.40	4.9	465	408	854	keine D.
02	0.4038	14.9	0.40	99.7	1000	1000	1087	stabil
Ar	0.3996	6.1	0.40	99.3	909	909	945	stabil
Ar	0.3992	7.2	0.40	2.1	449	400	1000	keine D.
Ar	0.4006	9.9	0.40	99.6	1053	1053	1116	stabil
Kr	0.3999	5.5	0.40	99.2	625	615	640	stabil
Kr	0.4002	5.7	0.40	99.2	625	321	649	instabil
Kr	0.3999	6.8	0.40	99.3	667	682	682	stabil
Xe	0.3891	4.5	0.40	99.5	455	263	478	instabil
Xe	0.3967	6.2	0.40	5.0	278	230	538	keine D.
Xe	0.3993	7.2	0.40	99.5	548	556	569	stabil
Xe	0.3061	11.1	0.30	1.7	270	223	672	keine D.
Xe	0.2888	15.5	0.30	99.6	758	758	764	stabil
Xe	0.2203	14.4	0.25	3.0	nicht	registr.	742	keine D.
Xe	0.2030	17.2	0.25	99.3	276	191	795	keine D.
Xe	0.1754	28.5	0.25	99.5	909	889	961	stabil
Xe	0.1911	29.3	0.25	99.6	909	889	970	stabil

In stabilen Detonationen wurde fast immer eine Leuchterscheinung in Form das Rohr durcheilender Funken beobachtet.

Als experimentelle Detonationsgeschwindigkeit D_0 sind die Mittelwerte aus den Meßgrößen D_1 und D_2 zusammen mit Literaturwerten für das System Ozon/Sauerstoff und den nach der CJ-Theorie berechneten Werten für die hier untersuchten Systeme in Abb. 3.23 als Funktion der Ozonkonzentration aufgezeichnet. Die experimentellen Detonationsgeschwindigkeiten sind unabhängig vom Initialdruck und stimmen innerhalb der Fehlergrenzen mit den CJ-Geschwindigkeiten überein, sind jedoch stets geringfügig niedriger als diese. Die Höhe des Meßfehlers ergibt sich aus der gewählten Abtastfrequenz des Transientenrekorders (plus/minus 1 Kanal).

Abb.3.23 Detonationsgeschwindigkeiten

Aus den gemessenen Detonationsgeschwindigkeiten wurden nach der CJ-Theorie, d.h. unter Verwendung der Gleichungen (2.26), (2.28) und (2.29) (s.S.32), die experimentellen Werte für Detonationstemperatur und Detonationsdruck durch Iteration berechnet. Dieser Weg war notwendig, da diese beiden Größen nicht direkt meßbar sind. So erlaubt die Ausrichtung der Druckaufnehmer senkrecht zur Stömungsrichtung der Gase nicht das Erfassen des Gesamtdrucks (vgl. S.94). Die Ergebmisse sind in Abb. 3.24 für die Temperatur und in Abb. 3.25 für den Druck gemeinsam mit den theoretischen Werten dargestellt. Entsprechend den gemessenen Detonationsgeschwindigkeiten sind die experimentellen Temperaturen und Drücke geringfügig niedriger als die theoretischen Werte.

Der Einfluß der WAA-typischen Verunreinigungen, Kohlenmonoxid, Methan und Stickstoffdioxid, auf die Detonation eines Ozon/Edelgas-Gemisches wurde bei einem Initialdruck von 0.4 bar untersucht. Als geeignetes Trägergas wurde wegen seiner hohen Dichte Xenon gewählt: Das System Ozon/Xenon zeigt die niedrigsten Detonationsgeschwindigkeiten, daher sollten Effekte durch Verunreinigungen hier am deutlichsten zu beobachten sein. Eingesetzt wurden Kohlenmonoxid in einer Konzentration von ca. 5 Mol-%, Methan und Stickstoffdioxid in

Abb.3.25 Detonationsdrücke

Konzentrationen von jeweils ca. 1 Mol-% bezogen auf das Trägergas. Die Analyse der ozonhaltigen Gemische vor der Zündung ergab, daß ein Großteil des Kohlenmonoxids und ein geringer Anteil des Methans durch spontane Reaktion mit Ozon zu Kohlendioxid oxidiert worden war (Tab.3.16 und Tab.3.17).

Та	b.3.16	Analyse o	ler 03,	/CO/X	e-Gemische	vor	der	Zündung
----	--------	-----------	---------	-------	------------	-----	-----	---------

X ₀₃ [%]	X _{CO} [%]	X _{CO2} [%]
5.8	1.40	3.06
10.7	2.20	2.57
13.6	1.43	4.10
16.8	0	2.57

Tab.3.17 Analyse der 03/CH4/Xe-Gemische vor der Zündung

X ₀₃ [%]	X _{CH4} [%]	X _{CO} [%]	X _{CO2} [%]
-	0.97	0	0
5.7	0.98	0	0.37
6.9	0.89	0	0.31
8.8	0.82	0	0.22
9.8	0.82	0	0.25
10.7	0.81	0	0.28
13.3	0.76	0	0.50

Die Detonation dieser Gemische wurde durch die Zündung von jeweils 0.4 bar Knallgas eingeleitet. Dabei wurde für CO-haltige Gemische mit einer Ozonkonzentration oberhalb 10 Mol-% eine blaue Flamme beobachtet. Abb.3.26 zeigt die experimentell bestimmten sowie die theoretischen Detonationsgeschwindigkeiten als Funktion der Ozonkonzentration. Bei der Berechnung der Detonationsgeschwindigkeiten wurde angenommen, daß für CO-haltige Gemische ca. 2/3 der ursprünglichen CO-Menge zum Zeitpunkt der Zündung bereits zu CO₂ oxidiert war

und für CH_4 -haltige Gemische die Reaktion innerhalb der Detonationswelle nicht zu CO_2 sondern zu CO führt. Übereinstimmend mit den berechneten Werten wurde für den Zusatz von 1 Mol-% Methan ein deutlicher, für den Zusatz von real 1.5 Mol-% Kohlenmonoxid ein geringerer Anstieg der Detonationsgeschwindigkeit festgestellt. Stickstoffdioxid in einer Konzentration von 1 Mol-% beeinflußt die Detonationsgeschwindigkeit nicht.

Bei Einsatz einer Füllkörperpackung wurden unabhängig von deren Länge Detonationen im Rohrabschnitt hinter der Packung erst bei Ozonkonzentrationen oberhalb von 21.1 ± 1.6 Mol-% beobachtet. Die hier gemessenen Detonationsgeschwindigkeiten entsprechen den Werten, die für Ozon/Xenon-Gemische in einem 20 mm breiten Rohr bestimmt wurden, und sind geringfügig niedriger als die CJ-Geschwindigkeiten (Abb.3.27). Für Ozondetonationen unterhalb dieser Grenze von 21.1 Mol-% wurde in fast allen Versuchen im Rohrabschnitt hinter der Packung eine vollständige Umsetzung des Ozons beobachtet, die in einer beinahe ohne Druckanstieg fortschreitenden Flamme erfolgte. Die Geschwindigkeit dieser Flammen betrug im Mittel $195 \pm 7 \text{ m/s}$, ein Wert, der der normalen Schallgeschwindigkeit für ein Ozon/Xenon-Gemisch mit einer Ozonkongentration von 20 Mol-% (190 m/s) entspricht.

```
Abb.3.27 Detonation in einer simulierten Füllkörperkolonne
```


In den Abbildungen 3.28 und 3.29 sind die Meßsignale für die Detonation zweier Ozon/Xenon-Gemische in der simulierten Füllkörperkolonne wiedergegeben. Form und Höhe der Signale sind durch die Anordnung der Druckaufnehmer bedingt: Ist der Aufnehmer senkrecht zur Strömungsrichtung des Mediums angeordnet, so erfaßt er nur den statischen Druck, bei paralleler Anordnung wird der Gesamtdruck, nämlich die Summe aus statischem und dynamischem Druck, erfaßt. Die Druckaufnehmer in den Meßpositionen 1, 2 und 3 waren senkrecht zur Rohrachse angeordnet, dabei befanden sich die Positionen 2 und 3 im Abstand von 5 mm vor bzw. hinter den Siebböden der Packung. Der Druckaufnehmer in Position 4 war in Richtung der Rohrachse im Zentrum des fest verschlossenen Rohrendes eingeschraubt (s.S.53, Abb.3.4). Da eine auf eine

Zeit (ms)

Fläche auftreffende Schockwelle reflektiert wird, muß Aufnehmer 4 einen Druck anzeigen, der im Idealfall doppelt so hoch wie der Gesamtdruck sein muß. Bedingt durch die Auflösung des Meßsystems wird sich die durch das Meßsignal gegebene Fläche verdoppeln, d.h. der gemessene Maximalwert wird geringfügig niedriger sein als der zweifache Maximaldruck.

Abb. 3.28 zeigt eine Detonation, die in beiden Teilen des Rohres, sowohl vor als auch hinter der Packung erfolgt: Signal 1 zeigt entsprechend der Versuchsanordnung einen Druckanstieg zu einem relativ geringen Maximalwert. Das zweite Druckmaximum wird durch Reflexion der Druckwelle am Gaseinlaß, der sich nahe der Position 1 befindet, verursacht. Signal 4 steigt zu einem Maximalwert von 9.49 bar an, der

Zeit [ms]

nur geringfügig niedriger ist als der Detonationsdruck für ein entsprechendes Ozon/Xenon-Gemisch in einem 20 mm breiten Rohr (10.22 bar). Signal 2 zeigt die gleiche Form und einen vergleichbar steilen Druckanstieg wie Signal 4 zu einem allerdings etwas niedrigeren Maximalwert von 7.38 bar. Siebboden und Füllkörper wirken also einerseits wie eine feste, undurchlässige Wand und reflektieren die Schockwelle. Das in Vergleich zu Signal 4 niedrigere Druckmaximum wird durch die Anordnung des Druckaufnehmers und die teilweise Durchlässigkeit der Packung für die Druckwelle verursacht. Signal 3 weist entsprechend der Versuchsanordnung einen relativ geringen Maximaldruck auf und ist zudem durch den Weg der Druckwelle durch die Packung in seiner Amplitude geschwächt und stark verbreitert. Die mit Pfeilen markierten zweiten Maxima der Signale 3 und 4 sind auf Reflexionen der Druckwelle an der Füllkörperpackung bzw. am Rohrende zurückzuführen. Da hier das Ozon bereits vollständig zu Sauerstoff umgesetzt war, wurde keine Detonation, sondern eine Schockwelle mit abnehmender Intensität und Geschwindigkeit beobachtet. In diesem Versuch wurden im Rohrabschnitt vor der Füllkörperpackung eine mittlere Geschwindigkeit von 832 \pm 35 m/s, innerhalb der Packung 589 \pm 120 m/s und hinter der Packung 829 ± 59 m/s gemessen. (vgl.: Die experimentell bestimmte, normale Detonationsgeschwindigkeit für ein Gemisch von 22.2 Mol-% Ozon in Xenon in einem 20 mm breiten Rohr beträgt 831 ± 35 m/s). Der hohe Meßfehler für die Geschwindigkeiten innerhalb und hinter der Packung wird durch die starke Verbreiterung des Signals 3 verursacht.

Abb.3.29 zeigt eine Ozondetonation, die die Füllkörperpackung nicht durchdringt: Die Signale der Meßpositionen 1 und 2 sind in ihrer Form und in den erreichten Maximalwerten den entsprechenden Signalen des oben beschriebenen Versuches vergleichbar (s.Abb.3.28). Dagegen zeigen die Signale 3 und 4 eine nur sehr schwache Druckwelle mit abnehmender Intensität. Die gemessenen mittleren Geschwindigkeiten betragen hier 808 \pm 33 m/s vor der Packung, 592 \pm 121 m/s innerhalb und 209 \pm 4 m/s hinter der Packung gegenüber einer normalen Detonationsgeschwindigkeit von 811 \pm 33 m/s für das entsprechende Gasgemisch.

4. Interpretation und Diskussion der Ergebnisse

Die Ergebnisse der Versuche zur Oxonexplosion und Ozondetonation wurden mit den Aussagen der hier diskutierten Modelle der Flamme, der Explosion und der Detonation und gegebenfalls mit Literaturwerten verglichen und interpretiert.

4.1. Ozonexplosion

Diskutiert wurden die im Experiment heobachteten deutlichen Abhängigkeiten des Explosionsdruckes und der Zündgrenze von dem Trägergas, der Geometrie der Versuchsanordnung (Kugel, Rohre verschiedenen Durchmessers und Längen), dem Initialdruck und dem Trägergas zugesetzte Verunreinigungen (CO, CH4, NO2). Explosionsdruck, Explosionstemperatur und Flammengeschwindigkeiten wurden für Gemische (Ar, von 15 Mol-% Ozon mit Edelgasen Kr, Xe) in Gefäßen unterschiedlicher Geometrie bei unterschiedlichen Initialdrücken durch Iteration berechnet. Ferner wurde für einige ausgewählte Beispiele bestimmt, ob unter den gegebenen Versuchsbegingungen ein Übergang von der Explosion zur Detonation erfolgen kann oder unmöglich ist.

4.1.1. Explosionsdrücke

In allen Versuchsreihen zur Ozonexplosion wurde eine Abhängigkeit des Explosionsdruckes von der Ozonkonzentration und dem Trägergas beobachtet. Die Deutung des Einflusses dieser beiden Faktoren auf das Explosionsverhalten ist trivial: Mit der Ozonkonzentration steigt die Wärmetönung Δh für die Ozonzersetzung und somit die Explosionstemperatur; bei sonst gleichen Ausgangsbedingungen ist diese bei verschiedenen Trägergasen nach T $\simeq \Delta h/c_p + T_0$ abhängig von der Wärmekapazität des Gemisches.

Die Vorsuche zur Ozonexplosion wurden in Gefäßen zweier völlig unterschiedlicher Geometrien durchgeführt: a) in einer Kugel mit Zündung des Gases in deren Zentrum und b) in einem Rohr, wobei die Zündung in einem Rohrende erfolgte.

Wird ein Gasgemisch im Zentrum einer Kugel gezündet, so kann die Flamme nur radial zur Gefäßwand hin fortschreiten. Ein solcher Prozeß stellt ein eindimensionales System dar. Verluste treten hier nur in geringem Maße 1) in der äußersten Gasschicht durch Wärmeübertragung auf die kalte Gefäßwand und 2) durch Wärmestrahlung des IR-aktiven Ozons im durch adiabatische Kompression erwärmten Frischgas auf (das Produkt O₂ und das intermediäre O(³P) sind nicht IR-aktiv). Das Modell von Flamm und Mache für die adiabatische Explosion eines Gases in einem geschlossenen Gefäß läßt sich daher auf die Kugelgeometrie anwenden: Es wird keine Abhängigkeit des Verhältnisses von Explosionsdruck p_{max} zu Initialdruck po vom Initialdruck beobachtet. Die experimentel1 bestimmte Druck-Ozonkonzentration-Kurve folgt dem Verlauf der theoretischen Kurve. Die Meßwerte \mathbf{p}_{\max} sind jedoch um 20 % niedriger als die berechneten Werte p (Abb.3.13f,3.15d). Für diese Abweichung lassen sich zwei Ursachen nennen: 1) Dieses Modell der adiabatischen Explosion ist eine Näherung; d.h. die Rechnungen, die zu den Gleichungen (2.38) und (2.39) führen, enthalten einige Vereinfachungen. So werden z.B. in einer Differenz die Wärmekapazitäten des Gases bei konstantem Volumen C_V durch die Wärmekapazitäten bei konstantem Druck C_p ersetzt, um die Integrierbarkeit der resultierenden Gleichungen zu erreichen [133]. 2) Es wird ein adiabatischer Prozeß angenommen. In Wirklichkeit geben die äußeren Gasschichten, sobald sie durch Kompression erwärmt werden, einen geringen Teil ihrer Energie durch Wärmeleitung an die kalte Gefäßwand ab. Ferner treten durch das IR-aktive Ozon Verluste durch Wärmestrahlung im komprimierten, erwärmten Frischgas auf.

Während hier auf die Wärmestrahlung nicht weiter eingegangen werden soll, sollen am Beispiel eines Ozon/Argon-Gemisches die Verluste durch Wärmeleitung durch eine einfache Näherung abgeschätzt werden: Nur die äußerste Gasschicht soll Wärme an die Gefäßwand abgeben, während Kompression und Verbrennung der inneren Schichten rein adiabatisch erfolgen. Seien ζ die Breite der äußersten Schicht, A die Kugeloberfläche, T_{max} die maximale und T₀ die ursprüngliche Temperatur des Gases. Dann ist der Verlust innerhalb einer Zeitt gegeben durch $q_{-} \approx \overline{\lambda}(T-T_{0})\frac{A}{\zeta}t$. Durch diesen Verlust verringert sich die Temperatur des Gases um die Differenz $\Delta T = T_{max}$ -T. Daraus folgt für den Wärmeverlust $q_{-} \approx \overline{c}_{p} \rho V(T_{max} - T_{0})$. Das Volumen der Gasschicht beträgt V = A× ζ . Somit erhält man:

(4.1)
$$\Delta T \simeq \frac{\overline{\lambda}}{\overline{c}_{p} \rho \zeta^{2}} (T_{max} - T_{o})t.$$

 $\overline{\lambda}$ bedeutet hier die mittlere Wärmeleitfähigkeit des Gases zwischen den Temperaturen T_{max} und T₀, \overline{c} die mittlere, spezifische Wärmekapazität des Gases zwischen den Temperaturen T_{max} und T. Die Normierung der Temperaturdifferenz ΔT führt zu der Größe $\Delta \tau$. $\Delta \tau$ ist definiert durch $\Delta \tau = (T_{max} - T)/(T_{max} - T_{0})$ und ist ein anschauliches Maß für den Wärmeverlust. Man erhält:

(4.2)
$$\Delta \tau \simeq \frac{\overline{\lambda}}{\overline{c}_{p} \rho \zeta^{2}} t.$$
Sei & der Anteil des verbrannten Gases an der Gesamtmenge. Für den Druck $p = p(\xi)$ gilt die Näherung $\xi \simeq (p-p_0)/(p_e-p_0)$; der Enddruck p_e ist bekannt (s.Kap.2.5.1.). Es lassen sich also für jeden Wert $\boldsymbol{\xi}$ der aktuelle Druck $p(\xi)$ und mit Hilfe der Adiabatengleichungen auch Volumen und Temperatur des verbrannten, sowie des unverbrannten Gases angeben. Da Temperatur T und Druck p des Frischgases somit stets bekannt sind, läßt sich für die Verbrennung des Gases innerhalb einer Zone dξ nach Warnatz [42] eine Flammengeschwindigkeit $v(\xi)$ mit den Ausgangsbedingungen $T(\xi)$ und $p(\xi)$ berechnen. Die Flammengeschwindigkeit ist zu Beginn des Prozesses ($\xi \simeq 0$) gleich der in Kapitel 2.3.2. berechneten Geschwindigkeit vo laminarer Flammen und steigt mit zunehmenden Werten für Temperatur und Druck des Frischgases deutlich an. Die Ergebnisse für das gewählte Beispiel sind in Tab.4.1 wiedergegeben. Betrachtet wird Ozon/Argon-Gemisches Explosion $X_{0} = 15 \text{ Mol-\%},$ die eines mit $p_0 = 0.45$ bar und $T_0 = 300$ K in einer Kugel von 1 Liter Inhalt. Der Explosionsdruck für dieses Gemisch beträgt nach Flamm und Mache [133] $p_{p}/p_{o} = 6.12$ (s.S.169, Tab.7.16). Die Umsetzung des Gases erfolge in 10 Schichten $\Delta \xi$ = 0.1. Das Volumen V(ξ) des verbrannten Gases ergibt sich aus $V(\xi) = \xi V_0 (p/p_0)^{-1/\delta}$ und wird durch den Radius $r = \sqrt[3]{\frac{3}{4}V(\xi)/\pi}$ ausgedrückt. T_{af} ist die jeweilige Flammentemperatur des Gases.

Tab.4.1	Adiabatische Expl	losion eines	Ozon/Argon-	Gemisches	in	einer
	Kugel mit X _{Og} = 15	Mol-%, $p_0 = 0$).45 bar, T ₀	= 300 K und	V o	= 1 L

ξ	p/po	T [K]	r [cm]	v[cm/s]	T _{af} [K]
~ 0	1 00	200	0.00		1120
- 0	1.00	200	0.00	55.7	1129
0.1	1.21	221	4.1/	51.2	11/3
0.2	2.02	392	4.87	68.9	1208
0.3	2.54	427	5.25	87.6	1237
0.4	3.05	458	5.51	107.2	1264
0.5	3.56	486	5.69	127.4	1287
0.6	4.07	511	5.84	148.2	1307
0.7	4.58	535	5.95	170.9	1327
0.8	5.10	557	6.05	193.9	1345
0.9	5.61	577	6.14	217.6	1361
1.0	6.12	597	6.20	244.5	1378

Die Zeit t, in der die Wärmemenge q_abgegeben wird, sei gleich der Zeit t_j, in der eine Gasschicht $\Delta \xi = \xi_j - \xi_{j-1}$ verbrennt (j =1...10). Diese ist gegeben durch t_j = (r_j-r_{j-1})/ \overline{v}_j . Da die Flammengeschwindigkeit innerhalb $\Delta \xi$ nicht konstant ist, sondern von v_{j-1} zu v_j ansteigt, wird die mittlere Geschwindigkeit $\overline{v}_j = \frac{1}{2}(v_j + v_{j-1})$ eingesetzt. Gleichung (4.2) enthält als weitere Unbekannte die Dichte p des Gases und die Temperatur T_{max}. Für ein ideales Gas gilt $\rho = p/RTM$, wobei M die Masse für 1 Mol des Gasgemisches angibt. T_{max,j} ist diejenige Temperatur, die das vom Volumen V_j=A× ζ_j eingeschlossene Frischgas nach Verbrennung der Zone $\Delta \xi = \xi_j - \xi_{j-1}$ durch Kompression annehmen würde, wenn kein Wärmeverlust erfolgt. Für den adiabatischen Prozeß gilt $\xi = (p-p_0)/(p_e-p_0)$. Für $\Delta \xi = \xi_j - \xi_{j-1}$ folgt daher $\Delta \xi = (p_j - p_{j-1})/(P_e-p_0)$. Da p_{j-1} bereits bekannt ist, läßt sich p_j berechnen. Einsetzen des Ergebnisses für p_j in die Adiabatengleichung ergibt den Wert T_{max,j}. Man erhält schließlich:

(4.3)
$$\Delta \tau = \frac{\overline{\lambda} R M}{\overline{c}_{p} \zeta_{j}^{2}} \frac{T_{j}}{p_{j}} \frac{r_{j} r_{j-1}}{\frac{1}{2} (v_{j} v_{j-1})}$$

Aus dieser Gleichung läßt sich für jedes ξ_j durch Iteration die Temperatur T_j und somit auch der Druck p_j/p_o des Gases in der äußersten Schicht berechnen. Tab.4.2 zeigt den berechneten Druck- und Temperaturanstieg in dieser Schicht während der schrittweisen Verbrennung des Gases. Wird die äußerste Gasschicht verbrannt (j=10), sind an Stelle von Volumen, Temperatur, Wärmekapazität, Adiabatenkoeffizient und Wärmeleitfähigkeit des Frischgases die entsprechenden Größen des verbrannten Gases zu berücksichtigen. Die benötigten Daten wurden Tabellenwerken entnommen (C_p(0₃,0₂): [91], C_p(Ar) und $\chi(0_2,Ar)$: [92], $\chi(0_2,Ar)$: [93], $\chi(0_3)$: [135]. Für $\chi(0_3)$ wurde der Wert 1.29 eines dreiatomigen, idealen Gases eingesetzt [134]. Die durch die Verbrennung bewirkte Expansion des Gases wird durch die Zunahme der Schichtdicke ζ für $\xi = 1$ deutlich.

Tab.4.2 Temperatur- und Druckanstieg innerhalb der äußersten Gasschicht bei der Explosion eines Ozon/Argon-Gemisches in einer Kugel mit $X_{O_n} = 15$ Mol%, p₀ = 0.45 bar, T₀ = 300 K und V₀ = 1 L

ξ	ζ [cm]	Δτ _ζ [%]	^Τ ζ ^[K]	^p ζ ^{/p} ο
~ 0	0.01		200	1 00
- 0	0.21		300	1.00
0.1	0.21	84	308	1.07
0.2	0.17	15	349	1.49
0.3	0.15	7.1	384	1.91
0.4	0.13	4.7	414	2.34
0.5	0.12	2.9	442	2.78
0.6	0.11	2.3	468	3.22
0.7	0.10	1.7	491	3.67
0.8	0.09	1.6	509	4.02
0.9	0.08	1.5	533	4.54
1.0	0.20	2.2	1320	4.96

Nach diesem einfachen Modell sinkt der Explosionsdruck von dem Wert $p_{e}/p_{o} = 6.12$ für den adiabatischen Prozeß nach Flamm und Mache [133] auf einen Wert von $p_e/p_o = 4.96$ für einen Vorgang, der geringe Verluste durch Wärmeleitung in der Randzone des Gasvolumens erlaubt. Experimentell wurde für das hier gewählte Ozon/Argon-Gemisch ein Explosionsdruck von $p_{max}/p_o = 4.85 \pm 0.15$ bestimmt. Das Meßergebnis stimmt innerhalb der Fehlergrenze mit dem berechneten Wert $p_o/p_o = 4.96$ überein. D.h. die beobachtete Differenz zwischen Meßwerten und den streng nach der Theorie von Flamm und Mache [133] berechnenten Drücken wird durch das Auftreten von Wärmeverlusten innerhalb der äußeren Gasschichten durch Wärmeübertragung auf die Gefäßwand erklärt.

Wird ein brennbares Gemisch in einem Rohr eingeschlossen und erfolgt die Zündung an einem Ende des Rohres, so pflanzt sich die Flamme in Richtung der Rohrachse fort. Da die Temperatur der Gefäßwand während der Verbrennung nahezu konstant bleibt (sie entspricht der Ausgangstemperatur T₀ des Systems), bildet sich ein Temperaturgradient senkrecht zur Rohrachse aus, welcher einen Wärmefluß zur Wand hin bewirkt und zu einer Krümmung der Flammenfront führt. Ein solcher Prozeß stellt ein mehrdimensionales System dar.

Bei der Verbrennung eines Gases in einem geschlossenen Rohr treten mehrere gegenläufige Prozesse auf: 1) Der Wärmefluß zur Rohrwand führt zur Verringerung der Flammentemperatur und der Flammengeschwindigkeit; die Verbrennung erfolgt nicht mehr adiabatisch. 2) Die Expansion des Gases in der Flammenfront bewirkt eine Kompression und damit eine Erwärmung des Frischgases; diese wiederum führt zum Anstieg der Flammentemperatur und -Geschwindigkeit. 3) Die Krümmung der Flammenfront vergrößert deren Fläche und somit die Brenngeschwindigkeit (diese gibt an, wieviel Frischgas pro Zeiteinheit verbrennt und ist eine Funktion der Flammenoberfläche); folglich erhöht sich die Flammengeschwindigkeit (i.e. die Fortschreitungsgeschwindigkeit der Flamme im Raum) in der Nähe der Rohrachse; der Geschwindigkeitsgradient wird steiler. Überwiegt die Abkühlung der Flamme durch Wärmeleitung zur Gefäßwand, so ist eine Explosion des Gases nicht möglich. Die Flamme kann sogar instabil werden. Dann sinkt in einem genügend langen Rohr die Flammentemperatur so weit ab, daß dies zum Auslöschen der Flamme führt. Überwiegt die Erwärmung durch Kompression, so tritt Explosion ein. Diese erfolgt jedoch nicht-adiabatisch und kann daher nicht mehr durch das Modell von Flamm und Mache [133] beschrieben werden; es wurden daher in fast allen Versuchen zur Ozonexplosion in Rohren deutlich niedrigere als die nach Flamm und Mache berechneten Explosionsdrücke beobachtet. Eine Versteifung des Geschwindigkeitsgradienten und die damit verbundene Vergrößerung der Flammenoberfläche begünstigen den Übergang zur turbulenten Flamme und somit zur Detonation.

Die Verbrennung eines Gases einem geschlossenen, in zylindrischen Gefäß kann nicht durch das Model1 der mehr eindimensionalen, adiabatischen, stationären, laminaren Flamme beschrieben werden. Die Erhaltungsgleichungen für Masse, Impuls und Energie müssen die Änderung der physikalischen Größen nach allen Richtungen des Raumes enthalten. Auch ist die Vereinfachung des Gleichungssystems durch die Annahme einer stationären, d.h. zeitunabhängigen Flamme nicht mehr erlaubt. Es resultiert ein System partieller Differentialgleichungen, für das keine mathematische Lösung

existiert. Daher soll der Einfluß der zylindrischen Geometrie auf die Verbrennung bzw. die Explosion ozonhaltiger Gasgemische anhand einer einfachen Näherung erklärt werden:

Das Gas sei in einem zylindrischen Gefäß des Durchmessers d und der Länge & eingeschlossen. Die Flamme schreite entlang der Rohrachse (x-Richtung) mit der Geschwindigkeit v(x) fort, die Flammenfront sei planar. Der Energieverlust erfolge nur durch Wärmeleitung radial zur Gefäßwand hin. Sei T_{max} die maximale Temperatur des verbrannten Gases in Achsennähe, die ursprüngliche Temperatur T_o gleich der Temperatur des Gases in Wandnähe, $\overline{\lambda}$ die mittlere Wärmeleitfähigkeit des Gases zwischen diesen Temperaturen, dann ist der Verlust q_ innerhalb einer Zeit t gegeben durch den mittleren Temperaturgradienten $(T_{max}-T_0)/\frac{1}{2}d$, die mittlere Wärmeleitfähigkeit und die Zylinderoberfläche A gemäß der Näherung $q_{2} \approx 2\overline{\lambda}(T_{max}-T_{0})At/d$. Die Temperatur des Gases nimmt durch den Wärmeverlust um den Betrag $\Delta T = T_{max} - T$ ab. Für den Verlust q_ gilt daher q_ $\simeq \bar{c}_{p} \rho V \times \Delta T$. Innerhalb der Zeit t legt die Flamme den Weg Ax zurück. Oberfläche A und Volumen V dieser Zone sind gegeben durch $A=\pi d\Delta x$ und $V=\frac{1}{4}\pi d^2\Delta x$. Die Zeit t ist gegeben durch $t=\Delta x/v$. Somit erhält man für die Temperaturabnahme:

(4.4)
$$\Delta T \simeq \frac{8\overline{\lambda}(T_{max} - T_0)}{\overline{c_p} \rho d^2} \frac{\Delta x}{v}$$

Mit $\Delta \tau = (T_{max} - T) / (T_{max} - T_o)$ folgt:

(4.5)
$$\Delta \tau \simeq \frac{8\overline{\lambda}}{\overline{c}_{p}\rho d^{2}} \frac{\Delta x}{\overline{v}}$$

Die Temperatur des Gases sei zu Beginn des Prozesses gleich der Temperatur T_{af} der adiabatischen, eindimensionalen, laminaren Flamme. Die Verbrennung des Gases erfolge in zehn Schritten, dabei ändere sich der Anteil ξ des verbrannten Gases an der Gesamtmenge um jeweils $\Delta \xi$ =0.1. Jede dieser zehn Zonen fülle den ganzen Querschnitt $\frac{1}{4}\pi d^2$ des Rohres aus. Die Verbrennung der ersten Zone erfolge adiabatisch. Diese Annahme ist sicher nicht korrekt, ermöglicht aber die Einbeziehung der bei dem Zünden des Gases diesem zugeführten Energie. Die hier eingesetzte Methode, das Zünden mittels elektrisch erhitztem Pt-Draht, ist ungenau: Auch nach erfolgter Zündung wird dem Gas Energie zugeführt und dieses weiter aufgeheizt. Dieser zusätzliche Energiebetrag sei gerade so groß, daß der Verlust durch Wärmeleitung vollständig ausgeglichen wird, so daß die Verbrennung der ersten Gasschicht scheinbar adiabatisch erfolgt. Diese Annahme ist nicht nur sinnvoll, sie erwies sich im weiteren Verlauf der Rechnungen als notwendig: Für einige Systeme, in denen eine Explosion des Gases beobachtet wurde, ergab die Rechnung ohne die Annahme der adiabatischen Verbrennung der ersten Zone das Erlöschen der Flamme.

Während der Verbrennung aller weiterer Zonen gibt das verbrannte, heiße Gas Energie durch Wärmeleitung an die Gefäßwand ab. Folglich ist die am Ende einer Zone erreichte Flammentemperatur T_f niedriger als die Temperatur T_{af} der entsprechenden adiabatischen Flamme. Die durch die Verbrennung zur Temperatur T_f bewirkte Kompression und Erwärmung des Frischgases erfolge jedoch adiabatisch. Diese Annahme ermöglicht es, aus der Flammentemperatur T_f die Temperatur T_u des Frischgases und schließlich mit Hilfe der Adiabatengleichung p $(1-\delta)/\delta_{T_u}=p_0(1-\delta)/\delta_{T_0}$ den Druck pzu berechnen:

Wie bereits für den Fall der Ozonexplosion in einer Kugel gezeigt wurde (s.S.100), lassen sich für adiabatische Explosionen mit den Modellen von Flamm und Mache [133] und Warnatz [42] der Druck $p(\xi)$, die Frischgastemperatur $T_u(\xi)$, die Flammentemperatur $T_{af}(\xi)$ und die Flammengeschwindigkeit $v_0(\xi)$ für jeden Wert ξ berechnen (s.Anhang 7.6). Trägt man die Flammentemperaturen gegen die Frischgastemperaturen auf, erhält man eine Grafik, aus der sich für jede Flammentemperatur T_f die zugehörige Frischgastemperatur T_u bestimmen läßt. Die Ermittlung der Flammengeschwindigkeiten v der nicht-adiabatischen Flammen erfolgt analog. Bei der Berechnung des Energieverlustes nach Gleichung (4.5) ist zu berücksichtigen, daß während der Verbrennung einer Gaszone sich innerhalb dieser sowohl Temperatur, Druck und Volumen das Gases, als auch die Geschwindigkeit der Flamme ändern. Das Gesamtvolumen des Gases ist gegeben durch $V_0 = \frac{1}{4}\pi d^2 \ell$, das unkomprimierte Frischgas nimmt den Anteil (1- ξ)V ein. Für das Volumen V = $\frac{1}{4}\pi d^2 x$ des auf den Druck p komprimierten Frischgases gilt nach der Adiabatengleichung V = (1- ξ)V₀(p/p₀)⁻¹V^{ξ}. Die Zeit t= $\Delta x/v$, in der die Wärmemenge q_abgegeben wird, sei gleich der Zeit t_j (mit j = 1..10), in der eine Gaszone $\Delta \xi = \xi_j - \xi_{j-1}$ verbrennt.

Abb.4.1 Verbrennung einer Zone j eines in einem Rohr eingeschlossenen Gases

Wie Abb.4.1 zeigt, legt die Flamme innerhalb dieser Zeit die Strecke $\Delta x = x_j - x_{j-1} \text{ mit } x_j = (1 - \xi_j) \ell(p_j/p_0)^{-\sqrt{\chi}} \text{ und } x_{j-1} = (1 - \xi_{j-1}) \ell(p_{j-1}/p_0)^{-\sqrt{\chi}}$ zurück, wobei sich die Flammengeschwindigkeit von v_{j-1} in x_{j-1} zu v_j in x_j ändert. Die gesuchte Temperaturabnahme in der Ebene x_j ist definiert durch $\Delta T_j = T_{max,j} - T_{f,j}$. Es ist $T_{f,j}$ die Flammentemperatur, die in x_j erreicht wird und $T_{max,j}$ die Temperatur, die in x_j erreicht würde, wenn kein Wärmeverlust erfolgt. $T_{max,j}$ ist leicht zu ermitteln: Für die Zone j-1 sind Flammentemperatur $T_{f,j-1}$, Frischgastemperatur $T_{u,j-1}$ und

Druck p_{j-1} bereits bekannt. Erfolgt die Verbrennung der j-ten Zone adiabatisch, so ändert sich der Druck gemäß $\xi \approx (p-p_0)/(P_e-p_0)$ um $\xi_j - \xi_{j-1} \approx (p_j - p_{j-1})/(P_e-p_0)$. Da in dieser Gleichung alle Größen außer p_j bekannt sind, läßt sich dieser berechnen. Einsetzen von p_j in die Adiabatengleichung liefert die Temperatur $T_{u,j}$ des Frischgases, welche durch graphische Auswertung zu $T_{max,j}$ führt. Gleichnung (4.5) enthält als weitere Unbekannte die Dichte ρ des Gases. Für ein ideales Gas gilt $\rho = p/RTM$. Nimmt man für die Temperaturverteilung einen Rotationsparaboloiden an (Abb.4.2), so ist die mittlere Temperatur des Gases in der Ebene x_j gegeben durch $\overline{T}_j = \frac{1}{2}(T_{f,j} - T_0)$. Damit ergibt sich für die Dichte $\rho_j = p_j/RT_jM$.

Abb.4.2 Temperaturprofil einer nicht-adiabatischen Flamme in einem Rohr

Die Flammengeschwindigkeit zeigt die gleiche radiale Abhängigkeit wie die Temperatur: Sie nimmt in Achsennähe den maximalen Wert v an und sinkt in Wandnähe ab auf den Wert Null, beträgt also im Mittel v = $\frac{1}{2}v$. Da sich ferner die Flammmengeschwindigkeit entlang der Strecke $\Delta x_j = x_j - x_{j-1}$ ändert, folgt $\overline{v}_j = \frac{1}{4}(v_j + v_{j-1})$. Somit erhält man für $\Delta \tau_j$:

(4.6)
$$\Delta \tau_{j} = \frac{8\lambda RM(T_{f,j}^{-}T_{o})}{\overline{c}_{p} d^{2} p_{j}} \frac{x_{j}^{-}x_{j-1}}{\frac{1}{2}(v_{j}^{+}v_{j-1}^{-})},$$

Diese Gleichung ermöglicht die Berechung von T_{f,j} durch Iteration, wobei die Größen mit Index j-1 die Ergebnisse der vorausgegangenen Rechnung, die Größen mit Index j, ausgenommen T_{max,j}, die geschätzten Werte sind. Die Rechnungen wurden durchgeführt für Ozon/Edelgas-Gemische unter Variation

- a) des Trägergases,
- b) des Initialdruckes po,
- c) des Gefäßdurchmessers d und
- d) der Gefäßlänge &.

Die Ausgangsbedingungen waren:

a) $X_{0_a} = 15 \text{ Mol}-\%;$	Tragergase: Argon, Krypton, Xenon;
$T_0 = 300 \text{ K}; p_0$	$= 0.45$ bar; $d = 50$ mm; $\ell = 500$ mm;
b) X ₀₂ = 15 Mol-%;	Trägergas: Xenon; T ₀ = 300 K;
$p_0 = 0.45$ bar,	0.23 bar; $d = 50 \text{ mm}$; $\ell = 500 \text{ mm}$;
c) X ₀ = 15 Mol-%;	Trägergas: Xenon; T ₀ = 300 K;
$p_0 = 0.45$ bar;	$d = 50 \text{ mm}$, 35 mm, 20 mm; $\ell = 500 \text{ mm}$;
d) X ₀ = 15 Mol-%;	Trägergas: Xenon; T ₀ = 300 K;
$p_0 = 0.45 \text{ bar};$	$d = 50 \text{ mm}; \ \& = 500 \text{ mm}, \ 1000 \text{ mm}.$

Die Daten für Wärmeleitfähigkeiten, Wärmekapazitäten und Adiabatenkoeffizienten wurden Tabellenwerken entnommen ($\lambda(O_2, Ar, Kr, Xe)$: [93], Cp(O₂) und $\delta(O_2)$: [92]). Für die Wärmekapazitäten und Adiabatenkoeffizienten der Edelgase wurden die Werte C_p = 5/2×R und δ = 5/3 einatomiger, idealer Gase angenommen. Die Ergebnisse sind graphisch in den Abbildungen 4.3 bis 4.6 sowie tabellarisch in Anhang 7.6 wiedergegeben.

Wie im Experiment wurde eine nur geringe Abhängigkeit des Explosionsdruckes von dem als Träger eingesetzten Edelgas (außer Helium) festgestellt (Abb.4.3 und S.58, Abb.3.6). Bei gleicher Wärmekapazität und gleichen Ausgangsbedingungen T₀, p₀, d und ℓ bestimmen allein Wärmeleitfähigkeit und Flammengeschwindigkeit die Temperaturabnahme $\Delta \tau$ und somit letztlich den Explosionsdruck p(ξ =1). Der Einfluß der Wärmeleitfähigkeit, die drastisch in der Reihenfolge Ar > Kr > Xe abnimmt, wird gemäß Gl.(4.5) durch die in gleicher Reihenfolge

Abb.4.3 Druck- und Temperaturanstieg in nicht-adiabatischen Explosionen von Ozon/Edelgas-Gemischen

abnehmende Flammengeschwindigkeit gemildert. Es resuliert eine nur geringe Abnahme des Explosionsdruckes $p(\xi=1)$ in der Reihenfolge Xe > Kr > Ar. Somit läßt sich auch ohne Kenntnis der Flammengeschwindigkeit die deutliche Verringerung des exprimentell bestimmten Explosionsdruckes p_{max} bei der Verwendung von Helium als Trägergas erklären: Helium besizt eine extrem hohe Wärmeleitfähigkeit, die etwa das 10-fache der des Argons beträgt [93]. Ferner zeigen die hier berechneten Explosionsdrücke in Übereinstimmung mit den experimentellen Beobachtungen eine deutliche Abhängigkeit von dem Initialdruck p_0 , dem

Abb.4.4 Druck- und Temperaturanstieg in nicht-adiabatischen Explosionen von Ozon/Xenon-Gemischen bei unterschiedlichen Initialdrücken

Gefäßdurchmesser d und der Gefäßlänge ℓ . Der Initialdruck p₀ bestimmt den aktuellen Druck p(ξ) und somit die Dichte des Gases zu jedem Zeitpunkt t(ξ). Folglich steigt der Wärmeverlust, hier ausgedrückt durch die Größe $\Delta \tau$, mit abnehmendem Initialdruck und führt schließlich zu einem Absinken des Explosionsdruckes p(ξ =1) (Abb.4.4 und S.70, Abb.3.16). Der Wärmeverlust ist eine Funktion des mittleren Temperaturgradienten sowie des Verhältnisses von Gefäßoberfläche zu Gefäßvolumen und ist daher dem Quadrat des Durchmessers d umgekehrt proportional (G1.(4.5)). Jede Änderung von d muß sich daher deutlich auf den Abb.4.5 Druck- und Temperaturanstieg in nicht-adiabatischen Explosionen von Ozon/Xenon-Gemischen bei unterschiedlichen Gefäßdurchmessern

Abb.4.6 Druck- und Temperaturanstieg in nicht-adiabatischen Explosionen von Ozon/Xenon-Gemischen bei unterschiedlichen Gefäßlängen

Wärmeverlust und damit letztlich auch auf den Explosionsdruck auswirken. Folglich wurden bei Verringerung des Rohrdurchmessers eine deutliche Abnahme des Explosionsdruckes berechnet $(p(\xi=1))$ und im Experiment (p_{max}) beobachtet (Abb.4.5 und S.64, Abb.3.12). Mit wachsender Rohrlänge ℓ vergrößert sich die Zeit t, innerhalb der die Flamme das gesamte Rohr durcheilt, bzw. die Zeit t, innerhalb der das Gas Wärme an die Rohrwand abgibt. In der Anwendung von Gleichung (4.5) resultieren breitere Intervalle Δx . Folglich steigt der Wärmeverlust mit zunehmender Rohrlänge an, der Explosionsdruck nimmt entsprechend ab (Abb.4.6 und Anhang 7.6, Tab.7.33). Tab.4.3 faßt die berechneten Explosionsdrücke $p(\xi=1)$ für die hier betrachteten Systeme zusammen und setzt sie in Relation zu den entsprechenden experimentellen Werten p_{max} . Da "Explosionen" der Ozon/Edelgas-Gemische bei einem Ozonanteil von 15 Mol-% i.allg. detonationsartigen Charakter zeigen (z.B. S.60, Abb.3.9 und S.118, Tab.4.5), wurden die experimentellen Explosionsdrücke durch lineare Extrapolation der Maximaldruck vs Ozonkonzentration-Meßkurven bestimmt.

Tab.4.3 Experimentelle und theoretische Werte für die Explosionsdrücke verschiedener Ozon/Edelgas-Systeme ($X_{O_g} = 15$ Mol-%, $T_0 = 300$ K)

Trägergas	p o [bar]	d [mm]	L [mm]	p_{max}/p_{o}	p(ξ=1)/p₀	∆p[%]
Argon	0.45	50	500	3.75±0.1	3.90	4
Krypton	0.45	50	500	4.00±0.1	4.09	3
Xenon	0.45	50	500	4.20±0.1	4.41	5
Xenon	0.23	50	500	3.55±0.1	3.39	-5
Xenon	0.45	35	500	3.35±0.1	3.35	±0
Xenon	0.45	20	500	2.00±0.1	2.53	27
Xenon	0.40	50	1000	3.00±0.2	3.15	5

Das hier beschriebene Modell der nicht-adiabatischen Explosion ist eine einfache Näherung: Flamm und Maches Modell der adiabatischen Explosion wurde um eine Näherung für den Energieverlust durch Wärmeleitung erweitert und unter Einbeziehung der Theorie der eindimensionalen, adiabatischen, laminaren Flamme auf das Problem nicht-adiabatischer Explosionen angewandt. Dabei erfolgte die Berechnung des Explosionsdruckes durch numerische Integration über nur zehn Zeit- bzw. Raumintervalle. Dennoch sind die Abweichungen Δp der berechneten Explosionsdrücke $p(\xi=1)$ von den Meßwerten p_{max} nur gering. Die sehr gute Übereinstimmung von theoretischen und experimentellen Ergebnissen zeigt: Für die Ozonexplosion in Rohren treten Abweichungen von der adiabatischen Explosion auf, nämlich die beobachtete Abhängigkeit des Explosionsdruckes von Trägergasen gleicher Wärmekapazität, Initialdruck, Durchmesser und Länge des Rohres. Diese werden durch einen Wärmeverlust, der allein durch Wärmeleitung erfolgt, hinreichend erklärt.

4.1.2. Übergang von der Explosion zur Detonation

In einigen Versuchen zur Ozonexplosion, insbesondere bei Gemischen von Ozon mit Argon, Krypton und Xenon, wurden Explosionen beobachtet, die von Leuchterscheinungen (Funken, Blitze) und Geräuschentwicklung begleitet waren. Für diese Ozon/Edelgas-Gemische wurde ferner ein exponentieller Anstieg des Explosionsdruckes mit der Ozonkonzentration registriert (S.58, Abb.3.6). In zwei Versuchen wurden sogar höhere als die nach Flamm und Mache berechneten Explosionsdrücke gemessen (s.S.61, Tab.3.3). Die Aufzeichnung der zeitlichen Druckänderung zeigte einen unstetigen Druckanstieg (S.60, Abb.3.9). Aus der Beobachtung einer Geräuschentwicklung während der "Explosionen" folgt, daß hier die Fortschreitungsgeschwindigkeit der Flammenfront die normale Schallgeschwindigkeit überschritt. Also lagen hier Detonationen vor, obwohl nie Drücke gemessen wurden, die den CJ-Werten entsprachen. Diese Diskrepanz wird jedoch durch die Trägheit des Meßsystems erklärt. Hier ist vor allem die für eine Regristrierung von Detonationsdrücken zu langsame Anstiegszeit des Spitzenwertspeichers zu nennen (s. Fehlerdiskussion, S.85). Bei der Aufzeichnung der zeitlichen Druckänderung mittels eines Transientenrekorders wurde mit 2 kHz eine zu niedrige Wandlerfrequenz vorgewählt: Bei einsetzenden Detonationen tritt stets Detonationsspin auf, dessen Frequenz v sich nach der von Fay [127] formulierten Gleichung

(2.31)
$$v = D_0^{CJ} k_n / [d\pi(\delta+1)]$$

berechnen läßt (S.37). Für ein Ozon/Xenon-Gemisch mit einem Anteil von 18.2 Mol-% Ozon ist $D_0^{CJ} = 812 \text{ m/s}$, $T_{CJ} = 2137 \text{ K}$ und $\mathcal{X} = 1.571$. Der Rohrdurchmesser beträgt hier d = 5 cm. Es ergibt sich für die Frequenz des Detonationsspins v = 3.6 kHz, ein Wert, der etwa doppelt so hoch ist wie die vorgewählte Wandlerfrequenz. Die pro Kanal des ADC's aufgezeichneten Druckmeßwerte sind demnach über mehrere Maxima und Minima der Druckwelle gemittelt und sind folglich zu niedrig.

Für das Einsetzen einer Detonation ist es notwendig, daß die Verbrennung des Gases von der anfangs laminaren Flamme in eine turbulente Flamme übergeht. Die turbulente Flamme, die mit einer Geschwindigkeit v_t fortschreitet, erzeugt vor sich im Frischgas eine Schockwelle mit der Geschwindigkeit v_s. Erreicht das Gas in dieser Schockwelle für einen bestimmten Zeitraum, der Induktionszeit, die Zündtemperatur, so tritt Detonation ein. Nach Lee [129] läßt sich die erforderliche Geschwindigkeit der turbulenten Flamme berechnen nach:

(4.7)
$$v_t \approx \frac{4(\ell-1)}{(\ell+1)^3 q} q$$

wobei q gleich der spezifischen Verbrennungswärme ist und für Ozon 3 kJ/g beträgt. Die Geschwindigkeit v_s der Schockwelle läßt sich aus den Rankine-Hugoniot-Gleichungen (2.12) und (2.13) berechnen: Da in einer Schockwelle keine chemische Reaktion erfolgt, bleibt die Anzahl der Teilchen unverändert. Mit der Zustandsgleichung für ideale Gase pv = nRT, der Näherung für die spezifische Energie $\varepsilon_s - \varepsilon_0 = \overline{c}_v (T_s - T_0)$ und der Definition $\mu = v_0 / v_s$ lassen sich die Rankine-Hugoniot-Gleichungen umformen zu:

(4.8)
$$\overline{c}_{v}(T_{s}-T_{o}) -\frac{1}{2}(\mu-1)nR(T_{s}-\frac{1}{\mu}T_{o}) = 0$$

(4.9)
$$v_{s} = \sqrt{\frac{\mu}{\mu-1}} nR(\mu T_{s} - T_{o}).$$

Wie innerhalb dieses Textes noch gezeigt wird, entzündet sich ein brennbares Ozongemisch, wenn es auf eine Temperatur von 750 K erhitzt wird (s.S.121). Somit ist die Temperatur T_s der Schockwelle bekannt. Die Daten für Wärmekapazitäten und Adiabatenkoeffizienten wurden Tabellenwerken entnommen ($C_p(0_3,0_2)$: [92] und $\delta(0_2)$: [92]). Für die Wärmekapazitäten und Adiabatenkoeffizienten der Edelgase wurden die Werte $C_v = 3/2 \times R$ und $\delta = 5/3$ einatomiger, idealer Gase angenommen. Für $\delta(0_3)$ wurde der Wert 1.29 eines dreiatomigen, idealen Gases eingesetzt [134]. Tab.4.4 faßt die für verschiedene Ozon/Trägergas-Gemische berechneten Geschwindigkeiten der Schockwellen und der turbulenten Flammen zusammen und setzt letztere in Relation zu den entsprechenden Geschwindigkeiten v_0 der adiabatischen, laminaren Flammen.

Tab.4.4 Kritische Flammengeschwindigkeiten für das Einsetzen von Detonationen in Ozonflammen

Trägergas	X ₀₃ [%]	v _s [m/s]	v _t [m/s]	v _o [m/s]	v _t /vo
Ozon	100	980	30	4.84	6
Xenon	15	465	4.6	0.21	22
Krypton	15	570	8.6	0.25	34
Argon	15	790	22	0.34	65
Argon	20	805	24	0.67	35
Sauerstoff	15	990	34	0.13	260
Sauerstoff	30	985	33	0.87	33

Abb.4.7 Schematische Darstellungen der Flammenoberflächen

(a) laminarer und (b) turbulenter Flammen in Rohren [129]

Der Übergang von einer laminaren in eine turbulente Flamme ist gleichbedeutend mit einer Änderung der Flammenstruktur: Die ursprünglich planare oder konische Flammenoberfläche wird in sich gefaltet (Abb.4.7). Die durch Faltung bewirkte Vergrößerung der Oberfläche führt zu einem deutlichen Anstieg der Brenngeschwindigkeit. Mit der Brenngeschwindigkeit erhöht sich die pro Zeiteinheit freiwerdende Energie, folglich steigen die Flammentemperatur und die Flammengeschwindigkeit deutlich an. Nach einer von Lee [129] zitierten Faustregel verzwanzigfacht sich die Flammengeschwindigkeit beim bei dem Übergang zur Turbulenz: $v_t \simeq 20 \times v_0$. Die Geschwindigkeit der turbulenten Flamme bleibt dann nahezu konstant, bis eine erneute Faltung der Flammenoberfläche eintritt. Dann erhöht sich die Flammengeschwindigkeit wiederum um das 20-fache der Geschwindigkeit der laminaren Flamme. Bezeichnet man die Anzahl der Faltungen der Flammenoberfläche, also den Grad der Turbulenz, mit 'f', so erhält man in grober Näherung für die Geschwindigkeit turbulenter Flammen:

$(4.10) v_{+} \simeq f \times 20 \times v_{0}$

diesen Überlegungen folgt unmittelbar: Das nach Lee [129] Aus berechnete Verhältnis v_{+}/v_{0} (Tab.4.4) ist ein Maß für die Neigung einer beliebigen, laminaren Ozonflamme über das Zwischenstadium der Turbulenz in eine Detonation überzugehen. Reines Ozon wird demnach sofort detonieren, sobald die Oberfläche der laminaren Flamme durch äußere Einwirkung gestört wird. Ein Ozon/Xenon-Gemisch mit einem Anteil von 15 Mol-% Ozon detoniert, sobald die anfangs laminare Flamme in Turbulenz übergeht. Für die entsprechenden Ozon/Kryptonund Ozon/Argon-Flammen reicht der Übergang zur einfachen Turbulenz nicht mehr aus, um eine Detonation einzuleiten, sondern es ist eine zwei- bzw. dreifache Faltung der Flammenoberfläche notwendig. Damit wird das Einsetzen von Detonationen zunehmend erschwert und somit unwahrscheinlich. Im entsprechenden Ozon/Sauerstoff-Gemisch ist eine Anzahl von f = 13 Faltungen erforderlich, um die notwendige Flammengeschwindigkeit $v_{+} = 260 \times v_{0}$ zu erreichen. Eine Detonation ist hier also unmöglich.

Erhöht man jedoch den Ozonanteil auf 20 Mol-% im Argon-Gemisch oder auf 30 Mol-% im Sauerstoff-Gemisch, so erreicht man geeignete Voraussetzungen für das Einsetzen von Detonationen.

Lee's Modell über das Einsetzen von Detonationen soll nun auf die Ozonexplosion in geschlossenen Rohren angewandt werden: Da in den hier durchgeführten Versuchen Rohre von kurzer Länge (& = 50 cm und l = 100 cm) benutzt wurden, muß der Übergang von der laminaren zur turbulenten Flamme bereits bei geringem Abbrand des Gases erfolgen, damit im verbleibendem Frischgas eine Detonation einsetzen kann. Hier wurde ein Abbrand von $\xi = 0.3$ angenommen. Bei diesem Wert zeigt die Geschwindigkeit $v_{\mathfrak{g}}$ der laminaren Flamme bereits eine Abhängigkeit von dem Initialdruck po, dem Gefäßdurchmesser d und der Gefäßlänge Ł (Anhang 7.6, Tab.7.50 bis 7.56), während die Geschwindigkeiten der Schockwelle und der turbulenten Flamme gemäß der Rankine-Hugoniot-Gleichungen und des Modells von Lee unabhängig von diesen Parametern sind. Wegen der kurzen Gefäßlängen kann nur ein Übergang zu der einfachen, turbulenten Flamme erfolgen. Höhere Turbulenzen mit mehrfacher Faltung der Flammenoberfläche sind hier nicht möglich. Tab.4.5 faßt die Vorhersage einer Detonation nach dem Modell von Lee und die experimentellen Beobachtun-

Tab.4.5 Kritische Flammengeschwindigkeiten für das Einsetzen von Detonationen in Ozon/Edelgas-Gemischen mit $X_{O_3} = 15$ Mol-%, $T_0 = 300$ K und $\xi = 0.3$ in Rohren

							Det	onation
Trägergas 	p₀[bar]	d[mm]	L [mm]	v _l [m/s]	v _t [m/s]	v _t /v _l	theor	. beob.
Argon	0.45	50	500	0.55	22	40	nein	nein
Krypton	0.45	50	500	0.44	8.6	20	ja	ja
Xenon	0.45	50	500	0.39	4.6	12	ja	ja
Xenon	0.23	50	500	0.32	4.6	14	ja	ja
Xenon	0.45	35	500	0.32	4.6	14	ja	kein Meßwert
Xenon	0.45	20	500	0.14	4.6	33	nein	nein
Xenon	0.40	50	1000	0.29	4.6	16	ja	nein

gen für Ozon/Edelgas-Gemische mit einem Ozonanteil von 15 Mol-% in in unterschiedlichen Versuchsanordnungen zusammen. Die Aussagen der Theorie über das Einsetzten von Detonationen stimmen, abgesehen von einer Ausnahme, mit den experimentellen Beobachtungen überein. Für das System Ozon/Krypton mit $X_{O_g} = 15$ Mol-%, $T_0 = 300$ K, $p_0 = 0.45$ bar, d = 50 mm und $\ell = 500$ mm wird die Detonationsgrenze richtig vorhergesagt ($v_t/v_\ell \approx 20$). Folglich läßt sich Lee's Modell auf Flammen und Explosionen ozonhaltiger Gasgemische anwenden. Gleichzeitig wird das hier beschriebene Modell der nicht-adiabatischen Explosion erhärtet.

4.1.3. Zündgrenzen

Für alle hier untersuchten Ozon/Trägergas-Systeme wurden für die Ozonexplosion Zündgrenzen beobachtet.

Vergleicht man die hier gemessenen Werte für die Zündgrenze mit den experimentellen Ergebnissen von Schumacher [25], Cook et al. [26] und Raffel et al. [27] für das System Ozon/Sauerstoff, sowie von Yastrebov und Kobozev [35] für verschiedene Ozon/Trägergas-Systeme (Tab.4.6, Tab.4.7), so findet man: Die hier gemessenen Zündgrenzen für Ozon/Sauerstoff-Gemische entsprechen den Meßwerten von Cook et al. und Raffel et al. und sind deutlich niedriger als die Daten von Schumacher. Gute Übereinstimmung mit den Ergebnissen von Yastrebov und Kobozev wurde für die Systeme Ozon/Sauerstoff und Ozon/Stickstoff beobachtet, während hier für Ozon/Argon ein um 12 % geringerer Wert bestimmt wurde (7.9 Mol-%). Diese Abweichungen werden durch unterschiedliche Methoden der Ozonbestimmung sowie der Zündung des Gases erklärt: Schumacher [25] sowie Yastrebov und Kobozev [35] bestimmten die Ozonkonzentration aus der Differenz zwischen Initialdruck p_0 und Enddruck p_{end} (s.S.83), gemessen mit einem Flüssigkeitsmanometer (Hg oder H₂SO₄). Diese Methode ist weit weniger genau als die hier und in der Arbeit von Raffel et al. [27] eingesetzte UV-Spektroskopie (s. Fehlerdiskussion, S.82f). Raffel

Tab.4.6 Zündgrenzen ozonhaltiger Gasgemische in einer eindimensionalen Versuchsanordnung (T₀ = 300 K)

Träger- gas	Versuchs- anordnung	p ₀ [bar]	X _{gr} [Mol-%]	Autor	Bemerkung
Ar O2	Kugel,124mmø Kugel,124mmø	0.45 0.45	7.5 ± 0.2 9.8 ± 0.2	diese Arbeit diese Arbeit	
02 02 02	Kugel, 99mmø Kugel, 99mmø Kugel,110mmø	1.0133 1.0133 1.0133	9.3 ± 0.3 10.9 ± 0.6 11	Cook et al.(26) Cook et al.(26) Schumacher (23)	E=0.44J E=0.17J
02	Zylinder	0.35-0.7	10	Raffel et al.(27)	j _{ign} =1J/cm ³

Tab.4.7. Zündgrenzen ozonhaltiger Gasgemische in einer zweidimensionalen Versuchsanordnung (50 mm breites Rohr, $T_0 = 300$ K)

Trägergas	p₀ [bar]	X [Mol-%]	Autor	Bemerkung
02	1.000	10.2 ± 0.3	diese Arbeit	
$\overline{0_2}$	1.0133	10.4	Yastrebov, Kobozev [35]	
02	1.0133	11.8	Schumacher [23]	
N ₂	0.45	10.8 ± 0.2	diese Arbeit	
N ₂	1.0133	10.4	Yastrebov,Kobozev [35]	
CC1,F,	0.43	22.5 ± 2.5	diese Arbeit	
CC14	1.0133	» 10.4	Yastrebov,Kobozev [35]	
Ar	0.45	7.9 ± 0.2	diese Arbeit	ℓ(Pt)=40mm
Ar	0.45	8.8 ± 0.2	diese Arbeit	$\ell(Pt)=25mm$
Ar	1.0133	8.8	Yastrebov, Kobozev [35]	

et al. [27] zeigten am System Ozon/Sauerstoff, daß die Zündenergie, angegeben als absorbierte Energiedichte j, mit sinkender Ozonkonzentration deutlich zunimmt und im Konzentrationsbereich von 10 Mol-% Ozon unendlich steil ansteigt. Die Bestimmung der Zündgrenzen erfordert

-120-

daher eine reproduzierbare Energiequelle. Die Autoren der hier zitierten Arbeiten zündeten das Gasgemisch entweder durch einen elektrisch erhitzten Pt-Draht [23], durch Funken [26,35] oder mit einem Laser [27]. Die Arbeiten von Schumacher sowie von Yastrebov und Kobozev enthalten keine Angaben über die Höhe des Energiewertes. Werden Pt-Drähte zur Zündung verwendet, so müssen neben der Konstanz von Spannung und Stromstärke auch die gleiche Länge der Drähte gegeben sein: Bei Verkürzung des Pt-Drahtes von 40 mm auf 25 mm steigt die Zündgrenze für Ozon/Argon-Gemische in einem 50 mm breiten Rohr bei einem Initialdruck von 0.45 bar von 7.9 ± 0.2 Mol-% Ozon auf 8.8 ± 0.2 Mol-% Ozon (s.S.67). In einem Rohr von 20 mm Durchmesser wurde für keines der hier untersuchten Systeme eine scharf ausgeprägte Zündgrenze, sondern ein eher kontinuierlicher Übergang zur Explosion beobachtet (Abb.3.10-3.12). Dies stimmt mit den Ergebnissen von Cook et al. [26] überein, die für Explosionen von Ozon/Sauerstoff-Gemischen in einer Kugel von 25 mm Durchmesser ebenfalls keine scharfe Grenze beobachteten.

Für Explosionen in Rohren bei einem Initialdruck p₀ < 1 bar wurde eine Abhängigkeit der Zündgrenze, ausgedrückt als Molenbruch X gr an Ozon, von Initialdruck, Durchmesser des Rohres, sowie Wärmeleitfähigkeit und molarer Wärmekapazität des Gasgemisches der Form

(4.11)
$$X_{gr} = A_i + B_i \frac{\lambda}{c_p p_o d}$$

gefunden, wobei der Index i das jeweilige Ozon/Trägergas-System bezeichnet (Abb.4.8). Die Schnittpunkte A_i der Geraden mit der Ordinaten (A_{Oa} = 10.8 ± 0.2, A_{N2} = 10.2 ± 0.4, A_{Edelgas} = 7.3 ± 0.3) entsprechen den Zündgrenzen für adiabatische, eindimensionale Flammen, da hier kein Einfluß durch Wandeffekte vorliegt (d = ∞). Die Temperatur dieser Flammen beträgt für alle hier berechneten Ozon/Trägergas-Systeme T_{af} = 750 ± 5 K (s.S.22, Abb.2.3) und entsprechen der Zündtemperatur für Ozon. Es wird postuliert, daß die Zündtemperatur für jede Zündgrenze gleich ist und 750 K beträgt. Folglich ist auch die Flammengeschwindig-

Abb.4.8 Zündgrenzen für die Ozonexplosion in Rohren

keit für jede Zündgrenze in einem gewählten Ozon/Trägergas-System gleich und entspricht dem Wert v_0 für $X_{0_3} = X_{gr}(d=\infty)$. Da für die Flammendicke δ nach Gl. (2.15) die einfache Näherung $\delta = \overline{\lambda}/\overline{c}_{D}\rho_{0}v_{0}$ gilt, lassen die in Gl. (4.11) formulierten, experimentellen Ergebnisse darauf schließen, daß für die Zündgrenze von Ozon in Rohren die Gesetzmäßigkeit $X_{gr} = a + b\frac{\delta}{d}$ mit $a = X_{gr}(d=\infty)$ gegeben ist. Setzt man für die Flammendicke δ die nach Warnatz [42] berechneten und für nichtadiabatische Flammen korrigierten Werte ein (da δ umgekehrt proportional der Flammengeschwindigkeit ist, wird δ adiab. mit dem Quotienten aus adiabatischer und nicht-adiabatischer Flammengeschwindigkeit multiplizert. Letztere ist gleich v₀ von $X_{gr}(d=\infty)$.), so erhält

Abb.4.9 Zündgrenzen für die Ozonexplosion in Rohren

Flammendicke δ / Gefässdurchmesser d

man erwartungsgemäß, wie Abb.4.9 zeigt, für die Zündgrenzen den Zusammenhang

(4.12)
$$X_{gr} = X_{gr}(d=\infty) + b\frac{\delta}{d}$$
,

mit b = $(1.47\pm0.05)\times10^{-2}$ Mol-% für die hier untersuchten Trägergase.

Im System Ozon/Sauerstoff wurde bei dem Druck $p_0 = 1$ bar eine geringere als die durch Gleichung (4.12) gegebene Züngrenze beobachtet (Abb.4.10). Schumacher [25] fand bei hohen Initialdrücken (25 atm – 40 atm) ein Absinken der Zündgrenze zu auffallend geringen Ozonkonzentrationen (7 Mol-%). Für Drücke oberhalb von 1 bar ist das Modell des idealen Gases nicht mehr streng anwendbar, da Kovolumen und Viskosität zunehmend an Bedeutung gewinnen. Damit kann das Modell der adiabatischen, laminaren Flamme, das störungsfreie, viskositätsfreie, ideale Gase annimmt (s.S.18), nicht mehr in seiner ursprünglichen Form auf die Explosion eines Gases in einem geschlossenen Gefäß angewandt werden. Da die Schichten d ξ des Gases nicht mehr frei expandieren können, erfolgt auch zu Beginn des Prozesses (ξ =0) die Verbrennung nicht mehr bei konstantem Druck, sondern führt zu einem Druckanstieg innerhalb der Schicht d ξ . Daher nimmt das Gas bereits bei der Zündung eine höhere Temperatur als die der adiabatischen, laminaren Flamme an. Folglich sinkt die Zündgrenze zu niedrigeren Ozonkonzentrationen ab.

4.1.4. Einfluß WAA-typischer Verunreinigungen

Werden ozonhaltigen Gemischen geringe Konzentrationen an Kohlenmonoxid, Methan oder Stickstoffdioxid zugesetzt, so wird ein Absinken der Zündgrenze sowie ein Anstieg des Explosionsdruckes beobachtet (s.S.76-79, Abb.3.19, 3.20, 3.21).

Wie bereits in Abb.4.9 gezeigt wurde, ist die Zündgrenze umgekehrt proportional der Flammengeschwindigkeit v₀, die durch Lösen der Differentalgleichungen für die adiabatische, eindimensionale, laminare Flamme als Eigenwert des Gleichungssystems erhalten wird (s.Kap.2.3.1.). Der in einer adiabatischen Explosion erreichte Enddruck p_e ist eine Funktion jener Temperatur T_b des verbrannten Gases, die zu Beginn des Prozesses ($\xi = 0$) erreicht wird. Dies ist die Temperatur T_{af} der adiabatischen, laminaren Flamme (s.Kap.2.5.). Sowohl Kohlenmonoxid und Methan als auch das durch Reaktion von Stickstoffdioxid mit Oxon gebildete Distickstoffpentoxid reagieren in der Flamme und bewirken eine gegenüber der reinen Ozon/Inertgas-Flamme veränderte Thermodynamik und Kinetik der chemischen Reaktionen. Folglich wird der Quellenterm $(1/\rho_c_D)\Sigmar_ih_i$ der Energiegleichung (Gl.2.20, S.19) drastisch beeinflußt:

Die Verbrennung von CO zu CO_2 und die von CH_4 zu CO_2 und H_2O sind stark exotherm [131]:

 $CO + \frac{1}{2}O_2 \rightarrow CO_2 \qquad \Delta H = -283.05 \text{kJ/Mol}$ $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O \qquad \Delta H = -802.53 \text{kJ/Mol}$

Entsprechend einer Konzentration von durchschnittlich 1.8 Mol-% Kohlenmonoxid beträgt die hier zusätzlich freigesetzte Energie ca. -5.1 kJ pro Mol Gasgemisch (vgl.: Für eine Ozonkonzentration von 10 Mol-% beträgt die Wärmetönung -14.3 kJ pro Mol Gasgemisch). Dieser zusätzliche Energiebetrag bewirkt einen Anstieg der Flammentemperatur und damit auch der Flammengeschwindigkeit. Folglich müssen die Zündgrenze auf eine geringere Ozonkonzentration absinken und die Explosionstemperatur sowie der Explosionsdruck auf höhere Werte ansteigen. Das Gleiche gilt für den Zusatz von ca. 1 Mol-% Methan. Hier werden ca. -8.0 kJ pro Mol Gasgemisch zusätzlich freigesetzt. Darüber hinaus führt die Reaktion von Ozon mit Methan zu einer Vielzahl von Radikalen und anderen reaktiven Spezies (s.S.11; [70]), die einen rascheren Ozonabbau bewirken. Daher wird neben einem deutlichen Anstieg des Explosionsdruckes ein im Vergleich zur CO-Beimischung weit stärkeres Absinken der Zündgrenze beobachtet.

Stickstoffdioxid reagiert bereits bei Raumtemperatur spontan mit Ozon unter Bildung des in heterogener Reaktion äußerst hydrolyseempfindlichen Distickstoffpentoxids. Die in der Flamme erfolgende Umsetzung von N_2O_5 zu NO_2 ist schwach endotherm [131]:

$$N_2O_5 \rightarrow 2NO_2 + \frac{1}{2}O_2$$
 $\Delta H = 55.1 \text{ kJ/Mol}$

D.h. hier wird die Wärmetönung der Gesamtreaktion entsprechend einer N_2O_5 -Konzentration von max. 0.5 Mol-% um max. 0.3 kJ pro Mol Gasgemisch verringert. Im Gegensatz zu den Systemen Ozon/Inertgas, Ozon/Inertgas/Kohlenmonoxid und Oxon/Inertgas/Methan ist hier nicht die Zersetzung des Ozons

$$O_3 + M \rightarrow O_2 + O + M \tag{1}$$

sondern die Disproportionierung des Distickstoffpentoxids

$$N_2O_5 + M \rightarrow NO_3 + NO_2 + M$$
(13)

geschwindigkeitsbestimmend (s.Kap.2.1.2). Für eine Temperatur von 750 K betragen die Reaktionsgeschwindigkeiten $k_1 = 7.6 \times 10^7 \text{cm}^3 \text{Mol}^{-1} \text{s}^{-1}$ [42] und $k_{13} = 7.8 \times 10^{11} \text{cm}^3 \text{Mol}^{-1} \text{s}^{-1}$ [143]. Sowohl N₂O₅ als auch die hier entstehenden Stickstoffoxide sind äußerst reaktiv und bewirken einen raschen Ozonabbau. Hier beeinflußt allein die Kinetik den Quellenterm der Energiegleichung und bewirkt so einen Anstieg der Flammentemperatur und der Flammengeschwindigkeit. Daher wird bei Stickstoffdioxidzusatz ein, wenn auch geringer, Anstieg des Explosionsdruckes sowie ein drastischer Effekt auf die Zündgrenze beobachet: Die Zündgrenze wird nicht nur zu geringeren Ozonkonzentrationen verschoben, sie ist zudem nicht mehr scharf definiert. Dies erklärt auch die Neigung von Ozon/Inertgas/Stickstoffdioxid-Gemischen zu spontanen Explosionen. Daß hier sowohl das Verschwinden einer scharf ausgeprägten Zündgrenze als auch Spontanexplosionen im Reaktionsgefäß beobachtet wurden, ist ein Indiz dafür, daß die bei der IR-spektroskopischen Untersuchung des Gasgemisches festgestellte Hydrolyse des N₂O₅ zu Salpetersäure nicht im Mischungsgefäß während der Herstellung des Gemisches oder im Reaktionsgefäß sondern erst nach der Probenahme in der Meßzelle erfolgte.

4.2. Ozondetonation

Die in binären Gemischen sowie in Gemischen mit zusätzlichen, geringen Anteilen an Wasser, Kohlenmonoxid, Methan oder Stickstoffdioxid bestimmten Detonationsgeschwindigkeiten wurden mit den entsprechenden Werten der Chapman-Jouguet-Detonation verglichen. Ferner wurden ein möglicher Einfluß des zur Zündung eingesetzten Knallgases auf die Ozondetonation und die Auswirkung von Füllkörperpackungen auf das Fortschreiten von Detonationen diskutiert.

4.2.1. Detonationsgeschwindigkeit

Für die Detonation von gasförmigem Ozon in Gemischen mit Sauerstoff, Argon, Krypton oder Xenon wurden Detonationsgeschwindigkeiten experimentell bestimmt, die gut mit den entsprechenden Chapman-Jouguet-Geschwindigkeiten D_0^{CJ} übereinstimmen, obgleich sie stets geringfügig niedriger sind als diese (s.S.88, Abb.3.23). Die CJ-Theorie beschreibt eine streng planare Detonationswelle, die nur in einem unendlich breiten Rohr realisiert werden kann, denn in jedem endlich breiten Rohr führt die Wechselwirkung des Gases mit der Rohrwand zu einer Krümmung der Wellenfront in Wandnähe und somit zur Verringerung der Detonationsgeschwindigkeit (s.Kap.2.4.3.). Daher werden für das hier eingesetzte Rohr mit einem Durchmesser von 20 mm geringere als die nach der CJ-Theorie berechneten Werte erwartet und beobachtet. Die Abweichung $\Delta D_0 / D_0^{CJ}$ der experimentellen von der CJ-Geschwindigkeit beträgt -1.5 bis -6.5 % und entspricht den von Getzinger et al.[34] bestimmten Werten für Ozon/Sauerstoff-Gemische mit hohen Ozonkonzentrationen (Tab.4.8).

Tab.4.8	Abweichung	der	experimentell	bestimmten	Detonations-
	geschwindig	ceit vo	n der CJ-Geschwi	ndigkeit	

Trägergas	X ₀₃ [%]	D ₀ [m/s]	$D_0^{CJ}[m/s]$	$\Delta D_0 / D_0^{CJ}$	Autor
Argon	13.2	1177 ± 98	1229	-4.2 %	diese Arbeit
	21.3	1333 ± 126	1423	-6.3 %	diese Arbeit
Krypton	21.9	1026 ± 74	1063	-3.5 %	diese Arbeit
Xenon	40.4	1040 ± 78	1090	-4.6 %	diese Arbeit
	51.0	1177 ± 98	1195	-1.5 %	diese Arbeit
Sauerstoff	80	1747	1793	-2.6 %	Getzinger et al.[34]
	85	1766	1812	-2.5 %	Getzinger et al.[34]
	90	1785	1831	-2.5 %	Getzinger et al.[34]
	95	1804	1841	-2.4 %	Getzinger et al.[34]

4.2.2. Einfluß von Knallgas und WAA-typischen Verunreinigungen

In den Versuchen zur Ozondetonation wurden Temperaturen bis zu 3000 K erreicht (s.S.89, Abb.3.24). Dies sind Temperaturen, die eine Reaktion von intermediärem $O({}^{3}P)$ mit in der Apparatur vorhandenen Spuren von Wasser erlauben (s.S.9). Durch die Zündung mit Knallgas werden neben beträchtlichen Mengen Wasser intermediär OH-Radikale gebildet. Treten diese Produkte in das Ozon/Trägergas-Gemisch ein, so ist ein Abbau des Ozons durch Kettenreaktion mit OH und HO₂ als Kettenträger wahrscheinlich.

Es wurde gezeigt, daß die Versuchsergebnisse sehr gut mit dem Modell von Chapman und Jouguet beschrieben werden können. Dieses Modell berücksichtigt nur thermodynamische Daten, jedoch keine kinetische Prozesse. Der genaue Reaktionsmechanismus der Ozonzersetzung ist daher für das Ergebnis (Temperatur und Detonationsgeschwindigkeit) ohne Bedeutung, sofern die Energiebilanz der Gesamtreaktion unverändert bleibt. Für beide Reaktionsmechanismen,

a) die durch OH-Radikale unbeeinflußte Ozonzersetzung

$O_3 + M \rightarrow O_2 + O + M$	$\Delta H_{3000} = 110.47 \text{ kJ/Mol}$	(1)
$O + O + M \rightarrow O_2 + M$	$\Delta H_{3000} = -513.44 \text{ kJ/Mol}$	(4)

b) sowie den Ozonabbau durch Kettenreaktion

$OH + O_3 \rightarrow$	$HO_2 + O_2$	$\Delta H_{3000} = -167.54 \text{ kJ/Mol}$	(7)

 $HO_2 + O_3 \rightarrow OH + 2 O_2 \qquad \Delta H_{3000} = -124.94 \text{ kJ/Mol} (8)$

gilt für die Gesamtreaktion

 $2 O_3 \rightarrow 3 O_2 \qquad \Delta H_{3000} = -146.25 \text{ kJ/Mol} (20)$

Temperatur und Geschwindigkeit der Detonation sind demnach unabhängig von OH-Radikalen.

Nach der ZND-Theorie wird eine Detonation durch Kompression der Gase in einer Schockwelle eingeleitet. Die Breite der Schockwelle beträgt ca. 0.1 µm. Anschließend erfolgt in der Reaktionszone, deren Länge einige mm betragen kann, die chemische Umsetzung der Gase, die schließlich durch die CJ-Ebene in die nicht-stationären Schwaden übertreten (s.2.4.2.). Nach einem Modell von Tsugé läßt sich der Einfluß der Rohrwand, der zur Krümmung der Schockfront und innerhalb der Reaktionszone zur Ausbildung einer Grenzschicht entlang der Wand führt, berechnen (s.2.4.3.). In beiden Modellen wird die Strömung der Gase als laminar vorausgesetzt. Also kann keine Vermischung von verbrannten und unverbrannten Gasen erfolgen. Zieht man jedoch Turbulenz (z.B durch die Membran, Unebenheit der Gefäßwand, Verbindungsstücke) und damit eine solche Vermischung der Gase, hier speziell von Knallgas und Ozon, in Erwägung, so ist die Reaktion

$$H_2 + \frac{1}{2}O_2 \rightarrow H_2O$$
 $\Delta H_{3000} = -241.9 \text{ kJ/Mol}$ (21)

bei der Berechnung von Detonationstemperatur und -geschwindigkeit mit zu berücksichtigen.

Abb.4.11 zeigt die nach der CJ-Theorie berechneten Detonationsgeschwindigkeiten für verschiedene Ozon/Xenon-Gemische bei steigendem Knallgasgehalt. Die maximale Knallgaskonzentration von $X_{2H_{\pm}/O_{a}} = 0.12$ entspricht dabei dem homogenen Gemisch der gesammten zum Zünden des Ozons eingesetzten Knallgasmenge mit dem Ozon/Xenon-Gemisch und ist unter den gewählten Versuchsbedingungen nicht realisierbar. Ferner sind die experimentell bestimmten Detonationsgeschwindigkeiten in Abb.4.11 als schraffierte Zonen, deren Breite der jeweiligen Meßgenauigkeit entspricht, eingezeichnet. Die Berechnungen der Detonationsgeschwindigkeiten zeigen, daß die Detonation von Gemischen geringer Ozonkonzentration ($X_{O_3} = 0.1$) durch Vermischung mit Knallgas

Abb.4.11 Einfluß von Knallgas auf die Detonation von Ozon/Xenon-Gemischen

Detonationsgeschwindigkeit D₀ [m/s]

500

250

0.00

0.02

Molenbruch Knallgas X_{2H2}/0₂

0.06

10% 0

50 % 30 %

10 %

0.04

 D_n^{CJ} berechnet für 0_3 -Konzentrationen

(bezogen auf das reine O₃/Xe-Gemisch):

03

03 03

0.08

0.10

0.12

drastisch, die Detonation von Gemische mit hoher Ozonkonzentration $(X_{O_3} = 0.5)$ dagegen nur schwach beeinflußt werden kann. Der Vergleich der experimentellen Daten für Ozon/Xenon-Detonationen mit den berechneten Kurven zeigt, daß für Gemische mit Ozonkonzentrationen $X_{O_3} \leq 0.3$ keine signifikante Vermischung von Knallgas und Oxon/Xenon auftritt. Für höhere Konzentrationen wird eine solche Vermischung,

würde sie eintreten, die Detonationsgeschwindigkeit nur innerhalb der experimentellen Fehler beeinflussen. Dieses Ergebnis stimmt überein mit den hier diskutierten Modellen, nach denen sich das Gas auch unmittelbar vor der Schockfront in Ruhe befindet und sich die Zustandsgrößen des Gases erst in der Schockwelle (unstetig) ändern, wobei die Bewegung des verdichteten Gases durch die Gleichungen für die laminare Strömung beschrieben wird.

Durch Zusatz von <u>Kohlenmonoxid</u> zu einem Ozon/Xenon-Gemisch wird dessen Detonationsgeschwindigkeit entsprechend der Wärmetönung der Reaktion

$$CO + \frac{1}{2}O_2 \rightarrow CO_2$$
 $\Delta H = -283.05 \text{kJ/Mol}$

erhöht. Vor dem Einleiten der Detonation verringerte sich bereits die CO-Konzentration von 5 Mol-% auf im Mittel 1.4 \pm 1.0 Mol-% (s.S.91, Tab.3.17). Daher beträgt die zu berücksichtigende, zusätzliche Energie -4.2 kJ pro Mol der gesamten Gasmenge (vgl.: für eine Ozonkonzentration von 10 Mol-% beträgt die Wärmetönung -14.3 kJ pro Mol Gasgemisch). Wie die Abb.4.12 verdeutlichen, stimmen mit Ausnahme eines Versuches, in dem eine geringere Detonationsgeschwindigkeit registriert wurde, die Meßwerteinnerhalb der Fehlergrenze mit der für eine CO-Konzentration von 1.5 Mol-% berechneten D₀ vs X₀₃-Kurve überein: In diesem Versuch wurde eine Ozonkonzentration von 5.4 Mol-%, also ein Wert unterhalb der Zündgrenze (s.S.76, Abb.3.19), bestimmt.

Zusatz von <u>Methan</u> zu einem Ozon/Xenon-Gemisch erhöht dessen Detonationsgeschwindigkeit entsprechend der Wärmetönung der Reaktion

$$CH_4 + 1\frac{1}{2}O_2 \rightarrow CO + 2H_2O$$
 $\Delta H = -519.48 \text{kJ/Mol}$,

d.h. bei der hier gewählten Konzentration von 1 Mol-% Methan um einen zusätzlichen Energiebetrag von -5.2 kJ pro Mol Gasgemisch. Für die mit Berücksichtigung dieser Reaktion berechneten Detonationsgeschwindigkeiten wurde eine sehr gute Übereinstimmung mit den experimentellen Werten gefunden. Nimmt man dagegen eine Reaktion

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$
 $\Delta H = -802.53 \text{kJ/Mo1}$

mit hier $\Delta H = -8$ kJ pro Mol Gasgemisch an, so wird, wie in den Abb.4.12 gezeigt wird, eine weniger gute Übereinstimmung von experimentellen und theoretischen Werten beobachtet. Wie bereits in den Arbeiten von Kistiakowsky et al. [106,112] berichtet wurde, führt die Detonation von Kohlenwasserstoff-haltigen Gemischen innerhalb der Detonationswelle nur bis Kohlenmonoxid. Die weitere Oxidation Z11m zum Endprodukt Kohlendioxid erfolgt in den nicht-stationären Schwaden, die mit geringerer Geschwindigkeit fortschreiten, und kann demnach nicht zur Detonationstemperatur und -Geschwindigkeit beitragen [130].

Abb.4.12 Einfluß WAA-typischer Verunreinigungen auf die Detonation von Ozon/Xenon-Gemischen

Zusatz von 1 Mol-% <u>Stickstoffdioxid</u> bewirkt keine meßbare Änderung der Detonationsgeschwindigkeit für Ozon/Xenon-Gemische, da die Wärmetönung für die schwach endotherme Reaktion

$$N_2O_5 \rightarrow 2NO_2 + \frac{1}{2}O_2$$
 $\Delta H = 55.1 \text{ kJ/Mol},$

hier sind entsprechend 0.5 Mol-% N_2O_5 ca. 0.3 kJ pro Mol Gasgemisch zu berücksichtigen, zu keiner signifikanten Änderung der Energiebilanz führt (vgl.: für eine Ozonkonzentration von 10 Mol-% beträgt die Wärmetönung 14.3 kJ pro Mol Gasgemisch).

4.2.3. Detonationen in simulierten Füllkörperkolonnen

Der Einsatz von Füllkörperpackungen, bestehend aus Edelstahlwendeln 3x3 mm, zeigte, daß eine solche Packung unabhängig von ihrer Länge das Fortschreiten von Detonationen verhindert: Detonationen von Ozon/Xenon-Gemischen mit Ozonkonzentrationen bis zu 21.1 Mol-% bei einem Initialdruck von 0.4 bar pflanzen sich nicht durch eine Packung von 100 mm oder 500 mm Länge fort. Für die hier beobachtete Detonationsgrenze ist demnach neben dem Initialdruck nur der Durchmesser der Siebbodenöffnungen (1 mm) und der Metallwendeln (3 mm) verantwortlich, übereinstimmend mit der in Kapitel 2.4.3. formulierten Aussage über die Existenz von Detonationsgrenzen, die durch eine kritische Brennstoffkonzentration, einen kritischen Initialdruck und einen kritischen Durchmesser charakterisiert sind.

Hier ist der Vergleich mit dem Auslöschen von <u>Ozon/Xenon-</u> <u>Flammen</u> von Interesse. Nach den empirische Formeln von Streng und Grosse [96] für das Auslöschen von Ozon/Sauerstoff-Flammen findet man durch Kombination der Gleichungen (2.22) und (2.23)

(2.22)
$$d_o/\mu m = 10^{1.953} X_{O_3}^{-2.118}$$
 für $T_0 = 298$ K und $p = 1$ atm

(2.23)
$$d_o/\mu m = 10^{1.953} (p/atm)^{-1.111}$$
 für $T_o = 298$ K und $X_{O_3} = 1$

für ein Ozon/Sauerstoff-Gemisch mit einer Ozonkonzentration von 21.1 Mol-% und einem Initaldruck von 0.4 bar einen Quenchingdurchmesser von $d_o(O_2) = 6.8$ mm für das Auslöschen der Flamme in einem Rohr. Der Quenchingdurchmesser $d_o(Xe)$ für die entsrechende Ozon/Xenon-Flamme läßt sich mit Hilfe der Näherung

(2.21)
$$d_o \simeq \sqrt{2e\beta b} \delta$$

abschätzten (s.S.29). Ozon/Sauerstoff- und Ozon/Xenon-Flammen unterscheiden sich in der Flammendicke δ und im Zeldovich-Parameter β durch die Flammentemperatur. Mit $\beta = \frac{E}{RT_{af}^2} \times (T_{af}^-T_o)$ erhält man

(4.13)
$$\frac{d_o(Xe)}{d_o(O_2)} \simeq \frac{T_{af}(O_2)}{T_{af}(Xe)} \sqrt{\frac{T_{af}(Xe) - T_o}{T_{af}(O_2) - T_o}} \frac{\delta(Xe)}{\delta(O_2)}$$

Aus den nach Warnatz [42] berechnetem Flammenprofilen (Tab.7.2 und 7.5) erhält man für eine Ozonkonzentration von 21.1 Mol-% und einen Initialdruck von 0.4 bar

(4.14)
$$d_o(Xe) = 0.53 d_o(0_2).$$

Der kritische Durchmesser für das Auslöschen der Ozon/Xenon-Flamme in einem Rohr beträgt somit d $_{0}(Xe) \simeq 3.6$ mm. Dieser Wert entspricht dem Durchmesser des eingesetzten Füllkörper (3 mm). Wie diese Abschätztung zeigt, ist also die Detonationsgrenze, hier ausgedrückt als kritischer Durchmesser, identisch mit der durch den Quenchingdurchmesser für das Auslöschen der Flamme gegebenen Zündgrenze.
5. Zusammenfassung

Da Radiolyse von Sauerstoff bei tiefen Temperaturen das thermodynamisch instabile und daher explosive und detonationsfähige Ozon bildet, sind für die Sicherheitsbetrachtung kerntechnischer Anlagen zur kryogenen Abtrennung des radioaktiven Spaltprodukts Krypton-85 aus dem Auflöserabgas einer WAA umfangreiche Kenntnisse über das Explosions- und Detonationsverhaltens des Ozons erforderlich.

In dieser Arbeit wurden die Ozonexplosion sowie die Ozondetonation experimentell und theoretisch untersucht. Grundlagen der Berechnungen waren Modelle der eindimensionalen, laminaren Flamme, der adiabatischen Explosion und der idealen Detonation. Ergänzend wurden die Kinetik des thermischen Ozonzerfalls, die Zündgrenzen und das Quenching von Flammen, die nicht-ideale Detonation und das Einsetzen von Detonationen diskutiert.

Für die Ozonexplosion wurde als die charakteristische Größe der Explosionsdruck als Funktion von Ozonkonzentration, Trägergas, Intialdruck, Gefäßgeometrie und WAA-typischer Verunreinigungen bestimmt. Die Abhängigkeit der Explosion von Ozonkonzentration und Trägergas wurde durch einfache, thermodynamische Funktionen erklärt. Der hier beobachtete Einfluß von Initialdruck und Geometrie wies auf einen nicht-adiabatischen Prozeß hin, der auf Energieverluste durch Wärmeleitung zurückgeführt werden konnte. Die Erweiterung bestehender Theorien um eine Näherung für den Wärmeverlust führte hier zu einem einfachen Modell, das eine nicht-adiabatische Explosion erstmals quantitativ beschreibt. Die beobachtete Neigung ozonhaltiger Gemische, von einer Explosion in eine Detonation überzugehen, konnte durch das Auftreten von Turbulenzen bereits zu Beginn des Explosionsvorganges verstanden werden. Die Anwendung einer diesbezüglichen Theorie auf die nicht-adiabatische Ozonexplosion lieferte Aussagen für das Einsetzen von Detonationen in sehr guter Übereinstimmung mit den experimentellen Beobachtungen.

Aus den Meßwerten für die Zündgrenzen konnte eine empirische Formel abgeleitet werden, die die Zündgrenze als Funktion von Trägergas, Initialdruck und Gefäßgeometrie beschreibt und eine Bestimmung der Zündtemperatur für Ozon (750±5 K) ermöglichte. Verursacht durch das nicht-ideale Verhalten der Gase, treten jedoch Abweichungen von dieser Systematik bei höheren Initialdrücken auf.

Zündgrenze und Explosionsdruck ozonhaltiger Gemische wurden bereits durch geringe Mengen an Kohlenmonoxid, Methan oder Stickstoffdioxid beeinflußt: a) Kohlenmonoxid und Methan beeinflussen durch ihre stark exotherme Verbrennung die Thermodynamik der Gesamtreaktion und führen zu einem deutlichem Anstieg des Explosionsdruckes; b) Stickstoffoxide und die Reaktionsprodukte des Methan verändern die Kinetik des Ozonzerfalls und bewirken ein deutliches Absinken der Zündgrenze. Stickoxide verursachen eine besonders drastische Änderung des Explosionsverhaltens: Das ozonhaltige Gemisch neigt hier zur Spontanexplosion.

Für Ozon/Dichlordifluormethan-Gemische wurde eine Berechnung des Explosionsdruckes durch die Bildung polymerer Zersetzungsprodukte des CCl_2F_2 in der Flamme verhindert. Aufgrund des experimentellen Befundes, der auffallend hohen Zündgrenze und den niedrigen Explosionsdrücken, und der für die "Edelgaswäsche" reduzierten Wahrscheinlichkeit der radiolytischen Ozonbildung ist dieses Verfahren vom Standpunkt der Ozonproblematik weitaus sicherer als die kryogene Spaltedelgasabtrennung.

Versuche zur Ozondetonation - es wurde als charakteristische Größe die Detonationsgeschwindigkeit in Abhängigkeit von Ozonkonzentration, Initialdruck und WAA-typischen Verunreinigungen bestimmt - ergaben, daß sich die Ozondetonation sehr gut durch die klassische Theorie von Chapman und Jouguet beschreiben läßt. Bedingt durch Wandeffekte waren die Meßwerte allerdings geringfügig niedriger als die theoretischen Ergebnisse, die nur für ideale Detonationen gelten. Die CJ-Theorie liefert somit obere Grenzwerte für die Charakteristika der Ozondetonation und stellt folglich eine geeignete Grundlage für Sicherheitsbetrachtungen dar. Die hier gemessenen Detonationsgrenzen sind eine Funktion der Zündenergie (hier: der einleitenden Schockwelle) und des Rohrdurchmessers: Für Ozon/Xenon-Gemische, gezündet mit ca. 0.4 bar Knallgas in einem 20 mm breiten Rohr, beträgt die Detonationsgrenze ca. 7 Mol-% Ozon und steigt bei Einsatz einer Füllkörperpackung von 3 mm Porengröße auf ca. 21 Mol-% Ozon an. Diese Packung, die mit dem in der kerntechnischen Anlage zur ⁸⁵Krypton-Separierung "KRETA" eingesetzten Typ identisch ist, stellt somit ein wirksames Hindernis für das Fortschreiten von Detonationen dar.

6. Literatur

- [1] E.Henrich, K.Ebert, Proc.18th DOE Nuclear Airborne Waste Management and Air Cleaning Conference, Baltimore, USA, 12-16 August 1984, S.780 (1985).
- [2] E.Henrich, R.v.Ammon, K.Ebert, Proc.18th DOE Nuclear Airborne
 Waste Management and Air Cleaning Conference, Baltimore, USA, 12-16 August 1984, S.1004 (1985).
- [3] Empfehlung der "Strahlenschutzkommission"SSK vom 24.02.83 zur Rückhaltung radioaktiver Stoffe bei einer WAA.
- [4] H.Stockberger, H.Sartorius, A.Sittkus, Z.Naturforschung <u>32a</u>, 1249(1977).
- [5] E.Henrich, R.v.Ammon, E.Hutter, 5.PWA Statusbericht 1984, KfK 3740 ,S.183, (1984).
- [6] E.Henrich, R.v.Ammon, Atomenergie-Kerntechnik <u>46</u>, 81(1985).
- [7] H.Gutowski, E.Schröder, Atomenergie-Kerntechnik <u>33</u>, 277(1979).
- [8] A.W.Boyd, O.A.Miller, E.B.Selkirk, Can.J.Chem. 55, 203(1977).
- [9] D.W.Brown, L.A.Wall, J.Phys.Chem. 65, 915(1961).
- [10] W.Cleuren, J.Ceulemans, P.Huyskens, priv.Mitteilung.
- [11] M.T.Dmitriev, J.Appl.Chem.(USSR) <u>41</u>, 34(1968).
- [12] J.D.Gault, K.W.Logan, H.R.Danner, Nucl.Safety <u>14</u>, 466(1973).
- [13] J.A.Ghormley, C.J.Hochanadel, J.W.Boyle, J.Chem.Phys. <u>50</u>, 419(1969).
- [14] G.R.A.Johnson, J.M.Warman, Disc.Farad.Soc, <u>37</u>, 87(1964).
- [15] J.F.Kircher, J.S.McNulty, J.L.Farling, A.Levy, Radiat.Research 13, 452(1960).
- [16] G.M.Meaburn, D.Penner, J.LeCalve, M.Bourene, J.Phys.Chem.72, 3920(1968).
- [17] S.Y.Psezhetsky, I.Y.Myasnikov, N.A.Buneev, Acad.Sciences USSR, Symp.on Radiat.Chem., S.133(1955).
- [18] J.F.Riley, ORNL-3176, 33(1961); ORNL-3488, 42(1963);

ORNL-3650, 147(1963).

[19]	J.T.Sears,	J.W.Sutherland,	J.Phys.Chem.	72,	1166(1968).
------	------------	-----------------	--------------	-----	-------------

- [20] C.Willis, A.W.Boyd, M.J.Young, D.A.Armstrong, Can.J.Chem.48, 1505(1970).
- [21] C.Willis, A.W.Boyd, M.J.Young, Can.J.Chem. <u>48</u>, 1515(1970).
- [22] A.G.Streng, Explosivstoffe <u>10</u>, 225(1960).
- [23] J.Duhayon, J.P.Goumondy, A.Leudet, J.C.Rousseau,Europ. Patentamt, Nr. 0008 273/B1 (6.8.79).
- [24] C.L.Bendixsen, "1974 Operation of the ICPP Rare Gas Recovery Facility", ICP-1057(1975).
- [25] H.J.Schumacher, An.Asoc.Quim.Argent. <u>41</u>, 230(1953).
- [26] G.A.Cook, E.Spadinger, A.D.Kiffer, C.V.Klumpp, Ind.Eng.Chem. <u>48</u>, 736(1956).
- [27] B.Raffel, J.Warnatz, J.Wofrum, J.Appl.Phys.B <u>37</u>, 189(1985).
- [28] B.Lewis, G.v.Elbe, J.Am.Chem.Soc. <u>55</u>, 511(1933).
- [29] B.Lewis, G.v.Elbe, J.Chem.Phys. <u>2</u>, 283,291,294,665(1934).
- [30] B.Lewis, G.v.Elbe, J.Chem.Phys. <u>3</u>, 63(1935); J.Am.Chem.Soc. <u>57</u>, 1399(1935).
- [31] A.G.Streng, C.S.Stokes, L.A.Streng, J.Chem.Phys. <u>29</u>, 458(1958).
- [32] R.O.Miller, J.Phys.Chem. <u>63</u>, 1054(1959).
- [33] S.A.Harper, W.E.Gordon, Advan.Chem.Ser. <u>21</u>, 28(1959).
- [34] R.W.Getzinger, J.R.Bowen, A.K.Oppenheim, M.Boudart, 10th Symp.(Internatl.) on Comb., Combustion Institute, Pittsburgh, Penn., 779 (1965).
- [35] V.V.Yastrebov, N.I.Kobozev, Russ.J.Phys.Chem. <u>33</u>, 118(1959).
- [36] S.W.Benson, "The Foundations of Chemical Kinetics", McGraw-Hill Book Company, Inc., New York, 400ff, (1960).
- [37] S.W.Benson, A.E.Axworthy, J.Chem.Phys. <u>26</u>, 1718(1957);
 42, 2614(1965).
- [38] W.M.Jones, N.Davidson, J.Am.Chem.Soc. <u>84</u>, 2868(1962).
- [39] J.V.Michael, J.Chem.Phys. <u>54</u>, 4450(1971).
- [40] K.L.Wray, J.Chem.Phys. <u>38</u>, 1518(1963).
- [41] R.E.Center, R.T.V.Kung, J.Chem.Phys. 62, 801(1975).
- [42] J.Warnatz, Ber.Bunsenges.Phys.Chem. <u>82</u>, 192(1978).

- [43] J.H.Kiefer, R.W.Lutz, J.Chem.Phys. <u>42</u>, 1705(1965).
- [44] G.v.Elbe, B.Lewis, J.Am.Chem.Soc. <u>55</u>, 507(1933).
- [45] R.E.Duff, Phys.Fluids <u>1</u>, 242(1958).
- [46] S.R.Byron, J.Chem.Phys. <u>30</u>, 1380(1959).
- [47] D.L.Matthews, Phys.Fluids <u>2</u>, 170(1959).
- [48] M.Camac, A.Vaughan, J.Chem.Phys. <u>34</u>, 460(1961).
- [49] O.L.Anderson, United Aircraft Corporation, Research Laboratories, Rept. R-1822-1 August (1961).
- [50] W.S.Watt, A.L.Myerson, J.Chem.Phys. <u>51</u>, 1638(1969).
- [51] M.Billiotte, H.Guenoche, C.Sedes, Entropie <u>38</u>, 5(1971).
- [52] W.D.Breashears, P.F.Bird, J.Chem.Phys. <u>55</u>, 4017(1971).
- [53] F.Kaufman, Progress in Reaction Kinetics 1, 3(1961).
- [54] F.Kaufman, J.R.Kelso, J.Chem.Phys. <u>40</u>, 1162(1964);
 Disc.Farad.Soc. <u>37</u>, 26(1964).
- [55] J.W.Linnett, D.G.M.Marsden, Proc.Roy.Soc.(London) A234, 489(1956).
- [56] W.B.DeMore, O.F.Raper, J.Chem.Phys. <u>44</u>, 1780(1966).
- [57] D.M.Scott, R.J.Cvetanovic, J.Chem.Phys. <u>54</u>, 1449(1971).
- [58] D.L.Baulch, D.D.Drysale, J.Duxbury, S.J.Grant, "Evaluated Data for High Temperature Reactions", Vol.3, Butterworth, London (1976).
- [59] W.D.McGrath, R.G.W.Norrish, Nature <u>182</u>, 235(1958); Proc.Roy. Soc.(London) A254, 317(1960).
- [60] P.H.Frank, Th.Just, Ber.Bunsenges.Phys.Chem. <u>89</u>, 181(1985).
- [61] P.Harteck, S.Dondes, J.Chem.Phys. <u>26</u>, 1734(1957).
- [62] L.M.Arin, P.Warneck, J.Phys.Chem. <u>76</u>, 1514(1972).
- [63] D.Garvin, J.Am.Chem.Soc. <u>76</u>, 1523(1954).
- [64] J.W.Birks, B.Shoemaker, T.J.Beck, D.M.W, Hinton, J.Chem. Phys.
 65, 5181(1976).
- [65] R.A.Graham, H.S.Johnston, J.Chem.Phys. <u>60</u>, 4628(1974).
- [66] R.E.Nightingale, A.R.Downie, D.L.Rotenberg, B.Crawford, R.A.Ogg, J.Phys.Chem. <u>58</u>, 1047(1954).
- [67] C.H.Wu, E.D.Morris, H.Niki, J.Phys.Chem. <u>77</u>, 2507(1973).
- [68] R.A.Graham, H.S.Johnston, J.Phys.Chem. <u>82</u>, 254(1978).
- [69] C.C.Kirscher, J.J.Margitan, S.P.Sander,

J.Phys.Chem. <u>88</u>, 4370(1984).

[70] G.Rotzoll, J.Phys.Chem. <u>90</u>, 677(1986).

[71] E.Mallard, H.Chatelier, Compt.rend. <u>93</u>, 145(1881).

[72] E.Mallard, H.Chatelier, Ann.mines <u>4</u>, 274, 379(1883).

[73] R.Becker, Z.Physik <u>8</u>, 23(1922).

[74] R.G.Kirkwood, W.W.Wood, J.Chem.Phys. <u>22</u>, 1915(1954).

[75] F.A.Williams, "Combustion Theory", Chapt.2.Cummings Publishing Company, Inc., Menlo Park, Calif.(1985).

[76] Hugoniot, J.de l'ecole polytechn. 57, 3(1887); 58, 1(1889).

[77] W.Döring, Ann.Physik <u>43</u>, 421(1943).

[78] E.Jouguet, J.math. <u>1</u>, 345(1905); <u>2</u>, 5(1906).

- [79] A.G.Streng, A.V.Grosse, J.Am.Chem.Soc. <u>79</u>, 1517(1957);
 6th Symp.(Internatl.) on Combustion, Reinhold Publ. Corp., New York, 264 (1957).
- [80] B.Lewis, G.v.Elbe, J.Chem.Phys. <u>2</u>, 537(1934); Chem.Revs. 21, 347(1937).
- [81] H.O.Hirschfelder, C.F.Curtiss, D.E.Campbell, J.Phys.Chem. <u>57</u>,403(1957).

[82] R.Sandri, Can.J.Chem. <u>34</u>, 313, 324(1956); <u>35</u>, 474(1957).

[83] E.S.Campbell, Chem.Engeneer.Sci. <u>20</u>, 311(1965).

[84] F.Cramarossa, G.Dixon-Lewis, Combust.Flame <u>16</u>, 243(1971).

[85] K.A.Wilde, ibid. 18, 43(1972).

[86] L.Bledjian, ibid. <u>20</u>, 5(1973).

[87] S.B.Margolis, J.Computat.Phys. <u>27</u>, 410(1978).

[88] J.M.Heimerl, T.P.Coffee, Combust.Flame <u>39</u>, 301(1980).

[89] B.Rogg, I.S.Wichman, ibid. <u>62</u>, 271(1985).

[90] F.A.William, "Combustion Theory", (s.[75]), Chapt.5.

[91] D.R.Stull, H.Prophet, "JANAF Thermochemical Tables", 2nd Ed., Nat.Stand.Ref.Data Ser., Nat.Bur.Stand.(U.S.), 37 (1971).

- [92] J.Hilsenrath, et al., "Tables of Thermodynamic and Transport Properties", Pergamon Press, New York (1960).
- [93] N.B.Vargaftik, "Tables on the Thermophysical Properties of Liquids and Gases in Normal and Dissociated States", 2nd Ed.,

- [94] L.A.Loavachev, V.S.Babkin, V.A.Bunev, A.V.V'Yun, V.N.Krivulin,A.N.Baratov, Combust.Flame 20, 259(1973).
- [95] F.A.William, "Combustion Theory", (s.[75]), Chapt.8.
- [96] A.G.Streng, A.V.Grosse, Combust.Flame <u>5</u>, 81(1961).
- [97] S.W.Benson, "The Foundations of Chemical Kinetics", (s.[75]), 463f,471ff.
- [98] G.B.Kistiakowsky, Industr.Engeneer.Chem. <u>43</u>, 2794(1951).
- [99] D.L.Chapman, Phil.Mag. <u>47</u>, 90(1899).
- [100] Y.B.Zeldovich, J.Exptl.Theoret.Phys.(USSR) <u>10</u>, 542(1940).
- [101] J.v.Neumann, "Theory of Stationary Detonation Waves", OSRD Rept.549(1942).
- [102] Th.Just, H.G.Wagner, Z.Elektrochem. <u>64</u>, 501(1960).
- [103] J.G.Kirkwood, W.W.Wood, J.Chem.Phys. <u>22</u>, 1915(1954).
- [104] H.M.Peek, Z.W.Salzburg, J.Chem.Phys. <u>20</u>, 763(1952).
- [105] G.B.Kistiakowsky, P.H.Kydd, J.Chem.Phys. <u>22</u>, 1940(1954).
- [106] G.B.Kistiakowsky, P.H.Kydd, J.Chem.Phys. <u>23</u>,271(1955); 25, 824(1956).
- [107] R.E.Duff, H.T.Knight, J.P.Rink, Phys.Fluids 1, 393(1958).
- [108] W.Pusch, H.G.Wagner, Ber.Bunsenges.Phys.Chem. <u>69</u>, 503(1965).
- [109] T.Fujiwara, J.Phys.Soc.Japan, <u>28</u>, 1350(1970).
- [110] B.Lewis, J.B.Friauf, J.am.chem.Soc. <u>52</u>, 3905(1930).
- [111] G.B.Kistiakowsky, H.T.Knight, M.E.Malin, J.Am.Chem.Soc. <u>73</u>, 2972(1951).
- [112] G.B.Kistiakowsky, H.T.Knight, M.E.Malin, J.Chem.Phys. 22, 876,884(1954).
- [113] R.E.Duff, H.T.Knight, H.R.Wright, J.Chem.Phys. <u>22</u>, 1617(1954).
- [114] H.M.Peek, R.G.Thrap, J.Chem.Phys. <u>26</u>, 740(1957).
- [115] G.B.Kistiakowsky, W.G.Zinman, J.Chem.Phys. <u>23</u>, 1889(1955).
- [116] W.W.Wood, J.G.Kirkwood, J.Chem.Phys. <u>25</u>, 1276(1956).
- [117] R.E.Duff, J.Chem.Phys. <u>28</u>, 1193(1958).
- [118] S.Tsugé, Combust.Sci.Technol. <u>3</u>, 195(1971).
- [119] W.A.Bone, R.F.Fraser, W.H.Wheeler, Phil.Trans.Roy.Soc.(London)

<u>A235</u>, 29(1935).

- [120] A.J.Mooradian, W.E.Gordon, J.Chem.Phys. <u>19</u>, 1166(1951).
- [121] C.Campbell, D.W.Woodhead, J.Chem.Soc. <u>129</u>, 3010(1926); 130, 1572(1927).
- [122] C.Campbell, A.C.Finch, J.Chem.Soc. <u>1928</u>, 2094.
- [123] W.A.Bone, R.P.Fraser, Phil.Trans.Roy.Soc.(london), A228, 197(1929); A230, 371(1932).
- [124] G.B.Kistiakowsky, H.T.Knight, M.E.Malin, J.Chem.Phys. 22, 994(1954).
- [125] R.E.Duff, H.T.Knight, J.Chem.Phys. <u>20</u>, 1493(1952).
- [126] W.E.Gordon, A.J.Mooradian, A.S.Harper, 7th Symp.(Inernat1.) on Comb., Butterworth, London, 758 (1959).
- [127] J.A.Fay, J.Chem.Phys. <u>20</u>, 942(1952).
- [128] Lord Rayleigh, "Theory of Sound", Dover Publications, New York(1945).
- [129] J.H.S.Lee, Ann.Rev.Phys.Chem. <u>28</u>, 75(1977).
- [130] D.J.Berets, E.F.Greene, G.B.Kistiakowsky, J.Am.Chem.Soc. 72, 1080,1086(1950).
- [131] Handbook of Chemistry and Physics, 64th Ed., CRC-Press, 1983/84
- [132] F.A.Williams, "Combustion Theory", 2.Aufl., (s.[75]), S.576.
- [133] W.Jost, "Verbrennungsvorgänge in Gasen", Springer Verl., Berlin, 1919, S.147ff.
- H.Horvath, L.Bilitzky, J.Hüttner, "Ozone", R.J.H.Clark(Hsg.),
 Topics in Inorganic and General Chemistry, Monograph 20, Elsevier,
 Amsterdam, S.24f, (1985).
- [135] A.L.Horvath, "Physical Properties of Inorganic Compounds", Edward Arnold Publ.Ltd., London, S.282, (1985).
- [136] W.v.Siemens, Poggendorf Ann. <u>102</u>, 120(1857).
- [137] M.Berthelot, Ann.chim.Phys. <u>10</u>, 165(1877).
- [138] M.Griggs, J.Chem.Phys. <u>49</u>, 857(1968).
- [139] S.E.Novick, B.J.Howard, W.Klemperer, J.Chem. Phys. <u>57</u>, 561(1972).
- [140] G.Herzberg, "Infrared and Raman Spectra", D.van Nostrand Comp., Inc., Princeton, New Jersey, S.184,284, (1960).
- [141] G.Herzberg," Infrared and Raman Spectra", (s.[140]), S.286.
- [142] M.K.Wilson, R.M.Badger, J.Chem.Phys. 16, 741(1948).
- [143] G.E.McGraw, D.L.Bernitt, I.C.Hisatsune, J.Chem.Phys. <u>42</u>, 237(1965).

7. Anhang

7.1 Laminare Flammen verschiedener Ozon/Trägergas-Gemische

X ₀₃ [%]	p ₀ [bar]	c] δ[cm]		v ₀ [cm/s]	
5	0.45	50.8	518	0.1	
6	0.45	24.0	558	0.3	
7	0.45	12.5	598	0.6	
10	0.05	22.6	719	3.0	
10	0.1	11.6	719	2.9	
10	0.2	5.89	719	2.9	
10	0.45	2.72	719	2.8	
10	1.0	1.32	719	2.7	
15	0.05	5.75	906	12.8	
15	0.1	2.92	906	12.8	
15	0.2	1.47	907	12.8	
15	0.45	0.657	908	12.7	
15	1.0	0.304	908	12.5	
20	0.05	2.58	1069	31.8	
20	0.1	1.31	1070	31.8	
20	0.2	0.657	1071	31.7	
20	0.45	0.293	1074	31.6	
20	1.0	0.133	1077	31.4	
25	0.05	1.56	1215	58.4	
25	0.1	0.790	1216	58.3	
25	0.2	0.395	1217	58.4	
25	0.45	0.175	1220	58.1	
25	1.0	0.080	1224	57.9	
40	0.05	0.740	1568	159.4	
40	0.1	0.370	1569	159.4	
40	0.2	0.185	1571	159.3	
40	0.45	0.082	1575	159.5	
40	1.0	0.037	1577	159.3	
50	0.45	0.075	1778	235.2	
60	0.45	0.066	1949	303,5	
75	0.45	0.060	2156	379.3	
100	0.45	0.054	2451	483.5	

Tab.7.1 Ozon/Sauerstoff-Flammen

X ₀₃ [%]	p ₀ [bar]	δ[cm]	T[K]	V ₀ [cm/s]
5	1.0	4.06	619	0.7
10	0.05	7.09	898	9.9
10	0.1	3.59	898	9.9
10	0.2	1.80	899	9.9
10	0.45	0.80	89 9	9.9
10	1.0	0.362	900	9.9
15	0.05	2.47	1127	33.7
15	0.1	1.25	1127	33.7
15	0.2	0.625	1128	33.7
15	0.45	0.278	1129	33.7
15	1.0	0.125	1131	33.6
20	0.05	1.42	1314	67.8
20	0.1	0.714	1314	67.8
20	0.2	0.357	1314	67.8
20	0.45	0.159	1315	67.8
20	1.0	0.072	1317	67.7
25	0.05	1.01	1468	106.3
25	0.1	0.511	1468	106.2
25	0.2	0.256	1468	106.2
25	0.45	0.113	1469	106.2
25	1.0	0.051	1471	106.1
40	0.45	0.070	1811	218.8
40	1.0	0.032	1812	218.7
60	0.45	0.065	2105	331.2
75	0.45	0.060	2259	389.2
100	0.45	0.054	2451	483.5

Tab.7.2 Ozon/Argon-Flammen

X ₀₃ [%]	p₀[bar]	δ[cm]	T[K]	$v_0 [cm/s]$
10	0 45	2 15	739	3 4
15	0.45	0.570	932	14.5
20	0.45	0.264	1100	34.9
25	0.45	0.162	1246	62.8
40	0.45	0.091	1614	170.8
50	0.45	0.078	1792	233.1
60	0.45	0.068	1953	293.1
75	0.45	0.060	2162	371.0
100	0.45	0.054	2451	483.5

Tab.7.4	Ozon/Krypton-Flammen

X ₀₃ [%]	p₀[bar]	δ[cm]	T[K]	v _o [cm/s]
10	0.45	0.815	901	7.1
15	0.45	0.278	1131	25.4
20	0.45	0.156	1318	53.1
25	0.45	0.111	1473	85.7
40	0.45	0.070	1815	185.7
60	0.45	0.057	2109	299.6
75	0.45	0.059	2266	371.9
100	0.45	0.054	2451	483.5

Tab.7.5 Ozon/Xenon-Flammen

X ₀₃ [%]	p ₀ [bar]	δ[cm]	T[K]	v ₀ [cm/s]
10	0.45	0.836	901	5.5
15	0.45	0.273	1132	20.7
20	0.45	0.151	1319	44.8
25	0.45	0.107	1474	73.9
40	0.45	0.068	1818	166.1
60	0.45	0.057	2110	274.0
75	0.45	0.059	2285	354.4
100	0.45	0.054	2451	483.5

7.2 Chapman-Jouguet-Detonation verschiederner Ozon/Trägergas-Gemische

Tab.7.6 Ozon/Sauerstoff-Detonation

X ₀₃ [%]	T _{CJ} [K]	p _{CJ} /p _o	D _o ^{CJ} [m/s]	X ₀₃ [%]	T _{CJ} [K]	^p CJ ^{∕p} ₀	D _o CJ[m/s]
1	406	1.81	507	26	1781	11.49	1320
2	485	2.33	590	27	1825	11.83	1337
3	558	2.79	654	28	1867	12.18	1355
4	627	3.24	711	29	1910	12.53	1371
5	694	3.67	759	30	1951	12.88	1387
6	757	4.09	804	31	1992	13.21	1403
7	819	4.49	843	32	2032	13.55	1418
8	879	4.89	880	33	2071	13.89	1433
9	937	5.28	915	34	2110	14.22	1447
10	994	5.67	949	35	2148	14.55	1461
11	1049	6.06	980	36	2186	14.89	1475
12	1103	6.43	1009	37	2222	15.21	1487
13	1157	6.81	1037	38	2258	15.53	1500
14	1210	7.18	1064	39	2293	15.85	1512
15	1261	7.55	1090	40	2327	16.16	1524
16	1312	7.91	1114	41	2360	16.48	1536
17	1362	8.27	1138	42	2392	16.78	1547
18	1412	8.64	1161	43	2424	17.09	1558
19	1460	9.00	1183	44	2455	17.38	1569
20	1508	9.36	1204	45	2485	17.68	1579
21	1555	9.71	1225	46	2513	17.98	1589
22	1602	10.07	1245	47	2541	18.26	1598
23	1647	10.43	1265	48	256 9	18.53	1607
24	1693	10.77	1283	49	2595	18.80	1615
25	1737	11.14	1303	50	2621	19.08	1624

X ₀₃ [%]	T _{CJ} [K]	p _{CJ} /p _o	D _o ^{CJ} [m/s]	X ₀₃ [%]	T _{CJ} [K]	p _{CJ} /p _o	D _o ^{CJ} [m/s]
51	2646	19.36	1633	76	3087	25.03	1772
52	2670	19.62	1640	77	3103	25.25	1776
53	2694	19.88	1648	78	3114	25.46	1780
54	2717	20.13	1655	79	3127	25.66	1784
55	2739	20.38	1662	80	3139	25.85	1787
56	2759	20.64	1670	81	3151	26.04	1791
57	2780	20.88	1676	82	3162	26.24	1794
58	2800	21.12	1682	83	3175	26.42	1798
59	2820	21.36	1689	84	3185	26.62	1801
60	2840	21.58	1694	85	3197	26.80	1804
61	2857	21.83	1701	86	3205	27.00	1808
62	2876	22.06	1706	87	3216	27.18	1811
63	2894	22.27	1712	88	3226	27.36	1814
64	2911	22.50	1717	89	3236	27.54	1817
65	2927	22.71	1722	90	3248	27.71	1819
66	2943	22.93	1727	91	3256	27.89	1822
67	2958	23.15	1732	92	3264	28.08	1825
68	2974	23.35	1737	93	3275	28.25	1828
69	2987	23.57	1742	94	3282	28.43	1831
70	3002	23.77	1746	95	3292	28.60	1833
71	3018	23.98	1750	96	3301	28.77	1835
72	3032	24.20	1755	97	3307	28.96	1838
73	3047	24.41	1759	98	3316	29.13	1841
74	3061	24.62	1764	99	3324	29.30	1843
75	3075	24.82	1768	100	3331	29.48	1845

Tab.7.6 Ozon/Sauerstoff-Detonation (Forts.)

Tab.7.7 Ozon/Helium-Detonation

X ₀₃ [%]	T _{CJ} [K]	p _{CJ} /p _o	D _o ^{CJ} [m/s]	X ₀₃ [%]	T _{CJ} [K]	p _{CJ} /p _o	D _o CJ[m/s]
1	490	2.19	1646	26	2531	15.36	2474
2	632	2.99	1885	27	2569	15.70	2464
3	765	3.75	2049	28	2606	16.02	2453
4	890	4.46	2163	29	2640	16.33	2442
5	1009	5.14	2250	30	2673	16.63	2431
6	1121	5.81	2319	31	2703	16.91	2419
7	1228	6.44	2370	32	2731	17.20	2408
8	1330	7.06	2411	33	2758	17.47	2396
9	1427	7.66	2443	34	2784	17.72	2383
10	1520	8.23	2467	35	2807	17.98	2371
11	1608	8.78	2486	36	2829	18.24	2360
12	1693	9.32	2500	37	2851	18.47	2347
13	1773	9.85	2512	38	2872	18.71	2335
14	1850	10.35	2519	39	2890	18.94	2323
15	1924	10.85	2524	40	2908	19.17	2311
16	1994	11.33	2526	41	2926	19.38	2299
17	2061	11.79	2526	42	2942	19.59	2287
18	2125	12.24	2525	43	2957	19.81	2276
19	2185	12.68	2523	44	2972	20.01	2264
20	2243	13.11	2519	45	2985	20.22	2253
21	2298	13.51	2514	46	2997	20.42	2242
22	2350	13.91	2507	47	3012	20.61	2230
23	2399	14.29	2500	48	3024	20.82	2220
24	2445	15.67	2492	49	3037	21.02	2209
25	2489	15.03	2484	50	304 9	21.21	2199

X ₀₃ [%]	T _{CJ} [K]	p _{CJ} /p _o	D _o ^{CJ} [m/s]	X ₀₃ [%]	T _{CJ} [K]	p _{CJ} /p _o	D _o CJ[m/s]
51	3060	21.41	2189	76	3244	25.71	1981
52	3071	21.59	2179	77	3247	25.88	1974
53	3082	21.78	2169	78	3253	26.04	1968
54	3092	21.96	2159	79	3258	26.19	1961
55	3102	22.16	2149	80	3263	26.35	1954
56	3111	22.35	2140	81	3268	26.50	1948
57	3121	22.52	2131	82	3271	26.67	1942
58	3128	22.71	2122	83	3274	26.83	1936
59	3137	22.88	2113	84	3278	26.99	1930
60	3145	23.06	2104	85	3281	27.15	1924
61	3152	23.23	2096	86	3285	27.30	1919
62	3159	23.41	2087	87	3291	27.45	1912
63	3168	23.57	2078	88	3295	27.60	1907
64	3174	23.75	2070	89	3298	27.76	1901
65	3181	23.91	2062	90	3300	27.92	1896
66	3189	24.08	2054	91	3306	28.07	1890
67	3193	24.25	2047	92	3309	28.23	1885
68	3199	24.42	2039	93	3311	28.39	1880
69	3205	24.59	2031	94	3316	28.53	1874
70	3213	24.74	2023	95	3318	28.69	1870
71	3218	24.90	2016	96	3320	28.86	1865
72	3223	25.07	2009	97	3324	29.00	1860
73	3228	25.24	2002	98	3326	29.17	1855
74	3234	25.39	1994	99	3330	29.31	1850
75	3238	25.56	1988	100	3331	29.48	1845

Tab.7.7 Ozon/Helium-Detonation (Forts.)

Tab.7.8 Ozon/Argon-Detonation

X ₀₃ [%]	T _{CJ} [K]	^p CJ ^{∕p} ₀	D _o ^{CJ} [m/s]	X ₀ [%]	T _{CJ} [K]	p _{CJ} /p _o	D _o CJ[m/s]
1	490	2.19	548	26	2531	15.36	1499
2	632	2.99	657	27	2569	15.70	1513
3	765	3.75	745	28	2606	16.02	1526
4	890	4.46	818	29	2640	16.33	1538
5	1009	5.14	882	30	2673	16.63	1549
6	1121	5.81	940	31	2703	16.91	1560
7	1228	6.44	991	32	2731	17.20	1570
8	1330	7.06	1038	33	2758	17.47	1579
9	1427	7.66	1081	34	2784	17.72	1588
10	1520	8.23	1120	35	2807	17.98	1597
11	1608	8.78	1157	36	2829	18.24	1606
12	1693	9.32	1191	37	2851	18.47	1613
13	1773	9.85	1223	38	2872	18.71	1621
14	1850	10.35	1253	39	2890	18.94	1628
15	1924	10.85	1281	40	2908	19.17	1635
16	1994	11.33	1307	41	2926	19.38	1641
17	2061	11.79	1331	42	2942	19.59	1647
18	2125	12.24	1355	43	2957	19.81	1654
19	2185	12.68	1377	44	2972	20.01	1659
20	2243	13.11	1398	45	2985	20.22	1665
21	2298	13.51	1417	46	2997	20.42	1670
22	2350	13.91	1436	47	3012	20.61	1675
23	2399	14.29	1453	48	3024	20.82	1681
24	2445	15.67	1470	49	3037	21.02	1686
25	2489	15.03	1485	50	3049	21.21	1691

X ₀₃ [%]	T _{CJ} [K]	^p CJ ^{∕p} ₀	D _o ^{CJ} [m/s]	X ₀₃ [%]	T _{CJ} [K]	p _{CJ} /p _o	D _o CJ[m/s]
51	3060	21.41	1696	76	3244	25,71	1786
52	3071	21.59	1700	77	3247	25.88	1789
53	3082	21.78	1705	78	3253	26.04	1791
54	3092	21.96	1709	79	3258	26.19	1794
55	3102	22.16	1713	80	3263	26.35	1797
56	3111	22.35	1718	81	3268	26.50	1799
57	3121	22.52	1722	82	3271	26.67	1802
58	3128	22.71	1726	83	3274	26.83	1805
59	3137	22.88	1730	84	3278	26.99	1807
60	3145	23.06	1734	85	3281	27.15	1810
61	3152	23.23	1738	86	3285	27.30	1813
62	3159	23.41	174 1	87	3291	27.45	1815
63	3168	23.57	1745	88	3295	27.60	1817
64	3174	23.75	1748	89	3298	27.76	1820
65	3181	23.91	1752	90	3300	27.92	1822
66	3189	24.08	1755	91	3306	28.07	1824
67	3193	24.25	1759	92	3309	28.23	1827
68	3199	24.42	1762	93	3311	28.39	1829
69	3205	24.59	1765	94	3316	28.53	1831
70	3213	24.74	1768	95	3318	28.69	1834
71	3218	24.90	1771	96	3320	28.86	1837
72	3223	25.07	1774	97	3324	29.00	1838
73	3228	25.24	1777	98	3326	29.17	1841
74	3234	25.39	1780	99	3330	29.31	1843
75	3238	25.56	1783	100	3331	29.48	1845

Tab.7.8 Ozon/Argon-Detonation (Forts.)

Tab.7.9 Ozon/Krypton-Detonation

X ₀₃ [%]	T _{CJ} [K]	p _{CJ} /p _o	D _o CJ[m/s]	X ₀₃ [%]	T _{CJ} [K]	p _{CJ} /p _o	D _o ^{CJ} [m/s]
1	490	2.19	380	26	2531	15.36	1126
2	632	2.99	457	27	2569	15.70	1140
3	765	3.75	519	28	2606	16.02	1154
4	890	4.46	572	29	2640	16.33	1167
5	1009	5.14	619	30	2673	16.63	1179
6	1121	5.81	661	31	2703	16.91	1192
7	1228	6.44	699	32	2731	17.20	1204
8	1330	7.06	735	33	2758	17.47	1215
9	1427	7.66	768	34	2784	17.72	1226
10	1520	8.23	798	35	2807	17.98	1237
11	1608	8.78	827	36	2829	18.24	1248
12	1693	9.32	854	37	2851	18.47	1258
13	1773	9.85	880	38	2872	18.71	1268
14	1850	10.35	904	39	2890	18.94	1279
15	1924	10.85	928	40	2908	19.17	1289
16	1994	11.33	950	41	2926	19.38	1298
17	2061	11.79	971	42	2942	19.59	1308
18	2125	12.24	991	43	2957	19.81	1317
19	2185	12.68	1011	44	2972	20.01	1326
20	2243	13.11	1030	45	2985	20.22	1336
21	2298	13.51	1047	46	2997	20.42	1345
22	2350	13.91	1064	47	3012	20.61	1354
23	2399	14.29	1080	48	3024	20.82	1363
24	2445	15.67	1097	49	3037	21.02	1372
25	2489	15.03	1112	50	3049	21.21	1381

X ₀₃ [%]	T _{CJ} [K]	^p CJ ^{∕p} ₀	D ₀ CJ[m/s]	X ₀₃ [%]	T _{CJ} [K]	p _{CJ} /p _o	D _o CJ[m/s]
51	3060	21.41	1391	76	3244	25.71	1611
52	3071	21.59	1399	77	3247	25.88	1620
53	3082	21.78	1408	78	3253	26.04	1629
54	3092	21.96	1417	79	3258	26.19	1638
55	3102	22.16	1426	80	3263	26.35	1648
56	3111	22.35	1435	81	3268	26.50	1657
57	3121	22.52	1443	82	3271	26.67	1667
58	3128	22.71	1452	83	3274	26.83	1676
59	3137	22.88	1461	84	3278	26.99	1685
60	3145	23.06	1470	85	3281	27.15	1695
61	3152	23.23	1478	86	3285	27.30	1704
62	3159	23.41	1487	87	3291	27.45	1714
63	3168	23.57	1496	88	3295	27.60	1723
64	3174	23.75	1505	89	3298	27.76	1733
65	3181	23.91	1513	90	3300	27.92	1743
66	3189	24.08	1522	91	3306	28.07	1753
67	3193	24.25	1531	92	3309	28.23	1763
68	3199	24.42	1540	93	3311	28.39	1773
69	3205	24.59	1549	94	3316	28.53	1783
70	3213	24.74	1557	95	3318	28.69	1793
71	3218	24.90	1566	96	3320	28.86	1804
72	3223	25.07	1575	97	3324	29.00	1814
73	3228	25.24	1584	98	3326	29.17	1824
74	3234	25.39	1593	99	3330	29.31	1835
75	3238	25.56	1602	100	3331	29.48	1845

Tab.7.9 Ozon/Krypton-Detonation (Forts.)

Tab.7.10 Ozon/Xenon-Detonation

X ₀₃ [%]	T _{CJ} [K]	p _{CJ} /p _o	D _o CJ[m/s]	X ₀₃ [%]	T _{CJ} [K]	p _{CJ} /p _o	D _o ^{CJ} [m/s]
1	490	2.19	304	26	2531	15.36	929
2	632	2.99	357	27	2569	15.70	942
3	765	3.75	417	28	2606	16.02	954
4	890	4.46	459	29	2640	16.33	967
5	1009	5.14	497	30	2673	16.63	978
6	1121	5.81	532	31	2703	16.91	990
7	1228	6.44	563	32	2731	17.20	1002
8	1330	7.06	593	33	2758	17.47	1013
9	1427	7.66	620	34	2784	17.72	1023
10	1520	8.23	645	35	2807	17.98	1034
11	1608	8.78	669	36	2829	18.24	1045
12	1693	9.32	692	37	2851	18.47	1055
13	1773	9.85	714	38	2872	18.71	1065
14	1850	10.35	734	39	2890	18.94	1076
15	1924	10.85	754	40	2908	19.17	1086
16	1994	11.33	773	41	2926	19.38	1096
17	2061	11.79	791	42	2942	19.59	1106
18	2125	12.24	809	43	2957	19.81	1116
19	2185	12.68	826	44	2972	20.01	1125
20	2243	13.11	842	45	2985	20.22	1135
21	2298	13.51	858	46	2997	20.42	1145
22	2350	13.91	873	47	3012	20.61	1155
23	2399	14.29	888	48	3024	20.82	1165
24	2445	15.67	902	49	3037	21.02	1175
25	2489	15.03	916	50	3049	21.21	1185

X ₀₃ [%]	T _{CJ} [K]	^p CJ ^{∕p} ₀	D _o ^{CJ} [m/s]	X ₀₃ [%]	T _{CJ} [K]	^p CJ ^{∕p} ₀	D _o ^{CJ} [m/s]
51	3060	21.41	1195	76	3244	25.71	1470
52	3071	21.59	1205	77	3247	25.88	1483
53	3082	21.78	1215	78	3253	26.04	1496
54	3092	21.96	1225	79	3258	26.19	1509
55	3102	22.16	1235	80	3263	26.35	1522
56	3111	22.35	1246	81	3268	26.50	1536
57	3121	22.52	1256	82	3271	26.67	1550
58	3128	22.71	1266	83	3274	26.83	1564
59	3137	22.88	1277	84	3278	26.99	1578
60	3145	23.06	1287	85	3281	27.15	1592
61	3152	23.23	1298	86	3285	27.30	1607
62	3159	23.41	1309	87	3291	27.45	1622
63	3168	23.57	1319	88	3295	27.60	1637
64	3174	23.75	1330	89	3298	27.76	1652
65	3181	23.91	1341	90	3300	27.92	1668
66	3189	24.08	1352	91	3306	28.07	1784
67	3193	24.25	1364	92	3309	28.23	1701
68	3199	24.42	1375	93	3311	28.39	1718
69	3205	24.59	1386	94	3316	28.53	1734
70	3213	24.74	1897	95	3318	28.69	1752
71	3218	24.90	1409	96	3320	28.86	1770
72	3223	25.07	1421	97	3324	29.00	1788
73	3228	25.24	1433	98	3326	29.17	1807
74	3234	25.39	1445	99	3330	29.31	1826
75	3238	25.56	1458	100	3331	29.48	1845

Tab.7.10 Ozon/Xenon-Detonation (Forts.)

Tab.7.11 Ozon/Kohlenmonoxid/Xenon-Detonation berechnet für eine CO-Konzentration von 5 Mol-% bezogen auf das Trägergas

X ₀₃ [%]	T _{CJ} [K]	p _{CJ} /p _o	D _o CJ[m/s]	X ₀₃ [%]	T _{CJ} [K]	p _{CJ} /p _o	D ₀ CJ[m/s]
1	757	3.63	413	26	2833	17.02	993
2	1131	5.66	527	27	2853	17.25	1002
3	1477	7.53	614	28	2872	17.46	1012
4	1797	9.27	686	29	2889	17.68	1021
5	2027	10.54	738	30	2905	17.90	1030
6	2090	10.96	754	31	2921	18.11	1039
7	2150	11.36	770	32	2937	18.30	1048
8	2207	11.75	785	33	2951	18.50	1057
9	2261	12.12	800	34	2964	18.70	1066
10	2311	12.49	814	35	2978	18.89	1075
11	2359	12.84	828	36	2990	19.07	1084
12	2405	13.18	840	37	3002	19.26	1092
13	2448	13.51	853	38	3013	19.45	1101
14	2489	13.83	866	39	3024	19.64	1110
15	2527	14.15	880	40	3035	19.82	1119
16	2564	14.45	890	41	3046	20.00	1128
17	2598	14.74	901	42	3055	20.18	1137
18	2631	15.02	912	43	3064	20.36	1146
19	2661	15.30	923	44	3074	20.53	1155
20	2690	15.56	933	45	3082	20.71	1164
21	2717	15.83	944	46	3090	20.89	1173
22	2744	16.07	954	47	3098	21.06	1182
23	2768	16.31	964	48	3106	21.24	1191
24	2790	16.56	974	49	3113	21.41	1200
25	2812	16.80	983	50	3122	21.57	1209

.

Tab.7.11 Ozon/Kohlenmonoxid/Xenon-Detonation berechnet für eine CO-Konzentration von 5 Mol-% bezogen auf das Trägergas (Forts.)

X ₀₃ [%]	T _{CJ} [K]	p _{CJ} /p _o	D _o ^{CJ} [m/s]	X ₀₃ [%] T _{CJ} [K]	p _{CJ} /p _o	D _o ^{CJ} [m/s]
51	3127	21.74	1219	76	3250	25.70	1482
52	3135	21.90	1228	77	3253	25.86	1494
53	3142	22.06	1237	78	3259	26.00	1506
54	3148	22.26	1247	79	3262	26.16	1519
55	3154	22.39	1256	80	3264	26.31	1532
56	3160	22.55	1266	81	3269	26.46	1545
57	3165	22.71	1276	82	3271	26.62	1558
58	3170	22.88	1285	83	3274	26.78	1572
59	3177	23.02	1295	84	3278	26.92	1585
60	3181	23.19	1305	85	3281	27.08	1599
61	3187	23.34	1315	86	3284	27.23	1613
62	3191	23.51	1325	87	3286	27.39	1628
63	3196	23.66	1335	88	3290	27.53	1642
64	3199	23.83	1346	89	3294	27.68	1657
65	3205	23.98	1357	90	3295	27.84	1673
66	3210	24.13	1367	91	3299	27.99	1788
67	3213	24.30	1378	92	3300	28.15	1704
68	3218	24.45	1389	93	3303	28.30	1720
69	3223	24.61	1400	94	3307	28.44	1736
70	3228	24.76	1411	95	3309	28.61	1753
71	3232	24.92	1422	96	3311	28.75	1770
72	3236	25.07	1434	97	3314	28.90	1787
73	3240	25.23	1446	98	3317	29.05	1805
74	3243	25.38	1457	99	3319	29.20	1823
75	3247	25.54	1469	100	3321	29.37	1842

Tab.7.12 Ozon/Kohlenmonoxid/Xenon-Detonation berechnet für eine CO-Konzentration von 1.5 Mol-% bezogen auf das Trägergas

X ₀₃ [%]	T _{CJ} [K]	p _{CJ} /p _o	D _o ^{CJ} [m/s]	X ₀₃ [%]	T _{CJ} [K]	p _{CJ} /p _o	D ₀ CJ[m/s]
1	736	3.53	404	26	2636	15.96	951
2	1022	5.09	493	27	2668	16.25	962
3	1135	5.73	527	28	2698	16.54	974
4	1242	6.36	558	29	2726	16.81	985
5	1344	6.96	587	30	2752	17.07	995
6	1442	7.54	613	31	2777	17.33	1006
7	1534	8.10	638	32	2800	17.58	1016
8	1622	8.65	662	33	2823	17.82	1026
9	1706	9.17	684	34	2844	18.07	1037
10	1786	9.68	705	35	2864	18.30	1047
11	1862	10.18	726	36	2883	18.52	1057
12	1935	10.65	745	37	2901	18.75	1067
13	2004	11.12	763	38	2918	18.96	1076
14	2079	11.57	781	39	2934	19.17	1086
15	2132	12.01	798	40	2949	19.38	1096
16	2192	12.43	814	41	2963	19.58	1105
17	2248	12.84	830	42	2976	19.78	1115
18	2302	13.24	845	43	2990	19.97	1124
19	2353	13.62	860	44	3001	20.18	1134
20	2400	13.99	874	45	3014	20.37	1144
21	2446	14.35	888	46	3026	20.56	1153
22	2489	14.69	901	47	3038	20.75	1162
23	2529	15.02	914	48	3048	20.94	1172
24	2567	15.34	926	49	3058	21.12	1182
25	2603	15.66	939	50	3068	21.31	1191

Tab.7.12 Ozon/Kohlenmonoxid/Xenon-Detonation berechnet für eine CO-Konzentration von 1.5 Mol-% bezogen auf das Trägergas (Forts.)

X ₀₃ [%]	T _{CJ} [K]	₽ _{CJ} /₽₀	D _o ^{CJ} [m/s]	X ₀₃ [%]	T _{CJ} [K]	p _{CJ} /p _o	D _o ^{CJ} [m/s]
51	3077	21.49	1201	76	3237	25.62	1471
52	3088	21.66	1211	77	3240	25.80	1484
53	3095	21.84	1221	78	3245	25.95	1496
54	3105	22.03	1230	79	3249	26.11	1509
55	3113	22.20	1240	80	3254	26.26	1523
56	3121	22.38	1250	81	3258	26.42	1536
57	3128	22.55	1260	82	3262	26.57	1549
58	3136	22.71	1270	83	3265	26.73	1563
59	3142	22.89	1281	84	3269	26.89	1577
60	3150	23.05	1291	85	3272	27.05	1592
61	3157	23.21	1301	86	3275	27.21	1606
62	3161	23.39	1312	87	3281	27.35	1621
63	3167	23.55	1322	88	3284	27.51	1636
64	3173	23.71	1333	89	3286	27.67	1651
65	3181	23.86	1343	90	3292	27.81	1667
66	3186	24.03	1354	91	3294	27.97	1683
67	3191	24.19	1365	92	3296	28.13	1699
68	3198	24.34	. 1376	93	3301	28.28	1716
69	3202	24.51	1388	94	3303	28.44	1733
70	3206	24.67	1399	95	3307	28.58	1750
71	3213	24.83	1410	96	3309	28.75	1768
72	3217	24.99	1422	97	3313	28.89	1785
73	3223	25.15	1434	98	3314	29.06	1803
74	3226	25.32	1446	99	3319	29.20	1823
75	3232	25.47	1459	100	3321	29.37	1842

Δ.

Tab.7.13 Ozon/Methan/Xenon-Detonation berechnet für eine CH_4 -Konzentration von 1 Mol-% bezogen auf das Trägergas und für die Reaktion $CH_4 + O_3 \rightarrow CO + 2H_2O$

X ₀₃ [%]	T _{CJ} [K]	p _{CJ} /p _o	D _o ^{CJ} [m/s]	X ₀₃ [%]	T _{CJ} [K]	p _{CJ} /p _o	D <mark>CJ</mark> [m/s]
1	1073	5.39	507	26	2702	16.52	966
2	1185	6.04	540	27	2731	16.79	977
3	1291	6.67	570	28	2757	17.06	988
4	1393	7.27	599	29	2783	17.31	998
5	1489	7.85	624	30	2806	17.56	1008
6	1580	8.41	648	31	2830	17.80	1018
7	1667	8.96	671	32	2851	18.05	1028
8	1750	9.49	693	33	2871	18.28	1038
9	1829	9.99	714	34	2890	18.51	1048
10	1905	10.47	733	35	2907	18.73	1058
11	1977	10.95	752	36	2925	18.94	1067
12	2046	11.43	771	37	2941	19.15	1077
13	2111	11.87	788	38	2956	19.34	1086
14	2173	12.31	805	39	296 9	19.56	1095
15	2232	12.73	821	40	2984	19.74	1104
16	2288	13.14	836	41	2995	19.94	1114
17	2341	13.54	851	42	3008	20.13	1123
18	2392	13.92	866	43	3021	20.32	1132
19	2439	14.29	880	44	3032	20.51	1142
20	2484	14.64	893	45	3044	20.68	1151
21	2526	14.98	906	46	3053	20.88	1161
22	2566	15.31	919	47	3064	21.06	1170
23	2603	15.62	931	48	3075	21.23	1179
24	2638	15.94	943	49	3083	21.41	1188
25	2671	16.23	954	50	3091	21.58	1198

Tab.7.13	Ozon/Methan/Xenon-Detonation							
	berechnet für eine CH4-Konzentration von 1 Mol-%							
	bezogen auf das Trägergas							
	und für die Reaktion $CH_4 + O_3 \rightarrow CO + 2H_2O$ (Forts.)							

X ₀₃ [%]	T _{CJ} [K]	p _{CJ} ∕p₀	D _o ^{CJ} [m/s]	X ₀₃ [%]	T _{CJ} [K]	p _{CJ} /p _o	D _o CJ[m/s]
51	3101	21.77	1207	76	3244	25.75	1473
52	3109	21.94	1217	77	3248	25.90	1486
53	3117	22.11	1226	78	3252	26.05	1498
54	3124	22.28	1236	79	3256	26.21	1511
55	3132	22.44	1245	80	3259	26 36	1524
56	3138	22.61	1255	81	3262	26.51	1538
57	3146	22.77	1265	82	3265	26.67	1551
58	3153	22.93	1275	83	3271	26.81	1565
59	3157	23.10	1285	84	3274	26.96	1579
60	3163	23.26	1294	85	3276	27.12	1593
61	3169	23.42	1305	86	3282	27.26	1607
62	3177	23.57	1315	87	3284	27.41	1622
63	3182	23.73	1326	88	3286	27.57	1637
64	3186	23.89	1336	89	3290	27.71	1652
65	3193	24.04	1347	90	3292	27.87	1668
66	3197	24.20	1358	91	3297	28.01	1683
67	3203	24.35	1368	92	3299	28.17	1700
68	3207	24.51	1380	93	3302	28.31	1716
69	3213	24.66	1391	94	3304	28.47	1733
70	3217	24.82	1402	95	3307	28.61	1750
71	3222	24.97	1414	96	3311	28.76	1768
72	3225	25.14	1425	97	3313	28.92	1786
73	3230	25.29	1437	98	3316	29.06	1804
74	3235	25.44	1449	99	3319	29.20	1823
75	3240	25.59	1461	100	3320	29.37	1842

Tab.7.14 Ozon/Methan/Xenon-Detonation berechnet für eine CH₄-Konzentration von 1 Mol-% bezogen auf das Trägergas

und für die Reaktion $CH_4 + 2O_3 \rightarrow CO_2 + O_2 + 2H_2O$

X ₀₃ [%]	T _{CJ} [K]	p _{CJ} /p _o	D _o ^{CJ} [m/s]	X ₀₃ [%]	T _{CJ} [K]	p _{CJ} /p _o	D _o CJ[m/s]
1	1073	5.39	507	26	2771	16.89	977
2	1432	7.36	599	27	2795	17.14	987
3	1528	7.93	624	28	2818	17.39	997
4	1620	8.48	648	29	2840	17.62	1007
5	1706	9.01	671	30	2861	17.86	1017
6	1789	9.53	692	31	2880	18.07	1026
7	1867	10.03	712	32	2899	18.30	1036
8	1942	10.51	731	33	2916	18.52	1045
9	2013	10.98	749	34	2932	18.73	1054
10	2080	11.43	767	35	2947	18.94	1063
11	2144	11.87	784	36	2962	19.14	1073
12	2205	12.29	800	37	2975	19.33	1082
13	2263	12.70	816	38	2989	19.52	1091
14	2317	13.10	831	39	3002	19.71	1100
15	2369	13.48	845	40	3014	19.90	1109
16	2417	13.85	859	41	3026	20.09	1118
17	2464	14.21	873	42	3037	20.28	1127
18	2507	14.54	885	43	3048	20.45	1136
19	2548	14.88	898	44	3058	20.63	1145
20	2586	15.20	910	45	3068	20.81	1154
21	2622	15.51	922	46	3077	20.99	1163
22	2655	15.81	934	47	3087	21.16	1172
23	2687	16.10	945	48	3094	21.34	1182
24	2717	16.36	956	49	3103	21.52	1191
25	2745	16.63	966	50	3111	21.69	1200

berechnet für eine CH_4 -Konzentration von 1 Mol-% bezogen auf das Trägergas und für die Reaktion $CH_4 + 2O_3 \rightarrow CO_2 + O_2 + 2H_2O$ (Forts.)

X ₀₃ [%]	T _{CJ} [K]	p _{CJ} /p _o	D _o CJ[m/s]	X ₍) ₃ [%]	T _{CJ} [K]	p _{CJ} /p _o	D _o CJ[m/s]
51	3118	21.86	1210		76	3248	25.77	1474
52	3126	22.01	12.19		77	3251	25.93	1486
53	3132	22.19	1228		78	3257	26.07	1499
54	3140	22.34	1238		79	3260	26.22	1512
55	3147	22.50	1247		80	3263	26.37	1525
56	3152	22.67	1257		81	3266	26.53	1538
57	3158	22.83	1267		82	3271	26.67	1551
58	3164	22.99	1277		83	3273	26.82	1565
59	3171	23.14	1286		84	3275	26.98	1579
60	3176	23.30	12.76		85	3280	27.12	1593
61	3181	23.46	1306		86	3282	27.28	1608
62	3187	23.61	1317		87 [.]	3287	27.42	1622
63	3191	23.77	1327		88	3289	27.58	1637
64	3197	23.92	1337		89	3292	27.72	1652
65	3200	24.08	1348		90	3294	27.88	1668
66	3206	24.23	1359		91	3298	28.02	1684
67	3210	24.40	1370		92	3301	28.16	1700
68	3215	24.54	1381		93	3303	28.32	1716
69	3221	24.69	1392		94	3306	28.47	1733
70	3223	24.86	1403		95	3309	28.61	1750
71	3228	25.01	1415		96	3311	28.77	1768
72	3232	25.16	1426		97	3313	28.91	1786
73	3237	25.32	1438		98	3316	29.06	1804
74	3241	25.47	1450		99	3320	29.20	1822
75	3244	25.62	1462	1	00	3322	29.37	1842

Tab.7.15	Ozon/Distickstoffpentoxid/Xenon-Detonation								
	berechnet für eine $N_{2}O_{5}\mbox{-Konzentration}$ von 0.5 Mol-%								
	bezogen auf das Trägergas								
	und für die Reaktion $N_2O_5 + O_3 \rightarrow 2NO_2 + 2O_2$								

X ₀₃ [%]	T _{CJ} [K]	₽ _{CJ} /₽₀	D _o CJ[m/s]	X ₀₃ [%]	T _{CJ} [K]	^p CJ ^{∕p} ₀	D _o CJ[m/s]
1	490	2.19	304	26	2531	15.36	929
2	632	2.99	357	27	2569	15.70	942
3	765	3.75	417	28	2606	16.02	954
4	890	4.46	459	29	2640	16.33	967
5	1009	5.14	497	30	2673	16.63	978
6	1121	5.81	532	31	2703	16.91	990
7	1228	6.44	563	32	2731	17.20	1002
8	1330	7.06	593	33	2758	17.47	1013
9	1427	7.66	620	34	2784	17.72	1023
10	1520	8.23	645	35	2807	17.98	1034
11	1608	8.78	669	36	2829	18.24	1045
12	1693	9.32	692	37	2851	18.47	1055
13	1773	9.85	714	38	2872	18,71	1065
14	1850	10.35	734	39	2890	18.94	1076
15	1924	10.85	754	40	2908	19.17	1086
16	1994	11.33	773	41	2926	19.38	1096
17	2061	11.79	791	42	2942	19.59	1106
18	2125	12.24	809	43	2957	19.81	1116
19	2185	12.68	826	44	2972	20.01	1125
20	2243	13.11	842	45	2985	20.22	1135
21	2298	13.51	858	46	2997	20.42	1145
22	2350	13.91	873	47	3012	20.61	1155
23	2399	14.29	888	48	3024	20.82	1165
24	2445	15.67	902	49	3037	21.02	1175
25	2489	15.03	916	50	3049	21.21	1185

Tab.7.15 Ozon/Distickstoffpentoxid/Xenon-Detonation berechnet für eine N_2O_5 -Konzentration von 0.5 Mol-% bezogen auf das Trägergas

und für die Reaktion $N_2O_5 + O_3 \rightarrow 2NO_2 + 2O_2$ (Forts.)

X ₀₃ [%]	T _{CJ} [K]	p _{CJ} ∕p₀	D _o CJ[m/s]	X ₀₃ [%]	T _{CJ} [K]	p _{CJ} /p _o	D _o CJ[m/s]
51	3060	21.41	1195	76	3244	25.71	1470
52	3071	21.59	1205	77	3247	25.88	1483
53	3082	21.78	1215	78	3253	26.04	1496
54	3092	21.96	1225	79	3258	26.19	1509
55	3102	22.16	1235	80	3263	26.35	1522
56	3111	22.35	1246	81	3268	26.50	1536
57	3121	22.52	1256	82	3271	26.67	1550
58	3128	22.71	1266	83	3274	26.83	1564
59	3137	22.88	1277	84	3278	26.99	1578
60	3145	23.06	1287	85	3281	27.15	1592
61	3152	23.23	1298	86	3285	27.30	1607
62	3159	23.41	1309	87	3291	27.45	1622
63	3168	23.57	1319	88	3295	27.60	1637
64	3174	23.75	1330	89	3298	27.76	1652
65	3181	23.91	1341	90	3300	27.92	1668
66	3189	24.08	1352	91	3306	28.07	1784
67	3193	24.25	1364	92	3309	28.23	1701
68	3199	24.42	1375	93	3311	28.39	1718
69	3205	24.59	1386	94	3316	28.53	1734
70	3213	24.74	1897	95	3318	28.69	1752
71	3218	24.90	1409	96	3320	28.86	1770
72	3223	25.07	1421	97	3324	29.00	1788
73	3228	25.24	1433	98	3326	29.17	1807
74	3234	25.39	1445	99	3330	29.31	1826
75	3238	25.56	1458	100	3331	29.48	1845

Tab.7.16	Adiabatische Explosion verschiedener Ozon/Trägergas-Gemische
	berechnet nach dem Modell von Flamm und Mache

Träger- gas	Sauer	stoff	Stick	stoff	Edel	Edelgase	
X ₀₃ [%]	p _e /p _o	T _e [K]	p _e /p _o	T _e [K]	p _e /p _o	T _e [K]	
1	1.20	358	1.22	363	1.36	401	
2	1.40	413	1.44	422	1.72	497	
3	1.60	465	1.66	481	2.09	590	
4	1.80	516	1.87	535	2.46	680	
5	2.00	567	2.09	589	2.84	768	
6	2.18	612	2.28	636	3.18	845	
7	2.37	657	2.48	683	3.52	921	
8	2.56	702	2.67	729	3.87	996	
9	2.75	747	2.87	775	4.23	1071	
10	2.94	791	3.07	821	4.58	1146	
11	3.12	833	3.26	863	4,89	1206	
12	3.31	875	3.44	904	5.19	1267	
13	3.49	915	3.63	946	5.50	1328	
14	3.68	957	3.82	988	5.81	1388	
15	3.87	998	4.02	1029	6.12	1448	
16	4.04	1035	4.19	1066	6.38	1496	
17	4.21	1070	4.37	1102	6.64	1545	
18	4.39	1106	4.54	1138	6.91	1593	
19	4.56	1142	4.72	1173	7.17	1641	
20	4.74	1178	4.89	1209	7.44	1689	
21	4.90	1209	5.05	1240	7.66	1728	
22	5.06	1240	5.21	1271	7.89	1768	
23	5.21	1270	5.37	1302	8.12	1807	
24	5.37	1301	5.54	1332	8.35	1845	
25	5.54	1332	5.70	1363	8.58	1884	

Träger- gas	Sauer	stoff	Stick	stoff	Edel	gase
X ₀₃ [%]	p _e /p _o	T _e [K]	p _e /p _o	T _e [K]	p _e /p _o	T _e [K]
26	5.68	1359	5.86	1392	8.77	1916
27	5.83	1386	6.02	1422	8.97	1948
28	5,98	1412	6.18	1451	9.17	1980
29	6.13	1439	6.34	1481	9.37	2012
30	6.28	1465	6.51	1510	9.57	2043
31	6.42	1490	6.66	1536	9.73	2068
32	6.56	1514	6.80	1561	9.90	2093
33	6.71	1539	6.95	1586	10.06	2117
34	6.86	1564	7.10	1611	10.22	2142
35	7.00	1589	7.25	1636	10.39	2166
36	7.14	1611	7.38	1658	10.56	2191
37	7.28	1634	7.52	1679	10.73	2216
38	7.42	1656	7.66	1701	10.90	2241
39	7.56	1678	7.80	1724	11.07	2265
40	7.70	1700	7.94	1746	11.23	2290
41	7.84	1722	8.07	1765	11.38	2309
42	7.98	1743	8.20	1784	11.52	2329
43	8.12	1765	8.33	1803	11.66	2348
44	8.26	1787	8.45	1821	11.80	2367
45	8.40	1808	8.58	1839	11.94	2386
46	8.53	1828	8.70	1857	12.09	2405
47	8.66	1847	8.82	1874	12.23	2424
48	8.80	1866	8.95	1891	12.37	2443
49	8.93	1885	9.07	1909	12.51	2461
50	9.07	1905	9.20	1926	12.65	2480

Tab.7.16Adiabatische Explosion verschiedener Ozon/Trägergas-Gemische
berechnet nach dem Modell von Flamm und Mache (Forts.)

Tab.7.17	Explosion von Ozon/Sauerstoff-Gemischen in einer Kugel
	von 124 mm Durchmesser

X ₀₃ [%]	p _o [hPa] j	p _{end} [hPa]	p _{max} [hPa]	p _{max} /p _o	Y(-0 ₃)[%]
14.6 ± 0.2	228	245	718 ± 51	3.15 ± 0.22	98.1
7.0 ± 0.1	444	450	479 ± 5	1.08 ± 0.04	39.7
9.1 ± 0.1	452	459	523 ± 51	1.16 ± 0.11	32.2
9.6 ± 0.1	456.5	468	578 ± 51	1.27 ± 0.11	47.2
9.9 ± 0.1	444	456	600 ± 51	1.35 ± 0.12	50.4
10.0 ± 0.1	452	476	1085 ± 51	2.30 ± 0.12	95.4
11.1 ± 0.1	455.5	481	1075 ± 52	2.36 ± 0.12	97.8
13.1 ± 0.1	445	475	1304 ± 53	2.93 ± 0.12	97.3
15.1 ± 0.1	441	475	1442 ± 54	3.27 ± 0.12	98.6
17.5 ± 0.2	450	490	1741 ± 56	3.87 ± 0.13	99.3
18.1 ± 0.2	451	492	1665 ± 55	3.69 ± 0.12	99.3
20.8 ± 0.2	443	491	1879 ± 56	4.24 ± 0.13	99.3

Tab.7.18 Explosion von Ozon/Sauerstoff-Gemischen in einem $500 \times 75 \text{ mm Rohr}$

X ₀₃ [%]	p _o [hPa] p	end ^[hPa]	p _{max} [hPa]	p _{max} /p _o	Y(-0 ₃)[%]
12 0 + 0 2	200	212	362 + 50	1 81 + 0 25	977
12.0 ± 0.2 13.5 ± 0.2	202	212	445 ± 50	2.20 ± 0.25	98.3
13.6 ± 0.2	200	215	443 ± 50	2.21 ± 0.25	98.3
18.3 ± 0.2	210	221.5	605 ± 50	3.01 ± 0.25	99.4
23.7 ± 0.2	199.5	224	756 ± 51	3.79 ± 0.25	99.4
12.8 ± 0.1	299	319	643 + 51	$2 15 \pm 0.17$	98.6
14.9 ± 0.1	301	324.5	776 ± 51	2.13 ± 0.17 2.58 ± 0.17	99.5
20.0 ± 0.2	300.5	332	1018 ± 52	3.39 ± 0.17	99.6
23.4 ± 0.2	301	337	1206 ± 53	4.01 ± 0.18	99.5
13 5 + 0 1	497	456	1030 + 52	2/43 + 0.12	00 3
18.9 ± 0.1	428	470	1469 ± 54	3.34 ± 0.13	99.4

In Versuchen, die mit einem * gekennzeichnet sind, wurden Leuchterscheinung und Geräuschentwicklung beobachtet.

X ₀₃ [%]	p _o [hPa]	p _{end} [hPa]	p _{max} [hPa]	p _{max} /p _o	Y(-0 ₃)[%]
18.0 ± 0.7	35	36	35 ± 14	1.00 ± 0.00	36.5
18.7 ± 0.7	35	38	35 ± 14	1.00 ± 0.00	88.2
19.0 ± 0.9	30	31.5	30 ± 14	1.00 ± 0.00	41.2
19.2 ± 0.7	35	38	40 ± 14	1.15 ± 0.41	90.8
19.9 ± 0.7	35	38.5	45 + 14	1.29 ± 0.41	92.3
20.3 ± 0.7	35	38.5	45 + 14	1.29 ± 0.41	96.8
21.6 ± 0.7	40	44.5	60 ± 14	1.51 ± 0.36	97.4
22.6 ± 0.7	40	45	71 + 14	1.76 ± 0.36	97.5
24.1 ± 0.5	51	57	102 + 14	2.00 ± 0.28	98.8
26.5 ± 0.6	49	56	102 ± 11 110 ± 14	2.24 ± 0.29	98.9
16.8 ± 0.4	63	68	94 ± 23	1.49 ± 0.36	96.3
17.4 ± 0.5	55	60	81 ± 24	1.47 ± 0.41	95.2
17.6 ± 0.4	61	66	92 ± 23	1.51 ± 0.37	96.4
18.1 ± 0.5	56	61.5	87 ± 23	1.55 ± 0.41	97.0
18.3 ± 0.5	55	61	96 ± 23	1.75 ± 0.41	96.2
15.4 ± 0.4	75	81	96 ± 23	1.27 ± 0.30	93.2
14.3 ± 0.3	105	110	146 ± 23	1.39 ± 0.22	95.2
18.5 ± 0.3	121	132	255 ± 23	2.11 ± 0.19	98.3
19.0 ± 0.3	111	122	235 ± 23	2.11 ± 0.21	97.8
15.9 ± 0.2	150	161	284 ± 23	1.89 ± 0.16	97.7
17.1 ± 0.2	180	195	417 ± 24	2.32 ± 0.13	97.5
11.0 ± 0.1	225	228	240 ± 15	1.07 ± 0.07	10.0
11.9 ± 0.2	222	226	258 ± 15	1.16 ± 0.07	38.0
12.8 ± 0.2	219.5	233	343 ± 16	1.56 ± 0.07	96.4
13.5 ± 0.2	221	235	375 ± 16	1.70 ± 0.07	96.8
14.4 ± 0.2	220	236	415 ± 16	1.89 ± 0.07	97.8
14.9 ± 0.2	218	234	428 ± 16	1.96 ± 0.07	96.6
15.2 ± 0.2	220	237	435 ± 16	1.98 ± 0.07	97.7
15.6 ± 0.2	219	236	475 ± 16	2.17 ± 0.08	97.1
17.4 ± 0.2	220	239	538 ± 16	2.45 ± 0.08	97.4
18.4 ± 0.2	259	284	671 ± 25	2.59 ± 0.10	98.1
19.6 ± 0.2	223	245	594 ± 25	2.66 ± 0.11	97.9
19.9 ± 0.2	241	264	653 ± 25	2.71 ± 0.10	98.5
22.6 ± 0.2	221	246	734 ± 18	3.32 ± 0.08	99.3
26.2 ± 0.2	222	251	878 ± 19	3.96 ± 0.09	99.2
38.3 ± 0.5 *	218	261	1346 ± 24	6.18 ± 0.11	99.9 *
45.8 ± 0.5 *	219	270	1778 ± 29	8.12 ± 0.14	99.9 *
48.5 ± 0.5 *	220	274	1840 ± 29	8.37 ± 0.14	99.9 *

48.5 ± 0.5 * 220

Tab.7.19 Explosion von Ozon/Sauerstoff-Gemischen in einem 500×50 mm Rohr
	00 × 00 mi	" KOML (FOI	(13,)		
X ₀₃ [%]	p _o [hPa]	p _{end} [hPa]	p _{max} [hPa]	p _{max} /p _o	Y(-0 ₃)[%]
9.3 ± 0.1	436	439	446 ± 25	1.02 ± 0.06	11.7
9.7 ± 0.1	449	453	459 ± 25	1.02 ± 0.06	19.3
10.4 ± 0.1	427	432	437 ± 25	1.02 ± 0.06	23.3
11.3 ± 0.1	422	430	474 ± 25	1.12 ± 0.06	27.2
11.9 ± 0.1	456	483	796 ± 26	1.75 ± 0.06	97.1
12.3 ± 0.1	451	478	812 ± 27	1.80 ± 0.06	97.8
12.9 ± 0.1	435	463	837 ± 27	1.92 ± 0.06	97.9
14.4 ± 0.1	403	432	872 ± 27	2.16 ± 0.07	98.2
15.5 ± 0.1	419	452	996 ± 27	2.38 ± 0.07	98.9
19.8 ± 0.2	426	469	1313 ± 30	3.08 ± 0.07	99.2
21.6 ± 0.3	427	474	1530 ± 32	3.58 ± 0.08	99.4
22.7 ± 0.3	435	485	1569 ± 33	3.61 ± 0.08	98.8
24.9 ± 0.3	452	507	1990 ± 32	4.40 ± 0.07	99.2

1989 ± 37

3192 ± 47

 1509 ± 32

 1482 ± 32

 1604 ± 33

 1135 ± 26

 1728 ± 32

 2107 ± 42

 2324 ± 38

99.5 *

100.0 *

98.6

98.6

98.9

17.9

84.2

98.3

98.0

 4.71 ± 0.09

 7.25 ± 0.11

 3.02 ± 0.07

 3.07 ± 0.07

 3.20 ± 0.07

 1.13 ± 0.03

 1.73 ± 0.03

 2.11 ± 0.04

 2.32 ± 0.04

Tab.7.19 Explosion von Ozon/Sauerstoff-Gemischen in einem 500 x 50 mm Rohr (Forts.)

29.3 ± 0.3 *

42.5 ± 0.7 *

 18.5 ± 0.2

 18.8 ± 0.2

 19.4 ± 0.2

 9.9 ± 0.1

 10.2 ± 0.1

 11.3 ± 0.1

 12.7 ± 0.1

422

443

499

482

501

1002

1000

999

1001

483

539

546

527

550

1015

1045

1055

1064

13.7 ± 0.1	1002	1071	2540 ± 41	2.54 ± 0.04	98.8
15.2 ± 0.1	1001	1077	2878 ± 45	2.87 ± 0.05	98.6
16.4 ± 0.3	1005	1088	3159 ± 48	3.14 ± 0.05	99.3
19.0 ± 0.3	1005	1101	3620 ± 54	3.60 ± 0.06	99.1
19.4 ± 0.3	999	1097	3696 ± 55	3.69 ± 0.06	99.1
20.4 ± 0.3	997	1100	3817 ± 56	3.83 ± 0.06	99.3
23.2 ± 0.3	1004	1123	4419 ± 64	4.40 ± 0.07	99.6

Tab.7.20 Explosion von Ozon/Sauerstoff-Gemischen in einem $500 \times 35 \text{ mm Rohr}$

X ₀₃ [%]	p _o [hPa] p	end ^[hPa]	p _{max} [hPa]	p _{max} /p _o	Y(-0 ₃)[%]
$12.7 \pm 0.4 \\ 15.3 \pm 0.4 \\ 16.3 \pm 0.4$	66 68.5 68.5	67 69.5 69.5	66 ± 50 74 ± 50 69 ± 50	1.00 ± 0.00 1.07 ± 0.72 1.00 ± 0.00	6.4 11.7 11.1
18.6 ± 0.4	68	74	89 ± 50	1.32 ± 0.73	95.7

X ₀₃ [%] I	p _o [hPa]	p _{end} [hPa]	P _{max} [hPa]	p _{max} /p _o	Y(-0 ₃)[%]
12.9 ± 0.3 15.6 ± 0.3	101 102	102 109	111 ± 50 122 ± 50 122 ± 50	1.10 ± 0.49 1.20 ± 0.49 1.20 ± 0.49	13.8 94.1
15.7 ± 0.3	102	110	132 ± 50	1.30 ± 0.49 1.20 ± 0.48	93.7 Q5 Q
16.7 ± 0.3 19.3 ± 0.3	103	111	123 ± 50 174 ± 50	1.20 ± 0.48 1.69 ± 0.48	96.9
13.0 ± 0.2	155	156	170 ± 50	1.10 ± 0.32	16.7
16.0 ± 0.2	153	165	214 ± 50	1.40 ± 0.32	96.8
17.0 ± 0.2	154	167.5	245 ± 50	1.60 ± 0.32	97.1
20.0 ± 0.2	155	171	320 ± 50	2.06 ± 0.32	97.5
13.3 ± 0.1	236	251	317 ± 50	1.34 ± 0.21	96.0
16.1 ± 0.2	240	259.5	422 ± 50	1.76 ± 0.21	97.2
17.3 ± 0.2	241	261	474 ± 50	1.96 ± 0.21	96.5
20.3 ± 0.2	236	260	564 ± 50	2.39 ± 0.21	97.4
13.5 ± 0.1	360.5	385	532 ± 50	1.48 ± 0.14	97.4
16.4 ± 0.1	360.5	390.5	719 ± 51	2.00 ± 0.14	97.0
17.6 ± 0.1	360	392	805 ± 51	2.24 ± 0.14	96.7
20.5 ± 0.2	358	395	985 ± 52	2.75 ± 0.15	97.1
9.0 ± 0.1	446	451.5	471 ± 17	1.06 ± 0.04	14.4
10.9 ± 0.1	450	464	470 ± 17	1.05 ± 0.04	47.1
12.2 ± 0.1	450	477	633 ± 18	1.41 ± 0.04	96.4
12.7 ± 0.1	450	477.5	643 ± 18	1.43 ± 0.04	97.4
13.0 ± 0.1	443.5	472.5	667 ± 19	1.50 ± 0.04	97.8
15.2 ± 0.1	448	482	885 ± 20	1.98 ± 0.05	97.7
15.6 ± 0.1	438	472	860 ± 20	1.96 ± 0.05	97.7
21.7 ± 0.3	446	495	1401 ± 25	3.14 ± 0.06	97.7
25.3 ± 0.3 *	435	491	1660 ± 28	3.82 ± 0.07	98.5 *
12.9 ± 0.1	551	587	864 ± 52	1.57 ± 0.10	97.1
13.4 ± 0.1	548	585	912 ± 52	1.66 ± 0.10	97.1
16.5 ± 0.2	550	595	1238 ± 53	2.25 ± 0.10	96.5
17.7 ± 0.2	548.5	597	1368 ± 54	2.49 ± 0.10	95.6
20.7 ± 0.2	546	602	1678 ± 55	3.07 ± 0.10	97.5
11.5 ± 0.1	840	888	1295 ± 54	1.55 ± 0.07	97.1
12.6 ± 0.1	832	887	1429 ± 55	1.74 ± 0.07	97.0
16.3 ± 0.2	837	906	2066 ± 58	2.47 ± 0.07	96.8
17.6 ± 0.2	841	914	2226 ± 60	2.65 ± 0.07	97.1
19.8 ± 0.2	833	913	2572 ± 62	3.09 ± 0.08	97.4

Tab.7.20 Explosion von Ozon/Sauerstoff-Gemischen in einem 500 × 35 mm Rohr (Forts.)

X ₀₃ [%]	p ₀ [hPa] p	end ^[hPa]	p _{max} [hPa]	p _{max} /p _o	Y(-0 ₃)[%]
12.2 ± 0.2	201.5	203.5	202 ± 5	1.00 ± 0.01	0.7
14.4 ± 0.2	201	204	226 ± 50	1.13 ± 0.25	14.9
18.7 ± 0.2	203	222	304 ± 50	1.50 ± 0.25	96.8
20.6 ± 0.2	203	223	329 ± 50	1.62 ± 0.25	96.7
24.4 ± 0.2	199	223.5	421 ± 50	2.12 ± 0.25	95.1
12.2 ± 0.1	302	305	312 ± 50	1.03 ± 0.17	1.4
14.6 ± 0.1	300	321	371 ± 50	1.24 ± 0.17	93.4
18.9 ± 0.2	301	329	493 ± 50	1.64 ± 0.17	95.2
20.8 ± 0.2	300.5	331	563 ± 50	1.87 ± 0.17	95.1
$24.4 \pm 0.2 *$	303	339	743 ± 51	2.45 ± 0.17	93.7 *
11.5 ± 0.1	451	455	476 ± 17	1.06 ± 0.04	8.1
13.8 ± 0.1	451.5	483	574 ± 18	1.27 ± 0.04	96.3
15.2 ± 0.1	448	483.5	672 ± 19	1.50 ± 0.04	97.1
16.6 ± 0.1	450	486	663 ± 18	1.47 ± 0.04	96.1
17.2 ± 0.1	450	490	765 ± 19	1.70 ± 0.04	95.4
18.3 ± 0.2	451	491	786 ± 19	1.74 ± 0.04	95.8
21.3 ± 0.2	451	497	1010 ± 21	2.24 ± 0.05	96.0
25.5 ± 0.3	450	505	1243 ± 24	2.76 ± 0.06	95.0
29.6 ± 0.3 *	452	515	1255 ± 23	2.78 ± 0.05	95.6 *
35.2 ± 0.6 *	453	531	2176 ± 34	4.80 ± 0.08	99.6 *
$36.4 \pm 0.6 *$	452	534	2017 ± 32	4.46 ± 0.08	99.6 *
12.4 ± 0.1	602	635	728 ± 51	1.21 ± 0.09	93.4
14.7 ± 0.2	602	646	905 ± 52	1.50 ± 0.09	94.7
19.0 ± 0.2	597	653	1244 ± 53	2.08 ± 0.09	93.3
20.8 ± 0.2	600	663	1419 ± 54	2.36 ± 0.09	93.3
21.6 ± 0.2	599	663	1534 ± 55	2.56 ± 0.09	93.5
$24.6 \pm 0.2 *$	600	673	1414 ± 54	2.36 ± 0.09	95.0 *
12.4 ± 0.2	746	791	974 ± 52	1.30 ± 0.07	94.0
14.9 ± 0.2	748	803	1168 ± 53	1.56 ± 0.07	94.9
18.9 ± 0.2	753	823	1693 ± 56	2.25 ± 0.08	93.2
19.7 ± 0.2	750.5	821	1726 ± 56	2.30 ± 0.08	93.5
21.0 ± 0.2	751	829	1959 ± 57	2.61 ± 0.08	91.8
$23.5 \pm 0.2 *$	750	836	2267 ± 50	3.02 ± 0.08	92.6 *

Tab.7.21 Explosion von Ozon/Sauerstoff-Gemischen in einem $500 \times 20 \text{ mm Rohr}$

X ₀₃ [%]	P _o [hPa]	p _{end} [hPa]	p _{max} [hPa]	p _{max} /p _o	Y(-0 ₃)[%]
13.3 ± 0.6 15.0 ± 0.5	47 49	48 51.5	47 ± 23 49 ± 23	1.00 ± 0.00 1.00 ± 0.00	20.6 60.6
11.7 ± 0.5	56	58	56 ± 23	1.00 ± 0.00	31.9
13.1 ± 0.4	72	73	82 ± 23	1.14 ± 0.32	20.7
14.2 ± 0.4	64	68	85 ± 23	1.32 ± 0.36	90.4
14.3 ± 0.4	72	77	93 ± 23	1.29 ± 0.32	93.1
15.8 ± 0.3	80	86.5	121 ± 23	1.52 ± 0.29	96.9
13.8 ± 0.3	94	100	125 ± 23	1.33 ± 0.24	95.1
13.4 ± 0.3	111	118	163 ± 23	1.46 ± 0.21	95.2
15.3 ± 0.3	115	123	187 ± 23	1.63 ± 0.20	97.8
15.1 ± 0.2	126	136	229 ± 23	1.82 ± 0.18	97.5
12.7 ± 0.1	237	252	397 ± 24	1.67 ± 0.10	97.6
13.5 ± 0.1	273	291	520 ± 24	1.91 ± 0.09	97.9
13.8 ± 0.2	220	237	395 ± 24	1.80 ± 0.11	97.4
14.3 ± 0.2	189	202	354 ± 24	1.87 ± 0.13	98.0
15.5 ± 0.5	253	273	573 ± 25	2.26 ± 0.10	97.0
15.9 ± 0.2	229	248	523 ± 24	2.28 ± 0.11	97.9
12.0 ± 0.1	327	346	554 ± 25	1.69 ± 0.08	97.6
16.5 ± 0.1	350	379	907 ± 27	2.59 ± 0.08	98.1
7.4 ± 0.1	448	452	448 ± 25	1.00 ± 0.00	8.6
7.8 ± 0.1	448	452	448 ± 25	1.00 ± 0.00	7.1
9.5 ± 0.1	458	467	468 ± 25	1.02 ± 0.06	28.3
10.5 ± 0.1	448	455	479 ± 25	1.07 ± 0.06	21.0
10.7 ± 0.1	452	463	535 ± 25	1.18 ± 0.06	39.0
10.9 ± 0.1	448	471	778 ± 26	1.74 ± 0.06	94.6
10.9 ± 0.1	452	475	772 ± 26	1.71 ± 0.06	94.5
11.6 ± 0.1	447	473	808 ± 26	1.81 ± 0.06	97.2
12.8 ± 0.1	447	476	911 ± 27	2.04 ± 0.06	97.5
13.1 ± 0.1	455	474	919 ± 27	2.07 ± 0.06	97.7
13.2 ± 0.1	447	477	921 ± 27	2.06 ± 0.06	98.1
14.2 ± 0.1	456	488	1075 ± 28	2.36 ± 0.06	98.3
16.0 ± 0.1	458	494	1200 ± 29	2.62 ± 0.07	98.4
16.6 ± 0.1	447	484	1251 ± 30	2.80 ± 0.07	98.6
17.2 ± 0.1	448	487	1324 ± 30	2.96 ± 0.07	99.2
19.9 ± 0.2	453	500	1556 ± 32	3.44 ± 0.07	99.5
22.8 ± 0.3	448	498	1768 ± 34	3.95 ± 0.08	98.7
38.5 ± 0.6 *	450	519	3168 ± 46	7.04 ± 0.11	99.2 *

Tab.7.22 Explosion von Ozon/Stickstoff-Gemischen in einem 500 × 50 mm Rohr

X ₀₃ [%]	p _o [hPa] p	end ^[hPa]	p _{max} [hPa]	p _{max} /p _o	Y(-0 ₃)[%]
14.3 ± 0.1	452	469	473 ± 25	1.05 ± 0.06	69.7
15.8 ± 0.1	439	458	449 ± 25	1.02 ± 0.06	43.7
20.1 ± 0.2	448	463	520 ± 25	1.16 ± 0.06	31.8
21.2 ± 0.3	443	464	536 ± 25	1.21 ± 0.06	49.4
22.0 ± 0.3	451	481	585 ± 25	1.30 ± 0.06	58.8
22.4 ± 0.3	442	474	612 ± 25	1.38 ± 0.06	64.2
22.7 ± 0.3	452	483	672 ± 25	1.39 ± 0.06	59.9
22.7 ± 0.3	430	460	585 ± 25	1.36 ± 0.06	60.8
22.8 ± 0.3	446	478	611 ± 25	1.37 ± 0.06	63.6
23.8 ± 0.3	431	465	642 ± 26	1.49 ± 0.06	69.5
24.0 ± 0.3	429	475	733 ± 26	1.71 ± 0.06	87.0
24.5 ± 0.3	432	482	783 ± 26	1.81 ± 0.06	94.8
25.0 ± 0.3	446	504	910 ± 27	2.04 ± 0.06	98.0
25.9 ± 0.3	429	485	893 ± 27	2.08 ± 0.06	99.0
26.0 ± 0.3	451	512	936 ± 27	2.07 ± 0.06	98.0
26.4 ± 0.3	434	493	908 ± 27	2.09 ± 0.06	99.0
29.8 ± 0.3	438	50 6	1098 ± 28	2.51 ± 0.07	98.9
31.1 ± 0.3	443	514	1154 ± 29	2.61 ± 0.07	98.5
32.2 ± 0.3	441	516	1225 ± 30	2.78 ± 0.07	99.3

Tab.7.23 Explosion von Ozon/Dichlordifluormethan-Gemischen in einem 500 × 50 mm Rohr

Tab.7.24 Explosion von	Ozon/Helium-Gemischen	in	einem
------------------------	-----------------------	----	-------

 $500 \times 50 \text{ mm Rohr}$

Х _{Оз} [%]	p _o [hPa]	^p end ^[hPa]	p _{max} [hPa]	p_{max}/p_{o}	Y(-0 ₃)[%]
6.8 ± 0.1	450	454	460 ± 17	1.02 ± 0.04	12.8
7.9 ± 0.1	449	451	459 ± 17	1.02 ± 0.04	6.8
8.8 ± 0.1	450	456	486 ± 18	1.08 ± 0.04	25.3
9.0 ± 0.1	451	471	754 ± 20	1.67 ± 0.04	92.9
10.1 ± 0.1	448	471	935 ± 21	2.09 ± 0.05	96.2
10.4 ± 0.1	450	473	963 ± 21	2.14 ± 0.05	96.3
11.1 ± 0.1	450	475	1014 ± 22	2.25 ± 0.05	96.2
11.4 ± 0.1	451	477	1118 ± 22	2.48 ± 0.05	97.9
13.2 ± 0.2	450	480	1342 ± 25	2.98 ± 0.06	98.2
14.6 ± 0.2	451	485	1466 ± 26	3.25 ± 0.06	98.6
15.2 ± 0.2	449	485	1505 ± 27	3.35 ± 0.06	98.0
$20.2 \pm 0.4 *$	452	499	2072 ± 33	4.59 ± 0.08	99.1 *
$22.3 \pm 0.4 *$	450	503	2440 ± 39	5.42 ± 0.09	99.9 *
$24.3 \pm 0.6 *$	450	505	2553 ± 39	5.67 ± 0.09	99.7 *

X ₀₃ [%]	p _o [hPa]	<pre>Pend[hPa]</pre>	p _{max} [hPa]	p _{max} /p _o	Y(-0 ₃)[%]
10.6 ± 0.2	221	233	807 ± 51	3.65 ± 0.23	98.3
13.9 ± 0.2 *	272	291	1245 ± 52	4.58 ± 0.20	98.6 *
4.6 ± 0.1	444	446	475 ± 5	1.07 ± 0.04	19.1
5.3 ± 0.1	444	447	495 ± 10	1.11 ± 0.08	28.4
5.6 ± 0.1	435	442.5	490 ± 10	1.13 ± 0.08	56.1
7.4 ± 0.1	448	458	665 ± 51	1.48 ± 0.11	63.4
7.5 ± 0.1	445	455	685 ± 51	1.54 ± 0.12	60.9
7.6 ± 0.1	451	467	1088 ± 52	2.41 ± 0.12	96.2
8.7 ± 0.1	445	464	1284 ± 53	2.89 ± 0.12	98.4
9.5 ± 0.1	456	476	1437 ± 54	3.15 ± 0.12	97.2
11.0 ± 0.1	448	472	1730 ± 55	3.86 ± 0.13	99.2
$13.8 \pm 0.1 *$	448.5	479	2016 ± 55	4.49 ± 0.15	97.8 *
$16.1 \pm 0.1 *$	440	475	2223 ± 59	5.05 ± 0.14	99.6 *

X ₀₃ [%]	p _o [hPa]	p _{end} [hPa]	p _{max} [hPa]	p _{max} /p _o	Y(-0 ₃)[
11.8 ± 0.7	35	35	35 ± 23	1.00 ± 0.00	16.3
12.6 ± 0.5	56.5	56.5	57 ± 23	1.00 ± 0.00	2.4
12.7 ± 0.4	69	73.5	100 ± 23	1.45 ± 0.33	96.4
11.7 ± 0.3	95	100	157 ± 23	1.65 ± 0.24	97.1
13.1 ± 0.3	90	96.5	162 ± 23	1.80 ± 0.25	97.3
12.1 ± 0.3	100	106	172 ± 23	1.72 ± 0.23	97.4
13.0 ± 0.3	113	120	247 ± 23	2.19 ± 0.21	97.3
8.4 ± 0.2	134	135	134 ± 23	1.00 ± 0.00	15.6
12.9 ± 0.2	137	145	312 ± 23	2.28 ± 0.17	97.7
12.1 ± 0.2	150	159	310 ± 23	2.07 ± 0.16	98.2
13.1 ± 0.2	200	213	499 ± 24	2.49 ± 0.12	98.2
9.9 ± 0.1	224	235	399 ± 24	1.78 ± 0.11	97.5
10.6 ± 0.1	225	237	447 ± 24	1.99 ± 0.11	97.6
11.4 ± 0.1	225	238	514 ± 24	2.28 ± 0.11	97.2
12.5 ± 0.1	224	239	564 ± 24	2.52 ± 0.11	97.5
13.4 ± 0.2	224	239	616 ± 25	2.75 ± 0.11	97.6
8.9 ± 0.1	300	313	511 ± 24	1.70 ± 0.08	97.6
12.5 ± 0.1	313	333	870 ± 26	2.78 ± 0.09	98.0
13.7 ± 0.1	308	329	932 ± 27	3.03 ± 0.09	98.3
6.6 ± 0.1	449	451	459 ± 25	1.02 ± 0.06	2.4
7.7 ± 0.1	447	451	478 ± 25	1.07 ± 0.06	14.9
7.8 ± 0.1	448	453	489 ± 25	1.09 ± 0.06	20.6
8.0 ± 0.1	448	466	809 ± 27	1.81 ± 0.06	93.4
8.1 ± 0.1	447	465	804 ± 26	1.79 ± 0.06	94.2
9.0 ± 0.1	449	469	923 ± 27	2.06 ± 0.06	96.4
10.0 ± 0.1	449	472	1006 ± 28	2.24 ± 0.06	97.5
10.6 ± 0.1	449	473	1130 ± 29	2.52 ± 0.07	97.6
11.7 ± 0.1	451	479	1255 ± 30	2.78 ± 0.07	98.5
12.1 ± 0.1	448	476	1293 ± 30	2.89 ± 0.07	98.5
13.1 ± 0.1	450	480	1430 ± 31	3.18 ± 0.07	98.5

 1530 ± 32

 1605 ± 33

 1676 ± 33

1668 ± 33

 1872 ± 35

 1754 ± 34

 2383 ± 41

 2777 ± 46

 2712 ± 44

 13.5 ± 0.1

 13.9 ± 0.1

 14.5 ± 0.1

 15.5 ± 0.2

 16.4 ± 0.2

16.1 ± 0.1 *

 $18.8 \pm 0.6 *$

 $19.4 \pm 0.6 *$

19.7 ± 0.6 *

447

450

449

441

449

450

440

447

454

479

483

483

476

486

487

480

492

503

Tab.7.26 Explosion von Ozon/Argon-Gemischen in einem 500 × 50 mm Rohr

 3.42 ± 0.07

 3.57 ± 0.08

 3.73 ± 0.08

 3.78 ± 0.08

 4.17 ± 0.08

 3.90 ± 0.08

 5.42 ± 0.10

 6.21 ± 0.11

 5.97 ± 0.10

99.5

99.5

99.5

98.9

99.9

99.2 *

99.6 *

99.9 *

99.8 *

%]

X ₀₃ [%]	p _o [hPa]	p _{end} [hPa]	p _{max} [hPa]	p _{max} /p _o	Y(-0 ₃)[%]
7.0 ± 0.1	200.5	204	216 ± 50	1.08 ± 0.25	12.2
9.6 ± 0.1	200	206	240 ± 50	1.20 ± 0.25	40.6
11.0 ± 0.1	201	212	272 ± 50	1.35 ± 0.25	96.4
12.5 ± 0.2	200	213	342 ± 50	1.71 ± 0.25	97.2
13.6 ± 0.2	200	214	362 ± 50	1.81 ± 0.25	97.4
14.1 ± 0.2	201	215	423 ± 50	2.11 ± 0.25	97.5
16.8 ± 0.2	201	218	519 ± 50	2.58 ± 0.25	96.8
7.2 ± 0.1	300	304	310 ± 50	1.03 ± 0.17	20.7
9.6 ± 0.1	300	314	401 ± 50	1.34 ± 0.17	97.0
9.6 ± 0.1	301.5	316	418 ± 50	1.39 ± 0.17	95.9
11.1 ± 0.1	301	318	503 ± 50	1.67 ± 0.17	97.6
12.9 ± 0.1	300	319	613 ± 50	2.04 ± 0.17	96.7
13.9 ± 0.1	300	321	644 ± 51	2.15 ± 0.17	96.3
14.1 ± 0.1	302	324	747 ± 31	2.47 ± 0.17	97.6
17.1 ± 0.1	300	326	907 ± 51	3.02 ± 0.17	96.4
9.8 ± 0.1	451	473	734 ± 51	1.63 ± 0.11	96.0
11.2 ± 0.1	450	475	895 ± 52	1.99 ± 0.11	96.9
12.6 ± 0.1	450	479	1072 ± 52	2.38 ± 0.12	96.8
13.9 ± 0.1	450.5	482	1128 ± 52	2.50 ± 0.12	96.8
14.5 ± 0.1	450	483	1279 ± 53	2.84 ± 0.12	96.2
17.4 ± 0.1	450	490	1552 ± 54	3.45 ± 0.12	97.0
8.6 ± 0.1	600	621	853 ± 52	1.42 ± 0.09	62.3
9.3 ± 0.1	597	625	931 ± 52	1.56 ± 0.09	96.7
13.3 ± 0.1	598	638	1609 ± 55	2.69 ± 0.09	95.7
13.9 ± 0.2	601	643	1733 ± 55	2.88 ± 0.09	96.3
17.8 ± 0.2 7	* 600	654	2273 ± 59	3.79 ± 0.10	97.2 *
20.0 ± 0.2	* 600	661	2329 ± 60	3.88 ± 0.10	97.3 *
9.9 ± 0.1	750	788	1468 ± 54	1.96 ± 0.07	96.4
11.3 ± 0.1	751	794	1818 ± 57	2.42 ± 0.08	97.1
12.9 ± 0.1	750	798	2145 ± 58	2.86 ± 0.08	96.6
13.8 ± 0.1 *	* 756	807	2151 ± 58	2.85 ± 0.08	96.9 *
14.8 ± 0.2	751	808	2530 ± 61	3.37 ± 0.08	97.2
17.4 ± 0.2 🕫	* 750	816	2994 ± 65	3.99 ± 0.08	97.0 *

X ₀₃ [%]	p _o [hPa]	^p end ^[hPa]	p _{max} [hPa]	p _{max} /p _o	Y(-0 ₃)[%]
8.3 ± 0.1	200	202	205 ± 50	1.03 ± 0.25	12.9
10.9 ± 0.1	200	209.5	225 ± 50	1.13 ± 0.25	92.7
12.3 ± 0.2	200	212.5	251 ± 50	1.25 ± 0.25	94.3
14.9 ± 0.2	201	216	317 ± 50	1.58 ± 0.25	92.2
16.8 ± 0.2	201	218	373 ± 50	1.86 ± 0.25	92.2
17.6 ± 0.2	201	219	413 ± 50	2.06 ± 0.25	92.9
21.8 ± 0.2	197.5	219	536 ± 50	2.71 ± 0.25	92.8
24.4 ± 0.2	201.5	225	586 ± 50	2.91 ± 0.25	92.9
8.3 ± 0.1	300	302	320 ± 50	1.07 ± 0.17	11.3
11.2 ± 0.1	301	318	412 ± 50	1.37 ± 0.17	95.3
12.6 ± 0.1	298	317	450 ± 50	1.51 ± 0.17	93.3
15.1 ± 0.1	298	321	556 ± 50	1.87 ± 0.17	98.3
17.0 ± 0.1	300	325.5	669 ± 51	2.23 ± 0.17	92.4
17.8 ± 0.2	301	328	729 ± 51	2.41 ± 0.17	93.7
22.4 ± 0.2	301	334.5	761 ± 51	2.53 ± 0.17	93.6
24.3 ± 0.2	300	336.6	947 ± 51	3.16 ± 0.17	95.5
8.5 ± 0.1	450	458	490 ± 50	1.09 ± 0.11	12.4
11.3 ± 0.1	451	478	704 ± 51	1.56 ± 0.11	96.1
12.6 ± 0.1	450	478	763 ± 51	1.70 ± 0.11	93.3
16.1 ± 0.1	451	487	1078 ± 52	2.39 ± 0.12	92.0
18.3 ± 0.1	451	491	1300 ± 53	2.88 ± 0.12	91.7
22.4 ± 0.2	451	502	1462 ± 54	3.24 ± 0.12	93.8
6.9 ± 0.1	601	608	657 ± 51	1.09 ± 0.09	7.9
8.1 ± 0.1	598	604	638 ± 51	1.07 ± 0.09	3.5
11.0 ± 0.1	602	636	986 ± 52	1.64 ± 0.09	94.2
12.8 ± 0.1	59 9	637	1135 ± 53	1.89 ± 0.09	93.1
16.2 ± 0.2	596	644	1617 ± 55	2.71 ± 0.09	92.0
$22.8 \pm 0.2 =$	\$ 598	668	2286 ± 59	3.82 ± 0.10	99.1 *
6.5 ± 0.1	746	755	797 ± 52	1.07 ± 0.07	6.8
8.1 ± 0.1	749	757.5	850 ± 52	1.14 ± 0.07	11.3
12.6 ± 0.1	751	799	1535 ± 55	2.04 ± 0.07	94.2
15.9 ± 0.2	751	812	2247 ± 59	2.00 ± 0.08	96.9
$22.3 \pm 0.2 = 7$	* 751.5	840	3138 ± 67	4.23 ± 0.09	99.2 *

Tab.7.28 Explosion von Ozon/Argon-Gemischen in einem $500 \times 20 \text{ mm Rohr}$

X ₀₃ [%]	p _o [hPa]	p _{end} [hPa]	p _{max} [hPa]	p _{max} /p _o	Y(-0 ₃)[%]
			· · · · · · · · · · · · · · · · · · ·		
6.6 ± 0.1	450	453	450 ± 25	1.00 ± 0.00	16.1
7.2 ± 0.1	449	452	454 ± 25	1.01 ± 0.06	15.2
7.3 ± 0.1	450	455	512 ± 25	1.14 ± 0.06	29.3
7.7 ± 0.1	448	461	721 ± 26	1.61 ± 0.06	68.6
8.0 ± 0.1	450	468	904 ± 27	2.01 ± 0.06	96.2
8.3 ± 0.1	449	468	913 ± 27	2.03 ± 0.06	96.8
8.9 ± 0.1	448	469	974 ± 27	2.17 ± 0.06	97.4
9.1 ± 0.1	448	469	984 ± 28	2.20 ± 0.06	97.8
10.3 ± 0.1	448	472	1149 ± 29	2.56 ± 0.07	98.5
11.8 ± 0.1	450	478	1388 ± 31	3.08 ± 0.07	98.4
13.4 ± 0.1	448	479	1572 ± 32	3.51 ± 0.08	99.1
14.4 ± 0.1	447	480	1695 ± 33	3.79 ± 0.08	99.0
15.4 ± 0.2 *	448	483	1871 ± 35	4.18 ± 0.08	99.1 *
15.6 ± 0.2 *	449	485	1851 ± 35	4.12 ± 0.08	99.0 *
$15.6 \pm 0.2 *$	447	484	2045 ± 37	4.58 ± 0.09	99.7 *
15.9 ± 0.2 *	448	485	2247 ± 39	5.02 ± 0.09	99.9 *
16.1 ± 0.2 *	449	486	2181 ± 38	4.86 ± 0.09	99.7 *
17.2 + 0.2 *	449	469	2563 + 43	5.71 ± 0.10	99.9 *

Tab.7.29	Explosion von Ozon/Krypton-Gemischen in einem	
	500 × 50 mm Rohr	

•

X ₀₃ [%]	p _o [hPa]	^p end ^[hPa]	p _{max} [hPa]	p _{max} /p _o	Y(-0 ₃)[%]
14.9 ± 0.3 *	114	122	351 ± 23	3.08 ± 0.21	97.7 *
11.1 ± 0.1	226	238	566 ± 24	2.51 ± 0.11	99.1
12 8 ± 0.2	231	247	674 ± 25	2.92 ± 0.11	97.9
15.5 ± 0.2 *	226	244	834 ± 26	3.69 ± 0.12	99.3 *
$16.0 \pm 0.2 *$	226	245	870 ± 26	3.85 ± 0.12	99.4 *
6.3 ± 0.1	446	452	451 ± 25	1.01 ± 0.06	23.2
6.9 ± 0.1	450	453	481 ± 25	1.07 ± 0.06	19.7
7.1 ± 0.1	449	454	511 ± 25	1.14 ± 0.06	29.4
7.2 ± 0.1	450	454	502 ± 25	1.11 ± 0.06	27.7
7.6 ± 0.1	450	458	600 ± 25	1.33 ± 0.06	47.4
7.8 ± 0.1	450	461	687 ± 26	1.53 ± 0.06	63.3
8.2 ± 0.1	450	467	929 ± 27	2.07 ± 0.06	92.8
8.4 ± 0.1	450	469	1007 ± 28	2.24 ± 0.06	98.5
8.6 ± 0.1	450	469	1017 ± 28	2.26 ± 0.06	97.3
9.0 ± 0.1	450	470	1063 ± 28	2.36 ± 0.06	98.4
9.1 ± 0.1	450	471	1063 ± 28	2.36 ± 0.06	98.8
9.3 ± 0.1	448	469	1056 ± 28	2.36 ± 0.06	98.1
9.6 ± 0.1	449	471	1135 ± 29	2.53 ± 0.07	98.7
10.6 ± 0.1	449	472	1222 ± 29	2.72 ± 0.07	99.3
11.4 ± 0.1	450	476	1378 ± 30	3.06 ± 0.07	98.8
11.5 ± 0.1	449	480	1398 ± 31	3.11 ± 0.07	98.9
12.7 ± 0.1	452	482	1540 ± 32	3.41 ± 0.07	99.0
12.8 ± 0.1	450	479	1574 ± 32	3.50 ± 0.07	99.5
13.7 ± 0.1	451	483	1771 ± 34	3.93 ± 0.08	99.2
$14.3 \pm 0.1 *$	450	483	1842 ± 35	4.09 ± 0.08	99.3 *
$14.9 \pm 0.2 *$	449	484	2222 ± 39	4.95 ± 0.09	99.8 *
$15.3 \pm 0.2 *$	450	485	2316 ± 40	5.15 ± 0.09	99.8 *
$16.1 \pm 0.1 *$	449	486	2573 ± 43	5.73 ± 0.10	99.9 *
$16.3 \pm 0.2 *$	448	486	2613 ± 43	5.83 ± 0.10	99.9 *
$17.0 \pm 0.2 *$	450	490	2837 ± 46	6.30 ± 0.11	99.9 *
$17.0 \pm 0.2 *$	450	489	2832 ± 46^{1}	6.29 ± 0.11 7 86 ± 0.11	99.8 * 99.8 *
18.2 ± 0.2 *	449.5	490	3044 ± 51 ¹ 4212 ± 51 ³	6.77 ± 0.12 9.37 ± 0.12	100.0 * 100.0 *

Tab.7.30 Explosion von Ozon/Xenon-Gemischen in einem $500 \times 50 \text{ mm Rohr}$

1> gemessen mit Spitzenwertspeicher 2> gemessen mit Oszilloskop 3> gemessen mit Transientenrekorder

X ₀₃ [%]	p _o [hPa]	p _{end} [hPa]	p _{max} [hPa]	p _{max} /p _o	Y(-0 ₃)[%]
9.3 ± 0.2	184	192	255 ± 50	1.38 ± 0.27	94.4
9.4 ± 0.2	199	208.5	290 ± 50	1.46 ± 0.25	95.7
11.0 ± 0.2	202	213	354 ± 50	1.75 ± 0.25	98.6
11.4 ± 0.2	202.5	214	374 ± 50	1.85 ± 0.25	96.9
15.4 ± 0.2	203	219	584 ± 10	2.88 ± 0.05	97.0
15.5 ± 0.2	198	213.5	564 ± 11	2.85 ± 0.05	97.7
18.0 ± 0.2	199	217	668 ± 11	3.36 ± 0.06	97.4
5.5 ± 0.1	301.5	304	322 ± 50	1.07 ± 0.17	8.0
9.6 ± 0.1	300	314	502 ± 50	1.67 ± 0.17	96.4
11.4 ± 0.1	302	320	626 ± 51	2.07 ± 0.17	96.1
11.4 ± 0.1	301	319	614 ± 51	2.04 ± 0.17	96.1
11.7 ± 0.1	302	320	658 ± 12	2.18 ± 0.04	97.1
11.9 ± 0.1	305	323	686 ± 12	2.25 ± 0.04	96.7
15.7 ± 0.1	299	323	990 ± 16	3.31 ± 0.05	97.2
$15.9 \pm 0.2 *$	300	324	993 ± 17	3.31 ± 0.06	97.1 *
16.6 ± 0.2	302	327	1043 ± 18	3.45 ± 0.06	97.8
$22.4 \pm 0.2 *$	302	335.5	1323 ± 53	4.38 ± 0.18	98.6 *
9.1 ± 0.1	450	470	775 ± 19	1.72 ± 0.04	98.6
9.3 ± 0.1	449	469	805 ± 19	1.79 ± 0.05	97.9
12.7 ± 0.1	450.5	478	1182 ± 23	2.62 ± 0.05	97.5
14.3 ± 0.1	450	482	1446 ± 25	3.21 ± 0.06	98.7
$18.3 \pm 0.4 *$	452.5	493	1957 ± 31	4.32 ± 0.07	98.1 *
$21.0 \pm 0.2 *$	450	497	2696 ± 40	5.99 ± 0.10	99.8 *
$27.8 \pm 0.4 *$	454	536	3757 ± 54	8.28 ± 0.13	99.9 *
5.7 ± 0.1	599	604	650 ± 51	1.08 ± 0.09	19.2
9.9 ± 0.1	599	629	1220 ± 53	2.04 ± 0.09	97.3
11.8 ± 0.1	604	640	1676 ± 55	2.77 ± 0.09	97.8
12.3 ± 0.2	600	637	1672 ± 55	2.79 ± 0.09	97.2
$17.0 \pm 0.2 *$	598	651	3500 ± 69	5.85 ± 0.12	99.6 *
18.0 ± 0.2	598	651	2521 ±120	4.32 ± 0.20	99.6

Tab.7.31 Explosion von Ozon/Xenon-Gemischen in einem 500 × 35 mm Rohr

X ₀₃ [%]	p _o [hPa]	p _{end} [hPa]	p _{max} [hPa]	p _{max} /p _o	Y(-0 ₃)[%]
11.3 ± 0.2	197	209	258 ± 50	1.31 ± 0.25	95.0
11.5 ± 0.2	201	213	299 ± 10	1.49 ± 0.05	95.6
11.6 ± 0.2	202	214	294 ± 9	1.46 ± 0.05	95.6
15.4 ± 0.2	200	216	391 ± 10	1.95 ± 0.05	95.5
18.7 ± 0.2	202	219.5	495 ± 14	2.45 ± 0.25	93.5
8.5 ± 0.1	297.5	301	348 ± 50	1.17 ± 0.17	16.0
11.7 ± 0.1	301	317	453 ± 50	1.50 ± 0.17	95.5
11.7 ± 0.1	302	320	464 ± 50	1.54 ± 0.17	94.8
15.5 ± 0.2	300	323	676 ± 14	2.25 ± 0.05	98.7
19.2 ± 0.2	305	334	691 ± 36	2.27 ± 0.05	94.8
8.1 ± 0.1	452	461	493 ± 17	1.09 ± 0.04	53.1
8.4 ± 0.1	449	461	530 ± 18	1.18 ± 0.04	56.1
13.3 ± 0.1	451.5	481	833 ± 20	1.84 ± 0.05	96.0
15.8 ± 0.1	454	488	1074 ± 22	2.37 ± 0.05	94.6
19.7 ± 0.2	450	493	1100 ± 22	2.45 ± 0.05	95.6
$21.6 \pm 0.2 *$	451	496	1305 ± 24	2.89 ± 0.06	95.3 *
7.3 ± 0.1	601	611	692 ± 51	1.15 ± 0.09	30.7
12.1 ± 0.1	602.5	638	1117 ± 30	1.85 ± 0.04	94.6
15.9 ± 0.2 *	599	646	1755 ± 30	2.93 ± 0.05	91.5 *
19.3 ± 0.2 *	599	656	2217 ± 38	3.70 ± 0.06	91.0 *
8.7 ± 0.1	747	782	1162 ± 22	1.56 ± 0.07	90.2
10.4 ± 0.1	748	784	1230 ± 22	1.64 ± 0.07	94.1
12.9 ± 0.2	747	794	1575 ± 28	2.11 ± 0.07	95.1
15.3 ± 0.2	749	806	2194 ± 37	2.93 ± 0.08	91.8
16.0 ± 0.2	751	808.5	2247 ± 60	3.01 ± 0.08	91.7
18.7 ± 0.2	746	816	2303 ± 60	3.09 ± 0.09	93.7

Tab.7.32	Explosion von Ozon/Xenon-Gemischen in einem
	500 × 20 mm Rohr

Tab.7.33 Explosion von Ozon/Xenon-Gemischen in einem 1000 × 50 mm Rohr

X ₀₃ [%]	p _o [hPa] p	end ^[hPa]	p _{max} [hPa]	p _{max} /p _o	Y(-0 ₃)[%]
13.5 ± 0.1	416.5	443	1152 ± 22	2.77 ± 0.06	99.7
14.1 ± 0.1	416	443	1172 ± 22	2.82 ± 0.06	99.6
15.8 ± 0.1	366	394	1192 ± 23	3.26 ± 0.06	97.7
16.9 ± 0.1 18.2 ± 0.2	380 380	411 414	1451 ± 25 1293 ± 23	3.82 ± 0.07 3.40 ± 0.26	95.4 95.2

X ₀₃ [%]	p _o [hPa]	^p end ^[hPa]	p _{max} [hPa]	p _{max} /p _o	Y(-0 ₃)[%]
6.4 ± 0.1	447	454	630 ± 21	1.41 ± 0.05	68.2
7.0 ± 0.1	449	454	645 ± 21	1.44 ± 0.05	64.8
7.1 ± 0.1	449	457	1255 ± 42	2.80 ± 0.10	98.2
8.4 ± 0.2	251	256.5	1061 ± 32	4.23 ± 0.13	98.0
9.1 ± 0.1	302	310	1478 ± 53	4.89 ± 0.18	98.5
10.0 ± 0.2	288	298	1517 ± 46 *	5.27 ± 0.16	97.4 *
11.4 ± 0.1	300	310	1544 ± 55 *	5.15 ± 0.19	94.6 *
12.1 ± 0.1	280	291	1524 ± 55 *	5.44 ± 0.20	97.8 *

Tab.7.34 Explosion von Ozon/Argon/Kohlenmomoxid-Gemischen in einer Kugel von 124 mm Durchmesser

Tab.7.35 Explosion von Ozon/Argon/Methan-Gemischen in einer Kugel von 124 mm Durchmesser

X ₀₃ [%]	p _o [hPa]	p _{end} [hPa]	p _{max} [hPa]	p _{max} /p _o	Y(-0 ₃)[%]
2.7 ± 0.1	422	425	458 ± 5	1.09 ± 0.04	50.4
4.7 ± 0.1	437	444	525 ± 10	1.20 ± 0.05	70.4
5.1 ± 0.1	437	446	760 ± 34	1.74 ± 0.08	80.1
5.3 ± 0.1	442	453	925 ± 33	$2 09 \pm 0.07$	92.2
5.6 ± 0.1	448	461.5	1094 ± 33	2.44 ± 0.07	98.0
5.6 ± 0.1	410	422	1050 ± 18	2.56 ± 0.05	98.2
7.2 ± 0.1	226	234.5	775 ± 14	3.43 ± 0.06	98.0
7.5 ± 0.1	451	468	1790 ± 29	3.97 ± 0.07	98.3
9.6 ± 0.1	444	465	2126 ± 38 *	4.79 ± 0.09	98.7 *

Tab.7.36 Explosion von Ozon/Argon/Stickstoffdioxid-Gemischen in einer Kugel von 124 mm Durchmesser

X ₀₃ [%]	p _o [hPa] p	end ^[hPa]	p _{max} [hPa]	p _{max} /p _o	Y(-0 ₃)[%]
2.4 ± 0.1	446	450	486 ± 5	1.09 ± 0.01	68.5
3.8 ± 0.1	450.5	454	506 ± 10	1.12 ± 0.02	72.0
4.0 ± 0.1	449	456	530 ± 20	1.18 ± 0.05	76.8
5.5 ± 0.1	428	440	710 ± 20	1.66 ± 0.05	99.5
6.4 ± 0.1	442	457	920 ± 20	2.08 ± 0.05	100.0
7.0 ± 0.1	417.5	435	1005 ± 20	2.41 ± 0.05	99.3
8.1 ± 0.1	446	468	1342 ± 28	3.01 ± 0.06	100.0
8.4 ± 0.1	438	459	1345 ± 26	3.07 ± 0.06	99.8
10.7 ± 0.1	452	480	1773 ± 29 *	3.92 ± 0.07	100.8 *
11.6 ± 0.1	454	485	1881 ± 35 *	4.14 ± 0.08	100.0 *

Tab.7.37 Detonation von Ozon/Sauerstoff-Gemischen gezündet mit ca.400 hPa Knallgas

X ₀₃ [%]	p _o [hPa] Y(-O	3)[%] D ₁ [m/s]	D ₂ [m/s]
$7.3 \pm 0.1 \\ 14.9 \pm 1.2 \\ 16.6 \pm 1.2 \\ 19.8 \pm 1.2 \\ 20.8 \pm 1.3 \\ 21.1 \pm 1.3$	400.6 403.8 9 403.4 9 402.8 9 402.0 9 404.2 9	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Tab.7.38 Detonation von Ozon/Argon-Gemischen gezündet mit ca.400 hPa Knallgas

X ₀₃ [%]	p _o [hPa] Y(-0)3)[%]	D ₁	[m/	s]	D 2	[m,	/s]
6.1 ± 0.1	399.6	99.3	909	±	58	909	±	58
7.2 ± 0.1	399.2	2.1	449	±	14	400	±	11
9.9 ± 0.1	400.6 9	99.6	1053	±	78	1053	±	78
12.4 ± 0.1	400.2 9	9.6	1143	±	92	1177	±	98
13.2 ± 0.1	400.9 9	9.5	1177	±	98	1177	±	98
17.3 ± 0.1	399.9 9	99.6	1212	±	104	1212	±	104
21.3 ± 0.2	402.0 9	9.6	1333	±	126	1333	±	126
22.3 ± 0.2	402.5 9	99.6	1333	±	126	1333	±	126

Tab.7.39 Detonation von Ozon/Krypton-Gemischen

gezündet mit ca.400 hPa Knallgas

X ₀₃ [%]	p _o [hPa] Y	(-03)[%]	D ₁ [m	/s]	D ₂ [m/	s]
5.5 ± 0.1	399.9	99.2	625 ±	28	615 ±	27
5.7 ± 0.1	400.2	99.2	625 ±	55	351 ±	17
6.8 ± 0.1	399.3	99.3	667 ±	31	667 ±	31
12.6 ± 0.1	399.7	99.5	755 ±	40	784 ±	44
12.9 ± 0.1	400.1	99.8	833 ±	98	800 ±	91
13.6 ± 0.1	400.2	99.5	816 ±	47	851 ±	51
15.1 ± 0.1	401.3	99.6	889 ±	56	870 ±	54
16.3 ± 1.2	401.6	99.5	930 ±	61	930 ±	61
21.9 ± 1.2	403.3	99.8	1026 ±	74	1026 ±	74

X ₀₃ [%]	p _o [hPa]	p _k [hPa]	Y[-0 ₃)[%]	D ₁ [m/s]	D ₂ [m/s]
4.5 ± 0.1	389.1	400	99.5	455 ± 6	263 ± 2
6.2 ± 0.1	396.7	400	5.0	278 ± 2	230 ± 2
7.2 ± 0.1	399.3	400	99.5	548 ± 21	556 ± 22
7.2 ± 0.1	391.8	400	99.8	546 ± 8	562 ± 9
8.3 ± 0.1	400.3	400	99.5	571 ± 46	588 ± 49
8.5 ± 0.1	400.6	400	99.5	588 ± 25	580 ± 24
8.5 ± 0.1	387.0	400	99.8	588 ± 25	588 ± 25
8.7 ± 0.1	392.5	400	99.8	575 ± 9	588 ± 10
9.0 ± 0.1	400.2	400	99.5	606 ± 52	606 ± 52
9.3 ± 0.1	400.1	400	99.3	602 ± 10	571 ± 9
9.6 ± 0.1	399.7	400	99.8	625 ± 11	602 ± 10
10.6 ± 0.1	400.3	400	99.6	645 ± 59	667 ± 63
10.6 ± 0.1	254.3	400	99.4	635 ± 29	635 ± 29
10.7 ± 0.1	401.5	400	99.8	645 ± 59	645 ± 59
11.1 ± 0.1	306.1	300	1.7	270 ± 5	224 ± 4
11.3 ± 0.1	400.3	400	99.8	645 ± 59	667 ± 63
11.3 ± 0.1	398.5	400	99.6	656 ± 30	645 ± 29
12.8 ± 0.1	398.9	400	99.6	678 ± 33	667 ± 31
12.8 ± 0.1	399.5	400	99.7	685 ± 13	662 ± 12
13.4 ± 0.1	388.0	400	99.8	702 ± 35	702 ± 35
14.4 ± 0.1	220.3	250	3.0	nicht	registriert
14.5 ± 0.1	401.3	400	99.7	727 ± 37	727 ± 37
14.6 ± 0.1	389.3	400	99.9	709 ± 14	704 ± 14
15.6 ± 0.1	393.1	400	99.6	735 ± 15	758 ± 16
16.6 ± 0.1	400.8	400	99.6	702 ± 35	678 ± 33
17.1 ± 0.1	397.1	400	99.5	727 ± 37	784 ± 44
17.2 ± 0.2	203.0	250	99.3	276 ± 5	191 ± 3
18.4 ± 0.1	400.8	400	99.9	769 ± 84	769 ± 84
18.5 ± 0.1	402.2	400	99.7	784 ± 44	784 ± 44
19.8 ± 0.1	245.7	400	99.7	816 ± 47	784 ± 44
20.2 ± 0.2	255.4	400	99.9	784 ± 44	784 ± 44
20.9 ± 0.2	394.5	400	99.8	787 ± 18	794 ± 18
21.5 ± 0.2	401.1	400	99.7	851 ± 51	851 ± 51
24.0 ± 0.2	247.6	400	99.4	853 ± 49	851 ± 51
28.5 ± 0.2	175.4	250	99.5	909 ± 58	889 ± 56
29.3 ± 0.2	191.1	250	99.6	909 ± 58	889 ± 56
40.4 ± 0.5	197.6	300	99.5	1053 ± 78	1026 ± 74
42.2 ± 0.5	198.1	300	99.6	1081 ± 83	1053 ± 78
51.0 ± 0.6	154.8	250	99.6	1177 ± 98	1177 ± 98

Tab.7.40	Detonation von Ozon/Xenon-Gemischen
	bei unterschiedlichem Knallgasdruck $\mathbf{p}_{\mathbf{k}}$

X ₀₃ [%]	p _o [hPa]	Y(-0 ₃)[%]	D ₁ [m/s]	D ₂ [m/s]
5.8 ± 0.1	381.2	99.6	541 ± 21	526 ± 20
10.7 ± 0.1	387.8	99.6	687 ± 33	702 ± 35
13.6 ± 0.1	396.4	99.7	741 ± 39	769 ± 42
16.8 ± 0.1	391.6	99.9	769 ± 42	784 ± 44

Tab.7.41 Detonation von Ozon/Xenon/Kohlenmonoxid-Gemischen gezündet mit ca.400 hPa Knallgas

Tab.7.42 Detonation von Ozon/Xenon/Methan-Gemischen gezündet mit ca.400 hPa Knallgas

X ₀₃ [%]	p ₀ [hPa] Y(-0 ₃)[%] D ₁ [m/s]	D ₂ [m/s]
$2.8 \pm 0.1 \\ 5.7 \pm 0.1 \\ 6.9 \pm 0.1 \\ 8.8 \pm 0.1 \\ 9.8 \pm 0.1 \\ 10.7 \pm 0.1 \\ 12.2 \pm 0.1 \\ 12.2 \pm 0.1 \\ 12.2 \pm 0.1 \\ 13.2 \pm 0.1 \\ 14.2 \pm 0$	398.0 45.9 396.6 99.6 399.3 99.7 397.8 99.8 397.1 99.8 198.6 99.2 228.2 20.6	370 ± 10 656 ± 30 678 ± 33 702 ± 35 727 ± 37 714 ± 36 800 ± 65	$244 \pm 4645 \pm 29678 \pm 33690 \pm 34714 \pm 36702 \pm 35784 \pm 44$

Tab.7.43 Detonation von Ozon/Xenon/Stickstoffdioxid-Gemischen gezündet mit ca.400 hPa Knallgas

Х _{Оз}	[%]	p _o [hPa]	Y(-0 ₃)[%]] D ₁	[m/s]	D2	[m,	/s]
4.3 :	± 0.1	334.0	26.1	325	± 8	242	±	4
6.8 :	± 0.1	402.0	99.7	533	± 20	290	±	6
8.8 :	± 0.1	391.7	99.8	597	± 25	606	±	26
9.1 :	± 0.1	402.2	99.8	606	± 26	615	±	27
13.6 :	± 0.1	399.0	100.0	678	± 33	690	±	34

Tab.7.44 Detonation von Ozon/Xenon-Gemischen in einem Rohr mit einer 10 cm langen Füllkörperpackung gezündet mit ca.400 hPa Knallgas

X ₀₃ [%]	p _o [hPa]	Y(-0 ₃)[%]	D ₁ [m/s]	D ₂ [m/s]	D ₃ [m/s]
14.8 ± 0.1	361.6	75.4	727 ± 26	0	0
15.9 ± 0.1	398.2	98.0	721 ± 26	190 ± 51	192 ± 4
17.5 ± 0.1	390.4	72.4	769 ± 30	308 ± 134	189 ± 4
19.3 ± 0.1	386.4	98.8	792 ± 31	444 ± 279	205 ± 4
21.3 ± 0.2	393.1	99.7	800 ± 32	571 ± 461	206 ± 4
23.5 ± 0.3	400.0	99.3	879 ± 39	500 ± 354	879 ± 55
28.0 ± 0.3	402.0	99.4	899 ± 40	571 ± 461	909 ± 58

Tab.7.45 Detonation von Ozon/Xenon-Gemischen

in einem Rohr mit einer 50 cm langen Füllkörperpackung gezündet mit ca.400 hPa Knallgas

X ₀₃ [%]	p _o [hPa]	Y(-0 ₃)[%]	D ₁ [m/s]	D ₂ [m/s]	D ₃ [m/s]
12.7 ± 0.1	395.8	58.6	702 ± 25	0	0
15.6 ± 0.1	395.8	99.6	755 ± 29	392 ± 43	199 ± 4
16.2 ± 0.1	343.0	99.5	734 ± 27	323 ± 30	199 ± 4
16.6 ± 0.1	395.4	99.6	748 ± 28	0	0
18.5 ± 0.1	400.7	99.5	762 ± 29	345 ± 34	204 ± 4
18.9 ± 0.1	378.8	99.5	762 ± 29	476 ± 64	199 ± 4
19.9 ± 1.5	375.0	99.6	755 ± 29	392 ± 53	755 ± 40
20.7 ± 0.2	402.7	99.6	808 ± 33	606 ± 103	205 ± 4
21.1 ± 0.2	401.5	99.6	825 ± 34	606 ± 103	207 ± 4
22.5 ± 0.3	376.9	99.6	833 ± 35	588 ± 120	829 ± 59

7.6 Berechnung der nicht-adiabatischen Explosion verschiedener Ozon/Trägergas-Systeme

ξ	p/p₀	T _u [K]	T _{af} [K]	$v_0[cm/s]$	d[cm]
<pre> ≈ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 </pre>	1.00 1.51 2.02 2.54 3.05 3.56 4.07 4.58 5.10 5.61	300 351 392 427 458 486 511 535 557 577	1129 1173 1208 1237 1264 1287 1307 1327 1327 1345 1361	33.7 51.2 68.9 87.6 107.2 127.4 148.2 170.9 193.9 217.6	$\begin{array}{c} 0.278 \\ 0.158 \\ 0.106 \\ 0.078 \\ 0.061 \\ 0.049 \\ 0.042 \\ 0.036 \\ 0.031 \\ 0.029 \end{array}$
1.0	0.12	597	13/8	244.5	0.027

Tab.7.46 Adiabatische Explosion eines Ozon/Argon-Gemisches

 $X_{0_3} = 15 \text{ Mol-\%}, T_0 = 300 \text{ K}, p_0 = 0.45 \text{ bar}$

Tab.7.47 Adiabatische Explosion eines Ozon/Krypton-Gemisches

 $X_{0_3} = 15 \text{ Mol-\%}, T_0 = 300 \text{ K}, p_0 = 0.45 \text{ bar}$

ξ	p/p₀	T _u [K]	T _{af} [K]	V₀[cm/s]	d[cm]
≃ 0	1.00	300	1131	25.4	0.278
0.1	1.51	351	1177	38.9	0.156
0.2	2.02	392	1212	52.6	0.104
0.3	2.54	427	1241	67.1	0.076
0.4	3.05	458	1267	82.2	0.059
0.5	3.56	486	1290	98.2	0.047
0.6	4.07	511	1310	114.4	0.040
0.7	4.58	535	1330	132.2	0.034
0.8	5.10	557	1348	150.6	0.030
0.9	5.61	577	1365	169.4	0.028
1.0	6.12	597	~ ~		

Tab.7.48 Adiabatische Explosion eines Ozon/Xenon-Gemisches

 $X_{0_3} = 15$ Mol-%, $T_0 = 300$ K, $p_0 = 0.45$ bar

ξ	p/po	T _u [K]	T _{af} [K]	$v_0[cm/s]$	d[cm]
≃ 0	1.00	300	1132	20.7	0.273
0.1	1.51	351	1176	33.6	0.145
0.2	2.02	392	1211	45.7	0.096
0.3	2.54	427	1241	58.4	0.070
0.4	3.05	458	1266	71.7	0.054
0.5	3.56	486	1289	85.8	0.044
0.6	4.07	511	1309	100.2	0.036
0.7	4.58	535	1329	115.9	0.031
0.8	5.10	557	1046	132.2	0.028
0.9	5.61	577	1363	149.0	0.025
1.0	6.12	597	-		

Tab.7.49 Nicht-adiabatische Explosion eines Ozon/Argon-Gemisches

 $X_{0_3} = 15 \text{ Mol-\%}, T_0 = 300 \text{ K}, p_0 = 0.45 \text{ bar,} d = 50 \text{ mm}, \ell = 500 \text{ mm}$

ξ	Δτ[%]	T _f [K]	T _u [K]	p/po	v[cm/s]
0		1129	300	1.00	33.7
0.1	3.6	1173	351	1.51	51.2
0.2		1175	354	1.55	52.2
0.3	3.2	1181	361	1.63	55.0
0.4	2.6	1192	372	1.76	59.8
0.5	$1.9\\1.3$	1206	391	2.01	68.5
0.6		1224	411	2.29	78.6
0.7	0.8	1244	434	2.64	91.7
0.8	0.5	1264	458	3.05	107.2
0.9	0.34	1284	482	3.49	124.5
1.0	0.44	1301	503	3.90	141.0

Tab.7.50 Nicht-adiabatische Explosion eines Ozon/Krypton-Gemisches $X_{0_3} = 15$ Mol-%, $T_0 = 300$ K, $p_0 = 0.45$ bar, d = 50 mm, $\ell = 500$ mm

ξ	Δτ[%]	T _f [K]	T _u [K]	p/po	v[cm/s]
0	-	1131	300	1.00	25.4
0.2	3.4	1182	357	1.58	40.7
0.3	2.8 21	1191 1204	367 381	$\begin{array}{c}1.70\\1.88\end{array}$	43.8 48 5
0.5	1.5	1219	400	2.13	55.6
0.6 0.7	1.0 0.6	1237 1257	422 446	2.46 2.84	64.7 76.5
0.8	6.4	1277	470	3.26	89.0
1.0	0.4	1311	512	4.09	115.1

Tab.7.51 Nicht-adiabatische Explosion eines Ozon/Xenon-Gemisches $X_{0_3} = 15$ Mol-%, $T_0 = 300$ K, $p_0 = 0.45$ bar, d = 50 mm, $\ell = 500$ mm

ξ	Δτ[%]	T _f [K]	T _u [K]	p/p₀	v[cm/s]
0		1132	300	1 00	20 7
0.1	-	1176	351	1.51	33.6
0.2	3.1	1183	360	1.62	35.8
0.3	2.4	1195	372	1.76	39.3
0.4	1.7	1209	390	2.00	45.1
0.5	1.2	1227	412	2.31	52.8
0.6	0.7	1247	436	2.68	61.8
0.7	0.5	1267	460	3.08	72.4
0.8	0.3	1287	484	3.52	85.0
0.9	0.2	1306	507	3.98	97.9
1.0	0.3	1322	527	4.41	110.2

Tab.7.52 Nicht-adiabatische Explosion eines Ozon/Xenon-Gemisches $X_{0_3} = 15$ Mol-%, $T_0 = 300$ K, $p_0 = 0.23$ bar, d = 50 mm, $\ell = 500$ mm

ξ	Δτ[%]	$T_{f}[K]$	T _u [K]	p/po	v[cm/s]
0	-	1132	300	1.00	20.7
0.1	-	1176	351	1.51	33.6
0.2	6.0	1156	362	1.64	27.2
0.3	5.0	1172	373	1.78	32.2
0.4	3.7	1193	384	1.91	39.0
0.5	2.6	1209	393	2.04	46.0
0.6	1.9	1223	406	2.22	50.6
0.7	1.5	1236	422	2.46	56.5
0.8	1.0	1252	441	2.76	64.0
0.9	0.7	1269	461	3.10	73.0
1.0	1.0	1281	477	3.39	81.0

Tab.7.53 Nicht-adiabatische Explosion eines Ozon/Xenon-Gemisches

Х _{0 з}	=	15	Mo1-%,	Τo	Ξ	300	К,	₽o	Η	0.45	bar,	d =	35	mm,	l	Η	500	mm
------------------	---	----	--------	----	---	-----	----	----	---	------	------	-----	----	-----	---	---	-----	----

ξ	Δτ[%]	T _f [K]	T _u [K]	p/po	v[cm/s]
		4 4 9 9			
0	-	1132	300	1.00	20.7
0.1	-	1176	351	1.51	33.6
0.2	6.3	1154	362	1.64	26.6
0.3	5.2	1170	373	1.78	31.6
0.4	3.9	1191	383	1.91	38.5
0.5	2.8	1208	393	2.04	44.8
0.6	2.1	1222	405	2.20	50.1
0.7	1.6	1234	420	2.43	55.7
0.8	1.1	1251	439	2.73	63.2
0.9	0.8	1267	459	3.07	72.0
1.0	1.0	1279	475	3.35	80.0

Tab.7.54 Nicht-adiabatische Explosion eines Ozon/Xenon-Gemisches $X_{0_3} = 15$ Mol-%, $T_0 = 300$ K, $p_0 = 0.45$ bar, d = 20 mm, $\ell = 500$ mm

ξ	Δτ[%]	T _f [K]	T _u [K]	p/p₀	v[cm/s]
0	-	1131	300	1 00	20.7
0.1	-	1176	351	1.51	33.6
0.2	19.2	1036	360	1.61	14.4
0.3	20.2	1032	368	1.71	14.1
0.4	16.4	1072	376	1.82	16.8
0.5	12.8	1109	385	1.93	19.2
0.6	9.8	1143	393	2.04	23.6
0.7	7.6	1169	402	2.16	31.2
0.8	5.5	1195	411	2.29	39.6
0.9	4.1	1214	419	2.41	47.1
1.0	6.1	1201	427	2.53	42.0

Tab.7.55 Nicht-adiabatische Explosion eines Ozon/Xenon-Gemisches $X_{0_3} = 15$ Mol-%, $T_0 = 300$ K, $p_0 = 0.4$ bar, d = 50 mm, $\ell = 1000$ mm

ξ	Δτ[%]	T _f [K]	T _u [K]	p/po	v[cm/s]
	_	1120	200	1 00	20.7
U	-	1132	300	1.00	20.7
0.1		1176	351	1.51	33.6
0.2	7.0	1147	362	1.62	24.8
0.3	6.0	1163	373	1.77	29.2
0.4	4.4	1184	383	1.90	36.0
0.5	3.2	1203	393	2.03	42.8
0.6	2.4	1218	401	2.15	48.8
0.7	1.9	1229	414	2.34	53.5
0.8	1.4	1243	431	2.60	60.0
0.9	0.9	1260	451	2.93	68.0
1.0	1.3	1270	464	3.15	74.4