KfK 4502 März 1989

Zur Identifikation der Fluiddynamik pulsierter Bodenkolonnen mittels radioaktiver Tracermarkierung

J. J. Porta

Laboratorium für Isotopentechnik Projekt Wiederaufarbeitung und Abfallbehandlung

Kernforschungszentrum Karlsruhe

Kernforschungszentrum Karlsruhe

Laboratorium für Isotopentechnik Projekt Wiederaufarbeitung und Abfallbehandlung

> KfK 4502 PWA 17/89

ZUR IDENTIFIKATION DER FLUIDDYNAMIK PULSIERTER BODENKOLONNEN MITTELS RADIOAKTIVER TRACERMARKIERUNG

Juan Jose Porta

Von der Fakultät Verfahrenstechnik der Universität Stuttgart genehmigte Dissertation

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

Als Manuskript vervielfältigt Für diesen Bericht behalten wir uns alle Rechte vor .

Kernforschungszentrum Karlsruhe GmbH Postfach 3640, 7500 Karlsruhe 1

ISSN 0303-4003

Die vorliegende Arbeit befaßt sich mit der Identifikation des fluiddynamischen Verhaltens pulsierter Bodenkolonnen anhand gemessener Tracerverweilzeitverteilungen. Ein berührungloses radionuklidtechnisches Meßverfahren wird vorgestellt, mit dessen Hilfe sowohl die konvektive Geschwindigkeit und die Vermischungsintensität beider fluiden Phasen, als auch der Dispersphasenanteil in einer technischen Extraktionskolonne bestimmt werden können.

Eine systemtheoretische Behandlung der experimentellen Verweilzeitverteilungssignale zur indirekten Bestimmung der Vermischungsparameter führt zu Integralgleichungen, deren Lösung eine inkorrekt gestellte inverse Aufgabe darstellt. Es wird gezeigt, daß der häufig begangene direkte Weg zur mathematischen Behandlung des Vermischungsproblems mittels Optimierung eines parametrischen Modells zu Interpretationsfehlern führen kann. Zur Lösung der Entfaltungsaufgabe wird eine Methode auf der Basis der schnellen Fouriertransformation vorgestellt. Sie gestattet, zusammen mit einem parameterfreien Test, die Grenzen des häufig zur Auslegung pulsierter Extraktionskolonnen gewählten axialen Dispersionsmodells zu überprüfen. Dieses Modell scheitert bei der Darstellung der beobachteten fluiddynamischen Vorgänge der Dispersphase. Ein alternatives stochastisches Vermischungsmodell wird vorgeschlagen, das die Fluiddynamik beider Phasen gut beschreibt.

Auf der Basis einer statistischen Versuchsplanung werden die Haupt- und Wechselwirkungen der Durchflußmengen, des Phasenverhältnisses, der Hubamplitude und der Pulsationsfrequenz auf die oben genannten fluiddynamischen Größen im Stoffsystem Salpetersäure (3N) / Tributhylphosphat (30%) in Kerosin in Bezug auf zwei in der Wiederaufarbeitung von Kernbrennstoffen vorwiegend eingesetzte Bodengeometrien (Sieb- bzw Düsenbodeneinsätze) analysiert.

Die durchgeführten Messungen zeigen vor allem eine ausgeprägte Wirkung der Bodengeometrie. Außerdem widerlegen sie die Zulässigkeit der allgemein praktizierten Darstellung des Dispersphasenanteiles und der Vermischungsintensität über dem Produkt von Pulsfrequenz und Amplitude als bestimmender Faktor für die Fluiddynamik einer Pulskolonne.

ABSTRACT

On the identification of fluddynamical phenomena in pulsed extraction columns by means of radiotracers

This report discusses the identification of the fluiddynamical behaviour of pulsed extraction columns with the help of experimental residence time distributions (RTD). A radiotracer measuring technique is presented, by means of which the convective fluid velocity and the intensity of mixing in each one of the two fluid phases, as well as the dispersed phase holdup can be determined and monitored on-line without disturbing the process.

A mathematical treatment of the experimental RTD data based on the linear systems theory for the determination of the mixing parameters leads to integral equations whose solution represents an ill-posed problem. The usual approach for the direct solution of the mixing problem by means of the numerical optimization of a parametrical model leads to interpretation errors. The reasons for this are discussed in the present report. An alternative FFT method for the solution of the convolution equation is presented. Through this method, together with a non-parametrical statistical test, it is possible to determine the limitations of frequently used axial dispersion models for the design of pulsed extraction columns. This model fails in the description of the experimentally observed fluiddynamical behaviour of the dispersed phase. An alternative stochastical mixing model is suggested which fits the RTD data of both phases.

On the basis of a statistical design, the main effects and interactions of the total flow rate, phase ratio, pulse amplitude and frequency on the afore mentioned fluiddynamical variables for the 3N HNO_3 / 30% TBP - kerosene system are analyzed with two of the most common plate geometries (sieve and nozzle plates) found in the reprocessing of nuclear fuels.

The experiments show a marked effect of the plate geometry on the analyzed variables. They refute also the admissibility of the generalized practise of representing the dispersed phase holdup and the intensity of mixing depending on the product of pulse amplitude and frequency as a determining factor of the fluid dynamics in a pulsed extraction column.

Inhaltsverzeichnis

Kapitel 1. Problemdarstellung und Zielsetzung Einleitung Betrieb und Auslegung pulsierter Bodenextraktoren Tropfengrößenverteilungen Der Dispersphasenanteil (Holdup) Die Vermischung beider Phasen Zielsetzung der eigenen Arbeit	1 1 3 3 5
Kapitel 2. Mathematische Grundlagen Systemtheoretische Betrachtungen Systemidentifikation durch Lösung der Faltungsgleichung Numerische Signalentfaltung Die Fouriertransformation und der Faltungssatz Die diskrete Fouriertransformation FFT-Entfaltung	7 10 11 12 13 14
Kapitel 3. Versuchsanlage, Stoffsystem und Meßtechnik Die Pulskolonne PETRA Das untersuchte Stoffsystem Meßtechnik Traceruntersuchungen Radionuklidtechnik Radiotracertechnik Detektorart und Meßanordnung Markierung der wäßrigen Phase Markierung der organischen Phase Meßwerterfassung und Datenverarbeitung Ermittlung der Tropfengrößenverteilungen	19 19 21 22 23 23 25 26 27 29 30
Kapitel 4. Versuchsplanung und -durchführung Faktorielle Versuchsplanung Grundlagen Vorgehensweise Radiotraceruntersuchungen in der Pulskolonne PETRA	31 31 33 33 34
Kapitel 5. Versuchsauswertung Modulares Softwarekonzept FFT-Entfaltung von Verweilzeitverteilungssignalen Parameterschätzung durch direkte Optimierung Bestandsaufnahme Eigene Methode Äquivalenzkriterien Vermischungsmodelle Das axiale Dispersionsmodell Das lognormale Verteilungsmodell Responsefunktionsanalyse Erläuterung der Ergebnistabellen zur Responsefunktionsanalyse	37 38 41 43 45 46 47 50 51 53
Kapitel 6. Diskussion der Versuchsergebnisse Tropfengrößenverteilungen Dispersphasenanteil (Holdup) Parametereinflüsse auf den Holdup Axiale Holdup-Verteilung Vergleich mit Literaturangaben Vermischungsuntersuchungen	55 55 56 57 59 61 62

 Fluiddynamische Bereiche der Pulskolonne Die Vermischung der Kontiphase Parametersensibilität der Dispersionskoeffizienten Vergleich mit Literaturangaben Die axiale Vermischung der Dispersphase Die Grenzen des Dispersionsmodells Das lognormale Verteilungsgesetz des konvektiven Vermischungsprozesses Parameterabhängigkeiten 	. 62 . 63 . 64 . 68 . 68 . 70 . 74 . 78
Kapitel 7. Zusammenfassung	. 81
ANHANG	. 83
Anhang A. Signalverarbeitung im FourierbereichRaumfrequenzdarstellung eines DatenfeldesZerofilling eines DatenfeldesDie Bewältigung des Rauschproblems	. 85 . 85 . 86 . 87
Anhang B. Auswertung der Siebbodenversuche Organische Dispersphase Entfaltung und Modellvergleich Normierte Versuchseinstellungen und statistische Kennzahlen der Impulsantwort-	. 93 . 93 . 93
verteilungen RSA für den Mittelwert der Impulsantwortverteilungen RSA für die Standardabweichung der Impulsantwortverteilungen RSA für den Variationskoeffizient der Impulsantwortverteilungen Axiale Variationskoeffizienten nach dem lognormalen Modell Wäßrige Kontiphase Entfaltung und Modellvergleich Normierte Versuchseinstellungen und statistische Kennzahlen der Impulsantwort-	100 101 102 103 104 106 106
verteilungen RSA für den Mittelwert der Impulsantwortverteilungen RSA für die Standardabweichung der Impulsantwortverteilungen RSA für den Variationskoeffizient der Impulsantwortverteilungen RSA für Dispersionskoeffizienten RSA für den Hold-up nach der globalen Entfaltung Axiale Holdup-Profile nach dem lognormalen Modell	113 114 115 116 117 118 119
Anhang C. Auswertung der Düsenbodenversuche Organische Dispersphase Entfaltung und Modellvergleich	121 121 121
Normerte Versuchsemstehungen und statistische Kemizahlen der Impulsantwort- verteilungen RSA für den Mittelwert der Impulsantwortverteilungen RSA für die Standardabweichung der Impulsantwortverteilungen RSA für den Variationskoeffizient der Impulsantwortverteilungen Axiale Variationskoeffizienten nach dem lognormalen Modell Wäßrige Kontiphase Entfaltung und Modellvergleich	128 129 130 131 132 134 134
Normierte Versuchseinstellungen und statistische Kennzahlen der Impulsantwort- verteilungen RSA für den Mittelwert der Impulsantwortverteilungen RSA für die Standardabweichung der Impulsantwortverteilungen RSA für den Variationskoeffizient der Impulsantwortverteilungen RSA für den Hold-up nach der globalen Entfaltung Axiale Holdup-Profile nach dem lognormalen Modell	141 142 143 144 145 146 147
Anhang D. Das Programm MODEL	149

Anhang E. Das Programm IDECOD	183
Anhang F. Das Programm FFTKOR	201
Literaturverzeichnis	215

Abbildungsverzeichnis

Abbilduna	1.	Prinzipieller Aufbau und Betriebsbereiche einer Pulskolonne	. 2		
Abbildung	2.	Korrelationen zur Holdup-Bestimmung	. 4		
Abbildung	ldung 3. Die Pulskolonne als Übertragungssystem				
Abbildung	4	Systemidentifikation und Parameterschätzung			
Abbildung	5	5 Die Problematik der Systemidentifikation			
Abbildung	6	6 Division im Fourierbereich			
Abbildung	7 Strukturnlan des Programms IDECOD für EET-Entfaltung				
Abbildung	ing 7. Strukturplan des Programms (DECOD für PPT-Entitationg				
Abbildung	0. Q	9 Untersuchte Redenainbauten			
Abbildung	10	Untersuchte Bodeneinbauten Criptillationadataktar mit Blaikallimatar und dasson Erfassungsboroish			
Abbildung	10.	J. SZINUMATIONSOBTEKTOR MIT BIBIKONIMATOR UND DESSEN ERIASSUNGSDEREIC			
Abbildung	17	Moßwortorfassung und Datonvorarboitung	30		
Abbildung	12.	Orthogonalo Diano für Faktoronvorsucho	32		
Abbildung	10.	Konzontrationadiahtavortailungan baidar Phason	35		
Abbildung	14.	Impulsantworten beider Phasen durch EET-Entfaltung	39		
Abbildung	10.	Impulsantworten zweier Meßetreeken en der Bulskelenne	30		
Abbildung	10.	Überprüfung der Systemlingerität	40		
Abbildung	17.	Oberpfullung der Systemilineartial	-40		
Appliquing	10.	Strukturpian des Programms MODEL zur direkten Lösung des rai-	13		
Abbildung	40		43		
Abbildung	19.	Auswertestrategie für die Parameterschatzung	16		
Applique	20.	Der nichtparametrische Kolmogoroli-Smitholi-Test	40		
Abbildung	21.	Aufgle Verändenung des Kadiotracermenverteilung in der Mischkoloppo	49 56		
	22.	Axiale veranderung der Troptengrobenvertenung in der Mischkolomie	50		
Abbildung	23.	Der Holdup als Funktion von Frequenz und Amplitude	50		
Abbildung	24.	hältnis	59		
Abbildung	25	Der Holdun als Funktion von Durchflußmenge und Phasenverhältnis	60		
Abbildung	26	Der Holdup als Funktion von Ereguenz und Phasenverhältnis	60		
Abbildung	27	Holdup-Vergleich zwischen zwei Meßmethoden	61		
Abbildung	28	Fluiddynamische Vorgänge im oberen Dekanter	62		
Abbildung	29	Die Vermischung der Kontinhase	63		
Abbildung	30	Modellvergleich für die Kontinhase (Kolmogoroff-Smirnoff-Test)	64		
Abbildung	31	Wirkung der Pulsintensität auf die Dispersion der Kontiphase für Sieb-			
ribbildulig	01.	und Düsenbodeneinbauten	65		
Abbildung	32.	Wirkung von Durchflußmenge und Phasenverhältnis auf die Dispersion			
		der Kontiphase	66		
Abbildung	33.	Wirkung der Hubamplitude auf die axiale Verteilung der Dispersions-			
Ū.		koeffizienten für die Kontiphase	67		
Abbildung	34.	Wirkung der Pulsfrequenz auf die axiale Verteilung der Dispersions-			
-		koeffizienten für die Kontiphase	67		
Abbildung	35.	Intensitätsfunktion der Dispersphase	69		
Abbildung	36.	Das Dispersionsmodell bei großen Meßabständen	70		
Abbilduna	37.	Das Dispersionsmodell bei kleinen Meßabständen	71		
Abbildung	38	Modellvergleich für die Disperphase (Kolmogoroff-Smirnoff-Test)	72		
Abbildung	39	Dispersionsmodell mit Totzeit	74		
Abbildung	⊿∩	Das lognormale Vermischungsmodell	76		
Abbildung	40. 11	Wogshbängigkeit der Parameter vom legnermalen Modell	76		
Abbildung	יו ר מא	Konvoktivo und stochastischo Disporsphasonvorgänge	77		
Applique	42. 10	Wirkung der Duleintensität auf die Vermischung der Disperenhase /	79 79		
Appliquing	43.	Wirkung der Pulsintensität auf die Vermischung der Disperspilase (10		
Applidung	44.	wirkung der Gesamtdurchtlußmenge und des Phasenverhaltnisses auf	70		
	· -	die vermischung der Dispersphase (79		
Abbildung	45.	Spektralzerlegung eines Verweilzeitverteilungssignals	80		
Abbildung	46.	FFT-Glättung mittels Spektralfenster (Boxcar) zur Beseitigung von Aus-	00		
		reißern	88		

Abbildung	47.	Das Gibbs'sche Phänomen	89
Abbildung	48.	Digitale Fensterfunktionen zur Spektrumglättung	90

X

Tabellenverzeichnis

Tabelle	1.	Vergleich der notwendigen Multiplikationen für die DFT/FFT Algorithmen	14
Tabelle	2.	Physikochemische Konstanten des untersuchten Stoffsystems	21
Tabelle	3.	Radioisotope zur Markierung der wäßrigen Phase	27
Tabelle	4.	Radiotracerisotope zur Markierung der organischen Phase	28
Tabelle	5.	Stabiler Parameterbereich für die Siebbodenveruche	32
Tabelle	6.	Central Composite Design für 4 Faktoren	33
Tabelle	7.	Programmodule für die Signalverarbeitung	38
Tabelle	8.	"Standardeinstellung" für die Faktorenversuche (Zentraler Punkt im CCD)	52
Tabelle	9.	Axiale Tropfengrößenverteilungen in der Mischkolonne mit Düsenboden	
		(DB) und Siebboden (SB)	55
Tabelle	10.	Axiale Dispersionskoeffizienten der Dispersphase nach einer Zweimeß-	
		stellenmessung	71
Tabelle	11.	Experimentelle Untersuchungen zur axialen Vermischung in Pulskolonnen	73

Symbolverzeichnis und Abkürzungen

а Pulsamplitude A [-] Lineartransformation (z.B. Matrixoperator) A_k เ_ี_2 Kolonnenquerschnittfläche Bö [-] Bodensteinzahl [T-1] C(t) Verweilzeitverteilungsdichte d [L] Durchmesser [L] d₃₂ Sauterdurchmesser [L2T-1] D Dispersionskoeffizient DKS Kolmogoroff-Smirnoff-Schätzer [-] $E[\xi]$ Erwartungswert von ξ ξ [T-1] f Pulsfrequenz F(t) ר-־ Kummulative Verweilzeitverteilung T-17 m(t) Modellgewichtsfunktion $M(\omega)$ ר-Modellfrequenzgang ΓĽ³Τ-1] Q Gesamtdurchfluss ($V_0 + V_a$) R Phasenverhältnis (V_0/V_a) [-] R_{SS} S[ζ] ·-7 **Residual Sum of Squares** Standardabweichung von ξ S²[ξ] Varianz von ξ t Zeit T Τ] t_o Totzeit LT-1] u Lineare Geschwindigkeit [L³T-1] ٧ Volumenstrom x(t)[-] Inputsignal $X(\omega)$ Fouriertransformiertes Inputsignal y(t) Outputsignal Y(ω) Fouriertransformiertes Outputsignal Ζ Axiale Ortskoordinate Ľ٦ Δz Meßebenenabstand ٦L] α_3 Verteilungsschiefe -] 3 Dispersphasenanteil (Holdup) -1 [T-1] λ Intensitätsfunktion [ζ] μ Gewogener Mittelwert von ξ , [ξ] Mittelwert der Lognormalverteilung von ξ , [ML-1T-1] Viskosität [ML-3] Dichte Ψ Responsefunktion [-] ΓT-17 ω Kreisfrequenz, Raumfrequenz [MT-2] Grenzflächenspannung, σ [ξ²] Standardabweichung von ξ , [ξ²Ī Standardabweichung der Lognormalverteilung von ξ σ^2 [ξ2] Varianz von ξ Variationskoeffizient bezüglich der Zeit $\sigma_{\rm m}$ -1 Variationskoeffizient bezüglich der Länge σδ Totzeit der Lognormalverteilung LLJ τ_0

[L]

٤Ź٦

- |

Dimensionen

Indices

- a wäßrig c kontinuierlich d dispers
- o organisch
- k Kolonne
- m gemittelt
- N Düsenboden ("Nozzle")
- S Siebboden

Abkürzungen

FFT Schnelle Fouriertransformation DFT **Diskrete Fouriertransformation** IDFT Inverse diskrete Fouriertransformation PUREX Plutonium and Uranium Recovery by Extraction RSA Response Surface Analyse ST Statistische Behandlung (Treatment) TBP Tributhylphosphat VWZ Verweilzeit VWZV Verweilzeitverteilung

Einleitung

Der niedrige Energieverbrauch und die Möglichkeit der selektiven Abtrennung von Einzelkomponenten aus größeren Flüssigkeitsmischungen ohne Änderung von Aggregatzuständen begünstigen aus technischen und wirtschaftlichen Gründen die Anwendung der Grundoperation Flüssig-Flüssig-Extraktion in der chemischen Industrie.

Ein wichtiges Einsatzgebiet der Solventextraktion ist die Wiederaufarbeitung von Kernbrennstoffen. Die Tatsache, daß die Flüssig-Flüssig-Extraktion weltweit¹ im technischen Maßstab angewandt wird, darf als Beweis der Überlegenheit dieses Stofftrennverfahrens für diese Aufgabe gewertet werden.

Der für die industrielle Rückgewinnung von Uran und Plutonium² aus abgebrannten Brennelementen am häufigsten eingesetzte Apparatetyp ist die pulsierte Bodenkolonne. Sie hat folgende, für diese Aufgabe wichtige Eigenschaften :

- Lange Standzeiten mit wenig Wartungsaufwand
- Bauweise, die eine minimale Abschirmung erlaubt und einen Kritikalitätsstörfall ausschließt
- Einfache Betriebs- und Regelungstechnik
- Modularer Aufbau in Hinblick auf einfaches Ersetzen einzelner Apparateteile
- Flexibilität gegenüber geänderten Prozeßbedingungen
- Guter Wirkungsgrad bezüglich des Stoffaustausches

Diese Arbeit befaßt sich mit Aspekten der Fluiddynamik von pulsierten Bodenkolonnen zum Stoffsystem Salpetersäure (3N) / Tributhylphosphat (30%) in Kerosin, die im industriellen PUREX ("Plutonium and Uranium Recovery by Extraction")³ Prozeß eine Hauptrolle spielen. Darüber hinaus sind die hier behandelten Probleme natürlich generell auch außerhalb der Wiederaufarbeitung von Kernbrennstoffen für Fragen der Anwendung der Solventextraktion von Bedeutung. Unter diesem Gesichtspunkt sollen die hier vorgestellten Überlegungen und Ergebnisse einen nützlichen Beitrag zum Verständnis des Verhaltens ähnlicher Extraktortypen leisten.

Betrieb und Auslegung pulsierter Bodenextraktoren

Der prinzipielle Aufbau besteht aus einem senkrechten Rohr (Abbildung 1 auf Seite 2), durch das zwei nicht miteinander mischbare Flüssigkeiten im Gegenstrom fließen. Geeignete Einbauten und Pulsation zerlegen eine der Flüssigkeiten in Tropfen, während die andere Flüssigkeit als kontinuierliche (zusammenhängende) Phase bestehen bleibt⁴. Normalerweise wird die Flüssigkeit mit dem größeren Volumenstrom dispergiert, um die für die Stoffübertragung notwendige Tauschfläche zu erzeugen. Der funktionelle Betrieb derartiger Kolonnen erfordert das Benetzen der Einbauten sowie der Kolonnenwand durch die kontinuierliche Phase und das Abweisen der dispersen Tropfenphase.

Abbildung 1 auf Seite 2 zeigt die drei Bereiche, in denen der Betrieb einer Pulskolonne prinzipiell möglich ist. Im sogenannten Mixer-Settler-Bereich arbeitet die Kolonne absatzweise: bei kleiner Pulsfrequenz steigen die relativ großen Tropfen schnell auf, sam-

¹ Baumgärtel, G., Huppert, C. und Merz, E.: Brennstoff aus der Asche, W.Girardet, Essen (1984)

Lo, T.Č., Baird, M.H.I. und Hanson, C.: Handbook of Solvent Extraktion, John Wiley & Sons, New York (1983), Kapitel 25
 LORG, LT., English for Nuclear Evel Barrowski (1987)

³ Long, J.T.: Engineering for Nuclear Fuel Reprocessing, Gordon and Breach, New York (1967)

⁴ Der Betrieb einer solchen Pulskolonne wird in "Die Pulskolonne PETRA" auf Seite 19 näher erläutert

meln sich unter den Kolonnenböden und koaleszieren teilweise. Durch Steigerung der Pulsfrequenz oder des Durchsatzes gelangt man in den Dispersionsbereich mit zeitlich und örtlich weitgehend homogener Tropfendichte. Bei einer weitereren Steigerung von Pulsation oder Volumenströmen erreicht man den instabilen Bereich⁵. Dort kommt es bei sehr dichter Tropfenpackung zu örtlicher Tropfenkoaleszenz, die zu großen Ballen disperser Phase und instabilem Kolonnenverhalten führt. Wenn eine Pulskolonne nicht mehr ausschließlich im Gegenstrom arbeitet, spricht man vom Fluten. Eine zusammenfassende Darstellung des gegenwärtigen Kenntnisstandes zum Fluten in pulsierten Bodenkolonnen wird von Miller⁶ gegeben.

Abbildung 1. Prinzipieller Aufbau und Betriebsbereiche einer Pulskolonne

Die erzielbare Trennleistung des pulsierten Bodenextraktors hängt wesentlich von den fluiddynamischen Größen ab. Von diesen die wichtigsten sind Tropfengrößenverteilung, Holdup (Dispersphasenanteil) und Vermischungsverhalten. Strömung und Stoffübergang sind in Gegenstromextraktoren auf komplexe Weise miteinander verknüpft. Die "Mikroströmung" in unmittelbarer Umgebung der Tropfen beeinflußt die Stoffübergangsgeschwindigkeit, ausgedrückt durch die Stoffübergangskoeffizienten. Die "Makroströmung" des Zweiphasensystems ist außer für den Tropfen-Holdup wesentlich für den Vermischungszustand beider Phasen verantwortlich. Die Berechnung der Stoffübergangsleistung muß diesem Phänomen Rechnung tragen.

Trotz erheblicher Anstrengungen in der Forschung ist es bisher nicht gelungen, die theoretischen Grundlagen dieses Stofftrennungsverfahrens so weit zu entwickeln, daß damit eine optimale Auslegung von Extraktionskolonnen möglich ist. Daher müssen die zur Optimierung notwendigen Daten in der Regel experimentell an Pilotextraktoren ermittelt werden. Dazu sind umfangreiche systematische Parameterstudien des entsprechenden Apparates mit dem jeweiligen Extraktionssystem erforderlich. Es bleibt die Frage, ob derartige, aus Laborversuchen gewonnene Berechnungsgleichungen auch zu einer sicheren und wirtschaftlichen Dimensionierung von großtechnischen Apparaten führen.

⁵ Sege, G. und Woodfield, F.W.: Chem.Eng.Prog.Symp.Ser. 50 /13/ (1954) 179

⁶ Miller, H.: KfK Bericht 3771 (1986)

Tropfengrößenverteilungen

Die Fluiddynamik von Extraktionskolonnen wird im wesentlichen von dem Verhalten der dispersen Phase, d.h. dem Verhalten der Tropfen bestimmt. Die bisherigen Konzepte zur Beschreibung des Tropfenverhaltens gehen i.allg. davon aus, daß dieses durch einen geeigneten mittleren Tropfendurchmesser (z.B. dem Sauterdurchmesser) hinreichend genau beschrieben werden kann, wobei die Veränderungen dieses kennzeichnenden Durchmessers durch Tropfenzerfall oder Koaleszenzvorgänge außer Acht gelassen werden. Nur sehr wenige Autoren⁷ haben bei ihren Modellen eine Tropfengrößenverteilung berücksichtigt und den Einfluß auf die axiale Vermischung untersucht. Messungen der Tropfengrößenverteilungen[®] über der Kolonnenhöhe haben eine Veränderung des Tropfenspektrums bei unterschiedlichen Betriebsbedingungen gezeigt, so daß davon auszugehen ist9, daß das Verhalten der dispersen Phase durch einen mittleren Tropfendurchmesser nicht ausreichend gekennzeichnet werden kann. Die Tropfenphase in der Kolonne liegt als Kollektiv großer, mittlerer und kleiner Tropfen vor. Je nach Dichteunterschied gegenüber dem umgebenden, kontinuierlichen Medium ist die mittlere Tropfenbewegung nach unten oder nach oben gerichtet. Pulsation, Kolonnenbodengeometrie, und Tropfenpackungsdichte beeinflussen die Tropfen in ihrer Bewegung. Dabei gehören große Tropfen bevorzugt in die Gruppe höherer Geschwindigkeiten, mittlere zu mittleren und kleine Tropfen zur Gruppe kleinerer Geschwindigkeiten. Diese Geschwindigkeitsunterschiede führen zu unterschiedlichen Verweilzeiten der Tropfenindividuen und verursachen Änderungen in der Zusammensetzung des Tropfenkollektivs in Abhängigkeit von der Kolonnenhöhe.

Der Dispersphasenanteil (Holdup)

Bei der Bewertung gemessener Dispersphasenanteile und deren Abhängigkeit von Betriebsparametern sind sich die meisten Autoren nicht einig. Bauckhage¹⁰ hat die wichtigsten Korrelationen zur Berechnung des Holdups in pulsierten Siebbodenextraktoren aus der Literatur zusammengefaßt. Um die Unsicherheit dieser, für eine Kolonnenauslegung häufig benutzten Ansätze aufzuzeigen, stellt Abbildung 2 auf Seite 4 den Kurvenverlauf einiger Korrelationen (nämlich die von Miyauchi¹¹, Mishra¹² und Bell¹³) für das untersuchte Stoffsystem dar. Es ist klar ersichtlich, daß die Kurven nicht einmal im Trend übereinstimmen. Sie zeigen quantitative Abweichungen von bis zu einer Größenordnung. Es wäre sicherlich für den PUREX-Prozeß von großer Wichtigkeit, derart unsichere Auslegungsansätze durch eine intensivere Beschäftigung mit der Fluiddynamik pulsierter Bodenkolonnen verbessern zu können.

Die Vermischung beider Phasen

Die Vermischungseigenschaften spielen beim Scale-up von Pulskolonnen eine wichtige Rolle. Beispielsweise zeigt sich, daß Laborkolonnen mit kleinem Durchmesser durchweg höhere Trennleistungen aufweisen als technische Extraktionskolonnen gleicher Länge aber grösseren Durchmessers¹⁴. Die Ursachen hierfür sind rein hydrodynamischer Natur und im wesentlichen darin zu sehen, daß einzelne Elemente der kontinuierlichen oder

⁹ Casamatta, G. und Vogelpohl, A.: Chem.-Ing.-Tech. MS 1196/84

⁷ Aufderheide, E.: Dissertation, TU Clausthal (1985)

⁸ Jiricni, V. und Prochazka J.: Chem.Eng.Sci. 35 (1980) 2237-2245

¹⁰ Bauckhage, K. et al.: Chem.-Ing.-Tech. 7 /5/ (1975) 169-182

¹¹ Miyauchi, T. und Oya, H.: A.I.Ch.E.Journal 11 /3/ (1965) 395-402

¹² Mishra, J.C. und Dutt, D.K.: Chem.Age India 20 (1969) 845

¹³ Bell, R.L. und Babb. A.L.: Ind.Eng.Chem.Proc.Res.Dev. 8 (1969) 392

¹⁴ Merz, A. und Zimmermann, H.: ANS Fuel Reprocessing and Waste Management Proceedings, Jackson ID (1984)

Abbildung 2. Korrelationen zur Holdup-Bestimmung

dispersen Phase unterschiedliche Schicksale erleiden (z.B. schlechtere radiale Vermischung bei Großkolonnen). Dies vermindert prinzipiell die Trennwirksamkeit. Diesem Phänomen kann durch konstruktive Maßnahmen (z.B."louver plates"¹⁵) begegnet werden.

Die axiale Vermischung beider Phasen bedingt eine Minderung des Konzentrationsunterschiedes zwischen den Phasen und damit des Wirkungsgrades. Die mathematische Modellierung der Vermischung in pulsierten Bodenkolonnen beschreibt die physikalischen Vorgänge nur ungenügend, so daß heute für Maßstabvergrößerungen dieser Apparate keine gesicherte Ausgangsbasis besteht. In der technischen Literatur¹⁶ finden sich zwar relativ viele Untersuchungen zur axialen Vermischung in Pulskolonnen, jedoch behandeln sie meist nur das Verhalten der Kontiphase. Vor allem hinsichtlich der Dispersphase bestehen sowohl zur Meßtechnik als auch zur Signalverarbeitung große Unsicherheiten, so daß man derzeit noch nicht auf ein fundiert zu nennendes Ergebnisfeld zur Einordnung eigener Ergebnisse zurückgreifen kann. Die zahlreich vorhandenen Veröffentlichungen über experimentelle Untersuchungen zeigen große Diskrepanzen und Unstimmigkeiten der Ergebnisse. Darüber hinaus herrscht keine Übereinstimmung in der Beurteilung der Einflußgrößen. Zusammenfassende Überblicke liefern Aufderheide⁷, Logsdail¹⁷, Niebuhr¹⁸ und Pietzsch¹⁹.

Die Mehrheit der publizierten Daten wurde in kleinen Laborkolonnen gewonnen. Fast alle Autoren haben versucht, ihre Daten in Form von Potenzansätzen (Korrelationen) als Funktion der Pulsfrequenz und der Amplitude wiederzugeben. Durch eine Gegenüberstellung²⁰ dieser Korrelationen wird gezeigt:

- die Korrelationen sind im wesentlichen empirisch
- manche sind sogar dimensionsanalytisch inkonsistent

¹⁵ Eiben, K. et al: ISEC'86 Preprints, Band I, München (1986)

¹⁶ Lo, T.C., Baird, M.H.I. und Hanson, C.: *Handbook of solvent extraction*, John Wiley & Sons, New York (1983)

¹⁷ Siehe ¹⁶, Kapitel 11

¹⁸ Niebuhr, E.: Dissertation, TU Clausthal (1982)

¹⁹ Pietszch, W.: Dissertation, TU München (1984)

²⁰ Vasudeva, K.: Symp. on Solvent Extraction of Metals, Bombay (1979)

• die Wirkung der Geometrie und der Betriebsparameter auf die Einflußgrößen ist widersprüchlich

Zielsetzung der eigenen Arbeit

Der Strömungsvorgang in einer Extraktionskolonne ist nur als ein Teilaspekt des Gesamtsystems anzuschen. Eine mathematische Gesamtdarstellung kann nur durch eine sinnvolle Verknüpfung von Teilmodellen erfolgen. Hierbei hat es sich als günstig erwiesen, den Anteil des Stofftransports von den übrigen Prozessen abzuspalten. Die mathematische Darstellung von Transportprozessen führt zu linearen Gleichungssystemen, während Begleitprozesse, wie z.B. chemische Reaktionen, in der Regel nichtlineare Ausdrücke liefern. Wegen der Vielzahl der Einflußgrößen auf den Stofftransport ist es zweckmäßig, das Gesamtproblem in Teilprobleme aufzuspalten, die getrennt untersucht werden. Somit wird ein Einblick in die Elementarvorgänge bei der Extraktion ermöglicht. Nach Pippel²¹ ist es üblich, für die Darstellung des Gesamtprozesses, die für die Ableitung komplexer Modelle generell erforderlichen Vereinfachungen schwerpunktmäßig auf die linearen Stofftransportprozesse zu konzentrieren und die übrigen Vorgänge (chemische Reaktionen) möglichst unverfälscht zu übernehmen.

Von entscheidender Bedeutung scheint zu sein, daß ein grundlegendes Verständnis der Haupt- und Wechselwirkungen relevanter Betriebsparameter auf Vermischung, Holdup und Tropfengrößenverteilung in einer Pulskolonne erlangt wird. Vorher wird eine Extrapolation von Pilotanlagen oder gar Laborkolonnen auf die industrielle Anwendung kaum möglich sein.

In dieser Arbeit wird ein berührungsloses Meßverfahren (Radiotracertechnik) vorgestellt, mit dessen Hilfe fluiddynamische Größen (konvektive Geschwindigkeit, Vermischung und Holdup) ohne Störung der Strömung bestimmt werden können. Diese Messungen wurden bis heute überwiegend mit Sonden, die in den Strömungskanal eingebaut sind, durchgeführt. Solche Einbauten führen aber zu einer Beeinflussung der Strömung, und können daher im allgemeinen nicht als rückwirkungsfrei betrachtet werden.

Als Aufgabe der experimentellen Prozeßanalyse soll hier die Bestimmung eines physikalisch begründeten mathematischen Prozeßmodells des fluiddynamischen Verhaltens einer Pulskolonne auf vorwiegend experimentellem Wege verstanden werden. Das zu ermittelnde Modell soll eine ausreichende Beschreibung des Verhaltens der untersuchten Extraktionskolonne darstellen, um mit deren Hilfe bestimmte systemtheoretische Aufgaben, wie z.B. den Entwurf einer geeigneten Prozeßsteuerung, lösen zu können.

In der Flüssig-Flüssig-Extraktion sind Apparate und Systeme so kompliziert, daß man gezwungen ist, sie als "gray box" zu betrachten. Die a priori zur Verfügung stehende Information reicht nicht aus, um das Modell eindeutig zu bestimmen. Die Anwendung von Methoden der Systemtheorie auf Extraktionskolonnen kann auf rein theoretischem Wege und durch experimentelle Untersuchungen das Verständnis über dynamische Vorgänge innerhalb der pulsierten Bodenkolonne erweitern. Beide Wege ergänzen sich und tragen gemeinsam zur Entwicklung von genaueren Modellbeschreibungen bei.

Lineare Systeme können besonders zweckmäßig mit Hilfe von Spektraltransformationen beschrieben werden. Obwohl das Verfahren für elektrische und nachrichtentechnische Systeme entwickelt wurde, läßt es sich genau so gut auf fluiddynamische und chemische Vorgänge anwenden. Somit befaßt sich diese Arbeit mit einer Aufgabe (Entfaltung), deren Lösung sehr empfindlich gegenüber kleinen Änderungen der in das mathematische Modell eingehenden Daten ist. Um ein derartiges Modell richtig nutzen zu können, muß man sowohl in die Ursachen dieser Empfindlichkeit gegenüber Datenänderungen eindringen, als auch über geeignete Algorithmen verfügen, die diese Empfindlichkeit in geeigneter Weise verringern.

²¹ Pippel, W.; Philipp, G.: Chem.Eng.Sci. 23 (1977) 543

Zusammenfassend kann gesagt werden, daß in dieser Arbeit ein Weg vorgeschlagen wird, wie eine fluiddynamische Aufgabe im Rahmen der Flüssig-Flüssig-Extraktion definiert, und wie durch Anwendung einer experimentellen Strategie Parameterwirkungen unter statistischen Kriterien analysiert werden können. Das Ergebnis dieser Methoden soll die Auswahl von mathematischen Modellen zur Charakterisierung der Zweiphasenströmung in pulsierten Bodenkolonnen ermöglichen.

6

Kapitel 2. Mathematische Grundlagen

Verschiedene Gebiete wie die Bildverarbeitung, die Computertomographie, die Seismologie und die moderne chemische Spektroskopie verwenden als fundamentales analytisches Hilfsmittel integrale Transformationsmethoden (siehe z.B. Marschall²²). Diese mathemathischen Werkzeuge lassen sich mit großem Vorteil für die Analyse von verfahrenstechnischen Prozessen anwenden. Durch eine systemtheoretische Betrachtung der untersuchten Anlage werden Erfahrungen anderer Disziplinen, insbesondere der Nachrichten- und Regelungstechnik, übertragbar.

Die zentrale Aufgabe dieses Kapitels besteht darin, eine leicht verständliche und anschauliche Darstellung der in dieser Arbeit für die digitale Verarbeitung von experimentellen Meßsignalen angewandten Verfahren zu vermitteln. Dies gilt insbesondere für die wesentlichen Grundkonzepte schneller Fouriertransformationsmethoden.

Systemtheoretische Betrachtungen

Unter einem System wird im folgenden ein mathematisches Modell verstanden, das in sehr allgemeiner Weise zur Beschreibung und zur Untersuchung technischer Anlagen oder Prozesse verwendet werden kann.

Die hierbei auftretenden physikalischen Größen (wie z.B. Tracerkonzentrationen) werden durch deterministische oder stochastische Signale dargestellt. Unter Signalen seien hier allgemeine Zeitfunktionen verstanden, die Information tragen. Funktionell unterscheidet man insbesondere zwei Gruppen von Signalen. Die eine umfaßt die sogenannten Eingangssignale, die mit x(t) bezeichnet werden und eine Systemanregung (*Input*) bedeuten. Die zweite Gruppe stellt die sogenannten Ausgangssignale dar, die mit y(t) bezeichnet werden und die entsprechende Systemreaktion (*Output*) charakterisieren.

Abbildung 3. Die Pulskolonne als Übertragungssystem

Die zwischen Ein- und Ausgangsgrößen einer Extraktionskolonne bestehende Verknüpfung ist in Abbildung 3 veranschaulicht und kann allgemein in Form einer Operatorbeziehung ausgedrückt werden:

$$\mathbf{y}(t) = \mathbf{A}[\mathbf{x}(t)]$$

[2.1]

Diese Gleichung besagt nur, daß dem Eingangsvektor x(t) der Ausgangsvektor y(t) zugeordnet ist.

Wenn die beschreibenden Gleichungen (d.h. der Operator A) des untersuchten Extraktionssystems im voraus bekannt sind, besteht die Aufgabe meistens in der Berechnung der Systemantwort auf eine bestimmte Anregung. Ein typisches *direktes* Problem ist z.B. die Bestimmung der Reaktion eines Mixer-Settlers (dessen Übertragungsverhalten bekannt ist) auf eine Zulaufstörung.

²² Marschall, A.G. (Hrsg.): Fourier, Hadamard and Hilbert Transforms in Chemistry, Plenum Press, New York (1982)

Eine viel schwierigere *inverse* Aufgabe stellt sich dagegen, wenn die Reaktion des Systems (Output) auf eine vorgegebene Anregung (Input) aus vorausgegangenen Experimenten bekannt ist und geeignete Systemgleichungen (ein Modell) gesucht werden. Diese *Modellierungsaufgabe* hat nicht eine, sondern eine *unendlich große Anzahl von Lösungen*. Alle diese Realisierungen würden dasselbe Input-Output-Verhalten aufweisen, so daß ein externer Beobachter vor einer Vielzahl von möglichen Modellen steht, zwischen denen er ohne zusätzliche Information nicht unterscheiden kann.

Abbildung 4. Systemidentifikation und Parameterschätzung

Bei der Modellierung einer Pulskolonne, verfügt man bei definierten Betriebszuständen über eine Anzahl experimenteller Input-Output-Beobachtungen (z.B. Verweilzeitverteilungen). Daraus versucht man Gleichungen zu entwickeln, die das Verhalten der Kolonne beschreiben. Hierzu sind Vorkenntnisse (*a-priori Information*) über die Systemstruktur und innere Vorgänge unerläßlich. Sind die internen Prozesse weitgehend geklärt, so ist man in der Lage ein geeignetes Modell aufzustellen. Die Modellierungsaufgabe beschränkt sich in diesem Fall lediglich auf die Bestimmung von Systemkonstanten aus den experimentellen Meßdaten mittels eines geeigneten Optimierungsverfahrens (*Parameterschätzung*). In Anbetracht der komplizierten Vorgänge in Extraktionskolonnen kann ein solches Modell allerdings nicht eindeutig aufgestellt werden, so daß unter diesen Umständen die gestellte Modellierungsaufgabe einen nicht zu vernachlässigenden *subjektiven* Anteil enthält. Statistische Tests können nur Unterschiede, jedoch keine Übereinstimmung zwischen vorgeschlagenen Modellen und dem untersuchten System feststellen. Daher ist der Vertrauensbereich des Modells auf das Experimentierfeld beschränkt und nur unter Vorbehalt zu extrapolieren.

In Anbetracht dieser Ausgangssituation muß zunächst durch Einbeziehung von Plausibilitätskriterien die Mannigfaltigkeit der Lösung eingeschränkt werden. Somit ist die Modellierung der Fluiddynamik einer Pulskolonne als Identifikationsaufgabe zu verstehen. Das generelle Vorgehen wird in Abbildung 4 dargestellt.

Der Begriff der *Identifikation* wird in Abbildung 5 auf Seite 9 veranschaulicht und entspricht hier der von Zadeh²³ angegebenen Definition : *"Identifikation ist die auf Messungen der Ein- und Ausgangssignale basierende Bestimmung eines Systems innerhalb einer vorgegebenen Systemklasse, welches dem untersuchten System äquivalent ist "*

²³ Zadeh, L.: I.R.E. Trans. Circuit Theory 3 (1956) 277

Abbildung 5. Die Problematik der Systemidentifikation

Bei der Analyse der Vermischungseffekte in einer Pulskolonne mittels Tracerverfahren (siehe später "Traceruntersuchungen" auf Seite 22) wird versucht, die Struktur eines Systems anhand seiner Antwort auf vorgegebene Eingangssignale zu identifizieren. Bisher wurde davon ausgegangen, daß das System durch bestimmte definierte bzw. reproduzierbare Signale erregt wird. In der Praxis spielen jedoch Rauscherscheinungen eine große Rolle. Das *Rauschen* stammt sowohl aus der Prozeßstatistik in sich (thermisches Rauschen) als auch aus dem Meßverfahren (Tracerzerfallsstatistik, Detektorrauschen, usw.). Somit erhält die Identifikationsaufgabe eine neue Dimension, da das Nutzsignal aus dem überlagerten Rauschen herausgefiltert werden muß.

Die Linearität ist eine wichtige Systemeigenschaft, die im folgenden stets vorausgesetzt werden muß. Hierbei handelt es sich um eine Idealisierung, die bei realen Gebilden in der Regel nicht vorliegt, die aber bei zahlreichen Anwendungen näherungsweise besteht und den wesentlichen Sachverhalt beschreibt. Lineare zeitinvariante Systeme gehorchen dem Superpositionsprinzip, wonach das System auf eine beliebige Linearkombination von beliebigen Eingangssignalen mit genau der gleichen Linearkombination der zugehörigen Ausgangssignale antwortet. Bei der Identifikation nichtlinearer Systeme gibt es dagegen keine mit dem Superpositionsprinzip vergleichbare Methode, worauf man eine allgemeine Theorie aufbauen kann.

Die Theorie der Identifikation linearer Systeme hat sich weitgehend etabliert. Lineare zeitinvariante Systeme haben die bemerkenswerte Eigenschaft, daß die Kenntnis eines Testsignals und seiner Antwort ausreicht, das Zeitverhalten des Systems auf beliebige Eingangssignale zu beschreiben (siehe Unbehauen²⁴). Allein mit Hilfe der Impulsantwort kann das Eingangsignal mit dem Ausgangssignal in eindeutiger Weise verknüpft werden. Unter *Impulsantwort* h(t) eines linearen Systems sei hier die Antwortfunktion des Systems auf eine (ideale) Anregung mittels der Dirac'schen Impulsverteilung (δ -Distribution) verstanden. Die Impulsantwort ist mit der Übertragungsfunktion (Frequenzgang) des Systems durch eine Integraltransformation verknüpft und reicht zu seiner Kennzeichnung aus. Sie wird deshalb auch als Systemcharakteristik (Zeitcharakteristik) bezeichnet.

²⁴ Unbehauen, R.: Systemtheorie, R. Oldenbourg, München-Wien (1969)

Systemidentifikation durch Lösung der Faltungsgleichung

In einem linearen Systemmodell sind die gemessenen Signale analytisch durch eine Funktionalgleichung verbunden. Die Systemreaktion wird mittels der Impulsantwort und die Systemanregung *quellenmäßig*²⁵ durch eine Volterra'sche Integralgleichung²⁶ dargestellt

$$y(t) = \int_0^t x(t-\tau)h(\tau) d\tau$$
[2.2]

Die hier gestellte inverse Identifikationsaufgabe besteht in der Bestimmung der *Quellenfunktion* h(t) (die sogenannte Impulsantwort des Systems) aus vorgegebener Anregung x(t) und ihrer entsprechenden Reaktion y(t). Obwohl GI. [2.2] eine im Prinzip sehr einfache Integralgleichung (*Faltungsintegral*) ist, erweist sich ihre numerische Lösung²⁷ als ein durchaus schwieriges Problem. Wesentlich ist doch zunächst, daß *eine geschlossene Lösung* nicht möglich ist. Deshalb muß die Lösung auf numerischem Wege gesucht werden, und selbst dabei sind die Probleme nicht gering.

Die Hauptschwierigkeit besteht darin, daß die Lösung h(t) nicht stetig von den Daten abhängt. Um diesen Punkt weiter zu erläutern seien zwei Lösungen

$$h_1(t) = h(t)$$
 [2.3]

[2.4]

$$h_2(t) = h(t) + M \cos(\omega t)$$

der Faltungsgleichung [2.2] vorgestellt, wobei M und ω zwei beliebige Konstanten und h(t) die "exakte" Lösung darstellen. Hierbei ist natürlich

$$|y_{2}(t) - y_{1}(t)| = |M \int_{0}^{t} x(t - \tau) \cos(\omega \tau) d\tau|$$
[2.5]

Um ein praktisches Beispiel heranzuziehen, betrachte man den Systeminput als die Impulsantwort eines vorgeschalteten idealen Rührkessels

$$\mathbf{x}(t) = \mathbf{e}^{-t} \quad \forall \ t \ge \mathbf{0}$$

Durch Substitution von [2.6] in [2.5] ist klar, daß

$$|y_2(t) - y_1(t)| = \left| \mathbf{M} \frac{\omega \sin(\omega t) + \cos(\omega t) - e^{-t}}{\omega^2 + 1} \right| \le \left| \mathbf{M} \frac{\omega + 1}{\omega^2 + 1} \right|$$
[2.7]

Diese Ungleichung besagt, daß für jede beliebige Amplitude M immer eine Kreisfrequenz ω existiert, die groß genug ist, daß die absolute Differenz von $y_2(t)$ und $y_2(t)$ sehr klein wird. Dies bedeutet aber, daß man sich zwei von einander ganz unterschiedliche Impulsantworten $h_2(t)$ und $h_2(t)$ vorstellen kann, die denselben Output bei Faltung mit dem Input x(t) ergeben, so daß der Entfaltungsfehler unbeschränkt ist. Dieses Problem liegt weder in der digitalen Darstellung²⁸ eines Signals noch in der numerischen Lösungsmethode, sondern es ist zur Lösungsaufgabe der Faltungsgleichung inhärent, denn letztere weist die Eigenschaften eines Tiefpaßfilters auf. Sie gehört zur wenig bekannten, aber in den praktischen Anwendungen sehr wichtigen Klasse der *inkorrekt gestellten inversen Aufgaben*.

²⁵ Courant, R. und Hilbert, D.: Methoden der mathematischen Physik I, Springer-Verlag, Berlin (1968) 97

²⁶ Volterra, V.: Theory of Functionals and of Integral and Integro-differential Equations, Dover Publ., New York (1959)

²⁷ Linz, P.: Analytical and Numerical Methods for Volterra Equations, S.I.A.M., Philadelphia PA (1985)

²⁸ Die kleine absolute Differenz von $y_2(t)$ und $y_2(t)$ kann durch Abrundung im Rechenwerk entstehen

Nach Hadamard²⁹ wird ein mathematisches Problem, wobei eine gewisse Lösung aus vorgegebenen Daten bestimmt werden soll, als sachgemäß (*korrekt gestellte Aufgabe*) bezeichnet, wenn folgende Forderungen erfüllt werden :

- 1. die Lösung muß existieren,
- 2. sie soll eindeutig bestimmt sein und
- 3. sie soll von den Daten stetig abhängen.

Viele inverse Aufgaben (wie hier die Entfaltung), in ihrer klassischen Formulierung, lassen sich als die Lösung einer Operatorgleichung auffassen und gehören zur Klasse der inkorrekt gestellten Probleme. Sie können nämlich:

- 1. gar keine Lösung haben,
- 2. nicht eindeutig bestimmte Lösungen besitzen oder
- 3. eindeutig bestimmte, aber unstetige, von den Daten abhängende Lösungen haben.

Die klassische Aufgabenstellung geht von der Konzeption der Exaktheit aus, d.h. daß alle vorliegenden Daten genau angegeben sind. Inverse Aufgaben sind insbesondere deswegen kompliziert, weil experimentelle Daten nur mit unvermeidlichen Meßfehlern bestimmt werden können. So sind z.B. die in den Verweilzeitverteilungssignalen vorgegebenen Konzentrationen bzw. Zeitmomente stets mit gewissen Fehlergrenzen behaftet. Somit ist die theoretische und numerische Interpretation von Verweilzeitexperimenten stets als *Identifikationsproblem* zu betrachten. Sie gehört zu der Klasse der inkorrekten Aufgaben mit ungenau gegebenen Informationen. Diese inverse Aufgabe beinhaltet Abbildungen von stochastischen Variablen, so daß das Problem eine statistische Behandlung erfordert.

Numerische Signalentfaltung

Für die numerische Inversion der Volterra'schen Integralgleichung [2.2] zur Berechnung der Impulsantwort h(t) (Entfaltung) muß die Faltungsgleichung diskretisiert werden. Die Entfaltung entspricht dann einer Inversion der sogenannten Faltungsmatrix³⁰. Benachbarte Spalten in der Faltungsmatrix gleichen sich mit abnehmender Schrittweite (d.h. mit einer Zunahme der Anzahl von Diskretisierungspunkten) einander immer mehr an. Dies führt bei der Matrixinversion zu erheblichen numerischen Schwierigkeiten (Instabilitäten) wegen schlechter Matrixkondition (siehe Tichonow³¹). Ein zweites wichtiges Problem der numerischen Entfaltung im Zeitbereich ist der dazu erforderliche erhebliche Rechenzeit-aufwand.

Um die erwähnten Probleme zu bewältigen, ist es bei der digitalen Verarbeitung vorteilhaft die Signale durch eine sogenannte Funktionaltransformation in einem Orthogonalsystem zu entwickeln. Eine Funktionaltransformation ist eine Rechenvorschrift, die den Übergang aus dem Originalbereich in einen Bildbereich bewerkstelligt. Die Fouriertransformation ist eine solche Funktionaltransformation, mit deren Hilfe ohne Beeinträchtigung des Informationsgehaltes der Signale eine erhebliche Reduzierung der Problemkomplexität erreicht wird (siehe z.B. Griffiths³²).

²⁹ Hadamard, J.: Bull. Univ. Princeton, 13 (1902) 49-52

 ³⁰ Achilles, D.: *Die Fouriertransformation in der Signalverarbeitung*, Springer-Verlag, Berlin (1985)
 ³¹ Tikhonov, A.N. und Arsenin, V.Y.: *Solutions of ill-posed Problems*, John Wiley & Sons, New York (1977)

³² Griffiths, P.R.: *Transform Techniques in Chemistry*, Plenum Press, New York (1978)

Die Fouriertransformation und der Faltungssatz

Die harmonische Exponentielle

$$x(t) = e^{i\omega t} = \cos \omega t + i \sin(\omega t)$$

ist für beliebige Kreisfrequenz ω eine Eigenfunktion linearer zeitinvarianter Systeme. Aus diesem Grund ist eine solche Funktion für den Zweck der orthogonalen Entwicklung eines Signals besonders geeignet³³.

[2.8]

Die lineare Integraltransformation

$$F(\omega) = \int_{-\infty}^{+\infty} f(t) e^{-i\omega t} dt$$
[2.9]

stellt die kontinuierliche Fouriertransformierte $F(\omega)$ der Funtion f(t) dar. Die Fouriertransformation ist eine zyklische Operation, so daß ihre Umkehrung die ursprüngliche Funktion wiedergibt

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\omega) e^{i\omega t} d\omega$$
 [2.10]

Ein zentrales Problem der Fourieranalyse ist die Bestimmung der Fouriertransformierten $F(\omega)$ eines Signals f(t) aus der Information eines begrenzten Intervalls von f(t). Die Funktion f(t) ist nicht im gesamten Intervall (- ∞ , + ∞) bekannt, so daß ihre Fouriertransformierte nicht exakt bestimmt sondern nur approximiert werden kann. Hierbei entsteht ein Fehler, der durch zwei Methoden

- Fensterfunktionen
- Extrapolation

eingeschränkt werden kann. Auf diese Punkte wird später und in "Anhang A. Signalverarbeitung im Fourierbereich" auf Seite 85 näher eingegangen.

Bracewell³⁴ bietet eine ausgezeichnete Einführung in die Theorie der Fouriertransformation, so daß an dieser Stelle auf eine ausführliche Diskussion dieser Aspekte zugunsten der Anwendungen in der Signalverarbeitung verzichtet wird.

Die Faltung zweier Signale ist ein bedeutendes physikalisches Konzept in vielen verschiedenen wissenschaftlichen Gebieten und spielt in der Theorie linearer Systeme eine zentrale Rolle. Nach Bringham³⁵ ist die Beziehung zwischen dem Faltungsintegral

$$y(t) = \int_{-\infty}^{+\infty} x(t-\tau)h(\tau) \, d\tau = \int_{-\infty}^{+\infty} h(t-\tau)x(\tau) \, d\tau = x(t) \star h(t)$$
[2.11]

und ihrer Fourier-Transformierten

$$Y(\omega) = X(\omega) H(\omega)$$
[2.12]

wahrscheinlich eines der wichtigsten und leistungsfähigsten Instrumente der modernen Analysis. Dieser Zusammenhang, als *Faltungssatz* bekannt, ermöglicht eine komplizierte Faltungsoperation im Zeitbereich mittels einer einfacheren Multiplikation im Frequenzbereich mit einer erheblichen numerischen Beschleunigung zu realisiseren. Eine Umkehrung des Faltungstheorems gestattet die Berechnung der Fouriertransformierten $H(\omega)$ der Impulsantwort h(t), die den *Frequenzgang* des Systems darstellt.

³³ Papoulis, A.: The Fourier Integral and its Applications, McGraw-Hill, New York (1962)

³⁴ Bracewell, R.N.: The Fourier Transform and its Applications, McGraw-Hill, New York (1986)

³⁵ Bringham, E.O.: The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs, N.J. (1974)

Die diskrete Fouriertransformation

Für die Computerauswertung hat sich eine Approximation der kontinuierlichen Fouriertransformation als besonders geeignet erwiesen: die *diskrete Fouriertransformation* (DFT).

Die DFT ist auf eine bestimmte Klasse von Funktionen eingeschränkt, die als bandbegrenzt bezeichnet werden. Das Frequenzspektrum einer bandbegrenzten Funktion weist keine Komponenten über einer maximalen Frequenz ω_{max} auf.

Durch die Wahl der Abtastrate (d.h. des Meßintervalls Δt) und die Dauer der Messung (Anzahl der Meßpunkte N) wird die Frequenzauflösung $\Delta \omega$ des Spektrums festgesetzt

$$\Delta \omega = \frac{1}{N} \Delta t$$
 [2.13]

Ein diskretes bandbegrenztes Signal $f_N(t)$, definiert für ganzzahlige Abtastpunkte $0 \le n \le N-1$ mit einem Meßabstand Δt , kann durch eine diskrete Version einer Fourier'schen Reihe

$$f_n = \frac{1}{N} \sum_{n=0}^{N-1} F_k e^{i2\pi k \cdot \frac{n}{N}}$$
[2.14]

dargestellt werden, wobei die Koeffizienten F_k durch die diskrete Fouriertransformierte von $f_N(t)$ berechnet werden

$$F_{k} = \sum_{n=0}^{N-1} f_{n} e^{-i2\pi k \frac{n}{N}}$$
[2.15]

Die DFT wandelt dank des Faltungssatzes die zyklische Faltung zweier Signale x(t) und h(t) in einer einfachen Multiplikation im Frequenzbereich:

$$DFT\{y(t)\} = DFT\{x(t)\} DFT\{h(t)\}$$

Die diskrete Fouriertransformation setzt eine Periodizität der diskreten Signale sowohl im Zeit- als auch im Frequenzbereich voraus. Ähnlich wie die kontinuierliche Fouriertransformation, ist die DFT eine zyklische Operation. Daher kann das originale Signal wieder durch Umkehrung der DFT aus dem komplexen Frequenzfeld gewonnen werden:

$$y(t) = IDFT\{DFT\{h(t)\}\}$$
 [2.17]

Die erforderliche Prozedur für die inverse diskrete Fouriertransformation (IDFT) hängt vom spezifischen Algorithmus ab. Einzelheiten darüber findet man in den ausführlichen Werken von Elliot und Rao³⁶ oder Burrus und Parks³⁷.

Die schnelle Fouriertransformation (FFT) ist nichts anderes, als ein ausgeklügelter Algorithmus³⁸, der die Auswertung der diskreten Fouriertransformation (DFT) schneller als alle anderen bekannten Algorithmen ermöglicht. Der FFT-Algorithmus ist im wesentlichen eine Matrixfaktorisierung, und zwar derart, daß die Anzahl der komplexen Multiplikationen und Additionen aller Teilmatrizen minimal wird³⁵. Aus der Tatsache, daß die Multiplikationszeit den wesentlichen Teil der Gesamtrechenzeit ausmacht, wird der Grund für die numerische Effizienz des FFT-Algorithmus erkennbar.

[2.16]

³⁶ Elliot, D.F. und Rao, K.R.: Fast Transforms: Algorithms, Analysis and Applications, Academic Press, New York (1982)

³⁷ Burrus, C.S. und Parks, T.W.: *DFT/FFT and Convolution Algorithms*, John Wiley & Sons, New York (1985)

³⁸ Cooley, J.W. und Tukey, J.W.: Math.Comput. 19 (1965) 297-301

Feldlänge N	$k = \log_2 N$	tDFT/tFFT
1024	10	205
4096	12	683
16384	14	2341
65536	16	8192

Tabelle 1. Vergleich der notwendigen Multiplikationen für die DFT/FFT Algorithmen

Um diesen wichtigen Vorteil zu verdeutlichen, stellt Tabelle 1 die Anzahl der notwendigen Muliplikationen in Abhängigkeit der Raumfrequenzen für einen 1024-Punkte Vektor nach beiden Verfahren (DFT/FFT) dar. Die Rechenzeit wird in diesem Beispiel etwa um den Faktor 200 verkürzt.

Gerade in der Möglichkeit der Kombination des Faltungssatzes mit dem FFT-Algorithmus liegt der wesentliche Vorteil der Fouriertransformation zur Lösung der in der Signalverarbeitung zentralen Operationen der Faltung und Entfaltung. Wichtige Konzepte der DFT, insbesondere

- Raumfrequenzen
- Spektralzerlegung eines Signals
- Zerofilling eines Datenfeldes
- Fensterpaare
- Leckeffekt .
- Aliasing,

sind für ein allgemeines Verständnis der in dieser Arbeit vorgestellten Methodik nicht unbedingt erforderlich. Da sie aber für die praktische Implementierung und Durchführung der Entfaltunsgsoperation wesentlich sind, werden sie im "Anhang A. Signalverarbeitung im Fourierbereich" auf Seite 85 ausführlich erläutert.

FFT-Entfaltung

Ein Problem der Entfaltung liegt vor, wenn das Ergebnis y(t) einer Faltung $y(t) = x(t)^*h(t)$ und eines der beiden miteinander gefalteten Signale (etwa x(t)) bekannt ist, während das dritte Signal h(t) bestimmt werden soll.

Bei der Systemidentifikation ist die Impulsantwort h(t) bei bekannten Eingangs- und Ausgangssignalen zu ermitteln. Ein anderer häufig auftretender Anwendungsfall ist die Systemelimination, wo der Einfluß eines störenden Systems oder Mediums, in welchem das Superpositionsprinzip gilt und das durch eine Impulsantwort charakterisiert werden kann, durch Entfaltung zu kompensieren ist. Gerade in Hinblick auf diesen Punkt wurden erste Ansätze zur FFT-Entfaltung in der Gaschromatographie gemacht. Dwyer³⁹ und Maldacker⁴⁰ berichten über die Trennung von Ein- und Auslaufeffekten von der Wirkung der aktiven Säule in einem Gaschromatographen. Howard und Rayborn⁴¹ berichten ausführlich über die praktischen Möglichkeiten der FFT-Entfaltung von gaschromatographischen Daten bei der Bestimmung der relativen Materialkonzentrationen in Mischpeaks. Diese Autoren führen auch das Konzept der Funktionsergänzung ("function continuation") ein, um das Problem der Seitenschwinger⁴² zu bewältigen.

Grundsätzlich läßt sich die Entfaltung bei Umkehrung des Faltungstheorems im Frequenzbereich durch Division der bekannten Spektralgrößen durchführen. So erhält man

³⁹ Dwyer, R.W.: Anal.Chem. 45 (1973) 1380-1383

⁴⁰ Maldacker, T.A.; Davis, J.E. und Rogers, L.B.: Anal.Chem. 46 (1974) 637-642

⁴¹ Howard, S. und Rayborn, G.H.: NASA Contractor Report 3229 (1980)

⁴² Siehe Erläuterungen in "Die Bewältigung des Rauschproblems" auf Seite 87

bei bandbegrenzten Signalen die DFT des gesuchten Signals im Fall der Systemelimination aus

$$X(\omega) = \frac{Y(\omega)}{H(\omega)}$$
[2.18]

beziehungsweise aus

$$H(\omega) = \frac{Y(\omega)}{X(\omega)}$$
[2.19]

im Fall der Systemidentifikation. Durch eine IDFT kann dann das gesuchte Signal (d.h. seine Abtastwerte) bestimmt werden.

Die allgemeine Methode der FFT-Entfaltung kann folgendermaßen beschrieben werden:

- 1. Man braucht eine gemessene Funktion (Output) und einen gemessenen Input, oder eine theoretische Übertragungsfunktion (Gewichtsfunktion).
- 2. Der Untergrund wird von beiden Signalen abgezogen.
- 3. Beide Zeitreihen werden nach einem Zerofilling einer FFT-Operation unterzogen.
- 4. Die DFT des Outputs wird durch die DFT des Inputs bzw. der Gewichtsfunktion als komplexer Vektor dividiert.
- 5. Das somit erhaltene Raumfrequenzfeld wird mittels einer FFT-Operation in den Zeitbereich zurücktransformiert.

Das Problem der Entfaltung ist schlecht konditioniert. Die Signale müssen hinreichend dicht abgetastet werden, um den Aliasing-Fehler⁴³ genügend klein zu halten. Das bedeutet aber, daß die zu dividierenden Größen ab einer bestimmten Bandgrenze sehr kleine Werte besitzen. Dadurch können bei Vorliegen von unausweichlichen Meßungenauigkeiten oder bei überlagertem Rauschen erhebliche numerische Fehler verursacht werden.

Abbildung 6. Division im Fourierbereich

Wenn das ganze Raumfrequenzfeld zurücktransformiert wird, erscheint das Ergebnis sinnlos. Der Grund dafür ist in Abbildung 6 dargestellt. Aus den diskreten Fouriertransformierten des Inputs X(ω) und des Outputs Y(ω) vor der Entfaltung sieht man, daß nur die ersten, niedrigen Raumfrequenzen ω signifikant sind. Es ist daher ersichtlich, daß die Funktion ziemlich schnell, spätestens nach einigen hundert Raumfrequenzen, gegen Null

⁴³ Siehe Erläuterungen in "Zerofilling eines Datenfeldes" auf Seite 86

geht wenn man die Signale ins Rauschen extrapolieren würde⁴⁴. Man merkt dabei, daß der Grundrauschpegel sich auf das ganze Spektrum ausdehnt. Dieses weißartige Rauschen stammt aus dem Prozeß in sich, aber auch aus der Meßstatistik des Detektors und vor allem aus Abrundungsfehlern im Rechenwerk. Der Grund, weshalb dieses Rauschen eine solche Signifikanz erlangt, liegt in der Division im Raumfrequenzbereich. Man erkennt also mit einer gewissen Sicherheit die Fourierkoeffizienten nur in dem Bereich, wo beide Spektren eine merkbare Leistung aufweisen. Ab einer Bandstoppkante ist die Amplitude von X(ω), wegen des Zufallfehlers des Rauschens, verschwindend klein. Aus diesem Grund kann im Rauschbereich die Division in Gleichung [2.19] unsinnig hohe Werte ergeben. Dies bedeutet aber eine Verstärkung des Rauschpegels in H(ω) proportional zur Raumfrequenz (inverse Tiefpaßfilterung). Diese Ergebnise sind dann nutzlos und können sehr schnell die ganze Entfaltung in Frage stellen. Dies tritt nur auf wenn man zu viele Koeffizienten zurücktransformiert.

Das Ergebnis aus der Division im Frequenzbereich und die Frequenzauslese vor der Rücktransformation stellen eine der größten praktischen Probleme der Entfaltung dar. Es ist offensichtlich notwendig, diese unerwünschten hohen Raumfrequenzen nach einer Bandstoppkante abzuschneiden, bevor man zu tief in die Rauschregion eindringt. Diese Operation wird in der angelsächsischen Literatur als *"window closing"*⁴⁵ bezeichnet. Manche Autoren⁴⁶ haben auch Datenfenster im Zeitbereich empfohlen (*"tapering"*). Ein Datenfenster ist jedoch ein Kunstgriff, und das Ergebnis kann die gesuchte Funktion nur wegen der Abschwächung der Seitenschwinger verbessern. Die Peakgestalt kann dabei leicht verändert werden.

Abbildung 7. Strukturplan des Programms IDECOD für FFT-Entfaltung

Das in dieser Arbeit verwendete Entfaltungsverfahren ist in Abbildung 7 schematisch dargestellt und ist im Programm IDECOD implementiert (siehe später "FFT-Entfaltung von Verweilzeitverteilungssignalen" auf Seite 38 und "Anhang E. Das Programm IDECOD" auf Seite 183). Wegen des vorher erwähnten Rauschproblems bei hohen Raumfrequenzen werden hier nur die ersten Fourierkoeffizienten ($H_1(\omega)$) als Lösung des Entfaltungsproblems gebraucht (ideale Tiefpaßfilterung). Diese Methode liefert bei einer nicht zu kleinen Vermischungsintensität gute Ergebnisse, wie im Kapitel 6 diskutiert. Bei der Entfaltung von Signalen aus kurzen Meßstrecken strebt die Impulsantwort gegen eine δ -ähnliche

⁴⁴ Siehe Erläuterungen in "Raumfrequenzdarstellung eines Datenfeldes" auf Seite 85, insbesondere Abbildung 45 auf Seite 86

⁴⁵ Jenkins, G.M. und Watts, D.G.: Spectral Analysis and its Applications, Holden Day, San Francisco CA (1969)

⁴⁶ Blackman, R.B. und Tukey, J.W.: *The Measurement of Power Spectra*, Dover Publ., New York (1959)

Funktion, welche durch eine breite Fouriertransformierte abbgebildet wird. Es können hier allerdings nur wenige Raumfrequenzen für die Rücktransformation beibehalten werden, so daß die Tiefpaßfilterung zu dem bekannten Gibbs'schen Phänomen (Seitenschwinger) führt. Da die höheren Frequenzen in diesem Fall für eine hohe Signalauflösung wichtig sind, kann durch analytische Funktionsergänzung47 mittels Zeitbereichanpassung die Information des Hochfrequenzbereiches zurückgewonnen werden. Für diesen Zweck muß allerdings eine künstliche Funktion m(t) durch Anpassung einer geeigneten Funktion an dem Peak der Funktion h₁(t) ermittelt werden. Als besonders für diesen Zweck geeignet werden Laguerre'sche Polynome⁴⁸ oder Hermite'sche Wellenfunktionen⁴⁹ erwähnt. Brauchbare Ergebnisse der analytischen Extrapolation gemessener Verweilzeitverteilungssignale liefern nach eigener Erfahrung auch parametrische Ansätze wie die lognormale Verteilung (siehe später "Das lognormale Verteilungsmodell" auf Seite 50 und "Anhang D. Das Programm MODEL" auf Seite 149). Die DFT der Kunstfunktion m(t) wird berechnet und ihre Koeffizienten mit denen von h(t) verglichen. Wegen der Rauschdominanz im Hochfrequenzbereich werden die höheren H-Koeffizienten durch die von M ersetzt, da die letzteren rauschfrei sind. Die Niederfrequenzkomponenten von H, die die Haupteigenschaften der Entfaltung abbilden, werden dadurch nicht beeinträchtigt. Eine der Hauptvorteile dieser Methode ist die Möglichkeit der Anwendung von physikalisch bedingten a priori Informationen bei der Entfaltung. Diese Zwänge ("constraints") gestatten die teilweise Wiederherstellung jener Teile des Signals, die durch Tiefpaßfilterung verloren gingen. Daher wird eine höhere Auflösung erreicht. In dieser Arbeit wurden die Nicht-negativität und Unimodalität der Impulsantwort als wichtige Constraints angesetzt.

Die indirekt mittels FFT-Entfaltungsalgorithmen gewonnene Impulsantwort h(t) bietet somit ein lineares parameterfreies Vermischungsmodell, das sowohl als vollständige Systembeschreibung als auch als Zwischenstufe zur Gewinnung parametrischer Modelle dient. Häufig erwies sich in dieser Arbeit ihre Verwendung als vorteilhaft, besonders weil die Struktur des Systems unbekannt ist und Tracerexperimente nur eine Systemidentifikation ermöglichen.

⁴⁷ Redshaw, T.C: Dissertation, Univ. of Wales U.K. (1982)

⁴⁸ Hansson, L.; Kurten, R. und Thyn, J.: Int.J.Appl.Rad.Isot. 26 (1975) 347-354

⁴⁹ Al-Faour, O.M.: Dissertation, Univ.Coll.of Wales (1981)

Die Pulskolonne PETRA

Die pulsierte Extraktionskolonne PETRA wurde mit der Zielsetzung konzipiert, aufgrund der erwarteten Vorteile der Radionuklidtechnik (siehe z.B. Vogg⁵⁰) mit ihren hervorragenden Meßmöglichkeiten, gerade in Hinblick auf die berührungslose Diagnose von Strömungsprozessen, einen wesentlichen Beitrag zum Verständnis der fluiddynamischen Vorgänge in Pulskolonnen zu leisten. Darüber hinaus wurde das Radiotracerverfahren bis zur Einsatzreife für Anwendungen in technischen Kolonnen des Uranextraktionszyklus des Technikums zur Komponentenerprobung der WAK⁵¹ im Kernforschungszentrum Karslruhe entwickelt.

Abbildung 8. Die Pulskolonne PETRA

Im Rahmer der vorliegenden Arbeit wurden umfangreiche systematische Radiotracerexperimente zur Fluiddynamik der reinen Phasen im Stoffsystem Salpetersäure (3N) / Tributhylphosphat (30%) in Kerosin durchgeführt. Der Einsatz von offenen Radionukliden zur phasenspezifischen Markierung von flüssigen Mehrphasenströmungen erforderte, daß die Kolonne an eine Peripherie angeschlossen werden mußte, die sowohl eine se-

⁵⁰ Vogg, H.: Chem.-Ing.-Tech. 55 (1983) 467-474

⁵¹ Wiederaufarbeitungsanlage Karlsruhe

parate Führung und Lagerung markierter Stoffströme erlaubt, als auch die entsprechende Abschirmung des Experiments und Versuchspersonals gestattet. Weitere Sicherheitsmaßnahmen (z.B. Brandschutz) sind für diese Anlagen üblich.

Abbildung 9. Untersuchte Bodeneinbauten

Die Versuchanlage ist in Abbildung 8 auf Seite 19 schematisch dargestellt. Sie wurde im wesentlichen von Merz⁵² nach den Richtlinien der CEA⁵³ konzipiert und unter seiner Federführung aufgebaut. Die Pulskolonne wird durch zwei Kreiselpumpen aus den Vorratsbehältern (4 x 1 m³ Fassungsvolumen) gespeist. Durch manuelle Regelung sind die Volumenströme über geeichte Schwebekörperdurchflußmesser einstellbar. Beide Phasen werden bei den fluiddynamischen Untersuchungen (ohne Stoffübergang) in geschlossenem Kreislauf geführt. Kurz vor Beginn eines Tracerexperiments wird die zu markierende Phase durch geeeignete Ventilschaltung, nach ihrem Ablauf aus der Kolonne, in einen Abklingbehälter geleitet. Diese Vorsichtsmaßnahme verhindert die Rückführung von markierter Flüssigkeit in die Pulskolonne, was zu einer allmählichen Untergrundserhöhung führen würde.

Die pulsierte Extraktionskolonne besteht aus sechs übereinander angeordneten Glasschüssen, die mit Bodeneinbauten ausgerüstet sind. An das Mittelteil (die sogenannte

⁵² Unveröffentlichter KfK-Bericht

⁵³ Commissariat d'Energie Atomique (Frankreich)
"aktive Kolonnenlänge") schliessen sich oben und unten je ein Zwischenstück mit eingebauter Einleitbrause zur Verteilung der jeweils zugeführten Phase über den Kolonnen-Querschnitt sowie ein Trenngefäß mit den erforderlichen Anschlußstutzen für Phasenablauf, Pulsationspumpe, Meßfühler, Entlüftung und Entleerung an. Die Einspeisung der leichten und schweren Phase erfolgt durch zwei Kreiselpumpen, während die den Durchfluß bewirkenden Schwingungen der Flüssigkeitssäule mittels eines am Kolonnenfuß angeflanschten schubkurbelangetriebenen Pulsators erzeugt werden. Die Pulsintensität (sowohl Pulsamplitude als auch -frequenz) kann manuell stufenlos eingestellt werden. Zur Eichung der Pulsamplitude wurde in einem Vorversuch die Pulskolonne mit der Kontiphase bis zur Mitte (etwa 3 m) aufgefüllt und mit sämtlichen Zu- und Ableitungen geschlossen pulsiert. Aus Filmaufnahmen der Trennspiegelschwankungen konnte die Pulsamplitude direkt ermittelt werden. Die hiermit gemessene Pulsamplitude stimmte mit dem aus dem Querschnittverhältnis von Pulsatorkolben und Pulskolonne berechneten Hub sehr gut überein.

Die am Zentralstab in einem Abstand von 50 mm eingesetzten elektropolierten Sieb- bzw. Düsenböden-Einsätze (siehe Abbildung 9) wurden zu kompletten Einheiten vormontiert in die Glaskolonnenschüsse eingebaut. Aufgrund der modularen Bauweise ist eine Austauschbarkeit der Bodeneinbauten jederzeit gewährleistet. Es können daher, ohne Beeinträchtigung der Funktionsfähigkeit, Lochböden unterschiedlicher Geometrie wahlweise eingesetzt werden.

Das untersuchte Stoffsystem

Grundsätzlich sind an verschiedenen Kolonnen gewonnene experimentelle Ergebnisse (Fluiddynamik, Trennwirkung) nicht ohne Berücksichtigung der verwendeten Stoffsysteme zu bewerten.

Für die Experimente wurde ein Stoffsystem gewählt, das im technischen PUREX-Prozeß zum Einsatz kommt und dessen physikalisch-chemische Eigenschaften bereits vielfach untersucht worden sind. Aufgrund der bekannten Stoffeigenschaften und der bisherigen Auslegungsgrundlagen zur Fluiddynamik in pulsierten Siebbodenextraktoren wurden die notwendigen Versuchsanordnungen im voraus konzipiert. In dieser Arbeit wurden nur relevante Parameter untersucht, die für den Betreiber einer bestehenden Pulskolonne kontrollierbar sind, d.h. die Betriebsparameter (Phasendurchflüsse, Pulsationsbedingungen) und die Bodenart. Über den Einfluß dieser obengenannten Parameter wurden nach einem statistischen Versuchsplan systematische Studien durchgeführt.

Phase	[H+] [mol/l]	ho [kg/m ³]	μ [10 ⁻³ N.s/m ²]	σ [10 ⁻³ N/m]
organische Phase	0.54	830.2	1.976	10.6
wäßrige Phase	2.24	1077.7	0.995	10.6

Tabelle 2. Physikochemische Konstanten des untersuchten Stoffsystems

Salpetersäure (3N) diente als wäßrige Phase und eine Mischung von 30% TBP und 70% n-Dodekan als organische Phase. Beide Phasen waren gegenseitig gesättigt. Auf diese Weise wurde sichergestellt, daß bei den fluiddynamischen Untersuchungen keine überlagerte Stoffübertragung (Salpetersäure) zwischen den beiden Phasen stattfinden konnte. Die Stoffdaten wurden während der Versuchsreihen mehrmals vermessen, wobei sich keine signifikanten Änderungen ergaben. Über die Stoffwerte des untersuchten Systems und deren Bestimmung wird hier auf den ausführlichen Bericht von Hunsinger⁵⁴ hingewiesen. Die für die Fluiddynamik relevanten Stoffdaten (bei 25°C) der Meßkampagnen an der Pulskolonne PETRA sind in Tabelle 2 angegeben.

⁵⁴ Hunsinger, H.: Diplomarbeit 85/23, FH Karlsruhe (1985)

Meßtechnik

Traceruntersuchungen

Die Vermischungseffekte in Extraktionskolonnen werden gewöhnlich mittels Traceruntersuchungen der jeweiligen Phasen erfaßt und analysiert. Dies geschieht sowohl bei Experimenten mit reinen Phasen als auch unter Stoffaustauschbedingungen. Hierzu wird die zu untersuchende Phase mit einem geeigneten Tracer markiert. Die Tracerverbindungen, die man bei Vermischungsuntersuchungen einsetzt, sind sehr vielfältig. Eine wesentliche Grundvoraussetzung gilt allerdings für sie alle: sie dürfen nur in einer der Phasen löslich sein und sollten keinen meßbaren Einfluß auf den Stoffaustausch ausüben. Die richtige Wahl des Tracers ist also von äußerster Wichtigkeit.

Aus praktischen Gründen scheint eine Salzlösung die am weitesten verbreitete Tracerverbindung für die Bestimmung der Vermischung einer wäßrigen kontinuierlichen Phase zu sein. Sie kann durch ihre elektrische Leitfähigkeit ohne großen Aufwand erfaßt werden. Die meisten Untersuchungen befassen sich deswegen lediglich mit der Vermischung der Kontiphase in ein- bzw. zweiphasigem Kolonnenbetrieb. Über Vermischung der Dispersphase in Extraktionskolonnen wurde bisher nur selten berichtet. Dies hängt damit zusammen, daß gegenüber der Kontiphase eine wesentlich aufwendigere Tracerund Meßtechnik angewandt werden muß. Ein allgemein anerkanntes Verfahren steht bisher nicht zur Verfügung.

Einige Experimentatoren verwenden einen Farbtracer zur Markierung der Tropfenphase. Souhrada⁵⁵ berichtet über umfangreiche Untersuchungen mit verschiedenen Typen von Farbtracern, die sich entweder in der Gegenphase lösten, mit ihr in Wechselwirkung traten oder sogar die Struktur der Zweiphasenströmung beeinflußten. E. von Fischer⁵⁶ hat zurecht darauf hingewiesen, daß die Zugabe eines Farbtracers die Fluiddynamik einer Extraktionskolonne unter Stoffaustauschbedingungen stört. Dieses Verhalten wird damit begründet, daß die Farbstoffe die Tropfenkoaleszenz behindern. Unter Zugabe des häufig benutzten Farbstoffes "Calco Oil Blue" beobachtete Fischer einen höheren Dispersphasenanteil unter Stoffaustauschbedingungen, so daß er auf weitere Untersuchungen verzichten mußte.

Ein zweites meßtechnisches Problem stellen die eigentlichen Detektoren dar, die häufig in der Kolonne eigebaut sind. Solche Einbauten führen aber zu einer Beeinflussung der Strömung, und können daher im allgemeinen nicht als rückwirkungsfrei betrachtet werden. Wegen der meist sehr komplizierten Strömungsverhältnisse sind die verursachten Fehler kaum abschätzbar. Aus dieser Tatsache, wie auch mit dem Wunsch, anlagenseitig mit einem möglichst geringen Aufwand für die Aufstellung von Meßstellen auszukommen, ergibt sich die Forderung nach berührungslosen Meßverfahren. Die Nachweisempfindlichkeit von radioaktiven Isotopen ist so hoch, daß nur äußerst geringe Tracermengen für eine Systemuntersuchung erforderlich sind, ohne deswegen auf eine ausreichende Meßstatistik verzichten zu müssen.

Bezüglich der Signalform werden der deterministische Einheitssprung oder der Einheitsimpuls öfters mit der Behauptung angestrebt, diese Signale seien besonders geeignet, weil eine direkte Beziehung zu Verweilzeitverteilungskurven (VWZV-Kurven) leicht herstellbar sei. Diese Aussage kann leicht widerlegt werden. Folgende Nachteile sind zu erwähnen:

- Es ist extrem schwer (wenn nicht unmöglich) einen scharfen Sprung oder eine Deltafunktion experimentell zu erzeugen.
- Man handelt sich damit bei der theoretischen Berechnung der Antwortfunktion wegen der Systemstörung erhebliche mathematische Schwierigkeiten ein.

⁵⁵ Souhrada, F.; Prochazka, J. und Landau, J.: Coll.Czech.Chem.Commun. 31 (1966) 1695

⁵⁶ E. von Fischer : Dissertation 7220 ETH, Zürich (1983)

 Man kommt leicht bei scharfen Signalen in den nichtlinearen Bereich des Systems, wo die Grundannahmen des Modells nicht mehr gelten.

Aris⁵⁷ und Bischoff⁵⁸ konnten zeigen, daß ideale und mathematisch genau definierte Störsignale wie Sprung oder Impuls nicht benötigt werden, wenn man an zwei oder mehreren Stellen im System die zeitliche Änderung der Störung mißt. Diese Methode ist den idealen Befragungssignalen überlegen⁵⁹, weil

- der experimentelle Aufwand wesentlich verringert wird,
- ein analytisch vorgegebener Funktionsverlauf am Systemeingang nicht einzuhalten ist, und
- die Detektordynamik keine Verfälschungen der Meßergebnisse verursacht, wenn für Störsignal und Antwort Detektoren mit gleichen Übertragungseigenschaften benutzt werden.

Auf diese Weise kann jedem Ausgangssignal y(t) ein Eingangssignal x(t) zugeordnet werden.

Radionuklidtechnik

Radiotracertechnik

Im Mittelpunkt dieses Verfahrens steht der Radiotracer mit seinen speziellen Eigenschaften. Hohe Nachweisempfindlichkeit und störungsfreie Nachweisverfahren sind hier an erster Stelle zu nennen. Es sei an dieser Stelle nochmals darauf hingewiesen, daß sehr hohe Verteilungskoeffizienten, entweder für die kontinuierliche oder disperse Phase, als Grundforderung für eine Tracerverbindung vorliegen müssen. Bei der Tracerentwicklung zur spezifischen Markierung beider flüssigen Phasen spielen sowohl kernphysikalische Gesichtspunkte als auch chemische Eigenschaften der einzusetzenden Tracerverbindungen eine wichtige Rolle. Diese Auswahlkriterien können folgendermaßen zusammengefaßt werden:

1. Halbwertszeit

Hinsichtlich der Halbwertszeit des Radionuklids sind Gesichtspunkte zu beachten, die zu gegenläufigen Aussagen führen. Einerseits sollte man stets bemüht sein, ein Nuklid mit möglichst kurzer Halbwertszeit einzusetzen, um die radioaktive Kontamination der in der Untersuchung einbezogenen Materialmenge zeitlich möglichst gering zu halten. Andererseits müssen aber auch die Transportzeit des Radionuklids vom Herstellungs- zum Einsatzort und die notwendige Tracervorbereitung berücksichtigt werden. Außerdem sollte angestrebt werden, die Einflüsse des Abklingens der Radioaktivität während der eigentlichen Messung möglichst klein zu halten.

Die üblichen mittleren Verweilzeiten der einzelnen Phasen in Extraktionskolonnen des PUREX-Prozesses liegen maximal im Stundenbereich. Da man die Erfassung der Verweilzeitverteilung mindestens über 3 bis 5 mittlere Verweilzeiten ausdehnen sollte, und man notfalls etwa 1 Versuch pro Tag durchführen möchte, empfehlen sich Radioisotope mit einer Halbwertszeit von 1-6 Stunden.

⁵⁷ Aris, R.: Chem.Engng.Sci. 9 (1959) 266

⁵⁸ Bischoff, K.B.: Chem.Engng.Sci. 12 (1960) 69

⁵⁹ Böxkes, W.; Hofmann, H.: Chem.-Ing.-Tech. 44 /14/ (1972) 882-889

2. Strahlenart und Energie der Strahlung

Die Auswahl der Radionuklide nach der emittierten Strahlenart und der Energie der Teilchen bzw. Quanten erfolgt im Hinblick auf eine möglichst einfache Durchführung des Strahlennachweises. Heute haben sich im wesentlichen Szintillationsdetektoren für den Strahlennachweis durchgesetzt. Reine γ -Strahlung aussendende Radionuklide als Indikatoren haben Vorteile, da sie im Vergleich zu gemischten β,γ -Strahlern im Rahmen der gültigen Strahlenschutzbestimmungen durch höhere Freigrenzen sich auszeichnen. Außerdem haben β -Strahler den Nachteil eines erhöhten Untergrundes wegen der Bremsstrahlung in den notwendigen Bleiabschirmungen und Kollimatoren.

Eine obere Energiegrenze ist technisch bedingt, denn γ -Photonen über 0.5 MeV erfordern sehr schwere Kollimatoren für eine saubere Erfassung der Strahlung (zur Unterdrückung des Compton Effektes). Je niedriger die Energie gewählt wird, umso besser können lokale Phänomene erfaßt werden. Bei zu niedrigen Energien kommt man in einen Bereich, wo die Signale aufgrund von Dichteunterschieden in beiden Phasen Holdup-abhängig werden. Die Selbstabsorption der niederenergetischen Strahlung bewirkt dann eine ungleichmäßige Wichtung der Signale von den Randund mittleren Regionen in der Kolonne.

Diese Überlegungen führten zu einem Energiebereich der einsetzbaren Radiotracer von 0.3-0.7 MeV.

3. Verfügbarkeit und Kosten

Drei Quellen wurden für die Beschaffung der notwendigen Radionuklide in Betracht gezogen:

- TRIGA-II Reaktor im Krebsforschungszentrum Heidelberg
- Isochronzyklotrone KIZ und KAZ des Kernforschungszentrums Karlsruhe
- Handelsübliche Radioisotopengeneratoren

4. Chemische Formen und Herstellung des Tracers

Die physikalische und chemische Form muß so gewählt werden, daß die Forderungen erfüllt werden, die sich aus der Markierung ergeben. In der Regel soll eine chemische Umarbeitung mit einfachen Methoden durchführbar sein.

Der Einfachheit halber wäre es wünschenswert, einfache ionische Tracer einsetzen zu können. Wie in den folgenden Abschnitten erläutert wird, ist dies nur bei der Markierung der wäßrigen Phase möglich. Bei der organischen Phase muß man auf chemische und radiochemische Markierungsverfahren zurückgreifen.

Zur Tracerherstellung wurden folgende Methoden ausführlich untersucht:

- Direkte ionische Phasenmarkierung
- Rückstoßmarkierung (Szilard-Chalmers Reaktionen)
- Isotopenaustausch
- Chemische Anlagerung

5. Tracerreinigung

Bei der direkten Markierung mit ionischen Tracern ist dieser Schritt selten nötig. Bei der Markierung der organischen Phase mit Leitverbindungen, möchte man sich jedoch vergewissern, daß keine wasserlöslichen Verunreinigungen mitinjiziert werden (Gefahr von Signalverzerrung). Bei der Rückstoßmarkierung ist nur eine Waschkaskade nötig, in der die organische Phase mehrmals mit Salpetersäure gewaschen wird bis alle Verunreinigungen beseitigt sind. Beim Isotopenaustausch oder bei einer chemischen Anlagerung muß man ein fremdes Lösungsmittel, das für die Reaktion benötigt wird (z.B. Kochen im Rückfluß), entfernen. Dafür hat sich hier die Solventextraktion als die günstigste Methode herausgestellt (siehe Abbildung 11 auf Seite 28).

6. Radiochemische Reinheit und langlebige Kontamination

Anforderungen sind auch an die Reinheit der Indikatorsubstanz zu stellen, die hinsichtlich der Verunreinigung durch andere Radionuklide und der sogenannten radiochemischen Reinheit erfolgen müssen. Unter radiochemisch rein wird das Vorliegen des Radionuklids in der gewünschten chemischen Form verstanden; insbesondere dürfen keine radioaktiven Fremdstoffe enthalten sein. Ebenfalls muß beachtet werden, daß einige Radionuklide radioaktive Folgeprodukte bilden und aus diesem Grunde keine radioaktive Reinheit besitzen können. Dieser Punkt erforderte grundlegende Untersuchungen, um langlebige Kontaminationen der Versuchsapparatur vermeiden zu können.

Detektorart und Meßanordnung

Abbildung 10. Szintillationsdetektor mit Bleikollimator und dessen Erfassungsbereich

Als Strahlendetektoren für die y-Photonen der verwendeten Radiotracer wurden Nal(TI)-Szintillationszähler (siehe Abbildung 10) eingesetzt. Die benutzten Bleikollimatoren hatten in der Regel eine Schlitzbreite von 5 mm. Die zur Tracerkonzentration proportionale Information wurde unmittelbar in Form digitalisierter Impulse an das in Abbildung 12 auf Seite 30 dargestellte Meßwerterfassungssystem weitergeleitet. Die experimentellen Meßwerte stellen letztlich den zeitlichen Verlauf einer örtlichen Tracerkonzentration im Erfassungsbereich eines jeden Detektors dar. Die absoluten Werte hängen mit

- dem Phasenanteil,
- der Ansprechswahrscheinlichkeit (efficiency) des Detektors,
- dem Selbtabschirmungsvermögen der Phasen

zusammen.

Die Tatsache, daß in der Literatur keine Angaben über eine funktionelle Wegabhängigkeit der Verteilungsstreuung (Dispersion) gefunden werden konnte, war ein wichtiger Grund, um die Untersuchung der axialen Vermischung eines phasenspezifischen Radiotracers in mehreren aufeinanderfolgenden Querschnitten stromabwärts (Vielmeßstellen-Verfahren) durchzuführen. Man benutzte also die Verweilzeitverteilungskurve eines beliebigen, an der Kolonne aufgestellten Szintillationdetektors (Meßstellen 1-17 in Abbildung 8 auf Seite 19) als genau definiertes Eingangssignal, die Verweilzeitverteilungskurve eines anderen als Antwortsignal der dazwischenliegenden Meßstrecke. In Verbindung mit einer Multidetektormeßtechnik können somit ortsabhängige Strömungszustände phasenspezifisch markierter Fluidströme bestimmt und hinsichtlich Konvektion und Dispersion qualitativ und quantitativ beschrieben werden.

Die Vorteile dieser Methode liegen darin, daß

- 1. keine präzise Spurstoffinjektion benötigt wird, sondern eine beliebig geformte Pulsmarkierung benutzt werden kann, und
- 2. die axiale Wegabhägigkeit der Verweilzeitverteilungen und der Einfluß des Detektorabstandes auf die Meßergebnisse erfaßt werden kann.

Das Anbringen mehrerer Detektoren in einer Kreisanordnung an einer Kolonnenebene gestattet auch die Diagnose und Analyse von meist vernachlässigten radialen Vermischungsvorgängen, die in großen industriellen Kolonnen eine wichtige Rolle spielen¹⁴. Die Ergebnisse der entsprechenden Untersuchungen an der Pulskolonne PETRA wurden an anderer Stelle⁶⁰ bereits vorgestellt. Diese Arbeit befaßt sich ausschließlich mit der Untersuchung der axialen Vermischungseffekte in der Pulskolonne. Durch geeignete Wahl des Tracerisotopes wird die Selbstabschirmung der strömenden Phasen vernachlässigbar, so daß bei der Messung ein echter Mittelwert über den gesamten Kolonnenquerschnitt erzeugt wird. Selbstverständlich hat ein radiales Profil von Strömungsgeschwindigkeiten einen indirekten Einfluß auf die axiale Vermischung. Dieser Punkt ist besonders wichtig bei der Analyse der Tropfenfluiddynamik und wird in "Die axiale Vermischung der Dispersphase" auf Seite 68 ausführlich diskutiert.

Markierung der wäßrigen Phase

Die radioaktive Markierung der Kontiphase stellte das kleinste Problem der Tracerentwicklung dar, denn viele Elemente weisen hohe Verteilungskoeffizienten bezüglich der wäßrigen Phase des untersuchten Systems auf. Sekine und Hasegawa⁶¹ bieten einen sehr umfangreichen Überblick der Literatur auf dem Gebiet der Extraktionschemie bis 1977, wo das Extraktionsverhalten zahlreicher Spezies in verschiedenen Systemen zusammengefaßt wird. Ishimori und Nakamura⁶² berichten über das Verteilungsverhalten von über 60 Elementen im System TBP-Kerosin/Salpetersäure. Viele dieser Elemente besitzen allerdings keine geeigneten Radioisotope. Nach einer ersten Auswahl wurde das Verhalten von Ba, Cu, Ga, In, Mn und Sr systematisch untersucht.

Sämtliche Aktivierungen mit thermischen Neutronen wurden im TRIGA-II Reaktor des Deutschen Krebsforschungszentrums in Heidelberg durchgeführt. Die meisten Bestrahlungen erfolgten bei einem thermischen Neutronenfluß von 2*10¹² n/cm².s. Die Auflösung der festen Proben in der salpetersauren Phase bereitete keine Schwierigkeiten (mit Ausnahme von BaNO₃). Der Tracer konnte anschließend ohne weitere Behandlung in die Kolonne injiziert werden.

Britsch⁶³ markierte die wäßrige Kontiphase des PUREX Systems mit ⁶¹Cu. Dieser Tracer hat den Nachteil, daß ein Zyklotron mit einem starken α-Partikelstrahl zur Verfügung stehen muß. Aus Kostengründen wurde auf eine derartige Markierung der wäßrigen Phase verzichtet.

Als besonders benutzerfreundliche und kostengünstige Alternative, erwiesen sich hierfür Radionuklidgeneratoren (insbesondere ¹¹³Sn/¹¹³mIn), die bisher fast ausschließlich auf dem Gebiet der Nuklearmedizin Anwendung gefunden haben. Hiermit ist eine einfache ionische Markierung möglich. In Tabelle 4 auf Seite 28 werden die geeigneten Radioisotope für die Markierung der wäßrigen Phase zusammengefaßt.

⁶⁰ Merz, A.; Porta, J.J. und Walter, R.: *ISEC'86 Conference Preprints*, Band III, München (1986) 413-420

⁶¹ Sekine T., Hasegawa Y.: Solvent Extraction Chemistry, Marcel Dekker, New York (1977), ISBN 0-8247-6391-2.

⁶² Ishimori, T., Nakamura, E.: JAERI 1047 /1/ (1963) 12

⁶³ Britsch, R.: Int.J.Appl.Rad.Isot. 34 /9/ (1983) 1400-1402

Nuklid	Energie [keV]	HWZ [min]	Quelle
⁵⁶ Mn	847	155	⁵⁵ Mn(n,γ) ⁵⁶ Mn
⁶¹ Cu	511	204	⁵⁹ Co(α,2n) ⁶¹ Cu
⁶⁴ Cu	511	762	⁶³ Cu(n,γ) ⁶⁴ Cu
⁶⁸ Ga	511	68	⁶⁸ Ge → (287 d) → ⁶⁸ Ga
⁸⁷ mSr	388	168	⁸⁷ Y → (80 h) → ^{87m} Sr
113m n	392	100	¹¹³ Sn → (115 d) → ^{113m} In

Tabelle 3. Radioisotope zur Markierung der wäßrigen Phase

Markierung der organischen Phase

Die chemischen Eigenschaften des extrem aggressiven PUREX-Systems machen eine einfache ionische Markierung der organischen Phase unmöglich, und stellen hohe Ansprüche an die chemische Stabilität der eingesetzten Tracerverbindungen. Ein ideales Tracerisotop stellt ¹⁸F dar, das für die erste Experimentierphase hauptsächlich über die ¹⁹F(n,2n)¹⁸F Kernreaktion am KIZ des Kernforschungszentrums Karlsruhe produziert wurde. Bei dieser Reaktion wurde die Rückstoßmarkierung mehrerer Perfluorkohlenstoffverbindungen (PFKV) erfolgreich untersucht⁶⁴.

Das Element lod besitzt 32 radioaktive Isotope und nur ein stabiles Naturisotop (¹²⁷I). Die große Anzahl von Isotopen mit sehr unterschiedlichen Zerfallseigenschaften bietet eine breite Palette von Einsatzmöglichkeiten je nach technischen Anforderungen, wobei man sich lediglich mit einer einheitlichen Markier- und Handhabungstechnik vertraut machen muß.

Arthayukti⁶⁵ untersuchte die Vermischung der Dispersphase in einer Pulskolonne (System Wasser/CCl₄) mittels Radiotraceruntersuchungen mit ¹³¹I-C₂H₅. Wegen seiner langen Halbwertszeit (8 Tage), schlechten Verteilungskoeffizienten und chemischer Instabilität im untersuchten System, kann diese Tracerverbindung hier nicht eingesetzt werden.

Die meisten eigenen Entwicklungsarbeiten zur lodmarkierung wurden mit ¹²³I durchgeführt. Dieses Isotop wird im Karlsruher Zyklotron kommerziell für die Nuklearmedizin hergestellt. Die Verunreinigungen betragen weniger als 1.5*10⁻⁵ an ¹²⁵I nach Bestrahlungsende, ¹²⁴I ist nicht nachweisbar.

Die in der Literatur veröffentlichten Ergebnisse zum Iodisotopenaustausch sind vielfältig und in der Regel auf die medizinische Anwendungen der Leitverbindungen gerichtet. Im Rahmen dieser Arbeit wurde eine neue, schnelle Methode zur nukleophilen Iodierung von Bromdodekan entwickelt, welche durch einen Kronenether katalysiert wird. Es wird die Bromverbindung anstelle der Iodhomologe eingesetzt, um die Dichte des Tracers so wenig wie möglich in Bezug auf reines Dodekan zu erhöhen. Das grundlegende Problem dabei ist die Übertragung von wäßrigem Iodid auf eine Dodekanphase und die Erhöhung der Reaktionsgeschwindigkeit. Makrozyklische Polyether (*"Crown-Ethers"*)⁶⁶ haben die einzigartige Eigenschaft, Alkalimetalle wie K oder Na zu komplexieren und sie dadurch in einer organischen Phase löslich zu machen.

⁶⁴ Porta, J.J.: Diplomarbeit, TU Stuttgart (1982)

⁶⁵ Arthayukti, W.: Dissertation, Univ. Toulouse (1975)

⁶⁶ Hiraoka, M.: Crown Compounds, Elsevier Co., Amsterdam (1982)

Nuklid	Energie [keV]	HWZ [min]	Quelle	Tracerverbindung
¹⁸ F	511	109 min	¹⁹ F(n,2n) ¹⁸ F	C ₆ F ₆
⁷⁵ Br	287,511	95 min	⁷⁶ Se(p,2n) ⁷⁵ Br	n-C ₁₂ H ₂₅ Br
⁸² Br	554-776	35.3 h	⁸¹ Br(n,γ) ⁸² Br	n-C ₁₂ H ₂₅ Br
123	159	13.2 h	¹²⁴ Xe(p,2n) ¹²³ Cs	n-C ₁₂ H ₂₅ I
128	443	25 min	¹²⁷ Ι(n,γ) ¹²⁸ Ι	n-C ₁₂ H ₂₅ I
132	520-970	2.3 h	¹³² Te(β ⁻) ¹³² I	n-C ₁₂ H ₂₅ I

Tabelle 4. Radiotracerisotope zur Markierung der organischen Phase

Die entwickelte Methode ist sehr einfach und schnell. Die ¹²³I Aktivität (weniger als 0.2 ml wäßriger Lösung), zusammen mit 10-20 ml Aceton, wird mit 20-40 mg Dicyclohexyl-18-Krone-6 in einem 50-100 ml Rundkolben mit 1 ml Bromdodekan und 4 ml Dodekan versetzt. Das Austauschgemisch wird 20-30 Minuten im Rückfluß zum Sieden gebracht (56-57°C). Die Reaktionsmischung wird gekühlt und dann mehrmals (3-4 mal) mit HNO₃ 3N gewaschen. Da die wäßrige Phase kaum Aktivität zeigt, läßt sich eine 100% Anlagerung unterstellen. Die organische Phase (5 ml) kann somit direkt in die Kolonne eingesetzt werden. Diese Tracerverbindung wurde bei den von Hunsinger durchgeführten Untersuchungen⁵⁴ in der Pulskolonne PETRA eingesetzt. Allerdings beträgt die Halbwertsdicke für die γ -Photonen des ¹²³I in Wasser nur 4.7 cm, was seinen Anwendungsbereich auf schlanke Glaskolonnen beschränkt.

Abbildung 11. Waschstufe für die organische Tracerreinigung

¹³²I, das aus handelsüblichen Isotopengeneratoren periodisch von seinem Mutternuklid ¹³²Te abgetrennt werden kann, wurde ebenfalls für den Tracereinsatz getestet. Das ¹³²I konnte aus diesem Generator mit einer Ausbeute von 70-90 % gewonnen werden. Die Eluate enthielten keine fremdionischen Verunreinigungen, jedoch traten ¹³²Tc (<0.05%) und ¹³¹I (<0.5%) als radiochemische Verunreinigungen auf. Da sich das als Verunreinigung entstehende ¹³¹I bei langer Lagerungszeit in der Säule des Jodgenerators anreichert, ist es ratsam, das erste Eluat zu verwerfen. Für die hier durchgeführten systematischen Tracerexperimente mit einer kurzen Verweilzeit (unter 15 min) konnte das Reaktornuklid ¹²⁸I eingesetzt werden. Die Aktivitätsausbeuten waren sehr hoch (2-3 Ci), aber wegen der sehr kurzen Halbwertzeit war man auf einen raschen Transport des Radionuklids zum Einsatzort angewiesen.

Zusammenfassend kann gesagt werden, daß zur phasenspezifischen Markierung der organischen Phase umfangreiche Bestrahlungs- und Markierexperimente notwendig waren. Radiohalogenierte organische Tracerverbindungen wie das Perfluorbenzol⁶⁷ und das loddodekan haben sich für diesen Zweck als besonders günstig erwiesen (siehe Tabelle 3 für geeigneten Radioisotope zur Markierung der organischen Phase (TBP/Kerosin)).

Für die Abtrennung von in anorganischer Phase löslichen organischen Verunreinigungen⁶⁸ wurde eine Waschstufe (siehe Abbildung 11 auf Seite 28) entwickelt, die sowohl für zyklotronbestrahlte Ampullen (¹⁸F) als auch für Reaktorproben (¹²⁸I) geeignet ist. Hier wird in mehreren Arbeitsgängen der Flüssigtracer durch Extraktion mit HNO₃ (3N) gereinigt.

Die Eignung der hier entwickelten Tracerverbindungen für Radiotracermessungen⁶⁰ unter Stoffübergangsbedingungen wurde in zahlreichen Experimenten an industriellen Kolonnen⁶⁹ ausreichend bewiesen.

Meßwerterfassung und Datenverarbeitung

Das mikroprozessorgesteuerte Datenerfassungssystem und dessen Kopplung auf ein lokales Netzwerk, wo die eigentliche Datenverarbeitung erfolgt, ist in Abbildung 12 schematisch dargestellt.

Der Multiplexer ist die zentrale Verknüpfungsstelle des Meßwerterfassungssystems. Über V.24 Schnittstellen ist er mit sämtlichen anderen Systemkomponenten verbunden. Der Multiplexer steuert aktiv den Datenverkehr. Er sorgt selbständig für eine Geschwindigkeitsoptimierung hinsichtlich der Datenübertragung. Die Versuchsdaten können sowohl auf Floppy-Disk als auch auf den Massenspeichern des PDP-11/60 Rechners in Echtzeit gespeichert werden. Die Einzelheiten des Meßwerterfassungssystems und das Konzept der Signalverarbeitung werden an anderer Stelle ausführlich vorgestellt⁷⁰.

Der PDP-11/60 Prozeßrechner ist für Meßzwecke und kleinere Aufgaben der Datenverarbeitung geeignet, stößt jedoch auf Grund eines zu kleinen Arbeitspeichers und begrenzter Rechengeschwindigkeit für Signalverarbeitung an seine Leistungsgrenze.

Während die Rechengeschwindigkeit durch Kopplung der PDP-11/60 Maschine des Laboratoriums für Isotopentechnik mit einem SKYMNK Array-Prozessor erheblich gesteigert werden konnte, bleibt der Engpaß beim Hauptspeicher erhalten. Dies bewirkt eine hohe Plattenbelastung, die zu einem entsprechenden Leistungsverlust führt. Ein weiteres Problem ist mangels lizenzpflichtiger Software (wie z.B. IMSL, DISSPLA, SAS) gegeben, so daß eine Kopplung mit den Zentralrechnern des Kernforschungszentrums Karlsruhe für Modellierungsaufgaben und statistische Versuchsauswertung notwendig wurde. Die Großrechenanlagen bieten gleichzeitig Backupmöglichkeiten und eine erweiterte Geräteperipherie.

⁶⁷ Porta, J.J. et al.: Deutsche Offenlegungsschrift DE 3346723 A1

⁶⁸ Diese wäßrig lösliche Verunreinigungen können bereits während der Bestrahlung bzw. durch Hydrolyse entstehen (siehe Porta⁶⁴)

⁶⁹ Eiben, K. et al.: ISEC'86 Conference Preprints, Band I, München (1986) 317-324

⁷⁰ Porta, J.J. und Walter, R.: KfK-Bericht in Vorbereitung

Abbildung 12. Meßwerterfassung und Datenverarbeitung

Ermittlung der Tropfengrößenverteilungen

Zur Ermittlung der für das Verhalten von Pulskolonnen wichtigen Tropfengrößenverteilungen wurden die Tropfen auf photographischem Wege erfaßt.

Bei jeder Versuchseinstellung wurden parallel zu VWZV-Messungen in der Kolonnenmitte mehrere Aufnahmen mit einer motorangetriebenen Spiegelreflexkamera, Marke CANON F-1 mit einem 100 mm Makro-Objektiv mit Zwischenring angefertigt. Hierzu wurde die Kolonne mit einer 1 kW Photolampe (180° versetzt) beleuchtet. Zur Vermeidung optischer Verzerrungen durch die Linsenwirkung der zylindrischen Kolonne wurde anfangs durch einen mit der kontinuierlichen Phase gefüllten Vorsatz photographiert. Da bei der Bildauswertung die gekrümmten Randzonen nicht erfaßt wurden, erwies sich diese Vorsichtsmaßnahme als überflüssig und wurde deswegen außer Acht gelassen.

Der photographierte Bildausschnitt wurde so gewählt, daß ein Teil des Kolonnenbodens auf dem unteren Teil des Photos abgebildet war. Somit konnte über den photographierten Lochdurchmesser der Vergrößerungsmaßstab für die Auswertung berechnet werden. Die Auswertung der auf DIN A4 vergrößerten Bilder wurde mit einem Teilchengrößenanalysator der Fa. ZEISS durchgeführt.

Um keine diskreten Betriebszustände innerhalb eines Pulsationshubes zu erfassen, dehnte sich die Auswertung stets über mindestens 5 Bilder bei jeder Kolonneneinstellung aus. Bei jeder Versuchseinstellung wurden je nach Tropfenspektrumsbreite 800 - 1500 Tropfen ausgewertet. Bedingt durch die Aufnahmetechnik ließen sich nur wandnahe Zonen photographieren und auswerten. Eine Untersuchung der Veränderung des Tropfengrößenspektrums über der Kolonnenhöhe wurde nur für eine Einstellung als Beispiel vorgenommen.

Faktorielle Versuchsplanung

Grundlagen

Als erster Schritt einer mathematischen Modellierung war festzulegen, welche Einflußgrößen und Wirkungsgrößen in das Versuchsprogramm einbezogen werden sollten. Weiterhin war der Charakter der erfaßten Einflußgrößen zu bestimmen und deren Variationsgrenzen anzugeben. Von besonderem Interesse in dieser Arbeit waren Aussagen über die Wirkung (und Wechselwirkungen) von kontrollierbaren Betriebsparametern auf die für die Fluiddynamik der Pulskolonne relevanten Größen Holdup und Vermischungsintensität.

Die Fluiddynamik pulsierter Bodenkolonnen ist ein hoch komplexes Phänomen, das von sehr vielen Versuchsparametern abhängt. Sie sind häufig entweder durch die Auslegung (z.B. Kolonnendurchmesser oder Länge) oder durch den Prozeß (Phaseneigenschaften, Temperatur, usw.) festgelegt. Die Literaturrecherche zu Beginn dieser Arbeit wies auf keine geeigneten Voruntersuchungen hin, so daß die Wahl der zu erfassenden experimentellen Faktoren dieser Analyse von zentraler Bedeutung war. Die meisten Autoren¹⁶ haben Korrelationen aufgestellt, in denen das Produkt aus Pulsamplitude und Frequenz (a.f) eine grundlegende Rolle spielt. Als Korrelationsbasis wurde bei Hanson⁷¹ der Quotient aus der Dispersphasengeschwindigkeit zum Produkt alf als dimensionslose Zahl angegeben. Ein Ziel des in dieser Arbeit gewählten statistischen Versuchsprogramms war auch die Überprüfung der Zulässigkeit dieser Annahmen. Ein weiteres Problem war die Wichtigkeit der Abkoppelung möglicher Einflüsse von Stoffübergangseffekten auf die Fluiddynamik der Extraktionskolonne. In dieser Arbeit wurden folgende Faktoren für zwei Bodengeometrien (Siebboden/Düsenboden) untersucht :

6 Gesamtdurchflußmenge $Q = V_0 + V_a$ $R = V_0 / V_a$

а

- Phasenverhältnis â ŵ
- Pulsfrequenz Pulshub

Zielfunktionen waren :

- Dispersphasenanteil ε (Holdup)
- Axiale Vermischung beider Phasen

Die meisten aus der Literatur bekannten experimentellen Untersuchungen zur Fluiddynamik von Extraktionskolonnen basieren auf einer Ein-Faktor-Methode ("one-at-a-time") zur Auslegung der Versuchsreihen. Hierbei wird nur eine Einflußgröße verändert und alle anderen bei der Untersuchung konstant gehalten. Diese Vorgehensweise versagt allerdings, wenn Wechselwirkungen im Spiel sind. Auf der anderen Seite, ist die 2ⁿ Versuchsplanung so aufgebaut, daß für jedes Niveau (Stufe) eines Faktors beide Niveaus aller anderen Faktoren untersucht werden. Dadurch erhält man Versuchsergebnisse bei allen möglichen Kombinationen der untersuchten Faktorstufen. Die Reihenfolge bei der Versuchsdurchführung wird durch Zufallsauswahl festgelegt. In einem Faktorenversuch kann man eine große Anzahl von Einflußparametern gleichzeitig untersuchen, ohne daß die Wirkung des einen Parameters durch die Wirkung eines anderen verfälscht wird. Die Unabhängigkeit der Einflußgrößen (Versuchsparameter oder Faktoren) wird erst durch einen orthogonalen Aufbau des Versuchsplans gewährleistet. 2ⁿ-Faktorenversuche haben diese gewünschte Eigenschaft.

⁷¹ Hanson, C.: Neuere Fortschritte der Flüssig-Flüssig-Extraktion, Verlag Sauerländer (1974)

Central Composite Design

Abbildung 13. Orthogonale Pläne für Faktorenversuche

Die Existenz von Extrema bliebe jedoch beim 2^n -Faktorenversuchsplan unentdeckt. Um die Modellparameter einer quadratischen Funktion bestimmen zu können, werden mindestens drei Parametereinstellungen für jeden Faktor benötigt. Mit wachsender Zahl der Einflußgrößen wird der Aufwand für vollständige Faktorversuche mit drei Stufen so umfangreich, daß man sie praktisch nicht heranziehen kann. Für die Ermittlung der Restvarianz wären auch im Falle von vier Faktoren in drei Stufen, 66 Freiheitsgrade (81 *Treatments*⁷² minus 15 Modellkoeffizienten) unnötig hoch. Daher wurden die Versuchsreihen zweckmäßiger nach einem von Box und Wilson⁷³ entwickelten orthogonalen zentral zusammengesetzten Versuchsplan⁷⁴ ausgelegt. Als "Kern" wurde der vollständige Faktorversuch mit 2 Stufen zu insgesamt $2^4 = 16$ Treatments ausgewählt und durch (2^*4+1) zusätzliche Versuche ergänzt. Der Kern besteht aus den 16 Ecken eines Hyperwürfels im R⁴-Raum, wobei 9 zusätzliche Meßpunkte im Ursprung und symmetrisch dazu in gleichem Abstand auf den Achsen der 4 Einflußgrößen liegen.

Normierte Einheiten			-1	0	+ 1	+√2
x ₁	x ₁ Gesamtdurchfluß [l/h]		232	260	288	300
x ₂	Phasenverhältnis	1	2.3	5.5	8.7	10
x ₃	Pulsamplitude [mm]	5.6	6.5	8.4	10.4	11.2
x ₄	Pulsfrequenz [Hz]	1.0	1.22	1.75	2.28	2.5

Dieser erweiterte orthogonale Versuchsplan heißt "Central Composite Design" und wird für den dreidimensionalen Fall mit zwei vollständigen Stufen $(2^3 + 3^*2 + 1)$ links in Abbildung 13 dargestellt. Aus dem daneben dargestellten vollständigen Faktorenversuch ("Full Factorial Design") in drei Stufen (3^3) werden die Vorteile der zentral zusammengesetzten Versuchspläne bei steigender Anzahl der Variablen leicht ersichtlich.

Die Ecken des normierten Hyperwürfels wurden jeweils als -1 (niedrig) und +1 (hoch) für jeden Faktor kodiert. Der normierte Abstand der zusätzlichen Meßpunkte vom zentralen

⁷² Als Treatment (Behandlung) wird jede Parametereinstellung eines statistischen Versuchsplans bezeichnet

⁷³ Box, G.E.P. und Wilson, K.B.: J.Roy.Stat.Soc., Series B, 13 (1951) 1-45

⁷⁴ Box, G.E.P.; Hunter, G.P. und Hunter, J.S.: *Statistics for experimenters*, John Wiley, New York (1978)

Punkt betrug bei dem gewählten Design $\sqrt{2}$. Dieser Wert orthogonalisierte den Versuchsplan, was eine Vereinfachung der Auswertung zur Folge hatte und unkorrelierte Schätzwerte der Modellkoeffizienten sicherte⁷⁵. Man konnte daher mit 25 Treatments die 15 Koeffizienten der multilinearen Form und die Restvarianz mit mindestens 10 Freiheitsgraden ausreichend genau schätzen.

Treatment	x ₁	x ₂	x ₃	× ₄
1	1.000	1.000	1.000	1.000
2	1.000	1.000	1.000	-1.000
3	1.000	1.000	-1.000	1.000
4	1.000	1.000	-1.000	-1.000
5	1.000	-1.000	1.000	1.000
6	1.000	-1.000	1.000	-1.000
7	1.000	-1.000	-1.000	1.000
8	1.000	-1.000	-1.000	-1.000
9	-1.000	1.000	1.000	1.000
10	-1.000	1.000	1.000	-1.000
11	-1.000	1.000	-1.000	1.000
12	-1.000	1.000	-1.000	-1.000
13	-1.000	-1.000	1.000	1.000
14	-1.000	-1.000	1.000	-1.000
15	-1.000	-1.000	-1.000	1.000
16	-1.000	-1.000	-1.000	-1.000
17	0.0	0.0	0.0	0.0
18	-1.414	0.0	0.0	0.0
19	1.414	0.0	0.0	0.0
20	0.0	-1.414	0.0	0.0
21	0.0	1.414	0.0	0.0
22	0.0	0.0	-1.414	0.0
23	0.0	0.0	1.414	0.0
24	0.0	0.0	0.0	-1.414
25	0.0	0.0	0.0	1.414

 Tabelle 6.
 Central Composite Design f
 ür 4 Faktoren

Vorgehensweise

Voruntersuchungen an der mit Siebböden bestückten Pulskolonne zeigten, in welchem Bereich die Kolonne stabil arbeiten konnte. Es wurde daher versucht, den größten Paramet erbereich zu erfassen, wo die Kolonne keine Instabilitäten zeigen würde. Diese Flutpun ktmessungen führten zu dem in Tabelle 5 auf Seite 32 dargestellten stabilen Paramet erbereich. Jede kontrollierbare Variable durfte normierte Werte aus der Quintuple $(-\sqrt{2}, -1, 0, +1, +\sqrt{2})$ annehmen. Die entsprechenden Einstellungen sind in Tabelle 6 zu

⁷⁵ Myers, R.H.: *Response surface methodology*, Allyn and Bacon, Boston MA (1971), Kapitel 7

ersehen. Um beobachtete lokale Instabilitäten im höheren Parameterbereich bei Versuchen mit Düsenböden auszugleichen, wurde der Versuchsplan um zusätzliche Punkte aus dem 3⁴ Design erweitert.

Zusammenfassend kann gesagt werden, daß das statistische Design die Anzahl der Experimente und die Versuchsbedingungen in jedem Fall bestimmte. Der Versuchsplan wurde ein sehr wichtiger Punkt, denn damit konnte die gewünschte Information mit einer großen Ökonomie an Zeit und Arbeit erhalten werden. Der ausgewählte Plan erforderte ein empfindliches Gleichgewicht der Versuchsbedingungen. Sie hatten eine gewisse Symmetrie, die die Berechnungen vereinfachten und die Fehler, die den Konstanten der Zielfunktion anhaften, minimierte. Der Plan beinhaltete mehr als die minimale Anzahl der Versuche, was eine Varianzanalyse gestattete. Die Versuchspunkte wurden so ausgelegt, daß das gesamte Versuchsfeld homogen abgetastet werden konnte. Dabei wurde besonders darauf geachtet, daß mögliche Versuchsgruppierungen in einer begrenzten Region ausgeschlossen blieben (homogene Versuchsfeldabtastung) und Untersuchungen in allen interessanten Betriebsbereichen (d.h. sowohl Mixer-Settler-, als auch Dispersionsbereich) durchgeführt werden konnten.

Radiotraceruntersuchungen in der Pulskolonne PETRA

Die Vermischungsexperimente mit Radiotracern wurden in zwei umfangreiche Versuchsreihen eingeteilt und nach einem Central Composite Design durchgeführt.

Um die gemessenen Impulsmengen-Zeitfunktionen in Form einer Wahrscheinlichkeitsdichteverteilung darstellen zu können, ist es notwendig, daß die in jedem konstanten Meßintervall Δt gemessene Impulsmenge $\Delta I_i(t)$ auf die entsprechende Gesamtimpulsgesamtmenge I_{ges} bezogen wird,

Verteilungsdichte
$$C_i(t) = \frac{dI_i(t)/dt}{\int_0^\infty dI_i(t)} \simeq \frac{\Delta I_i(t)/\Delta t}{I_{ges}}$$
 [4.1]

sodaß für C(t) die Normierungsbedingung

$$\int_0^\infty C(t) dt = 1$$
[4.2]

gilt.

Die Dichtefunktion ist z.B. bei der Analyse des Übertragungsverhaltens der Kolonne zwischen zwei räumlich getrennten Meßebenen durch Signalentfaltung von Wichtigkeit, da die Meßdaten durch den Normierungschritt relativiert werden und somit untereinander vergleichbar sind.

Normierte Verweilzeitverteilungssignale für ein typisches Experiment sind in Abbildung 14 auf Seite 35 aufgezeigt. Jede Kurve stellt die Tracerdichteverteilung in Bezug auf einen der 12 an dem aktiven Kolonnenteil aufgestellten Detektoren dar (siehe Abbildung 8 auf Seite 19). Es wurden insgesamt über 2000 Verweilzeitverteilungssignale (4000-12000 Kanäle Auflösung) aus 17 Szintillationsdetektoren in ca. 120 Versuchen erfaßt. Man konnte maximal einen Doppelversuch täglich ausführen, d.h. nach Erreichen des fluiddynamischen Beharrungszustandes wurde zuerst ein Experiment mit Markierung der organischen Dispersphase und in Folge ein zweites Experiment mit Markierung der wäßrigen Kontiphase durchgeführt.

Die Markierung beider Phasen mit Radiotracern mittels einer Zahnraddosierpumpe (1-5 ml Tracer pro Injizierung) erfolgte i.allg. in die Druckleitungen unmittelbar vor dem Eintritt in die Verteilerköpfe. Damit wurden kurze Injizierzeiten von 2-10 s realisiert. Die in jeder Druckleitung eingebauten, der Dosierpumpe nachgeschalteten statischen Mi-

34

scher garantierten eine hinreichend gute radiale Vermischung der Tracermenge mit der zu markierenden Phase. Da die Forderung nach einem mathematisch-analytisch beschreibbaren Eingangssignal nicht gegeben war (siehe "Traceruntersuchungen" auf Seite 22), stellte sich die Aufgabe, eine Tracerinjizierung (Impulsindikatormodulation) für die Zweiphasengegenstromkolonne zu finden, deren Form, Höhe und Dauer ein so breites Frequenzspektrum aufwies, daß möglichst viele Frequenzen des Systems angeregt wurden. Ein Kriterium für eine geeignete Systemanregung x(t) war der Vergleich zwischen der Impulsdauer von x(t) und der des Ausgangssignals y(t). Ist die Eingangsimpulsbreite kleiner oder etwa gleich groß wie die der Antwort, so werden auch die höheren Frequenzen angeregt, und das angesprochene Frequenzband läßt eine gute Systemidentifikation zu.

Wegen der kurzen Verweilzeit des organischen Tracers konnte nach ca. 1 Stunde bereits die wäßrige Kontiphase markiert werden. Die erste Meßkampagne (SIEB) wurde mit reinen Phasen und Siebböden in organisch disperser Fahrweise durchgeführt. Die zweite Meßkampagne (DUES) baute auf derselben Struktur der vorherigen auf, wobei lediglich die Bodenart geändert wurde (Düsenboden). Die Temperatur der Versuchsphasen wurde mittels eines in den Vorlagetanks eingebauten Wärmetauschers bei 25°C konstant gehalten.

Modulares Softwarekonzept

Die Auswertung von Verweilzeitverteilungssignalen erfordert den Lauf mehrerer umfangreicher Rechenprogramme auf einer Datenverarbeitungsanlage. Dabei sind große Datenmengen zu verarbeiten und von Programm zu Programm weiterzugeben. Die Reihenfolge der Module und die Art der zu übergebenden Daten sind nicht fest vorgegeben, sondern hängen von gewählten Rechenmodellen und von der Physik der jeweiligen verfahrenstechnischen Anlage ab.

Jede dieser Rechnungen setzt sich aus einzelnen komplizierten Rechenschritten zusammen. Es war deswegen notwendig, den Ablauf der Programme und den Transfer, sowie die Verwaltung der Daten soweit als möglich zu automatisieren. Gleichzeitig sollte die Flexibilität der möglichen Rechenstrategien erhalten bleiben. Allen diesen Anwendungen ist es gemeinsam, daß auf einen Datenbestand Algorithmen, die irgendwelche theoretischen Modelle oder Manipulationen repräsentieren, angewandt werden. Dadurch werden neue Daten erzeugt und alte gelöscht oder ersetzt. Diese Algorithmen wurden hier durch Programmodule realisiert. Nach dieser Auffassung ist ein Modul ein Operator, der auf Daten einer Datenbasis wirkt und dabei die Datenbasis verändert. Das Programmsystem beinhaltet demnach folgende Grundelemente:

- Definition und Identifizierung von Daten
- Definition von Operatoren oder Module, die auf diese Daten wirken
- Steuerung einer ausgewählten Modulfolge
- Verknüpfung zwischen Modulen und bestimmten Untermengen der Datenbasis (Signale)
- Darstellung der erzeugten Daten, die die gewünschten Ergebnisse enthalten, in einer dem Endbenutzer bequemen Form (z.B. Plotten)

Alle Informationen im System werden in Datenblöcken mit direktem Zugriff gespeichert. Jeder Datensatz besteht aus einem Strukturblock (dem sogenannten "Spektrumkopf") konstanter Länge und einem Datenvektor mit variabler Länge. Der Datenvektor enthält die eigentlichen Daten, die in der Datenbasis stets als Vektor behandelt werden. Im Strukturblock sind die Identifikationskennung und die Dokumentation des Versuches und der Auswertung enthalten. Die beschreibende Information kann entweder vom Benutzer gezielt eingegeben oder von den einzelnen Modulen automatisch erzeugt werden.

Die Vorstellungen dieses Konzepts gingen dahin, zentrale Programme zu schaffen, die es dem Benutzer gestatten, die gewünschten Funktionen und Algorithmen selbst zu bestimmen (z.B. Fensterfunktionen oder Vermischungsansätze) sowie die Reihenfolge des Ablaufs beliebig festzulegen. Da wesentliche Teile der Auswertung am besten interaktiv durchzuführen sind, mußte eine benutzerfreundliche Schnittstelle zu den Programmen geschaffen werden. Dies erfolgt über Menüeingabe, wobei die in FORTRAN 77 programmierten Lademodule mittels Kommandoprozeduren gesteuert werden. Die Reihenfolge der aktivierten Module, d.h. der gewählten Auswerteschritte, wird im Spektrumkopf protokolliert, bzw. in einer großen zentralen Datenbank auf Platte eingetragen. Diese Datenbank wird mittels SAS-Prozeduren⁷⁶ verwaltet. Für diese Aufgaben mußte das bestehende Softwarekonzept des Laboratoriums für Isotopentechnik wesentlich neu gestaltet werden. Dabei handelt es sich nicht nur um formale Programmunstellungen, vielmehr wurden wesentliche Teile der Algorithmen neu erstellt, um die Vorteile der schnellen Rechner-Hardware und die schnelle Fouriertransformation voll zur Geltung zu bringen.

Die einzelnen Schritte des gesamten Ablaufes einer Signalverarbeitung und Modellierung seien hier kurz erläutert. Der erste Schritt wird vom Benutzer interaktiv an einer Work-

⁷⁶ SAS User's Guide (Version 5), SAS Institute, Cary NC (1985)

Datenoperation	Modulname	Rechner
Versuchsparametereingabe	KEIN	PDP-11
Ausreißerkorrektur	FFTKOR	PDP-11
Halbwertszeitkorrektur	KORAUS	PDP-11
Untergrundkorrektur	KORAUS	PDP-11
Berechnung der statistischen Momente	MOMENT	PDP-11
Normierung der Verweilzeitverteilungssignale	VNORMI	PDP-11
Signaleentfaltung	IDECOD	IBM 3090
Vermischungsmodelle	MODEL	IBM 3090

station des lokalen PDP-11/60-Rechners durchgeführt, wo die Signalvorbereitung geschieht.

Tabelle 7. Programmodule f ür die Signalverarbeitung

Es wurde bereits in "Meßwerterfassung und Datenverarbeitung" auf Seite 29 erläutert, warum eine weitere Auswertung der Versuchsdaten auf dem PDP-11/60 Rechner nicht realisierbar ist. Aus diesem Grund bereitet dieser Rechner, über Menüeingabe oder automatisch, einen Job (Auftrag für die Stapelverarbeitung) vor, wobei die Daten über die RJE-Kopplung (siehe Abbildung 12 auf Seite 30) auf die Zentralrechneranlagen des Kernforschungszentrums übertragen werden. Hier werden sie sowohl interaktiv als auch im Stapelbetrieb weiterverarbeitet. Danach läuft grundsätzlich folgendes Schema ab: Auf jedem Rechner wird ein Job ausgeführt, der zunächst die Daten übernimmt, dann seine eigentliche Aufgabe erledigt (z.B. Berechnungen durchführt) und schließlich einen vollständigen und gültigen Auftrag zusammen mit den bisher vorliegenden Ergebnisdaten an den nächsten Rechner weiterleitet. Tabelle 7 zeigt einige wichtige Module des Programmpakets zur Signalanalyse und Auswertung von Tracerexperimenten. Die meisten Programme sind sowohl in PDP-11 FORTRAN IV, als auch IBM/370 FORTRAN 77 Version verfügbar und können vom Laboratorium für Isotopentechnik des Kernforschungszentrums Karlsruhe bezogen werden.

FFT-Entfaltung von Verweilzeitverteilungssignalen

Für die Identifikation der fluiddynamischen Vorgänge in dem mit Böden bestückten Teil der Kolonne erwies es sich als vorteilhaft, die Analyse mit einer "black-box"-Entfaltung der Verweilzeitverteilungssignale der extremen Sonden (Meßabstand 5.6 m) zu starten. Dieser maximale Abstand ist besonders wichtig bei der Behandlung der Dispersphase, da ihre extrem kurzen Verweilzeiten einer vernünftigen Meßstatistik für zwei benachbarte Meßebenen entgegentritt. Erst der Weg durch eine längere Kolonnenstrecke sichert eine Mittelung der stochastischen Tropfenvorgänge, die für eine Reproduzierbarkeit der Ergebnisse notwendig ist. Abbildung 15 auf Seite 39 stellt für beide Phasen die Verweilzeitverteilungssignale und Impulsantwortfunktionen eines typischen Experiments für den ersten und den letzten Detektor beider Phasen im aktiven Teil der Kolonne (Meßabstand der Detektoren 1-12 -siehe Abbildung 8 auf Seite 19- ist 5.6 m) dar. Bemerkenswert ist die ausgeprägte Totzeit der Impulsantwort h(t) der Dispersphase (mittlere Kurve rechts in Abbildung 15 auf Seite 39). Ein zweites Merkmal der Dispersphasenfluiddynamik ist die Anwesenheit von markanten Tailingeffekten. Diese Tatsachen werden in den meisten Vermischungsmodellen nicht zum Ausdruck gebracht.

Es ist immer möglich, für ein beliebiges System ein äquivalentes lineares System zu finden, das ein gemessenes Ausgangssignal y(t) mit dem Eingangssignal x(t) verbindet. Dies besagt aber nicht, daß das untersuchte System in Wirklichkeit linear ist. Die hier ange-

Abbildung 15. Impulsantworten beider Phasen durch FFT-Entfaltung

wandte Methode ermöglicht es jedoch, die Systemlinearität zu überprüfen, wenn man einzelne Systemteile getrennt analysiert und dann das Superpositionsprinzip anwendet. Abbildung 16 auf Seite 39 stellt die Tracerdichteverteilungen (normierte Verweilzeitverteilungssignale) dreier an der Pulskolonne aufgestellter Detektoren und die entsprechenden Impulsantworten für die Zwischenstrecken dar. Diese Impulsantworten wurden durch FFT-Signalentfaltung zwischen den jeweiligen Meßebenen berechnet. Sie beschreiben das Übertragungsverhalten zweier Subsysteme, die in Reihe geschaltet sind. Für ein lineares System muß die Faltung beider Impulsantworten die Impulsantwort der ganzen Strecke ergeben. Abbildung 17 auf Seite 40 vergleicht die durch Superposition (Faltung) beider Teilstrecken berechnete Impulsantwort mit der Impulsantwort aus Entfaltung der extremen Detektoren. Die praktische Überlappung beider Signale (rechts im Bild) darf als Beweis der Systemlinearität interpretiert werden.

Die vorgestellte Auswertemethode gestattet, die modellfreie Impulsantwortfunktion mittels FFT-Signalentfaltung zu berechnen, und dies unabhängig vom Injizierungssignal. Damit kann die Vermischungswirkung des betrachteten Kolonnenteils eindeutig identifi-

Abbildung 16. Impulsantworten zweier Meßstrecken an der Pulskolonne

Abbildung 17. Überprüfung der Systemlinearität

ziert werden. Durch eine direkte Auswertung der Signale wären real vorhandene Tailingeffekte (die in üblichen Modellen nicht berücksichtigt werden) nicht mehr zu erkennen. Basierend auf dieser parameterfreien Darstellung des Systems können somit die Grundbedingungen eines geeigneten Modells aufgestellt werden. Dadurch lernt man, wie der funktionelle Verlauf des aufzustellenden Modells "auszusehen" hat.

Für eine erste, grobe Bewertung von Verweilzeitverteilungssignalen ist es nicht immer erforderlich, alle gemessenen Werte bzw. den gesamten Kurvenverlauf zu verwenden. Nach Levenspiel und Smith⁷⁷ läßt sich jede Verweilzeitverteilung (analog zu einer stochastischen Verteilung) durch ihre Momente charakterisieren. Man berechnet aus den gemessenen Signalen eine oder mehrere statistische Verteilungsparameter und vergleicht diese mit den entsprechenden möglichen Modellen, um somit auf das günstigste Vermischungsmodell zu schliessen. Diese statistischen Kennzahlen lassen sich direkt mit der Fouriertransformierte der Impulsantwort verknüpfen⁷⁸. Darum lassen sich auch im Frequenzbereich Aussagen machen, die den gleichen Informationsgehalt beinhalten wie entsprechende aus dem Zeitbereich.

Für die Charakterisierung der Gewichtsfunktionen wurden in dieser Arbeit die ersten drei Kumulanten berechnet. Die Kumulanten⁷⁹ einer Verteilung sind verschiebungsinvariant, was bedeutet, daß die Totzeit des Systems mit deren Hilfe nicht erfaßt werden kann. Der Verteilungsmittelwert μ (Erwartungswert) und die Varianz σ^2 (Zufallsstreuung) stellen die ersten Kumulanten dar und sind ein Maß für die Lage und Breite einer Verweilzeitverteilung. Die dritte Kumulante drückt die Symmetrieeigenschaften der Verteilung aus. Ist die Schiefe α_3 positiv, so ist die Verteilung asymmetrisch mit einem steilen Aufstieg und einem flachen Abfall zu größeren Zeiten hin (positiver Tailingeffekt).

Aris⁸⁰ zeigte, daß die ersten Kumulanten

- Mittelwert (μ)
- Varianz (σ^2)

⁷⁸ Kendall M.G. und Stuart A.: The advanced theory of Statistics (Vol I), Griffin, London (1958)

⁷⁷ Levenspiel, O. und Smith, W.K.: Chem.Eng.Sci. 6 (1957) 227

⁷⁹ Soong, T.T.: Probabilistic Modeling and Analysis in Science and Engineering, John Wiley & Sons, New York (1981) 97

⁸⁰ Aris, R.: Chem.Eng.Sci. 9 (1959) 266

einer Verteilung sich unter Faltung additiv verhalten. Jeffreson⁸¹ verallgemeinerte dieses Ergebnis auf sämtliche Kumulanten. Diese Ergebnisse stellen die Grundlage der sogenannten "Momentenmethode" dar.

Eine Anzahl von Autoren haben in der letzten Zeit wiederholt die Ermittlung von Momenten kritisiert⁸², weil diese Methode besonders empfindlich gegenüber Auswerteungenauigkeiten sei und angeblich keine befriedigende Aussagekraft besitze. Dieses Problem wird i.a. als "Tailing" bezeichnet und hängt damit zusammen, daß die Abweichungen im Zeitbereich mit der Gewichtsfunktion tⁿ bewertet werden, die die abklingenden Bereiche der Meßkurve überproportional wichten. Es muß an dieser Stelle betont werden, daß Verteilungskumulanten, im Gegensatz zu "optimierten" Parametern einer Kurvenanpassung im Zeit- oder Bildbereich, modellunabhängige Kennzahlen liefern. Die Angabe von Modellparametern ist jedoch nur bei einem gültigen Modell gerechtfertigt. Diese Tatsache verleiht den Kumulanten einer Verteilung, für die erste objektive Bewertung eines Tracerversuches, mehr Aussagekraft als irgendwelche Modellgrößen. Die Ableitung von Modellkoeffizienten aus den Verteilungsmomenten (Momentenmethode) ist nur im Falle eines korrekt identifizierten Systems nach Überprüfung der Modellanwendbarkeit gerechtfertigt. Die Nichteinhaltung dieser Regel kann zu falschen Folgerungen führen, wie es in Kapitel 6 gezeigt wird.

Die Versuchsergebnisse der indirekten Auswertung⁸³ für beide Meßkampagnen sind unter dem Titel "FFT-Entfaltungsergebnisse" in "Anhang B. Auswertung der Siebbodenversuche" auf Seite 93 und "Anhang C. Auswertung der Düsenbodenversuche" auf Seite 121 dargestellt. Die stochastischen Verteilungskumulanten wurden aus den durch FFT-Entfaltung berechnenten Gewichtsfunktionen ermittelt und stellen gemittelte Werte für den aktiven Teil der Kolonne dar.

Parameterschätzung durch direkte Optimierung

Häufig wird die inkorrekt gestellte Aufgabe der Lösung der Volterra'schen Integralgleichung [2.2] durch ein korrekt gestelltes Problem ersetzt. Die Mannigfaltigkeit der Lösung wird hier durch a-priori Festlegung der Anzahl der Freiheitsgrade (Parametrisierung) eingeschränkt.

Direkte Verfahren zur iterativen Lösung einer Optimierungsaufgabe sind dadurch gekennzeichnet, daß die das gegebene Problem beschreibende Gleichung stets streng erfüllt wird. Daher ist in diesem Fall eine nachträgliche statistische Überprüfung der Zulässigkeit dieser Hypothese zwingend notwendig.

Bestandsaufnahme

Die Anpassung der experimentellen Tracersignale an eine Modellgleichung kann sowohl im Zeitbereich als auch im Laplace-Raum oder im Frequenzbereich erfolgen. Da der Rechenaufwand einer solchen Auswertung erheblich sein kann, nimmt man, um eine Vereinfachung der Numerik zu erreichen, in der Regel Informationsverluste in Kauf. So versuchte z.B. Bauer⁸⁴, die von Urbanczyk⁸⁵ angegebene Laplace-Transformierte der analytischen Lösung des Dispersionsmodells

$$G(s) = e^{\left[\frac{u\Delta z}{2D}\left(1 - \sqrt{\frac{4Ds}{u^2}}\right)\right]}$$

[5.1]

⁸² Blaß, E. et al: Chem.-Ing.-Techn. 57 (1985) 565-581

⁸¹ Jeffreson, C.P.: Chem.Eng.Sci. 25 (1970) 1319-1329

⁸³ Entfaltung der Verweilzeitverteilungssignale aus den extremen Detektoren 1-12 in Abbildung 8 auf Seite 19 (Meßabstand 5.6 m))

⁸⁴ Bauer R.: Dissertation 5741 ETH, Zürich (1976)

⁸⁵ Urbanczyk, W.: Dissertation, TU Hannover (1972)

nach einem Vorschlag von Ostergard⁸⁶ durch Logarithmieren zu linearisieren

$$-\frac{1}{\ln[G(s)]} = \frac{s\Delta z}{u\ln[G(s)^2]} - \frac{D}{u\Delta z}$$
[5.2]

In dieser als "Ausgleich im Laplace-Bereich" bekannten Methode wird die Laplace-Transformierte der Modellfunktion des axialen Dispersionsmodells an die transformierten experimentellen Daten durch lineare Regressionsanalyse angepasst. Dabei betrachtet Bauer die komplexe Laplace-Variable s = a + ib als eine reelle Zahl, d.h. er berücksichtigt nur den Realteil, was eine ungleichmäßige Gewichtung im Zeitbereich zur Folge hat⁸⁷. Die Verteilung der Zufallsfehler wird durch jede nicht-lineare Transformation⁸⁸ verändert, so daß, wie bereits von Böxkes⁸⁹ beschrieben, auch keine gleichmäßige Gewichtung im Laplace-Raum gewährleistet wird.

Dieser konzeptuelle Mangel wird öfters auch bei der Optimierung über den komplexen Frequenzgang begangen, indem man die Modellparameter nur aus dem Argument oder dem Betrag der komplexen Transformierten berechnet. Durch diese Aufspaltung wird ein nicht vorhersehbarer Informationsverlust hervorgerufen. Man übersieht einfach, daß die Laplace-Transformierte eine komplexe Funktion eines komplexen Parameters ist, während die Fourier-Transformierte eine komplexe Funktion eines reellen Parameters darstellt. Im Bildbereich müssen unbedingt beide Komponenten optimiert werden, um eine saubere Anpassung zu sichern. Die Nichteinhaltung dieser Bedingung führt häufig zu unbrauchbaren Ergebnissen. So gelang es Niebuhr¹⁸, bei der Auswertung der von ihm gemessenen Verweilzeitverteilungen nach einem Ausgleich im Zeitbereich nur bei 80 bzw. 125 von 400 Experimenten, vernünftige Ergebnisse zu erzielen. Die Startwerte für die Parameterschätzung wurden über einen "Ostergard'schen" Ausgleich im Laplacebereich⁸⁶ gewonnen. Die Tatsache, daß seine Berechnungen häufig zu physikalisch irrelevanten "optimalen" Parametern (negative mittlere Verweilzeiten bzw Bodensteinzahlen) führte, deutet daraufhin, daß die Startwerte der Optimierung sehr schlecht waren, was in aller Regel zu lokaler Konvergenz führt. Dieses Konvergenzverhalten wird für die von Pietsch¹⁹ durchgeführten Messungen auch von Blaß⁹⁰ bestätigt.

Die Ergebnisse lassen insgesamt vermuten, daß die aus der Literatur bekannten großen Abweichungen der Vermischungsparameter nicht nur versuchs- bzw. systemabhängig sind, sondern auch im starken Maße von der Auswertemethode abhängen können. Um diese Vermutung näher zu untersuchen, wurden die von Britsch⁹¹ gemessenen und nach der Bauer'schen Methode⁸⁴ ausgewerteten Daten mit dem hier entwickelten Rechenprogramm MODEL nachgerechnet. Dabei ergaben sich Dispersionskoeffizienten für die organische Phase, die um bis zu 4 mal höher liegen können als die von Britsch angegebenen. Diese Tatsachen können den oben erwähnten Verdacht nur bekräftigen.

Mit der raschen Entwicklung der elektronischen Datenverarbeitung hat sich in letzter Zeit die Uberzeugung bestätigt, daß der Ausgleich im Zeitbereich (iterative Faltung) die sizur Modellparameterschätzung cherste Methode darstellt. So lösten z.B Sommeregger⁹², E.v.Fischer⁵⁶ und Aufderheide⁷ diese Optimierungsaufgabe. Wesentlicher Nachteil dieser Vorgehensweise ist jedoch der erhebliche numerische Aufwand für die Berechnung der Faltung, weil ebensoviele numerische Integrationen wie eingelesene Meßpunkte durchgeführt werden mußten. Als Konsequenz mußte die für eine Faltung berücksichtigte Anzahl der Diskretisierungspunkte von gemessenen Signalen auf z.B. 150 beschränkt werden⁷, was immer noch die beträchtliche Zeit von etwa 200 CPU-Sekunden auf einem Großrechner erforderte. Durch diese Begrenzung werden häufig Meßdaten aus den Verweilzeitverteilungskurven nicht berücksichtigt, wie z.B. Vorlauf und Tailing.

⁸⁶ Ostergard, K. und Michelsen, M.L.: Can.J.of Chem.Eng. 47 (1969) 107

⁸⁷ Anderssen, A.S. und White, E.T.: Chem.Eng.Sci. 25 (1970) 1015

⁸⁸ Daniel, C. and Wood, F.S.: Fitting Equations to Data, Wiley-Interscience, New York (1971)

⁸⁹ Böxkes, W.: Dissertation, TU Erlangen (1973)

⁹⁰ Blaß, E.: Interner KfK Bericht

⁹¹ Britsch: Interner KfK Bericht

⁹² Sommeregger : Dissertation, TU Graz (1980)

Eigene Methode

Das numerische Verfahren zur direkten Lösung des Faltungsintegrals, das in dieser Arbeit entwickelt wurde, stellt einen Ausgleich im Zeitbereich dar. Ein wesentlicher Unterschied zu den bereits erwähnten Methoden ist die Anwendung der in Kapitel 2 vorgestellten Methodik. Dies führt zu einer erheblichen Beschleunigung der iterativen Faltungsaufgabe.

Abbildung 18. Strukturplan des Programms MODEL zur direkten Lösung des Faltungsintegrals

Das Verfahren kann folgendermaßen gegliedert werden :

- 1. Die normierten Verweilzeitverteilungssignale werden durch eine Zerofillingoperation auf 8K-Stützstellen erweitert.
- 2. Die diskrete Fouriertransformierte der Modellfunktion für einen gegebenen Satz von Parametern wird mit der diskreten Fouriertransformierte des Systeminputs multipliziert.
- 3. Das Ergebnis dieser komplexen Multiplikation wird wieder in den Zeitbereich mittels einer inversen FFT transformiert.
- 4. Der Modelloutput (Faltungsoutput) wird jetzt mit dem Meßoutput im Zeitbereich verglichen (Residuenanalyse).
- 5. Ist ein bestimmtes Konvergenzkriterium erreicht, dann liefert das Verfahren die beste Anpassung im Sinne von Gauss-Legendre,
- 6. andernfalls muß ein neuer Satz von Parametern eine neue Modellfunktion liefern und so weiter, bis das Konvergenzkriterium erfüllt ist (zurück zu 2).

Abbildung 18 stellt die direkte Modellierungsaufgabe schematisch dar. Sie entspricht dem rechten Lösungspfad in Abbildung 4 auf Seite 8. Die praktische Implementierung der Algorithmen und weitere Einzelheiten können in "Anhang D. Das Programm MODEL" auf Seite 149 ersehen werden.

Ein zweiter wichtiger Punkt bei der Entwicklung des nicht-linearen Optimierungsverfahrens in MODEL war die Einhaltung bzw. Beschleunigung der Konvergenzgeschwindigkeit. So zeigt z.B. das Newton-Verfahren eine stark verbesserte Konvergenz in der Nähe des Minimums, während die Levenberg-Marquardt Methode möglichst große Verbesserungsschritte zu erreichen sucht⁹³, was für die ersten Optimierungsschritte von großem Vorteil ist. Das in dieser Arbeit entwickelte Verfahren stellt den Kern eines iterativen Algorithmus dar, wobei die gewählte Optimierungsmethode zur Minimierung einer quadratischen Residuensumme eine Kompromißlösung zwischen unterschiedlichen Algorithmen (Newton-Raphson, konjugiertes Gradientenverfahren und Levenberg-Marquardt Methode) ist. Das Programm beinhaltet eine Modifikation der Optimierungsroutine VA05A der HAR-WELL Subroutine Library⁹⁴, welche für diese Aufgabe nach eigener Erfahrung sehr zuverlässig ist. Die Startwerte für die Optimierung werden aus den Verteilungskumulanten geschätzt (Momentenmethode). Die zu optimierenden Parameter werden im Algorithmus normiert behandelt, so daß deren absolute Werte zu keiner Übergewichtung einzelner Faktoren führt. Die Konvergenz des Algorithmus auf ein lokales Minimum im physikalisch relevanten Bereich (positive Transportkoeffizienten und Verweilzeiten) wird mittels der Einführung von Straffunktionen ("penalty functions"⁹³) gesichert.

Abbildung 19. Auswertestrategie für die Parameterschätzung

Die Rechenzeit von MODEL wächst sehr stark mit der Anzahl der Stützstellen, so daß die erste Verfeinerung der Parameter mit einer groben Masche erfolgt. Erst nach Berechnung dieser, bezüglich der Momentenmethode, verbesserten Schätzwerte wird eine feinere Masche verwendet, was eine Minimierung der Aliasing- und Integrationsfehler sichert. Die Rechenzeiten auf einer IBM 3090 Rechenanlage (im Skalarmodus) betragen etwa 7 s für 4000 Stützstellen und weniger als 0.3 s bei 200 Stützstellen bei konstanter Stützstellenzahl. Das Programm ist für die interaktive Auswertung am graphischen Bildschirm konzipiert, und die Benutzerinterface wurde durch ISPF-Paneltechnik realisiert. Für längere Rechenläufe (große Anzahl von Versuchen) kann auch der Batchbetrieb gewählt werden.

⁹³ Bard, Y.: Nonlinear Parameter Estimation, Academic Press, New York (1974)

⁹⁴ Harwell Subroutine Library, U.K.A.E.A. Report AERE-R 9185 (1984)

Abbildung 19 stellt die Auswertestrategie, die für die Modellüberprüfung und Parameterschätzung der Vermischungsmodelle gewählt wurde, dar. Danach wurden für jedes einzelne Verweilzeitverteilungsexperiment die normierten Signale aus den 12 an der "aktiven" Kolonne angebrachten Szintillationsdetektoren (1-12 in Abbildung 8 auf Seite 19) nach den zu überprüfenden Vermischungsansätzen numerisch optimiert. Hier wurden sowohl *globale* als auch *lokale* Parameter berechnet. Als lokale Auswertung versteht sich die Optimierung über zwei bestimmte Meßebenen (durch numerierte Kreise in Abbildung 19 auf Seite 44 dargestellt) an der Pulskolonne, deren Abstand durch schwarze Pfeile in der selben Abbildung symbolisiert wird. Dagegen wird bei der globalen Optimierung (siehe Abbildung 19 auf Seite 44 rechts) als Systeminput immer das Signal aus dem ersten in Strömungsrichtung an der Kolonne angebrachten Detektor beibehalten, wobei der Meßabstand (schwarze Pfeile rechts) stets zunimmt. Die letzt genannte Auswertestrategie gestattet die Untersuchung des Einflusses des Meßstellenabstands auf die Anpassungsgüte und eine Überprüfung der Modellgültigkeit. Erst bei einem statistisch nicht widerlegbaren Modell sind die Ergebnisse aus der lokalen Optimierung sinnvoll.

Äquivalenzkriterien

Die meisten praktischen Probleme der Kurvenanpassung nach der Methode der kleinsten Quadrate ("least squares") werden in der Regel mit einem Rechenprogramm behandelt. das für eine Regressionsanalyse entwickelt wurde. Es ist deswegen notwendig zu bemerken, daß die Verteilungseigenschaften und Signifikanztests, die sich für die Regressionsschätzung etabliert haben, nicht in aller Regel auf die Kurvenanpassung mit kleinsten Quadraten anwendbar sind95 . Die Hauptfrage hier lautet, ob nach der Parameterschätzung das gewählte Modell die experimentellen Daten "gut" beschreibt. Stimmt das Modell, dann sind die Residuen als beobachtete zufällige Fehler zu betrachten. Auf der anderen Seite, wenn die Residuen groß sind oder keine zufällige Natur aufweisen, dann können sie nicht als Beobachtungsfehler verstanden werden, und man muß daraus schließen, daß das gewählte Modell die Daten nicht beschreibt. Während eine schlechte Anpassung ("lack of fit") eine solide Basis für eine Modellablehnung darstellt (oder mindestens als ein guter Grund für eine Modellverbesserung zu interpretieren wäre), ist eine gute Anpassung keine Prüfung der Modellgültigkeit. Eine gute Anpassung unterstreicht nur die Tatsache, daß die vorhandenen Daten nicht eine Modellablehnung rechtfertigen. Grundsätzlich ist mit naturwissenschaftlichen Methoden eigentlich keine Bestätigung eines Modells möglich. Als einzige Hoffnung bleibt, daß sie es nicht widerlegen.

Aus dem Gebiet der nichtparametrischen Statistik wurden Anpassungstests für diesen Zweck herangezogen. Ein Anpassungstest prüft, ob eine beobachtete Verteilung mit einer hypothetischen Verteilung verträglich ist. So wird häufig der *Chi-Quadrat-Test* empfohlen⁹⁶, wobei eine gute Übereinstimmung zwischen Beobachtung und Hypothese zu sehr kleinen Werten von χ^2 führen wird. Man könnte dann weiter schließen, daß die Übereinstimmung zu gut sei, um allein durch den Zufall bedingt zu sein. Allerdings zeigte der Chi-Quadrat-Test eine schlechte Sensibilität für die Bewertung von Vermischungsmodellen. Dieser Test prüft die Summe der relativen Abweichungen von Histogrammen. Diese relativen Abweichungen können auf der Tailingseite (siehe Abbildung 20 auf Seite 46 links) erheblich sein und die Ergebnisse stark beeinträchtigen.

Als Alternative zu χ^2 haben Kolmogoroff⁹⁷ und Smirnoff⁹⁸ einen zweiten wichtigen nichtparametrischen, verteilungsfreien Anpassungstest vorgeschlagen, der auf die maximalen Abweichungen der kumulativen Verteilungen zielt. Aus diesem Wert (D_{KS}) kann die Fehlerwahrscheinlichkeit des Modells quantitativ geschätzt werden. Der Kolmogoroff-Smir-

⁹⁵ Hemmerle, W.J.: Statistical Computations on a Digital Computer, Blaisdell Publ. Co., Waltham MA (1967)

⁹⁶ Sachs, L.: Angewandte Statistik, Springer Verlag, Berlin (1978)

⁹⁷ Kolmogoroff, A.: Ann.Math.Stat. 12 (1941) 461-463

⁹⁸ Smirnoff, N.: Ann.Math.Stat. 19 (1948) 279-281

Abbildung 20. Der nichtparametrische Kolmogoroff-Smirnoff-Test

noff-Test (KS-Test) (siehe Abbildung 20 auf Seite 46 rechts) wurde in dem Optimierungsprogramm implementiert und hat sich, ergänzend zu der Summe der quadratischen Abweichungen (R_{SS}), sehr gut bewährt.

Die statistischen Grundlagen des Kolmogoroff-Smirnoff'schen Tests sind in der statistischen Literatur⁹⁹ ausführlich beschrieben und bedürfen an dieser Stelle keiner weiteren Erläuterung.

Vermischungsmodelle

Obwohl ein Teil der Datenstreuung, die in der Literatur bezüglich der axialen Vermischung in Pulskolonnen zu finden ist, mit Meß- und Datenanalysefehlern erklärt werden könnte, ist es sicher auch möglich, daß die experimentellen Ergebnisse durch unkontrollierte oder gar unberücksichtigte Unterschiede in den fluidynamischen und physikochemischen Verhältnissen sowie den Stoffübertragungsbedingungen in den jeweiligen Extraktionskolonnen der verschiedenen Experimentatoren beeinflußt wurden. Unterschiede können aber auch aus Unzulänglichkeiten in der Modellvorstellung resultieren.

Es ist bekannt, daß gemessene Verweizeitverteilungen durch eine Vielzahl von allgemeinen Zellenmodellen angepaßt werden können, so daß eine erzielte Übereinstimmung zunächst keine physikalische Bedeutung besitzt. Dennoch hat diese Vorgehensweise den Vorteil, daß eine große Anzahl von experimentellen Meßwerten durch parametrische Ansätze ausgedrückt werden können, was für eine zusammenfassende Bewertung der Experimente immer wichtig ist.

⁹⁹ Gibbons, J.D.: Nonparametric Statistical Inference, Marcel Dekker, New York (1985) Kapitel 4

Das axiale Dispersionsmodell

Die erweiterte HTU-NTU-Methode¹⁰⁰ hat sich für die Grobauslegung der Austauschhöhe von Gegenstromextraktionskolonnen bewährt. Zur Berechnung der Konzentrationsprofile längs der Apparatehöhe werden differentielle Bilanzierungen überwiegend in Form des Rückfluß-Modells¹⁰¹ und des Dispersionsmodells¹⁰² eingesetzt. Nach Mecklenburgh¹⁰³ können, bei hinreichend großer Stufenzahl, die Anpassungsparameter beider Modelle (die axialen Dispersionskoeffizienten beider Phasen einerseits sowie die Stufenzahl und die Rückflußparameter beider Phasen andererseits) ineinander umgerechnet werden. Es ist heute immer noch die etablierte Meinung¹⁰⁴, daß für pulsierte Extraktoren beide Modelle in der Lage sind, das komplexe Geschehen vernünftig zu beschreiben (nach Blaß¹⁰⁵ sogar das instationäre Verhalten, also das Anfahren einer Kolonne, Leistungsänderungen und unerwünschte Störungen).

Bei der Herleitung der Differentialgleichung des axialen Dispersionsmodells wird gewöhnlich eine Stoffbilanz über ein infinitesimales Kolonnenelement aufgestellt. Dabei werden Kolonneneinbauten (z.B. Siebböden) nicht berücksichtigt, was die physikalische Bedeutung dieses Modells stark in Frage stellt. Man setzt ein Modell an, das in seiner äußeren Form dem Fick'schen Diffusionsgesetzt entspricht. Einer der Hauptvorteile dieses Modells ist dessen Analogie zur Diffusionsgleichung, und die Möglichkeit der Anwendung sämtlicher klassischen mathematischen Lösungen, die für die Wärmeleitung¹⁰⁶ oder Stoffübertragung¹⁰⁷ berechnet wurden. Diese Ähnlichkeit ist allerdings nur formal, da hier der Dispersionskoeffizient von der Apparategeometrie, den Betriebsbedingungen und den Stoffeigenschaften der beteiligten Phasen abhängt.

In immer wieder abgewandelter Form wird hierfür die Gleichung der Diffusionstheorie (Fokker-Planck)¹⁰⁸ verwendet:

$$\frac{\partial C}{\partial t} = - u \frac{\partial C}{\partial z} + \frac{\partial}{\partial z} \left[D \frac{\partial C}{\partial z} \right]$$
[5.3]

Dabei werden in aller Regel konstante Koeffizienten (lineare Phasengeschwindigkeit u und axialer Dispersionskoeffizient D) der Differentialgleichung vorausgesetzt. Die dazu notwendigen stochastischen Grundlagen¹⁰⁹ werden in der Literatur ausführlich behandelt¹¹⁰. Durch Bezug auf die Gesamtlänge der Meßstrecke Δz und die mittlere Verweilzeit t_m

$$t_m = \frac{\Delta z}{u}$$
[5.4]

$$\theta = \frac{t}{t_m}$$
[5.5]

$$\zeta = \frac{\Delta z}{Z}$$
[5.6]

läßt sich diese parabolische Differentialgleichung in dimensionsloser Form umschreiben,

¹⁰⁵ Blaß, E.; Zimmerman, H.: Verfahrenstechnik (Mainz) 16 /9/ (1982) 682-690

- ¹⁰⁷ Crank, J.: Mathematics of Diffusion, Oxford Univ. Press, London (1956)
- ¹⁰⁸ Molerus, O.: Chem.-Ing.-Tech. 38 /2/ (1966) 137-145

¹⁰⁰ Kursunterlagen : Verfahrenstechnische Auslegung thermischer Trennapparate, DECHEMA/GVC, TU München (1983)

¹⁰¹ Sleicher, C.A.: AIChE J. 5 (1959) 145-149

¹⁰² Dankwerts, P.V.: Chem.Eng.Sci. 2 (1953) 1-13

¹⁰³ Mecklenburgh, J.C.; Hartland, S.: *The Theory of Backmixing*, John Wiley and Sons, New York (1975)

¹⁰⁴ Reissinger, K.-H. und Marr, R.: Chem.-Ing.-Tech. 58 /7/ (1986) 540-547

¹⁰⁶ Carlslaw, H.S. und Jaeger, J.C.: Conduction of Heat in Solids, Oxford Univ. Press, London (1959)

¹⁰⁹ Larson, H.J.; Shubert, B.O.: *Probabilistic Models in Engineering Sciences*, John Wiley & Sons, New York (1979).

¹¹⁰ Risken, H.: *The Fokker-Planck Equation*, Springer-Verlag, Berlin (1984).

$$\frac{\partial C}{\partial \theta} = Bo \frac{\partial^2 C}{\partial \zeta^2} - \frac{\partial C}{\partial \zeta}$$
[5.7]

wobei die dimensionslose Zahl Bo ein Maß für das Verhältnis von konvektivem (u Δz) zu diffusivem (D) Transport darstellt

$$Bo = \frac{u\Delta z}{D}$$
[5.8]

Die Bodensteinzahl (Bo) wird häufig auch als Pecletzahl (Pe) zitiert.

Zahlreiche Autoren (siehe z.B. Aufderheide⁷, Bauer⁸⁴, und Sommeregger⁹²) haben sich wiederholt mit der Lösung dieser Differentialgleichungen für verschiedene Randbedingungen befaßt. Nur in wenigen Fällen ist es gelungen geschlossene analytische Lösungen (meistens über die Methode der Laplace-Transformation) zu erhalten, obwohl die ersten Kumulanten (Mittelwert und Varianz) in der Regel ermittelt werden können (siehe z.B. Van der Laan¹¹¹). Die Tatsache, daß unterschiedliche Randbedingungen in aller Regel zu unterschiedlichen Lösungen einer Differentialgleichung führen, wird von vielen Autoren nicht richtig berücksichtigt. Ein Beispiel dafür gibt Pallaske¹¹² in seiner Kritik an zwei häufig benutzten Verweilzeitverteilungsformeln für das axiale Dispersionsmodell.

So gibt z.B. Feller¹¹³ folgende Lösung:

$$C(t) = \sqrt{\frac{Bo\tau}{4\pi t^3}} e^{-\left[\frac{Bo(\tau-t)^2}{4\tau t}\right]}$$
[5.9]

an mit dem Mittelwert

$$E\{t\} = \tau \frac{Bo+1}{Bo}$$
[5.10]

Dagegen gibt Levenspiel¹¹⁴ eine andere Lösung an:

$$C(t) = \sqrt{\frac{Bo}{4\pi t\tau}} e^{-\left[\frac{Bo(\tau-t)^2}{4\tau t}\right]}$$
[5.11]

mit dem Mittelwert

$$E\{t\} = \tau \frac{Bo+2}{Bo}$$
[5.12]

und der Varianz

$$S^{2}\{\theta\} = \frac{2}{Bo} + \frac{8}{Bo^{2}}$$
[5.13]

Beide Lösungen gelten für das 1-Meßstellen Verfahren mit einer Dirac'schen Stoßmarkierung am Anfang der Meßstrecke. Für eine pulsartige Tracerinjizierung hängt die Form des Ausgangssignals (Lösung der Differentialgleichung) stark von der Art der Verteilung des Tracers über dem Strömungsquerschnitt sowie von der Art, wie er gemessen wird (Randbedingungen), ab (siehe z.B. Kreft¹¹⁵). Bei Nichtbeachtung dieser Tatsachen werden, wie es Levenspiel¹¹⁶ zeigen konnte, unterschiedliche Verweilzeitverteilungen erhalten.

¹¹¹ Van der Laan, E.T.: Chem.Eng.Sci. 7 (1958) 187

¹¹² Pallaske, U.: Chem.-Ing.-Tech. 56 /1/ (1984) 46-47

¹¹³ Feller, W.: Introduction to Probability Theory and its Applications, Band I, S. 323-327, John Wiley & Sons, New York (1957)

¹¹⁴ Levenspiel, O. and Smith, W.K.: Chem.Engng.Sci. 6 (1957) 227

¹¹⁵ Kreft, A. und Zuber, A.: Chem.Eng.Sci. 33 (1978) 1471-1480

¹¹⁶ Levenspiel, O und Turner, J.C.R.: Chem.Eng.Sci. 25 (1970) 1605

Die Interpretation von Verweilzeitverteilungssignalen als Laufzeitverteilungen hängt vermutlich damit zusammen, daß die Wirkung eines endlich breiten Detektors nicht richtig berücksichtigt wird (siehe z.B. Braun¹¹⁷). Jeder Detektor hat eine eigene Impulsantwort, die mit der des Kollimators (Boxcarfunktion) und dem gemessenen Signal zusammengefaltet wird. Hinzu kommt, daß ein räumlich begrenzter Sensor vorbeilaufende Teilchen nicht direkt zählt, weil das Signal selbst von der Teilchengeschwindigkeit abhängig ist. Unter Umständen muß das Konzept, daß das Signal eines Detektors proportional zur momentanen Teilchenkonzentration im Meßvolumen ist, neu bedacht werden. Nach Braun¹¹⁷ stellt die Konzentration eine reine Wahrscheinlichkeitsaussage dar, sodaß bei der Tropfenphase erhebliche Konzentrationsschwankungen gemessen werden können.

Abbildung 21. Randbedingungen des Radiotracermeßverfahrens

Abbildung 21 stellt die experimentellen Randbedingungen des Radiotracermeßverfahrens schematisch dar. Die Feller'schen Lösung¹¹³ der Fokker-Planck'schen Differentialgleichung gibt die Verteilung der Laufzeiten für den ersten Meßstellendurchgang an (*"first passage time"*) und ist deswegen für die Auswertung von den hier gemessenen Signalen nicht brauchbar. Trotzdem wird dieser Ansatz von zahlreichen Autoren verwendet. Bei jedem Vergleich von Dispersionskoeffizienten ist also besondere Aufmerksamkeit auf die experimentellen Bedingungen zu richten.

Für die Beurteilung des Dispersionsmodells mit den experimentellen Daten wurde hier die klassische Lösung von Levenspiel¹¹⁴ für "durch-die-Wand"-Messungen (Kontrollvolumen offen-offen) eingesetzt. Diese Vorgehensweise entspricht den experimentellen Randbedigungen des hier eingesetzten berührungslosen Meßverfahrens am besten. Durch Parameterausgleich in der Zeitdomäne (iterative FFT-Faltung der Verweilzeitverteilungssignale) wurden die Modellparameter Bo und τ optimiert. Die Startwerte für die Anpassung wurden nach der Aris'schen Methode⁵⁷ aus der Differenz der Kumulanten μ und σ^2 geschätzt. Die Optimierung erfolgte sowohl über benachbarte Meßebenen (der gemessene Systemoutput einer Zone wurde als Input der in Flußrichtung nächsten Zone betrachtet) als auch bei konstantem Systeminput (erste Meßebene) und variablen Meßabstand (siehe Abbildung 19 auf Seite 44).

¹¹⁷ Braun, H.: Dissertation, TH Karlsruhe (1984)

Das lognormale Verteilungsmodell

Sheppard¹¹⁸ entwickelte den Gedanken, daß die Form der Verweilzeitverteilungskurve eines komplexen Strömungssystems nicht nur von der Hydraulik bestimmt wird, sondern einen stochastischen Prozeß darstellt. Jedes einzelne Tracerelement muß bei seinem Durchgang durch eine Pulskolonne häufig eine Zufallswahl zwischen verschiedenen Strömungspfaden treffen. Kolmogoroff¹¹⁹ erkannte als erster das logarithmisch normale Verteilungsgesetz für die Größe von Teilchen bei einem Zerteilungsprozeß. Jones¹²⁰ konnte die Tropfengrößenverteilungen eines pulsierten Siebbodenextraktors durch eine lognormale Verteilung beschreiben. Hunsinger⁵⁴ zeigte, daß diese Annahme näherungsweise im Dispersionsbereich für die Pulskolonne PETRA mit Düsenbodeneinbauten erfüllt ist. Nach Aufderheide⁷ sind die Tropfenaufstiegsgeschwindigkeiten in pulsierten Siebbodenextraktoren der Topfengröße annähernd proportional. Daher ist die Vermutung gerechtfertigt, daß die Tropfengrößenverteilung das Verweilzeitverhalten einer Pulskolonne beeinflussen wird. Wise¹²¹ wies auf die Ähnlichkeiten zwischen Lognormal-, Irrfahrt- und Gamma-Verteilungsmodellen bei der Beschreibung von Tracerverdünnungskurven hin und konnte dadurch den pulsierenden Blutfluß¹²² beschreiben. Es ist auch hier sicher gerechtfertigt anzunehmen, daß jede Pulsation eine turbulente Vermischung zur Folge haben wird. Auch Molerus¹²³ konnte die Verweilzeitverteilungen der Gasphase in Blasensäulen im heterogenen Strömungszustand mittels einer nullpunktverschobenen Lognormalverteilung modellieren.

Die lognormale Verteilung¹²⁴ bietet ein Modell für Prozesse an, bei denen multiplikative Fehler zusammenwirken. Sie stellt die Verteilung $\Lambda(\xi|\mu,\sigma^2)$ einer Zufallsvariable ξ dar, deren Logarithmus einer Normalverteilung N($\ln(\xi)|\mu,\sigma^2$) folgt. Sie gilt auch wenn ein experimenteller Meßwert ein Zufallsteil einer vorhergehenden Beobachtung ist. Näherungsweise folgen der Lognormalverteilung oft auch solche Merkmale, die nur ganzzahlige Werte annehmen können. Nach Bury¹²⁵ kann ein lognormales Modell a-priori angesetzt werden, wenn die gemessenen Merkmale einer "black box" das Ergebnis von Ursachen ist, die selbst nicht meßbar sind, und zwar wenn

- das gemessene Merkmal das multiplikative Ergebnis der zugrundeliegenden Ursachen ist,
- die Ursachen unabhängige Zufallsvariablen sind und
- es eine große Anzahl von Ursachen gibt.

In diesem Falle besagt der *zentrale Grenzwertsatz* der Statistik, daß die Stichprobenverteilung der Summe beliebig vieler Zufallsvariablen asymptotisch normalverteilt ist. Durch eine logarithmische Transformation wird aber die Multiplikation durch eine Summe abgebildet, so daß das gemessene Merkmal lognormalverteilt sein sollte. Diese allgemeine Bedingung macht verständlich, warum die Lognormalverteilung insbesondere bei vielen biologischen und technischen Phänomen anzutreffen ist.

Oft existiert eine untere Schwelle der Verteilung (in unserem Falle eine Totzeit τ). Die verallgemeinerte Verteilungsdichte kann durch drei Parameter charakterisiert werden :

$$\Lambda(t \mid \tau, \, \mu, \, \sigma) = \frac{1}{(t-\tau)\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left[\frac{\ln(t-\tau)-\mu}{\sigma}\right]^2}$$
[5.14]

¹²⁰ Jones, S.C.: Dissertation, Univ. of Michigan MI (1962)

 ¹¹⁸ Sheppard, C.W.: Basic Principles of the Tracer Method, John Wiley & Sons (1962)
 ¹¹⁹ Kolmogoroff, A.N.: Doklady Akademii Nauk SSSR, 31 (1941) 25-32

¹²¹ Wise, M.E.: Statistica Neerlandica, 20 (1966) 119-142

¹²² Wise, M.E.: Acta Physiologica Pharmacologica Neerlandica, 14 (1966) 175-204

¹²³ Molerus, O. und Kurtin, M.: Chem.-Ing.-Tech. 58 /6/ (1986) 504-505

¹²⁴ Aitchinson, J. und Brown, J.A.C.: *The Lognormal Distribution*, Cambridge Univ. Press, London (1957)

¹²⁵ Bury, K.V.: Statistical Models in Applied Science, John Wiley & Sons, New York (1975)

Der Modellparameter τ (nicht zu verwechseln mit dem Gleichnamigen aus dem Dispersionsmodell) stellt hier eine Totzeit dar. Sie entspricht der Verweilzeit des schnellsten Phasenelements. Erst nach der Totzeit τ ist ein Anstieg der Verteilungsdichte der Gewichtsfunktion zu erwarten. Die zweiparametrige Verteilung stellt den Sonderfall $\tau = 0$ dar und wird auch als $\Lambda(\mu,\sigma^2)$ bezeichnet. Etwas verwirrend mag die Tatsache sein, daß, obwohl die Modellparameter μ und σ ein Maß für den Mittelwert und die Streuung der Verteilung sind, sie keineswegs aber deren Erwartungswert E{t} bzw. Standardabweichung S{t} darstellen. Wegen der engen Beziehung der normalen und lognormalen Verteilungen wird diese Schreibweise jedoch in der statistischen Literatur verwendet. Diese Modellparameter weisen allerdings einfache Beziehungen zu der Verteilungskumulanten auf ;

$$E\{t\} = \tau + e^{\mu + \frac{\sigma^2}{2}}$$
[5.15]

$$S^{2}\{t\} = e^{2\mu + \sigma^{2}} [e^{\sigma^{2}} - 1]$$
[5.16]

$$\gamma(t) = \frac{\sqrt{e^{\sigma} - 1}}{1 + \frac{\tau}{E\{t\}}}$$
[5.17]

Somit stellt der Variationskoeffizient $\gamma(\tau,\mu,\sigma)$ ein dimensionsloses Maß zur Bewertung der Dispersion einer lognormalen Verteilung dar. Obwohl häufig in der angelsächsischen Literatur die etwas angebrachtere Bezeichnung Dispersionskoeffizient ("coefficient of dispersion") für γ benutzt wird, wäre an dieser Stelle eine solche Bezeichnung nicht zu empfehlen. Dies könnte eine Verwechslung mit dem dimensionsbehafteten Koeffizienten D des axialen Dispersionsmodells zur Folge haben.

Bei der Modellierung der Verweilzeitverteilungen wurde sowohl die zwei- als auch die dreiparametrige Lognormalverteilung an die gemessenen Signale über FFT-Faltung angepasst. Die Startwerte für die Optimierung der Parameter μ und σ wurden nach der Momentenmethode¹²⁵ aus der gemessenen Verweilzeitverteilungen geschätzt:

$$\mu \simeq 2 \ln E\{t\} - \frac{\ln E\{t^2\}}{2}$$

$$\sigma^2 \simeq \ln E\{t^2\} - 2 \ln E\{t\}$$
[5.18]
[5.19]

Responsefunktionsanalyse

Die statistische Analyse der Versuchsergebnisse erforderte eine Auswahl des funktionalen Zusammenhangs, womit die gewählten Variablen beschrieben werden sollten. Der Grund für die Wahl der Funktionalform der Variablen kann auch als Wunsch nach einer gewissen Einfachheit in der Form des Raummodells interpretiert werden, das die gewählte Responsefunktion darstellen sollte. Im allgemeinen werden diese Forderungen am besten dadurch erfüllt, daß die Variablen in einer von der theoretischen Seite solid begründeten Form dargestellt werden. Leider steht aus heutiger Sicht der Extraktionsforschung kein solcher Ansatz zur Verfügung.

Bei der hier vorliegenden statistischen Problemstellung sollten *abhängige* (Response-) Variablen Ψ untersucht werden. Man nimmt dabei an, daß sie von anderen *unabhängigen* Variablen (Faktoren) beeinflußt werden. Es wurde deshalb versucht, Ansätze zu finden, mit denen Beobachtungswerte dieser Variablen Ψ_i durch entsprechende Faktorenwerte x_i erklärt werden können. Hauptziel dabei war, experimentell nicht erfaßte Werte möglichst gut vorhersagen zu können. Das hier gewählte Verfahren stellt ein verallgemeinertes lineares Modell (Generalized Linear Model GLM¹²⁶) dar. Die Schätz- und Testmethoden der klassischen Regressionsanalyse beruhen im wesentlichen darauf, daß für jeden Versuchspunkt (Treatment) x_i möglichst viele Meßwiederholungen vorliegen. Dagegen sind bei dem hier verwendeten Verfahren keinerlei Meßwiederholungen nötig, weil hier lediglich der Gesamtstichprobenumfang groß zu sein braucht.

Der funktionale Zusammenhang zwischen Responsefunktion Ψ und den untersuchten Faktoren x_i (siehe "Kapitel 4. Versuchsplanung und -durchführung" auf Seite 31) kann durch eine Responsefunktion

$$\Psi = \Psi (x_1, x_2, x_3, x_4)$$

[5.20]

festgelegt werden. Bei den verwickelten Zusammenhängen der Extraktionstechnik kennt man die Funktion Ψ im allgemeinen nicht. Bei der Auswertung der Faktorenversuche wurde ein Modell zugrundegelegt, bei dem eine quadratische Taylorreihe um das Zentrum des Versuchsplans (Treatment 17) entwickelt wird. Den Differentialquotienten 1. Ordnung werden die Haupteffekte, den Differentialquotienten 2. Ordnung die Zweifaktorwechselwirkungen zugeordnet. Auf die Bestimmung von Wechselwirkungen höherer Ordnung wird verzichtet. Das mathematische Modell ist linear in Bezug auf jede einzelne Variable. Es ersetzt die Wirklichkeit durch

$$\Psi = \Psi (x_1, x_2, x_3, x_4) \simeq \Psi_0 + \sum \beta_{ij} x_{ij}$$
[5.21]

Einen solchen Ausdruck nennt man eine quadratische Multilinearform. Das mathematische Modell für die erweiterte 2⁴-Faktorenversuche ist also eine 4-fache Multilinearform. In der englisch-sprachigen Literatur findet man für diese Modellgleichung die Bezeichnung "response surface". Dieses Modell wird im 5-dimensionalen Raum durch eine Hyperfläche 4-ter Ordnung dargestellt, d.h. die Wirklichkeit wird in quadratischer Form durch die Versuchspunkte (Treatments) angenähert. Die Responsefunktion wird als Raumfläche dargestellt, die man durch Hyperebenen mit konstantem Ψ schneidet. Die so entstehenden Linien gleicher Response projiziert man als Höhenlinien (Konturlinien) in jede zweidimensionale Versuchsebene (siehe Kapitel 7). In jeder diesen Ebenen gibt es normalerweise einen Versuchsbereich, der allein für die Untersuchung von Interesse ist. Außerhalb dieses Bereiches hat die Responsefunktion Ψ keine praktische Bedeutung. Die Hyperfläche kann geometrisch nur durch eine Einschränkung ihrer Freiheitsgrade dargestellt werden. So wurden in dieser Arbeit in der Regel zwei Faktoren konstant gehalten, um somit den funktionellen Verlauf der untersuchten Wirkungsgröße als Antwortfläche bzw. Konturplot darstellbar zu machen.

Der Übersichtlichkeit halber werden in den meisten Abbbildungen in dieser Arbeit die konstant gehaltenen Betriebsparameter nicht ausgeführt. Diese entsprechen dann der "Standardeinstellung" des zentralen Punktes (Treatment 17) des CCD :

Faktor	Standardeinstellung	Alias
Gesamtdurchflußmenge	Q = 260 l/h	FLUSS
Phasenverhältnis	R = 5.5	RATIO ,
Pulshub	a = 9 mm	HUB
Pulsfrequenz	f = 1.75 Hz	FREQUENZ
Axiale Ortskoordinate	Z = 2.5 m	Z

Tabelle 8. "Standardeinstellung" für die Faktorenversuche (Zentraler Punkt im CCD)

¹²⁶ Dempster, A.P.: J.Multiv.Analysis 1 (1971) 316-346

Erläuterung der Ergebnistabellen zur Responsefunktionsanalyse

Im Anhangsteil der vorliegenden Arbeit sind zahlreiche Ergebnistabellen der Responsefunktionsanalyse (RSA) für verschiedene Antwortvariablen (statistische Verteilungskennzahlen, Modellparameter, usw.) aufgeführt. Diese Antwortvariablen wurden in Abhängigkeit der kontrollierbaren Versuchsparameter (Faktoren) nach einem verallgemeinerten linearen Modell korreliert. Die statistischen Analysen wurden mit normierten Faktoren (siehe Tabelle 6 auf Seite 33) durchgeführt. Die Druckausgaben entsprechen weitgehend der Darstellungsweise des Programmpaketes SAS¹²⁷. Auf eine ausführliche Darstellung wird hier verzichtet, da die entsprechenden Einzelheiten aus der Literatur¹²⁸ zu entnehmen sind. Aus rechentechnischen Gründen wurden die Regressoren mit Synonymen (*"alias"*) versehen (siehe Tabelle 8 auf Seite 52).

 ¹²⁷ SAS Institute: SAS User's Guide: Statistics (Version 5), Cary N.C. (1985)
 ¹²⁸ Freund, R.J. und Littell, R.C.: SAS for Linear Models, SAS Institute, Cary N.C. (1981)

.

Kapitel 6. Diskussion der Versuchsergebnisse

Dieses Kapitel befaßt sich mit der Darstellung und Diskussion der Ergebnisse und der Interpretation neuer Erkenntnisse, die durch eigene, an der Pulskolonne PETRA durchgeführte Radiotraceruntersuchungen mit dem Stoffsystem Salpetersäure (3N) / Tributhylphosphat (30%) in Kerosin gewonnen wurden. Ein Schwerpunkt dieser Arbeit war die Analyse des Dispersphasenanteils als Funktion der kontrollierbaren Betriebsparameter (Gesamtdurchfluss, Phasenverhältnis, Frequenz und Amplitude der Pulsation) und die Identifikation des Verweilzeitverhaltens beider fluiden Phasen. Die Untersuchungen erstreckten sich auf zwei in der Wiederaufarbeitung von Kernbrennstoffen vorwiegend eingesetzte Bodengeometrien (Sieb- und Düsenböden). Desweiteren wurde der Einfluß des Meßstellenabstandes auf die berechneten Modellkoeffizienten systematisch untersucht. Bei jeglichen Vergleichen zwischen beiden Bodengeometrien werden die Siebbodenergebnisse links und die Düsenbodenergebnisse rechts im Bild dargestellt.

Tropfengrößenverteilungen

In der Literatur findet man zahlreiche Arbeiten (siehe z.B. Pietzsch¹⁹) über Untersuchungen mit Siebböden. Dagegen sind selten systematische Messungen für die Auslegung pulsierter Düsenbodenextraktoren zu finden. Aus diesem Grunde schien es von Interesse, Aufnahmen der Tropfengrößenverteilungen der Dispersphase parallel zu den Untersuchungen mit Düsenböden zu machen. Dadurch konnte ein Einblick⁵⁴ in die Auswirkung der Betriebsparameter auf die Tropfengrößen erlangt werden.

Zur Überprüfung der in der Literatur verbreiteten Meinung, daß das Tropfengrößenspektrum nach einer bestimmten Anlaufstrecke praktisch stabil bleibt, wurden an der mit Düsen- (3 m unten) und Siebboden (3 m oben) ausgerüsteten Pulskolonne PETRA (Bodenabstand 0.05 m) Bildaufnahmen entlang der Kolonnenachse angefertigt. Tabelle 9 stellt die Ergebnisse (siehe auch Abbildung 22 auf Seite 56) für folgende Versuchsbedingungen dar:

- Organischer Durchfluß 150 l/h
- Wäßriger Durchfluß 50 l/h
- Pulsfrequenz 1.6 Hz
- Pulsamplitude
 8.44 mm

Nr.	Position	z [m]	Tropfen	μ _d [m]	σ _d [mm]	d ₃₂ [mm]	σ_{δ}
1	3. DB	0.15	1575	1.43	0.69	2.08	0.48
2	8. DB	0.40	1957	1.18	0.50	1.62	0.42
3	16. DB	0.80	1588	1.19	0.44	1.52	0.37
4	36. DB	1.80	1338	1.13	0.40	1.39	0.35
5	56. DB	2.80	1669	1.19	0.42	1.47	0.35
6	50. SB	5.50	776	1.06	0.76	2.32	0.72

Tabelle 9.Axiale Tropfengrößenverteilungen in der Mischkolonne mit Düsenboden (DB) und
Siebboden (SB)

Die Aufnahmen bestätigen, daß nach etwa 1 m Einlaufstrecke die Variationskoeffizienten σ_{δ} der Tropfegrößenverteilungen praktisch konstant bleiben. Außerdem ist ein klarer Unterschied in der Wirkung von Düsenboden (Bild 5) und Siebboden (Bild 6) in Abbildung 22 auf Seite 56 bei stabiler Tropfengrößenverteilung ersichtlich.

Abbildung 22. Axiale Veränderung der Tropfengrößenverteilung in der Mischkolonne

Aus der Abbildung 22 ist auch ersichtlich, daß in der Mitte der Kolonne (etwa 3 m Laufstrecke mit Düsenböden, Bild 5) auf jeden Fall eine stabile Tropfengrößenverteilung vorliegt.

Dispersphasenanteil (Holdup)

Der Dispersphasenanteil in dem mit Lochböden ausgerüsteten aktiven Kolonnenteil (6 m Länge) konnte nach den gemessenen (aus der Differenz der gewogenen Mittelwerten der Verweilzeitverteilungen) bzw. berechneten (aus der Impulsantwortfunktion) mittleren Verweilzeiten ermittelt werden. Hierzu gibt es drei Lösungsansätze. Für Einzelexperimente mit Markierung einer Phase gelten:

$$\varepsilon_1 = \frac{V_o \mu_o}{A_k \Delta z}$$
[6.1]

$$\varepsilon_1 = 1 - \frac{V_a \mu_a}{A_k \Delta z}$$
[6.2]

Für Doppelexperimente mit Markierung beider Phasen gilt

 $\varepsilon_2 = \frac{1}{1 + \frac{V_a \mu_a}{V_o \mu_o}}$ [6.3]

Eine gute Reproduzierbarkeit der Holdup-Werte ε aus einphasigen Experimenten mit Markierung der wäßrigen Kontiphase ist mit zunehmendem Phasenverhältnis V_o/V_a nicht mehr gegeben, verursacht durch die eingeschränkte Dosiergenauigkeit des wäßrigen, kleineren Volumenstroms. Daher wurden in aller Regel die Holdupwerte aus den mittleren Verweilzeiten der organischen Dispersphase ermittelt. Der Einfluß zeitlicher Dosierschwankungen beider Volumenströme hat auf die Berechnung eines Doppelexperimentes eine geringere Wirkung.

Aus diesen Gleichungen läßt sich auch eine Holdup-Verteilung längs der Kolonne berechnen. Die Verteilung $\varepsilon(\Delta z)$ ist zu verstehen als integraler Mittelwert über die gesamte Versuchsdauer des fluiddynamischen VWZV-Doppelexperiments bezogen auf den Pulskolonnenabschnitt Δz zwischen zwei Detektormeßebenen.

56
Der Tropfenanteil in der aktiven Pulskolonne wurde aus dem gewogenen Mittelwert der durch FFT-Entfaltung berechneten Impulsantwortverteilungsfunktionen (Signale aus den Meßebenen 1 und 12) ermittelt. Die Ergebnisse sind für die jeweilige Phase und Bodeneinbauten im Anhangteil B und C tabellarisch (unter dem Titel "Normierte Versuchseinstellungen und statistische Kennzahlen der Impulsantwortverteilungsfunktionen") dargestellt. Es werden in jedem Fall zwei Werte ε_1 (einphasige Markierung) und ε_2 (zweiphasig) angegeben, die miteindander sehr gut übereinstimmen. Diese Angaben sind integrale Mittelwerte für die Dauer des Tracerversuches für den 5.6 m langen aktiven Kolonnenteil.

Die vorgestellte Meßmethode weist gegenüber herkömmlichen Verfahren folgende Vorteile auf:

- 1. Es handelt sich um eine berührungslose Meßmethode, die keine Störung des Kolonnenbetriebes (wie z.B. durch Probeentnahme oder Abschalten der Pulsation und Trennspiegelsenkung) erfordert.
- 2. Sie kann auch unter Stoffübergangsbedingungen eingesetzt werden. Die dort entstehenden axialen Dichteverteilungen (Konzentrationsprofile) verursachen, im Gegensatz zum Differenzdruckverfahren, keine Beeinträchtigung der Meßergebnisse.
- Es können ohne großen Aufwand, durch Anbringen mehrerer Detektoren, axiale Holdup-Profile erfaßt werden. Hierbei sind keine besonderen Vorrichtungen erforderlich, denn die γ-Strahlung ist sogar durch metallische Apparatewände meßbar, so daß an beliebigen Stellen Meßebenen aufgestellt werden können.

Parametereinflüsse auf den Holdup

Die berechneten Holdupwerte für Tracerexperimente mit Markierung der organischen Dispersphase wurden nach der Methode der Response Surface Analyse (RSA) (siehe "Responsefunktionsanalyse" auf Seite 51) als quadratische Form der Funktion

$$\varepsilon = \varepsilon (Q, R, f, a)$$

[6.4]

für beide Bodenarten angenähert. Diese Funktionen beschreiben den Dispersphasenanteil in dem untersuchten Parameterbereich. Die Modellkoeffizenten der Hyperflächen und deren Vertrauensbereiche sind im Anhang B (Siebböden) und C (Düsenböden) aufgeführt. Diese Vorgehensweise war insofern wichtig, weil sowohl die Haupt- als auch die Wechselwirkungen der Betriebsparameter untersucht werden konnten.

Bei diesen Responsefunktionen werden jeweils die Ergebnisse der Siebbodenexperimente links, und die der Düsenbodenexperimente rechts daneben dargestellt. Bei jeglichen Schlußfolgerungen aus diesen Responsefunktionen muß berücksichtigt werden, daß als Terme höherer Ordnung nur die quadratischen Glieder der Taylor Reihenentwicklung vorhanden sind. Diese Tatsache zwingt die Konturen zu Kegelschnitten, d.h. Elypsen, Parabeln oder Hyperbeln. Die hohen Korrelationskoeffizienten (0.99 für Sieb- bzw. 0.98 für Düsenböden) bestätigen, daß die Annäherung gerechtfertigt ist. Da der größtmögliche Parameterbereich bei stabilem Kolonnenbetrieb untersucht wurde, konnten verdeckte Effekte sichtbar gemacht werden.

Der signifikante Einfluß der Pulsintensität auf den Dispersphasenanteil wird durch Abbildung 23 auf Seite 58 deutlich, in der die Abhängigkeit des Holdups von der Pulsfrequenz und -amplitude bei konstanten Durchflußmengen gezeigt wird. Die eigenen Messungen widerlegen die Zulässigkeit der allgemein praktizierten Darstellung des Dispersphasenanteiles einer Pulskolonne über dem Produkt von Pulsfrequenz und Amplitude. Dies wird deutlich wenn man die gestrichelten Linien in Abbildung 24 auf Seite 59 betrachtet, die Isoholdup-Konturen für konstantes Produktes f.a darstellen. Es ist im Falle der Siebbodeneinbauten ersichtlich, daß die Linien konstanten Holdups eindeutige Elypsen sind, so daß bei konstantem f.a unterschiedliche Dispersphasenanteile gemessen werden können.

Abbildung 23. Der Holdup als Funktion von Frequenz und Amplitude

Eine wichtige Rolle spielt die Bodengeometrie, wobei die gemessenen Holdupwerte bei den Düsenbodenversuchen bis um den Faktor zwei höher als die der entsprechenden Siebbodenversuche liegen. Diese Tatsache wird durch eine sehr feine Tropfenzerteilung erklärbar. Die Tropfengrößenverteilungen und Flutkurven für Düsenbodeneinbauten können in Referenz⁵⁴ ersehen werden. Der steile Anstieg des Dispersphasenanteils mit Düsenbodeneinbauten im Bereich hoher Pulsamplituden und -frequenzen, ausgedrückt durch dicht nebeneinander liegende Isoholdup-Konturen, deutet auf eine schnelle Annäherung an die Flutgrenze, so daß kleine Erhöhungen der Betriebsparameter zu instabilem Kolonnenbetrieb führen. Die dort anfallenden Treatments 1, 5 und 9 bei den Düsenbodenexperimenten konnten deswegen als Versuchspunkte für die Auswertung nicht herangezogen werden.

Dieses Verhalten bei unterschiedlichen Pulsintensitäten ist auf die Wirkung der Bodeneinbauten zurückzuführen. Bei kleinen Pulsationsintensitäten üben die Löcher der Bodeneinbauten eine Sperrwirkung auf die relativ großen Tropfen aus, die sich durch die Entstehung einer Stauschicht unter den Böden ausdrückt. Erst bei einer erneuten Pulsation wird die Koaleszensschicht durch die Löcher gepreßt und in Tropfen zerteilt, so daß die mittlere Aufstiegsgeschwindigkeit der Dispersphase (hier organisch) entlang der Kolonne, im Mixer-Settler-Bereich, der Pulsfrequenz proportional ist. Mit einer Steigerung der Pulsationsintensität, d.h. der für die Zerteilung und Bildung neuer Tropfenoberfläche notwendigen Energie, nimmt die Tropfengröße ab, so daß die Sperrwirkung der Löcher entfällt und die Stauschicht verschwindet. Dieser Betriebszustand wird an der Pulskolonne PETRA durch ein Holdup-Minimum charakterisiert, das den Übergang in den Dispersionsbereich mit räumlich homogener Tropfendispersion kennzeichnet. Bei weiterer Abnahme der Tropfengröße wird aber die Tropfenaufstiegsgeschwindigkeit kleiner, so daß die Verweilzeit der Dispersphase und der Holdup zunehmen.

Die meisten bekannten Holdup-Korrelationen vernachlässigen den hier festgestellten ausgeprägten Einfluß der Bodengeometrie auf den Holdup (siehe Abbildung 23 und Abbildung 26 auf Seite 60). Literaturübersichtsarbeiten zu diesem Punkt haben Aufderheide⁷ und Bauckhage¹⁰ verfaßt. Es wird lediglich versucht, diese Einflüsse auf der Basis von dimensionsanalytischen Überlegungen durch Anpassungskonstanten, die Stoffwerte, Geometrie und Pulsation beinhalten, zu beschreiben. So sind z.B. von Kumar

und Hartland¹²⁹, aus zahlreichen experimentellen Meßwerten aus insgesamt 8 Stoffsystemen, 3 Korrelationsgleichungen zur Berechnung des Dispersphasenanteiles entwikkelt worden. Diese Ansätze basieren alle auf dem Produkt von Frequenz und Amplitude (vielleicht deswegen, weil es die Dimension einer Geschwindigkeit hat), wobei der Lochdurchmesser nicht berücksichtigt wird. Die in Abbildung 23 auf Seite 58 dargestellten eigenen Ergebnisse widersprechen eindeutig der Ansicht¹³⁰, daß die Bodengeometrie unwichtig ist und annähernd gleiche Ergebnisse für Sieb- und Düsenböden zu erwarten sind, so daß die aus der Literatur bekannten Korrelationen für pulsierte Siebbodenkolonnen, im Fall des Systems Salpetersäure (3N) / Tributhylphosphat (30%) in Kerosin, nicht auf Düsenbodenkolonnen übertragbar sind.

Abbildung 25 auf Seite 60 zeigt eine nur schwache Abhängigkeit des Dispersphasenanteils von den Durchflußmengen für die Experimente mit Siebböden im untersuchten Bereich. Sie ist ausgeprägter für Düsenbodeneinsätze, jedoch nur bei hohen Volumenströmen (d.h. nahe des instabilen Bereiches, siehe auch Abbildung 1 auf Seite 2). Der Holdup nimmt mit dem Phasenverhältnis bei konstanter Durchflußmenge zu, was auf eine gegenseitige Behinderung der Tropfen zurückgeführt werden könnte. Mit dem Phasenverhältnis erhöht sich auch die relative Geschwindigkeit der Tropfen bezüglich der umgebenden Kontiphase, so daß die Abbremswirkung der letzten immer größer wird und der Dispersphasenanteil steigt (siehe Abbildung 25 auf Seite 60). Die Wichtigkeit der Phasengeschwindigkeit gegenüber der Pulsfrequenz ist aber zweitrangig, was durch die Abhängigkeit des Holdups von dem Phasenverhältnis und Pulsfrequenz bei konstantem Gesamtdurchfluß und Hubamplitude in Abbildung 26 auf Seite 60 veranschaulicht wird.

Axiale Holdup-Verteilung

Da die Entfaltung der Verweilzeitsignale aus benachbarten Sonden mit geringem Meßabstand zur Entstehung von unvertretbar großen Seitenschwingern führt (weil die Impulsantwortfunktion der Meßstrecke einer Dirac'schen Verteilung ähnelt), wurden die lokalen Dispersphasenanteile (zwischen benachbarten Meßebenen, siehe Abbildung 19 auf Seite 44) direkt aus den mittleren Verweilzeiten der lognormalen Gewichtsfunktionen nach Gl. [5.14] geschätzt. Sie sind im Anhang B (Siebböden) und C (Düsenböden) dargestellt.

¹²⁹ Kumar, A. und Hartland, S.: Chem.Eng.Res.Dev. 61 (1983) 248-252

¹³⁰ Schmidt, H. und Miller, H.: KfK Nachr. 14 /3/ (1982) 154-165

Abbildung 25, Der Holdup als Funktion von Durchflußmenge und Phasenverhältnis

Die Ergebnisse aus den lokalen Verweilzeitmessungen deuten auf eine axiale Verteilung des Dispersphasenanteils. Bei hohen Kolonnenbelastungen (über 20-25% Holdup) wird ein inhomogener Verlauf des Holdups erkennbar. Die Treatments 2, 13 und 29 mit Düsenbodeneinbauten lassen dieses Phänomen deutlich erkennen (siehe Anhang E.4). Dort bildet sich ein Maximum im mittleren Teil der aktiven Kolonne. Der Anstieg in der unteren Einlaufstrecke wird mit einer feiner werdenden Tropfengrößenverteilung erklärt. Die kleinsten Tropfen werden aber von der Kontiphase nach unten mitgeschleppt ("entrainment"), woraus die beobachte Abnahme des Holdups im oberen Kolonnenteil verständlich wird.

Abbildung 26. Der Holdup als Funktion von Frequenz und Phasenverhältnis

Vergleich mit Literaturangaben

Hunsinger⁵⁴ hat an der Pulskolonne PETRA (ausgerüstet mit Düsenböden), auf der Basis einer statistischen Versuchsplanung, systematische Holdup-Untersuchungen durchgeführt. Als Meßmethoden wurden sowohl ein Differenzdruckverfahren als auch eine Radiotracermethode eingesetzt. Seine Daten sind allerdings in einem Parameterbereich erfaßt worden, der dem hier untersuchten Bereich nicht exakt entspricht. Die Durchflußmenge wurde dort zwischen 150 und 230 l/h bei einem Phasenverhältnis von 1-5 variiert.

Abbildung 27. Holdup-Vergleich zwischen zwei Meßmethoden

Abbildung 27 zeigt auf der linken Seite die Konturlinien (für ε = konst.) des Druckmeßverfahrens⁵⁴ und auf der rechten Seite die in dieser Arbeit über Verweilzeitmessungen gewonnenen Holdupwerte als Funktion von Frequenz und Amplitude. Der Gesamtdurchfluß wurde hier mit 230 l/h, und das Phasenverhälnis mit 3 konstant in dem Taylor'schen Regressionsansatz des Holdup gehalten (siehe die Modellkoeffizienten für die Experimente mit Düsenböden in "RSA für den Hold-up nach der globalen Entfaltung" auf Seite 146). Eine gute Übereinstimmung beider Ergebnisse trotz notwendiger Extrapolation der Meßwerte aus dem Druckmeßverfahren ist ersichtlich.

Ein ausgeprägtes Holdup-Minimum als Funktion der Pulsintensität kann durch diese Arbeit bestätigt werden. Diese Tatsache entspricht Beobachtungen an Siebbodenkolonnen¹⁹ und Düsenbodenkolonnen⁵⁴. Sie wird allerdings nur in dem parabolischen Korrelationsansatz von Bell und Babb¹³ (siehe Abbildung 2 auf Seite 4) qualitativ annähernd beschrieben. Das Holdup-Minimum wurde bereits in der Dissertation von Sehmel¹³¹ erwähnt. Nach diesem Autor kennzeichnet dieser Wert die Grenze zwischen dem Dispersions- und dem Mixer-Settler-Bereich.

¹³¹ Sehmel, G.A.: Dissertation, Univ. of Washington (1961)

Vermischungsuntersuchungen

Die mathematische Behandlung der experimentellen Beobachtungen (Verweilzeitverteilungen) zur Identifikation der Vermischungsvorgänge wurde mittels FFT-Signalentfaltung realisiert. Parallel dazu wurde die Anwendbarkeit des öfters a-priori angesetzten axialen Dispersionsmodells für die Beschreibung des fluiddynamischen Verhaltens beider Phasen in dem aktiven Teil einer Pulskolonne statistisch analysiert. Ein stochastisches Verteilungsmodell wird als Alternative zur Beschreibung der beobachteten Vermischungsvorgänge diskutiert.

Fluiddynamische Bereiche der Pulskolonne

In den aus der Literatur¹³² bekannten Berechnungsmethoden für Extraktionskolonnen mit Stoffübergang wird lediglich die Vermischung in dem mit Bodeneinbauten ausgerüsteten mittleren Teil des Apparates berücksichtigt. Diese Tatsache wird durch die Bezeichnung "aktive Kolonne" zum Ausdruck gebracht. Allerdings warnte Kintner¹³³, daß die Verweilzeit beider Phasen in der Koaleszenzschicht beider fluiden Phasen relativ groß sein kann. Aus diesem Grunde wird die Fluiddynamik im Bereich der Trennschicht (Dekanter) einen nicht zu vernachlässigenden Anteil des Stoffaustausches bestimmen. Es ist bisher in der Literatur keine Berechnungsmethode vorgeschlagen worden, die dieser Tatsache Rechnung trägt. Messungen an industriellen Kolonnen unter Stoffaustausch haben dieses Verhalten bestätigt¹³⁴.

Abbildung 28. Fluiddynamische Vorgänge im oberen Dekanter

Die gewählte experimentelle Anordnung der Szintillationsdetektoren ermöglichte das fluiddynamische Verhalten des Trennschichtdekanters (Detektor 17 in Abbildung 8 auf

¹³² Autorenkollektiv : Verfahrenstechnische Berechnungsmethoden, Band 2, VCH Verlag, Weinheim (1986).

¹³³ Kintner, R.C. : Advances in Chemical Engineering (Vol IV), Academic Press, New York (1963) 51-94

¹³⁴ Merz A.: KfK Nachrichten 18 /2/ (1986) 83-89

Seite 19) mitzuerfassen. Abbildung 28 stellt die gemessenen Verweilzeitsignale eines typischen Experiments im oberen Teil der Kolonne dar. Man erkennt, daß die kopfseitig eingespeiste, markierte Kontiphase in die Trennschicht des oben liegenden Dekanters transportiert wird mit einer angenäherten Rührkesselcharakteristik. Für dieses Verweilzeitverhalten sind die aufsteigenden Tropfen der Dispersphase verantwortlich. Sie bewirken eine sehr starke Vermischung der Kontiphase im oberen Dekanter.

Aus diesem Grunde kann es nur vernünftig sein, eine Pulskolonne in mindestens drei fluiddynamische Bereiche modellmäßig einzuteilen:

- oberer Dekanter
- Bodenkolonne ("aktiver Teil")
- unterer Dekanter

Das Rührkesselverhalten des Trennschichtdekanters ist konstruktionsbedingt, und kann von Kolonne zu Kolonne unterschiedlich sein, so daß an dieser Stelle eine detallierte Modellierung der fluiddynamischen Vorgänge in diesem Apparateteil uninteressant scheint. In dieser Arbeit wird ausschließlich das Verhalten des aktiven Kolonnenteils behandelt.

Die Vermischung der Kontiphase

Abbildung 29 stellt beispielhaft die durch Modellanpassung im Zeitbereich optimierte Gewichtsfunktion für ein typisches Experiment (Siebböden, Treatment 9) mit Markierung (^{113m}In) der Kontiphase bei maximalem Meßabstand von 5.6 m dar. Es ist ersichtlich, daß das axiale Dispersionsmodell die durch die modellunabhängige Impulsantwort h(t) (als Experiment im Bild gekennzeichnet) charakterisierte Fluiddynamik der Kontiphase gut beschreibt.

Abbildung 29. Die Vermischung der Kontiphase

Die systematischen Ergebnisse der Auswertung gemessener Verweilzeitverteilungen für die Tracerexperimente mit Markierung der wäßrigen Kontiphase sind in Anhang B (Siebbodenversuche) und C (Düsenbodenversuche) zu ersehen. Jeweils in den linken Abbildungen sind die normierten Verweilzeitverteilungssignale der extremen Detektoren (1 und 12 in Abbildung 8 auf Seite 19) dargestellt. Zwischen beiden Funktionen wird die Tiefpaßimpulsantwort (Lösung der FFT-Entfaltung) aufgezeigt. Rechts daneben werden als Qualitätsmaß der direkten Auswertung (Modellausgleich im Zeitbereich) die Schätzerwerte des Kolmogoroff-Smirnoff-Tests (in "Äquivalenzkriterien" auf Seite 45 bereits

Abbildung 30. Modellvergleich für die Kontiphase (Kolmogoroff-Smirnoff-Test)

erläutert) nach der globalen Auswertestrategie als Funktion des Meßstellenabstandes dargestellt. Es werden jeweils die Ergebnisse des Dispersionsmodells (dicke Punkte •) den Ergebnissen des in "Das lognormale Verteilungsmodell" auf Seite 50 vorgestellten stochastischen Modells (schwarze Kästchen •) gegenübergestellt, wie es in Abbildung 30 für ein typisches Verweilzeitexperiment mit Markierung der Kontiphase gezeigt wird. Die maximalen Abweichungen der gemessenen (Experiment) und erwarteten (Modell) kummulativen Verweilzeitverteilungen liegen hier für alle Versuchseinstellungen zwischen 0.05-1.0%. Obwohl eine lognormale Verteilung die gemessenen Verweilzeitverteilungssignale besser beschreiben kann, kann für die Kontiphase das axiale Dispersionsmodell nicht statistisch widerlegt werden, denn die entsprechende Irrtumswahrscheinlichkeit liegt eindeutig unter 5%. Infolgedessen sind Dispersionskoeffizienten als Kennzahlen für die quantitative Beschreibung der Vermischung der Kontiphase zulässig. Der Einfluß des Meßstellenabstandes auf die Anpassungsgüte ist nicht statistisch signifikant und erfordert an dieser Stelle keine besondere Aufmerksamkeit.

Parametersensibilität der Dispersionskoeffizienten

Die experimentelle Meßanordnung ermöglichte die Berechnung von lokalen Dispersionskoeffizienten (D) zwischen jeweils 45 cm bzw. 55 cm entfernten Meßebenen entlang der Kolonne. Ähnlich wie bereits in "Parametereinflüsse auf den Holdup" auf Seite 57 erläutert, wurden Responseanalysen der berechneten Dispersionskoeffizienten in Abhängigkeit der Faktoren für beide Bodengeometrien durchgeführt. Hierbei ist allerdings die quadratische Form eine Funktion von 5 Parametern:

$$D = D\left(Q, R, f, a, z\right)$$

[6.5]

Als axiale Lage z ist hier der Mittelpunkt zwischen den jeweiligen Meßebenen in Bezug auf die unterste Meßebene (Detektor 1 in Abbildung 8 auf Seite 19) zu verstehen. Diese Hyperflächen beschreiben die berechnenten Dispersionskoeffizienten nach einem Ausgleich im Zeitbereich (siehe "Eigene Methode" auf Seite 43) und können die experimentellen Beobachtungen mit einem mittleren quadratischen Fehler von 6% wiedergeben. Die Modellkoeffizienten der Responseflächen und deren Vertrauensbereiche sind für Siebbodenversuche in "RSA für Dispersionskoeffizienten" auf Seite 117 bzw. für Düsenbodenversuche in "RSA für Dispersionskoeffizienten" auf Seite 145 zu ersehen.

Diese Betrachtungsweise verdeutlicht die Tatsache, daß starke Wechselwirkungen zwischen den einzelnen Versuchsparametern eine wichtige Rolle spielen können. Abbildung 31 auf Seite 65 zeigt die berechneten Dispersionskoeffizienten für beide untersuchten Bodengeometrien, als Responsefunktion der Pulsamplitude und -frequenz bei

Abbildung 31. Wirkung der Pulsintensität auf die Dispersion der Kontiphase für Sieb- und Düsenbodeneinbauten

konstanten Durchflußströmen. Diese Abbildung stellt lokale Dispersionskoeffizienten in der Mitte der Pulskolonne (z = 2.5 m) dar, und widerlegt die Zulässigkeit der allzu häufig gewählten Darstellung berechneter Dispersionskoeffizienten als Funktion des Produktes von Pulsfrequenz und Amplitude (siehe z.B. Reissinger¹⁰⁴). Ähnlich wie bereits im Falle des Holdups gezeigt wurde, wirkt sich eine solche Darstellung irreführend aus, weil somit stark voneinander abweichende Werte einer konstanten Abszisse (Hyperbeln auf der (f,a)-Hyperebene in Abbildung 31) zugeordnet werden können. Diese Ergebnisse geben eine plausible Erklärung für die von vielen Autoren berichtete große Schwankungsbreite bei der Darstellung von Dispersionskoeffizienten als Funktion des Produktes (f.a).

Es sei an dieser Stelle darauf hingewiesen, daß Abbildung 31 zwei physikalisch unterschiedliche Betriebsbereiche der Pulskolonne darstellt. Während die Düsenbodenkolonne bereits im Dispersionsbereich operiert, arbeitet die Siebbodenkolonne noch absatzsweise. Im Mixer-Settler-Bereich, d.h. bei kleiner Pulsfrequenz und -amplitude bzw. niedriger Volumenstrombelastung, sammelt sich eine organische Koaleszenzschicht am Ende jedes Pulshubes unter den Bodeneinbauten. Dies erklärt die beobachtete niedrige Vermischungsintensität der Kontiphase in diesem Bereich, denn bei völlig gesperrten Bodenöffnungen kann ein Phasentransport zwischen nächstgelegenen Bodenkammern nur während des Aufwärtshubes stattfinden. Die Frequenz der Pulsation bestimmt die Beschleunigung, mit der am Anfang jedes Pulsationszyklus die Koaleszenzschicht durch die Löcher gepreßt wird und somit in die nächste Bodenkammer gelangt. Mit der Pulsfrequenz nimmt die Geschwindigkeit des an jeder Öffnung entstehenden Tropfenstrahls zu. Eine hohe Turbulenz und ein Aufwärtssog bauen sich in Bodennähe auf, so daß Kontiphasenelemente mit den Tropfen zurückgeschleppt werden. Aufgrund dieser Turbulenz bilden sich in jeder Bodenkammer großräumige Wirbel, die über starke Phasenwechselwirkungen zur Vermischungsintensität beitragen. Mit der Pulsamplitude steigt auch die axiale Vermischung, denn dieser Parameter bestimmt die von der Kontiphase pro Pulsationszyklus zurückgelegte Hublänge.

Nach dem Übergang in den Dispersionsbereich stellen die Bodeneinbauten kaum ein Hindernis für beide Phasen dar, denn die Tropfengröße ist hier kleiner als die Bodenöffnungen und die Koaleszenzschicht verschwindet. In diesem Bereich wirkt sich die Pulsintensität auf die Vermischung der Kontiphase über die Tropfengröße und den Dispersphasenanteil indirekt aus.

Abbildung 32. Wirkung von Durchflußmenge und Phasenverhältnis auf die Dispersion der Kontiphase

Recht unerwartet erscheint die im Bereich hoher Pulsintensitäten unterschiedliche Krümmung der Responsehyperflächen für beide Bodengeometrien (siehe Abbildung 31 auf Seite 65). Dort steigt in der Siebbodenkolonne die Vermischung der Kontiphase weiter. Dagegen ist in der Düsenbodenkolonne eine Abnahme der Vermischungsintensität zu verzeichnen. Der funktionelle Verlauf des Dispersphasenanteiles (siehe Abbildung 23 auf Seite 58) hat gezeigt, daß die Düsenbodenkolonne früher als die Siebbodenkolonne in den Dispersionsbereich übergeht, und dort der Anstieg zum Flutbereich schneller erfolgt. Es muß an dieser Stelle darauf hingewiesen werden, daß sich dort große Dispersphasenagglomerate bilden, die die großräumigen Wirbel behindern und die beobachtete Abnahme der Vermischungsintensität erklären könnte.

Abbildung 32 zeigt den Zusammenhang zwischen Dispersionskoeffizienten der Kontiphase und den Durchflußströmen bei konstanter Pulsintensität in der Mitte der aktiven Kolonne. Die Vermischungsintensität nimmt praktisch linear für beide Bodeneinsätze mit steigendem Phasenverhältnis (V_0/V_a) ab, d.h. sie ist der Kontiphasengeschwindigkeit direkt proportional und kann mit einer erhöhten Turbulenz der wäßrigen Phase bei höheren Reynoldszahlen leicht erklärt werden. Demgegenüber ist der Einfluß der Gesamtdurchflußmenge im Untersuchungsbereich zu vernachlässigen.

Bemerkenswert ist die festgestellte axiale Abhängigkeit der lokalen Vermischungsintensität in Wechselwirkung mit den Pulsbedingungen. Abbildung 33 auf Seite 67 zeigt die Abhängigkeit der lokalen Dispersionskoeffizienten von der Hubamplitude a und der axialen Lage z bei konstanten Durchflußmengen und Pulsfrequenz. Dagegen wird in Abbildung 34 auf Seite 67, bei sonst identischen Versuchsbedingungen, die Hubamplitude konstant gehalten und die Pulsfrequenz variiert. Beide Abbildungen verdeutlichen die Tatsache, daß die an einer gegebenen Pulskolonne ermittelten Dispersionskoeffizienten der Kontiphase, je nach absoluter Lage der Meßebenen, eine relativ kleine Variation von bis 15% aufweisen können. Die axiale Koordinate z bezieht sich auf die erste Meßebene (Sondenposition 1) und nimmt mit der Kolonnenhöhe zu, so daß, für die nach unten flies-

Abbildung 33. Wirkung der Hubamplitude auf die axiale Verteilung der Dispersionskoeffizienten für die Kontiphase

sende Kontiphase, die Dispersion mit dem Weg ansteigt. Dieses Phänomen wird in der Literatur¹³⁵ theoretisch begründet und später in dieser Arbeit weiter diskutiert.

Eine Extrapolation von Meßwerten aus einem 1- bzw. 2-Meßstellenverfahren auf die ganze Kolonnenlänge ist nach den hier vorgestellten Ergebnissen nicht immer möglich. Die berechneten Dispersionskoeffizienten zeigen in bestimmten Regionen wenig Sensibilität (z.B. Hyperflächenmaximum bzw. -minimum) in Bezug auf die Parametereinstellung,

Abbildung 34. Wirkung der Pulsfrequenz auf die axiale Verteilung der Dispersionskoeffizienten für die Kontiphase

¹³⁵ Hatton, T.A. und Lightfoot, E.N.: Chem.Eng.Sci. 37 /9/ (1982) 1289-1307

während in anderen Bereichen signifikante Änderungen (große Gradienten der Responsefläche) zu verzeichnen sind.

Vergleich mit Literaturangaben

Wegen der aus der Literatur²⁰ bekannten, stark divergierenden Aussagen von Vermischungsuntersuchungen in pulsierten Bodenextraktoren, kann eine Übereinstimmung mit publizierten Korrelationsansätzen eher als zufällig bewertet werden. Ein Vergleich von Ergebnissen stellt hier keine zuverlässige Basis zur Beurteilung eigener Messungen. Zudem arbeiten die meisten Autoren vorwiegend mit den von der *European Federation of Chemical Engineering* empfohlenen Systemen¹³⁶ (Toluol/Wasser und Butylacetat/Wasser). Diese Korrelationen sollten nicht auf andere Stoffsysteme übertragen werden.

Pietzsch hat systematische Studien¹⁹ an einer mit Siebböden ausgerüsteten Pulskolonne durchgeführt. Die dort untersuchte Kolonne (7.2 cm Durchmesser, 3.5 m aktive Kolonnenhöhe) ist etwas kleiner als die vorliegende Pulskolonne PETRA, aber die Konstruktionsmaterialen und Bodengeometrie sind mit dieser vergleichbar. Es ist anzumerken, daß dieser Autor als Kontiphase Wasser anstelle von Salpetersäure verwendete. Die dort angegebenen Dispersionskoeffizienten weisen eine erheblich größere Streuung (etwa 20%) für die Kontiphase auf (gegenüber 6% in dieser Arbeit). Dies ist vielleicht damit zu erklären, daß er die klassische "one-at-a-time" Versuchsstrategie angewandt, und seine Ergebnisse als Funktion des Produktes (f.a) dargestellt hat. Somit wurden alle möglichen Wechselwirkungen als Ergebnisstreuung gedeutet. Die absoluten Werte liegen allerdings im Bereich von 0.5-3.5 cm²/s, gegenüber den in dieser Arbeit vorliegenden Dispersionskoeffizienten für die wäßrige Phase von 0.8-2.2 cm²/s. Ähnlich wie bei den Untersuchungen von Pietzsch nimmt die Vermischung mit zunehmender Pulsationsintensität zu.

Åhnlich wie bei Referenz ¹⁹ kann der von Mar und Babb ¹³⁷ (Vermischungsexperimente mit Wasser als Kontiphase und Hexan, Benzol und CCl₄ als Dispersphase) angegebene Ansatz als einzig bekannte Korrelation die hier berechneten Dispersionskoeffizienten in der Größenordnung wiedergeben. Dieser Ansatz sagt allerdings eine Abnahme der Vermischungsintensität mit zunehmender Durchflußmenge der Kontiphase voraus, was von den eigenen Messungen und Abbildung 32 auf Seite 66 widerlegt wird. Für einen graphischen Vergleich der bekanntesten Vermischungsansätze für das hier untersuchte System wird hier auf die Literatur¹³⁸ hingewiesen.

Die axiale Vermischung der Dispersphase

Gegenstromextraktionskolonnen zeigen komplexe Strömungsmuster, die auf Flußinhomogenitäten wie Channeling und Totzeiteffekten beruhen. Die Strömung der Dispersphase wird in aller Regel mit Hilfe eines deterministischen Modells beschrieben (rechter Pfad in Abbildung 4 auf Seite 8), ohne vorher eine richtige Identifikation der tatsächlich herrschenden Strömungsbedingungen (linker Pfad) unternommen zu haben. Aus den oben beschriebenen Gründen sind diese, für ideale Bedingungen physikalisch begründeten Strömungsmodelle, auf die realen Zustände in einer pulsierten Bodenkolonne nicht anwendbar.

Strömungsinhomogenitäten können leicht aus gemessenen Input-Output Verweilzeitverteilungssignalen identifiziert werden (siehe z.B. Robinson¹³⁹). Für diesen Zweck geeig-

¹³⁶ Misek, T.: *Recommended systems for liquid extraction studies*, European Federation of Chemical Engineering (1978)

¹³⁷ Mar, B.W. and Babb, A.L.: Ind.Eng.Chem. 51 (1959) 1011

¹³⁸ Referenz ¹⁹, Seite 118

¹³⁹ Robinson, B.A. und Tester, J.W.: Chem.Eng.Sci. 41 /3/ (1986) 469-483

nete Information liefert die zuerst von Naor und Shinnar¹⁴⁰ vorgeschlagene Intensitätsfunktion λ (t). Sie stellt in ihrem zeitlichen Verlauf den Quotient aus momentan austretender Tracermenge zu der noch im System befindlichen dar. Als Ausgangsgröße dient die an der betreffenden Stelle registrierte Impulsmengen-Zeitfunktion I_i(t).

Die Intensitätsfunktion ist definiert als

$$\lambda(t) = \frac{\Delta F/\Delta t}{1 - F(t)} = \frac{\Delta I_i(t)/\Delta t}{I_{ges} - \sum_{0}^{t} \Delta I_i(t)}$$

wobei $F(t) = \frac{\sum_{0}^{t} \Delta I_i(t)}{\sum_{0}^{\infty} \Delta I_i(t)}$

die kumulative Verteilung (Summenfunktion) darstellt. λ (t) quantifiziert die *Fluchtwahrscheinlichkeit* der markierten Fluidelemente, die sich zur Zeit t im System befinden. Anzeichen für schlecht durchmischte Zonen bzw. Kurzschlußeffekte zeigen sich in einem ausgeprägten Maximum der Intensitätsfunktion. Für den idealen Rührkessel ist λ (t) konstant.

Abbildung 35. Intensitätsfunktion der Dispersphase

Abbildung 35 zeigt die Intensitätsfunktion eines typischen Signals der Dispersphase. Die Tatsache, daß die λ (t)-Kurve über einen bestimmten Zeitabschnitt abnimmt, gilt als Beweis für Totraumeffekte. Real vorhandene Tailingeffekte (insbesondere bei Experimenten mit Düsenböden) wurden durch Signalentfaltung in eindeutiger Weise identifiziert (siehe "Entfaltung und Modellvergleich" auf Seite 121). Ähnliche Effekte wurden für die Kontiphase nicht beobachtet.

[6.6]

¹⁴⁰ Naor, P. und Shinnar, R.: Ind.Engng.Chem.Fundam. 2 (1963) 278-286

Rückwirkungen der dispersen Phase auf die Kontiphase sind ebenfalls zu erwarten. In der Wirbelschleppe ("wake") der Dispersphase wird ein nicht unerhebliches Volumen an Kontiphase in Hauptstromrichtung der dispersen Phase mitgeschleppt, um später mit Fluidelementen der Kontiphase stochastisch ausgetauscht zu werden. Das Wakevolumen stellt eine stagnierende Region dar, und läßt sich am auslaufenden Ast der Verweilzeitsignale als Tailingeffekt erkennen.

Bei der Einbeziehung der Ergebnisse aus Verweilzeitexperimenten zur Berechnung von Konzentrationsprofilen in pulsierten Bodenkolonnen muß auf die Wichtigkeit der Segregation¹⁴¹ für einen Extraktionsprozeß hingewiesen werden. Input-Output Tracerexperimente in segregierten Mehrphasenströmungen liefern Information über die makroskopischen Vermischungsverhältnisse (Makromischung). Sie sind aber zum Verständnis der internen Vermischung auf der Molekularebene (z.B. innerhalb einzelner Tropfenindividuen) von begrenztem Nutzen. Diese sogenante Mikromischung beeinflußt stets die Konversion in einem Strömungsreaktor, ausgenommen bei linearer Kinetik. Dies bedeutet aber, daß die Verweilzeitverteilung keine einzigartige Beschreibung der Vermischung in einer segregierten Strömung liefern kann, wie es bereits in Kapitel 2 erläutert wurde. Eine allgemeine Beschreibung der Wirkung von Mikromischungseffekten auf chemische Reaktionen wurde von Zwietering¹⁴² gegeben. Chauhan¹⁴³ hat bewiesen, daß für eine Reaktionsrate mit einer Ordnung höherer als 1, die Segregation eine höhere Konversion bringt, und umgekehrt für Reaktionsordnungen kleiner als 1.

Die Grenzen des Dispersionsmodells

Abbildung 36 zeigt beispielhaft und entsprechend der Einstellung in Abbildung 29 auf Seite 63 (Treatment 9, Siebböden) die Ergebnisse einer Modellanpassung für den maximalen Meßabstand von 5.6 m. Es ist ersichtlich, daß das axiale Dispersionsmodell nicht in der Lage ist, das Vermischungsverhalten der Dispersphase bei großen Meßabständen zu beschreiben. Die Irrtumswahscheinlichkeit einer angenommenen Modellgültigkeit beträgt in diesem Beispiel 99% (siehe Tabelle 10 auf Seite 71).

Abbildung 36. Das Dispersionsmodell bei großen Meßabständen

¹⁴¹ Levenspiel, O.: Chemical Reaction Engineering, John Wiley & Sons, New York (1972)

¹⁴² Zwietering, T.N.: Chem.Eng.Sci. 11 (1959) 1

¹⁴³ Chauhan, S.P.; Bell, J.P. und Adler, R.J.: Chem.Eng.Sci. 27 (1972) 585

Wenn dagegen die Meßsignale benachbarter Detektoren (Meßabstand 0.55 m) zur Schätzung der Modellparameter herangezogen werden (die meisten aus der Literatur bekannten Ergebnisse wurden unter solchen Randbedingungen ermittelt), wird eine qualitativ akzeptable Übereinstimmung (siehe Abbildung 37 auf Seite 71) von gerechneten und gemessenen Outputsignalen (unter Gültigkeitsannahme des axialen Dispersionsmodells) auch für die Dispersphase erzielt. Die berechneten Dispersionskoeffizienten sind allerdings stark meßstellenabhängig (siehe D_d in Tabelle 10), was die Ergebnisse einer Zwei-Meßstellenmessung in Frage stellt.

Abbildung 37. Das Dispersionsmodell bei kleinen Meßabständen

Um die statistische Aussagekraft Kolmogoroff-Smirnoff-Tests (siehe des "Äquivalenzkriterien" auf Seite 45) in diesem Beispiel zu erläutern, gibt die letzte Spalte von Tabelle 10 die Irrtumswahrscheinlichkeit des Modells an. Alle Werte liegen weit über 10%, was stark gegen die Gültigkeit des Dispersionsmodells spricht. Selbst Dispersionskoeffizienten, die in der Mitte der Kolonne ermittelt wurden (z.B. Meßebene 7-8), sind auf die Gesamtlänge nicht extrapolierbar. Aus Tabelle 10 geht hervor, daß das axiale Dispersionsmodell nicht geeignet ist, um die Fluiddynamik der Dispersphase zu beschreiben. Abbildung 38 auf Seite 72 stellt die maximalen Abweichungen (D_{KS}) der kumulativen Outputverteilungen (siehe auch Abbildung 20 auf Seite 46) als Funktion des Meßstellenabstandes für die globale Auswertestrategie dar.

Meßebene	∆z [cm]	u _d [cm/s]	Dd	R _{SS}	D _{KS}	Ω_{Irr}
1 → 2	55	4.0	9.1	91.4	0.033	0.75
7 → 8	55	4.5	12.6	42.8	0.017	0.38
11 → 12	55	4.1	20.0	37.2	0.018	0.43
1 → 12	560	4.2	23.7	118.8	0.063	0.99

Tabelle 10. Axiale Dispersionskoeffizienten der Dispersphase nach einer Zweimeßstellenmessung

Es ist klar ersichtlich, daß die Kolmogoroff-Smirnoff-Schätzerwerte (D_{KS}) des Dispersionsmodells (dicke Punkte •) höher liegen als die des Lognormalenmodells (schwarze Kästchen •) und die Anpassungsgüte des ersten Modells sich mit wachsendem Meßstellenabstand verschlechtert. Dieser nichtparametrische Test wurde systematisch für die Parameterschätzung aller untersuchten Modelle mit globaler Anpassung (siehe Abbildung 19 auf Seite 44 rechts) durchgeführt. Der Vergleich beider hier vorgestellten Modelle ist für die Düsenbodenversuche in "Entfaltung und Modellvergleich" auf Seite 93

Abbildung 38. Modellvergleich für die Disperphase (Kolmogoroff-Smirnoff-Test)

bzw. für Siebbodenversuche in "Entfaltung und Modellvergleich" auf Seite 121 (jeweils rechts) neben den durch Signalentfaltung berechneten Impulsantwortfunktionen (jeweils links) dargestellt.

Der eindeutig festgestellte Einfluß des Meßstellenabstandes auf die indirekt bestimmten Dispersionkoeffizienten lenkt die Aufmerksamkeit auf besondere Merkmale der meisten aus der Literatur bekannten Arbeiten zur axialen Vermischung in Pulskolonnen, die in Tabelle 11 auf Seite 73 aufgelistet sind:

- Die meisten Autoren verfügten nur über eine 1- bzw. 2-Meßstellentechnik.
- Die Vermischungsparameter werden häufig nach einem axialen Dispersionsmodell geschätzt.
- Der Detektorme
 ßabstand wird öfters gegen
 über der Kolonnenlänge klein gew
 ählt.
- Die Versuchsergebnisse werden auf die ganze aktive Kolonnenlänge extrapoliert.

Die Vermischungsvorgänge der Dispersphase stellen einen stochastischen Prozeß dar, wo wenige Partikel (Tropfen) im Spiel sind. Hier sind statistische Schwankungen nicht mehr zu vernachlässigen. Erst der Weg durch eine längere Kolonnenstrecke sichert die notwendige statistische Mittelung, die reproduzierbare Meßergebnisse gewährleistet. Nach Katz und Shinnar¹⁴⁴ weichen, wegen der großen Anzahl betrachteter Moleküle, die makroskopischen Eigenschaften der Kontiphase nur vernachlässigbar von den Mittelwerten ab. Die statistischen Schwankungen innerer dynamischer Vorgänge spielen zunächst in diesem Zusammenhang eine untergeordnete Rolle. Somit wird die unvertretbar große Schwankungsbreite der berichteteten Dispersionskoeffizienten verständlicher, denn damit sind die Literaturwerte als lokale Angaben zu interpretieren, und nicht auf die gesamte Kolonnenlänge extrapolierbar. Auf der Grundlage dieser Problematik werden häufig sich widersprechende Versuchsergebnisse zur Fluiddynamik in pulsierten Gegenstromextraktoren verständlicher.

Die Rolle der Stoffübergangsbedingungen, Pulsform, Benetzungseigenschaften, und viele andere Faktoren, die in dieser Untersuchung ausgeklammert blieben, macht ein Vergleich von Literaturergebnissen noch problematischer. Die meisten bekannten Experimente aus der Literatur wurden in Abwesenheit von jeglicher Stoffübertragung durchgeführt. Es liegt auch die Vermutung nahe, daß die berechneten Dispersionskoeffizienten in Extraktionskolonnen nicht nur von der Fluiddynamik abhängen, sondern auch von der Wechselwirkung beider Phasen während der Stoffübertragung. In der Literatur findet man lediglich

144 Katz, S. und Shinnar, R.: Ind.Eng.Chem. 61 /4/ (1969) 60-74

Stoffsystem		Dim	Literatur		
Kontiphase	Dispersphase	d _k	L _k	Δz	Forscher
Wasser	CCl ₄	5.0	200	100	Arthayukti ⁶⁵
Wasser	Toluol,Butac.	7.2/21.0	440	106	Aufderheide ⁷
HNO ₃	Kerosin/TBP	30.0	500	100	Britsch ⁶³
Wasser	MIBK	2.5	92	35	Johnson ¹⁴⁸
Wasser	Kerosin,CCl ₄	5.6	400	. ?	Kagan ¹⁴⁷
Wasser	Hexan,Benzol,CCl ₄	5.1	153	100	Mar ¹³⁷
HNO ₃	Kerosin/TBP	10.0/35.0	600/800	55-560	Merz ¹⁴
Wasser ⁻	MIBK	3.2/5.4	37/86	?	Miyauchi ¹¹
Wasser	Trichloret.	5.0	24	?	Nemecek ¹⁴⁶
Wasser	Toluol	7.2	440	51	Niebuhr ¹⁸
Wasser	Kerosin	10.8	180	?	Noh ¹⁴⁹
HNO ₃	Kerosin/TBP	5.1	100	65	Rao ¹⁵⁰
Wasser	Kerosin/TBP	7.2	350	100	Pietzch ¹⁹
Wasser	Hexan,Benzol,MIBK	5.0	218	?	Sehmel ¹³¹
HNO ₃	Kerosin/TBP	10.0	355	54	Schmidt ¹³⁰

einige wenige Untersuchungen (siehe z.B Hatton¹⁴⁵) in Füllkörperabsorptionskolonnen, die auf solche Wechselwirkungen hinweisen.

Tabelle 11. Experimentelle Untersuchungen zur axialen Vermischung in Pulskolonnen

Hatton und Lightfoot¹³⁵ haben mittels theoretischer Überlegungen und numerischer Beispiele über die Wirkung der Stoffübertragungsbedingungen auf den Dispersionsprozeß in industriellen Zweiphasenkontaktoren gezeigt, weshalb das makroskopische Dispersionsmodell bei der Beschreibung von technischen Extraktionskolonnen zum Scheitern verurteilt ist. In krassem Widerspruch zu der weit verbreiteten Grundannahme des axialen Dispersionsmodells hängt das Dispersionsverhalten beider Phasen in Mehrphasenkontaktoren nicht nur von der Fluiddynamik ab, sondern auch von den physikochemischen Eigenschaften und Stoffübergangsgeschwindigkeiten.

Solche Einflüsse auf die Dispersionskoeffizienten bleiben öfters bei der Berechnung von industriellen Kontaktoren unberücksichtigt, was für die praktischen Anwendungen eine erhebliche Rolle spielen kann. Nach Hatton¹³⁵ können die aus Experimenten in kleinen Kolonnen bestimmten Dispersionskoeffizienten somit zu klein und nicht auf große Kolonnen extrapolierbar sein.

Diese Effekte sind vor allem in den Einlaufstrecken einer Pulskolonne zu erwarten, denn hier findet der Stoffübergang vorwiegend statt. In Anbetracht der in Abbildung 28 auf Seite 62 dargestellten Vermischungsvorgänge außerhalb des aktiven Kolonnenteils und der in Großkolonnen des PUREX-Prozesses gemessenen Uranprofile¹³⁴ muß die Anwendbarkeit des axialen Dispersionsmodells zur Vorausberechnung pulsierter Bodenextraktoren mit großen Vorbehalten gesehen werden.

¹⁴⁵ Hatton, T.A. und Woodburn, E.T.: A.I.Ch.E.J. 24 (1978) 187

¹⁴⁶ Nemecek M. und Prochazka, J.: Can.J.Chem.Eng. 52 (1974) 739-749

¹⁴⁷ Kagan, S.Z. et al: Int.Chem.Eng. 5 (1965) 656

¹⁴⁸ Johnson, J.L.: Dissertation, K.S.U. (1966)

¹⁴⁹ Noh, J.S. und Kim, S.D.: J.Kor.Inst.Chem.Eng. 18 /3/ (1980) 141-152

¹⁵⁰ Rao, K.V.K. et al: Can.J.Chem.Eng. 56 (1978) 120-123

Um den durch FFT-Entfaltung eindeutig identifizierten Totzeiten in der Verweilzeitverteilung der Dispersphase Rechnung zu tragen, wurde zuerst das axiale Dispersionsmodell um einen Totzeitparameter erweitert. Geometrisch gesehen bedeutet dies eine Verschiebung der Verteilung um die Totzeit nach rechts. Dabei ändern sich ihre Kumulanten nicht. Dies könnte als eine Strecke ohne Vermischung (rein konvektive Pfropfenströmung) interpretiert werden. Da jedes lineare System dem Superpositionsprinzip gehorcht, ist die physikalische Position dieser Verzögerungsstrecke unwichtig.

Abbildung 39. Dispersionsmodell mit Totzeit

Daraus ergibt sich ein 3-parametriges "Dispersionsmodell" mit Totzeit to:

$$C(t) = \sqrt{\frac{Bo}{4\pi t^{+}\tau}} e^{-\left[\frac{Bo(\tau - t^{+})^{2}}{4\tau t}\right]}$$
[6.7]

wobei

$$t^{+} = t - t_{0} \quad \forall \ t > t_{0}$$
[6.8]

bedeutet. Damit konnte eine bessere Anpassung (siehe Abbildung 39) an die gemessenen Kurven erzielt werden. Es muß hier allerdings darauf hingewiesen werden, daß dieser Ansatz eine reine Parametrisierung der Gewichtsfunktion ohne jegliche physikalische Bedeutung darstellt. Der Begriff "Dispersionsmodell" wurde hier nur in Anlehnung auf die Levenspiel'sche Lösung des Dispersionsmodells in Gleichung [5.11] gewählt.

Das lognormale Verteilungsgesetz des konvektiven Vermischungsprozesses

Levenspiel und Fitzgerald¹⁵¹ warnen vor einem Mißbrauch des Dispersionsmodells, das leider viel zu häufig bei der Interpretation von Mehrphasenströmungen herangezogen wird. Konvektive Effekte werden von den meisten Autoren schlicht übersehen. Die stochastische Grundannahme des Dispersionsmodells ist eine immer wieder eintretende zufällige Neuordnung der Fluidelemente, das heißt ein stetiges Wiedervergessen der Vergangenheit (Markoff-Prozeß). Nach Bauer⁸⁴ besitzen alle Elemente der betrachteten Phase nach dem axialen Dispersionsmodell dieselbe Wahrscheinlichkeit, innerhalb einer gewissen Zeit eine bestimmte Distanz in axialer Richtung zurückzulegen, wobei die einzelnen Fluidelemente nur für eine kurze Zeit unterschiedliche Geschwindigkeiten aufweisen, um sich dann zufällig wieder orientieren zu müssen. Dagegen werden in der

¹⁵¹ Levenspiel, O. und Fitzgerald, T.J.: Chem.Eng.Sci. 38 /3/ (1983) 489-491

breiten Klasse der konvektiven Modelle alle Elemente unterschiedliche Schicksale erleiden.

Langsam koaleszierende Tropfen in einer Extraktionskolonne werden unterschiedliche Transportgeschwindigkeiten aufweisen, wobei größere Tropfen sich schneller als die kleineren bewegen werden. Diese Geschwindigkeitsunterschiede tragen entscheidend zur axialen Vermischung bei und stellen ein rein konvektives Phänomen dar. Hier findet eine relative Verschiebung oder Verzögerung der einzelnen Fluidelemente zueinander statt, wobei die Dispersion auf dem Weg zunehmen kann, so daß die Streuung der Aufenthaltswahrscheinlichkeiten für eine gegebene Strecke eine Funktion des Weges ist. Zu einer wegabhängigen Dispersion trägt auch die partielle Koaleszenz der größeren Tropfen bei, wogegen kleinere Tropfen eine größere Überlebenswahrscheinlichkeit in jeder Bodenstufe haben.

Wenn ein löslicher Tracer in die Dispersphase einer pulsierten Extraktionskolonne injiziert wird, wird er abhängig von der herrschenden Geschwindigkeitsverteilung durch mindestens drei Mechanismen dispergiert:

- 1. Bei hohen Geschwindigkeiten findet die Tracerdispersion überwiegend als Ergebnis der Konvektion statt. Bei einer total segregierten Strömung spielen hier die Diffusionssvorgänge im Sinne von Dankwerts keine Rolle.
- 2. Bei mittleren Geschwindigkeiten findet die Tracerdispersion durch eine Mischung von Konvektion und Diffusion statt.
- 3. Ausschließlich bei sehr niedrigen Geschwindigkeiten und sehr starker Tropfenkoaleszens sind die konvektiven Effekte gegenüber der Diffusion vernachlässigbar.

Gleichzeitige Messungen von Partikelgröße und -geschwindigkeit in Zweiphasenströmungen¹⁵² haben gezeigt, daß keine eindeutige Korrelation zwischen Partikelgröße und Aufstiegsgeschwindigkeit in Mehrphasenströmungen zu beobachten ist. Wenn große Tropfen in kleinere zerreißen, werden letztere im Aufwärtssog der unmittelbar vorne stehenden Tropfen mitgeschleppt (*"Schornsteineffekt"*). Diese experimentellen Tatsachen stellen die öfters eingesetzten Schwarmmodelle zur Beschreibung des Tropfenverhaltens in Frage.

Es ist zuletzt immer möglich, auf der Basis der Markoff'schen Kettentheorie stochastische Modelle¹⁰⁹ zur Beschreibung beobachteter Verweilzeitverteilungen in einfachen idealisierten Situationen (siehe z.B. lordache¹⁵³) aufzustellen. Jedoch müssen letztendlich immer *subjektive* Annahmen über das dabei herrschende statistiche Verteilungsgesetz gemacht werden, die in aller Regel zu der Exponential- oder Gammaverteilung führen, wie es bei Zeitverzögerungsmodellen (*"time-delay models"*¹⁵⁴) gemacht wird.

Auf der Basis der in "Das lognormale Verteilungsmodell" auf Seite 50 diskutierten stochastischen Grundlagen und der hier erläuterten Bedenken gegen ein deterministisches Modell wurde versucht, die gemessenen Verweilzeitverteilungen direkt mittels eines lognormalen Verteilungsansatzes zu beschreiben.

Abbildung 40 auf Seite 76 zeigt das Ergebnis eines Ausgleiches im Zeitbereich (siehe "Eigene Methode" auf Seite 43) mit der 3-parametrigen Lognormalverteilung als Gewichtsfunktion derselben Verweilzeitsignale von Abbildung 39 auf Seite 74 und Abbildung 36 auf Seite 70. Die Güte der Anpassung ist ersichtlich und die entsprechenden Werte des Kolmogoroff-Smirnoff-Schätzers sind in Abbildung 38 auf Seite 72 angegeben.

¹⁵² Plawsky, J.L. und Hatton, T.A.: ISEC'86 Conference Preprints, Band III (1986) 89-97

¹⁵³ lordache, O. und Corbu, S.: Chem.Eng.Sci. 41 /8/ (1986) 2099-2102

¹⁵⁴ Rathor, M.N.: Dissertation, Loughborough Univ., U.K. (1969)

Abbildung 40. Das lognormale Vermischungsmodell

Ein interessantes Ergebnis der globalen direkten Auswertung der Dispersphasenversuche nach dem lognormalen Modell ist die Tatsache, daß die hiermit berechneten Variationskoeffizienten zu einem vom Meßstellenabstand unabhängigen Wert streben, wie es in Abbildung 41 für einen typischen Düsenbodenversuch (Treatment 29) gezeigt wird. Der Variationskoeffizient der Gewichtsfunktion erreicht einen konstanten Wert nach einer kurzen Strecke (etwa 1 m), so daß eine Möglichkeit besteht, die Vermischungsintensität der Dispersphase in einer Pulskolonne nach einem Zweimeßstellenverfahren zu bestimmen. Voraussetzung hierfür ist, daß die Detektoren weit genug auseinander sind (möglichst die ganze aktive Kolonne, ausgenommen die Einlaufstrecken) und daß ein geeignetes Modell zur Auswertung der Verweilzeitverteilungen angewendet wird.

Abbildung 41. Wegabhängigkeit der Parameter vom lognormalen Modell

Diese Experimente bestätigen auch die von Levenspiel und Fitzgerald¹⁵¹ vorausgesagte Wegabhängigkeit der Verteilungsmomente für ein konvektives Transportmodell, das so-

genannte Gauss'sche konvektive Modell. In diesem Ansatz nimmt die Standardabweichung der Verweilzeitverteilungen linear mit dem Weg zu, im Gegensatz zu einem Dispersionsmodell, wo die Varianz der Verteilung eine lineare Funktion des Weges ist. Das von diesen Autoren vorgeschlagene Modell setzt allerdings eine normale Verteilung der Partikelgrößen (Gauss-konvektives In "Das Modell) voraus. lognormale Verteilungsmodell" auf Seite 50 wurde aber erläutert, warum sich die Tropfengrößen annähernd lognormal verteilen, was für die Pulskolonne PETRA mit Düsenböden experimentell bestätigt wurde⁵⁴. Danach sind die mittleren Geschwindigkeiten der einzelnen Tropfenklassen im Dispersionsbereich annähernd lognormal verteilt, was sich auf die Verweilzeitverteilung der Dispersphase auswirkt.

Obwohl eine nullpunktverschobene Lognormalverteilung als Gewichstfunktion des linearen Systems die gemessenen Verweilzeitsignale der Dispersphase in der Düsenbodenkolonne immer besser als das axiale Dispersionsmodell beschreibt (siehe Ergebnisse des Kolmogoroff-Smirnoff-Tests in "Entfaltung und Modellvergleich" auf Seite 121), zeigen einige Siebbodenversuche (siehe Treatments 3, 4, 11, 12 und 22 in "Entfaltung und Modellvergleich" auf Seite 93) im Bereich niedriger Frequenz (1-1.3 Hz) keine Verbesserung der Anpassungsgüte gegenüber dem axialen Dispersionsmodell. Diese Tatsache hängt mit einer pfropfenartigen Förderung der organischen Dispersphase in der Kolonne zusammen.

Abbildung 42. Konvektive und stochastische Dispersphasenvorgänge

Man kann gedanklich das Schicksal eines Tropfens in zwei Etappen trennen (siehe Abbildung 42). Nach seiner Entstehung in einem bestimmten Boden, wird jeder Tropfen durch einen rein konvektiven Mechanismus zum nächsten Boden stromabwärts transportiert (mit Ausnahme der sehr kleinen Tropfen die durch Entrainment mit der Kontiphase mitgeschleppt werden). Während der kurzen Aufstiegszeit kann man Tropfenkoaleszens in vielen Fällen vernachlässigen. Wird der nächste Boden in einem Pulsationszyklus erreicht (was bei kleinen Tropfen nicht immer geschieht), dann wartet der Tropfen dort bis zum nächsten Pulsschub. Während dieser Wartezeit (stochastischer Prozeß) hat jede Tropfengrößenklasse eine bestimmte Überlebenswahrscheinlichkeit (keine Koaleszenz). Nach einer bestimmten Kolonnenstrecke, in Abhängigkeit von den Pulsbedingungen, hat sich ein Gleichgewicht zwischen Tropfengeburt und Tropfenzerfall eingestellt (siehe Abbildung 22 auf Seite 56). Wenn die Pulsfrequenz allerdings klein ist, arbeitet die Kolonne absatzweise (Mixer-Settler-Bereich). Ist die Wartezeit zwischen Hubzyklen lang genug, dann können sämtliche Tropfenindividuen vollständig koaleszieren. Somit werden die konvektiven Geschwindigkeitsunterschiede zwischen Böden ausgeglichen, was einen pfropfenartigen Transport entlang der Kolonne (ohne Vermischung zwischen Bodenkammern) zur Folge haben kann. Diese Tatsache wird von den im Anhangsteil dargestellten Impulsantwortfunktionen für die Siebbodenexperimente im Mixer-Settler-Bereich bestätigt. Es ist aus den scharfen Impulsantworten mit Tailing ersichtlich, daß nur die allerkleinsten Tropfenindividuen einen Koaleszenszyklus überleben. Der Kolmogoroff-Smirnoff-Test zeigt in diesen Fällen, daß keines beider Modelle in der Lage ist, die Fluiddynamik der Pulskolonne richtig zu beschreiben. Dagegen werden bei Düsenbodenversuchen (höhere Holdups und Vermischung, vorwiegend Dispersionsbereich) die gemessenen Verweilzeitsignale immer besser durch eine lognormale Verteilung beschrieben.

Parameterabhängigkeiten

Wie bereits in "FFT-Entfaltung von Verweilzeitverteilungssignalen" auf Seite 38 diskutiert wurde, ist eine Angabe von Modellkoeffizienten erst bei einem statistisch nicht widerlegbaren Modell angebracht. Die vorher erwähnten Schwierigkeiten des lognormalen Verteilungsmodells, um die Fluiddynamik im Bereich niedriger Frequenzen (insbesondere in der Siebbodenkolonne) einwandfrei zu beschreiben, machen eine Sensibilitätsanalyse der Vermischungsintensität der organischen Dispersphase auf der Basis einer Systemidentifikation empfehlenswert. Daraufhin wurde die Wirkung der Versuchsparameter auf die axiale Vermischung über die indirekt bestimmten Impulsantwortverteilungen untersucht. Als Maß für die Tracerdispersion wurden die Variationskoeffizienten σ_{θ} herangezogen.

Die im Anhang B und C dargestellten Impulsantworten der Dispersphase und deren Kumulanten machen die viel höhere Mischwirkung von Düsenböden gegenüber Siebböden ersichtlich. Die gemessenen Variationskoeffizienten der Impulsantwortfunktion für Verweilzeitverteilungsexperimente mit Düsenböden sind etwa doppelt so groß als mit Siebböden.

Die berechneten Responsflächen der Variationskoeffizienten (aus den Impulsantwortfunktionen) als Funktion der Pulsfrequenz und -amplitude für beide Bodenarten sind in Abbildung 43 dargestellt. Es ist ersichtlich, daß die Düsenbodeneinbauten im Vergleich mit Siebböden eine stärkere Vermischung der Dispersphase verursachen. Dieser Unterschied ist insbesondere im Bereich niedriger Amplitude bzw. Frequenz ausgeprägter. Während für sonst konstante Parametereinstellungen die Siebbodenkolonne in diesem Bereich sich als Mixer-Settler vorwiegend darstellt, arbeitet die Düsenbodenkolonne im

Abbildung 44. Wirkung der Gesamtdurchflußmenge und des Phasenverhältnisses auf die Vermischung der Dispersphase (σ_{θ})

Dispersionsbereich. Eine Erklärung für dieses Verhalten wurde bereits gegeben, und hängt mit der Koaleszens der Tropfen unterhalb der Bodeneinbauten am Ende jedes Pulsationszyklus zusammen, so daß die konvektiven Geschwindigkeitunterschiede ("forward mixing") durch den stochastischen Warteprozeß (siehe Abbildung 42 auf Seite 77 rechts) ausgeglichen werden. Aus Abbildung 43 auf Seite 78 geht hervor, daß die Pulsfrequenz gegenüber der Amplitude eine stärkere Wirkung auf die Intensität der Vermischung in der Dispersphase ausübt.

Der Einfluß der Bodengeometrie auf die Vermischungsintensität wird deutlich in Anbetracht von Abbildung 44. Dort wird der Zusammenhang zwischen Variationskoeffizienten, der Durchflußmenge und dem Phasenverhältnis für konstante Pulsationsintensität veranschaulicht. Die Gegenüberstellung der Ergebnisse für beide Bodenarten zeigt erneut eine stärkere Mischwirkung der Düsenböden. Dagegen beeinflussen die Durchflussmengen beider Phasen die Vermischung der Dispersphase bei konstanter Pulsintensität relativ wenig. ·

Kapitel 7. Zusammenfassung

Die hier vorgestellten Ergebnisse zur digitalen Auswertung von Verweilzeitverteilungssignalen und zur Fluiddynamik in einer pulsierten Extraktionskolonne stellen einen Beitrag zu den im Laboratorium für Isotopentechnik des Kernforschungszentrums Karlsruhe im Rahmen des Projektes *Wiederaufarbeitung und Abfallbehandlung* durchgeführten Arbeiten auf dem Gebiet der radionuklidtechnischen Diagnose von Extraktionsapparaten dar.

Die Untersuchungen wurden mit dem für die Wiederaufarbeitung von Kernbrennstoffen üblichen Stoffsystem Salpetersäure (3N) / Tributhylphosphat (30%) in Kerosin in einer für den PUREX-Prozeß in halbtechnischem Maßstab typischen Pulskolonne durchgeführt. Die gewonnenen Erkenntnisse sind allerdings nicht nur für ein grundlegendes Verständnis der Flüssig-Flüssig-Extraktion in der Kernbrennstoffwiederaufarbeitung von Bedeutung, sondern lassen sich auch auf andere kontinuierlich durchströmte verfahrenstechnische Apparate anwenden.

Die erzielbare Trennleistung einer pulsierten Bodenkolonne hängt von vielen fluiddynamischen Einzelfaktoren ab. Die vorliegende Arbeit stellt eine grundlegende Aufarbeitung zweier dieser Einzelprobleme dar, nämlich der Bestimmung des Dispersphasenanteiles und der Analyse des Vermischungsverhaltens in Abhängigkeit der Gesamtdurchflußmenge beider fluiden Phasen, des Phasenverhältnisses, der Pulsamplitude und der Pulsfrequenz für zwei in der Wiederaufarbeitung häufig eingesetzte Bodengeometrien (Sieb- und Düsenboden).

Mit Hilfe eines berührungslosen radionuklidtechnischen Tracerverfahrens konnten sowohl die konvektive Geschwindigkeit und axiale Vermischungsintensität beider Phasen als auch der Dispersphasenanteil ohne Störung der Strömung an mehreren Stellen entlang der Kolonne erfaßt werden.

Die im Rahmen dieser Arbeit für das untersuchte Stoffsystem speziell entwickelten Radiotracerverbindungen haben sich für die spezifische Markierung beider Phasen als besonders geeignet erwiesen. Sie können sowohl für Experimente mit reinen als auch uranbeladenen Phasen unter technischen Bedingungen eingesetzt werden und üben keinen meßbaren Einfluß weder auf die Fluiddynamik der Zweiphasenströmung noch auf den Stoffaustausch aus.

Eine wichtige Voraussetzung zur Versuchsauswertung war die Entwicklung geeigneter numerischer Verfahren zur digitalen Verarbeitung von Verweilzeitverteilungssignalen. Hierzu haben sich die Methoden der schnellen Fouriertransformation (FFT) als ein hervorragendes Werkzeug herausgestellt. Im Rahmen der heute verfügbaren Rechentechnik beschleunigen sie die für die digitale Signalverarbeitung zentralen Operationen der Faltung und der Entfaltung erheblich bzw. machen sie auf einem kleinen Mikrocomputer erst möglich. Eine schnelle interaktive Auswertung der Tracerexperimente wurde somit gewährleistet.

Die lineare Systemtheorie stellt die Basis für die Interpretation der gemessenen Eingang-Ausgangssignale aus der Pulskolonne dar. Zwei Lösungswege zur Modellierung der Tracerdispersion entlang der Kolonne, nämlich die iterative Parameteroptimierung nach einem a-priori angesetzten Vermischungsmodell und die Systemidentifikation mittels Signalentfaltung, wurden gegenübergestellt. Es konnte gezeigt werden, daß die Methode der Parameterschätzung bei einem unvollständig identifizierten System zu inkorrekten Schlußfolgerungen führen kann.

Zur Modellierung der Fluiddynamik pulsierter Extraktionskolonnen wird häufig das axiale Dispersionsmodell verwendet. Die Gültigkeitsgrenzen dieses Ansatzes zur Beschreibung der Vermischung im untersuchten System wurden qualitativ durch Vergleich mit der modellfreien Impulsantwort und quantitativ durch Verwendung des parameterfreien Kolmogoroff-Smirnoff'schen-Tests überprüft. Die eigenen Experimente bestätigen die Anwendbarkeit des Dispersionsmodells für die Kontiphase. Dagegen konnte die Gültigkeit des axialen Dispersionsmodells zur allgemeinen Beschreibung der Vermischung in der Dispersphase eindeutig widerlegt werden.

Die Diskrepanz zwischen der Gewichtsfunktion des axialen Dispersionsmodells und der Impulsantwort des Systems hängt mit Strömungsinhomogenitäten der Dispersphase wie Channeling und Totzeiteffekte zusammen. Sie konnten durch modellfreie FFT-Signalentfaltung sichtbar gemacht werden. Die eingesetzte Multidetektormeßtechnik erlaubte eine Identifizierung des bisher vernachlässigten Einflusses des Meßstellenabstandes und der Meßgeometrie bei der Bestimmung von Dispersionskoeffizienten. Ergebnisse aus lokalen Messungen können nicht auf die ganze aktive Kolonnenlänge extrapoliert werden. Aus dieser Tatsache wird die große Schwankungsbreite der berichteten Dispersionskoeffizienten in der Literatur verständlicher.

Eine stochastische Modellierung der Tracersignale auf der Basis einer drei-parametrigen lognormalen Systemgewichtsfunktion gestattet eine sehr gute Beschreibung der beobachteten Verweilzeitverteilungen für beide Phasen. Diese Untersuchungen bestätigen, daß nach etwa 1 m Einlaufstrecke die Variationskoeffizienten der Verweilzeitverteilungen der Dispersphase praktisch stabil bleiben. Dagegen sind in diesem Fall die Dispersionskoeffizienten wegabhängig. Diese Tatsache kann durch einen vorwiegend konvektiven Transportmechanismus für die Tropfenphase erklärt werden.

Die Experimente wurden nach einem statistischen Versuchsplan (Central Composite Design) durchgeführt, der sowohl die Anzahl und Reihenfolge der Versuche als auch die einzustellenden Versuchsbedingungen festlegte. Die funktionellen Zusammenhänge der untersuchten Variablen wurden mittels quadratischer multilinearer Formen durch Taylor'sche Reihenentwicklung angenähert und dargestellt (Responseflächen zweiter Ordnung).

Die Vorteile der hier gewählten experimentellen und analytischen Vorgehensweise können folgendermaßen zusammengefaßt werden:

- eine organisierte Methode der Versuchsplanung, Datenerfassung und -analyse ermöglichte eine Minimierung des Versuchsaufwandes mit einem maximalen Informationsgehalt pro Versuch,
- die dem Experiment folgende statistische Varianz- und Regressionsanalyse konnte durch den gewählten Versuchsplan erheblich vereinfacht werden,
- Wechselwirkungen zwischen den Versuchsparametern konnten sichtbar gemacht werden,
- zuverlässige Aussagen in Bereichen, die nicht direkt durch Experimente untersucht wurden (Interpolation), konnten gemacht werden.

Durch Responsefunktionsanalyse konnte eindeutig gezeigt werden, daß die Rolle der Wechselwirkung zweier wichtiger Betriebsparameter, nämlich der Frequenz und der Amplitude der Pulsation, nicht richtig eingeschätzt wird. Die durchgeführten Messungen widerlegen die Zulässigkeit der allgemein praktizierten Darstellung des Dispersphasenanteiles und der Vermischungsintensität über dem Produkt von Pulsfrequenz und Amplitude als bestimmender Faktor für die Fluiddynamik einer Pulskolonne.

Anhang

- "Anhang A. Signalverarbeitung im Fourierbereich" auf Seite 85
- "Anhang B. Auswertung der Siebbodenversuche" auf Seite 93
- "Anhang C. Auswertung der Düsenbodenversuche" auf Seite 121
- "Anhang D. Das Programm MODEL" auf Seite 149
- "Anhang E. Das Programm IDECOD" auf Seite 183
- "Anhang F. Das Programm FFTKOR" auf Seite 201

Anhang A. Signalverarbeitung im Fourierbereich

Bevor man sich mit den Anwendungen von Fouriermethoden in der Signalverarbeitung befaßt, müssen einige Besonderheiten der diskreten Fouriertransformation bezüglich ihrer Wirkung auf allgemeine Datenfelder (*Arrays*) erläutert werden. Als Feld sei hier ein allgemeiner Vektor in einem relevanten Koordinatensystem verstanden. Für den Zweck der Transformation muß die Länge N des Feldes kleiner oder gleich 2^k sein (für k positiv und ganzzahlig). Wegen der bereits erwähnten Periodizität der DFT wiederholt sich die Funktion nach der Periode N ad infinitum.

Raumfrequenzdarstellung eines Datenfeldes

Sobald vereinbart wurde, daß die Meßdaten mittels eines Feldes der Länge N dargestellt werden, kann man die spezifische Datenherkunft unbeachtet lassen. Somit wird die Tatsache ersichtlich, daß fast beliebige gemessene Zeitfunktionen (auch von anderen unabhängigen Variablen möglich), in diskretisierter Form, mit den Methoden der diskreten Fouriertransformation verarbeitet werden können. Um diese Aussage besser verstehen zu können, muß zunächst das Konzept der Raumfrequenzen erläutert werden. Raumfrequenzen sind im Grunde genommen die Sinus- oder Cosinusschwingungen, deren Periode mit N. Δt übereinstimmt, wobei Δt das diskrete Zeitintervall zwischen Feldpunkten darstellt. Von überragender Wichtigkeit für die Fourieranalyse von allgemeinen Datenfeldern ist der Begriff, daß diese Raumfrequenzen von den Meßdaten vollkommen unabhängig sind. Die Definition der Raumfrequenzen hängt nur von der vereinbarten Funktionsperiode (z.B. der Dauer der gesamten Messung) und der Anzahl der Feldelemente (Auflösung) ab. Das zu transformierende Datenfeld bestimmt nun die erforderliche Amplitude und Phase jeder Raumfrequenzkomponente. Die Aufsummierung über allen Raumfrequenzen gibt das ursprüngliche Zeitfeld wieder. Dadurch stellt die FFT lediglich einen Algorithmus dar, um die Amplituden sämtlicher Raumfrequenzen für ein bestimmtes Datenfeld zu ermitteln. Mittels dieser Raumfreguenzdarstellung der DFT wird sofort klar, daß jegliche Datenbehandlungen im Fourierbereich als eine Veränderung der Amplituden (und Phasen) bzw. der Anzahl der Raumfrequenzen zu verstehen ist.

Der Frequenzraum ist komplex, wobei jeder Frequenzkomponente ein reeller und ein imaginärer Punkt zugewiesen ist. Sie entsprechen jeweils einer reellen Cosinus- und einer imaginären Sinusschwingung, die beim ersten Feldelement anlaufen. Das Amplitudenspektrum kann aus beiden Vektoren ermittelt werden:

$$A(\omega) = \sqrt{\left[I_{\cos}(\omega)\right]^2 + \left[I_{\sin}(\omega)\right]^2}$$
[A.1]

Öfters ist es auch wichtig, das Phasenspektrum der Raumfrequenzen zu kennen, welches aus dem Ausdruck

$$\Phi(\omega) = \arctan \frac{[I_{sin}(\omega)]}{[I_{cos}(\omega)]}$$
[A.2]

berechnet werden kann. Das Phasenspektrum ergibt zusätzliche Informationen bezüglich der Verteilung von Signal und Rauschen zwischen den einzelnen Raumfrequenzen.

Abbildung 45 auf Seite 86 zeigt die Cosinus- (bei 1.0 anfangend), Sinus- (bei 0.0 anfangend) und Amplitudenspektren (H}llkurve) eines typischen Verweilzeitverteilungssignals (VWZV-Signal) aus einer Pulskolonne. Interessant zu beobachten ist, daß das Amplitudespektrum sehr schnell abklingt, was auf den wichtigen Beitrag der niedrigen Raumfrequenzen hinweist. Es ist ersichtlich, daß Verweilzeitverteilungssignale *rote Prozesse*¹⁵⁵ darstellen, denn die Signalleistung ist im Niederfrequenzbereich konzentriert. Dagegen

¹⁵⁵ Fougere, P.F.: J.Geophys.Research 90 (1985) 4355-4366

Spektralzerlegung eines VWZ-Signals

Abbildung 45. Spektralzerlegung eines Verweilzeitverteilungssignals

darf das Rauschen angenähert als weiß angenommen werden. Dieses Phänomen bietet sehr interessante Möglichkeiten bei der Erhöhung des Signal/Rauschen-Verhältnisses auf die in "Die Bewältigung des Rauschproblems" auf Seite 87 eingegangen wird. Vorher muß allerdings eine wichtige Datenfeldoperation der Fourierverarbeitung erläutert werden.

Zerofilling eines Datenfeldes

Viele FFT-Algorithmen wurden für Feldlängen N entwickelt, die eine Zweierpotenz darstellen (2^k für k positiv und ganzzahlig). Somit müssen in der Regel diskretisierte Meßdaten mit Nullen erweitert werden, bevor sie einer FFT-Operation unterworfen werden. Diese Operation nennt man *Zerofilling*; sie wurde urprünglich nur dazu gebraucht, um ein bestimmtes Feld auf 2^k Abtaststellen für die FFT zu erweitern.

Als Ergebnis einer Zerofilling-Erweiterung im ursprünglichen Zeitbereich wird die fundamentale Raumfrequenz $\Delta \omega$ im Fourierbereich verkleinert. Dadurch werden Bandüberlappungsfehler (*aliasing*³⁴) verringert. Dagegen entspricht ein Zerofilling im Fourierbereich eine Interpolation der ursprünglichen Punkte im Zeitbereich. Somit ist eine interesante Anwendung (siehe z.B. Horlick¹⁵⁶) des Zerofillings möglich, wenn man nicht über eine ausreichende Anzahl von Meßdaten verfügt und eine glatte Funktion für die weitere Verarbeitung benötigt.

Da in dieser Arbeit ausschließlich die DFT über einen geeigneten FFT-Algorithmus verwendet wird, müssen einige Einschränkungen in bezug auf die Möglichkeiten der kontinuierlichen Fouriertransformation in Kauf genommen werden. Ein wichtiger Punkt ist die Tatsache, daß für die Signalverarbeitung eine lineare Faltung benötigt wird. Die *lineare Faltung* zweier Signale x(n) und h(n) wird durch

$$y(n) = \sum_{-\infty}^{+\infty} x(m) h(n-m)$$
 [A.3]

definiert. Hat das Feld x(n) die Länge N und das Feld h(n) die Länge M, dann resultiert aus einer linearen Faltung ein Outputfeld y(n) der Länge N+M-1. Die DFT ist allerdings mit einer anderen Faltungsoperation, nämlich mit der *zyklischen Faltung*

¹⁵⁶ Horlick, G. und Yuen, W.K.: Anal.Chem. 48 (1976) 1643-1644

$$y(n) = \sum_{m=0}^{N-1} x(m) h(n-m)$$

verbunden. In diesem Fall haben alle drei Felder die *gleiche* Länge N. Alle drei Signale werden außerhalb des Intervalls (0,N-1) als periodisch betrachtet.

Die zirkulare Eigenschaft der diskreten Fouriertransformation stellt den zweiten wichtigen Grund für die notwendige Zerofilling-Erweiterung der Signale vor einer FFT-Faltungsoperation dar. Der sogenannte "Wrap-around-Effekt" (bow-tie, siehe Bendat¹⁵⁷) entsteht, wenn das Ergebnis der Faltung zweier Datenfelder der Länge N in ein drittes Feld, ebenfalls der Länge N, abgelegt wird. Da die lineare Faltung beider Felder die Länge 2N hat, beobachtet man eine Funktion, die sich wie ein Spiegelbild um sich selbst faltet und die kein Bezug auf das gewünschte Ergebnis hat. Um die lineare Faltung beider Felder durch eine zirkulare Faltung berechnen zu können (DFT-Multiplikation), müssen vorher beide Datenfelder durch Zerofilling auf die Länge 2N erweitert werden.

Als dritter Grund für das Zerofilling kann die Einschränkung von Aliasing- und Leckagefehlern bei der Signalentfaltung genannt werden, auf die später eingegangen wird.

Die Bewältigung des Rauschproblems

Die diskrete Fouriertransformation eines verrauschten Feldes ergibt eine Raumfrequenzverteilung für das Signal und das Rauschen. Die Amplituden der Fourierkoeffizienten eines Meßsignals (siehe Abbildung 45 auf Seite 86) können sehr aufschlußreich sein. Wie von Inonye¹⁵⁸ bereits erwähnt, klingen die Fourierkoeffizienten eines Signals mit der Frequenz ab, wenn dieses langsam in Verhältnis zu dem Rauschen variiert. Mittels einer DFT wird Rauschen zu Rauschen transformiert, und die Koeffizienten bleiben annähernd konstant (weisses Rauschen). Somit kann durch eine geschickte Verarbeitung im Fourierbereich das Rausch/Signal-Verhältnis vor der Rücktransformation erhöht werden.

In den wichtigsten Anwendungen werden hierfür zusätzliche Funktionen zur Verarbeitung herangezogen. Der Einsatz von sogenannten Fensterfunktionen ("windows") im Fourierbereich ist in der angelsächsischen Literatur unter dem Begriff window carpentry bekannt. Damit kann allerdings das Rauschproblem nicht vollständig beseitigt werden. Es gibt immer einen kleinen Beitrag des Rauschens im Signalband, der nicht eliminiert wird, wodurch zusätzliche Information im Hochfrequenzbereich verloren geht.

Zur Erhöhung des Signal/Rauschen-Verhältnisses wurde in dieser Arbeit eine Analyse der Amplitudenspektren der Verweilzeitverteilungssignale durchgeführt, wobei die jeweilige Frequenz der Bandstoppkante ("cut-off edge") und die Breite des Übergangsbandes optimal bestimmt werden konnten. Anschließend wurde ein geeignetes Filter verwendet. Die Wahl des Filters hängt davon ab, welche Anforderungen an den geglätteten Output gestellt werden.

Die Funktionen

 $w(t) \Leftrightarrow W(\omega)$

stellen ein Fensterpaar dar, wenn sie real, gerade, normiert

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} W(\omega) \, d\omega = 1$$
 [A.6]

und zeitbegrenzt

[A.5]

¹⁵⁷ Bendat, J.S. und Piersol, A.G.: *Engineering Applications of Correlation and Spectral Analysis*, John Wiley & Sons, Ney York (1980)

¹⁵⁸ Inonye, T.; Harper, T. und Rasmussen, N.C.: Nucl.Instrum.Meth. 67 (1969) 125

sind. Fensterfunktionen werden in der Literatur ausführlich behandelt (siehe z.B. Childers¹⁶⁸), so daß hier ausschließlich die eigenen Anwendungen und praktischen Erfahrungen diskutiert werden.

Eine erste wichtige Anwendung der "window carpentry" in der Analyse von Verweilzeitverteilungen ist die Eliminierung scharfer Ausreißerimpulse bei Erhaltung eines relativ sich sehr langsam ändernden Meßsignals.

Werden Radiotracersignale digital¹⁵⁹ erfaßt, so kann es vorkommen, daß Meßwerte nach der einen oder anderen Seite so stark abweichen, daß der Verdacht von nicht zufallsbedingten, sondern durch systematische Einflüsse¹⁶⁰ verursachten Abweichungen besteht. Diese *Ausreißer* gehören nicht der Grundgesamtheit an, der die übrigen Meßwerte zugrunde liegen. Sie müssen daher aus dem Datenmaterial entfernt werden. Sorgt man nicht für ein ausreißerfreies Datenmaterial, können Kenndaten wie z.B. Mittelwert oder Standardabweichung bzw. daraus abgeleitete Testgrößen zu erheblich verfälschten Aussagen führen. Ein Ausreißertest ist daher die Voraussetzung für weitere statistische Untersuchungen an dem vorliegendem Datenmaterial, so daß dieser Test an erster Stelle durchgeführt werden muß.

Abbildung 46. FFT-Glättung mittels Spektralfenster (Boxcar) zur Beseitigung von Ausreißern

Abbildung 46 veranschaulicht das Ausreißerproblem und den Weg zu seiner Lösung mittels Frequenzanalyse und digitaler Filterung. Die scharfen δ -ähnlichen Ausreißerimpulse haben ein sehr breites Frequenzspektrum, während das Verweilzeitverteilungssignal durch wenige Frequenzkomponenten abgebildet wird. Somit können durch digitale Tiefpaßfilterung die Ausreißerimpulse unterdrückt werden. Durch einen Vergleich des hiermit berechneten rauschfreien Signales mit dem originalen Meßsignal können sehr schnell Ausreißererimpulse identifiziert und die entsprechenden Meßwerte durch die Werte des glatten Niederfrequenzsignals ersetzt werden. Dieser Filtervorgang findet implizit bei Analogmeßverfahren statt. Die Meßdaten erscheinen dann als "glatt", wobei die Information aus dem Hochfrequenzbereich dort bereits während der Messung verloren geht.

¹⁵⁹ Die folgende Ausführungen werden nach Erläuterung der Meßmethode in Kapitel 3 verständlicher

¹⁶⁰ Ein Grund dafür sind öfters Netzinstabilitäten

Dieses Beispiel erläutert die Anwendung eines der meist verbreiteten Fensterpaare, nämlich der *Boxcarfunktion*.

$$\Pi(\omega) = \begin{vmatrix} 1 & \forall & | \omega & | \leq \omega_{\max} \\ 0 & \forall & | \omega & | > \omega_{\max} \end{vmatrix}$$
[A.8]

Ihre Fouriertransformierte im Zeitbereich, die sogenannte interpolierende Funktion sinc(x)

$$\operatorname{sinc}(t) = \frac{\sin(\omega t)}{\omega t}$$
[A.9]

hat die einzigartige Spektraleigenschaft, daß sie keine Frequenzkomponenten über die Stoppfrequenz ω_{max} aufweist.

Durch Verwendung eines abszissenverschobenen Frequenzboxcars ist es möglich, jeden beliebigen Frequenzbereich abzufiltern (Tief-, Band- bzw. Hochpaßfilter). Jede Fensterfilterung im Frequenzbereich ist allerdings als eine Faltungsoperation im Zeitbereich zu verstehen, wobei die ursprünglichen Meßdaten mit der inversen Fouriertransformierten (IDFT) der gewählten Filterfunktion gefaltet werden. Aus diesem Grunde müssen die Eigenschaften der gewählten Fensterfunktion im Auge behalten werden, um sicherzustellen, daß die rücktransformierten Daten nicht durch den sogenannten *Leckeffekt* ("leaka-ge") verzerrt werden. Dieses Problem ist durch die meßtechnische Begrenzung des Signals auf eine endliche Zeit (Zeitbegrenzung) bedingt. Die Fouriertransformierte eines *zeitbegrenzten* Signals ist per Definition¹⁶¹ *bandunbegrenzt*, d.h. es sind unendlich viele Frequenzkomponenten für seine Frequenzdarstellung erforderlich. Da die kontinuierliche Fouriertransformierte des Meßsignals durch eine DFT mit einer begrenzten Anzahl von Raumfrequenzen angenähert wird, enstehen Bandüberlappungen der höheren Frequenzen verfälschen und als Seitenschwinger des Signalpeaks im Zeitbereich erscheinen.

Der Leckeffekt³⁵ läßt sich abschwächen, wenn man eine Frequenzbegrenzungsfunktion (Fensterfunktion) verwendet, deren spektrale Seitenschwinger geringere Amplituden aufweisen als die der sinc(t)-Funktion. Je kleiner die Seitenschwingeramplituden, um so schwächer sind die Auswirkungen des Leckeffektes auf die Ergebnisse der Fensterfilte-

¹⁶¹ Papoulis, A.: Signal Analysis, McGraw Hill, New York (1984)

rung. Die gesuchte nichtverschwindende Frequenzkomponente ist im Vergleich zu der gewünschten δ -Funktion (keine Seitenschwinger) manchmal beträchtlich verbreitert bzw. verschmiert. Man kann generell sagen, je mehr man die Leckkomponenten zu verkleinern versucht, desto breiter bzw. verschmierter erscheinen die interessierenden Ergebnisse der Filterungsoperation. Der Leckeffekt ist besonders problematisch bei einer Tiefpaßfilterung und wird zunächst anhand eines einfachen Beispiels erläutert.

Abbildung 47 auf Seite 89 zeigt die *Apodisation*¹⁶² der DFT einer Rechteckfunktion $\Pi(t)$ (rechts verschobener Boxcar im Zeitbereich). Man beobachtet einen Hauptschwinger an dem Amplitudenspektrum (rechts) und abklingende Seitenschwingers rücktransformiert, ergibt sich eine unimodale Funktion, die vom Rechteck stark abweicht. Bei Berücksichtigung von 3 (10) mal so vielen Raumfrequenzen ergibt sich eine trimodale (dekamodale) Approximation des Rechtecks. Die Approximation der ursprünglichen Funktion wird umso besser, je mehr Raumfrequenzen rücktransformiert werden (breiteres Filterfenster). In der unmittelbaren Umgebung der Sprungstellen, wo die Konvergenz der Fourierschen Reihe nicht mehr gleichmäßig ist, sind Wellen vorhanden, welche der Sprungstelle näher und näher rücken und immer schmäler werden, für welche jedoch die Abweichung von der Kurve für $\Pi(t)$ nicht nach Null konvergiert. Diese Erscheinung nennt man das *Gibbs'sche Phänomen*, welches von J.W.Gibbs¹⁶³ auf rein empirischem Wege gefunden wurde.

Abbildung 48. Digitale Fensterfunktionen zur Spektrumglättung

Die Wichtigkeit des Leckeffektes in Form Gibbs'scher Seitenschwinger wird bei der Entfaltung von Verweilzeitverteilungssignalen aus wenig durchmischten Meßstrecken ersichtlich¹⁶⁴. Der Grund für dieses Problem ist, daß vermischungsarme Systeme durch scharfe δ -ähnliche Impulsantworten charakterisiert werden, die ein sehr breites Leistungsspektrum aufweisen und nicht ohne große Leckverluste aus dem Rauschen herausgefiltert werden können.

Wenn nur kleine Überschwinger ("*ripples*") im Frequenzbereich toleriert werden können, empfiehlt Kaiser¹⁶⁵ die Anwendung von NER Filtern ("Nearly Equal Ripple Approximation"). Sie stellen im wesentlichen Besselfunktionen erster Art dar, die eine sehr kleine

¹⁶² Aus dem Griechischen: "die Beine abtrennen"

¹⁶³ Courant, R. und Hilbert, D.: Methoden der mathematischen Physik I, Springer-Verlag, Berlin (1968)

¹⁶⁴ siehe "Entfaltung und Modellvergleich" f}r die organische Dispersphase im Anhang B, z.B SIEB17)

¹⁶⁵ Kaiser, J.F. und Reed, W.A.: Rev.Sci.Instrum. 48 /11/ (1977) 1447-1457

Signalverzerrung im Zeitbereich verursachen und eine Unterdrückung der Gibbs'schen Seitenschwinger bis unter -60 dB ermöglichen.

Das Kaiser-Bessel'schen Filterpaar

1

$$w(t) = \begin{cases} \frac{I_0[\omega_K \sqrt{(\frac{T_0}{2})^2 - t^2}]}{I_0(\frac{T_0}{2})(\omega^2 - \omega_K^2)} & \forall |t| \le \frac{T_0}{2} \\ 0 & \text{sonst} \end{cases}$$

bzw.

$$W(\omega) = \frac{2\sin\left[\frac{T_0}{2}\sqrt{\omega^2 - \omega_K^2}\right]}{I_0(\frac{T_0}{2})(\omega^2 - \omega_K^2)}$$
[A.11]

hat sich durch die eigene Erfahrung für die Glättung von Verweilzeitverteilungssignalen hervorragend bewährt. In ist die modifizierte Bessel'schen Funktion erster Art der Ordnung Null. Die Filterwirkung dieses Fensterpaars steigt mit dem Parameter $\omega_{\rm K}$, der vom Benutzer frei gewählt werden kann.

Abbildung 48 auf Seite 90 vergleicht das Spektrum eines Boxcar- mit einem Kaiser-Bessel'schen-Filters. Während der Boxcarfilter-Seitenschwinger von bis -15 dB aufweist, ist das gezeigte NER-Filter in der Lage, das Gibbs'sche Phänomen bis -45 dB zu unterdrücken

Zwischen diesen beiden extremen Filterarten bietet sich eine ganze Palette von Möglichkeiten (siehe z.B. Gecklinli¹⁶⁶ und Cameron¹⁶⁷) an. Für einen praktischen Einstieg in die digitale Filtertechnik ist das Buch von Childers und Durling¹⁶⁸ zu empfehlen.

Die für diese Arbeit wichtigste Anwendung digitaler Filter stellt das verwendete Verfahren zur numerischen Signalentfaltung dar, das in "FFT-Entfaltung" auf Seite 14 und "FFT-Entfaltung von Verweilzeitverteilungssignalen" auf Seite 38 erläutert wird. Die FORTRAN-Implementierung folgender Filterfunktionen

- Boxcar
- 0 Kaiser-Bessel (NER)
- Hamming
- Tukey
- Papoulis

kann in "Anhang F. Das Programm FFTKOR" auf Seite 201 ersehen werden.

[A.10]

¹⁶⁶ Geckinli, N.C. und Yavuz, D.: IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. ASS-26 /6/ (1978) 501-507

¹⁶⁷ Cameron, D.G.; Moffatt, D.J.: JTEVA, 12 /2/ (1984) 78-85

¹⁶⁸ Childers, D. und Durling, A.: Digital Filtering and Signal Processing, West Publ. Co., St. Paul MINN (1975)
Organische Dispersphase

Entfaltung und Modellvergleich

Anhang B. Auswertung der Siebbodenversuche 93

Anhang B. Auswertung der Siebbodenversuche 95

Normierte Versuchseinstellungen und statistische Kennzahlen der Impulsantwortverteilungen

ST	<i>X</i> ₁	X ₂	X ₃	X4	$t_0(s)$	μ(s)	$\sigma(s)$	$\sigma_{ heta}$	α_3	ε ₁ (%)	ε ₂ (%)
1	1.725	1.194	0.990	0.999	94.0	143.6	26.8	0.187	1.74	25.3	25.2
2	1.591	1.182	990	0.999	74.0	90.0	9.4	0.104	1.46	15.7	16.1
2	1.754	1.245	-,990	0.999	74.0	89.4	11.9	0.133	2.73	15.8	•
3	1.411	1.094	0.990	999	84.0	96.1	7.5	0.078	2.57	16.4	
3	1.411	1.094	0.990	999	85.0	95.9	7.4	0.077	2.83	16.3	16.6
4	1.683	1.216	990	981	82.0	97.8	8.4	0.086	2.50	17.2	17.3
6	1.259	974	990	0.999	76.0	94.2	11.6	0.123	2.03	12.4	12.5
7	1.365	974	0.990	999	88.0	98.5	7.7	0.078	2.57	13.1	13.1
8	1.382	971	990	999	89.0	101.6	8.0	0.079	2.28	13.6	13.5
9	- .746	1.069	0.990	0.999	93.0	142.0	29.6	0.208	1.97	19.3	19.3
10	-1	0.999	990	0.999	74.0	89.2	11.9	0.133	2.65	11.7	•
11	700	1.106	0.990	999	87.0	95.3	4.6	0.048	1.38	13.0	•
12	852	1.047	990	981	85.0	97.8	10.3	0.105	3.17	13.0	•
13	-1.21	-1.04	0.990	0.999	100.0	147.3	25.9	0.176	1.26	14.4	14.2
14	-1.28	-1.02	990	0.999	75.0	93.6	14.7	0.157	2.51	9.2	9.0
15	-1.2	-1.02	0.990	999	88.0	98.6	7.0	0.071	1.83	9.8	9.6
16	-1.07	-1	990	999	88.0	99.2	6.0	0.060	2.03	10.1	10.1
17	0.212	0.063	0.000	0.000	72.0	89.0	10.4	0.117	2.09	12.7	12.6
18	-1.18	0.066	0.000	0.000	72.0	89.3	14.2	0.159	2.87	10.0	10.8
19	1.414	0.000	0.000	0.000	74.0	89.9	13.3	0.148	2.87	14.4	14.3
20	0.099	-1.41	0.000	0.000	74.0	94.0	16.6	0.177	3.00	7.8	7.5
21	0.156	1.446	0.000	0.000	73.0	88.1	11.6	0.132	2.82	13.4	13.5
22	0.283	0.113	0.000	-1.41	96.0	110.1	8.0	0.073	2.99	14.7	•
23	0.371	0.075	0.000	1.395	80.0	115.6	23.3	0.202	2.29	16.8	16.5
24	0.297	0.063	-1.41	0.000	73.0	85.9	8.5	0.099	2.38	12.4	12.3
25	0.240	0.072	1.414	0.000	87.0	106.7	21.0	0.197	2.54	15.3	_• -
26	-3.94	0.946	0.000	0.000	70.0	88.7	15.3	0.172	2.96	7.4	7.3

RSA für den Mittelwert der Impulsantwortverteilungen

•

RESPONSE MEAN		101.0148			
ROOT MSE		4.899998			
R-SQUARE		0.9619951			
COEF OF VARIATION		0.04850771			
REGRESSION	DF	TYPE I SS	R-SQUARE	F-RATIO	PROB
LINEAR	4	2920.84320	0.3853	30.41	0.0001
QUADRATIC	4	1391.28168	0.1835	14.49	0.0002
CROSSPRODUCT	6	2980.86946	0.3932	20.69	0.0001
TOTAL REGRESS	14	7292.99433	0.9620	21.70	0.0001
PARAMETER	DF	ESTIMATE	STD DEV	T-RATIO	PROB
INTERCEPT	1	88.58193355	2.62017062	33.81	0.0001
FLUSS	1	-0.08630057	0.91840976	-0.09	0.9267
RATIO	1	-1.65260087	1.11574934	-1.48	0.1643
HUB	1	11.46668961	1.15989603	9.89	0.0001
FREQUENZ	1	8.24599913	1.16053874	7.11	0.0001
FLUSS*FLUSS	1	0.10755216	0.40648836	0.26	0.7958
RATIO*FLUSS	1	0.34448266	0.93034616	0.37	0.7176
RATIO*RATIO	1	1.60587595	1.66778697	0.96	0.3546
HUB*FLUSS	1	-0.38336835	1.05802748	-0.36	0.7234
HUB*RATIO	1	0.41321262	1.28485224	0.32	0.7533
HUB*HUB	1	4.29099539	1.75110048	2.45	0.0306
FREQUENZ*FLUSS	1	-0.44159360	1.05382786	-0.42	0.6826
FREQUENZ*RATIO	1	0.03182381	1.28074219	0.02	0.9806
FREQUENZ*HUB	1	13.62126025	1.27266971	10.70	0.0001
FREQUENZ*FREQUENZ	1	12.89845876	1.75434897	7.35	0.0001
FACTOR	DF	SS	MEAN SQUARE	F-RATIO	PROB
FLUSS	5	9.288203	1.857641	0.08	0.9946
RATIO	5	77.92695	15.58539	0.65	0.6678
HUB	5	5035.77	1007.154	41.95	0.0001
FREOUENZ	5	4878.162	975.6323	40.63	0.0001

.

:

RSA für die Standardabweichung der Impulsantwortverteilungen

RESPONSE MEAN		12.9963			
ROOT MSE		2.227712			
R-SQUARE		0.9501733			
COEF OF VARIATION		0.1714113			
REGRESSION	DF	TYPE I SS	R-SQUARE	F-RATIO	PROB
TIMPAD	,	00/ /0000	0 (001	(0.00	0 0001
LINEAR	4	834.40993	0.6981	42.03	0.0001
QUADRATIC	4	2.61100475	0.0022	0.13	0.96/8
CROSSPRODUCT	6	298.61631	0.2498	10.03	0.0004
TOTAL REGRESS	14	1135.63724	0.9502	16.35	0.0001
PARAMETER	DF	ESTIMATE	STD DEV	T-RATIO	PROB
INTERCEPT	1	13 31921583	1 19122190	11 18	0 0001
FILLER	1		0.41754144	-0.06	0.0001
PATTO	1	-0.02404347	0.41734144	-0.00	0.5550
	1	-0.24396296	0.50725697	-0.48	0.0303
	T	3.00433/9/	0.52/52901	0.99	0.0001
FREQUENZ	1	6.25338598	0.52/62181	11.85	0.0001
FLUSS*FLUSS	1	0.05665249	0.18480393	0.31	0.7644
RATIO*FLUSS	1	-0.28546366	0.42296815	-0.67	0.5125
RATIO*RATIO	1	-0.09446320	0.75823473	-0.12	0.9029
HUB*FLUSS	1	0.41190817	0.48101658	0.86	0.4086
HUB*RATIO	1	-0.24148987	0.58413911	-0.41	0.6866
HUB*HUB	1	0.18248917	0.79611199	0.23	0.8226
FREQUENZ*FLUSS	1	-0.28504110	0.47910728	-0.59	0.5629
FREQUENZ*RATIO	1	-0.22398796	0.58227053	-0.38	0.7072
FREQUENZ*HUB	1	4.35593310	0.57860050	7.53	0.0001
FREQUENZ*FREQUENZ	1	0.65268228	0.79758887	0.82	0.4291
FACTOR	DF	SS	MEAN SQUARE	F-RATIO	PROB
FLUSS	5	12.81487	2.562975	0.52	0.7593
RATIO	5	4.673805	0.934761	0.19	0.9614
HUB	5	506.0267	101.2053	20.39	0.0001
FREOUENZ	5	946.4619	189.2924	38.14	0.0001

RSA für den Variationskoeffizient der Impulsantwortverteilungen

RESPONSE MEAN ROOT MSE R. SOLLADE		0.1251737 0.02520545			
COEF OF VARIATION		0.072490			
COLL OF VARIATION		0.2013037			
REGRESSION	DF	TYPE I SS	R-SQUARE	F-RATIO	PROB
LINEAR	4	0.04156114	0.6951	16.35	0.0001
QUADRATIC	4	0.003700991	0.0619	1.46	0.2756
CROSSPRODUCT	6	0.006906529	0.1155	1.81	0.1793
TOTAL REGRESS	14	0.05216866	0.8725	5.87	0.0020
PARAMETER	DF	ESTIMATE	STD DEV	T-RATIO	PROB
INTERCEPT	1	0.15011503	0.01347808	11.14	0.0001
FLUSS	1	0.000151750	0.004724274	0.03	0.9749
RATIO	1	-0.001725376	0.005739383	-0.30	0.7688
HUB	1	0.01656452	0.005966472	2.78	0.0168
FREQUENZ	1	0.04624044	0.005969778	7.75	0.0001
FLUSS*FLUSS	1	0.000820920	0.002090965	0.39	0.7015
RATIO*FLUSS	1	-0.003225805	0.004785674	-0.67	0.5131
RATIO*RATIO	1	-0.004237848	0.008579049	-0.49	0.6302
HUB*FLUSS	1	0.005427469	0.005442463	1.00	0.3383
HUB*RATIO	1	-0.004283275	0.006609243	-0.65	0.5291
HUB*HUB	1	-0.007900087	0.009007611	-0.88	0.3977
FREQUENZ*FLUSS	1	-0.001834558	0.005420860	-0.34	0.7409
FREQUENZ*RATIO	1	-0.003170054	0.006588101	-0.48	0.6390
FREQUENZ*HUB	1	0.02013887	0.006546577	3.08	0.0096
FREQUENZ*FREQUENZ	1	-0.01364882	0.009024321	-1.51	0.1563
FACTOR	DF	SS	MEAN SQUARE	F-RATIO	PROB
FLUSS	5	0.001559343	0.0003118686	0.49	0.7771
RATIO	5	0.0008904687	0.0001780937	0.28	0.9151
HUB	5	0.0116093	0.00232186	3.65	0.0306
FREQUENZ	5	0.04559017	0.009118034	14.35	0.0001

.

Axiale	Variationskoeffizienten	nach dem	lognormalen	Modell
--------	-------------------------	----------	-------------	--------

Treatment	Versuch	Mittel wert	Standard abweichung	Minimum	Maximum	Spannweite
1	SIEB20	0.32	0.06	0.27	0.45	0.18
2	SIEB35	0.28	0.14	0.07	0.43	0.36
2	SIEB66	0.38	0.05	0.26	0.43	0.17
3	SIEB55	0.13	0.12	0.04	0.37	0.32
3	SIEB56	0.15	0.14	0.04	0.41	0.37
4	SIEB58	0.14	0.11	0.05	0.28	0.24
5	SIEB12	0.42	0.13	0.24	0.66	0.43
6	SIEB06	0.33	0.16	0.08	0.54	0.46
7	SIEB17	0.13	0.12	0.04	0.38	0.34
8	SIEB25	0.16	0.12	0.05	0.36	0.30
9	SIEB33	0.34	0.06	0.28	0.47	0.19
10	SIEB60	0.39	0.05	0.25	0.43	0.19
11	SIEB30	0.16	0.12	0.05	0.35	0.30
12	SIEB39	0.09	0.07	0.05	0.24	0.19
13	SIEB10	0.36	0.07	0.28	0.51	0.24
14	SIEB37	0.35	0.11	0.09	0.46	0.37
15	SIEB14	0.15	0.15	0.05	0.40	0.35
16	SIEB22	0.17	0.10	0.05	0.32	0.28
17	SIEB28	0.35	0.09	0.10	0.43	0.33
18	SIEB51	0.33	0.09	0.08	0.42	0.34
19	SIEB49	0.34	0.04	0.28	0.39	0.11
20	SIEB64	0.27	0.08	0.09	0.38	0.29
21	SIEB53	0.30	0.08	0.07	0.39	0.32
22	SIEB42	0.07	0.03	0.04	0.15	0.11
23	SIEB46	0.39	0.06	0.32	0.51	0.18
24	SIEB44	0.16	0.09	0.06	0.27	0.21
25	SIEB68	0.36	0.04	0.30	0.43	0.14
26	SIEB62	0.35	0.04	0.30	0.42	0.12

						Kolon	nenbe	reich				
I	Versuch	1	2	3	4	5	6	7	8	9	10	11
			. 950 mm 644 mm 146						_ ~ ~ ~ ~			
1	SIEB20	.45	.40	.33	. 32	.31	. 29	.29	.29	.27	.27	.27
2	SIEB35	.26	.41	.29	, 36	.30	.43	.38	.43	.09	.07	.08
2	SIEB66	.26	.38	.31	.41	.40	.42	.41	.37	.37	.41	.43
3	SIEB55	.21	.25	.28	.37	.06	.06	.04	.05	.05	.05	.04
3	SIEB56	.21	.08	.27	.41	.37	.05	.05	.05	.04	.04	.07
4	SIEB58	.28	.26	.28	.07	.06	.06	.06	.05	.05	.05	.28
5	SIEB12		.66	.60	.50	.24	.40	.41	.36	.38	.34	.31
6	SIEB06	.12	.46	. 39	.54	.42	.42	.42	.34	.08	.08	.38
7	SIEB17	.14	.19	.38	.33	.05	.05	.05	.04	.05	.05	.04
8	SIEB25	.25	.25	.26	.31	.07	.06	.06	.06	.06	.36	.05
9	SIEB33	.47	.42	.38	.36	.33	.32	.32	.30	.30	.28	.30
10	SIEB60	.25	.38	.37	.41	.43	.43	.41	.43	. 39	.40	.42
11	SIEB30	.19	.24	.18	.30	.31	.35	.05	.05	.05	.05	.05
12	SIEB39	.21	.08	.07	.24	. 06	.06	.05	.05	.05	.05	.05
13	SIEB10	.51	.43	.38	.38	.34	.36	. 30	.33	.33	.28	.28
14	SIEB37	.24	.37	.32	.41	. 34	.46	.40	.44	.38	.09	.42
15	SIEB14	.10	.37	.40	.38	.07	.06	.05	.06	.05	.05	.05
16	SIEB22	.11	.19	.26	.27	. 32	.07	.05	.05	.20	.27	.05
17	SIEB28	.32	.41	.43	.38	.38	.10	.37	.38	. 36	.35	.41
18	SIEB51	.27	.42	.38	.36	.36	.34	.36	.38	. 38	. 34	.08
19	SIEB49	.30	.28	.34	.37	.33	.39	.35	.31	.36	.36	. 39
20	SIEB64	.26	.22	.30	.22	.31	.32	.33	.29	.09	. 29	.38
21	SIEB53	.28	. 39	.30	.35	.34	.30	.32	.33	.33	.31	.07
22	SIEB42	.11	.09	.07	.07	.05	.05	.06	.05	.05	.15	.04
23	SIEB46	.51	.49	.41	.36	.39	.39	.36	.35	. 32	.33	.33
24	SIEB44	. 24	.12	.21	:25	.23	.27	.07	.22	.06	.06	.06
25	SIEB68	.43	.43	.35	.37	. 39	.35	.30	.34	.35	.33	.32
26	SIEB62	.35	.36	. 33	. 39	.36	.34	.34	.30	.32	.32	.42

Wäßrige Kontiphase

Entfaltung und Modellvergleich

Anhang B. Auswertung der Siebbodenversuche 107

Normierte Versuchseinstellungen und statistische Kennzahlen der Impulsantwortverteilungen

ST	<i>X</i> ₁	X2	<i>X</i> ₃	X4	μ(s)	$\sigma(s)$	$\sigma_{ heta}$	α_3	$\varepsilon_1(\%)$	$\varepsilon_2(\%)$
1	1.725	1.194	0.990	0.999	3956.9	1080.7	0.273	0.77	25.0	25.2
2	1.591	1.182	990	0.999	4345.6	1128.2	0.260	0.76	18.4	16.1
3	1.386	1.131	0.990	999	4380.6	1336.0	0.305	0.90	18.0	•
3	1.411	1.094	0.990	999	4325.6	1296.2	0.300	0.81	17.9	16.6
4	1.481	1.131	990	999	4394.4	1104.8	0.251	0.98	17.0	•
4	1.683	1.216	990	981	4375.9	1095.2	0.250	0.92	18.0	17.3
5	1.435	952	0.990	0.999	1470.2	234.9	0.160	0.54	19.5	•
6	1.259	974	990	0.999	1574.7	259.8	0.165	0.91	13.5	12.5
7	1.365	974	0.990	999	1567.7	269.9	0.172	0.57	9.1	13.1
7	1.365	974	0.990	999	1550.0	277.8	0.179	0.72	14.0	13.2
8	1.382	971	- .990	999	1564.0	237.6	0.152	0.69	13.3	13.5
9	746	1.069	0.990	0.999	5283.9	1561.1	0.295	0.96	19.4	19.3
10	679	1.194	990	0.981	5929.7	1776.6	0.300	0.82	12.4	•
13	-1.21	-1.04	0.990	0.999	1953.7	374.5	0.192	0.71	12.9	14.2
14	-1.28	-1.02	990	0.999	2129.7	402.4	0.189	0.82	7.6	9.0
15	-1.2	-1.02	0.990	999	2137.4	451.3	0.211	1.01	6.6	9.5
15	-1.2	-1.02	0.990	999	2071.3	403.6	0.195	0.82	9.5	9.7
16	-1.07	-1	990	999	2035.5	379.7	0.187	0.86	10.7	10.1
16	-1.07	-1	- .990	999	2062.7	387.4	0.188	0.86	9.5	10.0
17	0.368	0.063	0.000	0.000	3361.9	784.8	0.233	0.90	14.3	•
17	0.368	0.063	0.000	0.000	3482.8	819.0	0.235	0.84	11.2	•
17	0.212	0.063	0.000	0.000	3512.6	821.2	0.234	0.83	11.9	12.6
18	-1.18	0.066	0.000	0.000	4209.1	1095.8	0.260	0.91	10.2	10.8
19	1.414	0.000	0.000	0.000	2949.0	618.6	0.210	0.69	14.0	14.3
20	0.025	-1.42	0.255	0.019	1150.2	139.0	0.121	0.41	4.3	•
20	0.099	-1.41	0.000	0.000	1161.0	143.1	0.123	0.55	•	•
21	0.156	1.446	0.000	0.000	5676.1	1643.9	0.290	0.76	14.6	13.5
23	0.371	0.075	0.000	1.395	3354.6	856.8	0.255	0.84	14.9	16.5
24	0.297	0.063	-1.41	0.000	3498.3	811.7	0.232	0.82	11.4	12.3
26	-3.94	0.946	0.000	0.000	9511.2	3304.8	0.347	0.70	6.1	7.3

RSA für den Mittelwert der Impulsantwortverteilungen

RESPONSE MEAN		3299.21			
ROOT MSE		80,49691			
R-SOUARE		0.9989878			
COEF OF VARIATION		0.02439885			
REGRESSION	DF	TYPE I SS	R-SQUARE	F-RATIO	PROB
			•		
LINEAR	4	88904744.13	0.9259	3430.10	0.0001
QUADRATIC	4	5215289.54	0.0543	201.21	0.0001
CROSSPRODUCT	6	1805012.42	0.0188	46.43	0.0001
TOTAL REGRESS	14	95925046.09	0.9990	1057.42	0.0001
PARAMETER	DF	ESTIMATE	STD DEV	T-RATIO	PROB
INTERCEPT	1	3485.58650	35.22565241	98.95	0.0001
FLUSS	1	-489.83544	14.45223658	-33.89	0.0001
RATIO	1	1642.85336	19.94724895	82.36	0.0001
HUB	1	-86.30218210	19.84030389	-4.35	0.0006
FREQUENZ	1	-58.36780553	22.78257705	-2.56	0.0217
FLUSS*FLUSS	1	103.89597	8.34468102	12.45	0.0001
RATIO*FLUSS	1	-242.96235	17.04504505	-14.25	0.0001
RATIO*RATIO	1	-22.41828766	25.51910823	-0.88	0.3935
HUB*FLUSS	1	12.36155706	16.75645750	0.74	0.4721
HUB*RATIO	1	-44.85794402	19.95179895	-2.25	0.0400
HUB*HUB	1	-93.34371128	35.59176016	-2.62	0.0192
FREQUENZ*FLUSS	1	10.89985313	18.77407045	0.58	0.5701
FREQUENZ*RATIO	1	-47.64313730	22.63328045	-2.11	0.0526
FREQUENZ*HUB	1	-59.21840675	19.47544332	-3.04	0.0083
FREQUENZ*FREQUENZ	1	-62.85499321	36.56285288	-1.72	0.1062
FACTOR	DF	SS	MEAN SQUARE	F-RATIO	PROB
FLUSS	5	24302351	4860470	750.10	0.0001
RATIO	5	51630727	10326145	1593.60	0.0001
HUB	5	222251.1	44450.22	6.86	0.0016
FREQUENZ	5	183436.5	36687.29	5.66	0.0040

RSA für die Standardabweichung der Impulsantwortverteilungen

RESPONSE MEAN ROOT MSE R-SQUARE		836.5467 57.38391 0.9961466			
COEF OF VARIATION		0.06859619			
REGRESSION	DF	TYPE I SS	R-SQUARE	F-RATIO	PROB
LINEAR	4	11390082.53	0.8886	864.74	0.0001
QUADRATIC	4	990950.71	0.0773	75.23	0.0001
CROSSPRODUCT	6	387923.55	0.0303	19.63	0.0001
TOTAL REGRESS	14	12768956.79	0.9961	276.98	0.0001
PARAMETER	DF	ESTIMATE	STD DEV	T-RATIO	PROB
INTERCEPT	[`] 1	823.15649	25.11134487	32.78	0.0001
FLUSS	1	-184.09533	10.30257986	-17.87	0.0001
RATIO	1	574.14799	14.21981464	40.38	0.0001
HUB	1	1.66265954	14.14357660	0.12	0.9080
FREQUENZ	1	-26.79010562	16.24103772	-1.65	0.1198
FLUSS*FLUSS	1	47.30095269	5.94868082	7.95	0.0001
RATIO*FLUSS	1	-111.32668	12.15091774	-9.16	0.0001
RATIO*RATIO	1	41.53977338	18.19183134	2.28	0.0374
HUB*FLUSS	1	11.79922747	11.94519205	0.99	0.3389
HUB*RATIO	1	9.70479955	14.22305820	0.68	0.5054
HUB*HUB	1	-29.70134596	25.37233246	-1.17	0.2600
FREQUENZ*FLUSS	1	7.91136695	13.38348974	0.59	0.5632
FREQUENZ*RATIO	1	-28.57483484	16.13460850	-1.77	0.0969
FREQUENZ*HUB	1	-40.20070339	13.88347810	-2.90	0.0111
FREQUENZ*FREQUENZ	1	7.15628208	26.06459626	0.27	0.7874
FACTOR	DF	SS	MEAN SQUARE	F-RATIO	PROB
FLUSS	5	4102363	820472.6	249.16	0.0001
RATIO	5	6144884	1228977	373.22	0.0001
HUB	5	44660.92	8932.184	2.71	0.0613
FREQUENZ	5	46037.15	9207.431	2.80	0.0560

RSA für den Variationskoeffizient der Impulsantwortverteilungen

RESPONSE MEAN		0.2254614			
ROOT MSE		0.005907755			
R-SOUARE		0.9944818			
COEF OF VARIATION		0.02620295			
REGRESSION	DF	TYPE I SS	R-SQUARE	F-RATIO	PROB
			·		
LINEAR	4	0.08933162	0.9416	639.88	0.0001
QUADRATIC	4	0.003487681	0.0368	24.98	0.0001
CROSSPRODUCT	6	0.001529864	0.0161	7.31	0.0009
TOTAL REGRESS	14	0.09434917	0.9945	193.09	0.0001
PARAMETER	\mathbf{DF}	ESTIMATE	STD DEV	T-RATIO	PROB
INTERCEPT	1	0.23568574	0.002585248	91.17	0.0001
FLUSS	1	-0.01537624	0.001060665	-14.50	0.0001
RATIO	1	0.05813728	0.001463950	39.71	0.0001
HUB	1	0.007727486	0.001456101	5.31	0.0001
FREQUENZ	1	-0.004397730	0.001672038	-2.63	0.0189
FLUSS*FLUSS	1	0.000129742	0.000612425	0.21	0.8351
RATIO*FLUSS	1	-0.001868157	0.001250954	-1.49	0.1561
RATIO*RATIO	1	-0.01501008	0.001872875	-8.01	0.0001
HUB*FLUSS	1	0.001844250	0.001229774	1.50	0.1545
HUB*RATIO	1	0.003692558	0.001464284	2.52	0.0235
HUB*HUB	1	0.003251049	0.002612118	1.24	0.2324
FREQUENZ*FLUSS	1	0.001444716	0.001377849	1.05	0.3110
FREQUENZ*RATIO	1	-0.002774090	0.001661081	-1.67	0.1156
FREQUENZ*HUB	1	-0.007191314	0.001429324	-5.03	0.0001
FREQUENZ*FREQUENZ	1	0.01230593	0.002683387	4.59	0.0004
FACTOR	DF	SS	MEAN SQUARE	F-RATIO	PROB
FLUSS	5	0.01122833	0.002245665	64.34	0.0001
RATIO	5	0.07364434	0.01472887	422.01	0.0001
HUB	5	0.002970703	0.0005941406	17.02	0.0001
FREQUENZ	5	0.001737665	0.000347533	9.96	0.0002

RSA für Dispersionskoeffizienten

RESPONSE MEAN		1.50712			
ROOT MSE		0.08102678			
R-SOUARE		0.9280244			
COEF OF VARIATION		0.05376264			
REGRESSION	DF	TYPE I SS	R-SQUARE	F-RATIO	PROB
LINEAR	5	20.42850183	0.7858	622.31	0.0001
OUADRATIC	5	2.82606691	0.1087	86.09	0.0001
CROSSPRODUCT	10	0.87090853	0.0335	13.27	0.0001
TOTAL REGRESS	20	24.12547727	0.9280	183.73	0.0001
PARAMETER	DF	ESTIMATE	STD DEV	T-RATIO	PROB
INTERCEPT	1	1.58861962	0.01911845	83.09	0.0001
FLUSS	1	0.03928709	0.008843057	4.44	0.0001
RATIO	1	-0.23091581	0.01152948	-20.03	0.0001
HUB	1	0.13246740	0.01183793	11.19	0.0001
FREQUENZ	1	0.05029421	0.01211610	4.15	0.0001
Z	1	-0.001472731	0.000129477	-11.37	0.0001
FLUSS*FLUSS	1	0.000996077	0.002340002	0.43	0.6707
RATIO*FLUSS	1	-0.000419617	0.004338441	-0.10	0.9230
RATIO*RATIO	1	0.01267812	0.008433984	1.50	0.1339
HUB*FLUSS	1	0.04153913	0.004852334	8.56	0.0001
HUB*RATIO	1	0.005161885	0.005814622	0.89	0.3754
HUB*HUB	1	0.06392554	0.009823708	6.51	0.0001
FREQUENZ*FLUSS	1	0,002944807	0.004972263	0.59	0.5542
FREQUENZ*RATIO	1	0.005633706	0.005821124	0.97	0.3340
FREQUENZ*HUB	1	-0.03173533	0.006144732	-5.16	0.0001
FREQUENZ*FREQUENZ	1	0.13484328	0.009990127	13.50	0.0001
Z*FLUSS	1	0.000077391	0.000025622	3.02	0.0028
Z*RATIO	1	0.000089907	0.000033332	2.70	0.0074
Z*HUB	1	-0.000069850	0.000035276	-1.98	0.0487
Z*FREQUENZ	1	-0.000122438	0.000035696	-3.43	0.0007
Z*Z	1	0.0000016974	2.17103E-07	7.82	0.0001

RSA für den Hold-up nach der globalen Entfaltung

RESPONSE MEAN		13.565			
ROOT MSE		0.7923419			
R-SQUARE		0.9908628			
COEF OF VARIATION		0.05841075			
REGRESSION	DF	TYPE I SS	R-SQUARE	F-RATIO	PROB
LINEAR	4	267.03544	0.7773	106.34	0.0001
QUADRATIC	4	33.47681413	0.0974	13.33	0.0071
CROSSPRODUCT	6	39.89421926	0.1161	10.59	0.0102
TOTAL REGRESS	14	340.40647	0.9909	38.73	0.0004
PARAMETER	DF	ESTIMATE	STD DEV	T-RATIO	PROB
INTERCEPT	1	11.94849083	0.44358422	26.94	0.0001
FLUSS	1	1.59563966	0.17092485	9.34	0.0002
RATIO	1	1.68193301	0.24611783	6.83	0.0010
HUB	1	1.72018179	0.26118809	6.59	0.0012
FREQUENZ	1	1.22034076	0.27143532	4.50	0.0064
FLUSS*FLUSS	1	0.12328392	0.09553245	1.29	0.2533
RATIO*FLUSS	1	0.28429999	0.23389566	1.22	0.2784
RATIO*RATIO	1	-0.73253846	0.31188389	-2.35	0.0657
HUB*FLUSS	1	0.04023600	0.25260752	0.16	0.8797
HUB*RATIO	1	0.40397786	0.31869072	1.27	0.2608
HUB*HUB	1	1.32486144	0.39804258	3.33	0.0208
FREQUENZ*FLUSS	1	0.07835889	0.26490384	0.30	0.7793
FREQUENZ*RATIO	1	0.21937252	0.32981574	0.67	0.5354
FREQUENZ*HUB	1	1.72212889	0,28086216	6.13	0.0017
FREQUENZ*FREQUENZ	1	1.26418801	0.41788001	3.03	0.0292
FACTOR	DF	SS	MEAN SQUARE	F-RATIO	PROB
FLUSS	5	79.71842	15.94368	25.40	0.0015
RATIO	5	43.7685	8.7537	13.94	0.0058
HUB	5	57.87473	11.57495	18.44	0.0031
FREQUENZ	5	55.30619	11.06124	17.62	0.0034

Treatment Versuch Mittel Standard Minimum Maximum Spannweite abweichung wert 27.53 4.92 1 SIEB20 25.02 1.47 22.61 2 0.72 14.55 16.52 1.97 15.80 SIEB35 2 15.10 16.19 1.10 SIEB66 15.78 0.28 3 0.45 15.70 17.33 1.63 SIEB55 16.61 3 0.00 1.70 1.70 SIEB56 0.15 0.51 4 0.81 0.26 16.98 17.79 SIEB58 17.43 5 2.81 19.20 0,95 17.76 20.57 SIEB12 6 12.35 12.76 0.81 SIEB06 0.27 11.95 7 12.97 13.80 0.84 13.30 0.25 SIEB17 0.79 8 13.44 14.24 SIEB25 13.76 0.25 9 SIEB33 18.87 0.92 17.19 20.10 2.91 12.08 10 0.32 11.19 0.88 SIEB60 11.69 13.76 0.60 13.16 11 SIEB30 13.40 0.20 0.89 12.74 13.64 12 SIEB39 13.16 0.25 2.49 13 14.26 0.70 12.64 15,13 SIEB10 8.57 9.41 0.84 14 SIEB37 9.04 0.30 15 0.24 9.52 10.35 0.82 SIEB14 9.91 10.59 0.57 16 10.03 SIEB22 10.33 0.20 0.95 17 SIEB28 12.80 0.32 12.26 13.21 18 10.50 11.08 0.58 SIEB51 10.78 0.18 14.98 1.30 19 13.67 14.32 0.37 SIEB49 20 7.90 0.41 7.49 SIEB64 7.67 0.13 1.04 21 SIEB53 13.38 0.34 12.79 13.82 22 16.21 0.44 15.73 16.96 1.23 SIEB42 23 14.93 17.74 2.81 SIEB46 16.36 0.87 0.69 24 12.25 12.95 0.24 SIEB44 12.63 1.80 25 13.92 15.72 SIEB68 14.84 0.60 7.15 0.46 26 SIEB62 7.39 0.15 7.61

Axiale Holdup-Profile nach dem lognormalen Modell

	Kolonnenbereic						reich					
I	Versuch	1	2	3	4	5	6	7	8	9	10	11
1	SIEB20	27.5	26.5	26.2	24.0	25.6	24.8	24.4	22.6	23.9	23.7	26.1
2	SIEB35	16.2	15.7	16.5	14.6	16.4	15.7	16.5	14.6	16.5	15.4	15.8
2	SIEB66	15.8	15.7	16.1	15.8	15.9	15.8	15.8	15.7	15.8	15.1	16.2
3	SIEB55	16.6	16.4	16.4	16.2	16.6	17.3	16.6	16.8	17.0	15.7	17.2
4	SIEB58	17.0	17.1	17.3	17.6	17.7	17.8	17.4	17.5	17.2	17.5	17.7
5	SIEB12	•	20.6	19.9	19.0	20.2	17.8	19.2	18.0	18.4	19.0	19.9
6	SIEB06	12.3	12.4	12.4	12.0	12.8	12.5	12.4	12.4	12.0	12.0	12.7
7	SIEB17	13.0	13.0	13.5	13.2	13.2	13.2	13.8	13.1	13.4	13.4	13.5
8	SIEB25	13.5	13.4	13.7	13.6	14.0	13.9	14.0	13.8	13.6	13.6	14.2
9	SIEB33	20.1	19.3	19.9	18.6	19.6	18.6	18.3	17.2	17.6	18.7	19.6
10	SIEB60	11.6	12.0	11.8	11.2	12.1	11.5	12.1	11.2	11.9	11.5	11.8
11	SIEB30	13.2	13.3	13.3	13.4	13.6	13.2	13.6	13.8	13.2	13.4	13.5
12	SIEB39	13.0	13.0	13.3	12.7	13.3	13.1	13.5	13.1	13.1	13.0	13.6
13	SIEB10	14.3	15.1	14.4	14.5	15.1	13.7	14.2	13.8	12.6	14.8	14.2
14	SIEB37	9.0	9.1	9.2	8.6	9.4	8.8	9.3	8.6	9.3	8.8	9.3
15	SIEB14	9.7	10.0	9.9	9.5	10.3	9.7	10.2	9.7	10.0	9.8	10.0
16	SIEB22	10.0	10.1	10.5	10.2	10.3	10.5	10.5	10.6	10.2	10.6	10.2
17	SIEB28	13.2	13.2	13.1	12.3	12.9	13.0	12.7	12.5	12.3	12.7	12.9
18	SIEB51	10.9	11.1	11.0	10.6	10.9	10.7	10.8	10.5	10.5	10.8	10.8
19	SIEB49	15.0	14.4	14.5	13.9	14.6	14.2	14.6	13.7	14.2	14.0	14.3
20	SIEB64	7.9	7.8	7.8	7.7	7.7	7.7	7.7	7.6	7.5	7.5	7.6
21	SIEB53	13.7	13.4	13.8	12.8	13.5	13.7	13.2	13.3	12.9	13.2	13.6
22	SIEB42	15.8	15.8	16.3	16.0	16.6	16.2	17.0	15.8	16.4	15.7	16.8
23	SIEB46	17.6	17.7	17.0	16.2	16.5	16.5	16.0	14.9	15.7	15.4	16.3
24	SIEB44	12.8	12.6	12.9	12.3	12.9	12.7	12.8	12.4	12.4	12.4	12.6
25	SIEB68	15.7	15.2	15.5	14.6	14.9	14.6	14.8	14.3	14.2	13.9	15.6
26	SIEB62	7.6	7.5	7.6	7.2	7.4	7.5	7.4	7.3	7.2	7.4	7.4

Organische Dispersphase

Entfaltung und Modellvergleich

Anhang C. Auswertung der Düsenbodenversuche 123

Anhang C. Auswertung der Düsenbodenversuche 125

Normierte Versuchseinstellungen und statistische Kennzahlen der Impulsantwortverteilungen

ST	<i>X</i> ₁	X ₂	X ₃	<i>X</i> ₄	$t_0(s)$	μ(s)	$\sigma(s)$	$\sigma_{ heta}$	α3	ε ₁ (%)ε ₂ (%)
2	1.206	1.015	989	0.981	107.0	170.1	46.4	0.273	1.79	28.4	
3	1.043	0.981	0.992	999	85.0	127.7	31.7	0.248	2.16	20.9	20.9
4	1.018	0.977	989	981	91.5	133.7	26.4	0.198	1.86	21.9	22.3
6	0.990	-1.03	989	0.999	90.5	140.5	44.8	0.319	2.22	17.6	•
7	0.880	-1.04	0.001	999	84.5	117.7	29.3	0.249	2.64	14.6	14.5
7	0.880	-1.04	0.001	999	81.5	123.4	32.4	0.262	2.30	15.3	15.3
8	1.022	-1.02	989	- .999	86.5	116.9	25.6	0.219	2.43	14.8	15.1
10	-1.05	0.990	989	1.018	85.5	129.9	40.7	0.313	2.31	16.9	16.9
11	-1.09	0.987	0.992	999	82.5	116.0	26.1	0.225	2.08	15.1	
12	-1.07	0.974	989	-1.02	83.0	113.6	26.7	0.235	2.64	14.8	14.9
13	-1.01	996	0.992	0.981	206.5	423.8	160.2	0.378	2.18	43.3	45.3
14	-1.01	996	989	0.981	82.8	120.1	31.8	0.265	2.23	12.3	12.2
15	-1.12	-1.01	0.992	999	84.8	112.8	23.8	0.211	1.93	11.3	11.2
16	-1.03	993	989	999	83.5	106.5	19.8	0.185	2.49	10.9	10.9
17	0.194	0.022	0.001	019	87.5	138.4	40.0	0.289	1.99	19.7	19.6
18	- 1.36	025	0.001	019	84.3	126.8	35.7	0.282	2.30	15.0	15.0
20	007	-1.43	0.001	019	76.5	123.2	34.4	0.279	2.41	9.8	9.6
21	0.131	1.527	0.001	0.000	88.0	139.0	39.8	0.287	1.89	21.1	21.2
22	0.106	0.019	0.001	-1.41	87.8	122.4	27.9	0.228	2.89	17.2	17.6
24	0.127	0.019	-1.42	0.000	77.3	121.3	37.6	0.310	2.28	17.1	17.4
26	025	016	1.414	999	84.0	131.8	38.9	0.295	2.31	18.2	18.1
28	-1.41	-1.01	989	0.981	81.5	124.1	51.4	0.414	3.41	12.0	12.0
29	-1.41	-1.01	0.992	0.981	161.0	332.3	117.8	0.355	1.97	32.2	•
30	-1.42	999	989	0.000	78.5	111.0	26.3	0.237	2.50	10.8	10.8
31	-1.42	- .999	0.992	0.000	89.0	141.0	38.9	0.276	1.80	13.7	13.6
32	- 1.58	0.965	0.001	0.999	100.0	163.0	50.3	0.309	1.92	19.9	19.8
33	1.036	- .101	-1.41	0.038	78.8	128.7	39.6	0.308	2.18	19.7	19.9
RSA für den Mittelwert der Impulsantwortverteilungen

RESPONSE MEAN ROOT MSE R-SOUARE		146.5074 29.7293 0.9153914			
COEF OF VARIATION		0.2029201			
REGRESSION	DF	TYPE I SS	R-SQUARE	F-RATIO	PROB
LINEAR	4	58613.19312	0.4676	16.58	0.0001
QUADRATIC	4	5367.89000	0.0428	1.52	0.2584
CROSSPRODUCT	6	50766.32335	0.4050	9.57	0.0005
TOTAL REGRESS	14	114747.41	0.9154	9.27	0.0002
PARAMETER	DF	ESTIMATE	STD DEV	T-RATIO	PROB
INTERCEPT	1	152.84232	20.76866829	7.36	0.0001
FLUSS	1	16.04003537	10.13150792	1.58	0.1394
RATIO	1	-1.32112862	7.62200958	-0.17	0.8653
HUB	1	57.48593757	11.09652957	5.18	0.0002
FREQUENZ	1	72.98869598	11.05141348	6.60	0.0001
FLUSS*FLUSS	1	-9.78973852	11.52326634	-0.85	0.4122
RATIO*FLUSS	1	4.61739722	7.48911843	0.62	0.5491
RATIO*RATIO	1	-8.23071427	11.43198710	-0.72	0.4853
HUB*FLUSS	1	5.55297052	10.61569889	0.52	0.6104
HUB*RATIO	1	-2.79730718	10.54045924	-0.27	0.7952
HUB*HUB	1	22.74626837	12.00588183	1.89	0.0825
FREQUENZ*FLUSS	1	5.96689521	8.79876920	0.68	0.5105
FREQUENZ*RATIO	1	-2.75851466	8.84237636	-0.31	0.7604
FREQUENZ*HUB	1	65.22391622	11.23711327	5.80	0.0001
FREQUENZ*FREQUENZ	1	37.30528323	12.32194792	3.03	0.0105
FACTOR	DF	SS	MEAN SQUARE	F-RATIO	PROB
FLUSS	5	6838.281	1367.656	1.55	0.2476
RATIO	5	1067.878	213.5757	0.24	0.9362
HUB	5	67250.88	13450.18	15.22	0.0001
FREQUENZ	5	67548.13	13509.63	15.29	0.0001

RSA für die Standardabweichung der Impulsantwortverteilungen

RESPONSE MEAN ROOT MSE		42.38148 13.79834			
K-SQUARE		0.899/129			
COEF OF VARIATION		0.3255747			
REGRESSION	DF	TYPE I SS	R-SQUARE	F-RATIO	PROB
LINEAR	4	12179.96610	0.5346	15,99	0.0001
QUADRATIC	4	1003.81295	0.0441	1.32	0.3184
CROSSPRODUCT	6	7313.39142	0.3210	6.40	0.0032
TOTAL REGRESS	14	20497.17046	0.8997	7.69	0.0005
PARAMETER	DF	ESTIMATE	STD DEV	T-RATIO	PROB
INTERCEPT	1	47.31554404	9.63941946	4.91	0.0004
FLUSS	1	5.99152431	4.70236480	1.27	0.2267
RATIO	1	-2.35251735	3.53762439	-0.66	0.5186
HUB	1	23.47594076	5.15026296	4.56	0.0007
FREQUENZ	1	32.61299759	5.12932311	6.36	0.0001
FLUSS*FLUSS	1	-5.08151395	5.34832548	-0.95	0.3608
RATIO*FLUSS	1	0.11074079	3.47594525	0.03	0.9751
RATIO*RATIO	1	-4.34418270	5.30595980	-0.82	0.4289
HUB*FLUSS	1	3.72005576	4.92709369	0.76	0.4648
HUB*RATIO	1	-1.62050656	4.89217251	-0.33	0.7462
HUB*HUB	1	10.64252894	5.57232315	1.91	0.0803
FREQUENZ*FLUSS	1	1.08717943	4.08379709	0.27	0.7946
FREQUENZ*RATIO	1	-2.42112815	4.10403660	-0.59	0.5662
FREQUENZ*HUB	1	24.68096734	5.21551246	4.73	0.0005
FREQUENZ*FREQUENZ	1	13.00851512	5.71901977	2.27	0.0421
FACTOR	DF	SS	MEAN SQUARE	F-RATIO	PROB
FLUSS	5	1127.589	225.5179	1.18	0.3725
RATIO	5	261.6742	52.33485	0.27	0.9182
HUB	5	9782.972	1956.594	10.28	0.0005
FREQUENZ	5	13097.26	2619.452	13.76	0.0001

RSA für den Variationskoeffizient der Impulsantwortverteilungen

	0.2758889			
	0.03715464			
	0.7781095			
	0.1346725			
DF	TYPE I SS	R-SQUARE	F-RATIO	PROB
		· ·		
4	0.04758788	0.6374	8.62	0.0016
4	0.004045589	0.0542	0.73	0.5870
6	0.006457595	0.0865	0.78	0.6015
14	0.05809106	0.7781	3.01	0.0317
	,			
DF	ESTIMATE	STD DEV	T-RATIO	PROB
1	0.30260691	0.02595596	11.66	0.0001
1	0.006086143	0.01266201	· 0.48	0.6394
1	-0.009474366	0.009525722	-0.99	0.3396
1	0.01825953	0.01386806	1.32	0.2125
1	0.05125311	0.01381167	3.71	0.0030
1	-0.007561240	0.01440138	-0.53	0.6091
1	-0.01040522	0.009359640	-1.11	0.2880
1	-0.01319873	0.01428730	-0.92	0.3738
1	0.009634031	0.01326713	0.73	0.4817
1	-0.008003125	0.01317310	-0.61	0.5548
1	0.01207671	0.01500453	0.80	0.4366
1	-0.01125275	0.01099640	-1.02	0.3263
1	-0.01153790	0.01105089	-1.04	0.3170
1	0.000784273	0.01404375	0.06	0.9564
1	-0.008585548	0.01539954	-0.56	0.5874
DF	SS	MEAN SQUARE	F-RATIO	PROB
5	0.007166754	0.001433351	1.04	0.4390
5	0.00425968	0.000851936	0.62	0.6895
5	0.004564008	0.0009128015	0.66	0.6597
5	0.05088636	0.01017727	7.37	0.0023
	DF 4 4 6 14 DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.2758889 0.03715464 0.7781095 0.1346725 DF TYPE I SS 4 0.04758788 4 0.004045589 6 0.006457595 14 0.05809106 DF ESTIMATE 1 0.30260691 1 0.006086143 1 -0.009474366 1 0.01825953 1 0.05125311 1 -0.007561240 1 -0.01040522 1 -0.01319873 1 0.009634031 1 -0.0125275 1 0.01207671 1 -0.01153790 1 0.000784273 1 -0.008585548 DF SS 5 0.007166754 5 0.00425968 5 0.004564008 5 0.004564008	0.2758889 0.03715464 0.7781095 0.1346725 DF TYPE I SS 4 0.04758788 0.6374 4 0.004045589 0.0542 6 0.006457595 0.0865 14 0.05809106 0.7781 DF ESTIMATE STD DEV 1 0.30260691 0.02595596 1 0.006086143 0.01266201 1 0.03260691 0.02595596 1 0.006086143 0.01266201 1 0.03260691 0.02595596 1 0.006086143 0.01266201 1 0.01825953 0.01386806 1 0.01825953 0.01386806 1 0.0125311 0.01381167 1 -0.01319873 0.01440138 1 -0.01207671 0.01326713 1 0.01207671 0.01326713 1 0.01207671 0.01326713 1 0.000784273 0.01404375 <t< td=""><td>0.2758889 0.03715464 0.7781095 0.1346725 DF TYPE I SS R-SQUARE F-RATIO 4 0.04758788 0.6374 4 0.004045589 0.0542 6 0.006457595 0.0865 14 0.05809106 0.7781 DF ESTIMATE STD DEV 1 0.30260691 0.02595596 1 0.006086143 0.01266201 1 0.30260691 0.02595596 1 0.009474366 0.009525722 -0.99 1 0.01825953 1 0.01825953 0.01386806 1.32 1 0.05125311 1 0.01825953 0.01386806 1.32 1 -0.01040522 1 0.01825953 0.01428730 -0.92 1 0.019634031 1 0.01207671 0.01326713 1 0.01207671 0.01500453 0.80 -1.02</td></t<>	0.2758889 0.03715464 0.7781095 0.1346725 DF TYPE I SS R-SQUARE F-RATIO 4 0.04758788 0.6374 4 0.004045589 0.0542 6 0.006457595 0.0865 14 0.05809106 0.7781 DF ESTIMATE STD DEV 1 0.30260691 0.02595596 1 0.006086143 0.01266201 1 0.30260691 0.02595596 1 0.009474366 0.009525722 -0.99 1 0.01825953 1 0.01825953 0.01386806 1.32 1 0.05125311 1 0.01825953 0.01386806 1.32 1 -0.01040522 1 0.01825953 0.01428730 -0.92 1 0.019634031 1 0.01207671 0.01326713 1 0.01207671 0.01500453 0.80 -1.02

Anhang C. Auswertung der Düsenbodenversuche 131

Treatment	Versuch	Mittel wert	Standard abweichung	Minimum	Maximum	Spannweite
2	DUES09	0.47	0.04	0.37	0.51	0.14
3	DUES20	0.37	0.08	0.15	0.45	0.30
4	DUES15	0.38	0.06	0.27	0.46	0.19
6	DUES07	0.55	0.06	0.41	0.61	0.19
7	DUES33	0.35	0.05	0.28	0.44	0.16
7	DUES35	0.42	0.07	0.23	0.48	0.25
8	DUES18	0.37	0.10	0.11	0.45	0.34
10	DUES39	0.53	0.07	0.36	0.60	0.25
11	DUES26	0.40	0.06	0.29	0.46	0.18
12	DUES44	0.35	0.04	0.24	0.39	0.15
13	DUES24	0.48	0.09	0.41	0.73	0.32
14	DUES22	0.55	0.08	0.41	0.66	0.25
15	DUES13	0.51	0.23	0.10	0.71	0.61
16	DUES11	0.36	0.12	0.08	0.50	0.42
17	DUES05	0.45	0.06	0.31	0.52	0.21
18	DUES37	0.40	0.03	0.34	0.46	0.12
20	DUES01	0.36	0.06	0.20	0.43	0.23
20	DUES54	0.48	0.49	0.01	1.22	1.20
21	DUES03	0.48	0.02	0.44	0.51	0.07
22	DUES27	0.23	0.04	0.19	0.32	0.13
24	DUES29	0.40	0.04	0.32	0.44	0.12
26	DUES31	0.41	0.06	0.27	0.49	0.22
28	DUES41	0.55	0.08	0.36	0.66	0.29
29	DUES43	0.48	0.04	0.44	0.60	0.16
30	DUES46	0.30	0.06	0.13	0.36	0.23
31	DUES48	0.58	0.04	0.45	0.62	0.17
32	DUES50	0.57	0.04	0.47	0.63	0.16
33	DUES52	0.41	0.02	0.38	0.45	0.06

Axiale Variationskoeffizienten nach dem lognormalen Modell

						Kolon	nenbe	reich	1991 Mai ang 1991			
	Versuch	1	2	3	4	5	6	7	8	9	10	11
2	DUES09	. 37	.45	.49	.45	.49	.47	.46	.51	.48	.48	. 49
3	DUES20	.15	.45	.35	.40	.38	.38	.36	.38	.38	.40	.42
4	DUES15	.41	.42	.41	.43	. 39	.42	.38	.27	.46	.35	.29
6	DUES07	.41	.48	.52	.57	.57	.58	.53	.60	.56	.61	.61
7	DUES33	.36	.44	. 39	.36	.28	.28	.36	. 35	.33	.33	.33
7	DUES35	.23	.42	.42	.46	.48	.41	.43	.48	.47	.40	.37
8	DUES18	.28	.36	.42	.44	.41	.43	.45	.38	. 39	.41	.11
10	DUES39	.36	.48	.50	.55	.54	.52	.53	.60	.57	.57	.59
11	DUES26	. 29	. 29	.43	.42	.44	. 39	.35	.45	.46	.40	.43
12	DUES44	.24	.31	.38	.36	. 39	.35	.36	.38	.32	.33	.36
13	DUES24	.73	.54	.51	.49	.46	.45	.44	.41	.41	.43	.41
14	DUES22	.41	.41	.54	.60	.66	.53	.58	.59	.57	.57	.56
15	DUES13	.10	.30	.49	.53	.62	.66	.71	.13	.70	.65	.71
16	DUES11	.25	.27	.36	.37	.41	.46	.08	.42	. 39	.46	.50
17	DUES05	.36	.31	.43	.43	.47	.45	.47	.47	.48	.52	.51
18	DUES37	.41	.34	. 39	.36	.41	. 39	.41	.41	.41	.44	.46
20	DUES01	.20	.38	. 39	.36	.32	.40	.38	.40	.37	.38	.43
21	DUES03	.44	.46	.47	.48	.48	.49	.47	.49	.51	.50	.50
22	DUES27	.32	.30	.22	.23	.20	.21	.19	.21	.20	.21	.24
24	DUES29	.41	.32	.44	.40	.44	.36	.41	.40	.44	.41	.41
26	DUES31	.27	.46	.49	. 39	. 39	.42	.42	.43	.41	.41	.44
28	DUES41	.36	.51	.61	.64	.66	.55	.53	.55	.53	.54	.54
29	DUES43	.60	.52	.44	.46	.47	.45	.47	.47	.46	.47	.46
30	DUES46	.26	.34	.28	.29	.33	.36	.30	.32	.32	.13	. 36
31	DUES48	.45	.59	.60	.57	.59	.62	.57	.57	.59	.59	.59
32	DUES50	.47	.55	.58	.56	.57	.58	.57	.60	.63	.57	.59
33	DUES52	.43	.44	.40	.41	.40	.38	.43	.39	.45	.42	.42

Wäßrige Kontiphase

Entfaltung und Modellvergleich

Anhang C. Auswertung der Düsenbodenversuche 135

Normierte Versuchseinstellungen und statistische Kennzahlen der Impulsantwortverteilungen

ST	<i>X</i> ₁	X ₂	X ₃	X ₄	μ(s)	$\sigma(s)$	$\sigma_{ heta}$	α_3	$\varepsilon_1(\%)$	$\varepsilon_2(\%)$
3	1.043	0.981	0.992	999	4156.2	958.4	0,231	0.93	21.0	20.9
4	1.018	0.977	989	981	4021.0	889.8	0.221	0.96	23.6	22.3
7	0.880	-1.04	0.001	999	1521.5	238.0	0.156	0.66	14.4	14.5
7	0.880	-1.04	0.001	999	1507.7	239.2	0.159	0.55	15.2	15.3
8	1.022	-1.02	989	999	1514.2	203.0	0.134	0.47	15.5	
8	1.022	-1.02	989	999	1487.6	197.3	0.133	0.55	16.9	15.1
10	- 1.05	0.990	989	1.018	5511.5	1718.6	0.312	0.87	16.9	16.9
11	-1.09	0.990	0.992	999	5673.6	1847.9	0.326	0.93	14.8	•
12	-1.07	0.974	989	-1.02	5595.1	1528.2	0.273	0.81	15.4	14.9
13	-1.01	996	1.022	0.981	1194.2	138.9	0.116	0.45	47.6	45.3
14	-1.01	- .996	- .989	0.981	2005.0	348.8	0.174	0.68	12.0	12.2
15	-1.12	-1.01	0.992	999	2045.6	364.0	0.178	0.89	10.3	11.2
16	-1.03	993	989	999	2027.4	355.7	0.175	0.73	11.4	10.9
17	0.194	0.022	0.001	019	3163.9	747.4	0.236	0.77	19.2	19.6
18	-1.36	025	0.001	019	3901.6	1021.0	0.262	0.90	15.0	15.0
20	007	-1.43	0.001	019	1087.3	138.0	0.127	0,90	8.0	9.6
21	0.131	1.527	0.001	0.000	5353.8	1710.1	0.319	1.67	21.5	21.2
22	0.103	0.019	0.001	-1.41	3187.1	658.0	0.206	0.83	19.3	17.6
24	0.127	0.019	-1.41	0.000	3197.9	692.7	0.217	0.89	18.8	17.4
26	025	016	1.414	999	3241.2	794.5	0.245	0.89	17.7	18.1
28	-1.41	-1.01	989	0.981	2093.4	351.0	0.168	0.52	11.7	12.0
30	-1.42	999	989	0.000	2129.6	395.4	0.186	0.72	11.0	10.8
31	-1.42	- .999	0.992	0.000	2073.7	362.7	0.175	0.63	13.3	13.6
32	-1.58	0.965	0.001	0.999	5653.9	1723.0	0.305	0.86	19.6	19.8
33	1.036	101	-1.41	0.038	2683.7	489.4	0.182	0.78	20.6	19.9

RSA für den Mittelwert der Impulsantwortverteilungen

RESPONSE MEAN ROOT MSE R-SOUARE		3041.108 80.70935			
COFE OF VARIATION		0.9900000			
COLF OF VARIATION		0.02055945			
REGRESSION	DF	TYPE I SS	R-SQUARE	F-RATIO	PROB
LINEAR	4	55818237.45	0.9742	2142.24	0.0001
QUADRATIC	4	112297.93	0.0020	4.31	0.0278
CROSSPRODUCT	6	1298948.37	0.0227	33.23	0.0001
TOTAL REGRESS	14	57229483.75	0.9989	627.54	0.0001
PARAMETER	DF	ESTIMATE	STD DEV	T-RATIO	PROB
INTERCEPT	1	3152.92179	55.88651439	56.42	0.0001
FLUSS	1	-496.19009	57.50263403	-8.63	0.0001
RATIO	1	1515.83266	23.90434543	63.41	0.0001
HUB	1	-141.00540	31.61233290	-4.46	0.0012
FREQUENZ	1	-234.97206	63.80963199	-3.68	0.0042
FLUSS*FLUSS	1	73.78051256	43.17969329	1.71	0.1183
RATIO*FLUSS	1	-263.06357	24.73184586	-10.64	0.0001
RATIO*RATIO	1	24.24449414	30.87725353	0.79	0.4505
HUB*FLUSS	1	6.78641663	28.91571826	0.23	0.8192
HUB*RATIO	1	-5.23453192	27.77654144	-0.19	0.8543
HUB*HUB	1	-40.78529350	33.60230935	-1.21	0.2527
FREQUENZ*FLUSS	1	-13.89911793	58.35853497	-0.24	0.8166
FREQUENZ*RATIO	1	-21,34177065	28.50105446	-0.75	0.4712
FREQUENZ*HUB	1	-194.62660	31.61636570	-6.16	0.0001
FREQUENZ*FREQUENZ	1	-129.33091	51.48341665	-2.51	0.0308
FACTOR	DF	SS	MEAN SQUARE	F-RATIO	PROB
FLUSS	5	4288773	857754.5	131.68	0.0001
RATIO	5	49368696	9873739	1515.77	0.0001
HUB	5	427872.3	85574.46	13.14	0.0004
FREQUENZ	5	494033.1	98806.61	15.17	0.0002

RSA für die Standardabweichung der Impulsantwortverteilungen

RESPONSE MEAN ROOT MSE R-SOUARE		724.44 44.14363 0.9974345			
COEF OF VARIATION		0.06093484			
REGRESSION	DF	TYPE I SS	R-SQUARE	F-RATIO	PROB
LINEAR	4	7053750.54	0.9287	904.95	0.0001
QUADRATIC	4	79776.54889	0.0105	10.23	0.0015
CROSSPRODUCT	6	442509.87	0.0583	37.85	0.0001
TOTAL REGRESS	14	7576036.96	0.9974	277.70	0.0001
PARAMETER	DF	ESTIMATE	STD DEV	T-RATIO	PROB
INTERCEPT	1	751.90892	30.56689118	24.60	0.0001
FLUSS	1	-227.99809	31.45082094	-7.25	0.0001
RATIO	1	533.20136	13.07437999	40.78	0.0001
HUB	1	-21.91607036	17.29023094	-1.27	0.2337
FREQUENZ	1	-50.98240870	34.90040663	-1.46	0.1748
FLUSS*FLUSS	1	-21.40902821	23.61694947	-0.91	0.3860
RATIO*FLUSS	1	-140.70533	13.52697783	-10.40	0.0001
RATIO*RATIO	1	87.91094021	16.88818240	5.21	0.0004
HUB*FLUSS	1	-24.15840597	15.81532904	-1.53	0.1576
HUB*RATIO	1	37.48931370	15.19226112	2.47	0.0332
HUB*HUB	1	-15.02692481	18.37864009	-0.82	0.4326
FREQUENZ*FLUSS	1	-5.98228023	31.91895232	-0.19	0.8551
FREQUENZ*RATIO	1	18.45652002	15.58853043	1.18	0.2638
FREQUENZ*HUB	1	-76.50473676	17.29243666	-4.42	0.0013
FREQUENZ*FREQUENZ	1	-60.57847223	28.15863562	-2.15	0.0569
FACTOR	DF	SS	MEAN SQUARE	F-RATIO	PROB
FLUSS	5	777003.4	155400.7	79.75	0.0001
RATIO	5	6343483	1268697	651.06	0.0001
HUB	5	76516.68	15303.34	7.85	0.0031
FREQUENZ	5	67036.87	13407.37	6.88	0.0050

RSA für den Variationskoeffizient der Impulsantwortverteilungen

RESPONSE MEAN		0.20864			
ROOT MSE		0.01053744			
R-SQUARE		0.9882824			
COEF OF VARIATION		0.05050535			
REGRESSION	DF	TYPE I SS	R-SQUARE	F-RATIO	PROB
LINEAR	4	0.08493257	0.8963	191.22	0.0001
QUADRATIC	4	0.002012764	0.0212	4.53	0.0240
CROSSPRODUCT	6	0.006706055	0.0708	10.07	0.0009
TOTAL REGRESS	14	0.09365138	0.9883	60.24	0.0001
PARAMETER	\mathbf{DF}	ESTIMATE	STD DEV	T-RATIO	PROB
INTERCEPT	1	0.23531063	0.007296560	32.25	0.0001
FLUSS	1	-0.03444336	0.007507561	-4.59	0.0010
RATIO	1	0.06138313	0.003120958	19.67	0.0001
HUB	1	-0.005036070	0.004127316	-1.22	0.2504
FREQUENZ	1	-0.01826358	0.008331004	-2.19	0.0531
FLUSS*FLUSS	1	-0.01064161	0.005637554	-1.89	0.0884
RATIO*FLUSS	1	-0.008003681	0.003228997	-2.48	0.0326
RATIO*RATIO	1	-0.003764730	0.004031343	-0.93	0.3724
HUB*FLUSS	1	-0.002947085	0.003775245	-0.78	0.4531
HUB*RATIO	1	0.006152837	0.003626513	1.70	0.1206
HUB*HUB	1	-0.006186241	0.004387127	-1.41	0.1889
FREQUENZ*FLUSS	1	-0.008301812	0.007619308	-1.09	0.3015
FREQUENZ*RATIO	1	0.008644246	0.003721106	2.32	0.0426
FREQUENZ*HUB	1	-0.01754385	0.004127842	-4.25	0.0017
FREQUENZ*FREQUENZ	1	-0.02156463	0.006721690	-3.21	0.0094
FACTOR	DF	SS	MEAN SQUARE	F-RATIO	PROB
FLUSS	- 5	0.009208344	0.001841669	16.59	0.0001
RATIO	5	0.07258273	0.01451655	130.74	0.0001
HUB	5	0.00365976	0.000731952	6.59	0.0058
FREQUENZ	5	0.004912856	0.0009825713	8.85	0.0019

RSA für Dispersionskoeffizienten

RESPONSE MEAN ROOT MSE		1.427696 0.08057897			
R-SOUARE		0.9186868			
COEF OF VARIATION		0.05643987			
REGRESSION	DF	TYPE I SS	R-SQUARE	F-RATIO	PROB
LINEAR	5	10.58353166	0.7617	326.00	0.0001
QUADRATIC	5	0.86311103	0.0621	26.59	0.0001
CROSSPRODUCT	10	1.31771561	0.0948	20.29	0.0001
TOTAL REGRESS	20	12.76435831	0.9187	98.29	0.0001
PARAMETER	DF	ESTIMATE	STD DEV	T-RATIO	PROB
INTERCEPT	1	1.64763889	0.03314937	49.70	0.0001
FLUSS	1	-0.02182702	0.02505757	-0.87	0.3849
RATIO	1	-0.28003382	0.01473246	-19.01	0.0001
HUB	1	0.03015167	0.01991106	1.51	0.1318
FREQUENZ	1	-0.08643915	0.03090621	-2.80	0.0057
Z	1	-0.000960401	0.000169178	-5.68	0.0001
FLUSS*FLUSS	1	-0.04663836	0.01495545	-3.12	0.0021
RATIO*FLUSS	1	-0.03394936	0.009092944	-3.73	0.0003
RATIO*RATIO	1	0.05798269	0.01149459	5.04	0.0001
HUB*FLUSS	1	0.002247547	0.01050771	0.21	0.8309
HUB*RATIO	1	-0.02286846	0.01026872	-2.23	0.0272
HUB*HUB	1	-0.07832766	0.01255578	-6.24	0.0001
FREQUENZ*FLUSS	1	-0.05023001	0.02156609	-2.33	0.0210
FREQUENZ*RATIO	1	0.03518772	0.009886202	3.56	0.0005
FREQUENZ*HUB	1	-0.13468401	0.01385677	-9.72	0.0001
FREQUENZ*FREQUENZ	1	-0.10191436	0.01924903	-5.29	0.0001
Z*FLUSS	1	-0.000158992	0.000047299	-3.36	0.0010
Z*RATIO	1	0.000085254	0.000041418	2.06	0.0410
Z*HUB	1	-0.000142556	0.000050480	-2.82	0.0053
Z*FREQUENZ	1	-0.000022545	0.000060926	-0.37	0.7118
Z*Z	1	8.27930E-07	2.72266E-07	3.04	0.0027

RSA für den Hold-up nach der globalen Entfaltung

RESPONSE MEAN		15.85455			
ROOT MSE		0.946802			
R-SQUARE		0.9791966	•		
COEF OF VARIATION		0.05971801	,		
			,		
REGRESSION	DF	TYPE I SS	R-SQUARE	F-RATIO	PROB
			·		
LINEAR	4	264.84104	0.8780	73.86	0.0001
QUADRATIC	4	19.55847787	0.0648	5.45	0.0258
CROSSPRODUCT	6	10.95999034	0.0363	2.04	0.1867
TOTAL REGRESS	14	295.35951	0.9792	23.53	0.0002
PARAMETER	\mathbf{DF}	ESTIMATE	STD DEV	T-RATIO	PROB
INTERCEPT	1	18.77033144	0.71280205	26.33	0.0001
FLUSS	1	2.03026271	0.83736387	2.42	0.0458
RATIO	1	3.32613393	0.32505143	10.23	0.0001
HUB	1	1.17808813	0.67925818	1.73	0.1264
FREQUENZ	1	1.76246130	1.20200061	1.47	0.1860
FLUSS*FLUSS	1	-0.02684530	0.50996184	-0.05	0.9595
RATIO*FLUSS	1	0.68961960	0.37382803	1.84	0.1076
RATIO*RATIO	1	-1.62795623	0.41122102	-3.96	0.0055
HUB*FLUSS	1	-0. <u>5</u> 3774474	0.51604196	-1.04	0.3320
HUB*RATIO	1	0.30647767	0.47345457	0.65	0.5381
HUB*HUB	1	0.05127953	0.46466036	0.11	0.9152
FREQUENZ*FLUSS	1	-0.40620773	0.75151373	-0.54	0.6056
FREQUENZ*RATIO	1	0.44048822	0.40978518	1.07	0.3181
FREQUENZ*HUB	1	1.20148063	0.82258592	1.46	0.1875
FREQUENZ*FREQUENZ	1	0.55392319	0.79246109	0.70	0.5071
		•		-	
FACTOR	DF	SS	MEAN SQUARE	F-RATIO	PROB
·	_				
FLUSS	5	69.50922	13.90184	15.51	0.0011
RATIO	5	156.5279	31.30559	34.92	0.0001
HUB	5	11.5365	2.3073	2.57	0.1249
FREQUENZ	5	10.73207	2.146415	2.39	0.1430

Treatment	Versuch	Mittel wert	Standard abweichung	Minimum	Maximum	Spannweite
2	DUES09	26.07	7.07	19.38	39.48	20.10
3	DUES20	19.55	1.31	17.53	21.94	4.42
4	DUES15	21.07	1.95	18.13	24.22	6.09
6	DUES07	15.54	0.78	13.77	16.55	2.78
7	DUES33	13.58	0.45	12.74	14.33	1.59
7	DUES35	14.13	0.80	12.55	15.42	2.87
8	DUES18	13.87	0.41	13.19	14.42	1.23
10	DUES39	14.92	0,58	13.63	15.66	2.04
11	DUES26	14.23	0.84	13.08	15.64	2.56
12	DUES44	13.82	0.50	12.96	14.80	1.85
13	DUES24	41.10	6.06	28.88	49.47	20.60
14	DUES22	11.11	0.49	10.30	11.98	1.68
15	DUES13	10.36	0.37	9.72	10.79	1.07
16	DUES11	10.35	0.23	9.99	10.62	0.63
17	DUES05	17.76	0.97	15.92	19.52	3.60
18	DUES37	13.67	0.74	12.65	14.90	2.25
20	DUES01	9.16	0.43	8.58	9.89	1.32
21	DUES03	19.03	1.04	16.97	20.70	3.74
22	DUES27	16.37	0.47	15.46	17.03	1.58
24	DUES29	15.54	1.01	14.09	17.57	3.48
26	DUES31	16.62	0.98	14.76	18.37	3.61
28	DUES41	10.38	0.36	9.63	10.74	1.11
29	DUES43	29.91	6.55	17.46	36.00	18.53
30	DUES46	10.15	0.50	9.57	11.02	1.45
31	DUES48	12.28	0.59	11.28	13.45	2.17
32	DUES50	17.48	1.30	15.18	19.96	4.78
33	DUES52	17.88	1.20	16.34	20.38	4.05

Axiale Holdup-Profile nach dem lognormalen Modell

	Kolonnenbereich											
. 	Versuch	1	2	3	4	5	6	7	8	9	10	11
2	DUES09	19.4	21.2	22.8	21.7	23.1	22.4	22.7	23.3	33.3	39.5	37.4
3	DUES20	17.5	18.9	18.6	18.9	20.0	19.2	19.3	20.3	21.6	18.7	21.9
4	DUES15	18.1	18.6	20.0	19.1	20.6	21.4	22.0	22.3	22.5	22.9	24.2
6	DUES07	13.8	14.6	15.6	15.3	15.5	15.7	15.8	16.2	16.0	16.5	16.0
7	DUES33	12.7	13.0	13.5	13.3	13.8	13.6	13.8	13.5	14.3	13.7	14.0
7	DUES35	12.5	13.3	14.1	13.4	14.3	13.9	14.8	14.6	14.5	14.6	15.4
8	DUES18	13.2	13.5	14.2	13.6	13.9	13.8	14.1	13.4	14.4	14.2	14.4
10	DUES39	13.6	14.6	15.2	14.3	15.2	14.9	14.9	15.0	15.3	15.7	15.5
11	DUES26	13.1	13.1	14.4	13.7	14.2	13.7	14.9	13.9	14.5	15.3	15.6
12	DUES44	13.0	13.3	13.7	13.5	13.7	14.2	14.0	13.7	14.2	13.9	14.8
13	DUES24	37.1	49.5	48.7	46.2	43.1	39.5	40.8	39.5	35.3	43.4	28.9
14	DUES22	10.6	10.3	11.6	10.5	11.3	11.3	11.1	11.0	11.2	11.3	12.0
15	DUES13	9.7	9.9	10.8	10.0	10.7	10.5	10.4	10.2	10.7	10.2	10.8
16	DUES11	10.0	10.0	10.2	10.2	10.4	10.3	10.5	10.4	10.6	10.6	10.6
17	DUES05	15.9	16.9	18.3	16.8	17.6	18.1	17.8	18.2	18.5	17.6	19.5
18	DUES37	12.7	13.0	14.0	12.8	14.1	13.5	14.1	13.0	14.6	13.7	14.9
20	DUES01	8.6	9.0	9.3	8.6	9.3	9.3	9.5	9.0	9.6	8.7	9.9
21	DUES03	17.0	18.3	19.0	18.5	18.8	18.9	20.1	18.3	20.1	19.5	20.7
22	DUES27	15.5	15.9	16.0	16.2	16.3	16.6	16.4	16.5	16.6	17.0	17.0
24	DUES29	14.1	14.2	15.9	14.9	15.4	15.3	16.0	15.4	16.7	15.5	17.6
26	DUES31	14.8	15.7	16.3	15.9	16.8	16.6	17.5	16.6	17.5	16.6	18.4
28	DUES41	9.6	9.9	10.5	10.0	10.5	10.5	10.5	10.5	10.6	10.7	10.7
29	DUES43	17.5	21.0	26.2	34.8	33.2	35.7	34.6	36.0	29.0	35.6	25.4
30	DUES46	9.7	9.7	10.4	9.6	10.1	10.0	10.8	9.7	10.6	9.9	11.0
31	DUES48	11.3	12.1	12.5	11.6	12.5	12.2	12.8	12.0	12.6	12.0	13.4
32	DUES50	15.2	16.4	17.8	16.4	18.1	16.9	18.3	17.1	18.6	17.6	20.0
33	DUES52	16.3	16.8	18.1	17.1	18.6	17.7	18.8	17.2	20.4	16.7	18.8

Anhang D. Das Programm MODEL

С	PROGRAM MODEL						
C C							
C	10-NOV-86						
	NON-LINEAR MODEL OPTIMIZATION BY ITERATIVE FAST CONVOLUTION						
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	MODELS - AXIAL DISPERSION - LOG-NORMAL DISTRIBUTION - GAMMA DISTRIBUTION (UNTESTED FOR PRODUCTION RUNS)						
	MODEL PARAMETERS ARE :						
	X(1) - RELATED TO RESIDENCE TIME MEAN VALUE X(2) - RELATED TO RESIDENCE TIME VARIANCE X(3) - RELATED TO THE DEAD TIME OF THE SYSTEM						
	GDELAY - DEAD TIME OF THE SYSTEM GMEAN - EXPECTED VALUE OF THE WEIGHTING FUNCTION GVARIA - VARIANCE OF THE WEIGHTING FUNCTION GGAMMA - COEFICIENT OF DISPERSION OF THE WEIGHTING FUNCTION						
C	2 AND 3 PARAMETER OPTIONS FOR ALL MODELS						
	MAXIMAL ARRAY DIMENSION IS 8192						
C C C C C C C C C C C	INTERACTIVE VERSION FOR IBM3279 DISPLAY BATCH VERSION FOR VERSATEC PLOTTER						
	BATCH INPUT ON UNIT 10 OVERWRITES DEFAULT VALUES BATCH OUTPUT ON UNIT 20 SHOULD BE PROCESSED WITH PROGRAM 'GETLOG'						
C C C	DD ALLOCATIONS : UNIT 10 AND 20 STATIC ALL OTHER DYNAMIC						
C C							
C C C	SPKIN - INPUT SIGNAL TO THE LINEAR SYSTEM KANIN - INPUT DIMENSION SPKUT - OUTPUT SIGNAL OF THE LINEAR SYSTEM						
	SYSTEM - WEIGHTING FUNCTION OF THE SYSTEM (MODEL) MODOUT - MODEL OUTPUT SIGNAL T - TIME ARRAY (SECONDS)						
	VECTOR - HELP VECTOR FOR THE CONVOLUTION FILTER - HELP VECTOR FOR THE CONVOLUTION XSCALE - SCALE ARRAY WITH DIMENSION NPAR						
Ċ	REAL*4 F,X,XSCALE,MUIN,MUOUT,SPKIN,SPKUT,SYSTEM,VECTOR,T,FILTER,						

+

Y,MODOUT,RANGE,POSIN,POSUT,ORGAN,SAUER,FLOWR,GDELAY, GVARIA,GGAMMA,PARMIN,PARMAX,TEMP,TIMINT,DIFMU,DIFVAR, DELTAZ,RESSSQ,CHISQR,PROB,DMAXCD,STATKS,P1SIDE,P2SIDE, +

.

```
SIGTH2, BOINV, DK, ZERO, AREA, CONVER, H, DMAX, ACC, XPAGE, YPAGE,
   +
   +
         XAXMAX, YAXMAX, HITE, DXMIN, DXMAX, DYMIN, DYMAX, XSIZE, YSIZE,
   +
         XSTEP, YSTEP, CHITE, CPUTIM, TIMOUT, AMPLIT
   DIMENSION X(3), Y(8192,4), MODOUT(8192), RANGE(4)
С
   INTEGER*4 KANIN, KANUT, KTEMP, ICALLS, IVA05A, LONG, NPAR, MAXFUN,
   +
           IPRINT.NPICY.LASTPL
С
   CHARACTER*40 TITLE
   CHARACTER*23 DSNOUT
   CHARACTER*10 TX(10),AR(4)
   CHARACTER*8 ADATUM, CHBUFF, CHLOCK, MEMBER
   CHARACTER*6 ATIME
   CHARACTER*5 REGION(12)
   CHARACTER*3 MESS(16)
   CHARACTER*2 ATR
   CHARACTER*1 KENGEW, KENOUT, MODOPT, MODAUT, STATUS, WRITUT, LOCK, ASHOW
С
   LOGICAL BATCH, NEWPAG, SHOW, AXERR, EMEXIT
С
   COMMON /DATCOM/ SPKIN(8192),SPKUT(8192),SYSTEM(8192),
              VECTOR(32768), FILTER(16384), KANIN, KANUT
   +
   COMMON /OPTCOM/ WORK(70000),XSCALE(3),PARMIN(3),PARMAX(3),ICALLS,
   +
              MODOPT
   COMMON /TIMCOM/ T(8192),TIMINT
   COMMON /STESTS/ F(8192), RESSSQ, CHISQR, PROB, DMAXCD, STATKS, P1SIDE,
              P2SIDE
С
   COMMON /DFAULT/ ZERO, AREA, CONVER, H, DMAX, ACC, LONG, NPAR, MAXFUN,
              IPRINT, NPICY, ASHOW, WRITUT, LOCK
   +
   COMMON /DPARAM/ XPAGE, YPAGE, XAXMAX, YAXMAX, HITE, BATCH, SHOW
   COMMON /DSIZES/ XSIZE(5), YSIZE(5), XSTEP(5), YSTEP(5), CHITE(5)
С
   INCLUDE (KOPF)
   INCLUDE (KENNUNG)
   INCLUDE (MOMCOM)
С
   EQUIVALENCE (SPKIN(1),Y(1,1))
   EQUIVALENCE (SPKUT(1),Y(1,2))
   EQUIVALENCE (SYSTEM(1),Y(1,3))
   EQUIVALENCE (VECTOR(1),Y(1,4))
   EQUIVALENCE (MODOUT(1), VECTOR(1))
   EQUIVALENCE (DXMIN, RANGE(1))
   EQUIVALENCE (DXMAX,RANGE(2))
   EQUIVALENCE (DYMIN, RANGE(3))
   EQUIVALENCE (DYMAX,RANGE(4))
С
   DATA EMEXIT/.FALSE./
   PARAMETER (TIMOUT = 30.)
С
C---
C FIRST EXECUTABLE INSTRUCTION
C---
     С
   CALL ERRSET (207,10000,-1,2,0,209)
   CALL ERRSET (251,10000,-1,2,0,252)
   CALL ERRSET (262,10000,-1,2,0,262)
   CALL ERRSET (290,10000,-1,2,0,290)
С
C--
     C INQUIRE PROCESSING ENVIRONMENT
   C--
С
```

```
INQUIRE (UNIT = 10, OPENED = BATCH)
С
C-
     С
   KENFIL = ''
 50 \text{ FMTFIL} = .\text{FALSE}.
   TYPEOK = .FALSE.
С
C-----
                  C BATCH EXECUTION
C----
    С
   IF (BATCH) THEN
С
    CALL CHPAGE (6,' AXIAL ',' MIXING ',' MODELS ')
CALL CHPAGE (6,' AXIAL ',' MIXING ',' MODELS ')
С
C DEFAULT 4 VERTICAL PICTURES
С
    NPICY = 4
С
C READ PROCESSING PARAMETERS (UNIT 10) AND SET UP KENNUNGEN
С
    CALL PROCES
С
C VERSATEC PAGE SIZE
С
    NPICT = NUMVER^{*}(NUMSON-1)
    IF (MODOPT.EQ.'A') NPICT = NPICT*4
    NCOLS = NPICT/NPICY
    IF (MOD(NPICT,NPICY).NE.0) NCOLS = NCOLS+1
    YPAGE = 23.
    XPAGE = XSTEP(NPICY)*FLOAT(NCOLS) + 2.
С
   ELSE
С
C-----
C TSO EXECUTION
C-----
С
C IBM3279 PAGE SIZE
С
   XPAGE = 11.
    YPAGE = 8.
С
C DEFAULT 1 PICTURE
С
   NPICY = 1
С
C READ KENNUNGEN
С
   CALL KENIO
С
C-
    С
  END IF
С
  FMTFIL = .TRUE.
С
C---
    C SWAP KENNUNGEN FOR ACQUEOUS PHASE EXPERIMENTS
C-----
С
```

```
CALL SWPKEN
С
C-----
C SET UP ISPF PANEL 'MODEL1'
C----
С
 100 IF (.NOT.BATCH) THEN
С
      WRITE (TX(1),'(I7)') NPAR
      WRITE (TX(3),'(E10.3)') H
      WRITE (TX(4), '(E10.3)') DMAX
      WRITE (TX(5),'(E10.3)') ACC
      WRITE (TX(6),'(I7)') MAXFUN
      WRITE (TX(7),'(17)') IPRINT
С
     LASTRC = ISPLNK('VDEFINE', '(MODOPT)', MODOPT, 'CHAR', 1)
LASTRC = ISPLNK('VDEFINE', '(NPAR)', TX(1), 'CHAR', 7)
LASTRC = ISPLNK('VDEFINE', '(H)', TX(3), 'CHAR', 10)
LASTRC = ISPLNK('VDEFINE', '(DMAX)', TX(4), 'CHAR', 10)
      LASTRC = ISPLNK('VDEFINE','(ACC)',TX(5),'CHAR',10)
      LASTRC = ISPLNK('VDEFINE', '(MAXFUN)', TX(6), 'CHAR', 7)
      LASTRC = ISPLNK('VDEFINE','(IPRINT)',TX(7),'CHAR',7)
     LASTRC = ISPLNK('VDEFINE', '(SHOW)', ASHOW, 'CHAR', 1)
LASTRC = ISPLNK('VDEFINE', '(LOCK)', LOCK, 'CHAR', 1)
LASTRC = ISPLNK('VDEFINE', '(WRITUT)', WRITUT, 'CHAR', 1)
С
C-----
            C DISPLAY ISPF PANEL 'MODEL1' , BACK TO KENIO WITH PF3
C----- .
С
     LASTRC = ISPLNK('DISPLAY', 'MODEL1')
С
     IF (LASTRC.EQ.8) GOTO 50
С
     READ (TX(1),*) NPAR
     READ (TX(3),*) H
     READ (TX(4),*) DMAX
     READ (TX(5),*) ACC
     READ (TX(6),*) MAXFUN
     READ (TX(7),*) IPRINT
     IF (ASHOW.EQ.'Y') SHOW = .TRUE.
С
    END IF
С
    IF (MODOPT.EQ.'A') PRINT *, 'AUTOMATIC MODUS'
    MODAUT = MODOPT
С
    IF (SHOW) THEN
С
     IF (BATCH) THEN
С
C--
C INITIALIZE PLOT PARAMETERS
C-----
С
       KPLOT = 0
       HITE = CHITE(NPICY)
       XPOS = 2.
       YPOS = 1.
       YAXMAX = YSIZE(NPICY)
       XAXMAX = XSIZE(NPICY)
С
C-----
```

```
C SIGNON VERSATEC PLOTTER (DISSPLA GOES TO LEVEL 1)
C-----
С
    CALL VRSTEC (XPAGE, YPAGE)
С
C--
C INITIALIZE DISSPLA OPTIONS AND PARAMETERS
C--
        С
    CALL DISSIN
С
   END IF
С
  END IF
С
C---
   C START EXPERIMENT LOOP
C-----
С
  ISTART = 1
  ISTOP = NUMSON-1
С
  DO 700 IVER = 1, NUMVER
С
C-----
                 C START NEW PAGE
C-----
С
   NEWPAG = .TRUE.
С
C-----
                    C START MODEL LOOP
C-----
С
   IAUT = 1
С
 150 IF (MODAUT.EQ.'A') THEN
С
    IF (IAUT.EQ.1) THEN
     MODOPT = 'D'
     NPAR = 2
     IAUT = IAUT + 1
С
    ELSE IF (IAUT.EQ.2) THEN
     MODOPT = 'D'
     NPAR = 3
     IAUT = IAUT + 1
С
    ELSE IF (IAUT.EQ.3) THEN
     MODOPT = 'L'
     NPAR = 2
     IAUT = IAUT + 1
С
    ELSE IF (IAUT.EQ.4) THEN
     MODOPT = 'L'
     NPAR = 3
     IAUT = IAUT + 1
С
    END IF
С
   ELSE
С
```

```
IAUT = 5
С
    END IF
С
    IF (MODOPT.EQ.'D') THEN
     CONTINUE
    ELSE IF (MODOPT.EQ.'L') THEN
     CONTINUE
    ELSE IF (MODOPT.EQ.'G') THEN
     PRINT *, '>>> WARNING : ESTIMATES MAY BE ERRONEOUS <<<'
    ELSE
     PRINT *, '>>> MODEL OPTION UNKNOWN << <'
     IF (BATCH) STOP
     GOTO 100
    END IF
С
C-----
C START DETECTOR LOOP
C-----
С
    JZONE = 1
С
    DO 650 KK = ISTART, ISTOP
С
C----
C QUERY REMAINING CPU TIME (EMERGENCY EXIT)
C-----
С
     CALL TIMEL (CPUTIM)
С
     IF (CPUTIM.LE.TIMOUT) THEN
      \dot{E}MEXIT = .TRUE.
      GOTO 750
     END IF
С
     IR = KK-(IVER-1)*NUMSON
С
     CALL VSETR4 (ZERO, SPKIN, 1, LONG)
     CALL VSETR4 (ZERO,SPKUT,1,LONG)
     CALL VSETR4 (ZERO,SYSTEM,1,LONG)
С
C-----
C SYSTEM INPUT
C------
С
     IF (LOCK.EQ.'Y') THEN
      CALL FOPEN (1,DSN(ISTART))
     ELSE
      CALL FOPEN (1,DSN(KK))
     END IF
С
     CALL FORMRD (1,SPKIN,LITKEN(KK))
     CLOSE (1)
С
     IF (VMOM1.EQ.ZERO.OR.SIGMA.EQ.ZERO) THEN
      CALL MOMENT (SPKIN,1,KANTOT,'Y')
     END IF
С
     POSIN = SOKOR
     MUIN = VMOM1
     VARIN = SIGMA^{**2}
     KANIN = KANTOT
```

```
YMAXIN = YMAX
С
C----
         C SYSTEM OUTPUT
C----
   С
    CALL FOPEN (2,DSN(KK+1))
    CALL FORMRD (2,SPKUT,LITKEN(KK+1))
    CLOSE (2)
С
    IF (VMOM1.EQ.ZERO.OR.SIGMA.EQ.ZERO) THEN
     CALL MOMENT (SPKUT,1,KANTOT,'Y')
    END IF
С
    POSUT = SOKOR
    MUOUT = VMOM1
    VARUT = SIGMA**2
    KANUT = KANTOT
    YMAXUT = YMAX
С
    CALL MAXI (SPKUT, KANUT, SPKMAX, IMAX)
С
    YCUT = 0.01*SPKMAX
    DO 200 LASTPL = IMAX, KANUT
     IF (SPKUT(LASTPL).LT.YCUT) GOTO 250
 200
      CONTINUE
С
C-----
C TIME ARRAY
C-----
С
 250
     TIMINT = ZEIT
    DO 300 I=1,LONG
     T(I) = FLOAT(I)*ZEIT
 300
      CONTINUE
С
C---
    C FLOW PARAMETERS
C----
      С
С
   FLUSS = O + A
С
   RATIO = O / A
С
    SAUER = FLUSS/(RATIO + 1.)
    ORGAN = FLUSS-SAUER
С
C-----
   C CORRECT PULS AMPLITUDE FOR PETRA EXPERIMENTS
C---
     С
    AMPLIT = HUB
    IF (LITKEN(KK)(1:4).NE.'PUST') AMPLIT = AMPLIT*0.75**2
С
C--
    C RESET PARAMETER ESTIMATES
C--
    С
    X(1) = 0.
    X(2) = 0.
    X(3) = 0.
С
C-
   C MARK CPU START TIME
```

C-С CALL TIMED (CPUTIM) С C---C GUESS START ESTIMATES AND SCALE PARAMETERS DOWN C--С LASTCH = MAX(KANIN, KANUT)DELTAZ = ABS(POSUT-POSIN)DIFMU = ABS(MUOUT-MUIN)DIFVAR = ABS(VARUT-VARIN)|CALLS| = 0С CALL GUESS (TIMINT, LASTCH, DIFMU, DIFVAR, F, X, NPAR) С C----C NON-LINEAR PARAMETER OPTIMIZATION C--С IVA05A = IPRINTС CALL VA05A (LASTCH,NPAR,F,X,H,DMAX,ACC,MAXFUN,IVA05A,WORK) С C----C CPU OCCUPANCY TIME IN SECONDS (TIME ELAPSED SINCE LAST CALL) C-----С CALL TIMED (CPUTIM) С C-----C RESCALE PARAMETERS ESTIMATES C--С 350 CALL SCALE (NPAR,X,XSCALE,'UP') С C-----C MOMENTS OF THE MODEL DISTRIBUTION C--С CALL MOMENT (SYSTEM,1,LASTCH,'Y') С C-C GOODNESS OF FIT TESTS C---С CALL GUTFIT (SPKUT, MODOUT, LASTCH, NPAR) С C--C MODEL DISTRIBUTION PARAMETERS C--С IF (MODOPT.EQ.'D') THEN С GDELAY = X(3) $GMEAN = X(1)^{*}(X(2) + 2)/X(2) + X(3)$ $GGAMMA = SQRT(2./X(2) + 8./X(2)^{**}2)$ $GVARIA = (GGAMMA^*X(1))^{**2}$ С ELSE IF (MODOPT.EQ.'L') THEN С GDELAY = X(3) $GMEAN = EXP(X(1) + X(2)^{**}2/2.) + X(3)$

```
GVARIA = EXP(2.*X(1) + X(2)**2)*(EXP(X(2)**2)-1.)
       GGAMMA = SQRT(EXP(X(2)^{**}2)-1.)
С
     END IF
С
C--
        C DISPERSED PHASE HOLDUP (%)
C---
С
     IF (KENPHA(1:1).EQ.'O') THEN
      FLOWR = ORGAN
     ELSE IF (KENPHA(1:1).EQ.'W') THEN
      FLOWR = SAUER
     ELSE
       PRINT * '>>> PHASENKENNZEICHEN UNKNOWN <<<'
      STOP
     END IF
С
     HOLDUP = CONVER*(FLOWR*VMOM(2))/(AREA*DELTAZ)
     IF (KENPHA(2:2).EQ.'K') HOLDUP = 1.-HOLDUP
     HOLDUP = 100 * HOLDUP
С
C-
             C AXIAL FLOW VELOCITY IN CM/S
C-----
С
     VMIT = DELTAZ/VMOM(2)
С
C-----
C DISPERSION COEFFICIENT FOR OPEN-OPEN VESSEL (LEVENSPIEL)
C-----
С
С
    1/BO = BOINV = DK/(VMIT*DELTAZ)
С
С
    SIGTH2 = 2*BOINV + 8*BOINV**2
С
С
    SIGTH2 = ZMOM(3)/VMOM(2)^{*2}
С
     SIGTH2 = (0.01*VARIAT)**2
     BOINV = (SQRT(4. + 32.*SIGTH2)-2.)/16.
     DK = BOINV*VMIT*DELTAZ
С
C---
   -----
C PREPARE DISPLAY FOR RTD-FUNCTIONS
Ċ-
         С
     YMAXSY = VMAXV(SYSTEM, LASTCH)
     RANGE(1) = 0.
     RANGE(2) = LASTPL^{*}ZEIT
     RANGE(3) = 0.
     RANGE(4) = AMAX1(YMAXIN,YMAXSY,YMAXUT)
С
     TITLE(1:6) = LITKEN(KK)(1:6)
     TITLE(7:7) = ''
     IF (NPAR.EQ.2) TITLE(8:8) = 2^{\prime}
     IF (NPAR.EQ.3) TITLE(8:8) = '3'
     TITLE(9:19) = '-PARAMETER'
     IF (MODOPT.EQ.'D') TITLE(20:21) = 'AD'
     IF (MODOPT.EQ.'L') TITLE(20:21) = 'LN'
     IF (MODOPT.EQ.'G') TITLE(20:21) = 'GD'
     TITLE(22:28) = '-MODEL'
С
     REGION(JZONE) = LITKEN(KK)(9:10)//'-'//LITKEN(KK+1)(9:10)
```

TITLE(29:33) = REGION(JZONE)С JZONE = JZONE + 1С MESS(1) = LITKEN(KK)(8:10)MESS(2) = LITKEN(KK+1)(8:10)MESS(3) = MESS(2)IF (MODOPT.EQ.'D') STATUS = 'D' IF (MODOPT.EQ.'L') STATUS = 'L' Ċ WRITE (MODELL,'(12)') NPAR MODELL(1:1) = MODOPTС MESS(3)(1:1) = STATUSMESS(4) = MESS(2)MESS(4)(1:1) = 'O'С 400 IF (SHOW) THEN С IF (.NOT.BATCH) THEN С C-----C ISPF PANEL 'MODEL2' C---С DO 450 | = 1,4WRITE (AR(I), '(E10.3)') RANGE(I) 450 CONTINUE С WRITE (ATR,'(I2)') ITR С LASTRC = ISPLNK('VDEFINE','(XMIN)',AR(1),'CHAR',10) LASTRC = ISPLNK('VDEFINE', '(XMAX)', AR(2), 'CHAR', 10) LASTRC = ISPLNK('VDEFINE', '(YMIN)', AR(3), 'CHAR', 10) LASTRC = ISPLNK('VDEFINE', '(YMAX)', AR(4), 'CHAR', 10) LASTRC = ISPLNK('VDEFINE', '(TRANSF)', ATR, 'CHAR', 2) С 500 LASTRC = ISPLNK('DISPLAY', 'MODEL2')С C--C RESIGN DISPLAY WITH PF3 C---С IF (LASTRC.EQ.8) GOTO 600 С LASTRC = ISPLNK('CONTROL', 'DISPLAY', 'SAVE') С DO 550 I = 1.4READ (AR(I),*) RANGE(I) 550 CONTINUE С READ (ATR,*) ITR С C---C CONTROL TRANSFORMATION COORDINATES C-----С AXERR = .FALSE.С IF (DXMIN.GE.DXMAX) AXERR = .TRUE. IF (DXMIN.LT.0.) AXERR = .TRUE. IF (DYMIN.GE.DYMAX) AXERR = .TRUE. IF (ITR.EQ.1) THEN

```
IF (DXMIN.LE.0.) AXERR = .TRUE.
      ELSE IF (ITR.GE.2) THEN
       IF (DYMAX.LE.0.) AXERR = .TRUE.
       IF (DYMIN.LE.0.) AXERR = .TRUE.
      END IF
      IF (AXERR) THEN
       WRITE (*, *) > > PLEASE CHECK UP TRANSFORMATION',
  +
             OR COORDINATES < < <'
       GOTO 500
      END IF
С
C-----
C SIGNON IBM3279 DEVICE (DISSPLA GOES TO LEVEL 1)
C-----
С
      CALL IBM79
С
C
C INITIALIZE DISSPLA OPTIONS AND PARAMETERS
C-----
С
      HITE = 0.2
      XAXMAX = 9.
      YAXMAX = 5.
      XPOS = 1.2
      YPOS = 1.2
С
      CALL DISSIN
С
     END IF
С
C-----
C SHIFT PHYSICAL ORIGIN
C-----
С
     CALL PHYSOR (XPOS, YPOS)
С
C-----
C DEFINE SUBPLOT AREA (DISSPLA GOES TO LEVEL 2)
C-----
С
     CALL AREA2D (XAXMAX,YAXMAX)
С.
C-----
C PLOT FUNCTIONS
C-----
С
     CALL DISSGO (T,Y,LONG,LASTPL,4,RANGE,ITR,TITLE(1:33),
  +
           'TIME (S)', 'PROBABILITY DENSITY', MESS)
С
C-----
C END SUB-PLOT (DISSPLA RETURNS TO LEVEL 1)
C---
  С
     IF (BATCH) THEN
С
      CALL ENDGR (0)
С
С
    C CALCULATE NEXT SHIFT
C-
       С
      KPLOT = KPLOT + 1
```

YPOS = 1. + KPLOT*YSTEP(NPICY)С IF (KPLOT.GE.NPICY) THEN KPLOT = 0XPOS = XPOS + XSTEP(NPICY)YPOS = 1.END IF С ELSE С CALL ENDPL (0) С C----C RESET DISPLAY C-С LASTRC = ISPLNK('CONTROL', 'DISPLAY', 'REFRESH') LASTRC = ISPLNK('CONTROL', 'DISPLAY', 'RESTORE') GO TO 400 С END IF С END IF С C---C OUTPUT RESULTS <u>C-----</u> С 600 IF (BATCH) THEN С C---_____ C BATCH OUTPUT C---С C PRINTER HARDCOPY (UNIT 6) С IF (KK.EQ.ISTART) THEN С C FIRST MODELING SECTION С IF (NEWPAG) THEN CHBUFF = ''WRITE (CHBUFF(1:3),'(I3)') TREAT CHBUFF(6:7) = KENPHAIF (LOCK.EQ.'Y') THEN CHLOCK = 'LOCKED' ELSE IF (LOCK.EQ.'N') THEN CHLOCK = 'DISCRETE'END IF CALL CHPAGE (6,' '//TITLE(1:6)//' ',CHBUFF,CHLOCK) PRINT 1000, TITLE(1:6), CHLOCK, KENPHA, TREAT, FLUSS, RATIO, +AMPLIT, HERTZ 1000 FORMAT ('1',A3,1X,A8,' = = = > ',A2,' TREATMENT',I3, ', FLUSS',F6.1,' L/H, RATIO',F6.2,', HUB ', ++-F5.2,' MM, FREQUENZ ', F5.2,' HZ') NEWPAG = .FALSE.END IF С PRINT 2000, TITLE(1:28) 2000 FORMAT (/1X,A28/1X,'REGION',4X,'DELAY',6X,'MEAN',4X, 'VARIANCE',5X,'AREA',6X,'RESSSQ',5X,'KS-PROB',3X, ++'ZONE',2X,'VELOC',2X,'HOLDUP',6X,'DK',2X,

```
+
                'VARIAT',2X,'LOOPS',4X,'CPU-T'/1X,132('-'))
С
C MEMBER NAME FOR DISK OUTPUT
С
         MEMBER = TITLE(1:1)//TITLE(5:6)//KENPHA//MODELL
         IF (LOCK.EQ.'Y') THEN
           MEMBER(8:8) = 'L'
         ELSE
           MEMBER(8:8) = 'D'
         END IF
С
         WRITE (20,*) '$',MEMBER
С
        END IF
С
        PRINT 3000, REGION(IR), GDELAY, GMEAN, GVARIA, VMOM(1), RESSSQ,
    +
                  P1SIDE, DELTAZ, VMIT, HOLDUP, DK, VARIAT, ICALLS,
    +
                  CPUTIM
3000
         FORMAT (1X,A5,2X,F8.2,2X,F8.2,2X,F10.2,2X,F7.5,2X,E10.4,2X,
    +
               E10.4,2X,F5.1,2X,F5.2,2X,F6.2,2X,F6.2,2X,F6.2,2X,
   +
               15,2X,F7.2)
C
        CALL DATTIM (ADATUM, ATIME)
С
C WRITE OUTPUT TO DISK LOG FILE (UNIT 20) 'LIT828.MODEL.DATA'
С
        WRITE (20,4000) TITLE(1:6), CHLOCK, KENPHA, TREAT, FLUSS, RATIO,
   ╀
                    AMPLIT, HERTZ, ADATUM, ATIME, REGION(IR),
   +
                    .MODELL,X(1),X(2),X(3),RESSSQ,DMAXCD,STATKS,
   +
                    P1SIDE, P2SIDE, GDELAY, GMEAN, GVARIA, GGAMMA,
   +
                    DELTAZ, VMIT, HOLDUP, VMOM(1), VMOM(2), ZMOM(3),
   +
                    VARIAT, ASYM, EXZ, DK, DIFMU, DIFVAR, LASTCH,
   +
                    ICALLS, CPUTIM
4000
         FORMAT (1X,A6,2X,A8,2X,A2,2X,I3,2X,4(F6.2,2X),A8,2X,A6,2X,
               A5,2X,A2,2X,24(E14.7,2X),I5,2X,I5,2X,F7.3)
   +
С
      ELSE
С
C-----
C TSO OUTPUT WITH ISPF PANEL 'MODEL3'
C-
       С
        LASTRC = ISPLNK('VDEFINE', '(VERSUCH)', TITLE(1:6), 'CHAR', 6)
        WRITE (TX(8),'(13)') TREAT
        LASTRC = ISPLNK('VDEFINE', '(TREAT)', TX(8), 'CHAR', 10)
        WRITE (TX(9),'(I6)') KANTOT
        LASTRC = ISPLNK('VDEFINE','(KANTOT)',TX(9),'CHAR',10)
        CALL CHPAN ('FLUSS', FLUSS, '(F10.2)', 1)
        CALL CHPAN ('RATIO', RATIO, '(F10.2)', 2)
        CALL CHPAN ('HUB', AMPLIT, '(F10.2)', 3)
        LASTRC = ISPLNK('VDEFINE', '(TRACER)', TRACER, 'CHAR', 8)
        LASTRC = ISPLNK('VDEFINE', '(KENPHA)', KENPHA, 'CHAR', 2)
        LASTRC = ISPLNK('VDEFINE', (INPUT)', IN, 'CHAR', 2)
        LASTRC = ISPLNK('VDEFINE', '(OUTPUT)', OUT, 'CHAR', 2)
        LASTRC = ISPLNK('VDEFINE', '(MODOPT)', TITLE(20:21), 'CHAR', 2)
        CALL CHPAN ('ZONE', DELTAZ, '(F10.1)',4)
        CALL CHPAN ('VMIT', VMIT, '(F10.2)', 5)
        CALL CHPAN ('HOLDUP', HOLDUP,'(F10.2)',6)
        CALL CHPAN ('DIFMU', DIFMU, '(F10.2)', 7)
        CALL CHPAN ('DIFVAR', DIFVAR, '(F10.1)', 8)
        CALL CHPAN ('GMEAN', VMOM(2), '(F10.2)', 9)
        CALL CHPAN ('GVARIA', ZMOM(3), '(F10.1)', 10)
        CALL CHPAN ('GDELAY', GDELAY, '(F10.2)', 11)
```

CALL CHPAN ('RESSSQ',RESSSQ,'(E10.4)',12) WRITE (TX(10),'(I6)') ICALLS LASTRC = ISPLNK('VDEFINE','(LOOPS)',TX(10),'CHAR',10) CALL CHPAN ('KSDIST',DMAXCD,'(E10.4)',13) CALL CHPAN ('KSSTAT',STATKS,'(E10.4)',14) CALL CHPAN ('KS1SID',P1SIDE,'(E10.4)',15) CALL CHPAN ('KS2SID',P2SIDE,'(E10.4)',16) CALL CHPAN ('CPUTIM',CPUTIM,'(F10.2)',17) CALL CHPAN ('FREQUENZ',HERTZ,'(F10.2)',18) C	
C DISPLAY ISPF PANEL 'MODEL3'	
C LASTRC = ISPLNK('DISPLAY','MODEL3') C END IF C C	
C OUTPUT SPECTRA	
C IF (WRITUT.EQ.'Y') THEN	
IN = REGION(IR)(1:2) $OUT = REGION(IR)(4:5)$ $ZONE = DELTAZ$ $VMITMO = X(1)$ $VSTREU = X(2)$ $TOTZEI = X(3)$ $RSS = RESSSQ$ $KSDIST = DMAXCD$ $KSSTAT = STATKS$ $KS1SID = P1SIDE$ $KS2SID = P2SIDE$	
DSNOUT = DSN(KK+1)	
C STATUS = MODOPT DSNOUT(20:20) = STATUS CALL MAXI (SYSTEM,MAXKAN,YMAX,IMAX) TYMAXA = ZEIT*FLOAT(IMAX) CALL FWRITE (3,DSNOUT,STATUS,SYSTEM) C STATUS = 'O' DSNOUT(20:20) = STATUS	
CALL MAXI (MODOUT,MAXKAN,YMAX,IMAX) TYMAXA = ZEIT*FLOAT(IMAX) CALL FWRITE (3,DSNOUT,STATUS,MODOUT)	
END IF	
650 CONTINUE C	
C DETECTOR LOOP DONE	
C C IF (IAUT.LE.4) GOTO 150 C	
C MODEL LOOP DONE, SHIFT KENNUNGEN TO NEXT EXPERIMENT	

.

```
C----
   С
    ISTART = ISTART + NUMSON
    ISTOP = ISTOP + NUMSON
С
 700 CONTINUE
С
C-----
         C EXPERIMENT LOOP DONE
C----
    С
 750 IF (BATCH) THEN
С
C-----
C SIGNOFF GRAPHICS DEVICE (DISSPLA RETURNS TO LEVEL 0)
C-----
С
    IF (SHOW) CALL ENDPL (0)
С
C
C PRINT JOB STATISTICS AND END BATCH EXECUTION
C-----
С
    PRINT 5000
5000 FORMAT ('1JOB STATISTICS'/1X,14('-')//)
    CALL TIMEX (CPUTIM)
    PRINT 6000, CPUTIM
6000 FORMAT (1X,F7.2,' SECONDS CPU TIME USED')
    CALL TIMEL (CPUTIM)
    PRINT 7000, CPUTIM
7000 FORMAT (1X,F7.2,' SECONDS CPU TIME LEFT')
    PRINT 8000, NUMKEN, NUMSON, NUMVER
8000 FORMAT (1X,14,' SPECTRA ---',13,' DETECTORS ---',13,
   +
         ' EXPERIMENTS')
    PRINT *, 'KENNUNG LIST'
    PRINT 9000, (LITKEN(I), I = 1, NUMKEN)
9000 FORMAT (1X,A10)
С
    IF (EMEXIT) THEN
     CALL CHPAGE (6, TIME-OUT', TIME-OUT', TIME-OUT')
     PRINT *, LITKEN(KK), 'INPUT NOT PROCESSED FOR MODEL ', MODOPT
     STOP 32
    ELSE
     STOP
    END IF
С
   END IF
С
C-
    C IF TSO MODUS RETURN TO MODEL SELECTION PANEL 'MODEL1'
C-----
С
   GOTO 100
С
   END
   BLOCK DATA LOADER
С
C--
         _____
С
   SETS DEFAULT VALUES FOR THE PROGRAM EXECUTION
C-----
          С
```

REAL*4 ZERO, AREA, CONVER, H, DMAX, ACC, WORK, XSCALE, PARMIN, PARMAX, +XPAGE, YPAGE, XAXMAX, YAXMAX, HITE, XSIZE, YSIZE, XSTEP, YSTEP, CHITE + INTEGER*4 LONG, NPAR, MAXFUN, IPRINT, ICALLS, NPICY CHARACTER*1 ASHOW, WRITUT, LOCK, MODOPT LOGICAL BATCH, SHOW С COMMON /DFAULT/ ZERO, AREA, CONVER, H, DMAX, ACC, LONG, NPAR, MAXFUN, IPRINT, NPICY, ASHOW, WRITUT, LOCK +COMMON /OPTCOM/ WORK(70000),XSCALE(3),PARMIN(3),PARMAX(3),ICALLS, +MODOPT COMMON /DPARAM/ XPAGE, YPAGE, XAXMAX, YAXMAX, HITE, BATCH, SHOW COMMON /DSIZES/ XSIZE(5), YSIZE(5), XSTEP(5), YSTEP(5), CHITE(5) С C-С C MAXIMAL ARRAY LENGTH С DATA LONG/8192/ DATA ZERO/0.0/ С C-С C NO DISPLAY С DATA ASHOW/'N'/ DATA SHOW/.FALSE./ С C CHARACTER HEIGHTS С DATA CHITE/0.5,0.25,0.17,0.12,0.1/ С C X SIZES FOR PLOTTER С DATA XSIZE/25.,12.,7.,5.,4./ С C X STEP FOR PLOTTER С DATA XSTEP/28.,14.,9.,7.,6./ С C Y SIZES FOR PLOTTER С DATA YSIZE/18.,9.,5.,4.,3./ С C Y STEP FOR PLOTTER С DATA YSTEP/23.0,11.5,7.6,5.7,4.6/ С C-С C NO SPECTRUM OUTPUT С DATA WRITUT/'N'/ С C OPTIMIZATION BETWEEN SUCCESIVE DETECTORS С DATA LOCK/'N'/ С C AXIAL DISPERSION MODEL IS DEFAULT С DATA MODOPT/'D'/ С
```
C PULSED COLUMN FLOW SECTION IN CM**2 (10.0 CM I.D.)
С
    DATA AREA/78.5398/
С
C CONVERSION FACTOR ( L/H ---> CM**3/S )
С
    DATA CONVER/0.2777778/
С
C.
С
С
   PARAMETERS OF THE OPTIMIZATION ROUTINE
С
С
    LASTCH >>> NUMBER OF FUNCTIONS IN THE SUM OF SQUARES
С
    NPAR >>> NUMBER OF PARAMETERS TO BE OPTIMIZED
С
         >>> ARRAY(LASTCH) WITH THE MODEL RESIDUALS
    F
С
    Х
         >>> ARRAY(NPAR) WITH THE BEST PARAMETER ESTIMATES
С
С
С
    Ή
        >>> SCALAR PARAMETER TO ESTIMATE PARTIAL DERIVATIVES
    DMAX >>> SCALAR PARAMETER ESTIMATING THE "DISTANCE"
         >>> ACCURACY IN THE SUM OF SQUARES OF F
    ACC
С
    MAXFUN >>> MAXIMAL CALL NUMBER OF CALFUN
С
    IPRINT >>> CONTROLS VA05A PRINTING
С
    WORK >>> VA05A WORKING SPACE
С
С
  TWO PARAMETERS TO BE OPTIMIZED (NO DELAY TIME)
С
    DATA NPAR/2/
С
C SCALAR PARAMETER TO ESTIMATE DERIVATIVES
С
   DATA H/1.0E-03/
С
C ESTIMATE OF THE "DISTANCE" BETWEEN ESTIMATED & OPTIMAL PARAMETERS
С
   DATA DMAX/1./
С
C REQUIRED ACCURACY OF THE ESTIMATED SUM OF SQUARES
С
   DATA ACC/1.0E-20/
С
C MAXIMUM NUMBER OF ITERATIONS (CALLS OF CALFUN)
С
   DATA MAXFUN/1000/
С
C PRINT OPTION
С
   DATA IPRINT/0/
С
   END
   SUBROUTINE PROCES
С
C
С
    PROCESS UNIT 10 TO OVERWRITE PROGRAM DEFAULTS
C-
С
C COMMON VARIABLES
С
   INCLUDE (KENNUNG)
С
   REAL*4 ZERO, AREA, CONVER, H, DMAX, ACC, WORK, XSCALE, PARMIN, PARMAX,
         XPAGE, YPAGE, XAXMAX, YAXMAX, HITE
   INTEGER*4 LONG, NPAR, MAXFUN, IPRINT, ICALLS, NPICY
```

```
CHARACTER*1 ASHOW, WRITUT, LOCK, MODOPT
    LOGICAL BATCH, SHOW
 С
    COMMON /DFAULT/ ZERO, AREA, CONVER, H, DMAX, ACC, LONG, NPAR, MAXFUN,
                IPRINT, NPICY, ASHOW, WRITUT, LOCK
    COMMON /OPTCOM/ WORK(70000),XSCALE(3),PARMIN(3),PARMAX(3),ICALLS,
    +
                MODOPT
    COMMON /DPARAM/ XPAGE,YPAGE,XAXMAX,YAXMAX,HITE,BATCH,SHOW
 С
C LOCAL VARIABLES
 С
    INTEGER*4 LAST.I
    CHARACTER*72 RECORD
С
  100 READ (10,'(A72)',END=400) RECORD
С
C SEARCH STRING FOR FIRST SPACE CHARACTER
С
    DO 200 I = 1.72
     IF (RECORD(I:I) EQ.' ') GOTO 300
 200 CONTINUE
С
 300 \text{ LAST} = 1-1
С
    IF (RECORD(1:LAST).EQ.'USER') THEN
     READ (RECORD(1:72),*) USER
     PRINT *, RECORD(1:LAST),' IS ',USER
    ELSE IF (RECORD(1:LAST).EQ.'PROJEKT') THEN
     READ (RECORD(1:72),*) PROJEK
     PRINT *, RECORD(1:LAST),' IS ', PROJEK
    ELSE IF (RECORD(1:LAST).EQ.'VERSUCHE') THEN
     READ (RECORD(I:72),*) KVERSU
     PRINT *, RECORD(1:LAST),' IS ',KVERSU
    ELSE IF (RECORD(1:LAST).EQ.'SONDEN') THEN
     READ (RECORD(1:72),*) KSONDE
     PRINT *, RECORD(1:LAST),' IS ',KSONDE
    ELSE IF (RECORD(1:LAST).EQ.'MODOPT') THEN
     READ (RECORD(I:72),*) MODOPT
     PRINT *, RECORD(1:LAST),' IS ',MODOPT
    ELSE IF (RECORD(1:LAST).EQ.'LOCK') THEN
     READ (RECORD(1:72),*) LOCK
     PRINT *, RECORD(1:LAST),' IS ',LOCK
    ELSE IF (RECORD(1:LAST).EQ.'SHOW') THEN
     SHOW = .TRUE.
     READ (RECORD(I:72),*) NPICY
     PRINT *, 'SHOW OPTION WITH ',NPICY,' VERTICAL FRAMES'
    ELSE IF (RECORD(1:LAST).EQ.'WRITUT') THEN
     READ (RECORD(1:72),*) WRITUT
     PRINT *, 'WRITE OUT OPTION IS ', WRITUT
   ELSE IF (RECORD(1:LAST).EQ.'NPAR') THEN
     READ (RECORD(1:72),*) NPAR
     PRINT *, RECORD(1:LAST),' IS ',NPAR
   ELSE
     PRINT *, '>>> UNKNOWN COMMAND LINE READ FORM UNIT 10 << <'
     PRINT *, RECORD
   END IF
С
   GOTO 100
С
 400 CALL KENNIN (USER, PROJEK, KVERSU, KSONDE)
С
   RETURN
С
```

```
SUBROUTINE KENNIN (USER, PROJEK, KVERSU, KSONDE)
С
C-
              _____
С
    (SUBROUTINE VERSION OF KENIO FOF BATCH-OPERATION)
C-
       С
    INCLUDE (KENNUNG)
С
    FILTYP = 'FORM'
С
C KENNUNGSPARAMETER OVER COMMON
С
С
    READ (LUNIN,*) USER
Ĉ
    READ (LUNIN,*) PROJEK
С
    READ (LUNIN,*) KVERSU
С
    READ (LUNIN,*) KSONDE
С
C VERSUCHSFELD AUFBAUEN
С
    READ (KVERSU, '(15(I2,A1))') (VERNUM(I), VZEICH(I), I = 1,15)
    NUMVER = 1
   VERFEL(1) = VERNUM(1)
С
    DO 200 I = 1.15
С
     IF (VZEICH(I).EQ.'-') THEN
С
      START = VERNUM(I) + 1
      STOP = VERNUM(1+1)
      DO 100 K = START, STOP,1
       NUMVER = NUMVER + 1
       VERFEL(NUMVER) = K
 100
        CONTINUE
С
    ELSE IF (VZEICH(I).EQ.',') THEN
С
      NUMVER = NUMVER + 1
      VERFEL(NUMVER) = VERNUM(I+1)
С
    ELSE IF (VZEICH(I).EQ.' ') THEN
С
      GOTO 300
С
    END IF
С
 200 CONTINUE
С
C SONDENFELD AUFBAUEN
С
 300 READ (KSONDE, '(15(A1, 12, A1))') (SONSTA(I), SONNUM(I), SONZEI(I),
   +
                      1 = 1.15
С
   NUMSON = 1
   STAFEL(1) = SONSTA(1)
   SONFEL(1) = SONNUM(1)
С
   DO 500 1=1,15
С
    IF (SONZEI(I).EQ.'-') THEN
```

С

```
STOP = SONNUM(1+1)
С
       DO 400 K = START, STOP, 1
        NUMSON = NUMSON + 1
        STAFEL(NUMSON) = SONSTA(I)
        SONFEL(NUMSON) = K
 400
         CONTINUE
С
     ELSE IF (SONZEI(I).EQ.',') THEN
С
      NUMSON = NUMSON + 1
      STAFEL(NUMSON) = SONSTA(I+1)
      SONFEL(NUMSON) = SONNUM(I+1)
С
     ELSE IF (SONZEI(I).EQ.' ') THEN
С
      GOTO 600
С
     END IF
С
 500 CONTINUE
С
C NUMERISCHE FELDER AUF INTERNAL FILE UMWANDELN
С
 600 DO 700 I=1,1000
     WRITE (VERSU(I), '(I2)') VERFEL(I)
     IF (VERSU(I)(1:1).EQ.'') VERSU(I)(1:1) = '0'
     WRITE (SONDE(I), (12)) SONFEL(I)
     IF (SONDE(I)(1:1).EQ.'') SONDE(I)(1:1) = '0'
 700 CONTINUE
С
    LAUF = 1
    DO 800 I=1,NUMVER
     DO 800 J = 1, NUMSON
С
      LITKEN(LAUF) = PROJEK//VERSU(I)//'.'//STAFEL(J)//SONDE(J)
      DSN(LAUF) = USER//'.'//PROJEK//VERSU(I)//'.'//FILTYP//'('//
   +
               STAFEL(J)//SONDE(J)//')'
      LAUF = LAUF + 1
С
 800
       CONTINUE
С
C DATASETNAMES VOM INTERNAL FILE EINLESEN
С
    NUMKEN = NUMVER*NUMSON
    IF (TYPEOK) PRINT 1000, (DSN(I),I=1,NUMKEN)
1000 FORMAT (' ',A27)
С
C ENDE
С
    RETURN
С
    END
   SUBROUTINE CHPAN (PANVAR, VALUE, FORMAT, I)
С
C--
С
    DEFINES AND COPIES REAL*4 VARIABLES FOR PANEL 'MODEL3'
C---
С
   CHARACTER*(*) PANVAR, FORMAT
```

START = SONNUM(I) + 1

```
168
```

```
CHARACTER*10 DUMMY(100)
   REAL*4 VALUE
   INTEGER*4 LASTRC,I
С
   WRITE (DUMMY(I), FORMAT) VALUE
   LASTRC = ISPLNK('VDEFINE', PANVAR, DUMMY(I), 'CHAR', 10)
С
   RETURN
С
   END
   SUBROUTINE GUESS (TIMINT, LASTCH, DIFMU, DIFVAR, F, X, NPAR)
С
C-
С
    START ESTIMATES FOR THE MODEL OPTIMIZATION
C-
     С
C DUMMY VARIABLES
С
   REAL*4 TIMINT, DIFMU, DIFVAR, F(1), X(1)
   INTEGER LASTCH,NPAR
С
C COMMON VARIABLES
С
   REAL*4 SPKIN, SPKUT, SYSTEM, VECTOR, FILTER, WORK, XSCALE, PARMIN, PARMAX
   INTEGER KANIN, KANUT, ICALLS
   CHARACTER*1 MODOPT
   COMMON /DATCOM/ SPKIN(8192),SPKUT(8192),SYSTEM(8192),
             VECTOR(32768), FILTER(16384), KANIN, KANUT
   COMMON /OPTCOM/ WORK(70000),XSCALE(3),PARMIN(3),PARMAX(3),ICALLS,
             MODOPT
   INCLUDE (MOMCOM)
С
C LOCAL VARIABLES
С
   CHARACTER*1 MODSAV
С
C-----
C FIRST GUESS FOR 3-PARAMETER AXIAL-DISPERSIVE MODEL
C-----
С
   X(1) = DIFMU
   X(2) = 2.*X(1)**2/DIFVAR
   IF (NPAR.EQ.2) THEN
    X(3) = 0.
   ELSE
    X(3) = 0.1 \times X(1)
   END IF
С
   PARMIN(1) = 0.1*X(1)
   PARMAX(1) = 10.*X(1)
С
   PARMIN(2) = 0.01 X(2)
   PARMAX(2) = 100.*X(2)
С
   PARMIN(3) = 0.0
   PARMAX(3) = 10.*X(3)
С
C---
C SCALE PARAMETERS DOWN
C-----
С
```

```
DO 100 I=1,NPAR
    XSCALE(I) = X(I)
    X(I) = 1.
 100 CONTINUE
   IF (NPAR.EQ.2) X(3) = 0.
С
C----
C APPROXIMATE OPTIMIZATION FOR FIRST PARAMETER ESTIMATES
С
C TRY FIRST TO OBTAIN ESTIMATES FOR THE AXIAL DISPERSION MODEL
C-
  С
   MODSAV = MODOPT
   MODOPT = 'D'
   IPRT = 0
   CALL VA05A (LASTCH, NPAR, F, X, 0.01, 1.0, 1.0E-04, 50, IPRT, WORK)
   MODOPT = MODSAV
С
C-----
C IF AXIAL-DISPERSIVE MODEL WANTED GUESS IS DONE
C---
С
С
    X(1) IS MU
С
    X(2) IS BO
С
    X(3) IS DELAY
С
   IF (MODOPT.EQ.'D') RETURN
С
C---
C SCALE UP AND ESTIMATE MOMENTS OF THE MODEL DISTRIBUTION
C-
       С
   CALL SCALE (NPAR,X,XSCALE,'UP')
   CALL DISPER (SYSTEM, LASTCH, X)
   CALL MOMENT (SYSTEM,1,LASTCH,'N')
С
C---
C LOG-NORMAL DISTRIBUTION MODEL
C-----
С
С
   X(1) IS MU
С
   X(2) IS SIGMA
С
   X(3) IS DELAY
С
   IF (MODOPT.EQ.'L') THEN
С
    X(1) = 2.*ALOG(VMOM(2))-0.5*ALOG(VMOM(3))
    X(2) = SQRT(ALOG(VMOM(3))-2.*ALOG(VMOM(2)))
    IF (NPAR.EQ.3) THEN
     X(3) = ALOG(X(3))
     IF (X(3).LE.1.) X(3) = 1.
    ELSE IF (NPAR.EQ.2) THEN
     X(3) = 0.0
    END IF
С
C-----
    C GAMMA DISTRIBUTION MODEL
C-----
С
С
   X(1) IS LAMBDA
С
   X(2) IS SIGMA
С
   X(3) IS DELAY
С
```

```
170
```

```
ELSE IF (MODOPT.EQ.'G') THEN
С
    X(1) = VMOM(2)^{**}2/ZMOM(3)
    X(2) = ZMOM(3)/VMOM(2)
С
    PRINT *, (X(I), I = 1,3)
С
   END IF
С
C-----
C RESET UPPER BOUNDS
C-----
С
   IF (MODOPT.EQ.'D') THEN
    PARMAX(1) = 10.*X(1)
    PARMAX(2) = 100.*X(2)
    PARMAX(3) = 10.*X(3)
   ELSE IF (MODOPT.EQ.'L') THEN
    PARMAX(1) = 10.*X(1)
    PARMAX(2) = 100.*X(2)
    PARMAX(3) = 10.*X(3)
   ELSE IF (MODOPT.EQ.'G') THEN
    PARMAX(1) = 10.*X(1)
    PARMAX(2) = 100.*X(2)
    PARMAX(3) = 10.*X(3)
   END IF
С
C-----
C SCALE PARAMETERS DOWN
C-----
С
   DO 200 I=1,NPAR
   XSCALE(I) = X(I)
   X(I) = 1.
 200 CONTINUE
   IF (NPAR.EQ.2) X(3) = 0.
С
C-----
           C APPROXIMATE OPTIMIZATION FOR FIRST PARAMETER ESTIMATES
C-----
С
  IPRT = 0
  CALL VA05A (LASTCH, NPAR, F, X, 0.01, 1.0, 1.0E-04, 50, IPRT, WORK)
С
                               .
C------
C SET BOUNDARY CONSTRAINTS AND RESCALE
C----
   *****
С
   CALL SCALE (NPAR,X,XSCALE,'UP')
   DO 300 J=1,NPAR
    PARMIN(J) = 0.0
    PARMAX(J) = 100.*X(J)
   XSCALE(J) = X(J)
   X(J) = 1.
300 CONTINUE
С
  RETURN
С
  END
```

SUBROUTINE CALFUN (LASTCH,NPAR,F,X)

С

```
C-
С
    DETERMINATION OF THE SYSTEM'S WEIGHTING FUNCTION
С
    AND THE THEORETICAL MODEL OUTPUT
С
С
    LASTCH - LAST CHANNEL NUMBER
    NPAR - NUMBER OF PARAMETERS TO BE OPTIMIZED
С
С
    F
        - ARRAY OF RESIDUALS
С
    Х
        - BEST ESTIMATES' ARRAY
С
          ۵
C-
                     _____
С
C DUMMY ARGUMENTS
С
   REAL F(1),X(1)
   INTEGER LASTCH,NPAR
С
C COMMON VARIABLES
С
   REAL*4 T, SPKIN, SPKUT, SYSTEM, VECTOR, FILTER, XSCALE, PARMIN, PARMAX,
   +
         TIMINT
   INTEGER KANIN, KANUT, ICALLS
   CHARACTER*1 MODOPT
С
   COMMON /DATCOM/ SPKIN(8192),SPKUT(8192),SYSTEM(8192),
              VECTOR(32768), FILTER(16384), KANIN, KANUT
   +
   COMMON /OPTCOM/ WORK(70000),XSCALE(3),PARMIN(3),PARMAX(3),ICALLS,
              MODOPT
   +
   COMMON /TIMCOM/ T(8192),TIMINT
С
C LOCAL VARIABLES
C
   REAL*4 PUNISH
   INTEGER IWK(16)
   LOGICAL PENAL
   PARAMETER (PUNISH = 10000.)
С
C FIRST EXECUTABLE INSTRUCTION
С
   ICALLS = ICALLS + 1
С
C SCALE PARAMETERS UP
С
   CALL SCALE (NPAR,X,XSCALE,'UP')
С
C---
                              _____
C IF NECESSARY CONSTRAIN PARAMETER ESTIMATES AND RETURN TO VA05A
C-
           С
   IF (PENAL(NPAR,X,PARMIN,PARMAX)) THEN
С
    IF (ICALLS.GT.5) THEN
С
     CALL VSETR4 (PUNISH, F, 1, LASTCH)
     CALL SCALE (NPAR,X,XSCALE,'DOWN')
     RETURN
С
    END IF
С
   END IF
С
C----
            C EVALUATE WEIGHTING FUNCTION FOR THE SELECTED MODEL
```

	С С (1) AXIAL-DISPERSIVE MODEL
	C	IF (MODOPT.EQ.'D') THEN
	C	CALL DISPER (SYSTEM, LASTCH, X)
	C C (;	2) LOG-NORMAL MODEL
	C	ELSE IF (MODOPT.EQ.'L') THEN
	C	CALL LGNPDF (SYSTEM,LASTCH,X)
	C C (:	3) GAMMA DISTRIBUTION MODEL
	C	ELSE IF (MODOPT.EQ.'G') THEN
	C c	CALL GDMPDF (SYSTEM,LASTCH,X)
		END IF
	C C C C	COPY SYSTEM INPUT AND WEIGHTING FUNCTION INTO CONVOLUTION ARRAYS
		CALL VMOVE (SPKIN,VECTOR,KANIN) CALL VMOVE (SYSTEM,FILTER,LASTCH)
		CONVOLVE INPUT WITH WEIGHTING FUNCTION TO OBTAIN MODEL OUTPUT
	с	CALL VCONVO (VECTOR, FILTER, KANIN, LASTCH, IWK)
	C C C	ALCULATE RESPONSE FUNCTION AND WEIGTH IT WITH OUTPUT
	C C 10 C	DO 100 I = 1,LASTCH F(I) = (VECTOR(I)-SPKUT(I)) * SPKUT(I) 0 CONTINUE
	C C_S	CALE PARAMETERS DOWN
	C C	CALL SCALE (NPAR,X,XSCALE,'DOWN')
	С	RETURN
		END
	C 	SUBROUTINE SCALE (NPAR,X,XSCALE,WAY)
	C C	SCALE PARAMETER ESTIMATES
		REAL*4 X(1),XSCALE(1) INTEGER NPAR CHARACTER*(*) WAY

```
C SCALE DOWN
С
    IF (WAY.EQ.'DOWN') THEN
С
     DO 100 I = 1, NPAR
      X(I) = X(I)/XSCALE(I)
 100
       CONTINUE
С
C SCALE UP
С
   ELSE IF (WAY.EQ.'UP') THEN
С
     DO 200 I = 1,NPAR
      X(I) = X(I) * XSCALE(I)
 200
       CONTINUE
С
C SCALING ERROR
С
                             3
   ELSE
C .
     PRINT *, '>>> SCALING ERROR, VERIFY SOURCE CODE <<<'
     STOP
С
   END IF
С
   RETURN
С
   END
   LOGICAL FUNCTION PENAL (NPAR,X,PARMIN,PARMAX)
С
C-
С
    TEST PARAMETERS AGAINST BOUNDARY LIMITS
C-
С
   REAL*4 X(1), PARMIN(1), PARMAX(1)
   INTEGER LASTCH, NPAR
С
   PENAL = .FALSE.
С
   DO 100 I=1,NPAR
    IF (X(I).LT.0.0) PENAL = .TRUE.
    IF (X(I).LT.PARMIN(I)) PENAL = .TRUE.
    IF (X(I).GT.PARMAX(I)) PENAL = .TRUE.
 100 CONTINUE
С
   RETURN
С
   END
   SUBROUTINE GUTFIT (OBSERV, EXPECT, NOBS, NPAR)
С
C-
                    С
    GOODNESS-OF-FIT TESTS
C--
    С
           :
C DUMMY ARGUMENTS
С
   REAL*4 OBSERV(1), EXPECT(1)
   INTEGER*4 NOBS,NPAR
С
```

```
C COMMON ARGUMENTS
С
   REAL*4 F, RESSSQ, CHISQR, PROB, DMAXCD, STATKS, P1SIDE, P2SIDE
   COMMON /STESTS/ F(8192), RESSSQ, CHISQR, PROB, DMAXCD, STATKS, P1SIDE,
   +
            P2SIDE
С
C LOCAL ARGUMENTS
С
   REAL*4 SUMOBS(8192), SUMEXP(8192), CISQAR(8192), RESCUM
   INTEGER*4 NDF
С
C-----
C CHI-SQUARED TEST AND RESIDUAL SUM OF SQUARES
C-
         С
   RESSSQ = 0.
С
   DO 100 I=1,NOBS
С
    CISQAR(I) = (OBSERV(I)-EXPECT(I))^{**2}
    RESSSQ = RESSSQ + CISQAR(I)
    CISQAR(I) = CISQAR(I)/EXPECT(I)
    CISQAR(I) = ABS(CISQAR(I))
С
 100 CONTINUE
С
   CHISQR = VSUM(CISQAR, NOBS)
С
   NDF = NOBS-NPAR
С
   CALL SA01A (CHISQR,NDF,PROB)
С
C----
        C KOLMOGOROFF-SMIRNOFF TEST
C------
С
С
   CALCULATES MAXIMUM DEVIATION BETWEEN CUMULATIVE DISTRIBUTIONS
С
   CALL SUMFUN (OBSERV, SUMOBS, NOBS)
¢
   CALL SUMFUN (EXPECT, SUMEXP, NOBS)
С
C---
           _____
C DMAXCD IS THE MAXIMUM DISTANCE FOR THE CUMULATIVE DISTRIBUTIONS
C---
    С
   DMAXCD = 0.0
С
   DO 200 I=1,NOBS
    RESCUM = ABS(SUMOBS(I)-SUMEXP(I))
    DMAXCD = AMAX1(DMAXCD,RESCUM)
 200 CONTINUE
С
   STATKS = DMAXCD*SQRT(FLOAT(NDF))
С
C---
C K-S STATISTICS ASYMPTOTIC PROBABILITY DISTRIBUTION FUNCTION
C---
         С
   CALL MDSMR (STATKS, P1SIDE, P2SIDE)
С
   RETURN
С
```

```
SUBROUTINE DISPER (SYSTEM, LASTCH, X)
С
C-
                       C
C
C
    WEIGHTING FUNCTION OF THE AXIAL-DISPERSION MODEL
C-
С
С
    LEVENSPIEL SOLUTION VALID FOR "THROUGH THE WALL" MEASUREMENTS
С
С
С
С
С
    REFERENCES :
    HIMMELBLAU, D.M.:
Ċ
    PROCESS ANALYSIS BY STATISTICAL METHODS.
С
    JOHN WILEY & SONS, N.Y. (1970). CHAPTER 10
С
С
    LEVENSPIEL O .:
C
C
C
C
C
    CHEMICAL REACTION ENGINEERING.
    JOHN WILEY & SONS, N.Y. (1972). CHAPTER 9
    PARAMETERS : TAU - MEAN RESIDENCE TIME
С
            BO - BODENSTEIN NUMBER
C
C
            DELAY - DELAY TIME (DEAD TIME)
Ċ
    BO = U * L / D
С
C DUMMY ARGUMENTS
С
   REAL*4 SYSTEM(1),X(1)
   INTEGER LASTCH
С
C COMMON VARIABLES
С
   REAL*4 T,TIMINT
   COMMON /TIMCOM/ T(8192),TIMINT
С
C LOCAL VARIABLES
С
   REAL*4 PI, TAU, BO, DELAY, BOTAUM, BOTAUD, FACTOR, EXPO, TIME
   PARAMETER (PI = 3.14159265359)
С
C FIRST EXECUTABLE INSTRUCTION
С
   TAU = X(1)
   BO = X(2)
   DELAY = X(3)
   BOTAUM = BO*TAU
   BOTAUD = BO/TAU
   FACTOR = 0.5*SQRT(BOTAUD/PI)
С
   DO 100 I=1,LASTCH
С
     TIME = T(I)-DELAY
     IF (TIME.LE.O.) THEN
      SYSTEM(I) = 0.
     ELSE
      EXPO = (1.-TIME/TAU)^{*2}BOTAUM/(4.*TIME)
      EXPO = EXP(-EXPO)
      SYSTEM(I) = FACTOR^{(1)}SQRT(TIME))^{EXPO}
      SYSTEM(I) = TIMINT*SYSTEM(I)
```

```
END IF
C
100 CONTINUE
C
RETURN
C
```

```
SUBROUTINE LGNPDF (SYSTEM, LASTCH, X)
С
C-
    LOG-NORMAL DISTRIBUTION MODEL PROBABILITY DENSITY FUNCTION
С
C-
   С
С
    3-PARAMETER MODEL ACCORDING TO BURY
С
С
    SIGMA - EXTENT OF MIXING IN FLOW DIRECTION
С
    MU - MEAN RESIDENCE TIME OF THE SYSTEM
С
    DELAY - DEAD TIME OF THE SYSTEM
С
С
    REFERENCE :
С
С
    BURY, K.V.: STATISTICAL MODELS IN APPLIED SCIENCE
С
           JOHN WILEY & SONS, N.Y. (1975), CHAPTER 8
С
C-
С
C DUMMY ARGUMENTS
С
   REAL*4 SYSTEM(1),X(1)
   INTEGER LASTCH
С
C COMMON VARIABLES
С
   REAL*4 T,TIMINT
   COMMON /TIMCOM/ T(8192),TIMINT
С
C LOCAL VARIABLES
С
   REAL*4 MU,SIGMA,DELAY,TIME,OVFLOW,TWOPI,FACTOR
   DATA OVFLOW/150./
   DATA TWOPI/6.283185308/
С
C FIRST EXECUTABLE STATEMENT
С
   MU = X(1)
   SIGMA = X(2)
   DELAY = X(3)
   FACTOR = SIGMA*SQRT(TWOPI)
   FACTOR = TIMINT/FACTOR
С
   DO 100 I=1,LASTCH
С
    TIME = T(I)-DELAY
    IF (TIME.LE.1.) THEN
     SYSTEM(I) = 0.
    ELSE
     EXPO = (ALOG(TIME)-MU)/SIGMA
     EXPO = 0.5 EXPO^{*2}
     IF (EXPOLE.OVFLOW) THEN
       SYSTEM(I) = FACTOR*EXP(-EXPO)/TIME
     ELSE
```

```
SYSTEM(I) = 0.
       END IF
     END IF
С
  100 CONTINUE
С
    RETURN
С
    END
    SUBROUTINE GDMPDF (SYSTEM, LASTCH, X)
С
C-
С
     GAMMA DISTRIBUTION MODEL PROBABILITY DENSITY FUNCTION
C--
С
С
    3-PARAMETER MODEL ACCORDING TO BURY (CHAPTER 9)
С
С
    REFERENCE :
С
С
    BURY, K.V.: STATISTICAL MODELS IN APPLIED SCIENCE
С
            JOHN WILEY & SONS, N.Y. (1975), CHAPTER 9
С
C
C
    SIGMA - MEAN RESIDENCE TIME OF THE SYSTEM
    LAMBDA - EXTENT OF MIXING IN FLOW DIRECTION
С
    DELAY - DEAD TIME OF THE SYSTEM
С
C-
              С
C DUMMY ARGUMENTS
С
    REAL*4 SYSTEM(1),X(1)
    INTEGER LASTCH
С
C COMMON VARIABLES
С
    REAL*4 T.TIMINT
    COMMON /TIMCOM/ T(8192),TIMINT
С
C LOCAL VARIABLES
С
    REAL*4 SIGMA, LAMBDA, DELAY, TIME, OVFLOW, FACTOR, GAMMAL
    DATA OVFLOW/150./
С
C FIRST EXECUTABLE STATEMENT
С
    LAMBDA = X(1)
   SIGMA = X(2)
   DELAY = X(3)
   PRINT *, 'GDM'
PRINT *, 'SIGMA = ',SIGMA
PRINT *, 'LAMBDA = ',LAMBDA
PRINT *, 'DELAY = ',DELAY
С
C GAMMA FUNCTION FROM HARWELL LIBRARY
С
   CALL FC03A (GAMMAL, LAMBDA)
С
   FACTOR = TIMINT/(SIGMA*GAMMAL)
С
```

```
DO 100 I=1,LASTCH
C
```

178

```
TIME = T(I)-DELAY
     IF (TIME.LE.O.) THEN
      SYSTEM(I) = 0.
     ELSE
      EXPO = TIME/SIGMA
      IF (EXPOLE.OVFLOW) THEN
       SYSTEM(I) = FACTOR*EXPO**(LAMBDA-1.)*EXP(-EXPO)
      ELSE
       EXPO = ALOG(FACTOR) + (LAMBDA-1.)*ALOG(EXPO)-EXPO
       SYSTEM(I) = EXP(EXPO)
      END IF
    END IF
С
 100 CONTINUE
С
   RETURN
С
   END
   SUBROUTINE DISSIN
С
C----
           _____
С
    INITIALIZE DISSPLA OPTIONS
C-----
С
C COMMON VARIABLES
С
   REAL*4 XPAGE, YPAGE, XAXMAX, YAXMAX, HITE
   LOGICAL BATCH, SHOW
   COMMON /DPARAM/ XPAGE, YPAGE, XAXMAX, YAXMAX, HITE, BATCH, SHOW
С
   CALL RESET ('ALL')
   CALL NOBRDR
   CALL NOCHEK
   CALL HEIGHT (HITE)
   CALL SWISSM
   CALL SHDCHR (90.,1,.001,1)
С
С
    CALL THKCRV (0.02)
С
C X AXIS SET-UP
С
   CALL XINTAX
   CALL XAXEND ('NOFIRST')
С
C Y AXIS SET-UP
С
   CALL YAXEND ('NOENDS')
   CALL YREVTK
С
C SET THE PAGE SIZE FOR SELECTED DEVICE
С
   CALL PAGE (XPAGE, YPAGE)
С
C DEFINE GRACE MARGIN
С
   CALL GRACE (0.)
С
   RETURN
С
   END
```

+MESS) С C-С С **DUMMY PARAMETERS :** С С X - VEKTOR DER LAENGE N MIT DER UNABHAENGIGEN VARIABLE С Y - MATRIX (N*M) MIT DEN N WERTEN DER M FUNKTIONEN С IY - REIHENDIMENSION DER MATRIX Y (IM HAUPTPROG. VEREINBART) С MAXKAN - DARSTELLUNGSLAENGE DES X VEKTORS C C NFUN - ANZAHL DER ZU PLOTTENDEN FUNKTIONEN R(4) - ACHSENGRENZEN С (1) - X MIN С (2) - X MAX (3) - Y MIN С (4) - Y MAX С С С С С С ITR - KOORDINATENSYSTEM (0) - XLIN - YLIN (1) - XLOG - YLIN (2) - XLIN - YLOG С (3) - XLOG - YLOG С TITLE - CHARACTER STRING ALS PLOTTITEL С С С XLABEL - X-ACHSENBESCHREIBUNG YLABEL - Y-ACHSENBESCHREIBUNG MESS - MESSAGE ARRAY DER LAENGE NFUN С 000000 **PLOT PARAMETERS :** XORIG - VALUE OF X AT THE AXIS ORIGIN XSTP - X STEP INTERVAL IN USER UNITS XMAX - VALUE OF X AT END OF X AXIS YORIG - VALUE OF Y AT THE AXIS ORIGIN С YSTP - Y STEP INTERVAL IN USER UNITS С YMAX - VALUE OF Y AT END OF Y AXIS С C--С REAL*4 X(1), Y(IY, 1), R(4), XORIG, XMAX, YORIG, YMAX REAL*4 WORK(8192) INTEGER*4 IY, MAXKAN, NFUN, ITR, LTIT, LXLAB, LYLAB CHARACTER*(*) TITLE, XLABEL, YLABEL, MESS(1) CHARACTER*6 COLOR(18) С C COMMON VARIABLES С REAL*4 XPAGE, YPAGE, XAXMAX, YAXMAX, HITE LOGICAL BATCH, SHOW COMMON /DPARAM/ XPAGE, YPAGE, XAXMAX, YAXMAX, HITE, BATCH, SHOW С DATA COLOR/'BLUE', 'RED', 'GREEN', 'MAGENTA', 'CYAN', 'WHITE', 'BLUE', 'RED', 'GREEN', 'MAGENTA', 'CYAN', 'WHITE', 'BLUE', 'RED', 'GREEN', +'MAGENTA', 'CYAN', 'WHITE'/ +С C-С

SUBROUTINE DISSGO (X,Y,IY,MAXKAN,NFUN,R,ITR,TITLE,XLABEL,YLABEL,

LTIT = LENGTH(TITLE) LXLAB = LENGTH(XLABEL) LYLAB = LENGTH(YLABEL)C XORIG = R(1) XMAX = R(2)

YORIG = R(3)

```
YMAX = R(4)
 С
 C DEFINE GRAPH HEADING
 С
     CALL HEADIN (TITLE, LTIT, 1.0, 1)
 С
 C DEFINE COORDINATE TRANSFORMATIONS
 С
 C XLIN - YLIN
 С
    IF (ITR.EQ.0) THEN
 С
      CALL XNAME (XLABEL, LXLAB)
      CALL YNAME (YLABEL, LYLAB)
      CALL GRAF (XORIG, 'SCALE', XMAX, YORIG, 'SCALE', YMAX)
С
C XLOG - YLIN
С
    ELSE IF (ITR.EQ.1) THEN
С
     XINPC = XAXMAX/ALOG10(XMAX/XORIG)
      CALL YNAME (YLABEL, LYLAB)
      CALL YGRAF (XORIG, 1, YORIG, 'SCALE', YMAX)
      CALL XLGAXS (XORIG, XINPC, XAXMAX, XLABEL, LXLAB, 0.0, 0.0)
С
C LOG Y AXIS
С
    ELSE IF (ITR.GE.2) THEN
С
     IF (YMAX.LT.1.) YORIG = 1.0E-03
     YINPC = YAXMAX/ALOG10(YMAX/YORIG)
С
C XLIN - YLOG
С
     IF (ITR.EQ.2) THEN
       CALL XNAME (XLABEL, LXLAB)
       CALL XGRAF (XORIG, 'SCALE', XMAX, YORIG, .1)
       CALL YLGAXS (YORIG, YINPC, YAXMAX, YLABEL, LYLAB, 0.0, 0.0)
С
C XLOG - YLOG
С
     ELSE
       CALL XNAME (XLABEL, LXLAB)
       CALL YNAME (YLABEL, LYLAB)
       XINPC = XAXMAX/ALOG10(XMAX/XORIG)
       CALL LOGLOG (XORIG, XINPC, YORIG, YINPC)
     END IF
С
    END IF
С
C DATA OUT
С
    XPOS = .8*XAXMAX
    YPOS = .8*YAXMAX
    YJUMP = .1*YAXMAX
С
    DO 200 J=1,NFUN
С
     DO 100 I=1,MAXKAN
       WORK(I) = Y(I,J)
       IF (ITR.GE.2) THEN
        IF (WORK(I).LE.1.0E-03) WORK(I) = 1.0E-03
       END IF
```

100 CONTINUE С CALL SETCLR (COLOR(J)) С CALL CURVE (X,WORK,MAXKAN,0) С CALL MESSAG (MESS(J),3,XPOS,YPOS) YPOS = YPOS - YJUMPС 200 CONTINUE С C PLOT SECONDARY AXES С CALL SETCLR ('WHITE') CALL XNONUM CALL YNONUM С IF (ITR.EQ.0) THEN CALL XGRAXS (XORIG, 'SCALE', XMAX, XAXMAX, '\$', 100,0.0, YAXMAX) CALL YGRAXS (YORIG, 'SCALE', YMAX, YAXMAX, '\$', -100, XAXMAX, 0.0) ELSE IF (ITR.EQ.1) THEN CALL YGRAXS (YORIG, 'SCALE', YMAX, YAXMAX, ' \$',-100, XAXMAX, 0.0) CALL XLGAXS (XORIG, XINPC, XAXMAX, ' \$', 100, 0.0, YAXMAX) ELSE IF (ITR.EQ.2) THEN CALL XGRAXS (XORIG, 'SCALE', XMAX, XAXMAX, '\$', 100, 0.0, YAXMAX) CALL YLGAXS (YORIG, YINPC, YAXMAX,' \$',-100, XAXMAX,0.0) ELSE IF (ITR.EQ.3) THEN CALL XLGAXS (XORIG, XINPC, XAXMAX, ' \$', 100, 0.0, YAXMAX) CALL YLGAXS (YORIG, YINPC, YAXMAX, '\$',-100, XAXMAX, 0.0) END IF С CALL RESET ('XNONUM') CALL RESET ('YNONUM') С C FRAME TO ENHANCE THE PLOT С CALL FRAME С C BACK TO CALLING PROGRAM С RETURN С END

PROGRAM IDECOD С С J.J.PORTA С 15-JUN-86 С C-С LINEAR SISTEM INTERACTIVE FFT SIGNAL DECONVOLUTION C-С С THIS PROGRAMS CONDUCTS THE SIGNAL DECONVOLUTION С OF NORMALIZED RTD DATA. C C THE INPUT AND OUTPUT DATA ARE CONVERTED INTO THE FOURIER TRANSFORM DOMAIN AND THE COMPLEX DIVISION c c IS EXECUTED. AFTER INTERACTIVE LOW-PASS FILTERING OF THE TRANSFER С FUNCTION REVERSE SPECTRUM TRANSFORMATION GIVES THE 0000 IMPULSE RESPONSE (TIME DOMAIN WEIGTHING FUNCTION). DOUBLE PRECISION VERSION FOR IBM3279 DEVICE C-С REAL*4 T(16384),SPKIN(16384),SYSTEM(16384),SPKUT(16384), Y(16384,3),RANGE(4),TEMP,ZERO,POSIN,POSUT,HOLD,MUEIN,MUEOUT REAL*8 INPUT(16384),OUTPUT(16384) INTEGER KANIN, KANUT, MAXKAN, ITEMP, LONG, IIN, IUT CHARACTER*35 TITEL CHARACTER*23 DUMIBM CHARACTER*10 DUMDEC CHARACTER*3 MESS(3) CHARACTER*1 MOML, FUNL, MOMEN С EQUIVALENCE (INPUT(1),T(1)) EQUIVALENCE (SPKIN(1),Y(1,1)) EQUIVALENCE (SPKUT(1), Y(1,2)) EQUIVALENCE (SYSTEM(1),Y(1,3)) С **INCLUDE (KOPF)** INCLUDE (KENNUNG) INCLUDE (MOMCOM) С DATA MOMEN/'Y'/ DATA MOML/'Y'/ DATA FUNL/'Y'/ DATA ZERO/0.0/ DATA LONG/16384/ С C---C FIRST EXECUTABLE INSTRUCTION C-С CALL ERRSET (207,100000,-1,2,0,209) С TYPEOK = .FALSE.100 FMTFIL = .FALSE. CALL KENIO FMTFIL = .TRUE.С

```
IF (NUMSON.NE.2) THEN
   WRITE (*,*) '>>> NUMSON NE 2 , KENNFILE BITTE UEBERPRUEFEN <<<'
   GOTO 100
   END IF
С
C-----
C SWAP KENNUNGEN FOR ACQUEOUS PHASE EXPERIMENTS
C-----
С
  CALL SWPKEN
С
C---
   C START EXPERIMENT LOOP
C-----
С
C IIN IS THE KENNUNG-NUMBER OF THE INPUT DATA
C IUT IS THE KENNUNG-NUMBER OF THE OUTPUT DATA
С
  IIN = 1
  IUT = 2
С
  DO 400 IVER = 1, NUMVER
С
C----
        C RESET ARRAYS TO ZERO VECTOR (ZERO-FILLING OPERATION AFTER MOVE)
C----
   С
   CALL VSETR4 (ZERO, SPKIN, 1, LONG)
   CALL VSETR4 (ZERO, SPKUT, 1, LONG)
С
C-----
C INPUT SIGNAL
C---
   С
   TYPEOK = .TRUE.
   FMTFIL = .TRUE.
   CALL FOPEN (1,DSN(IIN))
   CALL FORMRD (1,SPKIN,LITKEN(IIN))
   CLOSE (1)
С
   KANIN = KANTOT
   YMAXIN = YMAX
   POSIN = SOKOR
   MUEIN = VMOM1
   SIGMAI = SIGMA
С
C-----
       C OUTPUT SIGNAL
C-----
                С
   CALL FOPEN (1,DSN(IUT))
   CALL FORMRD (1,SPKUT,LITKEN(IUT))
   CLOSE (1)
С
   KANUT = KANTOT
   YMAXUT = YMAX
   POSUT = SOKOR
   MUEOUT = VMOM1
   SIGMAO = SIGMA
С
   ZONE = ABS(POSUT-POSIN)
   MAXKAN = MAX(KANIN, KANUT)
   DZMOM2 = SIGMAO**2-SIGMAI**2
```

```
DVMOM1 = MUEOUT-MUEIN
С
C-----
C GUESS DISPERSION COEFFICIENT AND BODENSTEIN NUMBER FROM MOMENTS
C---
      С
    CALL BODEN (DVMOM1,DZMOM2,ZONE,DISPEK,BOSPEK)
С
C--
    C INCREASE PRECISSION
C----
     С
    DO 200 I=1,LONG
     INPUT(I) = DBLE(SPKIN(I))
     OUTPUT(I) = DBLE(SPKUT(I))
 200
      CONTINUE
С
C-----
C DECONVOLUTION STEP IN THE FOURIER TRANSFORM DOMAIN
C-----
С
    CALL VDECON (OUTPUT, KANUT, INPUT, KANIN, LONG)
С
C----
C DISPLAY FUNCTIONS
C--
   С
    DO 300 I = 1, MAXKAN
     T(I) = FLOAT(I) * ZEIT
     SYSTEM(I) = SNGL(OUTPUT(I))
 300
     CONTINUE
С
    CALL MAXI (SYSTEM, MAXKAN, YMAXSY, IMAXSY)
    YMAX = AMAX1(YMAXIN,YMAXUT,YMAXSY)
С
    RANGE(1) = 0.
    RANGE(2) = T(MAXKAN)
    RANGE(3) = 0.
    RANGE(4) = YMAX
С
    NUMFUN = 3
    DUMDEC = LITKEN(IUT)
    DUMDEC(8:8) = 'U'
    CALL IBMNAM (DUMDEC, DUMIBM)
    TITEL = DSN(IUT)(8:13)//' ENTFALTUNG SONDEN '//DSN(IIN)(21:22)/
         /' = > '//DSN(IUT)(21:22)
    MESS(1) = DSN(IIN)(20:22)
    MESS(2) = DSN(IUT)(20:22)
    MESS(3) = DUMIBM(20:22)
С
C-
          C DISSPLA STEP
C-----
С
    CALL DISPLA (T,Y,LONG,MAXKAN,NUMFUN,RANGE,ITR,TITEL,'ZEIT(S)',
   ÷
          'DICHTE', MESS)
С
C--
      C OPTION SELECTION PANEL IDECOD
C--
        С
    LASTRC = ISPLNK('VDEFINE', '(MOM)', MOMEN, 'CHAR', 1)
    LASTRC = ISPLNK('VDEFINE', '(MOMLEG)', MOML, 'CHAR', 1)
```

```
LASTRC = ISPLNK('VDEFINE', '(FUNLEG)', FUNL, 'CHAR', 1)
С
    LDISPL = ISPLNK('DISPLAY', 'IDECOD')
С
C---
C RESET KOPF ELEMENTS
C---
         С
    KANTOT = MAXKAN
    YMAX = YMAXSY
    TYMAXA = FLOAT(IMAXSY)*ZEIT
    MODELL = 'FT'
    IN = DSN(IIN)(21:22)
    OUT = DSN(IUT)(21:22)
    CALL KRESET
Ċ
C----
C ESTIMATE MOMENTS OF THE IMPULSE RESPONSE FUNCTION
C--
    *********
С
    IF (MOMEN.EQ.'Y') THEN
С
     KANLIN = 1
     CALL FBOUND (SYSTEM, KANTOT, KANLIN, KANREC, 'GEWICHTSFUNKTION (FF
   +T-ENTFALTUNG)')
     TO = KANLIN*ZEIT
     KANTOT = KANREC
     KANLIN = 1
     CALL MOMENT (SYSTEM, KANLIN, KANREC, MOML)
     CALL BODEN (VMOM(2),ZMOM(3),ZONE,DIFOUR,BOFOUR)
     CALL HUP (VMOM(2), FLUSS, RATIO, KENPHA, ZONE, HOLDUP)
     CALL KOPFIO (DUMDEC)
С
    END IF
С
C-
       C STORE IMPULSE RESPONSE FUNCTION ON DISK
C-
С
    IF (FUNL.EQ.'Y') THEN
С
     CALL FWRITE (1, DUMIBM, 'U', SYSTEM)
С
    END IF
С
C-
          _____
C INCREASE SPECTRUM POINTERS FOR NEXT DECONVOLUTION
C-
     С
    ||N| = ||N+2|
    IUT = IUT + 2
С
 400 CONTINUE
С
   STOP
С
   END
   SUBROUTINE VDECON (A, LA, B, LB, LENGTH)
С
C-
С
   VECTOR DECONVOLUTION
```

C-С DOUBLE PRECISION VERSION C-С С PURPOSE - VECTOR DECONVOLUTION С С USAGE - CALL VDECON (A,B,LA,LB,IWK) ARGUMENTS A - ON INPUT, A MUST CONTAIN (IN ITS FIRST LA ELEMENTS) THE OUTPUT ARRAY (R*8) ON OUTPUT, A WILL CONTAIN (IN THE FIRST LA ELEMENTS) THE RESULT OF THE DECONVOLUTION. THE LENGTH OF VECTOR A MUST BE AT LEAST 2**(M+1), WHERE M IS THE SMALLEST INTEGER SUCH THAT LENGTH IS LESS THAN OR EQUAL TO 2**M. NOTE - THE ROUTINE TREATS A AND B AS COMPLEX VECTORS OF LENGTH 2**M AND 2**(M-1) RESPECTIVELY. B - B CONTAINS (IN ITS FIRST LB ELEMENTS) THE С INPUT ARRAY (R*8). C C ON OUTPUT, B IS DESTROYED. THE LENGTH OF VECTOR B MUST BE AT LEAST 2**M, WHERE M IS Ċ DEFINED ABOVE. С LA - LENGTH OF THE FIRST DATA ARRAY (OUTPUT) С LB - LENGTH OF THE SECOND DATA ARRAY (INPUT) С C-С INCLUDE (KENNUNG) **INCLUDE (KOPF)** С C-----C SPECIFICATIONS FOR DUMMY ARGUMENTS C----С INTEGER LA, LB, LENGTH COMPLEX*16 A(1),B(1) С C-----C SPECIFICATIONS FOR LOCAL VARIABLES C-----С REAL*4 AMPL(8192) INTEGER IMAX,NN,NREM,MTWO,M,I,MM,LAP1,LBP1,ND2,LAP1S2,LBP1S2,ND4, + NDT,NP2,NMK,N2,J,IWK(20) DOUBLE PRECISION PI, ZERO, ONE, THETA, TP, TEMP, DN, A1(2), GA(2), GB(2), +HALF COMPLEX*16 XIMAG, ALPH, BETA, GAMA, GAMB, CZERO, C1, S1 CHARACTER*6 ACUT, ASHIFT С EQUIVALENCE (GA(1), GAMA) EQUIVALENCE (GB(1), GAMB) EQUIVALENCE (ALPH, A1(1)) EQUIVALENCE (ZERO, CZERO) С DATA CZERO/(0.D0,0.D0)/ PARAMETER (IMAX = 24) PARAMETER (ONE = 1.0D0) PARAMETER (HALF = 0.5D0) PARAMETER (PI = 3.141592653589793D0) С C--

```
C FIRST EXECUTABLE STATEMENT
C-----
С
   NN = LENGTH
   NREM = (NN+1)/2
С
C-----
C DETERMINE THE SMALLEST INTEGER M SUCH THAT
C-----
С
С
   LENGTH IS LESS THAN OR EQUAL TO 2**M
С
   MTWO = 2
   M = 1
   DO 50 I = 1,IMAX
    IF (NN.LE.MTWO) GOTO 100
    MTWO = MTWO + MTWO
    M = M + 1
 50 CONTINUE
 100 \text{ NN} = 2^{**}\text{M}
   MM = M-1
С
C-----
C ZERO THE TRAILING ELEMENTS OF BOTH A AND B
C-----
С
   LAP1 = LA+1
   LBP1 = LB+1
   DN = NN
   ND2 = NN/2
   LAP1S2 = LAP1/2
   LBP1S2 = LBP1/2
   IF (LAP1S2*2.NE.LAP1) GOTO 150
   TEMP = A(LAP1S2)
   A(LAP1S2) = TEMP
 150 \text{ LAP1S2} = \text{LAP1S2} + 1
С
   DO 200 I = LAP1S2,ND2
    A(I) = CZERO
 200 CONTINUE
С
   IF (LBP1S2*2.NE.LBP1) GOTO 250
   TEMP = B(LBP1S2)
   B(LBP1S2) = TEMP
 250 \text{ LBP1S2} = \text{LBP1S2} + 1
С
   DO 300 I = LBP1S2,ND2
    B(I) = CZERO
 300 CONTINUE
С
   ND4 = ND2/2
   NDT = ND4+1
   THETA = PI/ND2
   XIMAG = DCMPLX(ZERO,ONE)
   NP2 = ND2 + 2
С
C-----
        ____
C COMPUTE THE CENTER ELEMENTS FOR BOTH THE A AND B VECTORS
C-----
С
   GAMA = CZERO
   GAMB = CZERO
С
```

```
DO 350 I = 1,ND2
     GAMA = GAMA + A(I)
     GAMB = GAMB + B(I)
 350 CONTINUE
С
   TEMP = GA(1)-GA(2)
    GAMA = TEMP
   TEMP = GB(1)-GB(2)
   GAMB = TEMP
С
C-----
C COMPUTE THE FFT OF BOTH A AND B AS COMPLEX VECTORS
C---
     С
C USING IMSL DOUBLE PRECISSION FFT2C
С
   CALL FFT2C (A.MM.IWK)
   CALL FFT2C (B,MM,IWK)
С
   ALPH = A(1)
   A(1) = A1(1) + A1(2)
   ALPH = B(1)
   B(1) = A1(1) + A1(2)
   TP = THETA
С
C------
C COMPUTE THE FFT OF BOTH A AND B AS REAL VECTORS
C USING THE COMPLEX RESULT ABOVE
C-----
С
   DO 400 K = 2,ND4
    NMK = NP2-K
    S1 = DCONJG(A(NMK))
    ALPH = A(K) + S1
    BETA = XIMAG^{*}(S1-A(K))
    S1 = DCMPLX(DCOS(THETA), DSIN(THETA))
    A(K) = (ALPH + BETA*S1)*HALF
    A(NMK) = DCONJG(ALPH-BETA*S1)*HALF
    C1 = DCONJG(B(NMK))
    ALPH = B(K) + C1
    BETA = XIMAG^{*}(C1-B(K))
    B(K) = (ALPH + BETA*S1)*HALF
    B(NMK) = DCONJG(ALPH-BETA*S1)*HALF
    THETA = THETA + TP
 400 CONTINUE
С
N2 = NN+2
C-----
    C DECONVOLUTION STEP : DIVIDE TRANSFORMS OF A AND B
C-----
С
   DO 450 I=1,ND2
    A(I) = DCONJG(A(I)/B(I))
 450 CONTINUE
С
   DO 500 I=2,ND2
    J = N2-I
    A(J) = DCONJG(A(I))
 500 CONTINUE
С
   A(ND2+1) = GAMA^*GAMB
С
```

```
C------
C AMPLITUDE SPECTRUM
C-----
      С
   DO 550 I = 1,ND2
    AMPL(I) = SQRT((REAL(A(I)))^{**2} + (IMAG(A(I)))^{**2})
 550 CONTINUE
С
   AMPMAX = AMPL(2)
   AMPCUT = 0.1^{*}AMPMAX
С
   DO 600 I = 1,8192
    KUTOFF = I
    IF (AMPL(I).LE.AMPCUT) GOTO 650
 600 CONTINUE
С
C-----
C SHOW AMPLITUDE SPECTRUM
C----
     С
 650 CALL AMPDAR (AMPL, AMPL(2), KUTOFF)
С
C----
C IS CUTOFF OK ? (PANEL CUTOFF)
C-
С
   WRITE (ACUT,'(16)') KUTOFF
   ASHIFT = '1.0'
С
   LASTRC = ISPLNK('VDEFINE','(CUTOFF)',ACUT,'CHAR',6)
   LASTRC = ISPLNK('VDEFINE','(SHIFT)',ASHIFT,'CHAR',6)
С
   LDISPL = ISPLNK('DISPLAY','CUTOFF')
С
   READ (ACUT,*) KUTOFF
   READ (ASHIFT,*) SHIFT
   KUTOFF = SHIFT*KUTOFF
С
   IF (LDISPL.NE.8) GOTO 650
С
C---
C INTERACTIVE INPUT FOR NON-ISPF ENVIRONMENT
C-
          С
С
    WRITE (*,*) 'TIEFPASSFILTER BEI RAUMFREQUENZ ',KUTOFF
С
    CALL PROMPT (2, 'CUTOFF OK (Y) = = = > ', IRC)
С
    READ (5,'(A1)') CUTOK
С
    IF (CUTOK.EQ.'N') THEN
С
     CALL PROMPT (2, 'ENTER SHIFT FACTOR = = = > ', IRC)
С
     READ (5,'(G14.7)') SHIFT
С
     KUTOFF = SHIFT*KUTOFF
С
     GOTO 650
С
    END IF
С
C-
С
 700 DO 750 I=KUTOFF,ND2
    A(I) = (0.D0, 0.D0)
    A(LENGTH-I+2) = (0.D0,0.D0)
 750 CONTINUE
С
   A(ND2 + 1) = (0.D0, 0.D0)
С
```

```
C------
C TAKE INVERSE TRANSFORM
C--
     С
   CALL FFT2C (A,M,IWK)
С
C-----
C REDUCE THE COMPLEX RESULT TO ITS REAL COMPONENTS ONLY
C--
      С
   J = -1
С
   DO 800 I=1,NREM
    J = J + 2
    A1(1) = A(J)
    A1(2) = A(J+1)
    A(I) = ALPH/DN
 800 CONTINUE
С
   RETURN
С
   END
   SUBROUTINE AMPDAR (Y,YMAX,N)
С
C-
С
   DISPLAY ROUTINE FOR LOW-PASS FILTER
C----
      С
   INCLUDE (KENNUNG)
С
   REAL*4 X(8192), Y(1), XBOT(2), YBOT(2), YMAX, LASTRC
С
C-
C SAVE ISPF ENVIRONMENT
C-
  *******
С
   LASTRC = ISPLNK('CONTROL', 'DISPLAY', 'SAVE')
С
C-----
C DARSTELLUNGSBEREICH
C-----
           С
   NSTOP = 3*N
   IF (NSTOP.GT.8192) NSTOP = 8192
  XMIN = 0.
  XMAX = 3.
  YMIN = 0.
С
  DO 100 I = 1,NSTOP
   X(I) = 3*FLOAT(I)/FLOAT(NSTOP)
 100 CONTINUE
С
C-----
C DATEN AUSGEBEN
C-----
С
C INITIALIZE OUTPUT TO IBM3279 DISPLAY
С
  CALL IBM79
С
  CALL RESET ('ALL')
```

```
CALL NOBRDR
  CALL NOCHEK
  CALL HEIGHT (0.3)
  CALL SWISSM
  CALL SHDCHR (90.,1,.001,1)
С
  CALL XNAME ('CUT-OFF$',100)
  CALL YNAME ('AMPLITUDE$',100)
С
C-----
C SET THE PAGE SIZE FOR IBM3279 SCREEN
C---
    С
  CALL PAGE (11.,7.5)
С
C-
    C DEFINE SUBPLOT AREA
C
С
  CALL GRACE (0.)
  CALL AREA2D (9.,5.)
С
C-----
C DEFINE GRAPH HEADING
C-----
С
  CALL HEADIN ('POWER SPECTRUM$',100,1.2,1)
С
C-----
C SETUP BASIC LINEAR AXES
C---
    С
  CALL XINTAX
  CALL XAXEND ('NOFIRST')
  CALL YAXEND ('NOFIRST')
С
С
  CALL XREVTK
С
  CALL YREVTK
С
  CALL GRAF (XMIN, 'SCALE', XMAX, YMIN, 'SCALE', YMAX)
С
C-
   C FRAME TO ENHANCE THE PLOT
C---
                  С
  CALL THKFRM (.02)
  CALL SETCLR ('YELLOW')
  CALL FRAME
С
C-----
C DATA OUT
C-----
С
  CALL SETCLR ('RED')
С
  CALL CURVE (X,Y,NSTOP,0)
С
C-
  C SHADE LOWPASS AREA
C-----
С
  CALL SETCLR ('CYAN')
С
```

C	XBOT(1) = 0. YBOT(1) = 0. XBOT(2) = 1. YBOT(2) = 0.
C C	CALL SHDPAT (16) CALL SHDCRV (X,Y,N,XBOT,YBOT,′XAXIS′)
c	CALL ENDPL (0)
C C C	RESTORE ISPF ENVIRONMENT
Ċ	LASTRC = ISPLNK('CONTROL', 'DISPLAY', 'REFRESH') LASTRC = ISPLNK('CONTROL', 'DISPLAY', 'RESTORE')
C C	RETURN
	END
C	SUBROUTINE KRESET
C	RESET KOPF ELEMENTS
c c	INCLUDE (KOPF)
	$\begin{array}{l} EFFI = 0, \\ VMOM1 = 0, \\ VMOM2 = 0, \\ VMOM3 = 0, \\ VMOM4 = 0, \\ SIGMA = 0, \\ WOELB = 0, \\ SCHIEF = 0, \\ VARKO = 0. \end{array}$
C	T0 = 0. T50 = 0. T90 = 0. TYMAXG = 0. ACHSE = ' ' METHOD = ' '
С	RETURN E N D
C	SUBROUTINE DISPLA (X,Y,IY,MAXKAN,NFUN,R,ITR,TITLE,XLABEL,YLABEL, + MESS)
	DUMMY PARAMETERS : X - VEKTOR DER LAENGE N MIT DER UNABHAENGIGEN VARIABLE Y - MATRIX (N*M) MIT DEN N WERTEN DER M FUNKTIONEN IY - REIHENDIMENSION DER MATRIX Y (IM HAUPTPROG. VEREINBART) MAXKAN - DARSTELLUNGSLAENGE DES X VEKTORS NFUN - ANZAHL DER ZU PLOTTENDEN FUNKTIONEN

```
С
     R(4) - ACHSENGRENZEN
С
     (1) - X MIN
С
     (2) - X MAX
С
     (3) - Y MIN
С
     (4) - Y MAX
С
    ITR - KOORDINATENSYSTEM
С
     (0) - XLIN - YLIN
С
     (1) - XLOG - YLIN
С
     (2) - XLIN - YLOG
С
     (3) - XLOG - YLOG
С
    TITLE - CHARACTER STRING ALS PLOTTITEL
С
    XLABEL - X-ACHSENBESCHREIBUNG
С
     YLABEL - Y-ACHSENBESCHREIBUNG
С
    MESS - MESSAGE ARRAY DER LAENGE NFUN
С
С
    PLOT PARAMETERS :
С
С
    XORIG - VALUE OF X AT THE AXIS ORIGIN
С
    XSTP - X STEP INTERVAL IN USER UNITS
С
    XMAX - VALUE OF X AT END OF X AXIS
С
    YORIG - VALUE OF Y AT THE AXIS ORIGIN
С
    YSTP - Y STEP INTERVAL IN USER UNITS
С
    YMAX - VALUE OF Y AT END OF Y AXIS
С
C-
С
    REAL*4 X(1), Y(IY,1), R(4), XORIG, XMAX, YORIG, YMAX
    REAL*4 WORK(16000)
    INTEGER*4 IY, MAXKAN, NFUN, ITR, LTIT, LXLAB, LYLAB
    CHARACTER*(*) TITLE, XLABEL, YLABEL, MESS(1)
    CHARACTER*40 TEXT, TEXX, TEXY
    CHARACTER*6 COLOR(18)
    CHARACTER*10 AR(4)
    CHARACTER*2 ATR
    LOGICAL AXERR
С
    DATA YAXMAX/5./
    DATA XAXMAX/9./
С
    DATA COLOR/'BLUE', 'RED', 'GREEN', 'YELLOW', 'CYAN', 'WHITE', 'BLUE',
        'RED', 'GREEN', 'YELLOW', 'CYAN', 'WHITE', 'BLUE', 'RED', 'GREEN',
   +
        'YELLOW', 'CYAN', 'WHITE'/
   +
С
C-----
C---- ISPF PANEL 'DARS'
C-----
С
    LTIT = LENGTH(TITLE)
    LXLAB = LENGTH(XLABEL)
    LYLAB = LENGTH(YLABEL)
С
    DO 100 I = 1,40
     TEXT(I:I) = ' '
     TEXX(I:I) = ' '
     TEXY(I:I) = \prime \prime
 100 CONTINUE
С
   TEXT(1:LTIT) = TITLE
   TEXX(1:LXLAB) = XLABEL
   TEXY(1:LYLAB) = YLABEL
С
   DO 200 |=1,4
    WRITE (AR(I), '(E10.3)') R(I)
```

```
200 CONTINUE
  ¢
       WRITE (ATR,'(I2)') ITR
  C
      LASTRC = ISPLNK('VDEFINE','(XMIN)',AR(1),'CHAR',10)
LASTRC = ISPLNK('VDEFINE','(XMAX)',AR(2),'CHAR',10)
LASTRC = ISPLNK('VDEFINE','(YMIN)',AR(3),'CHAR',10)
LASTRC = ISPLNK('VDEFINE','(YMAX)',AR(4),'CHAR',10)
LASTRC = ISPLNK('VDEFINE','(TRANSF)',ATR,'CHAR',2)
LASTRC = ISPLNK('VDEFINE','(TITLE)',TEXT,'CHAR',40)
LASTRC = ISPLNK('VDEFINE','(XLABEL)',TEXX,'CHAR',40)
LASTRC = ISPLNK('VDEFINE','(XLABEL)',TEXX,'CHAR',40)
       LASTRC = ISPLNK('VDEFINE', '(YLABEL)', TEXY, 'CHAR', 40)
 С
   300 LASTRC = ISPLNK('DISPLAY', 'DARS')
 С
 C END (PF3-KEY) RETURNS TO CALLING MODULE
 С
      IF (LASTRC.EQ.8) RETURN
 С
       LASTRC = ISPLNK('CONTROL', 'DISPLAY', 'SAVE')
 С
      DO 400 I = 1.4
        READ (AR(I),*) R(I)
   400 CONTINUÉ
 С
      READ (ATR,*) ITR
 С
      XORIG = R(1)
      XMAX = R(2)
      YORIG = R(3)
      YMAX = R(4)
 С
 C CONTROL TRANSFORMATION COORDINATES
 С
      AXERR = .FALSE.
С
      IF (XORIG.GE.XMAX) AXERR = .TRUE.
      IF (XORIG.LT.0.) AXERR = .TRUE.
      IF (YORIG.GE.YMAX) AXERR = .TRUE.
      IF (ITR.EQ.1) THEN
        IF (XORIG.LE.0.) AXERR = .TRUE.
      ELSE IF (ITR.GE.2) THEN
        IF (YMAX.LE.0.) AXERR = .TRUE.
        IF (YORIG.LE.O.) AXERR = .TRUE.
      END IF
      IF (AXERR) THEN
        WRITE (*,*) '>>> PLEASE CHECK UP TRANSFORMATION',
      +
                     ' OR COORDINATES < < < < '
        GOTO 300
      END IF
С
      LTIT = LENGTH(TEXT)
      LXLAB = LENGTH(TEXX)
      LYLAB = LENGTH(TEXY)
С
C---
C START DISSPLA
C-
С
C INITIALIZE OUTPUT TO IBM3279 DISPLAY
С
      CALL IBM79
С
```

Anhang E. Das Programm IDECOD

```
CALL RESET ('ALL')
    CALL NOBRDR
    CALL NOCHEK
    CALL HEIGHT (.2)
    CALL SWISSM
    CALL SHDCHR (90.,1,.001,1)
С
C X AXIS SET-UP
С
    CALL XINTAX
    CALL XAXEND ('NOFIRST')
С
C Y AXIS SET-UP
С
    CALL YAXEND ('NOENDS')
    CALL YREVTK
С
C SET THE PAGE SIZE FOR IBM3279 SCREEN
С
    CALL PAGE (11.,7.5)
С
C DEFINE SUBPLOT AREA
С
    CALL GRACE (0.)
    CALL AREA2D (XAXMAX, YAXMAX)
С
C DEFINE GRAPH HEADING
С
С
    CALL SWISSB
С
    CALL HEADIN (TEXT, LTIT, 1.5, 1)
С
C DEFINE COORDINATE TRANSFORMATIONS
С
C XLIN - YLIN
С
    IF (ITR.EQ.0) THEN
С
     CALL XNAME (TEXX,LXLAB)
     CALL YNAME (TEXY, LYLAB)
     CALL GRAF (XORIG, 'SCALE', XMAX, YORIG, 'SCALE', YMAX)
С
C XLOG - YLIN
С
   ELSE IF (ITR.EQ.1) THEN
С
     XINPC = XAXMAX/ALOG10(XMAX/XORIG)
     CALL YNAME (TEXY, LYLAB)
     CALL YGRAF (XORIG, 1, YORIG, 'SCALE', YMAX)
     CALL XLGAXS (XORIG, XINPC, XAXMAX, TEXX, LXLAB, 0.0, 0.0)
С
C LOG Y AXIS
С
   ELSE IF (ITR.GE.2) THEN
С
     IF (YMAX.LT.1.) YORIG = 1.0E-03
     YINPC = YAXMAX/ALOG10(YMAX/YORIG)
С
C XLIN - YLOG
С
     IF (ITR.EQ.2) THEN
      CALL XNAME (TEXX LXLAB)
      CALL XGRAF (XORIG, 'SCALE', XMAX, YORIG, .1)
```

```
CALL YLGAXS (YORIG, YINPC, YAXMAX, TEXY, LYLAB, 0.0, 0.0)
 С
 C XLOG - YLOG
 С
      ELSE
       CALL XNAME (TEXX, LXLAB)
       CALL YNAME (TEXY, LYLAB)
       XINPC = XAXMAX/ALOG10(XMAX/XORIG)
       CALL LOGLOG (XORIG, XINPC, YORIG, YINPC)
      END IF
С
    END IF
С
C DATA OUT
С
    XPOS = 8.
    YPOS = 4.5
    YJUMP = 0.3
С
    DO 600 J = 1,NFUN
С
     DO 500 I=1,MAXKAN
       WORK(I) = Y(I,J)
       IF (ITR.GE.2) THEN
        IF (WORK(I).LE.1.0E-03) WORK(I) = 1.0E-03
       END IF
 500
        CONTINUE
С
     CALL SETCLR (COLOR(J))
С
     CALL CURVE (X,WORK,MAXKAN,0)
С
     CALL MESSAG (MESS(J),3,XPOS,YPOS)
     YPOS = YPOS - YJUMP
С
 600 CONTINUE
С
C PLOT SECONDARY AXES
С
    CALL SETCLR ('WHITE')
    CALL XNONUM
    CALL YNONUM
С
    IF (ITR.EQ.0) THEN
     CALL XGRAXS (XORIG, SCALE', XMAX, XAXMAX, ' $', 100, 0.0, YAXMAX)
    CALL YGRAXS (YORIG, 'SCALE', YMAX, YAXMAX, ' $',-100, XAXMAX, 0.0)
    ELSE IF (ITR.EQ.1) THEN
     CALL YGRAXS (YORIG, 'SCALE', YMAX, YAXMAX, ' $',-100, XAXMAX, 0.0)
     CALL XLGAXS (XORIG, XINPC, XAXMAX, '$', 100, 0.0, YAXMAX)
    ELSE IF (ITR.EQ.2) THEN
     CALL XGRAXS (XORIG, 'SCALE', XMAX, XAXMAX, ' $', 100, 0.0, YAXMAX)
     CALL YLGAXS (YORIG, YINPC, YAXMAX, '$',-100, XAXMAX, 0.0)
    ELSE IF (ITR.EQ.3) THEN
     CALL XLGAXS (XORIG, XINPC, XAXMAX, ' $', 100,0.0, YAXMAX)
     CALL YLGAXS (YORIG, YINPC, YAXMAX, ' $',-100, XAXMAX, 0.0)
   END IF
С
C FRAME TO ENHANCE THE PLOT
С
   CALL FRAME
С
   CALL ENDPL (0)
```

```
С
```

```
C-----
C STOP DISSPLA AND DISPLAY MAIN PANEL
C-
     С
    LASTRC = ISPLNK('CONTROL', 'DISPLAY', 'REFRESH')
    LASTRC = ISPLNK('CONTROL', 'DISPLAY', 'RESTORE')
С
    GOTO 300
С
    END
    SUBROUTINE KOPFIO (LITKEN)
С
C-
С
     ISPF PANEL OUTPUT
C----
    С
C LOCAL AND DUMMY VARIABLES
С
    REAL*4 DSIGMA
    INTEGER*4 LASTRC
    CHARACTER*1 PANEL
    CHARACTER*6 CIKOPF(10)
    CHARACTER*13 CRKOPF(60), LITKEN
C
C COMMON KOPF VARIABLES
С
    INCLUDE (KOPF)
С
C CONVERT INTEGER VARIABLES OVER INTERNAL WRITE TO CHARACTER
С
    DO 100 I=1,10
     WRITE (CIKOPF(I), '(I6)') IKOPF(I)
 100 CONTINUE
С
C DEFINE INTEGER VARIABLES
С
    LASTRC = ISPLNK('VDEFINE','(KANTOT)',CIKOPF(1),'CHAR',6)
LASTRC = ISPLNK('VDEFINE','(KANRAF)',CIKOPF(2),'CHAR',6)
LASTRC = ISPLNK('VDEFINE','(KANLIN)',CIKOPF(3),'CHAR',6)
    LASTRC = ISPLNK('VDEFINE', '(KANREC)', CIKOPF(4), 'CHAR', 6)
    LASTRC = ISPLNK('VDEFINE', '(KANEAL)', CIKOPF(5), 'CHAR', 6)
    LASTRC = ISPLNK('VDEFINE','(KANEAR)',CIKOPF(6),'CHAR',6)
    LASTRC = ISPLNK('VDEFINE','(KANLUG)',CIKOPF(7),'CHAR',6)
    LASTRC = ISPLNK('VDEFINE', '(KANRUG)', CIKOPF(8), 'CHAR', 6)
    LASTRC = ISPLNK('VDEFINE','(TREAT)',CIKOPF(9),'CHAR',6)
С
C CONVERT REAL VARIABLES OVER INTERNAL WRITE TO CHARACTER
С
    DO 200 |=1,60
     WRITE (CRKOPF(I), '(E13.6)') RKOPF(I)
 200 CONTINUE
С
C DEFINE REAL VARIABLES
С
   LASTRC = ISPLNK('VDEFINE','(ZEIT)',CRKOPF(1),'CHAR',13)
   LASTRC = ISPLNK('VDEFINE','(VERZEI)',CRKOPF(2),'CHAR',13)
   LASTRC = ISPLNK('VDEFINE','(EFFI)',CRKOPF(3),'CHAR',13)
   LASTRC = ISPLNK('VDEFINE','(YMAX)',CRKOPF(4),'CHAR',13)
   LASTRC = ISPLNK('VDEFINE', '(SOKOR)', CRKOPF(5), 'CHAR', 13)
   LASTRC = ISPLNK('VDEFINE','(HERTZ)',CRKOPF(6),'CHAR',13)
   LASTRC = ISPLNK('VDEFINE','(FLUSS)',CRKOPF(7),'CHAR',13)
```

```
198
```

LASTRC =	ISPLNK('VDEFINE', '(RATIO)', CRKOPF(8), 'CHAR', 13)
LASTRC =	ISPLNK('VDEFINE', '(TO)', CRKOPF(10), 'CHAR', 13)
LASTRC =	ISPLNK('VDEFINE','(T50)',CRKOPF(11),'CHAR',13)
LASTRC =	ISPLNK('VDEFINE','(T90)',CRKOPF(12),'CHAR',13)
LASTRC =	ISPLNK(VDEFINE, (VMOM1), CRKOPF(13), CHAR, 13)
LASTRC =	ISPLNK(VDEFINE, (VARKO), CRKOPF(15), CHAR, 13)
LASTRC =	ISPLNK('VDEFINE','(VMOM0)',CRKOPF(16),'CHAR',13)
LASTRC =	ISPLNK('VDEFINE','(SCHIEF)',CRKOPF(17),'CHAR',13)
LASTRC =	ISPLNK('VDEFINE','(WOELB)',CRKOPF(18),'CHAR',13)
LASTRC =	ISPLNK(VDEFINE , (VMITGL) ,CRKOPF(19), CHAR, 13)
LASTRC =	ISPLNK('VDEFINE', '(VMOM3)', CRKOPF(21), 'CHAR', 13)
LASTRC =	ISPLNK('VDEFINE','(VMOM4)',CRKOPF(22),'CHAR',13)
LASTRC =	ISPLNK('VDEFINE','(UGL)',CRKOPF(23),'CHAR',13)
LASTRC =	ISPLNK('VDEFINE', '(UGR)', CRKOPF(24), 'CHAR', 13)
LASTRC =	ISPLINK (VDEFINE, (HOLDOF), CRKOPF(23), CHAR, 13)
LASTRC =	ISPLNK('VDEFINE', '(VMITEL)', CRKOPF(27), 'CHAR', 13)
LASTRC =	ISPLNK('VDEFINE','(DVMOM1)',CRKOPF(28),'CHAR',13)
LASTRC =	ISPLNK('VDEFINE', '(DZMOM2)', CRKOPF(29), 'CHAR', 13)
LASTRC =	ISPLNK('VDEFINE', '(BOSPEK)', CRKOPF(30), 'CHAR', 13)
LASTRC =	ISPLINK (VDEFINE, (VMITMO), CRKOPF(31), CHAR, 10)
LASTRC =	ISPLNK('VDEFINE', '(BOSPLI)', CRKOPF(33), 'CHAR', 13)
LASTRC =	ISPLNK('VDEFINE','(BODISP)',CRKOPF(34),'CHAR',13)
LASTRC =	ISPLNK('VDEFINE', '(DISPEK)', CRKOPF(35), 'CHAR', 13)
LASTRC =	ISPLNK('VDEFINE', '(DIMOGL)', CRKOPF(36), 'CHAR', 13)
LASTRC =	ISPLINK(VDEFINE , (DIFOUR) ,CRKOPF(37), CHAR, 13)
LASTRC =	ISPLAK(VDEFINE', (DIDISP)'.CRKOPF(39), CHAR', 13)
LASTRC =	ISPLNK('VDEFINE', '(TYMAXA)', CRKOPF(40), 'CHAR', 13)
LASTRC =	ISPLNK('VDEFINE','(RUEHR)',CRKOPF(41),'CHAR',13)
LASTRC =	ISPLNK('VDEFINE','(TOTZEI)',CRKOPF(42),'CHAR',13)
LASTRC =	ISPLNK('VDEFINE','(TYMAXG)',CRKOPF(43),'CHAR',13)
LASIRC =	ISPLNK('VDEFINE', '(HWZ)', CRKOPF(44), 'CHAR', 13)
LASTRC =	ISPLINK (VDEFINE, (HWZR), CRKOPP(43), CHAR, 13)
LASTRC =	ISPLNK('VDEFINE'.'(WERTL)'.CRKOPF(47),'CHAR',13)
LASTRC =	ISPLNK('VDEFINE', '(WERTK)', CRKOPF(48), 'CHAR', 13)
LASTRC =	ISPLNK('VDEFINE','(RSS)',CRKOPF(49),'CHAR',13)
LASTRC =	ISPLNK('VDEFINE','(CHISQ)',CRKOPF(50),'CHAR',13)
LASTRC =	ISPLNK('VDEFINE', '(VSTREU)', CRKOPF(51), 'CHAR', 13)
LASTRC =	ISPLNK('VDEFINE', (KSDIST)', CRKOPF(52), CHAR', 13)
LASTRC =	ISPLINK (VDEFINE, (KSSTAT), CRKOPF(30), CHAR, 10)
LASTRC =	ISPLNK('VDEFINE', '(KS2SID)', CRKOPF(55), 'CHAR', 13)
DSIGMA =	SQRT(DZMOM2)
LASTRC =	15PLNK(VDEFINE, (DSIGMA), CKKOPP(00), CHAR, 13)
DEFINE CHAF	
LASTRC =	ISPLNK('VDEFINE', (PANEL)', PANEL, 'CHAR', 'I)
LASTRC =	ISPLNK('VDEFINE','(LITKEN)',LITKEN,'CHAR',10)
LASTRC =	ISPLNK('VDEFINE','(TRACER)',TRACER,'CHAR',8)
LASTRC =	ISPLNK('VDEFINE','(KENPHA)',KENPHA,'CHAR',2)
LASTRC =	ISPLNK('VDEFINE','(METHOD)',METHOD,'CHAR',2)
LASIRC =	
LASTRC =	13PLINK(VDEFINE , (UUT) , UUT, CHAK ,2)

С

С С С

С

```
LASTRC = ISPLNK('VDEFINE','(MODELL)',MODELL,'CHAR',2)
С
C DISPLAY ISPF PANEL 'KOPFIO1'
С
C FORTSETZUNG EINES BEFEHLS UNTERBROCHEN
С
300 \text{ PANEL} = 'N'
С
   LASTRC = ISPLNK('DISPLAY', 'KOPFIO1')
С
   IF (PANEL.EQ.'Y') THEN
С
C DISPLAY ISPF PANEL 'KOPFIO2'
С
    PANEL = 'N'
С
    LASTRC = ISPLNK('DISPLAY', 'KOPFIO2')
С
    IF (PANEL.EQ.'Y') GOTO 300
С
   END IF
С
   RETURN
С
```
С	PROGRAM FFTKOR
Č	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	J.J.PORTA 8-SEP-86
	DIESES PROGRAMM FUEHRT DIE FAST-FOURIER ANALYSE EINES ZEIT- SPEKTRUMS AUS.
	SPEKTRUM-GLAETTUNG DURCH APODISATION IM FOURIER-RAUM: DER LECKEFFEKT LAESST SICH ABSCHWAECHEN, WENN MAN EINE ZEITBEGRENZUNGSFUNKTION (FENSTERFUNKTION) VERWENDET, DEREN SPEKTRALE SEITENSCHWINGER GERINGERE AMPLITUDEN AUFWEISEN ALS DIE DER SIN(F)/F FUNKTION (BOXCAR).
	IMPLEMENTIERTE FENSTERFUNKTIONEN:
	KAISER-BESSEL (NER) BOXCAR HAMMING TUKEY PAPOULIS
	MAXIMALE SPEKTRUMLAENGE : 16384 KANAELE
С	REAL*8 XR(16384),XI(16384) REAL*4 BUFFER(16384),AMPL(16384),T(16384) COMMON /FILCOM/ LONG,KUTOFF,FAKTOR,OMEGA,BESSOM,PI,TWOPI CHARACTER*6 ACUT,ASHIFT,AOMEGA CHARACTER*1 ARRAY,WINDOW
c c c c c	INCLUDE (KOPF) INCLUDE (KENNUNG)
	REAL*4 Y(16384,2),RANGE(4),TEMP,ZERO INTEGER ITEMP,LONG CHARACTER*35 TITEL CHARACTER*23 DUMIBM CHARACTER*10 DUMDEC CHARACTER*3 MESS(2) CHARACTER*1 DISKUT,STATUT,REPEAT
	EQUIVALENCE (BUFFER(1),Y(1,1)) EQUIVALENCE (AMPL(1),Y(1,2))
	DATA DISKUT/'Y'/ DATA STATUT/'S'/ DATA REPEAT/'N'/ DATA WINDOW/'B'/ DATA ZERO/0.0/
С С Е	RSTE AUSFUEHRBARE ANWEISUNG
С С	

```
CALL ERRSET (207,100000,-1,2,0,209)
С
   TYPEOK = .FALSE.
 100 \text{ FMTFIL} = .FALSE.
   CALL KENIO
   FMTFIL = .TRUE.
С
   LONG = 16384
   PI = 3.14159265
   TWOPI = 6.283185
С
C---
    C ANFANG SPEKTRUMSCHLEIFE
C-----
       *****
С
   DO 800 K = 1, NUMKEN
С
     PRINT *, 'START LOOP'
    KUTOFF = 0
    FMTFIL = .TRUE.
    CALL FOPEN (1,DSN(K))
    CALL FORMRD (1, BUFFER, LITKEN(K))
    CLOSE (1)
С
C---
    C NULL IMAGINAER VEKTOR
C-----
С
С
     PRINT *, 'NULL VECTOR'
 102 CONTINUE
    DO 200 I=1,LONG
     XI(1) = 0.0
     XR(I) = BUFFER(I)
     IF (I.GT.KANTOT) XR(I) = 0.0
 200
      CONTINUE
С
C-----
C DIREKTE FOURIER TRANSFORM
C----
    *****
С
    INV = 0
    CALL FFTDP (XR,XI,LONG,INV)
С
     PRINT *, 'INV IS ', INV
    IF (INV.LT.0) STOP
С
C----
            C FENSTERWAHL
C--
    С
   WRITE (AOMEGA,'(F6.3)') OMEGA
С
   LASTRC = ISPLNK('VDEFINE','(LITKEN)',LITKEN(K),'CHAR',10)
LASTRC = ISPLNK('VDEFINE','(WINDOW)',WINDOW,'CHAR',1)
LASTRC = ISPLNK('VDEFINE','(OMEGA)',AOMEGA,'CHAR',6)
С
   LDISPL = ISPLNK('DISPLAY', 'FFTKOR')
С
   READ (AOMEGA,*) OMEGA
С
   IF (OMEGA.EQ.0.) OMEGA = TWOPI
   BESSOM = BESSI0(OMEGA)
   KUTOFF = 0
С
C---
  C LEISTUNGSSPECTRUM BERECHNEN
```

```
C------
С
   IF (WINDOW.EQ.'B') THEN
С
   DO 550 I=1,LONG
    AMPL(I) = SQRT((SNGL(XR(I)))^{**2} + (SNGL(XI(I)))^{**2})
 550 CONTINUE
С
   AMPMAX = AMPL(2)
   AMPCUT = 0.01*AMPMAX
   DO 600 I=1,LONG
    KUTOFF = I
    IF (AMPL(I).LE.AMPCUT) GOTO 650
 600 CONTINUE
С
C---
     C LEISTUNGSSPECTRUM DARSTELLEN
C------
С
 650 CALL AMPDAR (AMPL, AMPL(2), KUTOFF)
С
C---
C IST BANDSTOPPKANTE OK ? (PANEL CUTOFF)
C--
    С
   WRITE (ACUT, '(I6)') KUTOFF
   ASHIFT = '1.0'
С
   LASTRC = ISPLNK('VDEFINE','(CUTOFF)',ACUT,'CHAR',6)
   LASTRC = ISPLNK('VDEFINE','(SHIFT)',ASHIFT,'CHAR',6)
С
   LDISPL = ISPLNK('DISPLAY','CUTOFF')
С
   READ (ACUT,*) KUTOFF
   READ (ASHIFT,*) SHIFT
   KUTOFF = SHIFT*KUTOFF
С
   IF (LDISPL.NE.8) GOTO 650
С
   END IF
С
C---
    C FENSTERKORREKTUR
C-
     **********
С
    CALL FILTER (XR,XI,WINDOW)
С
C-----
C INVERSE FFT
C-----
С
    INV = 1
    CALL FFTDP (XR,XI,LONG,INV)
С
    PRINT *, 'INV IS ', INV
    IF (INV.LT.0) STOP
С
C------
C DISPLAY FUNCTIONS
C--
      С
    DO 300 I = 1, KANTOT
     T(I) = FLOAT(I)*ZEIT
     AMPL(I) = SNGL(XR(I))
```

```
300
       CONTINUE
С
     RANGE(1) = 0.
     RANGE(2) = T(KANTOT)
     RANGE(3) = 0.
     RANGE(4) = YMAX
С
     NUMFUN = 2
     DUMDEC = LITKEN(K)
     DUMDEC(8:8) = 'S'
     CALL IBMNAM (DUMDEC, DUMIBM)
     TITEL = DSN(K)(8:13)// FFT SMOOTHING'
     MESS(1) = DSN(K)(20:22)
     MESS(2) = DUMIBM(20:22)
С
C-----
C DISSPLA STEP
C-----
С
     CALL DISPLA (T,Y,LONG,KANTOT,NUMFUN,RANGE,ITR,TITEL,'ZEIT(S)',
   +
           'DICHTE', MESS)
С
C----
C OPTION SELECTION PANEL SMOOUT
C----
    С
     LASTRC = ISPLNK('VDEFINE','(REPEAT)',REPEAT,'CHAR',1)
LASTRC = ISPLNK('VDEFINE','(DISKUT)',DISKUT,'CHAR',1)
LASTRC = ISPLNK('VDEFINE','(STATUT)',STATUT,'CHAR',1)
С
     LDISPL = ISPLNK('DISPLAY', 'SMOOUT')
С
     IF (REPEAT.EQ.'Y') GO TO 102
С
C-----
C STORE RESPONSE FUNCTION ON DISK
C-
С
     IF (DISKUT.EQ.'Y') THEN
С
     YMAX = VMAXV (AMPL,KANTOT)
     CALL FWRITE (2,DSN(K),STATUT,AMPL)
С
    END IF
С
C-
          С
С
    ENDE SPEKTRUMSCHLEIFE
С
 800 CONTINUE
С
   STOP
С
   END
   SUBROUTINE FILTER (XR,XI,WINDOW)
С
C-
С
    FILTERVERTEILER SUBROUTINE
C--
С
   REAL*8 XR(1),XI(1)
```

```
COMMON /FILCOM/ N,KUTOFF,FAKTOR,OMEGA,BESSOM,PI,TWOPI
    CHARACTER*1 WINDOW
С
    DO 400 I=2,N/2
     L = I
     FAKTOR = 1.
С
     IF (L.LE.KUTOFF) THEN
      GOTO 300
     ELSE IF (WINDOW.EQ.'B') THEN
      FAKTOR = 0.
     ELSE IF (WINDOW.EQ.'T') THEN
      CALL TUKEY (L)
     ELSE IF (WINDOW.EQ.'K') THEN
      CALL KAISER (L)
     ELSE IF (WINDOW.EQ.'H') THEN
      CALL HAMM (L)
     ELSE IF (WINDOW.EQ.'P') THEN
      CALL PAPOUL (L)
     END IF
С
 300 XR(I) = XR(I)*FAKTOR
     XR(N-I+2) = XR(I)
     XI(I) = XI(I) * FAKTOR
     XI(N-I+2) = -XI(I)
 400 CONTINUE
С
    XR(N/2+1) = 0.
    XI(N/2+1) = 0.
С
   RETURN
С
   END
   SUBROUTINE KAISER (I)
С
С
    KAISER-BESSEL FENSTER
С
   COMMON /FILCOM/ N,KUTOFF,FAKTOR,OMEGA,BESSOM,PI,TWOPI
С
   FAKTOR = BESSI0(OMEGA*SQRT(1.-(FLOAT(I)/FLOAT(N/2))**2))/BESSOM
С
   RETURN
   END
   FUNCTION BESSIO (OMEGA)
С
С
    BESSIO BERECHNET DEN WERT DEN MODIFIZIERTEN BESSEL-FUNKTION
С
    DER ERSTEN KLASSE UND NULLTER ORDNUNG MITTELS REIHEN
С
    ENTWICKLUNG.
С
    DAS ARGUMENT DER FUNKTION WIRD IN RADIAN ANGEGEBEN UND MUSS
С
    ZWISCHEN 0. UND 20. BETRAGEN
С
   Y = OMEGA/2.
   T = 1.E-08
   E = 1.
   DE = 1.
   DO 100 I = 1,25
    DE = DE^{Y}/FLOAT(I)
    SDE = DE^{**2}
    E = E + SDE
    IF (E*T-SDE) 100,100,200
```

```
100 CONTINUE
С
 200 \text{ BESSIO} = \text{E}
    RETURN
    END
    SUBROUTINE HAMM (I)
С
    COMMON /FILCOM/ N,KUTOFF,FAKTOR,OMEGA,BESSOM,PI,TWOPI
С
    FAKTOR = 0.54 + 0.46 COS(TWOPIFLOAT(I)/FLOAT(N))
С
    RETURN
    END
    SUBROUTINE TUKEY (I)
С
    COMMON /FILCOM/ N,KUTOFF,FAKTOR,OMEGA,BESSOM,PI,TWOPI
С
    FAKTOR = (COS(PI*FLOAT(I-KUTOFF)/FLOAT(N-KUTOFF)))**2
С
    RETURN
    END
    SUBROUTINE PAPOUL (I)
С
    COMMON /FILCOM/ N,KUTOFF,FAKTOR,OMEGA,BESSOM,PI,TWOPI
С
    ARGUM = FLOAT(I)/FLOAT(N)
    PIARG = PI^*ARGUM
С
   FAKTOR = 1./PI*SIN(PIARG) + (1.-ARGUM)*COS(PIARG)
С
   RETURN
   END
   SUBROUTINE FFTDP (XR,XI,N,INV)
С
C
C
    FAST FOURIER TRANSFORMATION MIT DOPPELTER GENAUIGKEIT
Ċ-
С
DIESE SUBROUTINE IMPLEMENTIERT DIE SANDE-TUKEY RADIX-2
    FAST FOURIER TRANSFORMATION. SOWOHL DIE DIREKTE ALS AUCH DIE
    INVERSE TRANSFORMATION KOENNEN BERECHNET WERDEN:
    NAME
                            INHALT
             TYP
                 ON ENTRY
                                 ON RETURN
    XR REAL ARRAY REALER TEIL DES ARRAYS REALER TEIL DER DFT
    XI REAL ARRAY IMAG. TEIL DES ARRAYS IMAG. TEIL DER DFT
    Ν
       INTEGER
                  LAENGE DES ARRAYS
                                         UNGEAENDERT
                   0 FUER DIREKTE FFT
                                        INV WIRD ZU -1 BEIM
    INV INTEGER
С
                                 FEHLER RETURN GESETZT
               1 FUER INVERSE FFT
С
С
    DIE DIREKTE TRANSFORMATION IST:
```

```
С
С
         Ν
С
     (1/N) SUM X(T)*EXP(-2*PI*I*(T-1)*(J-1)/N), J=1 TO N
С
         T = 1
С
0
0
0
0
0
     DIE INVERSE TRANSFORMATION IST:
         Ν
         SUM X(T)*EXP( 2*PI*I*(T-1)*(J-1)/N), J=1 TO N
С
         T = 1
Ĉ
C-
               С
С
     QUELLE: PETER BLOOMFIELD, 'FOURIER ANALYSIS OF TIME SERIES'
С
          JOHN WILEY & SONS, 1976, PP. 75-76
С
C-
С
    IMPLICIT REAL*8(A-H,O-Z)
    REAL*8 XR(1),XI(1)
    DIMENSION UR(15), UI(15)
    LOGICAL FIRST
    DATA FIRST/.TRUE./
С
    IF (.NOT.FIRST) GOTO 100
    UR(1) = 0.0D0
    UI(1) = 1.0D0
С
    DO 50 I = 2,15
     UR(I) = DSQRT((1.0D0 + UR(I-1))/2.0D0)
  50 UI(I) = UI(I-1)/(2.0D0*UR(I))
С
    FIRST = .FALSE.
С
 100 IF (N.GT.0.AND.N.LE.2**14) GOTO 150
    INV = -1
    RETURN
С
 150 \text{ NO} = 1
    || = 0
 200 \text{ N0} = \text{N0} + \text{N0}
    || = || + 1
    IF (N0.LT.N) GOTO 200
    11 = N0/2
    13 = 1
    |0| = ||
С
    DO 400 I4 = 1,II
С
     DO 350 K=1,11
      WR = 1.0D0
      WI = 0.0D0
      KK = K-1
С
      DO 250 I=1,10
        IF (KK.EQ.0) GOTO 300
        IF (MOD(KK,2).EQ.0) GOTO 250
        J0 = 10-1
        WS = WR^*UR(J0)-WI^*UI(J0)
        WI = WR^*UI(J0) + WI^*UR(J0)
        WR = WS
 250
         KK = KK/2
С
```

```
300
       IF (INV.EQ.0) WI = -WI
      L = K
С
      DO 350 J = 1,13
       L1 = L + I1
       ZR = XR(L) + XR(L1)
       ZI = XI(L) + XI(L1)
       Z = WR^{*}(XR(L)-XR(L1))-WI^{*}(XI(L)-XI(L1))
       XI(L1) = WR^{*}(XI(L)-XI(L1)) + WI^{*}(XR(L)-XR(L1))
       XR(L1) = Z
       XR(L) = ZR
       XI(L) = ZI
 350
        L = L1 + I1
С
     10 = 10-1
     |3| = |3+|3|
 400 11 = 11/2
С
    UM = 1.0D0
   IF (INV.EQ.0) UM = 1.0D0/DBLE(FLOAT(N0))
С
   DO 500 J=1,N0
     K = 0
     J1 = J-1
С
     DO 450 I=1,II
      K = 2^{*}K + MOD(J1,2)
 450
       J1 = J1/2
С
     K = K+1
     IF (K.LT.J) GOTO 500
     ZR = XR(J)
     ZI = XI(J)
     XR(J) = XR(K)^*UM
     XI(J) = XI(K)^*UM
     XR(K) = ZR^*UM
     XI(K) = ZI^{*}UM
 500 CONTINUE
С
   RETURN
С
   END
   SUBROUTINE AMPDAR (Y,YMAX,N)
С
   INCLUDE (KENNUNG)
С
   REAL*4 X(16384), Y(1), XBOT(2), YBOT(2), YMAX, LASTRC
С
C---
C ISPF-UMGEBUNG RETTEN
C-----
С
   LASTRC = ISPLNK('CONTROL', 'DISPLAY', 'SAVE')
С
C-----
          C DARSTELLUNGSBEREICH
C-----
С
   NSTOP = 3*N
   IF (NSTOP.GT.16384) NSTOP = 16384
   XMIN = 0.
```

208

```
XMAX = 3.
  YMIN = 0.
С
   DO 100 I=1,NSTOP
   X(I) = 3*FLOAT(I)/FLOAT(NSTOP)
 100 CONTINUE
Ç
C
        C DATEN AUSGEBEN
C-----
С
C IBM3279 DISPLAY ALS OUTPUT DEVICE INITIALISIEREN
С
  CALL IBM79
С
  CALL RESET ('ALL')
  CALL NOBRDR
  CALL NOCHEK
  CALL HEIGHT (0.3)
  CALL SWISSM
  CALL SHDCHR (90.,1,.001,1)
С
  CALL XNAME ('CUT-OFF$',100)
  CALL YNAME ('AMPLITUDE$',100)
С
C-
C SET THE PAGE SIZE FOR IBM3279 SCREEN
C-----
С
  CALL PAGE (11.,7.5)
С
C----
  C DEFINE SUBPLOT AREA
C-----
С
  CALL GRACE (0.)
  CALL AREA2D (9.,5.)
С
C-----
C DEFINE GRAPH HEADING
C-----
С
  CALL HEADIN ('POWER SPECTRUM$',100,1.2,1)
С
C-
    C SETUP BASIC LINEAR AXES
C----
    С
  CALL XINTAX
  CALL XAXEND ('NOFIRST')
  CALL YAXEND ('NOFIRST')
С
С
   CALL XREVTK
С
   CALL YREVTK
С
  CALL GRAF (XMIN, 'SCALE', XMAX, YMIN, 'SCALE', YMAX)
С
C-
C FRAME TO ENHANCE THE PLOT
C---
  С
  CALL THKFRM (.02)
  CALL SETCLR ('YELLOW')
```

CALL FRAME С C--C DATA OUT C-----С CALL SETCLR ('RED') С CALL CURVE (X,Y,NSTOP,0) С C---____ C SHADE LOWPASS AREA C------С CALL SETCLR ('CYAN') С XBOT(1) = 0.YBOT(1) = 0.XBOT(2) = 1.YBOT(2) = 0.С CALL SHDPAT (16) CALL SHDCRV (X,Y,N,XBOT,YBOT,'XAXIS') С CALL ENDPL (0) С C-----C RESTORE ISPF ENVIRONMENT C-----С LASTRC = ISPLNK('CONTROL','DISPLAY','REFRESH') LASTRC = ISPLNK('CONTROL','DISPLAY','RESTORE') С RETURN С END SUBROUTINE DISPLA (X,Y,IY,MAXKAN,NFUN,R,ITR,TITLE,XLABEL,YLABEL, +MESS) С С **DUMMY PARAMETERS :** С С X - VEKTOR DER LAENGE N MIT DER UNABHAENGIGEN VARIABLE Ċ Y - MATRIX (N*M) MIT DEN N WERTEN DER M FUNKTIONEN С IY - REIHENDIMENSION DER MATRIX Y (IM HAUPTPROG. VEREINBART) С MAXKAN - DARSTELLUNGSLAENGE DES X VEKTORS С NFUN - ANZAHL DER ZU PLOTTENDEN FUNKTIONEN С R(4) - ACHSENGRENZEN С (1) - X MIN С (2) - X MAX С (3) - Y MIN С (4) - Y MAX С ITR - KOORDINATENSYSTEM С (0) - XLIN - YLIN С (1) - XLOG - YLIN С (2) - XLIN - YLOG С (3) - XLOG - YLOG С TITLE - CHARACTER STRING ALS PLOTTITEL С **XLABEL - X-ACHSENBESCHREIBUNG** С YLABEL - Y-ACHSENBESCHREIBUNG С MESS - MESSAGE ARRAY DER LAENGE NFUN С

```
С
    PLOT PARAMETERS :
С
C
C
    XORIG - VALUE OF X AT THE AXIS ORIGIN
    XSTP - X STEP INTERVAL IN USER UNITS
С
    XMAX - VALUE OF X AT END OF X AXIS
С
    YORIG - VALUE OF Y AT THE AXIS ORIGIN
С
    YSTP - Y STEP INTERVAL IN USER UNITS
С
    YMAX - VALUE OF Y AT END OF Y AXIS
С
    REAL*4 X(1),Y(IY,1),R(4),XORIG,XMAX,YORIG,YMAX
    REAL*4 WORK(16000)
    INTEGER*4 IY, MAXKAN, NFUN, ITR, LTIT, LXLAB, LYLAB
    CHARACTER*(*) TITLE, XLABEL, YLABEL, MESS(1)
CHARACTER*40 TEXT, TEXX, TEXY
    CHARACTER*6 COLOR(18)
    CHARACTER*10 AR(4)
    CHARACTER*2 ATR
    LOGICAL AXERR
С
    DATA YAXMAX/5./
    DATA XAXMAX/9./
С
    DATA COLOR/'BLUE', 'RED', 'GREEN', 'YELLOW', 'CYAN', 'WHITE', 'BLUE',
        'RED', 'GREEN', 'YELLOW', 'CYAN', 'WHITE', 'BLUE', 'RED', 'GREEN',
   +
   +
        'YELLOW', 'CYAN', 'WHITE'/
С
C.
    ******
C ISPF PANEL 'DARS'
C-----
       -------
С
    LTIT = LENGTH(TITLE)
    LXLAB = LENGTH(XLABEL)
    LYLAB = LENGTH(YLABEL)
С
    DO 100 I=1,40
     TEXT(I:I) = ''
     TEXX(1:1) = \prime \prime
     TEXY(I:I) = ' '
 100 CONTINUE
С
    TEXT(1:LTIT) = TITLE
    TEXX(1:LXLAB) = XLABEL
    TEXY(1:LYLAB) = YLABEL
С
    DO 200 I = 1,4
     WRITE (AR(I), '(E10.3)') R(I)
 200 CONTINUE
С
    WRITE (ATR,'(I2)') ITR
С
    LASTRC = ISPLNK('VDEFINE', '(XMIN)', AR(1), 'CHAR', 10)
    LASTRC = ISPLNK('VDEFINE', '(XMAX)', AR(2), 'CHAR', 10)
    LASTRC = ISPLNK('VDEFINE','(YMIN)',AR(3),'CHAR',10)
    LASTRC = ISPLNK('VDEFINE', '(YMAX)', AR(4), 'CHAR', 10)
    LASTRC = ISPLNK('VDEFINE','(TRANSF)',ATR,'CHAR',2)
    LASTRC = ISPLNK('VDEFINE','(TITLE)',TEXT,'CHAR',40)
    LASTRC = ISPLNK('VDEFINE', '(XLABEL)', TEXX, 'CHAR', 40)
    LASTRC = ISPLNK('VDEFINE', '(YLABEL)', TEXY, 'CHAR', 40)
С
 300 LASTRC = ISPLNK('DISPLAY', 'DARS')
С
C MIT PF3 DARSTELLUNG UNTERDRUECKEN
С
```

```
IF (LASTRC.EQ.8) RETURN
С
    LASTRC = ISPLNK('CONTROL','DISPLAY','SAVE')
С
    DO 400 I=1,4
     READ (AR(I),*) R(I)
 400 CONTINUE
С
    READ (ATR,*) ITR
С
   XORIG = R(1)
   XMAX = R(2)
    YORIG = R(3)
   YMAX = R(4)
С
C CONTROL TRANSFORMATION COORDINATES
С
    AXERR = .FALSE.
С
    IF (XORIG.GE.XMAX) AXERR = .TRUE.
   IF (XORIG.LT.0.) AXERR = .TRUE.
   IF (YORIG.GE.YMAX) AXERR = .TRUE.
   IF (ITR.EQ.1) THEN
    IF (XORIG.LE.0.) AXERR = .TRUE.
   ELSE IF (ITR.GE.2) THEN
     IF (YMAX.LE.0.) AXERR = .TRUE.
     IF (YORIG.LE.0.) AXERR = .TRUE.
   END IF
   IF (AXERR) THEN
     WRITE (*,*) > > PLEASE CHECK UP TRANSFORMATION',
   +
              ' OR COORDINATES < < <'
     GOTO 300
   END IF
С
   LTIT = LENGTH(TEXT)
   LXLAB = LENGTH(TEXX)
   LYLAB = LENGTH(TEXY)
С
C----
   C START DISSPLA
C---
С
C INITIALIZE OUTPUT TO IBM3279 DISPLAY
С
   CALL IBM79
С
   CALL RESET ('ALL')
   CALL NOBRDR
   CALL NOCHEK
   CALL HEIGHT (.2)
   CALL SWISSM
   CALL SHDCHR (90.,1,.001,1)
   CALL THKCRV (0.03)
С
C X AXIS SET-UP
С
   CALL XINTAX
   CALL XAXEND ('NOFIRST')
С
C Y AXIS SET-UP
С
   CALL YAXEND ('NOENDS')
```

```
CALL YREVTK
 С
 C SET THE PAGE SIZE FOR IBM3279 SCREEN
 С
    CALL PAGE (11.,7.5)
 С
 C DEFINE SUBPLOT AREA
 С
    CALL GRACE (0.)
    CALL AREA2D (XAXMAX,YAXMAX)
 С
 C DEFINE GRAPH HEADING
 С
    CALL HEADIN (TEXT, LTIT, 1.5, 1)
 С
C DEFINE COORDINATE TRANSFORMATIONS
 С
C XLIN - YLIN
 С
    IF (ITR.EQ.0) THEN
 С
      CALL XNAME (TEXX,LXLAB)
      CALL YNAME (TEXY, LYLAB)
      CALL GRAF (XORIG, 'SCALE', XMAX, YORIG, 'SCALE', YMAX)
С
C XLOG - YLIN
С
    ELSE IF (ITR.EQ.1) THEN
С
      XINPC = XAXMAX/ALOG10(XMAX/XORIG)
      CALL YNAME (TEXY, LYLAB)
      CALL YGRAF (XORIG, 1, YORIG, 'SCALE', YMAX)
      CALL XLGAXS (XORIG, XINPC, XAXMAX, TEXX, LXLAB, 0.0, 0.0)
С
C LOG Y AXIS
С
    ELSE IF (ITR.GE.2) THEN
С
      IF (YMAX.LT.1.) YORIG = 1.0E-03
      YINPC = YAXMAX/ALOG10(YMAX/YORIG)
С
C XLIN - YLOG
С
     IF (ITR.EQ.2) THEN
       CALL XNAME (TEXX,LXLAB)
       CALL XGRAF (XORIG, 'SCALE', XMAX, YORIG, .1)
       CALL YLGAXS (YORIG, YINPC, YAXMAX, TEXY, LYLAB, 0.0, 0.0)
С
C XLOG - YLOG
С
     ELSE
       CALL XNAME (TEXX,LXLAB)
       CALL YNAME (TEXY,LYLAB)
       XINPC = XAXMAX/ALOG10(XMAX/XORIG)
       CALL LOGLOG (XORIG, XINPC, YORIG, YINPC)
С
     END IF
С
    END IF
С
C DATA OUT
С
    XPOS = 8.
```

```
YPOS = 4.5
    YJUMP = 0.3
С
    DO 600 J = 1,NFUN
С
     DO 500 I = 1, MAXKAN
      WORK(I) = Y(I,J)
      IF (ITR.GE.2) THEN
       IF (WORK(I).LE.1.0E-03) WORK(I) = 1.0E-03
      END IF
 500
       CONTINUE
С
     CALL SETCLR (COLOR(J))
С
     CALL CURVE (X,WORK,MAXKAN,0)
С
     CALL MESSAG (MESS(J),3,XPOS,YPOS)
     YPOS = YPOS - YJUMP
С
 600 CONTINUE
С
C PLOT SECONDARY AXES
С
    CALL SETCLR ('WHITE')
    CALL XNONUM
    CALL YNONUM
С
   IF (ITR.EQ.0) THEN
     CALL XGRAXS (XORIG, 'SCALE', XMAX, XAXMAX, ' $', 100, 0.0, YAXMAX)
     CALL YGRAXS (YORIG, 'SCALE', YMAX, YAXMAX, ' $',-100, XAXMAX, 0.0)
   ELSE IF (ITR.EQ.1) THEN
     CALL YGRAXS (YORIG, 'SCALE', YMAX, YAXMAX, ' $',-100, XAXMAX, 0.0)
     CALL XLGAXS (XORIG, XINPC, XAXMAX, '$', 100, 0.0, YAXMAX)
   ELSE IF (ITR.EQ.2) THEN
     CALL XGRAXS (XORIG, SCALE', XMAX, XAXMAX, '$', 100, 0.0, YAXMAX)
     CALL YLGAXS (YORIG, YINPC, YAXMAX, ' $',-100, XAXMAX, 0.0)
   ELSE IF (ITR.EQ.3) THEN
     CALL XLGAXS (XORIG, XINPC, XAXMAX, ' $', 100, 0.0, YAXMAX)
     CALL YLGAXS (YORIG, YINPC, YAXMAX, ' $',-100, XAXMAX, 0.0)
   END IF
С
C FRAME TO ENHANCE THE PLOT
С
   CALL FRAME
С
   CALL ENDPL (0)
С
C---
          C STOP DISSPLA AND DISPLAY MAIN PANEL
C-
       С
   LASTRC = ISPLNK('CONTROL', 'DISPLAY', 'REFRESH')
   LASTRC = ISPLNK('CONTROL', 'DISPLAY', 'RESTORE')
С
   GOTO 300
С
   END
```

Literaturverzeichnis

- /1/ Baumgärtel, G., Huppert, C. und Merz, E.: Brennstoff aus der Asche, W.Girardet, Essen (1984)
- /2/ Lo, T.C., Baird, M.H.I. und Hanson,
 C.: Handbook of Solvent Extraktion,
 John Wiley & Sons, New York (1983),
 Kapitel 25
- /3/ Long, J.T.: Engineering for Nuclear Fuel Reprocessing, Gordon and Breach, New York (1967)
- /4/ Sege, G. und Woodfield, F.W.: Chem.Eng.Prog.Symp.Ser. 50 /13/ (1954) 179
- /5/ Miller, H.: KfK Bericht 3771 (1986)
- /6/ Aufderheide, E.: Dissertation, TU Clausthal (1985)
- /7/ Jiricni, V. und Prochazka J.: Chem.Eng.Sci. 35 (1980) 2237-2245
- /8/ Casamatta, G. und Vogelpohl, A.: Chem.-Ing.-Tech. MS 1196/84
- /9/ Bauckhage, K. et al.: Chem.-Ing.-Tech. 7 /5/ (1975) 169-182
- /10/ Miyauchi, T. und Oya, H.: A.I.Ch.E.Journal 11 /3/ (1965) 395-402
- /11/ Mishra, J.C. und Dutt, D.K.: Chem.Age India 20 (1969) 845
- /12/ Bell, R.L. und Babb. A.L.: Ind.Eng.Chem.Proc.Res.Dev. 8 (1969) 392
- /13/ Merz, A. und Zimmermann, H.: ANS Fuel Reprocessing and Waste Management Proceedings, Jackson ID (1984)
- /14/ Eiben, K. et al: ISEC'86 Preprints, Band I, München (1986)
- /15/ Lo, T.C., Baird, M.H.I. und Hanson,
 C.: Handbook of solvent extraction,
 John Wiley & Sons, New York (1983)
- /16/ Niebuhr, E.: Dissertation, TU Clausthal (1982)
- /17/ Pietszch, W.: Dissertation, TU München (1984)
- /18/ Vasudeva, K.: Symp. on Solvent Extraction of Metals, Bombay (1979)
- /19/ Pippel, W.; Philipp, G.: Chem.Eng.Sci. 23 (1977) 543
- /20/ Marschall, A.G. (Hrsg.): Fourier, Hadamard and Hilbert Transforms in Chemistry, Plenum Press, New York (1982)
- /21/ Zadeh, L.: I.R.E. Trans. Circuit Theory 3 (1956) 277
- /22/ Unbehauen, R.: Systemtheorie, R. Oldenbourg, München-Wien (1969)

- /23/ Courant, R. und Hilbert, D.: Methoden der mathematischen Physik I, Springer-Verlag, Berlin (1968) 97
- /24/ Volterra, V.: Theory of Functionals and of Integral and Integro-differential Equations, Dover Publ., New York (1959)
- /25/ Linz, P.: Analytical and Numerical Methods for Volterra Equations, S.I.A.M., Philadelphia PA (1985)
- /26/ Hadamard, J.: Bull. Univ. Princeton, 13 (1902) 49-52
- /27/ Achilles, D.: Die Fouriertransformation in der Signalverarbeitung, Springer-Verlag, Berlin (1985)
- /28/ Tikhonov, A.N. und Arsenin, V.Y.: Solutions of ill-posed Problems, John Wiley & Sons, New York (1977)
- /29/ Griffiths, P.R.: Transform Techniques in Chemistry, Plenum Press, New York (1978)
- /30/ Papoulis, A.: The Fourier Integral and its Applications, McGraw-Hill, New York (1962)
- /31/ Bracewell, R.N.: The Fourier Transform and its Applications, McGraw-Hill, New York (1986)
- /32/ Bringham, E.O.: *The Fast Fourier Transform*, Prentice-Hall, Englewood Cliffs, N.J.
- /33/ Elliot, D.F. und Rao, K.R.: Fast Transforms: Algorithms, Analysis and Applications, Academic Press, New York (1982)
- /34/ Burrus, C.S. und Parks, T.W.: *DFT/FFT and Convolution Algorithms*, John Wiley & Sons, New York (1985)
- /35/ Cooley, J.W. und Tukey, J.W.: Math.Comput. 19 (1965) 297-301
- /36/ Dwyer, R.W.: Anal.Chem. 45 (1973) 1380-1383
- /37/ Maldacker, T.A.; Davis, J.E. und Rogers, L.B.: Anal.Chem. 46 (1974) 637-642
- /38/ Howard, S. und Rayborn, G.H.: Deconvolution of Gas Chromatographic Data, NASA Contractor Report 3229 (1980)
- /39/ Jenkins, G.M. und Watts, D.G.: Spectral Analysis and its Applications, Holden Day, San Francisco CA (1969)
- /40/ Blackman, R.B. und Tukey, J.W.: The Measurement of Power Spectra, Dover Publ., New York (1959)

- /41/ Redshaw, T.C: Dissertation, Univ. of Wales U.K. (1982)
- /42/ Hansson, L.; Kurten, R. und Thyn, J.: Int.J.Appl.Rad.Isot. 26 (1975) 347-354
- /43/ Al-Faour, O.M.: Dissertation, Univ.Coll.of Wales (1981)
- /44/ Vogg, H.: Chem.-Ing.-Tech. 55 (1983) 467-474
- /45/ Hunsinger, H.: Diplomarbeit 85/23, FH Karlsruhe (1985)
- /46/ Souhrada, F.; Prochazka, J. und Landau, J.: Coll.Czech.Chem.Commun. 31 (1966) 1695
- /47/ E. von Fischer : Dissertation 7220 ETH, Zürich (1983)
- /48/ Aris, R.: Chem.Engng.Sci. 9 (1959) 266
- /49/ Bischoff, K.B.: Chem.Engng.Sci. 12 (1960) 69
- /50/ Böxkes, W.; Hofmann, H.: Chem.-Ing.-Tech. 44 /14/ (1972) 882-889
- /51/ Merz, A.; Porta, J.J. und Walter, R.:
 ISEC'86 Conference Preprints, Band III, München (1986) 413-420
- /52/ Sekine T., Hasegawa Y.: Solvent Extraction Chemistry, Marcel Dekker, New York (1977), ISBN 0-8247-6391-2.
- /53/ Ishimori, T., Nakamura, E.: JAERI 1047 /1/ (1963) 12
- /54/ Britsch, R.: Int.J.Appl.Rad.Isot. 34 /9/ (1983) 1400-1402
- /55/ Porta, J.J.: Diplomarbeit, TU Stuttgart (1982)
- /56/ Arthayukti, W.: Dissertation, Univ. Toulouse (1975)
- /57/ Hiraoka, M.: Crown Compounds, Elsevier Co., Amsterdam (1982)
- /58/ Porta, J.J. et al.: Deutsche Offenlegungsschrift DE 3346723 A1
- /59/ Eiben, K. et al.: *ISEC'86 Conference Preprints*, Band I, München (1986) 317-324
- /60/ Hanson, C.: Neuere Fortschritte der Flüssig-Flüssig-Extraktion, Verlag Sauerländer (1974)
- /61/ Box, G.E.P. und Wilson, K.B.: J.Roy.Stat.Soc., Series B, 13 (1951) 1-45
- /62/ Box, G.E.P.; Hunter, G.P. und Hunter, J.S.: Statistics for experimenters, John Wiley, New York (1978)
- /63/ Myers, R.H.: Response surface methodology, Allyn and Bacon, Boston MA (1971), Kapitel 7.
- /64/ SAS User's Guide (Version 5), SAS Institute, Cary NC (1985)
- /65/ Levenspiel, O. und Smith, W.K.: Chem.Eng.Sci. 6 (1957) 227

- /66/ Kendall M.G. und Stuart A.: The advanced theory of Statistics (Vol I), Griffin, London (1958)
- /67/ Soong, T.T.: Probabilistic Modeling and Analysis in Science and Engineering, John Wiley & Sons, New York (1981) 97
- /68/ Aris, R.: Chem.Eng.Sci. 9 (1959) 266
- /69/ Jeffreson, C.P.: Chem.Eng.Sci. 25 (1970) 1319-1329
- /70/ Blaß, E. et al: Chem.-Ing.-Techn. 57 (1985) 565-581
- /71/ Bauer R.: Dissertation 5741 ETH, Zürich (1976)
- /72/ Urbanczyk, W.: Dissertation, TU Hannover (1972)
- /73/ Ostergard, K. und Michelsen, M.L.: Can.J.of Chem.Eng. 47 (1969) 107
- /74/ Anderssen, A.S. und White, E.T.: Chem.Eng.Sci. 25 (1970) 1015
- /75/ Daniel, C. and Wood, F.S.: Fitting Equations to Data, Wiley-Interscience, New York (1971)
- /76/ Böxkes, W.: Dissertation, TU Erlangen (1973)
- /77/ Sommeregger : Dissertation, TU Graz (1980)
- /78/ Bard, Y.: Nonlinear Parameter Estimation, Academic Press, New York (1974)
- /79/ Harwell Subroutine Library, U.K.A.E.A. Report AERE-R 9185 (1984)
- /80/ Hemmerle, W.J.: Statistical Computations on a Digital Computer, Blaisdell Publ. Co., Waltham MA (1967)
- /81/ Sachs, L.: Angewandte Statistik, Springer Verlag, Berlin (1978)
- /82/ Kolmogoroff, A.: Ann.Math.Stat. 12 (1941) 461-463
- /83/ Smirnoff, N.: Ann.Math.Stat. 19 (1948) 279-281
- /84/ Gibbons, J.D.: Nonparametric Statistical Inference, Marcel Dekker, New York (1985) Kapitel 4
- /85/ Kursunterlagen : Verfahrenstechnische Auslegung thermischer Trennapparate, DECHEMA/GVC, TU München (1983)
- /86/ Sleicher, C.A.: AIChE J. 5 (1959) 145-149
- /87/ Dankwerts, P.V.: Chem.Eng.Sci. 2 (1953) 1-13
- /88/ Mecklenburgh, J.C.; Hartland, S.: The Theory of Backmixing, John Wiley and Sons, New York (1975)
- /89/ Reissinger, K.-H. und Marr, R.: Chem.-Ing.-Tech. 58 /7/ (1986) 540-547

- /90/ Blaß, E.; Zimmerman, H.: Verfahrenstechnik (Mainz) 16 /9/ (1982) 682-690
- /91/ Carlslaw, H.S. und Jaeger, J.C.: Conduction of Heat in Solids, Oxford Univ. Press, London (1959)
- /92/ Crank, J.: Mathematics of Diffusion, Oxford Univ. Press, London (1956)
- /93/ Molerus, O.: Chem.-Ing.-Tech. 38 /2/ (1966) 137-145
- /94/ Larson, H.J.; Shubert, B.O.: Probabilistic Models in Engineering Sciences, John Wiley & Sons, New York (1979)
- /95/ Risken, H.: *The Fokker-Planck Equation*, Springer-Verlag, Berlin (1984)
- /96/ Van der Laan, E.T.: Chem.Eng.Sci. 7 (1958) 187
- /97/ Pallaske, U.: Chem.-Ing.-Tech. 56 /1/ (1984) 46-47
- /98/ Feller, W.: Introduction to Probability Theory and its Applications, Band I, S. 323-327, John Wiley & Sons, New York (1957)
- /99/ Levenspiel, O. and Smith, W.K.: Chem.Engng.Sci. 6 (1957) 227
- /100/ Kreft, A. und Zuber, A.: Chem.Eng.Sci. 33 (1978) 1471-1480
- /101/ Levenspiel, O und Turner, J.C.R.: Chem.Eng.Sci. 25 (1970) 1605
- /102/ Braun, H.: Dissertation, TH Karlsruhe (1984)
- /103/ Sheppard, C.W.: Basic Principles of the Tracer Method, John Wiley & Sons (1962)
- /104/ Kolmogoroff, A.N.: Doklady Akademii Nauk SSSR, 31 (1941) 25-32
- /105/ Jones, S.C.: Dissertation, Univ. of Michigan MI (1962)
- /106/ Wise, M.E.: Statistica Neerlandica, 20 (1966) 119-142
- /107/ Wise, M.E.: Acta Physiologica Pharmacologica Neerlandica, 14 (1966) 175-204
- /108/ Molerus, O. und Kurtin, M.: Chem.-Ing.-Tech. 58 /6/ (1986) 504-505
- /109/ Aitchinson, J. und Brown, J.A.C.: *The Lognormal Distribution*, Cambridge Univ. Press, London (1957)
- /110/ Bury, K.V.: Statistical Models in Applied Science, John Wiley & Sons, New York (1975)
- /111/ Dempster, A.P.: J.Multiv.Analysis 1 (1971) 316-346
- /112/ SAS Institute: SAS User's Guide: Statistics (Version 5), Cary N.C. (1985)

- /113/ Freund, R.J. und Littell, R.C.: SAS for Linear Models, SAS Institute, Cary N.C. (1981)
- /114/ SAS User's Guide (Version 5), SAS Institute, Cary NC (1985)
- /115/ Kumar, A. und Hartland, S.: Chem.Eng.Res.Dev. 61 (1983) 248-252
- /116/ Schmidt, H. und Miller, H.: KfK Nachr. 14 /3/ (1982) 154-165
- /117/ Sehmel, G.A.: Dissertation, Univ. of Washington (1961)
- /118/ Autorenkollektiv : Verfahrenstechnische Berechnungsmethoden, Band 2, VCH Verlag, Weinheim (1986)
- /119/ Kintner, R.C. : "Drop phenomena affecting liquid extraction". Advances in Chemical Engineering (Vol IV), Academic Press, New York (1963) 51-94
- /120/ Merz A.: KfK Nachrichten 18 /2/ (1986) 83-89
- /121/ Hatton, T.A. und Lightfoot, E.N.: Chem.Eng.Sci. 37 /9/ (1982) 1289-1307
- /122/ Misek, T.: Recommended systems for liquid extraction studies, European Federation of Chemical Engineering (1978)
- /123/ Mar, B.W. and Babb, A.L.: Ind.Eng.Chem. 51 (1959) 1011
- /124/ Robinson, B.A. und Tester, J.W.: Chem.Eng.Sci. 41 /3/ (1986) 469-483
- /125/ Naor, P. und Shinnar, R.: Ind.Engng.Chem.Fundam. 2 (1963) 278-286
- /126/ Levenspiel, O.: Chemical Reaction Engineering, John Wiley & Sons, New York (1972)
- /127/ Zwietering, T.N.: Chem.Eng.Sci. 11 (1959) 1
- /128/ Chauhan, S.P.; Bell, J.P. und Adler, R.J.: Chem.Eng.Sci. 27 (1972) 585
- /129/ Katz, S. und Shinnar, R.: Ind.Eng.Chem. 61 /4/ (1969) 60-74
- /130/ Hatton, T.A. und Woodburn, E.T.: A.I.Ch.E.J. 24 (1978) 187
- /131/ Levenspiel, O. und Fitzgerald, T.J.: Chem.Eng.Sci. 38 /3/ (1983) 489-491
- /132/ Plawsky, J.L. und Hatton, T.A.: ISEC'86 Conference Preprints, Band III (1986) 89-97
- /133/ lordache, O. und Corbu, S.: Chem.Eng.Sci. 41 /8/ (1986) 2099-2102
- /134/ Rathor, M.N.: Dissertation, Loughborough Univ., U.K. (1969)
- /135/ Fougere, P.F.: J.Geophys.Research 90 (1985) 4355-4366

- /136/ Horlick, G. und Yuen, W.K.: Anal.Chem. 48 (1976) 1643-1644
- /137/ Bendat, J.S. und Piersol, A.G.: Engineering Applications of Correlation and Spectral Analysis, John Wiley & Sons, Ney York (1980)
- /138/ Inonye, T.; Harper, T. und Rasmussen, N.C.: Nucl.Instrum.Meth. 67 (1969) 125
- /139/ Papoulis, A.: Signal Analysis, McGraw Hill, New York (1984)
- /140/ Courant, R. und Hilbert, D.: Methoden der mathematischen Physik I, Springer-Verlag, Berlin (1968)
- /141/ Kaiser, J.F. und Reed, W.A.: Rev.Sci.Instrum. 48 /11/ (1977) 1447-1457
- /142/ Geckinli, N.C. und Yavuz, D.: IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. ASS-26 /6/ (1978) 501-507
- /143/ Cameron, D.G.; Moffatt, D.J.: JTEVA, 12 /2/ (1984) 78-85
- /144/ Childers, D. und Durling, A.: Digital Filtering and Signal Processing, West Publ. Co., St. Paul MINN (1975)