KfK 5239 September 1993

# Neue metallorganische Komplexe des Technetiums in diversen Oxidationsstufen:

Synthesen, Eigenschaften und Strukturen im Vergleich mit Homologen des Mangans und Rheniums

> J. E. Joachim Institut für Heiße Chemie

Kernforschungszentrum Karlsruhe

## KERNFORSCHUNGSZENTRUM KARLSRUHE

Institut für Heiße Chemie

KfK 5239

# NEUE METALLORGANISCHE KOMPLEXE DES TECHNETIUMS IN DIVERSEN OXIDATIONSSTUFEN :

## SYNTHESEN, EIGENSCHAFTEN UND STRUKTUREN IM VERGLEICH MIT HOMOLOGEN DES MANGANS UND RHENIUMS

### J. E. Joachim

Von der natuwissenschaftlich - mathematischen Gesamtfakultät der Ruprecht-Karls-Universität Heidelberg genehmigte Dissertation

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

Als Manuskript gedruckt Für diesen Bericht behalten wir uns alle Rechte vor

Kernforschungszentrum Karlsruhe GmbH Postfach 3640, 76021 Karlsruhe

ISSN 0303-4003

# Zusammenfassung

Metallorganische Verbindungen des ein-, drei- und siebenwertigen Technetiums wurden synthetisiert, charakterisiert, ihre Eigenschaften untersucht und mit den auf analogen Reaktionswegen synthetisierten homologen Rhenium- und Manganverbindungen verglichen. Sowohl von den meisten Technetiumverbindungen als auch von den Manganund Rheniumhomologen (soweit noch nicht bekannt) konnten die Molekül- und Kristallstrukturen durch Röntgenstrukturanalyse ermittelt werden.

Aus  $Tc_2(CO)_{10}$  wurde die Verbindung BrTc(CO)<sub>5</sub> (1) synthetisiert und auf ihre chemischen Eigenschaften hin untersucht. 1 wandelt sich bei der Sublimation im Vakuum unter CO-Abspaltung zu 80 % in die dimere Verbindung [BrTc(CO)<sub>4</sub>]<sub>2</sub> (2) um. Durch thermische Behandlung sowohl von 1 als auch von 2 in Tetrahydrofuran (THF) entsteht unter CO-Substitution der zweikernige Komplex [(THF)Tc(CO)<sub>3</sub>Br]<sub>2</sub> (3). Bei der Umsetzung von 3 mit Pyridin bildete sich unter Aufspaltung der Brom-Brücke die monomere, einkernige Verbindung (C<sub>5</sub>H<sub>5</sub>N)<sub>2</sub>Tc(CO)<sub>3</sub>Br (4).

Durch Reaktion von BrTc(CO)<sub>5</sub> (1) mit den Alkalisalzen der dreizähligen Liganden Hydrotris(pyrazol-1-yl)borat (L), Hydrotris(3,5-dimethylpyrazol-1-yl)borat (L<sup>\*</sup>) und Tetramethylpyrrolyl (Pyr<sup>\*</sup>) gelang die Synthese der "Halbsandwichverbindungen" LTc(CO)<sub>3</sub> (5), L<sup>\*</sup>Tc(CO)<sub>3</sub> (6) und Pyr<sup>\*</sup>Tc(CO)<sub>3</sub>·HPyr<sup>\*</sup> (7). Während bei 5 und 6 der Ligand über je ein freies Elektronenpaar der drei Pyrazolylstickstoffe an das Metallzentrum gebunden ist, liegt bei 7 eine  $\eta^5$ -Koordination des Metallions mit dem  $\pi$ -System des aromatischen Pyrrolylringes vor. Im festen Zustand ist in 7 ein bei der Reaktion entstandenes, freies Pyrrol an den negativierten Stickstoff des  $\eta^5$ -gebundenen Pyrrolyls über eine Wasserstoffbrücke koordiniert.

Die Verbindungen LTc(CO)<sub>3</sub> (5) und L<sup>\*</sup>Tc(CO)<sub>3</sub> (6) wurden auf ihr photochemisches Verhalten und auf ihre Reaktion gegenüber  $\sigma$ -Donor- $\pi$ -Akzeptor-Liganden ( $\pi$ -Säuren) untersucht. UV-Bestrahlung von 5 und 6 in THF zu den äußerst instabilen Komplexen LTc(CO)<sub>2</sub>(THF) bzw. L<sup>\*</sup>Tc(CO)<sub>2</sub>(THF) und anschließende thermische Reaktion nach insitu-Zugabe von Triphenylphosphan (PPh<sub>3</sub>), Trimethylphosphit (TMP) oder molekularem Stickstoff (N<sub>2</sub>) führt zu den Komplexen LTc(CO)<sub>2</sub>(PPh<sub>3</sub>) (9), L<sup>\*</sup>Tc(CO)<sub>2</sub>(TMP) (11) und [L<sup>\*</sup>Tc(CO)<sub>2</sub>]<sub>2</sub>( $\mu$ -N<sub>2</sub>) (12). Im Fall von 12 handelt es sich um einen zweikernigen Technetium(I)komplex, der eine nahezu linear verbrückende Tc-N-N-Tc-Einheit enthält.

Bestrahlt man LTc(CO)<sub>3</sub> (5) in Anwesenheit von PPh<sub>3</sub> in THF mit UV-Licht (Cophotolyse), läßt sich das erwartete Produkt LTc(CO)<sub>2</sub>(PPh<sub>3</sub>) (9) nicht nachweisen. In einer unübersichtlichen Reaktion entsteht die Verbindung LTc(CO)(PPh<sub>2</sub>Me)<sub>2</sub> (10), welche in geringen Ausbeuten isoliert werden konnte.

Gegenüber seinen Homologen Mangan und Rhenium konnten anhand dieser photolytischen Reaktionen gravierende Unterschiede aufgezeigt werden. So blieben Versuche, die homologen, verbrückten Distickstoffkomplexe von Mangan und Rhenium auf analoge Reaktionsweise herzustellen, erfolglos. Während sich von Mangan keine identifizierbaren Produkte isolieren lassen, entsteht bei Rhenium ausschließlich der Komplex  $L^{*}Re(CO)_{2}(THF)$  (8b), der, im Gegensatz zum Technetium-Homologen, isolierbar und luftstabil ist.

Ein weiteres Teilgebiet der vorliegenden Arbeit war die Komplexchemie des siebenwertigen Technetiums. Umsetzungen von Tc<sub>2</sub>O<sub>7</sub> mit Alkalisalzen von L<sup>-</sup> und L<sup>\*-</sup> brachten in relativ guten Ausbeuten (35 - 41 %) die Tc(VII)-Verbindungen LTcO<sub>3</sub> (14) und L<sup>\*</sup>TcO<sub>3</sub> (15). Poly(pyrazol-1-yl)borat-Anionen stellen einen ausgezeichneten Liganden dar, um das TcO<sub>3</sub><sup>+</sup>-Fragment zu fixieren bzw. zu stabilisieren.

Erfolglos blieben Versuche, die Verbindung Cp<sup>\*</sup>TcO<sub>3</sub> zu synthetisieren. Alle gängigen Synthesearten, die zu der homologen Verbindung Cp<sup>\*</sup>ReO<sub>3</sub> führen, scheiterten.

Im letzten Abschnitt der Arbeit werden Umsetzungen der Technetium(III)-Verbindungen Cp<sub>2</sub>TcCl (**16**) und Cp<sub>3</sub>Tc (**17**) mit den chalkogenhaltigen, nukleophilen Substituenten Phenolat (PhO<sup>-</sup>) und para-Thiokresolat (MePhS<sup>-</sup>) beschrieben. Die resultierenden Komplexe Cp<sub>2</sub>Tc(OPh) (**18**) und Cp<sub>2</sub>Tc(SPhMe) (**19**) wurden eingehend spektroskopisch charakterisiert.

Von folgenden Technetium-, Mangan- und Rheniumverbindungen konnte im Rahmen dieser Arbeit erstmals die Molekül- und Kristallstruktur durch Röntgenstrukturanalyse bestimmt werden:

| BrTc(CO) <sub>3</sub> (1)                      | BrMn(CO) <sub>5</sub> (1a)                                   |                                                                                                                        |
|------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| $[BrTc(CO)_4]_2$ (2)                           |                                                              |                                                                                                                        |
| $(C_{5}H_{5}N)_{2}Tc(CO)_{3}Br$ (4)            |                                                              | $(C_5H_5N)_2Re(CO)_3Br$ (4b)                                                                                           |
| LTc(CO) <sub>3</sub> (5)                       | LMn(CO) <sub>3</sub> (5a)                                    | LRe(CO) <sub>3</sub> (5b)                                                                                              |
| $L^{*}Tc(CO)_{3}$ (6)                          | $L^*Mn(CO)_3$ (6a)                                           | L <sup>*</sup> Re(CO) <sub>3</sub> (6b)                                                                                |
| $Pyr^{*}Tc(CO)_{3}$ ·HPyr <sup>*</sup> (7)     | Pyr <sup>*</sup> Mn(CO) <sub>3</sub> ·HPyr <sup>*</sup> (7a) | Pyr <sup>*</sup> Re(CO) <sub>3</sub> ·HPyr <sup>*</sup> (7b)<br>L <sup>*</sup> Re(CO) <sub>2</sub> (THF) ( <b>8</b> b) |
| LTc(CO)(PPh <sub>2</sub> Me) <sub>2</sub> (10) |                                                              | -                                                                                                                      |
| $L^{*}Tc(CO)_{2}(TMP)$ (11)                    | L <sup>*</sup> Mn(CO) <sub>2</sub> (TMP) ( <b>11</b> a)      | L <sup>*</sup> Re(CO) <sub>2</sub> (TMP) (11b)                                                                         |
| $L^*Tc(CO)_2(\mu-N_2)$ (12)                    | 2.                                                           |                                                                                                                        |
|                                                | L <sup>*</sup> 2Mn (13a)                                     |                                                                                                                        |

# NEW ORGANOMETALLIC COMPLEXES OF TECHNETIUM IN DIFFERENT OXIDATION STATES: SYNTHESIS, PROPERTIES AND STRUCTURES IN CORRELATION WITH THE HOMOLOGOUS COMPOUNDS OF MANGANESE AND RHENIUM

### Abstract

New organometallic compounds of Tc(I), Tc(III) and Tc(VII) were synthesized and their properties examined. These compounds were correlated with their homologous compounds of manganese and rhenium, which were also synthesized by the same route. The molecular and crystal structures of most technetium complexes and of the homologous complexes of manganese and rhenium were determined by single cristal X-ray diffraction.

By reaction of the starting material  $Tc_2(CO)_{10}$  with bromine the compound  $BrTc(CO)_5$  (1) was synthesized. Through sublimation in vacuum, 1 converted into the dimeric complex [BrTc(CO)\_4]\_2 (2) in yield of 80 %. Heating of the compounds 1 or 2 in THF results in, after CO substitution, the dinuclear complex [(THF)Tc(CO)\_3Br]\_2 (3). Reaction of 3 with pyridine yields the monomeric complex (C<sub>5</sub>H<sub>5</sub>N)<sub>2</sub>Tc(CO)<sub>3</sub>Br (4).

Along a simple route from BrTc(CO)<sub>5</sub> (1) and the alkali salts of the tridentate ligands hydrotris(pyrazol-1-yl)borate (L), hydrotris(3,5-dimethylpyrazol-1-yl)borate (L<sup>\*</sup>) and tetramethylpyrrolyl (Pyr<sup>\*</sup>) the carbonyl technetium "half-sandwich" compounds LTc(CO)<sub>3</sub> (5), L<sup>\*</sup>Tc(CO)<sub>3</sub> (6) and Pyr<sup>\*</sup>Tc(CO)<sub>3</sub>·HPyr<sup>\*</sup> (7) are accessible. While in 5 and 6 the ligand is coordinated by the six electrons of the pyrazolenitrogen to the metal, displays in 7 eine  $\eta^5$ -coordination of a tetramethylpyrrolylring to the Tc(CO)<sub>3</sub>-fragment and a free tetramethylpyrrole is bonded to the nitrogen of the  $\eta^5$ -bonded pyrrolylring by a hydrogen-bridged bond.

The compounds  $LTc(CO)_3$  (5) and  $L^*Tc(CO)_3$  (6) were examined for their photochemical behaviour and reactions with  $\sigma$ -donor- $\pi$ -acceptor ligands. UV-irradiation of the compounds 5 and 6 in THF yields the very unstable, non-isolable complexes  $LTc(CO)_2$ (THF) and  $L^*Tc(CO)_2$ (THF). Following in-situ reactions with triphenylphosphane (PPh<sub>3</sub>), trimethylphosphite (TMP) or molecular nitrogen (N<sub>2</sub>) led to the isolable, air-stable products  $LTc(CO)_2$ (PPh<sub>3</sub>) (9),  $L^*Tc(CO)_2$ (TMP) (11) and  $[L^*Tc(CO)_2]_2(\mu$ -N<sub>2</sub>) (12). 12 is a dinuclear technetium(I) complex with an almost linear N<sub>2</sub> bridge. UV-irradiation of  $LTc(CO)_3$  (5) does not lead to the expected compound  $LTc(CO)_2(PPh_3)$  (9). A reaction yet to be defined formed the product  $LTc(CO)(PPh_2Me)_2$  (10), which could be isolated in yield of 5 %.

In comparison with the analogous reactions of the homologous compounds of manganese and rhenium the reaction of Tc often led to different products. It was not possible to isolate the homologous N<sub>2</sub>-bridged compounds of manganese and rhenium by the same route. In the case of rhenium only the isolable, air-stable complex  $L^*Re(CO)_2(THF)$  (8b) was formed.

A further part of the work dealt with the chemistry of technetium(VII) compounds. Reactions of the starting material  $Tc_2O_7$  with KL and  $NaL^*$  yields the Tc(VII)-compounds  $LTcO_3$  (14) and  $L^*TcO_3$  (15) (35 - 41 %). Poly(pyrazol-1-yl)borato anions are prominent ligands to fix and stabilize the  $TcO_3^+$ -fragment. Attempts to synthesize the compound  $Cp^*TcO_3$  were unsuccessful failed. All conventional routes, which were successful in synthesizing the homologous compound  $Cp^*ReO_3$ , yielded no analogous technetium products.

The last part of the work describes reactions of the technetium(III) compounds  $Cp_2TcCl$  (16) and  $Cp_3Tc$  (17) with the nucleophilic substituents phenolate (PhO<sup>-</sup>) and para-thiokresolate (MePhS<sup>-</sup>). The resulting compounds  $Cp_2Tc(OPh)$  (18) and  $Cp_2Tc(SPhMe)$  (19) were isolated and analyzed by means of the spectroscopic data.

The molecular and crystal structures of the following complexes of technetium, manganese and rhenium were determined by single cristal X-ray diffraction for the first time:

| BrTc(CO) <sub>3</sub> (1)                     | BrMn(CO) <sub>5</sub> (1a)                              |                                                                                                               |
|-----------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| $[BrTc(CO)_{4}]_{2}$ (2)                      |                                                         |                                                                                                               |
| $(C_{5}H_{5}N)_{2}Tc(CO)_{3}Br$ (4)           |                                                         | $(C_5H_5N)_2Re(CO)_3Br$ (4b)                                                                                  |
| LTc(CO) <sub>3</sub> (5)                      | LMn(CO) <sub>3</sub> (5a)                               | LRe(CO) <sub>3</sub> (5b)                                                                                     |
| $L^{*}Tc(CO)_{3}(6)$                          | L <sup>*</sup> Mn(CO) <sub>3</sub> (6a)                 | L <sup>*</sup> Re(CO) <sub>3</sub> (6b)                                                                       |
| $Pyr^{*}Tc(CO)_{3} \cdot HPyr^{*}$ (7)        | $Pyr^*Mn(CO)_3 \cdot HPyr^*$ (7a)                       | Pyr <sup>*</sup> Re(CO) <sub>3</sub> ·HPyr <sup>*</sup> (7b)<br>L <sup>*</sup> Re(CO) <sub>2</sub> (THF) (8b) |
| $LTc(CO)(PPh_2Me)_2$ (10)                     |                                                         |                                                                                                               |
| L <sup>*</sup> Tc(CO) <sub>2</sub> (TMP) (11) | L <sup>*</sup> Mn(CO) <sub>2</sub> (TMP) ( <b>11</b> a) | L <sup>*</sup> Re(CO) <sub>2</sub> (TMP) (11b)                                                                |
| $L^{*}Tc(CO)_{2}(\mu-N_{2})$ (12)             | _                                                       | -                                                                                                             |
|                                               | L <sup>*</sup> <sub>2</sub> Mn (13a)                    | i                                                                                                             |

# Abkürzungen

# 1. Chemische Verbindungen und Liganden

| М                  | Metall                                   |
|--------------------|------------------------------------------|
| THF                | Tetrahydrofuran                          |
| L                  | Hydrotris(pyrazol-1-yl)borat             |
| L                  | Hydrotris(3,5-dimethylpyrazol-1-yl)borat |
| Ср                 | Cyclopentadienyl                         |
| Cp <sup>*</sup>    | Pentamethylcyclopentadienyl              |
| R                  | Rest                                     |
| Me                 | Methyl                                   |
| Ph                 | Phenyl                                   |
| Pz                 | Pyrazolyl                                |
| PR3                | Trialkylphosphan                         |
| PPh3               | Triphenylphosphan                        |
| RO                 | Alkoholat '                              |
| RS <sup>-</sup>    | Thioalkoholat                            |
| PhO <sup>-</sup>   | Phenolat                                 |
| MePhS <sup>-</sup> | Thiokresolat                             |
| Ar                 | Aryl                                     |
| Pyr                | Tetramethylpyrrolyl                      |
| $PPh_2Me$          | Diphenylmethylphosphan                   |
| TMP                | Trimethylphosphit                        |

# 2. IR-Spektren

| ٧S | very strong            |
|----|------------------------|
| S  | strong                 |
| m  | medium                 |
| w  | weak                   |
| sh | shoulder               |
| ν  | Valenzschwingung       |
| ô  | Deformationsschwingung |

# 3. NMR-Spektren

- s Singulett
- d Dublett
- t Triplett
- m Multiplett
- b chemische Verschiebung

# 4. UV/VIS-Spektren

- $\lambda$  Wellenlänge
- e molarer Extinktionskoeffizient

| max  | Maximum                       |
|------|-------------------------------|
| sh   | shoulder                      |
| E    | Energie                       |
| СТ   | charge-transfer               |
| LMCT | Ligand-Metall-charge-transfer |
| MLCT | Metall-Ligand-charge-transfer |
| LF   | Ligandenfeld                  |
| IL   | Intraligand                   |

# 5. Massenspektrum

| EI               | Elektronenstoßionisation |
|------------------|--------------------------|
| m/z              | Massenzahl               |
| $M^+$            | Molekülpeak              |
| I <sub>rel</sub> | relative Intensität      |

# 6. Dipolmomentmessung

| μ            | Dipolmoment                                |
|--------------|--------------------------------------------|
| r            | Abstand                                    |
| <b>9</b> eff | effektive Ladung                           |
| D            | Debye $(3.336 \cdot 10^{-30} \text{ C m})$ |

# 7. Magnetische Messung

| H | magnetische | Feldstärke  | (in KOe) |
|---|-------------|-------------|----------|
| χ | magnetische | Suszeptibil | ität     |

# 8. Sonstiges

| МО       | Molekülorbital                                |
|----------|-----------------------------------------------|
| HOMO     | highest occupied molecular orbital            |
| LUMO     | lowest unoccupied molecular orbital           |
| Х        | Ligand (allgemein)                            |
| D        | Donorligand                                   |
| Р        | Phosphor-Donorligand                          |
| hν       | elektromagnetische Strahlung (UV/VIS-Bereich) |
| $\Delta$ | thermisch                                     |
| Smp.     | Schmelzpunkt                                  |
| Zers.    | Zersetzung                                    |
| DC       | Dünnschichtchromatographie                    |
| NS       | Normschliff                                   |
| min.     | Minute                                        |
| h        | Stunde                                        |
| d        | Tag                                           |
| RT       | Raumtemperatur                                |

# Inhaltsverzeichnis

# Allgemeiner Teil

1.

•

| 1.1 | Einführung                                  | 1 |
|-----|---------------------------------------------|---|
| 1.2 | Die allgemeine Chemie des Technetiums       | 2 |
| 1.3 | Die metallorganische Chemie des Technetiums | 3 |
| 1.4 | Problemstellung und Ziel der Arbeit         | 7 |

# 2. Beschreibung und Diskussion der Ergebnisse

| 2.1     | Einleitung                                                                                                                                        | 8  |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2.2     | Reaktionen mit $Tc_2(CO)_{10}$ als Ausgangsverbindung                                                                                             | 9  |
| 2.2.1   | Die Verbindungen BrTc(CO) <sub>5</sub> (1) und $[(\mu-Br)Tc(CO)_4]_2$ (2)                                                                         | 9  |
| 2.2.2   | Die dimere Verbindung [(THF)Tc(CO) <sub>3</sub> Br] <sub>2</sub> (3) und ihre<br>Reaktion mit Pyridin zu $(C_5H_5N)_2$ Tc(CO) <sub>3</sub> Br (4) | 14 |
| 2.2.3   | Technetiumcarbonylkomplexe mit Poly(pyrazol-1-yl)borat-Liganden                                                                                   | 20 |
| 2.2.3.1 | Poly(pyrazol-1-yl)borat-Liganden                                                                                                                  | 20 |
| 2.2.3.2 | Die Verbindungen LTc(CO) <sub>3</sub> (5) und $L^*Tc(CO)_3$ (6)                                                                                   | 22 |
| 2.2.4   | Die Verbindung $\eta^5$ -Pyr <sup>*</sup> Tc(CO) <sub>3</sub> · HPyr <sup>*</sup> (7) und ihre<br>Homologen [Mn (7a), Re (7b)]                    | 37 |
| 2.2.5   | Photochemische Reaktionen der Verbindungen $LTc(CO)_3$ (5)<br>und $L^*Tc(CO)_3$ (6)                                                               | 47 |
| 2.2.5.1 | Photochemische Reaktivität von Organo-ÜM-Verbindungen                                                                                             | 47 |
| 2.2.5.2 | Die Photochemie der Homologen $LM(CO)_3$ und $L^*M(CO)_3$<br>(M = Mn, Re)                                                                         | 48 |
| 2.2.5.3 | Die Verbindungen LTc(CO) <sub>2</sub> (PPh <sub>3</sub> ) (9) und LTc(PPh <sub>2</sub> Me) <sub>2</sub> (CO) (10)                                 | 55 |
| 2.2.5.4 | Die Verbindung $L^*Tc(CO)_2(TMP)$ (11) und ihre Homologen [Mn (11a),<br>Re (11b)] {TMP = Trimethylphosphit}                                       | 60 |

| 2.2.5.5 | Der verbrückte Distickstoffkomplex [ $L^*Tc(CO)_2$ ] <sub>2</sub> ( $\mu$ -N <sub>2</sub> ) (12)                                                                             | 70  |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 2.2.6   | Exkurs: Das "Nebenprodukt" L <sup>*</sup> 2Mn (13a)                                                                                                                          | 78  |
|         |                                                                                                                                                                              |     |
| 2.3     | Trioxotechnetium(VII)-Verbindungen                                                                                                                                           | 82  |
| 2.3.1   | Herstellungsversuche der Verbindung $\eta^5$ -Cp <sup>*</sup> TcO <sub>3</sub>                                                                                               | 82  |
| 2.3.2   | Die Verbindungen LTcO <sub>3</sub> (14) und L $^{*}$ TcO <sub>3</sub> (15)                                                                                                   | 84  |
|         |                                                                                                                                                                              |     |
| 2.4     | Cyclopentadienyltechnetium(III)-Komplexe                                                                                                                                     | 90  |
| 2.4.1   | Die Synthese von Cp2Tc(III)(OPh) (18) aus Cp2TcCl (16)                                                                                                                       | 91  |
| 2.4.2   | Die Synthese von Cp <sub>2</sub> Tc(III)(SPhMe) (19) aus Cp <sub>3</sub> Tc (17)                                                                                             | 94  |
| 2.4.3   | Ein Vergleich der Cp <sub>2</sub> TcX - Verbindungen (X = Cp; Cl, OPh, SPhMe)                                                                                                | 98  |
| 2.4.4   | Umsetzung von Cp <sub>2</sub> TcCl (16) mit KCpMo(CO) <sub>3</sub>                                                                                                           | 100 |
| 3.      | Experimenteller Teil                                                                                                                                                         |     |
| 3.1     | Allgemeine Arbeitstechniken                                                                                                                                                  | 102 |
| 3.2     | Spektren und Analytik                                                                                                                                                        | 103 |
| 3.3     | Ausgangsverbindungen                                                                                                                                                         | 105 |
| 3.4     | Reaktionen mit $M_2(CO)_{10}$ als Ausgangsverbindung<br>(M = Mn, Tc, Re)                                                                                                     | 105 |
| 3.4.1   | Synthese von BrTc(CO) <sub>5</sub> (1) und [BrTc(CO) <sub>4</sub> ] <sub>2</sub> (2)                                                                                         | 105 |
| 3.4.2   | Synthese der Verbindung [(THF)Tc(CO)3Br]2 (3)                                                                                                                                | 106 |
| 3.4.3   | Synthese der Verbindung (C5H5N)2Tc(CO)3Br (4)                                                                                                                                | 107 |
| 3.4.4   | Synthese der Verbindungen LM(CO)3 und $L^*M(CO)3$<br>[L = Hydrotris(pyrazol-1-yl)borat, {M = Tc (5), Mn (5a),<br>Re (5b)}; $L^*$ = Hydrotris(3,5-dimethylpyrazol-1-yl)borat, | 108 |
|         | $\{M = Tc (6), Mn (6a), Re (6b)\}\}$                                                                                                                                         |     |

3.4.5 Synthese der Verbindung  $\eta^5$  -Pyr<sup>\*</sup> M(CO)<sub>3</sub> · HPyr<sup>\*</sup> 113 [Pyr<sup>\*</sup> = Tetramethylpyrrolyl] {M = Tc (7), Mn (7a), Re (7b)}

| 3.4.5   | Synthese von Hydrotris(3,5-dimethylpyrazol-1-yl)borato-<br>tetrahydrofurano-rheniumdicarbonyl (8b)                                                                                                           | 115 |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 3.4.6   | Synthese von Hydrotris(pyrazol-1-yl)borato-<br>triphenylphosphano-technetiumdicarbonyl (9)                                                                                                                   | 116 |
| 3.4.7   | Synthese von Hydrotris(pyrazol-1-yl)borato-bis[diphenyl-<br>methylphosphan]-technetiumcarbonyl (10)                                                                                                          | 117 |
| 3.4.8.1 | Synthese von Hydrotris(3,5-dimethylpyrazol-1-yl)borato-<br>trimethylphosphito-mangandicarbonyl (11a)                                                                                                         | 118 |
| 3.4.8.2 | Synthese von Hydrotris(3,5-dimethylpyrazol-1-yl)borato-<br>trimethylphosphito-technetiumdicarbonyl (11) und Hydrotris(3,5-<br>dimethylpyrazol-1-yl)borato-trimethylphosphito-technetiumdi-<br>carbonyl (11b) | 119 |
| 3.4.9   | Synthese von $\mu$ -Distickstoff-bis[hydrotris(3,5-dimethylpyrazol-<br>1-yl)borato-technetiumdicarbonyl] (12)                                                                                                | 121 |
| 3.4.10  | Synthese von Bis[hydrotris(3,5-dimethylpyrazol-1-yl)borato]-<br>mangan (13a)                                                                                                                                 | 122 |
| 3.4.11  | Reaktionen von Cp <sup>*</sup> Tc(CO) <sub>3</sub> mit oxidierenden Medien                                                                                                                                   | 122 |
| 3.5     | Reaktionen mit Tc <sub>2</sub> O <sub>7</sub> als Ausgangsverbindungen                                                                                                                                       | 123 |
| 3.5.1   | Synthese von Hydrotris(pyrazol-1-yl)borato-<br>technetiumtrioxid (14)                                                                                                                                        | 123 |
| 3.5.2   | Synthese von Hydrotris(3,5-dimethylpyrazol-1-yl)borato-<br>technetiumtrioxid (15)                                                                                                                            | 124 |
| 3.6     | Reaktionen mit TcCl4 als Ausgangsverbindung                                                                                                                                                                  | 125 |
| 3.6.1   | Synthese von Bis(cyclopentadienyl)technetium(III)phenolat (18)                                                                                                                                               | 125 |
| 3.6.2   | Synthese von Bis(cyclopentadienyl)technetium(III)-p-thiokresolat (19)                                                                                                                                        | 126 |

Umsetzung von Cp2TcCl (16) mit KCpMo(CO)3

127

3.6.3

| 4.   | Kristallographische Daten                                                                                          | 128 |
|------|--------------------------------------------------------------------------------------------------------------------|-----|
| 4.1  | BrTc(CO)5 (1)                                                                                                      | 128 |
| 4.2  | BrMn(CO)5 (1a)                                                                                                     | 129 |
| 4.3  | [BrTc(CO)4]2 (2)                                                                                                   | 131 |
| 4.4  | (C5H5N)2Tc(CO)3Br (4)                                                                                              | 133 |
| 4.5  | (C5H5N)2Re(CO)3Br (4b)                                                                                             | 134 |
| 4.6  | HB(C <sub>3</sub> H <sub>3</sub> N <sub>2</sub> ) <sub>3</sub> Tc(CO) <sub>3</sub> (5)                             | 135 |
| 4.7  | HB(C <sub>3</sub> H <sub>3</sub> N <sub>2</sub> ) <sub>3</sub> Mn(CO) <sub>3</sub> (5a)                            | 137 |
| 4.8  | HB(C <sub>3</sub> H <sub>3</sub> N <sub>2</sub> ) <sub>3</sub> Re(CO) <sub>3</sub> (5b) (monokline Form)           | 139 |
| 4.9  | HB(C <sub>3</sub> H <sub>3</sub> N <sub>2</sub> ) <sub>3</sub> Re(CO) <sub>3</sub> (5b) (trigonale Modifikation)   | 141 |
| 4.1( | HB(3,5-Me <sub>2</sub> C <sub>3</sub> HN <sub>2</sub> ) <sub>3</sub> Tc(CO) <sub>3</sub> (6)                       | 141 |
| 4.11 | HB(3,5-Me <sub>2</sub> C <sub>3</sub> HN <sub>2</sub> ) <sub>3</sub> Mn(CO) <sub>3</sub> (6a)                      | 143 |
| 4.12 | HB(3,5-Me <sub>2</sub> C <sub>3</sub> HN <sub>2</sub> ) <sub>3</sub> Re(CO) <sub>3</sub> (6b)                      | 146 |
| 4.13 | Me <sub>4</sub> C <sub>4</sub> NTc(CO) <sub>3</sub> ·HNC <sub>4</sub> Me <sub>4</sub> (7)                          | 148 |
| 4.14 | Me <sub>4</sub> C <sub>4</sub> NMn(CO) <sub>3</sub> ·HNC <sub>4</sub> Me <sub>4</sub> (7a)                         | 150 |
| 4.15 | Me <sub>4</sub> C <sub>4</sub> NRe(CO) <sub>3</sub> ·HNC <sub>4</sub> Me <sub>4</sub> (7b)                         | 151 |
| 4.16 | HB(3,5-Me <sub>2</sub> C <sub>3</sub> HN <sub>2</sub> ) <sub>3</sub> Re(CO) <sub>2</sub> THF (8b)                  | 153 |
| 4.17 | 'HB(C3H3N2)3Tc(PPh2Me)2(CO) (10)                                                                                   | 155 |
| 4.18 | HB(3,5-Me <sub>2</sub> C <sub>3</sub> HN <sub>2</sub> ) <sub>3</sub> Tc(CO) <sub>2</sub> P(OMe) <sub>3</sub> (11)  | 156 |
| 4.19 | HB(3,5-Me <sub>2</sub> C <sub>3</sub> HN <sub>2</sub> ) <sub>3</sub> Mn(CO) <sub>2</sub> P(OMe) <sub>3</sub> (11a) | 161 |
| 4.20 | HB(3,5-Me <sub>2</sub> C <sub>3</sub> HN <sub>2</sub> ) <sub>3</sub> Re(CO) <sub>2</sub> P(OMe) <sub>3</sub> (11b) | 166 |
| 4.21 | $[HB(3,5-Me_2C_3HN_2)_3Tc(CO)_2]_2(\mu-N_2) (12)$                                                                  | 171 |
| 4.22 | [HB(3,5-Me <sub>2</sub> C <sub>3</sub> HN <sub>2</sub> ) <sub>3</sub> ] <sub>2</sub> Mn (13a)                      | 173 |

5. Literatur und Bemerkungen

.

175

## 1. Allgemeiner Teil

"Wir schlagen für die neu entdeckten Elemente folgende Namen vor: Für das Element Nr. 43 nach unserer Ostmark den Namen Masurium (Ma) und für das Element 75 nach dem deutschen Rhein den Namen Rhenium (Re)."

W.Noddack und I.Tacke (1925)

### 1.1 Einführung

Im Jahre 1925 wurde erstmals von dem Element Nr. 43 mit dem Namen Masurium<sup>[1]</sup> berichtet. Angeblich war es in verschiedenen Mineralien auf röntgenspektroskopischem Wege nachgewiesen worden. Dieser Sachverhalt wurde in den darauffolgenden Jahren nicht bestätigt<sup>[2]</sup> und der Anspruch auf die Entdeckung konnte nicht akzeptiert werden.

Erst 1937 entdeckten C. Perrier und E. Segrè das Element Nr. 43 in einem mit Deuteronen bestrahlten Molybdänblech<sup>[3]</sup>. Sie zeigten, daß dies Element nur in radioaktiver Form existiert und kein natürliches Vorkommen aufweist. Es war dabei vornehmlich nach der Kernreaktion  ${}^{94}Mo(d,n) \rightarrow {}^{95m}Tc$  und  ${}^{96}Mo(d,n) \rightarrow {}^{97m}Tc$  entstanden.

Aufgrund dieser künstlichen Erzeugungsweise des Elementes 43 schlugen die Entdecker den Namen Technetium (griech.  $\tau \epsilon \chi \nu \eta \tau \sigma s = \text{künstlich}^{[4]}$  vor, der 1947 von IUPAC offiziell akzeptiert wurde.

Gegenwärtig sind 21 Isotope des Technetiums bekannt, deren Halbwertszeiten zwischen wenigen Sekunden und einigen millionen Jahren liegen.

Heute weiß man, daß das langlebige  $^{99}$ Tc ( $t_{1/2} = 2.1 \cdot 10^5$  a) in sehr kleinen Mengen in der Natur als Produkt der Spontanspaltung von  $^{238}$ U und der induzierten Spaltung von  $^{235}$ U durch thermische Neutronen vorkommt<sup>[5]</sup> ( etwa 0.2 ng pro kg Pechblende).

In großer Menge entsteht  $^{99}$ Tc in Kernreaktoren, wo es mit einer Spaltausbeute von 6.13% gebildet wird. In einem modernem Druckwasserreaktor fällt pro Tag etwa 95 g  $^{99}$ Tc an<sup>[6]</sup>.

 $^{99}$ Tc geht unter ß<sup>-</sup>-Strahlung mit einer maximalen Energie von 0.29 MeV in den stabilen Kern  $^{99}$ Ru über. Der ß-Zerfall folgt ohne  $\gamma$ -Strahlung, die spezifische Aktivität beträgt 3.78·10<sup>10</sup> Zerfälle pro Minute und Gramm<sup>[7]</sup>.

Potentielle Anwendungsmöglichkeiten von  $^{99}$ Tc wären die Wirkung des Pertechnetat-Ions als Korrosionsinhibitor für Eisen und Stahl<sup>[8]</sup>, seine Supraleitfähigkeit mit einer Sprungtemperatur von 7.46 K<sup>[9]</sup>, sowie einige katalytische Verfahren. Größerer technischer Gebrauch ist jedoch wegen der Radioaktivität nicht relevant.

Breite Anwendung findet das Nuklid <sup>99m</sup>Tc in der Nuklearmedizin, wo es ein ideales in-vivo-Diagnosticum darstellt. <sup>99m</sup>Tc ist ein reiner Gammastrahler ( $t_{1/2} = 6$  h, E = 140 keV), geht in <sup>99</sup>Tc über, welches außerordentlich schnell vom tierischen Organismus ausgeschieden wird<sup>[10,11]</sup>. Durch die Gewinnung von <sup>99m</sup>Tc mit Hilfe eines sogenannten Nuklidgenerators steht <sup>99m</sup>Tc trotz seiner kurzen Halbwertszeit dem Anwender praktisch jederzeit zur Verfügung.

So werden Technetium-Radiopharmaka, die spezifisch für verschiedene Organe sind, injiziert und es lassen sich szintillationstomographisch bzw. nuklearkardiographisch entsprechende Organe (z.B. Gehirn, Niere, Lunge, Knochen, Herz ect.) bildlich darstellen<sup>[11]</sup>.

# **1.2** Die allgemeine Chemie des Technetiums<sup>[7,12]</sup>

Das Technetium kommt in seinen chemischen Verbindungen in den Oxidationsstufen -1 bis +7 vor. Einige Beispiele sind in Tabelle 1 aufgezeigt.

In einfachen Salzen ist die siebenwertige Oxidationsstufe in der Regel der stabilste Zustand (z.b.  $TcO_4^-$ ) gefolgt vom Vierwertigen, speziell  $TcO_2$ , wobei die übrigen Oxidationsstufen durch Komplexbildner stabilisiert werden können. In wäßrigem Medium wird die Technetiumchemie durch die Oxidationskraft von  $TcO_4^-$  und die thermodynamische Stabilität von unlöslichem  $TcO_2$  bestimmt.

Technetium mit Oxidationszahlen < +4 läßt sich leicht zu vier- oder siebenwertigen Technetium oxidieren. Fünf- und sechswertiges Technetium disproportioniert leicht in die Oxidationsstufen +4 und +7.

$$3 \text{ Tc}(V) \rightarrow 2 \text{ Tc}(IV) + \text{Tc}(VII)$$
$$3 \text{ Tc}(VI) \rightarrow \text{Tc}(IV) + 2 \text{ Tc}(VII)$$

Vergleicht man Technetium mit seinen d<sup>7</sup>-Homologen Mangan und Rhenium, zeigt die Chemie des Technetiums mehr Analogie mit seinem schwereren Homologen Rhenium, was auf die Lanthanoidenkontraktion und die daraus resultierende Ähnlichkeit der Ionenradien zurückzuführen ist. So zeigen homologe Verbindungen des Technetiums und des Rheniums oftmals Ähnlichkeiten in ihren chemischen und physikalischen Eigenschaften und haben oft isotype Kristallstrukturen. Anderseits existieren auch in vielerlei Hinsicht gravierende Unterschiede zwischen Rhenium und Technetium, welche auch im Rahmen dieser Arbeit beobachtet wurden und an entsprechender Stelle diskutiert werden.

 Tab. 1: Beispiele von literaturbekannten Technetiumverbindungen in verschiedenen

 Oxidationsstufen<sup>[13]</sup>

L.

| Oxidationsstufe | Verbindung                                                                                                                                                                                                                                   |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| + VII           | Tc2O7, TcO3Cl, K2[TcH9], K[TcO4]                                                                                                                                                                                                             |
| +VI             | $Li_4TcO_5$ , $TcOCl_4$ , $TcCl_6$ , $(Me_4N)_2[TcO_4]$                                                                                                                                                                                      |
| + V             | TcOCl <sub>3</sub> , (Bu <sub>4</sub> N)[TcOCl <sub>4</sub> ], TcF <sub>5</sub> , TcNCl <sub>3</sub> (PPH <sub>3</sub> ) <sub>2</sub>                                                                                                        |
| +IV             | $TcO_2$ , $TcCl_4$ , $K_2[TcF_6]$ , $TcS_2$                                                                                                                                                                                                  |
| + III           | (Bu <sub>4</sub> N) <sub>2</sub> [Tc <sub>2</sub> Cl <sub>8</sub> ], Tc(CO) <sub>3</sub> (PMe <sub>2</sub> Ph)Cl <sub>3</sub> ,<br>Tc <sub>2</sub> (OAc) <sub>4</sub> Cl <sub>2</sub> , Tc(PMePh <sub>2</sub> ) <sub>3</sub> Br <sub>3</sub> |
| +II             | [Tc(NH <sub>3</sub> ) <sub>4</sub> (NO)(H <sub>2</sub> O)]Cl <sub>2</sub> , Tc(dppe) <sub>2</sub> Cl <sub>2</sub> ,<br>(Bu <sub>4</sub> N)Tc(NO)Cl <sub>4</sub> , [Cp <sub>2</sub> Tc] <sub>2</sub>                                          |
| +I              | TcCl(CO)5, CpTc(CO)3, HTc(CO)5, K5[Tc(CN)6]                                                                                                                                                                                                  |
| 0               | Tc <sub>2</sub> (CO) <sub>10</sub>                                                                                                                                                                                                           |
| -1              | NaTc(CO)5                                                                                                                                                                                                                                    |

#### **1.3** Die metallorganische Chemie des Technetiums

Die metallorganische Chemie des Technetiums steckt im Vergleich zu seinen Homologen Mangan und Rhenium noch in den Kinderschuhen; eine logische Konsequenz des erschwerten Umgangs aufgrund der strengen Sicherheitsbestimmungen und seines hohen Preises ( ca. 58000 \$/kg<sup>[14]</sup>).

Es fällt also nicht schwer die relativ wenigen metallorganischen Verbindungen des Technetiums kurz zusammenzufassen.

Die ersten Arbeiten führten in den 60'ger Jahren E.O. Fischer, W. Hieber und D.K. Huggins durch. 1961 wurde zum ersten Mal von dem Decacarbonyl  $Tc_2(CO)_{10}$  berichtet, daß man durch Einwirkung von CO bei 220°C und 300 atm auf  $Tc_2O_7$  erhielt<sup>[15,16]</sup>. Die 1965 durchgeführte Röntgenstrukturanalyse bestätigte, daß  $Tc_2(CO)_{10}$  isostrukturell mit den homologen  $Mn_2(CO)_{10}$  und  $Re_2(CO)_{10}$  ist (Abb. 1).



Abb. 1: Struktur von Ditechnetiumdecacarbonyl<sup>[17]</sup>

Andere unsubstituierte Carbonylkomplexe wie  $[Tc(CO)_4]_n$ ,  $[Tc(CO)_5]^{-[18,19]}$ , und  $[Tc(CO)_6]^{-[20]}$  folgten innerhalb kurzer Zeit.

Eine Reihe von Technetium(I)-Gemischtligandkomplexen vom Typus Tc(CO)<sub>5</sub>X, [Tc(CO)<sub>4</sub>X]<sub>2</sub> und Tc(CO)<sub>5-n</sub>L<sub>n</sub> wurden dargestellt, wobei X = Cl, Br, I und L ein einzähliger, organischer Ligand wie Pyridin, PR<sub>3</sub> oder RS<sup>-[15,18,20]</sup> ist. Die heteronuklearen Carbonyle MnTc(CO)<sub>10</sub>, TcRe(CO)<sub>10</sub><sup>[21]</sup> und CoTc(CO)<sub>9</sub><sup>[22]</sup> sind neueren Datums und deren Identifizierung geschah anhand IR- und massenspektroskopischer Daten.

Den ersten  $\pi$ -Komplex CpTc(CO)<sub>3</sub> synthetisierte Fischer et al. durch Reaktion von NaCp mit Tc(CO)<sub>5</sub>Cl<sup>[23,24]</sup>, kurz darauf folgte das Cyclopentadienylderivat C<sub>6</sub>H<sub>5</sub>COC<sub>5</sub>H<sub>4</sub>Tc(CO)<sub>3</sub><sup>[25]</sup>.

Umsetzungen von TcCl<sub>4</sub> mit NaCp in Gegenwart von NaBH<sub>4</sub> ergaben diamagnetische, gelbe Kristalle, welche als Cp<sub>2</sub>TcH (a) formuliert wurden. Dies Hydrid reagierte mit Säuren (HX) zu Salzen vom Typ [TcCp<sub>2</sub>H<sub>2</sub>]X<sup>[26]</sup>.

Reagiert Benzol mit TcCl<sub>4</sub> in Gegenwart von AlCl<sub>3</sub> und Al, resultiert die Verbindung  $[Tc(C_6H_6)_2]^+$  (b) deren Reduktion mit LiAlH<sub>4</sub> diamagnetisches (C<sub>6</sub>H<sub>6</sub>)Tc(C<sub>6</sub>H<sub>7</sub>) ergibt. Analog dazu wurde auch Hexamethylbenzol eingesetzt und gleiche Ergebnisse erzielt<sup>[26]</sup>.



In den 70'ger Jahren untersuchte Tsutsui Reaktionen von Tetraphenylporphyrin (TPP) mit  $Tc_2(CO)_{10}$ . Es resultierte der zweikernige Technetiumkomplex (TPP)[Tc(CO)\_3]\_2 (c), dessen Molekülstruktur durch Röntgenstrukturanalyse ermittelt wurde. Das Technetium ist dabei an drei Pyrrolstickstoffe des Porphyrinringes und drei Carbonyle gebunden<sup>[27]</sup>.

Auch wurden einige neue Gemischtligandcarbonylverbindungen des Technetiums synthetisiert, wie der siebenfach koordinierte Tc(III) - Komplex TcCl<sub>3</sub>(CO)(PMe<sub>2</sub>Ph)<sub>3</sub><sup>[28]</sup> und die Tc(I) - Komplexe TcCl(CO)<sub>2</sub>(PMe<sub>2</sub>Ph)<sub>3</sub> und TcCl(CO)<sub>3</sub>(PMe<sub>2</sub>Ph)<sub>2</sub><sup>[29]</sup>.

In letzter Zeit sind wieder einige neue metallorganische Verbindungen des Technetiums in erster Linie von K. Raptis dargestellt und meist deren Molekül- und Kristallstruktur anhand röntgenstrukturanalytischer Daten aufgeklärt worden. So wurden die Tricarbonylverbindungen  $Cp^*Tc(CO)_3$  (d), EtMe<sub>4</sub>CpTc(CO)<sub>3</sub> und IndTc(CO)<sub>3</sub> (e) erstmals synthetisiert<sup>[30]</sup> und die Verbindung  $Cp^*Tc(CO)_3$  auf ihr photochemisches Verhalten hin untersucht.



Bestrahlung mit UV-Licht in Cyclohexan brachte die zweikernigen Komplexe  $Cp^*_2Tc_2(CO)_5$  (f) und  $Cp^*_2Tc_2(CO)_3$  (g), wobei letzterer Komplex eine  $Tc \equiv Tc$  Dreifachbindung enthält<sup>[31]</sup>. Setzt man der Cyclohexanlösung vor der Bestrahlung PPh<sub>3</sub> hinzu, erhält man das Substitutionsprodukt  $Cp^*Tc(CO)_2(PPh_3)^{[32]}$ .



Bei der Oxidation von  $Cp^*Tc(CO)_3$  mit 30 %'iger Wasserstoffperoxidlösung erhielt K. Raptis eine Verbindung, deren ermittelte Molekülstruktur ein hochsymmetrisches Polymer der Zusammensetzung  $[Cp^*Tc_2O_3]_n$  ergab $[^{33}]$ .

Den ersten Butadienkomplex C<sub>4</sub>H<sub>6</sub>Tc(CO)<sub>8</sub> isolierte man nach der Bestrahlung einer Lösung von Tc<sub>2</sub>(CO)<sub>10</sub> mit 1,3-Butadien mit UV-Licht, die Charakterisierung erfolgte spektroskopisch und kristallographisch<sup>[34]</sup>.

Auch durch Umsetzung von  $Tc_2O_7$  mit Me<sub>4</sub>Sn konnten neue metallorganische Verbindungen des Technetiums erhalten werden. Bei dieser Reaktion fallen drei Produkte an: nämlich die Verbindungen CH<sub>3</sub>TcO<sub>3</sub>, (CH<sub>3</sub>)<sub>4</sub>Tc<sub>2</sub>O<sub>4</sub> und (CH<sub>3</sub>)<sub>3</sub>SnOTcO<sub>3</sub><sup>[35,36]</sup>.

Erneute Reaktionen von TcCl<sub>4</sub> mit KCp, diesmal in Abwesenheit von NaBH<sub>4</sub>, ergaben die Verbindungen Cp<sub>2</sub>TcCl und Cp<sub>3</sub>Tc; bei letzterer sind zwei Cp-Ringe  $\eta^5$ , ein weiterer  $\eta^1$  an das Metall gebunden<sup>[37,38]</sup>.

Aus neueren Arbeiten von H.H. Knight Castro sowie W.H. Herrmann resultieren die Verbindungen ([Me<sub>2</sub>N(CH<sub>2</sub>)<sub>3</sub>]C<sub>5</sub>Me<sub>4</sub>)Tc(CO)<sub>3</sub>, ([Me<sub>3</sub>N<sup>+</sup>(Ch<sub>2</sub>)<sub>3</sub>]C<sub>5</sub>Me<sub>4</sub>)Tc(CO)<sub>3</sub>I<sup>-</sup>, Cp<sup>\*</sup>Tc(CO)<sub>2</sub>(NO)<sup>+</sup>, Cp<sup>\*</sup>Tc(CO)<sub>2</sub>Br<sub>2</sub> (i)<sup>[39]</sup>, einige kationische Tc(I)-Di- und Tricarbonylkomplexe<sup>[40]</sup>, sowie die Verbindungen Na[Tc<sub>3</sub>(CO)<sub>9</sub>(OCH<sub>3</sub>)<sub>4</sub>] (j)<sup>[41]</sup>, [(C<sub>6</sub>H<sub>15</sub>N<sub>3</sub>)Tc(CO)<sub>2</sub>PPh<sub>3</sub>]Cl und HB(C<sub>3</sub>H<sub>3</sub>N<sub>2</sub>)<sub>3</sub> Tc(CO)<sub>2</sub>PPh<sub>3</sub> (k)<sup>[42]</sup>.



6

Man kann sehen, daß die Geschichte der metallorganischen Technetiumchemie bis zum heutigen Tage, im Gegensatz zu den meisten anderen Übergangsmetallen noch durchaus überschaubar geblieben ist, obwohl die Technetiumchemie in Bezug auf nuklearmedizinische Anwendungen stark an Attraktivität gewonnen hat.

### **1.4 Problemstellung und Ziel der Arbeit**

Aufgrund bereits mehrfach erwähnter Punkte unterliegt die metallorganische Chemie des Technetiums starken Beschränkungen, wodurch ein konventionelles Arbeiten ausgeschlossen wird. Die Verfügbarkeit der Ausgangsverbindungen ist sehr eingeschränkt, ein mehrstufiges Reaktionsgefüge hängt folglich stark von den jeweiligen Ausbeuten ab.

Im Vordergrund der Arbeit steht die Stabilisierung des Tc(CO)<sub>3</sub>-Fragmentes an Liganden, welche dem Cyclopentadienyl-Ligand in ihren elektronischen und koordinativen Eigenschaften ähneln. Es handelt sich dabei um heteroorganische Liganden welche über Stickstoff sowohl durch  $\sigma$ -Bindungen, als auch über  $\pi$ -Bindungen zum Metall hin koordiniert sind. Dessen Studium ist grundlegend sowohl für die klassische Koordinationschemie als auch für die Bindung von Metallen in biologischen Systemen.

Desweiteren sollen die synthetisierten Komplexe auf ihr photochemisches Reaktionsverhalten hin untersucht werden. In erster Linie handelt es sich hierbei um Substitutionen der Carbonylgruppe durch andere  $\pi$ -Säuren. Die Produkte sollen Informationen über Bindungsmöglichkeiten, Stabilität, Koordination an das Metall u.s.w. liefern und direkt mit ihren homologen Mangan- und Rheniumverbindungen, die analogen Reaktionsprozessen unterworfen werden, verglichen werden.

Ein wichtiger Punkt ist die metallorganische Chemie des siebenwertigen Technetiums. Reaktionswege, welche zu der Verbindung  $Cp^*ReO_3^{[126]}$  führen, sollen auf das Technetium angewandt, untersucht und verglichen werden. Ebenso ist es von Interesse, das TcO<sub>3</sub><sup>+</sup>-Fragment an einfach negative,  $Cp^-$ -ähnliche Liganden zu binden und zu stabilisieren.

Ein weiteres Teilgebiet ist die metallorganische Chemie des dreiwertigen Technetiums. Die aus TcCl<sub>4</sub> und KCp hergestellten Verbindungen Cp<sub>2</sub>TcCl und Cp<sub>3</sub>Tc sollen auf ihr Reaktionsverhalten gegenüber nukleophilen, einfach negativ geladenen Liganden geprüft und die dabei entstehenden Verbindungen charakterisiert werden.

### 2. Beschreibung und Diskussion der Ergebnisse

"Tatsächlich ist der Fortschritt der Naturwissenschaften wie ein alter Wüstenpfad übersät mit den ausgebleichten Gerippen fallengelassener Theorien, die einstmals ewiges Leben zu besitzen schienen"

Arthur Koestler

### 2.1 Einleitung

Das Reaktionsgefüge dieser Arbeit basiert auf drei verschiedenen Ausgangsverbindungen, die gleichzeitig die wichtigsten Edukte in der metallorganischen Chemie des Technetiums sind. Es handelt sich dabei um die Verbindungen  $Tc_2(CO)_{10}$ ,  $Tc_2O_7$  und  $TcCl_4$ .

Da Technetium nur in Form der Verbindung NH<sub>4</sub>TcO<sub>4</sub> erhältlich ist, müssen die Edukte zuerst aus dieser Grundsubstanz synthetisiert werden (Schema 1). Die Synthesevorschriften der Startverbindungen sind zwar literaturbekannt, wurden jedoch von uns modifiziert.



Schema 1: Syntheseüberblick der Startverbindungen aus NH<sub>4</sub>TcO<sub>4</sub>

Reduktion von NH<sub>4</sub>TcO<sub>4</sub> mit elementarem Wasserstoff ergibt metallisches Technetium<sup>[43]</sup>. Nach Chlorierung des Metalls läßt sich TcCl<sub>4</sub> isolieren<sup>[44]</sup>, Oxidation mit reinem Sauerstoff ergibt Tc<sub>2</sub>O7<sup>[45]</sup>. Das Carbonyl Tc<sub>2</sub>(CO)<sub>10</sub> erhält man aus Tc<sub>2</sub>O7 durch Reduktion und gleichzeitiger Carbonylierung mit CO unter Druck<sup>[15]</sup> oder direkt aus dem Ammoniumpertechnetat mit Na/Hg als Reduktionsmittel unter CO-Druck<sup>[39,41]</sup>.

# 2.2 Reaktionen mit $Tc_2(CO)_{10}$ als Ausgangsverbindung

Alle auf  $Tc_2(CO)_{10}$  basierenden Reaktionen wurden zuerst mit der homologen Rheniumverbindung und teilweise auch mit der homologen Manganverbindung durchgeführt und deren Ausbeuten optimiert. Analoge Arbeitsweisen wurden für die Technetiumreaktionen angewandt. Von den erhaltenen Rhenium- und Mangenverbindungen waren die Strukturen größtenteils bislang unbekannt und konnten im Rahmen dieser Arbeit erstmals ermittelt werden.

2.2.1 Die Verbindungen  $BrTc(CO)_5$  (1) und  $[(\mu-Br)Tc(CO)_4]_2$  (2)



Das Technetiumpentacarbonylbromid ist eine leicht zu synthetisierende, äußerst wichtige Zwischenverbindung, die sich hervorragend für Substitutionsreaktionen eignet, bei denen neue Liganden an das Technetium gebunden werden können.

Durch Zutropfen von in CCl<sub>4</sub> gelöstem Brom zu einer  $Tc_2(CO)_{10}$ -Lösung bei Raumtemperatur entsteht BrTc(CO)<sub>5</sub> (1) in quantitativer Ausbeute als farbloser Feststoff.

Die zum ersten Mal vor mehr als 30 Jahren synthetisierte Verbindung<sup>[15,16,18]</sup> wurde anhand des IR-Spektrums und einer Tc-Analyse mittels Flüssigkeitsszintillationsspektroskopie identifiziert.

1 wurde im Vakuum (ca. 10 torr unter Argon) bei 60 - 70° C sublimiert um Einkristalle zur Bestimmung der Molekül- und Kristallstruktur zu erhalten. Dabei wurde festgestellt, daß sich 1 entgegen früherer Behauptungen<sup>[21]</sup> nicht quantitativ unter Erhaltung der monomeren Struktur sublimieren läßt, sondern sich zu 80 % unter CO-Abspaltung zu der ebenfalls bekannten<sup>[15,18]</sup>, dimeren Verbindung [BrTc(CO)<sub>4</sub>]<sub>2</sub> (2) umwandelt. 2 wurde ebenfalls durch IR-Spektroskopie und Tc-Analyse identifiziert.

Von beiden Verbindungen konnte erstmals die Molekül- und Kristallstruktur mittels Röntgenstrukturanalyse an Einkristallen bestimmt werden. KRISTALLSTRUKTUREN

Die Strukturen der homologen Bromcarbonylverbindungen BrRe(CO)5 und  $[BrMn(CO)_4]_2$  sind in der Literatur beschrieben worden $^{[46-48]}$ . Von BrTc(CO)5 wurde 1981 eine Röntgen-Pulveraufnahme nach der Debye - Scherrer - Methode gemacht und ein Liniendiagramm aufgenommen $^{[49]}$ . Darüberhinaus berichtete 1990 eine russische Gruppe von einer tetrameren Bromtechnetiumcarbonylverbindung  $[Tc(CO)_3Br]_4$  und dessen Struktur $^{[50]}$ .

Bei eigenen Arbeiten mit Bromcarbonylverbindungen der  $d^7$ -Metalle gelang es erstmals von der Verbindung BrMn(CO)<sub>5</sub> (1a) auf gleiche Art und Weise Einkristalle zu erhalten, die röntgenographisch vermessen wurden und dessen Struktur hier zusammen mit den Strukturen von 1 und [BrTc(CO)<sub>4</sub>]<sub>2</sub> (2) diskutiert werden soll.

1 kristallisiert in Form farbloser, leicht getrübter, blockförmiger Kristalle, 1a weist analoge Kristallform auf, ist jedoch gelborange gefärbt. Die Strukturen sind isotyp. Das Zentralatom wird jeweils von einem Bromatom und fünf CO-Gruppen oktaedrisch koordiniert. Die ermittelten Zellkonstanten von 1 stimmen mit den nach der Debye -Scherrer - Methode bestimmten Parameter überein<sup>[49]</sup>. Alle drei Bromcarbonylhomologen sind isostrukturell.

|                 |   | 1                        | 1a                      | 1b <sup>[46,47]</sup>     |
|-----------------|---|--------------------------|-------------------------|---------------------------|
| Kristallsystem  |   | orthorombisch            | orthorhombisch          | orthorombisch             |
| Raumgruppe      |   | Pnma (Nr.62)             | Pnma (Nr.62)            | Pnma (Nr.62)              |
| Achsenlängen    | a | 11.897(2) Å              | 11.783(5) Å             | 11.886(2) Å               |
|                 | b | 11.682(3) Å              | 11.529(9) Å             | 11.644(2) Å               |
|                 | с | 6.188(1) Å               | 6.119(3) Å              | 6.1888(10) Å              |
| Volumen         |   | 860.0(4) Å <sup>3</sup>  | 831.24 Å <sup>3</sup>   | 856.5(2) Å <sup>3</sup>   |
| Z               |   | 4                        | 4                       | 4                         |
| d <sub>rö</sub> |   | 2.456 g cm <sup>-1</sup> | 2.19 g cm <sup>-1</sup> | $3.150 \text{ g cm}^{-1}$ |

Tab.2: Kristallographische Zellparameter von 1, 1a, 1b

Das diskrete, monomere Molekül zeigt  $C_{4v}$ -Symmetrie, die Spiegelebene schließt die Atome Br, Tc(Mn), C(1) und O(1) ein. Die Br-Tc(Mn)-C(1)-O(1)-Kette ist linear, während die Verbindungslinien der äquatorialen Carbonyle C(2)-Tc(Mn)-C(3) um etwa 4° von der Linearität abweichen. Die äquatorialen Carbonyle sind von der axialen Carbonylgruppe zum Halogen hin geneigt. Die Bindungslängen der äquatorialen Kohlenstoff-Metall-Bindungen stimmen einzeln betrachtet untereinander überein, sind beim Technetium aufgrund des



Bindungsabstände [pm]: Br(1)-Tc(1) 260.5(2), Tc(1)-C(1) 196(1), Tc(1)-C(2) 201.2(9), Tc(1)-C(3) 197.3(9), C(1)-O(1) 113(2), C(2)-O(2) 110(2), C(3)-O(3) 114(2)

Bindungswinkel [°]: Br(1)-Tc(1)-C(1) 178.8(3), Br(1)-Tc(1)-C(2) 87.6(3), C(1)-Tc(1)-C(2) 91.6(3), Br(1)-Tc(1)-C(3) 88.5(2), C(1)-Tc(1)-C(3) 92.4(4), C(2)-Tc(1)-C(3) 89.7(4), Tc(1)-C(1)-O(1) 179(2), Tc(1)-C(2)-O(2) 178.2(9), Tc(1)-C(3)-O(3) 175.7(7)



Bindungsabstände [pm]: Br(1)-Mn(1) 250.7(3), Mn(1)-C(1) 183.2(13), Mn(1)-C(2) 187.1(9), Mn(1)-C(3) 187.3(9), C(1)-O(1) 113.0(16)

Bindungswinkel [°]: Br(1)-Mn(1)-C(1) 179.8(4), Br(1)-Mn(1)-C(2) 87.0(3), C(1)-Mn(1)-C(2) 93.1(4), Br(1)-Mn(1)-C(3) 87.8(3), C(1)-Mn(1)-C(3) 92.1(4), C(2)-Mn(1)-C(3) 88.8(4), Mn(1)-C(1)-O(1) 178.4(11)

Abb.2: Moleküldarstellung von 1 und 1a und ausgesuchte Bindungsparameter

11

größeren Ionenradius um rund 12 pm länger (Tc-C = 199.3(9) pm, Mn-C = 187.2(9) pm). Ebenso sind die entsprechenden C-O-Abstände gleich. Der axiale Metall-Kohlenstoff-Abstand ist gegenüber den äquatorialen Abständen etwas verkürzt, was auf eine Rückbindungsverstärkung M<sup>-</sup>CO hindeutet (Tc-C(1) = 196.0(19) pm; Mn-C(1) = 183.2(13) pm).

Der Tc-Br-Abstand beträgt 260.5(2) pm [Mn-Br 250.7(3) pm]. Substrahiert man den kovalenten Radius des Bromatoms (114 pm<sup>#</sup>) resultiert ein Technetiumradius in BrTc(CO)5 von 146.5 pm. Für die homologe Rheniumverbindung wurde ein Radius von 148 pm errechnet<sup>[46]</sup>. Analog berechnet sich für die Manganverbindung **1a** ein Wert von 137 pm.

|                 |    | 2                          | 2a <sup>[49]</sup>         |  |
|-----------------|----|----------------------------|----------------------------|--|
| Kristallsystem  | a. | monoklin                   | monoklin                   |  |
| Raumgruppe      |    | P2 <sub>1</sub> /c (Nr.14) | P2 <sub>1</sub> /c (Nr.14) |  |
| Achsenlängen    | a  | 9.846(1) Å                 | 9.57(1) Å                  |  |
|                 | b  | 11.834(2) Å                | 11.79(2) Å                 |  |
|                 | c  | 13.031(2) Å                | 12.91(2) Å                 |  |
| Winkel          | ß  | 108.74(2)°                 | 109.30(10)°                |  |
| Volumen         |    | 1437.8(4) Å <sup>3</sup>   | 1373 Å <sup>3</sup>        |  |
| Z               |    | 4                          | 4                          |  |
| d <sub>rö</sub> |    | 2.679 g cm <sup>-1</sup>   | 2.35 g cm <sup>-1</sup>    |  |

Tab. 3: Kristallographische Zellparameter von 2, 2a

2 kristallisiert in Form farbloser, klarer, stark lichtbrechender Prismen, welche ein monoklines Kristallsystem aufweisen, das mit der homologen Manganverbindung identisch ist. Die Struktur von 2 zeigt ein diskretes, dimeres Molekül, das aus zwei Oktaedern aufgebaut ist, die über eine gemeinsame Kante der verbrückten Bromatome verbunden sind. Das Molekül besitzt, wie die homologe Manganverbindung D<sub>2h</sub>-Symmetrie. Die mittlere Bindungslänge der vier äquivalenten Tc-Br-Bindungen beträgt 264.2(1) pm und ist somit wegen der Verbrückung um etwa 4 pm gegenüber der monomeren Verbindung 1 vergrößert.

Die vier axialen Tc-C-Abstände sind innerhalb ihrer Standartabweichung von  $3\sigma$  gleich, betragen im Mittel 200.2(8) pm und sind gegenüber den vier äquivalenten äquatorialen Tc-C-Abständen, die zu den Bromatomen in trans-Stellung stehen, signifikant um rund 10 pm verlängert. Wie auch schon bei der monomeren Verbindung bewirkt der vom Brom ausgehende trans-Effekt eine Rückbindungsverstärkung und somit eine

<sup>#</sup> aus L. Pauling, The Nature of the Chemical Bond, Cornell University Press, Ithaca 1960

Verkürzung der Tc-C-Bindung. Die C-O-Bindungsabstände korrelieren mit den korrespondierenden Tc-C-Abständen; die axialen C-O-Abstände sind somit etwas kürzer.

Durch die äquivalenten Tc-Br-Abstände bilden die beiden Technetiumatome mit den Bromatomen einen gleichseitigen Rhombus. Die beiden Br-Tc-Br-Winkel sind nahezu gleich (Abweichung von  $> 0.2^{\circ}$ ) und betragen im Mittel 83.86(4)°, die Tc-Br-Tc-Winkel betragen 96.14(3)°. Die äquatorialen Carbonyle liegen mit dem Rhombus in einer Ebene, die jeweiligen Br-Tc-C-O-Ketten weichen um rund 2° von der Linearität ab. Die axialen O-C-Tc-C-O-Ketten zeigen eine Abweichung von der Linearität um etwa den gleichen Betrag.



**Bindungsabstände** [pm]: Tc(1)-Br(1) 264.4(1), Tc(1)-Br(2) 265.0(1), Tc(1)-C(1) 200.3(8), Tc(1)-C(2) 189.2(7), Tc(1)-C(3) 191.4(9), Tc(1)-C(4) 200.2(8), Tc(1)-Tc(2) 393.01(9), O(1)-C(1) 112(2), O(2)-C(2) 116.4(9), O(3)-C(3) 115(2), O(4)-C(4) 112(2)

**Bindungswinkel** [°]: Br(1)-Tc(1)-Br(2) 83.65(4), Br(1)-Tc(1)-C(1) 90.0(3), Br(1)-Tc(1)-C(2) 93.9(3), Br(1)-Tc(1)-C(3) 177.4(2), Br(1)-Tc(1)-C(4) 90.5(3), Br(2)-Tc(1)-C(1) 90.0(2), Br(2)-Tc(1)-C(2) 177.5(3), Br(2)-Tc(1)-C(3) 93.8(2), Br(2)-Tc(1)-C(4) 177.8(3), C(1)-Tc(1)-C(2) 89.6(3), C(1)-Tc(1)-C(3) 88.7(3), C(2)-Tc(1)-C(4) 90.1(4), Tc(1)-Br(1)-Tc(2) 96.34(3), Tc(1)-Br(2)-Tc(2) 95.93(3), Tc(1)-C(1)-O(1) 177.7(7), Tc(1)-C(2)-O(2) 178.2(7), Tc(1)-C(3)-O(3) 178.4(7), Tc(1)-C(4)-O(4) 178.8(7)

Abb.3: Moleküldarstellung von 2 und ausgesuchte Bindungsparameter

### 2.2.2 Die dimere Verbindung [(THF)Tc(CO)<sub>3</sub>Br]<sub>2</sub> (3) und ihre Reaktion mit Pyridin zu (C<sub>5</sub>H<sub>5</sub>N)<sub>2</sub>Tc(CO)<sub>3</sub>Br (4)



Die Reaktion von BrTc(CO)<sub>5</sub> (1) mit THF ergibt unter CO-Abspaltung die dimere Verbindung [(THF)Tc(CO)<sub>3</sub>Br]<sub>2</sub> (3). Nach der Extraktion des Rohproduktes mit Pentan konnte in 84 %'iger Ausbeute 3 als farbloses Pulver isoliert werden, das sich an der Luft, im Gegensatz zu der homologen, luftstabilen Rheniumverbindung [(THF)Re(CO)<sub>3</sub>Br]<sub>2</sub><sup>[51,52,53]</sup>, schnell zersetzt. Die bei der Extraktion anfallenden Kristalle waren sehr klein und für eine Röntgenstrukturanalyse unbrauchbar. 3 ist nicht sublimierbar und als CH<sub>2</sub>Cl<sub>2</sub>-Lösung über längere Zeit nicht stabil.

Die Bildung von 3 aus 1 kann durch eine Substitution von zwei Carbonylgruppen durch THF und anschließende Dimerisierung unter THF-Abspaltung erklärt werden (Schema 2).



### Schema 2: Möglicher Mechanismus zur Bildung von 3

Die Charakterisierung von 3 erfolgte mittels IR-, <sup>1</sup>H-NMR-, EI-Massenspektroskopie und Technetiumanalyse.

Spektroskopische Untersuchungen

Das in KBr aufgenommene IR-Spektrum zeigt ein für das M(CO)<sub>3</sub>-Fragment typische Bandenmuster der  $\nu_{CO}$ -Schwingung. Die beiden Tc(CO)<sub>3</sub>-Fragmente des dimeren Moleküls sind auf Grund eines Inversionszentrums am Mittelpunkt des Tc-Br-Tc-Br-Vierrings äquivalent. Eine geringe Aufspaltung der niederenergetischen Bande der E-Rasse (siehe auch S. 22) deutet jedoch auf eine Symmetrieerniedrigung des Moleküls im Festkörper hin.

Im Vergleich zum IR-Spektrum der analogen Rheniumverbindung liegen die Banden bei der Technetiumverbindung aufgrund der kleineren reduzierten Masse um etwa 10 cm<sup>-1</sup> zu höheren Wellenzahlen hin verschoben.

Tab. 4: IR-Banden (KBr) von 3 und 3b

| Verbindung Bandenlage [cm <sup>-1</sup> ] |                                     | Schwingung      |
|-------------------------------------------|-------------------------------------|-----------------|
| 3                                         | 2039 s; 1949 vs; 1928 vs; 1912 sh,m | ν <sub>CO</sub> |
| 3ь                                        | 2028 s; 1934 s; 1916 vs             | ν <sub>CO</sub> |



Abb. 4: IR-Spektrum (KBr) von 3 (2700 - 200 cm<sup>-1</sup>)

Im <sup>1</sup>H-NMR-Spektrum, aufgenommen in CDCl<sub>3</sub>, sieht man für das am Technetium koordinierte THF ein Triplett bei 4.39 ppm der vier Protonen in  $\alpha$ -Stellung und ein Multiplett bei 2.13 ppm der vier Protonen in  $\beta$ -Stellung. Ein Indiz für die Instabilität der Verbindung ist das mit der Zeit stärker werdende Auftreten von freiem THF während der NMR-Messung.

Die Signale der analogen Rheniumverbindung sind zu tieferem Feld hin verschoben (Tab. 5). Freies THF wurde hier nicht beobachtet. Offensichtlich ist das THF wesentlich fester an das Rhenium als an das Technetium koordiniert.

| Verbindung | Chemische Verschiebung [ $\delta$ ]    | Signalproton                                       |
|------------|----------------------------------------|----------------------------------------------------|
| 3          | 4.39 ppm; t; (8H)<br>2.13 ppm; m; (8H) | α-CH <sub>2</sub> (THF)<br>β-CH <sub>2</sub> (THF) |
| 3b         | 4.46 ppm; t; (8H)<br>2.16 ppm; m; (8H) | α-CH <sub>2</sub> (THF)<br>β-CH <sub>2</sub> (THF) |
| freies THF | 3.78 ppm; t<br>1.85 ppm; m             | α-CH <sub>2</sub><br>β-CH <sub>2</sub>             |

Tab.5: <sup>1</sup>H-NMR-Daten von 3 und 3b



Abb. 5: <sup>1</sup>H-NMR-Spektrum (CDCl<sub>3</sub>) von 3

Im EI-Massenspektrum wurde der Molekülpeak nicht registriert. Außer dem intensiven Peak bei m/z = 72 ( $I_{rel} = 100 \%$ ) von abgespaltenem THF erscheinen keine weiteren Peaks höherer Masse von signifikanter Intensität, welche bestimmten Technetiumfragmenten zugeordnet werden können.

#### Umsetzung von 3 mit Pyridin



Versuche, das THF durch Pyridin als Donor-Liganden zu substituieren und unter Aufrechterhaltung der dimeren Struktur ein stabiles Molekül zu erhalten, blieben ohne Erfolg.

Zwar wurde das THF durch das Pyridin substituiert, gleichzeitig wurde jedoch auch die Br-Brücke aufgespaltet und man erhielt die monomere, bereits bekannte Verbindung  $(C_5H_5N)_2Tc(CO)_3Br$  (4)<sup>[54]</sup>. Demzufolge stellt Pyridin ein stärkerer Donor nicht nur als THF, sondern auch als das uber die Brücke koordinierte Brom dar.

Nach dem Umkristallisieren von 4 in  $CH_2Cl_2/Hexan$  erhielt man farblose Kristalle, die IR-, <sup>1</sup>H-NMR-, EI-massenspektroskopisch und anhand einer Technetiumanalyse identifiziert wurde. Die genauen spektroskopischen Daten sind im Experimentellen Teil (S. 107) aufgeführt. Die Diskussion kann man der Orginalliteratur entnehmen.

Anhand der erhaltenen Einkristalle dieser Verbindung konnte erstmals eine Röntgenstrukturanalyse durchgeführt werden. Ebenso war bislang die Struktur der analogen Rheniumverbindung unbekannt, sodaß auch deren Struktur erstmals aufgeklärt werden konnte. Sowohl 4 als auch 4b kristallisieren aus  $CH_2Cl_2/Hexan$  in Form fabloser, klarer Prismen. Die Verbindungen sind isostrukturell.

|                 |     | 4                        | 4b                      |  |
|-----------------|-----|--------------------------|-------------------------|--|
| Kristallsystem  |     | monoklin                 | monoklin                |  |
| Raumgruppe      |     | C2/c (Nr.15)             | C2/c (Nr.15)            |  |
| Achsenlängen    | a   | 7.562(2) Å               | 7.547(6) Å              |  |
|                 | b   | 14.626(3) Å              | 14.552(8) Å             |  |
|                 | C . | 13.303(3) Å              | 13.29(1) Å              |  |
| Winkel          | ß   | 90.35(3)°                | 90.19(7)°               |  |
| Volumen         |     | 1471(1) Å <sup>3</sup>   | 1459.6 Å <sup>3</sup>   |  |
| Z               |     | 4                        | 4                       |  |
| d <sub>rö</sub> |     | 1.897 g cm <sup>-1</sup> | 2.31 g cm <sup>-1</sup> |  |

Tab. 6: Kristallographische Zellparameter von 4 und 4b

Zwei Pyridinringe sind über das Stickstoffatom zusammen mit drei Carbonylgruppen und einem Bromatom um das Metallzentrum quasi oktaedrisch angeordnet (Abb. 6, S. 19). kristallographischen Die Moleküle liegen auf einer C<sub>2</sub>-Achse, die mit den Winkelhalbierenden der N-M-N- bzw. C-M-C-Winkeln zusammenfällt. Das Molekül nimmt dabei im Kristall beide, um die C2-Achse gedrehte Lagen ein, so daß die Bromposition mit der dazu trans-ständigen CO-Gruppe wechselseitig vertauscht werden kann. Die in diesen Positionen gemessenen Reflexe ergeben eine Elektronendichte, die genau ein Mittel der zu für Br erwartenden Elektronendichte die Summe von CO und darstellt [Z(C)+Z(O)+Z(Br)/2]. Die dadurch resultierende statistische Verteilung des Bromatoms und der dazu trans-ständigen Carbonylgruppe führt zu einer Gleichheit des Metall-Bromund des trans-ständigen Metall-Carbonylkohlenstoff-Abstands.

Die restlichen Bindungsparameter sind von dieser Fehlordnung nicht betroffen und können sinnvoll interpretiert werden. Die mittleren Metall-Carbonylkohlenstoffabstände von 4 und 4b sind innerhalb ihrer Standartabweichungen gleich, ebenso die korrespondierenden C-O-Abstände. Die cis-ständigen, planaren Pyridinringe liegen nicht in der tetragonalen N-N-C-C-Ebene sondern stehen in einem Winkel von 39° zu dieser Ebene. Betrachtet man nur die Pyridinringe, so stehen deren Ebenen in einem Winkel von 53° zueinander. Durch diese gegenseitige Verdrehung der Pyridinringe ist ihre sterische Abstoßung soweit eingeschränkt, daß ein relativ kleiner cis-Winkel (N-M-N) von etwa 85° möglich ist. Die N-M-C-Winkel betragen dementsprechend etwa 95°. Die M-N-Bindungsabstände sind ebenfalls innerhalb ihrer Standartabweichungen gleich und betragen 224.9(8) pm [Tc] bzw. 223.4(14) pm [Re].



**Bindungsabstände [pm]:** Tc(1)-Br(1) 259.0(2), Tc(1)-CO 259.0(2), Tc(1)-N(1) 224.9(8), Tc(1)-C(11) 193(1), C(11)-O(11) 118(1)

Bindungswinkel [°]; Br(1)-Tc(1)-N(1) 90.9(2), Br(1)-Tc(1)-C(11) 89.8(3), N(1)-Tc(1)-C(11) 94.5(4), Br(1)-Tc(1)-CO 177(2), N(1)-Tc(1)-N(1A) 85.5(4), Tc(1)-C(11)-O(11) 175(1)



Bindungsabstände [pm]: Re(1)-Br(1) 258.1(4), Re(1)-CO 258.1(4), Re(1)-N(1) 223.4(14), Re(1)-C(11) 190.9(18), C(11)-O(11) 114.9(23)

Bindungswinkel [°]; Br(1)-Re(1)-N(1) 89.7(4), Br(1)-Re(1)-C(11) 89.3(6), N(1)-Re(1)-C(11) 94.0(7), Br(1)-Re(1)-CO 175.9(2), N(1)-Re(1)-CO 87.3(4), C(11)-Re(1)-CO 93.7(6), Br(1)-Re(1)-N(1A) 87.3(4), N(1)-Re(1)-N(1A) 85.2(7), C(11)-Re(1)-N(1A) 176.4(7), Br(1)-Re(1)-C(11A) 93.7(6), Re(1)-C(11)-O(11) 177.2(16)

Abb. 6: Molekülstruktur von 4 und 4b und ausgewählte Bindungsparameter

19

2.2.3 Technetiumcarbonylkomplexe mit Poly(pyrazol-1-yl)borat-Liganden

# 2.2.3.1 Poly(pyrazol-1-yl)borat-Liganden<sup>[55,56,57]</sup>

Ende der 60'ger bzw. Anfang der 70'ger Jahre präparierte S. Trofimenko erstmals diese neue Ligandklasse und untersuchte ihre Koordinationschemie gegenüber Metallionen<sup>[58,59]</sup>.

In diesen Verbindungen sind zwei bis vier Pyrazolringe an ein Boratom gebunden und stellen exzellente zwei- bzw. dreizählige Chelatliganden dar. Synthetisiert werden die Liganden aus Pyrazol und Tetrahydroboranat, wobei der Substitutionsgrad stark von der Temperatur abhängig ist (Schema 3).

$$BH_{4}^{-} + 2Hpz \xrightarrow{120^{\circ}C} H_{2}B(pz)_{2}^{-} + 2H_{2}$$

$$H_{pz} | 180^{\circ}C$$

$$H_{2} + B(pz)_{4}^{-} \xrightarrow{220^{\circ}C} HB(pz)_{3}^{-} + H_{2}$$

Schema 3: Darstellungsüberblick Poly(-1-pyrazolyl)borat-Liganden

Von besonderem Interesse sind die dreizähligen Liganden vom Typ  $RB(Pz)_3$  (R = H, Alkyl, Pyrazolyl), denen man eine formale Analogie zum Cyclopentadienylliganden (Cp) zuschreiben kann. Beide sind einfach negativ geladene sechs-Elektronen-Donatoren, welche drei Koordinationsstellen besetzen.

In der Regel zeigen Poly(-1-pyrazolyl)boratkomplexe eine höhere thermische Stabilität und eine wesentlich schlechtere Löslichkeit in unpolaren bzw. polaren Lösungsmitteln als die analogen Cp-Komplexe. In vielen Fällen konnte jedoch der Sachverhalt bewiesen werden, daß Komplexverbindungen dieser Ligandklasse gleiches chemisches Verhalten wie die analogen  $\eta^{5}$ -Cp-Verbindungen zeigen, auch wenn die Reaktivität durch die höhere kinetische Abschirmung des Liganden am Metallzentrum geringer ist.



Im Rahmen dieser Arbeit wurden die Liganden Hydrotris(-1-pyrazolyl)borat (L) und Hydrotris(3,5-dimethyl-1-pyrazolyl)borat (L<sup>\*</sup>) eingesetzt. Bei früheren Arbeiten unserer Arbeitsgruppe in Zusammenarbeit mit einem Arbeitskreis des Departamento de Quimica (LNETI) in Sacavem (Portugal) wurden die Liganden L und L<sup>\*</sup> in der Chemie der f-Elemente der Lanthanoiden- und Actinoidenreihe verwendet. Eingesetzt als stabilisierende Liganden aufgrund sterischer Abschirmung, wurden Verbindungen vom Typ L<sub>2</sub>LnX, L<sub>2</sub>AnX<sub>2</sub> und LAnX<sub>3</sub> synthetisiert und ihre Analogie zu den entsprechenden Cp-Verbindungen untersucht<sup>[61-66]</sup>.

Von Technetium sind bisher nur wenige Komplexe dieser Ligandklasse dargestellt worden. Es handelt sich dabei um die Verbindungen LTcOCl<sub>2</sub>, LTc(PPh<sub>3</sub>)Cl<sub>2</sub>, LTc(OPPh<sub>3</sub>)Cl<sub>2</sub><sup>[67]</sup> und um den carbonylhaltigen Komplex LTc(CO)<sub>2</sub>(PPh<sub>3</sub>)<sup>[42]</sup>.

Obwohl die carbonylhaltigen Verbindungen des Typs  $LM(CO)_3$  bzw.  $L^*M(CO)_3$  mit  $M = Mangan^{[58]}$  und Rhenium<sup>[69,70]</sup> schon seit langem bekannt sind, wurden sie im Rahmen dieser Arbeit nach modifizierten Literaturvorschriften synthetisiert und untersucht. Die Angabe eigener IR-, NMR-, und UV/VIS-Spektren dieser bekannten Verbindungen dient lediglich zur direkten und vollständigen Gegenüberstellung zu analogen Technetiumverbindungen. Darüber hinaus gelang es deren Kristall- und Molekülstruktur erstmals zu ermitteln, was eine ausgiebige Diskussion der homologen Verbindungen ermöglichte.

### 2.2.3.1 Die Verbindungen [HB(Pz)3]Tc(CO)3 (5) und [HB(3,5-Me2Pz)3]Tc(CO)3 (6)



LTc(CO)<sub>3</sub> (5) und L<sup>\*</sup>Tc(CO)<sub>3</sub> (6) wurden durch Umsetzung von Pentacarbonyltechnetiumbromid (1) mit dem Alkalisalz KL bzw. NaL<sup>\*</sup> in THF synthetisiert, wobei die Substitution des Bromids durch das jeweilige Ligandanion unter Eliminierung zweier Carbonylgruppen zu den luftstabilen "Halbsandwichverbindungen" führt. Die nach extraktiver Aufarbeitung gewonnenen farblosen Verbindungen wurden durch IR-, UV/VIS-, <sup>1</sup>H-NMR-, <sup>13</sup>C-NMR-Massenspektroskopie, Technetiumanalyse und Röntgenstrukturanalyse identifiziert. Außerdem wurde von allen Verbindungen, einschließlich den homologen Mangan- und Rheniumkomplexen, Dipolmomentmessungen durchgeführt und die Ladungsverteilung rechnerisch ermittelt<sup>[71]</sup>.

#### Spektroskopische Untersuchungen

Die Infrarotspektren (KBr) zeigen das für CO-Schwingungsabsorptionsbanden charakteristische Muster des Verbindungstypes  $ArM(CO)_3^{[72]}$ , welcher "Pianostuhl-Struktur" aufweist. Es treten im Absorptionsbereich der terminalen Carbonylgruppen zwei starke Banden auf, von denen die Niedrigerenergetische intensiver, breiter und im Falle der Verbindung LMn(CO)\_3 aufgespalten ist.

Nach der Methode der "lokalen Symmetrie"<sup>[73]</sup> am Zentralatom erhält man die Auswahlregeln für die CO-Schwingungen. Die Carbonylliganden in ArM(CO)<sub>3</sub> haben die lokale Symmetrie C<sub>3v</sub>. Daraus resultieren zwei IR-aktive Banden der Rassen A<sub>1</sub> und E. In der Regel entspricht in allen Metallcarbonylverbindungen die höherenergetischere Bande der Absorption der symmetrischen CO-Valenzschwingung<sup>[74]</sup>. Die Bande der asymmetrischen CO-Valenzschwingung der Rasse E erscheint bei kleinerer Wellenzahl und ist gegenüber der A<sub>1</sub>-Bande verbreitert, von größerer Intensität und nicht selten aufgrund einer Symmetrieerniedrigung des Moleküls im Festkörper aufgespalten, was in dem Spektrum von LMn(CO)<sub>3</sub> (5a) (Abb. 7, S. 23) deutlich zu sehen ist.
| Verbindung | Bandenlage                         | Schwingung                                |
|------------|------------------------------------|-------------------------------------------|
| 5          | 2024 s; 1913 vs<br>2527 m          | ν <sub>CO</sub><br>ν <sub>BH</sub>        |
| 5a         | 2026 s; 1932 vs; 1915 vs<br>2527 m | $rac{ u_{ m CO}}{ u_{ m BH}}$            |
| 5b         | 2020 s; 1896 vs<br>2539 m          | $     \frac{\nu_{\rm CO}}{\nu_{\rm BH}} $ |





Abb. 7:  $\nu_{CO}$ -Banden (KBr) von 5, 5a und 5b (2100 - 1800 cm<sup>-1</sup>)

Betrachtet man die Verbindungen  $LM(CO)_3$  und  $L^*M(CO)_3$  getrennt, liegen alle CO-Schwingungsbanden aufgrund der kleineren reduzierten Masse bei Mangan 7 - 19 cm<sup>-1</sup> höher als bei den homologen Rheniumverbindungen, wobei die Technetiumkomplexe 5 und 6 erwartungsgemäß eine Mittelstellung einnehmen.

Die CO-Bandenlagen in den Verbindungen desselben Metalls sind stark vom Donorcharakter der Liganden L und  $L^*$  abhängig. Durch die positiven induktiven Effekte (+I-Effekte) der sechs Methylgruppen in  $L^*$  erhöht sich die Elektronendichte an den Koordinationsstellen gegenüber dem nichtmethylierten L. Gleichzeitig wird der

| 6  | 2022 s; 1911 vs<br>2525 m | ν <sub>CO</sub><br>ν <sub>BH</sub> |
|----|---------------------------|------------------------------------|
| ба | 2023 s; 1912 vs<br>2525 m | $rac{ u_{ m CO}}{ u_{ m BH}}$     |
| 6b | 2017 s; 1893 vs<br>2529 m | ν <sub>CO</sub><br>ν <sub>BH</sub> |

Tab. 8: IR-Banden (KBr) von 6, 6a und 6b



Abb. 8:  $\nu_{CO}$ -Banden (KBr) von 6, 6a und 6b (2100 - 1800 cm<sup>-1</sup>)

Elektronendruck, der vom Ligand zum Metall hin ausgeübt wird, verstärkt und ein Teil der dadurch erhöhten Elektronendichte am Zentralion fließt in die  $\pi^*$ -Niveaus der Carbonylkohlenstoffatome (Verstärkung der Rückbindung), wodurch die CO-Bindung geschwächt und folglich die Absorptionbande der CO-Schwingung zu kleineren Energien hin verschoben wird.

Die Elektronenabsorptionsspektren wurden in THF aufgenommen. Jede Verbindung zeigt ein Absorptionsmaximum, wobei die Maxima der Technetiumkomplexe 5 und 6 gegenüber denen von Mangan und Rhenium bei den höchsten Energien auftreten.



Tab. 9: UV/VIS-spektroskopische Daten von 5, 5a und 5b

| Verbindung | λ <sub>max</sub> [nm]<br>(E [cm <sup>-1</sup> ]) | ε<br>[1 mol <sup>-1</sup> cm <sup>-1</sup> ] |
|------------|--------------------------------------------------|----------------------------------------------|
| 5          | 270 (37037)                                      | 7136                                         |
| 5a         | 346 (28901)                                      | 2236                                         |
| 5b         | 282 (35461)                                      | 6872                                         |

Abb. 9: Absorptionsspektren (THF) von 5, 5a und 5b (220 - 400 nm)



Tab. 10: UV/VIS-spektroskopische Daten von 6, 6a und 6b

| 6  | 273 (36630) | 7639 |
|----|-------------|------|
| 6a | 347 (28818) | 2664 |
| 6b | 283 (35336) | 6815 |

Abb. 10: Absorptionsspektren (THF) von 6, 6a und 6b (220 - 400 nm)

Sowohl Lagen als auch Intensitäten der Absorptionsmaximas deuten auf chargetransfer-Übergänge (CT)hin. Es handelt sich dabei um intramolekulare welche sich und Elektronenübergänge zwischen Zentralteilchen Liganden, als Wechselwirkung zwischen Ionisierungsenergie und Elektronenaffinität ergeben<sup>[75]</sup>.

Im Gegensatz zu den d $\rightarrow$ d(t<sub>2g</sub> $\rightarrow$ eg<sup>\*</sup>)-Ligandfeldübergängen (LF) sind CT-Übergänge uneingeschränkt erlaubt und weisen große Intensitäten auf.



Metall Komplex Ligand

Abb. 11: Stark vereinfachtes MO-Schema eines oktaedrischen Komplexes mit Definition unterschiedlicher Arten elektronischer Anregung [Quelle: N. Sutin, Inorg. React. Meth. 15 (1986) 260]

Unser Interesse gilt nun der Wechselwirkung Ligand L bzw.  $L^*$  und Metall. Es kommen dafür zwei Arten von CT-Übergängen in Frage:

1. LMCT: Der Elektronenübergang findet statt von einem tiefer liegenden Molekülorbital mit weitgehendem besetzten höherliegenden Ligandcharakter einem leeren zu Molekülorbital, wesentlichen Metallcharakter daß im besitzt<sup>[75]</sup>. stark vereinfachtes Betrachtet ein man

MO-Schema eines oktaedrischen Komplexes (Abb. 11, S. 26), so müßte man den Elektronenübergang auf der Grundlage eines  $L_{\pi} \rightarrow M_{\sigma}^{*} d(e_{g}^{*})$ -charge-transfer-Übergangs erklären. Die  $M_{\pi d}(t_{2g})$ -Orbitale sind wegen der d<sup>6</sup>-Konfiguration des Tc(I) voll besetzt und müßten Übersprungen werden.

2. MLCT: Am Stickstoff als Glied eines aromatischen Ringes existieren  $\pi^*$ -Orbitale, die zur Bildung einer Rückbindung mit dem Metall beitragen. Der CT-Übergang findet statt von dem mit sechs Elektronen vollständig besetzten  $M_{\pi d}(t_{2g})$ -Orbital zu dem antibindenten  $\pi^*$ -Orbital des Liganden. In der Regel erwartet man bei d<sup>6</sup> low spin Komplexen Übergänge dieses Types wie bereits bei den Komplexen (C5H5N)W(CO)5<sup>[76]</sup> und CpM(CO)<sub>2</sub>(NC5H5) (M = Mn, Re)<sup>[77]</sup> beschrieben.

Man kann die in den Spektren erscheinenden Absorptionsmaxima (Abb. 9 und 10, S. 25) Übergängen vom Typ 2 (MLCT) zuordnen.

Charge-transfer-Übergänge (MLCT) zwischen Zentralion und Carbonylgruppe vom Typ  $M_{\pi d}(t_{2g}) \rightarrow \pi^*(CO)$  zeigen Absorptionsbanden unter 250 nm <sup>[76]</sup> und sind im Spektrum nur als schwache Schultern bzw. überhaupt nicht mehr zu erkennen.

Ebenfalls uneingeschränkt erlaubt sind die  $\pi \rightarrow \pi^*$ -Intraligandübergänge (IL) der Pyrazolylliganden, die ebenfalls unterhalb 250 nm liegen.

Richten wir unser Augenmerk nochmals auf die Metall->L bzw. L\*-CT-Übergänge. Wie schon erwähnt sind die Maxima der Technetiumkomplexe bei den höchsten Energien, woraus man folgern kann, daß das M(CO)<sub>3</sub>-Fragment von allen drei Homologen im Falle des Technetiums am stärksten an den Liganden L bzw L<sup>\*</sup> gebunden ist. Diese Annahme wurde zudem noch durch andere Messungen (Dipolmomentmessungen s.S. 30ff) untermauert.

Die Verschiebung der Absorptionsmaxima der L<sup>\*</sup>- gegenüber den L-Verbindungen zu kleineren Wellenzahlen [ $\Delta E = 83 \text{ cm}^{-1}$  (Mn), 125 cm<sup>-1</sup> (Re), 407 cm<sup>-1</sup> (Tc)] kann man auf die bereits angesprochenen +I-Effekte der Methylgruppen an den Pyrazolringen zurückführen, welche die Elektronendichte an den Ligandkoordinationstellen erhöhen und dadurch eine Verringerung des HOMO-LUMO-Abstands bewirken, wodurch der MLCT-Übergang bei kleineren Absorptionsenergien abläuft.

EI-massenspektroskopische Untersuchungen der Technetium- (5, 6), Mangan- (5a, 6a) und Rheniumkomplexe (5b, 6b) zeigen jeweils einen Molpeak, der mit den errechneten Molmassen übereinstimmt. Bei den Rheniumverbindungen tritt die charakteristische Isotopenverteilung auf. In allen Spektren haben die Fragmente LM bzw. L<sup>\*</sup>M die höchste Intensität und repräsentieren somit die thermisch stabilsten Fragmente der Verbindungen.

| Verbindung                     | Mögliches Fragment                | m/z | (rel.Int.[%]) |
|--------------------------------|-----------------------------------|-----|---------------|
| 5                              | $LTc(CO)_3^+$ (M <sup>+</sup> )   | 396 | (46)          |
|                                | $LTc(CO)_2^+$                     | 368 | (61)          |
|                                | LTcCO <sup>+</sup>                | 340 | (98)          |
|                                | LTc+                              | 312 | (100)         |
| 5a                             | $LMn(CO)_3^+$ (M <sup>+</sup> )   | 352 | (4.1)         |
|                                | LMnCO <sup>+</sup>                | 296 | (4.5)         |
|                                | LMn <sup>+</sup>                  | 268 | (100)         |
| 5b ( <sup>187</sup> Re)        | $LRe(CO)_3^+$ (M <sup>+</sup> )   | 484 | (82)          |
|                                | $LRe(CO)_2^+$                     | 456 | (33)          |
|                                | LReCO <sup>+</sup>                | 428 | (21)          |
|                                | LRe <sup>+</sup>                  | 400 | (100)         |
| 6                              | $L^{*}Tc(CO)_{3}^{+}(M^{+})$      | 480 | (27)          |
|                                | $L^{*}Tc(CO)_{2}^{+}$             | 452 | (24)          |
|                                | L <sup>*</sup> TcCO+              | 424 | (64)          |
|                                | L <sup>*</sup> Tc <sup>+</sup>    | 396 | (100)         |
| ба                             | $L^*Mn(CO)_3^+$ (M <sup>+</sup> ) | 436 | (2.2)         |
|                                | L <sup>*</sup> Mn <sup>+</sup>    | 352 | (100)         |
| <b>6b</b> ( <sup>187</sup> Re) | $L^{*}Re(CO)_{3}^{+}(M^{+})$      | 568 | (60)          |
| · ·                            | $L^*Re(CO)_2^+$                   | 540 | (15)          |
|                                | L*ReCO+                           | 512 | (38)          |
|                                | L*Re+                             | 484 | (100)         |

Tab. 11: EI-MS-Fragmentierung von 5, 5a und 5b bzw. 6, 6a und 6b

<sup>1</sup>H- und <sup>13</sup>C-NMR-Messungen beweisen eine Äquivalenz der Ligandpyrazolylringe bei allen Komplexen in Lösung (CDCl<sub>3</sub>). Die drei Wasserstoffatome des unmethylierten Pyrazolyls in L liefern drei Signale im Verhältnis 1:1:1 und spalten in

|                  | Verbindung                              | Chemische Verschiebung [ $\delta$ ] | Signalproton |
|------------------|-----------------------------------------|-------------------------------------|--------------|
| 1 <sub>H:</sub>  | 5                                       | 6.21 ppm; t                         | C(4)-H (3H)  |
|                  |                                         | 7.64 ppm; d                         | C(5)-H (3H)  |
|                  |                                         | 7.73 ppm; d                         | С(3)-Н (3Н)  |
|                  | 5a                                      | 6.22 ppm; t                         | C(4)-H (3H)  |
|                  |                                         | 7.65 ppm; d                         | С(5)-Н (3Н)  |
|                  | 1999 1929 1929 1929 1929 1929 1929 1929 | 7.83 ppm; d                         | С(3)-Н (3Н)  |
|                  | 5b                                      | 6.22 ppm; t                         | C(4)-H (3H)  |
|                  |                                         | 7.65 ppm; d                         | C(5)-H (3H)  |
|                  |                                         | 7.84 ppm; d                         | С(3)-Н (3Н)  |
|                  | 6                                       | 2.34 ppm; s                         | C(5)-Me (9H) |
|                  |                                         | 2.43 ppm; s                         | C(3)-Me (9H) |
|                  |                                         | 5.80 ppm; s                         | С(4)-Н (3Н)  |
|                  | ба                                      | 2.32 ppm; s                         | C(5)-Me (9H) |
|                  |                                         | 2.51 ppm; s                         | C(3)-Me (9H) |
|                  |                                         | 5.79 ppm; s                         | С(4)-Н (3Н)  |
|                  | 6b                                      | 2.34 ppm; s                         | C(5)-Me (9H) |
|                  |                                         | 2.46 ppm; s                         | C(3)-Me (9H) |
|                  |                                         | 5.84 ppm; s                         | С(4)-Н (3Н)  |
| <sup>13</sup> C: | 5                                       | 105.69 ppm; 135.27 ppm              | C(4); C(5)   |
|                  | ·····                                   | 144.20 ppm                          | C(3)         |
|                  | 5a                                      | 105.82 ppm; 135.33 ppm              | C(4); C(5)   |
|                  |                                         | 144.20 ppm                          | C(3)         |
|                  | 5b                                      | 106.31 ppm; 135.20 ppm              | C(4); C(5)   |
|                  |                                         | 144.98 ppm                          | C(3)         |
|                  | 6                                       | 2.57 ppm; 15.02 ppm                 | Me(5); Me(3) |
|                  |                                         | 106.42 ppm; 144.26 ppm              | C(4); C(5)   |
|                  |                                         | 151.35 ppm                          | C(3)         |
|                  | 6a                                      | 2.47 ppm; 14.80 ppm                 | Me(5); Me(3) |
|                  |                                         | 107.04 ppm; 144.20 ppm              | C(4); C(5)   |
|                  |                                         | 152.40 ppm                          | C(3)         |
|                  | 6b                                      | 2.92 ppm; 15.55 ppm                 | Me(5); Me(3) |
|                  |                                         | 106.64 ppm; 144.15 ppm              | C(4); C(5)   |
|                  |                                         | 152.44 ppm                          | C(3)         |

# Tab. 12: NMR-Daten von 5, 5a und 5b bzw. 6, 6a und 6b

ein Triplett und zwei Dubletts. Der methylierte Pyrazolylring liefert drei Singuletts im Verhältnis 3:3:1. Während die Peaks der Protonen in 4'er und 5'er Stellung des Pyrazolyls der einzelnen Komplexe keine signifikanten Unterschiede in ihren chemischen Verschiebungen aufweisen, fällt auf, daß die Protonensignale in 3'er Stellung bei den Technetiumverbindungen 5 und 6 gegenüber den Homologen leicht hochfeldverschoben sind, d.h. die Protonen in 3'er Stellung erfahren eine größere Abschirmung.

Für die Carbonylkohlenstoffatome konnten im <sup>13</sup>C-NMR-Spektrum keine Signale beobachtet werden. Als möglicher Grund können wir eine lange Relaxationszeit für die betreffenden Kohlenstoffe annehmen<sup>[78]</sup>.

## LADUNGSVERTEILUNG

Für die Diskussion der chemischen Bindung in den Komplexen LM(CO)<sub>3</sub> und  $L^*M(CO)_3$  (M = Tc, Mn, Re) muß man die Ladungsverteilung zwischen dem Liganden L bzw.  $L^*$  und dem Zentralatom M, sowie zwischen dem Zentralatom und den CO - Gruppen betrachten. Als relatives Maß für die Ladungsverteilung zwischen verschiedenen Molekülgruppen einer Komplexverbindung können die Partialdipolmomente der betreffenden Bindungen zwischen diesen Gruppen betrachtet werden<sup>[79]</sup>. Die Partialdipolmomente lassen sich aus dem Gesamtdipolmoment  $\mu_{exp}$  der Komplexe errechnen, welches rechnerisch anhand experimentell gemessener Größen wie Dielektrizitätskonstante und Brechungsindex hergeleitet werden kann<sup>[80]</sup>.



Abb. 12: Schematische Darstellung der Partialmomente innerhalb der L bzw. L<sup>\*</sup>M(CO)<sub>3</sub> - Verbindungen

Die Dipolmomente der LM(CO)<sub>3</sub>- bzw.  $L^*M(CO)_3$ -Verbindungen setzen sich vektoriell additiv aus den Partialmomenten zwischen Zentralion und den Liganden bzw. den koordinierten Stickstoffatomen und den Partialmomenten der Carbonylgruppen zusammen (Abb. 12, S. 30). Aufgrund der Molekülsymmetrie heben sich die Beiträge senkrecht zur C<sub>3</sub> - Achse gegenseitig auf. Wirksam bleiben deshalb nur die Beiträge der Partialmomente paralell zur C<sub>3</sub> - Achse.

Die partielle Ladungsverteilung der Komplexe wurde nach den Gleichungen 1 - 4 errechnet, wobei neben dem experimentell ermittelten Dipolmoment des jeweiligen Komplexes die kristallographischen Abstände und Winkel innerhalb ihrer Standartabweichungen berücksichtigt wurden.

$$\mu_{\rm exp} = \mu_{\rm L-M} + \Sigma \mu_{\rm M-Ni} - \Sigma \mu_{\rm M-CO}(\pm \mu_{\rm CO})$$
 [GL.1]

wobei:

| $\mu_{\text{L-M}} = r_{\text{M-B}} \cdot q_{\text{L}}$                                | [GL.2] |
|---------------------------------------------------------------------------------------|--------|
| $\mu_{\text{M-Ni}} = r_{\text{M-Ni}} \cdot q_{\text{eff,Ni}} \cdot \sin(\alpha - 90)$ | [GL.3] |
| $\mu_{\text{M-CO}} = r_{\text{M-C}} \cdot q_{\text{eff.C}} \cdot \sin(\phi - 90)$     | [GL.4] |

mit:

 $\mu_{CO} = 0$   $\alpha$  = Winkel: C<sub>3</sub>-Achse - M - N  $\phi$  = Winkel: C<sub>3</sub>-Achse - M - C

Für die Ladung an den Boropyrazolylliganden  $q_L$  und  $q_L^*$  wurden näherungsweise 1 e<sup>-</sup> Elementarladung angenommen, wie für das BH<sub>4</sub><sup>-</sup>-Anion im Falle des Cp<sub>3</sub>UBH<sub>4</sub>-Komplexes bereits experimentell ermittelt<sup>[81]</sup>. Für die Bindungsmomente  $\mu_{M-Ni}$  zwischen dem koordinativ gebundenen Stickstoffatomen und dem Zentralion wurden die aus den Komplexen L<sub>2</sub>UCl<sub>2</sub><sup>[62,63]</sup>, L<sub>2</sub>NpCl<sub>2</sub><sup>[66]</sup> und L<sup>\*</sup>UCl<sub>3</sub><sup>[61]</sup> berechneten Werte eingesetzt. Durch Vektoraddition erhält man den Gesamtbeitrag  $\mu_{MN3}$ . Die berechneten Partialmomente sind zusammen mit den experimentell bestimmten Dipolmomenten in Tabelle 13 (S. 32) zusammengefaßt.

|                    |     | 5     | 5a    | 5b    | 6     | ба    | 6b    |
|--------------------|-----|-------|-------|-------|-------|-------|-------|
| $\mu_{exp}$        | [D] | 6.11  | 6.09  | 5.85  | 6.64  | 6.61  | 6.42  |
| $\mu_{L-M}$        | [D] | 16.09 | 15.18 | 15.99 | 15.80 | 15.13 | 15.66 |
| $\mu_{\rm MN3}$    | [D] | 1.91  | 1.91  | 1.91  | 2.86  | 2.86  | 2.86  |
| $\mu_{\text{M-N}}$ | [D] | 1.00  | 1.00  | 1.00  | 1.50  | 1.50  | 1.50  |
| $\mu_{M(CO)3}$     | [D] | 11.89 | 11.00 | 12.05 | 12.02 | 11.38 | 12.09 |
| μ <sub>M-CO</sub>  | [D] | 6.64  | 6.14  | 6.73  | 6.72  | 6.35  | 6.75  |

Tab. 13: Experimentell bestimmtes Dipolmoment und berechnete Partialmomente der Verbindungen 5, 5a und 5b bzw. 6, 6a und 6b

Betrachtet man die Partialmomente der Metall-Kohlenstoffbindungen für das M(CO)<sub>3</sub>-Fragment, so bekommt man Werte, die im Einklang mit der Lage der entsprechenden IRspektroskopisch ermittelten Carbonylschwingungen stehen. Das Partialmoment  $\mu_{M(CO)3}$ nimmt von Mangan hin zum Rhenium zu, was durch die Verstärkung des Rückbindungscharakters M<sup>-</sup>CO erklärt wird. Die entsprechenden CO-Valenzschwingungsbanden treten somit bei niedrigeren Energien auf.



Abb. 13: Korrelation zwischen CO-Valenzschwingungen und den Partialmomenten  $\mu_{M-CO}$ 

Betrachtet man nun den Beitrag, der vom Ligand L bzw.  $L^*$  aus geliefert wird, so sieht man, daß die Summe der Partialmomente  $\mu_{L-M}$  und  $\mu_{MN3}$  bei den Technetiumverbindungen 5 und 6 die höchsten Werte aufweist. Wie bereits diskutiert liegen

auch die Absorptionsenergien der  $CT_{M\rightarrow L}$ -Übergänge bei den Technetiumverbindungen am höchsten (Tab. 9 und 10, S. 25). Beides steht in Einklang mit der bereits geäußerten Annahme, daß die Liganden L und L<sup>\*</sup> im Falle der Technetiumverbindungen am stärksten an das Metall gebunden sind. Was die Bindungsstärke betrifft, nehmen über Stickstoff koordinierte Liganden bei Technetiumverbindungen gegenüber seinen Homologen eine herausragende Stellung ein.



Abb. 14: Korrelation zwischen  $CT_{M\rightarrow L}$ -Energien und der Summe der Partialmomente  $\mu_{L-M}$  und  $\mu_{MN3}$ 

# Kristallstrukturen

Sowohl Sublimation im Vakuum unter ca. 10 torr Argon als auch durch Umkristallisation der Verbindungen aus Hexan/CH<sub>2</sub>Cl<sub>2</sub> konnten Einkristalle erhalten werden, welche für Röntgenstrukturanalysen geeignet waren.

**5** und **5a** kristallisieren trigonal mit zwei unabhängigen Molekülen pro Elementarzelle. **6**, **6a** und **6b** kristallisieren monoklin. Während bei **5**, **5a**, **6**, **6a** und **6b** durch Sublimation erhaltene, wie auch aus Lösung gezüchtete Einkristalle die gleiche Elementarzelle aufweisen, spielt bei LRe(CO)<sub>3</sub> (**5b**) die Kristallisationsmethode offensichtlich eine wesentliche Rolle. Sublimierte Einkristalle kristallisieren monoklin, während bei der Kristallisation aus der Lösung Einkristalle erhalten wurden, welche trigonal zu kristallisieren scheinen. Eine vollständige Strukturaufklärung von **5b** (trigonale Modifikation) ist zwar nicht gelungen, ihre Gitterkonstanten liegen jedoch in der selben Größenordnung wie 5 und 5a.

|                                                                        |                  | 5                                                                                                                                  | 5a                                                                                                                                 | 5b(Mod.a)                | 5b(Mod.b)                                                                                                                           |
|------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Kristallsystem                                                         |                  | trigonal                                                                                                                           | trigonal                                                                                                                           | trigonal                 | monoklin                                                                                                                            |
| Raumgruppe                                                             |                  | P3 (Nr.143)                                                                                                                        | P <sub>3</sub> (Nr.143)                                                                                                            | P3 (Nr.143)              | C <sub>c</sub> (Nr.9)                                                                                                               |
| Achsenlängen                                                           | a                | 11.464(4)Å                                                                                                                         | 11.522(4)Å                                                                                                                         | 11.466(2)Å               | 15.882(4) Å                                                                                                                         |
|                                                                        | b                | -                                                                                                                                  | -                                                                                                                                  | -                        | 7.731(3) Å                                                                                                                          |
|                                                                        | c                | 8.091(3)Å                                                                                                                          | 7.933(3)Å                                                                                                                          | 8.037(3)Å                | 13.410(4) Å                                                                                                                         |
| Winkel                                                                 | ß                | -                                                                                                                                  | -                                                                                                                                  | -                        | 106.09(2)°                                                                                                                          |
| Volumen                                                                |                  | 920.9 Å <sup>3</sup>                                                                                                               | 912.1 Å <sup>3</sup>                                                                                                               | 915.1 Å <sup>3</sup>     | 1582.1 Å <sup>3</sup>                                                                                                               |
| Z                                                                      |                  | 2                                                                                                                                  | 2                                                                                                                                  | 2                        | 4                                                                                                                                   |
| d <sub>rö</sub>                                                        |                  | 1.425 g cm <sup>-1</sup>                                                                                                           | 1.282 g cm <sup>-1</sup>                                                                                                           | 1.754 g cm <sup>-1</sup> | 2.029 g cm <sup>-1</sup>                                                                                                            |
|                                                                        |                  |                                                                                                                                    |                                                                                                                                    |                          |                                                                                                                                     |
|                                                                        |                  | 6                                                                                                                                  | ба                                                                                                                                 |                          | 6b                                                                                                                                  |
| Kristallsystem                                                         |                  | <b>6</b><br>monoklin                                                                                                               | 6a<br>monoklin                                                                                                                     |                          | 6b<br>monoklin                                                                                                                      |
| Kristallsystem<br>Raumgruppe                                           |                  | 6<br>monoklin<br>P2 <sub>1</sub> /c (Nr.14)                                                                                        | 6a<br>monoklin<br>P2 <sub>1</sub> /c (Nr.1                                                                                         | 4)                       | <b>6b</b><br>monoklin<br>P2 <sub>1</sub> /c (Nr.14)                                                                                 |
| Kristallsystem<br>Raumgruppe<br>Achsenlängen                           | a                | 6<br>monoklin<br>P2 <sub>1</sub> /c (Nr.14)<br>8.026(3) Å                                                                          | 6a<br>monoklin<br>P2 <sub>1</sub> /c (Nr. 1<br>8.007(2) Å                                                                          | 4)                       | 6b<br>monoklin<br>P2 <sub>1</sub> /c (Nr.14)<br>7.998(3) Å                                                                          |
| Kristallsystem<br>Raumgruppe<br>Achsenlängen                           | a<br>b           | 6<br>monoklin<br>P2 <sub>1</sub> /c (Nr.14)<br>8.026(3) Å<br>14.081(4) Å                                                           | 6a<br>monoklin<br>P2 <sub>1</sub> /c (Nr.1<br>8.007(2) Å<br>14.069(3) Å                                                            | 4)                       | <b>6b</b><br>monoklin<br>P2 <sub>1</sub> /c (Nr.14)<br>7.998(3) Å<br>14.091(4) Å                                                    |
| Kristallsystem<br>Raumgruppe<br>Achsenlängen                           | a<br>b<br>c      | 6<br>monoklin<br>P2 <sub>1</sub> /c (Nr.14)<br>8.026(3) Å<br>14.081(4) Å<br>18.995(6) Å                                            | 6a<br>monoklin<br>P2 <sub>1</sub> /c (Nr. 1<br>8.007(2) Å<br>14.069(3) Å<br>18.773(6) Å                                            | 4)                       | 6b<br>monoklin<br>P2 <sub>1</sub> /c (Nr.14)<br>7.998(3) Å<br>14.091(4) Å<br>18.919(2) Å                                            |
| Kristallsystem<br>Raumgruppe<br>Achsenlängen<br>Winkel                 | а<br>b<br>c<br>ß | 6<br>monoklin<br>P2 <sub>1</sub> /c (Nr.14)<br>8.026(3) Å<br>14.081(4) Å<br>18.995(6) Å<br>97.51(2)°                               | 6a<br>monoklin<br>P2 <sub>1</sub> /c (Nr.1<br>8.007(2) Å<br>14.069(3) Å<br>18.773(6) Å<br>98.61(2)°                                | 4)                       | 6b<br>monoklin<br>P2 <sub>1</sub> /c (Nr.14)<br>7.998(3) Å<br>14.091(4) Å<br>18.919(2) Å<br>97.27(2)°                               |
| Kristallsystem<br>Raumgruppe<br>Achsenlängen<br>Winkel<br>Volumen      | а<br>b<br>c<br>ß | 6<br>monoklin<br>P2 <sub>1</sub> /c (Nr.14)<br>8.026(3) Å<br>14.081(4) Å<br>18.995(6) Å<br>97.51(2)°<br>2128.4 Å <sup>3</sup>      | 6a<br>monoklin<br>P2 <sub>1</sub> /c (Nr. 1<br>8.007(2) Å<br>14.069(3) Å<br>18.773(6) Å<br>98.61(2)°<br>2090.95 Å <sup>3</sup>     | 4)                       | 6b<br>monoklin<br>P2 <sub>1</sub> /c (Nr.14)<br>7.998(3) Å<br>14.091(4) Å<br>18.919(2) Å<br>97.27(2)°<br>2115.3 Å <sup>3</sup>      |
| Kristallsystem<br>Raumgruppe<br>Achsenlängen<br>Winkel<br>Volumen<br>Z | a<br>b<br>c<br>ß | 6<br>monoklin<br>P2 <sub>1</sub> /c (Nr.14)<br>8.026(3) Å<br>14.081(4) Å<br>18.995(6) Å<br>97.51(2)°<br>2128.4 Å <sup>3</sup><br>4 | 6a<br>monoklin<br>P2 <sub>1</sub> /c (Nr.1<br>8.007(2) Å<br>14.069(3) Å<br>18.773(6) Å<br>98.61(2)°<br>2090.95 Å <sup>3</sup><br>4 | 4)<br>A                  | 6b<br>monoklin<br>P2 <sub>1</sub> /c (Nr.14)<br>7.998(3) Å<br>14.091(4) Å<br>18.919(2) Å<br>97.27(2)°<br>2115.3 Å <sup>3</sup><br>4 |

Tab. 14: Kristallographische Zellparameter von 5, 5a und 5b bzw. 6, 6a und 6b

Die Verbindungen LM(CO)<sub>3</sub> bzw.  $L^*M(CO)_3$  (M = Tc, Mn, Re) sind wie erwartet in ihren Molekülstrukturen isostrukturell. In allen sechs Verbindungen liegen im Kristall diskrete Moleküle vor, in denen das Metallion durch die Stickstoffatome und die drei Carbonylkohlenstoffatome oktaedrisch koordiniert ist. Die Moleküle besitzen eine C<sub>3</sub>-Achse, die durch das Bor- und das Metallion festgelegt ist.

Aufgrund des im Vergleich zu seinen isoelektronischen Homologen kleineren Ionenradius des Mangans sind alle vom Mangan ausgehenden Bindungen gegenüber denen des Technetiums und Rheniums, die etwa die gleiche Größenordnung haben, um 10 - 13 pm verkürzt. Betrachtet man zunächst die M(CO)<sub>3</sub>-Einheiten so sind in den einzelnen Molekülen die jeweiligen Metall-Carbonyl-Abstände innerhalb ihrer Standartabweichungen gleich. Die Tc-C- bzw. Re-C-Abstände in den Verbindungen L<sup>\*</sup>M(CO)<sub>3</sub> entsprechen mit ca. 190 pm den analogen Abständen der Pentamethylcyclopentadienylkomplexe Cp<sup>\*</sup>Tc(CO)<sub>3</sub> [Tc-C = 190.6(7)] und Cp<sup>\*</sup>Re(CO)<sub>3</sub> [Re-C = 189.4(7)]<sup>[30]</sup>.

Die C-M-C-Winkel liegen bei den unmethylierten Komplexen LM(CO)3 leicht über



5 (M = Tc):

Bindungsabstände [pm]: Tc-C(1) 182(3), Tc-N(1) 212(1), C(1)-O(1) 123(3), Tc-B 333(1) Bindungswinkel [°]: C(1)-Tc-C(1) 92.(1), Tc-C(1)-O(1) 166.(3), N(1)-Tc-N(1) 86.3(5), C(1)-Tc-N(1) 92.(1), C(1)-Tc-N(1) 176.(1), C(1)-Tc-N(1) 90.(1)

5a (M = Mn):

Bindungsabstände [pm]: Mn-C(1) 181(1), Mn-N(1) 217.7(8), C(1)-O(1) 115(1), Mn-B 314(2) Bindungswinkel [°]: C(1)-Mn-N(1) 92.2(4), C(2)-Mn-N(1) 174.8(3), C(3)-Mn-N(1) 93.1(4), Mn-C(1)-O(1) 176.7(9), Mn-N(1)-N(2) 116.8(6), Mn-N(1)-C(4) 130.8(6)

5b (M = Re):

Bindungsabstände [pm]: Re-C(1) 182(3), Re-C(2) 182(2), Re-C(3) 181(2), Re-N(1) 218(2), Re-N(3) 225(2), Re-N(5) 223(2), Re-B 336(3)

Bindungswinkel [°]: C(1)-Re-C(2) 95(1), C(1)-Re-C(3) 97(1), C(1)-Re-N(1) 92(1), C(1)-Re-N(3) 91.7(9), C(1)-Re-N(5) 171.2(9), C(2)-Re-C(3) 94(1), C(2)-Re-N(1) 94(1), C(2)-Re-N(3) 171.1(9), C(2)-Re-N(5) 91(1), C(3)-Re-N(1) 167.9(8), C(3)-Re-N(3) 91.2(8), C(3)-Re-N(5) 88.6(9), N(1)-Re-N(3) 79.7(6), N(1)-Re-N(5) 82.1(7), N(3)-Re-N(5) 81.2(7), C(1)-Re-C(2) 95(1), C(1)-Re-C(3) 97(1), C(2)-Re-C(3) 94(1), Re-C(1)-O(1) 178(3)

Abb. 15: Moleküldarstellung von LM(CO)<sub>3</sub> (jeweils isostrukturell) und ausgewählte Bindungsparameter von 5, 5a und 5b



6 (M = Tc):

Bindungsabstände [pm]: Tc-C(1) 190(2), Tc-C(2) 187(2), Tc-C(3) 193(2), Tc-N(1) 220(1), Tc-N(3) 219(1), Tc-N(5) 220(1), C(1)-O(1) 113(2), Tc-B 329(2)

Bindungswinkel [°]: C(1)-Tc-C(2) 89.0(7), C(1)-Tc-C(3) 86.7(7), C(1)-Tc-N(1) 93.6(7), C(1)-Tc-N(3) 92.2(6), C(1)-Tc-N(5) 175.3(6), C(2)-Tc-C(3) 85.4(8), C(2)-Tc-N(1) 96.3(7), C(2)-Tc-N(3) 177.4(6), C(2)-Tc-N(5) 94.8(6), C(3)-Tc-N(1) 178.4(7), C(3)-Tc-N(3) 92.4(7), C(3)-Tc-N(5) 96.2(6), N(1)-Tc-N(3) 86.0(5), N(1)-Tc-N(5) 83.5(5), N(3)-Tc-N(5) 84.0(5), C(1)-Tc-C(2) 89.0(7), C(1)-Tc-C(3) 86.7(7), C(2)-Tc-C(3) 85.4(8), Tc-C(1)-O(1) 178(2)

#### 6a (M = Mn)

Bindungsabstände [pm]: Mn(1)-C(1) 179.8(6), Mn(1)-C(2) 178.2(7), Mn(1)-C(3) 179.4(6), Mn(1)-N(1) 207.0(5), Mn(1)-N(3) 206.9(4), Mn(1)-N(5) 208.0(4), C(1)-O(1) 113.8(7). Mn-B 316.0(2) Bindungswinkel [°]: C(1)-Mn(1)-C(2) 87.7(3), C(1)-Mn(1)-C(3) 89.8(3), C(2)-Mn(1)-C(3) 88.0(3), C(1)-Mn(1)-N(1) 92.5(2), C(2)-Mn(1)-N(1) 93.9(2), C(3)-Mn(1)-N(1) 177.0(2), C(1)-Mn(1)-N(3) 92.7(2), C(2)-Mn(1)-N(3) 179.5(2), C(3)-Mn(1)-N(3) 91.7(2), N(1)-Mn(1)-N(3) 86.3(2), C(1)-Mn(1)-N(5) 178.5(2), C(2)-Mn(1)-N(5) 91.9(2), C(3)-Mn(1)-N(5) 91.6(2), N(1)-Mn(1)-N(5) 86.0(2), N(3)-Mn(1)-N(5) 87.7(2), Mn(1)-C(1)-O(1) 175.6(6)

#### 6b (M = Re)

Bindungsabstände [pm]: Re-C(1) 190.4(9), Re-C(2) 190(1), Re-C(3) 190(1), Re-N(1) 219.2(7), Re-N(3) 217.5(7), Re-N(5) 218.5(7), C(1)-O(1) 116(1), Re-B 325(1)

Bindungswinkel [°]: C(1)-Re-C(2) 90.3(4), C(1)-Re-C(3) 87.7(4), C(1)-Re-N(1) 174.2(3), C(1)-Re-N(3) 93.1(3), C(1)-Re-N(5) 92.2(3), C(2)-Re-C(3) 86.4(5), C(2)-Re-N(1) 94.1(3), C(2)-Re-N(3) 176.5(3), C(2)-Re-N(5) 94.6(4), C(3)-Re-N(1) 96.3(4), C(3)-Re-N(3) 94.2(4), C(3)-Re-N(5) 178.9(3), N(1)-Re-N(3) 82.4(3), N(1)-Re-N(5) 83.7(3), N(3)-Re-N(5) 84.7(3), C(1)-Re-C(2) 90.3(4), C(1)-Re-C(3) 87.7(4), C(2)-Re-C(3) 86.4(5), Re-C(1)-O(1) 178.2(9)

Abb. 16: Moleküldarstellung von  $L^{*}M(CO)_3$  (jeweils isostrukturell) und ausgewählte Bindungsparameter von 6, 6a und 6b 90°, bei den methylierten L<sup>\*</sup>-Verbindungen aufgrund sterischer Zwänge der Methylgruppen etwas unterhalb 90°. In beiden Fällen kommt es somit zu einer leichten Verzerrung des idealen Oktaeders. Wie bei allen M(CO)<sub>3</sub>-Carbonylsystemen<sup>[82]</sup> ist auch bei diesen Verbindungen eine Abweichung der M-C-O-Einheit von der Linearität festzustellen. All diese Effekte bewirken eine leichte Erniedrigung der C<sub>3v</sub> - Symmetrie.

Die Metallion-Stickstoff-Abstände sind ebenfalls innerhalb ihrer Standartabweichungen in den einzelnen Molekülen gleich. Vergleicht man die N-M-N-Winkel der L-Verbindungen mit ihren L<sup>\*</sup>-Homologen, so kann man keinen signifikanten Unterschied erkennen, der auf den Einfluß der Methylsubstituenten zurückzuführen wäre.

Die Metall-Bor-Abstände liegen mit > 314 pm (Mn) und > 325 pm (Tc,Re) außerhalb eines bindenden Bereiches. Auch würden bindende Wechselwirkungen der  $18e^-$ -Regel widersprechen, der Moleküle vom Typ ArM(CO)<sub>3</sub> allgemein gehorchen, jedoch sind elektrostatische Wechselwirkungen zwischen dem negativen Bor und dem positivem Metallzentrum vorhanden.

2.2.4 Die Verbindung  $\eta^5$ -Pyr<sup>\*</sup> Tc(CO) 3° HPyr<sup>\*</sup> (7) und ihre Homologen [Mn (7a), Re (7b)]



Heterocyclische Fünfringliganden vom Typ C<sub>4</sub>R<sub>4</sub>N<sup>-</sup> (R = H, CH<sub>3</sub>-) sind dem C<sub>5</sub>R<sub>5</sub>- (R = H, CH<sub>3</sub>-) iso- $\pi$ -elektronisch und eignen sich deshalb zur Darstellung von  $\eta^5$ -koordinierten Metall- $\pi$ -Komplexen.

7

Der erste Azacyclopentadienylmangankomplex  $\eta^5 - (C_4 H_4 N)Mn(CO)_3$  wurde schon 1962 von Pauson aus Mn<sub>2</sub>(CO)<sub>10</sub> und Pyrrol hergestellt<sup>[83a]</sup>. Eine Reihe von Azacyclopentadienylmetallcarbonylverbindungen des Eisens folgten<sup>[83b]</sup>. Erst 1987 wurde von einem Azacymanthrenderivat,  $\eta^5$ -3,4-Dimethylpyrrolylmangantricarbonyl, die Molekülund Kristallstruktur veröffentlicht<sup>[85]</sup>.

Die generellen Eigenschaften von heterocyclischen Metallkomplexen sind bereits gut untersucht<sup>[84]</sup>. Auffallend dabei ist die geringere Stabilität der  $\pi$ -stickstoffheterocyclischen Verbindungen im Vergleich zu ihren analogen carbocyclischen Verbindungen. Ein

wichtiges Kriterium für die Stabilität der  $\pi$ -Bindung von Cp-Metallkomplexen ist die elektrostatische Wechselwirkung zwischen Cp<sup>-</sup> und dem positiven Metallzentrum<sup>[86]</sup>. Wird nun ein Kohlenstoff durch ein elektronegativeres Atom ersetzt (Tab. 15), kommt es aufgrund einer Verschiebung des negativen Ladungsschwerpunktes zu einer Störung dieser Wechselwirkung. Elektropositivere Heteroatome bewirken jedoch eine Stabilitätszunahme. Tatsächlich sind in der Regel  $\eta^5$ -N-und S-heterocyclische Metallkomplexe luftinstabil, während B-, P- und As- heterocyclische Ringe luftstabile  $\eta^5$ -Metallkomplexe ergeben<sup>[84]</sup>.

| Tab. 15: Elektronegativitäten diverser Heteroringatome | ۶Ľ | Γ. | 2 |  |
|--------------------------------------------------------|----|----|---|--|
|--------------------------------------------------------|----|----|---|--|

| Gruppe III: | Gruppe IV: | Grupp   | e V:    | Gruppe VI:      |  |
|-------------|------------|---------|---------|-----------------|--|
| В           | С          | N P     | As Sb   | O S Se Te       |  |
| 1.9         | 2.5        | 3.0 2.1 | 2.0 1.9 | 3.5 2.6 2.4 2.1 |  |

Eine höhere Elektronendichte des  $\pi$ -Ringes bewirkt eine größere Stabilität der Komplexe. Eine Möglichkeit diese Ringelektronendichte zu erhöhen ist die Einführung von Alkylsubstituenten, welche einen +I-Effekt ausüben. So sind normalerweise alkylsubstituierte Analoga<sup>[87]</sup>. unsubstituierten Gleiche Aren- $\pi$ -Metallkomplexe stabiler als ihre Stabilisierung wurde bei stickstoffhaltigen Metallocenen durch Permethylierung des hetedemonstriert<sup>[88]</sup>. Aufgrund Ringes dieser Kriterien wurde rocyclischen als stickstoffheterocyclischer  $\pi$ -Ligand 2,3,4,5-Tetramethylpyrrolyl (Pyr<sup>\*</sup>) eingesetzt.

Bei der Umsetztung von BrM(CO)<sub>5</sub> (M = Mn, Tc, Re) mit KPyr<sup>\*</sup> in THF, läßt sich nach Extraktion der Rohprodukte mit Pentan die gelbe Verbindung Pyr<sup>\*</sup>Mn(CO)<sub>3</sub>·HPyr<sup>\*</sup> (7a) bzw. die farblosen Verbindungen  $Pyr^*M(CO)_3$ ·HPyr<sup>\*</sup> [M = Tc (7), Re (7b)] isolieren, die sich alle an der Luft binnen kurzer Zeit zersetzen. Bei allen Verbindungen ist im festen Zustand ein Pyrrolylring  $\eta^5$  an das Metallatom gebunden und ein freies Pyrrol über eine Wasserstoffbrücke an den Pyrrolylstickstoff koordiniert. Eine analytische Untersuchung des eingesetzten Kaliumsalzes zeigte, das kein freies Pyrrol enthalten war. Folglich muß das freie Pyrrol während der Reaktion entstehen. Über den Mechanismus kann keine definitive Aussage gemacht werden. Es kann sich sowohl um eine partielle Hydrolyse durch im Reaktionsraum vorhandene Spuren von Wasser als auch eine metallkatalysierte Protonenabspaltung des Lösungsmittels handeln. Tatsache ist, daß die Verbindung selbst nach Sublimation nur als ein solches Addukt vorliegt. Offenbar leistet die mit der Bildung der Wasserstoffbrücke verbundene Reduzierung der Ladungsdichte an dem Pyrrolylstickstoffatom einen wesentlichen Beitrag zur Stabilität der Metall- $\pi$ -Bindung (Vgl. ist Elektronegativitäten, Tab. 15). Verwunderlich jedoch, daß bei der Röntgenstrukturanalyse der Verbindung 3,4-Dimethylpyrrolylmangantricarbonyl<sup>[85]</sup> keine

solche Adduktkoordination festgestellt wurde. Die Methylsubstitution in 2,5-Stellung scheint einen entscheidenden Einfluß auf die Stabilisierung der Wasserstoffbrücke zu haben. Tatsächlich kamen Kuhn und Mitarbeiter bei der Synthese eines permethylierten Diazaferrocens aus NaPyr<sup>\*</sup> und FeCl<sub>2</sub> zu analogem Ergebnis<sup>[89]</sup>.

Die Verbindungen 7, 7a und 7b wurden IR-, UV/VIS-, <sup>1</sup>H-NMR-, EI-massenspektroskopisch und durch Röntgenstrukturanalyse identifiziert und charakterisiert. Von der Technetiumverbindung wurde zusätzlich eine Tc-Analyse und eine Messung der magnetischen Suszeptibilität gemacht.

## SPEKTROSKOPISCHE UNTERSUCHUNGEN

Im Festkörper-IR-Spektrum, aufgenommen in KBr-Matrix, erscheinen die schon erwähnten, dem M(CO)<sub>3</sub>-Fragment charakteristischen Banden. Die der asymmetrischen CO-Valenzschwingung zugeschriebene, niedrigerenergetischeren Bande zeigt gegenüber der entsprechenden Cp<sup>\*</sup>-Verbindung eine signifikante Verbreiterung. Zurückzuführen ist dies wohl auf das im Festkörper anhaftende Addukt, das eine starke Symmetrieerniedrigung zur Folge hat. Weiter ist auffallend, daß die Absorptionsenergie der Banden gegenüber den analogen Cp<sup>\*</sup>-Verbindungen um durchschnittlich 20 cm<sup>-1</sup> zu höheren Energien verschoben sind. Der Einfluß des elektronegativeren Heteroatoms auf die Abschwächung der M-CO-Rückbindung ist unverkennbar.



Tab. 16:  $\nu_{CO}$ -Banden (KBr) von 7, 7a und 7b

| 7          | 2027s; 1934vs |
|------------|---------------|
| 7a         | 2030s; 1938vs |
| 7 <b>b</b> | 2020s; 1912vs |

Abb. 17:  $\nu_{CO}$ -Banden (KBr) von 7, 7a und 7b (2100 - 1800 cm<sup>-1</sup>)

Die Elektronenabsorptionsspektren der drei homologen Verbindungen (in Cyclohexan) zeigen ähnlichen Verlauf, wobei das Maximum der Manganverbindung bei niedrigster Energie erscheint. Lage und Intensitäten der Banden weisen auf charge-transfer-Übergänge  $M \rightarrow \pi^*$ (Ring) hin. Ein Vergleich von 7 und 7a mit den entsprechenden Cp<sup>\*</sup>M(CO)<sub>3</sub>-Verbindungen zeigt, daß die Maxima genau identische Energien aufweisen<sup>[33]</sup>, woraus auf die gleiche HOMO-LUMO-Separierung geschlossen werden kann.



Tab. 17: UV/VIS-spektroskopische Daten (Cyclohexan) von 7, 7a und 7b

| Verbind | ung λ <sub>max</sub> [nm]<br>(E [cm <sup>-1</sup> ]) | €<br>[1 mol <sup>-1</sup> cm <sup>-1</sup> ] |
|---------|------------------------------------------------------|----------------------------------------------|
| 7       | 285 (34843)                                          | 1884                                         |
| 7a      | 341 (29325)                                          | 1570                                         |
| 7b      | 267 (37453)                                          | 2792                                         |

Abb. 18: UV/VIS-Spektren (Cyclohexan) von 7, 7a und 7b (220 - 500 nm)

Betrachtet man die in Benzol(d<sub>6</sub>) aufgenommenen <sup>1</sup>H-NMR-Spektren der Verbindungen, so erkennt man in allen Fällen vier Singuletts in einem etwaigem Verhältnis von 1 : 1. Zwei Singuletts von den  $\alpha$ - und  $\beta$ -Methylgruppen des  $\eta^5$  gebundenen Ringes und zwei von den entsprechenden Methylgruppen des freien Pyrrols. Auffallend ist, daß die Signale der im festen Zustand über H-Brücken koordinierten Pyrrolringe in allen drei Fällen die gleiche chemische Verschiebung von 1.91 ppm bzw. 2.00 ppm aufweisen, welche mit den <sup>1</sup>H-NMR-Signalen des freien Tetramethylpyrrol identisch sind; ein Indiz dafür, daß nur im festen Zustand das Pyrrol über die H-Brücke an den  $\eta^5$ -Komplex fixiert ist, in Lösung sich jedoch frei bewegt. Die Methylgruppen des  $\pi$ -gebundenen Pyrrolringes sind vom Mangan hin zum Rhenium tieffeldverschoben. Aufgrund der höheren positiven effektiven Ladung des Rheniums gegenüber seinen Homologen ist der +I-Effekt der Methylgruppen bei 7b am stärksten und die Abschirmung der entsprechenden Protonen am geringsten.

Tab. 18: <sup>1</sup>H-NMR-Daten [δ] von 7, 7a und 7b

| Signalproton                     | 7           | 7a          | 7b          |
|----------------------------------|-------------|-------------|-------------|
| $\eta^5$ -Pyr ( $lpha$ -Me) (6H) | 1.93 ppm; s | 1.83 ppm; s | 2.06 ppm; s |
| $\eta^5$ -Pyr (B-Me) (6H)        | 1.40 ppm; s | 1.30 ppm; s | 1.44 ppm; s |
| Pyr*(α-Me) (6H)                  | 2.00 ppm; s | 2.00 ppm; s | 2.00 ppm; s |
| Pyr*(ß-Me) (6H)                  | 1.91 ppm; s | 1.91 ppm; s | 1.91 ppm; s |



Abb. 19: <sup>1</sup>H-NMR-Spektrum (Benzol-d<sub>6</sub>) von 7

Von 7a und 7b wurden EI - Massenspektren aufgenommen. In beiden Fällen stellt der Peak mit der höchsten Masse den adduktfreien Komplex  $Pyr^*M(CO)_3$  dar. Die Fragmentierungsmuster sind sehr ähnlich, ein Unterschied liegt jedoch in den verschiedenen relativen Intensitäten der Fragmentpeaks.

| Verbindung              | Mögliches Fragment                  | m/z (rel. Int.[%]) |
|-------------------------|-------------------------------------|--------------------|
| 7a                      | $Pyr^*Mn(CO)_3^+$ (M <sup>+</sup> ) | 261 (12)           |
|                         | $Pyr^*Mn(CO)_2^+$                   | 233 (4)            |
|                         | Pyr <sup>*</sup> MnCO <sup>+</sup>  | 205 (22)           |
|                         | Pyr <sup>*</sup> Mn <sup>+</sup>    | 177 (100)          |
|                         | HPyr <sup>*+</sup>                  | 123 (27)           |
|                         | Pyr <sup>*+</sup>                   | 122 (58)           |
| 7b ( <sup>187</sup> Re) | $Pyr^*Re(CO)_3^+$ (M <sup>+</sup> ) | 393 (75)           |
|                         | $Pyr^*Re(CO)_2^+$                   | 365 (95)           |
|                         | Pyr <sup>*</sup> ReCO <sup>+</sup>  | 337 (100)          |
|                         | Pyr <sup>*</sup> Re <sup>+</sup>    | 307 (40)           |
|                         | HPyr <sup>*</sup> +                 | 123 (45)           |
|                         | Pyr*+                               | 122 (97)           |

Tab. 19: EI-MS-Fragmentierung von 7a und 7b

# Kristallstrukturen

Nach Sublimation im Vakuum unter ca. 10 torr Argon kristallisieren alle drei Verbindungen in Form langer, dünner, gelber (Mn) bzw. farbloser (Tc, Re) Nadeln. Während 7 und 7b die gleichen Zellparameter aufweisen, kristallisiert 7a in einem anderen Kristallsystems (Tab. 20 u. Abb. 20, S. 43). Die Bindungsparameter der Molekülstruktur von 7a wird aufgrund des großen Fehlers nicht diskutiert.

Die Röntgenstrukturanalyse bestätigt eine  $\eta^5$ -koordinierte "Halbsandwichverbindung" vom Typ ArM(CO)<sub>3</sub>. An den  $\eta^5$ -koordinierten Pyrrolring ist über eine Wasserstoffbrücke ein Tetramethylpyrrolylmolekül verbunden, dessen Ebene bei 7 in einem Winkel von 72.88°(±0.54), bei 7b in einem Winkel von 74.26°(±0.53) zu der des  $\pi$ gebundenen Ringes steht (Im Falle der Verbindung (Pyr<sup>\*</sup>)<sub>2</sub>Fe·2HPyr<sup>\*</sup> ist der Interplanarwinkel 81.2°<sup>[89]</sup>). Beide C<sub>4</sub>N-Ringe sind im Rahmen der Meßgenauigkeit planar. Fast alle Bindungsparameter von 7 und 7b sind innerhalb der Fehlergrenzen von 3 $\sigma$ gleich. Lediglich der Winkel C(3)-M-Ringzent. ist bei 7b mit 126.6(3)° gegenüber 7 mit 121.2(6)° signifikant vergrößert. Ebenso auffällig ist der Bindungsabstand Re-C(7) gegenüber Tc-C(7) um 8(1) pm verlängert. Die Abstände M-Ringzent. liegen mit 191.9(2) pm (Re) und 195.7(1) pm (Tc) im Erwartungsbereich und sind vergleichbar mit den Verbindungen Cp<sup>\*</sup>Re(CO)<sub>3</sub> [Re-Ringzent. 197(1) pm] und Cp<sup>\*</sup>Tc(CO)<sub>3</sub> [Tc-Ringzent 194.4(6) pm]<sup>[30]</sup>.

Tab. 20: Kristallographische Zellparameter der Verbindungen 7, 7a und 7b

|                 |   | 7                         | 7a                         | 7ь                        |
|-----------------|---|---------------------------|----------------------------|---------------------------|
| Kristallsystem  |   | orthorombisch             | monoklin                   | orthorombisch             |
| Raumgruppe      |   | Pna2 <sub>1</sub> (Nr.33) | P2 <sub>1</sub> /c (Nr.14) | Pna2 <sub>1</sub> (Nr.33) |
| Achsenlängen    | а | 20.967(5) Å               | 23.982(6) Å                | 20.932(3) Å               |
|                 | b | 11.556(2) Å               | 8.653(2) Å                 | 11.515(2) Å               |
|                 | с | 8.731(3) Å                | 22.13(6) Å                 | 8.717(2) Å                |
|                 | ß | -                         | 117.06(2)°                 | -                         |
| Volumen         |   | 2118(2) Å <sup>3</sup>    | 4.123(4) Å <sup>3</sup>    | 2109 Å <sup>3</sup>       |
| Z               |   | 4                         | 8                          | 4                         |
| d <sub>rö</sub> |   | 1.34 g cm <sup>-1</sup>   | 1.241 g cm <sup>-1</sup>   | 1.630 g cm <sup>-1</sup>  |

؛ نـــ



Abb. 20: Ansicht der Elementarzelle von 7a (links) und 7 bzw. 7b (rechts)



**Bindungsabstände [pm]:** Tc-C(1) 193(1), Tc-C(2) 189(2), Tc-C(3) 184(1), Tc-N(1) 216.7(9), Tc-C(4) 225(2), Tc-C(5) 237(1), Tc-C(7) 234.8(9), C(1)-O(1) 111(2), C(2)-O(2) 114(2), C(3)-O(3) 114(2), N(2)-H(1) 95.0(9), N(1)-H(1) 218.3(9), Tc-centr. 195.67(5)

Bindungswinkel [°]: C(1)-Tc-C(2) 90.9(6), C(1)-Tc-C(3) 91.7(6), C(1)-Tc-centr. 126.8(4), C(2)-Tc-C(3) 91.5(7), C(2)-Tc-centr. 125.9(4), C(3)-Tc-centr. 121.2(6), Tc-C(1)-O(1) 175(1), Tc-C(2)-O(2) 177(1), Tc-C(3)-O(3) 178(1), (1)-H(1)-N(2) 166.3(7)



Bindungsabstände [pm]: Re-C(1) 193(2), Re-C(2) 193(2), Re-C(3) 183(1), Re-N(1) 220.8(9), Re-C(4) 226(1), Re-C(5) 230(1), Re-C(6) 226(1), Re-C(7) 227(2), C(1)-O(1) 114(2), C(2)-O(2) 120(2), C(3)-O(3) 123(2), Re-centr. 191.9(2)

Bindungswinkel [°]: C(1)-Re-C(2) 88.4(7), C(1)-Re-C(3) 87.5(6), C(1)-Re-centr. 126.5(4), C(2)-Re-C(3) 88.7(6), C(2)-Re-centr. 116.6(4), C(3)-Re-centr. 126.6(6), Re-C(1)-O(1) 177(1), Re-C(2)-O(2) 175(1), Re-C(3)-O(3) 173(1), C(4)-N(1)-C(7) 110.2(9), N(1)-H(1)-N(2) 170.5(7)

## Abb. 21: Moleküldarstellungen und ausgewählte Bindungsparameter von 7 und 7b

Vergleicht man das  $\pi$ -gebundene Pyrrolyl mit dem freien Pyrrol so kann man keinen signifikanten Unterschied in den Bindungslängen und -winkeln feststellen. Das Wasserstoffatom der unsymmetrischen Wasserstoffbrücke ist dem Stickstoffatom N(2) zugeordnet [H(1)-N(2) 95.0(9) pm; H(1)-N(1) 218.3(7) pm]. Der N-H-N-Winkel [166.3(7)° (Tc); 170.5(7)° (Re)] ist für Bindungen dieser Art üblich<sup>[90]</sup>. Betrachtet man das  $\pi$ -gebundene System, erkennt man eine Verkürzung der M-N(1)-Bindung gegenüber den M-C-Bindungen der Ringkohlenstoffatome. Durch die höhere Elektronegativität des Heteroringatoms gegenüber den Kohlenstoffringatomen wird der negative Ladungsschwerpunkt des Ringes, welcher beim Cyclopentadienylanion zentriert ist, zum Stickstoffatom hin verschoben und führt somit zu einer erhöhten lokalen Wechselwirkung mit dem positiven Metallzentrum. Gleichzeitig tritt eine signifikante Bindungsverkürzung der in trans-Stellung zum Ringstickstoff befindlichen M-C(3) Carbonylkohlenstoffbindung gegenüber den anderen M-CO-Bindungen auf. Mit dieser Rückbindungsverstärkung korreliert automatisch eine Bindungsaufweitung der C(3)-O(3)-Bindung. Die drei Carbonylkohlenstoffatome liegen in einer Ebene, die parallel zur  $\eta^5$ -koordinierten Ringebene steht (Abweichung  $< 1^{\circ}$ ).

## Magnetische Suszeptibilität

Wie bei allen Übergangsmetallcarbonylen lassen sich die magnetischen Eigenschaften auf Grundlage der 18 Valenzelektronenregel (VE-Regel) diskutieren, welche bei Metallcarbonylen bemerkenswert oft, etwa zu 95 %, erfüllt wird<sup>[75]</sup>. Die 18 VE-Regel stellt neben dem Konzept des  $\sigma$ -Donor/ $\pi$ -Akzeptor-Synergismus ("Hin- und Rückbindung", s. S.48) die rudimentärsten Ansätze zur Diskussion von Struktur- und Bindungsverhältnissen in Übergangsmetallorganylen dar.

Die 18 VE-Regel (Sidgwick, 1927<sup>[91]</sup>) basiert auf der Valence Bond (VB)-Betrachtung lokalisierter Metall-Ligand-Bindungen und besagt, daß thermodynamisch stabile ÜM-Komplexe dann vorliegen, wenn die Summe der Metall(d)-Elektronen und der von den Liganden zur Bindung beigesteuerten Elektronen gerade 18 beträgt. Hierdurch erreicht das Zentralmetall formal die Elektronenkonfiguration des im Periodensystem folgenden Edelgases, d.h. alle bindenden Molekülorbitale sind doppelt besetzt, alle Antibindenden bleiben unbesetzt und es resultieren stabile, diamagnetische Komplexe.

Betrachtet man den negativen Pyrrolylligand als 6e<sup>-</sup>-Donor, die drei Carbonylgruppen als 6e<sup>-</sup>-Donoren und spricht dem einwertigen d<sup>7</sup>-Metall ebenfalls 6 e<sup>-</sup> zu, so resultiert ein diamagnetisches 18e<sup>-</sup>-Fragment.

Die Messung der magnetischen Suszeptibilität von 7 nach der Faraday-Methode<sup>[92]</sup> zeigte für starke Magnetfelder einen schwachen, jedoch feldabhängigen Diamagnetismus (Tab. 21).

|       | H[KOe] |      |      |      |       |       |
|-------|--------|------|------|------|-------|-------|
| T(K)  | 5      | 7    | 9    | 11   | 13    | 15    |
| 77.20 | 1.00   | 0.55 | 0.31 | 0.07 | -0.02 | -0.11 |
| 77.81 | 1.00   | 0.53 | 0.28 | 0.08 | -0.02 | -0.10 |
| 77.87 | 1.04   | 0.57 | 0.32 | 0.07 | -0.02 | -0.10 |
| 93.04 | 0.96   | 0.53 | 0.29 | 0.11 | 0.00  | -0.09 |
| 117.3 | 0.96   | 0.55 | 0.29 | 0.09 | -0.01 | -0.10 |
| 151.8 | 1.00   | 0.55 | 0.29 | 0.08 | -0.02 | -0.11 |
| 184.2 | 0.92   | 0.51 | 0.24 | 0.08 | -0.03 | -0.12 |
| 214.9 | 0.92   | 0.51 | 0.24 | 0.08 | -0.03 | -0.12 |
| 250.3 | 0.88   | 0.47 | 0.21 | 0.05 | -0.07 | -0.15 |
| 294.7 | 1.00   | 0.57 | 0.31 | 0.07 | -0.04 | -0.19 |
| T→∞   | 0.87   | 0.49 | 0.19 | 0.06 | -0.06 | -0.15 |

**Tab. 21:** Grammsuszeptilität  $\chi_g$  (10<sup>-6</sup> emu) bei verschiedenen Temperaturen in Abhängigkeit von der magnetischen Feldstärke

Die  $\chi_g$ -Werte wurden graphisch in einem  $\chi_g - 1/T$ -Diagramm aufgetragen und gegen 100/T->0 (T->∞) extrapoliert. Die dadurch erhaltenen  $\chi_g$ -Werte (Tab. 21, letzte Zeile) wurden graphisch gegen 1/H aufgetragen. Die resultierende Gerade wurde gegen 1/H->0 (H->∞) extrapoliert um ferromagnetische Verunreinigungen zu berücksichtigen. Der daraus resultierende Wert für die diamagnetische Grammsuszeptibilität betrug  $\chi_g$  (H->∞) -0.616 ·10 <sup>-6</sup> emu. Daraus ergibt sich eine molare Suszeptibilität  $\chi_m$  von -(264±8) · 10 <sup>-6</sup> emu. Dieser Wert stimmt mit den aus den diamagnetischen Inkrementen<sup>[93]</sup> berechneten Wert von -263.65 · 10 <sup>-6</sup> emu recht gut überein.

# 2.2.5 Photochemische Reaktionen der Verbindungen LTc(CO)<sub>3</sub> (5) und L<sup>\*</sup>Tc(CO)<sub>3</sub> (6)

# 2.2.5.1 Photochemische Reaktivität von Organo-ÜM-Verbindungen<sup>[94]</sup>

Durch Absorption eines Photons wird ein Molekül in einen elektronisch angeregten Zustand überführt, was eine Anhebung eines Elektrons von einem bindenden in ein antibindendes Molekülorbital bedeutet. Dies stellt eine neue chemische Spezies mit veränderter Elektronen- und Molekülstruktur und somit andersartigem chemischen Verhalten dar (photochemischer Aspekt). Moleküle im elektronisch angeregten Zustand können, verglichen mit dem Grundzustand, andere Bindungswinkel bevorzugen (und somit gespanntere Systeme bilden), modifizierte Reaktivität funktioneller Gruppen und drastische Änderung der Säuredissoziationskonstanten aufweisen, anderes Redoxverhalten zeigen sowie durch Schwächung bestimmter Bindungen höhere Reaktivität besitzen. Ein solch angeregtes Molekül geht anschließend einen photochemischen Primärprozeß ein.

Für die der Lichtabsorption folgenden photochemischen Primärprozesse sind die Lebensdauern der elektronisch angeregten Zustände von entscheidenter Bedeutung. Mit der primären elektronischen Anregung ist im allgemeinen auch eine Schwingungsanregung verbunden. Die überschüssige Schwingungsenergie wird aber unter Bildung eines vibratorisch äquilibrierten, elektronischen Anregungszustand rasch an das umgebende Medium abgegeben.

Je nach Energie und Lebensdauer der Anregungszustände können sich folgende Vorgänge anschließen:

Unimolekulare Primärprozesse (am Beispiel eines elektronisch angeregten Komplexes  $MX_6^*$ )

Strahlungslose Desaktivierung Lumineszenz Dissoziation, Assoziation Isomerisierung Homolytische Spaltung  $MX_{6}^{*} \rightarrow MX_{6} + W arme$   $MX_{6}^{*} \rightarrow MX_{6} + hv$   $MX_{6}^{*} \rightarrow MX_{5} \rightarrow MX_{5}A$ cis/trans - Umlagerung  $MX_{6}^{*} \rightarrow MX_{5} + X$ 

Bimolekulare Primärprozesse

Thermische Stoßdesaktivierung Energietransfer Assoziation  $MX_6^* + A \rightarrow MX_6 + A + W$ ärme  $MX_6^* + A \rightarrow MX_6 + A^*$  $MX_6^* + A \rightarrow [MX_6A] \rightarrow MX_5A + X$  Aus der Sicht der präparativen Nützlichkeit der photochemischen Primärprozesse interresieren vor allem Dissoziations- und Assoziationsprozesse. Auf diesen Reaktionswegen können Produkte erhalten werden, die thermisch überhaupt nicht oder nur in sehr schlechten Ausbeuten erhalten werden.

So erfordert z. B. die thermische Substitution von CO in CpMn(CO)<sub>3</sub> hohe Temperaturen, während sie photochemisch bereits bei Raumtemperatur abläuft ist<sup>[95,96]</sup>. Die Geschwindigkeitskonstante für den Vorgang CpMn(CO)<sub>3</sub>  $\rightarrow$  CpMn(CO)<sub>2</sub> + CO, der dem Eintritt eines neuen Donorliganden D vorausgeht, erfährt bei photochemischer Anregung CpMn(CO)<sub>3</sub>  $\rightarrow$  [CpMn(CO)<sub>3</sub>]<sup>\*</sup>  $\rightarrow$  CpMn(CO)<sub>2</sub> + CO eine Steigerung um etwa den Faktor 10<sup>16</sup>. Hierfür ist der Ligandfeldübergang t<sub>2g</sub>( $\pi$ )  $\rightarrow$  eg( $\sigma$ <sup>\*</sup>) verantwortlich, der die Depopulation eines M-CO bindenden und die Population eines M-CO antibindenden MO's bewirkt<sup>[97]</sup>.

# 2.2.5.2 Die Photochemie der Homologen LM(CO)<sub>3</sub> und L<sup>\*</sup>M(CO)<sub>3</sub> (M = Mn, Re)

Die Verbindungen LM(CO)<sub>3</sub> und L<sup>\*</sup>M(CO)<sub>3</sub> eignen sich als Ausgangsverbindungen für photochemische Reaktionen mit neutralen Donorliganden (D) unterschiedlicher  $\sigma$ -Donor- und  $\pi$ -Akzeptorstärken ( $\pi$ -Säuren) (Tab. 22).

**Tab. 22:** Qualitative Klassifizierung von Donorliganden nach ihrer  $\sigma$ -Donor- und  $\pi$ -Akzeptorstärke: ++ = sehr stark; + = stark; +- = mittel; - = schwach<sup>[117]</sup>

|                        | CO | N <sub>2</sub> | P(OMe) <sub>3</sub> | PPh3 | THF |
|------------------------|----|----------------|---------------------|------|-----|
| σ-Donorstärke:         | +- | -              | -+                  | +    | _   |
| $\pi$ -Akzeptorstärke: | ++ | +(+)           | +(-)                | +-   | -   |

Über entsprechende Reaktionen mit den Mangen- und Rheniumverbindungen  $LMn(CO)_3$  bzw.  $L^*Mn(CO)_3^{[98]}$  und  $LRe(CO)_3^{[99]}$  wurde bereits berichtet (Schema 4, S. 49). Als neutrale Donorliganden sind dabei in erster Linie phosphorhaltige Liganden (Phosphane, Phosphite) verwendet worden. Die Reaktionen wurden in THF durchgeführt, das ebenfalls als neutraler Donorligand fungieren kann.



Schema 4: Photolytische Reaktionen mit LM(CO)3

Vergleicht man die homologen Verbindungen LMn(CO)<sub>3</sub> und LRe(CO)<sub>3</sub> in ihrer photolytischen Reaktivität gegenüber Phosphorsubstituenten in THF, erkennt man einen gravierenden Unterschied. Während die Verbindung LMn(CO)<sub>3</sub> bzw. L<sup>\*</sup>Mn(CO)<sub>3</sub> sowohl cophotolytisch mit dem Phosphorreaktanden, als auch nach photolytischer Aktivierung und Reaktion zu dem intermediären Komplex LMn(CO)<sub>3</sub>(THF) und anschließender thermischer Weiterreaktion mit dem entsprechenden Substituenten zu den gewünschten Produkten führt, findet bei der cophotolytischen Substitutionsreaktion von LRe(CO)<sub>3</sub> in THF, trotz Überschuß des Phosphorsubstituenten keine Reaktion zu den gewünschten Produkten statt, sondern es läßt sich nur die Verbindung LRe(CO)<sub>2</sub>(THF) isolieren.

Das rote THF-Addukt LMn(CO)<sub>2</sub>(THF) konnte bisher noch nicht isoliert werden, jedoch wurde es intermediär IR-spektroskopisch in der Reaktionsmischung nachgewiesen<sup>[98]</sup>. Die homologe Verbindung LRe(CO)<sub>2</sub>(THF) ist dagegen, genau wie die analogen Cyclopentadienylverbindungen CpRe(CO)<sub>2</sub>(THF)<sup>[100]</sup> und Cp<sup>\*</sup>Re(CO)<sub>2</sub>(THF)<sup>[101]</sup>, leicht isolierbar und für längere Zeit luftstabil. Die hohe Stabilität des Re-THF-Adduktes ist wohl verantwortlich dafür, daß während der Bestrahlung das Reaktionsgleichgewicht im Gegensatz zu der analogen Manganreaktion, von Seiten des Tricarbonyls, als auch von Seiten des Phosphorsubstitutionsproduktes immer stark bei der Re-THF-Verbindung liegt.

 $LRe(CO)_{2}(THF) \xrightarrow{} LRe(CO)_{2}P$ 

Unterbricht man jedoch die Bestrahlung vor Zugabe des Phosphorsubstituenten (P), reagiert LRe(CO)<sub>2</sub>(THF) quantitativ bei Raumtemperatur zu dem gewünschten Produkt LRe(CO)<sub>2</sub>P.

Diese Ergebnisse wurden im Rahmen dieser Arbeit durch eigene Vorarbeiten mit den entsprechenden Rheniumverbindungen bestätigt.

Außerdem gelang es die Verbindung  $L^*Re(CO)_2(THF)$  (8b) nach Bestrahlung von 6b in THF und anschließender chromatographischer Aufarbeitung zu isolieren. Die Ausbeuten lagen jedoch bei weitem unter den von LRe(CO)<sub>2</sub>(THF) beschriebenen, was einer sterischen Hinderung des Reaktionszentrum durch die Methylgruppe zugeschrieben werden kann. Längere Bestrahlungszeiten verbessern jedoch die Ausbeuten nicht. 8b wurde IR-, UV/VIS-, EI-Massen-, <sup>1</sup>H-NMR-spektroskopisch und durch Röntgenstrukturanalyse charakterisiert.

## Spektroskopische Untersuchungen

Das IR-Festkörperspektrum (KBr) (Abb. 22) zeigt im terminalen Carbonylbereich zwei starke Banden bei 1933 und 1846 cm<sup>-1</sup>. Wie bereits erwähnt, hängt Zahl und Intensität der Carbonylbanden im Schwingungsspektrum hauptsächlich von der lokalen Symmetrie am Zentralatom ab. Wie bei allen Komplexen der Art  $L_2M(CO)_2$  mit  $C_{2v}$ -Symmetrie erwartet man für die gewinkelte (O)C-M-C(O)-Gruppe zwei Banden der Rassen A<sub>1</sub> und B<sub>1</sub>.

Die mit einer Schulter behaftete Bande der B-H-Valenzschwingung erscheint bei 2525 cm<sup>-1</sup> mit schwacher Intensität.



Im UV/VIS-Spektrum, aufgenommen in THF, erscheint neben zwei Schultern ein stark ausgeprägtes Maximum bei 319 nm und ein schwaches Maximum bei 406 nm.

Hinter den Schultern verbergen sich wohl  $\pi \to \pi^*$ -Elektronenübergänge der Pyrazolylringe sowie  $d \to \pi^*(CO)$ -CT-Übergänge. Das scharfe Maximum kann als der schon erwähnte  $M \to L^*$ -CT-Übergang beschrieben werden. Der Einfluß des THF - Liganden wird anhand der Maximumsverschiebung zu niedrigerer Energie gegenüber **6b** deutlich. Die energieärmste Bande kann man als  $d \to \pi^*(O)$ -CT-Übergang erklären.



Tab. 23: UV/VIS-spektroskopische Daten (THF) von 8b

| λ <sub>max</sub> [nm]<br>(E [cm <sup>-1</sup> ] | €<br>[l mol <sup>-1</sup> cm <sup>-1</sup> ] |
|-------------------------------------------------|----------------------------------------------|
| 406 (24631)                                     | 691                                          |
| 319 (31348)                                     | 11899                                        |
| 268 (37313) sh                                  |                                              |
| 250 (40000) sh                                  |                                              |

Abb. 23: UV/VIS-Spektrum (THF) von 8b (200 - 500 nm)

Im EI-MS von 8b erscheint der Peak mit der höchsten Masse bei m/z 610 und ein Isotopenpeak bei 608, was der dem Rhenium charakterischen Isotopenverteilung entspricht. Anhand des Fragmentierungsmusters erkennt man eine aufeinanderfolgende Abspaltung von THF und CO, woraus der Basepeak des thermisch stabilsten Fragmentes L<sup>\*</sup>Re<sup>+</sup> resultiert (Tab. 24, S. 52).

| Verbindung             | Mögliches Fragment                                                                                                                         | m/z (rel. Int.[%])                                        |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| 8b( <sup>187</sup> Re) | $L^{*}Re(CO)_{2}(C_{4}H_{6}O)^{+}$<br>$L^{*}Re(C_{4}H_{7}O)^{+}$<br>$L^{*}Re(C_{2}H_{6}O)^{+}$<br>$L^{*}Re(CO)_{2}^{+}$<br>$L^{*}ReCO^{+}$ | 610 (74)<br>555 (9.1)<br>554 (25)<br>540 (11)<br>512 (44) |
|                        | $L^*Re^+$                                                                                                                                  | 484 (100)                                                 |

Tab. 24: EI-MS-Fragmentierung von 8b

Die <sup>1</sup>H-NMR-Signale (Tab. 25) der Protonen des koordinierten THF's sind, wie erwartet, gegenüber freiem THF tieffeldverschoben. Die Signale der Pyrazolylwasserstoffatome zeigen, daß die einzelnen Ringe nicht äquivalent zueinander sind, sondern daß der dem THF trans-ständige Pyrazolylring andere chemische Verschiebungen zeigt, als die beiden dem THF cis-ständigen, welche wiederum zueinander äquivalent sind, ein Beweis, daß der Boropyrazolylligand in Lösung nicht frei rotiert, sondern starr an das Zentralion fixiert ist.

Tab. 25: <sup>1</sup>H-NMR-Daten (CDCl<sub>3</sub>) von 8b

| Verbindung | Chemische Verschiebung [δ] | Signalproton                    |
|------------|----------------------------|---------------------------------|
| 8b         | 1.91 ppm; m; (4H)          | β-CH <sub>2</sub> (THF)         |
|            | 4.47 ppm; t; (4H)          | $\alpha$ -CH <sub>2</sub> (THF) |
|            | 2.34 ppm; s; (6H)          | C(5)-Me (L*)                    |
|            | 2.46 ppm; s; (3H)          | C'(5)-Me (L*)                   |
|            | 2.36 ppm; s; (6H)          | C(3)-Me (L*)                    |
|            | 2.59 ppm; s; (3H)          | C'(3)-Me (L*)                   |
|            | 5.78 ppm; s; (2H)          | C(4)-H (L*)                     |
|            | 5.82 ppm; s; (1H)          | C'(4)-H (L*)                    |

Kristallstruktur

Aus CH<sub>2</sub>Cl<sub>2</sub>/Hexan erhält man gelbe, prismenförmige Einkristalle von **8b**, die in der monoklinen Raumgruppe C2/c (Nr.15) kristallisieren. Die Zellparameter sind: a: 27.606(8), b: 10.812(5), c: 16.212(6) Å und ß: 94.97(3)°; V = 4820.9 Å<sup>3</sup>, Z = 8, d<sub>rö</sub> = 1.685 g cm<sup>-1</sup>.



Bindungsabstände [pm]: Re-O(3) 203(1), Re-N(2) 221(1), Re-N(4) 218.4(9), Re-N(6) 219(1), Re-C(1) 185(2), Re-C(2) 189(1), O(1)-C(1) 119(2), O(2)-C(2) 116(1)

Bindungswinkel [°]: O(3)-Re-N(2) 89.4(5), O(3)-Re-N(4) 168.5(5), O(3)-Re-N(6) 89.4(5), O(3)-Re-C(1), 92.3(6), O(3)-Re-C(2) 91.6(6), N(2)-Re-N(4) 82.5(4), N(2)-Re-N(6) 84.7(4), N(2)-Re-C(1) 178.2(5), N(2)-Re-C(2) 97.6(5), N(4)-Re-N(6) 81.8(4), N(4)-Re-C(1) 95.7(5), N(4)-Re-C(2) 97.5(5), N(6)-Re-C(1) 94.9(5), N(6)-Re-C(2) 177.5(4), C(1)-Re-C(2) 82.7(5), Re-C(1)-O(1) 176(1), Re-C(2)-O(2) 175(1)

Abb. 24: Moleküldarstellung von 8b und ausgewählte Bindungsparameter

Das Rheniumatom in Verbindung 8b ist von den drei Stickstoffatomen des Pyrazolylboratliganden, den beiden Carbonylkohlenstoffen und dem THF-Sauerstoff guasi oktaedrisch koordiniert. Die cis-Winkel weichen bis zu 7° vom idealen Oktaederwinkel von 90° ab. Bei den trans-Winkeln kommt es vor allem bei O(3)-Re-N(4) mit 168.5(5)° zu einer starken Abweichung von der Linearität, was auf die sterischen Zwänge, die  $L^*$  und THF aufeinander ausüben, zurückzuführen ist. Die beiden anderen trans-Winkel N(2)-Re-C(1) und N(6)-Re-C(2) sind dagegen nahezu linear. Der Re-O(3)-Abstand erscheint mit 203(1) pm unerwartet kurz. Bei der nichtmethylierten Verbindung LRe(CO)<sub>2</sub>(THF)<sup>[99]</sup> wurde der Abstand mit 217.2(2) pm vermessen. Eine weitere vermessene Re(I)-THF-Verbindung [(THF)Re(CO)<sub>3</sub>Br]<sub>2</sub><sup>[53]</sup> zeigt einen Re-O-Abstand von 213(3) pm. Für 8b sollte man einen Abstand in gleichem Bereich erwarten. Daß dies nicht der Fall ist kann auch anhand eines sterischen Effektes der Methylgruppen nicht befriedigend erklärt werden. Auf eine weitere Ungereimtheit stoßt man bei der Betrachtung der zum THF trans-ständigen Re-N(4)-Bindungslänge. Während beim nichtmethylierten LRe(CO)2(THF)<sup>[99]</sup> analoger trans-Bindungsabstand aufgrund des trans-Effektes signifikant gegenüber den beiden zum CO trans-ständigen Re-N-Abständen verkürzt ist, kann man bei 8b keine signifikanten Unterschiede der Re-N-Abstände feststellen. Vergleicht man die mittleren Re-N-Abstände in 8b mit denen der Tricarbonylverbindung 6b sind sie innerhalb ihrer Standardabweichung gleich.



Die Verbindungen 9 und 10 wurden aus den gleichen Ausgangsprodukten, jedoch durch unterschiedliche Reaktionsführung erhalten.

# Photolytisch-thermischer Reaktionsweg

Durch 30 minütiges Bestrahlen von  $LTc(CO)_3$  (5) in THF bei Raumtemperatur und anschließender thermischer in-situ-Reaktion des entstandenen gelben THF-Komplexes  $LTc(CO)_2$ (THF) mit zugegebenem PPh<sub>3</sub>, läßt sich nach säulenchromatographischer Aufarbeitung 9 als hellgelber, luftstabiler Feststoff in ca. 30%'iger Ausbeute isolieren. 9 kristallisiert aus CH<sub>2</sub>Cl<sub>2</sub>/Hexan in Form klarer, gelber Prismen.

Genau zu dem Zeitpunkt, als die hier beschriebenen photolytischen Arbeiten durchgeführt wurden, wurde über die Verbindung LTc(CO)<sub>2</sub>(PPh<sub>3</sub>) berichtet, deren Synthese jedoch auf einem nicht photochemischen Reaktionsweg aus (PPh<sub>3</sub>)<sub>2</sub>Tc(CO)<sub>3</sub>Cl und KL<sup>[42]</sup> erfolgte.

9 wurde IR-, UV/VIS-, <sup>1</sup>H-NMR-spektroskopisch und anhand einer Tc-Bestimmung analysiert. Auf eine Diskussion der entsprechenden Spektren wurde aufgrund der bereits veröffentlichen Spektren, einschließlich Kristall- und Molekülstruktur, verzichtet.

Lediglich das noch nicht beschriebene Elektronenabsorptionsspektrum von 9 soll näher betrachtet werden.

## ELEKTRONENABSORPTIONSSPEKTRUM

Das Spektrum von 9 zeigt deutlich ein Maximum bei 263 nm und eine stark ausgeprägte Schulter bei 313 nm.



Tab. 26: UV/VIS-spektroskopische Daten (THF) von 9

| λ <sub>max</sub> [nm]   | €                                       |
|-------------------------|-----------------------------------------|
| (Ε [cm <sup>-1</sup> ]) | (1 mol <sup>-1</sup> cm <sup>-1</sup> ) |
| 313 (31949)             | 6087                                    |
| 263 (38023)             | 11534                                   |

Abb. 25: UV/VIS-Spektrum (THF) von 9 (220 - 420 nm)

Betrachten wir zunächst das Maximum, so sprechen Energie und Intensität für den CT-Übergang  $M \rightarrow L$ . Die deutliche Schulter bei 313 nm (31949 cm<sup>-1</sup>) rührt wohl von einem  $\sigma, d \rightarrow a_{\pi}$  charge-transfer-Vorgang her. PPh3 ist wie alle tertiäre Phosphane eine stärkere Lewis-Base als CO, ein besserer  $\sigma$ -Donor, dafür ist jedoch die  $\pi$ -Akzeptoreigenschaft deutlich schlechter (Vgl. Tab. 22, S. 49). Zur Ausbildung der  $\pi$ -Bindung zum Metall besitzt das P-Atom leere d-Orbitale. Daher kann man diese Bindung als  $d_{\pi}$ - $d_{\pi}$ -Bindung bezeichnen.

Ein Ladungsübergang vom  $\sigma, d \rightarrow a_{\pi}$ -Charakter<sup>[102]</sup> heißt nun, daß Elektronendichte von der Tc-P- $\sigma$ -Bindung bzw. der Tc-P- $d_{\pi}$ - $d_{\pi}$ -Bindung in antibindende  $\pi$ -Niveaus der Phenylringe transportiert wird.



## Cophotolytischer Reaktionsweg

Nach dreistündiger Bestrahlung von  $LTc(CO)_3$  (5) mit PPh<sub>3</sub> in THF bei Raumtemperatur und anschließender säulenchromatographischer Aufarbeitung läßt sich erstaunlicherweise weder  $LTc(CO)_2(PPh_3)$  noch  $LTc(CO)_2(THF)$  auch nicht in Spuren isolieren. Neben mehreren nicht bestimmbaren öligen Fraktionen wurde mit Benzol/Ether (10 : 1) grünes, luftstabiles  $LTc(PPh_2Me)_2(CO)$  (10) allerdings nur in etwa 5%'iger Ausbeute eluiert.

Eine geordnete mechanistische Erklärung zur Entstehung von 10 ist nicht möglich. Das Produkt widerspricht den zu erwarteten Reaktionsabläufen. Eine Erklärung wäre allenfalls, daß durch Zerstörung der eingesetzten Komponenten während der langen Bestrahlung und anschließender Kombination der entstandenen Fragmente eine Rekombination zu einem energetisch günstigen Produkt stattfand. Das eingesetzte PPh3 wurde einer massenspektroskopischen Analyse unterzogen; eine als Verunreinigung vorhanden Menge von PPh2Me in der Ausgangssubstanz ist auszuschließen. Die Tatsache, daß weder LTc(CO)3 bzw. LTc(CO)2(PPh3) noch LTc(CO)2(THF) isoliert werden konnte, spricht zwar für eine enorme Verschiebung des Reaktionsgleichgewichtes auf die Seite des THF-Adduktes (Vergl. S. 49) während der Bestrahlung, gleichzeitig aber deutet es auf eine große Reaktivität und Instabilität dieser Verbindung hin.

10 wurde anhand IR-, <sup>1</sup>H-NMR-, UV/VIS-spektroskopischer Daten und Röntgenstrukturanalyse charakterisiert. Eine Tc-Analyse bestätigte die Zusammensetzung.

## SPEKTROSKOPISCHE UNTERSUCHUNGEN

Im IR-Festkörperspektrum (KBr) sieht man wie erwartet bei 1903 cm<sup>-1</sup> eine starke Absorptionsbande der terminalen Carbonylgruppe. Die B-H-Valenzschwingung erscheint bei 2493 cm<sup>-1</sup>, verglichen mit der Tricarbonylverbindung, bei niedrigerer Energie.

Die einzelnen chemischen Verschiebungen des <sup>1</sup>H-NMR-Spektrums (CDCl<sub>3</sub>) von 10 sind Tab. 27 (S. 58) zu entnehmen. Die Signale der Protonen von L erscheinen deutlich im Verhältnis 2 : 1, was besagt, daß die drei Pyrazolylringe nicht äquvalent zueinander sind. Eine Rotation des Liganden in Lösung wird somit ausgeschlossen. Die Protonen des Pyrazolringes, der sich in trans-Stellung zu der einzelnen Carbonylgruppe befindet, sind gegenüber den Pyrazolylprotonen der den Phosphanen transständigen Ringen stärker abgeschirmt und hochfeldverschoben. Die Protonen der beiden am Phosphor befindlichen Methylgruppen ergeben ein Signal bei 1.25 ppm, das als Singulett erscheint. Die erwartete geminalen <sup>1</sup>H-<sup>31</sup>P-Kopplungskonstante <sup>2</sup>J<sub>HP</sub> von 0.5 Hz<sup>[103]</sup> ist so klein, daß eine Aufspaltung nicht erkennbar ist. Die 20 Phenylprotonen erscheinen als Multiplett bei 7.3 ppm.

|                 | Chemische Verschiebung [δ]                                         | Signalproton                     |  |
|-----------------|--------------------------------------------------------------------|----------------------------------|--|
| 1 <sub>H:</sub> | 7.45 - 7.1 ppm; m; (20H)                                           | C-H (Phenyl)                     |  |
|                 | 7.67 ppm; d; (2H)                                                  | C'(5)-H (L)                      |  |
|                 | 7.47 ppm; d; (1H)                                                  | C(5)-H (L)                       |  |
|                 | 7.72 ppm; d; (2H)                                                  | C'(3)-H (L)                      |  |
|                 | 6.02 ppm; d; (1H)                                                  | C(3)-H (L)                       |  |
|                 | 6.17 ppm; t; (2H)                                                  | C'(4)-H (L)                      |  |
|                 | 5.42 ppm; t; (1H)                                                  | C(4)-H (L)                       |  |
|                 | 1.25 ppm; s; (6H)                                                  | P-CH <sub>3</sub>                |  |
| Die den Pb      | 1.25 ppm; s; (6H)<br>osphanen trans-ständigen Ringe sind mit ' gek | P-CH <sub>3</sub><br>ennzeichnet |  |

Tab. 27: <sup>1</sup>H-NMR-Daten (CDCl<sub>3</sub>) von 10

Das UV/VIS-Spektrum, aufgenommen in THF, zeigt deutlich zwei Maxima geringer Intensität, die beide im sichtbaren Bereich liegen und die grüne Farbe des Komplexes erklären. Unter 300 nm sind noch zwei schwach ausgeprägte Schultern zu erkennen.



Tab. 28: UV/VIS-spektroskopische Daten (THF) von 10

| λ <sub>max</sub> [nm]<br>(E [cm <sup>-1</sup> ]) | ε<br>(1 mol <sup>-1</sup> cm <sup>-1</sup> ) |
|--------------------------------------------------|----------------------------------------------|
| 266 (37594); sh                                  |                                              |
| 273 (36630); sh                                  |                                              |
| 483 (20704); max                                 | 418                                          |
| 619 (16155); max                                 | 231                                          |

Abb. 27: VIS-Spektrum (THF) von 10 (400 - 800 nm)
Hinter den äußerst schwach ausprägten Banden unterhalb 300 nm, die nur als schwache Schultern erscheinen, verbergen sich die bereits besprochenen charge-transfer-Banden des allgemeinen Typ's MLCT (siehe Abb. 11, S. 26). Die bei 9 besprochenen  $\sigma$ ,d  $\rightarrow$  a<sub> $\pi$ </sub>-charge-transfer-Übergänge können nicht identifiziert werden. Auffällig sind die beiden Maxima im sichtbaren Bereich und ihre geringen Intensitäten, die somit nur d -> d-Ligandfeldübergängen (LF) zugeordnet werden können.

Bei einer ideal oktaedrischen Koordination am Metall mit der Elektronenkonfiguration  $d^6$  ist aufgrund des Energieabstandes zwischen den  $t_{2g}$  und  $e_g$ -Orbitalen ein d-Elektronenübergang im sichtbaren Bereich nicht zu erwarten. Da jedoch dem Oktaeder im Falle von 10 wegen der sterisch sehr anspruchsvollen Liganden eine enorme Verzerrung widerfahren muß, ist eine Entartung der t2g und eg-Orbitale soweit möglich, daß die Energieniveaus in Bezug auf ihre Abstände so stark beeinflußt werden, daß d-Elektronenübergänge im sichtbaren Energiebereich in Betracht gezogen werden können.

### **KRISTALLSTRUKTUR**

Durch Umkristallisation von 10 aus CH<sub>2</sub>Cl<sub>2</sub>/Hexan wurden Einkristalle in Form dunkelgrüner Plättchen erhalten, die bedingt für eine Röntgenstrukturanalyse geeignet waren.

Verbindung 10 kristallisiert in der monoklinen Raumgruppe P21/c (Nr. 14) mit den Zelldaten a: 10.008(4), b: 18.757(5), c: 20.586(6) Å und B: 101.27(2)°.

Die Anfertigung eines Molekülbildes war möglich, jedoch läßt der große Fehler (R = 15.4 %) eine sinnvolle Diskussion der Bindungsparameter nicht zu.



Das Technetiumzentralion bildet mit den Stickstoffen von L, den zwei Phosphoratomen der Phosphane und dem Carbonylkohlenstoff ein verzerrtes Oktaeder. Die B-Tc-Verbindungslinie kann man als eine C<sub>2</sub>-Achse auffassen. Die C<sub>2v</sub>-Symmetrie des Moleküls wird durch die Verzerrung gestört.

Aus dem Molekülbild ist ersichtlich, daß zwei an das Technetiumzentralion gebundene Triphenylphosphane aus sterischen Gründen gar nicht möglich sind; die beiden Phenylringe, die anstelle von C(23) und C(36) wären, würden sich gegenseitig stören. Eine Verbindung  $LTc(PPh_3)_2(CO)$  sollte demnach im Gegensatz zu der vor kurzem beschriebenen, typähnlichen Verbindung Cp'Mn(PPh\_3)\_2(CO)<sup>[104]</sup> nicht existent sein.

# 2.2.5.4 Die Verbindung L<sup>\*</sup>Tc(CO)<sub>2</sub>(TMP) (11) und ihre Homologen [Mn (11a); Re (11b)]; {TMP = Trimethylphosphit}



Bestrahlung von L<sup>\*</sup>Tc(CO)<sub>3</sub> (6) in THF zu intermediärem L<sup>\*</sup>Tc(CO)<sub>2</sub>(THF) und insitu-Zugabe eines Überschusses an TMP führt nach 18 stündiger Reaktion bei Raumtemperatur und anschließender säulenchromatographischer Aufarbeitung in 37 %'iger Ausbeute (bezogen auf 6) zu dem farblosen Produkt  $L^*Tc(CO)_2(TMP)$  (11). Die analoge Rheniumverbindung 11b konnte bei gleicher Reaktionsführung in 55 %'iger Ausbeute Die schon bekannte Manganverbindung isoliert werden. 11a wurde nach Literaturvorschrift<sup>[98]</sup> auf cophotolytischem Wege synthetisiert. Neben den Strukturen von 11 und 11b wurde auch erstmals von der Manganverbindung 11a die Molekül- und Kristallstruktur bestimmt.

Das leicht zu handhabende TMP bietet sich bei dem sterisch anspruchsvollen Liganden  $L^*$  als phosphorhaltigen Donorsubstituenden an. TMP ist, verglichen mit PPh<sub>3</sub>, ein etwas schwächerer  $\sigma$ -Donor, gleichzeitig ist aber die  $\pi$ -Akzeptorkraft des Phosphits gegenüber Phosphanen erhöht (Vgl. Tab. 22, S. 48).

Alle drei Homologen bilden luftstabile, gelbe (Mn) bzw. farblose (Tc, Re) Verbindungen und wurden IR-, UV/VIS-, <sup>1</sup>H-NMR-, EI-massenspektroskopisch und durch Röntgenstrukturanalyse charakterisiert. CH- bzw. Tc-Analysen bestätigten die Zusammensetzungen der Verbindungen.

### SPEKTROSKOPISCHE UNTERSUCHUNGEN

Das IR-Festkörperspektrum (KBr) zeigt in allen drei Fällen die erwarteten zwei intensiven Carbonylbanden zwischen 1960 und 1840 cm<sup>-1</sup> der beiden terminalen Carbonylgruppen (Tab. 29). Die beiden Banden der Rassen A<sub>1</sub> und B<sub>1</sub> ("lokale" C<sub>2v</sub>-Symmetrie) zeigen im Festkörperspektrum keine Aufspaltung. Die Schwingungsfrequenzen der P-O-Bindungen der koordinierten TMP-Gruppe sind mit 1025 und 742 cm<sup>-1</sup>, gegenüber 1011 und 726 cm<sup>-1</sup> des freien TMP's zu höheren Frequenzen verschoben. Durch die Koordination des Phosphors zum Metall wird die Elektronendichte am Phosphor erniedrigt, gleichzeitig verstärkt sich die P-O-Einfachbindung. Je positiver die Ladung am Metall, desto stärker dieser Effekt. Dies verdeutlicht ein Bandenvergleich mit der einzigen bisher literaturbekannten Tc-TMP-Verbindung Tc(TMP)6<sup>+</sup>(BPh4)<sup>-[105]</sup> (1048 und 762 cm<sup>-1</sup>), bei der aufgrund der "nackten" positiven Ladung die Banden in einem noch höheren Energiebereich liegen.

Verglichen mit den Festkörperspektren erscheinen die erwarteten Carbonylbanden in Hexanlösung bei höheren Energien, was auf intermolekulare Wechselwirkungen im Kristall zurückzuführen ist, die in Lösung aufgehoben sind.

|             | Verbindung | Bandenlage (cm <sup>-1</sup> ) | Schwingung          |
|-------------|------------|--------------------------------|---------------------|
|             | 11         |                                |                     |
| KBr:        |            | 1954 vs; 1862 vs               | ν <sub>CO</sub>     |
|             |            | 2525 m                         | $\nu_{ m BH}$       |
|             |            | 1023 s; 742 s                  | $\nu_{\mathrm{PO}}$ |
| Cyclohexan: |            | 1963 s; 1885 s                 | ν <sub>CO</sub>     |
|             | 11a        |                                |                     |
| KBr:        |            | 1946 vs; 1852 vs               | ν <sub>CO</sub>     |
|             |            | 2524 m                         | $\nu_{\rm BH}$      |
|             |            | 1015 s; 744 m                  | ν <sub>PO</sub>     |
| Cyclohexan: |            | 1954 s; 1875 s                 | $\nu_{\rm CO}$      |
|             | 11b        |                                |                     |
| KBr:        |            | 1939 vs; 1844 vs               | $\nu_{\rm CO}$      |
|             |            | 2531 m                         | $\nu_{ m BH}$       |
|             |            | 1025 s; 741 s                  | ν <sub>PO</sub>     |
| Cyclohexan: |            | 1951 s; 1872 s                 | $\nu_{\rm CO}$      |

| Tab. 2 | 9: IF | R-Banden | von | 11, | 11a | und | 11b |
|--------|-------|----------|-----|-----|-----|-----|-----|
|--------|-------|----------|-----|-----|-----|-----|-----|



Abb. 29:  $\nu_{co}$ -Banden (Cyclohexan) von 11, 11a und 11b (2100 - 1750 cm<sup>-1</sup>)

Die Elektronenabsorptionsspektren (Cyclohexan) haben bei 11a und 11b jeweils ein Maximum. Bei der Technetiumverbindung 11 kann man dagegen nur eine schwache und eine stärkere Schulter ausmachen.



Tab. 30: UV/VIS - spektroskopischeDaten (Cyclohexan) von 11, 11a und 11b

| Verbindung | λ <sub>max</sub> nm<br>(E [cm <sup>-1</sup> ]) | е<br>(1 mol <sup>-1</sup> cm <sup>-1</sup> ) |
|------------|------------------------------------------------|----------------------------------------------|
| 11         | 274 (36496); sh<br>253 (39526); sh             | 11800                                        |
| 11a        | 362 (27624); max<br>268 (37313); sh            | 1900                                         |
| 11b        | 259 (38610); max                               | 12460                                        |

Abb. 29: UV-Spektren (Cyclohexan) von 11, 11a und 11b (220 - 450 nm)

Bei den beiden ausgeprägten Maxima von 11a, 11b und der stärkeren Schulter von 11 (274 nm; 36496 cm<sup>-1</sup>) handelt es sich mit großer Sicherheit um Absorptionen der in dieser Arbeit schon mehrfach besprochenen M-L-charge-transfer-Übergänge. Hinter der schwachen Schulter von 11 (253 nm; 39526 cm<sup>-1</sup>) können sich, ebenso wie hinter der Schulter von 11a (268 nm; 37313 cm<sup>-1</sup>), die M  $\rightarrow \pi^*$ (CO)-CT-Übergänge verbergen.

In den <sup>1</sup>H-NMR-Spektren der Verbindungen erscheinen zwei mal drei Singuletts mit einem Intensitätsverhältnis 2:1 der Ligandprotonen und ein Dublett, das den Methylprotonen des Phosphitsubstituenten zugeordnet werden kann. Wie erwartet zeigen die Pyrazolylprotonen des in trans-Stellung zum Phosphorsubstituenten befindlichen Ringes eine andere chemische Verschiebung, als die beiden cis-Ständigen, welche einander äquivalent sind.

Bei Betrachtung von L<sup>\*</sup> sind die Abschirmungen der Methylprotonen in 3'er Stellung und des Protons in 4'er Position stark von den  $\sigma$ -Donor und  $\pi$ -Akzeptoreigenschaften des in trans-Stellung zu dem jeweiligen Pyrazolring befindlichen Substituenten abhängig. Ein Substituent, dessen Verhältnis  $\sigma$ -Donor zu  $\pi$ -Akzeptor größer als von CO ist, d.h. die Ladungsdichte gegenüber CO am Metall erhöht, bewirkt eine stärkere Abschirmung der beiden erwähnten Positionen des in trans-Stellung befindlichen Ringes gegenüber dem Ring in cis-Stellung. Sind die Donor/Akzeptor-Verhältnisse kleiner als von CO, d.h. würde sich die Ladungsdichte am Metall gegenüber CO erniedrigen, sind auch die Abschirmungsverhältnisse umgekehrt und die 3'er und 4'er Signale gegenüber den analogen Signalen der zu CO trans-ständigen Ringen tieffeldverschoben (Vgl. S. 72/73).

Die Methylprotonen der Phosphitgruppe erscheinen aufgrund der vicinalen <sup>1</sup>H-<sup>31</sup>P-Kopplung als Dublett.

| Signalproton                           | 11                                                          |             | 11b         |  |  |  |
|----------------------------------------|-------------------------------------------------------------|-------------|-------------|--|--|--|
| C'(5)-Me (L <sup>*</sup> ) (3H)        | 2.47 ppm; s                                                 | 2.49 ppm; s | 2.46 ppm; s |  |  |  |
| C(5)-Me (L <sup>*</sup> ) (6H)         | 2.36 ppm; s                                                 | 2.38 ppm; s | 2.39 ppm; s |  |  |  |
| C'(3)-Me (L <sup>*</sup> ) (3H)        | 2.28 ppm; s                                                 | 2.24 ppm; s | 2.31 ppm; s |  |  |  |
| C(3)-Me (L <sup>*</sup> ) (6H)         | 2.45 ppm; s                                                 | 2.53 ppm; s | 2.46 ppm; s |  |  |  |
| C'(4)-H (L <sup>*</sup> ) (1H)         | 5.73 ppm; s                                                 | 5.61 ppm; s | 5.83 ppm; s |  |  |  |
| С(4)-Н (L*) (2Н)                       | 5.77 ppm; s                                                 | 5.68 ppm; s | 5.89 ppm; s |  |  |  |
| РО-СН <sub>3</sub> (9Н)                | 3.32 ppm; d                                                 | 3.26 ppm; d | 3.50 ppm; d |  |  |  |
| <sup>3</sup> Ј <sub>РН</sub> (Р-О-С-Н) | 11.5 Hz                                                     | 10.7 Hz     | 11.4 Hz     |  |  |  |
| Der zum Phosphit trans -               | Der zum Phosphit trans - ständige Ring ist mit ' bezeichnet |             |             |  |  |  |

Tab. 31: <sup>1</sup>H-NMR-Daten (CDCl<sub>3</sub>) von 11,(a,b)



Abb. 31: <sup>1</sup>H-NMR-Spektren (CDCl<sub>3</sub>) von 11, 11a und 11b

Die Technetium- (11) und die Rheniumverbindung (11b) zeigen im EI-MS einen eindeutigen Molekülpeak bei den errechneten Molmassen. Die charakteristische Isotopenverteilung des Molpeaks von 11b ist mit der Computersimulierten identisch (Abb. 32). Die Fragmentierungsmuster von 11 und 11b sind in etwa gleich, nur die Intensitäten der analogen Fragmentpeaks sind verschieden. Die Manganverbindung 11a zeigt als Fragment mit der höchsten Masse L<sup>\*</sup>Mn (TMP)<sup>+</sup> und als Basepeak das Fragment L<sup>\*</sup>Mn<sup>+</sup>.

| Verbindung              | Mögliches Fragment                                | m/z (rel.Int.[%]) |
|-------------------------|---------------------------------------------------|-------------------|
| 11                      | $L^{*}Tc(CO)_{2}P(OMe)_{3}^{+}(M^{+})$            | 576 (21)          |
|                         | $L^{*}Tc(CO)P(OMe)_{3}^{+}$                       | 548 (30)          |
|                         | L <sup>*</sup> TcP(OMe) <sub>3</sub> <sup>+</sup> | 520 (17)          |
|                         | L <sup>*</sup> TcCO <sup>+</sup>                  | 424 (22)          |
|                         | L*Tc+                                             | 396 (100)         |
| 11a                     | L <sup>*</sup> MnP(OMe) <sub>3</sub> +            | 476 (19)          |
|                         | L*Mn+                                             | 352 (100)         |
| 11b( <sup>187</sup> Re) | $L^*Re(CO)_2P(OMe)_3^+(M^+)$                      | 664 (100)         |
|                         | L <sup>*</sup> Re(CO)P(OMe)3 <sup>+</sup>         | 636 (11)          |
|                         | L*ReP(OMe)3 +                                     | 608 (37)          |
|                         | L <sup>*</sup> ReCO <sup>+</sup>                  | 512 (43)          |
|                         | L*Re+                                             | 484 (82)          |

Tab. 32: EI-MS-Fragmentierung von 11, 11a und 11b



Abb. 32: Computersimulierter (oben) und gemessener Molpeak (unten) von 11b

### KRISTALLSTRUKTUR

Nach Umkristallisation von 11 in Pentan und von 11a und 11b in CH<sub>2</sub>Cl<sub>2</sub>/Hexan erhält man hauchdünne, tafelige, gelbe (Mn) bzw. farblose (Tc, Re) Einkristalle.

Die Verbindungen kristallisieren alle in gleichem Kristallsystem. Ein Blick auf die kristallographischen Zellparameter (Tab. 33) zeigt, daß 11, 11a und 11b zueinander isostrukturell sind. In der Elementarzellen der Verbindungen existieren zwei voneinander kristallographisch unabhängige, etwas verschiedene Moleküle. Die Molekülstrukturen homologen Verbindungen zeigen Abb. der 34 und 35. Eine Gegenüberstellung der wichtigsten Bindungslängen und -winkel verdeutlicht die Unterschiede der jeweiligen Moleküle (Abb. 34 und 35). Vor allem aber liegt der Unterschied in der räumlichen Ausrichtung der Methoxygruppen des Trimethylphosphitliganden (Abb. 33, S. 67).

|                 |   | 11                         | 11a                        | 11b                        |
|-----------------|---|----------------------------|----------------------------|----------------------------|
| Kristallsystem  |   | monoklin                   | monoklin                   | monoklin                   |
| Raumgruppe      |   | P2 <sub>1</sub> /c (Nr.14) | P2 <sub>1</sub> /c (Nr.14) | P2 <sub>1</sub> /c (Nr.14) |
| Achsenlängen    | a | 19.960(4)                  | 19.86(4) Å                 | 20.03(2) Å                 |
|                 | b | 8.180(3)                   | 8.197(7) Å                 | 8.156(4) Å                 |
|                 | с | 33.759(5)                  | 33.50(4) Å                 | 33.73(2) Å                 |
| Winkel          | ß | 107.51(2)                  | 108.4(1) °                 | 107.43(6) °                |
| Volumen         |   | 5256.5 Å <sup>3</sup>      | 5173.5 Å <sup>3</sup>      | 5257.3 Å <sup>3</sup>      |
| Z               |   | 8                          | 8                          | 8                          |
| d <sub>rö</sub> |   | 1.454 g cm <sup>-1</sup>   | $1.37 \text{ g cm}^{-1}$   | 1.68 g cm <sup>-1</sup>    |

Tab. 33: Kristallographische Zellparameter der Verbindungen 11,(a,b)

Die jeweiligen Metallzentren sind von den drei Boropyrazolylstickstoffen, zwei Carbonylkohlenstoffatomen und dem Phosphitphosphoratom sechsfach koordiniert. Betrachtet man die Metall-Stickstoffbindungen so folgen alle drei Metalle einer analogen Ordnung. Im Molekül 1 ist in allen drei Fällen die M-N(5)-Bindungslänge gegenüber den beiden anderen [M-N(1), M-N(3)] auffallend vergrößert. In Molekül 2 haben die M-N(7)-Bindungen den größten Abstand. Dies ist auf sterische Effekte zurückzuführen, die von der Ausrichtung der Methoxygruppen abhängig sind. Der jeweils zur TMP-Gruppe am nächsten stehende Pyrazolylring ist von diesen sterischen Spannungen am stärksten betroffen. Auch an den (O)C-M-C(O)-Winkeln lassen sich zwischen Molekül 1 und 2 signifikante Unterschiede feststellen, die auf gleiche Ursache zurückzuführen sind. Auch die M-P- Bindungen zeigen eine bestimmte Tendenz. In Molekül 2 ist in allen drei Fällen der M-P-Abstand ein wenig gegenüber Molekül 1 verlängert (1 - 2 pm).



Abb. 33: Projektionen der beiden TMP-Einheiten der voneinander unabhängigen Moleküle

Zur weiteren Diskussion soll in erster Linie die Technetiumverbindung 11 betrachtet werden. Aufgrund der Isostrukturellität der Homologen kann man annehmen, daß für 11a und 11b gleiche Aussagen getroffen werden können.

Ein Vergleich von L<sup>\*</sup>Tc(CO)<sub>2</sub>(TMP) (11) mit L<sup>\*</sup>Tc(CO)<sub>3</sub> (6) zeigt bei 11 einen gegenüber 6 etwas verkürzten M-C- (ca.6 pm) bzw. verlängerten C-O-Abstand (ca. 2 pm). Aufgrund des schon erwähnten (s.Tab.22, S. 48) und anhand der NMR-Spektren von 11 diskutierten (s.S. 63ff) gegenüber CO stärkeren  $\sigma$ -Donorcharakters von TMP und gleichzeitig schwächeren  $\pi$ -Akzeptorstärke, folgt eine Erhöhung der Elektronendichte am Metallzentrum und daraus eine Verstärkung der Rückbindung zu den beiden übrigen Carbonylkohlenstoffatomen. Gleichzeitig wird die C-O-Bindung etwas geschwächt. Betrachtet man die Tc-C-O-Winkel sieht man bei 11 (Tc-C-O 173°) eine etwas stärkere Abweichung von der Linearität als bei 6 (Tc-C-O 178°). Die Tc-N-Abstände sind bei 6 mit 219 - 220 pm nahezu gleich. Im selben Bereich liegen die Tc-N-Bindungen der beiden nicht vom TMP sterisch beeinflußten Pyrazolylringe [Tc(1)-N(1) 219(1) pm, Tc(1)-N(3) 221 pm, Tc(2)-N(9) 216 pm, Tc(2)-N(11) 221(1) pm].

Der Tc(1)-P(1)-Abstand in Molekül 1 beträgt 229.9(5) pm [Molekül 2: Tc(2)-P(2) 232.7(5) pm]. Im Vergleich mit anderen Tc-P-Bindungslängen von röntgenographisch Untersuchten Tc(I)-Verbindungen [CpTc(CO)<sub>2</sub>(PPh<sub>3</sub>)<sup>[32]</sup> 234.1(1) pm,

 $Cp^*Tc(CO)_2(PPh_3)^{[32]}$  234.0(1) pm,  $ClTc(CO)_3(PPh_3)_2^{[42]}$  244.04(5) pm,  $LTc(CO)_2(PPh_3)^{[42]}$  240.2(1) pm und  $HTc(N_2)(DPPE)_2^{[109]}$  235.9(7) pm] ist die Tc-P-Bindung in 11 etwas kürzer. Die Ursache dieser Verkürzung gegenüber den Phosphanverbindungen beweist die stärkere  $\pi$ -Akzeptoreigenschaft des Phosphitphosphors gegenüber dem Phosphanphosphor. Eine Rückbindungsverstärkung (sprich Tc-P-Bindungsverkürzung) ist die Folge.



Bindungsabstände [pm] (MOLEKÜL 1): Tc(1)-P(1) 229.9(5), Tc(1)-N(1) 219(1), Tc(1)-N(3) 221(1), Tc(1)-N(5) 224(1), Tc(1)-C(16) 184(2), Tc(1)-C(17) 184(2), C(16)-O(16) 115(2), C(17)-O(17) 115(2). (MOLEKÜL 2): Tc(2)-P(2) 232.7(5), Tc(2)-N(7) 226(1), Tc(2)-N(9) 216(1), Tc(2)-N(11) 221(1), Tc(2)-C(36) 176(2), Tc(2)-C(37) 187(2), C(36)-O(36) 123(2), C(37)-O(37) 118(2)

**Bindungswinkel** [°] (MOLEKÜL 1): P(1)-To(1)-N(1) 94.1(4), P(1)-To(1)-N(3) 174.9(3), N(1)-To(1)-N(3) 82.3(6), P(1)-To(1)-N(5) 93.8(4), N(1)-To(1)-N(5) 88.1(5), N(3)-To(1)-N(5) 82.4(5), P(1)-To(1)-C(16) 89.6(6), N(1)-To(1)-C(16) 91.2(7), N(3)-To(1)-C(16) 94.1(6), N(5)-To(1)-C(16) 176.5(6), P(1)-To(1)-C(17) 87.8(5), N(1)-To(1)-C(17) 177.0(7), N(3)-To(1)-C(17) 96.0(6), N(5)-To(1)-C(17) 94.0(7), C(16)-To(1)-C(17) 86.5(7), To(1)-P(1)-O(1) 118.5(6), To(1)-P(1)-O(2) 120.3(5), To(1)-P(1)-O(3) 114.0(5), To(1)-N(1)-N(2) 120(1), To(1)-N(1)-C(1) 137(1), To(1)-N(3)-N(4) 135(2), To(1)-N(3)-C(4) 135(2), To(1)-C(16)-O(16) 173(1), To(1)-C(17) 017) 173(1). (MOLEKŪL 2): P(2)-To(2)-N(7) 90.4(4), P(2)-To(2)-N(9) 172.2(4), N(7)-To(2)-N(9) 82.7(5), P(2)-To(2)-N(11) 95.4(3), N(7)-To(2)-N(11) 89.5(5), N(9)-To(2)-N(11) 81.2(5), P(2)-To(2)-C(36) 92.9(5), N(7)-To(2)-C(36) 176.0(6), N(9)-To(2)-C(36) 94.2(6), N(11)-To(2)-C(36) 92.3(7), P(2)-To(2)-C(37) 87.3(5), N(7)-To(2)-C(37) 93.7(6), N(9)-To(2)-C(37) 96.6(6), N(11)-To(2)-C(37) 175.9(6), C(36)-To(2)-C(37) 84.3(8), To(2)-P(2)-O(4) 112.4(6), To(2)-P(2)-O(5) 123.9(6), To(2)-P(2)-O(6) 115.8(6), To(2)-N(7)-N(8) 116(1), To(2)-N(7)-C(21) 138(2), To(2)-N(9)-N(10) 119(1), To(2)-N(9)-C(24) 136(1), To(2)-N(11)-N(12) 114.9(9), To(2)-N(11)-C(27) 138(2), To(2)-C(36) 0.36) 178(1), To(2)-C(37) 0.37) 179(2)

Abb. 34: Moleküldarstellung (11) von Molekül 1 und ausgesuchte Bindungsparameter (Molekül 1 und 2)



Bindungsabstände [pm] (MOLEKÜL 1): Mn(1)-P(1) 220.7(11), Mn(1)-N(1) 207.8(32), Mn(1)-N(3) 210.6(23), Mn(1)-N(5) 216.1(30), Mn(1)-C(16) 166.2(41), Mn(1)-C(17) 176.2(34), C(16)-O(16) 122.6(48) (MOLEKÜL 2): Mn(2)-P(2) 221.4(12), Mn(2)-N(7) 214.3(29), Mn(2)-N(9) 204.6(23), Mn(2)-N(11) 210.4(27), Mn(2)-C(36) 164.7(44), Mn(2)-C(37) 174.5(35), C(36)-O(36) 125.6(51). Bindungswinkel [°] (MOLEKÜL 1): P(1)-Mn(1)-N(1) 92.1(8), P(1)-Mn(1)-N(3) 175.2(9), N(1)-Mn(1)-N(3) 84.1(10), P(1)-Mn(1)-N(5) 92.2(7), N(1)-Mn(1)-N(5) 93.5(12), N(3)-Mn(1)-N(5) 85.3(10), P(1)-Mn(1)-C(16) 89.3(11), N(1)-Mn(1)-C(16) 90.5(16), N(3)-Mn(1)-C(16) 93.4(13), N(5)-Mn(1)-C(16) 175.7(15), P(1)-Mn(1)-C(17) 87.0(9), N(1)-Mn(1)-C(17) 170.8(15), N(3)-Mn(1)-C(17) 97.3(12), N(5)-Mn(1)-C(17) 95.7(13), C(16)-Mn(1)-C(17) 80.4(17), Mn(1)-C(16)-O(16) 177.8(24) (MOLEKÜL 2): P(2)-Mn(2)-N(7) 90.5(7), P(2)-Mn(2)-N(9) 172.9(9), N(7)-Mn(2)-N(9) 84.3(10), P(2)-Mn(2)-N(11) 92.2(8), N(7)-Mn(2)-N(11) 90.9(11), N(9)-Mn(2)-N(11) 83.0(10), P(2)-Mn(2)-C(36) 90.2(12), N(7)-Mn(2)-C(36) 177.6(15), N(9)-Mn(2)-C(36) 95.2(14), N(11)-Mn(2)-C(36) 91.4(15), P(2)-Mn(2)-C(37) 89.2(11), N(7)-Mn(2)-C(37) 92.5(15), N(9)-Mn(2)-C(37) 95.9(13), N(11)-Mn(2)-C(37) 176.3(16), C(36)-Mn(2)-C(37) 85.2(18), Mn(2)-C(36) 0172.1(31)



Bindungsabstände [pm] (MOLEKUL 1): Re(1)-P(1) 230.6(4), Re(1)-N(1) 219.0(10), Re(1)-N(3) 219.8(8), Re(1)-N(5) 222.9(10), Re(1)-C(16) 185.0(14), Re(1)-C(17) 188.9(12), C(16)-O(16) 119.3(18) (MOLEKUL 2): Re(2)-P(2) 232.1(4), Re(2)-N(7) 224.1(10), Re(2)-N(9) 219.5(9), Re(2)-N(11) 221.5(9), Re(2)-C(36) 188.3(13), Re(2)-C(37) 187.8(13), C(36)-O(36) 117.5(16) Bindungswinkel [°] (MOLEKUL 1): P(1)-Re(1)-N(1) 94.0(2), P(1)-Re(1)-N(3) 174.0(3), N(1)-Re(1)-N(3) 81.4(3), P(1)-Re(1)-N(5) 86.9(4), N(3)-Re(1)-N(5) 81.4(3), P(1)-Re(1)-N(5) 94.6(2), N(1)-Re(1)-N(5) 86.9(4), N(3)-Re(1)-N(5) 81.4(3), P(1)-Re(1)-C(16) 93.3(5), N(3)-Re(1)-C(16) 96.0(5), N(5)-Re(1)-C(16) 177.3(5), P(1)-Re(1)-C(17) 87.1(3), N(1)-Re(1)-C(17) 176.3(5), N(3)-Re(1)-C(17) 97.7(4), N(5)-Re(1)-C(17) 95.9(5), C(16)-Re(1)-C(17) 83.3(6), Re(1)-C(16) 179.6(9) (MOLEKUL 2): P(2)-Re(2)-N(7) 91.1(3), P(2)-Re(2)-N(9) 171.4(3), N(7)-Re(2)-N(9) 81.3(4), P(2)-Re(2)-N(11) 95.5(3), N(7)-Re(2)-N(11) 87.6(3), N(9)-Re(2)-C(36) 93.0(4), P(2)-Re(2)-C(37) 87.7(4), N(7)-Re(2)-C(37) 93.2(5), N(9)-Re(2)-C(37) 96.7(5), N(11)-Re(2)-C(37) 176.3(5), C(36)-Re(2)-C(37) 86.0(6), Re(2)-C(36) 176.7(12)

Abb. 35: Moleküldarstellungen (11a oben; 11b unten) der beiden voneinander unabhängigen Moleküle und ausgesuchte Bindungsparameter

# 2.2.5.5 Der verbrückte Distickstoffkomplex $[L^{*}Tc(CO)_{2}]_{2}(\mu-N_{2})$ (12)



<sup>12</sup> 

Molekularer Stickstoff erweist sich unter Normalbedingungen gewöhnlich als chemisch inert. Eine Reihe von Übergangsmetallen bilden jedoch nach Reaktion mit elementarem Stickstoff isolierbare und relativ stabile bis äußerst stabile Distickstoffkomplexe<sup>[106,107]</sup>. Als erstes Beispiel dieser Verbindungsklasse wurde 1965 der stabile Komplex [(NH<sub>3</sub>)<sub>5</sub>RuN<sub>2</sub>]Cl<sup>[108]</sup> isoliert. Auch von Technetium ist bereits der end-on koordinierte Distickstoffkomplex Hydrobis[1,2-bis(diphenylphosphinoethan)]distickstofftechnetium beschrieben worden<sup>[109]</sup>.

Reaktionen von Carbonylverbindungen der 7. Nebengruppe, bei denen durch Bestrahlung in THF und anschließender Reaktion mit elementarem Stickstoff Distickstoffkomplexe erzeugt werden, sind ebenfalls bekannt. Umsetzungen von RCpMn(CO)<sub>3</sub> (R = H, Me) in THF und anschließender Reaktion mit N<sub>2</sub> unter Normaldruck<sup>[110]</sup> bzw. Hochdruck<sup>[111]</sup> führt zu den einkernigen Komplexen RCpMn(CO)<sub>2</sub>(N<sub>2</sub>). Die analoge Rheniumverbindung entsteht durch Auflösen der photochemisch erzeugten Verbindung RCpRe(CO)<sub>2</sub>(THF) in Toluol und anschließendem N<sub>2</sub>-Durchleiten unter Druck (180 bar)<sup>[100]</sup>. Die gezeigten Reaktionen mit Stickstoff führen ausschließlich zu einkernigen Komplexen, in denen das N<sub>2</sub>-Molekül end-on an das Metallzentrum gebunden ist. Ein zweikerniger, verbrückter Distickstoffkomplex [RCpMn(CO)<sub>2</sub>]<sub>2</sub>( $\mu$ -N<sub>2</sub>) konnte, nach Reaktion von aus RCpMn(CO)<sub>3</sub> durch Bestrahlung in THF intermediär erzeugten RCpMn(CO)<sub>2</sub>(THF) mit 1,1,1-Triflourdiazoethan, isoliert werden<sup>[112]</sup>.

Durch Bestrahlung einer Lösung von  $L^*Tc(CO)_3$  (6) in THF und anschließender Vertreibung des Lösungsmittels im Stickstoffstrom bei Raumtemperatur, was einer in-situ-Reaktion mit N<sub>2</sub> gleichkommt, läßt sich nach säulenchromatographischer Aufarbeitung (Kieselgel) der zweikernige Distickstoffkomplex  $[L^*Tc(CO)_2]_2(\mu-N_2)$  (12) in 10 - 15 %'iger Ausbeute (bezogen auf 6) isolieren. Die resultierende braune, kristalline Verbindung ist in fester Form an Luft beständig und in polaren sowie in aromatischen Lösungsmittel gut löslich. 12 wurde anhand IR-, <sup>1</sup>H-NMR-, EI-MS-, und UV/VIS-Spektroskopie und Röntgenstrukturanalyse eingehend charakterisiert. Eine Technetiumanalyse bestätigte die Molekülzusammensetzung.

### **Spektroskopie**

Im IR-Spektrum von 12 erwartet man die schon besprochenen zwei Carbonylbanden der Rassen A<sub>1</sub> und B<sub>1</sub> für die gewinkelte (OC)-M-(CO)-Einheit. Im Festkörperspektrum (KBr) erscheinen Banden dieser Rassen, wobei die energetisch höher liegende Bande stark aufgespalten ist. Eine N<sub>2</sub>-Valenzschwingung ist wegen des zentrosymmetrischen Moleküls mit zwei äquivalenten Koordinationsteilen auf beiden Seiten des Stickstoffs nicht zu erwarten. Die B-H-Valenzschwingung liegt mit 2527 cm<sup>-1</sup> im Bereich der entsprechenden Schwingung des Tricarbonyls 6.

Tab. 34: IR-Banden (KBr) von 12

| Bandenlage              | Schwingung      |
|-------------------------|-----------------|
| 1964 s; 1941 s; 1899 vs | ۷CO             |
| 2527 m                  | <sup>𝔥</sup> BH |



**Abb. 36:** IR-Spektrum (KBr) von 12 (2700 - 200 cm<sup>-1</sup>)

Das UV/VIS-Spektrum von 12 zeigt eine breite Absorptionsbande bei 464 nm (21552 cm<sup>-1</sup>), die dem  $t_{2g}(M) \rightarrow \pi^*(N_2)$  charge-transfer-Übergang zugeordnet werden kann. Bisher elektronenabsorptionsspektroskopisch untersuchte Distickstoffkomplexe zeigten Übergänge in diesem Energiebereich<sup>[113]</sup>. Das schärfere Absorptionsmaximum bei höherer Energie resultiert aus den  $M \rightarrow L$  charge-transfer-Übergängen der Metall-d-Elektronen auf die Boropyrazolylliganden, welche im Vergleich zu den entsprechenden Absorptionsbanden dieses Typus bei den Verbindungen 6 und 11 bei niedrigerer Energie erscheinen. Hinter den Schultern können sich sowohl CT  $t_{2g}(M) \rightarrow \pi^*(CO)$ -Übergänge, als auch  $\pi \rightarrow \pi^*$ -Übergänge des Liganden verbergen.



Tab. 35: UV/VIS - spektroskopische Daten (THF) von 12

| λ <sub>max</sub> [nm]<br>[E (cm <sup>-1</sup> )]        | €<br>(l mol <sup>-1</sup> cm <sup>-1</sup> ) |
|---------------------------------------------------------|----------------------------------------------|
| 464 (21552); max<br>336 (29762); max<br>302 (33113); sh | 3175<br>21615                                |
| 262 (38167); sh                                         |                                              |

Abb. 37: UV/VIS-Spektrum (THF) von 12 (220 - 650 nm)

Im <sup>1</sup>H-NMR-Spektrum von 12 erscheinen 6 Singuletts. Aufgrund der Molekülsymmetrie sind beide Liganden L<sup>\*</sup> des Moleküls zueinander äquivalent, weshalb die Signale der jeweiligen Liganden zusammenfallen. Wie erwartet, zeigen die Protonen des in trans-Stellung zum Distickstoff stehenden Pyrazolringes eine chemische Verschiebung, die der der Pyrazolringe in cis-Stellung zum Distickstoff verschieden ist. Vergleicht man die Signale mit den entsprechenden Ligandsignalen von 11, sind die Verschiebungsverhältnisse der trans-Protonen den cis-Protonen gerade umgekehrt (Vergl. S. 63). Das dem CO isostere N<sub>2</sub> ist ein viel schwächerer  $\sigma$ -Donor, aber ein wesentlich besserer  $\pi$ -Akzeptor als TMP (Vgl. Tab. 22, S. 49). Vergleicht man N<sub>2</sub> mit CO, so ist in der Regel CO ein besserer  $\sigma$ -Donor und  $\pi$ -Akzeptor als N<sub>2</sub>, wie mehrfach spektroskopisch nachgewiesen wurde<sup>[114,115]</sup>. Betrachtet man jedoch die Verhältnisse  $\sigma$ -Donor zu  $\pi$ -Akzeptor, so müßte N<sub>2</sub> die Ladungsdichte des Zentralions mehr als CO erniedrigen. Der dadurch induzierte "trans-Effekt" bewirkt einen Elektronenzug, der die Protonen in 3'er und 4'er Stellung entschirmt. Zusätzliche Untermauerung findet diese Annahme bei Betrachtung röntgenstrukturanalytischer Daten von 12, die eine signifikante Bindungsverkürzung zwischen dem Technetiumzentralion und dem in trans-Stellung zum molekularen Stickstoff befindlichen Pyrazolylstickstoff gegenüber den beiden zum CO trans-ständigen Tc-N-Bindungen zeigt (vgl. S. 74ff).

|      |     | 1                    |       |                      |     |    |
|------|-----|----------------------|-------|----------------------|-----|----|
| Tab. | 36: | <sup>1</sup> H-NMR - | Daten | (CDCl <sub>3</sub> ) | von | 12 |

| Chemische Verschiebung [ $\delta$ ]                               | Signalproton               |  |  |  |
|-------------------------------------------------------------------|----------------------------|--|--|--|
| 2.43 ppm; s; (6H)                                                 | C'(5)-Me (L <sup>*</sup> ) |  |  |  |
| 2.34 ppm; s; (12H)                                                | C(5)-Me (L*)               |  |  |  |
| 2.30 ppm; s; (6H)                                                 | C'(3)-Me (L <sup>*</sup> ) |  |  |  |
| 2.36 ppm; s; (12H)                                                | C(3)-Me (L*)               |  |  |  |
| 5.72 ppm; s; (2H)                                                 | C'(4)-H (L*)               |  |  |  |
| 5.64 ppm; s; (4H) C(4)-H (L*)                                     |                            |  |  |  |
| Der zum N <sub>2</sub> trans - ständige Ring ist mit ' bezeichnet |                            |  |  |  |



Abb. 38: <sup>1</sup>H-NMR-Spektrum (CDCl<sub>3</sub>) von 12

Im EI-Massenspektrum von 12 konnte der Molekülpeak mit der hohen Masse 932 nicht registriert werden. Als Peak mit der höchsten Masse erschien das Fragment  $L^{*}Tc(CO)_{2}(N_{2})^{+}$ . Den intensivsten Fragmentpeak erhält man, wie bei allen  $L^{*}$ -Technetiumcarbonylverbindungen für das Fragment  $L^{*}Tc^{+}$  (m/z = 396).

| A CORD COLD COLD AND A A A CONSTRUCT OF A COLONY | Tab. | 37: | EI-MS- | Fragmen | tierung | von 12 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|--------|---------|---------|--------|
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|--------|---------|---------|--------|

| Verbindung | Mögliches Fragment    | m/z (rel.Int.[%]) |
|------------|-----------------------|-------------------|
| 12         | L*Tc(CO)2N2+          | 480 (9)           |
|            | $L^{*}Tc(CO)_{2}^{+}$ | 452 (29)          |
|            | $L^{*}$ TcCO +        | 424 (41)          |
|            | L*Tc+                 | 396 (100)         |

Strukturbeschreibung

Durch Umkristallisation von 12 in CH<sub>2</sub>Cl<sub>2</sub>/Hexan erhält man braune, prismenförmige Einkristalle, welche monoklin in der Raumgruppe C2/c (Nr.15) mit den Zellparametern a: 20.322(6), b: 14.547(4), c: 14.270(5) Å und ß: 103.95(2)° kristallisieren (V = 4049.3 Å<sup>3</sup>, Z = 4, d<sub>rö</sub> = 1.509 g cm<sup>-1</sup>).

12 stellt einen N,N-distickstoffverbrückten, zweikernigen Technetiumkomplex dar. Das Molekül besitzt ein kristallographisch bedingtes Symmetriezentrum, die Anordnung der Tc-N-N-Tc-Einheit ist nahezu linear [Winkel Tc-N-N =  $174.0(10)^{\circ}$ ]. Betrachtet man das Molekül frontal zur Tc-N-N-Tc-Achse, so stehen die Liganden L<sup>\*</sup> synclinal (skew) zueinander (Abb. 37, S. 75). Aufgrund der Dreizähligkeit des Liganden L<sup>\*</sup> besitzen die Tc-Atome die Koordinationszahl 6 und sind quasi oktaedrisch koordiniert.

Der N-N-Abstand des Distickstoffs beträgt 116(1) pm und ist gegenüber dem Abstand in elementarem Stickstoff um etwa 6 pm aufgeweitet<sup>[116]</sup>. Diese Aufweitung ist durch die Rückbindung Tc-N zu erklären. Ganz deutlich ist der Tc-N(7)-Bindungsabstand zur Distickstoffeinheit mit 194(2) pm gegenüber den übrigen Tc-N-Abständen [213(1) bis 221(1) pm] sehr verkürzt, was den wesentlich stärkeren  $\pi$ -Säurecharakter von N<sub>2</sub> gegenüber dem Ringstickstoff verdeutlicht. Die Tc-N(2)-Bindung, welche sich in trans-Stellung zur Tc-N(7)-Bindung befindet, ist erwartungsgemäß signifikant gegenüber den cisständigen Tc-N(4,6)-Bindungen um rund 7(1) pm verkürzt, was auf den angesprochenen, vom Distickstoff ausgehenden trans-Effekt zurückzuführen ist. Die Tc-Carbonylkohlenstoffabstände liegen bei 187(2) pm die korrespondierenden C-O-Abstände bei 117(2) pm.



Bindungsabstände [pm]: Tc-C(1) 186(2), Tc-N(6) 219(1), Tc-C(2) 187(1), Tc-N(7) 194(2), Tc-N(2) 213(1), C(1)-O(1) 117(2), Tc-N(4) 221(1), Tc-B 322(1), Tc-Tc' 503.5(3), N(7)-N(7') 116.0(3) Bindungswinkel [°]: C(1)-Tc-C(2) 89.4(6), N(2)-Tc-N(4) 85.9(4), C(1)-Tc-N(2) 92.1(6), N(2)-Tc-N(6) 85.2(4), C(1)-Tc-N(4) 93.2(5), N(2)-Tc-N(7) 170.4(6), C(1)-Tc-N(6) 176.5(5), N(4)-Tc-N(6) 84.4(4), C(1)-Tc-N(7) 94.6(6), N(4)-Tc-N(7) 86.3(6), C(2)-Tc-N(2) 93.3(6), N(6)-Tc-N(7) 87.9(4), C(2)-Tc-N(4) 177.2(5), Tc-C(1)-O(1) 175.(1), C(2)-Tc-N(6) 92.9(5), C(2)-Tc-N(7) 93.8(7), Tc-N(7) N(7') 174.(1)

Abb. 39: Moleküldarstellung und ausgewählte Bindungsparameter von 12



Abb. 40: Betrachtung von 12 frontal zur Tc-N-N-Tc-Achse, Veranschaulichung der synclinalen Konformation unter Weglassen der Carbonylgruppen Die Stabilität der M-N-M-Einheit, sowie die eigentlich geringe Aufweitung der N-N-Dreifachbindung gegenüber elementarem Distickstoff, ist anhand eines einfachen, qualitativen Molekülorbitalschemas erklärbar<sup>[106,117]</sup>:



Abb. 41: Qualitatives MO-Schema für zweikernige N2-verbrückte Komplexe

Betrachtet man die  $\sigma$ -Bindungsanteile als weitgehend konstant, kann man Änderungen der M-N- und N-N-Bindungen hauptsächlich auf Veränderungen des  $\pi$ -Systems zurückführen. Durch lineare Kombination von Md<sub>XZ</sub>-, Np<sub>X</sub>- und M'd<sub>XZ</sub>-Orbitalen erhält man die in Abb. 41 angedeuteten Vierzentrenmolekülorbitale. Die z-Richtung wird dabei durch die  $\sigma$ -Bindung bestimmt. Den Molekülorbitalen (MOs) entspricht ein Satz von Energieniveaus, deren Energie mit wachsender Knotenzahl der MOs zunimmt. Da zu den abgebildeten Orbitalen ein äquivalenter Satz von  $\pi$ -MOs existiert, die aus den Md<sub>yz</sub>-, Np<sub>y</sub>-, M`d<sub>yz</sub>-Orbitalen gebildet werden, sind die Energieniveaus entartet. Sie werden der Einfachheit halber mit 1e, 2e usw. bezeichnet. Die an den  $Md_{xy}$ -Orbitalen gebildeten  $\delta$ -Bindungen tragen praktisch nicht zur Bindung bei; ihnen entsprechen die nicht bindenden 1b- und 2b-Niveaus.

Die Stärke der M-N-Bindung und der N-N-Bindung hängt nun hauptsächlich von der Besetzung der e-Niveaus ab. Die vier Elektronen der beiden N-Atome füllen das 1e-Niveau. Dies besitzt für die N-N- und M-N-Bindungen bindenden Charakter. Wegen des partiellen Metallcharakters resultiert jedoch eine schwächere N-N-Bindung als im freien N<sub>2</sub>-Molekül. Die fortschreitende Besetzung der darüber liegenden Niveaus mit den 12 d-Elektronen der beiden Tc(I)-Zentren führt bei den 2e-Niveaus aufgrund des antibindenden Charakters bezüglich der N-N-Bindung zu einer starken Lockerung derselben. Jedoch wird die M-N-Bindung wegen des bindenden Charakters gefestigt. Die Besetzung der 3e-Niveaus verstärkt wiederum die N-N-Bindung, da die Orbitale in Bezug auf die N-Atome bindend sind. Insgesamt müssen für die Tc-N-N-Tc-Brücke 16 Elektronen untergebracht werden, was einer Auffüllung einschließlich der 3e-Niveaus entspricht.

Berücksichtigt man den bindenden Charakter des M-N-N-M- $\sigma$ -Orbitals, stehen insgesamt fünf bindende besetzte Orbitale zwei antibindende besetzte Orbitale hinsichtlich der N-N-Bindung sowie den M-N-Bindungen gegenüber, was die Stabilität der Einheit erklärt.

Tab. 36 zeigt eine Gegenüberstellung der N-N-Bindungslängen und M-N-N-Bindungswinkel röntgenographisch untersuchter verbrückter Distickstoffkomplexe.

| Verbindung                                                                                | d <sub>N-N</sub> (pm) | α <sub>M-N-N</sub> (°) | Lit.  |
|-------------------------------------------------------------------------------------------|-----------------------|------------------------|-------|
| N <sub>2</sub>                                                                            | 109.76                |                        | [116] |
| [(PMe <sub>2</sub> Ph)ClRe(N <sub>2</sub> )MoCl <sub>4</sub> (OMe)]                       | 121                   |                        | [118] |
| $\{[(C_6H_{11})_3P]_2Ni\}_2(N_2)$                                                         | 112                   | 178.2                  | [119] |
| [Ru(NH <sub>3</sub> ) <sub>5</sub> ] <sub>2</sub> (N <sub>2</sub> ) <sup>4+</sup>         | 112.4                 | 178.3                  | [120] |
| $[Z_{r}Cp^{*}_{2}N_{2}]_{2}(N_{2})$                                                       | 118.2                 | 176.7                  | [121] |
| $[\text{TiCp}^*_2]_2(N_2)$                                                                | 116                   | 178.1                  | [122] |
| [Mo(C <sub>6</sub> H <sub>3</sub> Me <sub>5</sub> )diphos] <sub>2</sub> (N <sub>2</sub> ) | 114.5                 | 175.6                  | [123] |
| $[Cp Mn(CO)_2]_2(N_2)$                                                                    | 111.81                | 176.5                  | [112] |
|                                                                                           |                       |                        |       |
| $[L^*Tc(CO)_2]_2(N_2)$ (12)                                                               | 116                   | 174                    | d.A.  |

Tab. 36: N-N-Abstände und M-N-N-Bindungswinkel von röntgenographisch untersuchtenN2-verbrückten Komplexen



2.2.6 EXKURS: Das "Nebenprodukt" L<sup>\*</sup><sub>2</sub>Mn (13a)



Wird analysenreines  $L^*Mn(CO)_3$  (6a) im Vakuum unter ca. 10 torr Argon in eine Ampulle eingeschmolzen und bei > 200°C sublimiert, so bildet sich neben sublimiertem 5a und der farblosen Verbindung [HB(C5H7N2)2]2<sup>[65]</sup> wenig gelbes Mn2(CO)10 und sehr wenig farbloses 13a. Mehrere Sublimationen bestätigten dieses Ergebnis.

Ab einer bestimmten Temperatur (um 200°C) zersetzt sich 6a unter Disproportionierung des einwertigen Mangans. Dabei entstehen durch Kombination der Fragmente besagte Sublimationsprodukte. Diesen Prozeß könnte man folgendermaßen formulieren:

 $4 L^*Mn^{I}(CO)_3 \rightarrow 2 L^*_2Mn^{II} + Mn^{0}_2(CO)_{10} + 2 CO$ 

Ein Teil des Liganden scheint sich unter Ringabspaltung in die neutrale, dimere Verbindung  $[HB(C_5H_7N_2)_2]_2$  umzuwandeln.

13a wurde schon 1967 von Trofimenko beschrieben<sup>[124]</sup>. Synthetisiert aus MnCl<sub>2</sub> und KL<sup>\*</sup> wurde der Komplex jedoch nur anhand Elementaranalyse charakterisiert. Mehr als 20 Jahre später konnte die Struktur des zweifach positiv geladenen Kations  $[L^*_2Mn]^+$  in der Verbindung  $[L^*_2Mn](ClO_4)_2$  ermittelt werden<sup>[125]</sup>. Die Molekülstruktur der neutralen Verbindung blieb bislang unbekannt.

Von 13a wurde neben einer Röntgenstrukturanalyse IR- und EI-massenspektroskopische Messungen durchgeführt. SPEKTROSKOPISCHE UNTERSUCHUNGEN

Das IR-Spektrum zeigt neben den für den Liganden  $L^*$  charakteristischen Absorptionsbanden die B-H-Valenzschwingung bei 2526 cm<sup>-1</sup> (Abb. 42).



Abb. 42: IR-Spektrum (KBr) von 13a (2700 - 200 cm<sup>-1</sup>)

Im EI-Massenspektrum erscheint der Molekülpeak bei 649 m/z mit der höchsten relativen Intensität, was auf die hohe thermische Stabilität der Verbindung hindeutet. Der stabile Fragmentpeak  $L^*Mn^+$  zeigt hingegen eine relative Intensität von 60%. Die Isotopenverteilung des Molpeaks stimmt mit der computersimulierten Verteilung exakt überein.

| Verbindung | Mögliches Fragment                                            | m/z (rel. Int.[%])  |
|------------|---------------------------------------------------------------|---------------------|
| 13a        | $L_{2}^{*}Mn^{+}(M^{+})$                                      | 649 (100)           |
|            | $L^{Mn}[HB(Me_2C_3HN_2)_2]^+$<br>$L^{Mn}[HB(Me_2C_3N_2)_2]^+$ | 556 (35)<br>538 (9) |
|            | $L^*Mn^+$                                                     | 352 (58)            |

|  | Tab. | 39: | EI-MS- | Fragmentierung | von | 13a |
|--|------|-----|--------|----------------|-----|-----|
|--|------|-----|--------|----------------|-----|-----|



Abb. 43: Computersimulierter (oben) und gemessener Molpeak (unten) von 13a

Kristallstruktur

13a schlägt sich an der kälteren Wand der Sublimationsampulle in Form farbloser, klarer, quaderförmiger Einkristalle nieder. Es liegt ein rhomboedrisch/hexagonales Kristallsystem mit der Raumgruppe C3<sub>i</sub>/2 (Nr.148) vor. Die Zellparameter sind a: 11.010(6) und c: 24.88(1) Å, V = 2611.9 Å<sup>3</sup>, Z = 3, d<sub>rö</sub> = 1.24 g cm<sup>-1</sup>.

Die sechs Stickstoffatome der Boropyrazolylliganden sind um das Manganzentralion oktaedrisch koordiniert, das Molekül besitzt D<sub>3d</sub>-Symmetrie. Die C<sub>3</sub>-Achse ist durch die Verbindungslinie B-Mn-B' festgelegt. Die trans-N-Mn-N'-Winkel betragen allesamt 180° und das Zentalion stellt gleichzeitig ein kristallographisches Inversionszentrum dar. Aufgrund der gegenseitigen Abstoßung der beiden Liganden entlang der C<sub>3</sub>-Achse wird ein idealer Oktaederwinkel von 90° verhindert, die Winkel betragen 84.3° bzw. 95.7°. Die Mn-N-Bindungsabstände sind mit 227.7 pm gegenüger der analogen kationischen Verbindung L<sup>\*</sup><sub>2</sub>Mn<sup>2+[125]</sup> um ca. 30 pm länger.

Aufgrund der Ähnlichkeit des Poly-1-pyrazolylboratliganden mit Cp<sup>-</sup> liegt hier eine dem Manganocen analoge Verbindung vor. Wendet man die 18 Valenzelektronenregel auf das Molekül an, resultiert ein paramagnetisches 17 VE-Fragment, welches luftinstabil sein müßte, wie es beim Manganocen der Fall ist. Die Stabilität der vorliegenden Verbindung kann durch die hohe sterische Abschirmung des Manganzentrums durch die Ligandmethylgruppen und einer daraus resultierenden kinetischen Inertheit erklärt werden.



Bindungsabstände [pm]: Mn(1)-N(2) 227.7(3), Mn(1)-N(2A) 227.7(3), Mn(1)-N(2B) 227.7(4), Mn(1)-N(2C) 227.7(4), Mn(1)-N(2D) 227.7(2), Mn(1)-N(2E) 227.7(2) Bindungswinkel [°]: N(2)-Mn(1)-N(2A) 180.0(1), N(2)-Mn(1)-N(2B) 84.3(1), N(2A)-Mn(1)-N(2B) 95.7(1), N(2)-Mn(1)-N(2C) 95.7(1), N(2A)-Mn(1)-N(2C) 84.3(1), N(2B)-Mn(1)-N(2C) 180.0(1), N(2)-Mn(1)-N(2D) 84.3(1), N(2A)-Mn(1)-N(2D) 95.7(1), N(2B)-Mn(1)-N(2D) 84.3(1), N(2C)-Mn(1)-N(2D) 95.7(1), N(2)-Mn(1)-N(2E) 95.7(1), N(2A)-Mn(1)-N(2E) 84.3(1), N(2B)-Mn(1)-N(2E) 95.7(1), N(2C)-Mn(1)-N(2E) 84.3(1), N(2D)-Mn(1)-N(2E) 180.0(1)

Abb. 44: Moleküldarstellung und ausgewählte Bindungsparameter von 13a

## 2.3 Trioxotechnetium(VII)-Verbindungen

Seit einigen Jahren sind organometallische Trioxo-Rhenium(VII)-Verbindungen bekannt, die eine sehr interessante Chemie aufweisen. So wurden Verbindungen synthetisiert und beschrieben, in denen das Re(VII)O<sub>3</sub>-Fragment an verschiedenen Liganden fixiert ist. Einige Vertreter dieser Verbindungsklasse sind Cp<sup>\*</sup>ReO<sub>3</sub><sup>[126]</sup>, CpReO<sub>3</sub><sup>[127]</sup>, CH<sub>3</sub>ReO<sub>3</sub><sup>[128]</sup>, LReO<sub>3</sub><sup>[129]</sup>, L<sup>\*</sup>ReO<sub>3</sub><sup>[130]</sup>.

Von großem Interesse ist es, das homologe  $TcO_3^+$ -Fragment an entsprechende Liganden zu fixieren, die Komplexe zu isolieren, sie zu untersuchen und deren Eigenschaften mit denjenigen der homologen Rheniumverbindungen zu vergleichen.

Die bisher einzige Technetiumverbindung, bei welcher dies definitiv gelang, ist  $CH_3TcO_3^{[35]}$ , das aus  $Tc_2O_7$  und  $(CH_3)_4Sn$  synthetisiert wurde. Ein deutlicher Stabilitätsunterschied zur analogen Rheniumverbindung stellte sich heraus. Die isolierte Technetiumverbindung zersetzt sich oberhalb 20°C und ist gegenüber Feuchtigkeit äußerst empfindlich, während das Rheniumanalogon Temperaturen von 200°C widersteht und in wäßriger Lösung über längere Zeit haltbar ist<sup>[35,128]</sup>.

# 2.3.1 Darstellungsversuche der Verbindung $\eta^5$ -Cp<sup>\*</sup> TcO<sub>3</sub>

Die Oxoverbindung  $\eta^{5}$ -Cp<sup>\*</sup> ReO<sub>3</sub> kann auf drei Standardreaktionswegen in mehr oder weniger guten bis sehr guten Ausbeuten aus der Carbonylverbindung  $\eta^{5}$ -Cp<sup>\*</sup>Re(CO) 3 durch Oxidation erhalten werden (Schema 5).



Schema 5: Synthesewege von Cp\*ReO<sub>3</sub><sup>[128a,c,131]</sup>

Herstellungsversuche der Verbindung aus KCp<sup>\*</sup> und Re<sub>2</sub>O<sub>7</sub> scheitern an der Reduktionskraft des permethylierten Cyclopentadienylanions<sup>[132]</sup>.

In Anbetracht dieser Ergebnisse stellt sich nun die Frage nach der analogen Technetiumverbindung  $\eta^5$ -Cp<sup>\*</sup> TcO<sub>3</sub>. Theoretische Betrachtungen über die Stabilität der Trioxo-( $\eta^5$ -Cp)-Verbindungen von Mangan, Technetium und Rhenium verdeutlichen, daß Cp<sup>\*</sup>TcO<sub>3</sub>, im Gegensatz zur homologen Manganverbindung, stabil und isolierbar sein sollte, falls eine geeignete Synthese gefunden werden kann<sup>[133]</sup>.

Erste Oxidationsversuche von  $Cp^*Tc(CO)_3$  mit  $H_2O_2$  wurden bereits von K. Raptis durchgeführt. Eine in sehr geringen Ausbeuten erhaltene Verbindung konnte nicht als die siebenwertige Zielverbindung identifiziert werden. Die Röntgenstrukturanalyse zeigte eine hochsymmetrische, polymere Verbindung mit der Formel  $[Cp^*TcO_3Tc]_n^{[33]}$ . Drei Sauerstoffatome verbrücken jeweils zwei Tc-Atome. Formal müssen den Polymermetallatomen die Oxidationsstufe +3.5 zugesprochen werden. Die Existenz dieser polymeren Verbindung wurde zunächst von W.A. Herrmann angezweifelt<sup>[35]</sup>. Eine theoretische Abhandlung von R. Hoffmann bestätigte jedoch die Existenzmöglichkeit dieser spektakulären Verbindung mit dem extrem kurzen Tc-Tc-Abstand von 186.7 pm und schrieb der Tc-Tc-Mehrfachbindung die Bindungsordnung 3.5 zu<sup>[134]</sup>.

Tatsache ist also, daß  $Cp^*Re(CO)_3$  und  $Cp^*Tc(CO)_3$  gegenüber  $H_2O_2$  ein voneinander abweichendes Verhalten zeigten.

Es stellte sich nun die Frage inwieweit andere Oxidationsmittel, welche bei Rhenium zur gewünschten Zielverbindung führen, auf Technetium anwendbar sind.

Eine photolytische Oxidation zeigte sich als erfolglos. Nach Bestrahlung von  $Cp^*Tc(CO)_3$  in THF und anschließender Einleitung von reinem Sauerstoff konnte weder  $Cp^*TcO_3$  noch eine andere  $Cp^*Tc-Oxoverbindung$ , auch nicht in Spuren, nachgewiesen werden. Neben wenig Edukt und  $Cp^*2Tc_2(CO)_5$  (f) wurde keine weitere identifizierbare Fraktion per Säulenchromatographie eluiert. Ein in Benzol unlöslicher Rückstand konnte nicht näher bestimmt werden. Im IR-Festkörperspektrum deutet zwar eine starke Bande auf eine Tc=O-Valenzschwingung hin, bei dem Rückstand handelt es sich jedoch um ein nicht chromatographierbares Gemisch aus Technetiumoxiden und Pentamethylcyclopentadienylzersetzungsprodukt.

Gleiches gilt auch für die Oxidation von  $Cp^*Tc(CO)_3$  mit  $Mn_2O_7$ , welche bei Rhenium mit nahezu 90%'iger Ausbeute zum Erfolg führt. Ein tropfenweises Zugeben von einer  $Mn_2O_7$ -Lösung (CCl<sub>4</sub>) zu in Aceton gelösten  $Cp^*Tc(CO)_3$  bei -78°C führt fast ausschließlich zu Technetiumoxiden. Eine durch Benzol extrahierte ölige Fraktion konnte nicht näher identifiziert werden. Im IR-Spektrum waren weder Tc=O-Banden noch Carbonylbanden zu erkennen. Die beiden aufgeführten Beispiele zeigen die großen Differenzen zwischen den beiden Homologen. Gravierende Stabilitätsunterschiede kamen schon beim Vergleich der beiden homologen Verbindungen CH<sub>3</sub>ReO<sub>3</sub> und CH<sub>3</sub>TcO<sub>3</sub> zum Ausdruck (S. 82). Noch extremer scheint der Unterschied bei dem Cp<sup>\*</sup>-Liganden. Es sieht so aus, daß es sehr schwer sein wird einen geeigneten Reaktionsweg für die vorhergesagte Verbindung Cp<sup>\*</sup>TcO<sub>3</sub> zu finden, vor allem aber die Verbindung in nachweisbarer Form zu isolieren und zu charakerisieren.



Anders als die Cyclopentadienylderivate erweist sich die Hydrotris(-1-pyrazolyl)borat-Gruppe als wesentlich geeigneterer Ligand um das TcO<sub>3</sub><sup>+</sup>-Fragment zu fixieren und zu stabilisieren.

Auf einem den entsprechenden Rheniumverbindungen nahezu analogen Reaktionsweg erhält man 14 und 15 aus Tc<sub>2</sub>O<sub>7</sub> und den Alkalisalzen KL bzw. NaL<sup>\*</sup> anhand einer nukleophilen Substitution unter Erhaltung der Technetiumoxidationstufe:



Im Gegensatz zu ihren Rheniumhomologen sind 14 und 15 nicht farblos, sondern

schwach (14) bis intensiv gelb (15) gefärbt. Die in fester Form luftstabilen Komplexe sind in aliphatischen Kohlenwasserstoffen wie Pentan und Hexan unlöslich. Mäßige Löslichkeit zeigen sie in polaren Lösungsmittel wie Aceton, THF, Ether und CH<sub>2</sub>Cl<sub>2</sub>, und sind somit besser löslich als die analogen Rheniumverbindungen. Während die Rheniumkomplexe im Vakuum (10<sup>-2</sup> torr) schon ab 150°C sublimierbar sind, lassen sich sowohl 14 als auch 15 uicht sublimieren, sondern sie zersetzen sich langsam. Daß die analogen Rheniumkomplexe eine höhere thermische Stabilität aufweisen, ist auch am Vergleich der Schmelz- oder Zersetzungspunkte erkennbar. Während sich 14 oberhalb 185°C und 15 bei T > 234°C zersetzen, treten bei den analogen Rheniumkomplexen erst bei T > 290°C bzw. T > 323°C Schmelzerscheinungen und anschließende Zersetzung auf.

Durch Extraktion der Technetiumverbindungen mit Pentan/Ether (1:1) erhält man gelbe, plättchenförmige, analysenreine Kristalle. Die schlechte Qualität und hohe Porosität verhindert eine Bestimmung der Kristall- und Molekülstruktur durch Röntgenstrukturanalyse. Auch unter Verwendung anderer Lösungsmittel (CH<sub>2</sub>Cl<sub>2</sub>/Hexan) gelang es nicht Einkristalle zu züchten. 14 und 15 wurden anhand IR-, <sup>1</sup>H-NMR-, EI-MS-, Elektronenabsorptionsspektroskopie und Tc-Analyse eingehend charakterisiert.

### SPEKTROSKOPISCHE UNTERSUCHUNGEN

Die IR-Spektren (Abb. 45, S. 86) wurden an KBr-Presslingen aufgenommen. Neben den für die Boropyrazolylliganden L bzw. L<sup>\*</sup> charakteristischen Absorptionsbanden sieht man deutlich die Bande der B-H-Valenzschwingung und im Bereich zwischen 850 und 930 cm<sup>-1</sup> die Absorptionsbanden der Tc=O-Valenzschwingungen des TcO<sub>3</sub>-Fragmentes. Bei beiden Verbindungen erkennt man primär zwei Banden. In 14 zeigt die höherenergetischere Bande eine Aufspaltung, die bei der entsprechenden Bande von 15 nicht zu erkennen ist. Gegenüber den homologen Rheniumverbindungen, die ein ähnliches Bandenmuster für die Re=O-Valenzschwindungen<sup>[129,130]</sup> zeigen, sind die Absorptionsenergien bei kleineren Wellenzahlen.

| Verbindung | Bandenlage                              | Schwingung                      |
|------------|-----------------------------------------|---------------------------------|
| 14         | 921s,sh; 897vs; 884vs;<br>868s,sh; 853s | $p_{ m TcO}$                    |
|            | 2525m                                   | $\nu_{ m BH}$                   |
| 15         | 884vs; 862s<br>2549m                    | $rac{ u_{ m TcO}}{ u_{ m BH}}$ |

### Tab. 40: IR-Banden (KBr) von 14 und 15



Abb. 45: IR - Spektren (KBr) (2700 - 200 cm<sup>-1</sup>) und  $\nu_{Tc=O}$ -Banden (rechts daneben) von 14 (oben) und 15 (unten)

In den <sup>1</sup>H-NMR-Spektren (CDCl<sub>3</sub>) (Tab. 41, Abb. 46, S. 87) von 14 und 15 treten die zu erwartenden Signale der Protonen der Pyrazolringe auf. 14 zeigt drei Signale gleicher Intensität. Daraus folgt eine Äquivalenz der Pyrazolringe in Lösung. Entsprechend findet man bei 15 erwartungsgemäß drei Singuletts im Verhältnis 3:3:1.

| Verbindung | Chemische Verschiebung $[\delta]$ | Signalproton |
|------------|-----------------------------------|--------------|
| 14         | 6.23 ppm; t; (3H)                 | С(4)-Н       |
|            | 7.65 ppm; d; (3H)                 | С(5)-Н       |
|            | 8.22 ppm; d; (3H)                 | С(3)-Н       |
| 15         | 2.33 ppm; s; (9H)                 | С(5)-Ме      |
|            | 2.81 ppm; s; (9H)                 | C(3)-Me      |
|            | 5.84 ppm; s; (3H)                 | C(4)-H       |

Tab. 41: <sup>1</sup>H-NMR-Daten (CDCl<sub>3</sub>) von 14 und 15



Abb. 46: <sup>1</sup>H-NMR-Spektren (CDCl<sub>3</sub>) von 14 (oben) und 15 (unten)

EI-massenspektroskopische Untersuchungen von 14 und 15 zeigen jeweils den Molpeak (m/z 360 bzw. m/z 444) bei den berechneten Molekülmassen. Die Art der Fragmentierung ist bei beiden Verbindungen ähnlich. Ein Pyrazol bzw. Dimethylpyrazol spaltet sich vom Molekül ab, wobei das jeweils thermisch stabilste Fragment ( $I_{rel} = 100\%$ ) gebildet wird (Tab. 42).

| Verbindung | Mögliches Fragment                   | m/z (1 | rel. Int.[%]) |
|------------|--------------------------------------|--------|---------------|
| 14         | $LTcO_3$ (M <sup>+</sup> )           | 360    | (53)          |
|            | LTcO <sup>+</sup>                    | 328    | (70)          |
|            | $HB(C_3H_3N_2)_2TcO_3^+$             | 293    | (100)         |
|            | $HB(C_3H_3N_2)_2TcO_2^+$             | 277    | (98)          |
|            | $HBC_3H_3N_2TcO_3^+$                 | 226    | (79)          |
|            | $C_3H_3N_2H^+$                       | 68     | (53)          |
| 15         | $L^{*}TcO_{3}^{+}$ (M <sup>+</sup> ) | 444    | (7)           |
|            | $HB(Me_2C_3HN_2)_2(MeC_3N_2)TcO_3^+$ | 426    | (20)          |
| •          | $L^{*}TcO_{2}^{+}$                   | 412    | (10)          |
|            | $HB(Me_2C_3HN_2)_2TcO_3^+$           | 348    | (100)         |
|            | $HB(Me_2C_3HN_2)(MeC_3HN_2)TcO_3^+$  | 333    | (51)          |
|            | $HB(Me_2C_3HN_2)TcO_3^+$             | 254    | (40)          |
|            | $Me_2C_3HN_2^+$                      | 95     | (99)          |

| weeks a age was sire a replicited of the A All we a CHIG T | Tab. | 42: | EI-MS | -Fragment | ierung | von | 14 | und | 14 |
|------------------------------------------------------------|------|-----|-------|-----------|--------|-----|----|-----|----|
|------------------------------------------------------------|------|-----|-------|-----------|--------|-----|----|-----|----|

Die Elektronenabsorptionsspektren von 14 und 15 zeigen ein Maximum bei 265 bzw. 274 nm (37736 cm<sup>-1</sup>,  $\epsilon = 10501 \text{ I mol}^{-1} \text{ cm}^{-1}$  bzw. 36496 cm<sup>-</sup>,  $\epsilon = 13261 \text{ I mol}^{-1} \text{ cm}^{-1}$ ). Die Größen der molaren Extinktionskoeffizienten deuten auf charge-transfer-Übergänge zwischen Ligand und Zentralteilchen hin.

Bei den bisher diskutierten Tc(I)-Carbonylverbindungen wurde der charge-transfer-Übergang zwischen L bzw. L<sup>\*</sup> und Metall als Elektronenübergang vom Typ  $M_{\pi d}(t_{2g}) \rightarrow L_{\pi^*}(N)$  (MLCT) betrachtet (Vergl. S. 26, Abb. 11). In den Komplexen 14 und 15 liegt jedoch ein siebenwertiges Technetiumzentralion vor mit leeren  $t_{2g}$ -Niveaus. Der chargetransfer-Übergang in diesem Falle erfolgt von einem tiefer liegenden besetzten Molekülorbital mit Ligandcharakter ( $L_{\pi}$ ) auf ein höherliegendes leeres MO mit weitgehendem Metallcharakter ( $M_{\pi d}(t_{2g})$ ) (LMCT).

Die Verschiebung des Absorptionsmaximums von 15 gegenüber 14 zu niedrigeren Energien ist auf den Einfluß der Methylsubstituenden zurückzuführen. Die Methylgruppen bei 15

bewirken durch ihre +I-Effekte eine Erhöhung der Elektronendichte in den Ringen einen kleineren HOMO-LUMO-Abstand und folglich einen Elektronenübergang bei niedrigeren Energien ( $\Delta E = 1240 \text{ cm}^{-1}$ ).



Abb. 47: UV/VIS-Banden (THF) von 14 und 15 (220 - 500 nm)

Die Absorptionsbanden der außerdem zu erwartenden  $(\pi + \sigma) \rightarrow M_{\pi d}(t_{2g})$ -CT-Übergänge vom Sauerstoff zum Metall (Literaturwerte bei 240 - 250 nm<sup>[135]</sup>) liegen bei < 240 nm und fallen in den hohen THF-Extinktionsbereich.

# 2.4 Cyclopentadienyltechnetium(III)-Komplexe

Vor Kurzem gelang es unserer Arbeitsgruppe durch Reaktion von TcCl<sub>4</sub> mit zwei Moläquivalenten KCp die Verbindung Cp<sub>2</sub>Tc(III)Cl (16) zu isolieren. Bei einem Überschuß an KCp bzw. Reaktion von 16 mit einem Moläquivalent KCp entsteht der Komplex Cp<sub>3</sub>Tc(III) (17) in dem zwei Cp-Ringe  $\eta^5$  und einer  $\eta^1$  an das Zentralion koordiniert sind. Beide Verbindungen wurden durch Röntgenstrukturanalyse bestätigt<sup>[37,38]</sup>. Die analogen Rheniumverbindungen konnten ebenfalls synthetisiert, isoliert und charakterisiert werden. Versuche sie aus ReCl<sub>4</sub> zu synthetisieren blieben jedoch erfolglos. Aus ReCl<sub>5</sub> konnte aber Cp<sub>2</sub>ReCl erhalten werden, wenn auch in wesentlich schlechteren Ausbeuten als das Technetiumanalogon<sup>[136]</sup>.

16 und 17 stellen interessante Ausgangsverbindungen für wichtige weiterführende Synthesen dar. Das Chloridion in 16 läßt sich durch eine nukleophile Substitution mit entsprechenden Alkaliligandsalzen (MX) ersetzen. Auch im Falle von 17 dürfte es kein Problem sein, durch Reaktion mit einer H-aciden Verbindung (HX) unter Cp-Abspaltung einen anderen Liganden einzuführen (Schema 6).



Schema 6: Reaktionüberblick: Cp2TcX-Verbindungen

Beide Fälle wurden durch Substitution der Chlorid- bzw. Cp-Einheit mit chalkogenhaltigen Liganden bestätigt. Die Wahl von sauerstoff- und schwefelhaltigen Liganden geschah dabei in Hinblick auf eine nähere Untersuchung der Tc(III)-O- und Tc(III)-S-Bindung. In Anbetracht der nuklearmedizinischen Anwendung von Technetium sind Koordinationen von schwefel- und sauerstoffhaltigen, organischen Liganden von physiologisch relevanter Bedeutung.

## 2.4.1 Die Synthese von Cp2Tc(III)(OPh) (18) aus Cp2TcCl (16)



Nach Reaktion von 16 mit KOPh in THF und anschließender Extraktion des getrockneten Rückstandes mit Pentan erhält man 18 in Form schwarzroter, luftstabiler Kristalle. Trotz optisch guter Qualität der Einkristalle konnte die Molekülstruktur von 18 nicht aufgeklärt werden. 18 ist nicht sublimierbar (Zersetzung) und andere Umkristallisationsversuche brachten keinen Erfolg.

Die eindeutige Charakterisierung erfolgte durch IR-, <sup>1</sup>H-NMR-, UV/VIS-, EI-Massenspektroskopie und Tc-Analyse.

### SPEKTROSKOPISCHE UNTERSUCHUNGEN

Das in KBr aufgenommene Festkörperinfrarotspektrum (Abb. 48, S. 92) zeigt neben den charakteristischen Schwingungsabsorptionsbanden der C-H- bzw. C-C-Valenz- und Deformationsschwingungen der Cyclopentadienylliganden bzw. des aromatischen Phenylringes (Tab. 43, S. 92) deutlich bei 1262 und 1279 cm<sup>-1</sup> die Banden der C-O-Valenzschwingung und bei 521 cm<sup>-1</sup> eine Bande, die man der Tc-O-Valenzschwingung zuordnen kann.

Tab. 43: IR-Banden (KBr) von 18

| Bandenlage [cm <sup>-1</sup> ]      | Schwingung       |
|-------------------------------------|------------------|
| 3012 vw; 3078 w; 3099 w (ohne Abb.) | $\nu_{ m CH}$    |
| 1479 s; 1586 m                      | $\nu_{\rm CC}$   |
| 1262 m; 1279 s                      | ν <sub>C-O</sub> |
| 787 m                               | $\delta_{ m CH}$ |
| 521 w                               | $\nu_{ m TcO}$   |



Abb. 48: IR-Spektrum (KBr) von 18 (2700 - 200 cm<sup>-1</sup>)

Das <sup>1</sup>H-NMR-Spektrum wurde in CDCl<sub>3</sub> aufgenommen und zeigt die zu erwartenden Protonensignale der Cp-Ringe und des monosubstituierten Phenylringes. Alle 10 Cp-Protonen sind wegen der freien Rotation und aufgrund der Symmetrie der Cp-Ringe zueinander äquivalent und es resultiert ein Singulett. Die fünf Phenylprotonen zeigen erwartungsgemäß zwei Tripletts und ein Dublett im Verhältnis 2:1:2 (Abb. 49, S. 93).

Tab. 44: <sup>1</sup>H-NMR-Daten (CDCl<sub>3</sub>) von 18

| Chemische Verschiebung [δ] | Signalproton             |
|----------------------------|--------------------------|
| 4.70 ppm; s; (10H)         | С-Н (η <sup>5</sup> -Ср) |
| 6.53 - 7.06 ppm; m; (5H)   | С-Н (Phenyl)             |



Abb. 49: <sup>1</sup>H-NMR-Spektrum (CDCl<sub>3</sub>) von 18

Das Elektronenabsorptionsspektrum (THF) zeigt im ganzen drei eindeutige Maxima. Das breite Maximum bei geringster Energie kann einem charge-transfer-Übergang zwischen dem Sauerstoff und dem Technetiumzentrum zugeordnet werden. Die bei 295 nm erscheinende Bande deutet auf  $M\pi d \rightarrow \pi^*(Cp)$  charge-transfer-Übergänge hin und die energiereichste Bande zeigt  $\pi \rightarrow \pi^*$ -Übergänge der aromatischen Liganden.



Tab. 45: UV/VIS spektroskopische Daten (THF) von 18

| λ <sub>max</sub> [nm]   | €                                       |
|-------------------------|-----------------------------------------|
| [E (cm <sup>-1</sup> )] | (1 mol <sup>−1</sup> cm <sup>−1</sup> ) |
| 360 (27777)             | 1654                                    |
| 295 (33898)             | 6739                                    |
| 245 (40816)             | 15639                                   |

Abb. 47: UV/VIS-Spektrum (THF) von 18 (220 - 500 nm)

Die EI-massenspektroskopische Aufnahme registriert den Molpeak der monomeren Verbindung bei der errechneten Molekülmasse von m/z 322. Die Stabilität der Cp<sub>2</sub>Tc<sup>+</sup>-Einheit wird durch entsprechenden Fragmentpeak mit höchster relativer Intensität unterstrichen. Daneben fällt noch der Molekülpeak der Verbindung Cp<sub>2</sub>TcH ins Gewicht ( $I_{rel} = 28\%$ ), die in der Gasphase aus Cp<sub>2</sub>Tc<sup>+</sup> und einem hydridisch fragmentierten Wasserstoff entsteht.

Tab. 46: EI-MS-Fragmentierung von 18

| Verbindung | Mögliches Fragment                                                                                                                         | m/z (rel. Int.[%])     |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| 18         | Cp <sub>2</sub> TcOC <sub>6</sub> H5 <sup>+</sup> (M <sup>+</sup> )<br>Cp <sub>2</sub> TcH <sup>+</sup><br>Cp <sub>2</sub> Tc <sup>+</sup> | 322(48)230(28)229(100) |

## 2.4.2 Die Synthese von Cp2Tc(III)(SPhMe) (19) aus Cp3Tc (17)



Reaktion von Cp<sub>3</sub>Tc (17) mit Thiokresol in THF und anschließender Extraktion des Rohproduktes mit Pentan ergibt 19 in etwa 50 %'iger Ausbeute. Der schmierige Niederschlag bleibt auch nach mehrstündigem Trocknen im Hochvakuum klebrig. 19 ist nicht sublimierbar und bei höheren Temperaturen (130°C) findet Zersetzung statt. Jegliche Versuche Einkristalle zu erhalten scheiterten.

19 wurde anhand ihrer IR-, <sup>1</sup>H-NMR-, UV/VIS-, EI-Massenspektren und Tc-Analyse eingehend charakterisiert.
Spektroskopische Untersuchungen

Im IR-Festkörperspektrum (KBr) erscheinen charakteristische Banden der C-H- und C-C-Valenz- bzw. Deformationsschwingungen der beiden  $\eta^5$ -koordinierten Cp-Ringe und der Methylphenylgruppe (Tab. 47, Abb. 47). Weiter sind vor allem die C-S-Valenzschwingung bei 1077 cm<sup>-1</sup> und die Tc-S-Valenzschwingung bei 491 cm<sup>-1</sup> hervorzuheben.

Tab. 47: IR-Banden (KBr) von 19

| Bandenlage [cm <sup>-1</sup> ]               | Schwingung       |
|----------------------------------------------|------------------|
| 3105w; 3085; 3005w; 2920w; 2855w (ohne Abb.) | $\nu_{ m CH}$    |
| 1597m; 1483s                                 | ν <sub>CC</sub>  |
| 1077m                                        | $\nu_{C-S}$      |
| 799s                                         | $\delta_{ m CH}$ |
| 491m                                         | ν <sub>TcS</sub> |



Abb. 47: IR-Spektrum (KBr) von 19 (2700 - 200 cm<sup>-1</sup>)

Auch bei 19 zeigen die Protonensignale der beiden Cp-Ringe nur ein Singulett und somit eine Äquivalenz der beiden Ringe in Lösung zueinander. Es rotieren sowohl die  $\eta^5$ gebundenen Cp-Ringe in Lösung um die Ringzentrum-Metall-Verbindungsachse als auch der Methylphenylrest um die Tc-S-Verbindungsachse. Die Protonen des Phenylrestes zeigen das typische Muster eines para-disubstituierten Benzols (Abb. 52). Die para-ständige Methylgruppe erscheint als Singulett bei 2.24 ppm.

Tab. 48: <sup>1</sup>H-NMR-Daten (CDCl<sub>3</sub>) von 19

| Chemische Verschiebung [ð] | Signalproton        |
|----------------------------|---------------------|
| 2.24 ppm; s; (3H)          | Ph-CH3              |
| 4.68 ppm; s; (10H)         | С-Н ( $\eta^5$ -Ср) |
| 6.88 ppm; m; (2H)          | C-H (Phenyl)        |
| 7.27 ррт; т; (2Н)          | C-H (Phenyi)        |



Abb. 52: <sup>1</sup>H-NMR - Spektrum (CDCl<sub>3</sub>) von 19

Das Elektronenabsorptionsspektrum wurde in THF aufgenommen. Näher betrachtet werden sollen die beiden Maxima, die oberhalb 300 nm in Erscheinung treten.



Tab. 49: UV/VISspektroskopische Daten von 19

| λ <sub>max</sub> [nm]<br>(E [cm <sup>-1</sup> ]) | $\epsilon$ (1 mol <sup>-1</sup> cm <sup>-1</sup> ) |
|--------------------------------------------------|----------------------------------------------------|
| 421 (23753)                                      | 902                                                |
| 356 (28089)                                      | 722                                                |

Abb. 50: UV/VIS-Spektrum (THF) von 19 (300 - 700 nm)

Betrachtet man die Anordnung Tc-S-Ph so können sowohl zwischen dem Technetiumion und dem Schwefelatom, als auch zwischen dem Schwefelatom und den  $\pi^*$ -Niveaus des Phenylringes charge-transfer-Übergänge stattfinden. Zieht man die Bandenlage des  $CT_O \rightarrow T_C$ -Übergangs von 18 heran, kann daraus folgern, daß aufgrund der größeren Polarisierbarkeit und geringeren Elektronegativität des Schwefelatoms gegenüber dem Sauestoff der  $CT_S \rightarrow T_C$ -Übergang bei niedrigerer Energie liegen sollte. Besagter Übergang kann der Bande bei 421 nm zugeschrieben werden (gegenüber 360 nm bei 18).

Das EI-Massenspektrum zeigt bei m/z 352 den Molekülpeak von 19. Die Abspaltung des Chalkogenligandrestes vom Molekül führt zum stabilen Fragment  $Cp_2Tc^+$  dessen Peak die höchste realtive Intensität aufweist. Weiter erscheinen eine Reihe von Peaks (Tab. 50, S 98), die von der Verbindung Cp\_3Tc (17) stammen. (Sämtliche C<sub>15</sub>-Fragmente sind auch im MS von reinem 17 eindeutig zu sehen<sup>[37]</sup>). Tc-Analyse und NMR-Spektrum (S. 96) lassen

nicht auf eine signifikante Verunreinigung von 19 durch nicht umgesetztes Edukt (Cp<sub>3</sub>Tc) schließen, sodaß man auf eine Entstehung von 17 in der Gasphase schließen kann. Der beim Massenspektrum von 18 erscheinende Peak der Verbindung Cp<sub>2</sub>TcH (vgl. Tab. 46, S. 94) wird im Falle von 19 nicht registriert.

| Verbindung | Mögliches Fragment                              | m/z ( | (rel. Int.[%]) |
|------------|-------------------------------------------------|-------|----------------|
| 19         | $Cp_2TcSC_6H_4Me^+$ (M <sup>+</sup> )           | 352   | (33)           |
|            | C <sub>15</sub> H <sub>18</sub> Tc <sup>+</sup> | 297   | (4)            |
|            | C <sub>15</sub> H <sub>17</sub> Tc <sup>+</sup> | 296   | (26)           |
|            | C <sub>15</sub> H <sub>16</sub> Tc <sup>+</sup> | 295   | (17)           |
|            | C <sub>15</sub> H <sub>15</sub> Tc <sup>+</sup> | 294   | (17)           |
|            | C <sub>15</sub> H <sub>14</sub> Tc <sup>+</sup> | 293   | (21)           |
|            | C <sub>15</sub> H <sub>13</sub> Tc <sup>+</sup> | 292   | (40)           |
|            | Cp <sub>2</sub> Tc <sup>+</sup>                 | 229   | (100)          |

Tab. 50: EI-MS-Fragmentierung von 19

# 2.4.3 Ein Vergleich der Cp<sub>2</sub>TcX - Verbindungen (X = Cp, Cl, OPh, SPhMe)

In allen Verbindungen liegt eine symmetrische, relativ stabile Cp<sub>2</sub>Tc<sup>+</sup>-Einheit vor, an die entlang der C<sub>2</sub>-Achse ein weiterer Ligand über eine  $\sigma$ -Bindung koordiniert ist. Dabei wird die Cp<sub>2</sub>Tc<sup>+</sup>-Einheit vor allem durch die signifikant kurzen Cp-Tc-Abstände von 187.7 pm (16)<sup>[37]</sup> bzw. 188.3 und 178.1 pm (17)<sup>[38]</sup> stabilisiert.



Abb. 54: Projektion der Cp<sub>2</sub>Tc<sup>+</sup>-Einheit<sup>[37]</sup>

Je nach Art des Liganden zeigen die Verbindungen unterschiedliche Eigenschaften in Bezug auf ihre Stabilität. Elektronisch gesehen gehorchen all diese Verbindungen der 18-Elektronenregel und zeigen am Zentralteilchen eine abgesättigte Edelgaskonfiguration.

Vergleicht man die Elektronegativitäten der koordinierten Ligandatome X so müßte zwischen Tc-O die stärksten Wechselwirkungen sein, gefolgt von Tc-Cl, Tc-S und Tc-C. Tatsächlich beobachtet man diese Ordnung bei den Absorptionsenergien der charge-transfer-Übergänge der jeweiligen Tc-X-Bindungen. Während die Übergänge zwischen Tc-O die energiereichste Bande aufweist, verschieben sich die entsprechenden Maxima bei Cl, S und C zu niedrigerer Energie. Zieht man die aus Dipolmessungen der Verbindungen errechneten effektiven Ladungen der koordinierten Atome X hinzu<sup>[137]</sup>, korrelieren die Absorptionsenergien der charge-transfer-Übergänge mit den entsprechenden Werten.

Tab. 51: Gegenüberstellung diverser gemessener- ( $\mu_{exp}$  [D]; E<sub>CT</sub>(Tc-X) [cm<sup>-1</sup>])), errechneter- ( $q_{eff}$  [e<sup>-</sup>]) und Literaturdaten (EN) der Cp<sub>2</sub>TcX-Verbindungen

| Cp <sub>2</sub> TeX | μ <sub>exp</sub><br>[D] | q <sub>eff</sub> (X) <sup>[137]</sup><br>[e⁻] | EN(X)[75] | E <sub>CT</sub> (Tc-X)<br>[cm <sup>-1</sup> ] |
|---------------------|-------------------------|-----------------------------------------------|-----------|-----------------------------------------------|
| X = OPh             | 6.177                   | 0.937                                         | 3.5       | 27708                                         |
| X = Cl              | 5.16                    | 0.915                                         | 3.16      | 26882                                         |
| X = SPhMe           | 6.557                   | 0.788                                         | 2.6       | 23753                                         |
| X = C(Cp)           | 7.14                    | 0.769                                         | 2.5       | 20790                                         |



Abb. 55: Korrelationsdiagramm E<sub>CT</sub>(Tc-X) - qeff

Mit diesem Stabilitätskriterium konkuriert eine kinetische Abschirmung des Technetiumzentrums. Während die dem Liganden X gegenüberliegende Seite durch die Cp-Ringe weitgehend abgeschirmt wird, ist die Angriffsseite stark von X beeinflußt.

So zeigt die Verbindung Cp<sub>2</sub>TcCp tatsächlich die geringste Stabilität. An der Luft zersetzen sich die Kristalle innerhalb kurzer Zeit, noch schneller wird die Verbindung in Lösung an der Luft zerstört. Dadurch, daß der  $\sigma$ -gebundene Cp-Ring aus sterischen Gründen nicht um die Tc-C-Achse rotieren kann, wird einmal das Molekül einer erhöhten Spannung ausgesetzt, zum anderen eine Niesche erzeugt, die einen leichten Zugriff auf das Zentralion ermöglicht. Hinzu kommt noch der Stabilitätsverlust des  $\sigma$ -gebundenen Cp-Ringes, der seinen aromatischen Zustand eingebüßt hat und olefinisch vorliegt.

Der Komplex Cp<sub>2</sub>TcCl ist weitgehend im kristallinen Zustand luftstabil, zeigt jedoch in Lösung nach wenigen Stunden Zersetzung. Der relativ stabilen Tc-Cl-Bindung steht auch eine weitgehend gute Abschirmung durch das voluminöse Chloridion gegenüber.

Cp<sub>2</sub>TcOPh (18) ist ebenfalls als Kristall an der Luft stabil und auch in Lösung dauert es an der Luft einige Stunden bis sich die gelborange Lösung dunkel verfärbt. Die starke Tc-O-Bindung wird durch die gute Abschirmung der Phenoxygruppe ergänzt.

Die größte Stabilität beobachtet man jedoch bei Cp2TcSPhMe (19). Der schmierige Feststoff zeigt unter dem Mikroskop an der Luft keine Veränderung und auch die Lösung hat noch nach Tagen die klare, orange Farbe der Verbindung. Hier scheint der abschirmende Einfluß des großen Schwefelatoms zusammen mit der Methylphenylgruppe für die Stabilität ausschlaggebend zu sein.

#### 2.4.4 Umsetzung von Cp<sub>2</sub>TcCl (16) mit KCpMo(CO)<sub>3</sub>

In der Hoffnung durch nukleophile Substitution das Chlorid durch eine negativ geladene CpMo(CO)<sub>3</sub><sup>-</sup>-Einheit zu ersetzen und somit eine Tc-Mo-Metallbindung zu schaffen, wurde Cp<sub>2</sub>TcCl aus KCp und Mo(CO)<sub>6</sub> synthetisiertem KCpMo(CO)<sub>3</sub> in-situ zugegeben. Die Reaktion wurde in THF bei Raumtemperatur durchgeführt. Nach extraktiver Aufarbeitung des Rohproduktes mit Pentan scheiden sich an der Kolbenwand eine Vielzahl von dunkelroten Kristallen ab, die als Cp<sub>2</sub>Mo<sub>2</sub>(CO)<sub>6</sub> eindeutig IR-spektroskopisch identifiziert werden konnten.



Die Reduktionskraft des CpMo(CO)3<sup>-</sup>-Anions scheint, dem Bestreben mit der Cp<sub>2</sub>Tc<sup>+</sup>-Einheit zu kombinieren, zu überwiegen. Es findet eine Oxidation von Mo(O) zu Mo(I) statt, die beiden entstehenden CpMo(CO)3-Fragmente kombinieren zu der bekannten Verbindung CpMo(CO)3-(CO)3MoCp<sup>[138]</sup>. Das vom Molybdän abgegebene Elektron müßte formal Tc(III) zu Tc(II) reduzieren, was eine Entstehung von Cp<sub>2</sub>Tc zur Folge hätte. Tatsächlich konnte man, nach Eindampfen des Extraktes und anschließender Sublimation des getrockneten Rückstandes, unter dem Mikroskop eine Zone von bernsteinfarbigen, dünnen Nadeln identifizieren, welche das dimere [Cp<sub>2</sub>Tc]<sub>2</sub> darstellen könnten. Aufgrund der geringen Quantität war eine weitere spektroskopische Untersuchung der Substanz nicht möglich. Der größte Teil der bereits früher isolierten, hochreaktiven Verbindung<sup>[37,139]</sup> scheint sich im Verlauf der Reaktion und Aufarbeitung zersetzt zu haben.

## 3. Experimenteller Teil

"Der, in Gesellschaft von Adepten, Sich in die schwarze Küche schloß Und, nach unendlichen Rezepten, Das Widrige zusammengoß. J.W. v. Goethe

#### 3.1 Allgemeine Arbeitstechniken

Sämtliche Arbeiten mit Technetiumverbindungen fanden unter Berücksichtigung der einschlägigen Sicherheitsbestimmungen in Glove-Boxen statt. Alle präparative Arbeiten, die Aufnahme von IR-, UV-, NMR- Spektren, Technetiummassenspektren und Technetiumanalysen sind im Kernforschungszentrum Karlsruhe, Institut für Heiße Chemie (IHCH) durchgeführt worden. Die Röntgenstrukturanalysen der Technetiumkristalle wurden im Europäischen Institut für Transurane (EITU) Karlsruhe, die Röntgenstrukturanalysen der Mangan- und Rheniumverbindungen, sowie deren Massenspektren im Anorganisch Chemischen Institut der Universität Heidelberg (Uni HD) gemacht bzw. aufgenommen.

Alle Arbeiten wurden unter Luft- und Feuchtigkeitsausschluß getätigt. Als Inertgas diente Argon (Ar 6.0), das über Phosphorpentoxid, Schwefelsäure, Kaliumhydroxid und Calciumhydrid getrocknet wurde.

Alle Apparaturen und Glasgefäße wurden vor ihrer Benutzung im Ölpumpenvakuum evakuiert, mehrfach mit Inertgas belüftet und mit Quecksilber-Rückschlagventilen gegen das Einströmen von Luft gesichert.

Der Reaktionsverlauf der Photolysen verfolgte man durch DC-Kontrolle (Kieselgel: Polygram SIL G/UV<sub>254</sub>, Fa. Machery Nagel). Als Säulenmaterialien für die säulenchromatographischen Aufarbeitungen wurde Kieselgel 60, Fa. Merck, der Korngrößen 0.05 - 0.2 und 0.05 - 0.063 verwendet. Die Dimension der Normaldrucksäulen sind den genauen Arbeitsvorschriften zu entnehmen.

Die für Reaktionen, Extraktionen und teilweise für Säulentrennungen und Umkristallisationen verwendeten Lösungsmittel sind durch mehrtägiges Kochen in Twisselmann-Umlaufapparaturen absolutiert und mit Argon gesättigt worden. Reinheitsgrad und Trockenmittel sind in Tab. 52 angegeben.

Die Bestrahlungen wurden mit einem Photoreaktor 400 der Firma Gräntzel Karlsruhe ausgeführt. Als Strahlungsquelle diente eine Quecksilber-Niederdrucklampe (Quarzglas Heralux, Leistung 400 W) mit einem Intensitätsmaximum bei 254 nm. Als Reaktionsgefäß diente ein Quarzrohr (4 cm Durchmesser, 15 cm Höhe, NS 29). Die Bestrahlungen wurden bei durch Luftkühlung konstant gehaltener Raumtemperatur durchgeführt.

| Tab. | 52: | Verwer | dete ] | Lösungm | ittel |
|------|-----|--------|--------|---------|-------|
|------|-----|--------|--------|---------|-------|

| LÖSUNGSMITTEL   | REINHEITSGRAD | TROCKENMITTEL    |
|-----------------|---------------|------------------|
| Benzol          | pro analysi   | Kalium           |
| Cyclohexan      | pro analysi   | Kalium           |
| Diethylether    | pro analysi   | CaH <sub>2</sub> |
| n-Hexan         | pro analysi   | Natrium          |
| Methylenchlorid | pro analysi   | CaH <sub>2</sub> |
| n-Pentan        | pro analysi   | CaH <sub>2</sub> |
| Tetrahydrofuran | pro analysi   | Kalium           |
| Toluol          | pro analysi   | Natrium          |

#### 3.2 Spektren und Analytik

Infrarotspektren wurden mit einem Perkin-Elmer 283 IR - Spektrometer, die Elektronenabsorptionsspektren auf einem Perkin-Elmer Lambda 9 UV/VIS/NIR-Spektrometer aufgenommen. Das als Matrix benutzte KBr war auf 600°C vorgeglüht, die Lösungsmittel absolutiert. Die Quarzküvetten hatten eine Dicke von 0.1 cm bzw. 1 cm.

Zur Aufnahme der <sup>1</sup>H-NMR- und <sup>13</sup>C-NMR-Spektren diente ein Brucker-AC-250 NMR-Spektrometer.

Dipolmomentmessungen wurden bei 20°C in benzolischer Lösung mit einem Dipolmeter DM 01 der Fa. WTW - Weinheim gemacht.

Die EI-Massenspektren (Elektronenstoßionisation) wurden auf einem Finnigan MAT 8200 (Mn, Re) bzw. Finnigan MAT 4500 (Tc) aufgenommen.

Zur Durchführung der Röntgenstrukturanalyse diente ein Nicolet Syntex-R3-<sup>[140]</sup> bzw. Siemens-Stoe AED II Vierkreisdifraktometer<sup>[141]</sup> mit einer Molybdän-Röntgenröhre (MoK $\alpha$  71.073 pm) und Graphitmonochromator. Für die Strukturaufklärung wurde das SDP-Plus-<sup>[142]</sup> bzw. das SHELXTL-Plus-Programm<sup>[143]</sup> (Microvax II Rechenanlage) unter Benutzung von Patterson- und Fouriersynthesen verwendet. Verfeinert wurde die Struktur nach der Methode der kleinsten Fehlerquadrate. Die Atomfaktoren wurden den International Tables entnommen<sup>[144]</sup>.

Für die Technetiumanalyse stand ein Flüssigszintillationszähler Beckmann LS 6800 zur Verfügung.

Die effektiven magnetischen Momente wurden nach der Faraday-Methode<sup>[92]</sup> bestimmt, aus der Kraft, die die Proben in einem statischen, inhomogenen Magnetfeld

erfahren. Übertragen wird die Kraft auf eine elektronische Mikrowaage der Fa. Sartorius vom Typ 4102. Bei dem Magneten handelt es sich um einen Forschungsmagneten B-E 25 C 8 der Fa. Bruker-Physik mit Polschuhen vom Henry-Typ.

Die Schmelz- bzw. Zersetzungspunkte der Mangan- und Rheniumverbindungen wurden auf einem Schmelztisch mit Monoskop der Fa. Hans Bock ermittelt und sind korrigiert. sind in eine Glaskapillare eingeschmolzen und deren Die Schmelz- bzw. Zersetzungspunkte der Technetiumverbindungen wurden mit einer Schmelzpunktbestimmungsapparatur der Fa. Edmund Bühler, Tübingen bestimmt.

Das mikroanalytische Labor der chemischen Institute der Universität Heidelberg führte die Elementaranalysen der Mangan- und Rheniumverbindungen durch.

Die spektroskopischen und analytischen Arbeiten wurden von folgenden Operatoren durchgeführt:

| Infrarotspektroskopie       | selbst                      |
|-----------------------------|-----------------------------|
| Kernresonanzspektroskopie   | J. Müller/IHCH              |
| EI-Massenspektroskopie      | B. Termin/Uni HD (Mn,Re)    |
|                             | W. Roth/IHCH (Tc)           |
| UV/VIS-Spektroskopie        | selbst                      |
| Dipolmomentmessung          | Dr. R. Maier/IHCH           |
| Molekulargewichtsbestimmung | Dr. R. Maier/IHCH           |
| Magnetische Messung         | B. Powietzka/IHCH           |
| Röntgenstrukturanalyse      | Dr. B. Nuber/Uni HD (Mn,Re) |
|                             | Dr. J. Rebizant/EITU (Tc)   |
|                             | Dr. D. Meyer/EITU (Tc)      |
| Technetiumanalyse           | selbst                      |
| Schmelzpunkbestimmung       | selbst                      |

#### 3.3 Ausgangsverbindungen

Die Ausgangsverbindungen waren entweder käuflich oder wurden nach indizierten Literaturvorschriften hergestellt. Die Verbindungen  $Tc_2O_7$  und  $TcCl_4$  wurden von Herrn E. Dornberger (IHCH) nach modifizierten Literaturvorschriften synthetisiert.  $Tc_2(CO)_{10}$  wurde nach verschiedenen Methoden von E. Dornberger, J. Müller und Dr. R. Maier synthetisiert.

| Tc <sub>2</sub> (CO) <sub>10</sub> [15,39,41]                                             |  |
|-------------------------------------------------------------------------------------------|--|
| BrRe(CO)5 <sup>[146]</sup>                                                                |  |
| Na[HB(3,5-Me <sub>2</sub> C <sub>3</sub> HN <sub>2</sub> ) <sub>3</sub> ] <sup>[58]</sup> |  |
| Cp <sup>*</sup> Tc(CO)3 <sup>[32]</sup>                                                   |  |
| Tc <sub>2</sub> O <sub>7</sub> <sup>[45]</sup>                                            |  |
| КСрМо(СО) <sub>3</sub> [137]                                                              |  |

BrMn(CO)<sub>5</sub><sup>[145]</sup> K[HB(C<sub>3</sub>H<sub>3</sub>N<sub>2</sub>)<sub>3</sub>]<sup>[58]</sup> K(Me<sub>4</sub>C<sub>4</sub>N)<sup>[147]</sup> Mn<sub>2</sub>O<sub>7</sub><sup>[148]</sup> TcCl<sub>4</sub><sup>[44]</sup>

## 3.4 Reaktionen mit $M_2(CO)_{10}$ als Ausgangsverbindung (M = Mn, Tc, Re)

#### 3.4.1 Synthese von $BrTc(CO)_5$ (1) und $[BrTc(CO)_4]_2$ (2)

420 mg (0.879 mmol) Technetiumdecacarbonyl werden in einem 50 ml Kolben vorgelegt und in 10 ml CCl<sub>4</sub> gelöst. Danach werden 230 mg (1.438 mmol) Brom in 5 ml CCl<sub>4</sub> gelöst und langsam der Carbonyllösung zugetropft, wobei sofort ein farbloser Niederschlag ausfällt. Man läßt noch 5 h bei Raumtemperatur rühren und entfernt dann das Lösungsmittel im Argonstrom. Zurück bleibt nahezu farbloses BrTc(CO)5, das für weitere Reaktionen eingesetzt werden kann.

Gibt man 1 in eine Sublimationsampulle unter Argon bei 10 torr und erhitzt auf 70°C, scheidet sich die Verbindung  $[BrTc(CO)_4]_2$  (2) als farblose Kristalle neben wenig sublimiertem  $BrTc(CO)_5$  an der Glaswand ab.

<u>1</u> BrTc(CO)5; C5BrO5Tc (318.95)

**Eigenschaften:** farbloser Feststoff, der sich beim längeren Liegenlassen an Luft bräunlich verfärbt, kristallisiert in Form farbloser Prismen, kaum löslich in Pentan, n-Hexan, CCl<sub>4</sub>, mäßig löslich in CH<sub>2</sub>Cl<sub>2</sub>, gut löslich in THF **Ausbeute:** quantitativ bezogen auf Tc<sub>2</sub>(CO)<sub>10</sub>

| Tc-Analyse: | ber. | [%]: | 31.03 |
|-------------|------|------|-------|
|             | gef. | [%]: | 30.80 |

IR (KBr)  $\nu_{co}$  [cm<sup>-1</sup>]: 2153 m; 2088 sh,m; 2069 s; 2048 s; 1996 s; 1985 s; 1950 m Kristallographische Daten: siehe Seite 128

#### <u>2</u> [BrTc(CO)<sub>4</sub>]<sub>2</sub>; C<sub>8</sub>Br<sub>2</sub>Tc<sub>2</sub>O<sub>8</sub> (581.89)

Eigenschaften: farbloser Feststoff, kristallisiert in Form stark lichtbrechende, luftstabile Prismen, kaum löslich in Pentan, Hexan, gut löslich in THF Ausbeute: 80% bezogen auf 1

| Tc-Analyse: | ber. [%]: | 34.02 |
|-------------|-----------|-------|
|             | gef. [%]: | 34.14 |

IR (KBr)  $\nu_{co}$  [cm<sup>-1</sup>]: 2119 m; 2055 sh,m; 2034 vs; 2010 vs; 1986 s; 1968 sh,s; 1958 sh,m; 1952 vs

Kristallographische Daten: siehe Seite 131

#### 3.4.2 Synthese der Verbindung [(THF)Tc(CO)<sub>3</sub>Br]<sub>2</sub> (3)

98 mg (0.31 mmol) BrTc(CO)5 werden in 50 ml THF gelöst und 20 h lang gekocht. Nach dem Entfernen des Lösungsmittels im Argonstrom wird der getrocknete Rückstand auf eine Extraktionsfritte (G3) gegeben und mit Pentan 2 Tage lang extrahiert. Schon nach wenigen Stunden fallen aus dem Extrakt feine, farblose Kristalle aus. Nach dem Abdekandieren des Extraktionsmittels wird der sehr feine, pulverartige Feststoff im Vakuum getrocknet. <u>3</u> [(THF)BrTc(CO)<sub>3</sub>]<sub>2</sub>; C<sub>14</sub>H<sub>16</sub>Br<sub>2</sub>O<sub>8</sub>Tc<sub>2</sub> (670.96)

Eigenschaften: farbloser Feststoff, der an Luft zerfließt und sich beim Aufbewahren unter Ar langsam gräulich färbt, mäßig löslich in  $CH_2Cl_2$ , gut löslich in THF Ausbeute: 86 mg (0.128 mmol) = 83.5% bezogen auf 1

| Tc-Analyse: | ber. [%]: | 29.55 |
|-------------|-----------|-------|
|             | gef. [%]: | 30.29 |

IR (KBr)  $\nu_{co}$  [cm<sup>-1</sup>]: 2039 s; 1949 vs; 1928 vs <sup>1</sup>H-NMR (250MHz;TMS;CDCl<sub>3</sub>)  $\delta$ : 4.39 (t,8H,CH<sub>2</sub>); 2.13 (m,8H,CH<sub>2</sub>) EI-MS: C<sub>4</sub>H<sub>8</sub>O<sup>+</sup> 72 (I = 100%; Basepeak); keine weiteren zuordbare Fragmente

#### 3.4.3 Synthese der Verbindung (C5H5N)2Tc(CO)3Br (4)

50 mg (0.075 mmol) [THFTc(CO)<sub>3</sub>Br]<sub>2</sub> (3) werden in 20 ml Pyridin gelöst und 5 h lang bei Raumtemperatur gerührt. Das Lösungsmittel wird langsam im Argonstrom abgedampft. Dabei fällt ein beige gefärbter Niederschlag aus, der aus einer Hexan/CH<sub>2</sub>Cl<sub>2</sub>-Lösung umkristallisiert wird.

#### $\underline{4}$ (C<sub>5</sub>H<sub>5</sub>N)<sub>2</sub>Tc(CO)<sub>3</sub>Br; C<sub>13</sub>H<sub>10</sub>BrN<sub>2</sub>O<sub>3</sub>Tc (421.13)

Eigenschaften: farblose, luftstabile, prismenförmige Kristalle, mäßig löslich in Pentan, n-Hexan, sehr gut löslich in THF, CH<sub>2</sub>Cl<sub>2</sub> Ausbeute: quantitativ bezogen auf 3

| Tc-Analyse: | ber. [%]: | 23.51 |
|-------------|-----------|-------|
|             | gef. [%]: | 23.78 |

IR (KBr)  $\nu_{co}$  [cm<sup>-1</sup>]: 2026 s; 1935 vs; 1906 vs

<sup>1</sup>H-NMR (250MHz;TMS;CDCl<sub>3</sub>)  $\delta$ : 8.78 (d,4H,CH); 7.83 (t,2H,CH); 7.34 (t,4H,CH) EI-MS: C<sub>5</sub>H<sub>5</sub>N<sup>+</sup> 79 (I = 100%; Basepeak); keine weiteren zuordbare Fragmente Kristallographische Daten: siehe Seite 133 3.4.4 Synthese der Verbindungen LM(CO)<sub>3</sub> und L<sup>\*</sup>M(CO)<sub>3</sub>
[L = Hydrotris(pyrazol-1-yl)borat, {M = Tc (5), Mn (5a), Re (5b)};
L<sup>\*</sup> = Hydrotris(3,5-dimethylpyrazol-1-yl)borat, {M = Tc (6), Mn (6a), Re (6b)}]

Da die Herstellung der Verbindungen auf dem gleichen Arbeitsweg erfolgt, ist es sinnvoll nur eine allgemeine Darstellungsmethode zu beschreiben. Einzelheiten können aus Tab. 53 entnommen werden.

Das zu reagierende Pentacarbonylbromid wird zusammen mit der entsprechenden Menge KL bzw. NaL<sup>\*</sup> in einem 100 ml Kolben vorgelegt, 50ml THF zugegeben und die Reaktionsmischung 12 - 16 h lang unter Rückfluß gekocht. Das Lösungsmittel wird nun im Vakuum abgezogen bzw. bei den Technetiumverbindungen im Argonstrom vertrieben. Der jeweils bräunliche Rückstand wird auf eine G3-Extraktionsfritte gegeben und mit Pentan mehrere Tage lang extrahiert. Dabei scheiden sich an der Kolbenwand gelbe (Mn) bzw. farblose (Tc, Re), analysenreine Kristalle ab, die nach Extraktionsbeendigung durch Dekantieren von der Lösung abgetrennt und im Vakuum getrocknet werden.

Durch Umkristallisieren aus CH<sub>2</sub>Cl<sub>2</sub>/Hexan oder Sublimation bei 10 torr unter Argon können von allen sechs Verbindungen Einkristalle erhalten werden.

#### <u>5</u> LTc(CO)3; C<sub>12</sub>H<sub>10</sub>BN<sub>6</sub>O<sub>3</sub>Tc (396.06)

Eigenschaften: farbloser, luftstabiler Feststoff, kristallisiert in Form farbloser Plättchen, sublimierbar, mäßig löslich in Pentan, n-Hexan, gut löslich in Benzol, sehr gut löslich in THF, CH<sub>2</sub>Cl<sub>2</sub>

Ausbeute: siehe Tab. 53 (S. 112) Fp [°C]: 228

Tc-Analyse:ber. [%]:24.10<br/>gef. [%]:23.48IR (KBr) $\nu_{\rm CO}$  [cm<sup>-1</sup>]:2024 s;1913 vs<br/> $\nu_{\rm BH}$  [cm<sup>-1</sup>]:2527 mUV/VIS (THF;d=0.1cm) max [nm]:270<sup>1</sup>H-NMR (250MHz;TMS;CDCl<sub>3</sub>)  $\delta$ :6.21 (t,3H,CH);7.64 (d,3H,CH);7.73 (d,3H,CH)1<sup>3</sup>C-NMR (250MHz;TMS;CDCl<sub>3</sub>)  $\delta$ :105.69 (C-4);135.27 (C-5);144.20 (C-3)EI-MS: M<sup>+</sup>396 (I = 48%)Kristallographische Daten: siehe Seite136Experimentell bestimmtes Dipolmoment  $\mu$  [D]:6.11

<u>5a</u> LMn(CO)3; C<sub>12</sub>H<sub>10</sub>BMnN<sub>6</sub>O<sub>3</sub> (352.00)

Eigenschaften: gelblicher, relativ luftstabiler Feststoff, kristallisiert in Form hellgelber Plättchen, zersetzt sich in Lösung an Luft nach mehreren Tagen, sublimierbar, allgemein besser löslich als 5

Ausbeute: siehe Tab. 53 (S. 112)

**Fp** [°C]: 145 (Zers.)

| Elementaranalyse: | ber. [%] | C 40.95 | H 2.86 | N 23.86 |
|-------------------|----------|---------|--------|---------|
|                   | gef. [%] | C 42.42 | Н 3.11 | N 22.91 |

IR (KBr)  $\nu_{\rm CO}$  [cm<sup>-1</sup>]: 2026 s; 1932 vs; 1915 vs;  $\nu_{\rm BH}$  [cm<sup>-1</sup>]: 2527 m UV/VIS (THF;d=0.1cm) max [nm]: 346 <sup>1</sup>H-NMR (250MHz;TMS;CDCl<sub>3</sub>)  $\delta$ : 6.22 (t,3H,CH); 7.65 (d,3H,CH); 7.83 (d,3H,CH)

<sup>13</sup>C-NMR (250MHz;TMS;CDCl<sub>3</sub>) δ: 105.82 (C-4); 135.33 (C-5); 144.20 (C-3)

EI-MS:  $M^+$  352 (I = 4.1%)

Kristallographische Daten: siehe Seite 137

Experimentell bestimmtes Dipolmoment  $\mu$  [D]: 6.09

<u>5b</u> LRe(CO)<sub>3</sub>; C<sub>12</sub>H<sub>10</sub>BN<sub>6</sub>O<sub>3</sub>Re (483.26)

Eigenschaften: farbloser, luftstabiler Feststoff, kristallisiert in Form farbloser Tafeln in zwei Modifikationen, sublimierbar, allgemein schwerer löslich als 5 Ausbeute: siehe Tab. 53 (S.112) Fp [°C]: 250

| Elementaranalyse: | ber. [%]: | C 29.83 | H 2.09 | N 17.39 |
|-------------------|-----------|---------|--------|---------|
|                   | gef. [%]: | C 30.07 | H 2.45 | N 16.91 |

IR (KBr)  $\nu_{CO} [cm^{-1}]$ : 2015 s; 1896 vs  $\nu_{BH} [cm^{-1}]$ : 2539 m

UV/VIS (THF;d=0.1cm) max [nm]: 282

<sup>1</sup>H-NMR (250MHz;TMS;CDCl<sub>3</sub>) δ: 6.22 (t,3H,CH); 7.65 (d,3H,CH); 7.84 (d,3H,CH)

<sup>13</sup>C-NMR (250MHz;TMS;CDCl<sub>3</sub>) δ: 106.31 (C-4); 135.20 (d,3H,CH); 144.98

(d,3H,CH)

EI-MS:  $M^+$  484 (I = 82%; Bezugsisotop <sup>187</sup>Re)

Kristallographische Daten: (monokline Modifikation) Seite 138, (trigonale

Modifikation) Seite 141 Experimentell bestimmtes Dipolmoment  $\mu$  [D]: 5.85

# <u>6</u> L<sup>\*</sup>Tc(CO)<sub>3</sub>; C<sub>18</sub>H<sub>22</sub>BN<sub>6</sub>O<sub>3</sub>Tc (480.22)

Eigenschaften: farbloser, luftstabiler Feststoff, kristallisiert in Form farbloser Tafeln, sublimierbar, mäßig löslich in Pentan, n-Hexan, gut löslich in Benzol, sehr gut löslich in CH<sub>2</sub>Cl<sub>2</sub>, THF Ausbeute: siehe Tab. 53 (S. 112) **Fp** [°C]: 296 (Zers.) **Tc-Analyse:** ber. [%]: 20.63 gef. [%]: 20.35  $\nu_{\rm CO} \, [{\rm cm}^{-1}]:$ IR (KBr) 2022 s; 1911 vs  $v_{\rm BH}$  [cm<sup>-1</sup>]: 2526 m UV/VIS (THF;d=0.1cm) max [nm]: 273 <sup>1</sup>H-NMR (250MHz;TMS;CDCl<sub>3</sub>) δ: 2.34 (s,9H,CH<sub>3</sub>); 2.43 (s,9H,CH<sub>3</sub>); 5.80 (s,3H,CH) <sup>13</sup>C-NMR (250MHz;TMS;CDCl<sub>3</sub>) δ: 12.57 (Me-5); 15.03 (Me-3); 106.42 (C-4); 144.26 (C-5); 151.35 (C-3)

EI-MS:  $M^+$  480 (I = 27,1%)

Kristallographische Daten: siehe Seite 141

**Experimentell** bestimmtes Dipolmoment  $\mu$  [D]: 6.64

# <u>6a</u> L<sup>\*</sup>Mn(CO)<sub>3</sub>; C<sub>18</sub>H<sub>22</sub>BMnN<sub>6</sub>O<sub>3</sub> (437.16)

Eigenschaften: gelber, relativ luftstabiler Feststoff, kristallisiert in Form gelber Tafeln, zersetzt sich in Lösung an Luft nach mehreren Tagen, sublimierbar, allgemein etwas besser löslich als 6 Ausbeute: siehe Tab. 53 (S. 112) Fp [°C]: 195

| Elementaranalyse: | ber. [%]: | C 52.41 | Н 5.34 | N 20.38 |
|-------------------|-----------|---------|--------|---------|
|                   | gef. [%]: | C 53.29 | Н 5.78 | N 20.67 |

IR (KBr)  $\nu_{co} [cm^{-1}]$ : 2023 s; 1912 vs  $\nu_{BH} [cm^{-1}]$ : 2525 m UV/VIS (THF;d=0.1cm) max [nm]: 347 <sup>1</sup>H-NMR (250MHz;TMS;CDCl<sub>3</sub>)  $\delta$ : 2.32 (s,9H,CH<sub>3</sub>); 2.51 (s,9H,CH<sub>3</sub>); 5.79 (s,3H,CH) <sup>13</sup>C-NMR (250MHz;TMS;CDCl<sub>3</sub>)  $\delta$ : 12.47 (Me-5); 14.80 (Me-3); 107.04 (C-4); 144.20 (C-5); 152.40 (C-3) EI-MS: M<sup>+</sup> 436 (I = 2.2%) Kristallographische Daten: siehe Seite 144 Experimentell bestimmtes Dipolmoment  $\mu$  [D]: 6.61

# **<u>6b</u>** L<sup>\*</sup>Re(CO)<sub>3</sub>; C<sub>18</sub>H<sub>22</sub>BN<sub>6</sub>O<sub>3</sub>Re (567.43)

Eigenschaften: farbloser, luftstabiler Feststoff, kristallisiert in Form farbloser Prismen, sublimierbar, auch nach Wochen in Lösung an Luft stabil, allgemein etwas schwerer löslich als 6 Ausbeute: siehe Tab. 53 (S. 112)

Fp [°C]: 310 (Zers.)

**Elementaranalyse:** ber. [%]: C 38.10 H 3.88 N 14.80 gef. [%]: C 38.52 H 4.05 N 14.49  $\nu_{\rm CO}$  [cm<sup>-1</sup>]: 2016 s; 1895 vs IR (KBr)  $\nu_{\rm BH} \, [\rm cm^{-1}]: 2529 \, \rm m$ UV/VIS (THF;d=0.1) max [nm]: 283 <sup>1</sup>H-NMR (250MHz;TMS;CDCl<sub>3</sub>) δ: 2.34 (s,9H,CH<sub>3</sub>); 2.46 (s,9H,CH<sub>3</sub>); 5.84 (s,3H,CH) <sup>13</sup>C-NMR (250MHz;TMS;CDCl<sub>3</sub>) δ: 12.92 (Me-5); 15.55 (Me-3); 106.64 (C-4); 144.15 (C-5); 152.44 (C-3) EI-MS:  $M^+$  568 (I = 60%, Bezugsisotop <sup>187</sup>Re) Kristallographische Daten: siehe Seite 146 Experimentell bestimmtes Dipolmoment  $\mu$  [D]: 6.42

| Verbindung                                   | Mengen der<br>Edukte                                                   | Reaktions bzw.<br>Extraktionszeit           | Ausbeute <sup>#</sup>   | Sublimat.<br>Temp. <sup>##</sup> |
|----------------------------------------------|------------------------------------------------------------------------|---------------------------------------------|-------------------------|----------------------------------|
| LTc(CO)3<br>(5)                              | 360 mg Bromid<br>(1.12 mmol)<br>300 mg KL<br>(1.19 mmol)               | 15 h<br>7 d                                 | 76%<br>(391.1 mg)       | 110°C                            |
| <b>LMn(CO)3</b><br>(5a)                      | 1.59 g Bromid<br>(5.79 mmol)<br>1.51 g KL<br>(6.00 mmol)               | 14 h<br>4 d                                 | 71.4%<br>(1.786 g)      | 100°C                            |
| LRe(CO)3<br>(5b)                             | 466 mg Bromid<br>(1.14 mmol)<br>290 mg KL<br>(1.15 mmol)               | 12 h<br>14 d                                | 82 <i>%</i><br>(439 mg) | 130°C                            |
| L <sup>*</sup> Tc(CO) <u>3</u><br>(6)        | 246 mg Bromid<br>(0.77 mmol)<br>260 mg NaL*<br>(0.81 mmol)             | 14 h<br>8 d                                 | 85 <i>%</i><br>(320 mg) | 120°C                            |
| L <sup>*</sup> Mn(CO)3<br>(6a)               | 1.03 g Bromid<br>(3.75 mmol)<br>1.31 g NaL <sup>*</sup><br>(4.10 mmol) | 16 h<br>4 d                                 | 75.3%<br>(1.38 g)       | 110°C                            |
| L <sup>*</sup> Re(CO)3<br>(6b)               | 384 mg Bromid<br>(0.94 mmol)<br>320 mg NaL*<br>(0.99 mmol)             | 13 h<br>8 d                                 | 91 <i>%</i><br>(490 mg) | 150°C                            |
| <sup>#</sup> bezogen auf c<br>## in zugeschm | las verwendete Carb<br>olzener Ampulle bei                             | onylmetallbromid<br>ca. 10 torr unter Argon |                         |                                  |

Tab. 53: Zur Synthese der Verbindungen 5, 5a und 5b bzw. 6, 6a und 6b

x

3.4.5 Synthese der Verbindungen Pyr<sup>\*</sup>M(CO)<sub>3</sub>·HPyr<sup>\*</sup> [Pyr<sup>\*</sup> = Tetramethylpyrrolyl] {M = Tc (7), Mn (7a), Re (7b)}

Das entsprechende Metallpentacarbonylbromid wird zusammen mit einem Überschuß Tetramethylpyrrolylkalium in THF gelöst und unter Rückfluß gekocht. Nach ca. 30 min beginnt sich die rotbraune Reaktionsmischung zu trüben (KBr). Nach Abbruch der Reaktion wird das Lösungsmittel im Vakuum abgezogen bzw. bei der Technetiumreaktion im Argonstrom entfernt. Der trockene, durch Zersetzungsprodukte violettbraun gefärbte Reaktionsrückstand wird auf eine Extraktionsfritte (G3) gebracht und mit Pentan extrahiert. Es entsteht im Falle der Manganverbindung eine klare, gelbe Lösung, bei Rhenium und Technetium eine klare, farblose Lösung. Nach dem Entfernen des Lösungsmittels bleibt ein kristalliner, gelber bzw. farbloser Niederschlag zurück. In allen drei Fällen lassen sich durch Sublimation analysenreine Einkristalle erhalten.

Die Reaktionsansätze, Reaktionszeiten und Sublimationsbedingungen sind in Tab. 54 aufgeführt.

# <u>7</u> Pyr<sup>\*</sup>Tc(CO)<sub>3</sub>·HPyr<sup>\*</sup>; C<sub>19</sub>H<sub>25</sub>N<sub>2</sub>O<sub>3</sub>Tc (428.42)

Eigenschaften: farbloser Festkörper, der sich an Luft nach wenigen Stunden unter Braunfärbung zersetzt, kristallisiert beim Sublimieren in Form langer, dünner Nadeln, gut löslich in Pentan, CH<sub>2</sub>Cl<sub>2</sub> und THF Ausbeute: siehe Tab. 54 (S. 115)

| Tc-Analyse: | ber. [%]: | 23.13 |
|-------------|-----------|-------|
|             | gef. [%]: | 23.31 |

IR (KBr)  $\nu_{c0}$  [cm<sup>-1</sup>]: 2027 s; 1934 vs UV/VIS (Cyclohex.;d=0.1cm) max[nm]: 287 <sup>1</sup>H-NMR (250MHz;TMS;C<sub>6</sub>D<sub>6</sub>)  $\delta$ : 1.92 (s,6H,Me-2,5); 1.40 (s,6H,Me-3,4); 2.00 (s,6H,Me-11,14); 1.91 (s,6H,Me-12,13) Kristallographische Daten: siehe Seite 149 Magnetische Suszeptibilität [in 10<sup>-6</sup> emu]: -264(±8) (berechnet: -263.68) <u>7a</u> Pyr<sup>\*</sup>Mn(CO)<sub>3</sub>·HPyr<sup>\*</sup>; C<sub>19</sub>H<sub>25</sub>MnN<sub>2</sub>O<sub>3</sub> (384.36)

**Eigenschaften:** gelber Festkörper, der sich an der Luft innerhalb einer Stunde unter Braunfärbung zersetzt, kristallisiert beim Sublimieren in Form langer, gelber Nadeln, gut löslich in Pentan, Benzol, CH<sub>2</sub>Cl<sub>2</sub>, THF Ausbeute: siehe Tab. 54 (S. 115)

IR (KBr)  $\nu_{c0}$  [cm<sup>-1</sup>]: 2020 s; 1935 vs UV/VIS (Cyclohex.;d=0.1cm) max [nm]: 341 <sup>1</sup>H-NMR (250MHz;TMS;C<sub>6</sub>D<sub>6</sub>)  $\delta$ : 1.83 (s,6H,Me-2,5); 1.30 (s,6H,Me-3,4); 2.00 (s,6H,Me-11,14); 1.91 (s,6H,Me-12,13) EI-MS: Me<sub>4</sub>PyrMn(CO)<sub>3</sub><sup>+</sup> 261 (I = 12%); Kristallographische Daten: siehe Seite 151

<u>7b</u> Pyr<sup>\*</sup>Re(CO)<sub>3</sub>·HPyr<sup>\*</sup>; C<sub>19</sub>H<sub>25</sub>N<sub>2</sub>O<sub>3</sub>Re (515.62)

**Eigenschaften:** farbloser Feststoff, der sich an Luft innerhalb mehrerer Stunden unter Braunfärbung zersetzt, kristallisiert beim Sublimieren in Form langer, farbloser Nadeln, gut löslich in Pentan, Benzol, CH<sub>2</sub>Cl<sub>2</sub>, THF **Ausbeute:** siehe Tab. 54 (S. 115)

Molekulargewichtsbestimmung: (Kryoskopie) gef.[g/mol]: 505.3

IR (KBr)  $\nu_{c0}$  [cm<sup>-1</sup>]: 2030 s; 1940 vs UV/VIS (Cyclohex.;d=0.1cm) max [nm]: 268 <sup>1</sup>H-NMR (250MHz;TMS;C<sub>6</sub>D<sub>6</sub>)  $\delta$ : 2.06 (s,6H,Me-2,5); 1.44 (s,6H,Me-3,4); 2.00 (s,6H,Me-11,14); 1.91 (s,6H,Me-12,13) EI-MS: Me<sub>4</sub>PyrRe(CO)<sub>3</sub><sup>+</sup> 393 (I = 30%; Bezugsisotop <sup>187</sup>Re) Kristallographische Daten: siehe Seite 151

| Verbindung                                                                                         | Mengen der<br>Edukte                                                     | Reaktions-<br>Extrakt.Zeit | Ausbeute <sup>#</sup> | Subl.<br>Temp. <sup>##</sup> |  |  |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------|-----------------------|------------------------------|--|--|
| Pyr <sup>*</sup> Mn(CO)3°HPyr <sup>*</sup><br>(7a)                                                 | 550 mg Bromid<br>(2.00 mmol)<br>360 mg KPyr <sup>*</sup><br>(2.23 mmol)  | 13 h<br>3 d                | 28%<br>(215 mg)       | 60°C                         |  |  |
| Pyr <sup>*</sup> Tc(CO) <sub>3</sub> ·HPyr <sup>*</sup><br>(7)                                     | 120 mg Bromid<br>(0.38 mmol)<br>90 mg KPyr <sup>*</sup><br>(0.56 mmol)   | 12 h<br>3 d                | 37.8%<br>(61 mg)      | 70°C                         |  |  |
| Pyr <sup>*</sup> Re(CO) <sub>3</sub> °HPyr <sup>*</sup><br>(7b)                                    | 200 mg Bromid<br>(0.49 mmol)<br>116 mg KPyr <sup>**</sup><br>(0.80 mmol) | 13 h<br>4 d                | 35.4%<br>(89 mg)      | 70°C                         |  |  |
| #bezogen auf eingesetztes Pentacarbonylbromid<br>## in Ampulle eingeschmolzen unter ca. 10 torr Ar |                                                                          |                            |                       |                              |  |  |

| 1 and 34: Zur Synthese der Verbindungen 7, 7a und 7 | Tab. | 54: | Zur | Synthese | der | Verbindungen | 7. | 7a | und | 7 |
|-----------------------------------------------------|------|-----|-----|----------|-----|--------------|----|----|-----|---|
|-----------------------------------------------------|------|-----|-----|----------|-----|--------------|----|----|-----|---|

# 3.4.5 Synthese von Hydrotris(3,5-dimethylpyrazol-1-yl)borato-tetrahydrofuranorheniumdicarbonyl (8b)

In einem Bestrahlungsreaktor werden 232 mg (0.38 mmol)  $L^*Re(CO)_3$  in 20 ml THF gelöst und 40 min lang bei Raumtemperatur bestrahlt. Die gelbbraune Lösung wird nun im Vakuum eingedampft, der Rückstand in Benzol aufgenommen und über Kieselgel (0.05 - 0.063; 15x2 cm) chromatographiert. Neben sehr wenig farbloser Ausgangsverbindung läßt sich die gelbe Verbindung 8b als 2. Fraktion mit Benzol eluieren. Beim langsamen Eindampfen des Lösungsmittels kristallisiert 8b als gelber Niederschlag aus. 8b läßt sich aus CH<sub>2</sub>Cl<sub>2</sub>/Hexan umkristallisieren.

<u>**8b</u>** L<sup>\*</sup>Re(CO)<sub>2</sub>THF; C<sub>21</sub>H<sub>30</sub>BN<sub>6</sub>O<sub>3</sub>Re (611.52)</u>

Eigenschaften: gelber, luftstabiler Festkörper, kristallisiert aus der CH<sub>2</sub>Cl<sub>2</sub>/Hexan-Lösung in Form gelber Plättchen, wenig löslich in Pentan, n-Hexan, gut löslich in Benzol, Ether, sehr gut löslich in THF,  $CH_2Cl_2$ , Ausbeute: 26 mg (0.043 mmol) = 10% bezogen auf L<sup>\*</sup>Re(CO)<sub>3</sub> Fp [°C]: 240 (Zers.)

IR(KBr)  $\nu_{CO} [cm^{-1}]$ : 1933 s; 1846 s  $\nu_{BH} [cm^{-1}]$ : 2525 m UV/VIS (THF;d=0.1cm) max [nm]: 406; 319 sh [nm]: 268; 261; 250 <sup>1</sup>H-NMR (250MHz;TMS;CDCl<sub>3</sub>)  $\delta$ : 1.91 (t,4H,CH<sub>2</sub>); 2.34 (s,6H,CH<sub>3</sub>); 2.36 (s,6H,CH<sub>3</sub>); 2.46 (s,3H,CH<sub>3</sub>); 2.59 (s,3H,CH<sub>3</sub>); 4.47 (t,4H,CH<sub>2</sub>); 5.78 (s,1H,CH); 5.82 (s,1H,CH) EI-MS: M<sup>+</sup>-H 610 (I = 74%; Bezugsisotop <sup>187</sup>Re) Kristallographische Daten: siehe Seite 153

# 3.4.6 Synthese von Hydrotris(pyrazol-1-yl)borato - triphenylphosphano technetiumdicarbonyl (9)

53 mg (0.12 mmol) LTc(CO)<sub>3</sub> werden in den Bestrahlungsreaktor gegeben und in 10 ml THF gelöst, und 45 min lang bei Raumtemperatur bestrahlt. Die schon nach wenigen Minuten gelb gefärbte Lösung ist am Ende der Bestrahlung dunkelbraun gefärbt. Nun werden 70 mg (0.26 mmol) Triphenylphosphan in 5 ml THF gelöst und mit einer Spritze der Reaktionslösung zugegeben. Es wird bei Raumtemperatur 14 h lang gerührt. Nach dem Abdampfen des Lösungsmittels im Argonstrom wird der dunkelbraune, ölige Rückstand mit Benzol aufgenommen und über eine mit Kieselgel gefüllte Säule (0.05 - 0.063; 15x2 cm) chromatographiert. Nach überschüssigem Triphenylphosphan läßt sich **9** mit Benzol als gelbe Fraktion eluieren. Das nach Abdampfen des Lösungsmittels ölige Produkt kristallisiert nach Zugabe von Pentan aus und läßt sich aus  $CH_2Cl_2/Hexan$ umkristallisieren. Man erhält gelbe, analysenreine Kristalle.

#### <u>9</u> LTc(CO)<sub>2</sub>PPh<sub>3</sub>; C<sub>29</sub>H<sub>25</sub>BN<sub>6</sub>O<sub>2</sub>PTc (630.34)

Eigenschaften: hellgelber, luftstabiler Feststoff, kristallisiert aus der Lösung in Form gelber Prismen, wenig löslich in Pentan, n-Hexan, gut löslich in Benzol, CH<sub>2</sub>Cl<sub>2</sub>, THF

Ausbeute: 21 mg (0.033 mmol) = 28.7% bezogen auf LTc(CO)3 **Fp** [°C]: 237 (Zers.)

gef. [%]:  $\nu_{\rm CO} \, [{\rm cm}^{-1}]:$ 1939 s; 1860 s: 1833 s IR (KBr)  $\nu_{\rm BH}$  [cm<sup>-1</sup>]: 2475 m UV/VIS (THF;d=0.1cm) max [nm]: 263 sh [nm]: 385; 311; 274

ber. [%]:

**Tc-Analyse:** 

# 3.4.7 Synthese von Hydrotris(pyrazol-1-yl)borato-bis[diphenylmethylphosphan]technetiumcarbonyl (10)

120 mg (0.27 mmol) LTc(CO)<sub>3</sub> werden im Bestrahlungsreaktor in 20 ml THF gelöst, 200 mg (0.76 mmol) Triphenylphosphan zugegeben und bei Raumtemperatur 3 h lang bestrahlt. Nach Abdampfen des Lösungsmittels im Argonstrom bleibt ein öligbrauner Rückstand zurück. Er wird mit Benzol aufgenommen und über eine Kieselgelsäule (0.05 -0.2; 15x2 cm) chromatographiert. Mit Benzol kommen mehrere gelbe und braune Fraktionen, deren Rückstände wegen ihrer öligen Konsistenz und geringen Menge nicht bestimmt werden können. Mit Benzol/Ether (10:1) läßt sich 10 als eine grüne Fraktion eluieren, die nach Entfernung des Lösungsmittels als grüner Niederschlag anfällt. Beim Umkristallisieren in CH<sub>2</sub>Cl<sub>2</sub>/Hexan erhält man dunkelgrüne, analysenreine Kristalle.

#### <u>10</u> LTc(CO)[PPh<sub>2</sub>Me]<sub>2</sub>; C<sub>36</sub>H<sub>36</sub>BN<sub>6</sub>OP<sub>2</sub>Tc (740.48)

Eigenschaften: grüner, luftstabiler Festkörper, kristallisiert aus der Lösung in Form dunkelgrüner Plättchen, wenig löslich in Pentan, n-Hexan, gut löslich in Benzol, CH<sub>2</sub>Cl<sub>2</sub>, Ether, THF

Ausbeute: ca.10 mg = 5% bezogen auf LTc(CO)<sub>3</sub>

| <b>Tc-Analyse:</b> | ber. [%]: | 13.38 |
|--------------------|-----------|-------|
|                    | gef. [%]: | 13.89 |

14.34

14.13

IR (KBr)  $\nu_{CO} [cm^{-1}]$ : 1903 s  $\nu_{BH} [cm^{-1}]$ : 2493 m UV/VIS (THF;d=1cm) max [nm]: 619; 483 sh [nm]: 273; 266 <sup>1</sup>H-NMR (250;TMS;CDCl<sub>3</sub>)  $\delta$ : 7.72 (d,2H,CH); 7.67 (d,2H,CH); 7.47 (d,1H,CH); 7.3 (m,20H,CH); 6.17 (t,2H,CH); 6.02 (d,1H,CH); 5.42 (t,1H,CH); 1.25 (d,6H,CH<sub>3</sub>) [<sup>2</sup>J<sub>PH</sub> = 0.5 Hz] Kristallographische Daten: siehe Seite 155

# 3.4.8.1 Synthese von Hydrotris(3,5-dimethylpyrazol-1-yl)borato-trimethylphosphitomangandicarbonyl (11a)

100 mg (0.23 mmol)  $L^*Mn(CO)_3$  werden in einem Bestrahlungsreaktor mit 15 ml THF gelöst und 0.5 ml Trimethylphosphit (TMP) zugegeben. Nach 4 stündiger Bestrahlung bei Raumtemperatur wird noch eine weitere Stunde bei Raumtemperatur gerührt. Danach zieht man das Lösungsmittel im Vakuum ab. Der braungelbe Rückstand wird mit Benzol aufgenommen und über Kieselgel einer Säulenchromatographie unterzogen (0.05-0.063; 20x2 cm). Neben Spuren von Edukt kommt 11a mit Benzol als Laufmittel als zweite, intensiv gelb gefärbte Fraktion. Nach Entfernen des Lösungsmittels läßt sich der gelbe Rückstand in CH<sub>2</sub>Cl<sub>2</sub>/Hexan umkristallisieren.

# <u>11a</u> L<sup>\*</sup>Mn(CO)<sub>2</sub>[P(OMe)<sub>3</sub>]; C<sub>20</sub>H<sub>31</sub>BN<sub>6</sub>MnO<sub>5</sub>P (532.23)

**Eigenschaften:** gelber, an der Luft relativ stabiler Feststoff, kristallisiert aus der Lösung in Form gelber, feiner Nadeln, zersetzt sich in Lösung an der Luft in wenigen Tagen, löslich in Pentan, n-Hexan, gut löslich in Benzol, Ether, THF,  $CH_2Cl_2$ **Ausbeute:** 44 mg (0.083 mmol) = 26% bezogen auf L<sup>\*</sup>Mn(CO)<sub>3</sub> **Fp** [°C]: 198 (Zers.)

| Elementaranaly | vse: ber. [                                                                  | [%]:              | C 45.13 | Н 5.83 | N 15.78 |
|----------------|------------------------------------------------------------------------------|-------------------|---------|--------|---------|
|                | gef. [                                                                       | [%]:              | C 45.09 | Н 5.94 | N 15.50 |
| IR (KBr)       | ν <sub>co</sub> [cm <sup>-1</sup> ]:<br>ν <sub>BH</sub> [cm <sup>-1</sup> ]: | 1946 s;<br>2524 m | 1852 s  |        |         |

UV/VIS (THF;d=0.1) max [nm]: 362 sh [nm]: 308; 268

<sup>1</sup>H-NMR (250MHz;TMS;CDCl<sub>3</sub>)  $\delta$ : 5.68 (s,2H,CH); 5.61 (s,1H,CH); 3,26 (d,9H,POCH<sub>3</sub>) [<sup>3</sup>J<sub>PH</sub> = 11.5 Hz]; 2.53 (s,6H,CH<sub>3</sub>); 2.49 (s,3H,CH<sub>3</sub>); 2.38 (s,6H,CH<sub>3</sub>); 2.24 (s,3H,CH<sub>3</sub>) EI-MS: L\*MnP(OMe)<sub>3</sub><sup>+</sup> 476 (Peak mit höchster Masse, I = 16%)

Kristallographische Daten: siehe Seite 161

# 3.4.8.2 Synthese von Hydrotris(3,5-dimethylpyrazol-1-yl)borato-trimethylphosphitotechnetiumdicarbonyl (11) und Hydrotris(3,5-dimethylpyrazol-1-yl)boratotrimethylphosphito-rheniumdicarbonyl (11b)

128 mg (0.27 mmol)  $L^*Tc(CO)_3$  bzw. 145 mg (0.26 mmol)  $L^*Re(CO)_3$  werden in den Photoreaktor gegeben, in 10 ml THF gelöst und 30 min. bei Raumtemperatur bestrahlt. Nach Bestrahlungsende wird der Reaktionsmischung 0.5 ml P(OMe)\_3 (TMP) zugegeben und im Falle der Technetiumverbindung bei Raumtemperatur 14 h gerührt, im Falle der Rheniumverbindung 5 h unter Rückfluß gekocht.

Nach dem Entfernen des Lösungsmittels wird der jeweils gelbbraune Rückstand mit Benzol aufgenommen und über Kieselgel gesäult (0.05 - 0.063; 15x2 cm). In beiden Fällen läßt sich als 1. Fraktion mit Benzol als Laufmittel wenig Ausgangsverbindung, als 2. Fraktion das gewünschte Produkt eluieren.

Die Rheniumverbindung läßt sich gut in CH<sub>2</sub>Cl<sub>2</sub>/Hexan umkristallisieren. Die Technetiumverbindung wird nach der chromatographischen Aufarbeitung zur Nachreinigung mit Pentan extrahiert. Der klare, farblose Extrakt wird innerhalb mehrerer Tage langsam abgedampft. An der Kolbenwand fallen büschelartig wachsende, farblose Nadeln an.

Beide Verbindungen lassen sich bei 110°C im Vakuum unter ca. 10 torr Ar in abgeschmolzener Glasampulle sublimieren. Die dabei entstehenden Kristalle sind jedoch sehr klein und verwachsen.

# <u>11</u> L<sup>\*</sup>Tc(CO)<sub>2</sub>[P(OMe)<sub>3</sub>]; C<sub>20</sub>H<sub>31</sub>BN<sub>6</sub>O<sub>5</sub>PTc (576.29)

Eigenschaften: farbloser, luftstabiler Festkörper, kristallisiert in Form büschelartig verwachsener, feiner Nadeln, sublimierbar, löslich in Pentan, n-Hexan, Benzol, gut löslich in CH<sub>2</sub>Cl<sub>2</sub>, THF

Ausbeute: 57 mg (0.099 mmol) = 37% bezogen auf  $L^{*}Tc(CO)_{3}$  (6)

Fp [°C]: 257 (Zers.)

| Tc-Analyse: | ber. [%]: | 17.18 |
|-------------|-----------|-------|
|             | gef. [%]: | 17.19 |

IR (KBr)  $\nu_{\rm CO}$  [cm<sup>-1</sup>]: 1954 vs; 1862 vs;  $\nu_{\rm BH}$  [cm<sup>-1</sup>]: 2525 m UV/VIS (THF;d=0.1cm) sh [nm]: 274; 232 <sup>1</sup>H-NMR (250MHz;TMS;CDCl<sub>3</sub>)  $\delta$ : 5.77 (s,2H,CH); 5.73 (s,1H,CH); 3.32 (d,9H,POCH<sub>3</sub>) [<sup>3</sup>J<sub>PH</sub> = 11.5 Hz]; 2.47 (s,3H,CH<sub>3</sub>); 2.45 (s,6H,CH<sub>3</sub>); 2.36 (s,6H,CH<sub>3</sub>); 2.28 (s,3H,CH<sub>3</sub>) EI-MS: M<sup>+</sup> 576 (I = 20.5%) Kristallographische Daten: siehe Seite 156

# <u>11b</u> L<sup>\*</sup>Re(CO)<sub>2</sub>[P(OMe)<sub>3</sub>]; C<sub>20</sub>H<sub>31</sub>BN<sub>6</sub>O<sub>5</sub>PRe (663.49)

Eigenschaften: farbloser, luftstabiler Festkörper, kristallisiert aus der Lösung in Form farbloser, feiner Nadeln, sublimierbar, wenig löslich in Pentan, n-Hexan, gut löslich in Benzol, sehr gut löslich in CH<sub>2</sub>Cl<sub>2</sub>, THF

Ausbeute: 96 mg (0.145 mmol) = 55% bezogen auf  $L^*Re(CO)_3$  (6b) Fp [°C]: 270

| Elementaranalyse: | ber. [%]: | C 36.21 | H 4.68 | N 12.66 |
|-------------------|-----------|---------|--------|---------|
|                   | gef. [%]: | C 36.35 | H 4.73 | N 12.33 |

IR (KBr)  $\nu_{\rm CO}$  [cm<sup>-1</sup>]: 1939 vs; 1844 vs  $\nu_{\rm BH}$  [cm<sup>-1</sup>]: 2531 w

UV/VIS (Cyclohexan;d=0.1cm) max [nm]: 259

sh [nm]: 216; 232;

<sup>1</sup>H-NMR (250MHz;TMS;Aceton-D6)  $\delta$ : 5.89 (s,2H,CH); 5.83 (s,1H,CH); 3.29 (d,9H,POCH<sub>3</sub>) [<sup>3</sup>J<sub>PH</sub> = 15.9Hz]; 2.46 (s,6H,CH<sub>3</sub>); 2.46 (s,3H,CH<sub>3</sub>); 2.39 (s,6H,CH<sub>3</sub>); 2.31 (s,3H,CH<sub>3</sub>) EI-MS: M<sup>+</sup> 664 (I = 100%, Bezugsisotop <sup>187</sup>Re) Kristallographische Daten: siehe Seite 166

## 3.4.9 Synthese von $\mu$ -Distickstoff-bis[hydrotris(3,5-dimethylpyrazol-1-yl)boratotechnetiumdicarbonyl] (12)

80 mg (0.25 mmol)  $L^{*}Tc(CO)_{3}$  (6) werden in 15 ml THF im Bestrahlungsreaktor gelöst und 30 min bei Raumtemperatur bestrahlt. Die braungelbe Lösung wird im Stickstoffstrom eingedampft. Das braune ölige Rohprodukt wird mit Benzol aufgenommen und über eine Kieselgelsäule (0.05 - 0.2;15x2 cm) chromatographiert. Als erste Zone wird wenig 6 mit Benzol eluiert, als zweite Zone kommt 12 mit leicht bräunlicher Farbe, die sich beim Eindampfen intensiviert. Die darauffolgenden Zonen von öliger Konsistenz konnten nicht charakterisiert werden. Nach dem Abdampfen des Lösungsmittels im Stickstoffstrom bleibt 12 als brauner Feststoff zurück, der sich in CH<sub>2</sub>Cl<sub>2</sub>/Hexan umkristallisieren läßt.

# <u>12</u> [ $L^*$ Tc(CO)<sub>2</sub>]<sub>2</sub>( $\mu$ -N<sub>2</sub>); C<sub>34</sub>H<sub>44</sub>B<sub>2</sub>N<sub>14</sub>O<sub>4</sub>Tc<sub>2</sub> (932.44)

Eigenschaften: brauner, luftstabiler Feststoff, kristallisiert aus der Lösung in Form violettbrauner Prismen, wenig löslich in Pentan, n-Hexan, gut löslich in Benzol, CH<sub>2</sub>Cl<sub>2</sub>, THF Ausbeute: 11.6 mg (0.04 mmol) = 18.8% bezogen auf  $L^*Tc(CO)_3$  (6)

Fp [°C]: 187 (Zers.)

Tc-Analyse:ber. [%]:21.24<br/>gef. [%]:gef. [%]:20.95IR (KBr) $\nu_{co}$  [cm<sup>-1</sup>]:1964 s;1941 s;1899 vs<br/> $\nu_{BH}$  [cm<sup>-1</sup>]:2527 wUV/VIS (THF;d=0.1cm)max [nm]:464;336<br/>sh [nm]:302;362<sup>1</sup>H-NMR (250MHz;TMS;CDCl<sub>3</sub>)  $\delta$ :5.72 (s,2H,CH);5.64 (s,4H,CH);2.43<br/>(s,3H,CH<sub>3</sub>);2.36 (s,6H,CH<sub>3</sub>);2.34 (6H,CH<sub>3</sub>);2.30 (s,3H,CH<sub>3</sub>)EI-MS:L\*Tc(CO)<sub>2</sub>N<sub>2</sub>+480,Peak mit höchster Masse (I = 9%)9%)Kristallographische Daten:siehe Seite 171

#### 3.4.10 Synthese von Bis[hydrotris(3.5-dimethylpyrazol-1-yl)borato]-mangan (13a)

100 mg (0.24 mmol)  $L^*Mn(CO)_3$  (6a) werden in eine Sublimationsampulle bei ca. 10 torr unter Argon eingeschmolzen und auf 200°C erhitzt. Es scheiden sich am kälteren Teil der Ampulle drei Zonen ab. Als erste farblose Fraktion erhält man die Verbindung [HB(C<sub>5</sub>H<sub>7</sub>N<sub>2</sub>)<sub>2</sub>]<sub>2</sub>, als zweite und größte Fraktion 6a und als Dritte wenig farbloses 13a.

<u>13a</u> L<sup>\*</sup><sub>2</sub>Mn; C<sub>30</sub>H<sub>44</sub>B<sub>2</sub>MnN<sub>12</sub> (649.32)
Eigenschaften: farblose, quaderförmige, luftstabile Kristalle, nicht löslich in Pentan, löslich in CH<sub>2</sub>Cl<sub>2</sub>, THF
Ausbeute: 4 mg (0.012 mmol) = 5 % bezogen auf L<sup>\*</sup>Mn(CO)<sub>2</sub> (6a)
Fp [°C]: 283 (Zers.)

**IR** (KBr)  $\nu_{BH}$  [cm<sup>-1</sup>]: 2526 m **EI-MS:** M<sup>+</sup> 649 (I = 100%) **Kristallographische Daten:** siehe Seite 173

# 3.4.11 Reaktionen von Cp<sup>\*</sup>Tc(CO)<sub>3</sub> mit oxidierenden Medien

a) mit Mn<sub>2</sub>O<sub>7</sub>

In einer auf -78°C gekühlten Lösung von 150 mg (0.472 mmol)  $Cp^*Tc(CO)_3$  in 3 ml CCl<sub>4</sub> und 6 ml Aceton werden tropfenweise unter Schutzgas 4 ml einer Lösung aus Mn<sub>2</sub>O<sub>7</sub> in CCl<sub>4</sub> (Gehalt: 59 mg/ml) unter starkem Rühren zugegeben. Nach beendeter Zugabe wird noch 1 <sup>1/2</sup> h gerührt und danach langsam auf Raumtemperatur erwärmt. Man filtriert die Reaktionsmischung über 1 cm Kieselgel und wäscht den Rückstand 4 mal mit CH<sub>2</sub>Cl<sub>2</sub>. Die braungelbe Lösung wird eingedampft. Es bleibt ein braungelbes Öl zurück, das sich nicht kristallisieren läßt und im IR-Spektrum keinen Hinweis auf eine Technetiumverbindung gibt.

#### b) photolytisch mit O<sub>2</sub>

220 mg (0.69 mmol)  $\operatorname{Cp}^*\operatorname{Tc}(\operatorname{CO})_3$  werden in 30 ml THF gelöst und 2 h lang mit UV-Licht bestrahlt. In die braungelbe Lösung wird nun Sauerstoff eingeleitet und der Gasraum des Reaktors mit Sauerstoff abgesättigt. Danach wird nochmals 30 min bestrahlt und 14 weitere Stunden gerührt. Die braune Lösung wird bis zur Trockene eingeengt und mit Benzol aufgenommen, wobei ein in Benzol nicht löslicher Rückstand übrigbleibt. Es wird über eine mit Kieselgel gefüllte Säule (0.005-0.063; 10x2 cm) chromatographiert. Als erste Fraktion erhält man mit Benzol farbloses Ausgangsprodukt Cp<sup>\*</sup>Tc(CO)<sub>3</sub>, als weitere Fraktion wenig gelbes Cp<sup>\*</sup><sub>2</sub>Tc<sub>2</sub>(CO)<sub>5</sub> (f) (s.S. 6). Die beiden Verbindungen wurden IR spektroskopisch analysiert<sup>[32]</sup>. Der zurückgebliebene Rückstand ist löslich in CH<sub>2</sub>Cl<sub>2</sub> und Acetonitril, konnte jedoch nicht charakterisiert werden.

## 3.5 Reaktionen mit Tc<sub>2</sub>O<sub>7</sub> als Ausgangsverbindung

#### 3.5.1 Synthese von Hydrotris(pyrazol-1-yl)borato-technetiumtrioxid (14)

340 mg (1.09 mmol) Tc<sub>2</sub>O<sub>7</sub> werden in 20 ml THF gelöst und mit fl. Stickstoff eingefroren. Dann werden 276 mg (1.09 mmol) Hydrotris(pyrazol-1-yl)boratokalium zugegeben und die Reaktionsmischung langsam aufgetaut. Nun wird unter Erwärmung auf Raumtemperatur, und weiter noch eine Stunde bei Raumtemperatur gerührt. Es entsteht eine gelbbraune Reaktionsmischung mit einem hellgelben Niederschlag. Es wird abfiltriert und der Rückstand 2 mal mit Wasser und 1 mal mit Aceton gewaschen. Der Rückstand ist analysenreines 14 und läßt sich durch Extraktion mit Pentan/Ether 1 : 2 kristallisieren. Versuche aus CH<sub>2</sub>Cl<sub>2</sub>/Hexan Einkristalle zu züchten sind erfolglos.

#### <u>14</u> LTcO<sub>3</sub>; C<sub>9</sub>H<sub>10</sub>BN<sub>6</sub>O<sub>3</sub>Tc (360.03)

Eigenschaften: hellgelber Feststoff, der bei der Extraktion als blaßgelbe Plättchen kristallisiert, nicht sublimierbar, zersetzt sich in Lösung nach längerem Stehenlassen an der Luft unter Braunfärbung, nicht löslich in Pentan, Hexan, mäßig löslich in Aceton, THF, Ether, CH<sub>2</sub>Cl<sub>2</sub>

Ausbeute: 128 mg (0.38 mmol) = 35% bezogen auf Tc<sub>2</sub>O<sub>7</sub> Fp [°C]: > 185 (Zers.)

Tc-Analyse:ber. [%]:27.50gef. [%]:27.63

IR (KBr)  $\nu_{TcO}$  [cm<sub>-1</sub>]: 921 s,sh; 897 vs; 884 vs; 868 m,sh; 853 m  $\nu_{BH}$  [cm<sup>-1</sup>]: 2520 m UV/VIS (THF;d=0.1) max [nm]: 265 <sup>1</sup>H-NMR (250MHz;TMS;CDCl<sub>3</sub>)  $\delta$ : 6.32 (t,3H,CH); 7.65 (d,3H,CH); 8.22 (d,3H,CH) EI-MS: M<sup>+</sup> 360 (I = 53%)

# 3.5.2 Synthese von Hydrotris(3,5-dimethylpyrazol-1-yl)boratotechnetiumtrioxid (15)

230 mg (0.74 mmol) Tc<sub>2</sub>O<sub>7</sub> werden in 40 ml THF gelöst und mit fl. Stickstoff eingefroren. Die stöchiometrische Menge von Hydrotris(3,5-dimethylpyrazol-1yl)boratonatrium (240 mg) wird zugegeben und die Reaktionsmischung langsam auftauen gelassen. Die anfänglich gelbe Lösung färbt sich mit der Zeit braun, wobei sich ein gelbbrauner Niederschlag bildet. Bei Raumtemperatur wird eine Stunde gerührt, der Niederschlag von der Lösung abfiltriert und jeweils 2 mal mit Wasser und 1 mal mit Aceton gewaschen. Der Rückstand läßt sich durch Extraktion kristallisieren (Pentan/Ether 1:1)

**<u>15</u>** L<sup>\*</sup>TcO<sub>3</sub>; C<sub>15</sub>H<sub>22</sub>BN<sub>6</sub>O<sub>3</sub>Tc (444.19)

**Eigenschaften:** gelber Feststoff, kristallisiert in Form kleiner, gelber, luftstabiler Plättchen, nicht sublimierbar, nicht löslich in Pentan, n-Hexan, wenig löslich in Ether, Aceton, CH<sub>2</sub>Cl<sub>2</sub>, THF **Ausbeute:** 135 mg (0.33 mmol) = 41% bezogen auf Tc<sub>2</sub>O<sub>7</sub> **Fp** [°C]: > 234 (Zers.)

| Tc-Analyse: | ber. [%]: | 22.29 |
|-------------|-----------|-------|
|             | gef. [%]: | 22.40 |

IR (KBr)  $\nu_{TcO}$  [cm<sup>-1</sup>]: 884 vs; 862 s  $\nu_{BH}$  [cm<sup>-1</sup>]: 2545 m UV/VIS (THF) max [nm]: 274 <sup>1</sup>H-NMR (250MHz;TMS;CDCl<sub>3</sub>)  $\delta$ : 2.33 (s,9H,CH<sub>3</sub>); 2.81 (s,9H,CH<sub>3</sub>); 5.84 (s,3H,CH) EI-MS: M<sup>+</sup> 444 (I = 5.6%)

#### 3.6 Reaktionen mit TcCl<sub>4</sub> als Ausgangsverbindung

Die Verbindungen Cp<sub>2</sub>Tc(III)Cl (16) und Cp<sub>3</sub>Tc(III) (17) wurden nach indizierter Literaturvorschrift durch reduktive Substitution aus Tc(IV)Cl<sub>4</sub> mit KCp bzw. Chloridsubstitution aus Cp<sub>2</sub>TcCl und KCp synthetisiert<sup>[37]</sup>.

#### 3.6.1 Synthese von Bis(cyclopentadienyl)technetium(III)phenolat (18)

100 mg (0.378 mmol) Cp<sub>2</sub>TcCl (16) werden mit 80 mg (0.61 mmol) Kaliumphenolat in 50 ml THF gelöst und eine Stunde bei Raumtemperatur gerührt. Danach erhitzt man zum Sieden. Nach 20 h wird die Reaktion abgebrochen und die rotbraune Lösung im Argonstrom eingedampft. Das ölige Rohprodukt wird mit fl. Stickstoff ausgefroren und auf eine Extraktionsfritte überführt.

Die Extraktion mit Pentan ergibt einen karminroten Extrakt, an der Kolbenwand scheiden sich nahezu schwarze Kristalle von 18 ab. Nach 3 Tagen wird die Extraktion abgebrochen, die den Kristallen überstehende Lösung abdekandiert und die Kristalle mit Pentan gewaschen.

#### <u>18</u> Cp<sub>2</sub>Tc(OPh); C<sub>16</sub>H<sub>15</sub>OTc (322.30)

**Eigenschaften:** rotschwarze, relativ luftstabile Kristalle, welche bei der Pentanextrakion prismenförmig auskristallisieren, die gelborange Lösung zersetzt sich innerhalb ca. 10 Stunden an Luft unter Grün – Braunfärbung und Ausflockung, wenig löslich in Pentan, löslich in Benzol, gut löslich in  $CH_2Cl_2$ , THF

Ausbeute: 48 mg (0.149 mmol) = 39.5% bezogen auf Cp<sub>2</sub>TcCl **Tc-Analyse:** ber. [%]: 30.75 gef. [%]: 30.94 <sub>vCH</sub> [cm<sup>-1</sup>]: 3012 vw; 3078 w; 3099 w IR (KBr):  $\nu_{\rm CC}$  [cm<sup>-1</sup>]: 1479 s; 1586 m  $\nu_{\rm CO}$  [cm<sup>-1</sup>]: 1262 m; 1279 s  $v_{\rm TcO}$  [cm<sup>-1</sup>]: 521 w UV/VIS (Benzol;d=0.1cm): max [nm]: 361 <sup>1</sup>H-NMR (250MHz;TMS;CDCl<sub>3</sub>) δ: 4.70 (s,10H,Cp); 6.53-7.06 (m,5H,Ph) EI-MS:  $M^+$  322 (I = 48%) Experimentell bestimmtes Dipolmoment  $\mu$  [D]: 6.18

#### **3.6.2** Synthese von Bis(cyclopentadienyl)technetium(III)-p-thiokresolat (19)

150 mg (0.51 mmol) Cp3Tc (17) werden mit 63.4 mg (0.51 mmol) p-Thiokresol vermischt, in THF gelöst und 20 h lang unter Rückfluß gekocht. Die anfangs rote Lösung färbt sich rotbraun. Nach dem Entfernen des Lösungsmittels im Argonstrom wird der ölige Rückstand mit fl. Stickstoff ausgefroren und auf eine Extraktionsfritte überführt. Es wird nun mit Pentan 12 d lang extrahiert. Am Lösungsmittelrand bildet sich ein schmieriger Niederschlag. Es wird abdekandiert, der Rückstand im Vakuum getrocknet und im ausgefrorenen Zustand in ein Schlenkrohr überführt.

**<u>19</u>** Cp<sub>2</sub>Tc(SPhMe); C<sub>17</sub>H<sub>17</sub>STc (352.38)

Eigenschaften: rotbrauner, schmieriger, luftstabiler Feststoff, schlecht löslich in Pentan, gut löslich in Benzol, THF

Ausbeute: 93 mg (0.26 mmol) = 52% bezogen auf 17 Tc-Analyse: ber. [%]: 28.10 gef. [%]: 27.78

IR (KBr)  $\nu_{CH} [cm^{-1}]$ : 3105 w; 3085 w; 3005 w; 2920 w; 2855 w  $\nu_{CC} [cm^{-1}]$ : 1597 m; 1483 s  $\nu_{CS} [cm^{-1}]$ : 1077 m  $\delta_{CH} [cm^{-1}]$ : 799 s  $\nu_{TcS} [cm^{-1}]$ : 491 m UV/VIS (Benzol;d=0.1cm) max [nm]: 421, 356 <sup>1</sup>H-NMR: (250MHz;TMS;CDCl3)  $\delta$ : 2.24 (s,3H,CH3); 4.68 (s,10H,Cp); 6.88 (m,2H,Ph); 7.27 (m,2H,Ph) EI-MS: M<sup>+</sup> 352 (I = 33.2%) Experimentell bestimmtes Dipolmoment  $\mu$  [D]: 6.56

#### 3.6.3 Umsetzung von Cp2TcCl (16) mit KCpMo(CO)3

153 mg (0.91 mmol) Mo(CO)<sub>6</sub> werden zusammen mit 80 mg (0.77 mmol) KCp in THF aufgeschlämmt und die farblose Suspension unter Rückfluß gekocht. Es entsteht nach 1 h eine gelbe, klare Lösung. Nach Ablassen des Überdruckes wird auf Raumtemperatur abgekühlt und 203 mg (0.77 mmol) 16 in fester Form zugegeben. Die Lösung färbt sich schnell rotbraun. Danach wird noch ca. 12 h lang unter Rückfluß gerührt.

Nach dem Abkühlen der Lösung wird das Lösungsmittel im Argonstrom eingedampft. Der rotbraune, trockene Rückstand wird auf eine G3-Extraktionsfritte gebracht und 2 d lang mit Pentan extrahiert. Die anfangs goldgelbe Lösung färbt sich nach 2 h intensiv rot und es bilden sich nach 24 h tief schwarzrote Kristalle, welche nach Abdekandieren des Extraktes als Cp<sub>2</sub>Mo<sub>2</sub>(CO)<sub>6</sub> IR-spektroskopisch identifiziert werden ( $\nu_{co}$  [cm<sup>-1</sup>] 1961vs; 1930s; 1907s; 1895vs)<sup>[137]</sup>. Der Extrakt wird zur Trockene eingeengt und in ein Sublimationsrohr überführt. Die Sublimationstemperatur wird von 50° - 120°C langsam gesteigert. Neben farblosen Mo(CO)<sub>6</sub> sind im Mikroskop noch wenig gelb-bernsteinfarbene, dünne Nadeln erkennbar, die auf dimeres Cp<sub>2</sub>Tc schließen lassen.

# 4 Kristallographische Daten

Die Strukturdaten der vermessenen Verbindungen sind tabellarisch angegeben und gegliedert in:

#### A. Experimentelle Daten

Dabei gelten folgende Abkürzungen und Definitionen:  $F_{000}$  Zahl der Elektronen pro Elementarzelle GOOF Goodness of fit  $[\Sigma w( | F_0 | - | F_c | )^2/(NO-NV)]^{1/2}$   $\mu$  linearer Absorptionskoeffizient  $R_W = \Sigma w[( | F_0 | - | F_c | )^2/\Sigma w F_0^2]^{1/2}$  mit  $w = 1/[\sigma(F_0)]^2$ Z = Besetzungszahl

#### B. Atomkoordinaten und isotrope Auslenkungsparameter Ueq

#### C. Bindungsabstände

#### **D. Bindungswinkel**

## 4.1 BrTc(CO)<sub>5</sub> (1)

#### A. Experimentelle Daten

Formel C<sub>5</sub>BrO<sub>5</sub>Tc; Kristallsystem orthorombisch; Raumgruppe Pnma (Nr. 62); Farbe,Habitus farblos, blockförmig; Gitterkonstanten a 11.897(2) (Å), b 11.682(3) (Å), c 6.188(1) (Å) ; Molekulargew. 317.96 (g mol<sup>-1</sup>); Z 4; Volumen 860.0(4) (Å<sup>3</sup>); F<sub>000</sub> 592; Ber. Dichte 2.456 (g cm<sup>-3</sup>); Kristallabmess. 0.35 x 0.25 x 9.11 (mm);  $\Theta$  Bereich (<sup>°</sup>) 1.5 <  $\Theta$  < 22.5; Quatrant ±h +k -1; Gemessene Refl. 1324; Unabhäng.Refl. 597; Nutzbare Refl. 533; Transmiss.Faktor (min/max) 0.511/1.000;  $\mu$  (mm<sup>-1</sup>) 62.17; Verfeinerung d. Atome aniso; R (%) 5.2; R<sub>w</sub> (%) 8.1; GOOF 1.847; Shift/err 0.01

|                         | x                | У               | Z                       | U <sub>eq</sub>    |  |
|-------------------------|------------------|-----------------|-------------------------|--------------------|--|
| Br(1)                   | 2458(1)          | 2500            | 1081(3)                 | 33.7(4)            |  |
| Tc(1)                   | 3761(1)          | 2500            | 4463(2)                 | 22.1(3)            |  |
| C(1)                    | 4720(10)         | 2500            | 7050(20)                | 16(3)              |  |
| O(1)                    | 5283(9)          | 2500            | 8520(20)                | 43(3)              |  |
| C(2)                    | 2760(10)         | 3725(9)         | 5710(20)                | 28(2)              |  |
| O(2)                    | 2246(7)          | 4396(7)         | 6420(20)                | 45(2)              |  |
| C(3)                    | 4679(8)          | 3691(8)         | 3050(20)                | 16(2)              |  |
| O(3)                    | 5193(7)          | 4423(7)         | 2340(20)                | 48(2)              |  |
| C. Bind                 | ungsabstände (p  | m] von <u>1</u> |                         |                    |  |
| Br(1)                   | -Tc(1)           | 260.5(2)        | Tc(1)-C(1)              | 196(1)             |  |
| Tc(1)-C(2)<br>C(1)-O(1) |                  | 201.2(9)        | Tc(1)-C(3)<br>C(2)-O(2) | 197.3(9)<br>110(2) |  |
|                         |                  | 113(2)          |                         |                    |  |
| C(3)-O(3)               |                  | 114(2)          |                         |                    |  |
| D. Bind                 | ungswinkel [°] v | on <u>1</u>     |                         |                    |  |
| Br(1)-Tc                | e(1)-C(1)        | 178.8(3)        | Br(1)-Tc(1)-C(2)        | 87.6(3)            |  |
| C(1)-Tc(1)-C(2)         |                  | 91.6(3)         | Br(1)-Tc(1)-C(3)        | 88.5(2)            |  |
| C(1)-Tc(1)-C(3)         |                  | 92.4(4)         | C(2)-Tc(1)-C(3)         | 89.7(4)            |  |
| $T_{C}(1)$ -C(          | (1)-O(1)         | 179(2)          | Tc(1)-C(2)-O(2)         | 178.2(9)           |  |
|                         |                  |                 |                         |                    |  |

# B. Atomkoordinaten [x10<sup>4</sup>] und isotrope Auslenkungsparameter $U_{eq}$ [pm<sup>2</sup>x10<sup>-1</sup>] von <u>1</u>

# 4.2 BrMn(CO)<sub>5</sub> (1a)

#### A. Experimentelle Daten

Formel C<sub>5</sub>BrMnO<sub>5</sub>; Kristallsystem rhombisch; Raumgruppe D2h/16, Pcmn, (Nr.62); Farbe,Habitus gelb, irregulär; Gitterkonstanten a (Å) 6.119(3), b(Å) 11.529(9), c (Å) 11.783(5); Molekulargew. (g mol<sup>-1</sup>) 274.89; Z 4; Volumen (Å<sup>3</sup>) 831.24; F<sub>000</sub> 520; Berechnete Dichte (g cm<sup>-3</sup>) 2.19; Kristallabmess. (mm) 0.4 x 0.5 x 0.6;  $\Theta$  Bereich (°)  $3.0 < 2 \Theta < 60.5$ ; Quatrant +h +k +1; Gemessene Refl. 1447; Unabhäng.Refl. 810; Nutzbare Refl. 889; Transmiss.Faktor (min/max) 0.54/1.00;  $\mu$  (mm<sup>-1</sup>) 6.27; Verfeinerung d. Atome aniso; R (%) 5.0; R<sub>W</sub> (%) 4.1; GOOF 2.92; Shift/err 0.003;

|             | Х         | У       | Z       | U <sub>eq</sub> |
|-------------|-----------|---------|---------|-----------------|
| D(1)        | 2017/0)   | 2500    | 2489/1) | A A ( 1 )       |
| DI(1)       | 5317(2)   | 2500    | 2400(1) | 44(1)           |
| Mn(1)       | 329(3)    | 2500    | 1219(1) | 29(1)           |
| C(1)        | -1869(22) | 2500    | 289(10) | 39(4)           |
| <b>O(1)</b> | -3316(15) | 2500    | -307(7) | 55(3)           |
| C(2)        | -627(14)  | 3650(8) | 2165(6) | 42(3)           |
| O(2)        | -1346(12) | 4342(6) | 2759(5) | 64(3)           |
| C(3)        | 1894(13)  | 3665(8) | 368(6)  | 39(3)           |
| O(3)        | 2672(11)  | 4401(6) | -139(6) | 62(3)           |

B. Atomkoordinaten [x10<sup>4</sup>] und isotrope Auslenkungsparameter  $U_{eq}$  [pm<sup>2</sup>x10<sup>-1</sup>] von <u>1a</u>

# C. Bindungsabstände [pm] von 1a

| Br(1)-Mn(1) | 250.7(3)  | Mn(1)-C(1)  | 183.2(13) |
|-------------|-----------|-------------|-----------|
| Mn(1)-C(2)  | 187.1(9)  | Mn(1)-C(3)  | 187.3(9)  |
| Mn(1)-C(2A) | 187.1(9)  | Mn(1)-C(3A) | 187.4(9)  |
| C(1)-O(1)   | 113.0(16) | C(2)-O(2)   | 114.9(11) |
| C(3)-O(3)   | 114.1(11) |             |           |

# D. Bindungswinkel [°] von <u>1a</u>

| Br(1)-Mn(1)-C(1)  | 179.8(4) | Br(1)-Mn(1)-C(2) | 87.0(3)   |
|-------------------|----------|------------------|-----------|
| C(1)-Mn(1)-C(2)   | 93.1(4)  | Br(1)-Mn(1)-C(3) | 87.8(3)   |
| C(1)-Mn(1)-C(3)   | 92.1(4)  | C(2)-Mn(1)-C(3)  | 88.8(4)   |
| Br(1)-Mn(1)-C(2A) | 87.0(3)  | C(1)-Mn(1)-C(2A) | 93.1(4)   |
| C(2)-Mn(1)-C(2A)  | 90.2(5)  | C(3)-Mn(1)-C(2A) | 174.8(4)  |
| Br(1)-Mn(1)-C(3A) | 87.8(3)  | C(1)-Mn(1)-C(3A) | 92.1(4)   |
| C(2)-Mn(1)-C(3A)  | 174.8(4) | C(3)-Mn(1)-C(3A) | 91.6(5)   |
| C(2A)-Mn(1)-C(3A) | 88.8(4)  | Mn(1)-C(1)-O(1)  | 178.4(11) |
| Mn(1)-C(2)-O(2)   | 178.8(7) | Mn(1)-C(3)-O(3)  | 177.7(7)  |
|                   |          |                  |           |
## 4.3 [BrTc(CO)<sub>4</sub>]<sub>2</sub> (2)

#### A. Experimentelle Daten

Formel C<sub>8</sub>Br<sub>2</sub>O<sub>8</sub>Tc<sub>2</sub>; Kristallsystem monoklin; Raumgruppe P2<sub>1</sub>/c (Nr.14); Farbe, Habitus farblos, klar; Gitterkonstanten a (Å) 9.846(1), b (Å) 11.834(2), c (Å) 13.031(2), ß (°) 108.74(2); Molekulargew. (g mol<sup>-1</sup>) 579.90; Z4; Volumen (Å<sup>3</sup>)1437.8(4); F<sub>000</sub> 1072; Ber. Dichte (g cm<sup>-3</sup>) 2.679; Kristallabmess. (mm) 0.15 x 0.20 x 0.10;  $\Theta$  Bereich (°) 2 <  $\Theta$  < 22.5; Quatrant +h +k ±1; Gemessene Refl. 2132; Unabhäng.Refl.1885; Nutzbare Refl.1337; Transmiss.Faktor (min/max) 0.705/1.000;  $\mu$  (mm<sup>-1</sup>) 74.14; Verfeinerung d. Atome aniso; R (%) 2.8; R<sub>W</sub> (%) 4.0; GOOF 1.128; Shift/err 0.01

| B.  | Atomkoordinaten                                   | [x10 <sup>4</sup> ] | und | isotrope | Auslenkungsparameter |
|-----|---------------------------------------------------|---------------------|-----|----------|----------------------|
| Ueq | [pm <sup>2</sup> x10 <sup>-1</sup> ] von <u>2</u> |                     |     |          |                      |

|       | x          | У         | Z         | U <sub>eq</sub> |
|-------|------------|-----------|-----------|-----------------|
|       |            | un        |           |                 |
| Tc(1) | 1026.6(6)  | 1220.9(5) | 3232.6(5) | 19.5(1          |
| Tc(2) | -3188.3(6) | 1264.7(5) | 2194.8(5) | 19.6(1          |
| Br(1) | -1116.2(9) | 28.8(7)   | 3483.3(7) | 27.4(2          |
| Br(2) | -1060.9(8) | 2474.6(6) | 1946.1(6) | 26.6(2          |
| O(1)  | 1098(7)    | 2725(6)   | 5220(5)   | 49(2)           |
| O(2)  | 3318(7)    | -304(6)   | 4735(5)   | 39(2)           |
| O(3)  | 3427(6)    | 2665(5)   | 2896(5)   | 45(2)           |
| O(4)  | 929(8)     | -200(6)   | 1191(5)   | 53(2)           |
| O(5)  | -3178(8)   | 2821(5)   | 4155(5)   | 46(2)           |
| O(6)  | -5558(6)   | -152(5)   | 2557(5)   | 43(2)           |
| O(7)  | -5485(7)   | 2768(6)   | 646(5)    | 45(2)           |
| O(8)  | -3132(8)   | -267(6)   | 279(5)    | 54(2)           |
| C(1)  | 1043(8)    | 2189(7)   | 4497(6)   | 27(2)           |
| C(2)  | 2456(8)    | 292(6)    | 4172(6)   | 25(2)           |
| C(3)  | 2517(8)    | 2138(7)   | 3022(6)   | 28(2)           |
| C(4)  | 970(9)     | 300(6)    | 1931(7)   | 27(2)           |
| C(5)  | -3145(8)   | 2274(7)   | 3460(6)   | 28(2)           |
| C(6)  | -4651(9)   | 375(7)    | 2433(7)   | 27(2)           |
| C(7)  | -4617(8)   | 2220(7)   | 1229(6)   | 30(2)           |
| C(8)  | -3126(9)   | 294(6)    | 975(6)    | 26(2)           |

| Tc(1)-Br(1) | 264.4(1)  | Tc(1)-Br(2) | 265.0(1)  |
|-------------|-----------|-------------|-----------|
| Tc(1)-C(1)  | 200.3(8)  | Tc(1)-C(2)  | 189.2(7)  |
| Tc(1)-C(3)  | 191.4(9)  | Tc(1)-C(4)  | 200.2(8)  |
| Tc(2)-Br(1) | 263.04(9) | Tc(2)-Br(2) | 264.2(2)  |
| Tc(2)-C(5)  | 202.5(8)  | Tc(2)-C(6)  | 189(1)    |
| Tc(2)-C(7)  | 192.5(7)  | Tc(1)-Tc(2) | 393.01(9) |
| O(1)-C(1)   | 112(2)    | O(2)-C(2)   | 116.4(9)  |
| O(3)-C(3)   | 115(2)    | O(4)-C(4)   | 112(2)    |
| O(5)-C(5)   | 112(2)    | O(6)-C(6)   | 114(1)    |
| O(7)-C(7)   | 114.4(9)  | O(8)-C(8)   | 112(2)    |

## C. Bindungsabstände [pm] von $\underline{2}$

## D. Bindungswinkel [°] von <u>2</u>

| Br(1)-Tc(1)-Br(2) | 83.65(4) | Br(1)-Tc(1)-C(1)  | 90.0(3)  |
|-------------------|----------|-------------------|----------|
| Br(1)-Tc(1)-C(2)  | 93.9(3)  | Br(1)-Tc(1)-C(3)  | 177.4(2) |
| Br(1)-Tc(1)-C(4)  | 90.5(3)  | Br(2)-Tc(1)-C(1)  | 90.0(2)  |
| Br(2)-Tc(1)-C(2)  | 177.5(3) | Br(2)-Tc(1)-C(3)  | 93.8(2)  |
| Br(2)-Tc(1)-C(4)  | 177.8(3) | C(1)-Tc(1)-C(2)   | 89.6(3)  |
| C(1)-Tc(1)-C(3)   | 88.7(3)  | C(2)-Tc(1)-C(4)   | 90.1(4)  |
| Br(1)-Tc(2)-Br(2) | 84.07(4) | Br(1)-Tc(2)-C(5)  | 90.0(3)  |
| Br(1)-Tc(2)-C(6)  | 93.6(2)  | Br(1)-Tc(2)-C(7)  | 176.5(3) |
| Br(1)-Tc(2)-C(8)  | 88.4(3)  | Br(2)-Tc(2)-C(5)  | 88.3(2)  |
| Br(2)-Tc(2)-C(6)  | 177.4(2) | Br(2)-Tc(2)-C(7)  | 92.5(3)  |
| Br(2)-Tc(2)-C(8)  | 89.2(3)  | C(5)-Tc(2)-C(6)   | 90.7(4)  |
| C(5)-Tc(2)-C(7)   | 90.3(3)  | C(5)-Tc(2)-C(8)   | 177.2(3) |
| C(6)-Tc(2)-C(7)   | 90.0(4)  | C(6)-Tc(2)-C(8)   | 91.7(4)  |
| C(7)-Tc(2)-C(8)   | 91.2(3)  | Tc(1)-Br(1)-Tc(2) | 96.34(3) |
| Tc(1)-Br(2)-Tc(2) | 95.93(3) | Tc(1)-C(1)-O(1)   | 177.7(7) |
| Tc(1)-C(2)-O(2)   | 178.2(7) | Tc(1)-C(3)-O(3)   | 178.4(7) |
| Tc(1)-C(4)-O(4)   | 178.8(7) | Tc(2)-C(5)-O(5)   | 177.1(8) |
| Tc(2)-C(6)-O(6)   | 178.4(7) | Tc(2)-C(7)-O(7)   | 178.5(7) |
| Tc(2)-C(8)-O(8)   | 177.9(8) |                   |          |
|                   |          |                   |          |

## 4.4 $(C_5H_5N)_2Tc(CO)_3Br$ (4)

#### A. Experimentelle Daten

Formel C<sub>13</sub>H<sub>10</sub>BrN<sub>2</sub>O<sub>3</sub>Tc; Kristallsystem monoklin; Raumgruppe C2/c (Nr.15); Farbe, Habitus farblos, tafelig; Gitterkonstanten a (Å) 7.562(2), b (Å) 14.626(3), c (Å) 13.303(3),  $\beta$  (°) 90.35(3); Molekulargew. (g mol<sup>-1</sup>) 420.15; Z 4; Volumen (Å<sup>3</sup>) 1471(1); F<sub>000</sub> 816; Ber. Dichte (g cm<sup>-3</sup>) 1.897;  $\Theta$  Bereich (°) 2 <  $\Theta$  < 22.5; Quatrant +h ±k ±1; Gemessene Refl. 4194; Unabhäng.Refl. 961; Nutzbare Refl. 900; Transmiss.Faktor (min/max) 0.706/0.999;  $\mu$  (mm<sup>-1</sup>) 36.526; Verfeinerung d. Nicht-Wasserstoffatome aniso; H-Atome berechnet d (C-H) = 0.954 Å, B(H) = 1.3 x B equ (C); R (%) 12.7; R<sub>w</sub> (%) 21.5; GOOF 6.953; Shift/err 0.01

| B.  | Atomkoordinaten                                   | [x10 <sup>4</sup> ] | und | isotrope | Auslenkungsparameter |
|-----|---------------------------------------------------|---------------------|-----|----------|----------------------|
| Ueq | [pm <sup>2</sup> x10 <sup>-1</sup> ] von <u>4</u> |                     |     |          |                      |

|       | x         | у        | Z        | U <sub>eq</sub> |
|-------|-----------|----------|----------|-----------------|
| To(1) | 0         | 1200(1)  | 2500     |                 |
| Br(1) | -2346(7)  | 1337(3)  | 1074(5)  | 65(1)           |
| N(1)  | -1400(20) | 2430(10) | 3310(20) | 60(5)           |
| C(11) | -1300(40) | 340(20)  | 3150(20) | 60(6)           |
| 0(11) | -2200(20) | -230(10) | 3510(10) | 66(4)           |
| C(1)  | -3170(30) | 2390(20) | 3430(20) | 67(6)           |
| C(2)  | -4100(30) | 3070(20) | 3930(20) | 57(6)           |
| C(3)  | -3190(40) | 3870(20) | 4280(20) | 66(6)           |
| C(4)  | -1420(30) | 3890(20) | 4120(20) | 65(6)           |
| C(5)  | -550(30)  | 3130(20) | 3630(20) | 56(6)           |

#### C. Bindungsabstände [pm] von 4

| T-(1) D (1)                                                                                                     |          |            |          |
|-----------------------------------------------------------------------------------------------------------------|----------|------------|----------|
| 1c(1)-Br(1)                                                                                                     | 259.0(2) | Tc(1)-N(1) | 224.9(8) |
| Tc(1)-C(11)                                                                                                     | 193(1)   | Tc(1)-CO   | 259.0(2) |
| N(1)-C(1)                                                                                                       | 136(1)   | N(1)-C(5)  | 128(1)   |
| C(11)-O(11)                                                                                                     | 118(1)   | C(1)-C(2)  | 138(1)   |
| C(2)-C(3)                                                                                                       | 143(1)   | C(3)-C(4)  | 136(1)   |
| C(4)-C(5)                                                                                                       | 145(1)   |            |          |
| A CONTRACTOR OF |          |            |          |

| Br(1)-Tc(1)-N(1)  | 90.9(2)  | Br(1)-Tc(1)-C(11) | 89.8(3)  |
|-------------------|----------|-------------------|----------|
| N(1)-Tc(1)-C(11)  | 94.5(4)  | Tc(1)-N(1)-C(1)   | 119.7(7) |
| Tc(1)-N(1)-C(5)   | 120.9(6) | C(1)-N(1)-C(5)    | 119.4(9) |
| Tc(1)-C(11)-O(11) | 175(1)   | N(1)-C(1)-C(2)    | 122.0(9) |
| C(1)-C(2)-C(3)    | 119.9(8) | C(2)-C(3)-C(4)    | 117(1)   |
| C(3)-C(4)-C(5)    | 121(2)   | N(1)-C(5)-C(4)    | 122.5(9) |
|                   |          |                   |          |

## 4.5 (C<sub>5</sub>H<sub>5</sub>N)<sub>2</sub>Re(CO)<sub>3</sub>Br (4b)

#### A. Experimentelle Daten

Formel C<sub>13</sub>H<sub>10</sub>BrN<sub>2</sub>O<sub>3</sub>Re; Kristallsystem monoklin; Raumgruppe C<sub>2h</sub>/6, C<sub>2</sub>/c, (Nr.15); Farbe, Habitus farblose, klare Prismen; Gitterkonstanten a (Å) 7.747(6), b (Å) 14.552(8), c (Å) 13.29(1),  $\beta$  (°) 90.19(7); Molekulargew. (g mol<sup>-1</sup>) 508.34; Z 4; Volumen (Å<sup>3</sup>) 1459.6; F<sub>000</sub> 944; Ber. Dichte (g cm<sup>-3</sup>) 2.31; Kristallabmess. (mm) 0.26 x 0.30 x 0.34;  $\Theta$  Bereich (°) 8.0 < 2  $\Theta$  < 24.0; Quatrant  $\pm$ h +k +1; Gemessene Refl. 1540; Unabhäng.Refl. 1146; Nutzbare Refl. 1194; Transmiss.Faktor (min/max) 0.58/1.00;  $\mu$  (mm<sup>-1</sup>) 11.16; H-Atome berechnet d (C-H) = 0.954Å, B(H) = 1.3 x B equ (C); R (%) 5.6; R<sub>w</sub> (%) 5.2; GOOF 3.43; Shift/err 0.007

B. Atomkoordinaten  $[x10^4]$  und isotrope Auslenkungsparameter  $U_{eq} \ [pm^2x10^{-1}] \ von \ \underline{4a}$ 

|       | x         | у        | Z        | U <sub>eq</sub> |
|-------|-----------|----------|----------|-----------------|
|       |           |          |          |                 |
| Re(1) | 0         | 1284(1)  | 2500     | 30(1)           |
| Br(1) | -2346(4)  | 1348(3)  | 1084(3)  | 66(1)           |
| N(1)  | -1413(18) | 2415(9)  | 3303(11) | 40(5)           |
| C(11) | -1332(23) | 333(12)  | 3134(16) | 48(7)           |
| O(11) | -2183(18) | -213(9)  | 3530(12) | 69(6)           |
| C(1)  | -3228(20) | 2387(13) | 3410(13) | 44(6)           |
| C(2)  | -4094(25) | 3074(12) | 3922(15) | 53(7)           |
| C(3)  | -3229(23) | 3812(15) | 4261(15) | 62(8)           |
| C(4)  | -1391(24) | 3864(13) | 4141(13) | 54(7)           |
| C(5)  | -463(29)  | 3144(11) | 3653(13) | 55(8)           |

| Re(1)-Br(1) | 258.1(4)  | Re(1)-N(1)   | 223.4(14) |
|-------------|-----------|--------------|-----------|
| Re(1)-C(11) | 190.9(18) | Re(1)-CO     | 258.1(4)  |
| Re(1)-N(1A) | 223.4(14) | Re(1)-C(11A) | 190.9(18) |
| N(1)-C(1)   | 137.8(20) | N(1)-C(5)    | 136.1(22) |
| C(11)-O(11) | 114.9(23) | C(1)-C(2)    | 137.6(25) |
| C(2)-C(3)   | 133.3(27) | C(3)-C(4)    | 139.9(25) |
| C(4)-C(5)   | 141.8(25) |              |           |
|             |           |              |           |

#### C. Bindungsabstände [pm] von 4a

#### D. Bindungswinkel [°] von 4a

| Br(1)-Re(1)-N(1)   | 89.7(4)   | Br(1)-Re(1)-C(11) | 89.3(6)   |
|--------------------|-----------|-------------------|-----------|
| N(1)-Re(1)-C(11)   | 94.0(7)   | Br(1)-Re(1)-CO    | 175.9(2)  |
| N(1)-Re(1)-CO      | 87.3(4)   | C(11)-Re(1)-CO    | 93.7(6)   |
| Br(1)-Re(1)-N(1A)  | 87.3(4)   | N(1)-Re(1)-N(1A)  | 85.2(7)   |
| C(11)-Re(1)-N(1A)  | 176.4(7)  | CO-Re(1)-N(1A)    | 89.7(4)   |
| Br(1)-Re(1)-C(11A) | 93.7(6)   | N(1)-Re(1)-C(11A) | 176.4(7)  |
| C(11)-Re(1)-C(11A) | 87.0(11)  | CO-Re(1)-C(11A)   | 89.3(6)   |
| N(1A)-Re(1)-C(11A) | 94.0(7)   | Re(1)-N(1)-C(1)   | 120.3(11) |
| Re(1)-N(1)-C(5)    | 119.0(12) | C(1)-N(1)-C(5)    | 120.7(15) |
| Re(1)-C(11)-O(11)  | 177.2(16) | N(1)-C(1)-C(2)    | 120.2(16) |
| C(1)-C(2)-C(3)     | 121.3(17) | C(2)-C(3)-C(4)    | 119.3(18) |
| C(3)-C(4)-C(5)     | 120.2(17) | N(1)-C(5)-C(4)    | 118.1(18) |
|                    |           |                   |           |

## 4.6 $HB(C_3H_3N_2)_3Tc(CO)_3$ (5)

#### A. Experimentelle Daten

Formel C<sub>12</sub>H<sub>10</sub>BN<sub>6</sub>O<sub>3</sub>Tc; Kristallsystem trigonal, Raumgruppe P<sub>3</sub>; Farbe, Habitus farblos; Gitterkonstanten a (Å) 11.464(4); c (Å) 8.091 (3); Molekulargew. (g mol<sup>-1</sup>) 395.06; Z 2; Volumen (Å<sup>3</sup>) 920.9; F<sub>000</sub> 392; Ber. Dichte (g cm<sup>-3</sup>) 1.425; Kristallabmess. (mm) 0.52 x 0.14 x 0.32;  $\Theta$  Bereich (°) 1.5 <  $\Theta$  < 30; Quatrant ±h ±k ±1; Gemessene Refl. 9850; Unabhäng.Refl. 3587; Nutzbare Refl. 3164; Transmiss.Faktor (min/max) 0.879/0.998;  $\mu$  (mm<sup>-1</sup>) 7.803; Verfeinerung d. Nicht-Wasserstoffatome aniso, H-Atome berechnet d (C-H) = 0.954 Å, B(H) = 1.3 x B equ (C); R (%) 5.7; R<sub>W</sub> (%) 10.2; GOOF 2.305; Shift/err 3.38

|         | X        | У        | Z          | U <sub>eq</sub> |  |
|---------|----------|----------|------------|-----------------|--|
| тс      | 3330     | 6670     | 2100       | 20.38(7)        |  |
| C(1)    | 4610(10) | 6590(10) | 3360(20)   | 6(9)            |  |
| O(1)    | 5620(9)  | 6844(9)  | 4170(20)   | 7(2)            |  |
| N(1)    | 4808(5)  | 8115(5)  | 490(7)     | 3(2)            |  |
| N(2)    | 4626(6)  | 7908(5)  | -1258(7)   | 3(4)            |  |
| C(4)    | 5990(7)  | 9241(7)  | 630(10)    | 3(7)            |  |
| C(5)    | 6570(8)  | 9710(8)  | -0960(10)  | 4(2)            |  |
| C(6)    | 5698(7)  | 8887(7)  | -2070(1)   | 3(8)            |  |
| В       | 3330     | 6670     | -2020(1)   | 18(3)           |  |
| Molekül | 2        |          | <u>-</u>   |                 |  |
|         | X        | у        | Z          | Ueq             |  |
| TC'     | 6670     | 3330     | 6519(1)    | 36.9(2)         |  |
| C(1)'   | 8039(7)  | 4734(6)  | 5112(9)    | 3(6)            |  |
| O(1')   | 8881(7)  | 5446(7)  | 4310(10)   | 50(6)           |  |
| N(1')   | 6681(5)  | 4803(6)  | 8285(7)    | 3(4)            |  |
| N(2')   | 6740(5)  | 4621(5)  | 9878(7)    | 3(3)            |  |
| C(4')   | 6693(8)  | 5979(8)  | 8060(10)   | 40(6)           |  |
| C(5')   | 6720(8)  | 6524(8)  | 9520(10)   | 39(8)           |  |
| C6'     | 6762(8)  | 5644(7)  | 10740(10)  | 39(4)           |  |
|         |          | 2220     | 105 (0(00) | 1(2)            |  |

# B. Atomkoordinaten [x10<sup>4</sup>] und isotrope Auslenkungsparameter $U_{eq} \ [pm^2x10^{-1}] \ von \ \underline{5}$

Molekül 1

## C. Bindungsabstände [pm] von 5

| $T_{c}$ -C(1) | 182(3) | $T_{C}N(1)$ | 212(1) |
|---------------|--------|-------------|--------|
| N(1)-N(2)     | 143(2) | N(1)-C(4)   | 133(2) |
| N(2)-C(6)     | 135(2) | N(2)-B      | 158(1) |
| C(5)-C(6)     | 132(2) | C(4)-C(5)   | 142(2) |
| C(1)-O(1)     | 123(3) | Tc-B        | 333(1) |

#### 136

| C(1)-Tc-C(1) 92.(1) Tc-C(1)-O(1) 166.(3)    |  |
|---------------------------------------------|--|
|                                             |  |
| N(1)-Tc-N(1) 86.3(5) N(2)-N(1)-C(4) 104.(1) |  |
| N(1)-N(2)-C(6) 110.(1) N(1)-N(2)-B 122.(1)  |  |
| C(6)-N(2)-B 128.(1) N(2)-C(6)-C(5) 108.(1)  |  |
| N(1)-C(4)-C(5) 110.(1) C(1)-Tc-N(1) 92.(1)  |  |
| C(4)-C(5)-C(6) 107.(1) C(1)-Tc-N(1) 176.(1) |  |
| N(2)-B-N(2) 105.8(8) C(1)-Tc-N(1) 90.(1)    |  |
| Tc-N(1)-N(2) 118.9(3) Tc-N(1)-C(4) 137.4(5) |  |

#### D. Bindungswinkel [°] von 5

### 4.7 $HB(C_3H_3N_2)_3Mn(CO)_3$ (5a)

#### A. Experimentelle Daten

Formel C<sub>12</sub>H<sub>10</sub>BMnN<sub>6</sub>O<sub>3</sub>; Kristallsystem trigonal; Raumgruppe P<sub>3</sub>; Farbe, Habitus hellgelb; Gitterkonstanten a (Å) 11.522(4), c (Å) 7.933(3); Molekulargew. (g mol<sup>-1</sup>) 352.00; Z 2; Volumen (Å<sup>3</sup>) 912.1; F<sub>000</sub> 356; Ber. Dichte (g cm<sup>-3</sup>) 1.282; Kristallabmess. (mm) 0.6 x 0.7 x 0.2;  $\Theta$  Bereich (°) 1.5 <  $\Theta$  < 22.5; Quatrant ±h +k +1; Gemessene Refl. 2523; Unabhäng.Refl. 1858; Nutzbare Refl. 1828; Transmiss.Faktor (min/max) 0.796/0.997;  $\mu$  (mm<sup>-1</sup>) 7.123; Verfeinerung d. Nicht-Wasserstoffatome Mn aniso, andere iso, H-Atome berechnet d (C-H) = 0.954 Å, B(H) = 1.3 x B equ (C); R (%) 6.9; R<sub>w</sub> (%) 11.6; GOOF 2.84; Shift/err 6.68

## B. Atomkoordinaten [x10<sup>4</sup>] und isotrope Auslenkungsparameter $U_{eq}$ [pm<sup>2</sup>x10<sup>-1</sup>] von <u>5a</u>

|      | Х       | у       | Z       | U <sub>eq</sub> |
|------|---------|---------|---------|-----------------|
| Mn   | 0       | 0       | 1290    | 23.5(2)         |
| C(1) | -39(4)  | 1274(4) | 2585(4) | 11.0(6)         |
| O(1) | 2104(5) | 1(5)    | 3433(7) | 58(1)           |
| N(1) | 8538(4) | -19(3)  | -465(5) | 15.8(6)         |

| N(2) | 8750(4) | -69(4) | -1969(5) | 26.5(7) |
|------|---------|--------|----------|---------|
| C(4) | 7434(6) | 0(6)   | -195(7)  | 28.5(9) |
| C(5) | 6842(4) | -78(4) | -1688(7) | 15.8(7) |
| C(6) | 7603(5) | -66(5) | -2638(5) | 29(1)   |
| В    | 0       | 0      | -2670(1) | 16(2)   |

### Molekül 2

|       | x       | у       | Z        | U <sub>eq</sub> ) |
|-------|---------|---------|----------|-------------------|
| MN'   | 6670    | 3330    | 5831(1)  | 26.0(2)           |
| C(1') | 5504(7) | 3372(8) | 4569(9)  | 58(1)             |
| O(1') | 4533(4) | 3282(4) | 3769(6)  | 51(1)             |
| N(1') | 5308(4) | 1950(4) | 7300(4)  | 19.9(9)           |
| N(2') | 5403(4) | 2028(4) | 9176(4)  | 24.6(8)           |
| C(4') | 4147(5) | 739(5)  | 7071(6)  | 18.4(8)           |
| C(5') | 3601(6) | 181(7)  | 8432(8)  | 43(2)             |
| C(6') | 4504(4) | 1059(6) | 10002(6) | 25(1)             |
| В'    | 6670    | 3330    | 9850(1)  | 44(2)             |

## C. Bindungsabstände [pm] von 5a

| 181(1)   | N(1)-N(2)                                        | 122(1)                                                                |
|----------|--------------------------------------------------|-----------------------------------------------------------------------|
| 130(2)   | N(2)-C(6)                                        | 143(1)                                                                |
| 217.7(8) | N(2)-B                                           | 151(1)                                                                |
| 115(1)   | C(4)-C(5)                                        | 135(1)                                                                |
| 115(1)   | Mn-B                                             | 314(2)                                                                |
|          | 181(1)<br>130(2)<br>217.7(8)<br>115(1)<br>115(1) | 181(1)N(1)-N(2)130(2)N(2)-C(6)217.7(8)N(2)-B115(1)C(4)-C(5)115(1)Mn-B |

## D. Bindungswinkel [°] von 5a

| C(1)-Mn-N(1)   | 92.2(4)  | N(2)-N(1)-C(4) | 112.4(8) |
|----------------|----------|----------------|----------|
| C(2)-Mn-N(1)   | 174.8(3) | N(1)-N(2)-C(6) | 99.0(8)  |
| C(3)-Mn-N(1)   | 93.1(4)  | N(1)-N(2)-B    | 124.(1)  |
| C(6)-N(2)-B    | 136(1)   | N(1)-C(4)-C(5) | 108.7(8) |
| C(4)-C(5)-C(6) | 102.5(9) | N(2)-(C)6-C(5) | 117.2(9) |
| Mn-C(1)-O(1)   | 176.7(9) | Mn-N(1)-N(2)   | 116.8(6) |
| Mn-N(1)-C(4)   | 130.8(6) | N(2)-B-N(2)    | 107.1(8) |

### 4.8 $HB(C_3H_3N_2)_3Re(CO)_3$ (5b) (monokline Form)

#### A. Experimentelle Daten

Formel C<sub>12</sub>H<sub>10</sub>BN<sub>6</sub>O<sub>3</sub>Re; Kristallsystem monoklin; Raumgruppe C<sub>c</sub>; Farbe, Habitus farblos; Gitterkonstanten a (Å) 15.882(4), b (Å) 7.731(3), c (Å) 13.410(4), ß (°) 106.09(2); Molekulargew. (g mol<sup>-1</sup>) 483.26; Z 4; Volumen (Å<sup>3</sup>) 1582.1; F<sub>000</sub> 912; Ber. Dichte (g cm<sup>-3</sup>) 2.029; Kristallabmess. (mm) 0.2 x 0.24 x 0.14;  $\Theta$  Bereich(°) 2 <  $\Theta$  < 22.5; Quatrant +h ±k ±l; Gemessene Refl. 4288; Unabhäng.Refl. 1073; Nutzbare Refl. 941; Transmiss.Faktor (min/max) 0.555/0.995;  $\mu$  (mm<sup>-1</sup>) 78.051; Verfeinerung d. Nicht-Wasserstoffatome Re aniso, andere iso, H-Atome berechnet d (C-H) = 0.954 Å, B(H) = 1.3 x B equ (C); R (%) 4.49; R<sub>W</sub> (%) 5.46; GOOF 1.125; Shift/err 0.03

## B. Atomkoordinaten [x10<sup>4</sup>] und isotrope Auslenkungsparameter

|       | X        | у         | Z        | U <sub>eq</sub> |
|-------|----------|-----------|----------|-----------------|
| Re    | 1500     | 1807(7)   | 1000     | 28.0(1)         |
| C(1)  | 870(20)  | 2180(30)  | 780(20)  | 37(4)           |
| O(1)  | 440(10)  | 3460(30)  | 640(10)  | 55(4)           |
| C(2)  | 850(10)  | -850(30)  | 1770(20) | 35(4)           |
| O(2)  | 390(10)  | -1470(20) | 2230(10) | 51(4)           |
| C(3)  | 910(10)  | -880(30)  | -190(10) | 31(4)           |
| O(3)  | 390(10)  | -1460(30) | -980(20) | 68(5)           |
| N(1)  | 2460(10) | 1270(20)  | 2340(10) | 25(3)           |
| N(2)  | 3330(10) | 1090(20)  | 2500(10) | 23(3)           |
| C(4)  | 2350(20) | 2180(30)  | 3160(20) | 35(4)           |
| C(5)  | 3180(20) | 2570(30)  | 3820(20) | 42(5)           |
| C(6)  | 3800(10) | 1890(30)  | 3420(20) | 37(4)           |
| N(3)  | 2480(10) | 1260(20)  | 230(10)  | 24(3)           |
| N(4)  | 3370(10) | 1030(20)  | 680(10)  | 25(3)           |
| C(7)  | 2370(10) | 2070(30)  | -670(20) | 33(4)           |
| C(8)  | 3220(20) | 2490(30)  | -760(20) | 37(4)           |
| C(9)  | 3810(10) | 1740(30)  | 70(10)   | 28(4)           |
| N(5)  | 2450(10) | -2020(20) | 1300(10) | 29(3)           |
| N(6)  | 3350(10) | -1720(20) | 1600(10) | 23(3)           |
| C(10) | 2290(10) | -3670(20) | 1230(10) | 27(3)           |
| C(11) | 3070(20) | -4490(30) | 1500(20) | 40(4)           |
| C(12) | 3740(10) | -3250(30) | 1740(20) | 30(4)           |
| В     | 3700(20) | 100(30)   | 1700(20) | 29(5)           |

 $U_{eq}$  [pm<sup>2</sup>x10<sup>-1</sup>] von <u>5b</u> (monoklin)

| Re-C(1)    | 182(3) | N(2)-B      | 155(3) |  |
|------------|--------|-------------|--------|--|
| Re-C(2)    | 182(2) | C(4)-C(5)   | 141(4) |  |
| Re-C(3)    | 181(2) | C(5)-C(6)   | 134(4) |  |
| Re-N(1)    | 218(2) | N(3)-N(4)   | 138(3) |  |
| Re-N(3)    | 225(2) | N(3)-C(7)   | 132(3) |  |
| Re-N(5)    | 223(2) | N(4)-C(9)   | 133(3) |  |
| C(7)-C(8)  | 143(3) | N(4)-B      | 151(4) |  |
| C(8)-C(9)  | 137(4) | C(1)-O(1)   | 119(4) |  |
| N(5)-N(6)  | 139(3) | C(2)-O(2)   | 119(3) |  |
| N(5)-C(10) | 130(3) | C(3)-O(3)   | 124(3) |  |
| N(6)-C(12) | 133(3) | N(6)-B      | 151(3) |  |
| N(1)-N(2)  | 136(2) | C(10)-C(11) | 134(4) |  |
| N(1)-C(4)  | 136(3) | C(11)-C(12) | 141(4) |  |
| N(2)-C(6)  | 140(3) | Re-B        | 336(3) |  |
|            |        |             |        |  |

## C. Bindungsabstände [pm] von 5b (monoklin)

## D. Bindungswinkel [°] von <u>5b</u> (monoklin)

| C(1)-Re-C(2)   | 95(1)    | N(1)-N(2)-C(6)    | 111(2) |
|----------------|----------|-------------------|--------|
| C(1)-Re-C(3)   | 97(1)    | N(1)-N(2)-B       | 121(2) |
| C(1)-Re-N(1)   | 92(1)    | C(6)-N(2)-B       | 128(2) |
| C(1)-Re-N(3)   | 91.7(9)  | N(1)-C(4)-C(5)    | 108(2) |
| C(1)-Re-N(5)   | 171.2(9) | C(4)-C(5)-C(6)    | 109(2) |
| C(2)-Re-C(3)   | 94(1)    | N(2)-C(6)-C(5)    | 105(2) |
| C(2)-Re-N(1)   | 94(1)    | N(4)-N(3)-C(7)    | 108(2) |
| C(2)-Re-N(3)   | 171.1(9) | N(3)-N(4)-C(9)    | 109(2) |
| C(2)-Re-N(5)   | 91(1)    | N(3)-N(4)-B       | 121(2) |
| C(3)-Re-N(1)   | 167.9(8) | C(9)-N(4)-B       | 130(2) |
| C(3)-Re-N(3)   | 91.2(8)  | N(3)-C(7)-C(8)    | 108(2) |
| C(3)-Re-N(5)   | 88.6(9)  | C(7)-C(8)-C(9)    | 106(2) |
| N(1)-Re-N(3)   | 79.7(6)  | N(4)-C(9)-C(8)    | 108(2) |
| N(1)-Re-N(5)   | 82.1(7)  | N(6)-N(5)-C(10)   | 110(2) |
| N(3)-Re-N(5)   | 81.2(7)  | N(5)-N(6)-C(12)   | 108(2) |
| C(1)-Re-C(2)   | 95(1)    | N(5)-N(6)-B       | 120(2) |
| C(1)-Re-C(3)   | 97(1)    | C(12)-N(6)-B      | 132(2) |
| C(2)-Re-C(3)   | 94(1)    | N(5)-C(10)-C(11)  | 108(2) |
| Re-C(1)-O(1)   | 178(3)   | C(10)-C(11)-C(12) | 109(2) |
| Re-C(2)-O(2)   | 176(2)   | N(6)-C(12)-C(11)  | 106(2) |
| Re-C(3)-O(3)   | 170(2)   | N(2)-B-N(4)       | 107(2) |
| N(2)-N(1)-C(4) | 107(2)   | N(2)-B-N(6)       | 109(2) |
| N(4)-B-N(6)    | 109(2)   |                   |        |
|                |          |                   |        |

## 4.9 HB(C<sub>3</sub>H<sub>3</sub>N<sub>2</sub>)<sub>3</sub>Re(CO)<sub>3</sub> (5b) (trigonale Modifikation)

#### A. Experimentelle Daten

Formel C<sub>12</sub>H<sub>10</sub>BN<sub>6</sub>O<sub>3</sub>Re; Kristallsystem trigonal; Raumgruppe P<sub>3</sub>; Farbe, Habitus farblos; Gitterkonstanten a (Å) 11.466(4), c (Å) 8.037(3); Molekulargew. (g mol<sup>-1</sup>) 483.26; Z 2; Volumen (Å<sup>3</sup>) 915.1; Ber. Dichte (g cm<sup>-3</sup>) 1.754;

## 4.10 HB( $3,5-Me_2C_3HN_2$ )<sub>3</sub>Tc(CO)<sub>3</sub> (6)

#### A. Experimentelle Daten

Formel C<sub>18</sub>H<sub>22</sub>BN<sub>6</sub>O<sub>3</sub>Tc; Kristallsystem monoklin; Raumgruppe P2<sub>1</sub>/c; Farbe, Habitus farblos; Gitterkonstanten a (Å) 8.026(3), b (Å) 14.081(4), c (Å) 18.995(6), ß (°) 97.51(2); Molekulargew. (g mol<sup>-1</sup>) 479.23; Z 4; Volumen (Å<sup>3</sup>) 2128.4; F<sub>000</sub> 976; Ber. Dichte (g cm<sup>-3</sup>) 1.496; Kristallabmess. (mm) 0.2 x 0.15 x 0.08;  $\Theta$  Bereich (°) 2 <  $\Theta$  < 22.5; Quatrant +h +k ±1; Gemessene Refl. 3162; Unabhäng.Refl. 2774; Nutzbare Refl. 1540; Transmiss.Faktor (min/max) 0.888/0.999;  $\mu$  (mm<sup>-1</sup>) 6.889; Verfeinerung d. Nicht-Wasserstoffatome alle aniso, H-Atome berechnet d (C-H) = 0.954 Å, B(H) = 1.3 x B equ (C); R (%) 5.45; R<sub>w</sub> (%) 8.97; GOOF 2.201

## B. Atomkoordinaten [x10<sup>4</sup>] und isotrope Auslenkungsparameter $U_{eq} \ [pm^2x10^{-1}] \ von \ \underline{6}$

|         | X         | у         | Z         | U <sub>eq</sub> |
|---------|-----------|-----------|-----------|-----------------|
| <u></u> |           | A         |           |                 |
| Tc      | 490(20)   | 2660.4(8) | 6322.6(7) | 24.7(2)         |
| C(1)    | -460(20)  | 1780(10)  | 6919(7)   | 32(4)           |
| O(1)    | -980(20)  | 1239(8)   | 7272(6)   | 53(3)           |
| C(2)    | 2270(20)  | 2860(10)  | 7051(8)   | 44(4)           |
| O(2)    | 3360(20)  | 2990(10)  | 7500(7)   | 73(4)           |
| C(3)    | -660(20)  | 3640(10)  | 6785(8)   | 39(4)           |
| O(3)    | -1210(20) | 4186(8)   | 7089(7)   | 65(3)           |
| N(1)    | 1730(10)  | 1547(8)   | 5772(6)   | 26(3)           |
| N(2)    | 1540(20)  | 1524(8)   | 5039(6)   | 26(3)           |
| C(4)    | 3080(30)  | 560(10)   | 6770(10)  | 56(5)           |
| C(5)    | 2630(20)  | 760(10)   | 5974(9)   | 37(4)           |
| C(6)    | 3010(20)  | 250(10)   | 5380(10)  | 52(5)           |
| C(7)    | 2250(20)  | 720(10)   | 4802(9)   | 36(4)           |

| C(8)  | 2210(30)  | 490(10)  | 4041(9)  | 55(5) |
|-------|-----------|----------|----------|-------|
| N(3)  | -1620(10) | 2496(8)  | 5474(6)  | 28(3) |
| N(4)  | -1250(10) | 2391(8)  | 4787(6)  | 30(3) |
| C(9)  | -4090(20) | 2620(10) | 6040(10) | 57(5) |
| C(10) | -3280(20) | 2500(10) | 5443(8)  | 35(4) |
| C(11) | -4040(20) | 2420(10) | 4770(10) | 45(4) |
| C(12) | -2820(20) | 2340(10) | 4376(9)  | 48(4) |
| C(13) | -2690(30) | 2200(10) | 3550(10) | 63(5) |
| N(5)  | 1510(20)  | 3605(8)  | 5558(6)  | 29(3) |
| N(6)  | 1500(10)  | 3289(8)  | 4859(6)  | 29(3) |
| C(14) | 2440(30)  | 5020(10) | 6250(10) | 64(6) |
| C(15) | 2330(20)  | 4480(10) | 5540(10) | 53(5) |
| C(16) | 2800(30)  | 4680(10) | 4880(9)  | 53(5) |
| C(17) | 2270(20)  | 3940(10) | 4455(9)  | 39(4) |
| C(18) | 2440(20)  | 3830(10) | 3729(8)  | 48(4) |
| В     | 6800(20)  | 2350(10) | 4618(9)  | 31(4) |
|       |           |          |          |       |

## C. Bindungsabstände [pm] von <u>6</u>

| Tc-C(1)     | 190(2) | C(6)-C(7)   | 136(3) |
|-------------|--------|-------------|--------|
| Tc-C(2)     | 187(2) | C(7)-C(8)   | 148(3) |
| Tc-C(3)     | 193(2) | N(3)-N(4)   | 138(2) |
| Tc-N(1)     | 220(1) | N(3)-C(10)  | 133(2) |
| Tc-N(3)     | 219(1) | N(4)-C(12)  | 140(2) |
| Tc-N(5)     | 220(1) | N(4)-B      | 162(2) |
| C(9)-C(10)  | 139(2) | C(10)-C(11) | 135(3) |
| C(11)-C(12) | 131(3) | C(1)-O(1)   | 113(2) |
| C(12)-C(13) | 160(3) | C(2)-O(2)   | 116(2) |
| N(5)-N(6)   | 140(2) | C(3)-O(3)   | 109(2) |
| N(5)-C(15)  | 140(2) | N(1)-N(2)   | 138(2) |
| N(6)-C(17)  | 139(3) | N(1)-C(5)   | 135(2) |
| N(6)-B      | 152(2) | N(2)-C(7)   | 136(2) |
| C(14)-C(15) | 155(3) | N(2)-B      | 153(2) |
| C(15)-C(16) | 138(3) | C(4)-C(5)   | 154(3) |
| C(16)-C(17) | 135(3) | C(5)-C(6)   | 140(3) |
| C(17)-C(18) | 141(3) | Tc-B        | 329(2) |

## D. Bindungswinkel [°] von <u>6</u>

| C(1)-Tc-C(2) | 89.0(7) | N(1)-C(5)-C(4) | 119(1) |
|--------------|---------|----------------|--------|
| C(1)-Tc-C(3) | 86.7(7) | N(1)-C(5)-C(6) | 111(2) |
| C(1)-Tc-N(1) | 93.6(7) | C(4)-C(5)-C(6) | 130(2) |
| C(1)-Tc-N(3) | 92.2(6) | C(5)-C(6)-C(7) | 106(2) |

| C(1)-Tc-N(5)      | 175.3(6) | N(2)-C(7)-C(6)    | 108(2) |
|-------------------|----------|-------------------|--------|
| C(2)-Tc-C(3)      | 85.4(8)  | N(2)-C(7)-C(8)    | 123(2) |
| C(2)-Tc-N(1)      | 96.3(7)  | C(6)-C(7)-C(8)    | 129(2) |
| C(2)-Tc-N(3)      | 177.4(6) | N(4)-N(3)-C(10)   | 107(1) |
| C(2)-Tc-N(5)      | 94.8(6)  | N(3)-N(4)-C(12)   | 104(1) |
| C(3)-Tc-N(1)      | 178.4(7) | N(3)-N(4)-B       | 121(1) |
| C(3)-Tc-N(3)      | 92.4(7)  | C(12)-N(4)-B      | 135(1) |
| C(3)-Tc-N(5)      | 96.2(6)  | N(3)-C(10)-C(9)   | 122(2) |
| N(1)-Tc-N(3)      | 86.0(5)  | N(3)-C(10)-C(11)  | 111(2) |
| N(1)-Tc-N(5)      | 83.5(5)  | C(9)-C(10)-C(11)  | 126(1) |
| N(3)-Tc-N(5)      | 84.0(5)  | C(10)-C(11)-C(12) | 106(2) |
| C(1)-Tc-C(2)      | 89.0(7)  | N(4)-C(12)-C(11)  | 111(2) |
| C(1)-Tc-C(3)      | 86.7(7)  | N(4)-C(12)-C(13)  | 113(1) |
| C(2)-Tc-C(3)      | 85.4(8)  | C(11)-C(12)-C(13) | 136(2) |
| Tc-C(1)-O(1)      | 178(2)   | N(6)-N(5)-C(15)   | 101(1) |
| Tc-C(2)-O(2)      | 180(2)   | N(5)-N(6)-C(17)   | 112(1) |
| Tc-C(3)-O(3)      | 175(2)   | N(5)-N(6)-B       | 120(1) |
| N(2)-N(1)-C(5)    | 104(1)   | C(17)-N(6)-B      | 128(1) |
| N(1)-N(2)-C(7)    | 111(1)   | N(5)-C(15)-C(14)  | 113(1) |
| N(1)-N(2)-B       | 119(1)   | N(5)-C(15)-C(16)  | 113(2) |
| C(7)-N(2)-B       | 130(1)   | C(14)-C(15)-C(16) | 135(2) |
| C(15)-C(16)-C(17) | 107(2)   | N(2)-B-N(4)       | 108(1) |
| N(6)-C(17)-C(16)  | 108(2)   | N(2)-B-N(6)       | 111(1) |
| N(6)-C(17)-C(18)  | 125(2)   | N(4)-B-N(6)       | 108(1) |
| C(16)-C(17)-C(18) | 127(2)   |                   |        |
|                   |          |                   |        |

## 4.11 HB(3,5-Me<sub>2</sub>C<sub>3</sub>HN<sub>2</sub>)<sub>3</sub>Mn(CO)<sub>3</sub> (6a)

#### A. Experimentelle Daten

Formel C<sub>18</sub>H<sub>22</sub>BMnN<sub>6</sub>O<sub>3</sub>; Kristallsystem monoklin; Raumgruppe P2<sub>1</sub>/c; Farbe, Habitus hellgelb, tafelig; Gitterkonstanten a (Å) 8.007(2), b (Å) 14.069(3), c (Å) 18.773(6), ß (°) 98.61(2); Molekulargew. (g mol<sup>-1</sup>) 412.15; Z 4; Volumen (Å<sup>3</sup>) 2090.95; F<sub>000</sub> 904; Ber. Dichte (g cm<sup>-3</sup>) 1.38; Kristallabmess. (mm) 0.08 x 0.40 x 0.90;  $\Theta$  Bereich (°) 3 < 2  $\Theta$  < 52.2; Quatrant +h +k ±1; Gemessene Refl. 4684; Unabhäng.Refl. 2366; Transmiss.Faktor (min/max) 0.87/1.00;  $\mu$  (mm<sup>-1</sup>) 6.4; Verfeinerung d. Nicht-Wasserstoffatome alle aniso, H-Atome berechnet d (C-H) = 0.954 Å, B(H) = 1.3 x B equ (C); R (%) 5.60; R<sub>W</sub> (%) 4.80; GOOF 2.17; Shift/err 0.007

|       | x        | у       | Z        | U <sub>eq</sub> |
|-------|----------|---------|----------|-----------------|
| Mn(1) | 589/1)   | 2387(1) | 1345(1)  | 40(1)           |
| C(1)  | 2366(8)  | 2367(1) | 2048(3)  | 57(2)           |
| O(1)  | 3423(6)  | 2203(4) | 2519(2)  | 09(2)           |
| C(2)  | -435(9)  | 1486(4) | 1787(3)  | 60(3)           |
| O(2)  | -1037(7) | 940(3)  | 2131(3)  | 90(2)           |
| C(3)  | -325(8)  | 3246(4) | 1878(3)  | 51(2)           |
| 0(3)  | -906(6)  | 3788(3) | 2229(2)  | 78(2)           |
| B(1)  | 691(8)   | 2580(5) | -325(3)  | 43(2)           |
| N(1)  | 1597(6)  | 1438(3) | 682(2)   | 41(2)           |
| N(2)  | 1565(6)  | 1664(3) | -27(3)   | 43(2)           |
| C(4)  | 2655(9)  | 89(4)   | 1486(3)  | 97(4)           |
| C(5)  | 2335(8)  | 586(4)  | 779(3)   | 55(3)           |
| C(6)  | 2775(9)  | 267(4)  | 131(4)   | 71(3)           |
| C(7)  | 2278(8)  | 954(4)  | -370(3)  | 53(3)           |
| C(8)  | 2470(9)  | 998(5)  | -1153(3) | 89(3)           |
| N(3)  | 1756(6)  | 3440(3) | 828(2)   | 39(2)           |
| N(4)  | 1561(6)  | 3435(3) | 84(3)    | 41(2)           |
| C(9)  | 3155(9)  | 4497(4) | 1815(3)  | 79(3)           |
| C(10) | 2614(8)  | 4236(4) | 1045(3)  | 50(2)           |
| C(11) | 2957(8)  | 4740(4) | 448(3)   | 62(3)           |
| C(12) | 2285(8)  | 4223(4) | -149(3)  | 55(3)           |
| C(13) | 2241(9)  | 4442(5) | -935(3)  | 89(3)           |
| N(5)  | -1448(5) | 2492(3) | 520(2)   | 45(2)           |
| N(6)  | -1136(5) | 2559(3) | -177(2)  | 45(2)           |
| C(14) | -4023(7) | 2404(5) | 1139(3)  | 81(3)           |
| C(15) | -3143(7) | 2484(4) | 493(3)   | 55(2)           |
| C(16) | -3896(7) | 2570(4) | -221(3)  | 60(2)           |
| C(17) | -2632(7) | 2609(4) | -631(3)  | 54(2)           |
| C(18) | -2708(8) | 2713(4) | -1431(3) | 80(3)           |

| B.  | Atomkoordinaten                                    | [x10 <sup>4</sup> ] | und | isotrope | Auslenkungsparameter |
|-----|----------------------------------------------------|---------------------|-----|----------|----------------------|
| Ueq | [pm <sup>2</sup> x10 <sup>-1</sup> ] von <u>6a</u> |                     |     |          |                      |

## C. Bindungsabstände [pm] von <u>6a</u>

| $M_{n}(1)$ - $C(1)$ | 179 8(6) | Mn(1)- $C(2)$            | 178 2(7) |
|---------------------|----------|--------------------------|----------|
| Mn(1) = C(3)        | 179.8(6) | Mn(1)-O(2)<br>Mn(1)-N(1) | 207 0(5) |
| Mn(1) = C(3)        | 206 0(4) | $M_{\rm H}(1) = N(1)$    | 207.0(3) |
| C(1) O(1)           | 200.9(4) | $\Gamma(1) - \Gamma(3)$  | 208.0(4) |
| C(1)-O(1)           | 115.0(7) | C(2)-O(2)                | 113.4(0) |
| C(3)-O(3)           | 113.1(8) | B(1)-N(2)                | 155.2(8) |
| B(1)-N(4)           | 153.7(8) | B(1)-N(6)                | 152.9(7) |

| N(1)-N(2)   | 136.5(6)  | N(1)-C(5)   | 133.7(7) |
|-------------|-----------|-------------|----------|
| N(2)-C(7)   | 135.9(8)  | C(4)-C(5)   | 148.8(9) |
| C(5)-C(6)   | 139.1(10) | C(6)-C(7)   | 136.5(9) |
| C(7)-C(8)   | 150.3(9)  | N(3)-N(4)   | 138.3(6) |
| N(3)-C(10)  | 134.4(7)  | N(4)-C(12)  | 135.4(8) |
| C(9)-C(10)  | 149.1(8)  | C(10)-C(11) | 138.8(9) |
| C(11)-C(12) | 137.6(8)  | C(12)-C(13) | 150.3(9) |
| N(5)-N(6)   | 137.2(6)  | N(5)-C(15)  | 135.0(7) |
| N(6)-C(17)  | 136.3(7)  | C(14)-C(15) | 149.6(9) |
| C(15)-C(16) | 139.1(8)  | C(16)-C(17) | 136.1(9) |
| C(17)-C(18) | 150.1(8)  |             |          |
|             |           |             |          |

## D. Bindungswinkel [°] von <u>6a</u>

| C(1)-Mn(1)-C(2)   | 87.7(3)  | C(1)-Mn(1)-C(3)   | 89.8(3)  |
|-------------------|----------|-------------------|----------|
| C(2)-Mn(1)-C(3)   | 88.0(3)  | C(1)-Mn(1)-N(1)   | 92.5(2)  |
| C(2)-Mn(1)-N(1)   | 93.9(2)  | C(3)-Mn(1)-N(1)   | 177.0(2) |
| C(1)-Mn(1)-N(3)   | 92.7(2)  | C(2)-Mn(1)-N(3)   | 179.5(2) |
| C(3)-Mn(1)-N(3)   | 91.7(2)  | N(1)-Mn(1)-N(3)   | 86.3(2)  |
| C(1)-Mn(1)-N(5)   | 178.5(2) | C(2)-Mn(1)-N(5)   | 91.9(2)  |
| C(3)-Mn(1)-N(5)   | 91.6(2)  | N(1)-Mn(1)-N(5)   | 86.0(2)  |
| N(3)-Mn(1)-N(5)   | 87.7(2)  | Mn(1)-C(1)-O(1)   | 175.6(6) |
| Mn(1)-C(2)-O(2)   | 173.8(6) | Mn(1)-C(3)-O(3)   | 179.0(5) |
| N(2)-B(1)-N(4)    | 109.1(4) | N(2)-B(1)-N(6)    | 108.4(5) |
| N(4)-B(1)-N(6)    | 107.4(5) | Mn(1)-N(1)-N(2)   | 119.0(3) |
| Mn(1)-N(1)-C(5)   | 134.5(4) | N(2)-N(1)-C(5)    | 106.5(5) |
| B(1)-N(2)-N(1)    | 119.5(4) | B(1)-N(2)-C(7)    | 130.3(5) |
| N(1)-N(2)-C(7)    | 110.1(4) | N(1)-C(5)-C(4)    | 123.8(6) |
| N(1)-C(5)-C(6)    | 109.6(5) | C(4)-C(5)-C(6)    | 126.6(6) |
| C(5)-C(6)-C(7)    | 106.7(6) | N(2)-C(7)-C(6)    | 107.1(6) |
| N(2)-C(7)-C(8)    | 123.0(5) | C(6)-C(7)-C(8)    | 129.8(6) |
| Mn(1)-N(3)-N(4)   | 118.6(3) | Mn(1)-N(3)-C(10)  | 134.5(4) |
| N(4)-N(3)-C(10)   | 106.6(4) | B(1)-N(4)-N(3)    | 118.9(4) |
| B(1)-N(4)-C(12)   | 131.6(5) | N(3)-N(4)-C(12)   | 109.4(4) |
| N(3)-C(10)-C(9)   | 124.1(5) | N(3)-C(10)-C(11)  | 109.5(5) |
| C(9)-C(10)-C(11)  | 126.3(5) | C(10)-C(11)-C(12) | 106.7(5) |
| N(4)-C(12)-C(11)  | 107.7(5) | N(4)-C(12)-C(13)  | 122.4(5) |
| C(11)-C(12)-C(13) | 129.8(6) | Mn(1)-N(5)-N(6)   | 118.7(3) |
| Mn(1)-N(5)-C(15)  | 134.4(4) | N(6)-N(5)-C(15)   | 106.9(4) |
| B(1)-N(6)-N(5)    | 119.4(4) | B(1)-N(6)-C(17)   | 131.3(5) |
| N(5)-N(6)-C(17)   | 109.3(4) | N(5)-C(15)-C(14)  | 124.3(5) |
| N(5)-C(15)-C(16)  | 108.9(5) | C(14)-C(15)-C(16) | 126.9(5) |
| C(15)-C(16)-C(17) | 107.2(5) | N(6)-C(17)-C(16)  | 107.7(5) |
| N(6)-C(17)-C(18)  | 122.0(5) | C(16)-C(17)-C(18) | 130 3(5) |

.

## 4.12 HB( $3,5-Me_2C_3HN_2$ )<sub>3</sub>Re(CO)<sub>3</sub> (6b)

#### A. Experimentelle Daten

Formel C<sub>18</sub>H<sub>22</sub>BN<sub>6</sub>O<sub>3</sub>Re; Kristallsystem monoklin; Raumgruppe P2<sub>1</sub>/c; Farbe, Habitus farblos; Gitterkonstanten a (Å) 7.998(3), b (Å) 14.091(4), c (Å) 18.919(5), ß (°) 97.27(2); Molekulargew. (g mol<sup>-1</sup>) 567.43; Z 4; Volumen (Å<sup>3</sup>) 2115.3; F<sub>000</sub> 1104; Ber. Dichte (g cm<sup>-3</sup>) 1.782; Kristallabmess. (mm) 0.26 x 0.32 x 0.20;  $\Theta$  Bereich (°) 2  $< \Theta < 27$ ; Quatrant  $\pm h \pm k + 1$ ; Gemessene Refl. 9484; Unabhäng.Refl. 4603; Nutzbare Refl. 2947; Transmiss.Faktor (min/max) 0.555/0.994;  $\mu$  (mm<sup>-1</sup>) 58.514; Verfeinerung d. Nicht-Wasserstoffatome alle aniso, H-Atome berechnet d (C-H) = 0.954 Å, B(H) = 1.3 x B equ (C); R (%) 3.77; R<sub>W</sub> (%) 4.50; GOOF 1.035; Shift/err 0.03

## B. Atomkoordinaten [x10<sup>4</sup>] und isotrope Auslenkungsparameter $U_{eq}$ [pm<sup>2</sup>x10<sup>-1</sup>] von <u>6b</u>

| 4 Mainton Aggint Talak Anging Sangarang Karding Sangarang Kardin | Х         | у         | Z         | U <sub>eq</sub> |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|-----------------|
| Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4847(3)   | 2353.7(2) | 1323.6(1) | 27,70(5)        |
| C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -460(10)  | 3256(7)   | 1909(4)   | 38(2)           |
| O(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1045(8)  | 3787(6)   | 2278(3)   | 54(2)           |
| C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2350(10)  | 2179(7)   | 2038(5)   | 45(2)           |
| O(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3429(9)   | 2039(7)   | 2500(4)   | 71(2)           |
| C(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -610(10)  | 1390(7)   | 1800(5)   | 45(2)           |
| O(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1285(9)  | 829(6)    | 2096(4)   | 71(2)           |
| N(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1489(7)   | 1410(5)   | 558(3)    | 32(1)           |
| N(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1495(7)   | 1715(5)   | -134(3)   | 32(1)           |
| C(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2460(10)  | 13(8)     | 1290(7)   | 65(3)           |
| C(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2210(10)  | 552(6)    | 609(5)    | 39(2)           |
| C(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2670(10)  | 311(7)    | -51(5)    | 46(2)           |
| C(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2213(9)   | 1037(7)   | -491(4)   | 37(2)           |
| C(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2450(10)  | 1148(9)   | -1270(5)  | 56(2)           |
| N(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1572(7)  | 2501(5)   | 462(4)    | 33(1)           |
| N(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1212(7)  | 2594(5)   | -241(3)   | 31(1)           |
| C(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -4130(10) | 2402(8)   | 1075(6)   | 56(2)           |
| C(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -3260(9)  | 2500(6)   | 414(5)    | 38(2)           |
| C(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -3960(10) | 2586(6)   | -279(6)   | 45(2)           |
| C(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2678(9)  | 2649(6)   | -684(5)   | 37(2)           |
| C(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2730(10) | 2777(8)   | -1473(5)  | 53(2)           |
| N(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1698(7)   | 3463(5)   | 763(3)    | 31(1)           |
| N(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1515(7)   | 3473(5)   | 31(3)     | 28(1)           |

| C(14) | 3070(10) | 4464(9) | 1743(5) | 56(2) |
|-------|----------|---------|---------|-------|
| C(15) | 2580(10) | 4251(7) | 982(5)  | 39(2) |
| C(16) | 2900(10) | 4756(7) | 391(5)  | 47(2) |
| C(17) | 2210(10) | 4265(6) | -187(5) | 40(2) |
| C(18) | 2200(10) | 4495(9) | -963(5) | 63(3) |
| В     | 640(10)  | 2622(8) | -374(5) | 34(2) |
|       |          |         |         |       |

## C. Bindungsabstände [pm] von <u>6b</u>

| Re-C(1)     | 190.4(9) | C(6)-C(7)   | 134(1) |  |
|-------------|----------|-------------|--------|--|
| Re-C(2)     | 190(1)   | C(7)-C(8)   | 152(1) |  |
| Re-C(3)     | 190(1)   | N(3)-N(4)   | 140(1) |  |
| Re-N(1)     | 219.2(7) | N(3)-C(10)  | 134(1) |  |
| Re-N(3)     | 217.5(7) | N(4)-C(12)  | 136(1) |  |
| Re-N(5)     | 218.5(7) | N(4)-B      | 153(1) |  |
| C(9)-C(10)  | 151(1)   | C(10)-C(11) | 136(1) |  |
| C(11)-C(12) | 136(1)   | C(1)-O(1)   | 116(1) |  |
| C(12)-C(13) | 150(1)   | C(2)-O(2)   | 116(1) |  |
| N(5)-N(6)   | 137.3(9) | C(3)-O(3)   | 114(1) |  |
| N(5)-C(15)  | 135(1)   | N(1)-N(2)   | 138(1) |  |
| N(6)-C(17)  | 134(1)   | N(1)-C(5)   | 134(1) |  |
| N(6)-B      | 154(1)   | N(2)-C(7)   | 134(1) |  |
| C(14)-C(15) | 148(1)   | N(2)-B      | 149(1) |  |
| C(15)-C(16) | 138(1)   | C(4)-C(5)   | 149(1) |  |
| C(16)-C(17) | 135(1)   | C(5)-C(6)   | 139(1) |  |
| C(17)-C(18) | 150(1)   | Re-B        | 325(1) |  |
|             |          |             |        |  |

## D. Bindungswinkel [°] von 6b

| C(1)-Re-C(2) | 90.3(4)  | N(1)-N(2)-C(7)  | 108.0(7) |
|--------------|----------|-----------------|----------|
| C(1)-Re-C(3) | 87.7(4)  | N(1)-N(2)-B     | 119.9(6) |
| C(1)-Re-N(1) | 174.2(3) | C(7)-N(2)-B     | 131.8(7) |
| C(1)-Re-N(3) | 93.1(3)  | N(1)-C(5)-C(4)  | 122.3(9) |
| C(1)-Re-N(5) | 92.2(3)  | N(1)-C(5)-C(6)  | 108.5(9) |
| C(2)-Re-C(3) | 86.4(5)  | C(4)-C(5)-C(6)  | 129.2(9) |
| C(2)-Re-N(1) | 94.1(3)  | C(5)-C(6)-C(7)  | 106.8(8) |
| C(2)-Re-N(3) | 176.5(3) | N(2)-C(7)-C(6)  | 109.4(8) |
| C(2)-Re-N(5) | 94.6(4)  | N(2)-C(7)-C(8)  | 121.9(9) |
| C(3)-Re-N(1) | 96.3(4)  | C(6)-C(7)-C(8)  | 129(1)   |
| C(3)-Re-N(3) | 94.2(4)  | N(4)-N(3)-C(10) | 105.2(7) |
| C(3)-Re-N(5) | 178.9(3) | N(3)-N(4)-C(12) | 109.1(6) |
| N(1)-Re-N(3) | 82.4(3)  | N(3)-N(4)-B     | 118.5(6) |

| N(1)-Re-N(5)      | 83.7(3)  | C(12)-N(4)-B      | 132.4(7) |
|-------------------|----------|-------------------|----------|
| N(3)-Re-N(5)      | 84.7(3)  | N(3)-C(10)-C(9)   | 120.6(9) |
| C(1)-Re-C(2)      | 90.3(4)  | N(3)-C(10)-C(11)  | 110.6(8) |
| C(1)-Re-C(3)      | 87.7(4)  | C(9)-C(10)-C(11)  | 128.9(8) |
| C(2)-Re-C(3)      | 86.4(5)  | C(10)-C(11)-C(12) | 107.5(7) |
| Re-C(1)-O(1)      | 178.2(9) | N(4)-C(12)-C(11)  | 107.6(8) |
| Re-C(2)-O(2)      | 176(1)   | N(4)-C(12)-C(13)  | 122.3(8) |
| Re-C(3)-O(3)      | 178.2(9) | C(11)-C(12)-C(13) | 130.1(8) |
| N(2)-N(1)-C(5)    | 107.3(7) | N(6)-N(5)-C(15)   | 106.6(8) |
| N(5)-N(6)-C(17)   | 108.9(8) | N(6)-C(17)-C(16)  | 108.7(8) |
| N(5)-N(6)-B       | 118.5(7) | N(6)-C(17)-C(18)  | 122(1)   |
| C(17)-N(6)-B      | 132.6(8) | C(16)-C(17)-C(18) | 129.3(9) |
| N(5)-C(15)-C(14)  | 122.0(9) | N(2)-B-N(4)       | 110.1(7) |
| N(5)-C(15)-C(16)  | 108.6(9) | N(2)-B-N(6)       | 110.5(7) |
| C(14)-C(15)-C(16) | 129(1)   | N(4)-B-N(6)       | 109.1(7) |
| C(15)-C(16)-C(17) | 107.1(8) |                   |          |
|                   |          |                   |          |

## 4.13 Me<sub>4</sub>C<sub>4</sub>NTc(CO)<sub>3</sub>·HNC<sub>4</sub>Me<sub>4</sub> (7)

#### **A. Experimentelle Daten**

Formel C<sub>19</sub>H<sub>25</sub>N<sub>2</sub>O<sub>3</sub>Tc; Kristallsystem orthorombisch; Raumgruppe Pna2<sub>1</sub> (Nr.33); Farbe farblos, dünn nadelig; Gitterkonstanten a (Å) 20.967(5), b (Å) 11.556(2), c (Å) 8.741(3), Molekulargew. 428.42(g mol<sup>-1</sup>); Z 4; Volumen (Å<sup>3</sup>) 2118(2); F<sub>000</sub> 880; Ber.Dichte (g cm<sup>-3</sup>) 1.340; Kristallabmess. (mm) 0.07x0.13x1.5;  $\Theta$  Bereich (°) 2 <  $\Theta$ < 25; Quatrant +h ±k -l; Gemessene Refl. 4116; Unabhäng.Refl. 1999; Nutzbare Refl. 1311; Transmiss.Faktor (min/max) 0.999/1.098;  $\mu$  (cm<sup>-1</sup>) 6.79; Verfeinerung d. Nicht-Wasserstoffatome alle aniso; H-Atome berechnet d(C-H) = 0.954 Å, B(H) = 1.3 x B equ (C); R (%) 5.8; R<sub>w</sub> (%) 8.6; GOOF 1.956; Shift/err 0.06

## B. Atomkoordinaten [x10<sup>4</sup>] und isotrope Auslenkungsparameter $U_{eq}$ [pm<sup>2</sup> x 10<sup>-1</sup>] von <u>7</u>

|      | X         | у         | Z        | U <sub>eq</sub> |
|------|-----------|-----------|----------|-----------------|
| Тс   | 3378.4(4) | 1850.6(8) | 1120     | 42.3(2)         |
| C(1) | 2706(8)   | 1940(10)  | 2620(20) | 63(3)           |
| O(1) | 2348(6)   | 1980(10)  | 3560(20) | 101(4)          |
| C(2) | 3999(6)   | 2130(10)  | 2650(20) | 57(3)           |
| O(2) | 4366(6)   | 2250(10)  | 3590(20) | 84(3)           |

| C(3)  | 3311(7)  | 3410(10)  | 700(30)   | 69(5)  |
|-------|----------|-----------|-----------|--------|
| O(3)  | 3289(7)  | 4370(10)  | 410(20)   | 107(5) |
| N(1)  | 3470(5)  | 44(8)     | 500(10)   | 50(2)  |
| C(4)  | 2919(6)  | 380(10)   | -160(20)  | 46(2)  |
| C(5)  | 3062(7)  | 1230(10)  | -1350(20) | 50(3)  |
| C(6)  | 3752(5)  | 1340(10)  | -1310(10) | 41(2)  |
| C(7)  | 4003(6)  | 540(10)   | -280(20)  | 54(3)  |
| C(8)  | 2284(7)  | -120(10)  | 140(20)   | 60(4)  |
| C(9)  | 2609(8)  | 1790(10)  | -2420(20) | 75(4)  |
| C(10) | 4130(8)  | 2100(20)  | -2330(20) | 83(5)  |
| C(11) | 4663(6)  | 250(10)   | 170(30)   | 68(4)  |
| N(2)  | 3829(5)  | -1765(8)  | 2990(10)  | 47(2)  |
| C(12) | 4113(5)  | -2770(10) | 2470(10)  | 43(2)  |
| C(13) | 4262(5)  | -3410(10) | 3930(10)  | 45(3)  |
| C(14) | 4062(7)  | -2670(10) | 5080(20)  | 60(3)  |
| C(15) | 3811(7)  | -1730(10) | 4550(10)  | 47(3)  |
| C(16) | 4195(8)  | -3120(10) | 900(30)   | 67(4)  |
| C(17) | 4570(10) | -4580(20) | 3930(30)  | 103(7) |
| C(18) | 4131(9)  | -3020(20) | 6880(20)  | 81(5)  |
| C(19) | 3509(8)  | -710(20)  | 5370(20)  | 86(4)  |
|       |          |           |           |        |

## C. Bindungsabstände [pm] von <u>7</u>

.

| Tc-C(1)     | 193(1)    | Tc-C(2)     | 189(2)   |
|-------------|-----------|-------------|----------|
| Tc-C(3)     | 184(1)    | Tc-N(1)     | 216.7(9) |
| Tc-C(4)     | 225(2)    | Tc-C(5)     | 237(1)   |
| Tc-C(7)     | 234.8(9)  | C(1)-O(1)   | 111(2)   |
| C(2)-O(2)   | 114(2)    | C(3)-O(3)   | 114(2)   |
| N(1)-C(4)   | 135(1)    | C(4)-C(5)   | 146(2)   |
| C(5)-C(6)   | 145(1)    | N(1)-C(7)   | 142(2)   |
| N(2)-C(12)  | 138(1)    | C(12)-C(13) | 150(2)   |
| C(13)-C(14) | 139(2)    | C(14)-C(15) | 129(2)   |
| N(2)-C(15)  | 136(1)    | C(12)-C(16) | 145(2)   |
| C(13)-C(17) | 150(2)    | C(14)-C(18) | 163(2)   |
| C(15)-C(19) | 151(2)    | C(4)-C(8)   | 147(2)   |
| C(5)-C(9)   | 148(2)    | C(6)-C(10)  | 149(3)   |
| C(7)-C(11)  | 148(2)    | C(6)-C(7)   | 140(2)   |
| N(2)-H(1)   | 95.0(9)   | N(1)-H(1)   | 218.3(9) |
| Tc-centr.   | 195.67(5) |             |          |

#### D. Bindungswinkel [°] von 7

| ) |
|---|
| ) |
| ) |
|   |
|   |
|   |
|   |
|   |
|   |
| ) |
|   |
| ) |
|   |
|   |
|   |
|   |
|   |
|   |
|   |

### 4.14 Me<sub>4</sub>C<sub>4</sub>NMn(CO)<sub>3</sub>·HNC<sub>4</sub>Me<sub>4</sub> (7a)

#### A. Experimentelle Daten

Formel C<sub>19</sub>H<sub>25</sub>MnN<sub>2</sub>O<sub>3</sub>; Kristallsystem monoklin; Raumgruppe P<sub>21</sub>/c (Nr.14); Farbe, Habitus gelb, nadelig; Gitterkonstanten a (Å) 23.982(6), b (Å) 8.653(2), c (Å) 22.130(6),  $\beta$  (°) 117.06(2); Molekulargew. (g mol<sup>-1</sup>) 384.36; Z 8; Volumen (Å<sup>3</sup>) 4.123(4); F<sub>000</sub>; Ber.Dichte (g cm<sup>-3</sup>) 1.241; Kristallabmess. (mm);  $\Theta$  Bereich (°); Quatrant; Gemessene Refl.; Unabhäng.Refl.; Nutzbare Refl.; Transmiss.Faktor (min/max);  $\mu$  (cm<sup>-1</sup>); Verfeinerung d. Nicht-Wasserstoffatome; H-Atome berechnet d (C-H) = 0.954 Å, B(H) = 1.3 x B equ (C); R (%); R<sub>W</sub> (%); GOOF; Shift/err

#### 4.15 $Me_4C_4NRe(CO)_3 \cdot HNC_4Me_4$ (7b)

#### A. Experimentelle Daten

Formel C<sub>19</sub>H<sub>25</sub>N<sub>2</sub>O<sub>3</sub>Re; Kristallsystem orthorombisch; Raumgruppe Pna2<sub>1</sub> (Nr.33); Farbe, Habitus farblos, dünn nadelig; Gitterkonstanten a (Å) 20.932(3), b (Å) 11.515(2), c (Å) 8.717(2), Molekulargew. (g mol<sup>-1</sup>) 515.62; Z 4; Volumen (Å<sup>3</sup>) 2107(1); F<sub>000</sub> 1008; Ber.Dichte (g cm<sup>-3</sup>) 1.630; Kristallabmess. (mm);  $\Theta$  Bereich (°) 2  $< \Theta < 25$ ; Quatrant  $\pm h \pm k \pm 1$ ; Gemessene Refl. 7911; Unabhäng.Refl. 1981; Nutzbare Refl. 1573; Transmiss.Faktor (min/max) 0.633/0.995;  $\mu$  (cm<sup>-1</sup>) 58.78; Verfeinerung d. Nicht-Wasserstoffatome Re aniso, alle Anderen iso; H-Atome berechnet d (C-H) = 0.954 Å, B(H) = 1.3 x B equ (C); R (%) 3.5; R<sub>W</sub> (%) 5.8; GOOF 1.715; Shift/err 0.01

| B.               | Atomkoordinaten                                    | $[x10^{4}]$ | und | isotrope | Auslenkungsparameter |
|------------------|----------------------------------------------------|-------------|-----|----------|----------------------|
| U <sub>e</sub> [ | pm <sup>2</sup> x 10 <sup>-1</sup> ] von <u>7b</u> |             |     |          |                      |

|       | Х                                                                                                               | у                                        | Z                                                                                                               | U <sub>eq</sub> |
|-------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------|
|       | na de La Santa de Canada de Can | an a | анан талар бол байлан тар өө бол тар тар бол байн тар тар тар бол бөлөө төр тар тар бол бөлөө төр тар бол бөлөө |                 |
| Re    | 3377.0(2)                                                                                                       | 1858.6(3)                                | 1130                                                                                                            | 39.5(1)         |
| C(1)  | 2723(8)                                                                                                         | 1980(10)                                 | 2680(20)                                                                                                        | 62(3)           |
| O(1)  | 2360(7)                                                                                                         | 1931(9)                                  | 3650(20)                                                                                                        | 91(4)           |
| C(2)  | 4003(6)                                                                                                         | 2180(10)                                 | 2700(20)                                                                                                        | 57(3)           |
| O(2)  | 4387(6)                                                                                                         | 2210(10)                                 | 3710(20)                                                                                                        | 89(3)           |
| C(3)  | 3289(6)                                                                                                         | 3430(10)                                 | 830(20)                                                                                                         | 57(3)           |
| O(3)  | 3267(6)                                                                                                         | 4460(10)                                 | 500(20)                                                                                                         | 90(4)           |
| N(1)  | 3475(4)                                                                                                         | 5(7)                                     | 530(10)                                                                                                         | 34(2)           |
| C(4)  | 2931(6)                                                                                                         | 340(10)                                  | -110(20)                                                                                                        | 46(2)           |
| C(5)  | 3049(6)                                                                                                         | 1211(9)                                  | -1240(20)                                                                                                       | 47(3)           |
| C(6)  | 3752(6)                                                                                                         | 1380(10)                                 | -1220(20)                                                                                                       | 45(2)           |
| C(7)  | 3970(6)                                                                                                         | 540(10)                                  | -160(20)                                                                                                        | 44(3)           |
| C(8)  | 2292(6)                                                                                                         | -130(10)                                 | 230(20)                                                                                                         | 50(3)           |
| C(9)  | 2588(6)                                                                                                         | 1783(8)                                  | -2350(20)                                                                                                       | 47(3)           |
| C(10) | 4145(6)                                                                                                         | 2150(10)                                 | -2320(20)                                                                                                       | 60(3)           |
| C(11) | 4658(6)                                                                                                         | 290(10)                                  | 270(20)                                                                                                         | 53(3)           |
| N(2)  | 3849(5)                                                                                                         | -1777(6)                                 | 3040(20)                                                                                                        | 42(2)           |
| C(12) | 4145(4)                                                                                                         | -2790(10)                                | 2610(20)                                                                                                        | 37(2)           |
| C(13) | 4261(6)                                                                                                         | -3430(10)                                | 3950(20)                                                                                                        | 41(2)           |
| C(14) | 4055(5)                                                                                                         | -2690(10)                                | 5220(20)                                                                                                        | 43(2)           |
| C(15) | 3809(7)                                                                                                         | -1720(10)                                | 4640(20)                                                                                                        | 49(3)           |
| C(16) | 4231(7)                                                                                                         | -3100(10)                                | 1000(30)                                                                                                        | 69(4)           |
| C(17) | 4608(9)                                                                                                         | -4560(20)                                | 3940(30)                                                                                                        | 87(5)           |
|       |                                                                                                                 |                                          |                                                                                                                 |                 |

| C(18) | 4144(8) | -3070(10) | 6900(30) | 74(5) |
|-------|---------|-----------|----------|-------|
| C(19) | 3540(8) | -750(20)  | 5530(30) | 75(4) |

## C. Bindungsabstände [pm] von 7b

| 193(2) | Re-C(2)                                                                                                                              | 193(2)                                                                                                                                                                                                                           |
|--------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 183(1) | Re-N(1)                                                                                                                              | 220.8(9)                                                                                                                                                                                                                         |
| 226(1) | Re-C(5)                                                                                                                              | 230(1)                                                                                                                                                                                                                           |
| 226(1) | Re-C(7)                                                                                                                              | 227(2)                                                                                                                                                                                                                           |
| 114(2) | C(2)-O(2)                                                                                                                            | 120(2)                                                                                                                                                                                                                           |
| 123(2) | N(1)-C(4)                                                                                                                            | 132(1)                                                                                                                                                                                                                           |
| 144(2) | C(5)-C(6)                                                                                                                            | 148(2)                                                                                                                                                                                                                           |
| 134(1) | N(2)-C(12)                                                                                                                           | 138(1)                                                                                                                                                                                                                           |
| 140(2) | C(13)-C(14)                                                                                                                          | 146(2)                                                                                                                                                                                                                           |
| 133(2) | N(2)-C(15)                                                                                                                           | 141(2)                                                                                                                                                                                                                           |
| 146(4) | C(13)-C(17)                                                                                                                          | 150(2)                                                                                                                                                                                                                           |
| 154(2) | C(15)-C(19)                                                                                                                          | 147(2)                                                                                                                                                                                                                           |
| 147(1) | C(5)-C(9)                                                                                                                            | 151(2)                                                                                                                                                                                                                           |
| 154(2) | C(7)-C(11)                                                                                                                           | 152(1)                                                                                                                                                                                                                           |
| 141(2) | Re-centr.                                                                                                                            | 191.9(2)                                                                                                                                                                                                                         |
|        | 193(2) $183(1)$ $226(1)$ $226(1)$ $114(2)$ $123(2)$ $144(2)$ $134(1)$ $140(2)$ $133(2)$ $146(4)$ $154(2)$ $147(1)$ $154(2)$ $141(2)$ | 193(2)Re-C(2)183(1)Re-N(1)226(1)Re-C(5)226(1)Re-C(7)114(2)C(2)-O(2)123(2)N(1)-C(4)144(2)C(5)-C(6)134(1)N(2)-C(12)140(2)C(13)-C(14)133(2)N(2)-C(15)146(4)C(13)-C(17)154(2)C(5)-C(9)147(1)C(5)-C(9)154(2)C(7)-C(11)141(2)Re-centr. |

## D. Bindungswinkel [°] von <u>7b</u>

| C(1)-Re-C(2)      | 88.4(7)  | C(1)-Re-C(3)      | 87.5(6)  |
|-------------------|----------|-------------------|----------|
| C(1)-Re-centr.    | 126.5(4) | C(2)-Re-C(3)      | 88.7(6)  |
| C(2)-Re-centr.    | 116.6(4) | C(3)-Re-centr.    | 126.6(6) |
| Re-C(1)-O(1)      | 177(1)   | Re-C(2)-O(2)      | 175(1)   |
| Re-C(3)-O(3)      | 173(1)   | C(4)-N(1)-C(7)    | 110.2(9) |
| N(1)-C(4)-C(5)    | 110.2(9) | N(1)-C(4)-C(8)    | 126(2)   |
| C(5)-C(4)-C(8)    | 123(2)   | C(4)-C(5)-C(6)    | 104.7(9) |
| C(6)-C(5)-C(9)    | 126(1)   | C(5)-C(6)-C(7)    | 103.9(9) |
| C(7)-C(6)-C(10)   | 129(2)   | N(1)-C(7)-C(6)    | 110.8(9) |
| N(1)-C(7)-C(11)   | 122(1)   | C(6)-C(7)-C(11)   | 127(1)   |
| C(12)-N(2)-C(15)  | 110(1)   | N(2)-C(12)-C(13)  | 107(2)   |
| N(2)-C(12)-C(16)  | 122(2)   | C(13)-C(12)-C(16) | 131(2)   |
| C(12)-C(13)-C(14) | 106(1)   | C(12)-C(13)-C(17) | 123(1)   |
| C(14)-C(13)-C(17) | 131(2)   | C(13)-C(14)-C(15) | 109(1)   |
| C(15)-C(14)-C(18) | 131(1)   | N(2)-C(15)-C(14)  | 108(1)   |
| N(2)-C(15)-C(19)  | 127(1)   | C(14)-C(15)-C(19) | 127(1)   |
| N(1)-H(1)-N(2)    | 170.5(7) |                   |          |
|                   |          |                   |          |

## 4.16 HB(3,5-Me<sub>2</sub>C<sub>3</sub>HN<sub>2</sub>)<sub>3</sub>Re(CO)<sub>2</sub>THF (8b)

#### A. Experimentelle Daten

C(8)

C(9)

C(10)

C(11)

C(12)

C(13)

5511(5)

5075(5)

5133(5)

5649(5)

4765(5)

7036(4)

Formel C21H30BN6O3Re; Kristallsystem monoklin; Raumgruppe C2/c (Nr.15); Farbe, Habitus gelb, tafelig; Gitterkonstanten a (Å) 27.606(5), b (Å) 10.812(2), c (Å) 16.212(3), B (°) 94.97(2); Molekulargew. (g mol<sup>-1</sup>) 611.52; Z 8; Volumen (Å<sup>3</sup>) 4821; F<sub>000</sub> 2416; Ber.Dichte (g cm<sup>-3</sup>) 1.685; Kristallabmess. (mm);  $\Theta$  Bereich (°) 1.5 <  $\Theta$ < 22.5; Ouatrant  $\pm h - k \pm 1$ ; Gemessene Refl. 13444; Unabhäng.Refl. 3142; Nutzbare Refl. 1865; Transmiss.Faktor (min/max) 0.783/1.000;  $\mu$  (cm<sup>-1</sup>) 51.41; Verfeinerung d. Nicht-Wasserstoffatome alle aniso außer THF-Kohlenstoffe; H-Atome berechnet d (C-H) = 0.954 Å, B(H) = 1.3 x B equ (C); R (%) 2.9; R<sub>w</sub> (%) 3.6; GOOF 0.885; Shift/err 0.02

| B.<br>U <sub>e</sub> (pm | Atomkoordinaten<br>1 <sup>2</sup> x 10 <sup>-1</sup> ] von <u>8b</u> | [x10 <sup>4</sup> ] und | isotrope | Auslenkungsparameter |
|--------------------------|----------------------------------------------------------------------|-------------------------|----------|----------------------|
|                          | Х                                                                    | у                       | Z        | U <sub>eq</sub>      |
| Re                       | 6546.4(2)                                                            | 233.2(4)                | 5437.9(  | (3) 28.06(8)         |
| O(1)                     | 6955(4)                                                              | 2319(9)                 | 6544(5)  | 53(3)                |
| O(2)                     | 6396(4)                                                              | 2413(8)                 | 4252(5)  | 51(2)                |
| O(3)                     | 7210(4)                                                              | -120(10)                | 5040(7)  | 101(4)               |
| N(1)                     | 5983(3)                                                              | -2192(9)                | 4960(6)  | 35(2)                |
| N(2)                     | 6233(3)                                                              | -1255(9)                | 4627(6)  | 35(2)                |
| N(3)                     | 5585(3)                                                              | -860(10)                | 5983(6)  | 38(2)                |
| N(4)                     | 5823(3)                                                              | 215(9)                  | 5887(5)  | 32(2)                |
| N(5)                     | 6312(4)                                                              | -2114(9)                | 6448(6)  | 37(2)                |
| N(6)                     | 6669(3)                                                              | -1237(8)                | 6362(5)  | 28(2)                |
| C(1)                     | 6791(5)                                                              | 1480(10)                | 6134(7)  | 36(3)                |
| C(2)                     | 6441(4)                                                              | 1560(10)                | 4678(6)  | 31(3)                |
| C(3)                     | 6281(5)                                                              | -1550(10)               | 3837(7)  | 43(3)                |
| C(4)                     | 6056(5)                                                              | -2690(10)               | 3666(8)  | 45(3)                |
| C(5)                     | 5875(5)                                                              | -3080(10)               | 4381(8)  | 44(3)                |
| C(6)                     | 6534(6)                                                              | -760(10)                | 3250(9)  | 57(4)                |
| C(7)                     | 5603(5)                                                              | -4240(10)               | 4550(10  | )) 59(4)             |

1150(10)

590(10)

-650(10)

2470(10)

-1670(2)

-1470(10)

6074(8)

6294(9)

6224(8)

6061(9)

6360(10)

6928(7)

59(4)

57(4)

49(3)

55(4)

74(5)

31(3)

| Atomkoordinaten<br><sup>2</sup> x 10 <sup>-1</sup> ] von <u>8b</u> | [x10 <sup>4</sup> ] | und | isotrope | Auslenkung |
|--------------------------------------------------------------------|---------------------|-----|----------|------------|
| X                                                                  |                     |     | 7.       | <u></u>    |

| C(14) | 6914(5) | -2510(10) | 7409(8)  | 42(3) |
|-------|---------|-----------|----------|-------|
| C(15) | 6456(5) | -2900(10) | 7085(7)  | 37(3) |
| C(16) | 7493(4) | -740(10)  | 7016(8)  | 46(3) |
| C(17) | 6157(5) | -3970(10) | 7345(8)  | 53(4) |
| C(18) | 7378(3) | -1218(9)  | 4914(6)  | 17(2) |
| C(19) | 7863(6) | -1180(2)  | 4660(10) | 68(4) |
| C(20) | 8033(6) | 110(10)   | 4660(10) | 65(4) |
| C(21) | 7585(5) | 870(10)   | 4840(8)  | 46(3) |
| В     | 5844(6) | -2150(2)  | 5873(9)  | 44(4) |
|       |         |           |          |       |

## C. Bindungsabstände [pm] von <u>8b</u>

| Re-O(3)     | 203(1)   | Re-N(2)     | 221(1) |
|-------------|----------|-------------|--------|
| Re-N(4)     | 218.4(9) | Re-N(6)     | 219(1) |
| Re-C(1)     | 185(2)   | Re-C(2)     | 189(1) |
| O(1)-C(1)   | 119(2)   | O(2)-C(2)   | 116(1) |
| N(1)-N(2)   | 136(1)   | N(3)-N(4)   | 135(1) |
| N(5)-N(6)   | 138(1)   | O(3)-C(18)  | 129(2) |
| O(3)-C(21)  | 155(2)   | N(1)-C(5)   | 136(2) |
| N(1)-B      | 156(2)   | N(2)-C(3)   | 134(2) |
| N(3)-C(10)  | 136(2)   | N(3)-B      | 158(2) |
| N(4)-C(8)   | 138(2)   | N(5)-N(6)   | 138(1) |
| N(5)-C(15)  | 137(1)   | N(6)-C(13)  | 133(1) |
| C(3)-C(4)   | 140(2)   | C(3)-C(6)   | 150(2) |
| C(4)-C(5)   | 137(2)   | C(5)-C(7)   | 150(2) |
| C(8)-C(9)   | 142(2)   | C(8)-C(11)  | 148(2) |
| C(9)-C(10)  | 135(2)   | C(10)-C(12) | 153(2) |
| C(13)-C(14) | 142(2)   | C(13)-C(16) | 148(2) |
| C(14)-C(15) | 139(2)   | C(15)-C(17) | 150(2) |
| C(18)-C(19) | 143(2)   | C(19)-C(20) | 147(2) |
| C(20)-C(21) | 154(2)   |             |        |
|             |          |             |        |

## D. Bindungswinkel [°] von <u>8b</u>

| O(3)-Re-N(2) | 89.4(5) | O(3)-Re-N(4) | 168.5(5)  |
|--------------|---------|--------------|-----------|
| O(3)-Re-N(6) | 89.4(5) | O(3)-Re-C(1) | 92.3(6)   |
| O(3)-Re-C(2) | 91.6(6) | N(2)-Re-N(4) | 82.5(4)   |
| N(2)-Re-N(6) | 84.7(4) | N(2)-Re-C(1) | 178.2(5)  |
| N(2)-Re-C(2) | 97.6(5) | N(4)-Re-N(6) | 81.8(4)   |
| N(4)-Re-C(1) | 95.7(5) | N(4)-Re-C(2) | 97.5(5)   |
| N(6)-Re-C(1) | 94.9(5) | N(6)-Re-C(2) | 177.5(4)  |
| C(1)-Re-C(2) | 82.7(5) | Re-C(1)-O(1) | 176.0(10) |

154

| Re-C(2)-O(2)      | 175.0(10) | C(18)-O(3)-C(21)  | 110.0(10) |
|-------------------|-----------|-------------------|-----------|
| N(2)-N(1)-C(5)    | 110.0(10) | N(2)-N(1)-B       | 122.0(10) |
| C(5)-N(1)-B       | 128.0(10) | N(1)-N(2)-C(3)    | 107.0(10) |
| N(4)-N(3)-C(10)   | 111.0(10) | N(4)-N(3)-B       | 121.0(10) |
| C(10)-N(3)-B      | 128.0(10) | N(3)-N(4)-C(8)    | 107.0(10) |
| N(6)-N(5)-C(15)   | 110.0(1)  | N(6)-N(5)-B       | 122.0(10) |
| C(15)-N(5)-B      | 128.0(10) | N(5)-N(6)-C(13)   | 107.9(9)  |
| N(2)-C(3)-C(4)    | 109.0(10) | N(2)-C(3)-C(6)    | 124.0(10) |
| C(4)-C(3)-C(6)    | 127.0(10) | C(3)-C(4)-C(5)    | 107.0(10) |
| N(1)-C(5)-C(7)    | 123.0(10) | N(1)-C(5)-C(4)    | 107.0(10) |
| C(4)-C(5)-C(7)    | 130.0(10) | N(4)-C(8)-C(9)    | 108.0(10) |
| N(4)-C(8)-C(11)   | 123.0(10) | C(9)-C(8)-C(11)   | 130.0(10) |
| C(8)-C(9)-C(10)   | 107.0(10) | N(3)-C(10)-C(9)   | 108.0(10) |
| N(3)-C(10)-C(12)  | 124.0(10) | C(9)-C(10)-C(12)  | 128.0(20) |
| N(6)-C(13)-C(14)  | 109.0(10) | N(6)-C(13)-C(16)  | 124.0(10) |
| C(14)-C(13)-C(16) | 124.0(10) | C(13)-C(14)-C(15) | 106.0(10) |
| N(5)-C(15)-C(14)  | 107.0(10) | N(5)-C(15)-C(17)  | 124.0(10) |
| C(14)-C(15)-C(17) | 129.0(10) | O(3)-C(18)-C(19)  | 112.0(10) |
| C(18)-C(19)-C(20) | 109.0(10) | C(19)-C(20)-C(21) | 104.0(10) |
| O(3)-C(21)-C(20)  | 103.0(10) | N(1)-B-N(3)       | 107.0(10) |
| N(1)-B-N(5)       | 108.0(10) | N(3)-B-N(5)       | 106.0(10) |
|                   |           |                   |           |

## 4.17 HB(C<sub>3</sub>H<sub>3</sub>N<sub>2</sub>)<sub>3</sub>Tc(PPh<sub>2</sub>Me)<sub>2</sub>(CO) (10)

#### A. Experimentelle Daten

Formel C<sub>36</sub>H<sub>36</sub>BN<sub>6</sub>OP<sub>2</sub>Tc; Kristallsystem monoklin; Raumgruppe P2<sub>1</sub>/c (Nr. 14); Farbe, Habitus grün, plättchenförmig; Gitterkonstanten a (Å) 10.008(4), b (Å) 18.757(5), c (Å) 20.586(6), ß (°) 101.27(2); Molekulargew. (g mol<sup>-1</sup>) 739.49; Z 4; Volumen (Å<sup>3</sup>) 3789.8; F<sub>000</sub> 1520; Ber.Dichte (g cm<sup>-3</sup>) 1.296;  $\Theta$  Bereich (°) 2 <  $\Theta$  < 22.5; Quatrant ±h +k +1; Gemessene Refl. 5307; Unabhäng.Refl. 4945; Nutzbare Refl. 1810; Transmiss.Faktor (min/max) 0.966/0.999;  $\mu$  (cm<sup>-1</sup>) 4.870; Verfeinerung d. Nicht-Wasserstoffatome Tc aniso, alle Anderen iso, H-Atome nicht berechnet; R (%) 15.4; R<sub>w</sub> (%) 18; GOOF 3.328; Shift/err 0.91

## 4.18 HB( $3,5-Me_2C_3HN_2$ )<sub>3</sub>Tc(CO)<sub>2</sub>P(OMe)<sub>3</sub> (11)

#### **A.Experimentelle Daten**

Formel C<sub>20</sub>H<sub>31</sub>BN<sub>6</sub>O<sub>5</sub>PTc; Kristallsystem monoklin; Raumgruppe C2<sub>h</sub>/5, P2<sub>1</sub>/n, (Nr.14); Farbe, Habitus farblose, dünn, nadelig; Gitterkonstanten a (Å) 19.960(4), b (Å) 8.180(3), c (Å) 33.759(5), ß (°) 107.51(2); Molekulargew. (g mol<sup>-1</sup>) 575.29; Z 8; Volumen (Å<sup>3</sup>) 5256.5; F<sub>000</sub> 2368; Ber.Dichte (g cm<sup>-3</sup>) 1.454;  $\Theta$  Bereich (°) 2.0 <  $\Theta$  < 22.5; Quatrant -h,-k,±1; Gemessene Refl. 7674; Unabhäng.Refl. 6842; Nutzbare Refl. 2895; Transmiss.Faktor (min/max) - ;  $\mu$  (cm<sup>-1</sup>) 6.327; Verfeinerung d. Nicht-Wasserstoffatome aniso; H-Atome berechnet d (C-H) = 0.954 Å, B(H) = 1.3 x B equ (C); R (%) 9.9; R<sub>W</sub> (%) 12.8; GOOF 2.811; Shift/err 0.01

| В.    | Atomkoordinaten                                   | [x10 <sup>4</sup> ] | und | isotrope | Auslenkungsparameter |
|-------|---------------------------------------------------|---------------------|-----|----------|----------------------|
| Ue [p | m <sup>2</sup> x 10 <sup>-1</sup> ] von <u>11</u> |                     |     |          |                      |

|       | X         | у        | Z         | U <sub>eq</sub> |
|-------|-----------|----------|-----------|-----------------|
| Tc(1) | 1647.9(8) | 1959(2)  | 1253.4(5) | 30.5(4)         |
| P(1)  | 1023(3)   | 3188(7)  | 641(2)    | 44(2)           |
| O(1)  | 343(9)    | 4260(30) | 636(5)    | 85(6)           |
| O(2)  | 1382(7)   | 4520(30) | 434(4)    | 51(4)           |
| O(3)  | 685(8)    | 1940(20) | 274(4)    | 67(5)           |
| N(1)  | 2422(7)   | 3940(20) | 1433(4)   | 42(4)           |
| N(2)  | 3107(8)   | 3600(30) | 1529(5)   | 55(4)           |
| N(3)  | 2334(7)   | 830(20)  | 1827(4)   | 33(3)           |
| N(4)  | 3051(8)   | 980(20)  | 1894(5)   | 44(4)           |
| N(5)  | 2382(7)   | 680(20)  | 968(4)    | 38(4)           |
| N(6)  | 3088(7)   | 940(20)  | 1164(4)   | 37(3)           |
| B(1)  | 3350(10)  | 1770(40) | 1549(8)   | 45(6)           |
| C(1)  | 2410(10)  | 5580(40) | 1473(7)   | 63(6)           |
| C(2)  | 3080(10)  | 6290(40) | 1604(6)   | 55(5)           |
| C(3)  | 3500(10)  | 5010(30) | 1633(8)   | 52(5)           |
| C(4)  | 2230(10)  | 70(30)   | 2162(7)   | 41(4)           |
| C(5)  | 2870(10)  | -340(40) | 2425(7)   | 50(5)           |
| C(6)  | 3370(1)   | 170(30)  | 2264(6)   | 48(5)           |
| C(7)  | 2350(10)  | -400(30) | 663(7)    | 47(5)           |
| C(8)  | 2990(10)  | -730(40) | 607(7)    | 64(6)           |
| C(9)  | 3450(10)  | 60(30)   | 935(6)    | 45(5)           |
| C(10) | 2680(10)  | 6460(50) | 1395(8)   | 77(7)           |

| Tc(2) | -3261.9(7) | 5201(2)   | 1128.6(5) | 31.6(4) |
|-------|------------|-----------|-----------|---------|
| P(2)  | 6520(3)    | -5956(8)  | 473(2)    | 47(2)   |
| O(4)  | 6080(9)    | -4870(20) | 133(4)    | 67(5)   |
| 0(5)  | 6180(10)   | -7740(30) | 350(7)    | 91(6)   |
| O(6)  | 7181(9)    | -6160(3)  | 311(4)    | 79(6)   |
| N(7)  | 7651(7)    | -3390(20) | 1039(5)   | 38(3)   |
| N(8)  | 8268(6)    | -3600(20) | 1336(4)   | 30(3)   |
| N(9)  | 7087(8)    | -3690(30) | 1738(5)   | 40(3)   |
| N(10) | 7791(8)    | -3670(20) | 1946(5)   | 34(3)   |
| N(11) | 7471(6)    | -6730(20) | 1457(4)   | 22(3)   |
| N(12) | 8129(6)    | -6200(20) | 1660(4)   | 25(3)   |
| B(2)  | 8370(10)   | -4430(40) | 1773(8)   | 45(5)   |
| C(21) | 7771(9)    | -2380(3)  | 756(5)    | 32(4)   |
| C(22) | 8430(10)   | -1890(30) | 868(6)    | 51(5)   |
| C(23) | 8770(10)   | -2670(30) | 1256(6)   | 45(5)   |
| C(24) | 6780(10)   | -2860(30) | 1979(7)   | 39(4)   |
| C(25) | 7291(9)    | -2310(30) | 2348(5)   | 38(5)   |
| C(26) | 7910(10)   | -2810(30) | 2341(7)   | 42(4)   |
| C(27) | 7490(10)   | -8410(30) | 1492(6)   | 46(5)   |
| C(28) | 8139(9)    | -8990(30) | 1700(6)   | 39(4)   |
| C(29) | 8533(9)    | -7540(30) | 1790(5)   | 33(4)   |
| C(30) | 7190(10)   | -1850(30) | 376(8)    | 51(5)   |
| C(31) | -460(10)   | 7450(40)  | 1530(10)  | 74(7)   |
| C(32) | 5950(10)   | -2640(40) | 1835(9)   | 63(6)   |
| C(33) | -1350(10)  | 7340(50)  | 2625(8)   | 78(8)   |
| C(34) | 6796(9)    | -9500(30) | 1252(5)   | 38(4)   |
| C(35) | -650(10)   | 2470(30)  | 2074(8)   | 55(6)   |
| C(36) | 6015(9)    | -5780(30) | 1219(5)   | 39(5)   |
| O(36) | 5506(7)    | -6410(30) | 1293(4)   | 62(4)   |
| C(37) | 6080(10)   | -3190(30) | 879(7)    | 42(4)   |
| O(37) | 5668(8)    | -2160(30) | 726(5)    | 67(4)   |
|       |            |           |           |         |

| 4310(10) | 4940(40)                                                                                                                             | 1796(9)                                                                                                                                                                              | 80(8)                                                                                                                                                                                                                                                                 |
|----------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1510(10) | -210(30)                                                                                                                             | 2191(7)                                                                                                                                                                              | 52(5)                                                                                                                                                                                                                                                                 |
| 4160(10) | 30(50)                                                                                                                               | 2396(8)                                                                                                                                                                              | 88(9)                                                                                                                                                                                                                                                                 |
| 1640(10) | -1050(30)                                                                                                                            | 376(6)                                                                                                                                                                               | 56(6)                                                                                                                                                                                                                                                                 |
| 4240(10) | 130(40)                                                                                                                              | 1066(7)                                                                                                                                                                              | 64(7)                                                                                                                                                                                                                                                                 |
| 1077(9)  | 2970(30)                                                                                                                             | 1519(6)                                                                                                                                                                              | 45(5)                                                                                                                                                                                                                                                                 |
| 664(9)   | 3540(30)                                                                                                                             | 1650(5)                                                                                                                                                                              | 85(5)                                                                                                                                                                                                                                                                 |
| 996(8)   | 310(30)                                                                                                                              | 1130(5)                                                                                                                                                                              | 39(5)                                                                                                                                                                                                                                                                 |
| 535(7)   | -600(20)                                                                                                                             | 1050(4)                                                                                                                                                                              | 56(4)                                                                                                                                                                                                                                                                 |
| -310(10) | 3610(5)                                                                                                                              | 652(9)                                                                                                                                                                               | 83(7)                                                                                                                                                                                                                                                                 |
| 2080(10) | 4180(40)                                                                                                                             | 416(9)                                                                                                                                                                               | 71(6)                                                                                                                                                                                                                                                                 |
| 320(10)  | 2490(40)                                                                                                                             | -142(9)                                                                                                                                                                              | 66(6)                                                                                                                                                                                                                                                                 |
|          | 4310(10)<br>1510(10)<br>4160(10)<br>1640(10)<br>4240(10)<br>1077(9)<br>664(9)<br>996(8)<br>535(7)<br>-310(10)<br>2080(10)<br>320(10) | 4310(10)4940(40)1510(10)-210(30)4160(10)30(50)1640(10)-1050(30)4240(10)130(40)1077(9)2970(30)664(9)3540(30)996(8)310(30)535(7)-600(20)-310(10)3610(5)2080(10)4180(40)320(10)2490(40) | 4310(10)4940(40)1796(9)1510(10)-210(30)2191(7)4160(10)30(50)2396(8)1640(10)-1050(30)376(6)4240(10)130(40)1066(7)1077(9)2970(30)1519(6)664(9)3540(30)1650(5)996(8)310(30)1130(5)535(7)-600(20)1050(4)-310(10)3610(5)652(9)2080(10)4180(40)416(9)320(10)2490(40)-142(9) |

| C(38) | -4080(10) | 4650(40)  | -323(8) | 65(6)  |
|-------|-----------|-----------|---------|--------|
| C(39) | -4530(20) | 1960(5)   | 320(10) | 103(9) |
| C(40) | 7820(10)  | -6910(40) | 560(8)  | 55(5)  |

## C. Bindungsabstände [pm] von 11

Molekül 1

| Tc(1)-P(1)  | 229.9(5) | Tc(1)-N(1)  | 219(1) |
|-------------|----------|-------------|--------|
| Tc(1)-N(3)  | 221(1)   | Tc(1)-N(5)  | 224(1) |
| Tc(1)-C(16) | 184(2)   | Tc(1)-C(17) | 184(2) |
| P(1)-O(1)   | 161(2)   | P(1)-O(2)   | 157(1) |
| P(1)-O(3)   | 159(1)   | O(1)-C(18)  | 143(2) |
| O(2)-C(19)  | 145(2)   | O(3)-C(20)  | 144(2) |
| N(1)-N(2)   | 134(2)   | N(1)-C(1)   | 135(2) |
| N(2)-B(1)   | 156(3)   | N(2)-C(3)   | 138(2) |
| N(3)-N(4)   | 139(2)   | N(3)-C(4)   | 136(2) |
| N(4)-B(1)   | 160(2)   | N(4)-C(6)   | 138(3) |
| N(5)-N(6)   | 138(2)   | N(5)-C(7)   | 134(2) |
| N(6)-B(1)   | 142(2)   | N(6)-C(9)   | 140(2) |
| C(1)-C(2)   | 140(2)   | C(1)-C(10)  | 156(3) |
| C(2)-C(3)   | 132(2)   | C(3)-C(11)  | 156(3) |
| C(4)-C(5)   | 137(2)   | C(4)-C(12)  | 148(3) |
| C(5)-C(6)   | 132(2)   | C(6)-C(13)  | 153(3) |
| C(7)-C(8)   | 138(2)   | C(7)-C(14)  | 156(2) |
| C(8)-C(9)   | 137(2)   | C(9)-C(15)  | 151(2) |
| C(16)-O(16) | 115(2)   | C(17)-O(17) | 115(2) |
|             |          |             |        |

| Tc(2)-P(2)  | 232.7(5) | Tc(2)-N(7)  | 226(1) |  |
|-------------|----------|-------------|--------|--|
| Tc(2)-N(9)  | 216(1)   | Tc(2)-N(11) | 221(1) |  |
| Tc(2)-C(36) | 176(2)   | Tc(2)-C(37) | 187(2) |  |
| P(2)-O(4)   | 151(1)   | P(2)-O(5)   | 161(2) |  |
| P(2)-O(6)   | 158(1)   | O(4)-C(38)  | 153(2) |  |
| O(5)-C(39)  | 141(3)   | O(6)-C(40)  | 144(2) |  |
| N(7)-N(8)   | 135(1)   | N(7)-C(21)  | 135(2) |  |
| N(8)-B(2)   | 158(2)   | N(8)-C(23)  | 135(2) |  |
| N(9)-N(10)  | 137(2)   | N(9)-C(24)  | 134(2) |  |
| N(10)-B(2)  | 158(2)   | N(10)-C(26) | 146(2) |  |
| N(11)-N(12) | 135(1)   | N(11)-C(27) | 139(2) |  |
| N(12)-B(2)  | 154(2)   | N(12)-C(29) | 135(2) |  |
| C(21)-C(22) | 132(2)   | C(21)-C(30) | 151(2) |  |

| C(22)-C(23) | 143(2) | C(23)-C(31) | 155(2) |
|-------------|--------|-------------|--------|
| C(24)-C(25) | 142(2) | C(24)-C(32) | 159(2) |
| C(25)-C(26) | 131(3) | C(26)-C(33) | 150(2) |
| C(27)-C(28) | 136(3) | C(27)-C(34) | 164(2) |
| C(28)-C(29) | 141(2) | C(29)-C(35) | 162(2) |
| C(36)-O(36) | 123(2) | C(37)-O(37) | 118(2) |

## D. Bindungswinkel [°] von 11

| P(1)-Tc(1)-N(1)   | 94.1(4)  | P(1)-Tc(1)-N(3)   | 174.9(3) |
|-------------------|----------|-------------------|----------|
| N(1)-Tc(1)-N(3)   | 82.3(6)  | P(1)-Tc(1)-N(5)   | 93.8(4)  |
| N(1)-Tc(1)-N(5)   | 88.1(5)  | N(3)-Tc(1)-N(5)   | 82.4(5)  |
| P(1)-Tc(1)-C(16)  | 89.6(6)  | N(1)-Tc(1)-C(16)  | 91.2(7)  |
| N(3)-Tc(1)-C(16)  | 94.1(6)  | N(5)-Tc(1)-C(16)  | 176.5(6) |
| P(1)-Tc(1)-C(17)  | 87.8(5)  | N(1)-Tc(1)-C(17)  | 177.0(7) |
| N(3)-Tc(1)-C(17)  | 96.0(6)  | N(5)-Tc(1)-C(17)  | 94.0(7)  |
| C(16)-Tc(1)-C(17) | 86.5(7)  | Tc(1)-P(1)-O(1)   | 118.5(6) |
| Tc(1)-P(1)-O(2)   | 120.3(5) | O(1)-P(1)-O(2)    | 96.5(9)  |
| Tc(1)-P(1)-O(3)   | 114.0(5) | O(1)-P(1)-O(3)    | 100.6(8) |
| O(2)-P(1)-O(3)    | 103.9(7) | P(1)-O(1)-C(18)   | 125(2)   |
| P(1)-O(2)-C(19)   | 118(1)   | P(1)-O(3)-C(20)   | 122(1)   |
| Tc(1)-N(1)-N(2)   | 120(1)   | Tc(1)-N(1)-C(1)   | 137(1)   |
| N(2)-N(1)-C(1)    | 103(2)   | N(1)-N(2)-B(1)    | 119(2)   |
| N(1)-N(2)-C(3)    | 111(2)   | B(1)-N(2)-C(3)    | 130(2)   |
| Tc(1)-N(3)-N(4)   | 135(2)   | Tc(1)-N(3)-C(4)   | 135(2)   |
| N(4)-N(3)-C(4)    | 108(1)   | N(3)-N(4)-B(1)    | 121(1)   |
| N(3)-N(4)-C(6)    | 106(1)   | B(1)-N(4)-C(6)    | 133(1)   |
| Tc(1)-N(5)-N(6)   | 115(1)   | Tc(1)-N(5)-C(7)   | 139(1)   |
| N(6)-N(5)-C(7)    | 106(1)   | N(5)-N(6)-B(1)    | 124(1)   |
| N(5)-N(6)-C(9)    | 106(1)   | B(1)-N(6)-C(9)    | 130(1)   |
| N(2)-B(1)-N(4)    | 104(1)   | N(2)-B(1)-N(6)    | 113(2)   |
| N(4)-B(1)-N(6)    | 111(2)   | N(1)-C(1)-C(2)    | 114(2)   |
| N(1)-C(1)-C(10)   | 120(2)   | C(2)-C(1)-C(10)   | 127(2)   |
| C(1)-C(2)-C(3)    | 102(2)   | N(2)-C(3)-C(2)    | 111(2)   |
| N(2)-C(3)-C(11)   | 120(2)   | C(2)-C(3)-C(11)   | 129(3)   |
| N(3)-C(4)-C(5)    | 107(1)   | N(3)-C(4)-C(12)   | 121(2)   |
| C(5)-C(4)-C(12)   | 132(2)   | C(4)-C(5)-C(6)    | 110(2)   |
| N(4)-C(6)-C(5)    | 109(2)   | N(4)-C(6)-C(13)   | 117(2)   |
| C(5)-C(6)-C(13)   | 134(2)   | N(5)-C(7)-C(8)    | 114(2)   |
| N(5)-C(7)-C(14)   | 122(2)   | C(8)-C(7)-C(14)   | 124(2)   |
| C(7)-C(8)-C(9)    | 103(2)   | N(6)-C(9)-C(8)    | 111(2)   |
| N(6)-C(9)-C(15)   | 119(2)   | C(8)-C(9)-C(15)   | 130(2)   |
| Tc(1)-C(16)-O(16) | 173(1)   | Tc(1)-C(17)-O(17) | 173(1)   |

| Mol | EKÜL | 2 |
|-----|------|---|
|     |      | _ |

| P(2)-Tc(2)-N(7)   | 90.4(4)  | P(2)-Tc(2)-N(9)   | 172.2(4) |
|-------------------|----------|-------------------|----------|
| N(7)-Tc(2)-N(9)   | 82.7(5)  | P(2)-Tc(2)-N(11)  | 95.4(3)  |
| N(7)-Tc(2)-N(11)  | 89.5(5)  | N(9)-Tc(2)-N(11)  | 81.2(5)  |
| P(2)-Tc(2)-C(36)  | 92.9(5)  | N(7)-Tc(2)-C(36)  | 176.0(6) |
| N(9)-Tc(2)-C(36)  | 94.2(6)  | N(11)-Tc(2)-C(36) | 92.3(7)  |
| P(2)-Tc(2)-C(37)  | 87.3(5)  | N(7)-Tc(2)-C(37)  | 93.7(6)  |
| N(9)-Tc(2)-C(37)  | 96.6(6)  | N(11)-Tc(2)-C(37) | 175.9(6) |
| C(36)-Tc(2)-C(37) | 84.3(8)  | Tc(2)-P(2)-O(4)   | 112.4(6) |
| Tc(2)-P(2)-O(5)   | 123.9(6) | O(4)-P(2)-O(5)    | 103.8(9) |
| Tc(2)-P(2)-O(6)   | 115.8(6) | O(4)-P(2)-O(6)    | 99.1(8)  |
| O(5)-P(2)-O(6)    | 98.3(9)  | P(2)-O(4)-C(38)   | 121(1)   |
| P(2)-O(5)-C(39)   | 121(2)   | P(2)-O(6)-C(40)   | 122(1)   |
| Tc(2)-N(7)-N(8)   | 116(1)   | Tc(2)-N(7)-C(21)  | 138(2)   |
| N(8)-N(7)-C(21)   | 107(1)   | N(7)-N(8)-B(2)    | 126(1)   |
| N(7)-N(8)-C(23)   | 110(1)   | B(2)-N(8)-C(23)   | 123(1)   |
| Tc(2)-N(9)-N(10)  | 119(1)   | Tc(2)-N(9)-C(24)  | 136(1)   |
| N(10)-N(9)-C(24)  | 105(1)   | N(9)-N(10)-B(2)   | 125(1)   |
| N(9)-N(10)-C(26)  | 110(1)   | B(2)-N(10)-C(26)  | 127(1)   |
| Tc(2)-N(11)-N(12) | 114.9(9) | Tc(2)-N(11)-C(27) | 138(2)   |
| N(12)-N(11)-C(27) | 106(1)   | N(11)-N(12)-B(2)  | 128(1)   |
| N(11)-N(12)-C(29) | 107(1)   | B(2)-N(12)-C(29)  | 124(1)   |
| N(8)-B(2)-N(10)   | 105(1)   | N(8)-B(2)-N(12)   | 103(1)   |
| N(10)-B(2)-N(12)  | 104(1)   | N(7)-C(21)-C(22)  | 111(2)   |
| N(7)-C(21)-C(30)  | 121(1)   | C(22)-C(21)-C(30) | .127(2)  |
| C(21)-C(22)-C(23) | 106(2)   | N(8)-C(23)-C(22)  | 105(2)   |
| N(8)-C(23)-C(31)  | 125(2)   | C(22)-C(23)-C(31) | 129(2)   |
| N(9)-C(24)-C(25)  | 112(1)   | N(9)-C(24)-C(32)  | 120(1)   |
| C(25)-C(24)-C(32) | 129(1)   | C(24)-C(25)-C(26) | 108(2)   |
| N(10)-C(26)-C(25) | 105(1)   | N(10)-C(26)-C(33) | 119(1)   |
| C(25)-C(26)-C(33) | 136(2)   | N(11)-C(27)-C(28) | 112(2)   |
| N(11)-C(27)-C(34) | 120(1)   | C(28)-C(27)-C(34) | 127(2)   |
| C(27)-C(28)-C(29) | 102(2)   | N(12)-C(29)-C(28) | 112(1)   |
| N(12)-C(29)-C(35) | 126(1)   | C(28)-C(29)-C(35) | 122(2)   |
| Tc(2)-C(36)-O(36) | 178(1)   | Tc(2)-C(37)-O(37) | 179(2)   |
|                   |          |                   |          |

## 4.19 HB(3,5-Me<sub>2</sub>C<sub>3</sub>HN<sub>2</sub>)<sub>3</sub>Mn(CO)<sub>2</sub>P(OMe)<sub>3</sub> (11a)

#### A. Experimentelle Daten

Formel C<sub>20</sub>H<sub>31</sub>BN<sub>6</sub>MnO<sub>5</sub>P; Kristallsystem monoklin; Raumgruppe C2<sub>h</sub>/5, P2<sub>1</sub>/n, (Nr.14); Farbe, Habitus gelbgrünlich, nadelig; Gitterkonstanten a (Å) 19.86(4), b (Å) 8.197(7), c (Å) 33.50(4), ß (°) 108.4(1); Molekulargew. (g mol<sup>-1</sup>) 532.23; Z 8; Volumen (Å<sup>3</sup>) 5173.5; F<sub>000</sub> 2224; Ber.Dichte (g cm<sup>-3</sup>) 1.37; Kristallabmess. (mm) 0.05 x 0.12 x 0.9;  $\Theta$  Bereich (°) 4.0 < 2  $\Theta$  < 13.0; Quatrant +h +k ±1; Gemessene Refl. 3216; Unabhäng.Refl. 1277; Nutzbare Refl. 1516; Transmiss.Faktor (min/max) 0.64/1.00;  $\mu$  (cm<sup>-1</sup>) 0.59; H-Atome berechnet d (C-H) = 0.954 Å, B(H) = 1.3 x B equ (C); R (%) 8.8; R<sub>W</sub> (%) 7.1; GOOF 2.05; Shift/err 0.04 ; Es handelt sich um zwei etwas voneinander verschiedene unabhängige Moleküle

## B. Atomkoordinaten [x10<sup>4</sup>] und isotrope Auslenkungsparameter $U_{eq}$ [pm<sup>2</sup> x 10<sup>-1</sup>] von <u>11a</u>

|                 | X                  | у                    | Z                 | U <sub>eq</sub> |
|-----------------|--------------------|----------------------|-------------------|-----------------|
| Mn(1)           | 1667/2)            | 2002/7)              | 1247(1)           | 35(3)           |
| $\mathbf{D}(1)$ | 1067(3)            | 2002(7)              | 1247(1)<br>6/3(3) | 56(4)           |
| $\Omega(1)$     | 401(14)            | J147(14)<br>A326(27) | 617(6)            | 81(9)           |
| O(2)            | 401(14)            | 4520(27)             | 434(6)            | 56(7)           |
| O(2)            | $\frac{141}{(12)}$ | 4334(20)             | 434(0)            | 52(7)           |
| U(J)<br>№(1)    | 732(11)            | 1903(23)             | 202(0)            | 52(7)           |
| N(1)            | 2333(17)           | 3980(39)             | 1417(8)           | 01(10)          |
| N(2)            | 3084(10)           | 3033(33)             | 1551(7)           | 48(9)           |
| N(3)            | 2315(14)           | 998(30)              | 1818(7)           | 43(9)           |
| N(4)            | 3051(15)           | 1042(32)             | 1880(8)           | 49(9)           |
| N(5)            | 2346(14)           | 697(30)              | 964(7)            | 47(9)           |
| N(6)            | 3077(14)           | 1096(28)             | 1169(7)           | 27(8)           |
| B(1)            | 3377(22)           | 1862(50)             | 1582(11)          | 44(14)          |
| C(1)            | 2291(24)           | 5606(58)             | 1435(11)          | 78(14)          |
| C(2)            | 2986(22)           | 6297(47)             | 1585(9)           | 74(14)          |
| C(3)            | 3431(21)           | 5137(53)             | 1614(9)           | 63(12)          |
| C(4)            | 2201(19)           | 156(45)              | 2135(10)          | 54(11)          |
| C(5)            | 2844(19)           | -171(43)             | 2432(10)          | 75(13)          |
| C(6)            | 3341(19)           | 230(44)              | 2268(10)          | 56(11)          |
| C(7)            | 2296(18)           | -311(43)             | 645(10)           | 50(11)          |
| C(8)            | 2993(20)           | -740(43)             | 625(10)           | 74(13)          |
| C(9)            | 3388(18)           | 175(43)              | 928(9)            | 46(10)          |

| C(10) | 1630(19) | 6447(41)  | 1381(9)  | 94(15)  |
|-------|----------|-----------|----------|---------|
| C(11) | 4266(18) | 5087(46)  | 1786(10) | 127(16) |
| C(12) | 1457(15) | -114(40)  | 2160(8)  | 74(12)  |
| C(13) | 4150(17) | 236(41)   | 2435(9)  | 103(14) |
| C(14) | 1650(16) | -1143(35) | 403(8)   | 54(12)  |
| C(15) | 4232(16) | 219(40)   | 1060(8)  | 96(14)  |
| C(16) | 1118(20) | 2871(43)  | 1469(10) | 63(12)  |
| O(16) | 709(12)  | 3461(27)  | 1637(6)  | 72(8)   |
| C(17) | 994(18)  | 510(40)   | 1135(9)  | 39(11)  |
| 0(17) | 523(13)  | -455(29)  | 1042(6)  | 76(9)   |
| C(18) | -257(18) | 3524(41)  | 642(9)   | 107(15) |
| C(19) | 2120(18) | 4270(41)  | 383(9)   | 88(14)  |
| C(20) | 363(16)  | 2399(37)  | -171(8)  | 80(13)  |
|       |          |           |          |         |

| Mn(2) | -3246(3)  | 5204(6)  | 1153(2)  | 35(3)   |
|-------|-----------|----------|----------|---------|
| P(2)  | -3508(6)  | 4018(14) | 529(3)   | 58(4)   |
| O(4)  | -3931(11) | 5121(27) | 131(6)   | 67(7)   |
| O(5)  | -3794(19) | 2325(45) | 412(9)   | 173(15) |
| O(6)  | -2898(17) | 3662(36) | 331(8)   | 133(12) |
| N(7)  | -2399(14) | 6524(29) | 1033(7)  | 36(8)   |
| N(8)  | -1742(15) | 6366(29) | 1325(7)  | 29(8)   |
| N(9)  | -2875(14) | 6247(30) | 1737(7)  | 39(9)   |
| N(10) | -2129(13) | 6276(28) | 1955(7)  | 31(8)   |
| N(11) | -2546(15) | 3314(34) | 1445(7)  | 47(8)   |
| N(12) | -1834(15) | 3660(35) | 1654(7)  | 40(9)   |
| B(2)  | -1638(23) | 5427(52) | 1737(12) | 60(15)  |
| C(21) | -2354(17) | 7638(38) | 723(9)   | 33(10)  |
| C(22) | -1632(18) | 8063(40) | 832(9)   | 52(11)  |
| C(23) | -1290(20) | 7298(43) | 1187(10) | 58(12)  |
| C(24) | -3118(19) | 6959(44) | 2009(10) | 59(12)  |
| C(25) | -2642(19) | 7634(41) | 2365(10) | 67(13)  |
| C(26) | -2039(19) | 7050(43) | 2335(10) | 54(12)  |
| C(27) | -2620(18) | 1679(43) | 1471(9)  | 36(10)  |
| C(28) | -1922(18) | 1027(40) | 1683(8)  | 44(11)  |
| C(29) | -1460(20) | 2318(46) | 1793(9)  | 49(11)  |
| C(30) | -2969(16) | 8152(37) | 367(8)   | 60(12)  |
| C(31) | -515(16)  | 7391(36) | 1451(8)  | 82(13)  |
| C(32) | -3928(16) | 7281(38) | 1902(8)  | 82(13)  |
| C(33) | -1299(17) | 7334(39) | 2598(9)  | 94(14)  |
| C(34) | -3265(17) | 683(38)  | 1332(8)  | 67(13)  |
| C(35) | -671(17)  | 2304(38) | 2025(8)  | 89(14)  |
| C(36) | -3917(22) | 4261(44) | 1242(10) | 72(14)  |
| O(36) | -4474(13) | 3723(26) | 1296(6)  | 69(8)   |
| C(37) | -3863(19) | 6729(43) | 929(9)   | 52(12)  |
| O(37) | -4308(13) | 7638(29) | 783(6)   | 74(9)   |
|       |           |          |          |         |

| C(38) | -4040(15) | 4737(38) | -296(8) | 78(12)  |
|-------|-----------|----------|---------|---------|
| C(39) | -4473(19) | 1915(48) | 312(10) | 135(19) |
| C(40) | -2227(17) | 2864(40) | 550(9)  | 89(14)  |

## C. Bindungsabstände [pm] von 11a

Molekül 1

| Mn(1)-P(1)  | 220.7(11) | Mn(1)-N(1)  | 207.8(32) |
|-------------|-----------|-------------|-----------|
| Mn(1)-N(3)  | 210.6(23) | Mn(1)-N(5)  | 216.1(30) |
| Mn(1)-C(16) | 166.2(41) | Mn(1)-C(17) | 176.2(34) |
| P(1)-O(1)   | 162.0(28) | P(1)-O(2)   | 160.3(25) |
| P(1)-O(3)   | 159.8(21) | O(1)-C(18)  | 148.9(46) |
| O(2)-C(19)  | 147.4(44) | O(3)-C(20)  | 146.8(30) |
| N(1)-N(2)   | 140.5(45) | N(1)-C(1)   | 134.1(57) |
| N(2)-B(1)   | 156.9(50) | N(2)-C(3)   | 138.3(51) |
| N(3)-N(4)   | 141.0(41) | N(3)-C(4)   | 134.5(47) |
| N(4)-B(1)   | 150.9(54) | N(4)-C(6)   | 141.0(40) |
| N(5)-N(6)   | 143.3(35) | N(5)-C(7)   | 132.8(42) |
| N(6)-B(1)   | 146.6(40) | N(6)-C(9)   | 138.6(46) |
| C(1)-C(2)   | 142.8(61) | C(1)-C(10)  | 144.2(60) |
| C(2)-C(3)   | 128.1(59) | C(3)-C(11)  | 157.4(52) |
| C(4)-C(5)   | 137.4(44) | C(4)-C(12)  | 152.2(50) |
| C(5)-C(6)   | 131.5(59) | C(6)-C(13)  | 152.5(48) |
| C(7)-C(8)   | 145.0(56) | C(7)-C(14)  | 145.3(41) |
| C(8)-C(9)   | 130.5(44) | C(9)-C(15)  | 159.1(46) |
| C(16)-O(16) | 122.6(48) | C(17)-O(17) | 119.0(40) |

| Mn(2)-P(2)  | 221.4(12) | Mn(2)-N(7)  | 214.3(29) |
|-------------|-----------|-------------|-----------|
| Mn(2)-N(9)  | 204.6(23) | Mn(2)-N(11) | 210.4(27) |
| Mn(2)-C(36) | 164.7(44) | Mn(2)-C(37) | 174.5(35) |
| P(2)-O(4)   | 161.1(22) | P(2)-O(5)   | 150.4(38) |
| P(2)-O(6)   | 158.0(38) | O(4)-C(38)  | 141.2(33) |
| O(5)-C(39)  | 132.6(53) | O(6)-C(40)  | 145.7(42) |
| N(7)-N(8)   | 136.7(33) | N(7)-C(21)  | 140.7(40) |
| N(8)-B(2)   | 153.4(47) | N(8)-C(23)  | 136.7(50) |
| N(9)-N(10)  | 143.0(34) | N(9)-C(24)  | 129.7(49) |
| N(10)-B(2)  | 155.8(56) | N(10)-C(26) | 138.1(42) |
| N(11)-N(12) | 139.4(38) | N(11)-C(27) | 135.5(45) |
| N(12)-B(2)  | 150.3(50) | N(12)-C(29) | 132.6(45) |
| C(21)-C(22) | 140.8(48) | C(21)-C(30) | 147.2(36) |
| C(22)-C(23) | 132.5(42) | C(23)-C(31) | 151.6(44) |
| C(24)-C(25) | 138.2(43) | C(24)-C(32) | 155.7(49) |

| C(25)-C(26) 132. | 3(56) C(26)-C | (33) 147.4(44) |  |
|------------------|---------------|----------------|--|
| C(27)-C(28) 144. | 5(45) C(27)-C | (34) 146.5(46) |  |
| C(28)-C(29) 137. | 2(49) C(29)-C | (35) 151.3(46) |  |
| C(36)-O(36) 125. | 6(51) C(37)-O | (37) 114.2(41) |  |

## D. Bindungswinkel [°] von 11a

| P(1)-Mn(1)-N(1)   | 92.1(8)   | P(1)-Mn(1)-N(3)   | 175.2(9)  |
|-------------------|-----------|-------------------|-----------|
| N(1)-Mn(1)-N(3)   | 84.1(10)  | P(1)-Mn(1)-N(5)   | 92.2(7)   |
| N(1)-Mn(1)-N(5)   | 93.5(12)  | N(3)-Mn(1)-N(5)   | 85.3(10)  |
| P(1)-Mn(1)-C(16)  | 89.3(11)  | N(1)-Mn(1)-C(16)  | 90.5(16)  |
| N(3)-Mn(1)-C(16)  | 93.4(13)  | N(5)-Mn(1)-C(16)  | 175.7(15) |
| P(1)-Mn(1)-C(17)  | 87.0(9)   | N(1)-Mn(1)-C(17)  | 170.8(15) |
| N(3)-Mn(1)-C(17)  | 97.3(12)  | N(5)-Mn(1)-C(17)  | 95.7(13)  |
| C(16)-Mn(1)-C(17) | 80.4(17)  | Mn(1)-P(1)-O(1)   | 119.8(9)  |
| Mn(1)-P(1)-O(2)   | 121.3(8)  | O(1)-P(1)-O(2)    | 90.7(13)  |
| Mn(1)-P(1)-O(3)   | 115.0(9)  | O(1)-P(1)-O(3)    | 103.2(11) |
| O(2)-P(1)-O(3)    | 102.6(12) | P(1)-O(1)-C(18)   | 116.8(20) |
| P(1)-O(2)-C(19)   | 120.1(19) | P(1)-O(3)-C(20)   | 124.3(18) |
| Mn(1)-N(1)-N(2)   | 117.2(22) | Mn(1)-N(1)-C(1)   | 136.5(29) |
| N(2)-N(1)-C(1)    | 106.2(31) | N(1)-N(2)-B(1)    | 121.6(28) |
| N(1)-N(2)-C(3)    | 107.1(29) | B(1)-N(2)-C(3)    | 131.0(31) |
| Mn(1)-N(3)-N(4)   | 115.6(19) | Mn(1)-N(3)-C(4)   | 135.3(23) |
| N(4)-N(3)-C(4)    | 108.8(23) | N(3)-N(4)-B(1)    | 123.7(24) |
| N(3)-N(4)-C(6)    | 103.1(28) | B(1)-N(4)-C(6)    | 133.1(30) |
| Mn(1)-N(5)-N(6)   | 110.8(17) | Mn(1)-N(5)-C(7)   | 139.6(22) |
| N(6)-N(5)-C(7)    | 109.5(27) | N(5)-N(6)-B(1)    | 126.8(29) |
| N(5)-N(6)-C(9)    | 99.7(21)  | B(1)-N(6)-C(9)    | 131.4(28) |
| N(2)-B(1)-N(4)    | 105.5(31) | N(2)-B(1)-N(6)    | 105.8(23) |
| N(4)-B(1)-N(6)    | 107.6(29) | N(1)-C(1)-C(2)    | 108.5(37) |
| N(1)-C(1)-C(10)   | 124.2(40) | C(2)-C(1)-C(10)   | 126.5(39) |
| C(1)-C(2)-C(3)    | 107.4(37) | N(2)-C(3)-C(2)    | 110.4(37) |
| N(2)-C(3)-C(11)   | 116.9(34) | C(2)-C(3)-C(11)   | 132.0(38) |
| N(3)-C(4)-C(5)    | 108.7(33) | N(3)-C(4)-C(12)   | 121.8(26) |
| C(5)-C(4)-C(12)   | 129.0(33) | C(4)-C(5)-C(6)    | 107.4(32) |
| N(4)-C(6)-C(5)    | 111.1(30) | N(4)-C(6)-C(13)   | 114.4(32) |
| C(5)-C(6)-C(13)   | 133.7(29) | N(5)-C(7)-C(8)    | 111.0(27) |
| N(5)-C(7)-C(14)   | 124.7(34) | C(8)-C(7)-C(14)   | 123.2(30) |
| C(7)-C(8)-C(9)    | 100.0(32) | N(6)-C(9)-C(8)    | 119.7(33) |
| N(6)-C(9)-C(15)   | 116.7(25) | C(8)-C(9)-C(15)   | 123.4(34) |
| Mn(1)-C(16)-O(16) | 177.8(24) | Mn(1)-C(17)-O(17) | 176.8(21) |
|                   |           |                   |           |

| P(2)-Mn(2)-N(7)   | 90.5(7)   |          | P(2)-Mn(2)-N(9)   | 172.9(9)    |
|-------------------|-----------|----------|-------------------|-------------|
| N(7)-Mn(2)-N(9)   | 84.3(10)  |          | P(2)-Mn(2)-N(11)  | 92.2(8)     |
| N(7)-Mn(2)-N(11)  | 90.9(11)  |          | N(9)-Mn(2)-N(11)  | 83.0(10)    |
| P(2)-Mn(2)-C(36)  | . ,       | 90.2(12) | N(7)-Mn(2)-C(36)  | ) 177.6(15) |
| N(9)-Mn(2)-C(36)  | 95.2(14)  |          | N(11)-Mn(2)-C(36) | 91.4(15)    |
| P(2)-Mn(2)-C(37)  | 89.2(11)  |          | N(7)-Mn(2)-C(37)  | 92.5(15)    |
| N(9)-Mn(2)-C(37)  | 95.9(13)  |          | N(11)-Mn(2)-C(37) | 176.3(16)   |
| C(36)-Mn(2)-C(37) | 85.2(18)  |          | Mn(2)-P(2)-O(4)   | 116.2(10)   |
| Mn(2)-P(2)-O(5)   | 127.4(14) |          | O(4)-P(2)-O(5)    | 104.3(14)   |
| Mn(2)-P(2)-O(6)   | 119.7(11) |          | O(4)-P(2)-O(6)    | 91.4(14)    |
| O(5)-P(2)-O(6)    | 89.8(20)  |          | P(2)-O(4)-C(38)   | 125.9(20)   |
| P(2)-O(5)-C(39)   | 124.7(33) |          | P(2)-O(6)-C(40)   | 124.8(22)   |
| Mn(2)-N(7)-N(8)   | 116.5(19) |          | Mn(2)-N(7)-C(21)  | 134.7(19)   |
| N(8)-N(7)-C(21)   | 108.8(25) |          | N(7)-N(8)-B(2)    | 121.2(29)   |
| N(7)-N(8)-C(23)   | 106.5(23) |          | B(2)-N(8)-C(23)   | 132.0(27)   |
| Mn(2)-N(9)-N(10)  | 119.9(20) |          | Mn(2)-N(9)-C(24)  | 139.3(22)   |
| N(10)-N(9)-C(24)  | 100.8(22) |          | N(9)-N(10)-B(2)   | 117.0(22)   |
| N(9)-N(10)-C(26)  | 106.9(26) |          | B(2)-N(10)-C(26)  | 136.1(26)   |
| Ma(2)-N(11)-N(12) | 120.0(20) |          | Mn(2)-N(11)-C(27) | 133.6(21)   |
| N(12)-N(11)-C(27) | 106.3(25) |          | N(11)-N(12)-B(2)  | 116.8(27)   |
| N(11)-N(12)-C(29) | 112.0(28) |          | B(2)-N(12)-C(29)  | 130.6(28)   |
| N(8)-B(2)-N(10)   | 105.7(28) |          | N(8)-B(2)-N(12)   | 111.4(26)   |
| N(10)-B(2)-N(12)  | 110.6(33) |          | N(7)-C(21)-C(22)  | 105.4(24)   |
| N(7)-C(21)-C(30)  | 123.6(29) |          | C(22)-C(21)-C(30) | 131.0(30)   |
| C(21)-C(22)-C(23) | 107.9(32) |          | N(8)-C(23)-C(22)  | 111.4(31)   |
| N(8)-C(23)-C(31)  | 119.0(27) |          | C(22)-C(23)-C(31) | 129.6(35)   |
| N(9)-C(24)-C(25)  | 118.9(34) |          | N(9)-C(24)-C(32)  | 120.1(26)   |
| C(25)-C(24)-C(32) | 120.4(34) |          | C(24)-C(25)-C(26) | 100.1(32)   |
| N(10)-C(26)-C(25) | 112.4(27) |          | N(10)-C(26)-C(33) | 115.9(33)   |
| C(25)-C(26)-C(33) | 130.7(32) |          | N(11)-C(27)-C(28) | 106.9(28)   |
| N(11)-C(27)-C(34) | 129.2(29) |          | C(28)-C(27)-C(34) | 123.9(30)   |
| C(27)-C(28)-C(29) | 107.6(29) |          | N(12)-C(29)-C(28) | 107.0(29)   |
| N(12)-C(29)-C(35) | 124.1(32) |          | C(28)-C(29)-C(35) | 128.9(32)   |
| Mn(2)-C(36)-O(36) | 172.1(31) |          | Mn(2)-C(37)-O(37) | 174.5(34)   |

### 4.20 HB(3,5-Me<sub>2</sub>C<sub>3</sub>HN<sub>2</sub>)<sub>3</sub>Re(CO)<sub>2</sub>P(OMe)<sub>3</sub> (11b)

#### A. Experimentelle Daten

Formel C<sub>20</sub>H<sub>31</sub>BN<sub>6</sub>O<sub>5</sub>PRe; Kristallsystem monoklin; Raumgruppe C2<sub>h</sub>/5, P2<sub>1</sub>/n, (Nr.14); Farbe, Habitus farblos, klar; Gitterkonstanten a (Å) 20.03(2), b (Å) 8.156(4), c (Å) 33.73(2), ß (°) 107.43(6); Molekulargew. (g mol<sup>-1</sup>) 663.49; Z 2\*4; Volumen (Å<sup>3</sup>) 5257.3; F<sub>000</sub> 2624; Ber.Dichte (g cm<sup>-3</sup>) 1.68; Kristallabmess. (mm) 0.03 x 0.1 x 0.9;  $\Theta$  Bereich (°) 4.0 < 2  $\Theta$  < 26.0; Quatrant +h +k ±1; Gemessene Refl. 8404; Unabhäng.Refl. 4912; Nutzbare Refl. 5425; Transmiss.Faktor (min/max) 0.69/1.00;  $\mu$  (cm<sup>-1</sup>) 4.78; H-Atome berechnet d (C-H) = 0.954 Å, B(H) = 1.3 x B equ (C); R (%) 4.7; R<sub>W</sub> (%) 3.8; GOOF 1.41; Shift/err 0.09; Es handelt sich um zwei etwas voneinander verschiedene unabhängige Moleküle

## B. Atomkoordinaten [x10<sup>4</sup>] und isotrope Auslenkungsparameter $\rm U_{e}~[pm^{2}~x~10^{-1}]$ von 11b

|       | Х       | Y        | Z       | U <sub>eq</sub> |
|-------|---------|----------|---------|-----------------|
| Re(1) | 1646(1) | 1944(1)  | 1255(1) | . 34(1)         |
| P(1)  | 1013(2) | 3172(4)  | 641(1)  | 46(1)           |
| 0(1)  | 359(5)  | 4319(11) | 637(3)  | 69(4)           |
| 0(2)  | 1368(4) | 4565(10) | 436(3)  | 66(4)           |
| D(3)  | 694(4)  | 1914(11) | 275(3)  | 69(4)           |
| N(1)  | 2418(5) | 3923(12) | 1424(3) | 39(4)           |
| N(2)  | 3131(5) | 3550(13) | 1529(3) | 50(5)           |
| N(3)  | 2347(5) | 865(11)  | 1825(3) | 39(4)           |
| N(4)  | 3065(5) | 939(12)  | 1891(3) | 46(4)           |
| N(5)  | 2384(5) | 672(11)  | 978(3)  | 38(4)           |
| N(6)  | 3096(5) | 908(12)  | 1150(3) | 44(4)           |
| 3(1)  | 3363(7) | 1771(18) | 1564(5) | 46(6)           |
| C(1)  | 2395(7) | 5542(17) | 1463(4) | 51(6)           |
| C(2)  | 3057(8) | 6195(18) | 1589(4) | 65(7)           |
| C(3)  | 3508(7) | 4961(20) | 1628(5) | 72(7)           |
| C(4)  | 2248(7) | 112(15)  | 2158(4) | 50(6)           |
| C(5)  | 2895(8) | -328(18) | 2425(4) | 71(7)           |
| C(6)  | 3394(7) | 202(17)  | 2249(4) | 63(6)           |
| C(7)  | 2313(6) | -362(15) | 654(4)  | 45(5)           |
| C(8)  | 2977(7) | -758(15) | 620(4)  | 55(6)           |
| C(9)  | 3447(7) | 67(18)   | 931(4)  | 59(6)           |
|       |         |          |         |                 |
| C(10) | 1720(7) | 6407(16)  | 1399(4) | 79(7)   |
|-------|---------|-----------|---------|---------|
| C(11) | 4282(7) | 5035(19)  | 1767(5) | 118(10) |
| C(12) | 1547(6) | -219(17)  | 2200(4) | 69(6)   |
| C(13) | 4167(6) | 53(21)    | 2412(4) | 110(9)  |
| C(14) | 1632(6) | -1044(16) | 399(4)  | 60(6)   |
| C(15) | 4229(6) | 86(19)    | 1037(5) | 95(8)   |
| C(16) | 1050(6) | 2944(17)  | 1508(4) | 58(6)   |
| O(16) | 664(5)  | 3595(13)  | 1668(3) | 88(5)   |
| C(17) | 960(6)  | 275(16)   | 1133(3) | 40(5)   |
| O(17) | 499(5)  | -663(12)  | 1041(3) | 72(5)   |
| C(18) | -267(6) | 3586(20)  | 679(4)  | 93(8)   |
| C(19) | 2053(7) | 4255(17)  | 392(4)  | 80(8)   |
| C(20) | 304(7)  | 2416(18)  | -139(4) | 89(8)   |
|       |         |           |         |         |

| Re(2) | -3267(1) | 5161(1)  | 1125(1) | 37(1)  |
|-------|----------|----------|---------|--------|
| P(2)  | -3481(2) | 4004(4)  | 470(1)  | 49(1)  |
| O(4)  | -3961(4) | 5103(10) | 93(3)   | 65(4)  |
| O(5)  | -3784(5) | 2216(12) | 354(3)  | 81(5)  |
| O(6)  | -2814(5) | 3795(13) | 297(3)  | 81(5)  |
| N(7)  | -2348(5) | 6551(11) | 1047(3) | 40(4)  |
| N(8)  | -1703(5) | 6413(12) | 1358(3) | 46(4)  |
| N(9)  | -2899(5) | 6278(11) | 1745(3) | 43(4)  |
| N(10) | -2202(5) | 6285(11) | 1957(3) | 43(4)  |
| N(11) | -2517(4) | 3252(11) | 1454(3) | 34(4)  |
| N(12) | -1835(5) | 3664(12) | 1676(3) | 41(4)  |
| B(2)  | -1665(7) | 5494(18) | 1755(5) | 49(6)  |
| C(21) | -2246(7) | 7574(15) | 763(4)  | 49(6)  |
| C(22) | -1552(7) | 8057(16) | 876(4)  | 61(6)  |
| C(23) | -1226(6) | 7316(16) | 1251(4) | 52(6)  |
| C(24) | -3219(7) | 7080(16) | 1991(4) | 51(6)  |
| C(25) | -2734(9) | 7608(17) | 2335(4) | 68(7)  |
| C(26) | -2098(8) | 7093(16) | 2311(4) | 53(6)  |
| C(27) | -2539(6) | 1607(16) | 1484(3) | 41(5)  |
| C(28) | -1888(7) | 1023(16) | 1693(4) | 50(6)  |
| C(29) | -1450(6) | 2329(17) | 1818(4) | 49(6)  |
| C(30) | -2814(7) | 8085(16) | 383(4)  | 67(6)  |
| C(31) | -489(6)  | 7404(18) | 1521(4) | 89(8)  |
| C(32) | -3995(6) | 7297(17) | 1863(4) | 79(8)  |
| C(33) | -1398(7) | 7356(19) | 2618(4) | 100(9) |
| C(34) | -3188(6) | 571(16)  | 1290(4) | 77(7)  |
| C(35) | -684(6)  | 2406(17) | 2055(4) | 73(7)  |
| C(36) | -4037(6) | 4074(15) | 1216(4) | 50(6)  |
| O(36) | -4526(4) | 3468(12) | 1280(3) | 80(5)  |
| C(37) | -3905(7) | 6819(17) | 876(4)  | 52(6)  |
| O(37) | -4338(5) | 7801(12) | 730(3)  | 75(5)  |
|       |          |          |         |        |

| C(38) | -4088(7) | 4714(17) | -335(4) | 81(7)  |
|-------|----------|----------|---------|--------|
| C(39) | -4487(7) | 1863(19) | 318(5)  | 103(9) |
| C(40) | -2189(7) | 3001(18) | 540(4)  | 75(7)  |

## C. Bindungsabstände [pm] von 11b

Molekül 1

| Re(1)-P(1)  | 230.6(4)  | Re(1)-N(1)  | 219.0(10) |
|-------------|-----------|-------------|-----------|
| Re(1)-N(3)  | 219.8(8)  | Re(1)-N(5)  | 222.9(10) |
| Re(1)-C(16) | 185.0(14) | Re(1)-C(17) | 188.9(12) |
| P(1)-O(1)   | 160.6(10) | P(1)-O(2)   | 160.3(10) |
| P(1)-O(3)   | 158.7(9)  | O(1)-C(18)  | 143.4(17) |
| O(2)-C(19)  | 144.7(17) | O(3)-C(20)  | 143.8(14) |
| N(1)-N(2)   | 139.7(14) | N(1)-C(1)   | 133.0(14) |
| N(2)-B(1)   | 151.8(18) | N(2)-C(3)   | 136.3(19) |
| N(3)-N(4)   | 138.9(13) | N(3)-C(4)   | 134.5(17) |
| N(4)-B(1)   | 155.8(20) | N(4)-C(6)   | 133.3(16) |
| N(5)-N(6)   | 138.4(12) | N(5)-C(7)   | 135.2(16) |
| N(6)-B(1)   | 151.0(17) | N(6)-C(9)   | 134.8(19) |
| C(1)-C(2)   | 137.3(20) | C(1)-C(10)  | 148.2(20) |
| C(2)-C(3)   | 133.2(22) | C(3)-C(11)  | 148.0(19) |
| C(4)-C(5)   | 138.5(17) | C(4)-C(12)  | 147.9(19) |
| C(5)-C(6)   | 137.7(23) | C(6)-C(13)  | 148.5(18) |
| C(7)-C(8)   | 140.6(19) | C(7)-C(14)  | 148.6(15) |
| C(8)-C(9)   | 136.0(17) | C(9)-C(15)  | 149.9(18) |
| C(16)-O(16) | 119.3(18) | C(17)-O(17) | 116.8(15) |
|             |           |             |           |

|             |           |             | -         |  |
|-------------|-----------|-------------|-----------|--|
| Re(2)-P(2)  | 232.1(4)  | Re(2)-N(7)  | 224.1(10) |  |
| Re(2)-N(9)  | 219.5(9)  | Re(2)-N(11) | 221.5(9)  |  |
| Re(2)-C(36) | 188.3(13) | Re(2)-C(37) | 187.8(13) |  |
| P(2)-O(4)   | 161.5(8)  | P(2)-O(5)   | 158.3(10) |  |
| P(2)-O(6)   | 161.9(11) | O(4)-C(38)  | 142.6(16) |  |
| O(5)-C(39)  | 140.6(18) | O(6)-C(40)  | 142.9(15) |  |
| N(7)-N(8)   | 140.3(12) | N(7)-C(21)  | 133.2(17) |  |
| N(8)-B(2)   | 151.8(19) | N(8)-C(23)  | 134.0(18) |  |
| N(9)-N(10)  | 136.5(13) | N(9)-C(24)  | 135.9(19) |  |
| N(10)-B(2)  | 157.2(20) | N(10)-C(26) | 132.5(16) |  |
| N(11)-N(12) | 138.9(12) | N(11)-C(27) | 134.7(16) |  |
| N(12)-B(2)  | 153.7(17) | N(12)-C(29) | 133.7(16) |  |
| C(21)-C(22) | 138.3(19) | C(21)-C(30) | 149.6(16) |  |
| C(22)-C(23) | 137.7(18) | C(23)-C(31) | 148.7(16) |  |
|             |           |             |           |  |

| C(24)-C(25) | 134.2(18) | C(24)-C(32) | 149.4(18) |
|-------------|-----------|-------------|-----------|
| C(25)-C(26) | 136.6(24) | C(26)-C(33) | 148.9(18) |
| C(27)-C(28) | 136.8(17) | C(27)-C(34) | 152.4(17) |
| C(28)-C(29) | 136.5(18) | C(29)-C(35) | 150.4(15) |
| C(36)-O(36) | 117.5(16) | C(37)-O(37) | 117.6(15) |
|             |           |             |           |

# D. Bindungswinkel [°] von <u>11b</u>

| P(1)-Re(1)-N(1)   | 94.0(2)   | P(1)-Re(1)-N(3)   | 174.0(3)  |
|-------------------|-----------|-------------------|-----------|
| N(1)-Re(1)-N(3)   | 81.4(3)   | P(1)-Re(1)-N(5)   | 94.6(2)   |
| N(1)-Re(1)-N(5)   | 86.9(4)   | N(3)-Re(1)-N(5)   | 81.4(3)   |
| P(1)-Re(1)-C(16)  | 88.0(4)   | N(1)-Re(1)-C(16)  | 93.3(5)   |
| N(3)-Re(1)-C(16)  | 96.0(5)   | N(5)-Re(1)-C(16)  | 177.3(5)  |
| P(1)-Re(1)-C(17)  | 87.1(3)   | N(1)-Re(1)-C(17)  | 176.8(5)  |
| N(3)-Re(1)-C(17)  | 97.7(4)   | N(5)-Re(1)-C(17)  | 95.9(5)   |
| C(16)-Re(1)-C(17) | 83.8(6)   | Re(1)-P(1)-O(1)   | 119.2(4)  |
| Re(1)-P(1)-O(2)   | 120.0(3)  | O(1)-P(1)-O(2)    | 92.8(5)   |
| Re(1)-P(1)-O(3)   | 113.8(4)  | O(1)-P(1)-O(3)    | 103.4(5)  |
| O(2)-P(1)-O(3)    | 104.4(5)  | P(1)-O(1)-C(18)   | 119.4(9)  |
| P(1)-O(2)-C(19)   | 118.5(8)  | P(1)-O(3)-C(20)   | 123.2(8)  |
| Re(1)-N(1)-N(2)   | 119.6(7)  | Re(1)-N(1)-C(1)   | 135.6(9)  |
| N(2)-N(1)-C(1)    | 104.8(10) | N(1)-N(2)-B(1)    | 119.6(10) |
| N(1)-N(2)-C(3)    | 109.1(10) | B(1)-N(2)-C(3)    | 130.8(10) |
| Re(1)-N(3)-N(4)   | 118.8(7)  | Re(1)-N(3)-C(4)   | 134.2(8)  |
| N(4)-N(3)-C(4)    | 107.0(8)  | N(3)-N(4)-B(1)    | 120.3(8)  |
| N(3)-N(4)-C(6)    | 109.3(11) | B(1)-N(4)-C(6)    | 130.3(11) |
| Re(1)-N(5)-N(6)   | 119.3(7)  | Re(1)-N(5)-C(7)   | 135.0(7)  |
| N(6)-N(5)-C(7)    | 105.7(10) | N(5)-N(6)-B(1)    | 119.2(10) |
| N(5)-N(6)-C(9)    | 109.8(9)  | B(1)-N(6)-C(9)    | 130.1(10) |
| N(2)-B(1)-N(4)    | 107.3(12) | N(2)-B(1)-N(6)    | 111.0(10) |
| N(4)-B(1)-N(6)    | 110.3(10) | N(1)-C(1)-C(2)    | 110.9(12) |
| N(1)-C(1)-C(10)   | 121.1(12) | C(2)-C(1)-C(10)   | 127.9(13) |
| C(1)-C(2)-C(3)    | 107.5(13) | N(2)-C(3)-C(2)    | 107.7(12) |
| N(2)-C(3)-C(11)   | 124.3(13) | C(2)-C(3)-C(11)   | 128.0(14) |
| N(3)-C(4)-C(5)    | 108.5(12) | N(3)-C(4)-C(12)   | 123.1(10) |
| C(5)-C(4)-C(12)   | 128.4(13) | C(4)-C(5)-C(6)    | 107.3(12) |
| N(4)-C(6)-C(5)    | 107.9(12) | N(4)-C(6)-C(13)   | 123.4(14) |
| C(5)-C(6)-C(13)   | 128.7(13) | N(5)-C(7)-C(8)    | 109.7(10) |
| N(5)-C(7)-C(14)   | 123.8(12) | C(8)-C(7)-C(14)   | 126.3(12) |
| C(7)-C(8)-C(9)    | 106.0(12) | N(6)-C(9)-C(8)    | 108.7(11) |
| N(6)-C(9)-C(15)   | 122.8(11) | C(8)-C(9)-C(15)   | 128.4(14) |
| Re(1)-C(16)-O(16) | 179.6(9)  | Re(1)-C(17)-O(17) | 174.5(10) |
|                   |           |                   |           |

| P(2)-Re(2)-N(7)   | 91.1(3)   | P(2)-Re(2)-N(9)   | 171.4(3)  |
|-------------------|-----------|-------------------|-----------|
| N(7)-Re(2)-N(9)   | 81.3(4)   | P(2)-Re(2)-N(11)  | 95.5(3)   |
| N(7)-Re(2)-N(11)  | 87.6(3)   | N(9)-Re(2)-N(11)  | 80.3(3)   |
| P(2)-Re(2)-C(36)  | 92.1(4)   | N(7)-Re(2)-C(36)  | 176.7(5)  |
| N(9)-Re(2)-C(36)  | 95.6(5)   | N(11)-Re(2)-C(36) | 93.0(4)   |
| P(2)-Re(2)-C(37)  | 87.7(4)   | N(7)-Re(2)-C(37)  | 93.2(5)   |
| N(9)-Re(2)-C(37)  | 96.7(5)   | N(11)-Re(2)-C(37) | 176.8(5)  |
| C(36)-Re(2)-C(37) | 86.0(6)   | Re(2)-P(2)-O(4)   | 114.8(4)  |
| Re(2)-P(2)-O(5)   | 123.9(4)  | O(4)-P(2)-O(5)    | 102.9(4)  |
| Re(2)-P(2)-O(6)   | 116.6(3)  | O(4)-P(2)-O(6)    | 97.8(5)   |
| O(5)-P(2)-O(6)    | 96.4(6)   | P(2)-O(4)-C(38)   | 123.9(8)  |
| P(2)-O(5)-C(39)   | 120.6(10) | P(2)-O(6)-C(40)   | 121.1(9)  |
| Re(2)-N(7)-N(8)   | 118.5(7)  | Re(2)-N(7)-C(21)  | 135.2(7)  |
| N(8)-N(7)-C(21)   | 106.3(9)  | N(7)-N(8)-B(2)    | 119.4(10) |
| N(7)-N(8)-C(23)   | 109.1(9)  | B(2)-N(8)-C(23)   | 131.2(10) |
| Re(2)-N(9)-N(10)  | 120.0(8)  | Re(2)-N(9)-C(24)  | 134.1(8)  |
| N(10)-N(9)-C(24)  | 105.9(9)  | N(9)-N(10)-B(2)   | 119.8(9)  |
| N(9)-N(10)-C(26)  | 109.5(11) | B(2)-N(10)-C(26)  | 130.6(10) |
| Re(2)-N(11)-N(12) | 120.7(7)  | Re(2)-N(11)-C(27) | 134.9(7)  |
| N(12)-N(11)-C(27) | 104.4(8)  | N(11)-N(12)-B(2)  | 117.4(9)  |
| N(11)-N(12)-C(29) | 111.5(9)  | B(2)-N(12)-C(29)  | 130.9(9)  |
| N(8)-B(2)-N(10)   | 108.6(10) | N(8)-B(2)-N(12)   | 112.1(11) |
| N(10)-B(2)-N(12)  | 109.2(11) | N(7)-C(21)-C(22)  | 109.9(10) |
| N(7)-C(21)-C(30)  | 123.3(11) | C(22)-C(21)-C(30) | 126.9(13) |
| C(21)-C(22)-C(23) | 106.8(13) | N(8)-C(23)-C(22)  | 108.0(10) |
| N(8)-C(23)-C(31)  | 121.2(12) | C(22)-C(23)-C(31) | 130.8(13) |
| N(9)-C(24)-C(25)  | 109.3(13) | N(9)-C(24)-C(32)  | 121.4(11) |
| C(25)-C(24)-C(32) | 129.3(15) | C(24)-C(25)-C(26) | 107.2(14) |
| N(10)-C(26)-C(25) | 108.0(11) | N(10)-C(26)-C(33) | 124.0(14) |
| C(25)-C(26)-C(33) | 128.0(13) | N(11)-C(27)-C(28) | 109.8(11) |
| N(11)-C(27)-C(34) | 124.2(10) | C(28)-C(27)-C(34) | 125.9(12) |
| C(27)-C(28)-C(29) | 108.3(12) | N(12)-C(29)-C(28) | 106.0(10) |
| N(12)-C(29)-C(35) | 122.9(12) | C(28)-C(29)-C(35) | 131.1(12) |
| Re(2)-C(36)-O(36) | 176.7(12) | Re(2)-C(37)-O(37) | 175.3(13) |
|                   |           |                   |           |

## 4.21 [HB(3,5-Me<sub>2</sub>C<sub>3</sub>HN<sub>2</sub>)<sub>3</sub>Tc(CO)<sub>2</sub>]<sub>2</sub>( $\mu$ -N<sub>2</sub>) (12)

#### A. Experimentelle Daten

Formel C<sub>34</sub>H<sub>44</sub>B<sub>2</sub>N<sub>14</sub>O<sub>4</sub>Tc<sub>2</sub>; Kristallsystem monoklin; Raumgruppe C2/c, (Nr.15); Farbe, Habitus braune Prismen; Gitterkonstanten a (Å) 20.322(6), b (Å) 14.547(4), c (Å) 14.270(5), ß (°) 103.95(2); Molekulargew. (g mol<sup>-1</sup>) 932.44; Z 4; Volumen (Å<sup>3</sup>) 4094.3; F<sub>000</sub> 1896; Ber.Dichte (g cm<sup>-3</sup>) 1.509; Kristallabmess. (mm) 0.3 x 0.2 x 0.7;  $\Theta$  Bereich (°) 5 < 2  $\Theta$  < 12; Quatrant -h +k ±1; Gemessene Refl. 5798; Unabhäng.Refl. 1586; Nutzbare Refl. 1651; Transmiss.Faktor (min/max) 0.923/0.999;  $\mu$  (cm<sup>-1</sup>) 7.116; Verfeinerung d. Nicht-Wasserstoffatome aniso, H-Atome berechnet d (C-H) = 0.954 Å, B(H) = 1.3 x B equ (C); R (%) 6.7; R<sub>w</sub> (%) 8.9; GOOF 1.755; Shift/err 0.33

## B. Atomkoordinaten [x10<sup>4</sup>] und isotrope Auslenkungsparameter

| Ue | [pm <sup>2</sup> | Ж | 10 <sup>-1</sup> ] | von | <u>12</u> |  |
|----|------------------|---|--------------------|-----|-----------|--|
|    |                  |   |                    |     |           |  |

|       | x         | у         | Z         | U <sub>eq</sub> |
|-------|-----------|-----------|-----------|-----------------|
| 77.0  | EF00 7/4\ | 0000 8/8  | 1070.0(0) | 40.7/0)         |
|       | 5525.7(4) | 2238.8(8) | 1070.9(8) | 40.7(2)         |
| O(1)  | 5071(6)   | 983(8)    | 990(10)   | 52(3)           |
| O(1)  | 5712(6)   | 179(7)    | 945(9)    | 92(3)           |
| C(2)  | 4700(6)   | 2114(8)   | 157(9)    | 49(3)           |
| O(2)  | 4198(5)   | 1990(7)   | -372(8)   | 74(3)           |
| N(1)  | 6533(5)   | 3247(7)   | 218(7)    | 44(2)           |
| N(2)  | 6069(5)   | 2540(7)   | 11(7)     | 50(3)           |
| C(3)  | 6070(6)   | 2210(10)  | -854(8)   | 59(3)           |
| C(4)  | 6560(8)   | 2680(10)  | -1207(8)  | 65(3)           |
| C(5)  | 6826(6)   | 3345(8)   | -519(9)   | 50(3)           |
| C(6)  | 5653(9)   | 1370(10)  | -1290(10) | 95(5)           |
| C(7)  | 7399(7)   | 4040(10)  | -0510(10) | 71(4)           |
| N(3)  | 6859(4)   | 3206(6)   | 2050(6)   | 38(2)           |
| N(4)  | 6499(4)   | 2459(6)   | 2142(6)   | 35(2)           |
| C(8)  | 6792(5)   | 2037(8)   | 2994(8)   | 44(2)           |
| C(9)  | 7354(6)   | 2560(10)  | 3424(9)   | 52(3)           |
| C(10) | 7401(5)   | 3274(7)   | 2822(9)   | 40(2)           |
| C(11) | 6548(7)   | 1167(9)   | 3350(10)  | 57(3)           |
| C(12) | 7904(6)   | 4050(10)  | 2918(9)   | 54(3)           |
| N(5)  | 5968(3)   | 4268(7)   | 1200(6)   | 37(2)           |
| N(6)  | 5413(4)   | 3734(6)   | 1162(6)   | 36(2)           |
| C(13) | 4904(6)   | 4306(9)   | 1218(7)   | 47(3)           |
| C(14) | 5128(5)   | 5212(8)   | 1316(6)   | 39(2)           |

| C(15) | 5795(7) | 5161(9)  | 1318(8)  | 52(3) |
|-------|---------|----------|----------|-------|
| C(16) | 4192(6) | 3950(10) | 1240(10) | 60(4) |
| C(17) | 6345(7) | 5940(10) | 1420(10) | 64(4) |
| N(7)  | 5113(4) | 2130(6)  | 2163(9)  | 75(4) |
| В     | 6640(7) | 3832(9)  | 1160(10) | 43(3) |
|       |         |          |          |       |

## C. Bindungsabstände [pm] von 12

| Tc-C(1)    | 186(2) | Tc-N(6)     | 219(1)   |
|------------|--------|-------------|----------|
| Tc-C(2)    | 187(1) | Tc-N(7)     | 194(2)   |
| Tc-N(2)    | 213(1) | C(1)-O(1)   | 117(2)   |
| Tc-N(4)    | 221(1) | C(2)-O(2)   | 113(2)   |
| Tc-B       | 322(1) | Tc-Tc'      | 503.5(3) |
| N(1)-N(2)  | 138(2) | C(8)-C(11)  | 149(2)   |
| N(1)-C(5)  | 133(2) | C(9)-C(10)  | 137(2)   |
| N(1)-B     | 156(2) | C(10)-C(12) | 151(2)   |
| N(2)-C(3)  | 133(2) | N(5)-N(6)   | 136(1)   |
| C(3)-C(4)  | 140(2) | N(5)-C(15)  | 137(2)   |
| C(3)-C(6)  | 152(2) | N(5)-B      | 152(2)   |
| C(4)-C(5)  | 139(2) | N(6)-C(13)  | 135(2)   |
| C(5)-C(7)  | 154(2) | C(13)-C(14) | 139(2)   |
| N(3)-N(4)  | 133(1) | C(13)-C(16) | 154(2)   |
| N(3)-C(10) | 136(2) | C(14)-C(15) | 136(2)   |
| N(3)-B     | 154(2) | C(15)-C(17) | 157(2)   |
| N(4)-C(8)  | 136(2) | N(7)-N(7')  | 116.0(3) |
| C(8)-C(9)  | 138(2) |             |          |

### D. Bindungswinkel [°] von 12

| C(1)-Tc-C(2)   | 89.4(6)  | N(2)-Tc-N(4)     | 85.9(4)  |
|----------------|----------|------------------|----------|
| C(1)-Tc-N(2)   | 92.1(6)  | N(2)-Tc-N(6)     | 85.2(4)  |
| C(1)-Tc-N(4)   | 93.2(5)  | N(2)-Tc-N(7)     | 170.4(6) |
| C(1)-Tc-N(6)   | 176.5(5) | N(4)-Tc-N(6)     | 84.4(4)  |
| C(1)-Tc-N(7)   | 94.6(6)  | N(4)-Tc-N(7)     | 86.8(6)  |
| C(2)-Tc-N(2)   | 93.3(6)  | N(6)-Tc-N(7)     | 87.9(4)  |
| C(2)-Tc-N(4)   | 177.2(5) | Tc-C(1)-O(1)     | 175.(1)  |
| C(2)-Tc-N(6)   | 92.9(5)  | Tc-C(2)-O(2)     | 176.(1)  |
| C(2)-Tc-N(7)   | 93.8(7)  | Tc-N(7)-N(7')    | 174.(1)  |
| N(2)-N(1)-C(5) | 109.(1)  | C(8)-C(9)-C(10)  | 108.(1)  |
| N(2)-N(1)-B    | 123.(1)  | N(3)-C(10)-C(9)  | 107.(1)  |
| C(5)-N(1)-B    | 129.(1)  | N(3)-C(10)-C(12) | 122.(1)  |
| N(1)-N(2)-C(3) | 109.(1)  | C(9)-C(10)-C(12) | 132.(1)  |

| N(2)-C(3)-C(4)  | 108.(2) | N(6)-N(5)-C(15)   | 108.(1) |
|-----------------|---------|-------------------|---------|
| N(2)-C(3)-C(6)  | 123.(2) | N(6)-N(5)-B       | 120.(1) |
| C(4)-C(3)-C(6)  | 128.(1) | C(15)-N(5)-B      | 131.(1) |
| C(3)-C(4)-C(5)  | 106.(1) | N(5)-N(6)-C(13)   | 107.(1) |
| N(1)-C(5)-C(4)  | 108.(1) | N(6)-C(13)-C(14)  | 111.(1) |
| N(1)-C(5)-C(7)  | 123.(1) | N(6)-C(13)-C(16)  | 122.(1) |
| C(4)-C(5)-C(7)  | 129.(2) | C(14)-C(13)-C(16) | 127.(1) |
| N(4)-N(3)-C(10) | 110.(1) | C(13)-C(14)-C(15) | 105.(1) |
| N(4)-N(3)-B     | 120.(1) | N(5)-C(15)-C(14)  | 110.(1) |
| C(10)-N(3)-B    | 130.(1) | N(5)-C(15)-C(17)  | 120.(1) |
| N(3)-N(4)-C(8)  | 109.(1) | C(14)-C(15)-C(17) | 130.(2) |
| N(4)-C(8)-C(9)  | 107.(1) | N(1)-B-N(3)       | 110.(1) |
| N(4)-C(8)-C(11) | 125.(1) | N(1)-B-N(5)       | 109.(1) |
| C(9)-C(8)-C(11) | 128.(1) | N(3)-B-N(5)       | 107.(1) |
|                 |         |                   |         |

## 4.22 [HB(3,5-Me<sub>2</sub>C<sub>3</sub>HN<sub>2</sub>)<sub>3</sub>]<sub>2</sub>Mn (13a)

#### A. Experimentelle Daten

Formel C<sub>30</sub>H<sub>44</sub>B<sub>2</sub>MnN<sub>12</sub>; Kristallsystem rhomboedrisch/hexagonal; Raumgruppe C<sub>3i</sub>/2, R3, (Nr.148); Farbe, Habitus farblos, klar; Gitterkonstanten a (Å) 11.010(6), c (Å) 24.88(1); Molekulargew. (g mol<sup>-1</sup>) 649.32; Z 3; Volumen (Å<sup>3</sup>) 2611.9; F<sub>000</sub> 1029; Ber.Dichte (g cm<sup>-3</sup>) 1.24; Kristallabmess. (mm) 0.08 x 0.25 x 0.25;  $\Theta$  Bereich (°) 8.0 < 2  $\Theta$  < 31.0; Quatrant +h -k +1; Gemessene Refl. 1649; Unabhäng.Refl. 933; Nutzbare Refl. 1100; Transmiss.Faktor (min/max) 0.94/1.00;  $\mu$  (cm<sup>-1</sup>) 0.40; H-Atome berechnet d (C-H) = 0.954 Å, B(H) = 1.3 x B equ (C); R (%) 6.4; R<sub>W</sub> (%) 5.8; GOOF 2.90; Shift/err 0.073;

| B.               | Atomkoordinaten                                     | [x10 <sup>4</sup> ] | und | isotrope | Auslenkungsparameter |
|------------------|-----------------------------------------------------|---------------------|-----|----------|----------------------|
| U <sub>e</sub> [ | pm <sup>2</sup> x 10 <sup>-1</sup> ] von <u>13a</u> |                     |     |          |                      |

|          | X       | у         | Z        | U <sub>eq</sub> |
|----------|---------|-----------|----------|-----------------|
| 3.6. /4> |         | <u></u> _ | <u> </u> |                 |
| Mn(1)    | 0       | 0         | 0        | 41(1)           |
| B(1)     | 0       | 0         | 1311(3)  | 38(2)           |
| N(1)     | 1071(3) | 1480(3)   | 1112(1)  | 40(2)           |
| N(2)     | 1081(4) | 1842(3)   | 578(1)   | 45(2)           |
| C(1)     | 2305(5) | 2498(5)   | 1978(2)  | 58(3)           |
| C(2)     | 2051(4) | 2608(5)   | 1390(2)  | 46(2)           |
| C(3)     | 2685(5) | 3706(5)   | 1040(2)  | 51(2)           |

| C(4) | 2070(4) | 3200(5) | 542(2) | 45(2) |
|------|---------|---------|--------|-------|
| C(5) | 2393(5) | 3952(5) | 15(2)  | 73(3) |

### C. Bindungsabstände [pm] von 13a

| Mn(1)-N(2)  | 227.7(3) | Mn(1)-N(2A) | 227.7(3) |  |
|-------------|----------|-------------|----------|--|
| Mn(1)-N(2B) | 227.7(4) | Mn(1)-N(2C) | 227.7(4) |  |
| Mn(1)-N(2D) | 227.7(2) | Mn(1)-N(2E) | 227.7(2) |  |
| B(1)-N(1)   | 154.0(4) | B(1)-N(1A)  | 154.0(4) |  |
| B(1)-N(1B)  | 154.0(3) | N(1)-N(2)   | 138.5(4) |  |
| N(1)-C(2)   | 135.7(5) | N(2)-C(4)   | 134.2(5) |  |
| C(1)-C(2)   | 150.7(6) | C(2)-C(3)   | 136.4(6) |  |
| C(3)-C(4)   | 138.7(6) | C(4)-C(5)   | 149.7(6) |  |
|             |          |             |          |  |

# D. Bindungswinkel [°] von <u>13a</u>

| 180.0(1) | N(2)-Mn(1)-N(2B)                                                                                                                                                        | 84.3(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 95.7(1)  | N(2)-Mn(1)-N(2C)                                                                                                                                                        | 95.7(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 84.3(1)  | N(2B)-Mn(1)-N(2C)                                                                                                                                                       | 180.0(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 84.3(1)  | N(2A)-Mn(1)-N(2D)                                                                                                                                                       | 95.7(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 84.3(1)  | N(2C)-Mn(1)-N(2D)                                                                                                                                                       | 95.7(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 95.7(1)  | N(2A)-Mn(1)-N(2E)                                                                                                                                                       | 84.3(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 95.7(1)  | N(2C)-Mn(1)-N(2E)                                                                                                                                                       | 84.3(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 180.0(1) | N(1)-B(1)-N(1A)                                                                                                                                                         | 110.2(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 110.2(3) | N(1A)-B(1)-N(1B)                                                                                                                                                        | 110.2(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 120.3(3) | B(1)-N(1)-C(2)                                                                                                                                                          | 130.0(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 109.7(3) | Mn(1)-N(2)-N(1)                                                                                                                                                         | 115.1(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 136.2(2) | N(1)-N(2)-C(4)                                                                                                                                                          | 105.6(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 121.0(3) | N(1)-C(2)-C(3)                                                                                                                                                          | 107.8(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 131.1(3) | C(2)-C(3)-C(4)                                                                                                                                                          | 106.4(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 110.5(3) | N(2)-C(4)-C(5)                                                                                                                                                          | 120.7(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 128 8(4) |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          | 180.0(1) $95.7(1)$ $84.3(1)$ $84.3(1)$ $84.3(1)$ $95.7(1)$ $95.7(1)$ $180.0(1)$ $110.2(3)$ $120.3(3)$ $109.7(3)$ $136.2(2)$ $121.0(3)$ $131.1(3)$ $110.5(3)$ $128.8(4)$ | 180.0(1) $N(2)-Mn(1)-N(2B)$ $95.7(1)$ $N(2)-Mn(1)-N(2C)$ $84.3(1)$ $N(2B)-Mn(1)-N(2C)$ $84.3(1)$ $N(2A)-Mn(1)-N(2D)$ $84.3(1)$ $N(2C)-Mn(1)-N(2D)$ $95.7(1)$ $N(2A)-Mn(1)-N(2E)$ $95.7(1)$ $N(2C)-Mn(1)-N(2E)$ $95.7(1)$ $N(2C)-Mn(1)-N(2E)$ $180.0(1)$ $N(1)-B(1)-N(1A)$ $110.2(3)$ $N(1A)-B(1)-N(1B)$ $120.3(3)$ $B(1)-N(1)-C(2)$ $109.7(3)$ $Mn(1)-N(2)-N(1)$ $136.2(2)$ $N(1)-N(2)-C(4)$ $121.0(3)$ $N(1)-C(2)-C(3)$ $131.1(3)$ $C(2)-C(3)-C(4)$ $110.5(3)$ $N(2)-C(4)-C(5)$ |

#### 5. Literatur und Bemerkungen

- [1] W. Noddack. I. Tacke, Die Naturwissenschaften 26 (1925) 567
- [2] a) W. Prandtel, Angew. Chem. **36** (1926) 1049
- b) M. Herszfinkiel, Compt. Rend. Acad. Sci. 184 (1927) 968
- [3] C. Perrier, E. Segrè, J. Chem. Phys. 5 (1937) 712
- [4] C. Perrier, E. Segrè, Nature 159 (1947) 24
- [5] B.T. Kenna, P.K. Kuroda, J. Inorg. Nucl. Chem. Lett. 23 (1961) 142
- [6] K.H. Lieser, Chemiker Zeitung 110 (1986) 215
- [7] K. Schwochau, Angew. Chem. 76 (1964) 9
- [8] G.H. Catrledge, J. Amer. Chem. Soc. 77 (1955)
- [9] M.L. Pickelsimer, S.T. Sekula, Physic. Rev. Lett. 9 (1962) 254
- [10] J.G. Hamilton, University of California, Radiation Laboratory, Report UCRL 98 (1948) 5
- [11] a) E. Deutsch, Radiopharmaceuticals, Society of Nuclear Medicine, New York 1979, S.130 - 146
  b) W.C. Eckelman, S.M. Levenson, Int. J. Appl. Rad. Isotopes 28 (1977) 67
  c) T. Krause, C. Schümichen, T. Meinertz, H. Just, Med. Mo. Pharm., 1 (1989) 2
- [12] a) Gmelin, Handbook of Inorganic Chemistry,
  Supplement Tc Vol 1 und 2 (1982/83)
  b) Cotton Wilkinson, Anorganische Chemie, Verlag Chemie, Weinheim 1982
- [13] E. Deutsch, K. Libson, S. Jaresson, L.F. Lindoy, Prog. Inorg. Chem.30 (1983) 75
- [14] Elsevier's Periodic Table of the Elements, Elsevier Science Publishers B.V., Amsterdam 1987
- [15] J.C. Hileman, D.K. Huggins, H.D. Kaesz, J. Amer. Chem. Soc. 63 (1961) 2953
- [16] W. Hieber, C. Herget, Angew. Chem. 73 (1961) 579
- [17] M.F. Bailey, L.F. Dahl, Inorg. Chem. 4 (1965) 1140
- [18] J.C. Hileman, D.K. Huggins, H.D. Kaesz, Inorg. Chem. 1 (1962) 933
- [19] H.D. Kaesz, D.K. Huggins, Can. J. Chem. 41 (1963) 1250
- [20] W. Hieber, F. Lux, C. Herget, Z. Naturforschung, **B 20** (1965) 1159
- [21] G. D. Michels, H.J. Svec, Inorg. Chem. 20 (1981) 3445
- [22] G. Sbrignadello, Inorg. Chim. Acta 48 (1981) 237
- [23] E.O. Fischer, M.W. Schmidt, Chem. Ber. 102 (1969) 1954
- [24] C. Palm, E.O. Fischer, F. Baumgärtner, Tetr. Lett (1962) 253
- [25] E.O. Fischer, W. Fellman, J. Organomet. Chem. 1 (1963) 191

- [26] E.O. Fischer, M.W. Schmidt, Angew. Chem. Int. Ed. 6 (1967) 93,Angew. Chem. 79 (1967) 99
- [27] M. Tsutsui, C.P. Hrung, T.S. Srivastava, D.L. Callen, E.F. Mayer,
   J. Amer. Chem. Soc. 97 (1975) 3952
- [28] G. Bandoli, D.A. Clemente, U. Mazzi, J. Chem. Soc. Dalton Trans (1976) 125
- [29] U. Mazzi, A. Bismondo, N. Katsev, D.A. Clemente,J. Organomet. Chem. 135 (1977) 177
- [30] K. Raptis, E. Dornberger, B. Kanellakopulos, B. Nuber, M.L. Ziegler,J. Organomet. Chem. 408 (1991) 61
- [31] K. Raptis, B. Kanellakopulos, B. Nuber, M.L. Ziegler,J. Organomet. Chem. 405 (1991) 323
- [32] K. Raptis, Dissertation, Universität Heidelberg 1990
- [33] B. Kanellakopulos, B. Nuber, K. Raptis, M.L. Ziegler, Angew. Chem. 101 (1989) 1055
- [34] B. Kanellakopulos, B. Nuber, K. Raptis, M. L. Ziegler,Z. Naturforschung 46b (1991) 55
- [35] W.A. Herrmann, R. Alberto, P. Kiprof, F. Baumgärtner, Angew. Chem. **102** (1990) 208
- [36] B. Kanellakopulos, B. Nuber, K. Raptis, M.L. Ziegler,Z. Naturforschung 46b (1991) 15
- [37] C. Apostolidis, B. Kanellakopulos, R. Maier, J. Rebizant, M.L. Ziegler,J. Organomet. Chem. 396 (1990) 315
- [38] C. Apostolidis, B. Kanellakopulos, R. Maier, J. Rebizant, M.L. Ziegler,J. Organomet. Chem. 411 (1991) 171
- [39] H.H. Knight Castro, A. Meetsma, J.H. Teuben, W. Vaalburg, K. Panek,G. Enzing, J. Organomet. Chem. 410 ((1991) 63
- [40] H.H. Knight Castro, C.E. Hissink, J.H. Teuben, W. Vaalburg, K. Panek, Recl. Trav. Chim. Pays-Bas 111 (1992) 105
- [41] W.A. Herrmann, R. Alberto, J.C. Bryan, A.P. Sattelberger, Chem. Ber. 124 (1991) 1107
- [42] R. Alberto, W.A. Herrmann, P. Kiprof, F. Baumgärtner, Inorg. Chem. 31 (1992) 895
- [43] J.W. Cobble, C.M. Nelson, G.W. Parker, W.T. Smith, G.E. Boyd,J. Amer. Chem. Soc. 74 (1952) 1852
- [44] K. Knox, S.Y. Tyree, R.D. Srivastava, V. Norman, J.V. Basset, J.H. Holloway, J. Amer. Chem. Soc. 79 (1957) 3358
- [45] G.E. Boyd, J.W. Cobble, C.M. Nelson, W.T. Smith,J. Amer. Chem. Soc. 74 (1952) 556
- [46] M.C. Couldwell, J. Simpson, Cryst. Struct. Comm. 6 (1977) 1

- [47] L.C. Porter, A.H. Reid, J.P. Fackler, Acta Cryst. C 48 (1992) 908
- [48] L.F. Dahl, C.H. Wei, Acta Cryst. 16 (1963) 611
- [49] A.A. Kruglov, L.L. Zaitseva, A.S. Kotel`nikova, Russ. J. Inorg. Chem. 26 (1981) 960
- [50] A.E. Miroslavov, G.V. Sidorenko, I.V. Borisov, E.K. Legin, A.A. Lychev,D.N. Suglobov, V.N. Adamov, Radiokhimiya 32 (1990) 6
- [51] D. Vitali, F. Calderazzo, Gazz. Chim. Ital. 102 (1972) 587
- [52] B.N. Stohoff, A.C. Lewis, Syn. React. Inorg. Metal-Org. Chem. 4(5) (1974) 467
- [53] F. Calderazzo, I.P. Mavani, D. Vitali, I. Bernal, J.D. Korp, J.L. Twood,J. Organomet. Chem. 160 (1978) 207
- [54] B. Lorenz, M. Findeisen, B. Olk, K. Schmidt,Z. Anorg. Allg. Chem. 566 (1988) 160
- [55] S. Trofimenko, Acc. Chem. Res. 4 (1971) 17
- [56] A. Shaver, Comprehensive Coordination Chemistry (eds.: G. Wilkinson,
   R.D. Gillard and J.A. McCleverty), Pergamon, Oxford, vol.2 (1987) 247
- [57] S. Trofimenko, Prog. Inorg. Chem. 34 (1986) 115
- [58] S. Trofimenko, J. Amer. Chem. Soc. 91 (1969) 588
- [59] S. Trofimenko, Chem. Rev. 72 (1972) 497
- [60] R.G. Ball, F. Edelmann, J.G. Matisons, J. Takats, N. Marques, J. Marçalo,
   A. Pires de Matos, K.W. Baquall, Inorg. Chim. Acta 132 (1987) 137
- [61] A. Domingos, N. Marques, A. Pires de Matos, Polyhedron 9 (1990) 69
- [62] C. Apostolidis, B. Kanellakopulos, R. Maier, N. Marques, A. Pires de Matos,
   I. Santos, 20<sup>èmes</sup> Journées des Actinides, Prague, 17. 22. April 1990
- [63] A. Domingos, J. Marçalo, I. Santos, A. Pires de Matos, Polyhedron 9 (1990) 1645
- [64] A. Domingos, J.P. Leal, J. Marçalo, N. Marques, A. Pires de Matos, I. Santos,
   M. Silva, B. Kanellakopulos, R. Maier, C. Apostolidis, J.A. Martinho Simones,
   European J. Solid State Inorg. Chem. 28 (1991) 413
- [65] C. Apostolidis, B. Kanellakopulos, R. Maier, D. Meyer, N. Marques, J. Rebizant, 21<sup>èmes</sup> Journées des Actinides, Montechoro, Portugal, 28. April - 1. Mai 1991
- [66] C. Apostolidis, D. Meyer, J. Rebizant, R. Maier, B. Kanellakopulos, N. Marques,
   A. Pires de Matos, I. Santos, 22<sup>èmes</sup> Journées des Actinides, Méribel France, 22. 25. April 1992
- [67] R.W. Thomas, G.W. Estes, R.C. Elder, E. Deutsch,J. Amer. Chem. Soc. 101 (1979) 4581
- [68] M.J. Abrams, A. Davison, A.G. Jones, Inorg. Chim. Acta 82 (1984) 125
- [69] M.Z. Iqubal, Proc. Pakistan. Acad. Sci. 10 (1973) 57
- [70] J.A. McCleverty, I. Wolochowicz, J. Organomet. Chem. 169 (1979) 289

- [71] J.E. Joachim, C. Apostolidis, B. Kanellakopulos, R. Maier, N. Marques,
   D. Meyer, J. Müller, A. Pires de Matos, B. Nuber, J. Rebizant, M.L. Ziegler,
   J.Organomet. Chem. 448 (1993) 119
- [72] J. Weidlein, U. Müller, K. Dehnike, *Schwingungsspektroskopie*, Georg Thieme Verlag, Stuttgart, New York, (1982)
- [73] F.A. Cotton, A.D. Liehr, G. Wilkinson, J. Inorg. Nucl. Chem. 1 (1955) 175
- [74] G. Bor, Spectrochim Acta 19 (1963) 1209
- [75] J.E. Huheey, Anorganische Chemie, Walter de Gryter, Berlin New York 1988
- [76] P.J. Gjordano, M.S. Wrighton, Inorg. Chem. 16 (1977) 160
- [77] M. Wrighton, Chem. Rev. 74 (1974) 401
- [78] H.O. Kalinowski, S. Berger, S. Braun, <sup>13</sup>C-NMR Spektroskopie, Georg Thieme Verlag, Stuttgart - New York 1984
- [79] W. Liptay, W. Strohmeier, H. Hellmann,Ber. Bunsenges. physik. Chem. 68 (1963) 91
- [80] R. Maier, KfK-Bericht 4623, Oktober 1989
- [81] R. Maier, Persönliche Mitteilung nicht veröffentlicher Ergebnisse
- [82] S.F.A. Kettle, Inorg. Chem. 4 (1965) 1661
- [83] a) K.K. Joshi, P.L. Pauson, proc. Chem. Soc. (1962) 326
  b) K.K. Joshi, P.L. Pauson, A. Qazi, W. Stabbs,
  J. Organomet. Chem. 1 (1964) 471
- [84] D.L. Kershner, F. Basolo, Coord. Chem. Rev. 79 (1987) 279
- [85] D.L. Kershner, A.L. Rheingold, F. Basolo, Organometallics 6 (1987) 196
- [86] B.E. Bursten, R.F. Fenske, Inorg. Chem. 18 (1979) 1760
- [87] D.M. Braitsch, R. Kumarappan, J. Organomet. Chem. 84 (1975) C 37
- [88] N. Kuhn, E.M. Horn, E. Zauder, D. Bläser, R. Boese, Angew. Chem. 100 (1988) 572
- [89] N. Kuhn, E.M. Horn, R. Boese, N. Augart, Angew. Chem. 100 (1988) 1433
- [90] I. Olorsson, P.G. Jonsson, *The Hydrogen Bond*, Schuster Zundel Sandorfy, Amsterdam 1976
- [91] N.V. Sidgwick, *The Electronic Theory of Valency*, Cornell University Press, Ithaca, New York, 1927
- [92] C. Aderhold, F. Baumgärtner, E. Dornberger, B. Kanellakopulos,Z. Naturforschung, 33a (1978) 1268
- [93] W. Haberditzl, *Magnetochemie*, WTB Chemie, Akademieverlag Berlin 1968
- [94] Ch. Elschenbroich, A. Salzer, Organometallchemie, B.G. Teubner, Stuttgart 1988
- [95] W. Strohmeier, C. Barbeau, D. v. Hobe, Chem. Ber. 96 (1963) 3254
- [96] W. Strohmeier, Angew. Chem. 76 (1964) 873
- [97] M. Wrighton, Chem. Ber. 74 (1974) 401
- [98] A.R. Schoenberg, W.P. Anderson, Inorg. Chem. 11 (1972) 85

- [99] M. Angaroni, G.A. Ardissoia, G. d'Alfonso, G. La Monica, M. Masciocchi, M. Moret, J. Chem. Soc., Dalton Trans. (1990) 1895
- [100] D. Sellmann. E. Kleinschmidt, Z. Naturforschung 32b (1977) 795
- [101] C.P. Casey, H. Sakaba, P.N. Hazin, D.R. Powell,J. Amer. Chem. Soc. 113 (1991) 8165
- [102] C. Kutal, Coord. Chem. Rev. 99 (1990) 213
- [103] M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der Organischen Chemie, Georg Thieme Verlag, Stuttgart New York, 1984, S.154
- [104] A.L. Rheingold, C.B. White, B.S. Haggerty, M.R. Terry, G.L. Geoffroy, Acta Cryst. C48 (1992) 1932
- [105] D.W. Wester, D.H. White, F.W. Miller, R.T. Dean, J.A. Schreifels, J.E. Hunt, Inorg. Chim. Acta, 131 (1987) 163
- [106] D. Sellmann, Angew. Chem. 86 (1974) 692
- [107] R.A. Henderson, G.J. Leight, G.J. Pickett, Adv. Inorg. Chem. and Radiochem. 27 (1983) 197
- [108] A.D. Allan, C.V. Senoff, Chem. Commun. (1965) 621
- [109] a) L. Kaden, B. Lorenz, K. Schmidt, M. Wahren, Z. Chem. 8 (1979) 305
  b) Y.T. Struchkov, A.S. Bazanov, L. Kaden, B. Lorenz, M. Wahren, H. Mayer, Z. anorg. allg. Chem. 494 (1982) 91
- [110] D. Sellmann, Angew. Chem. 83 (1971) 1027,Angew. Chem. ,Int. Ed. Engl. 10 (1971) 919
- [111] B. Bayerl, K. Schmidt, M. Wahren, Z. Chem. 15 (1975) 277
- [112] a) M.L. Ziegler, K. Weidenhammer, H. Zeiner, P.S. Skill, W.A. Herrmann, Angew. Chem. 88 (1976) 761
  b) K. Weidenhammer, W.A. Herrmann, M.L. Ziegler, Z. anorg. allg. Chem. 457 (1979) 183
- [113] R. Busby, W. Klotzbücher, G.A. Ozin, Inorg. Chem. 16 (1977) 822
- [114] D.J. Darensbourg, Inorg. Chem. 10 (1971) 2399
- [115] G.M. Bancroft, M.J. Mays, B.E. Prater, Chem. Commun. (1969) 589
- [116] International Tables for X-Ray Crystallography, Vol.III, P.270, The Kynoch Press, Birmingham, England 1962
- [117] Zyclusvorlesung " $\pi$  Säuren", M.L. Ziegler, Universität Heidelberg, SS 1989
- [118] M. Mercer, R.H. Crabtree, R.L. Richards, Chem. Commun. (1973) 808
- [119] P.W. Jolly, K. Jonas, C. Krüger, Y.H. Tsay, J. Organomet. Chem. 33 (1971) 109
- [120] P.M. Treitel, M.T. Flood, R.E. Marsh, H.B. Gray,J. Amer. Chem. Soc. 91 (1969) 6512
- [121] R.D. Sanner, J.M. Manriquez, R.E. Marsh, J.E. Bercaw,J. Amer. Chem. Soc. 98 (1976) 8351

- [122] R.D. Sanner, D.M. Duggan, T.C. McKenzie, R.E. Marsh, J.E. Bercaw,J. Amer. Chem. Soc. 98 (1976) 8358
- [123] R.A. Fonder, K. Prout, Acta Crystallogr. B30 (1974) 2778
- [124] S. Trofimenko, J. Amer. Chem. Soc. 89 (1967) 6288
- [125] M.K. Chan, W.H. Amstrong, Inorg. Chem. 28 (1989) 3777
- [126] a) W.A. Herrmann, E. Voss, M. Flöel, J. Organomet. Chem. 297 (1985) C5
  b) W.A. Herrmann, M. Flöel, J. Kulpe, J.K. Felixberger, E. Herdtweck, J. Organomet. Chem. 355 (1988) 297
  c) E. Herdtweck, P. Kiprof, W.A. Herrmann, J.G. Kuchler, I. Degnan, Z. Naturforsch. 45b (1990) 937
  d) J. Okuda, E. Herdtweck, W.A. Herrmann, Inorg. Chem. 27 (1988) 1254
- [127] W.A. Herrmann, M. Taillefer, C. de Meric de Bellefon, J. Behm, Inorg. Chem. 30 (1991) 3247
- [128] a) W.A. Herrmann, J. Organomet. Chem. 300 (1986) 111
  b) F. Bottomeley, L. Sutin, Adv. Organomet. Chem. 28 (1988) 339
  c) W.A. Herrmann, J.G. Kuchler, W. Wagner, J.K. Felixberger, E. Herdtweck, Angew. Chem. 100 (1988) 420
  d) J. Kochi, S. Wolowiec, J. Inorg. Chem. 30 (1991) 1215
- [129] I.A. Degnan, W.A. Herrmann, E. Herdtweck, Chem. Ber. 123 (1990) 1347
- [130] B.J. Coe, Polyhedron 11 (1992) 1085
- [131] W.A. Herrmann, P. Kiprof, K. Rypdal, J. Tremmel, R. Blom, R. Alberto,
  J. Behm, R.W. Albach, H. Bock, B. Salouki, J. Mink, D. Lichtenberger,
  N.E. Gruhn, J. Amer. Chem. Soc. 113 (1991) 6527
- [132] Die Reaktion wurde von mir in allen möglichen Varianten unterschiedlicher Reaktionsbedingungen durchgeführt. Re(VII) wurde dabei immer vollständig reduziert.
- [133] T. Szyperski, P. Schwerdtfeger, Angew. Chem. 101 (1989) 1271
- [134] A.W. Edith Chan, R. Hoffmann, S. Alvarez, Inorg. Chem. 30 (1991) 1086
- [135] P. Mullen, K. Schwochau, C.K. Jorgensen, Chem. Phys. Lett. 3 (1969) 49
- [136] C. Apostolidis, B. Kanellakopulos, R. Maier, J. Rebizant, M.L. Ziegler, J. Organomet. Chem. 409 (1991) 243
- [137] Die in Tab. 51, S. 99 aufgeführten q<sub>eff</sub>(X)-Werte wurden von R. Maier (IHCH) errechnet und mir persönlich mitgeteilt
- [138] R. Birdwhistell, P. Hackett, A.R. Mannig,J. Organomet. Chem. 157 (1978) 239
- [139] D.K. Huggins, H.D. Kaesz, J. Amer. Chem. Soc. 83 (1961) 4474
- [140] P3 Meβprogramm, Release 3.4, Siemens Analytical Nicolet Instrument Corporation, USA 1988

[141] DIF 4, Version 6.2C, *Meßprogramm für Siemens-Stoe-AED II-Diffraktometer*, Darmstadt 1987

•

- [142] Enraf Nonius SDP Plus. Structure Determination Package, Enraf - Nonius, Delft 1987
- [143] G.M. Sheldrick, SHELXTL Programm, Universität Göttingen 1983
- [144] International Tables for X Ray Crystallography, Vol. IV, The Kynoch Press, Birmingham 1974
- [145] W. Hieber, W. Schropp, Z. Naturforsch. 14b (1959) 460
- [146] W. Hieber, H. Fuchs, Z. anorg. allg. Chem. 24b (1941) 269
- [147] N. Kuhn, G. Henkel, J. Kreutzberg, Angew. Chem. 102 (1990) 1179
- [148] M. Trömel, M. Russ, Angew. Chem. 99 (1987) 1037