Forschungszentrum Karlsruhe Technik und Umwelt Wissenschaftliche Berichte FZKA 6219

Untersuchung von Vorläuferreaktionen bei der De-Novo-Synthese von Polychlorierten Dibenzodioxinen und Dibenzofuranen auf Modellflugaschen und Flugaschen von Müllverbrennungsanlagen

K. Hell

Institut für Technische Chemie Projekt Schadstoff- und Abfallarme Verfahren

FORSCHUNGSZENTRUM KARLSRUHE

Technik und Umwelt

Wissenschaftliche Berichte

FZKA 6219

Untersuchung von Vorläuferreaktionen bei der De-Novo-Synthese von Polychlorierten Dibenzodioxinen und Dibenzofuranen auf Modellflugaschen und Flugaschen von Müllverbrennungsanlagen

Katharina Hell

Institut für Technische Chemie Projekt Schadstoff- und Abfallarme Verfahren

Von der Naturwissenschaftlich-Mathematischen Gesamtfakultät der Ruprecht-Karls-Universität Heidelberg genehmigte Dissertation

Forschungszentrum Karlsruhe GmbH, Karlsruhe 1999

Als Manuskript gedruckt Für diesen Bericht behalten wir uns alle Rechte vor

Forschungszentrum Karlsruhe GmbH Postfach 3640, 76021 Karlsruhe

Mitglied der Hermann von Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF)

ISSN 0947-8620

Zusammenfassung

Untersuchungen von Vorläuferreaktionen bei der De-Novo-Synthese von Polychlorierten Dibenzodioxinen und Dibenzofuranen auf Modellflugaschen und Flugaschen von Müllverbrennungsanlagen

Ziel dieser Arbeit war, die Rolle der Vorläuferverbindungen polychlorierte Phenole (PCPh) und Benzole (PCBz) bei der *De-Novo-Synthese* polychlorierter Dibenzo-p-dioxine (PCDD) und Dibenzofurane (PCDF) auf Flugaschen aufzuklären. PCDD/F können entweder direkt aus Kohlenstoff (*de-novo*) oder schrittweise durch Kondensation von zwei Phenylringen aufgebaut werden. Durch die Verwendung von Modellflugasche, die ¹²C- und ¹³C-markierten Kohlenstoff in definierten Anteilen enthält, entstehen unterschiedlich kohlenstoffisotopenmarkierte PCPh, PCBz sowie PCDD/F. Aus den Anteilen der ¹²C₆/¹³C₆-PCDD/F (ein aromatischer Ring der PCDD/F ist vollständig aus ¹²C aufgebaut, während der andere aus ¹³C-Atomen besteht) an der Gesamtkonzentration der PCDD/F sind Aussagen über die Gewichtung beider Reaktionswege sowie Rückschlüsse über den Aufbau dieser Dreiringstrukturen möglich.

Die Ergebnisse haben gezeigt, daß für den PCDD- und PCDF-Aufbau aus Kohlenstoffpartikeln von Flugaschen unterschiedliche Reaktionsmechanismen wirksam sind. Ungefähr ein Drittel der PCDD werden durch Kondensation der *de-novo* gebildeten PCPh aufgebaut und zwei Drittel direkt *de-novo* aus dem Kohlenstoff freigesetzt. Dagegen spielt für die PCDF-Bildung aus Kohlenstoff die Kondensation aromatischer C₆-Vorläuferverbindungen als Intermediate eine untergeordnete Bedeutung. Die PCDF werden als komplettes Dibenzofuran-Gerüst aus der Kohlenstoffmatrix herausgelöst. Mit steigender Temperatur erhöht sich für die PCDD der Anteil der *De-Novo-Synthese*, während für die PCDF der Anteil der Kondensationsreaktion an den möglichen Bildungsreaktionen zunimmt. Bei konstanter Reaktionstemperatur wird das Verhältnis beider Reaktionswege kaum von der Reaktionszeit beeinflußt.

Daß die verwendeten Kohlenstoffisotope eine ähnliche Reaktivität wie der Restkohlenstoff von Flugaschen aufweisen, konnte bewiesen werden, indem sie mit Flugaschen umgesetzt wurden, die noch Restkohlenstoff enthielten. Sie erweisen sich somit als ein geeignetes Modell für die untersuchte Problemstellung.

Das hohe PCDD-Bildungspotential von Chlorphenolen wurde in thermischen Experimenten mit Modellmischungen und Flugaschen demonstriert, die jeweils mit Trichlorphenol dotiert wurden. Dagegen ist die PCDF-Bildung aus Chlorphenolen vernachlässigbar klein.

Bei kontinuierlicher Dosierung des Trichlorphenols in den Gasstrom erhält man einen deutlich höheren Umsatz der Vorläuferbindung zu PCDD/F, verglichen mit einmaliger Dotierung der Reaktionsmatrix mit der gesamten Menge an Trichlorphenol vor Versuchsbeginn.

In thermischen Experimenten mit Modellflugasche konnte gezeigt werden, daß trotz dreifacher Chlorierung der oxidative Abbau des verwendeten Trichlorphenols zu CO und CO₂ die Hauptreaktion darstellt.

Abstract

Investigation of Precursor Reactions in the De-Novo-Synthesis of Polychlorinated Dibenzodioxins and Dibenzofurans on Model Fly Ashes and Fly Ashes of Municipal Solid Waste Incinerators

The goal of this dissertation was to investigate the role of polychlorinated phenols (PCPh) and benzenes (PCBz) in the de-novo-synthesis of polychlorinated dibenzo-p-dioxins (PCDD) and dibenzofurans (PCDF) on fly ashes. PCDD/F can be formed either directly from carbon on the fly ash (*de-novo*) or step-by-step via condensation of two phenyl rings. Using model fly ash containing ¹²C- and ¹³C-labeled carbon in defined proportions, different carbon labeled PCPh, PCBz and PCDD/F are formed. By examining the fraction of ¹²C₆/¹³C₆-PCDD/F (one aromatic ring is completely constructed of ¹²C while the other is composed of ¹³C-atoms) in the total concentration of PCDD/F, predictions on the weighting of both reaction pathways and conclusions on the formation of these three ring structures are possible.

From the experimental results, it can be concluded that both reaction mechanisms are operative in the formation of PCDD/F from carbon particles of fly ashes. Approximately one third of the total PCDD are formed via condensation of *de-novo* formed PCPh while the remainder is released directly *de-novo* from the carbon. However, the condensation of aromatic C₆-precursors as intermediates is not important in the formation mechanism of PCDF. They are released as complete dibenzofuran entities from the carbon matrix. With increasing temperature, the fraction of PCDD formed *de-novo* from the carbon increases while the condensation of *de-novo* formed aromatic C₆-intermediates becomes more important in PCDF formation. At a constant reaction temperature, the ratio of both reaction pathways is hardly influenced by the reaction time.

In reactions with fly ashes containing native carbon doped with ¹³C-labeled carbon, the carbon isotope shows a similar reactivity as the residual carbon. Thus, these carbon isotopes are a suitable model for this investigation.

The high potential of chlorophenols to form PCDD was demonstrated in thermal experiments with model mixtures and fly ashes doped with trichlorophenol. In these experiments, the formation of PCDF was negligible. When the trichlorophenol is continuously added into the gas phase, as opposed to premixing with the reaction matrix, a distinctly higher conversion of the precursor to PCDD is obtained. In thermal experiments with model fly ash the oxidative breakdown of the used trichlorophenol to CO and CO₂ represents the main reaction, despite the presence of three chlorine atoms in the aromatic ring.

INHALTSVERZEICHNIS

1	EINL	EITUNG UND PROBLEMSTELLUNG	1
2	KEN	NTNISSTAND	3
	2.1	De-Novo-Synthese	5
		2.1.1 Katalysierte Oxidation des makromolekularen Kohlenstoffs2.1.2 Katalysierte Chlorierung des makromolekularen Kohlenstoffs	6 9
	2.2	Bildung von PCDD/F aus Vorläuferverbindungen	11
		2.2.1 Bildung von PCDD aus Vorläuferverbindungen2.2.2 Bildung von PCDF aus Vorläuferverbindungen	12 13
3	EXPI	ERIMENTELLER TEIL	15
	3.1 3.2 3.3 3.4	Herstellung der Modellflugaschen Charakterisierung des ¹² C- und ¹³ C-Kohlenstoffs Charakterisierung der Flugaschen Versuchsaufbau und -durchführung	15 16 17 18
4		LYTIK	23
	4.1	Probenaufarbeitung	23
		 4.1.1 Interne Standards 4.1.1.1 Interne Standards f ür Proben ohne ¹³C-Dotierung 4.1.1.2 Interne Standards f ür Proben mit ¹³C-Dotierung 	23 23 24
		 4.1.2 Wiederfindungsstandards 4.1.2.1 Wiederfindungsstandards f ür Proben ohne ¹³C-Dotierung 4.1.2.2 Wiederfindungsstandards f ür Proben mit ¹³C-Dotierung 	25 25 26
		4.1.3 Abtrennung und Reinigung der PCPh4.1.4 Reinigung und Fraktionierung der PCBz und PCDD/F	26 27
	4.2	Gaschromatographische Messung und massenspektrometrische Detektion	28
		4.2.1 Identifizierung und Quantifizierung der PCPh, PCBz und PCDD/F4.2.2 GC/MS - Geräte	28 31
	4.3	Online-Messung von CO und CO ₂	32
	4.4	Messung der Konzentration an 2,4,6-Cl₃Ph in der Gasphase	34
	4.5	Fehlerrechnung	35

I

5 ERGEBNISSE UND DISKUSSION

5.1	Bildung von polychlorierten organischen Verbindungen aus ¹² C- und	37
	¹³ C-markiertem Kohlenstoff auf Modellflugasche	

5.1.1 Bildung von PCPh, PCBz und PCDD/F auf Modellflugasche dotiert 38 mit ¹²C- bzw. ¹³C-markiertem Kohlenstoff

37

- 5.1.2 Bildung von PCPh, PCBz und PCDD/F auf Modellflugaschen dotiert 45 mit unterschiedlichen ¹²C/¹³C-Kohlenstoffisotopenverhältnissen
- 5.1.3 Bildung von PCPh, PCBz und PCDD/F auf Modellflugasche dotiert 63 mit konstantem ¹²C/¹³C-Kohlenstoffisotopenverhältnis in Abhängigkeit von der Reaktionstemperatur
- 5.1.4 Bildung von PCPh, PCBz und PCDD/F auf Modellflugasche dotiert 72 mit konstantem ¹²C/¹³C-Kohlenstoffisotopenverhältnis in Abhängigkeit von der Reaktionszeit
- 5.1.5 Bildung von PCPh, PCBz und PCDD/F auf Modellflugaschen dotiert 79 mit konstantem ¹²C/¹³C-Kohlenstoffisotopenverhältnis in Abhängigkeit von der Kupferkonzentration
- 5.1.6 Bildung von PCPh, PCBz und PCDD/F auf Modellflugasche unter 85 Zusatz von 2,4,6-Cl₃Ph und ¹³C-markiertem Kohlenstoff
- 5.1.7 Bildung von PCPh, PCBz und PCDD/F auf Flugaschen unter Zusatz 90 von ¹³C-markiertem Kohlenstoff
- 5.2 Umsetzung von 2,4,6-Trichlorphenol auf Flugasche und Modell- 97 flugasche zu PCDD/F
 - 5.2.1 Bildung von PCDD/F auf EPA-Flugasche in Abhängigkeit von der 98 Konzentration an 2,4,6-Trichlorphenol im Gasstrom
 - 5.2.2 Bildung von PCDD/F auf EPA-Flugasche in Abhängigkeit von der 102 Temperatur bei konstanter Gasphasenkonzentration an 2,4,6-Trichlorphenol
 - 5.2.3 Bildung von PCDD/F auf Modellflugasche in Abhängigkeit von der 103 Konzentration an 2,4,6-Trichlorphenol im Gasstrom
 - 5.2.4 Bildung von PCDD/F auf EPA- und Modellflugasche in Abhängigkeit 105 von der Konzentration an 2,4,6-Trichlorphenol auf der Matrix
- 5.3 Umsetzung von 2,4,6-Cl₃Ph auf Modellflugasche zu PCPh, PCBz, 107 PCDD/F, CO und CO₂ in Abhängigkeit von Reaktionstemperatur und Reaktionszeit
 - 5.3.1 Bildung weiterer Chlorphenolisomere aus 2,4,6-Cl₃Ph auf Modellflug- 108 asche
 - 5.3.2 Bildung von PCBz aus 2,4,6-Cl₃Ph auf Modellflugasche 109
 - 5.3.3 Bildung von PCDD/F aus 2,4,6-Cl₃Ph auf Modellflugasche 111
 - 5.3.4 Abbau des 2,4,6-Cl₃Ph zu CO und CO₂ auf Modellflugasche 115

5.4 Umsetzung von Diphenylether auf Modellflugasche zu PCPh, PCBz und 117 PCDD/F

11

		Inhaltsverzeichnis	
6	ZUS	SAMMENFASSUNG	122
7	LIT	ERATURVERZEICHNIS	125
8	ANI	HANG	132
	8.1	Abkürzungsverzeichnis	132
	8.2	Verwendete Chemikalien und Geräte	133
	8.3	Ergebnistabellen	134

1 Einleitung und Problemstellung

Mit der Entdeckung der polychlorierten Dibenzodioxine (PCDD) und Dibenzofurane (PCDF) in Abgasen und Flugaschen kommunaler Müllverbrennungsanlagen (MVA) im Jahre 1977 durch Olie et.al.¹ und ihrer Quantifizierung durch Buser et.al.² rückten diese hochtoxischen Verbindungen in den Brennpunkt des wissenschaftlichen Interesses. Seither beschäftigen sich mehrere Forschungsgruppen damit, Quellen und Bildungswege der PCDD/F sowie deren Eintragswege in die Umwelt näher zu untersuchen. Schnell wurde erkannt, daß chlorierte organische Verbindungen bei vielen Verbrennungsprozessen freigesetzt werden, wie zum Beispiel in Kraftwerken, Otto- und Dieselmotoren sowie in Hausfeuerungsanlagen^{3,4,5,6,7}. Ebenso entstehen sie als Nebenprodukte industrieller Prozesse bei der Herstellung und Verwendung chlorierter organischer Produkte, in Eisenerzsinteranlagen und bei der Kupferrückgewinnung^{8,9}. PCDD/F entstehen auch ohne menschlichen Einfluß bei natürlichen Prozessen wie Waldbränden und bei der enzymatischen Kondensation von Chlorphenolen in Böden¹⁰. Heute überwiegt die Freisetzung aus anthropogenen Quellen bei weitem die PCDD/F-Mengen natürlichen Ursprungs¹¹. Durch Untersuchungen von Sedimenten und historischen Proben wurde gezeigt, daß die Zunahme der anthropogenen Bildung vor allem mit der in den 40er Jahren einsetzenden Chlorchemie zusammenhängt^{12,13}.

Die weltweite Emission von PCDD/F bei der Müllverbrennung und ihre hohe Persistenz führte zu einer ubiquitären Verteilung dieser Stoffe in der Biosphäre¹⁴. Aufgrund der hohen Toxizität der PCDD/F wurden Umweltschutzvorschriften zur Dioxin-Emissionsminimierung in Industrieanlagen festgelegt^{15,16}. Durch die Einführung von Gewebe- und Elektrofilter zur Staubabscheidung, Aktivkoks zur Adsorption und Katalysatoren zur Zerstörung chlorierter organischer Spurenstoffe ist zwar die Einhaltung dieser Vorschriften und Grenzwerte (0,1 ng Toxizitätsequivalente PCDD/F/m³ Abgas; 17. BlmSch) möglich. Diese Schadstoffminderungsmaßnahmen am Ende des Rauchgaskanals, dem "End of Pipe", verursachen jedoch sowohl hohe Kosten für die Unternehmen, als auch erneut Sondermüll in Form von ausgedienten Filtern bzw. verbrauchten Katalysatoren.

Unter Umweltaspekten ist die Vermeidung oder zumindest eine Unterdrückung der Bildung dieser Umweltgifte wünschenswert, wofür detaillierte Kenntnisse über den Bildungsmechanismus chlorierter Organoverbindungen in MVA erforderlich sind.

Nachdem ursprünglich von einer homogenen Gasphasenreaktion ausgegangen wurde, bei der Organochlorverbindungen in Hochtemperaturprozessen durch Polymerisation von Kohlenwasserstoffradikalen aufgebaut werden könnten, wird mittlerweile ein heterogener, durch Flugasche katalysierter Mechanismus aus Restkohlenstoff – die *De-Novo-Synthese* – oder aus Vorläuferverbindungen wie z.B. Chlorphenolen, Chlorbenzolen, Chlorbiphenylen etc. im Niedertemperaturbereich (250 – 400 °C) von MVA favorisiert. Die Vorläuferverbindungen selbst können Bestandteil des Brenngutes sein oder *de-novo* aus dem Restkohlenstoff gebildet werden.

Zielsetzung dieser Arbeit war, weitergehende Informationen über die De-Novo-Synthese von PCDD/F unter besonderer Berücksichtigung auftretender Phenylringe als Intermediate

zu erhalten. Der Schwerpunkt der Untersuchungen wurde auf die Aufklärung des Aufbaus der Grundkörper beider Verbindungsklassen gelegt: Werden die PCDD- bzw. PCDF-Strukturen direkt aus der Kohlenstoffmatrix als komplettes zusammenhängendes C12-Gerüst herausgelöst oder werden zunächst aromatische C6-Zwischenverbindungen freigesetzt, die dann sukzessive zu PCDD/F kondensieren? Wenn einzelne Phenylringe als Intermediate im Reaktionsmechanismus involviert sind, soll geklärt werden, ob Chlorphenole oder Chlorbenzole bzw. eine Kombination beider am Aufbau der PCDD/F beteiligt sind. Mittels Experimenten mit Modellflugaschen, die neben ¹²C- auch ¹³Cmarkierten Kohlenstoff - als "Modellsubstanzen" für den Restkohlenstoff - enthalten, sollten Vorläuferverbindungen und PCDD/F gebildet werden, die sich in der Kohlenstoffmarkierung unterscheiden. Aus den relativen Anteilen der markierten, nichtmarkierten und gemischtmarkierten PCDD/F kann auf Details der Bildungswege geschlossen werden. Spielen Chlorphenole oder Chlorbenzole am Aufbau der PCDD/F eine Rolle, so können aus dem Chlorierungsmuster dieser Verbindungen und der der PCDD/F Rückschlüsse auf die Bedeutung der einzelnen Vorläuferverbindungsklassen gezogen werden.

Weiterhin soll die Beteiligung aromatischer C₆-Intermediate in der *De-Novo-Synthese* durch die Bildung gemischtmarkierter PCDD/F bewiesen werden, in denen ein Ring auf eine Vorläuferverbindung und der andere auf ¹³C-markierten Kohlenstoff zurückgeführt werden kann.

Die Ergebnisse der mechanistischen Aspekte der *De-Novo-Synthese* von PCDD/F aus amorphem ¹²C- und ¹³C-markiertem Kohlenstoff sollen auf die PCDD/F-Bildung aus Restkohlenstoff von realen Flugaschen von MVA übertragen und damit die Allgemeingültigkeit dieser mechanistischen Schlußfolgerungen für das System Flugasche belegt werden.

Abschließend soll die Bedeutung von Chlorphenolen bei der PCDD/F-Bildung erforscht werden. Hierbei ist von Interesse, ob die Art der Dotierung der Flugasche mit einer Vorläuferverbindung einen Einfluß auf den Umsatz zu PCDD/F hat und in welchem Ausmaß Chlorphenole zu CO und CO₂ oxidiert werden.

2 Kenntnisstand

Polychlorierte Dibenzo-p-dioxine (PCDD) und –furane (PCDF) sind zwei Klassen tricyclischer, aromatischer Verbindungen mit ähnlichen physikalischen, chemischen und biologischen Eigenschaften. Je nach Chlorierungsgrad (mono- bis oktachloriert) und Stellung der Chloratome resultieren 8 Homologengruppen (Verbindungen gleichen Chlorierungsgrades) und eine große Anzahl an Stellungsisomeren. Die einzelnen Vertreter werden als Kongenere (von lateinisch con genus: mit gleichem Stamm) bezeichnet. Insgesamt gibt es 75 PCDD-Kongenere und 135 PCDF-Kongenere. Die relative Verteilung der Homologengruppen innerhalb einer Verbindungsklasse wird als Homologenprofil, und diejenige innerhalb einer Homologengruppe als Isomerenmuster bezeichnet.

Abb. 2.1Strukturformeln der PCDD und PCDF mit systematischer Nummerierung der
Substituenten nach IUPAC; x, y = 1-4

Die relative Verteilung der möglichen Kongenere auf die verschiedenen Chlorierungsstufen der untersuchten Verbindungsklassen ist in folgender Tabelle aufgelistet:

Anzahl Chloratome	PCDD-Isomere	PCDF-Isomere	PCPh-Isomere	PCBz-Isomere
1	2	4	3	1
2	10	16	6	3
3	14	28	6	3
4	22	38	3	3
5	14	28	1	1
6	10	16		1
7	2	4		
8	1	1		
Summe der Kongeneren	75	135	19	12

Tab. 2.1	Verteilung der möglichen Kongenere der PCDD, PCDF, PCPh und PCBz auf die
	einzelnen Homologengruppen

In den Jahren 1960 - 1980 wurden PCDD/F bei mehreren Unfällen - der Bekannteste ist der Seveso Unfall 1976 in Italien - in größeren Mengen in die Umwelt freigesetzt. Hierbei handelte es sich nicht nur um die Freisetzung des toxischsten Vertreters der PCDD, dem 2,3,7,8-Cl₄DD, sondern auch um die giftigste Substanz, die jemals im Zusammenhang mit chemischen Produktionsprozessen als Nebenprodukt in die Umwelt gelangte¹⁷⁻¹⁹.

Im Gegensatz zu anderen polychlorierten Organoverbindungen, wie z.B. polychlorierten Biphenylen und Naphthalinen wurden PCDD/F nie kommerziell hergestellt. Die Kontamination der Umwelt mit PCDD/F ist hauptsächlich auf technische Nebenprodukte in Chlorphenolen (Holzschutzmittel), Agent Orange (Entlaubungsmittel) und polychlorierten Biphenylen (Transformatorflüssigkeiten) zurückzuführen¹⁸.

PCDD/F sind heute in den verschiedensten Matrices (Fische, Fleisch, Milch, Muttermilch, Kleider, Klärschlamm, Flugaschen und in Abgasen von MVA) nachweisbar^{19,20}, wobei die Konzentrationen aufgrund eingeführter gesetzlicher Richtlinien und technischer Erneuerungen seit Anfang der 90er Jahre rückläufig sind. Aufgrund ihrer hohen Persistenz und Lipophilie akkumulieren PCDD/F im Fettgewebe höherer Organismen. Dies hat zur Folge, daß die Aufnahme durch Lebewesen zu 95 % über die Nahrung erfolgt, obwohl primär PCDD/F über die Abgase in die Umwelt freigesetzt werden^{21,22}.

Die Toxizität hängt von der Anzahl und der Position der Chlorsubstituenten ab. Isomere, die in allen lateralen Positionen chloriert sind, weisen die höchste Toxizität auf. 2,3,7,8-Cl₄DD ist der wahrscheinlich giftigste Vertreter der polychlorierten Arylkohlenwasserstoffe und zählt gemessen an der Vielzahl der Veröffentlichungen zu den meistuntersuchten anthropogenen chemischen Substanzen²³⁻²⁶. Vom toxikologischen Standpunkt aus sind daher die Verbindungen mit vier und mehr Chlorsubstituenten von Interesse.

Nähere Informationen zu Vorkommen, Umweltverhalten, Analytik und Toxikologie der PCDD/F finden sich in den Bibliographien von Ballschmiter und Oehme^{27,28}.

Trotz intensiver Forschung auf dem Gebiet der PCDD/F-Bildung in Müllverbrennungsanlagen sind Fragen des detaillierten Bildungsmechanismus weiterhin offen. In den ersten Jahren nach der Entdeckung der PCDD/F in MVA lag der Schwerpunkt der Dioxinforschung in der Untersuchung von Gasphasenreaktionen²⁹, später rückten zunehmend Gas-Feststoffreaktionen in den Vordergrund. Wegbereiter der neuen Vorstellungen war ein von Shaub und Tsang entwickeltes kinetisches Modell aus dem hervorging, daß homogene Gasphasenreaktionen nur unwesentlich zu den PCDD/F-Emissionen beitragen³⁰. Stattdessen wurde ein heterogener flugaschenkatalysierter Mechanismus und für die PCDD/F-Bildung aus Chlorphenolen eine Reaktion 2. Ordnung vorgeschlagen³¹. Einen weiteren Hinweis lieferten Nottrodt et.al. Durch spezielle Messungen an einer MVA konnten sie zeigen, daß die PCDD/F-Konzentrationen im Feuerraum (800 °C) kaum nachweisbar sind, während im Rohgas hinter dem Dampferzeuger deutlich höhere Konzentrationen gefunden werden³².

Folgende heterogenen Reaktionsmöglichkeiten für die PCDD/F-Bildung auf Flugasche werden heute diskutiert: die direkte PCDD/F-Bildung aus Kohlepartikeln der Flugasche (*De-Novo-Synthese*) und die PCDD/F-Bildung aus Vorläuferverbindungen.

2.1 De-Novo-Synthese

Stieglitz und Vogg führten als erste thermische Experimente mit precursorfreien Flugaschen aus MVA im Temperaturbereich von 250 – 400 °C in synthetischer Luft durch. Durch diese Laborversuche wurde das hohe PCDD/F-Bildungspotential von Flugaschen bewiesen und eine PCDD/F-Bildung im Niedertemperaturbereich nahegelegt, der sich an den Brennraum von MVA anschließt, z.B. in den Elektrofilteranlagen und Abhitzekesseln³³.

Da alle Kongenere gebildet wurden, das Chlorierungsmuster dem Verteilungsmuster in realen Flugaschen entsprach, außer Restkohlenstoff (Rückstand der unvollständigen Verbrennung in MVA) und anorganischen Chloriden keine anderen Edukte vorhanden waren, wurde diese Reaktion als *De-Novo-Synthese* bezeichnet. Darunter versteht man die flugaschenkatalysierte Neubildung halogenierter organischer Verbindungen aus Kohlenstoffpartikeln und anorganischen Halogeniden in Gegenwart von Sauerstoff.

Weitergehende Experimente mit Flugaschen verschiedener MVA und mit Modellflugaschen (SiO₂, MgO, KCl, Aktivkohle und CuCl₂) lieferten Beweise für die *De-Novo-Synthese*. Wesentliche Einflußgrößen auf die Bildung von Organochlorverbindungen auf Flugaschen sind eine oxidative Atmosphäre sowie der Temperatur- und Zeitbereich^{34,35}. Des weiteren spielt die Art und Konzentration der Kohlen (Aktivkohle, Ruß, Graphit), die des Katalysators (Metallsalze wie CuCl₂, FeCl₃), des anorganischen Chlorids (KCl, NaCl, CuCl₂, FeCl₃) und der Wassergehalt der Gasphase eine bedeutende Rolle^{36,37}.

Den ersten Beweis für die *De-Novo-Synthese* potentieller Vorläuferverbindungen wie PCPh, PCBz, PCB und PCN für die PCDD/F-Bildung lieferten ebenfalls Stieglitz et.al.³⁸ Daraus ergibt sich die Frage, ob die Bildung von Vorläuferverbindungen und die von PCDD/F in parallelen Reaktionen stattfindet oder ob die Precursor als Intermediate für die PCDD/F fungieren. In thermischen Experimenten mit ¹³C-dotierter Modellflugasche in einer Gasphase, die mit einem breiten Spektrum an Vorläuferverbindungen angereichert wurde, zeigte Jiménez Leal, daß abhängig von Funktionalisierung und Struktur (ein aromatischer Ring oder zwei miteinander verknüpfte aromatische Ringe) Vorläuferverbindungen unterschiedlich stark am Aufbau der PCDD/F beteiligt sind³⁹. Diese Fragestellung wird in der vorliegenden Arbeit diskutiert, wobei der Schwerpunkt auf der Rolle von Vorläuferverbindungen liegt, die in-situ aus Kohlenstoffpartikeln gebildet werden.

Erste Versuche zur *De-Novo-Synthese* von PCDD/F auf ¹³C-Kohlenstoff dotierten Flugaschen führten Albrecht et.al.⁴⁰ und Milligan et.al.⁴¹ durch. Allerdings erwähnt keiner der beiden Autoren die Bildung gemischtmarkierter PCDD/F.

Albrecht et.al. führten die Experimente mit Flugaschen durch, deren nativer Kohlenstoff durch zwölfstündiges Erhitzen auf 500 °C entfernt wurde. Die thermische Behandlung dieser Flugasche, dotiert mit 1 % ¹³C-angereichertem Kohlenstoff (99 % ¹³C, 1 % ¹²C), lieferte geringe Ausbeuten an ¹³C₁₂-PCDD/F (280 ng/g). Da zusätzlich die Werte an ¹²C₁₂-PCDD/F (160 ng/g) sehr hoch waren und nicht auf die Verunreinigung des ¹³C-Kohlenstoffes mit ¹²C-Kohlenstoff zurückgeführt werden konnten, kamen Albrecht et.al. zu dem Schluß, daß die PCDD/F aus adsorbierten organischen Verunreinigungen gebildet wurden. Sie vermuteten, daß im Gegensatz zu ¹³C-markierten Verbindungen deren Gehalt durch Vorextraktion bis zu einem gewissen Maß reduziert werden kann, ein Restgehalt an

¹²C-markierten organischen Verbindungen (Aufnahme von Lösungsmittelresten aus der Laborluft) dagegen nicht vermeidbar ist. Diese Vermutung bestätigten sie durch thermische Experimente mit einer Reaktionsmischung (gebrannte Flugasche + ¹³C-Kohlenstoff), die vor der thermischen Behandlung mehrmals mit Toluol extrahiert wurde. Während nun die Konzentrationen der ¹²C₁₂-PCDD/F in der gleichen Größenordnung lagen wie in den ersten Versuchen, nahmen die ¹³C₁₂-PCDD/F Konzentrationen um den Faktor 10 ab.

Milligan et.al. konnten erst dann eine geringe PCDD/F-Bildung aus ¹³C-Kohlenstoff auf Flugaschen (natürlicher Kohlenstoff wurde nicht entfernt) feststellen, nachdem der Kohlenstoff unter Sauerstoff aktiviert wurde. Die Reaktion unter Sauerstoff bewirkt eine oxidative Umwandlung der amorphen Kohlenstoffstruktur in eine hochporöse Matrix mit lokalisierten kristallinen Strukturen.

Der Grund für die geringen Ausbeuten an ¹³C₁₂-PCDD/F könnte daher im ¹³C-Kohlenstoff selbst gelegen haben. Beide Autoren verwendeten ¹³C-Kohlenstoff der Firma Aldrich. Allerdings erhielten Milligan et.al. auch mit einer sehr reaktiven Flugasche, die mit 3,6 % ¹³C-Kohlenstoff der Firma Cambridge Isotope Laboratories (CIL) dotiert war, keine größeren Ausbeuten an ¹³C-markierten PCDD/F.

Wie später gezeigt wird, handelt es sich bei der *De-Novo-Synthese* um eine Nebenreaktion des oxidativen Abbaus von Kohlenstoff. Daher lag die Vermutung nahe, daß die PCDD/F eventuell auch aus Kohlendioxid, dem Endprodukt des Kohlenstoffabbaus, gebildet werden könnten. Milligan et.al. konnten keinen Einbau dieser Bausteine in das PCDD/F-Gerüst feststellen. Basierend auf der Tatsache, daß sie in den Experimenten mit ¹³C-dotierter Flugasche keine gemischtmarkierten PCDD/F-Strukturen fanden, schlossen sie, daß diese Verbindungsklassen direkte Abbauprodukte des makromolekularen Kohlenstoffs sind⁴¹.

Stieglitz et.al. gelang es, mit ¹²C- und ¹³C-Kohlenstoff (Firma CIL) dotierter Flugasche die Bildung von ¹²C₆/¹³C₆-PCDD/F nachzuweisen und zu zeigen, daß die PCDD/F-Bildung auf Flugasche auf zwei unterschiedlichen Reaktionswegen abläuft: Ein Teil der PCDD (20 %) entsteht durch Kondensation von Phenylringen, während der andere Teil sowie die Hauptmenge der PCDF als komplette Drei-Ringfragmente aus der Kohlenstoffmatrix herausgelöst werden⁴². Die zugrunde liegenden Mechanismen näher zu beleuchten war Zielsetzung dieser Arbeit.

Von besonderem Interesse ist der Einfluß der Temperatur und der Zeit auf die beiden Reaktionsrouten, sowie die Aufklärung der bevorzugten Bildung bestimmter PCDD/F-Isomere.

2.1.1 Katalysierte Oxidation des makromolekularen Kohlenstoffs

Die Oberfläche der verwendeten Kohlenstoffpräparate liegt zwischen typischen Werten für Ruß und Aktivkohlen. Während Ruß sich durch kleine Oberflächen und amorphe Struktur auszeichnet, sind Aktivkohlen teilweise kristallin und besitzen sehr große Oberflächen⁴³. Im Kohlenstoffgerüst von Aktivkohlen sind durchschnittlich 5 % Sauerstoff und 1 % Wasserstoff chemisch gebunden⁴⁴. Eichberger erhielt für Kohlenstoffpartikel von Flugaschen mittels XPS-Messungen einen Kohlenstoffgehalt von 70 - 93 % und einen Sauerstoffanteil zwischen 6 und 18 %; daneben liegen noch geringe Mengen an Chloriden sowie Spuren anorganischer Bestandteile vor⁴⁵. NMR-Messungen von Akhter et.al. ergaben

gleiche Anteile aromatischer und aliphatischer Kohlenstoffeinheiten⁴⁶. Damit ist die Bildung aromatischer Strukturen, der Ursprung des Wasserstoffs sowie die Hauptmenge des Sauerstoffs in Organochlorverbindungen, die aus Aktivkohle gebildet werden, erklärbar. In Laborexperimenten wurde erkannt, daß Graphit kein Bildungspotential für PCDD/F aufweist³⁶. Dies wurde als Hinweis dafür gewertet, daß erst der erhöhte Abstand zwischen den vorhandenen Kohlenstoffebenen in der Aktivkohle einen oxidativen Angriff unter Abbau der Struktur ermöglicht.

Die Erkenntnis, daß Organochlorverbindungen aus Kohlenstoffpartikeln gebildet werden, induzierte ein genaueres Studium des oxidativen Abbaus von festem Kohlenstoff zu gasförmigen Oxidationsprodukten wie CO und CO₂.

Bei der Oxidation von reiner Aktivkohle handelt es sich um eine exotherme Reaktion:

 $C(s) + O_2(g) \longrightarrow CO_2(g)$ $\triangle H = -496 \text{ kJ/mol}$

Trotz der hohen freiwerdenden Reaktionsenthalpie läuft die Reaktion ohne Gegenwart von Katalysatoren unter *de-novo*-Bedingungen (Temperaturbereich: 300 – 350 °C) sehr langsam ab.

Durch Messungen der Wärmetönung der Oxidation von Aktivkohle in Modellflugaschen bzw. von Restkohlenstoff in Flugaschen mittels dynamischer Differenzkalorimetrie wurde festgestellt, daß einige Übergangsmetallchloride aktive Katalysatoren bei der Kohlenstoffverbrennung sind. Unter verschiedenen getesteten Metallchloriden erweist sich CuCl₂ am wirksamsten. Es setzt die Oxidationstemperatur von 544 auf 350 °C herab. Bei der thermischen Behandlung von Flugaschen wurde ebenfalls bei 350 °C ein Konzentrationsmaximum für PCDD/F erhalten. Aus dieser Beziehung wurde der Schluß gezogen, daß der Abbau von Kohlenstoff und die Bildung von Organochlorverbindungen ursächlich zusammenhängen^{47,48}. Daß die Bildung von Organochlorverbindungen eine Nebenreaktion darstellt, wird auch deutlich, wenn man den 85 %igen Umsatz von Restkohlenstoff auf Flugasche (bei 450 °C, 2 Stunden) zu CO₂ mit den Spuren (0,01 %) an gebildeten polychlorierten Organoverbindungen vergleicht⁴⁹.

Milligan et.al. beobachteten interessante Beziehungen zwischen der *De-Novo-Synthese* und dem Kohlenstoffabbau zu CO₂. Flugaschen die eine hohe Aktivität in der *De-Novo-Synthese* zeigten, zeichneten sich auch durch hohe Vergasungsraten aus. Für Aktivkohle sind die Vergasungsraten um den Faktor 10 kleiner als für den Restkohlenstoff der Flugaschen. Von zentraler Bedeutung ist, daß eine Mischung aus Flugasche und Aktivkohle zu einem Anstieg der Vergasungsrate der Aktivkohle um eine Zehnerpotenz führt, und damit vergleichbar mit derjenigen von Restkohlenstoff ist. Diese Feststellung führte zu dem Schluß, daß Restkohlenstoff und Aktivkohle eine ähnliche Morphologie besitzen müssen. Von weit größerer Bedeutung war der Befund, daß Flugaschen den Abbau von Kohlenstoff katalytisch beschleunigen^{50,51}.

Folgendes Schema illustriert die auf Flugasche ablaufenden Prozesse⁵²:

Auf dem derzeitigen Stand der Forschung ergibt sich folgendes Bild: Die metallkatalysierte Kohlenstoffoxidation kann prinzipiell nach zwei verschiedenen Mechanismen ablaufen⁵³:

Aktivierung des Kohlenstoffs

a) Elektronentransfermechanismus

Durch die Übertragung von π -Elektronen aromatischer Teilstrukturen der Aktivkohle in freie d-Orbitale der Übergangsmetallionen wird die Elektronendichte der Kohlenstoffmatrix reduziert, wodurch die C-C-Bindungen an der Oberfläche geschwächt werden. An diesen aktivierten C-C-Bindungen setzt die Ausbildung von Sauerstoffoberflächenkomplexen und damit die Oxidation von Kohlenstoff ein.

b) Grenzflächenmechanismus

Bei diesem Mechanismus wird eine Ablösung einzelner C-Atome an der Kohlenstoff-Katalysator-Grenzfläche und die anschließende Diffusion dieser C-Atome mittels des Katalysators zur oxidierenden Atmosphäre an die Oberfläche postuliert.

Aktivierung des Sauerstoffs

a) Sauerstofftransfermechanismus

Hier findet eine Übertragung des Sauerstoffs durch den Metallkatalysator statt. Die Metallspezies bildet mit Sauerstoff Intermediate, die zur Oxidation benachbarter Kohlenstoffatome führen. Voraussetzung für eine katalytische Aktivität ist ein günstiges Redoxpotential zwischen den einzelnen Oxidationsstufen des Metalls, so daß Sauerstoff in der Lage ist, die reduzierte Form wieder zu reoxidieren.

b) Spillover-Mechanismus

Metallspezies dissoziieren molekularen Sauerstoff in reaktive Sauerstoffatome (Radikale), die dann zu aktiven Kohlenstoffstellen (Gitterfehlstellen, Ecken und Kanten) diffundieren und dort reagieren.

Eine detaillierte Studie zum Zusammenhang zwischen Oberflächenstrukturen von Aktivkohlen und der Bildung chlorierter organischer Spurenstoffe liefert die Dissertation von Eichberger⁴⁵.

2.1.2 Katalysierte Chlorierung des makromolekularen Kohlenstoffs

Für die Chlorierung der Kohlenstoffpartikel werden drei verschiedene Mechanismen diskutiert. Beim Ligandentransfermechanismus⁵⁴⁻⁵⁶ wird der Kohlenstoff durch direkte Übertragung von anorganischen Halogeniden halogeniert, wobei Cu (II) zu Cu (I) reduziert wird. Zur Reoxidation des Cu (I) ist Sauerstoff erforderlich. Die Notwendigkeit einer Metallspezies kann durch Vergiftung/Komplexierung der Metalle bzw. Belegung der aktiven Stellen der Flugasche mit H₂S belegt werden^{34,57}. Amine wirken ebenfalls inhibierend⁵⁸⁻⁶⁰. Experimente mit Modellmischungen, dotiert mit polycyclischen Aromaten (PAK), ergaben eine bevorzugte Bildung von 1,2,3-Trichlorbenzol, was auf einen radikalischen Chlorierungsmechanismus hindeutet. Eine exzellente Zusammenfassung einer Vielzahl von Chlorierungsreaktionen von Aromaten unter Kupferkatalyse in polaren und unpolaren Lösungsmitteln gibt eine Publikation von Nonhebel⁶¹.

Schematisch stellt sich dieser Ligandentransfer wie folgt dar:

$$ArH + CuCl_2 \longrightarrow ArHCl + CuCl$$
$$ArHCl + CuCl_2 \longrightarrow ArCl + CuCl + HCl$$

woraus folgende Bruttogleichung resultiert:

ArH + 2 CuCl₂ ----> ArCl + 2 CuCl + HCl

Im ersten Reaktionsschritt wird durch Übertragung eines Chlorradikals auf einen aromatischen Ring oder die makromolekulare Kohlenstoffstruktur Cu (II) zu Cu (I) reduziert. Im nächsten Schritt entsteht unter Abspaltung eines Wasserstoffradikals aus dem radikalischen Intermediat (ArHCI⁺) und eines Chlorradikals aus einem weiteren Äquivalent CuCl₂ Chlorwasserstoff. CuCl₂ hat somit eine zweifache Rolle: Chlorierungsmittel, als auch Katalysator für den Halogentransfer auf das Kohlenstoffgerüst und die Oxidation des Kohlenstoffs.

Ist kein Sauerstoff zur Reoxidation des CuCl vorhanden, so kann nur ein Anstieg der Chlor-Kohlenstoff-Bindungen gemessen werden. Erst eine anschließende Behandlung unter Sauerstoff führt zu einer Freisetzung von Organochlorverbindungen. Dies deutet auch auf eine doppelte Rolle des Sauerstoffs hin: Regenerierung des Katalysators und Abbau der Kohlenstoffstruktur.

Hoffman und Eiceman et.al.⁶² postulierten für die Chlorierung einen elektrophilen Mechanismus. Chlorwasserstoff reagiert mit einem auf der Flugaschenoberfläche adsorbierten Metallion unter Ausbildung einer chlorierten Spezies. Diese intermediäre Form greift aromatische Strukturen elektrophil an. Unter Übertragung eines Chlorradikals auf den aromatischen Kern wird das Metallion reduziert. Dieser Mechanismus stützt sich auf die hohen Konzentrationen von Eisenverbindungen in Flugaschen und auf die Bildung von Eisen(II)verbindungen nach der Behandlung von Flugaschen mit HCI-Gas.

Abb. 2.1-2 Chlorierungsmodell nach Hoffman und Eiceman, www.Xwww = Symbol für die Oberfläche

Das von Griffin⁵⁷ und Hagenmaier et.al.⁶³ präsentierte Modell geht von einer Chlorierung mit elementarem Chlor aus, das intermediär aus Chlorwasserstoff gemäß der *Deacon-Reaktion* gebildet wird.

$$CuCl_2 + \frac{1}{2}O_2 \longrightarrow CuO + Cl_2$$

CuO + 2 HCl \longrightarrow CuCl_2 + H_2O

Bruttoreaktionsgleichung der Deacon-Reaktion:

 $2 \text{ HCl} + \frac{1}{2} \text{ O}_2 \longrightarrow \text{ Cl}_2 + \text{ H}_2 \text{ O}$

Gullett testete die katalytische Aktivität einer Reihe von Metallverbindungen (Cu, CuO, CuCl, Fe, Fe₂O₃, FeCl₂·4 H₂O)⁶⁴. Die Kupferverbindungen katalysieren die Bildung von Chlor gemäß der *Deacon-Reaktion*, die Eisenverbindungen dagegen sind inaktiv. Nur mit FeCl₂·4 H₂O wurde eine Produktion von Chlor beobachtet, die auf eine Zersetzung des Eisenchlorids zurückgeführt werden konnte. Die katalytische Aktivität erreicht bei 400 – 450 °C ihr Maximum, einem Temperaturbereich, bei dem zum Teil noch die *De-Novo-Synthese* stattfindet.

In weiteren Experimenten untersuchten Gullett et.al. mehrere Metallverbindungen und unterschiedliche Oxidationsstufen der Metalle auf ihre katalytische Aktivität bei der PCDD-Bildung aus Chlorphenolen⁶⁵. Unter verschiedenen getesteten Katalysatoren und Oxidationsstufen zeigten Cu(II)-Verbindungen die höchste katalytische Aktivität. Gullett et.al. kamen zu dem Schluß, daß die PCDD/F-Bildung einem Dreistufenmechanismus folgt: Bildung von Chlor aus Chlorwasserstoff, Chlorierung aromatischer Kerne und Kondensation dieser chlorierten Precursorn zu PCDD/F, wobei alle drei Schritte durch Cu(II)-Verbindungen katalysiert werden. Born widerlegte die Annahme einer Chlorierung durch Chlor. Er beobachtete, daß die Oxychlorierung von Ethen bei Anwesenheit von HCI und CuCl₂ 30 - 60fach höhere Konzentrationen an chlorierten Produkten liefert, als Chlor durch die *Deacon-Reaktion* produziert werden konnte⁶⁶.

Während im Ligandentransfermechanismus nach Stieglitz et.al. CuCl₂ als chlorierende Spezies wirkt, ist im elektrophilen Mechanismus nach Hoffman et.al. HCl, das intermediär an eine Eisen(III)spezies gebunden wird, das eigentliche Chlorierungsedukt. Nach Griffin, Hagenmaier et.al. und Gullett et.al. ist elementares Chlor das Chlorierungsagens, das aus HCl intermediär gebildet wird.

In einer erst kürzlich erschienenen Publikation wird auch für die Chlorierung von Ethin auf einer CuCl₂-imprägnierten Oberfläche (Borsilikat) bei Temperaturen zwischen 150 – 500 °C ein Ligandentransfermechanismus vorgeschlagen⁶⁷.

Für weitere Informationen zum Einfluß der Konzentration an HCI und Chlor auf die Bildung von Organochlorverbindungen wird auf die Dissertation von Schleihauf⁶⁸ und Addink⁶⁹ verwiesen. Tiefergehende Zusammenfassungen zur *De-Novo-Synthese* bieten Publikationen von Addink⁷⁰, Karasek⁷¹, Tuppurainen⁷² und Olie⁷³.

2.2 Bildung von PCDD/F aus Vorläuferverbindungen

Das Vorkommen verschiedener einfacher chlorierter und nichtchlorierter Aromaten, wie Benzol, Toluol, Phenol, Biphenyl und Diphenylether auf Flugaschen⁷⁴ und in Emissionen⁷⁵⁻⁷⁸ von MVA und die PCDD/F-Bildung bei der Pyrolyse⁷⁹⁻⁸¹ dieser Verbindungen, gaben schon früh Anlaß dazu, diesen möglichen Reaktionspfad näher zu untersuchen.

Retrosynthetisch würde man PCDD durch Kondensation von Chlorphenolen und die PCDF durch Kondensation von Chlorbenzolen und Chlorphenolen darstellen. Die Untersuchung der PCDD/F-Bildung aus einfachen chlorierten Aromaten war auch für die Entwicklung geeigneter Synthesewege zur Herstellung von PCDD/F-Standards von Interesse⁸².

Vorläuferverbindungen können durch unvollständige Verbrennung in den Emissionen von MVA oder in Hochtemperaturprozessen über radikalische Zwischenstufen gebildet werden. Letztere Annahme stützt sich auf dem Auftreten von Organochlorverbindungen bei der Pyrolyse von Chlorkohlenwasserstoffen²⁹.

Für die Weiterreaktion zu den komplexeren PCDD/F-Strukturen kommen prinzipiell zwei Möglichkeiten in Frage: homogene Gasphasenreaktionen oder heterogene Gas-Feststoffreaktionen. Die Schlußfolgerungen aus Shaubs kinetischem Berechnungsmodell für die PCDD/F-Bildung lenkte die Forschungsaktivitäten zunehmend auf Modellexperimente mit Vorläuferverbindungen.

Die Palette der untersuchten Vorläuferverbindungsklassen ist groß: sie reicht von einfachen aliphatischen Verbindungen wie Ethan⁸³, Ehen⁸³, Ethin⁸⁴, Propen⁸⁵, Hexan⁸⁶ über Benzol⁸⁷⁻⁹⁰ und funktionalisierten Aromaten wie Toluol⁹¹⁻⁹³, Phenol bzw. Chlorphenolen^{88,90,94-99}, chlorierten und nichtchlorierten Diphenylethern^{100,101}, Biphenylen^{102,103,104} bis hin zu polycyclischen Aromaten¹⁰⁵⁻¹⁰⁷. Aufgrund der hohen Emissionen an Benzol, Toluol, Phenol und den chlorierten Analoga, gehören diese Verbindungen zu den am meisten untersuchten Vorläufersubstanzen für PCDD/F.

Diese Vielfalt an Vorläuferverbindungen, mit und ohne Doppelbindungen, mit und ohne funktionalisierte Gruppe, deutet darauf hin, daß jede Kombination von C, H, O und Cl chlorierte Organoverbindungen hervorbringen kann und läßt die Komplexizität der Vorgänge bei der PCDD/F-Bildung aus solchen Verbindungen erahnen.

2.2.1 Bildung von PCDD aus Vorläuferverbindungen

Unter den Vorläuferverbindungen zu PCDD nehmen die Chlorphenole eine besondere Stellung ein. Durch geeignete Kombination verschiedener Trichlorphenole sind alle 22-Cl₄DD-Isomere synthetisierbar^{108,109}. Neben den direkten Kondensationsprodukten entstehen eine Reihe weiterer Isomere. Die Arbeitsgruppe um Kende¹¹⁰ war die erste, die für die Bildung letzterer PCDD-Isomere eine intramolekulare nucleophile Substitution vorschlug. In dieser sogenannten *Smiles-Umlagerung* entsteht aus dem Anion der ortho-Hydroxydiphenylether-Verbindung (1a) ein Dioxaspirocyclisches Anion (1) als Intermediat¹¹¹. Dieses steht sowohl mit 1a als auch mit der ortho-Hydroxydiphenylether-Verbindung (1b) im Gleichgewicht. Im gleichen Zeitraum postulierten auch Gray et.al.¹¹² diesen Mechanismus für die PCDD-Bildung aus Chlorphenolen, der hier am Beispiel der Kondensation von 2,4,6-Cl₃Ph dargestellt ist:

Abb. 2.2-1 Smiles-Umlagerung

Erste Experimente zur PCDD-Bildung auf Flugaschen aus Chlorphenolen als Vorläuferverbindungen führten Dickson et.al.⁹⁴ durch. Dadurch, daß sie ¹³C-markierte Chlorphenole verwendeten, konnten sie die Versuche mit unmodifizierter Flugasche durchführen. In Parallelversuchen, in denen das Chlorphenol durch ein leeres Reaktionsrohr oder über einen feuerfesten Ziegelstein geleitet wurde, wurden keine PCDD gebildet. Diese Versuche lieferten eindeutige Beweise für das hohe PCDD-Bildungspotential der Chlorphenole auf Flugasche. Die Notwendigkeit von Flugasche als Reaktionsoberfläche für die Kondensation von Chlorphenolen bestätigten die von Shaub und Tsang postulierten Gas-Feststoffreaktionen^{30,31}.

Altwicker et.al. verglichen die Reaktivität verschiedener Chlorphenole abhängig vom Chlorierungsgrad; 2,3,4,6-Tetrachlorphenol (Cl₄Ph) zeigte den höchsten Umsatz zu PCDD⁸⁸. In Versuchen mit verschiedenen Sorten an Flugaschen zeigten sie, daß der Gesamtumsatz der Chlorphenole mit der Ausbeute an PCDD zusammenhängt. Des weiteren konnte eine Beziehung zwischen der Oberflächenbedeckung an Chlorphenolen und der PCDD-Bildung hergestellt werden. Basierend auf der Konzentration an extrahierbaren Chlorphenolen aus der Flugasche (nach der thermischen Behandlung von Flugaschen mit 2,3,4,6-Cl₄Ph) erfolgt die Bedeckung der Flugaschenoberfläche mit Chlorphenolen gemäß der *Freundlichschen-Isothermen*. Die flugaschenkatalysierte Umsetzung der Chlorphenole zu PCDD konnte mit einer *Langmuir-Hinshelwood-Reaktion* erklärt werden. Daher stellten Altwicker et.al. einen dreistufigen Reaktionsmechanismus auf: Adsorption der Chlorphenole an reaktiven Zentren der Flugasche, Reaktion zu PCDD und Desorption der Produkte^{88, 113}.

2.2.2 Bildung von PCDF aus Vorläuferverbindungen

Mittlerweile ist gesichert, daß Biphenyl¹⁰² und Chlorbiphenyle^{103,104} die effektivsten Vorläuferverbindungen für die PCDF-Bildung sind. Mit einem Umsatz von bis zu 50 % können sie für einen wesentlichen Teil der hohen PCDF-Emissionen verantwortlich sein. Der hohe Umsatz zu PCDF liegt in der bereits vorhandenen C-C-Verknüpfung zwischen zwei Phenylringen. Nach Oxidation in ortho-Stellung kann ein Ringschluß erfolgen. Scholz zeigte, daß hierfür keine ortho-Chlorsubstituenten vorhanden sein müssen^{103,104}.

Addink et.al. schlugen für die PCDF-Bildung eine Kondensation von Chlorphenolen und Chlorbenzolen über Diphenyletherstrukturen als Zwischenstufen vor⁸⁶. Folgendes Schema veranschaulicht dies am Beispiel der Kondensation von 1,2,4-Cl₃Bz mit 2,4,6-Cl₃Ph:

1,2,6,8-Cl4DF

Abb. 2.2-2 PCDF-Bildung aus einem Chlorbenzol- und Chlorphenolisomer

In Pyrolysereaktionen (300 – 700 °C) mit Chlorphenolen wurden zwei weitere Reaktionsmechanismen vorgeschlagen. Sidhu et.al. beobachten bei der Pyrolyse von 2,4,6-Cl₃Ph nach Zusatz von Hexan einen Anstieg der Konzentration an Cl₄DF und eine Abnahme der Cl₄DD-Konzentration¹¹⁴. Anhand der erhaltenen Isomere postulierten sie für die PCDF-Bildung die gleichen Intermediate wie für die PCDD-Bildung:

Abb. 2.2-3 PCDF-Bildung aus Chlorphenolen unter pyrolytischen Bedingungen nach Sidhu

Untersuchungen von Weber et.al. widersprechen diesem Mechanismus. Bei der Pyrolyse (200 - 600 °C) verschiedener Dichlorphenole erhielten sie nur Cl₄DF-Isomere, deren Bildung über Dihydroxybiphenyle als Zwischenverbindungen erklärt werden kann¹¹⁵.

Abb. 2.2-4 PCDF-Bildung aus Chlorphenolen unter pyrolytischen Bedingungen nach Weber

Gemäß Born und Mulder erfolgt die homogene PCDF-Bildung bei 500 °C aus Chlorphenolen durch radikalische Verknüpfung in ortho-Stellung¹¹⁶.

Während für die PCDD-Bildung aus Vorläuferverbindungen nur Kondensationen aus Chlorphenolen diskutiert werden, bestehen bei der PCDF-Bildung noch viele Unklarheiten, wie es auch in der Vielzahl der kontrovers diskutierten Mechanismen demonstriert wird.

3 Experimenteller Teil

In dieser Arbeit wurden sowohl Versuche zur *De-Novo-Synthese* von PCDD/F als auch Experimente zur Bildung von PCDD/F aus Vorläuferverbindungen durchgeführt. Die Untersuchungen zur *De-Novo-Synthese* wurden hauptsächlich mit einem Modellsystem durchgeführt, während für die Experimente mit Vorläuferverbindungen sowohl Flugasche als auch Modellmischungen als Matrix verwendet wurden. Die Zusammensetzung der einzelnen Reaktionsmischungen, sowie die Versuchsdurchführung und anschließende Analytik der Proben werden im folgenden beschrieben.

3.1 Herstellung der Modellflugaschen

Die Hauptkomponente der Modellmischungen bildet Florisil, ein Magnesium-Silikat (84 % SiO_2 , 15,5 % MgO, 0,5 % Na_2SO_4). Zur Entfernung eventuell vorhandener organischer Verunreinigungen wurde das Florisil im Muffeloffen für 5 h auf 600 °C erhitzt.

Als Chloridquelle wurde Kaliumchlorid (14,7 %) und als Katalysator Kupfer(II)chloriddihydrat (1,1 %) verwendet, wobei letzteres ebenfalls als Chloridquelle diente. Ausgangssubstanzen für die Bildung organischer Verbindungen waren Kohlenstoff (4 %) sowie die Vorläuferverbindungen 2,4,6-Trichlorphenol und Diphenylether.

Um eine möglichst homogene Verteilung der beiden Kohlenstoffsorten zu erreichen, wurden entsprechende Mischungen zunächst in einem Mörser intensiv verrieben und anschließend für 48 h in einer Über-Kopf-Schüttelmaschine vermischt. Zur Minimierung des Einwaagefehlers wurden größere Mengen einer Mischung aus Florisil, KCI und CuCl₂·2 H₂O hergestellt. Das CuCl₂·2 H₂O wurde in einem Mörser pulverisiert, anschließend wurden KCI und Florisil sukzessive dazugegeben und wie im Falle der Kohlenstoff-Mischung homogenisiert. Zu dieser vorbereiteten Florisil-Mischung wurden die Kohlenstoff-Mischungen bzw. die Vorläuferverbindungen gegeben und wie oben beschrieben vermischt. Die Zusammensetzungen der Modellflugaschen, dotiert mit Kohlenstoff, sind in Tab. 3.1-1 aufgelistet. Bei den 1:1, 1:2 und 2:1 Mischungen handelt es sich jeweils um molare Verhältnisse ${}^{12}C/{}^{13}C$ -Kohlenstoff. Alle Modellflugaschen enthielten 4 % Gesamtkohlenstoff, Modellflugasche A - E und I: 0,4 % und F - H: 0,05 - 0,2 % Kupfer als CuCl₂·2 H₂O.

MFA	¹² C : ¹³ C	¹² C [mg]	¹³ C [mg]	CuCl ₂ ·2 H ₂ O[mg]	KCI [mg]	Florisil [mg]
A	nur ¹² C	40,00		10,73	147,22	802,05
В	nur ¹³ C		40,00	10,73	147,22	802,05
С	1:1	18,98	21,02	10,73	147,22	802,05
D	1:2	12,46	27,53	10,73	147,22	802,05
Ε	2:1	25,77	14,23	10,73	147,22	802,05
F	1:1	18,98	21,02	5,36	147,22	807,05
G	1:1	18,98	21,02	2,68	147,22	810,10
н	1:1	18,98	21,02	1,34	147,22	811,44
<u> </u>				10,73	147,22	802,05

Tab. 3.1-1	Zusammensetzung	der verwendeter	n Modellflugaschen	dotiert mit Kohlenstof
------------	-----------------	-----------------	--------------------	------------------------

In den Experimenten, in denen 2,4,6-Cl₃Ph als Vorläuferverbindung verwendet wurde, wurden die Flugaschen bzw. Modellflugaschen mit 2,4,6-Cl₃Ph-Konzentrationen im Bereich von 1000 – 5000 µg/g dotiert. Die einzelnen Konzentrationen werden im Ergebnisteil explizit angegeben.

Das als Precursor eingesetzte 2,4,6-Trichlorphenol wurde auf Verunreinigungen mit PCDD/F, PCBz und den anderen PCPh-Isomeren untersucht. Die Konzentrationen der PCDD/F lagen im Bereich der Nachweisgrenzen (Tab. 8.11, die Werte sind in ng/5 mg 2,4,6-Cl₃Ph angegeben, da dies die maximal eingesetzte Menge 2,4,6-Cl₃Ph pro Gramm Modellflugasche war). Die Hauptverunreinigung (0,05 %) war 1,2,3,5-Cl₄Bz. Da Benzole ein sehr geringes PCDD/F-Bildungspotential besitzen^{88,90}, kommt als Quelle für die gebildeten PCDD/F nur 2,4,6-Trichlorphenol in Frage.

3.2 Charakterisierung des ¹²C- und ¹³C-Kohlenstoffs

Gemäß Angaben der Vertreiberfirma (CIL) handelt es sich bei diesen beiden isotopenangereicherten Kohlenstoffpräparaten um ein Nebenprodukt, welches bei der Herstellung von ¹²C- bzw. ¹³C-Benzol durch katalytische Trimerisierung von ¹²C- bzw. ¹³C-Ethin als amorpher Kohlenstoff bzw. Ethinruß anfällt. Da die Vertreiberfirma dieser Kohlenstoffsorten keine physikalischen Daten mitteilte, wurden zur Charakterisierung Thermodesorptionsmessungen, Messungen der spezifischen Oberfläche (BET-Methode) und Rasterelektronenmikroskop-Aufnahmen durchgeführt.

Die Thermodesorptionsmessungen bei 350 °C gekoppelt mit GC/MS ergaben nur Spuren von Verunreinigungen mit aromatischen Verbindungen. In der ¹²C-Kohlenstoffprobe wurden folgende Verbindungen gefunden: 2,4-Dichlortoluol, 1,2-Dichlorbenzol und Trichlorbenzol. Die ¹³C-Kohlenstoffprobe enthält Spuren an Hexadeuterobenzol, Styrol und Ethylbenzol. Die Konzentrationen der genannten Verbindungen lagen im Bereich von 10-30 ng/g Kohlenstoff bzw. 0,8 - 2,4 ng/40 mg Kohlenstoff (maximal eingesetzte Menge pro Gramm Modellflugasche), so daß eine Bildung aus Verunreinigungen der Kohlenstoffpräparate ausgeschlossen werden kann⁴².

Für die Bestimmung der BET-Oberfläche wurde Stickstoff als Adsorbat verwendet. Für die ¹²C-Kohlenstoffprobe wurde eine BET-Oberfläche von 285 m²/g und für die ¹³C-Kohlenstoffprobe 338 m²/g erhalten.

Mit bloßem Auge betrachtet unterscheiden sich die beiden Rußsorten geringfügig. Das ¹²C-Kohlenstoffpräparat ist grobkörniger, während das ¹³C-Kohlenstoffpräparat eher eine flockigere Struktur besitzt. In Abb. 3.1-1 sind die Rasterelektronenmikroskop-Aufnahmen der beiden Kohlenstoffsorten gezeigt. In der 50fachen Vergrößerung der ¹²C-Kohlenstoffprobe bzw. der 100fachen Vergrößerung der ¹³C-Kohlenstoffprobe sind Aggregate in der Größenordnung von wenigen Mikrometern bis 500 µm erkennbar. Die Grobkörnigkeit der ¹²C- gegenüber der ¹³C-Kohlenstoffprobe ist an den größeren Zusammenlagerungen im ¹²C-Kohlenstoff deutlich ersichtlich, während im ¹³C-Kohlenstoff nur kleinere Kondensationsplatten vorliegen. In der 100000fachen Vergrößerung beider Kohlenstoffsorten sind kaum Strukturunterschiede zwischen dem ¹²C- und ¹³C-Präparat zu erkennen. Durch die Zermahlung beider Kohlen im Mörser wurden diese Aggregate weitestgehend gleichmäßig zerkleinert, so daß mit bloßem Auge kein Unterschied mehr sichtbar war.

50fache Vergrößerung der ¹²C-Kohlenstoffprobe

100fache Vergrößerung der ¹³C-Kohlenstoffprobe

100000fache Vergrößerung der ¹²C-Kohlenstoffprobe

100000fache Vergrößerung der ¹³C-Kohlenstoffprobe

Abb. 3.1-1 Rasterelektronenmikroskop-Aufnahmen der amorphem ¹²C- und ¹³C-markierten Kohlenstoffproben

3.3 Charakterisierung der Flugaschen

Flugasche fällt im Elektrofilter von Müllverbrennungsanlagen an. Es handelt sich dabei um eine komplexe Matrix, deren Zusammensetzung vom Brenngut und den Prozeßbedingungen abhängig ist. Die Hauptkomponenten sind Silicium-, Aluminium-, Calcium-, Zink- und Eisenoxide, als Nebenprodukte enthält sie Erdalkalioxide sowie Oxide, Sulfate und Chloride von Übergangs- und Schwermetallen wie Cu, Cd, Hg und Pb. Die anorganischen Hauptbestandteile [in %] der verwendeten Flugaschen gemäß Röntgenfluoreszenzanalysen (Labor für Isotopentechnik, Forschungszentrum Karlsruhe) sind in der folgenden Tabelle aufgelistet.

	US-EPA - Flugasche	Göppinger - Flugasche
Cu	0,24	0,11
Fe	1,99	1,98
Zn	6,60	2,35
Pb	3,51	1,25
Na	2,86	2,00
K	6,19	3,87
Mg	0,57	1,30
Ca	12,50	7,21
AI	5,83	8,20
Si	7,76	16,70
CI	8,18	6,26
С	1,75	4,20
Ni	k.M.	0,04
Mn	k.M.	0,16
F	k.M.	0,27
Ti	2,26	k.M.
Sb	0,29	k.M.
Р	0,48	k.M.
S	5,88	k.M.
Br	0,38	k.M.

 Tab. 3.1-2
 Zusammensetzung [%] der verwendeten Flugaschen, k.M. = kein Meßwert vorhanden

3.4 Versuchsaufbau und -durchführung

Die thermische Behandlung der Flugaschen erfolgte in Reaktionsröhren aus Glas, die in einem Reaktor auf die gewünschte Temperatur erhitzt wurden. In dieser Arbeit wurden zwei unterschiedliche Apparaturen verwendet. Die Versuche mit Modellflugasche, die mit ¹²C- und ¹³C-Kohlenstoff dotiert war, wurden in Apparatur I durchgeführt. Die thermischen Experimente mit EPA (Environmental Protection Agency) - Flugasche und ein Großteil der Versuche mit der 2,4,6-Trichlorphenol dotierten Modellmischung wurden in Apparatur II durchgeführt.

Die Apparatur I (Abb. 3.1-2) besteht aus einem Reaktionsrohr (L = 50 cm, ϕ = 1,5 cm) aus Glas, das senkrecht in einem Röhrenofen eingebaut ist. In der Mitte des Reaktionsrohres ist eine Fritte eingeschmolzen, die zur Aufnahme der Modellflugasche dient und ein gleichmäßiges Durchströmen der Flugasche durch die Gasmischung gewährleistet. Die Gaszufuhr erfolgt von unten durch die Apparatur. Der Gasfluß wird am Gaseinlaß zur Apparatur mit Nadelventilen auf 50 ml/min eingestellt und am Gasauslaß der Apparatur mit einem Strömungsmeßgerät kontrolliert. Zur Temperaturmessung der MFA ist entlang der Innenwand des Reaktionsrohres ein dünnes, unten verschlossenes Glasrohr angebracht, in welches ein Thermoelement eingeführt wurde. Damit wurde die aktuelle Temperatur der Reaktionsmischung kontrolliert.

Zur Simulation der Verhältnisse in Müllverbrennungsanlagen wurde die Gasmischung (synthetische Luft oder 20 % Sauerstoff/80 % Helium) vor der Einleitung befeuchtet. Dazu wurde die Gasmischung durch eine auf 60 °C thermostatisierte Wasser-Waschflasche

geleitet. Entsprechend der Dampfdruckkurve wird so ein Wasserdampfgehalt von 150 mg/l Gasmischung erreicht.

Die Horizontalbewegung des Röhrenofens erlaubt, das Reaktionsgut bei Überschreitung der Solltemperatur z.B. aufgrund exothermer Reaktionen, kurzfristig aus der Heizzone herauszufahren. Die Temperatur der Flugasche schwankte um \pm 2 °C um den Sollwert.

Um die Kondensation von Wasser und entstehender Produkte innerhalb der Apparatur zu verhindern, wurden die Glasrohrteile, die sich außerhalb des Ofens befinden, mit einem Heizband auf 240 °C erhitzt.

Die flüchtigen Reaktionsprodukte und der in der Gasphase enthaltene Wasserdampf wurden in einer Toluol-Waschflasche (70 ml) am Gasauslaß der Apparatur aufgefangen.

Für einen typischen Versuch wurden jeweils 1 g Modellflugasche für eine bestimmte Zeit (15 - 240 min) und bei einer definierten Temperatur (250 - 400 °C) unter einem Gasstrom von 50 ml/min und einem Wassergehalt von 150 mg/I Gas thermisch behandelt. Nach Abkühlen auf Raumtemperatur wurde die MFA in eine Soxhlet-Hülse überführt und das Glasrohr sowie die Glasverbindungsstücke mit Toluol gespült. Diese Spüllösung wurde mit der Toluollösung der Waschflasche vereinigt. Beide Proben Modellflugasche und Waschflaschenlösung wurden getrennt aufgearbeitet.

Für die Versuche, in denen zusätzlich CO und CO₂ in der Gasphase quantifiziert wurden, wurde die Gasphase über ein Glasröhrchen, gefüllt mit 6 g Adsorbermaterial (Amberlite[®] XAD-16 Harz), geleitet. Dieses diente dazu, verdampftes Toluol zu adsorbieren, da Spuren von Toluol in der Gasphase die Messung der Gase störten. Das XAD-16 Harz ist ein Polymer auf der Basis von Polystyrol mit definierter spezifischer Oberfläche und Porendurchmesser. Die Aufnahmekapazität für organische Verbindungen liegt bei einigen Milligramm pro Gramm Material. Damit war sichergestellt, daß das Reaktionsgas nach Durchströmen des XAD-Harzes lösungsmittelfrei für die nachgeschaltete online-Messung der eigentlichen Gaskomponenten war. Das Adsorberröhrchen wurde für jeden Versuch mit trockenem (lösungsmittelfreien) XAD-Harz befüllt.

Da Stickstoff die Bestimmung von CO aufgrund von Massenüberlagerungen verfälschen würde, wurde für diese Versuche anstelle der synthetischen Luft eine Gasmischung aus 20 % O_2 und 80 % He verwendet.

Abb. 3.1-2 Apparatur I zur thermischen Behandlung der Flugaschen

Zur Bestimmung der Wiederfindungsraten der flüchtigen Verbindungen in n-Hexan und Toluol wurde Apparatur I mit einem gasdichten Septum verschlossen. Eine Standardlösung, die jeweils ein Isomer jeder Chlorierungsstufe enthielt, wurde durch dieses Septum direkt in den heißen Gasstrom injiziert. Aufgrund der hohen Siedepunkte der PCDD/F wurde auf eine Bestimmung der Wiederfindungsraten für PCDD/F verzichtet. Die Reaktionsbedingungen waren identisch mit denen bei der thermischen Behandlung der Modellflugaschen. Wie die Daten in Tab. 3.1-3 zeigen, liegen die Wiederfindungsraten für Chlorphenole in Toluol höher als in n-Hexan. Diejenigen Versuche mit Apparatur I wurden daher mit Toluol durchgeführt.

Verbindungsklasse	n-Hexan	Toluol
Cl ₂ Ph	66	80
Cl₃Ph	48	82
Cl₄Ph	66	81
Cl₅Ph	51	70
Cl ₂ Bz	80	84
Cl₃Bz	87	96
Cl ₄ Bz	92	96
Cl₅Bz	96	95
Cl₀Bz	100	99

Tab. 3.1-3 Wiederfindungsraten [%] der PCPh und PCBz in n-Hexan und Toluol

Apparatur II (Abb. 3.1-3) ist für Versuche konzipiert, in denen Flugasche bzw. Modellflugasche mit gasförmigem 2,4,6-Cl₃Ph dotiert wird. Diese Apparatur wurde konzipiert, um Flugasche und Modellmischungen mit gasförmigem 2,4,6-Cl₃Ph umzusetzen. Sie unterscheidet sich von Apparatur I durch die Verbindung des Reaktionsrohres mit einem Vorratsgefäß, welches die zu dosierende Vorläuferverbindung enthält. Geringe aber konstante Konzentrationen an Dämpfen organischer Verbindungen lassen sich dadurch erzeugen, daß man den gesättigten Dampf der Verbindung, der mit der flüssigen Phase im Gleichgewicht steht, mit einem Gasstrom vermischt. Nach kurzer Zeit stellt sich so eine konstante Konzentration der zudosierten Verbindung im Gasstrom ein. Die Konzentration der organischen Verbindung in der Gasphase ist dabei durch die Temperatur des Vorratsgefäßes und den Gasfluß festgelegt. In der Literatur¹¹⁷⁻¹²⁰ sind mehrere Apparaturen beschrieben, die auf diesem Prinzip beruhen.

Diese Versuche wurden in der Arbeitsgruppe von Prof. Altwicker durchgeführt. Da der Röhrenofen in dieser Arbeitsgruppe nur horizontal eingesetzt werden konnte, ergab sich eine horizontale Lage des Reaktionsrohres.

Abb. 3.1-3 Apparatur II zur thermischen Behandlung der Flugaschen

Das Vorratsgefäß, die Gaszuleitung und die Verbindungsstücke des Vorratsgefäßes mit dem Reaktionsrohr wurden mit einem Heizband geheizt. Das Vorratsgefäß selbst und die Verbindungsstücke zwischen Vorratsgefäß und Reaktionsrohr bestehen aus Edelstahl. Um ein gleichmäßiges Erhitzen zu gewährleisten und Kältebrücken zu vermeiden, welche zum Kondensieren des gasförmigen 2,4,6-Cl₃Ph führen könnten, wurden die Metalleitungen und das Vorratsgefäß erst mit Glaswolle und dann mit Heizband umwickelt. Zur Reduzierung der Wärmeabgabe wurde das ganze System nochmals mit Glaswolle isoliert. Vor Versuchsbeginn wurde das Vorratsgefäß bis zur Temperaturkonstanz erhitzt. Die Stromversorgung der Heizdrähte erfolgte über einen Leistungsregler, der mit dem Thermoelement des Vorratsgefäßes gekoppelt war. Nach Erreichen der Temperaturkonstanz wurden die Hähne H1, H2 und H3 geöffnet und die Gasphase in einer Waschflasche aufgefangen. Zur Bestimmung der aktuellen Gasphasenkonzentration an 2,4,6-Cl₃Ph wurde die Gasphase für eine bestimmte Zeit (10-15 min) in einer neuen Dichlormethan-Waschflasche gesammelt. Gleichzeitig wurde die Flugasche im Reaktor in einer Stickstoffatmosphäre (Stickstoffdurchleitung über H5) auf die gewünschte Reaktionstemperatur erhitzt.

Durch Umstellung der Hähne H3 (zu), H5 (zu) und H4 (auf) wurde der Versuch gestartet. Nach Versuchsende wurde das Heizelement entfernt und auf Stickstoff als Inertgas umgestellt. Um zu überprüfen, ob die Zusammensetzung der Gasphase während des Versuches konstant blieb, wurde am Ende des Versuches die Gasphase ein zweites Mal (über H3) für 10 min in einer neuen Dichlormethan-Waschflasche gesammelt.

Die kurzen Reaktionszeiten (30 min) erlaubten die Verwendung von Dichlormethan als Waschflaschenlösung. Um die Verdunstung des Lösungsmittels in der Waschflasche zu minimieren, wurde diese mit Eiswasser auf 0 °C gehalten.

Die Versuche mit 2,4,6-Cl₃Ph als Precursor wurden in einer Atmosphäre aus 10 % Sauerstoff in Stickstoff (Gasfluß: 80 ml/min) ohne Anreicherung der Gasphase mit Wasser durchgeführt. Diese Änderung der Reaktionsbedingungen diente dazu, eine bessere Vergleichbarkeit mit früheren Ergebnissen von Prof. Altwicker über die Umwandlung von 2,3,4,6-Cl₄Ph auf Flugasche zu gewährleisten.

4 Analytik

4.1 Probenaufarbeitung

Da die Proben noch störende Begleitsubstanzen enthalten und die Konzentrationen der Substanzmengen unterhalb des Meßbereiches der Massenspektrometrie lagen, ist eine direkte Messung der Substanzmengen erst im Anschluß an eine aufwendige Aufarbeitung und Einengung der Lösungen auf wenige Mikroliter möglich.

Die Probenaufarbeitung basiert auf den Richtlinien der VDI-Komission¹²¹ und Arbeitsvorschriften der Arbeitsgruppe. Sie besteht im Wesentlichen aus folgenden Arbeitsschritten:

- Extraktion der Feststoffproben
- Abtrennung, Derivatisierung und Reinigung der PCPh
- Reinigung und Fraktionierung der PCBz und PCDD/F

Reinigung und Fraktionierung der Proben erfolgte mittels Fest-Flüssig-Chromatographie unter Normaldruck. Zur Erhöhung der Wiederfindung der Substanzmengen, sowie zur Reduzierung der Mengen an Säulenmaterial und Lösungsmittel wurden einige Modifizierungen durchgeführt, die im folgenden beschrieben werden.

Die Feststoffproben wurden im Anschluß an die thermische Behandlung 24 h mit Toluol (150 ml) in einer "Heiß"-Soxhlet Apparatur extrahiert. Vor der Extraktion wurden den Proben definierte Mengen an internen Standards zugesetzt. Der Waschflaschenlösung wurden die gleichen Mengen an internen Standards zugefügt.

Der Extrakt aus der Soxhlet Apparatur und die Waschflaschenlösung wurden getrennt aufgearbeitet.

4.1.1 Interne Standards

Um Substanzverluste während der Aufarbeitung zu berücksichtigen, wurden interne Standards verwendet. Diese Arbeitsweise erfordert die Verwendung von Substanzen, die nicht bereits in der Probe enthalten sind und die ähnliche physikalische und chemische Eigenschaften wie die zu quantifizierenden Substanzen besitzen.

4.1.1.1 Interne Standards für Proben ohne ¹³C-Kohlenstoff-Dotierung

Für Versuche ohne ¹³C-markierten Kohlenstoff wurden ¹³C-markierte interne Standards verwendet, da diese Verbindungen die oben genannten Voraussetzungen optimal erfüllen. Die in den Standardlösungen enthaltenen Isomere, sowie die Absolutmengen der einzelnen Isomere, die pro Probe verwendet wurden, sind in den nachfolgenden Tabellen aufgelistet.

Für PCPh, PCBz und PCDD/F (Tab. 4.1-1) wurde eine Mischung aus jeweils fünf ¹³C-markierten Einzelisomeren verwendet.

	Menge [ng]
2,4-Cl ₂ Ph	240
2,4,6-Cl₃Ph	240
2,4,5-Cl₃Ph	240
2,3,4,5-Cl₄Ph	240
Cl₅Ph	240
1,4-Cl ₂ Bz	240
1,2,4-Cl₃Bz	240
1,2,4,5-Cl₄Bz	240
Cl₅Bz	240
Cl ₆ Bz	240
2,3,7,8-Cl₄DD	70,3
1,2,3,7,8-Cl₅DD	74,5
1,2,3,4,7,8-Cl ₆ DD	69,3
1,2,3,4,6,7,8-Cl7DD	73,8
Cl ₈ DD	110,5

Tab. 4.1-1 Verwendete ¹³C-PCPh-, ¹³C-PCBz- und ¹³C-PCDD-Standards

Aufgrund ähnlicher physikalischer und chemischer Eigenschaften der PCDD und PCDF wurde auf eine Zugabe von ¹³C-markierten PCDF-Standards verzichtet und die Konzentrationen der PCDF mittels ¹³C-PCDD-Standards und entsprechenden Response-faktoren (Korrektur- oder Flächenfaktoren) ermittelt. Die Responsefaktoren der PCDF (Tab. 4.1-4) beziehen sich auf bestimmte PCDD-Isomere. Sie wurden in einer separaten Messung mittels HRGC-AED bestimmt und regelmäßig überprüft.

4.1.1.2 Interne Standards für Proben mit ¹³C-Kohlenstoff-Dotierung

Bei Versuchen, in denen ¹²C- und ¹³C-Kohlenstoff als Precursor für PCDD und PCDF verwendet wurde, konnten keine ¹³C-markierten interne Standards für die Quantifizierung eingesetzt werden. In diesen Fällen wurde für jede Substanzklasse eine spezielle Verbindung ausgewählt. Für unsere Anforderungen haben sich solche Substanzen als geeignet erwiesen, die neben Chlor- auch Fluor- bzw. Bromsubstituenten tragen. Für jede zu untersuchende Stoffklasse wurde eine Verbindung mittleren Chlorierungsgrades ausgewählt.

Tab. 4.1-2	Verwendete Standards für die Quantifizierung von ¹² C- und ¹³ C- PCPh und PCBz, sowie
	$von {}^{12}C_{12}, {}^{12}C_{6}/{}^{13}C_{6}$ - und ${}^{13}C_{12}$ -PCDD/F

	Isomere	Menge [ng]
PCBz	¹² C-2,6-Dichlor-4-fluorphenol	312
PCPh	¹² C-1,3,5-Trichlor-2,4,6-trifluorbenzol	302
PCDD/F	¹² C-1-Brom-2,3,7,8-tetrachlordibenzofuran	30

Bei der thermischen Behandlung von Modellflugaschen definierter Zusammensetzung ist ausgeschlossen, daß Verbindungen mit Brom- bzw. Fluorsubstituenten entstehen.

Um diese Standards auch für Proben verwenden zu können, bei denen Flugasche von Müllverbrennungsanlagen mit ¹³C-Kohlenstoff dotiert wurde, wurde die Bildung dieser Verbindungen auf den verwendeten Flugaschen überprüft. Bei entsprechenden Versuchen mit Flugasche (300 °C, 60 min, 20 % O₂/80 % He) konnten keine der in Tab. 4.1-2 aufgelisteten Verbindungen nachgewiesen werden, so daß diese Verbindungen auch zur Quantifizierung von ¹²C₆-, ¹³C₆-PCBz und –PCPh, sowie ¹²C₁₂-, ¹³C₁₂- und ¹²C₆/¹³C₆-PCDD/F auf Flugaschen verwendet werden können.

Unterschiede in den physikalischen Eigenschaften (unterschiedliche Flüchtigkeit und beim Clean-up Absorptionsverhalten sowohl als auch auf der Säule im Gaschromatographen) wurden dadurch berücksichtigt, daß entsprechende Eichfaktoren in getrennten Versuchen ermittelt wurden. Dazu wurden Lösungen mit bekannten Mengen an ¹³C-PCPh, -PCBz, ¹³C-PCDD und -PCDF und den Standards (2,6-Dichlor-4-fluorphenol, 1,3,5-Trichlor-2,4,6-trifluorbenzol und 1-Brom-2,3,7,8-tetrachlordibenzofuran) wie in Kap. 4.1.3 und 4.1.4 aufgearbeitet und aus den erhaltenen Meßwerten die Faktoren ermittelt. Für jede Meßreihe wurden aktuelle Eichfaktoren ermittelt. Die Standardabweichung der Responsefaktoren zwischen den einzelnen Meßreihen lag zwischen 0 und 20 %.

4.1.2 Wiederfindungsstandards

Zur Überprüfung der Wiederfindung der eingesetzten internen Standards wird unmittelbar vor der GC/MS-Messung für jede Substanzklasse ein Wiederfindungsstandard zugegeben. Auch hier mußte zwischen Proben unterschieden werden, die nur ¹²C-Substanzen und denjenigen, die sowohl ¹²C- als auch ¹³C-Verbindungen enthielten.

4.1.2.1 Wiederfindungsstandards für Proben ohne ¹³C-Kohlenstoff-Dotierung

Ebenso wie die internen Standards dürfen die Wiederfindungsstandards nicht bereits in der Probe enthalten sein. Sie wurden in der Regel in den gleichen Mengen zugegeben wie die internen Standards, deren Wiederfindung berechnet werden sollte. Die Wiederfindungsstandards sind in Tab. 4.1-3 aufgelistet.

	Isomere	Menge [ng]
PCPh	¹² C-1,2,4,5-Tetrachlorbenzol	357
PCBz	¹² C-1,2-Dichlortetradeuterobenzol	240
PCDD/F	¹² C ₆ / ¹³ C ₆ -1,2,3,4-Tetrachlordibenzodioxin	70,3

Tab. 4.1-3 Verwendete Wiederfindungsstandards für PCPh, PCBz, und PCDD/F

4.1.2.2 Wiederfindungsstandards für Proben mit ¹³C-Kohlenstoff Dotierung

Für die Proben, in denen ¹²C- und ¹³C-PCBz nebeneinander quantifiziert wurden, kann ¹²C-1,2-Dichlortetradeuterobenzol aufgrund von Überlagerungen von Massenzahlen nicht verwendet werden. Für diese Proben wurde ¹²C-2,4,6-Trifluorbenzotrichlorid (400 ng pro Probe) als Wiederfindungsstandard eingesetzt. Da im Falle der Chlorphenole ein Chlorbenzolisomer als Wiederfindungsstandard verwendet wurde, kam es zu keinen Massenüberlagerungen mit den ¹³C-PCPh, so daß der gleiche Wiederfindungsstandard wie für die Proben, die nur ¹²C-Substanzen enthalten, eingesetzt werden konnte.

Da Proben mit ¹²C- und ¹³C-Kohlenstoff zur Bildung von gemischtringigen PCDD/F führen, konnte ¹²C₆/¹³C₆-1,2,3,4-Tetrachlordibenzodioxin nicht als Wiederfindungsstandard verwendet werden. Da die Wiederfindung für die PCDD/F in der Regel bei 80 % und höher lag, wurde auf ein PCDD/F-Wiederfindungsstandard für die Proben, die ¹²C₁₂-, ¹³C₁₂- und ¹²C₆/¹³C₆- PCDD/F enthielten, verzichtet.

4.1.3 Abtrennung und Reinigung der PCPh

Da Chlorphenole sehr polare Verbindungen sind, können sie von den restlichen zu bestimmenden Verbindungen durch Ausschütteln der Lösungen mit 20 ml einer 0,2 molaren K₂CO₃-Lösung (2 Schritte) abgetrennt werden. Die Aufarbeitung der organischen Phasen wird in Kap. 4.1.4 beschrieben.

Die Chlorphenolate in der wäßrigen Lösung wurden mit Acetanhydrid acetyliert. Hierzu wurden die Proben mit 1 ml Acetanhydrid versetzt und bis zur Beendigung der CO_{2^-} Entwicklung geschüttelt (ca. 30 min). Die Lösungen wurden anschließend zweimal mit je 10 ml Dichlormethan extrahiert. Die vereinigten organischen Phasen wurden auf 1 ml eingeengt und mittels einer SiO₂-Säule (Entfernung von Essigsäureresten) gereinigt. Hierzu wurde eine 12 cm lange Glassäule (Innendurchmesser: 1,4 cm) mit 2,5 g SiO₂ und 1 g Na₂SO₄ gefüllt. Nach Vorelution mit 30 ml Dichlormethan wird die Probe aufgegeben und mit 30 ml Dichlormethan eluiert. Um ein Mitreißen leichtflüchtiger Acetylphenolate mit dem verdampfenden Dichlormethan zu verhindern, wurden sowohl der ungereinigten Probe als auch dem Eluat vor dem Einengen jeweils 2 ml Toluol als Rückhaltelösemittel zugesetzt. Das Eluat wird auf ca. 250 μ l eingeengt, mit 25 μ l Ausbeutestandard versetzt und anschließend in GC-Probengläschen mit Glasinserts überführt.

4.1.4 Reinigung und Fraktionierung der PCBz und PCDD/F

Die vereinigten organischen Phasen aus der Chlorphenolabtrennung wurden auf 1 ml eingeengt. Zur Entfernung störender Begleitsubstanzen wurde diese Lösung mittels einer H₂SO₄/SiO₂-Säule (Elutionsmittel: n-Hexan) gereinigt. Dadurch werden diverse organische Verbindungen zu polaren Substanzen oxidiert und bleiben aufgrund der stärkeren Wechselwirkung auf dem Säulenmaterial adsorbiert.

Das mit Schwefelsäure beladene Kieselgel wurde durch kräftiges Schütteln von 100 g SiO₂ mit 78 g konzentrierter Schwefelsäure hergestellt.

Die Fraktionierung in PCBz und PCDD/F erfolgte auf einer Al₂O₃-Säule.

Beide Säulen wurden hintereinander geschaltet (H_2SO_4/SiO_2 –Säule: obere Säule; AI_2O_3 -Säule: untere Säule). Die H_2SO_4/SiO_2 –Säule (Länge: 32 cm, Innendurchmesser: 1,4 cm) wurde mit 3 g SiO_2, 6 g H_2SO_4/SiO_2 und 1 g Na_2SO_4 gefüllt und die AI_2O_3 -Säule (Länge: 15 cm, Innendurchmesser 1,4 cm) mit 12 g AI_2O_3 und 1 g Na_2SO_4 . Nach Vorelution mit 50 ml n-Hexan (Lösungsmittel fließt nacheinander durch beide Säulen) wird die Probe auf die H_2SO_4/SiO_2 –Säule aufgetragen und mit 60 ml n-Hexan eluiert. Nachdem das Lösungsmittel auch die AI_2O_3 -Säule passiert hat, wird mit 50 ml n-Hexan/Dichlormethan (98:2) und mit 60 ml n-Hexan/Dichlormethan (1:1) fraktioniert. Die erste Fraktion (60 ml n-Hexan und 50 ml n-Hexan/Dichlormethan (98:2)) enthält die PCBz und die zweite Fraktion die PCDD/F. Ähnlich wie für Chlorphenole wurde der Chlorbenzolfraktion 5 ml Toluol als Rückhaltelösemittel zugesetzt und die Lösung in GC-Gläschen mit Glasinserts überführt.

Die PCDD/F-Fraktion wurde am Turbovap auf 1 ml eingeengt. Die weitere Aufkonzentrierung erfolgte direkt in den Glasinserts in einem Aluminiumblock (60 °C) im Stickstoffstrom. In die Glasinserts wurde 10 µl Tetradecan vorgelegt. Nachdem die Lösung auf 10 µl eingeengt war, wurden 25 µl PCDD-Ausbeutestandard (LM: Toluol) zugegeben und nochmals auf 10 µl eingeengt.

Die Aufarbeitung der Proben in der Arbeitsgruppe von Prof. Altwicker erfolgte ähnlich. Allerdings wurden die Chlorphenole weder abgetrennt noch derivatisiert. Sie wurden von einer der H_2SO_4/SiO_2 -Säule vorgeschalteten Vorsäule (2 g desaktiviertem SiO₂) mit Dichlormethan eluiert und nach Aufkonzentrierung direkt gemessen. Das desaktivierte SiO₂ wurde aus 36 g SiO₂ und 4 g Wasser durch kräftiges Schütteln hergestellt.
4.2 Gaschromatographische Messung und massenspektrometrische Detektion

4.2.1 Identifizierung und Quantifizierung der PCPh, PCBz und PCDD/F

Die Auftrennung der Substanzklassen in die einzelnen Isomeren erfolgte mit hochauflösender Gaschromatographie, die anschließende Identifizierung und Quantifizierung der Substanzen mit Massenspektrometrie im "selective ion mode" (SIM). Chlorphenole und Chlorbenzole sowie Proben, die nur ¹²C₁₂-PCDD/F enthalten, wurden mit niedrigauflösender Massenspektrometrie gemessen. Substanzgemische von ¹²C₁₂-, ¹³C₁₂- und ¹²C₆/¹³C₆-PCDD/F wurden mit hochauflösender Massenspektrometrie quantifiziert, da aufgrund von Massenüberlagerungen einzelner Massenpeaks der Isotopencluster von ¹²C₁₂-, ¹³C₁₂- und ¹²C₆/¹³C₆-PCDD/F eine Auflösung von mindestens 10000 erforderlich ist.

Die quantitative Analyse der PCPh, PCBz und PCDD/F erfolgte jeweils durch routinemäßige SIM - Messungen und automatisierter Integration der Peakflächen. Innerhalb eines festgelegten Zeitfensters wurden nur die Massen von charakteristischen Ionen gemessen und integriert. Dies sind in der Regel die Massen zweier Ionen mit den höchsten Signalintensitäten [(z.B. M⁺ und (M+2)⁺] des durch die beiden Chlorisotope (³⁵Cl und ³⁷Cl) erzeugten Molekülionenclusters. Die Meßmatrix ist in mehrere Zeitfenster eingeteilt, wobei jedes Zeitfenster aus den Massen [(M⁺ und (M+2)⁺ oder (M+2)⁺ und (M+4)⁺] der Standards und der Substanzen aufgebaut ist. In der Regel wurde für jede Chlorhomologengruppe ein Zeitfenster gewählt (LRMS: 2 - 4 min, HRMS: 7 - 12 min).

Die Nachweisgrenzen für die Messungen mit niedrigauflösender Massenspektrometrie liegen zwischen 0,1 und 1 ng, wohingegen am hochauflösenden Massenspektrometer Substanzmengen im Femtogramm-Bereich bestimmt werden können.

Für eine eindeutige Identifizierung der einzelnen Ionenpeaks wurden die Retentionszeit und das Verhältnis ausgewählter Isotopenpeaks herangezogen. Es müssen folgende Kriterien erfüllt sein:

- Die Retentionszeiten der GC-Peaks einer Verbindung [in der Regel sind dies zwei Massen z.B. M⁺ und (M+2)⁺ oder (M+2)⁺ und (M+4)⁺] müssen innerhalb eines kleinen Zeitfensters (1 - 2 sec) übereinstimmen.
- Das Flächenverhältnis der Massen einer Verbindung sollte um nicht mehr als 15 % von dem theoretischen Chlorisotopencluster abweichen, welches durch die Anzahl der Chloratome im Molekül festgelegt ist.
- Das Signal/Rausch-Verhältnis muß größer als 3 sein.
- Die Probe darf keine weiteren Verbindungen enthalten, deren Massen sich mit den Massen der zu quantifizierenden Substanzen überlagern.

Die Zuordnung der PCDD/F-Peaks zu den exakten PCDD/F-Kongeneren erfolgte durch Vergleich der Spektren mit Literaturchromatogrammen, die alle Kongenere enthalten. Die Elutionsreihenfolge der einzelnen Kongeneren in diesen Literaturchromatogrammen wurde durch die Verwendung aller präparativ hergestellten PCDD/F-Kongenere erhalten¹²².

Die gemessenen Massen der untersuchten Verbindungsklassen und der verwendeten Standards, sowie die relativen Intensitätsverhältnisse der entsprechenden Peaks sind in den nachfolgenden Tabellen aufgelistet.

	Peak	Intensitäts- verhältnisse	¹² C-PCPh	¹³ C-PCPh	¹² C-PCBz	¹³ C-PCBz
Cl ₂	M	100	162	168	146	152
	M+2	64	164	170	148	154
Cl ₃	M	100	196		180	
	M+2	96	198	204	182	188
	M+4	31		206		190
Cl₄	M	78	230		214	
	M+2	100	232	238	216	220
	M+4	48		240		224
Cl ₅	M+2	100	266	272	250	246
	M+4	64	268	274	252	258
Cl ₆	M	52			282	<u> </u>
	M+2	100			284	290
	M+4	80				292

Tab. 4.1-4	Ausgewählte Massen der PCPh- und PCBz-Isotopencluster für die SIM-
	Messungen mit den entsprechenden Intensitätsverhältnissen

Tab. 4.1-5Ausgewählte Massen der PCDD- und PCDF-Isotopencluster für die SIM-
Messungen (HRGC/HRMS) mit den entsprechenden Intensitätsverhältnissen

	Peak	Intensitäts- verhältnisse	¹² C-PCDD	¹² C ₆ / ¹³ C ₆ -PCDD	¹³ C-PCDD	¹² C-PCDF	¹² C ₆ / ¹³ C ₆ -PCDF	¹³ C-PCDF
Cl ₄	М	78	319,8965	325,9167	331,9369	303,9016	309,9218	315,9419
	M+2	100	321,8936	327,9137	333,9339	305,8987	311,9188	317,9390
Cl ₅	M	63						349,9030
	M+2	100	355,8546	361,8748	367,8949	339,8597	351,9000	351,9000
	M+4	64	357,8517	363,8718	369,8920	341,8567	353,8971	
Cl ₆	M	52						383,8640
	M+2	100	389,8156	395,8358	401,8560	373,8207	379,8409	385,8610
_	M+4	80	391,8127	397,8328	403,8530	375,8178	381,8379	
CI7	M	45						417,8250
	M+2	100	423,7767	429,7968	435,8170	407,7817	413,8019	419,8221
	M+4	96	425,7737	431,7939	437,8140	409,7788	415,7990	
Cl ₈	M	35						
	M+2	89	457,7448	463,7578	469,7780	441,7428	447,7629	453,7831
	M+4	100	459,7347	465,7549	471,7751	443,7398	449,7600	455,7801

Tab. 4.1-6Ausgewählte Massen der Isotopencluster verwendeter spezieller interner
Standards für PCPh, PCBz und PCDD/F mit den entsprechenden Intensitäts-
verhältnissen

	Peak	Intensitäts- verhältnisse	¹² C-Cl ₂ FPh	¹² C-Cl ₃ F ₃ Bz	¹² C-BrCl₄DF
Cl ₂	M	100	180		
	M+2	64	182		
Cl ₃	M	100		234	
	M+2	96		236	
Cl ₄	М	100			383,8096

Tab. 4.1-7Ausgewählte Massen der Isotopencluster verwendeter speziellerWiederfindungsstandards für PCBz, PCPh und PCDD mit den entsprechendenIntensitätsverhältnissen

	Peak	Intensitäts- verhältnisse	¹² C-Cl₂D₄Bz	¹² C-CCI ₃ F ₃ Bz	¹² C-Cl₄Bz	¹² C ₆ / ¹³ C ₆ -Cl ₄ DD
Cl ₂	M	100	214			
	M+2	64	216			
CI ₃	M	100		248		
	M+2	96		250		
CI4	M	78		<u></u>	150	326
	M+2	100			152	328

Die Überprüfung der Flächenverhältnisse der Substanz- und Standardpeaks sowie die Berechnung der Konzentrationen der Substanzen erfolgt mit der Auswertesoftware GCMS 2.3¹²³. Die Berechnung der Mengen der einzelnen Verbindungen erfolgt gemäß folgender Formel¹²¹:

$$m_{P} = f \times m_{\text{ISTD}} \times \frac{F_{P}}{F_{\text{ISTD}}}$$
(GI. 4.1-1)

f=Substanzspezifischer Responsefaktorm_P=Menge der zu bestimmenden Substanz [ng]m_ISTD=Menge des zugegebenen internen Standards [ng]F_P=Fläche des Substanzpeaks [Flächeneinheiten]F_ISTD=Fläche des Standardpeaks [Flächeneinheiten]

Für Proben, die nur ¹²C-Verbindungen enthielten, wurden ¹³C-markierte Standards verwendet, so daß die Responsefaktoren gleich 1 gesetzt werden können. Für die Quantifizierung der PCDF in Proben ohne ¹³C-markierten Kohlenstoff als Reaktand und für die gleichzeitige Bestimmung ¹²C- und ¹³C-markierter Verbindungen in Proben, die ¹³C-Kohlenstoff enthielten, wurden substanzspezifische Responsefaktoren berechnet.

Vereinfachend wurde nur ein Responsefaktor für alle Isomere einer Homologengruppe ermittelt.

Die Responsefaktoren für die Quantifizierung der PCDF in Proben ohne ¹³C-Kohlenstoff und der ¹²C-, ¹³C-PCPh und -PCBz, sowie ¹²C₁₂-, ¹²C₆/¹³C₆- und ¹³C₁₂-PCDD/F in Proben, die ¹³C-Kohlenstoff enthielten, sind in den Tabellen 4.1-8 und 4.1-9 zusammengefaßt.

Tab. 4.1-8Response faktoren f
ür die Quantifizierung der PCDF der Proben ohne 13C-Kohlenstoffals Reaktand

Isomere	Interner Standard	Responsefaktoren
2,3,7,8-Cl₄DF	2,3,7,8-Cl4DD	0,845
1,2,3,7,8-Cl₅DF	1,2,3,7,8-Cl₅DD	0,746
1,2,3,4,7,8-Cl ₆ DF	1,2,3,4,7,8-Cl ₆ DD	0,839
1,2,3,4,6,7,8-Cl7DF	1,2,3,4,6,7,8-Cl7DD	0,689
Cl ₈ DF	Cl ₈ DD	0,857

Isomere	Interner Standard	Responsefaktoren
1,4-Cl ₂ Bz	1	1,98
1,2,4-Cl₃Bz		1,03
1,2,4,5-Cl₄Bz	1,3,5-Cl ₃ -2,4,6-F ₃ Bz	0,75
Cl₅Bz		0,58
Cl ₆ Bz		0,69
2,4-Cl ₂ Ph		1,37
2,4,6-Cl₃Ph		1,67
2,3,4,5-Cl₄Ph	2,6-Cl ₂ -4-FPh	1,56
Cl₅Ph	{	1,32
2,3,7,8-Cl₄DD		0,67
1,2,3,7,8-Cl₅DD		1,43
1,2,3,4,7,8-Cl ₆ DD	1-Br-2,3,7,8-Cl₄DF	1,72
1,2,3,4,6,7,8-Cl7DD		2,57
Cl ₈ DD	r	1,12
2,3,7,8-Cl4DF		0,53
1,2,3,7,8-Cl₅DF		0,49
1,2,3,4,7,8-Cl ₆ DF	1-Br-2,3,7,8-Cl₄DF	0,77
1,2,3,4,6,7,8-Cl ₇ DF		0,83
Cl ₈ DF	1	0,95

Tab. 4.1-9Response faktoren f
ür die Quantifizierung der PCPh, PCBz und PCDD/F der Proben,
in denen ¹³C-Kohlenstoff als Reaktand verwendet wurde

Mittels Proben unterschiedlicher Konzentration an 1,3,5-Trichlor-2,4,6-trifluorbenzol und 2,6-Dichlor-4-fluorphenol wurde die Reproduzierbarkeit der Responsefaktoren bzw. die Konstanz des Verhältnisses Standardmenge zu Peakfläche untersucht. Größere Schwankungen traten nur für Dichlorbenzole auf. Aufgrund ihres niedrigen Siedepunktes ist die Reproduzierbarkeit des Eichfaktors infolge der Probenaufarbeitung geringer. Da Dichlorbenzole in den Versuchen in geringen Konzentrationen verglichen mit den Verbindungen mit höherem Chlorierungsgrad gebildet wurden, hat die größere Schwankung dieses Faktors keine größeren Auswirkungen auf die Ergebnisse. Die Standardabweichung der Faktoren für Dichlorbenzol liegt bei 17 %, die der höheren Chlorierungsgrade zwischen 2 und 6 %.

4.2.2 GC/MS - Geräte

HRGC/LRMS	Gaschromatograph: HP 5890 Series II
	Autosampler: HP 6890 A
	Quadrupol MS: HP 5970 MSD
	Massenbereich 1 - 800, Auflösung ganzzahlige Massen
	Injektor: Split-Splitless
HRGC/HRMS	Gaschromatograph: HP 5890 Series II
	Autosampler: HP 6890 A
	VG Autospec
	Massenbereich 1 - 1000, Auflösung 10000
	Injektor: Split-Splitless

Säulen:

HRGC/LRMS	desaktivierte fused-Silica-Säule, DB-5, 30 m x 0,25 mm Innendurch-
	messer, 0,25 μm Filmdicke
HRGC/HRMS	desaktivierte fused-Silica-Säule, SP-2331, 60 m x 0,25 mm Innendurch
	messer, 0,2 μm Filmdicke

Temperaturprogramme:

HRGC/LRMS

• SIM - Messungen

PCDD/F (LM: Toluol): 105 °C: 3 min isotherm; 10 °C/min bis 200 °C; 5 °C/min bis 300 °C; 5 min isotherm PCDD/F (LM: Tetradecan): 200 °C: 3 min isotherm; 5 °C/min bis 300 °C; 3 min isotherm PCPh und PCBz (LM: Toluol): 80 °C: 2 min isotherm; 5 °C/min bis 200 °C; 20 °C/min bis 300 °C; 5 min isotherm

• TIC - Messungen

LM: Tetradecan: 200 °C: 3 min isotherm; 5 °C/min bis 300 °C; 5 min isotherm LM: Toluol: 80 °C: 3 min isotherm; 10 °C/min bis 200 °C, 5 °C/min bis 300 °C; 5 min isotherm

HRGC/HRMS

PCDD/F (LM: Tetradecan): 200 °C: 10 min isotherm; 5 °C/min bis 250 °C; 40 min isotherm

4.3 Online-Messung von CO und CO₂

Die Abbauprodukte CO und CO₂ wurden online mit dem Massenspektrometer Quadruvag PGA 100 der Firma Leybold gemessen. Zur Quantifizierung der Gase wurde vor jeder Meßreihe das Massenspektrometer mit einem Prüfgas (Messer Griesheim) kalibriert und die aktuellen Responsefaktoren bestimmt. Das Prüfgas wurde so ausgewählt, daß die Konzentrationen der Gaskomponenten im gleichen Größenordnungsbereich lagen wie die einzelnen Gase des Reaktionsgases. Die Zusammensetzung des Prüfgases ist in Tab. 4.1-10 aufgelistet.

Tab. 4.1-10	Zusammensetzung	des	Prüfgases
-------------	-----------------	-----	-----------

Komponente	Volumenprozent
Helium	78,64
Sauerstoff	19,40
Kohlendioxid	1,87
Kohlenmonoxid	0,0885

Die Konzentrationen von CO, CO₂, O₂ und He wurden mit dem Auswerteprogramm Masterquad 3.0 der Firma Leybold bestimmt. Für die Messung des Prüfgases wurde eine Matrix erstellt, welche die Verteilung der am häufigsten auftretenden lonenbruchstücke enthält. Für die Kalibrierung wurde das Prüfgas ca. 45 min gemessen. Nach der Kalibrierung wurde das Reaktionsgas mit der gleichen Meßmatrix gemessen. In Tab. 4.1-11 ist die Ionenbruchstück-Verteilung für die Gase He, O₂, CO₂ und CO aufgelistet.

Masse	Не	O ₂	CO ₂	CO
4	100	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***************************************	
12	1		4,78	2,36
16		8,95	9,47	0,74
28			6,73	96,85
32		91,01		
44			79,02	

Tab. 4.1-11 Ionenbruchstück-Verteilung der Reaktionsgase

Für die Versuche mit ¹²C- und ¹³C-Kohlenstoff wäre ein Prüfgas mit den entsprechenden markierten Gasen erforderlich. Da solche Prüfgase relativ teuer sind, wurde weiterhin mit unmarkiertem Prüfgas kalibriert und für die Berechnung der markierten Gase die gleichen Kalibrierfaktoren wie für die nicht-markierten Gase angenommen. Zur Messung der Reaktionsgase wurde die in Tab. 4.1-12 aufgeführte Meßmatrix verwendet.

Tab. 4.1-12 Ionenbruchstück-Verteilung der Reaktionsgase

Masse	Не	O ₂	¹² CO ₂	¹³ CO ₂	¹² CO	¹³ CO
4	100				ni - Tang _a n ng kang kang kang kang kang kang kang	
12			4,78		2,36	
13				4,78		2,36
16		8,95	9,47	9,47	0,74	0,74
28			6,73		96,85	
29				6,73		96,85
32		91,01				
44			79,02			
45				79,02		

Die quantitative Auswertung der Gase erfolgte gemäß folgender Formeln¹²⁴:

$$c = \frac{f \times I}{BF_{Mx} \times IW \times E \times p_{\text{tot}}} \quad \text{und} \quad E = \frac{I_{He}}{p_{\text{partial}He}} \quad \text{GI. 4.1-2}$$

c Konzentration in [%]

f Kalibrierfaktor

- Partialstromsignal der am häufigsten auftretenden Massenlinie Mx aus dem Bruchstückspektrum des Gases A
- *BF_{Mx}* Bruchstückfaktor für das Gas A: beschreibt den Anteil der Mx Ionen des Gases A, die durch die Massenlinie Mx repräsentiert werden

IW	relative Ionisierungswahrscheinlichkeit des Gases A bezogen auf Helium
E	Nominelle Empfindlichkeit des Spektrometers; sie wird durch das Verhältnis aus
	dem Partialstromsignal der Massenlinie 4 von Helium zu dem absoluten Helium-
	Partialdruck ermittelt in [A/mbar]
<i>p</i> _{tot}	Absoluter Druck im Massenspektrometer in [mbar]
P partial	Partialdruck eines Gases

4.4 Messung der Konzentration an 2,4,6-Cl₃Ph in der Gasphase

In den Experimenten, in denen 2,4,6-Trichlorphenol gasförmig durch die Flugasche geleitet wurde, wurden die Konzentrationen in der Gasphase aus dem Gehalt an 2,4,6-Cl₃Ph in der Dichlormethan-Waschflasche ermittelt (Kap. 3.4). Der Zusammenhang zwischen der Gasphasenkonzentration an 2,4,6-Cl₃Ph (10 % O_2 /90 % N_2 ; Gasfluß von 80 ml/min) und der Temperatur des Vorratsgefäßes ist in Abb. 4.1 dargestellt. Die Daten stellen Mittelwerte mehrerer Meßwerte dar, wobei die Standardabweichung ca. 20 % beträgt.

Abb. 4.1 Abhängigkeit der Gasphasenkonzentration an 2,4,6-Cl₃Ph von der Temperatur des Vorratsgefäßes

4.5 Fehlerrechnung

Die ermittelten Konzentrationswerte der untersuchten Verbindungsklassen sind mit unvermeidlichen Fehlern behaftet. Der Gesamtfehler für die Endergebnisse berechnet sich aus den voneinander unabhängigen mittleren Einzelfehlern (S₁, S₂, S₃,..) der zu berücksichtigenden Fehlerquellen nach dem Gauß'schen Fehlerfortpflanzungsgesetz:

$$S = (S_1^2 + S_2^2 + S_3^2 + S_4^2 + \dots)^{1/2}$$

Der Fehler bei der Einwaage der verschiedenen Substanzen zur Herstellung der Modellmischungen und der Mengen an Flugasche bzw. Modellflugasche für die thermischen Experimente bzw. für die anschließende Extraktion beträgt jeweils 0,5 %, wodurch sich für die Probenvorbereitung ein Gesamtfehler von maximal 1,3 % errechnet.

Während der thermischen Behandlung der Proben in der Reaktionsapparatur führen Temperaturschwankungen in der Probe von 2 °C zu Konzentrationsänderungen der untersuchten Verbindungsklassen von 7 %. Abweichungen in der Reaktionszeit von 1 min bewirken für kurze thermische Behandlungszeiten (< 60 min) Konzentrationsänderungen von 3 % und für lange Reaktionszeiten (1 – 4 h) kleiner als 1 %.

Die Wiederfindung der Substanzen aus der Gasphase beträgt 80 - 95 %. Somit ist die Versuchsdurchführung mit einem Fehler von maximal 22 % behaftet.

Die Konzentrationsungenauigkeit, sowohl der hergestellten, als auch der käuflich erworbenen internen Standards (Wäge- und Verdünnungsfehler) liegt in der Größenordnung von 10 %. Aufgrund der Pipettenungenauigkeit entsteht bei der Zudosierung ein weiterer Fehler von 5 %. Der Fehler aufgrund der Variation in den Eichfaktoren der substanzspezifischen internen Standards liegt bei 10 %. Bei der massenspektrometrischen Messung und der Bestimmung der Flächenwerte bei einem hohen Signal/Rausch-Verhältnis (> 20) wird ein Fehler von jeweils 5 % berechnet. Somit resultiert für den analytischen Teil ein Fehler von 16 %.

Der Gesamtfehler der Endergebnisse setzt sich aus allen Einzelfehlern bei Probenvorbereitung, Versuchsdurchführung und der Routineanalytik zusammen und beläuft sich entsprechend dem Fehlerfortpflanzungsgesetz auf 27 %. Die größte Unsicherheit der Endergebnisse ist bei der Durchführung der thermischen Experimente zu erwarten.

Der Fehler der Flächenwerte nimmt mit sinkender Konzentration aufgrund sinkendem Signal/Rausch-Verhältnis zu. Für die gemischtmarkierten ${}^{12}C_6/{}^{13}C_6$ -PCDF lagen die niederchlorierten Isomere bei kurzen Reaktionszeiten und niedrigen Reaktionstemperaturen oft im Bereich der Nachweisgrenze (<1 ng/g Modellflugasche). Hier kann der Fehler für den Flächenwert mehr als 50 % betragen, wodurch ein Gesamtfehler höher als 70 % resultieren kann. Trotz dieser hohen Unsicherheit wurden in den verschiedenen Versuchsreihen keine Ausreißer der Gesamtkonzentration einer Verbindungsklasse aus dem erwarteten Trend beobachtet. Da der Mengenanteil der an der Nachweisgrenze gebildeten Isomere an der Gesamtmenge der jeweiligen Chlorhomologengruppe unter den genannten Reaktions-

bedingungen kleiner als 10 % ist, hat diese hohe Unsicherheit keinen grundlegenden Einfluß auf die Schlußfolgerungen.

Für Versuche, in denen interne ¹³C-markierte Standards verwendet wurden, ist der Fehler bei der Abweichung in den Eichfaktoren um den Faktor 2 kleiner, woraus ein geringerer analytischer Fehler (14 %) resultiert. Damit ergibt sich hier ein Gesamtfehler von 25 %.

5 Ergebnisse und Diskussion

Zielsetzung dieser Arbeit war, die *De-Novo-Synthese* von PCDD/F weiter zu untersuchen. PCDD/F können hierbei entweder direkt aus Kohlenstoff *de-novo* oder schrittweise durch Kondensation von zwei aromatischen Sechsringstrukturen gebildet werden. Zur Unterscheidung zwischen diesen beiden Wegen eignen sich Experimente mit Flugasche oder Modellflugasche, die ¹²C- und ¹³C-Kohlenstoff in definierten Anteilen enthält. Falls aromatische C₆-Vorläuferverbindungen zu PCDD und PCDF reagieren, sollten neben einheitlichen ¹²C₁₂- und ¹³C₁₂-PCDD/F, d.h. PCDD/F die entweder vollständig aus ¹²C- oder ¹³C-Atomen aufgebaut sind, auch ¹²C₆/¹³C₆-PCDD/F entstehen, bei denen ein Benzolring vollständig aus ¹²C-Atomen besteht, während der andere Ring aus ¹³C-Atomen aufgebaut ist.

Aufgrund der komplexen Zusammensetzung von Flugaschen und Inhomogenität verschiedener Chargen eignen sich für mechanistische Studien besser Modellmischungen, deren Zusammensetzung genau definiert ist.

Bei vorgegebenem ¹²C/¹³C-Kohlenstoffisotopenverhältnis lassen sich Schlußfolgerungen auf die Gewichtung der beiden genannten Reaktionswege ziehen:

- i direkte Herauslösung des Kohlenstoffgrundgerüstes für die PCDD/F-Bildung verglichen mit
- ii Kondensation von aus Kohlenstoff gebildeten aromatischen C₆-Verbindungen zu PCDD/F.

Da die Reaktionsparameter Temperatur, Reaktionszeit und Katalysatorkonzentration einen großen Einfluß auf die Bildung der PCDD/F in Müllverbrennungsanlagen haben, wurde ihre Bedeutung für das Verhältnis der beiden konkurrierenden Bildungswege untersucht.

Um die Rolle der Chlorphenole bei der Bildung von PCDD/F zu erforschen, wurden thermische Versuche mit Flugaschen und Modellflugaschen durchgeführt und der Einfluß der Dotierungstechnik auf den Umsatz von 2,4,6-Cl₃Ph in PCDD/F ermittelt.

Neben der Bildung von PCDD/F aus Trichlorphenol wurden die PCBz erfaßt und durch online-Messung der oxidative Abbau des Trichlorphenols zu CO und CO₂ untersucht.

5.1 Bildung von polychlorierten organischen Verbindungen aus ¹²C- und ¹³C-markiertem Kohlenstoff auf Modellflugasche

Die thermischen Versuche wurden mit ¹²C- und ¹³C-Kohlenstoff der Firma Cambridge Isotope Laboratories (Kap. 8.2) durchgeführt. Wie in Kap. 3.2 beschrieben, werden beide Kohlenstoffisotope nach gleichen Synthesevorschriften hergestellt. Damit ist sichergestellt, daß physikalische Eigenschaften, wie z.B. Oberflächengröße und Beschaffenheit - die das chemische Verhalten des Kohlenstoffs stark beeinflussen können - nicht signifikant voneinander abweichen können. Gleiche Prozeßführung sollte auch zu ähnlichen Verunreinigungen durch Katalysatorreste führen. Mittels BET-Messungen konnte gezeigt

werden, daß beide Kohlenstoffisotope ähnliche Oberflächen besitzen. Die Oberfläche der ¹³C-Kohlenstoffprobe ist um 18 % größer als die der ¹²C-Kohlenstoffprobe.

Unterschiedliche Reaktivitäten des Kohlenstoffs in Versuchen mit Modellflugaschen, dotiert mit ¹²C- und ¹³C-Kohlenstoff, würden zu verschiedenen Verhältnissen an ¹²C₆- und ¹³C₆- PCPh und –PCBz (Zwischen- und Endprodukte) sowie ¹²C₁₂- und ¹³C₁₂-PCDD/F (Endprodukte) führen, und so ein schwer interpretierbares Verhältnis an ¹²C₁₂-, ¹²C₆/¹³C₆- und ¹³C₁₂-PCDD/F liefern.

5.1.1 Bildung von PCPh, PCBz und PCDD/F auf Modellflugasche dotiert mit ¹²C- bzw. ¹³C-markiertem Kohlenstoff

Zur Überprüfung des Potentials dieses amorphen Kohlenstoffs zur Bildung von PCPh, PCBz und PCDD/F wurden thermische Versuche mit Modellflugaschen, dotiert mit jeweils nur einem Kohlenstoffisotop ¹²C- bzw. ¹³C-Kohlenstoff, durchgeführt. Hierzu wurden MFA-A und MFA-B jeweils 2 Stunden in synthetischer Luft mit einem Fluß von 50 ml/min, die mit 150 mg Wasser/I Luft angereichert war, bei 300 °C erhitzt und die Mengen an gebildeten PCPh, PCBz und PCDD/F bestimmt. Die in den folgenden Tabellen und Diagrammen dargestellten Werte stellen immer die Summe der auf dem Feststoff- und in der Waschflasche (Gasphase) erhaltenen Konzentrationen dar. Die Konzentrationen der einzelnen Chlorhomologengruppen der untersuchten Produktklassen sind in Tab. 8.1 des Anhangs aufgeführt. Die Gesamtkonzentrationen dieser Verbindungsklassen beider Experimente sind in Tab. 5.1-1 gegenübergestellt.

	MFA-A: ¹² C-Kohlenstoff	MFA-B: ¹³ C-Kohlenstoff
¹² C-PCPh	585	0
¹² C-PCBz	112580	6220
¹³ C-PCPh	0	910
¹³ C-PCBz	1230	67360
¹² C-PCDD	1940	12
¹² C-PCDF	4310	70
¹³ C-PCDD	2	1600
¹³ C-PCDF	3	4130

Tab. 5.1-1	Konzentrationen [ng/g FA] der PCPh, PCBz und PCDD/F nach thermischer Behandlung
	der MFA-A (¹² C) und MFA-B (¹³ C), Reaktionstemperatur: 300 °C, Reaktionszeit: 2 h

Die nur unvollständige Isotopenreinheit des eingesetzten Kohlenstoffs erklärt die Bildung von ¹²C-Verbindungen im Versuch mit MFA-B (mit ¹³C-Kohlenstoff dotiert) und von ¹³C-Verbindungen im Versuch mit MFA-A (mit ¹²C-Kohlenstoff dotiert). Der höhere Gehalt an ¹²C (1 %) des ¹³C-Kohlenstoffpräparates verglichen mit nur 0,05 % ¹³C im ¹²C-Kohlenstoffpräparate erklärt die erhöhten Mengen an ¹²C-Verbindungen, die im Versuch mit MFA-B (¹³C) gebildet wurden.

Obwohl die Gesamtausbeuten der PCPh und PCBz um bis zu 50 % zwischen den beiden Versuchen schwanken, bleibt das Verteilungsmuster der gebildeten Chlorhomologen

weitgehend konstant. Die relative Verteilung der PCPh- und PCBz-Konzentrationen auf die Chlorierungsstufen ist in Tab. 5.1-2 gezeigt. Die Mengen an Chlorphenolen und -benzolen steigen kontinuierlich von den Dichlor- bis zu den Pentachlorverbindungen an, wobei das Konzentrationsmaximum der PCPh (Cl₅Ph) stärker als das der PCBz (Cl₅Bz) ausgeprägt ist. Beide Produkte unterscheiden sich in der Verteilung zwischen Feststoff und Gasphase. Während 65 % der Chlorbenzole verdampften und in der Gasphase gefunden wurden, waren es weniger als 10 % für die Chlorphenole. Aufgrund des schwach basischen Charakters des verwendeten Florisils (pH = 8,5) könnte der hohe Anteil der Chlorphenole, der auf der Oberfläche adsorbiert bleibt, durch spezifische Wechselwirkungen zwischen dem basischen Florisil und den sauren Chlorphenolen erklärt werden (vgl. Werte in Tab. 8.1). Dagegen bleiben die Chlorbenzole aufgrund fehlender ähnlicher Wechselwirkungen kaum auf der Oberfläche adsorbiert.

Tab. 5.1-2Prozentuale Verteilung der einzelnen Chlorierungsstufen der PCPh, PCBz und PCDD/Fjeweils bezogen auf die Gesamtkonzentration nach thermischer Behandlung derMFA-A (12C) und MFA-B (13C), Reaktionstemperatur: 300 °C, Reaktionszeit: 2 h

		Cl ₂	Cl ₃	Cl ₄	Cl ₅	Cl ₆	Cl ₇	Cl ₈
pize	¹² C ₆ -PCPh	3	4	21	72			w ==
85- A A	¹² C ₆ -PCBz	2	7	25	38	27		
MFA-A	¹² C ₁₂ -PCDD	n.u.	n.u.	2	15	31	29	22
	¹² C ₁₂ -PCDF	n.u.	n.u.	4	16	35	24	21
MFA-B	¹³ C ₆₋ PCPh	0	0	14	86			
	¹³ C ₆ -PCBz	1	6	29	43	21		
	¹³ C ₁₂ -PCDD	n.u.	n.u.	4	15	29	36	16
	¹³ C ₁₂ -PCDF	n.u.	n.u.	4	14	33	29	20

Aus beiden Kohlenstoffsorten bilden sich die gleichen Chlorphenol- und Chlorbenzolisomere, wobei in den einzelnen Homologengruppen einige Isomere in höheren Anteilen auftreten. Die Kongenerenmuster für die PCPh und PCBz sind für beide Kohlenstoffisotope sehr ähnlich. Die relative Verteilung der Konzentrationen der einzelnen Isomere, bezogen auf die jeweilige Chlorierungsstufe, ist in Tab. 5.1-3 für ¹²C₆- und ¹³C₆-PCBz gegenübergestellt. Unter den ¹²C₆-Chlorbenzolen dominieren folgende Isomere: 1,3-Cl₂Bz, 1,2,4-, 1,2,3-Cl₃Bz und 1,2,3,5-Cl₄Bz. Bei den ¹³C₆-Chlorbenzolen wird, mit Ausnahme der Trichlorbenzole, das gleiche Verteilungsmuster wie bei den ¹²C₆-Chlorbenzolen erhalten. Unter den Tetrachlor-benzolen wird 1,2,3,5-Cl₄Bz in geringfügig höherer Konzentration gegenüber den anderen Isomeren gebildet.

Stieglitz et.al. erhielten in Experimenten mit MFA, dotiert mit Aktivkohle, eine dominantere Abstufung³⁶. Neben geringen Mengen an 1,3,5-Cl₃Bz wurden 1,2,3- und 1,2,4-Cl₃Bz ungefähr zu gleichen Anteilen gebildet. Unter den Tetrachlorbenzolen wurde im Gegensatz zu den Ergebnissen hier das 1,2,3,4-Cl₄Bz mit einem Anteil von über 60 % erhalten.

Die beiden Tetrachlorbenzole 1,2,3,5- und 1,2,4,5-Cl₄Bz werden von der GC-Säule nahezu gleichzeitig eluiert, so daß es zu einer Peaküberlappung kommt und eine Integration der einzelnen Flächen nicht mehr möglich ist. Um trotzdem Anhaltspunkte für das Mengenverhältnis der beiden Isomere zu bekommen, erfolgte die Mengenberechnung

beider Isomere zusammen über die Fläche des M-Peaks. Das Verhältnis der beiden Isomere wurde über die Höhe ermittelt.

Während das 1,3-Cl₂Bz das meta-Chlorprodukt (Substituent 1. Ordnung, +M < -I -Effekt) von Monochlorbenzol darstellt, entstehen 1,2,3- und 1,2,4-Cl₃Bz bevorzugt durch orthobzw. para-Chlorierung des 1,3-Cl₂Bz. Die Chlorierung dieser Haupttrichlorbenzole erfolgt wieder bevorzugt in meta-Stellung zu den bereits vorhandenen Chlorsubstituenten, wobei 1,2,3,5-Cl₄Bz resultiert. Dies deutet auf einen Zusammenhang zwischen der Substitutionsrichtung und der bereits vorhandenen Anzahl an Chloratomen im Benzolring: ungerade Anzahl an Chloratomen favorisiert meta- und gerade Anzahl an Chloratomen ortho- bzw. para-Chlorierung.

Tab. 5.1-3	Prozentuale Verteilung der gebildeten Chlorbenzolisomere innerhalb der
	Homologengruppen nach thermischer Behandlung der MFA-A (¹² C) und
	MFA-B (¹³ C), Reaktionstemperatur: 300 °C, Reaktionszeit: 2 h

	MFA-A, ¹² C ₆	MFA-B, ¹³ C ₆
1,3-Cl ₂ Bz	77	70
1,4-Cl ₂ Bz	7	11
1,2-Cl ₂ Bz	16	19
1,3,5-Cl ₃ Bz	11	19
1,2,4-Cl ₃ Bz	40	59
1,2,3-Cl ₃ Bz	49	22
1,2,3,5-Cl ₄ Bz	45	45
1,2,4,5-Cl₄Bz	29	31
1,2,3,4-Cl₄Bz	26	24

Aus dem Chlorierungsmuster der Chlorbenzole läßt sich folgende Reaktionsroute ableiten:

Abb. 5.1-1 Reaktionsschema der Weiterchlorierung von 1,3-Cl₂Bz; die Hauptprodukte sind fett markiert

Andere Autoren sind der Auffassung, daß Chlorbenzole durch ipso-Substitution der Hydroxylgruppe in Chlorphenolen gegen eine Chlorfunktion gebildet werden^{39,66}. In der Tat könnte auch in diesen Experimenten ein Teil der Chlorbenzole aus Chlorphenolen resultieren. Wie später gezeigt wird, hat dieser Reaktionsweg für die PCBz-Bildung aus Kohlenstoff auf Flugaschen nur eine geringe Bedeutung.

Im folgenden Schema sind die Chlorbenzolisomere dargestellt, die durch ipso-Substitution aus den gebildeten Hauptchlorphenolen entstehen können:

Abb. 5.1-2 Bildung von Chlorbenzolisomeren durch ipso-Substitution der Hydroxylgruppe der überwiegend gebildeten Chlorphenolisomere gegen eine Chlorfunktion

Sowohl bei den ¹²C₆- als auch bei den ¹³C₆-Chlorphenolen wird fast ausschließlich nur ein lsomer pro Chlorierungsstufe gebildet. Hierbei handelt es sich um 2,4/2,5-Cl₂Ph (100 % bezogen auf die Gesamtkonzentration der Cl₂Ph), 2,4,6-Cl₃Ph (100 % bezogen auf Cl₃Ph), 2,3,4,5-Cl₄Ph (5 %) und 2,3,4,6-Cl₄Ph (95 % bezogen auf Cl₄Ph). Da neben 2,4,6-Cl₃Ph keine weiteren Trichlorphenolisomere gefunden wurden, läßt sich ableiten, daß 2,3,4,5-Cl₄Ph wahrscheinlich durch Isomerisierung des 2,3,4,6-Cl₄Ph-Isomers gebildet wurde. Die beiden Dichlorphenole 2,4- und 2,5-Cl₂Ph sind gaschromatographisch (DB-5-Säule) nicht weiter auftrennbar. Da unter den Trichlorphenolen nur das 2,4,6-Cl₃Ph und unter den Tetrachlorphenolen nur das 2,3,4,6-Cl₄Ph gebildet wurde, handelt es sich wahrscheinlich um das 2,4-Cl₂Ph-Isomer. Das gefundene Chlorierungsmuster läßt sich gut mit einer elektrophilen aromatischen Substitution erklären. Die Chlorierung erfolgt in ortho- oder para-Stellung zur bereits im Chlorphenol bzw. präformierten aromatischen Hydroxyverbindung enthaltenen Hydroxylgruppe (Substituent 1. Ordnung, +M > -I -Effekt). Für die ortho-/para-Chlorierung von Phenol mit CuCl₂ in Lösungsmittel (Dimethylformamid) schlug Kosower folgenden Mechanismus vor^{125,126}.

Abb. 5.1-3 a) + b) Chlorierung von Phenol gemäß Kosower unter CuCl₂-Katalyse nach einem Ligandentransfermechanismus
 c) Chlorierung von 2,4,6-Cl₃Ph gemäß Kosower

Durch synchrone Ein-Elektronen-Reduktion zweier Cu(II) entsteht ein ortho- oder para-Chlorcyclohexadienon, das schnell ins ortho- oder para-Chlorphenol tautomerisiert. Die bevorzugte ortho- und para-Chlorierung von Phenol wurde im Zusammenhang mit der Bildung von Chlorphenolen aus Phenol bzw. 2-Chlorphenol auf Modellflugasche auch von Born und Jiménez Leal und beobachtet^{66,39}. Ebenso stellte Wilhelm in Versuchen mit PAKs als Vorläuferverbindungen für die PCDD/F einen bevorzugten Abbau in ortho- und parachlorierte Phenole fest¹⁰⁷.

Die Chlorierung des Phenols bleibt auf Modellflugasche nicht auf der Stufe des 2,4,6-Cl₃Ph stehen - vollständig ortho- und parachlorierten Phenols – sondern läuft in hohem Maße weiter bis zum Pentachlorphenol. Die Chlorierung des 2,4,6-Cl₃Ph in den beiden meta-Stellungen sollte analog dem Mechanismus für die ortho- und para-Chlorierung erfolgen. Der in Abb. 5.1-3 c) illustrierte Mechanismus verdeutlicht dies. Da hier die Ketoform des Phenols nicht ausgebildet werden kann, scheint ein konzertierter Mechanismus wenig wahrscheinlich. Ähnlich dürfte die Chlorierung der aromatischen Strukturen ohne funktionelle Gruppe in der Aktivkohle erfolgen.

Ähnliche Chlorierungsmuster für Chlorphenole und -benzole wurden auch im Rauchgas von Müllverbrennungsanlagen beobachtet²⁹.

Während die PCPh- und PCBz-Ausbeuten zwischen den beiden Versuchen stark schwanken, ist der Umsatz beider Kohlenstoffisotope zu PCDD/F nahezu identisch. Die molare Ausbeute an ¹²C₁₂-PCDD/F für MFA-A ist 0,0057 % und die an ¹³C₁₂-PCDD/F für MFA-B 0,0054 %.

Für die PCDD/F ist die relative Verteilung der Konzentrationen der einzelnen Chlorierungsgrade in Tab. 5.1-2 gezeigt. Für beide Kohlenstoffisotope werden hexa- und heptachlorierte PCDD/F in den höchsten Konzentrationen gebildet.

Die isomerenspezifische Auswertung zeigt deutlich, daß die PCDD/F-Isomerenmuster beider Kohlenstoffisotopen sehr ähnlich sind. Weiterhin decken sie sich mit Mustern, die aus Restkohlenstoff auf Flugaschen bekannt sind. Die Isomerenmuster von PCDD/F aus nativem Kohlenstoff (natürliche Kohlenstoff der Flugaschen von MVA) und ¹³C-markiertem Kohlenstoff werden in Kap. 5.1.7 gegenübergestellt. Hier werden exemplarisch für die PCDD die Isomerenmuster von ¹²C₁₂-Cl₅DD und ¹³C₁₂-Cl₅DD (Abb. 5.1-4) und für die PCDF die Isomerenmuster von ¹²C₁₂-Cl₅DF und ¹³C₁₂-Cl₅DF (Abb. 5.1-5) herausgegriffen.

Bis auf wenige Ausnahmen (1,2,3,8,9-Cl₅DD, 1,2,3,4,8,9- und 2,3,4,6,7,8-Cl₆DF) ist die relative Verteilung für beide Kohlenstoffisotope vergleichbar. Wie im Falle der willkürlich gewählten Chlorierungsstufen Pentachlordibenzodioxin und Hexachlordibenzofuran wurden auch für die anderen Chlorhomologengruppen der PCDD und PCDF ähnliche Isomerenmuster für beide Kohlenstoffisotope erhalten.

Abb. 5.1-4 Konzentrationen [pmol/g MFA] der ¹²C₁₂-Cl₅DD- und ¹³C₁₂-Cl₅DD-Isomeren

Abb. 5.1-5 Konzentrationen [pmol/g MFA] der ¹²C₁₂-Cl₆DF- und ¹³C₁₂-Cl₆DF-Isomeren

Um die Ergebnisse aus den Versuchen mit markiertem Kohlenstoff auf das reale Geschehen auf Flugaschen von Müllverbrennungsanlagen übertragen zu können, sollte der verwendete Kohlenstoff auch eine ähnliche Produktverteilung wie der Restkohlenstoff liefern. Daß dies in der Tat der Fall ist, zeigt die Verteilung folgender untersuchter Stoffgruppen aus markiertem Kohlenstoff: 0,5 % PCPh, 2 % PCDD, 4,5 % PCDF und 93 % PCBz. Dieses Produktverhältnis wird im allgemeinen auf Flugaschen gefunden⁴⁹.

All diese Ergebnisse deuten auf eine ähnliche Morphologie und Reaktivität dieser isotopenangereicherten Kohlen verglichen mit Restkohlenstoff von Flugaschen, womit gewährleistet ist, daß sie gute Modelle für die untersuchte Problemstellung darstellen.

5.1.2 Bildung von PCPh, PCBz und PCDD/F auf Modellflugasche dotiert mit unterschiedlichen ¹²C/¹³C-Kohlenstoffisotopen-verhältnissen

Die Ergebnisse der thermischen Versuche mit Modellflugasche, dotiert mit ¹²C- bzw. ¹³C-Kohlenstoff, zeigen, daß die Ausbeuten der Vorläuferverbindungen (Zwischen- als auch Endprodukte: PCPh bzw. –PCBz) und auch die der Endprodukte (PCDD/F) aus beiden Kohlenstoffsorten in der gleichen Größenordnung liegen. Mit diesen Versuchen waren die Voraussetzungen für die folgenden Experimente geschaffen, in denen die Modellflugasche mit beiden Kohlenstoffarten in verschiedenen Verhältnissen dotiert wurde.

Im folgenden werden thermische Versuche mit Modellflugasche beschrieben, die mit unterschiedlichen Verhältnissen an ¹²C- und ¹³C-Kohlenstoff dotiert waren. Es wurden ¹²C:¹³C-Kohlenstoffverhältnisse von 1:1, 1:2 und 2:1 gewählt. Die Proben wurden bei 300 °C für 2 Stunden in synthetischer Luft, die mit 150 mg Wasser/I Luft angereichert war, behandelt.

Die Konzentrationen der einzelnen Chlorhomologengruppen der PCPh und PCBz sind in Tab. 8.2 und die der PCDD/F in Tab. 8.3 des Anhangs aufgelistet. Die Gesamtkonzentrationen der einzelnen Verbindungsklassen und die molaren Verhältnisse der ¹²C₆-, ¹³C₆-PCPh und –PCBz sowie die Konzentrationen der ¹²C₁₂-, ¹³C₁₂- und ¹²C₆/¹³C₆-PCDD/F sind in den folgenden Tabellen zusammengefaßt. Die Verhältnisse zwischen den ¹²C₆- und ¹³C₆-PCPh sowie -PCBz entsprechen relativ gut den eingesetzten Kohlenstoffverhältnissen.

Tab. 5.1-4	Konzentrationen [ng/g MFA] und molare Verhältnisse der ¹² C ₆ - zu ¹³ C ₆ -PCPh der
	thermischen Versuche mit Modellflugasche, dotiert mit unterschiedlichen Verhältnissen
	an ¹² C- und ¹³ C-Kohlenstoff

	¹² C: ¹³ C	¹² C ₆ -PCPh	¹³ C ₆ -PCPh	∑ PCPh	¹² C ₆ -PCPI	n : ¹	³ C ₆ -PCPh
MFA - C	1:1	757	1026	1783	1	:	1,3
MFA - D	1:2	394	800	1194	1	:	2
MFA - E	2:1	597	364	961	1,6	:	1

Tab. 5.1-5Konzentrationen [ng/g MFA] und molare Verhältnisse der ¹²C₆- zu ¹³C₆-PCBz der
thermischen Versuche mit Modellflugasche, dotiert mit unterschiedlichen Verhältnissen
an ¹²C- und ¹³C-Kohlenstoff

	¹² C: ¹³ C	¹² C ₆ -PCBz	¹³ C ₆ -PCBz	∑ PCBz	¹² C ₆ -PCB	z : ¹	³ C ₆ -PCBz
MFA - C	1:1	21520	22930	44480	1	:	1
MFA - D	1:2	31170	76840	108010	1	:	2,4
MFA - E	2:1	33520	20560	54080	1,6	:	1

Tab. 5.1-6	Konzentrationen [ng/g MFA] und molare Verteilung [%] der ¹² C ₁₂ -, ¹² C ₆ / ¹³ C ₆ -,
	¹³ C ₁₂ -PCDD/F der thermischen Versuche mit Modellflugasche, dotiert mit
	unterschiedlichen Verhältnissen an ¹² C- und ¹³ C-Kohlenstoff

			PCDD				PCDF			
	¹² C: ¹³ C	¹² C ₁₂	¹² C ₆ / ¹³ C ₆	¹³ C ₁₂	Summe	¹² C ₁₂	¹² C ₆ / ¹³ C ₆	¹³ C ₁₂	Summe	
MFA - C	1:1	650	370	870	1890	1670	60	2260	3990	
		35 %	19 %	46 %		42 %	1,5 %	56,5 %		
MFA - D	1:2	1330	1070	2830	5230	2200	65	6120	8385	
		26 %	20 %	54 %		26 %	1%	73 %		
MFA - E	2:1	1390	480	960	2830	3210	60	2320	5590	
		49 %	17 %	34 %		57 %	1 %	42 %		

Die Daten in Tab. 5.1-6 zeigen, daß der Anteil der ${}^{12}C_6/{}^{13}C_6$ -PCDD an der Gesamtsumme der PCDD ungefähr 20 % beträgt, während nur ca. 1 % ${}^{12}C_6/{}^{13}C_6$ -PCDF unter den PCDF erhalten wurden. Diese Ergebnisse zeigen einige Aspekte des Bildungsmechanismus der PCDD und PCDF auf. In Abb. 5.1-6 ist ein schematischer Reaktionsweg zu den unterschiedlich kohlenstoffisotopenmarkierten Zwischen- und Endprodukten skizziert.

Aus beiden Kohlenstoffisotopen entstehen *de-novo* chlorierte aromatische C₆-Verbindungen, wie z.B. Chlorphenole und –benzole. Durch Kondensation dieser C₆-Verbindungen entstehen PCDD, bei denen beide Ringe entweder aus dem gleichen Kohlenstoffisotop aufgebaut sind oder der eine Ring aus ¹²C- und der andere Ring aus ¹³C-Kohlenstoff besteht. Die Bildung von PCDF über diesen Reaktionsweg dagegen ist vernachlässigbar.

Neben diesen Kondensationsreaktionen von PCDD aus Chlorphenolen werden PCDD und PCDF direkt als komplettes "präformiertes" Kohlenstoffgerüst aus dem Kohlenstoff herausgelöst. Hierbei können nur einheitlich kohlenstoffisotopenmarkierte PCDD und PCDF entstehen, entweder ¹²C₁₂- oder ¹³C₁₂-PCDD/F. Für die PCDD können Dibenzodioxin- und ortho-Hydroxydiphenylether- und für die PCDF Dibenzofuran- und Biphenyl-Strukturen als Zwischenprodukte fungieren. Diese Vorläuferverbindungen zeichnen sich gegenüber den C₆-Vorläuferverbindungen dadurch aus, daß die Verknüpfung zwischen den beiden C₆-Ringen – die C-O-C-Bindung und die C-C-Bindung – bereits in der Kohlenstoffmatrix vorhanden ist oder durch den Abbau "freigelegt" wird.

Die Tatsache, daß 99 % der PCDF aus nur einem Kohlenstoffisotop aufgebaut sind, führt zur Schlußfolgerung, daß die Ausbildung der C-C-Bindung zwischen zwei aromatischen Ringen unter diesen Reaktionsbedingungen nicht signifikant ist.

Hiermit können Ergebnisse von Stieglitz et.al. für die PCDD/F-Bildung aus ¹²C- und ¹³C-Kohlenstoff auf Flugasche bestätigt werden⁴². Des weiteren kann die Gültigkeit des Reaktionsmechanismus auf Modellmischungen auf Silicat-Basis und unter Kupferkatalyse ausgeweitet werden.

Auch Scholz fand in seinen Untersuchungen über die Bildung polychlorierter Biphenyle (PCB) aus Kohlenstoff auf Modellflugasche keine ${}^{12}C_{6}/{}^{13}C_{6}$ -PCB; ein weiterer Beweis für die erschwerte Knüpfung einer C-C-Bindung unter diesen Reaktionsbedingungen 103,104 .

Zusammenfassend erfolgt die Bildung der PCDD und PCDF nach zwei unterschiedlichen Reaktionsrouten. Am Aufbau der PCDD sind sowohl die *direkte De-Novo-Synthese* (vgl.

Seite 53) als auch die Kondensation von Phenylringen beteiligt. Für die PCDF-Bildung spielt nur die direkte Herauslösung des Dibenzofuran-Gerüstes eine Rolle. Die C-C-Bindung in PCDF wird nur in untergeordnetem Maße durch Kupplung zweier Phenylringe ausgebildet.

Abb. 5.1-6 Reaktionsschema der ¹²C₁₂-, ¹²C₆/¹³C₆-, und ¹³C₁₂-PCDD/F-Bildung aus amorphem ¹²C- und ¹³C-markiertem Kohlenstoff; ……… ▶ nicht signifikanter Reaktionsweg * kennzeichnet Markierung für ¹³C-Kohlenstoff

Die relative Verteilung der Chlorierungsstufen der einzelnen Produktklassen ist für alle drei Kohlenstoffisotopenmischungen sehr ähnlich. Tabelle 5.1-7 zeigt die Werte im Einzelnen. Wie bereits für die Versuche mit Modellflugasche mit nur einem Kohlenstoffisotop berichtet, ist auch für diese Versuche die Konzentration an Pentachlorphenol unter den Chlorphenolen am höchsten, wobei die Konzentrationen der anderen Chlorierungsstufen kontinuierlich bis zu den Dichlorphenolen abnehmen. Des weiteren wurde die Bildung nur je eines Chlorphenolisomers für jeden Chlorierungsgrad beobachtet.

Für die Chlorbenzole wurden Cl_4Bz und Cl_5Bz in den höchsten Konzentrationen erhalten, wobei ihre Anteile sich in etwa die Waage halten (MFA-C und MFA-E); zum Teil war Cl_5Bz dominanter und die Anteile an Cl_3Bz und Cl_6Bz ausgeglichen (MFA-D).

Tab. 5.1-7Prozentuale Verteilung der einzelnen Chlorierungsstufen der PCBz, PCPh und PCDD/Fjeweils bezogen auf die Gesamtkonzentration nach thermischer Behandlung derMFA-A (12C) und MFA-B (13C), Reaktionstemperatur: 300 °C, Reaktionszeit: 2 h

		Cl ₂	Cl ₃	Cl4	Cl ₅	Cl ₆	Cl ₇	Cl ₈
	¹² C ₆ -PCPh	4	6	18	72			
	¹³ C₀-PCPh	0	0	14	86			
	¹² C ₆ -PCBz	7	16	33	32	12	-	
	¹³ C ₆ -PCBz	1	8	35	40	15		
	¹² C ₁₂ -PCDD	n.u.	n.u.	3	17	35	28	17
MFA-C	¹³ C ₁₂ -PCDD	n.u.	n.u.	3	15	29	34	20
	¹² C ₆ / ¹³ C ₆ -PCDD	n.u.	n.u.	3	11	30	32	25
	¹² C ₁₂ -PCDF	n.u.	n.u.	6	20	38	23	14
	¹³ C ₁₂ -PCDF	n.u.	n.u.	5	17	35	27	16
	¹² C ₆ / ¹³ C ₆ -PCDF	n.u.	n.u.	13	25	35	18	9
	¹² C ₆ -PCPh	3	14	19	64			
	¹³ C ₆ -PCPh	0	2	21	78			
	¹² C ₆ -PCBz	6	11	23	39	22		
	¹³ C ₆ -PCBz	0	4	22	44	30		
	¹² C ₁₂ -PCDD	n.u.	n.u.	2	17	28	30	23
	¹³ C ₁₂ -PCDD	n.u.	n.u.	3	13	23	36	25
	¹² C ₆ / ¹³ C ₆ -PCDD	n.u.	n.u.	3	8	28	30	31
	¹² C ₁₂ -PCDF	n.u.	n.u.	5	18	34	23	19
	¹³ C ₁₂ -PCDF	n.u.	n.u.	5	16	25	32	22
	¹² C ₆ / ¹³ C ₆ -PCDF	n.u.	n.u.	10	22	37	20	11
	¹² C ₆ -PCPh	2	19	15	64			
	¹³ C₀-PCPh	0	0	14	86			
	¹² C ₆ -PCBz	7	17	35	33	9		
	¹³ C ₆ -PCBz	1	8	37	44	11		
MFA-E	¹² C ₁₂ -PCDD	n.u.	n.u.	1	8	23	31	38
	¹³ C ₁₂ -PCDD	n.u.	n.u.	1	7	23	41	28
	¹² C ₆ / ¹³ C ₆ -PCDD	n.u.	n.u.	1	3	16	28	52
	¹² C ₁₂ -PCDF	n.u.	n.u.	3	10	27	25	34
	¹³ C ₁₂ -PCDF	n.u.	n.u.	2	9	25	29	35
	¹² C ₆ / ¹³ C ₆ -PCDF	n.u.	n.u.	8	18	28	24	22

Wie bereits für MFA-A und MFA-B beobachtet, werden unter den Chlorbenzolen einige Isomere bevorzugt gebildet. Für alle drei Mischungen und für beide Kohlenstoffisotope wurde das gleiche Isomerenmuster (Tab. 5.1-8) erhalten. Auch hier wurde wieder unter den $^{12}C_6$ -Trichlorbenzolen das 1,2,3- und unter den $^{13}C_6$ -Trichlorbenzolen das 1,2,4-Cl₃Bz- Isomer bevorzugt gebildet.

Würden die Chlorbenzole ausschließlich aus Chlorphenolen gebildet, so müßten für beide Kohlenstoffisotopen das gleiche Chlorbenzolisomerenmuster erhalten werden, da für ${}^{12}C_{6}$ - und ${}^{13}C_{6}$ -Chlorphenole die gleichen Hauptchlorphenolisomere gefunden wurden.

Tab. 5.1-8	Prozentuale Verteilung der gebildeten Chlorbenzolisomere innerhalb der
	Homologengruppen nach thermischer Behandlung der MFA-C, -D und -E
	Reaktionstemperatur: 300 °C, Reaktionszeit: 2 h

	MFA-C		MF	A-D	MFA-E	
	¹² C ₆	¹³ C ₆	¹² C ₆	$^{12}C_6$ $^{13}C_6$		¹³ C ₆
1,3-Cl ₂ Bz	74	57	75	64	75	100
1,4-Cl ₂ Bz	7	0	10	36	7	0
1,2-Cl ₂ Bz	19	43	15	0	18	0
1,3,5-Cl ₃ Bz	11	18	10	17	10	18
1,2,4-Cl₃Bz	41	61	33	60	37	62
1,2,3-Cl₃Bz	48	21	58	23	53	21
1,2,3,5-Cl ₄ Bz	44	46	39	43	43	45
1,2,4,5-Cl₄Bz	28	30	28	30	30	32
1,2,3,4-Cl ₄ Bz	28	24	33	27	27	23

Geht man davon aus, daß aromatische C₆-Ringe, d.h. Chlorphenole bzw. Chlorbenzole nach statistischen Gesichtspunkten zu PCDD/F kondensieren, gemäß den Regeln der Wahrscheinlichkeit, so sollte die Verteilung der ¹²C₁₂-, ¹²C₆/¹³C₆- und ¹³C₁₂-PCDD/F (in %), die durch Kondensation dieser C₆-Aromaten entstehen, den ¹²C₁₂-: ¹²C₆/¹³C₆-: ¹³C₁₂-PCDD/F-Verhältnissen entsprechen, die in Tab. 5.1-9 dargestellt sind. Aus Gründen der Übersichtlichkeit wurde ein ¹²C₆-Ring mit A und ein ¹³C₆-Ring mit B abgekürzt. Für die Mischung mit doppelter Konzentration an ¹³C-Kohlenstoff (und damit ¹³C₆-Verbindungen) verglichen mit ¹²C-Kohlenstoff (und damit ¹²C₆-Verbindungen), bzw. umgekehrt, wurde die doppelte Konzentration an A bzw. B mit AA' bzw. BB' bezeichnet.

Die Kombinationen AB und BA oder AA' und AA etc. sind nicht unterscheidbar, d.h. es gibt nur drei verschiedene Kondensationsprodukte, so daß die in der rechten Spalte der Tab. 5.1-9 aufgeführten ${}^{12}C_{12}$: ${}^{12}C_{6}/{}^{13}C_{6}$: ${}^{13}C_{12}$ -PCDD/F-Verhältnisse resultieren.

Tab. 5.1-9Statistische Verteilung der ${}^{12}C_{12}$ -, ${}^{12}C_{6}/{}^{13}C_{6}$ - und ${}^{13}C_{12}$ -PCDD/F [%], die durch
Kondensation von Phenylringen entstehen

¹² C ₆ : ¹³ C ₆	Kondensationsprodukte	$^{12}C_{12}$: $^{12}C_{6}/^{13}C_{5}$: $^{13}C_{12}$
1:1	AA AB BA BB	25 : 50 : 25
1:2	aa ab ab' ba b'a bb b'b bb' b'b'	11,11 : 44,44 : 44,44
2:1	aa a'a aa' a'a' ab a'b ba ba ' bb	44,44 : 44,44 : 11,11

Um diese statistischen Kombinationsmöglichkeiten auf die Kondensationen von ¹²C₆- und ¹³C₆-Chlorphenolen und -benzolen übertragen zu können, müssen einige Annahmen gemacht werden:

- i homogene Verteilung beider Kohlenstoffisotopen, sowie der daraus entstehenden Vorläuferverbindungen in der Reaktionsmischung
- ii die Ausbeuten aromatischer C₆-Ringe wie z.B. Chlorphenole und -benzole sollten unabhängig von der Isotopenart des Kohlenstoffs sein
- iii gleiche Reaktivität der ${}^{12}C_{6}$ und ${}^{13}C_{6}$ -Chlorphenole bzw. ${}^{12}C_{6}$ und ${}^{13}C_{6}$ -Chlorbenzole
- iv die aromatischen C₆-Ringe dürfen ausschließlich aus nur einer Isotopensorte -entweder aus ¹²C- oder ¹³C-Kohlenstoff aufgebaut sein.

Eine homogene Verteilung kann durch intensives Vermischen beider Kohlenstoffquellen erreicht werden. Die molaren Ausbeuten an ${}^{12}C_{6}$ - und ${}^{13}C_{6}$ -Chlorphenolen und -benzolen entsprechen in den bereits durchgeführten Experimenten (MFA-A bis MFA-E) weitgehend dem eingesetzten Kohlenstoffverhältnis, womit Punkt i erfüllt ist. Die zweite Annahme wird durch die Ergebnisse der Chlorphenole und –benzole (Tab. 5.1-4 und 5.1-5) bestätigt.

Zur Überprüfung der Annahme iv wurden Totalionenchromatogramme (TIC) der Chlorbenzol- und Chlorphenolproben aufgenommen.

In Abb. 5.1-7 ist ein Ausschnitt des Totalionenchromatogramms der Chlorbenzolfraktion des Versuches mit MFA-C (12 C : 13 C = 1:1) gezeigt.

Da für die Aufnahme von Totalionenchromatogrammen höhere Konzentrationen an Substanzen als für SIM-Messungen erforderlich sind, wird im folgenden der Isotopencluster von Hexachlorbenzol näher betrachtet, da Cl₆Bz unter den untersuchten C₆-Ringen in den höchsten Konzentrationen gebildet wurde.

Theoretisch können durch Scrambling der beiden Kohlenstoffisotope sieben verschiedene Benzolringe entstehen (${}^{12}C_{6^-}$, ${}^{12}C_5{}^{13}C_{1^-}$, ${}^{12}C_4{}^{13}C_{2^-}$, ${}^{12}C_3{}^{13}C_{3^-}$, ${}^{12}C_2{}^{13}C_{4^-}$, ${}^{12}C_1{}^{13}C_{5^-}$ und ${}^{13}C_{6^-}Cl_6Bz$).

Die Full-Scan-Messung zeigt, daß die gebildeten Benzolringe nur aus einem Kohlenstoffisotop aufgebaut sind, entweder ¹²C oder ¹³C. Die Tatsache, daß keine ungeraden Massenzahlen im TIC-Spektrum vorkommen, schließt damit die Bildung von ¹²C₅¹³C₁-Cl₆Bz, ¹²C₃¹³C₃-Cl₆Bz und ¹²C₁¹³C₅-Cl₆Bz aus.

Abb. 5.1-7 Isotopencluster von ${}^{12}C_6$ - und ${}^{13}C_6$ -Cl₅Bz und -Cl₆Bz der MFA-C (${}^{12}C : {}^{13}C = 1:1$) Reaktionstemperatur: 300 °C, Reaktionszeit: 2 h

Im folgenden wird eine mögliche Bildung von ${}^{12}C_4{}^{13}C_2$ -Cl₆Bz und ${}^{12}C_2{}^{13}C_4$ -Cl₆Bz vernachlässigt und nur die Bildung von ${}^{12}C_6$ - und ${}^{13}C_6$ -Hexachlorbenzol diskutiert.

Da ¹²C₆-Cl₆Bz und ¹³C₆-Cl₆Bz identische Retentionszeiten besitzen, sind die Isotopencluster beider Verbindungen nicht weiter auftrennbar. Um nachzuweisen, daß kein Scrambling innerhalb der Kohlenstoffringe stattfindet, werden für beide Verbindungen die absoluten Höhen der Signallinien der Isotopencluster gemäß den Intensitätsverhältnissen für Hexachlorbenzol berechnet.

Als Maßstab für die Berechnung des Isotopenclusters für ${}^{12}C_6$ -Cl₆Bz wird die Höhe des (M+2)–Peaks von ${}^{12}C_6$ -Cl₆Bz aus der Full-Scan-Messung verwendet. Dieser Peak kann von keinem Peak der anderen möglichen ${}^{12}C_x{}^{13}C_y$ -Cl₆Bz (mit x+y=6) überlagert werden. Die Höhe des (M+2)–Peaks von ${}^{13}C_6$ -Cl₆Bz wird über die Höhe des (M+2)–Peaks von ${}^{12}C_6$ -Cl₆Bz und dem Mengenverhältnis der beiden Hexachlorbenzole (bekannt aus der SIM-Messung) ermittelt. Die berechneten Höhen der Signallinien der Isotopencluster von ${}^{12}C_6$ -Cl₆Bz und ${}^{13}C_6$ -Cl₆Bz sind in Tab. 5.1-10 zusammengefaßt.

51

Peak	Intensitäts-	¹² C ₆	-Cl ₆ Bz	¹³ C ₆ -Cl ₆ Bz		
	verhältnisse	Masse	Abundance	Masse	Abundance	
M	52	282	16430	288	20382	
M+2	100	284	31600	290	39196	
M+4	80	286	25280	292	31357	
M+6	34	288	10745	294	13327	
M+8	8	290	2530	296	3135	
M+10	1	292	320	298	392	

Tab. 5.1-10 Berechnete Signallinienhöhen der Isotopencluster von ${}^{12}C_6$ - und ${}^{13}C_6$ - CI_6Bz

Addiert man die in Tab. 5.1-10 berechneten Signallinienhöhen der Isotopencluster für ${}^{12}C_{6}$ - und ${}^{13}C_{6}$ -Cl₆Bz, so sollte nur eine geringe Abweichung von den experimentellen Signallinienhöhen auftreten, wenn es sich um isotopenreine Kohlenstoffringe handelt. Wie der Vergleich beider Datenreihen in Tab. 5.1-11 zeigt, weichen die experimentellen Werte um max. 8 % von den berechneten Werten ab und liegen damit innerhalb der Meßgenauigkeit.

Tab. 5.1-11Vergleich der experimentellen und berechneten Isotopencluster von ${}^{12}C_6$ - und ${}^{13}C_6$ -Cl₆Bz für MFA-C (${}^{12}C : {}^{13}C = 1 : 1$)Reaktionstemperatur: 300 °C, Reaktionszeit: 2 h

Masse	Abundance experimentell	Σ Abundance: ¹² C ₆ -Cl ₆ Bz + ¹³ C ₆ -Cl ₆ Bz
282	17200	16430
284	31600	31600
286	25400	25280
288	32400	31127
290	45200	41726
292	33800	31726
294	15600	13327
296	4200	3135

Die bisherige Betrachtung zeigte, daß der Isotopencluster von Hexachlorbenzol sehr gut mit Phenylringen übereinstimmt, die nur aus einem Kohlenstoffisotop aufgebaut sind, entweder aus ¹²C- oder ¹³C-Kohlenstoffatomen.

Ähnliche Rechnungen mit verschiedenen Anteilen an ${}^{12}C_4{}^{13}C_2$ -Cl₆Bz, ${}^{12}C_2{}^{13}C_4$ -Cl₆Bz, ${}^{12}C_6$ -Cl₆Bz und ${}^{13}C_6$ -Cl₆Bz zeigen, daß bereits bei einem Anteil von max. 2 % an ${}^{12}C_4{}^{13}C_2$ -Cl₆Bz bzw. ${}^{12}C_2{}^{13}C_4$ -Cl₆Bz die experimentellen Signallinienhöhen um mind. 10 % von den berechneten Höhen abweichen würden.

Die Auswertung des Totalionenchromatogramms der Chlorphenolprobe der MFA-C bestätigt die oben ausgeführten Schlußfolgerungen.

Diese Ergebnisse führen zu dem Schluß, daß die aus Kohlenstoff gebildeten C₆-Ringe ausschließlich aus ¹²C- bzw. ¹³C-Kohlenstoff aufgebaut sind. Daher können die durch Kondensation entstandenen Strukturen (¹²C₆/¹³C₆-PCDD/F), als auch die direkt aus der Kohlenstoffmatrix herausgelösten ¹²C₁₂- und ¹³C₁₂-PCDD/F nur die beiden möglichen Ringe, ¹²C₆ oder ¹³C₆, enthalten.

Bisher wurde die Verteilung der ¹²C₆- und ¹³C₆-PCPh und -PCBz erörtert. Im folgenden wird die Verteilung der unterschiedlich markierten PCDD und PCDF in Abhängigkeit vom eingesetzten Kohlenstoffisotopenverhältnis beschrieben.

Während die ${}^{12}C_6/{}^{13}C_6$ -PCDD/F ausschließlich durch Kondensation aus ${}^{12}C_6$ - und ${}^{13}C_6$ -PCPh bzw. -PCBz entstehen, können die rein isotopenmarkierten ${}^{12}C_{12}$ - und ${}^{13}C_{12}$ -PCDD/F sowohl durch Kondensation zweier Phenylringe entstehen als auch direkt aus dem Kohlenstoff gebildet werden.

Unter der Annahme, daß die ¹²C₆-PCPh bzw. -PCBz und ¹³C₆-PCPh bzw. -PCBz ähnliche Reaktivität in der Kondensationsreaktion zu PCDD/F besitzen, sollte entsprechend Tab. 5.1-9 ein bestimmter Prozentsatz der rein kohlenstoffisotopenmarkierten PCDD/F abhängig vom ¹²C/¹³C-Kohlenstoffisotopenverhältnis - Kondensationsprodukte (¹²C₆/¹²C₆und ¹³C₆/¹³C₆-PCDD/F) darstellen. Die in Tabelle 5.1-9 aufgeführten Produktverhältnisse für die PCDD/F würden resultieren, wenn die erhaltenen PCDD/F nur durch Kondensation von zwei aromatischen C₆-Vorläufersubstanzen entstehen würden. Die experimentell erhaltenen Konzentrationswerte für die PCDD/F stellen die Summe aller möglichen Reaktionen mit Kohlenstoff als primärer PCDD/F-Quelle dar. Durch Subtraktion des entsprechenden Anteils der Kondensationsprodukte - entsprechend Tab. 5.1-9 - von der Gesamtsumme der ¹²C₁₂und ¹³C₁₂-PCDD/F, resultiert eine Restmenge an ¹²C₁₂- und ¹³C₁₂-PCDD/F, die direkt aus dem Kohlenstoff herausgelösten Produkte. Im folgenden wird dieser Reaktionsweg als direkte De-Novo-Synthese bezeichnet, direkt deshalb, weil keine aromatischen C_6 -Verbindungen als Intermediate an der PCDD/F-Bildung beteiligt sind. Diese (aus den experimentellen Daten) berechneten Werte für die Konzentrationen der Kondensationsprodukte aus C6-Verbindungen und die Konzentrationen der Produkte der direkten De-Novo-Synthese sind in Tab. 5.1-12 kursiv dargestellt. Unabhängig vom eingesetzten Kohlenstoffisotopenverhältnis entstehen ungefähr 40 % der PCDD durch Kondensation aus C_6 -Ringen, während nur ca. 2 % der PCDF sukzessive aus zwei aromatischen Ringen aufgebaut werden. Trotz unterschiedlicher absoluter Konzentrationen an PCDD/F wird für alle drei Reaktionsmischungen ein ähnliches Verhältnis der beiden diskutierten Reaktionswege erhalten.

Aus den erhaltenen Daten läßt sich weiter ableiten, daß geringfügige Änderungen der Reaktionsbedingungen, wie z.B. Körnungsgrad, bzw. variierende Oberflächengröße (Fehler beim Verreiben der Edukte und Herstellung der Modellflugasche) und Temperaturschwankungen während der thermischen Behandlung nur einen Einfluß auf die Ausbeuten der Reaktionsprodukte haben, der Reaktionsmechanismus dagegen bleibt unbeeinflußt.

Tab. 5.1-12	Konzentrationen der ${}^{12}C_{12}$ -, ${}^{13}C_{12}$ - und ${}^{12}C_{6}/{}^{13}C_{6}$ -PCDD/F [pmol/g MFA] der thermischen
	Versuche mit Modellflugaschen mit unterschiedlichen Kohlenstoffisotopenverhältnissen
	Reaktionstemperatur: 300 °C, Reaktionszeit: 2 h

MFA-C	^{12}C : ^{13}C = 1 : 1	¹² C ₁₂	¹³ C ₁₂	¹² C ₆ / ¹³ C ₆	Summe
Experiment	PCDD	1600	2070	880	4550
	Kondensation	440	440	880	1760 39 %
berechnet	De-Novo-Synthese	1160 42 %	1630 58 %		2790 61 %
Experiment	PCDF	4390	5510	150	10050
	Kondensation	75	75	150	300 3 %
berechnet	De-Novo-Synthese	4315 44%	5435 56 %		9750 97 %

MFA-D	^{12}C : ^{13}C = 1 : 2	¹² C ₁₂		¹³ C ₁₂		¹² C ₆ / ¹³ C ₆	Sumr	ne
Experiment	PCDD	3140		6540		2430	1211	0
	Kondensation	550	1	2430	ĺ	2430	5410	45 %
berechnet	De-Novo-Synthese	2590	39 %	4100	61 %		6690	55 %
Experiment	PCDF	5480		14360		170	2001	0
	Kondensation	40		170		170	380	2 %
berechnet	De-Novo-Synthese	5440	28 %	14190	72 %		19630	98 %

MFA-E	${}^{12}C:{}^{13}C=2:1$	¹² C ₁₂	¹³ C ₁₂	¹² C ₆ / ¹³ C ₆	Summe
Experiment	PCDD	3390	2250	1130	6770
	Kondensation	1130	260	1130	2520 37 %
berechnet	De-Novo-Synthese	2260 53 %	1990 47 %		4250 63 %
Experiment	PCDF	8310	5570	160	13880
	Kondensation	160	40	160	360 3%
berechnet	De-Novo-Synthese	8150 59 %	5530 41 %		13680 97 %

Die direkte De-Novo-Synthese von PCDD/F aus ¹²C- und ¹³C-Kohlenstoff (berechnete Werte in Tab. 5.1-12) sollte zu einem ¹²C₁₂-PCDD/F/¹³C₁₂-PCDD/F-Verhältnis führen, das dem eingesetzten ¹²C/¹³C-Kohlenstoffverhältnis entspricht. Dies wurde auf allen drei Modellflugaschen, unabhängig vom eingesetzten ¹²C/¹³C-Kohlenstoffverhältnis, gefunden. Mit Ausnahme der PCDD-Bildung des Versuches mit MFA-E (¹²C:¹³C=2:1) weichen die PCDD/F-Konzentrationen aus der *direkten De-Novo-Synthese* um 20 % vom theoretischen Verhältnis (Tab. 5.1-9) ab.

Aus dem Anteil der Konzentration an ${}^{12}C_6/{}^{13}C_6$ -PCDD bzw. –PCDF an der Gesamtsumme der PCDD bzw. PCDF lassen sich folgende Schlußfolgerungen ziehen:

- Ungefähr 40 % der PCDD entstehen durch Kondensationsreaktionen von aromatischen C₆-Verbindungen wie z.B. Chlorphenole oder –benzole
- Etwa 60 % der PCDD werden direkt als Dibenzodioxin-Struktur aus der Kohlenstoffmatrix herausgelöst ohne die Beteiligung einzelner aromatischer Ringe als Intermediate
- Der dominante Weg für die PCDF-Bildung ist der direkte Abbau aus der Kohlenstoffmatrix, wobei nur Verbindungen in Frage kommen, die bereits als C-Cverbrückte aromatische Strukturen aus der Kohlenstoffmatrix freigesetzt werden – z.B. Dibenzofuran-Strukturen oder Biphenyle, wobei aus letzteren durch Oxidation in ortho-Stellung Dibenzofuran-Verbindungen entstehen können.
- Nur ein kleiner Anteil der PCDF (< 3 %) wird durch Kondensationsreaktionen aus monoaromatischen Verbindungen gebildet. Aufgrund der hohen Bildungsenergie ist die Ausbildung einer C-C-Bindung zwischen zwei aromatischen Ringen unter diesen Reaktionsbedingungen nur bedingt möglich.

Die isotopengemischten ${}^{12}C_{6}/{}^{13}C_{6}$ -PCDD können nur auf eine Kondensation von Chlorphenolen oder -benzolen zurückgeführt werden, während unter den ${}^{12}C_{12}$ - und ${}^{13}C_{12}$ -PCDD ein Teil durch Kondensation von Chlorphenolen und der andere Teil durch direkte Herauslösung der Strukturen aus der Kohlenstoffmatrix entsteht. Die aus der Kondensation - sowohl direkt als auch über die *Smiles-Umlagerung* (vgl. Abb. 2.2-1) -

resultierenden Kondensationsprodukte (Cl₄DD-Cl₈DD) aus den Hauptisomeren der Chlorphenole sind in Tab. 5.1-13 aufgelistet.

PCPh + PCPh	PCDD-Kondensationsprodu	ukte
2-ClPh + Cl₅Ph	1,2,3,4-	
2,4-Cl₂Ph + 2,3,4,6-Cl₄Ph	1,2,3,7-; 1,2,3,8-; 1,2,4,7-; 1,2,4,8-	Cl₄DD
2,4,6-Cl₃Ph + 2,4,6-Cl₃Ph	1,3,6,8-; 1,3,7,9-	
2,4-Cl₂Ph + Cl₅Ph	1,2,3,4,7-	CI5DD
2,4,6-Cl₃Ph + 2,3,4,6-Cl₄Ph	1,2,3,6,8-; 1,2,3,7,9-; 1,2,4,6,8-; 1,2,4,7,9-	
2,4,6-Cl₃Ph + Cl₅Ph	1,2,3,4,6,8-	
2,3,4,6-Cl₄Ph + 2,3,4,6-Cl₄Ph	1,2,3,6,7,8-; 1,2,3,6,7,9-; 1,2,3,6,8,9-	Cl₅DD
	1,2,3,7,8,9-; 1,2,4,6,8,9-; 1,2,4,6,7,9-	
2,3,4,6-Cl₄Ph + Cl₅Ph	1,2,3,4,6,7,8-; 1,2,3,4,6,7,9-	Cl ₇ DD
Cl₅Ph + Cl₅Ph	1,2,3,4,6,7,8,9-	Cl ₈ DD

Tab. 5.1-13	Theoretische PCDD-Kondensationsprodukte aus den Hauptisomeren der Chlorphenole
	auf Modellflugasche

In Tab. 5.1-14 ist die Verteilung aller PCDD-Isomere für die einzelnen Chlorierungsstufen dargestellt. Die Kondensationsprodukte aus den Hauptchlorphenolen (entsprechend Tab. 5.1-13) sind hier fett markiert. Neben diesen Isomeren entstehen eine Reihe weiterer Isomere (sind in Tab. 5.1-14 unterstrichen) in hohen Konzentrationen. Diese Isomere können in zwei Gruppen eingeteilt werden:

- i Isomere, in denen ein Phenylring in alternierenden Positionen chloriert ist, während im anderen Ring die Chlorfunktionen vicinale Positionen besetzen, z.B. 1,3,7,8-, 1,2,6,8- und 1,2,7,9-Cl₄DD
- ii Isomere, in denen ein Phenylring in den Positionen 1, 2 und 3 bzw. 1, 2 und 4 chloriert ist, während im anderen Ring nur ein C-Atom chloriert ist, z.B. 1,2,3,6-, 1,2,3,7-, 1,2,3,8-, 1,2,3,9-Cl₄DD bzw. 1,2,4,6-, 1,2,4,7-, 1,2,4,8- und 1,2,4,9-Cl₄DD.

Da diese Isomere auch unter den isotopengemischten ${}^{12}C_{6}/{}^{13}C_{6}$ -PCDD in ähnlichen Konzentrationen vertreten sind wie in den isotopenreinen ${}^{12}C_{12}$ - und ${}^{13}C_{12}$ -PCDD, sind sie auch auf eine Kondensation von Phenyleinheiten zurückführbar. Die Hälfte der in Reaktionsweg ii aufgezählten Isomere (1,2,3,7-, 1,2,3,8-, 1,2,4,7- und 1,2,4,8-Cl₄DD) können auch durch Kondensation von 2,4-Cl₂Ph und 2,3,4,6-Cl₄Ph entstehen (Tab. 5.1-13). Bisher wurde nur die Kondensation bereits vollständig ausgebildeter Chlorphenolmoleküle betrachtet, d.h. auf der Kohlenstoffoberfläche adsorbierten Chlorphenolen. Reagiert aber ein Chlorphenol mit einem weiteren "Chlorphenol", das noch mit der Kohlenstoffmatrix über kovalente C-C-Bindungen verbunden ist, so resultieren weitere Isomere. Dieser Reaktionsweg führt - wie die direkte Kondensation zweier Chlorphenole - sowohl zur Bildung von kohlenstoffisotopenreinen als auch -gemischten PCDD, abhängig davon ob ein ${}^{12}C_{6}$ -PCPh oder ${}^{13}C_{6}$ -PCPh mit einem ${}^{12}C_{6}$ - oder ${}^{13}C_{6}$ -Phenylring reagiert, der noch mit dem Kohlenstoffgerüst kovalent verbunden ist.

	$^{12}C:^{13}C = 1:1$			
	¹² C ₁₂ -Cl ₄ DD	¹³ C ₁₂ -Cl ₄ DD	¹² C ₆ / ¹³ C ₆ -Cl ₄ DD	
1,3,6,8	12,0	14,4	20,0	
1,3,7,9	6,0	9,9	12,1	
<u>1,3,7.8</u>	<u>10,4</u>	<u>14,9</u>	<u>13,9</u>	
1,3,6,9/ <u>1,2,4,7</u> / <u>1,2,4,8</u>	<u>9,9</u>	<u>12,7</u>	<u>13,2</u>	
<u>1,2,6,8</u>	4,3	<u>4.6</u>	4.6	
1,4,7,9	1,6	1,9	1,1	
2,3,7,8	4,1	4,4	1,4	
<u>1,2,3,7</u>	<u>4,6</u>	<u>6,2</u>	<u>5,9</u>	
1,2,3,4 / <u>1,2,4,6</u> / <u>1,2,4,9</u> / <u>1,2,3,8</u>	7.7	<u>7.4</u>	<u>9,9</u>	
<u>1,2,3,6/1,2,7,9</u>	<u>5,4</u>	<u>8,5</u>	<u>7.8</u>	
1,4,6,9/1,2,7,8	15,4	7,9	3,3	
1.2.3.9	7.7	1.6	<u>3,2</u>	
1,2,6,9	3,8	1,6	0,9	
1,2,6,7	4,1	2,3	2,0	
1,2,8,9	2,8	1,9	0,6	
	¹² C ₁₂ -Cl ₅ DD	¹³ C ₁₂ -Cl ₅ DD	¹² C ₆ / ¹³ C ₆ -Cl ₅ DD	
1,2,4,6,8/1,2,4,7,9	25,4	24,7	27,7	
1,2,3,6,8	15,4	15,0	19,0	
1,2,4,7,8	<u>9,1</u>	<u>9,6</u>	<u>5,4</u>	
1,2,3,7,9	11,8	11,7	14,0	
1,2,4,6,9/ <u>1,2,3,4,7</u>	5,7	6,1	8,7	
1,2,3,7,8	<u>10,5</u>	<u>12,4</u>	<u>8,3</u>	
1,2,3,6,9	2,5	2,7	1,9	
1,2,4,6,7	2.4	<u>3,2</u>	<u>2,7</u>	
1,2,4,8,9	<u>3.6</u>	<u>3,5</u>	<u>2,1</u>	
1.2.3.4.6	<u>1.2</u>	1.1	<u>2,2</u>	
1.2,3,6,7	<u>5,7</u>	<u>4,6</u>	<u>3,5</u>	
<u>1,2,3,8,9</u>	<u>6,8</u>	<u>5,4</u>	<u>4.6</u>	
	¹² C ₁₂ -Cl ₆ DD	¹³ C ₁₂ -Cl ₆ DD	¹² C ₆ / ¹³ C ₆ -Cl ₆ DD	
1,2,4,6,7,9/1,2,4,6,8,9/1,2,3,4,6,8	33,4	34,0	42,5	
1,2,3,6,7,9/1,2,3,6,8,9	33,9	33,6	29,7	
1.2.3.4.7.8	7.4	<u>7.4</u>	<u>8,9</u>	
1,2,3,6,7,8	9,9	10,5	1,4	
1,2,3,4,6,9	1,4	1,3	1,9	
1,2,3,7,8,9	8,7	8,5	9,2	
1,2,3,4,6,7	<u>5,2</u>	<u>4,9</u>	<u>6,4</u>	
	¹² C ₁₂ -Cl ₇ DD	¹³ C ₁₂ -CI ₇ DD	¹² C ₆ / ¹³ C ₆ -Cl ₇ DD	
1,2,3,4,6,7,9	<u>46,9</u>	<u>47,0</u>	<u>45,6</u>	
1,2,3,4,6,7,8	<u>53,1</u>	<u>53,0</u>	<u>54,4</u>	

 Tab. 5.1-14
 Prozentuale Verteilung der PCDD-Isomere innerhalb der Homologengruppen nach thermischer Behandlung der MFA-C (¹²C:¹³C=1:1), Reaktionstemp. 300 °C, Zeit: 2 h

Die Bildung der Isomere der Gruppe i kann durch Kondensation von 2,4,6-Cl₃Ph mit einem aromatischen Ring erklärt werden, der noch über zwei C-Atome mit dem Kohlenstoffgerüst verbunden ist. Ein plausibler Reaktionsweg ist beispielhaft für die Bildung von 1,3,7,8-Cl₄DD und 1,2,4,8,9-Cl₅DD in Abb. 5.1-8 veranschaulicht.

Abb. 5.1-8 a) Bildung von 1,3,7,8-Cl₄DD durch Reaktion von 2,4,6-Cl₃Ph mit einem Phenylring, der noch über zwei C-C-Bindungen mit der Kohlenstoffmatrix verbunden ist
 b) Bildung von 1,2,4,8,9-Cl₅DD durch Reaktion von 2,3,4,6-Cl₃Ph mit einem Phenylring, der noch über zwei C-C-Bindungen mit der Kohlenstoffmatrix verbunden ist
 →→→ = Kohlenstoffmatrix

Die Kondensation des 2,4,6-Trichlorphenols mit einem "Chlorphenol", das noch mit der Kohlenstoffmatrix über zwei benachbarte C-Atome verbunden ist, liefert eine ortho-Hydroxydiphenyletherstruktur. Eine Chlorierung nach dem Ligandentransfermechanismus kann schließlich zu 1,3,7,8-, 1,2,6,8- oder 1,2,7,9-Cl₄DD führen. Daß 2,4,6-Cl₃Ph am Aufbau des Tetrachlordibenzodioxins beteiligt ist, läßt sich auch am Isomerenmuster erkennen: in einem Ring sind alternierende Positionen chloriert (vgl. Kondensationsprodukte in Tab. 5.1-13 unter Beteiligung von 2,4,6-Cl₃Ph). Durch analoge Reaktionswege läßt sich die Bildung der Kongenere der Gruppe ii erklären. Hierbei reagiert ein Chlorphenolmolekül, welches nur noch über ein Kohlenstoffatom mit dem Kohlenstoffskelett verbunden ist, mit 2,3,4,6-Cl₄Ph. Hierbei resultieren: 1,2,3,6-, 1,2,3,7-, 1,2,3,8-, 1,2,3,9-, 1,2,4,6-, 1,2,4,7-, 1,2,4,8- und 1,2,4,9-Cl₄DD. Auch hier ist aus dem Isomerenmuster zu erkennen, daß 2,3,4,6-Cl₄Ph am Aufbau der Tetrachlordibenzodioxine beteiligt ist.

Durch Kondensation eines Chlorphenolmoleküls, welches über zwei Kohlenstoffatome mit dem Kohlenstoffgerüst verbunden ist, mit 2,3,4,6-Cl₄Ph können folgende Kongenere entstehen: 1,2,3,6,7-, 1,2,3,7,8-, 1,2,3,8,9-, 1,2,4,6,7-, 1,2,4,7,8- und 1,2,4,8,9-Cl₅DD. Die Reaktion eines Chlorphenolmoleküls, welches nur noch über ein Kohlenstoffatom mit dem Kohlenstoffgerüst direkt verbunden ist, mit Pentachlorphenol sollte folgende Kongenere liefern: 1,2,3,4,6- und 1,2,3,4,7-Cl₅DD.

Im Falle der Hexachlordibenzodioxine kann die Bildung von 1,2,3,4,7,8- und 1,2,3,4,6,7-Cl₆DD durch Kondensation von Pentachlorphenol und "Chlorphenol", das über zwei Kohlenstoffatome noch am Kohlenstoffgerüst fixiert ist, erklärt werden.

Mit Hilfe der beiden vorgeschlagenen Reaktionen:

- i Kondensation von auf Kohlenstoff adsorbierten Chlorphenolen
- ii Kondensation eines auf der Kohlenstoffoberfläche adsorbierten Chlorphenols mit einem aromatischen Ring, der noch über C-C-Bindungen mit dem Kohlenstoffgerüst verbunden ist,

kann die Bildung von mehr als 80 % der Cl₄DD und mehr als 95 % der Isomere der höheren Chlorhomologengruppen erklärt werden. Die übrigen Isomere sind auf Chlorierungen und Dechlorierungen sowie Umlagerungen zurückzuführen.

Prinzipiell ist auch denkbar, daß Chlorphenole mit Chlorbenzolen reagieren, die noch mit dem Kohlenstoffgerüst kovalent verbunden sind. Nach Knüpfung der Etherbindung zur Diphenylether-Verbindung und anschließender Oxidation dieser Verbindung in ortho-Stellung zum bereits vorhandenen Sauerstoffatom zu einem ortho-Hydroxydiphenylether, resultieren die gleichen Strukturen.

Aus Gründen der Übersichtlichkeit wurden für die PCDF-Isomere nur die Isomere aufgelistet, deren Anteil an der Gesamtsumme des entsprechenden Chlorierungsgrades größer als 4 % ist.

Wie aus Tab. 5.1-15 hervorgeht, werden in allen drei PCDF-Gruppen ähnliche Isomere bevorzugt gebildet.

Aufgrund der geringen Konzentrationen an gemischtmarkierten ¹²C₆/¹³C₆-PCDF, die Aufschluß über mögliche Intermediate geben können, ist die Analyse des Reaktionsmechanismus erschwert.

Auch die ${}^{12}C_6/{}^{13}C_6$ -PCDF sollten genauso wie die ${}^{12}C_6/{}^{13}C_6$ -PCDD auf eine Kondensation von aromatischen C₆-Verbindungen zurückführbar sein. Addink et.al. schlugen für die PCDF-Bildung eine Kondensation von Chlorphenolen und Chlorbenzolen vor⁶⁸.

Durch Übertragung der mechanistischen Überlegungen der PCDD-Bildung durch Kondensation von Chlorphenolen auf die PCDF-Bildung erhält man folgende plausiblen Reaktionsmöglichkeiten:

- 1. Kondensation von auf Kohlenstoff adsorbierten Chlorphenolen mit Chlorbenzolen oder Chlorphenolen
- 2. Kondensation von Chlorphenolen mit aromatischen Ringen, die noch Teil der Kohlenstoffmatrix sind.

Wie erwähnt, sind die Konzentrationen der ¹²C₆/¹³C₆-PCDF sehr gering, so daß hier für eine Abschätzung der Rolle von Chlorbenzolen oder Chlorphenolen am Aufbau der PCDF die Bildung der Hexachlordibenzofurane näher analysiert wird.

In der folgenden Tabelle sind die PCDF-Isomere aufgeführt, deren prozentualer Anteil an der entsprechenden Chlorierungsstufe größer als 4 % ist.

Tab. 5.1-15	Prozentuale Verteilung der PCDF-Isomere innerhalb der Homologengruppen nach
	thermischer Behandlung der MFA-C (¹² C: ¹³ C = 1:1)
	Reaktionstemperatur: 300 °C, Reaktionszeit: 2 h

		$^{12}C:^{13}C = 1:1$	
	¹² C ₁₂ -Cl ₄ DF	¹³ C ₁₂ -Cl ₄ DF	¹² C ₆ / ¹³ C ₆ -Cl ₄ DF
1,3,6,8	2,1	4,3	2,0
1,3,7,8	3,7	5,7	2,7
1,6,7,8/1,2,3,4	3,1	1,7	16,9
1,2,4,7 /1,3,6,7	3,0	4,6	5,2
1,2,4,6/1,2,6,8	3,1	4,1	4,7
2,4,6,8/1,2,3,8/1,4,6,7/1,2,3,6	5,6	6,7	5,5
1,2,4,9	12,1	9,6	9,7
2,4,6,7	11,4	8,0	6,4
2,3,4,7	8,5	6,7	7,4
2,3,7,8	5,2	4,2	1,3
2,3,4,8	5,0	4,1	3,5
2,3,4,6	5,2	4,2	4,9
2,3,6,7	6,3	5,4	3,0
1,2,8,9	5,2	4,4	2,8
	¹² C ₁₂ -Cl ₅ DF	¹³ C ₁₂ -Cl ₅ DF	¹² C ₆ / ¹³ C ₆ -Cl ₅ DF
1,3,4,6,8	1,8	3,1	4,0
1,2,4,6,8	2,3	4,4	5,0
1,2,3,6,8 /1,3,4,7,8	9,2	9,6	8,0
1,2,4,7,8	5,8	6,2	4,6
1,2,4,6,7	2,9	3,0	7,0
1,2,3,4,6	1,5	1,5	7,6
2,3,4,6,8	10,3	8,3	7,7
2,3,4,7,8	10,5	7,8	7,7
2,3,4,6,7	8,5	6,4	6,0
	¹² C ₁₂ -Cl ₆ DF	¹³ C ₁₂ -Cl ₆ DF	¹² C ₆ / ¹³ C ₆ -Cl ₆ DF
1,2,3,4,6,8	5,4	6,3	12,7
1,3,4,6,7,8	8,5	7,8	7,4
1,2,4,6,7,8	11,8	11,4	11,7
1,2,4,6,7,9	8,4	8,1	3,7
1,2,3,4,7,8/1,2,3,4,7,9	11,9	10,7	17,2
1,2,3,6,7,8	10,4	9,1	9,5
1,2,3,4,6,7	4,6	3,7	12,7
1,2,3,6,7,9	6,4	5,9	2,4
1,2,3,7,8,9	4,3	6,0	0,8
2,3,4,6,7,8	7,1	8,9	8,8

		$^{12}C:^{13}C = 1:1$	
	¹² C ₁₂ -Cl ₇ DF	¹³ C ₁₂ -Cl ₇ DF	¹² C ₆ / ¹³ C ₆ -Cl ₇ DF
1,2,3,4,6,7,8	35,8	34,1	54,5
1,2,3,4,6,7,9	24,4	24,6	17,6
1,2,3,4,6,8,9	23,2	24,1	15,4
1,2,3,4,7,8,9	16,5	17,2	12,5

Aufgrund der Vielzahl an gebildeten Chlorbenzolen ist eine große Anzahl an PCDF-Isomeren möglich. Berücksichtigt man für die PCDF-Bildung nur die Kondensation der Hauptchlorphenole mit Chlorbenzolen - die in den höchsten Konzentrationen gebildet wurden - wobei im 1. Reaktionsschritt die Etherbindung durch Abspaltung von HCl und im 2. Reaktionsschritt die C-C-Bindung ebenfalls durch HCl-Abspaltung geknüpft wird (vgl. Abb. 2.2-2), so resultieren die in Tab. 5.1-16 aufgezählten PCDF-Isomere. Die am häufigsten gebildeten Isomere sind fett markiert.

Dadurch daß vereinfachend Diphenylether als Zwischenstufe bei der Kondensation von Chlorphenolen und Chlorbenzolen angenommen wurde, sind die Reaktionsprodukte nach beiden Reaktionswegen 1. und 2. nicht unterscheidbar. Bei der thermischen Behandlung verschiedener chlorierter Diphenylether auf Modellflugasche (300 °C) beobachteten Ross et.al.¹⁰⁰, daß diese bevorzugt unter H₂-Abspaltung PCDF liefern. Die HCI-Abspaltung spielte ebenfalls eine bedeutende Rolle, wohingegen eine Cl₂-Abspaltung kaum auftrat. Da hier mehr als 97 % der Chlorphenole in beiden ortho-Positionen chlorierten Diphenylether als Zwischenstufen eine HCI-Abspaltung am wahrscheinlichsten erscheint.

PCBz + PCPh	PCDF-Kondensationsprodukt	Ð
ClBz + Cl₅Ph	1,2,3,4-	
1,2,-Cl₂Bz + 2,3,4,6-Cl₄Ph	2,3,4,6- ; 1,2,4,6-	
1,3-Cl₂Bz + 2,3,4,6-Cl₄Ph	1,2,4,7-; 1,2,4,9-; 1,6,7,8-; 2,3,4,7-	
1,4-Cl₂Bz + 2,3,4,6-Cl₄Ph	2,3,4,8 -; 1,2,4,8-	
1,2,3-Cl₃Bz + 2,4,6-Cl₃Ph	2,4,6,7-	CLDE
1,2,4-Cl ₃ Bz + 2,4,6-Cl ₃ Ph	1,2,6,8-; 1,4,6,8-; 2,3,6,8-; 2,4,6,8-	01401
1,2,3,5-Cl₄Bz + 2,4-Cl₂Ph	1,2,3,8-; 1,3,4,8-	
1,2,4,5-Cl₄Bz + 2,4-Cl₂Ph	1,2,4,8-	
1,2,3,4-Cl₄Bz + 2,4-Cl₂Ph	2,3,4,8-	
Cl₅Bz + 2-Cl₂Ph	1,2,3,4-	
1,2-Cl₂Bz + Cl₅Ph	1,2,3,4,9-	
1,3-Cl₂Bz + Cl₅Ph	1,2,3,4,6 -; 1,2,3,4,9-	
1,4-Cl₂Bz + Cl₅Ph	1,2,3,4,8-	
1,2,3-Cl₃Bz + 2,3,4,6-Cl₄Ph	2,3,4,6,7-; 1,2,4,6,7-	
1,2,4-Cl₃Bz + 2,3,4,6-Cl₄Ph	1,2,4,6,8-; 1,2,4,7,8-; 2,3,4,6,8-; 2,3,4,7,8-;	
	1,2,6,7,8-; 1,2,4,6,9-; 1,2,4,8,9-; 1,4,6,7,8-	Cl₅DF
1,3,5-Cl₃Bz + 2,3,4,6-Cl₄Ph	1,2,4,7,9-; 1,3,6,7,8-	
1,2,3,5-Cl₄Bz + 2,4,6-Cl₃Ph	1,2,3,6,8-; 1,3,4,6,8-	
1,2,4,5-Cl₄Bz + 2,4,6-Cl₃Ph	1,2,4,6,8-	
1,2,3,4-Cl₄Bz + 2,4,6-Cl₃Ph	2,3,4,6,8-	
Cl ₅ Bz + 2,4-Cl ₂ Ph	1,2,3,4,8-	

Tab. 5.1-16 Theoretische PCDF-Kondensationsprodukte zwischen Hauptchlorbenzolen und den Hauptchlorphenolen auf Modellflugasche

PCBz + PCPh	PCDF-Kondensationsprodukte		
1,2,4-Cl ₃ Bz + Cl ₅ Ph	1,2,3,4,7,8-; 1,2,3,4,6,8-; 1,2,3,4,6,9-; 1,2,3,4,8,9-		
1,2,3-Cl₃Bz + Cl₅Ph	1,2,3,4,6,7-		
1,3,5-Cl₃Bz + Cl₅Ph	1,2,3,4,7,9-		
1,2,3,5-Cl₄Bz + 2,3,4,6-Cl₄Ph	1,2,3,6,7,8-; 1,2,4,6,7,8 -; 1,2,4,6,7,9-; 1,2,3,6,8,9-	Cl₅DF	
1,2,4,5-Cl₄Bz + 2,3,4,6-Cl₄Ph	1,2,4,6,7,8-; 1,2,4,6,8,9-		
1,2,3,4-Cl₄Bz + 2,3,4,6-Cl₄Ph	2,3,4,6,7,8-; 1,2,4,6,7,8-	}	
Cl₅Bz + 2,4,6-Cl₃Ph	1,2,3,4,6,8-		
1,2,3,5-Cl₄Bz + Cl₅Ph	1,2,3,4,6,7,9-; 1,2,3,4,7,8,9-		
1,2,4,5-Cl₄Bz + Cl₅Ph	1,2,3,4,6,8,9-	CLDE	
1,2,3,4-Cl₄Bz + Cl₅Ph	1,2,3,4,6,7,8-	CI7DE	
Cl₅Bz + 2,3,4,6-Cl₄Ph	1,2,3,4,6,7,8-; 1,2,3,4,6,8,9-		
Cl₅Bz + Cl₅Ph	1,2,3,4,6,7,8,9-	Cl₀DF	

Durch Kondensation der Hauptchlorphenole gemäß Sidhu¹¹⁴ (vgl. Abb. 2.2-3) über Phenoxyradikale und ortho-Hydroxydiphenylether resultieren folgende PCDF-Isomere (die am häufigsten gebildeten Isomere sind fett markiert):

Tab. 5.1-17	Theoretische PCDF-Kondensationsprodukte aus den Hauptchlorphenolen auf
	Modellflugasche gemäß dem Mechanismus nach Sidhu

PCPh + PCPh	PCDF-Kondensationsprodukte		
2-ClPh + Cl₅Ph	1,2,3,4-		
2,4-Cl₂Ph + 2,3,4,6-Cl₄Ph	1,2,4,7- ; 1,2,4,8-; 2,3,4,7-; 2,3,4,8-	Cl₄DF	
2,4,6-Cl₃Ph + 2,4,6-Cl₃Ph	1,3,6,8-; 2,4,6,8-		
2,4-Cl₂Ph + Cl₅Ph	1,2,3,4,7-; 1,2,3,4,8-	· · · · · · · · · · · · · · · · · · ·	
2,4,6-Cl₃Ph + 2,3,4,6-Cl₄Ph	1,2,3,6,8-; 1,2,4,6,8-; 1,3,4,6,8-	Cl₅DF	
	2,3,4,6,8- ; 1,2,4,7,9-; 1,3,6,7,8-		
2,4,6-Cl ₃ Ph + Cl ₅ Ph	1,2,3,4,6,8-; 1,2,3,4,7,9-		
2,3,4,6-Cl₄Ph + 2,3,4,6-Cl₄Ph	1,2,3,6,7,8-; 1,3,4,6,7,8-; 1,2,4,6,7,8-; 2,3,4,6,7,8-	Cl ₆ DF	
	1,2,4,6,8,9-; 1,3,4,6,7,9-; 1,2,3,6,8,9-; 1,2,4,6,7,9-		
2,3,4,6-Cl₄Ph + Cl₅Ph	1,2,3,4,6,7,8 -; 1,2,3,4,6,7,9-; 1,2,3,4,6,8,9-; 1,2,3,4,7,8,9-	Cl ₇ DF	
Cl₅Ph + Cl₅Ph	1,2,3,4,6,7,8,9-	Cl ₈ DF	

Auf der SP-2331-Säule wird 2,4,6,8-Cl₄DF zusammen mit 1,2,3,8-, 1,4,6,7- und 1,2,3,6-Cl₄DF eluiert, so daß hier über die Menge an 2,4,6,8-Cl₄DF keine Aussagen gemacht werden kann. Da die Gesamtkonzentration dieser 4 Isomere zusammen als auch die Konzentration an 1,3,6,8-Cl₄DF sehr gering ist, verläuft die PCDF-Bildung aus Kohlenstoff unwahrscheinlich über den von Sidhu vorgeschlagenen Mechanismus.

Durch Vergleich der möglichen PCDF-Kondensationsprodukte aus PCBz und PCPh (Tab. 5.1-16) bzw. PCPh und PCPh (Tab. 5.1-17) wird folgendes feststellt:

- Ein Großteil der gebildeten ¹²C₆/¹³C₆-PCDF-Hauptisomere (Tab. 5.1-15) kann durch Kondensation von Chlorphenolen gemäß dem von Sidhu vorgeschlagenen Mechanismus erklärt werden.
- Dagegen können durch die Kondensationsreaktion zwischen Chlorbenzolen und Chlorphenolen über Chlordiphenylether als Zwischenstufe die Bildung aller PCDF-Hauptisomere erklärt werden. Des weiteren stellen die in den höchsten Konzentrationen gebildeten PCDF-Isomere Kondensationsprodukte aus den Chlorbenzolen und –

phenolen dar, die ebenfalls in den höchsten Konzentrationen aus Kohlenstoff erhalten wurden. So sind zum Beispiel folgende Cl₅DF-Isomere auf eine Kondensation aus Chlorphenolen und Chlorbenzolen zurückführbar: 1,3,4,6,8-, 1,2,3,6,8-, 1,2,4,7,8-, 1,2,4,6,7-, 1,2,3,4,6-, 2,3,4,6,8-, 2,3,4,7,8- und 2,3,4,6,7-Cl₅DF. Dagegen können nur vier Isomere durch Kondensation aus Chlorphenolen erklärt werden: 1,3,4,6,8-, 1,2,4,6,8-, 1,2,3,6,8- und 2,3,4,6,8-Cl₅DF.

Dieser Vergleich führt zur Schlußfolgerung, daß für die PCDF-Bildung aus aromatischen C_6 -Verbindungen beide Reaktionswege gleichzeitig stattfinden: Kondensation zwischen Chlorphenolen und Chlorbenzolen als auch die Kondensation nur zwischen Chlorphenolen, wobei in beiden Fällen chlorierte Diphenylether als Zwischenverbindungen auftreten.

Obwohl für die Erklärung der Bildung kohlenstoffisotopengemischter PCDD/F keine Weiterchlorierungen berücksichtigt wurden, konnten die in den höchsten Konzentrationen gebildeten PCDD/F auf Kondensationen der ebenfalls in den höchsten Konzentrationen gefundenen aromatischen C₆-Verbindungen zurückgeführt werden.

5.1.3 Bildung von PCPh, PCBz und PCDD/F auf Modellflugasche dotiert mit konstantem ¹²C/¹³C-Kohlenstoffisotopenverhältnis in Abhängigkeit von der Reaktionstemperatur

In den beiden letzten Kapiteln wurde gezeigt, daß bei thermischer Behandlung der kohlenstoffdotierten Modellflugasche bei einer Reaktionstemperatur von 300 °C und einer Reaktionszeit von 2 Stunden ca. 40 % der PCDD durch Kondensation aromatischer C₆-Zwischenverbindungen entstehen, während PCDF fast ausschließlich direkt aus der Kohlenstoffmatrix herausgelöst werden.

Um die Frage zu klären, welchen Einfluß die Temperatur auf diese beiden Reaktionswege -Kondensation von aus Kohlenstoff gebildeten aromatischen C₆-Verbindungen und direkte Herauslösung einer bereits vorliegenden aromatischen C₁₂-Struktur aus der Kohlenstoffmatrix - hat, wurde der für die *De-Novo-Synthese* relevante Temperaturbereich: 250 - 400 °C untersucht. Diese Versuche wurden mit MFA-C (^{12}C : ^{13}C = 1:1) durchgeführt. Da die Mengen an CO und CO₂ quantifiziert wurden, wurde als Gasphase 20 % O₂/80 % He unter Beimengung von 150 mg Wasser/I Gasmischung verwendet.

Die Gesamtkonzentrationen der PCPh, PCBz und PCDD/F sind in folgender Tabelle zusammengefaßt. Die Konzentrationen der einzelnen Chlorierungsstufen sind in Tab. 8.4 und 8.5 des Anhangs aufgelistet.

Tab. 5.1-18Konzentrationen [ng/g MFA] der PCPh, PCBz und PCDD/F nach thermischer
Behandlung der MFA - C (^{12}C : $^{13}C = 1:1$) in Abhängigkeit von der Reaktionstemperatur
Reaktionszeit: 2 h

	¹² C ₆ -PCPh	¹³ C ₆ -PCPh	Summe	¹² C ₆ -PCBz	¹³ C ₆ -PCBz	Summe
250 °C	1320	2210	3530	3710	4770	8480
300 °C	460	700	1160	13360	15250	28610
350 °C	350	280	630	43260	50350	93610
400 °C	750	180	930	59630	71060	130690

	¹² C ₁₂ -PCDD	¹³ C ₁₂ -PCDD	¹² C ₆ / ¹³ C ₆ -PCDD	Summe
250 °C	160	260	120	540
300 °C	680	910	200	1790
350 °C	1500	1810	370	3680
400 °C	150	130	28	308
	¹² C ₁₂ -PCDF	¹³ C ₁₂ -PCDF	¹² C ₆ / ¹³ C ₆ -PCDF	Summe
250 °C	280	510	4	794
300 °C	1700	2440	40	4180
350 °C	4850	6230	140	11220
400 °C	1340	1440	30	2810

Die untersuchten Verbindungsklassen aromatische Vorläuferverbindungen und die PCDD/F-Produkte zeigen ein unterschiedliches Bildungsverhalten in Abhängigkeit von der Reaktionstemperatur. Für den Temperaturbereich von 250 - 400 °C ist der Konzentrationsverlauf für die einzelnen Chlorierungsstufen der PCPh und PCBz in Abb. 5.1-9 dargestellt.
Während die PCDD/F ein Bildungsmaximum bei 350 °C aufweisen, zeigen die Chlorphenole und -benzole entgegengesetzte Konzentrationsverläufe. Die Konzentrationen der Chlorphenole nehmen von 250 bis 300 °C drastisch ab. Diese Abnahme ist vor allem auf den Konzentrationsrückgang von Pentachlorphenol (um den Faktor 4) zurückzuführen. Zwischen 300 und 400 °C ist kein eindeutiger Trend erkennbar.

Im gesamten Temperaturbereich wurden die gleichen Chlorphenolisomere erhalten, wie bereits bei den vorausgegangenen Versuchen bei 300 °C (Kap. 5.1.1 und 5.1.2) beschrieben. Während bei 250 °C fast alle Chlorphenole auf der Modellflugasche gefunden wurden, sind es bei 400 °C nur noch 44 %. Auf die Konsequenzen der Konzentrationserniedrigung der Chlorphenole auf der Feststoffphase auf die Bildung von ${}^{12}C_{6}/{}^{13}C_{6}$ -PCDD/F wird später eingegangen.

Abb. 5.1-9 Konzentrationsverlauf der einzelnen Chlorierungsstufen der PCPh und PCBz nach thermischer Behandlung der MFA-C (¹²C:¹³C =1:1) in Abhängigkeit von der Reaktionstemperatur, Reaktionszeit: 2 h

Die Konzentrationen der Chlorbenzole steigen stetig von 250 bis 400 °C. Mit Ausnahme der Konzentration der ¹²C-Di- und -Trichlorbenzole steigen die Konzentrationen der übrigen Chlorhomologengruppen kontinuierlich im gesamten Temperaturbereich.

Sowohl für die ¹²C₆- als auch ¹³C₆-Chlorbenzole ist das pentachlorierte Isomer das Hauptprodukt (ca. 33 % bei den ¹²C₆-Verbindungen und ca. 45 % bei den ¹³C₆-Verbindungen). Aufgrund der schwachen Wechselwirkungen der Chlorbenzole mit der Oberfläche der Modellflugasche und der relativ niedrigen Siedepunkte nehmen die Konzentrationen der Chlorbenzole in der Gasphase stark zu. Während bei 250 °C 90 % der Chlorbenzole auf der Modellflugasche gefunden werden, sammeln sich bei 300 °C bereits die Hälfte und bei 400 °C über 90 % in der Waschflasche. Daher kann die stetige Konzentrationserhöhung auf eine zunehmende Verdampfung der Chlorbenzole zurückgeführt werden. Die Chlorbenzole werden dadurch einer Weiterreaktion zu höher kondensierten Verbindungen und einem oxidativen Abbau entzogen. Die relative Verteilung der Konzentrationen der Chlorkongeneren bezogen auf den jeweiligen Chlorierungsgrad ist in Tab. 5.1-19 aufgelistet. Wie bereits in den vorausgegangen Versuchen gefunden, wurde unter den Dichlorbenzolen hauptsächlich das 1,3-Cl₂Bz erhalten. Im Gegensatz zu den bisher erhaltenen Ergebnissen dominiert im gesamten Temperaturbereich (Ausnahme: ¹²C₆-Cl₃Bz bei 350 °C) das 1,2,4-Cl₃Bz unter den Trichlorbenzolen. Für die Erklärung dieses Isomerenmusters gilt das bereits in Kap. 5.1.1 Gesagte.

	250 °C		300	O°C	350	°C	400 °C	
	¹² C ₆	¹³ C ₆						
1,3-Cl ₂ Bz	69	0	81	100	76	44	65	39
1,4-Cl₂Bz	22	0	11	0	6	32	11	30
1,2-Cl₂Bz	8	0	8	0	18	24	24	31
1,3,5-Cl ₃ Bz	1	7	4	13	6	21	10	17
1,2,4-Cl ₃ Bz	93	69	57	59	26	60	49	59
1,2,3-Cl₃Bz	6	24	39	28	68	20	41	24
1,2,3,5-Cl ₄ Bz	45	46	42	46	40	42	41	41
1,2,4,5-Cl₄Bz	33	37	24	27	32	34	33	34
1,2,3,4-Cl ₄ Bz	22	17	34	27	28	24	26	25

Tab. 5.1-19	Prozentuale Verteilung der gebildeten Chlorbenzolisomere innerhalb der Homologen-
	gruppen nach thermischer Behandlung der MFA-C (¹² C: ¹³ C =1:1) in Abhängigkeit von
	der Reaktionstemperatur, Reaktionszeit: 2 h

Die Konzentrationen der ${}^{12}C_6/{}^{13}C_6$ -PCDD nehmen im gesamten Temperaturbereich von den tetrachlorierten Isomeren zum oktachlorierten Isomer zu. Sie unterscheiden sich damit im Chlorierungsgrad von den ${}^{12}C_{12}$ - und ${}^{13}C_{12}$ -PCDD/F als auch den ${}^{12}C_6/{}^{13}C_6$ -PCDF. Bei 350 °C dominieren für die ${}^{12}C_{12}$ -PCDD die hexachlorierten Isomere und für die ${}^{13}C_{12}$ -PCDD die heptachlorierten Verbindungen über den anderen Chlorohomologen.

Die verschiedenen Verteilungsmuster der Chlorhomologen der ${}^{12}C_6/{}^{13}C_6$ -PCDD und der ${}^{12}C_6/{}^{13}C_6$ -PCDF weisen darauf hin, daß die Bildung der kohlenstoffisotopengemischten PCDD/F durch Kondensation unterschiedlicher Vorläuferverbindungen erfolgt, wie in Kap. 5.1.2 beschrieben.

Die Tatsache, daß sowohl die PCDD/F-Produkte, die ausschließlich auf eine Kondensation von aromatischen C₆-Verbindungen zurückführbar sind, als auch die PCDD/F die *de-novo* aus dem Kohlenstoff gebildet werden, bei der gleichen Reaktionstemperatur - 350 °C - die höchsten Konzentrationen aufweisen, deutet darauf hin, daß die *De-Novo-Synthese* und die Kondensationsreaktion auf der Modellflugasche durch die gleichen Reaktionsparameter beeinflußt werden.

Mit Ausnahme der Oktachlordibenzofurane wurde für alle Chlorhomologengruppen ein Konzentrationsmaximum bei 350 °C erhalten. Dieses Konzentrationsmaximum entspricht der Summe der Konzentrationen aus Bildungs- und Abbaureaktionen in Abhängigkeit von der Temperatur. Solche Überlagerungen von Bildungs- und Abbaureaktionen sind ein bekanntes Phänomen bei der thermischen Behandlung von Flugasche sowohl in Festbett- als auch Fließbettreaktoren. Die Tatsache, daß bei 350 °C ein Konzentrationsmaximum an PCDD/F durchlaufen wird, kann dadurch erklärt werden, daß die Geschwindigkeit der Abbaureaktion (Dechlorierung/Oxidation) mit steigender Temperatur schneller als die der Bildungsgeschwindigkeit der PCDD/F ansteigt^{33,127}.

Das Konzentrationsmaximum der oktachlorierten Dibenzofurane liegt hier zwischen 300 und 350 °C; die Dechlorierung dieser Verbindung setzt also bereits unterhalb von 350 °C deutlich ein. Eine Dechlorierung des Oktachlordibenzofurans sollte konsequenterweise zu erhöhten Konzentrationen an Hepta- und Hexachlordibenzofuranen führen, was in der Tat der Fall ist. Diese Dechlorierungsreaktion ist bei den PCDD nicht so stark ausgeprägt.

Abb. 5.1-10 Konzentrationsverlauf der einzelnen Chlorierungsstufen der ${}^{12}C_{12}$ -, ${}^{13}C_{12}$ - und ${}^{12}C_{6}{}^{13}C_{6}$ -PCDD/F nach thermischer Behandlung der MFA-C (${}^{12}C:{}^{13}C = 1:1$) in Abhängigkeit von der Reaktionstemperatur; Reaktionszeit: 2 h

In Tabelle 5.1-20 sind die Gesamtkonzentrationen an PCDD/F für die drei verschieden kohlenstoffisotopenmarkierten Verbindungen zusammengefaßt. Mittels der Konzentration an ${}^{12}C_{6}/{}^{13}C_{6}$ -PCDD/F wurde das Verhältnis der PCDD/F-Bildung über den Kondensationsweg zweier Phenylringe und die *direkte De-Novo-Synthese* berechnet, wie bereits ausführlich in Kap. 5.1.2 beschrieben. Aus den Werten geht hervor, daß bei 250 °C fast die Hälfte der PCDD durch Kondensation von zwei C₆-Ringen entsteht. Mit steigender Temperatur nimmt der Anteil dieses Reaktionsweges an der PCDD-Bildung ab. Eine Temperatursteigerung um 50 °C auf 300 °C bewirkt bereits eine Reduzierung des Kondensationsweges um 50 %. Eine weitere Temperaturerhöhung auf 350 °C vermindert den Anteil der ${}^{12}C_{6}/{}^{13}C_{6}$ -PCDD um weitere 15 %. Dieser Trend setzt sich weiter fort, der Anteil der Kondensationsreaktion an den Gesamtreaktionen ist bei 400 °C um 60 % gegenüber den Verhältnissen bei 250 °C vermindert.

Diese Verschiebung des Anteils der Kondensationsreaktion mit steigender Temperatur zu Gunsten der *direkten De-Novo-Synthese* ist nicht unerwartet. Mit steigender Temperatur nimmt der Anteil der Chlorphenole in der Waschflasche gegenüber den Mengen auf der Flugasche zu. Durch die Verdampfung der Chlorphenole in die Gasphase, werden sie den Kondensationsreaktionen entzogen.

Im Gegensatz zu den ${}^{12}C_{6}/{}^{13}C_{6}$ -PCDD bewirkt eine Temperaturerhöhung eine Erhöhung der Konzentration der ${}^{12}C_{6}/{}^{13}C_{6}$ -PCDF an der Gesamtkonzentration der PCDF. Der Anteil der Kondensationsreaktion für die PCDF-Bildung steigt bei einer Temperaturerhöhung von 250 auf 300 °C um 100 %. Eine weitere Steigerung der Temperatur auf 350 bzw. 400 °C erhöht den Anteil der ${}^{12}C_{6}/{}^{13}C_{6}$ -PCDF an der Gesamtkonzentration der PCDF um weitere 20 %. Insgesamt ist der Anteil der Kondensationsreaktion der PCDF an der Gesamtreaktion der PCDF bei 400 °C um den Faktor 2,5 gegenüber 250 °C erhöht. Dies impliziert, daß an der ${}^{12}C_{6}/{}^{13}C_{6}$ -PCDF-Bildung auch Chlorbenzole als Zwischenprodukte bedeutend sind – wie bereits in Kap. 5.1.2 beschrieben - denn im Gegensatz zur starken Abnahme der Konzentration an adsorbierten Chlorphenolen ist die Konzentration an Chlorbenzolen auf der Modellflugasche im gesamten Temperaturbereich annähernd konstant. Des weiteren muß im Gegensatz zu den PCDD beim Aufbau der PCDF aus zwei Phenylringen eine C-C-Bindung ausgebildet werden. Aufgrund der hohen Bindungsenergie hat eine Temperaturerhöhung auch eine Erhöhung der Ausbeute der PCDF, die durch Kondensationsreaktionen entstehen, zur Folge.

Tab. 5.1-20	Konzentrationen [pmol/g MFA] der ${}^{12}C_{12}$, ${}^{13}C_{12}$ und ${}^{12}C_6$, ${}^{13}C_6$ -PCDD/F der
	thermischen Versuche mit MFA-C (¹² C: ¹³ C =1:1) in Abhängigkeit von der
	Reaktionstemperatur, Reaktionszeit: 2 h

	250 °C	¹² C ₁₂		¹³ C ₁₂		¹² C ₆ / ¹³ C ₆	Sum	me
Experiment	PCDD	365		585		280	123	30
	Kondensation	140		140		280	560	46 %
berechnet	De-Novo-Synthese	225 3	4 %	445	66 %		670	54 %
Experiment	PCDF	1635		2680		22	433	37
	Kondensation	11		11		22	44	1 %
berechnet	De-Novo-Synthese	1624 3	8 %	2669	62 %		4293	99 %

	300 °C	¹² C ₁₂		¹³ C ₁₂		¹² C ₆ / ¹³ C ₆	Sum	me
Experiment	PCDD	1630		2080		480	419	90
	Kondensation	240		240		480	960	23%
berechnet	De-Novo-Synthese	1390	43 %	1840	57 %		3230	77%
Experiment	PCDF	4220		5690		100	100	10
	Kondensation	50		50		100	200	2%
berechnet	De-Novo-Synthese	4170	43 %	5640	57 %		9810	98 %

	350 °C	¹² C ₁₂	¹³ C ₁₂	¹² C ₆ / ¹³ C ₆	Summe
Experiment	PCDD	3660	4230	870	8760
	Kondensation	435	435	870	1740 20 %
berechnet	De-Novo-Synthese	3225 46 %	3795 54%		7020 80 %
Experiment	PCDF	12620	15050	350	28020
	Kondensation	175	175	350	700 2,5%
perechnet	De-Novo-Synthese	12445 46 %	14875 54%		27320 97,5%

	400 °C	¹² C ₁₂		¹³ C ₁₂	^{#111} 11111111	¹² C ₆ / ¹³ C ₆	Sum	me
Experiment	PCDD	380		300		66	74	6
	Kondensation	33		33		66	132	18 %
berechnet	De-Novo-Synthese	347	56 %	267	44 %		614	78 %
Experiment	PCDF	3500		3520		90	71	10
	Kondensation	45		45		90	180	2,5 %
berechnet	De-Novo-Synthese	3455	50 %	3475	50 %		6930	97,4 %

Die theoretisch berechneten Werte für die *direkte De-Novo-Synthese* der PCDD stimmen weitgehend mit denen der PCDF überein, daß heißt, daß der Einfluß der Temperatur auf die Bildung von PCDD und PCDF gleich ist. Auffallend ist, daß die Ausbeuten an ¹³C₁₂-PCDD/F im gesamten Temperaturbereich verglichen mit den Ausbeuten an ¹²C₁₂-PCDD/F erhöht sind. Die Konzentrationen der ¹³C₁₂-PCDD/F, die aus der *direkten De-Novo-Synthese* resultieren, sind im gleichen Maß erhöht wie die Konzentration der ¹²C₁₂-PCDD/F, ebenfalls aus der *direkten De-Novo-Synthese*.

Da aufgrund steigender Temperatur die Chlorphenole durch Verdampfung einer Kondensation zu PCDD auf der Modellflugasche entzogen werden, könnte man vermuten, daß eine Erhöhung der Reaktionstemperatur zu einer Verschiebung im Isomerenmuster der ¹²C₆/¹³C₆-PCDD führen sollte. Durch Verringerung der Konzentration der Chlorphenole auf der Modellflugasche sollte die Wahrscheinlichkeit steigen, daß ein Chlorphenol eher mit einem Phenylring reagiert, der noch mit dem Kohlenstoffgerüst kovalent verbunden ist, als daß zwei Chlorphenole miteinander reagieren. Das heißt, daß mit steigender Temperatur der Anteil der PCDD-Isomere zunehmen sollte, bei denen ein Phenylring auf ein Chlorphenolmolekül (d.h. Ring ist in alternierenden Kohlenstoffpositionen chloriert) während der andere Ring auf Kohlenstoff (d.h. Ring ist in benachbarten Kohlenstoffpositionen chloriert) zurückgeführt werden kann (vgl. Kap. 5.1.2, Seite 57).

In Tabelle 5.1-21 sind für die Chlorierungsstufen Tetra bis Oktachlor der einzelnen ${}^{12}C_6/{}^{13}C_6-$ PCDD-Isomere in Prozent angegeben. Die Verbindungen, die auf eine Kondensation der Hauptchlorphenole zurückgeführt werden können, sind fett markiert, und die PCDD-Produkte, die aus einer Reaktion zwischen einem Chlorphenolmolekül und Kohlenstoff direkt hervorgehen, sind unterstrichen dargestellt.

Die genaue Analyse der Daten zeigt, daß die oben geschilderte Überlegung tatsächlich zu einem gewissen Ausmaß zutrifft. Bei 350 °C weisen folgende Tetrachlordibenzodioxine ein Konzentrationsminimum auf: 1,3,6,8-, 1,3,7,9-Cl₄DD und die Gruppe: 1,2,3,4-, 1,2,4,6-, 1,2,4,9- und 1,2,3,8-Cl₄DD, wovon 1,3,6,8-, 1,3,7,9-, 1,2,3,4- und 1,2,3,8-Cl₄DD mögliche Kondensationsprodukte aus den Hauptchlorphenolen sind. Dagegen zeigen folgende Isomere bei 350 °C ein Konzentrationsmaximum: 1,2,3,7- und 1,3,7,8-Cl₄DD.

Zwar eluieren 1,2,4,6- und 1,2,4,9-Cl₄DD (Bildungsminimum bei 350 °C; Kap. 5.1.2, Seite 55; Gruppe ii) zusammen mit 1,2,3,4- und 1,2,3,8-Cl₄DD (Kondensationsprodukte, Tab. 5.1-13) und des weiteren kann 1,2,3,7-Cl₄DD (Bildungsmaximum bei 350 °C) sowohl ein Kondensationsprodukt sein als auch entsprechend Reaktionsweg ii (Kap. 5.1.2, Seite 58) entstehen. Hier kann man aber aufgrund der geringen Konzentration der Tetrachlor-kongenere eher von Ausnahmen ausgehen.

Die Bilanz ist deutlicher bei den Pentachlordibenzodioxinen ausgeprägt. Folgende Isomere zeigen bei 350 °C ein Konzentrationsminimum: 1,2,4,6,8-, 1,2,4,7,9-, 1,2,3,6,8- und 1,2,3,7,9-Cl₅DD (Kondensationsprodukte von Hauptchlorphenolen), während 1,2,3,7,8-, 1,2,3,6,7- und 1,2,3,8,9-Cl₅DD (Kondensationsprodukte zwischen Chlorphenolen und vorgebildeten "Chlorphenolen" des Kohlenstoffs) ein Konzentrationsmaximum aufweisen.

Der erneute Konzentrationsanstieg der ${}^{12}C_6/{}^{13}C_6$ -PCDD, die auf eine Kondensation der Hauptchlorphenole zurückführbar sind, bei einer weiteren Temperaturerhöhung von 350 °C auf 400 °C könnte in der erhöhten Chlorphenolkonzentration auf der Modellflugasche begründet liegen. Für die ${}^{12}C_6$ -Chlorphenole steigt die Konzentration auf der Modellflugasche von 350 °C auf 400 °C um den Faktor 10 und für die ${}^{13}C_6$ -Chlorphenole um den Faktor 2.

Die Ergebnisse verdeutlichen, daß bei einer abnehmenden Konzentration an Chlorphenolen eine Kondensation zwischen einem adsorbierten Chlorphenol und einem präformierten aromatischen Ring des Kohlenstoffs einer Kondensation zwischen Chlorphenolen bevorzugt wird.

	-PCDD			
Cl₄DD	250 °C	300 °C	350 °C	400 °C
1,3,6,8	1,5	0,3	0,0	1,8
1,3,7,9	12,3	9,6	4,1	7,2
1.3.7.8	<u>18,5</u>	<u>19,6</u>	<u>21,3</u>	<u>18,9</u>
1,3,6,9/ <u>1,2,4,7/1,2,4,8</u>	<u>13,8</u>	<u>14,1</u>	<u>13,4</u>	<u>17,1</u>
<u>1,2,6,8</u>	<u>4,6</u>	<u>5,5</u>	<u>5.2</u>	<u>7.2</u>
1,4,7,9	0,0	1,0	1,4	2,7
2,3,7,8	0,0	1,4	4,1	1,8
1,2,3,7	<u>4,6</u>	<u>8,2</u>	<u>10,4</u>	4,5
1,2,3,4 / <u>1,2,4,6</u> / <u>1,2,4,9</u> / <u>1,2,3,8</u>	<u>23,1</u>	<u>15,1</u>	<u>10,9</u>	<u>15,3</u>
1,2,3,6/1,2,7,9	<u>10,8</u>	<u>10.0</u>	<u>10,4</u>	<u>9,0</u>
1,4,6,9/1,2,7,8	1,5	4,5	7,4	5,4
1.2.3.9	<u>4,6</u>	<u>5,5</u>	<u>4.6</u>	<u>3,6</u>
1,2,6,9	0,0	1,4	2,5	1,8
1,2,6,7	4,6	2,7	2,7	2,7
1,2,8,9	0,0	1,0	1,9	0,9
Cl₅DD	250°C	300°C	350°C	400°C
1,2,4,6,8/1,2,4,7,9	33,0	25,9	14,1	24,5
1,2,3,6,8	31,3	18,2	9,7	14,1
1.2.4.7.8	2.0	<u>5,9</u>	<u>8,7</u>	<u>10,0</u>
1,2,3,7,9	18,5	13,7	12,3	10,8
1,2,4,6,9/ <u>1,2,3,4,7</u>	6,8	8,8	9,6	7,8
1.2.3.7.8	<u>2,8</u>	7.7	<u>15,1</u>	<u>9,3</u>
1,2,3,6,9	0,3	1,8	3,0	3,0
1.2.4.6.7	<u>0,6</u>	2.2	<u>3,6</u>	<u>3.7</u>
<u>1,2,4,8,9</u>	<u>0,3</u>	<u>2,8</u>	<u>4.8</u>	<u>4.1</u>
1,2,3,4,6	<u>0,9</u>	<u>2.9</u>	<u>3,1</u>	<u>1.9</u>
1.2.3.6.7	1.4	4.9	<u>9.0</u>	<u>6.7</u>
1.2.3.8.9	2,3	<u>5,2</u>	<u>7.0</u>	<u>4,1</u>
Cl₀DD	250°C	300°C	350°C	400°C
1,2,4,6,7,9/1,2,4,6,8,9/1,2,3,4,6,8	33,4	34,0	42,5	39,4
1,2,3,6,7,9/1,2,3,6,8,9	33,9	33,6	29,7	29,5
1.2.3.4.7.8	7,4	<u>7.4</u>	<u>8,9</u>	9.0
1,2,3,6,7,8	9,9	10,5	1,4	7,6
1,2,3,4,6,9	1,4	1,3	1,9	2,8
1,2,3,7,8,9	8,7	8,5	9,2	5,1
1.2.3.4.6.7	5,2	4,9	<u>6,4</u>	6,5
CI7DD	250°C	300°C	350°C	400°C
1,2,3,4,6,7,9	<u>46,9</u>	47,0	<u>45,6</u>	54,4
1,2,3,4,6,7,8	<u>53,1</u>	<u>53,0</u>	<u>54,4</u>	<u>45.6</u>

Tab. 5.1-21Prozentuale Verteilung der ${}^{12}C_6/{}^{13}C_6$ -PCDD-Isomere innerhalb der
Homologengruppen nach thermischer Behandlung der MFA-C (${}^{12}C.{}^{13}C = 1:1$) in
Abhängigkeit von der Reaktionstemperatur, Reaktionszeit: 2 h

Bei der Bildung von Organochlorverbindungen aus Kohlenstoff auf Flugaschen handelt es sich um eine Nebenreaktion, bei der die PCDD/F in sehr geringen Ausbeuten entstehen. Die Ausbeuten für die ${}^{12}C_{6}$ -PCPh, ${}^{12}C_{6}$ -PCBz, ${}^{12}C$ -PCDD/F und ${}^{13}C$ -PCDD/F für den untersuchten Temperaturbereich sind in Tabelle 5.1-22 zusammengefaßt. Wie bereits in Kap. 5.1.1 besprochen, sind die Ausbeuten an Chlorbenzolen am höchsten, gefolgt von den PCDD/F und PCPh.

Tab. 5.1-22Molare Ausbeuten [%] der PCDD, PCDF, PCPh und PCBz nach thermischer
Behandlung der MFA-C (${}^{12}C:{}^{13}C = 1:1$) in Abhängigkeit von der Reaktionstemperatur
Reaktionszeit: 2 h

	12	C-	13	C-	¹² C-	¹³ C-	¹² C-	¹³ C-	¹² C-	¹³ C-
	PCDD	PCDF	PCDD	PCDF	PCDD/F	PCDD/F	PCPh	PCPh	PCBz	PCBz
250°C	0,0004	0,0012	0,0005	0,0020	0,0016	0,0026	0,0019	0,0031	0,006	0,007
300°C	0,0014	0,0032	0,0017	0,0043	0,0046	0,0061	0,0007	0,0010	0,023	0,023
350°C	0,0031	0,0096	0,0035	0,0114	0,0127	0,0150	0,0006	0,0004	0,074	0,077
400°C	0,0003	0,0027	0,0003	0,0027	0,0030	0,0030	0,0013	0,0003	0,097	0,109

Die eigentliche Hauptreaktion stellt die Oxidation des Kohlenstoffs zu CO und CO₂ dar. Bei Verwendung von ¹²C- und ¹³C-markiertem Kohlenstoff entstehen neben ¹²CO und ¹²CO₂ auch die ¹³C-markierten Gase. Da die Meßmatrix (Tab. 4.1-12) für die Quantifizierung von markiertem und nichtmarkiertem CO und CO₂ erst in den kommenden Versuchen entwickelt wurde, ist hier die quantitative Bestimmung von ¹³CO und ¹³CO₂ nicht berücksichtigt.

Während für die Bildung von PCDD/F bei 350 °C ein Konzentrationsmaximum erhalten wurde, steigen die Konzentrationen von CO und CO_2 kontinuierlich mit der Temperatur. Wichtig in diesem Zusammenhang ist, daß der Kohlenstoffabbrand der verwendeten Kohlenstoffisotope in ähnlichem Ausmaß stattfindet, wie der von Restkohlenstoff auf Flugaschen (Tab. 5.1-23).

Schwarz⁴⁹ erhielt für Restkohlenstoff einen Kohlenstoffabbrand (30 % bei 300 °C und 2 h, bzw. von 85 % bei 450 °C und 2 h) in einer gleichen Größenordnung.

Tab. 5.1-23	¹² C-Kohlenstoffabbrand [%] bei der thermischer Behandlung der MFA-C (^{12}C : ^{13}C =
	1:1) in Abhängigkeit von der Reaktionstemperatur, Reaktionszeit: 2 h

	250 °C	300 °C	350 °C	400 °C
Oxidation des ¹² C-Kohlenstoffs zu CO	0	0	3,5	7
Oxidation des ¹² C-Kohlenstoffs zu CO ₂	3	10	18	62

5.1.4 Bildung von PCPh, PCBz und PCDD/F auf Modellflugasche dotiert mit konstantem ¹²C/¹³C-Kohlenstoffisotopenverhältnis in Abhängigkeit von der Reaktionszeit

Zur Untersuchung der Zeitabhängigkeit der beiden vorgeschlagenen Reaktionen -Kondensation von aus Kohlenstoff gebildeten aromatischen C₆-Verbindungen und direkte Herauslösung einer Dibenzodioxin/furan-Struktur aus der Kohlenstoffmatrix – wurde MFA-C (¹²C:¹³C = 1:1) bei der optimalen Bildungstemperatur (350 °C, vgl. Kap. 5.1.3) für Reaktionszeiten zwischen 15 min und 4 Stunden erhitzt. Als Gasphase wurde wieder 20 % O₂/80 % He mit einem Wassergehalt von 150 mg/l Gas verwendet.

Die Gesamtkonzentrationen der PCPh, PCBz und PCDD/F sind in Tab. 5.1-24 aufgelistet. Die Konzentrationen der einzelnen Chlorierungsstufen sind in den Tabellen 8.6 und 8.7 des Anhangs aufgeführt.

Tab. 5.1-24	Konzentrationen [ng/g MFA] der PCPh, PCBz und PCDD/F nach thermischer
	Behandlung der MFA-C (¹² C: ¹³ C =1:1) in Abhängigkeit von der Reaktionszeit
	Reaktionstemperatur: 350 °C

	¹² C ₆ -PCPh	¹³ C ₆ -PCPh	Summe	¹² C ₆ -PCBz	¹³ C ₆ -PCBz	Summe
15 min	373	380	753	5710	4920	10630
30 min	196	205	401	14550	15070	29620
60 min	165	88	253	20110	21530	41640
240 min	329	259	589	49740	59240	108980

	¹² C ₁₂ -PCDD	¹³ C ₁₂ -PCDD	¹² C ₆ / ¹³ C ₆ -PCDD	Summe
15 min	137	133	42	312
30 min	425	550	150	1125
60 min	750	1110	290	2150
240 min	720	980	170	1870
	¹² C ₁₂ -PCDF	¹³ C ₁₂ -PCDF	¹² C ₆ / ¹³ C ₆ -PCDF	Summe
15 min	400	430	8	838
30 min	1720	2270	50	4040
60 min	3070	4350	100	7520
240 min	3510	4640	80	8230

Die höchste Konzentration an ${}^{12}C_{6}$ - und ${}^{13}C_{6}$ -Chlorphenolen wurde bereits nach einer Reaktionszeit von 15 min erreicht. Die Konzentration der PCPh nimmt bis zu einer Reaktionszeit von 60 min weiter ab. Nach einer Reaktionszeit von 4 Stunden konnte wieder eine erhöhte Konzentration an Chlorphenolen gefunden werden. Die Konzentrationsabnahme der ${}^{12}C_{6}$ - und ${}^{13}C_{6}$ -Chlorphenole nach einer Reaktionszeit von 15 min ist mit der Konzentrationszunahme der ${}^{12}C_{12}$ -, ${}^{13}C_{12}$ - und ${}^{12}C_{6}$ -PCDD korreliert.

Die erniedrigte PCDD-Konzentration nach einer Reaktionszeit von 4 Stunden bei gleichzeitig erhöhter Chlorphenolkonzentration könnte folgende Gründe haben. Zum einen spielt der Abbau der PCDD bei dieser Temperatur eine Rolle, zum anderen ist es ein Hinweis darauf, daß die Reaktionsgeschwindigkeit der Chlorphenolbildung höher als die Kondensationsreaktion der Chlorphenole zu PCDD ist, so daß es insgesamt zu einer erneuten Konzentrationszunahme der Chlorphenole kommt. Der Anteil der Chlorphenole, der in die Gasphase verdampfte, nimmt mit steigender Reaktionszeit von 2 auf 92 % zu. Würde nur die Konzentration der ${}^{12}C_{6}/{}^{13}C_{6}$ -PCDD nach einer Reaktionszeit von 120 min abnehmen, so könnte man die auf der Modellflugasche zurückgehende Konzentration an Chlorphenolen dafür verantwortlich machen. Die Tatsache, daß auch die Konzentrationen der ${}^{12}C_{12}$ - und ${}^{13}C_{12}$ -PCDD (Summe der PCDD-Produkte aus *de-novo* gebildeten Chlorphenolen und Kohlenstoff) nach einer Reaktionszeit von 120 min abnehmen, zeigt, daß Abbaureaktionen der PCDD die Oberhand gewinnen.

In Abb. 5.1-11 und 5.1-12 ist der Verlauf der Konzentrationen [pmol/g MFA] für die PCPh, PCBz und PCDD/F in Abhängigkeit von der Reaktionszeit dargestellt. Zusätzlich ist in den Diagrammen die Konzentration der PCPh, PCBz und PCDD/F für eine Reaktionszeit von 2 h aus Kap. 5.1.3 mitaufgeführt.

Abb. 5.1-11 Konzentrationsverlauf der einzelnen Chlorierungsstufen der PCPh und PCBz nach thermischer Behandlung der MFA-C (¹²C:¹³C =1:1) in Abhängigkeit von der Reaktionszeit, Reaktionstemperatur: 350 °C

Wie bereits in den vorausgegangenen Versuchsreihen gefunden, wurden auch in diesen Experimenten nur die bereits genannten Chlorphenole erhalten: 2,4/2,5-Cl₂Ph, 2,4,6-Cl₃Ph, 2,3,4,6-Cl₄Ph und Cl₅Ph.

Die Konzentrationen der Chlorbenzole nehmen mit steigender Reaktionszeit stetig zu, die auf der Oberfläche adsorbierten Chlorbenzole (Tab. 8.6) - und damit die für Reaktionen zu PCDD/F relevanten Konzentrationen - dagegen kontinuierlich ab. Ein Zusammenhang zwischen diesen Konzentrationsverläufen und den PCDD/F-Mengen ist nicht ersichtlich.

Wie die Daten in Tab. 5.1-25 zeigen, wurde im gesamten Reaktionszeitbereich für die Chlorbenzole ein ähnliches Isomerenmuster erhalten, wie bereits in der Versuchsreihe mit Modellflugasche in Abhängigkeit von der Reaktionstemperatur beschrieben. Bemerkenswert ist nur, daß nach einer Reaktionszeit von 15 min entgegen den bisherigen Ergebnissen unter den Tetrachlorbenzolen die Konzentration des 1,2,3,4-Cl₄Bz gegenüber den beiden anderen Isomeren dominiert. Eine weitere Erhöhung der Reaktionszeit hat kaum einen Einfluß auf das Chlorierungsmuster, d.h. das Gleichgewicht ist bereits nach einer Reaktionszeit zwischen 15 und 30 min erreicht. Dieses Ergebnis ist nicht unerwartet, da der Großteil der Chlorbenzole in die Gasphase verdampft (vgl. Tab. 8.6), wodurch eine weitere Isomerisierung nicht mehr möglich ist.

	15 n	nin	30	min	60 (min	240 min	
	¹² C ₆	¹³ C ₆						
1,3-Cl ₂ Bz	83	100	76	54	78	63	72	55
1,4-Cl₂Bz	11	0	12	0	10	0	12	19
1,2-Cl ₂ Bz	6	0	12	46	12	37	17	25
1,3,5-Cl ₃ Bz	1	6	5	16	8	18	14	21
1,2,4-Cl ₃ Bz	81	52	55	58	58	58	53	60
1,2,3-Cl₃Bz	18	42	40	27	35	24	33	19
1,2,3,5-Cl ₄ Bz	29	33	39	43	43	47	42	42
1,2,4,5-Cl ₄ Bz	20	23	27	28	28	28	33	36
1,2,3,4-Cl ₄ Bz	51	44	34	29	28	25	25	22

Tab. 5.1-25Prozentuale Verteilung der gebildeten Chlorbenzolisomere innerhalb der Homologen-
gruppen nach thermischer Behandlung der MFA-C (12C:13C= 1:1) in Abhängigkeit von
der Reaktionszeit, Reaktionstemperatur: 350 °C

Abb. 5.1-12 Konzentrationsverlauf der einzelnen Chlorierungsstufen der ${}^{12}C_{12}$ -, ${}^{13}C_{12}$ - und ${}^{12}C_{6}/{}^{13}C_{6}$ -PCDD/F nach thermischer Behandlung der MFA-C (${}^{12}C:{}^{13}C = 1:1$) in Abhängigkeit von der Reaktionszeit, Reaktionstemperatur: 350 °C

Die Konzentrationen der drei unterschiedlich kohlenstoffisotopenmarkierten PCDD/F steigen kontinuierlich bis zu einer Reaktionszeit von 120 min an. Nach einer Reaktionszeit von 4 Stunden wurden annähernd die gleichen Konzentrationen gefunden wie für eine Reaktionszeit von 1 Stunde. Da im untersuchten Zeitbereich (15 - 240 min, konstante Reaktionstemperatur: 350 °C) das Konzentrationsmaximum nach einer thermischen Behandlung von 2 Stunden erhalten wurde, wird an dieser Stelle für die Bildung der bevorzugten Chlorierungsgrade auf die Diskussion in Kap. 5.1.3 hingewiesen.

Die Unterschiede im Chlorierungsgrad zwischen den ${}^{12}C_6/{}^{13}C_6$ -PCDD und -PCDF ist auch nach einer Reaktionszeit von 4 Stunden sehr deutlich: unter den ${}^{12}C_6/{}^{13}C_6$ -PCDD dominiert das oktachlorierte Isomer und unter den ${}^{12}C_6/{}^{13}C_6$ -PCDF die hexachlorierten Kongeneren. Allerdings wird unter den PCDD auch im Falle der ${}^{12}C_{12}$ - und ${}^{13}C_{12}$ -PCDD nach einer Reaktionszeit von 4 Stunden das Oktachlordibenzodioxin in den höchsten Konzentrationen gefunden. Die Dominanz der höchsten Chlorierungsstufe gegenüber den niederen Chlorierungsstufen wird vermutlich durch die hohe Konzentration an Pentachlorphenol verursacht.

In Tab. 5.1-26 sind die Gesamtkonzentrationen der ${}^{12}C_{12^-}$, ${}^{13}C_{12^-}$ und ${}^{12}C_{6}/{}^{13}C_{6}$ -PCDD/F in pmol/g Modellflugasche aufgelistet. Die Konzentrationswerte für die ${}^{12}C_{12^-}$ und ${}^{13}C_{12}$ -PCDD/F wurden wieder wie in Kap. 5.1.2 basierend auf den Konzentrationen der ${}^{12}C_{6}/{}^{13}C_{6}$ -PCDD/F in die beiden möglichen Reaktionswege: Kondensationsreaktionen von aromatischen C₆-Zwischenverbindungen und direkte Bildung (*direkte De-Novo-Synthese*) der PCDD/F aus Kohlenstoff aufgetrennt.

Die berechneten Daten zeigen, daß für Reaktionszeiten zwischen 15 und 240 min das Verhältnis dieser beiden Reaktionen sowohl für die PCDD als auch PCDF nicht von der Reaktionszeit abhängt, das Gleichgewicht ist bereits nach einer Reaktionszeit von 15 min erreicht.

Tab. 5.1-26	Konzentrationen [pmol/g MFA] der ${}^{12}C_{12}$, ${}^{13}C_{12}$ - und ${}^{12}C_{6}$, ${}^{13}C_{6}$ -PCDD/F der thermischen
	Versuche mit MFA-C (¹² C: ¹³ C =1:1) in Abhängigkeit von der Reaktionszeit
	Reaktionstemperatur: 350 °C

	15 min	¹² C ₁₂		¹³ C ₁₂		¹² C ₆ / ¹³ C ₆	Sum	ne
Experiment	PCDD	320		300		100	720)
	Kondensation	50	<u>لي مسر بي منالي ا</u>	50		100	200	28 %
berechnet	De-Novo-Synthese	270	52 %	250	48 %	***************************************	520	72 %
Experiment	PCDF	1000		990		20	201	0
	Kondensation	10	,	10	HAROLOU HARONOLLAND	20	40	2 %
berechnet	De-Novo-Synthese	990	50 %	980	50 %		1970	98 %

	30 min	¹² C ₁₂	¹³ C ₁₂	¹² C ₆ / ¹³ C ₆	Summe
Experiment	PCDD	1060	1310	360	2730
	Kondensation	180	180	360	720 26 %
berechnet	De-Novo-Synthese	880 44 %	1130 56 %		2010 74 %
Experiment	PCDF	4560	5530	140	10230
	Kondensation	70	70	140	280 2,7 %
berechnet	De-Novo-Synthese	4490 45%	5460 55 %		9950 97,3 %

	60 min	¹² C ₁₂		¹³ C ₁₂		¹² C ₆ / ¹³ C ₆	Sum	nme
Experiment	PCDD	1860		2660		690	52	10
	Kondensation	345		345		690	1380	26 %
berechnet	De-Novo-Synthese	1515	40 %	2315	60 %		3830	74 %
Experiment	PCDF	8110		10660		260	190	30
	Kondensation	130	in an	130		260	520	2,7 %
berechnet	De-Novo-Synthese	7980	43 %	10530	57 %		18510	97,3 %

	240 min	¹² C ₁₂		¹³ C ₁₂		¹² C ₆ / ¹³ C ₆	Sum	me
Experiment	PCDD	1730		2310		390	443	0
	Kondensation	195		195		390	780	26 %
Derecnnet	De-Novo-Synthese	1535	42 %	2115	58 %		3650	74 %
Experiment	PCDF	9330		11490		210	210	30
	Kondensation	105	Concernant Colonnation	105		210	420	2 %
berechnet	De-Novo-Synthese	9225	45 %	11385	55 %		20610	98 %

In Kap. 5.1.3 wurden nur die ¹²CO- und ¹²CO₂-Mengen quantifiziert. Wie bereits in Kap. 4.3 beschrieben, wurde eine Methode entwickelt, wobei eine Quantifizierung markierter Gase mit unmarkiertem Prüfgas möglich ist. In Abb. 5.1-13 ist der zeitliche Verlauf der Konzentration von ¹²CO₂ und ¹³CO₂ für zwei Versuche (Reaktionszeit: 60 und 240 min) illustriert. Auf eine Darstellung der CO-Mengen wurde verzichtet, da die Konzentrationen unter 0,1 % liegen und der Verlauf nicht einheitlich ist.

Abb. 5.1-13 Konzentrationsverlauf der CO₂-Bildung aus ¹²C- und ¹³C-Kohlenstoff bei der thermischen Behandlung der MFA-C (¹²C:¹³C =1:1) in Abhängigkeit von der Reaktionszeit, Reaktionstemperatur: 350 °C

Im Mittelpunkt der Messungen dieser Abgase stand weniger die Quantifizierung der CO- und CO₂-Mengen, sondern vielmehr der Vergleich beider Kohlenstoffisotope bezüglich einer Oxidation. Die dargestellten ¹²CO₂- und ¹³CO₂-Kurven zeigen, daß es zwischen der Oxidation des ¹²C- und ¹³C-markierten Kohlenstoffs keinen Unterschied gibt, sowohl das Konzentrationsmaximum als auch der Konzentrationsverlauf, sowie die absoluten Mengen (Tab. 5.1-27) stimmen sehr gut überein.

Tab. 5.1-27¹²C- und¹³C-Kohlenstoffabbrand [%] bei der thermischer Behandlung der MFA-C
(12C:13C = 1:1) in Abhängigkeit von der Reaktionszeit, Reaktionstemperatur: 350 °C

	15 min	30 min	60 min	240 min
Oxidation des ¹² C-Kohlenstoffs zu ¹² CO ₂	2,3	7,1	14,5	37,8
Oxidation des ¹³ C-Kohlenstoffs zu ¹³ CO ₂	n.g.	6,8	14,4	29,0

5.1.5 Bildung von PCPh, PCBz und PCDD/F auf Modellflugaschen dotiert mit konstantem ¹²C/¹³C-Kohlenstoffisotopenverhältnis in Abhängigkeit von der Kupferkonzentration

Die Konzentration des Katalysators stellt einen weiteren wichtigen Parameter bei der *De-Novo-Synthese* von Organochlorverbindungen dar. In den bisher durchgeführten Versuchen wurden Modellflugaschen mit einem Cu²⁺-Gehalt von 0,4 % verwendet. Diese Konzentration wurde ausgewählt, weil Stieglitz et.al. in thermischen Experimenten mit Modellflugasche (mit Aktivkohle als Kohlenstoffquelle für PCDD/F) einen überproportionalen Konzentrationsanstieg für die PCDD/F für Kupferkonzentrationen zwischen 0 und 0,4 % feststellten³⁶.

Addink et.al. untersuchten die PCDD/F-Bildung auf Flugaschen in Abhängigkeit von der CuCl₂-Konzentration (Cu: 0 – 1,2 %). Die natürlich in Flugasche enthaltenen Salze wurden durch Extraktion mit Wasser entfernt. Für den getesteten Konzentrationsbereich wurde eine lineare PCDD/F-Zunahme für Cu²⁺-Konzentrationen bis 0,2 % und ein überproportionaler Zuwachs im übrigen Konzentrationsbereich erhalten¹²⁸.

Im Gegensatz zu Stieglitz et.al. und Addink et.al. fanden Luijk et.al.¹²⁹ in Experimenten mit Aktivkohle (in Mischungen mit SiO₂ und Al₂O₃) höchste Ausbeuten bei der kleinsten getesteten Cu²⁺-Konzentration (0,1 %). Mit steigender Kupferkonzentration nahm das PCDD/F-Verhältnis von 33 auf 0,2 ab und das PCDD/F-Isomerenmuster wechselte von einem "Precursor-Muster" auf ein Flugaschenmuster. Luijk et.al. erklärten dieses Phänomen damit, daß mit steigender CuCl₂-Konzentration mehr PCDD als PCDF oxidativ abgebaut werden. Des weiteren ist dieses Reaktionsverhalten ein Hinweis auf unterschiedliche Reaktionsmechanismen. Für die PCDD-Bildung sind Chlorphenole als Vorläuferverbindungen bedeutend, während für die PCDF Biphenyle oder Dibenzofurane eine Rolle spielen müssen.

In realen Flugaschen (vgl. Tab. 3.1-2) betragen die Kupferkonzentrationen 0,1 - 0,2 %. Daher wurde die *De-Novo-Synthese* aus den beiden Kohlenstoffisotopen für drei weitere niedere Kupferkonzentrationen untersucht.

Folgende Tabelle faßt die Gesamtkonzentrationen zusammen.

Tab. 5.1-28	Konzentrationen [ng/g MFA] der PCPh, PCBz und PCDD/F nach thermischer
	Behandlung der MFA-F,G und H (¹² C: ¹³ C =1:1) in Abhängigkeit von der
	Kupferkonzentration, Reaktionszeit: 1 h, Reaktionstemperatur: 350 °C

Cu [%]	¹² C ₆ -PCPh	¹³ C ₆ -PCPh	Summe	¹² C ₆ -PCBz	¹³ C ₆ -PCBz	Summe
0,05	117	68	185	3180	3490	6670
0,10	196	146	341	12910	23070	35980
0,20	550	485	1035	62690	116060	178750

Cu [%]	¹² C ₁₂ -PCDD	¹³ C ₁₂ -PCDD	¹² C ₆ / ¹³ C ₆ -PCDD	Summe
0,05	20	22	10	51
0,10	135	220	64	421
0,20	910	1730	450	2770
	¹² C ₁₂ -PCDF	¹³ C ₁₂ -PCDF	¹² C ₆ / ¹³ C ₆ -PCDF	Summe
0,05	80	160	10	247
0,10	320	770	30	1122
0,20	2010	4620	130	6760

In den Abbildungen 5.1-14 und 5.1-15 sind zusätzlich die Werte des Versuches mit 0,4 % Cu²⁺ aus Kap. 5.1.4 (350 °C, 1 h) aufgeführt. Aus den Konzentrationsverläufen geht hervor, daß mit steigendem Gehalt an Kupfer die Konzentrationen aller untersuchten Verbindungsklassen ein Maximum bei einer Kupferkonzentration von 0,2 % durchlaufen. Hier zeigt sich eine Doppelrolle von CuCl₂ sehr deutlich. Analog zu den Schlußfolgerungen bezüglich des beobachteten PCDD/F-Konzentrationsmaximums in Abhängigkeit von der Reaktionstemperatur (Kap. 5.1.3) kann hier ähnlich argumentiert werden: Die Bildung von PCDD/F nimmt mit steigender Kupferionenkonzentration (Katalysator für die Chlorierung und den Kohlenstoffabbau) zu. Ist die Konzentration an Kupfer zu hoch, dominiert der Abbau höherchlorierter PCDD/F, vor allem von Cl₈DD durch Dechlorierung. Dadurch ist der leichte Anstieg der Konzentrationen niederchlorierter PCDD/F erklärbar.

Das Homologenmuster der ¹²C₆-Chlorphenole ist durch die hohe Konzentration an Trichlorphenol geprägt. Unter den ¹³C₆-Chlorphenolen dominiert für die gesamte Versuchsreihe Pentachlorphenol. Für die ¹²C₆-Chlorbenzole wird ein Trend zu höherem Chlorierungsgrad mit steigender Kupferkonzentration beobachtet, während für die ¹³C₆-Chlorbenzole der Chlorierungsgrad unbeeinflußt von einem steigendem Kupfergehalt bleibt.

Daß es sich bei dem Abbau der Organochlorverbindungen um eine Dechlorierung handelt, wird bei den Chlorbenzolen deutlich: Eine Verdopplung der Kupferkonzentration von 0,2 auf 0,4 % bewirkt eine starke Abnahme der Pentachlorbenzole und einen relativ dazu geringeren Konzentrationsrückgang der niederchlorierten Benzole. Durch den Abbau höherchlorierter Verbindungen wird der Konzentrationsrückgang niederchlorierter Verbindungen zum Teil wieder ausgeglichen.

Abb. 5.1-14 Konzentrationsverlauf der einzelnen Chlorierungsstufen der PCPh und PCBz nach thermischer Behandlung der MFA-F,G,H und C (¹²C:¹³C =1:1) in Abhängigkeit von der Kupferkonzentration, Reaktionszeit: 1 h, Reaktionstemperatur: 350 °C

Ein Einfluß der Kupferkonzentration auf das Isomerenmuster der Chlorphenole konnte nicht festgestellt werden. Für jede Chlorierungsstufe wurde nur ein Chlorphenolisomer erhalten. Es handelt sich dabei um die gleichen Isomeren, die bereits in den bisherigen Kapiteln genannt wurden.

Die Chlorierung der Chlorbenzole bzw. der Kohlenstoffmatrix unter Bildung von Chlorbenzolen scheint von der Kupferkonzentration beeinflußt zu werden. Da der Trend nicht ganz eindeutig ist, kann es sich allerdings nur um einen schwachen Einfluß handeln. Bei kleinen Kupferkonzentrationen wurde die Bildung von 1,2-Cl₂Bz favorisiert. Für das Chlorierungsmuster der übrigen Chlorierungsgrade wurde ein annähernd gleiches Bild wie in den vorhergehenden Kapiteln erhalten.

Tab. 5.1-29	Prozentuale Verteilung der gebildeten Chlorbenzolisomere innerhalb der Homologen-
	gruppen nach thermischer Behandlung der MFA-F,G,H und C (12C:13C= 1:1) in
	Abhängigkeit von der Kupferkonzentration
	Reaktionszeit: 1 h. Reaktionstemperatur: 350 °C

	0,05	% Cu	6 Cu 0,1 %		0,2 % Cu		0,4 % Cu	
	¹² C ₆	¹³ C ₆						
1,3-Cl₂Bz	40	32	40	28	49	34	78	63
1,4-Cl₂Bz	10	28	11	25	8	18	10	0
1,2-Cl₂Bz	50	40	49	48	43	48	12	37
1,3,5-Cl ₃ Bz	6	11	6	9	6	8	8	18
1,2,4-Cl₃Bz	35	46	37	52	34	47	58	58
1,2,3-Cl₃Bz	59	43	57	39	60	45	35	24
1,2,3,5-Cl ₄ Bz	30	37	39	44	39	39	43	47
1,2,4,5-Cl₄Bz	27	28	26	26	23	28	28	28
1,2,3,4-Cl₄Bz	44	35	35	30	38	33	28	25

Der Vergleich der Chlorierungsgrade der PCDD und PCDF läßt auch hier auf Unterschiede im Reaktionsmechanismus der beiden Verbindungsklassen schließen. Mit steigendem Cu^{2+} -Gehalt der Modellmischung (0,05 – 0,4 %) steigt der Chlorierungsgrad der PCDD stärker als der der PCDF. Bei der optimalen Cu^{2+} -Konzentration von 0,2 % dominieren unter den PCDD die oktachlorierten Spezies und unter den PCDF die Hexa- und Heptachlor-verbindungen.

Abb. 5.1-15 Konzentrationsverlauf der Homologengruppen der ¹²C_{12⁻}, ¹³C_{12⁻} und ¹²C₆/¹³C₆-PCDD/F nach thermischer Behandlung der MFA-F,G, H und C (¹²C:¹³C = 1:1) in Abhängigkeit von der Kupferkonzentration, Reaktionszeit: 1 h, Temperatur: 350 °C

Der Vergleich der Gesamtkonzentrationen der PCDD und PCDF in Abhängigkeit von der Kupferkonzentration zeigt, daß der Kupfergehalt einen stärkeren Einfluß auf die PCDD- als auf die PCDF-Bildung hat.

Die Konzentrationen der ¹²C₁₂-PCDD und ¹³C₁₂-PCDD nehmen ungefähr um den Faktor 50 und die der ¹²C₁₂-PCDF und ¹³C₁₂-PCDF um den Faktor 25 bei einer Erhöhung der Kupferkonzentration von 0,05 auf 0,2 % zu. Die Konzentration der ¹²C₆/¹³C₆-PCDD wird um den Faktor 40, die der ¹²C₆/¹³C₆-PCDF dagegen nur um den Faktor 10 erhöht.

Bei einer Verdopplung der Kupferkonzentration von 0,2 auf 0,4 % nimmt die Konzentration der ${}^{12}C_{12}$ -PCDD und ${}^{13}C_{12}$ -PCDD um ca. 23 % ab. Dagegen bleibt die Konzentration der PCDF eher konstant: die Konzentration der ${}^{13}C_{12}$ -PCDF nimmt nur um 2 % ab, die der ${}^{13}C_{12}$ -PCDF sogar um 60 % zu.

Der Rückgang der Konzentration der gemischtmarkierten PCDF (-23 %) ist auch geringer als der der gemischtmarkierten PCDD (-34 %). Die Werte sind in folgender Tabelle zusammengefaßt.

Tab. 5.1-30Konzentrationen [pmol/g MFA] der ${}^{12}C_{12}$ -, ${}^{13}C_{12}$ - und ${}^{12}C_{6}/{}^{13}C_{6}$ -PCDD/F nach
thermischer Behandlung der MFA-F,G,H und C (${}^{12}C:{}^{13}C = 1:1$) in Abhängigkeit von
der Kupferkonzentration, Reaktionszeit: 1 h, Reaktionstemperatur: 350 °C

Cu [%]	0,05	0,1	0,2	0,4
¹² C ₁₂ -PCDD	47	340	2170	1860
¹³ C ₁₂ -PCDD	54	550	3920	2660
¹² C ₁₂ -PCDF	210	880	5060	8110
¹³ C ₁₂ -PCDF	390	1930	10850	10660
¹² C ₆ / ¹³ C ₆ -PCDD	26	160	1050	688
¹² C ₆ / ¹³ C ₆ -PCDF	32	80	340	260

Sowohl die PCDD-Bildung als auch der PCDD-Abbau reagieren stärker auf eine Änderung der Kupferkonzentration als die Reaktionen im Falle der PCDF, wiederum ein Hinweis auf unterschiedliche Reaktionswege beider Verbindungsklassen.

Der stärkere Einfluß der Kupferkonzentration auf die PCDD-Bildung könnte damit zusammenhängen, daß ein Großteil der PCDD-Bildungsreaktionen eine Folge zweier Reaktionen ist: Herauslösung von Phenylringen und anschließende Kondensation dieser, während für die PCDF nur der direkte Abbau aus der Kohlenstoffstruktur von Bedeutung ist.

Trennt man die PCDD/F-Konzentrationen auf in Anteile, die aus einer Kondensationsreaktion, und Anteile, die auf eine *direkte De-Novo-Synthese* zurückführbar sind (vgl. Kap. 5.1.2), so resultieren, die in Tab. 5.1-31 zusammengefaßten Ergebnisse.

Aus den Werten geht deutlich hervor, daß bei der niedrigsten Kupferkonzentration (0,05 %) der Anteil der Kondensationsreaktion für die PCDD am höchsten ist. In den letzten Kapiteln wurden bei einer Temperatur von 350 °C für den Anteil der Kondensationsreaktion an der PCDD/F-Bildung aus Kohlenstoff Werte kleiner als 28 % erhalten.

Erstaunlich hoch ist auch der Anteil der Kondensationsreaktion für PCDF. Unabhängig von Reaktionstemperatur und –zeit wurden bisher nur Werte kleiner als 3 % erhalten.

Eine Erhöhung der Kupferkonzentration um den Faktor 4 (von 0,05 auf 0,2) bewirkt im Falle der PCDF einen Rückgang der Kondensationsreaktion um 60 % und bei den PCDD um 30 %. Da die ${}^{12}C_6/{}^{13}C_6$ -PCDD-Bildung aus Chlorphenolen gesichert ist, kann der Rückgang der PCDF-Konzentration als Hinweis gewertet werden, daß zumindest ein Ring der PCDF auf Chlorphenole zurückgeführt werden kann.

Tab. 5.1-31Konzentrationen [pmol/g MFA] der ${}^{12}C_{12}$ -, ${}^{13}C_{12}$ - und ${}^{12}C_{6}/{}^{13}C_{6}$ -PCDD/F der thermischen
Versuche mit MFA –F,G und H (${}^{12}C.{}^{13}C = 1:1$) in Abhängigkeit von der
Kupferkonzentration, Reaktionstemperatur: 350 °C, Reaktionszeit: 1 h

	0,05 % Cu	¹² C ₁₂		¹³ C ₁₂		¹² C ₆ / ¹³ C ₆	Sum	me
Experiment	PCDD	47		54		26	12	7
	Kondensation	13		13		26	52	41 %
berechnet	De-Novo Synthese	34	45 %	41	55 %		75	59 %
Experiment	PCDF	210		390		32	63	2
	Kondensation	16		16		32	64	10 %
berechnet	De-Novo Synthese	194	34 %	374	66 %		568	90 %

	0,1 % Cu	¹² C ₁₂	¹³ C ₁₂	¹² C ₆ / ¹³ C ₆	Summe
Experiment	PCDD	340	550	160	1050
	Kondensation	80	80	160	320 26 %
Derecnnet	De-Novo Synthese	260 36 %	470 64%		730 74 %
Experiment	PCDF	880	1930	80	2890
	Kondensation	40	40	80	160 5,5 %
Derechnet	De-Novo Synthese	840 31 %	1890 69 %		2730 94,5 %

	0,2 % Cu	¹² C ₁₂	¹³ C ₁₂	¹² C ₆ / ¹³ C ₆	Summe
Experiment	PCDD	2170	3920	1050	7140
	Kondensation	525	525	1050	2100 29 %
berechnet	De-Novo Synthese	1645 33%	3395 67 %		5040 71 %
Experiment	PCDF	5060	10840	340	16240
	Kondensation	170	170	340	680 4,2 %
berechnet	De-Novo Synthese	4890 31%	10670 69 %		15560 95,8 %

5.1.6 Bildung von PCPh, PCBz und PCDD/F auf Modellflugasche unter Zusatz von 2,4,6-Cl₃Ph und ¹³C-markiertem Kohlenstoff

Chlorphenole kommen neben anderen Chlorhydroxyverbindungen, wie z.B. Hydroxychloranthracenen, -pyrenen, -naphthalinen (1-3 Chloratome), -diphenylether und -dibenzofuranen auf Flugaschen⁷⁷ und in den Abgasen von Müllverbrennungsanlagen^{75,79} in signifikanten Mengen vor. Das 2,4,6-Cl₃Ph-Isomer tritt dabei in der höchsten Konzentration auf, bezogen auf die Konzentrationen der restlichen Trichlorphenolisomere als auch auf die Isomere der restlichen Chlorierungsstufen.

Die bisher durchgeführten Versuche mit Modellflugasche, dotiert mit ¹²C- und ¹³C-markiertem Kohlenstoff zeigen, daß aus Kohlepartikel unter den gewählten Reaktionsbedingungen nur ganz bestimmte Chlorphenole gebildet werden. Von den Trichlorphenolen wurde ausschließlich 2,4,6-Cl₃Ph gebildet. Ein Teil der gebildeten PCDD kann auf eine Kondensation, der aus Kohlenstoff gebildeten Chlorphenole, unter Abspaltung von zwei Molekülen HCl zurückgeführt werden. Unter der Annahme, daß die ¹²C₆/¹³C₆-PCDD durch Kondensation von - aus beiden Kohlenstoffisotopen intermediär gebildeten – Chlorphenolen handelt, würde man auch bei einer Dotierung der MFA mit 2,4,6-Cl₃Ph und ¹³C-markiertem Kohlenstoff die Bildung von ¹²C₆/¹³C₆-PCDD erwarten.

Entstehen gleichzeitig auch ${}^{12}C_6/{}^{13}C_6$ -PCDF in den Verhältnissen, in denen sie auf der Modellflugasche gebildet wurden, so würde das bedeuten, daß auch die auf der Modellflugasche aus Kohlenstoff gebildeten ${}^{12}C_6/{}^{13}C_6$ -PCDF (Kap. 5.1.1 - 5.1.5) auf eine Kondensation von Chlorphenolen zurückzuführen sind.

Um die Reaktion von zugesetzten Chlorphenolen mit intermediär gebildeten Chlorphenolen (${}^{13}C_6$ -PCPh) zu untersuchen, wurde ein Versuch mit Modellflugasche durchgeführt, die mit ${}^{13}C$ -markiertem Kohlenstoff und 2,4,6-Cl₃Ph dotiert wurde. Hierzu wurde der MFA-B 1,1 mg 2,4,6-Cl₃Ph zugesetzt. Dies entspricht einem " ${}^{12}C$ -Kohlenstoffgehalt" von 0,4 mg, so daß ein " ${}^{12}C$ ": ${}^{13}C$ -Verhältnis von 1:100 resultiert.

Durch die Verwendung von ¹³C-markiertem Kohlenstoff war es möglich, die Kondensationsprodukte (${}^{12}C_{6}/{}^{13}C_{6}$ -PCDD/F-Produkte) aus den beiden unterschiedlich kohlenstoffisotopenmarkierten Chlorphenolen von den Reaktionsprodukten zu unterscheiden, die ausschließlich aus zugesetztem Chlorphenol (d.h. ${}^{12}C_{12}$ -PCDD/F-Produkte) bzw. aus Kohlenstoff (${}^{13}C_{12}$ -PCDD/F-Produkte) gebildet wurden. In nachfolgender Tabelle sind die Gesamtkonzentrationen, der aus ${}^{12}C_{6}$ -2,4,6-Cl₃Ph und ${}^{13}C$ -Kohlenstoff resultierenden Produkte PCPh, PCBz und PCDD/F aufgelistet.

Tab. 5,1-32	Konzentrationen [ng/g MFA] der PCPh, PCBz und PCDD/F nach thermischer
	Behandlung einer MFA dotiert mit 2,4,6-Cl ₃ Ph (1,1 mg/g MFA) und ¹³ C-markiertem
	Kohlenstoff (40 mg/g MFA), Reaktionstemperatur: 300 °C, Reaktionszeit: 2 h

	¹² C	¹³ C	¹² C ₆ / ¹³ C ₆
PCPh	25000	730	
PCBz	19630	93190	
PCDD	7110	3200	1450
PCDF	160	5850	200

In Tab. 5.1-33 sind die molaren Ausbeuten der Umsetzung von 2,4,6-Cl₃Ph und ¹³C-Kohlenstoff in die untersuchten Produktklassen angegeben. Die molaren Mengen der ¹²C₆/¹³C₆-PCDD/F wurden je zur Hälfte zu ¹²C- bzw. ¹³C-PCDD/F addiert. Die Ausbeute an PCDD aus 2,4,6-Cl₃Ph ist um den Faktor 220 größer als die Ausbeute aus ¹³C-Kohlenstoff, während die Ausbeute an PCDF aus ¹²C-2,4,6-Cl₃Ph nur um den Faktor 5,4 höher ist verglichen mit der aus ¹³C-Kohlenstoff. Diese hohe Ausbeute an PCDD aus Chlorphenolen bestätigt die Bedeutung der Chlorphenole als Zwischenprodukte bei der PCDD-Bildung aus Kohlenstoff.

Tab. 5.1-33Molare Ausbeuten [%] der PCPh, PCBz und PCDD/F nach thermischer Behandlung
einer Modellflugasche dotiert mit 2,4,6-Cl₃Ph (1,1 mg/g) und ¹³C-markiertem
Kohlenstoff (40 mg/g), Reaktionstemperatur: 300 °C, Reaktionszeit: 2 h

	PCPh	PCBz	PCDD	PCDF
¹² C-2,4,6-Cl ₃ Ph	0,78	1,9	0,8	0,03
¹³ C-Kohlenstoff	0,0004	0,074	0,0036	0,0055

Mit ¹³C-Kohlenstoff wurden die gleichen Chlorphenolisomere erhalten wie bereits in den vorausgegangenen thermischen Experimenten. Vernachlässigbare Mengen (0,01 %) an 2,4,6-Cl₃Ph wurden zu 2,4- und 2,6-Cl₂Ph dechloriert, die Weiterchlorierung von 2,4,6-Cl₃Ph führte zu 2,3,4,6-Cl₄Ph (0,03 %) und Cl₅Ph (0,7 %). Insgesamt wurden 98,7 % des 2,4,6-Cl₃Ph umgesetzt, aber nur 0,8 % in weitere Chlorphenole, 1,9 % in Chlorbenzole, 0,8 % in PCDD und 0,03 % in PCDF.

Für die Chlorbenzole aus ¹³C-Kohlenstoff (Tab. 5.1-34) wurde das gleiche Isomerenmuster erhalten, wie in den Versuchen mit Modellflugasche, dotiert mit Kohlenstoff. Das Isomerenmuster der Chlorbenzole aus 2,4,6-Cl₃Ph unterscheidet sich nur für die Trichlorbenzole von dem der ¹³C₆-Chlorbenzole aus Kohlenstoff. Die Bildung der beobachteten Chlorbenzole aus Trichlorphenol kann durch eine ipso-Substitution der Hydroxylgruppe gegen eine Wasserstoffunktion erklärt werden, wobei 1,2,3,5-Cl₄Bz entsteht. Eine schrittweise Dechlorierung dieser Verbindung könnte zur Bildung von 1,2,3-Cl₃Bz und 1,3-Cl₂Bz führen. Auf die Bildung von Chlorbenzolen aus Chlorphenolen wird in Kap. 5.3.2 näher eingegangen.

Die Konzentrationen der einzelnen Chlorhomologengruppen der PCPh, PCBz und PCDD/F sind in Tab. 8.10 des Anhangs aufgelistet. Obwohl in 2,4,6-Cl₃Ph bereits drei Kohlenstoffpositionen chloriert sind, weisen die Produkte aus ¹³C-Kohlenstoff einen höheren Chlorierungsgrad auf als die Verbindungen, die unter Beteiligung von 2,4,6-Cl₃Ph entstanden sind.

Unter den ${}^{12}C_{12}$ - und ${}^{12}C_6/{}^{13}C_6$ -PCDD/F wurden die penta- und hexachlorierten PCDD/F in den höchsten Konzentrationen erhalten, während unter den ${}^{13}C_{12}$ -PCDD/F die hexa- bis oktachlorierten PCDD/F vorherrschen. Durch Kondensation von 2,4,6-Cl₃Ph sollten hauptsächlich Tetrachlordibenzodioxine entstehen. Geringe Konzentration an Tetrachlor-phenol - durch Weiterchlorierung aus dem Trichlorphenol entstanden - lassen eine höhere Wahrscheinlichkeit einer Weiterchlorierung der beiden Tetrachlordibenzodioxine zu Pentabis Oktachlordibenzodioxine vermuten. Die Kondensation von Trichlorphenol mit höher chlorierten Phenolen kann nur eine untergeordnete Rolle spielen.

Tab. 5.1-34Prozentuale Verteilung der gebildeten Chlorbenzolisomere innerhalb der
Homologengruppen nach thermischer Behandlung einer Modellflugasche, dotiert
mit 2,4,6-Cl₃Ph (1,1 mg/g) und ¹³C-markiertem Kohlenstoff (40 mg/g), 300 °C, 2 h

	¹² C-2,4,6-Cl ₃ Ph und ¹³ C-Kohlenstoff				
	¹² C ₆	¹³ C ₆			
1,3-Cl ₂ Bz	85	71			
1,4-Cl₂Bz	4	11			
1,2-Cl ₂ Bz	11	19			
1,3,5-Cl ₃ Bz	24	18			
1,2,4-Cl₃Bz	13	54			
1,2,3-Cl₃Bz	63	28			
1,2,3,5-Cl ₄ Bz	45	39			
1,2,4,5-Cl₄Bz	33	37			
1,2,3,4-Cl ₄ Bz	22	23			

In Tab. 5.1-35 sind die Konzentrationen der einzelnen PCDD-Kongenere aufgelistet. Unter den ¹²C₁₂-Tetrachlordibenzodioxinen bilden die beiden Isomere 1,3,6,8,- und 1,3,7,9-Cl₄DD mehr als 96 % der Gesamtsumme an ¹²C₁₂-Cl₄DD. Es handelt sich dabei um die aus 2,4,6- Cl₃Ph direkt und über die *Smiles-Umlagerung* gebildeten Kondensationsprodukte.

Unter den ${}^{12}C_{12}$ -Pentachlordibenzodioxinen entstehen bevorzugt vier Isomere: 1,2,4,6,8-, 1,2,4,7,9-, 1,2,3,6,8 und 1,2,3,7,9-CI₅DD, die durch eine Kondensation von 2,4,6-CI₃Ph mit 2,3,4,6-CI₄Ph erklärbar sind.

Wie aus Tab. 5.1-35 weiter hervorgeht, wurden bei den ${}^{12}C_{12}$ -Hexachlordibenzodioxinen die Gruppe aus den 3 Isomeren 1,2,4,6,7,9-, 1,2,4,6,8,9- und 1,2,3,4,6,8-Cl₆DD mit 94 % der Gesamtsumme bevorzugt gebildet. Diese drei Verbindungen sind im HRGC/HRMS (SP-2331-Säule) nicht weiter auftrennbar und aufgrund der Gegenwart von ${}^{12}C_6/{}^{13}C_6$ -PCDD war es nicht möglich, diese Probe im HRGC/LRMS (DB-5-Säule) zu messen. Die Proben der thermischen Versuche mit 2,4,6-Cl₃Ph dotierter Modellflugasche wurden mittels HRGC/LRMS (DB-5-Säule) gemessen: sie zeigten, daß 1,2,3,4,6,8-Cl₆DD (ca. 80 %) das Hauptisomer unter den Cl₆DD. Unter den ${}^{12}C_6/{}^{13}C_6$ -Cl₆DD ist statistisch gesehen, eine Reaktion von 2,4,6-Cl₃Ph mit ${}^{13}C_6$ -Pentachlorphenol, dem Hauptchlorphenolisomer aus ${}^{13}C$ -Kohlenstoff, am wahrscheinlichsten, wobei 1,2,3,4,6,8-Cl₆DD gebildet wird.

Für die ¹³C₁₂-PCDD wurde ein ähnliches Isomerenmuster erhalten, wie bereits für die Versuche mit Modellflugasche, die nur mit Kohlenstoff dotiert waren (Tab. 5.1-14).

Die ¹²C₆/¹³C₆-PCDD in diesem Versuch können sowohl durch Reaktion des 2,4,6-Cl₃Ph mit ¹³C₆-Chlorphenolen als auch mit vorgebildeten Aromaten der Kohlenstoffstruktur reagieren. Die hohe Konzentration an 2,4,6-Cl₃Ph ist deutlich im hohen Anteil der Konzentration folgender Isomere 1,3,6,8-, 1,3,7,9-Cl₄DD, 1,2,3,6,8-, 1,2,3,7,9-, 1,2,4,6,8-, und 1,2,4,7,9-Cl₅DD sowie 1,2,3,4,6,8-Cl₆DD zu sehen (vgl. Tab. 5.1-13). Eine Reaktion zwischen "freien" Chlorphenolen (hauptsächlich 2,4,6-Cl₃Ph) und "präformierten" Phenylringen des Kohlenstoffs sollte zur Erhöhung der Konzentration folgender Isomere führen: 1,3,7,8-, 1,2,6,8- und 1,2,7,9-Cl₄DD führen, was in der Tat auch der Fall ist. Auch die Anteile folgender Isomere sind relativ hoch: 1,2,4,7-, 1,2,4,8- 1,2,4,6-, 1,2,4,9-, 1,2,3,8- und 1,2,3,9-Cl₄DD. Diese Isomere können durch eine Kondensation von 2,3,4,6-Cl₄Ph mit Chlorphenol-strukturen erklärt werden, die noch mit der Kohlenstoffmatrix verbunden sind (vgl. Kap. 5.1.2, Seite 58). Diese Ergebnisse untermauern den bei der PCDD-Bildung aus

Kohlenstoff beschriebenen Reaktionsweg: Reaktion von Chlorphenolen mit aromatischen Ringen, die noch über C-C-Bindungen mit dem Kohlenstoffgerüst verbunden sind.

Tab. 5.1-35Prozentuale Verteilung der PCDD-Isomere innerhalb der Homologengruppen nach
thermischer Behandlung der mit 2,4,6-Cl₃Ph (1,1 mg/g) und ¹³C-markiertem
Kohlenstoff (40 mg/g) dotierten MFA, Reaktionstemperatur: 300 °C, Zeit: 2 h

	2,4,6-Cl ₃ Ph und ¹³ C-Kohlenstoff				
	¹² C ₁₂ -Cl ₄ DD	¹³ C ₁₂ -Cl ₄ DD	¹² C ₆ / ¹³ C ₆ -Cl ₄ DD		
1,3,6,8	63,6	20,4	35,2		
1,3,7,9	32,8	11,3	24,6		
1.3.7.8	0,4	11.3	<u>13,7</u>		
1,3,6,9/ <u>1.2,4,7/1,2.4,8</u>	<u>0,3</u>	<u>11,3</u>	<u>5,0</u>		
1.2.6.8	0,2	<u>5,0</u>	4,9		
1,4,7,9	0,0	1,6	0,1		
2,3,7,8	0,0	4,6	0,2		
<u>1.2,3,7</u>	<u>0,1</u>	<u>6,4</u>	1.0		
1,2,3,4 / <u>1,2,4,6</u> / <u>1,2,4,9</u> / <u>1,2,3,8</u>	0.0	<u>7,9</u>	<u>1,6</u>		
1.2.3.6/1.2.7.9	<u>0,2</u>	8,1	<u>8,4</u>		
1,4,6,9/1,2,7,8	1,3	5,5	2,9		
1,2,3,9	0.0	3,0	0.0		
1,2,6,9	1,0	1,2	2,3		
1,2,6,7	0,0	1,2	0,0		
1,2,8,9	0,0	1,2	0,1		
	¹² C ₁₂ -Cl ₅ DD	¹³ C ₁₂ -Cl ₅ DD	¹² C ₆ / ¹³ C ₆ -Cl ₅ DD		
1,2,4,6,8/1,2,4,7,9	49,0	30,2	44,9		
1,2,3,6,8	27,3	19,1	26,4		
1.2.4.7.8	<u>0,3</u>	<u>8,3</u>	<u>1.5</u>		
1,2,3,7,9	21,8	13,2	22,0		
1,2,4,6,9/ <u>1,2,3,4,7</u>	0,6	4,9	1,5		
1.2.3.7.8	0.2	<u>9,6</u>	1.3		
1,2,3,6,9	0.2	2,1	0,3		
1,2,4,6,7	<u>0,1</u>	<u>2,5</u>	<u>0.5</u>		
<u>1,2,4,8,9</u>	<u>0,1</u>	2,5	<u>0,5</u>		
1,2,3,4,6	<u>0,2</u>	0.7	<u>0.3</u>		
1.2.3.6.7	<u>0,1</u>	3,2	<u>0,4</u>		
<u>1,2,3,8,9</u>	<u>0,1</u>	3,7	<u>0,5</u>		
	¹² C ₁₂ -Cl ₆ DD	¹³ C ₁₂ -Cl ₆ DD	¹² C ₆ / ¹³ C ₆ -Cl ₆ DD		
1,2,4,6,7,9/1,2,4,6,8,9/1,2,3,4,6,8	94,0	38,0	78,7		
1,2,3,6,7,9/1,2,3,6,8,9	4,0	15,6	14,3		
1.2.3.4.7.8	<u>0,2</u>	<u>19,1</u>	2,5		
1,2,3,6,7,8	0,9	5,7	1,9		
1,2,3,4,6,9	0,1	10,1	0,3		
1,2,3,7,8,9	0,7	8,2	1,6		
<u>1,2,3,4,6,7</u>	<u>0,1</u>	<u>3,3</u>	<u>0.7</u>		
	¹² C ₁₂ -Cl ₇ DD	¹³ C ₁₂ -CI ₇ DD	¹² C ₆ / ¹³ C ₆ -Cl ₇ DD		
1,2,3,4,6,7,9	<u>57,0</u>	<u>49,7</u>	<u>51,0</u>		
1,2,3,4,6,7,8	<u>43,0</u>	<u>50,3</u>	<u>49,0</u>		

Aufgrund der hohen Konzentration an 2,4,6-Cl₃Ph erwartet man hier eine bevorzugte Bildung von ${}^{12}C_{6}/{}^{13}C_{6}$ -PCDF, die gemäß dem von Sidhu (Tab.5.1-17) vorgeschlagenen Mechanismus aufgebaut werden. Aufgrund der Blockierung beider ortho-Positionen ist eine Kondensation gemäß Born und Mulder (vgl. Kap. 2, Seite 14) unwahrscheinlich¹¹⁶.

In der Tat stellen 1,3,6,8- und 2,4,6,8-Cl₄DF eindeutig Hauptisomere dar. Die beiden anderen in hohen Konzentrationen gebildeten Isomere können durch Kondensation von 2,4,6-Cl₃Ph mit einem Chlorbenzolisomer (vgl. Tab. 5.1-16) erklärt werden.

Auch die Ergebnisse unter den ${}^{12}C_{6}/{}^{13}C_{6}$ -Penta- bis Heptachlordibenzofuranen sprechen für eine Kondensation zwischen Chlorphenolen über eine Diphenyletherstufe als Zwischenverbindung.

Tab. 5.1-36	Prozentuale Verteilung der PCDF-Isomere innerhalb der Homologengruppen nach
	thermischer Behandlung der mit 2,4,6-Cl₃Ph-dotierter MFA (1,1 mg/g MFA) und
	¹³ C-markiertem Kohlenstoff (40 mg/g MFA), Reaktionstemperatur: 300 °C, Zeit: 2 h

	2,4,6-CI	₃ Ph und ¹³ C-Ko	hlenstoff
	¹² C ₁₂ -Cl ₄ DF	¹³ C ₁₂ -Cl ₄ DF	¹² C ₆ / ¹³ C ₆ -Cl ₄ DF
1,3,6,8	8,6	4,5	11,8
1,3,7,8	0,0	6,7	2,4
1,4,6,8	17,1	1,8	2,1
1,3,4,8	21,4	1,4	0,4
1,2,4,6/1,2,6,8	0,0	3,1	5,3
1,6,7,8/1,2,3,4	0,0	6,3	4,9
2,4,6,8/1,2,3,8/1,4,6,7/1,2,3,6	7,9	9,5	25,3
1,2,4,9	14,1	10,1	15,9
2,4,6,7	13,3	8,0	15,5
2,3,4,7	7,1	6,3	1,8
2,3,7,8	0,0	3,8	0,4
2,3,4,6	4,6	3,7	1,1
2,3,6,7	2,7	4,1	1,0
1,2,8,9	3,1	4,0	1,0
	¹² C ₁₂ -Cl ₅ DF	¹³ C ₁₂ -CI ₅ DF	¹² C ₆ / ¹³ C ₆ -Cl ₅ DF
1,3,4,6,8	6,1	3,9	13,2
1,2,4,6,8	7,6	5,9	19,5
1,2,3,6,8/1,3,4,7,8	18,2	9,2	18,3
1,2,4,7,8	2,6	5,6	2,0
1,2,3,6,9	20,9	2,1	0,2
2,3,4,6,8	3,1	8,9	26,4
2,3,4,7,8	4,3	7,6	1,5
2,3,4,6,7	8,6	6,3	1,3
	¹² C ₁₂ -Cl ₆ DF	¹³ C ₁₂ -Cl ₆ DF	¹² C ₆ / ¹³ C ₆ -Cl ₆ DF
1,2,3,4,6,8	38,7	7,0	56,8
1,3,4,6,7,8	5,6	7,8	5,9
1,2,4,6,7,8	6,6	10,3	6,7
1,2,4,6,7,9	2,3	8,6	1,7
1,2,3,7,8/1,2,3,4,7,9	2,3	11,5	7,7
1,2,3,6,7,8	9,6	8,3	5,1
1,2,4,6,8,9	7,7	5,0	1,3
1,2,3,4,6,7	6,3	3,9	3,5
1,2,3,6,7,9	1,5	6,6	1,3
1,2,3,4,6,9/1,2,3,6,8,9	3,2	9,7	2,0
1,2,3,7,8,9	0,8	5,1	0,5
2,3,4,6,7,8	13,3	8,3	6,1
	¹² C ₁₂ -Cl ₇ DF	¹³ C ₁₂ -Cl ₇ DF	¹² C ₆ / ¹³ C ₆ -Cl ₇ DF
1,2,3,4,6,7,8	57,5	30,4	57,4
1,2,3,4,6,7,9	14,7	25,4	14,2
1,2,3,4,6,8,9	15,4	25,6	18,4
1,2,3,4,7,8,9	12,4	18,7	10,0

Zwar wird 2,4,6,8-Cl₄DF zusammen mit drei weiteren Isomeren eluiert, aber die Befunde der höheren Chlorierungsgrade zeigen deutlich, daß bei einem Überangebot an Chlorphenolen verglichen mit Chlorbenzolen, auch die PCDF, die durch Kondensation zweier Phenylringe entstehen, ähnlich wie die PCDD aus Chlorphenolen aufgebaut werden.

5.1.7 Bildung von PCPh, PCBz und PCDD/F auf Flugaschen unter Zusatz von ¹³C-markiertem Kohlenstoff

Die Experimente mit Modellflugasche, dotiert mit amorphem ¹²C- und ¹³C-markiertem Kohlenstoff zeigen, daß im untersuchten Temperatur- und Zeitbereich (250 - 400 °C, 15 - 240 min) mindestens 18 % der PCDD durch Kondensation von aromatischen C₆-Verbindungen entstehen, während die PCDF direkt als bereits "präformierte" Strukturen aus der Kohlenstoffmatrix herausgelöst werden.

Stieglitz et.al.⁴² zeigten, daß auf Flugaschen, deren nativer Kohlenstoff oxidativ entfernt wurde, zugesetzter amorpher ¹²C- und ¹³C-markierter Kohlenstoff ca. 20 % gemischtringige PCDD und 1 % gemischtringige PCDF liefert.

Nachdem nun gezeigt wurde, daß sowohl auf Flugasche⁴² und Modellflugasche ¹²C- und ¹³C-markierter Kohlenstoff zur Bildung von ¹²C₆/¹³C₆-PCDD/F führt, muß nun noch geklärt werden, ob die erhaltenen Ergebnisse auch auf native Kohlenstoffpartikel (Restkohlenstoff der Flugasche) und ¹³C-Kohlenstoff übertragbar sind.

Der Restkohlenstoff auf realen Flugaschen ist mit der Flugasche auf eine komplexe Art vermischt und steht in direktem Kontakt mit den für die PCDD/F-Bildung verantwortlichen Katalysatoren. Schwarz⁴⁹ zeigte, daß in Flugaschen diverse Modifikationen von Kohlenstoff, wie z.B. fadenförmige und amorphe Kohlenstoffpartikel, nebeneinander vorliegen. Daneben liegt der Kohlenstoff in Silikat eingebettet vor.

Im Falle der Modellflugasche befindet sich nur die Oberfläche des Kohlenstoffs mit dem zugesetzten Kupfer(II)chlorid in direktem Kontakt. Daher sind Abweichungen von den bisherigen Ergebnissen denkbar.

Die bereits durchgeführten Versuche mit Modellflugasche zeigten neben dem Bildungspotential dieses amorphen Kohlenstoffs zu PCPh, PCBz und PCDD/F weitere Parallelen zum Reaktionsverhalten des Restkohlenstoffs auf, wie z.B. Umsatz, Homologen- und Isomerenmuster und PCDD/PCDF-Verhältnis. Diese Ergebnisse deuten darauf hin, daß auf Flugasche die Reaktionsmechanismen der PCDD/F-Bildung aus Kohlenstoff ähnlich ablaufen.

Die bisherigen Schlußfolgerungen können durch weitere Versuche belegt werden, bei denen gemischtringige PCDD/F-Moleküle entstehen, deren eine Hälfte auf nativen Kohlenstoff und die andere Hälfte auf ¹³C-markierten Kohlenstoff zurückgeführt werden kann.

Daher wurden thermische Versuche mit realen Flugaschen durchgeführt, die mit ¹³C-Kohlenstoff dotiert wurden. Die beiden ausgewählten Flugaschen: GP-FA und EPA-FA unterscheiden sich sowohl im Kohlenstoffgehalt als auch in ihrer Herkunft. Die GP-FA stammt aus dem Elektrofilter einer kommunalen Hausmüllverbrennungsanlage in Göppingen (Baden-Württemberg) und enthält noch 4,2 % Restkohlenstoff, während die EPA-FA mit 1,75 % nativem Kohlenstoff von Anlagen aus den USA bezogen wurde.

Zur Entfernung vorhandener Verunreinigungen (vor allem PCPh, PCBz und PCDD/F) wurden beide Flugaschen in einer Heiß-Soxhlet Apparatur 24 h mit Toluol extrahiert. Die nach der Reinigung noch gefundenen PCPh-, PCBz- und PCDD/F-Konzentrationen sind als Blindwerte in Tab 5.1-37 und die Zusammensetzung beider Flugaschen in Tab. 3.1-2 aufgeführt.

Die zudotierte Menge an ¹³C-Kohlenstoff wurde so gewählt, daß das molare Verhältnis von nativem Kohlenstoff auf der Flugasche zu zugesetztem ¹³C-Kohlenstoff gleich eins ist. Die EPA-FA wurde mit 19 mg ¹³C-Kohlenstoff (1,458 mmol) und die GP-FA mit 45,6 mg (3,5 mmol) pro Gramm Flugasche dotiert.

Die Versuche wurden in einer Sauerstoff/Helium-Atmosphäre (20 % O₂/80 % He) durchgeführt, deren Wassergehalt 150 mg/l Gasmischung betrug. Zum Vergleich der Daten und zur Überprüfung ob der ¹³C-Kohlenstoff einen Einfluß auf die Konzentrationen der ¹²C-Verbindungen hat, wurden die Versuche mit beiden Flugaschen unter den gleichen Reaktionsbedingungen wiederholt, ohne daß ¹³C-Kohlenstoff zugefügt wurde.

Die Konzentrationen der einzelnen Chlorierungsstufen der PCPh, PCBz und PCDD/F der thermischen Versuche mit und ohne ¹³C-Kohlenstoff Dotierung sind in Tab. 8.12 des Anhangs aufgelistet, diejenigen der Gesamtkonzentrationen in Tab. 5.1-37 zusammengefaßt.

	EPA-Flugasche			GP-Flugasche			
	Blind- wert	ohne ¹³ C nur Rest-C	Zugabe von ¹³ C ¹² C _{nat} : ¹³ C = 1:1	Blind- wert	ohne ¹³ C nur Rest-C	Zugabe von ¹³ C ¹² C _{nat} : ¹³ C = 1:1	
¹² C ₆ -PCPh	70	280	990	310	1950	1580	
¹³ C ₆ -PCPh			300			980	
¹² C ₆ -PCBz	100	55510	64490	70	138460	178730	
¹³ C ₆ -PCBz			77360			127460	
¹² C ₁₂ -PCDD	130	700	330	27	590	430	
¹³ C ₁₂ -PCDD			440			460	
¹² C ₆ / ¹³ C ₆ -PCDD			400			330	
¹² C ₁₂ -PCDF	27	1570	1140	14	5220	2940	
¹³ C ₁₂ -PCDF			1820			2970	
¹² C ₆ / ¹³ C ₆ -PCDF			160			260	

Гаb. 5.1-37	Konzentrationen [ng/g FA] der PCPh, PCBz und PCDD/F nach thermischer
	Behandlung der EPA-FA und GP-FA bei 350 °C und 1 h Reaktionszeit mit und ohne
	Zusatz von ¹³ C-Kohlenstoff

Die um den Faktor 2 erhöhte Konzentration an ${}^{13}C_6$ -PCPh, -PCBz und ${}^{12}C_{12}$ -, ${}^{13}C_{12}$ - und ${}^{12}C_6/{}^{13}C_6$ -PCDF auf GP-FA verglichen mit den Konzentrationen dieser Verbindungen auf EPA-FA ist auf die doppelt so hohe Menge an eingesetztem ${}^{13}C$ -Kohlenstoff auf GP-FA zurückzuführen.

Während auf beiden Flugaschen die Konzentration der ${}^{12}C_6$ -Chlorphenole um den Faktor 2 größer als die der ${}^{13}C_6$ -Chlorphenole ist, entstehen die ${}^{12}C_6$ - und ${}^{13}C_6$ -Chlorbenzole in ähnlichen Mengen. Aufgrund der geringen PCPh-Konzentration auf EPA-FA würde man eine geringere PCDD-Bildung erwarten. Die Ergebnisse zeigen aber, daß auf EPA- und GP-FA ähnliche PCDD-Konzentrationen entstehen. Die gleichen Ausbeuten an ${}^{13}C_{12}$ - und ${}^{12}C_6/{}^{13}C_6$ -PCDD auf EPA-FA und GP-FA - obwohl die eingesetzte Menge an ${}^{13}C$ -Kohlenstoff auf EPA-FA nur halb so groß war als auf GP-FA - könnte mit der erhöhten Konzentration an Kupfer auf EPA-FA verglichen mit GP-FA (vgl. Tab. 3.1-2) zusammenhängen.

Da ein bestimmter Anteil der PCDD auf eine Kondensation von Chlorphenolen zurückgeführt werden kann, sollte man erwarten, daß bei Zugabe von ¹³C-Kohlenstoff der Anteil der ¹²C₁₂-PCDD (PCDD aus nativem Kohlenstoff) an der Gesamtsumme der PCDD abnimmt. Die aus ¹³C-Kohlenstoff gebildeten ¹³C₆-PCPh reagieren mit den ¹²C₆-PCPh, wodurch die Konzentration an ¹²C₆-PCPh für die ¹²C₁₂-PCDD-Bildung erniedrigt ist. Interessant ist, daß die Menge an PCDF in gleichem Maß abnimmt, obwohl Chlorphenole für die PCDF eine untergeordnete Rolle spielen. Im Falle der EPA-FA ist die Abnahme an ¹²C₁₂-PCDF bei Zugabe von ¹³C₁₂-Kohlenstoff nicht so stark ausgeprägt. Dagegen führt der ¹³C₁₂-Kohlenstoff auf GP-FA zu einer Reduktion der ¹²C₁₂-PCDF-Konzentration um 40 %. Der hohe PCDF-Wert des Versuches mit GP-FA ohne ¹³C-Kohlenstoff Dotierung wurde durch einen Wiederholungsversuch bestätigt.

Der Zusatz von ¹³C-markiertem Kohlenstoff hat keinen Einfluß auf das Homologenprofil der PCDD/F der EPA- und GP-FA. Auf der EPA-FA wurden Cl₅DD, Cl₅DD und Cl₄DF bis Cl₅DF in den höchsten Konzentrationen erhalten. Auf der GP-FA dominieren die niederchlorierten Spezies, für die PCDD sind es die Cl₅DD und für die PCDF die Cl₄DF.

Erstaunlich ist, daß der Chlorierungsgrad der ${}^{13}C_{12}$ -PCDD/F abhängig von der Flugasche ist. Auf EPA-FA sind die ${}^{13}C_{12}$ -PCDD/F und ${}^{12}C_6/{}^{13}C_6$ -PCDD/F höherchloriert als auf GP-FA. Bezüglich des Chlorierungsgrades der ${}^{13}C_6$ -PCPh und –PCBz kann allerdings keine eindeutige Aussage gemacht werden. Auf der GP-FA sind knapp 90 % der ${}^{13}C_6$ -PCPh pentachloriert, dagegen sind auf der EPA-FA 64 % der ${}^{13}C_6$ -PCPh tetrachloriert und 36 % pentachloriert.

Milligan et.al. fanden in Experimenten mit Flugasche dotiert mit ¹³C-Kohlenstoff (Aldrich) Unterschiede im Homologen- und Isomerenmuster zwischen Produkten aus nativem und ¹³C-markiertem Kohlenstoff⁴¹. Die PCDD/F-Produkte aus letzterem waren höherchloriert als die Produkte aus dem Restkohlenstoff der Flugasche.

Wie bereits für die Bildung von Chlorphenolen auf kohlenstoffdotierter Modellflugasche beschrieben, wurde auch auf beiden Flugaschen jeweils nur 1 Isomer jeder Chlorierungsstufe erhalten - sowohl für die Chlorphenole gebildet aus Restkohlenstoff als auch aus dem zugesetzten ¹³C-Kohlenstoff.

Während unter den ¹²C₆-Chlorphenolen bevorzugt Trichlorphenol gebildet wird, dominieren unter den ¹³C₆-Chlorphenolen bevorzugt Tetra- und Pentachlorphenol (Tab. 8.12).

				0 1.17 501 000		annonszon
	EPA - FA	EPA - F	⁻ A + ¹³ C	GP - FA	GP - F	$A + {}^{13}C$
	¹² C ₆	¹² C ₆	¹³ C ₆	¹² C ₆	¹² C ₆	¹³ C ₆
1,3-Cl ₂ Bz	14	10	18	7	10	14
1,4-Cl₂Bz	2	3	14	3	4	2
1,2-Cl ₂ Bz	84	87	68	90	87	84
1,3,5-Cl ₃ Bz	6	4	9	5	5	6
1,2,4-Cl₃Bz	37	36	59	49	53	37
1,2,3-Cl₃Bz	57	60	32	47	42	57
1,2,3,5-Cl ₄ Bz	28	35	40	31	29	28
1,2,4,5-Cl ₄ Bz	43	24	27	31	35	43
1,2,3,4-Cl₄Bz	29	41	33	37	36	29

Tab. 5.1-38Prozentuale Verteilung der gebildeten Chlorbenzolisomere innerhalb der
Homologengruppen nach thermischer Behandlung der GP- und EPA-FA mit und
ohne Zusatz von ¹³C-Kohlenstoff (${}^{12}C_{nal}$: ${}^{13}C = 1:1$) bei 350 °C und 1 h Reaktionszeit

Analog den Ergebnissen für die ¹³C₆-Chlorphenole dominieren auch unter den Chlorbenzolen die höheren Chlorierungsgrade für die ¹³C-markierten Produkte und die niederen Chlorierungsgrade für die Chlorbenzole aus nativem Kohlenstoff der Flugasche. Unter den ¹²C₆-Chlorbenzolen wurden Tri- und Tetrachlorbenzole in den höchsten Konzentrationen gebildet. Aus ¹³C-Kohlenstoff wurden auf EPA-FA bevorzugt Tetra- und Pentachlorbenzole und auf GP-FA Tri- bis Pentachlorbenzole erhalten.

Interessant ist, daß das Isomerenmuster der ¹³C₆-Chlorbenzole auf realer Flugasche sich von demjenigen auf Modellflugasche unterscheidet. Auf beiden Flugaschen wird die Bildung von 1,2-Cl₂Bz favorisiert. Das Isomerenmuster der Tri- und Tetrachlorbenzole der EPA-FA ist mit demjenigen auf Modellflugasche vergleichbar. Für GP-FA wurden für die Chlorierungsgrade Dichlor bis Tetrachlor Isomerenmuster erhalten, die von denjenigen auf Flugasche abweichen. Dies deutet darauf, daß auf Flugasche zusätzliche Reaktionen ablaufen bzw. daß auf Modellflugasche mit CuCl₂ nur ein bestimmtes Spektrum an Reaktionen erfaßt wird.

Wird wie in den vorherigen Kapiteln die gebildete PCDD/F-Menge aufgeteilt in Produkte aus Kondensationsreaktionen von aromatischen C₆-Molekülen und Produkte aus einer *direkten De-Novo-Synthese* (Tab. 5.1-39) so erhält man relativ hohe Werte für die Kondensationsreaktion auf Flugaschen verglichen mit Modellflugasche. Das heißt, daß auf Flugaschen die PCDD-Bildung über Kondensationsreaktionen von Chlorphenolen stärker ausgeprägt ist als die direkte *De-Novo-Synthese*. Das könnte damit zusammenhängen, daß im nativen Kohlenstoff der Flugaschen mehr "Chlorphenolstrukturen" vorliegen als im verwendeten amorphen Kohlenstoff.

Bezogen auf die Gesamtsumme der PCDD bzw. PCDF beträgt auf EPA-FA der Anteil der gemischtringigen PCDD 34 % bzw. der an PCDF 4,3 %. Dies entspricht einem Anteil von 68 % Kondensationsreaktionen bei der Bildung von PCDD. Erstaunlich hoch ist der Anteil an gemischtringigen PCDF, verglichen mit dem Anteil auf Modellflugasche ist er um den Faktor 4 erhöht.

Während auf EPA-FA das Verhältnis ¹²C₁₂-PCDD/FI¹³C₁₂-PCDD/F für die *direkte De-Novo-Synthese* um 25 % vom erwarteten Verhältnis abweicht, entspricht es auf GP-FA ziemlich genau dem eingesetzten Kohlenstoffverhältnis.

Tab. 5.1-39Konzentrationen [pmol/g FA] der ${}^{12}C_{12}$ -, ${}^{13}C_{12}$ -und ${}^{12}C_{6}$ / ${}^{13}C_{6}$ -PCDD/F der thermischen
Versuche mit Flugaschen dotiert mit ${}^{13}C$ -Kohlenstoff (${}^{12}C_{nat.}$: ${}^{13}C=1:1$) bei 350 °C und
1 h Reaktionszeit

	EPA - FA + ¹³ C	¹² C ₁₂	¹³ C ₁₂	¹² C ₆ / ¹³ C ₆	Summe
Experiment	PCDD	900	1130	1060	3090
	Kondensation	530	530	1060	2120 69 %
berechnet	De-Novo-Synthese	370 38 %	600 62 %		970 31 %
Experiment	PCDF	3410	4800	460	8670
	Kondensation	230	230	460	920 11 %
berechnet	De-Novo-Synthese	3180 41%	4570 59 %		7750 89 %

	GP - FA + ¹³ C	¹² C ₁₂		¹³ C ₁₂	-	¹² C ₆ / ¹³ C ₆	Sumr	ne
Experiment	PCDD	1190		1250		900	334	0
	Kondensation	450	فانتستمصيفتي	450		900	1800	54 %
berechnet	De-Novo-Synthese	740	48 %	800	52 %		1540	46 %
Experiment	PCDF	8990		8160		800	1795	0
	Kondensation	400		400		800	1600	9%
berechnet	De-Novo-Synthese	8590	52 %	7760	48 %		16350	91 %

Obwohl der Anteil der Kondensationsreaktion an der PCDD-Bildung auf Flugasche höher als auf Modelllfugasche ist, sind die direkten Chlorphenolkondensationsprodukte (fett markierten PCDD-Isomere in Tab. 5.1-40) erniedrigt gegenüber denen auf Modellflugasche. Zum besseren Vergleich sind hier die ${}^{12}C_{6}/{}^{13}C_{6}$ -PCDD-Werte aus Tab. 5.1-14 mitaufgeführt. Die Konzentrationen der PCDD-Isomere, die auf eine Kondensation zwischen auf der Kohlenstoffoberfläche adsorbierten Chlorphenolen und aromatischen C₆-Ringen, die noch Teil der Kohlenstoffmatrix sind, zurückgeführt werden können, sind dagegen auf realer Flugasche erhöht. Dies bestätigt wieder die Vermutung, daß Restkohlenstoff viele hydroxyl-bzw. sauerstoffenthaltende Gruppen enthält.

Tab. 5.1-40Prozentuale Verteilung der PCDD Isomere innerhalb der Homologengruppen nach
thermischer Behandlung der EPA-FA dotiert mit ¹³C-Kohlenstoff (${}^{12}C_{nat.}$; ${}^{13}C=1$:1)
bei 350 °C und 1 h Reaktionszeit; \uparrow bzw. \downarrow kennzeichnen Konzentrationszunahme
bzw. –abnahme gegenüber Experimenten mit MFA (rechte Spalte)

	EPA-F	¹² C _{nat} : ¹³ C-Kohler	nstoff	MFA ¹² C: ¹³ C = 1:1
	¹² C ₁₂ -CI ₄ DD	¹³ C ₁₂ -Cl ₄ DD	¹² C ₆ / ¹³ C ₆ -Cl ₄ DD	¹² C ₆ / ¹³ C ₆ -Cl ₄ DD
1,3,6,8	13,4	5,7	8,5 ↓	20,0
1,3,7,9	9,7	5,7	7,6 ↓	12,1
1,3,7,8	<u>16,2</u>	<u>16,1</u>	<u>16,3</u> ↑	<u>13,9</u>
1,3,6,9/ <u>1,2,4,7</u> / <u>1,2,4.8</u>	<u>16,0</u>	<u>14,1</u>	<u>14,9</u> ↑	<u>13,2</u>
1,2,6,8	<u>6,6</u>	5.4	<u>6,0</u> ↑	<u>4,6</u>
1,4,7,9	2,6	3,3	2,4	1,1
2,3,7,8	5,0	6,8	3,9	1,4
1,2,3,7	<u>7,4</u>	<u>6.3</u>	<u>8,5</u> ↑	<u>5,9</u>
1,2,3,4 / <u>1,2,4,6</u> / <u>1,2,4,9</u> / <u>1,2,3,8</u>	<u>10,8</u>	8,8	<u>8.0</u> ↓	<u>9,9</u>
1.2.3.6/1.2.7.9	<u>4,8</u>	<u>8,5</u>	<u>10,1</u> ↑	<u>7,8</u>
1,4,6,9/1,2,7,8	2,5	10,1	5,9	3,3
1.2.3.9	<u>1.5</u>	<u>2,8</u>	<u>3,6</u> ↑	<u>3.2</u>
1,2,6,9	1,1	2,5	1,4	0,9
1,2,6,7	1,5	2,0	1,7	2,0
1,2,8,9	0,7	1,8	1,1	0,6
	¹² C ₁₂ -CI ₅ DD	¹³ C ₁₂ -Cl ₅ DD	¹² C ₆ / ¹³ C ₆ -Cl ₅ DD	¹² C ₆ / ¹³ C ₆ -Cl ₅ DD
1,2,4,6,8/1,2,4,7,9	23,4	16,1	21,6 ↓	27,7
1,2,3,6,8	11,9	8,8	13,2 ↓	19,0
1.2.4.7.8	<u>10,3</u>	<u>11,6</u>	<u>11.8</u> ↑	<u>5.4</u>
1,2,3,7,9	12,1	9,1	13,3 ↓	14,0
1,2,4,6,9/ <u>1,2,3,4,7</u>	7,0	6,1	6,0 ↓	8,7
1.2,3,7,8	<u>10,3</u>	<u>13,4</u>	<u>9,7</u> ↑	<u>8.3</u>
1,2,3,6,9	3,1	3,3	4,4 ↑	1,9
1.2,4,6,7	<u>4.7</u>	<u>4,8</u>	<u>4,3</u> ↑	<u>2.7</u>
1.2.4.8.9	<u>5,2</u>	<u>5,6</u>	<u>3,8</u> ↑	<u>2.1</u>
1.2.3.4.6	<u>2,4</u>	<u>2.3</u>	<u>2,6</u> ↑	<u>2,2</u>
1.2,3,6,7	<u>4.7</u>	<u>9,3</u>	<u>4,5</u> ↑	<u>3,5</u>
<u>1,2,3,8,9</u>	<u>4,8</u>	<u>9,7</u>	<u>4,9</u> ↑	<u>4,6</u>
	¹² C ₁₂ -Cl ₆ DD	¹³ C ₁₂ -Cl ₆ DD	¹² C ₆ / ¹³ C ₆ -Cl ₆ DD	¹² C ₆ / ¹³ C ₆ -Cl ₆ DD
1,2,4,6,7,9/1,2,4,6,8,9/1,2,3,4,6,8	36,2	27,7	34,4 ↓	42,5
1,2,3,6,7,9/1,2,3,6,8,9	31,8	35,7	32,7 ↓	29,7
1.2.3.4.7.8	<u>6,0</u>	<u>8,3</u>	<u>6,2</u>	<u>8,9</u>
1,2,3,6,7,8	7,9	9,5	6,9 ↓	1,4
1,2,3,4,6,9	2,3	2,1	4,7	1,9
1,2,3,7,8,9	7,8	9,3	8,0 ↓	9,2
1.2,3,4,6,7	<u>7.9</u>	<u>7,6</u>	7.2	<u>6.4</u>
	¹² C ₁₂ -Cl ₇ DD	¹³ C ₁₂ -Cl ₇ DD	¹² C ₆ / ¹³ C ₆ -Cl ₇ DD	¹² C ₆ / ¹³ C ₆ -Cl ₇ DD
1,2,3,4,6,7,9	<u>52,6</u>	<u>49,4</u>	<u>50,0</u>	45,6
1,2,3,4,6,7,8	<u>47,4</u>	<u>50,6</u>	<u>50,0</u>	<u>54,4</u>

Das Konzentrationsprofil (in Volumenprozent) von ¹²CO₂ (aus Restkohlenstoff der Flugasche) und ¹³CO₂ (aus ¹³C-Kohlenstoff) in Abhängigkeit von der Reaktionszeit (Abb. 5.1-16) veranschaulicht, daß die Oxidation des nativen und zugesetzten ¹³C-markierten Kohlenstoffs quantitativ in ähnlichem Ausmaß stattfindet.

Gemeinsam ist den beiden Diagrammen, daß das Maximum der Konzentration an ¹³CO₂ zeitlich gegenüber dem von ¹²CO₂ um ein paar Minuten versetzt ist. Der Kohlenstoffabbrand war in beiden Versuchen um 30 % höher für den ¹³C-markierten Kohlenstoff als für den nativen Kohlenstoff der Flugasche. Bei der thermischen Behandlung der EPA-FA wurden

50 % des Restkohlenstoffs und 70 % des 13 C-Kohlenstoffs zu CO₂ oxidiert und im Falle der GP-FA waren es 27 bzw. 37 %.

Abb. 5.1-16 Vergleich der Kohlenstoffoxidation von Restkohlenstoff und zugesetztem ¹³C-markiertem Kohlenstoff der EPA-FA und GP-FA anhand der online-Messung des Hauptproduktes Kohlendioxid bei 350 °C und 1 Stunde Reaktionszeit

5.2 Umsetzung von 2,4,6-Trichlorphenol auf Flugasche und Modellflugasche zu PCDD/F

Diese Studie wurde während eines Forschungsaufenthaltes in der Arbeitsgruppe von Prof. Altwicker (Rensselaer Polytechnic Institute, Troy, New York, USA) durchgeführt. In diesen Untersuchungen steht an Stelle von Kohlenstoff als Vorläuferkomponente zu PCDD/F ein Chlorphenolisomer im Vordergrund. Über das Vorkommen von Chlorphenolen, insbesondere des 2,4,6-Cl₃Ph in Flugaschen und Abgasen von Müllverbrennungsanlagen und die Bildung spezieller Chlorphenolisomere auf kohlenstoffdotierter Modellflugasche wurde in Kap. 5.1.6 berichtet.

Zur weiteren Untersuchung der PCDD/F-Bildung, insbesondere aus Vorläuferverbindungen wurde eine Reihe von Experimenten in Abhängigkeit von der Konzentration an 2,4,6-Cl₃Ph durchgeführt.

Zum einen sollte das PCDD/F-Bildungspotential aus 2,4,6-Cl₃Ph auf einer realen Flugasche und einer Modellflugasche (MFA-I) getestet, zum anderen der Einfluß zweier unterschiedlicher Dotierungstechniken auf die PCDD/F-Bildung erforscht werden:

- i kontinuierliche Dosierung der Vorläufersubstanz in den Gasstrom während der thermischen Behandlung
- ii Dotierung der Flugasche mit der Gesamtmenge an Vorläufersubstanz vor der thermischen Behandlung.

Die Mengen an Trichlorphenol wurden so gewählt, daß in beiden Methoden ähnliche Mengenbereiche untersucht wurden.

Zur Abschätzung kinetischer Parameter ist eine relativ konstante Konzentration der Vorläuferverbindung während der Reaktionszeit und im gesamten Reaktionsraum (innerhalb der Flugasche) erforderlich. Eine konstante Konzentration an Vorläufersubstanz kann durch eine gleichmäßige und kontinuierliche Zufuhr der Substanz über die Gasphase erreicht werden.

Damit auf der ganzen Durchlaufstrecke des Gasstromes durch die Flugasche relativ konstante Konzentrationen des Eduktes gewährleistet werden können, ist ein geringer Umsatz des Eduktes notwendig. Dahinter verbirgt sich folgende Idee: Geringer Umsatz führt nur zu einer geringen Abnahme der Konzentration der Vorläuferverbindung im gesamten Reaktionsraum. Der Umsatz der Vorläuferverbindung kann durch eine Verdünnung der Flugasche mit inaktivem Material reduziert werden. Diese Methode der Verdünnung der Flugasche mit einer inaktiven Matrix wurde von Milligan et.al. entwickelt⁹⁸. Die Glasperlen bestehen aus SiO₂, Al₂O₃, Na₂O, MgO, K₂O und CaO. Der Durchmesser der Glasperlen, der Partikeldurchmesser der verwendeten Flugasche und des Florisils (Basismaterial der Modellflugasche) sind kleiner als 200 µm. Milligan et.al. konnten mit einer zehnfachen Verdünnung der Ontario-Flugasche bei einer 2,3,4,6-Cl₄Ph-Konzentration von 150 ng/ml Gasphase einen Umsatz von 50 % und mit 350 ng/ml einen Umsatz geringer als 30 % erreichen⁹⁸. In der Regel werden ohne Verdünnung der Flugasche mit Glasperlen mehr als 95 % der Chlorphenole umgesetzt. Auch bei der thermischen Behandlung der mit 2,4,6-Cl₃Ph dotierten (unverdünnten) Modellflugasche (Kap. 5.1.6) wurden nur 1,3 % der ursprünglich eingesetzten Trichlorphenolmenge wiedergefunden. Durch die Verdünnung mit Glasperlen nimmt der Anteil der Produkte und des eingesetzten Eduktes in der Gasphase

verglichen mit dem Anteil auf dem Feststoff zu, wodurch höhere Produktausbeuten und ein geringerer Umsatz des Eduktes erzielt werden.

Der Großteil der in diesem Kapitel beschriebenen Versuche wurde mit 10fach verdünnter Flugasche und Modellflugasche und einer Konzentration an 2,4,6-Cl₃Ph zwischen 0 und 470 ng/ml Gasphase durchgeführt. Der experimentelle Aufbau und weitere Reaktionsbedingungen sind in Kap. 3.4 (Seite 21) beschrieben.

Der Restkohlenstoff der EPA-FA wurde nicht entfernt, da hierfür ein Erhitzen auf 500 °C für längere Zeit (24 h) erforderlich ist, wobei der Kohlenstoff oxidativ abgebaut wird. Eine solche Vorbehandlung der Flugasche kann zu einer Veränderung der ursprünglichen Matrix der Flugasche sowie der Modifikation(en) des Katalysators führen. Die Reaktivität einer solchen Flugasche wäre nicht mehr mit der Reaktivität einer ursprünglichen Flugasche vergleichbar. Zur Entfernung vorhandener Organochlorverbindungen wurde die Flugasche 24 h unter Toluol extrahiert. Die Blindwerte an PCPh und PCDD/F auf der EPA-FA sind in Tabelle 8.12 des Anhangs aufgelistet.

Da in den folgenden Experimenten der Umsatz des 2,4,6-Cl₃Ph in PCDD/F im Vordergrund steht und Chlorphenole und Chlorbenzole gleichzeitig *de-novo* aus dem Restkohlenstoff der EPA-FA gebildet werden, wird die Bildung weiterer Chlorphenolisomere und von Chlorbenzolen aus 2,4,6-Cl₃Ph im Zusammenhang mit einer weiteren Versuchsreihe (Kap. 5.3) diskutiert.

5.2.1 Bildung von PCDD/F auf EPA-Flugasche in Abhängigkeit von der Konzentration an 2,4,6-Trichlorphenol im Gasstrom

Es wurden zwei Versuchsreihen mit zwei unterschiedlichen Verdünnungsgraden (5 und 10 % EPA-FA in Glasperlen) der EPA-FA mit Glasperlen bei einer konstanten Reaktionstemperatur von 300 °C und einer Reaktionszeit von 30 min durchgeführt. Da der Restkohlenstoff der Flugasche nicht entfernt wurde, wurden PCDD/F auch ohne Zusatz von 2,4,6-Cl₃Ph gebildet. Eine Trennung zwischen den PCDD/F-Mengen, die aus Kohlenstoff und den PCDD/F-Mengen, die aus dem zugesetzten 2,4,6-Cl₃Ph gebildet wurden, ist nicht möglich.

In Abb. 5.2-1 ist der Konzentrationsverlauf der PCDD und PCDF in Abhängigkeit von der Konzentration an 2,4,6-Cl₃Ph im Gasstrom dargestellt (unterschiedliche Skalierung der y-Achsen!). Die Konzentrationen der einzelnen Chlorierungsstufen sind in Tab. 8.15 des Anhangs aufgeführt. Bei der thermischen Behandlung einer Mischung aus 10 % EPA-FA und 90 % Glasperlen bei 300 °C und einer Reaktionszeit von 30 min wurden ohne Chlorphenolzusatz 1800 ng PCDD und 1220 ng PCDF/g Flugasche *de-novo* gebildet.

Eine Konzentration von 18 ng 2,4,6-Cl₃Ph/ml Gasstrom führt bereits zu einer Erhöhung der PCDD-Konzentration um den Faktor 3, während die PCDF-Konzentration sogar geringfügig abnahm. Diese ersten Ergebnisse zeigen, daß 2,4,6-Cl₃Ph ein hohes Bildungspotential zu PCDD besitzt, während eine PCDF-Bildung aus dem Trichlorphenol kaum stattfindet.

Bei einer Erhöhung der Chlorphenolkonzentration um den Faktor 10 auf 186 ng/ml Gasphase stammen bereits 96 % der PCDD aus einer Kondensation des Trichlorphenols.

Tab. 5.2-1PCDD/F-Konzentrationen [ng/g EPA-FA] bei themischer Behandlung einer Mischung
aus 10 % EPA-FA und 90 % Glasperlen in Abhängigkeit von der Konzentration an
2,4,6-Cl₃Ph im Gasstrom, Reaktionstemperatur: 300 °C, Reaktionszeit: 30 min

	2,4,6-Cl ₃ Ph [ng/ml Gasphase]							
	0 18 55 186 400 467							
PCDD	1800	5235	11380	40650	206860	231950		
PCDF	1220	970	1210	420	2410	3130		

Folgendes Diagramm veranschaulicht die Produktverhältnisse:

Aus Gründen der Übersichtlichkeit wurde auf die Darstellung des geringen PCDF-Wertes des Versuches mit 186 ng 2,4,6-Cl₃Ph/ml Gasstrom verzichtet. Die relative Verteilung der Konzentrationen der einzelnen Chlorierungsstufen der PCDD stellt sich wie folgt dar:

Tab. 5.2-2	Homologenmuster der PCDD bei der thermischen Behandlung von EPA-FA in
	Abhängigkeit von der Konzentration an 2,4,6-Cl ₃ Ph im Gasstrom
	Reaktionstemperatur: 300 °C, Reaktionszeit: 30 min

	2,4,6-Cl ₃ Ph [ng/ml Gasphase]								
	0	18	55	186	400	467			
Cl₄DD	11	25	44	76	89	77			
Cl₅DD	7	32	34	16	9	16			
Cl₀DD	24	33	18	7	2	5			
Cl ₇ DD	27	8	4	1	1	1			
	31	2	1	0	0	0			

Mit zunehmender Konzentration an 2,4,6-Cl₃Ph in der Gasphase nimmt der Anteil der Konzentration der Tetrachlordibenzodioxine an der Gesamtkonzentration der PCDD zu. Dieser Trend ist nicht unerwartet, da die direkten Kondensationsprodukte von 2,4,6-Cl₃Ph
zwei Tetrachlordibenzodioxine - 1,3,6,8- und 1,3,7,9-Cl₄DD - sind. Der Anteil der PCDD, der in der Gasphase gefunden wird, ist höher als 75 %. Für die beiden Versuche mit einer Gasphasenkonzentration von 400 und 467 ng 2,4,6-Cl₃Ph/ml blieben nur 1 % der PCDD/F auf der Flugasche adsorbiert. Diese hohe Verdampfungstendenz der PCDD/F liegt zum einen in der Verdünnung der Flugasche mit Glasperlen begründet, zum anderen könnten die PCDD/F mit steigender Chlorphenolkonzentration von der Flugaschenoberfläche aufgrund stärkerer Adsorptionskräfte der Chlorphenole verdrängt werden. Durch die Verdampfung werden die PCDD einer Weiterchlorierung entzogen, so daß mit steigender Chlorphenolkonzentration der Anteil höherchlorierter PCDD immer geringer wird.

Die prozentuale Verteilung der in den höchsten Konzentrationen gebildeten PCDD-Isomere bezogen auf den jeweiligen Chlorierungsgrad - ist in Tab. 5.2-3 dargestellt. Unter den Cl₄DD werden hauptsächlich die beiden Kondensationsprodukte von 2,4,6-Cl₃Ph erhalten. Isomerisierungen finden kaum statt. Die vier Cl₅DD-Isomere können sowohl durch Kondensation von 2,4,6-Cl₃Ph und 2,3,4,6-Cl₄Ph als auch durch Weiterchlorierung der beiden Hauptisomere der Cl₄DD gebildet werden. Höherchlorierte Phenole wurden nur in Spuren gefunden, so daß eine Unterscheidung zwischen diesen beiden Wegen schwierig ist:

- i Weiterchlorierung des eingesetzten 2,4,6-Cl₃Ph und anschließende Kondensation intermediär gebildeter höherchlorierter Phenole mit 2,4,6-Cl₃Ph oder
- ii Weiterchlorierung der Tetrachlordibenzodioxine

Analog zur Bildung der Pentachlordibenzodioxine könnte auch das Hauptisomer der Hexachlordibenzodioxine, 1,2,3,4,6,8-Cl₆DD, durch Kondensation von 2,4,6-Cl₃Ph und Pentachlorphenol oder Weiterchlorierung der Pentachlordibenzodioxine entstehen.

Prozentuale Verteilung der in den höchsten Konzentrationen gebildeten PCDD-Isomere
(bezogen auf den jeweiligen Chlorierungsgrad) bei der thermischen Behandlung von
EPA-FA in Abhängigkeit von der Konzentration an 2,4,6-Cl₃Ph im Gasstrom
Reaktionstemperatur: 300 °C, Reaktionszeit: 30 min

			2,4,6	-Cl ₃ Ph [ng	g/ml Gasp	hase]	
		0	18	55	186	400	467
Cl₄DD	1,3,6,8-	7	17	27	55	65	56
	1,3,7,9-	5	42	65	40	33	42
	Summe	12	59	92	95	98	98
Cl ₅ DD	1,2,4,6,8-/1,2,4,7,9-	15	37	47	55	43	45
	1,2,3,6,8-	5	13	22	25	32	31
	1,2,3,7,9-	10	29	25	12	21	21
	Summe	30	79	94	92	96	97
Cl ₆ DD	1,2,3,4,6,8-	36	44	68	71	64	64

Der Umsatz des Chlorphenols in diverse Reaktionsprodukte schwankt zwischen 36 und 87 %, die PCDD-Ausbeuten betragen 6 \pm 3 %. Ein linearer Zusammenhang zwischen dem Gesamtumsatz von 2,4,6-Cl₃Ph und der PCDD-Ausbeute konnte nicht festgestellt werden. Die PCDD-Ausbeute verhielt sich eher umgekehrt proportional zum Gesamtumsatz des Trichlorphenols.

Aufgrund dieses hohen Umsatzes des Trichlorphenols wurde diese Versuchsreihe mit stärker verdünnter Flugasche wiederholt. Eine höhere Verdünnung der Flugasche sollte die Reaktivität der Flugasche erniedrigen und zu einem geringeren Umsatz des Precursors führen. Daher wurden die folgenden Versuche mit einer Mischung aus 5 % EPA-FA und 95 % Glasperlen durchgeführt.

Auf die *De-Novo-Synthese* aus Restkohlenstoff sollte diese Verdünnung keinen großen Einfluß haben, da die Konzentration des Restkohlenstoffs in der Flugasche nicht verändert wird. Die thermische Behandlung dieser Mischung bei 300 °C und einer Reaktionszeit von 30 min ergibt 1700 ng PCDD und 730 ng PCDF/g EPA-FA. Wie erwartet, wurde die PCDD-Menge kaum von der Verdünnung beeinflußt. Die PCDF-Menge ist allerdings um ca. 40 % reduziert.

Tab. 5.2-4PCDD/F-Konzentrationen [ng/g EPA-FA] bei thermischer Behandlung einer Mischung
aus 5 % EPA-FA und 95 % Glasperlen in Abhängigkeit von der Konzentration an
2,4,6-Cl₃Ph im Gasstrom, Reaktionstemperatur: 300 °C, Reaktionszeit: 30 min

	2,4,6-Cl₃Ph [ng/ml Gasphase]										
	0	152	205	267							
PCDD	1700	26550	32890	43590							
PCDF	730	90	230	620							

In Abb. 5.2-2 ist der Konzentrationsverlauf der PCDD und PCDF in Abhängigkeit von der Konzentration an 2,4,6-Cl₃Ph im Gasstrom dargestellt. Die Konzentrationen der einzelnen Chlorierungsstufen sind in Tab. 8.13 des Anhangs aufgelistet.

Aus dem Diagramm ist ersichtlich, daß die PCDD-Konzentration linear mit der Konzentration des Trichlorphenols in der Gasphase zunimmt.

Abb. 5.2-2Konzentrationsverlauf der PCDD/PCDF nach thermischer Behandlung einer Mischung
aus 5 % EPA-FA und 95 % Glasperlen in Abhängigkeit von der Konzentration an
2,4,6-Cl₃Ph im Gasstrom, Reaktionstemperatur: 300 °C, Reaktionszeit: 30 min

Die PCDD-Ausbeute $(1,5 \pm 0,4 \%)$ nahm um ca. 75 % ab, der Gesamtumsatz des 2,4,6-Cl₃Ph allerdings blieb unbeeinflußt von der höheren Verdünnung mit Glasperlen. Auch hier wurden höhere PCDD-Ausbeuten bei geringerem Gesamtumsatz erhalten. Beachtenswert ist, daß die *De-Novo-Synthese* von PCDF bei Anreicherung der Gasphase mit 2,4,6-Cl₃Ph zunächst abnimmt, mit steigender Konzentration an 2,4,6-Cl₃Ph langsam zunimmt, und erst bei einer Konzentration von 267 ng 2,4,6-Cl₃Ph/ml Gasstrom wieder den ursprünglichen *de-novo*-Wert (ohne Zusatz der Vorläuferverbindung) erreicht. Offenbar wird durch die Belegung der Flugaschenoberfläche mit dem Trichlorphenol die *De-Novo-Synthese* unterdrückt.

Der Rückgang der PCDD-Ausbeute wurde durch die Verdünnung mit Glasperlen verursacht: Beim Durchströmen des 2,4,6-Cl₃Ph durch die Mischung mit 5 % EPA-FA in Glasperlen kommt die Vorläuferverbindung nur mit der Hälfte an Flugaschenpartikeln in Kontakt verglichen mit der Mischung von 10 % EPA-FA in Glasperlen. Wie Milligan et.al. zeigten, handelt es sich bei der PCDD-Bildung aus Chlorphenolen auf Flugaschen um oberflächenkatalysierte Reaktionen¹¹³. Daher sollte es bei einer 50 %igen Erniedrigung der aktiven Reaktionsmatrix und damit aktiver Anzahl an Adsorptionsplätzen bei sonst gleichen Reaktionsbedingungen zu einer Verringerung der PCDD-Ausbeute kommen.

Trotz starker Verdünnung der Matrices mit Glasperlen konnten keine differentiellen Reaktorbedingungen, d.h. geringe Umsätze der eingesetzten Vorläuferverbindung erreicht werden. In den meisten Versuchen wurden mehr als 40 % des Trichlorphenols umgesetzt.

Da die stärkere Verdünnung der Flugasche mit Glasperlen zu keinem geringeren Umsatz des Trichlorphenols führte, wurden die folgenden Versuche wieder mit einer 10fachen Verdünnung der Flugasche durchgeführt.

Milligan et.al. erhielten bei der thermischen Behandlung von Ontario-Flugasche mit 400 ng 2,3,4,6-Cl₄Ph/ml Gasstrom 200 µg PCDD/g Flugasche⁹⁸. Ein Vergleich des Bildungspotentials verschiedener Chlorphenole (2,4,5-, 2,4,6-Cl₃Ph, 2,3,4,6-Cl₄Ph und Cl₅Ph) zeigte, daß 2,3,4,6-Cl₄Ph eine 5fach höhere Reaktivität als 2,4,6-Cl₃Ph besitzt⁸⁸.

Da auf EPA-FA ähnliche PCDD-Konzentrationen für 2,4,6-Cl₃Ph erhalten wurden, als Milligan et.al. für 2,3,4,6-Cl₄Ph auf Ontario-Flugasche erhielten, muß es sich bei der EPA-FA um eine sehr reaktive Flugasche handeln.

5.2.2 Bildung von PCDD/F auf EPA-Flugasche in Abhängigkeit von der Temperatur bei konstanter Gasphasenkonzentration an 2,4,6-Trichlorphenol

Zur Untersuchung des Temperatureinflusses der Kondensationsreaktion von 2,4,6-Cl₃Ph zu PCDD/F wurden Mischungen aus 10 % EPA-FA in Glasperlen in einem mit 2,4,6-Cl₃Ph angereicherten Gasstrom im Temperaturbereich von 250 – 400 °C thermisch behandelt. Die Temperatur des Precursor-Vorratsbehälters wurde so gewählt, daß eine Konzentration von ca. 100 ng 2,4,6-Cl₃Ph/ml Gasphase erreichte wurde. Die PCDD/F-Gesamtkonzentrationen sind in folgender Tabelle zusammengefaßt (vgl. auch Tab. 8.16).

Tab. 5.2-5PCDD/F-Konzentrationen [ng/g EPA-FA] nach thermischer Behandlung einer Mischung
aus 10 % EPA-FA und 90 % Glasperlen in einem mit 2,4,6-Cl₃Ph angereicherten
Gasstrom in Abhängigkeit von der Temperatur der Reaktionsmischung, Zeit: 30 min

	250 °C	300 °C	325 °C	350 °C	400 °C
PCDD	4630	8010	31030	102830	83670
PCDF	80	410	1460	1970	950

Für die PCDD- und PCDF-Bildung wurde bei 350 °C ein Maximum erhalten. Während es sich bei den PCDD hauptsächlich um Kondensationsprodukte des eingesetzten Trichlorphenols handelt, stellen PCDF nahezu reine *de-novo*-Produkte aus dem Restkohlenstoff dar. Dies wird sehr deutlich wenn man die Homologengruppen beider Verbindungsklassen vergleicht: das PCDD-Muster ist durch hohe Konzentrationen an Cl₄DD mit stark abnehmenden Konzentrationen zum Cl₈DD geprägt. Interessant ist, daß beide Reaktionen bei der gleichen Temperatur ein Konzentrationsmaximum zeigen. Die für die PCDF-Bildung erhaltene optimale *De-Novo-Synthese*-Temperatur deckt sich mit den in Kapitel 5.1.3 erhaltenen Ergebnissen mit amorphem Kohlenstoff als Quelle für die PCDD/F. Mit 17 % wurde bei 350 °C der höchste Umsatz für 2,4,6-Cl₃Ph zu PCDD erhalten.

Abb. 5.2-3 Konzentrationen der einzelnen PCDD- und PCDF-Homologengruppen nach thermischer Behandlung einer Mischung aus 10 % EPA-FA und 90 % Glasperlen in einem mit 2,4,6-Cl₃Ph angereicherten Gasstrom (ca. 100 ng/ml) in Abhängigkeit von der Temperatur der Reaktionsmischung, Reaktionszeit: 30 min

5.2.3 Bildung von PCDD/F auf Modellflugasche in Abhängigkeit von der Konzentration an 2,4,6-Trichlorphenol im Gasstrom

Um den Umsatz von 2,4,6-Cl₃Ph auf einer kohlenstofffreien Matrix zu untersuchen, wurde ein Großteil der Experimente aus Kap. 5.2.1 auf einer Modellflugasche (MFA-I, Tab. 3.1-1) wiederholt. Mit diesem von Restkohlenstoff entkoppelten System können PCDD/F nur aus dem eingesetzten Precursor oder aus Abbauprodukten davon gebildet werden.

Die MFA-I wurde in der gleichen Weise wie die EPA-FA mit Glasperlen verdünnt. Da keine *De-Novo-Synthese* in Frage kam, konnten auch Experimente mit sehr niedrigen Gasphasenkonzentrationen an 2,4,6-Cl₃Ph durchgeführt werden. In Abb. 5.2-4 sind die erhaltenen Werte für die PCDD/F-Konzentrationen dargestellt (unterschiedliche Skalierung der y-Achsen!).

Tab. 5.2-6PCDD/F-Konzentrationen [ng/g MFA] bei thermischer Behandlung einer Mischung
aus 10 % MFA-I und 90 % Glasperlen in Abhängigkeit von der Konzentration an
2,4,6-Cl₃Ph im Gasstrom, Reaktionstemperatur: 300 °C, Reaktionszeit: 30 min

Abb. 5.2-4 Konzentrationsverlauf der PCDD und PCDF nach thermischer Behandlung einer Mischung aus 10 % MFA-I und 90 % Glasperlen in Abhängigkeit von der Konzentration an 2,4,6-Cl₃Ph im Gasstrom, Reaktionstemperatur: 300 °C, Reaktionszeit: 30 min

Diese Versuche zeigen nochmals deutlich, daß unter diesen Reaktionsbedingungen eine PCDF-Bildung aus 2,4,6-Cl₃Ph und damit einfachen aromatischen Ringen vernachlässigbar ist. Signifikante Mengen an PCDF wurden erst bei einer 2,4,6-Cl₃Ph-Konzentration höher als 300 ng/ml Gasphase erhalten. Die Konzentration an PCDD ist aber immer noch mindestens um den Faktor 100 höher als die an PCDF. Während der Gesamtumsatz des 2,4,6-Cl₃Ph mit 43 - 91 % vergleichbar demjenigen auf EPA-FA ist, ist die PCDD-Ausbeute mit 2,2 \pm 0,9 % ca. um den Faktor drei kleiner als auf EPA-FA.

Ursachen für diese geringere Reaktivität könnte eventuell an der Abwesenheit von Kohlenstoff liegen. Luijk et.al. zeigten, daß in Gegenwart von Aktivkohle die PCDD-Bildung aus 2,4,6-Cl₃Ph um den Faktor 100 ansteigt¹²⁹. Ein Vergleich der Kupferkonzentration ist nur bedingt aussagekräftig. Obwohl in der Modellmischung eine 4-mal so hohe Cu-Konzentration als auf EPA-FA eingesetzt wurde, wurden mit der Modellflugasche niedrigere PCDD-Ausbeuten bei vergleichbarem Gesamtumsatz des Trichlorphenols erhalten (vgl. Tab. 3.1-2). Im Gegensatz zur Modellflugasche liegen in der realen Flugasche noch andere Metallspezies vor, die ebenso katalytische Eigenschaften besitzen können, zum anderen ist nicht bekannt, in welcher Form (Oxidationszustand/Modifikation/oxidisch, salzartig oder sulfidisch) das Kupfer in der EPA-FA vorliegt.

5.2.4 Bildung von PCDD/F auf EPA- und Modellflugasche in Abhängigkeit von der Konzentration an 2,4,6-Trichlorphenol auf der Matrix

Abschließend wurden Versuche mit 2,4,6-Cl₃Ph durchgeführt, wobei die Reaktionsmischungen direkt mit festem Trichlorphenol verrieben wurden. Die zudotierten Mengen wurden so gewählt, daß sie den Gesamtmengen entsprechen, die in den Versuchen in Kap. 5.2.1 und Kap. 5.2.3 durch die Flugasche durchströmten. Bei einem Gasfluß von 80 ml/min, einer Reaktionszeit von 30 min und einer Probe mit 0,2 g Flugasche/1,8 g Glasperlen (10fache Verdünnung) entspricht z.B. eine Gasphasenkonzentration von 100 ng 2,4,6-Cl₃Ph/ml einer Gesamtkonzentration von 240 µg 2,4,6-Cl₃Ph/0,2 g FA bzw. 1200 µg 2,4,6-Cl₃Ph/g FA.

Die PCDD/F-Konzentrationen sind in Tab. 5.2-7 zusammengefaßt. Die ersten beiden Versuche stellen Mittelwerte von vier bzw. zwei Versuchen dar. Die Abweichungen vom Mittelwert betragen zum Teil 50 %, was eventuell an den geringen Einwaagen der Vorläuferverbindung liegen kann. Der Gesamtumsatz des Trichlorphenols ist sowohl auf EPA-FA (57 – 96 %) als auch auf MFA-I (56 – 90 %) zu höheren Werten verschoben verglichen mit den Experimenten bei kontinuierlicher Dosierung des Trichlorphenols in den Gasstrom. Der Umsatz zu PCDD beträgt auf EPA-FA 0,9 ± 0,5 % und auf MFA-I 0,7 ± 0,1 %.

Tab. 5.2-7PCDD- und PCDF-Konzentrationen [ng/g FA] nach thermischer Behandlung einer
Mischung aus 10 % EPA-FA bzw. MFA-I und 90 % Glasperlen in Abhängigkeit von der
Konzentration an 2,4,6-Cl₃Ph auf den Matrices
Reaktionstemperatur: 300 °C, Reaktionszeit: 30 min

	MF	A-I				
2,4,6-Cl₃Ph [µg/g]	1000	2000	3000	5000	3000	5000
PCDD	10580	14630	16750	33560	12630	24110
PCDF	2940	1430	540	1150	280	480

In den beiden folgenden Diagrammen (Abb. 5.2-5) sind die Ergebnisse der beiden Dotierungstechniken für beide untersuchten Reaktionsmischungen gegenübergestellt. Mit steigender Trichlorphenolkonzentration nehmen die PCDD-Konzentrationen bei der Gasphasendosierung gegenüber einmaligem Dotieren der Flugaschen mit der Gesamtmenge an 2,4,6-Cl₃Ph zu. Auf EPA-FA wurden bis zu 6fach und auf MFA-I bis zu 3fach höhere Ausbeuten erhalten.

Der niedrigere Umsatz des 2,4,6-Cl₃Ph zu PCDD/F bei der zweiten Dotierungstechnik (ii, Seite 97) könnte mit der längeren Verweilzeit des Precursors auf der Matrix zusammenhängen.

Wird Flugasche mit einem mit 2,4,6-Cl₃Ph angereicherten Heliumstrom unter milden Bedingungen (100 °C) thermisch behandelt, so ist aus der Menge an adsorbierten Chlorphenolmolekülen auf der Feststoffphase die Anzahl der Adsorptionsplätze berechenbar. Hierbei wird angenommen, daß ein Chlorphenolmolekül nur einen Adsorptionsplatz auf der Flugaschenoberfläche belegt. Für Ontario-Flugasche berechneten Milligan et.al. 5,85 x 10¹⁸ Adsorptionsplätze¹¹³. Für EPA-Flugasche wurden so 2,8 x 10¹⁸ Adsorptionsplätze berechnet. Dieser Wert stimmt sehr gut mit der von Shaub und Tsang aus theoretischen Überlegungen abgeleiteten Anzahl an Adsorptionsplätzen (3 x 10¹⁸) überein³¹.

Bei einer Dotierung der Flugasche mit z.B. 5000 μ g 2,4,6-Cl₃Ph/g, d.h. 25,25 μ mol/g EPA-FA oder 15,2 x 10¹⁸ Chlorphenolmolekülen/g EPA-FA, findet nur jedes fünfte Molekül einen Adsorptionsplatz. Die übrigen Chlorphenole verdampfen und können sich an kälteren Stellen des Reaktors niederschlagen oder werden in der Gasphase abgebaut. Interessant ist, daß bei einer kontinuierlichen Zudosierung dieser 5000 μ g 2,4,6-Cl₃Ph (\cong 416 ng 2,4,6-Cl₃Ph/ml Gasphase) eine 7fach höhere PCDD-Konzentration (225000 ng verglichen mit 32000 ng) erhalten wird.

Bei einer geringeren Dotierung der Flugasche mit z.B. 2000 μ g 2,4,6-Cl₃Ph/g, d.h. 10,1 μ mol/g EPA-FA oder 6,1 x 10¹⁸ Chlorphenolmolekülen/g EPA-FA, sind doppelt so viele Chlorphenolmoleküle als Adsorptionsplätze vorhanden. Auch hier wurde bei Dotierung über die Gasphase (\cong 166 ng 2,4,6-Cl₃Ph/ml) eine doppelt so hohe PCDD-Konzentration (30000 ng verglichen mit 15000 ng) erhalten.

Diese Befunde bestätigen die von mehreren Autoren postulierte oberflächenkatalysierte Reaktion von Chlorphenolen zu PCDD^{31,98,113}. Der Vergleich beider Dotierungstechniken zeigte, daß bei einem Überangebot an Chlorphenolmolekülen pro Zeiteinheit der Umsatz zu PCDD aufgrund unzureichender Anzahl an Adsorptionsplätzen reduziert ist.

5.3 Umsetzung von 2,4,6-Cl₃Ph auf Modellflugasche zu PCPh, PCBz, PCDD/F, CO und CO₂ in Abhängigkeit von Reaktionstemperatur und Reaktionszeit

In diesem Kapitel steht die Untersuchung des Einflusses der Reaktionstemperatur und –zeit bei der thermischen Behandlung von 2,4,6-Cl₃Ph dotierter Modellflugasche im Vordergrund. Ziel dieser Experimente war, neben der Bildung von PCDD/F die Dechlorierungs- und Weiterchlorierungswege von 2,4,6-Cl₃Ph in die übrigen PCPh-Isomere und in PCBz-Isomere zu analysieren und den Abbau zu CO und CO₂ zu untersuchen.

Für diese Problemstellung war es ausreichend, die Modellflugasche (MFA-I, Tab. 3.1-1) direkt mit festem Chlorphenol zu dotieren. Daher wurde auf die aufwendige Reaktionsführung der kontinuierlichen Dosierung des Precursors in die Gasphase verzichtet. Da die Konzentrationen an CO und CO₂ online ermittelt wurden, eine Aufkonzentrierung der Gase also nicht möglich war, war es erforderlich, eine höhere Konzentration an 2,4,6-Cl₃Ph einzusetzen. Alle Versuche wurden mit einer konstanten Chlorphenolkonzentration in der Modellflugasche (5 mg 2,4,6-Cl₃Ph/g MFA) durchgeführt.

Als Gasphase wurde 20 % O₂/80 % He mit einem Fluß von 50 ml/min verwendet.

Die Gesamtkonzentration der PCPh, PCBz und PCDD/F sind in Tab. 5.3-1 zusammengefaßt. Die Konzentrationen der einzelnen Chlorierungsstufen sind in Tab. 8.18 und Tab. 8.19 des Anhangs aufgelistet.

		250	°C	<u> </u>		300	°C	
	1 min	15 min	30 min	60 min	1 min	15 min	30 min	60 min
PCPh	1020	460	260	130	440	160	150	180
PCBz	990	1920	4100	5580	4120	16610	28700	42300
PCDD	3700	13460	18270	20610	32500	51960	31610	27180
PCDF	10	50	30	40	30	460	1130	1120
PCDD/PCDF	370	270	610	515	810	110	28	25

Tab. 5.3-1Konzentrationen der PCPh [µg/g MFA], PCBz [ng/g MFA] und PCDD/F [ng/g MFA]nach thermischer Behandlung einer mit 2,4,6-Cl₃Ph dotierten MFA-I (5 mg/g) inAbhängigkeit von der Reaktionstemperatur und –zeit

		350) °С	<u> </u>	400 °C				
	1 min	15 min	30 min	60 min	1 min	15 min	30 min	60 min	
PCPh	150	170	190	120	200	110	47	63	
PCBz	18800	36900	43830	63370	79330	122270	103150	122280	
PCDD	44150	16460	4580	990	13280	4070	4380	5820	
PCDF	630	1840	1040	820	1780	260	250	520	
PCDD/PCDF	70	9	5	1	8	16	17	11	

5.3.1 Bildung weiterer Chlorphenolisomere aus 2,4,6-Cl₃Ph auf Modellflugasche

Die thermische Behandlung des 2,4,6-Cl₃Ph auf MFA-I im Temperaturbereich zwischen 250 – 400 °C und für Reaktionszeiten zwischen 15 und 60 min führte zu einem Umsatz zwischen 91 – 97 %. Nur bei einer Reaktionstemperatur von 250 °C und einer Reaktionszeit von 1 min wurde ein geringerer Umsatz (80 %) des 2,4,6-Cl₃Ph erhalten.

In Tab. 5.3-2 ist der Umsatz des eingesetzten Trichlorphenols in nieder- und höherchlorierte Phenole dargestellt. Eine Dechlorierung in Dichlorphenol findet kaum statt: nur ca. 0,02 % des 2,4,6-Cl₃Ph werden zu 2,4- bzw. 2,6-Cl₂Ph dechloriert.

Bei einer Reaktionstemperatur von 250 °C und einer Reaktionszeit von 1 min ist die Ausbeute höherchlorierter Phenole am höchsten. Eine Weiterchlorierung des eingesetzten Trichlorphenols in Tetra- und Pentachlorphenol nimmt sowohl mit steigender Reaktionstemperatur als auch steigender Reaktionszeit ab. Dieses Ergebnis ist die Folge steigender Verdampfung des Trichlorphenols und eines mit steigender Temperatur zunehmenden oxidativen Abbaus des Trichlorphenols.

Bis 300 °C ist die Konzentration an Pentachlorphenol höher als die an Tetrachlorphenol. Eine weitere Steigerung der Reaktionstemperatur führt zu einer Umkehr dieses Konzentrationsverhältnisses.

Das Trichlorphenol wird bevorzugt in para-Stellung dechloriert. Die Verteilung der Dichlorphenole sieht wie folgt aus: 10 % 2,6- und 90 % 2,4-Cl₂Ph. Neben nicht umgesetztem 2,4,6-Cl₃Ph (> 99 % der Cl₃Ph) wurde fast das ganze Spektrum an Trichlorphenolisomeren erhalten, allerdings in Anteilen kleiner als 0,1 % bezogen auf die Gesamtsumme Trichlorphenole. Das Hauptchlorphenolisomer unter den Cl₄Ph ist 2,3,4,6-Cl₄Ph (> 99 % der Cl₄Ph), daneben wurde auch 2,3,4,5-Cl₄Ph in Spuren (kleiner als 0,1 %) gebildet. Bei den in den höchsten Konzentrationen gebildeten Chlorphenolen handelt es sich um direkte Dechlorierung bzw. Weiterchlorierung des Trichlorphenols.

Umchlorierungen finden auch für lange Reaktionstemperaturen und -zeiten kaum statt.

Tab. 5.3-2	a) Prozentualer Umsatz des 2,4,6-Cl ₃ Ph in nieder- und höherchlorierte Phenole nach
	thermischer Behandlung der mit 2,4,6-Cl₃Ph dotierten MFA-I (5 mg/g) in
	Abhängigkeit von der Reaktionstemperatur und -zeit

		250) °C			300)°C			350)°C			400	0°C	
Zeit [min]	1	15	30	60	1	15	30	60	1	15	30	60	1	15	30	60
Cl₂Ph	0,04	0,02	0,01	0,00	0,01	0,01	0,01	0,00	0,01	0,02	0,01	0,01	0,01	0,00	0,00	0,00
Cl₄Ph	0,28	0,20	0,10	0,08	0,14	0,10	0,10	0,09	0,11	0,17	0,17	0,11	0,13	0,09	0,07	0,05
Cl₅Ph	0,21	0,29	0,20	0,14	0,40	0,16	0,12	0,11	0,06	0,08	0,07	0,06	0,11	0,05	0,04	0,04
Summe	0,53	0,51	0,32	0,23	0,55	0,27	0,23	0,21	0,18	0,27	0,25	0,18	0,26	0,14	0,11	0,09

b) Übersicht über den Umsatz [%] von 2,4,6-Cl₃Ph in weitere PCPh-Isomere (Summe) Abnahme:>

	250 °C	300 °C	350 °C	400 °C
1 min	0,53	0,55	0,18	0,26
15 min	0,51	0;27	0,27	0,14
30 min	0,32	0,23	0;25	0,11
60 min	0,23	0,21	0,18	0;09

5.3.2 Bildung von PCBz aus 2,4,6-Cl₃Ph auf Modellflugasche

Die Konzentrationen an PCBz nehmen mit steigender Reaktionstemperatur stetig zu. Am höchsten ist die Konzentrationszunahme für kurze Reaktionszeiten: Bei einer 1-minütigen thermischen Behandlung nimmt die Ausbeute der Chlorbenzole von 0,02 % bei 250 °C auf 1,4 % bei 400 °C zu, was einer Erhöhung um den Faktor 70 entspricht. Dagegen nimmt in diesem Temperaturbereich die PCBz-Ausbeute für eine Reaktionszeit von 60 min nur um den Faktor 21 zu. Die Ausbeuten an PCBz aus 2,4,6-Cl₃Ph sind in Tab. 5.3-3 b) zusammengefaßt. Wie in Kap. 5.3.4 gezeigt wird, wird der Abbau zu CO und CO₂ mit steigender Temperatur zunehmend bedeutender, wodurch die für die PCBz-Bildung zur Verfügung stehenden Mengen an 2,4,6-Cl₃Ph mit steigender Temperatur drastisch abnehmen.

Im Gegensatz zu den PCPh nimmt die Gesamtkonzentration der PCBz auch mit steigender Reaktionszeit zu. So führt z.B. eine Erhöhung der Reaktionszeit von 1 min auf 1 Stunde bei einer Reaktionstemperatur von 250 °C zu einer Konzentrationserhöhung um den Faktor 5. Zwar unterliegen die PCBz ebenso wie die PCPh einem oxidativen Abbau, aber aufgrund ihres höheren Dampfdruckes werden sie einer Weiterreaktion stärker als die PCPh entzogen, so daß insgesamt eine Konzentrationserhöhung resultiert. Die Konzentrationsverläufe der PCBz in Abhängigkeit von der Reaktionstemperatur und –zeit stellen sich wie folgt dar:

Abb. 5.3-1 Konzentrationsverlauf der PCBz nach thermischer Behandlung der mit 2,4,6-Cl₃Ph dotierten MFA-I (5 mg/g) in Abhängigkeit von der Reaktionstemperatur und –zeit

Die prozentuale Verteilung der aus 2,4,6-Cl₃Ph gebildeten Chlorbenzolisomere ist in Tab. 5.3-3 dargestellt. Bei den Cl₂Bz ist kein eindeutiger Trend im Isomerenmuster erkennbar. Da ihre Konzentrationen sehr gering sind, wird auf eine Diskussion über deren Bildungsweg verzichtet. Der Anteil der Cl₄Bz (Tab. 8.18) an der Gesamtkonzentration der PCBz beträgt 50 – 75 %. Die Bildung des 1,2,3,5-Cl₄Bz aus dem eingesetzten 2,4,6-Cl₃Ph ist durch ipso-Substitution der Hydroxylgruppe gegen ein Chloratom erklärbar. Die

Konzentration der Cl₃Bz ist im Mittel etwa doppelt so hoch als die der Cl₅Bz. Daher ist eine anschließende reduktive Dechlorierung des 1,2,3,5-Cl₄Bz zu 1,3,5-Cl₃Bz wahrscheinlicher als eine Weiterchlorierung zum Pentachlorbenzol.

Eine ähnliche Chlorierungsroute beobachtete auch Jiménez Leal für die Bildung von Chlorbenzolen aus 2-Chlorphenol³⁹.

Tab. 5.3-3a) Prozentuale Verteilung der gebildeten Chlorbenzolisomere innerhalb der
Homologengruppen nach thermischer Behandlung der mit 2,4,6-Cl₃Ph dotierten
MFA-I (5 mg/g) in Abhängigkeit von der Reaktionstemperatur und -zeit

		250) °C			300)°C			350	°C			400	°C	
Zeit [min]	1	15	30	60	1	15	30	60	1	15	30	60	1	15	30	60
1,3-Cl ₂ Bz	100	0	0	0	0	37	71	36	52	50	48	45	30	30	29	30
1,4-Cl₂Bz	0	0	0	0	100	63	6	21	6	8	11	11	12	15	10	15
1,2-Cl ₂ Bz	0	0	0	0	0	0	23	43	42	42	41	44	58	55	61	65
1,3,5-Cl₃Bz	86	87	82	82	89	88	76	87	86	79	81	70	69	71	56	55
1,2,4-Cl₃Bz	14	13	4	4	11	4	4	4	4	8	8	8	11	9	9	71
1,2,3-Cl₃Bz	0	0	14	14	0	8	20	9	10	13	11	22	20	20	36	9
1,2,3,5-Cl ₄ Bz	100	100	98	98	100	99	97	98	98	97	98	96	98	96	96	96
1,2,4,5-Cl₄Bz	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1,2,3,4-Cl₄Bz	0	0	2	2	0	0	3	0	2	3	2	4	2	4	4	4

	250 °C	300 °C	350 °C	400 °C
1 min	0,02	0,08	0,35	1,42
15 min	0,04	0,31	0,67	2,23
30 min	0,08	0,61	0;81	1,93
60 min	0,10	0,77	1,13	2;23

Die möglichen Dechlorierungs- und Weiterchlorierungsrouten von 2,4,6-Cl₃Ph in die Chlorbenzolisomere ist im folgenden Reaktionsschema veranschaulicht. Die Isomere, die in den höchsten Konzentrationen gebildet wurden, sind fett markiert.

Abb. 5.3-2 Reaktionsschema der Bildung von Chlorbenzolen aus 2,4,6-Cl₃Ph bei der thermischen Behandlung von 2,4,6-Cl₃Ph auf MFA-I

5.3.3 Bildung von PCDD/F aus 2,4,6-Cl₃Ph auf Modellflugasche

Das hohe PCDD-Bildungspotential von Chlorphenolen wurde in den letzten Kapiteln mehrfach betont. In diesem Kapitel soll der Einfluß der Reaktionstemperatur und -zeit auf die Reaktionen von 2,4,6-Cl₃Ph zu PCDD/F näher untersucht werden. In Abb. 5.3-3 ist der Konzentrationsverlauf der PCDD sowohl in Abhängigkeit von der Temperatur als auch der Zeit dargestellt. Die Konzentration an PCDD nimmt bei 250 °C kontinuierlich mit der Reaktionszeit zu. Eine Erhöhung der Temperatur um 50 °C auf 300 °C führt zu einem Konzentrationsmaximum nach einer Reaktionszeit von 15 min. Eine weitere Erhöhung der Reaktionszeit sehr hohe PCDD-Konzentrationen. Danach wird nur eine Abnahme der PCDD-Konzentration beobachtet.

Mit Ausnahme der Versuchsreihe mit 1-minütiger thermischer Behandlungszeit wurde für die übrigen Reaktionszeiten ein Konzentrationsmaximum bei 300 °C erhalten. Dieses

konkurrierender Mechanismen: Bildungsund Maximum ist die Folge zweier Zersetzungsreaktion von PCDD und Abbau des Eduktes, wobei die **Reaktions**geschwindigkeit der Zersetzung schneller mit der Temperatur als die Bildungsgeschwindigkeit zunimmt. Ab 350 °C ist die Temperatur hoch genug, so daß die Reaktionsgeschwindigkeit der Zersetzung höher als die der Bildungsreaktion ist, so daß Netto eine Konzentrationsabnahme gegenüber einer Reaktionstemperatur von 300 °C resultiert. In Kap. 5.2.2 wurde bei der thermischen Behandlung von EPA-FA mit 2,4,6-Cl₃Ph ein PCDD-Konzentrationsmaximum bei 350 °C erreicht. Ein direkter Vergleich beider Versuchsserien ist sehr schwierig, da unterschiedliche Dotierungstechniken und Matrices verwendet wurden.

Abb. 5.3-3 Konzentrationsverlauf der PCDD nach thermischer Behandlung der mit 2,4,6-Cl₃Ph dotierten MFA-I (5 mg/g) in Abhängigkeit von der Reaktionstemperatur und –zeit

Im Gegensatz zu den Experimenten in Kap. 5.2 wurden hier nur bei einer Reaktionstemperatur von 250 °C und einer Reaktionszeit von 1 min Cl₄DD in den höchsten Konzentrationen gebildet. Für die übrigen Reaktionszeiten wurden bei 250 °C überwiegend Cl₆DD gefolgt von den Cl₄DD erhalten. Bei einer Reaktionstemperatur von 300 °C ist das Homologenmuster von den Cl₆DD geprägt, wobei mit zunehmender Reaktionszeit der Anteil der Cl₇DD und Cl₈DD zunimmt.

Dieser Trend setzt sich bei 350 °C fort. Hier ist nur bei einer Reaktionszeit von 1 min der Anteil der Cl₆DD an der Gesamtkonzentration am höchsten. Für die übrigen Reaktionszeiten wurden Cl₈DD in den höchsten Konzentrationen erhalten.

Eine Reaktionstemperatur von 400 °C führt zu einer Abnahme des Chlorierungsgrades mit zunehmender Reaktionszeit.

Insgesamt wird also mit steigender Temperatur von 250 bis 350 °C ein Trend zu höherchlorierten Spezies beobachtet. Der Anteil höherchlorierter Dibenzodioxine nimmt von 250 bis 350 °C zu, wobei der Einfluß der Reaktionszeit schwach ausgeprägt ist. Wie bereits für die Erklärung des PCDD-Konzentrationsmaximums bei 300 °C begründet, nimmt die Reaktionsgeschwindigkeit der Zersetzungsreaktionen ab 350 °C schneller als die der

Bildungsreaktion der PCDD zu. Dies führt auch zu eine Abnahme des Chlorierungsgrades aufgrund zunehmender Dechlorierung.

Die in den höchsten Konzentrationen gebildeten PCDD-Isomere sind in Tab 5.3-4 zusammengefaßt. Es handelt sich dabei um die gleichen Isomere, wie bereits in Kap. 5.2.1 berichtet. Von besonderem Interesse ist hier der Einfluß der Reaktionstemperatur auf den Anteil der einzelnen Isomeren. Aus den Daten geht hervor, daß das Verhältnis von 1,3,6,8-zu 1,3,7,9-Cl₄DD unabhängig von Reaktionstemperatur und –zeit ist: Die Konzentration des direkten Reaktionsproduktes (1,3,6,8-Cl₄DD) ist doppelt so hoch als des über die *Smiles-Umlagerung* gebildeten PCDD-Isomers (1,3,7,9-Cl₄DD).

250 °C 300 °C 350 °C 400 °C Zeit [min] 1,3,6,8-1,3,7,9-Summe 1,2,4,6,8-;1,2,4,7,9--34 1,2,3,6,8-1,2,3,7,9-Summe 1,2,3,4,6,8-1.2.3.4.7.8-Summe 1,2,3,4,6,7,9 1,2,3,4,6,7,8 Summe

Tab. 5.3-4Prozentuale Verteilung der in höchsten Konzentrationen gebildeten PCDD-Isomeren
innerhalb der Homologengruppen nach thermischer Behandlung der mit 2,4,6-CI₃Ph
dotierten MFA-I (5 mg/g) in Abhängigkeit von der Reaktionstemperatur und -zeit

In Abb. 5.3-4 sind die Werte für eine Reaktionszeit von 30 min und den gesamten Temperaturbereich dargestellt. Bei den Pentachlordibenzodioxinen nimmt mit steigender Temperatur der Anteil der beiden zusammen eluierenden Isomere: 1,2,4,6,8-/1,2,4,7,9-Cl₅DD und des 1,2,3,7,9-Cl₅DD-Isomers ab, der des 1,2,3,6,8-Cl₅DD zu. Bei den Hexachlordibenzodioxinen nimmt der Anteil des 1,2,3,4,6,8-Cl₆DD ab. Dieser Abnahme steht die Zuname von 1,2,3,4,7,8-Cl₆DD gegenüber. Bei den Heptachlordibenzodioxinen ist die Bildung von 1,2,3,4,6,7,8-Cl₇DD gegenüber 1,2,3,4,6,7,9-Cl₇DD bevorzugt.

Abb. 5.3-4 Vergleich der Anteile einiger ausgewählter PCDD-Isomere in Abhängigkeit von der Temperatur; der Anteil der einzelnen Isomere bezieht sich auf die entsprechende Chlorhomologengruppe, Reaktionszeit: 30 min

Der Vergleich der PCDD-Konzentration (31610 ng /g) des Versuches bei 300 °C und einer Reaktionszeit von 30 min mit dem Experiment aus Kap. 5.2 (Tab. 5.2-7, 24110 ng/g) zeigt, daß die Verdünnung mit Glasperlen den Umsatz des 2,4,6-Cl₃Ph zu PCDD auf Modellflugasche kaum beeinflußt. Ohne Verdünnung wurde sogar ein geringfügig höherer Umsatz erhalten. In beiden Versuchen wurde MFA-I mit 5 mg 2,4,6-Cl₃Ph/g dotiert. Der höchste Umsatz des 2,4,6-Cl₃Ph zu PCDD beträgt hier 1 % (300 °C und 15 min).

Für die PCDF-Bildung aus 2,4,6-Cl₃Ph wurde ein annähernd ähnliches Bild (Abb. 5.3-5) wie für die PCDD-Bildung erhalten. Bei einer Reaktionstemperatur von 250 °C ist die PCDF-Bildung vernachlässigbar. Eine Reaktionstemperatur von 300 °C führt zu einer starken Zunahme der PCDF-Konzentration bis zu einer Reaktionszeit von 30 min. Im Gegensatz zu den PCDD resultiert hier erst bei einer Reaktionstemperatur von 350 °C und einer Reaktionszeit von 15 min ein Konzentrationsmaximum. Bei 400 °C werden hohe PCDF-Konzentrationen für sehr kurze Reaktionszeiten erhalten; mit zunehmender Reaktionszeit nimmt die PCDF-Konzentration dann drastisch ab.

Abb. 5.3-5 Konzentrationsverlauf der PCDF nach thermischer Behandlung der 2,4,6-Cl₃Ph dotierten MFA-I (5 mg/g) in Abhängigkeit von der Reaktionstemperatur und –zeit

Mit zunehmender Reaktionszeit wird die optimale Bildungstemperatur zunehmend zu niedrigeren Temperaturen verschoben. Während eine 1-minütige thermische Behandlung durch eine Konzentrationssteigerung im gesamten Temperaturbereich geprägt ist, wird für eine Reaktionszeit von 15 min ein PCDF-Konzentrationsmaximum bei 350 °C durchlaufen. Reaktionszeiten von 30 bzw. 60 min führen zu einem vergleichbaren PCDF-Konzentrationsverlauf mit einem Maximum bei 300 °C.

Bei 250 °C ist die Bildung von PCDF nicht signifikant und bei 400 °C führt der schnelle Abbau beider Verbindungsklassen zu einem ähnlichen Konzentrationsverlauf, so daß für diese Temperaturen das PCDD/PCDF-Verhältnis von der Reaktionszeit unbeeinflußt bleibt. Dagegen wird bei 300 °C für die PCDD ein Konzentrationsmaximum und für die PCDF eine kontinuierliche Zunahme der Konzentrationen mit der Reaktionszeit erhalten. Bei 350 °C nehmen die PCDD-Konzentrationen bereits nach kurzen Reaktionszeiten kontinuierlich ab und die PCDF zeigen ein Konzentrationsmaximum für eine Reaktionszeit von 15 min. Für beide Reaktionstemperaturen (300 und 350 °C) resultiert damit eine Abnahme des PCDD/PCDF-Verhältnisses mit zunehmender thermischer Behandlungszeit.

Wie bereits bei den PCDD beobachtet ist auch das PCDF-Isomerenmuster durch höhere Chlorierungsgrade (Cl₆DF und Cl₇DF) geprägt.

5.3.4 Abbau des 2,4,6-Cl₃Ph zu CO und CO₂ auf Modellflugasche

Trotz des hohen Chlorierungsgrades des Trichlorphenols stellt der Abbau zu CO und CO_2 die Hauptreaktion dar. Bereits bei einer Reaktionstemperatur von 250 °C wurden ca. 10 % des Trichlorphenols zu CO_2 abgebaut. Der oxidative Abbau des Trichlorphenols nimmt kontinuierlich mit der Temperatur zu. Bei 400 °C werden bereits 60 % des Trichlorphenols in CO und CO_2 umgewandelt. Damit stellt auch für Chlorphenole ähnlich wie für Restkohlenstoff der Abbau in die beiden Kohlenoxide die Hauptreaktion dar.

Die entsprechenden prozentualen Umsätze des Trichlorphenols zu CO und CO₂ sind in Tab. 8.20 des Anhangs aufgelistet. Übersichtlich ist die Zunahme des oxidativen Abbaus des Trichlorphenols in folgendem Diagramm (Abb. 5.3-7) aufgeführt.

Abb. 5.3-7 Abbau [%] von 2,4,6-Cl₃Ph in CO und CO₂ in Abhängigkeit von der Reaktionstemperatur und –zeit

Der Konzentrationsverlauf der CO- und CO₂-Bildung ist für den Temperaturbereich 250 - 400 °C jeweils für eine Reaktionszeit von 1 und 30 min in Abb. 5.3-8 dargestellt. Wie aus den Kurven erkennbar ist, wurde auch bei einer 1-minütigen Reaktionszeit noch nach 20 min CO_2 im Gasstrom gemessen. Dies liegt daran, daß CO_2 nach der Entstehung zum Teil noch auf der Modellflugasche adsorbiert bleibt. Die online-Messungen wurden erst nach Erreichung der Nullmarke beendet.

Bei niedriger Reaktionstemperatur (250 °C) wird kein CO gebildet. Erst bei einer Reaktionstemperatur von 300 °C und höher wurden geringe Mengen an CO gemessen. Bei 300 °C wird erst ab einer Reaktionszeit von 15 min CO freigesetzt. Für die Reaktionen, in denen auch CO gebildet wurde, beträgt das Verhältnis CO₂/CO ungefähr 5.

Abb. 5.3-8 Konzentrationsverlauf von CO und CO₂ Die Volumenprozente sind normiert auf 1 g MFA-I Reaktionszeit: linke Spalte: 1 min, rechte Spalte: 30 min

Interessant ist auch die Beobachtung, daß für Reaktionstemperaturen höher als 300 °C die CO₂-Kurve ein zweites, kleineres Maximum aufweist (bei 300 °C und einer Reaktionszeit von 1 min kein zweites Maximum). Da bereits nach 1-minütiger Reaktionszeit mehr als 91 % des Trichlorphenols umgesetzt sind, handelt es sich bei dem zweiten Maximum um einen Abbau von Produkten des Trichlorphenols. Dieses zweite Maximum im CO₂-Konzentrationsprofil steht in der Tat in direktem Zusammenhang mit den PCDD-Konzentrationen. Für die Experimente bei einer Reaktionstemperatur von 300 °C wird für die PCDD ein Konzentrationsmaximum für eine Reaktionszeit von 15 min erhalten. Und genau bei dieser Reaktionstemperatur und Reaktionszeit tritt zum ersten Mal in der Versuchsserie ein zweites CO₂-Konzentrationsmaximum im Gasstrom auf, d.h. die Abnahme der PCDD-Konzentration widerspiegelt sich im erneuten Konzentrationsanstieg von CO₂. Für die übrigen Versuche (350 und 400 °C) wird bereits ab einer Reaktionszeit von 1 min ein Rückgang der PCDD-Konzentration erhalten und bei allen Temperaturen ein zweiter CO₂-Peak.

5.4 Umsetzung von Diphenylether auf Modellflugasche zu PCPh, PCBz und PCDD/F

In Kapitel 5.1.2 wurde für die Bildung einer großen Anzahl an PCDD-Isomeren aus Kohlenstoff eine Kondensation zwischen Chlorphenolen und Phenylringen vorgeschlagen, die noch über ein oder zwei C-Atome mit der Kohlenstoffmatrix kovalent verbunden sind. Dabei wurden für die PCDD-Bildung "Diphenylether-" und "ortho-Hydroxydiphenylether-Strukturen" als Zwischenstufen postuliert.

Zur Überprüfung dieser Hypothese wurde MFA-I mit 40 mg Diphenylether dotiert und bei 300 °C für 30 min unter verschiedenen Atmosphären (synthetische Luft bzw. Stickstoff) behandelt.

Polychlorierte Diphenylether sind aufgrund ihrer hohen Reaktivität auf Flugaschen nur in sehr geringen Mengen nachweisbar^{74,130}. In Pyrolyseexperimenten erhielten Lindahl et.al.⁸¹ für eine Umsetzung von PCDE zu PCDD/F Ausbeuten in der Größenordnung von 0,1 - 4,5 %. Aus dem Isomerenmuster der PCDD/F haben sie folgende Bildungsrouten vorgeschlagen:

- i Verlust von zwei ortho-Chloratomen oder eines ortho-Wasserstoffs und eines ortho-Chlors unter Bildung der C-C-Bindung liefert PCDF
- ii Abspaltung von zwei ortho-Chloratomen liefert PCDD

Aus der klassischen Chemie ist die durch Palladiumacetat katalysierte^{132,133} und die photound thermochemische Cyclisierung^{79,134,135} von Diphenylether zu PCDF bekannt. Einen Übersichtsartikel über PCDE liefert eine Veröffentlichung von Becker et.al.¹⁰¹.

Obwohl sich die Bedingungen der oben zitierten Reaktionsmöglichkeiten zur Darstellung von PCDD/F aus PCDE von denen auf Flugaschen unterscheiden, können auf Flugaschen, wie bereits für 2,4,6-Cl₃Ph gezeigt, ähnliche klassische Reaktionen stattfinden.

Die Ergebnisse der Versuche mit Kohlenstoff zeigten, daß die Knüpfung einer C-C-Bindung zwischen zwei Phenylringen auf Flugasche unter den thermischen Bedingungen (250 - 400 °C) vernachlässigbar gering ist. Daher sollte auch Diphenylether oder PCDE ähnlich den Reaktionen von Biphenyl oder PCB^{102,103} (nach Oxidation in ortho-Stellung) hauptsächlich zur Ausbildung einer C-O-C-Bindung und damit zu PCDD führen. Über die prinzipielle Möglichkeit der Chlorierung von Diphenylether auf Modellflugasche (Florisil, CuCl₂, CuBr₂) berichteten Jay et.al.¹³⁶.

Wie erwartet, wurden bei der thermischen Behandlung (300 °C, 30 min) der mit Diphenylether dotierten Modellflugasche unter synthetischer Luft bevorzugt PCDD gebildet (87 % der Gesamtmenge der PCDD/F). Wie vermutet, ist die Ausbildung einer C-O-C-Bindung gegenüber der direkten C-C-Verknüpfung favorisiert. Für die Bildung von PCDD aus Diphenylether gibt es zwei plausible Reaktionswege:

a) ortho-Hydroxylierung des einen Ringes und ortho-Chlorierung des anderen Ringes mit anschließender Abspaltung von HCI

b) Kondensation von Phenolen bzw. Chlorphenolen - den Spaltprodukten von Diphenylether bzw. PCDE.

Diese Schlußfolgerung stützt sich auf dem Isomerenmuster der PCDD. Es wurden bevorzugt PCDD-Isomere erhalten, die auf eine Beteiligung von 2,4,6-Cl₃Ph zurückführbar sind. Diese Hypothese wird auch durch die hohen Konzentrationen an Chlorphenolen, vor allem des 2,4,6-Cl₃Ph untermauert.

Nicht auszuschließen ist, daß Diphenylether in den Positionen 2, 4 und 6 chloriert wird, so daß eine Ringschlußreaktion zu PCDD zu einem ähnlichen PCDD-Isomerenmuster wie die Kondensation von 2,4,6-Trichlorphenol führen kann.

Um einen weiteren Anhaltspunkt für diese Theorie zu erhalten, wurde obiger Versuch unter Stickstoff wiederholt. Durch den Ausschluß von Sauerstoff ist eine PCDD-Bildung aus Diphenylether bzw. PCDE weiterhin möglich allerdings nur durch Kondensation von Phenolen oder PCPh; eine ortho-Hydroxylierung ist unter diesen Bedingungen ausgeschlossen. Die Bildung von PCDF aus Diphenylether (d.h. C-C-Verknüpfung) sollte unter Stickstoff ähnlich ablaufen wie in einer sauerstoffhaltigen Atmosphäre.

Wie aus den Daten in Tab. 5.4-1 und 8.21 hervorgeht, entstehen auch unter Stickstoff mehr PCDD als PCDF (74 % der Gesamtmenge der PCDD/F). Das heißt, daß die Oxidation des Diphenylethers in ortho-Stellung durch Luftsauerstoff bei 300 °C nur zu einem geringen Anteil zur Bildung von ortho-Hydroxydiphenylether - "Prädioxine" – beiträgt. Im postulierten Reaktionsmechanismus für die Bildung von PCDD durch Kondensation von Chlorphenolen mit Phenylringen, die noch Teil der Kohlenstoffmatrix sind, handelt es sich daher vermutlich eher um Phenylringe mit bereits vorhandener Hydroxylgruppe.

Tab. 5.4-1	Konzentrationen [ng/g MFA] der PCPh, PCBz und PCDD/F nach thermischer
	Behandlung einer Modellflugasche dotiert mit Diphenylether (40 mg/g)
	Reaktionstemperatur: 300 °C, Reaktionszeit: 30 min

	l (synth. Luft)	II-a (Stickstoff)	II-b (synth. Luft)
PCPh	3940	15340	790
PCBz	3270	1380	4070
PCDD	2260	1840	1330
PCDF	330	640	340

Im Anschluß an die thermische Behandlung der Modellmischung II-a (unter Stickstoff) wurde ein Teil der Probe auf PCPh, PCBz und PCDD/F untersucht, während ein anderer Teil für weitere 30 min unter synthetischer Luft (II-b) auf 300 °C erhitzt wurde.

Diese weitere Verbrennung der Probe II-a in Gegenwart von Sauerstoff führte zu einer Konzentrationsabnahme aller Substanzklassen, mit Ausnahme der PCBz. Auffallend ist, daß im Versuch unter synthetischer Luft (I) und Stickstoff (II-a) Tetrachlorbenzole dominieren, während im Versuch II-b mehr als 50 % der Benzole zwei- und dreifach chloriert sind. Während fast 50 % der PCDF abgebaut wurden, nahm die Konzentration der PCDD nur um 25 % ab. Obwohl PCDF auf Flugaschen weniger stark abgebaut werden als PCDF, war in diesem Fall der PCDF-Abbau stärker ausgeprägt als der PCDD-Abbau. Dies könnte damit zusammenhängen, daß aus den vorhandenen PCDE und PCPh weitere

PCDD gebildet wurden, so daß die Abnahme der PCDD-Konzentration durch eine Neubildung aus PCPh und PCDE kompensiert wird.

Die Ausbeute an PCDD aus Diphenylether ist sehr gering (0,002 %) verglichen mit der aus Trichlorphenol. Allerdings handelt es sich hierbei auch um eine unchlorierte Verbindung, die unter den Reaktionsbedingungen schnell thermisch zersetzt werden kann. Allgemein steigt die PCDD/F-Ausbeute aus Precursorn mit steigendem Chlorierungsgrad, was auch Ross et.al. in ihren Untersuchungen zur PCDD/F-Bildung aus chlorierten Diphenvlethern (Cl_xDPE, x = 0, 3, 4, 5, 10) erhielten¹⁰⁰. Im Totalionenchromatogramm konnte nach der thermischen Behandlung bei 300 °C sowohl unter Stickstoff als auch unter synthetischer Luft kein Diphenlylether mehr nachgewiesen werden. Dagegen wurden chlorierte Diphenylether – Dichlor- bis Heptachlordiphenylether - in hohen Konzentrationen gefunden. Da der Umsatz des Diphenylethers zu PCDD/F im Vordergrund stand, wurde auf eine Quantifizierung der PCDE verzichtet. In den Abbildungen 5.4-1 und 5.4-2 sind die Totalionenchromatogramme eines Modellflugaschenextraktes und einer Waschflaschenlösung abgebildet. Die Peaks, die aufgrund des Massenspektrums oder zum Teil durch Vergleich mit Spektren in der Datenbank zugeordnet werden konnten, sind durchnummeriert. Halbquantitativ kann man aus den beiden Chromatogrammen und aufgrund bekannter PCDD/F-Werte (Tab. 5.4-1) schließen, daß die Weiterchlorierung des Diphenylethers in höherem Maß stattfindet als die PCDD/F-Bildung.

Auffallend ist die hohe PCPh-Konzentration verglichen mit der Konzentration der PCBz. Eine Zersetzung von Diphenylether unter Spaltung der Etherbrücke sollte zu ähnlichen Konzentrationen an PCPh und PCBz führen. Durch Kondensation von Chlorphenolen zu PCDD würde man daher eher geringere Mengen an PCPh verglichen mit PCBz erwarten.

Die Produkte aus Diphenylether unterscheiden sich sowohl im Homologen - als auch im Isomerenmuster von den Produkten, die aus Kohlenstoff gebildet werden (vgl. Kap. 5.1.1 - 5.1.5). Erstere weisen einen deutlich niederen Chlorierungsgrad auf. Ähnliche Beobachtungen machte Jiménez Leal bei der Umsetzung diverser aromatischer Vorläuferverbindungen (Toluol, Benzol, Benzaldeheyd, Fluoren und Naphthalin) in Gegenwart von Kohlenstoff auf einer Modellflugasche³⁹.

Unter den Chlorphenolen wurden wie im Falle der kohlenstoffdotierten Modellflugasche folgende Isomere gebildet: 2,4/2,5-Cl₂Ph, 2,4,6-Cl₃Ph, 2,3,4,6-Cl₄Ph und Cl₅Ph. Das Isomerenmuster der Chlorbenzole wird durch die hohen Konzentrationen folgender Isomere geprägt: 1,4-Cl₂Bz, 1,3,5-, 1,2,3-Cl₃Bz, 1,2,3,5- und 1,2,3,4-Cl₄Bz. Wie die Totalionenchromatogramme in Abb. 5.4-1 und 5.4-2 zeigen, entstehen in sehr hohen Mengen chlorierte Diphenylether. Die Erhöhung der Benzolkonzentration bei der thermischen Behandlung der Probe la unter synthetischer Luft könnte mit einer Zersetzung chlorierter Diphenylether zusammenhängen. Das würde auch die hohen Konzentrationen der Di- und Trichlorbenzole erklären, da Tetra- und Pentachlordiphenylether im Totalionenchromatogramm am häufigsten vertreten sind. Da die Isomerenmuster der Tri- und Tetrachlorbenzole voneinander abweichen, dürften hier mehrere Reaktionswege eine Rolle spielen, z.B. Bildung aus Chlorphenolen oder chlorierten Diphenylether.

Tab. 5.4-2Prozentuale Verteilung der gebildeten Chlorbenzolisomere innerhalb der
Chlorhomologengruppen nach thermischer Behandlung einer mit Diphenylether
doitierten MFA unter Stickstoff und synthetischer Luft
Reaktionstemperatur: 300 °C, Reaktionszeit: 30 min

	I (synth. Luft)	II-a (Stickstoff)	II-b (synth. Luft)
1,3-Cl ₂ Bz	33	14	42
1,4-Cl₂Bz	49	52	40
1,2-Cl ₂ Bz	18	34	19
1,3,5-Cl₃Bz	48	25	11
1,2,4-Cl₃Bz	16	29	17
1,2,3-Cl₃Bz	36	47	72
1,2,3,5-Cl₄Bz	46	13	56
1,2,4,5-Cl₄Bz	5	9	9
1,2,3,4-Cl₄Bz	49	78	38

Abb. 5.4-2 Produkte aus der thermischen Behandlung einer mit Diphenyltether dotierten MFA unter synthetischer Luft; Produkte gefunden in der Waschflasche Reaktionstemperatur: 300 °C, Reaktionszeit: 30 min
1: DF; 2, 3, 4: Cl₃DPE; 5, 7, 8, 9, 10: Cl₃DPE; 6: Cl₂DF;
11, 12, 13, 14, 15, 16: Cl₄DPE; 17, 18, 19, 20, 21: Cl₅DPE

6 Zusammenfassung

Organochlorverbindungen, insbesondere die hochtoxischen PCDD/F stehen seit Anfang der 80er Jahre im Mittelpunkt zahlreicher wissenschaftlicher Untersuchungen. Für ihre Bildung in Müllverbrennungsanlagen werden zwei unterschiedliche Mechanismen postuliert: a) homogene Gasphasenreaktionen organischer Radikale im Hochtemperaturbereich und b) heterogene, flugaschenkatalysierte Bildung aus Restkohlenstoff (*De-Novo-Synthese*) oder aus Vorläuferverbindungen im Niedertemperaturbereich.

In der vorliegenden Arbeit wurden die heterogenen PCDD/F-Bildungsreaktionen näher untersucht.

PCDD/F sind cylische Ether, die man sich durch Kombination zweier Phenylringe mit anschließender Ringschlußreaktion aufgebaut denken kann. Anhand eines Flugaschen-Modellsystems mit isotopenmarkiertem Kohlenstoff wurden in dieser Arbeit die Reaktionswege der PCDD/F-Bildung untersucht. Die thermische Behandlung einer solchen Modellflugasche unter Bedingungen, wie sie in Müllverbrennungsanlagen herrschen, zeigte, daß die *De-Novo-Synthese* von PCDD/F nach zwei unterschiedlichen Reaktionswegen abläuft: i) direkter Abbau vorgebildeter dibenzodioxin- und dibenzofuranverwandter Strukturen aus dem Kohlenstoff ohne Beteiligung aromatischer C₆-Intermediate und ii) Bildung aus zwei unabhängigen, aromatischen C₆-Einheiten.

Entsprechend Reaktionsroute i) entstehen nur Spezies, die aus dem gleichen Kohlenstoffisotop aufgebaut sind, während der zweite Bildungsweg (ii) auch zu Dreiringstrukturen führen kann, bei denen ein aromatischer Ring vollständig aus ¹²C und der andere aus ¹³C-Atomen aufgebaut ist.

Für die PCDD konnte gezeigt werden, daß beide Reaktionen parallel stattfinden. Bei einer Reaktionstemperatur von 300 °C und einer Reaktionszeit von 2 Stunden werden ungefähr 40 % der PCDD durch Kondensation aus *de-novo* gebildeten Phenylringen aufgebaut und 60 % direkt aus der Kohlenstoffmatrix als komplette Strukturen herausgelöst.

Im Gegensatz dazu ist für die PCDF-Bildung nur der direkte Abbau präformierter furanähnlicher Strukturen aus dem Kohlenstoffgerüst von Bedeutung. Für diese Strukturen kommen nur solche Gebilde in Frage, die aus zwei C-C-verknüpften, aromatischen C₆-Ringen bestehen. Mit einem Anteil von nur 1 % gemischtringiger PCDF (${}^{12}C_{6}/{}^{13}C_{6}$ -PCDF) ist die Kondensation aromatischer C₆-Verbindungen für die PCDF-Bildung nicht signifikant. Die Ausbildung der C-C-Bindung zwischen zwei Phenylringen ist unter diesen Bedingungen vernachlässigbar.

Mit steigender Reaktionstemperatur nimmt der Anteil der Kondensationsreaktionen für die PCDD um den Faktor 2,5 ab: von 46 % bei 250 °C auf 18 % bei 400 °C. Dieser Rückgang kann mit der Verteilung der ebenfalls *de-novo* gebildeten Chlorphenole zwischen der Feststoff- und der Gasphase korreliert werden. Mit steigender Reaktionstemperatur nimmt der Anteil der Chlorphenole in der Feststoffphase ab, wodurch sie einer katalysierten Weiterreaktion zu PCDD/F entzogen werden.

Im Gegensatz dazu gewinnt mit steigender Temperatur der Kondensationsweg für die PCDF an Bedeutung. Während Kondensationsreaktionen bei 250 °C nur mit 1 °% zum Aufbau der PCDF beitragen, sind es bei 400 °C bereits 2,5 %, was einem Anstieg um den Faktor 2,5 entspricht. Da, wie experimentell gezeigt, im gesamten Temperaturbereich die Mengen an adsorbierten Chlorbenzolen auf der Modellflugasche konstant blieben, wurde die Zunahme des Anteils der Kondensationsreaktionen durch die Beteiligung von Chlorbenzolen neben Chlorphenolen als Reaktionspartner erklärt. Des weiteren wird mit zunehmender Temperatur die Knüpfung der C-C-Bindung zwischen zwei Phenylringen erleichtert.

Das Verhältnis der beiden Reaktionsrouten i) und ii) ist für Reaktionszeiten zwischen 15 min und 4 Stunden konstant und nimmt mit steigendem Kupfergehalt der Modellflugasche ab.

Das Isomerenmuster der ${}^{12}C_6/{}^{13}C_6$ -PCDD läßt darauf schließen, daß bei der PCDD-Bildung *de-novo* gebildete ${}^{12}C_6$ - und ${}^{13}C_6$ -PCPh als Intermediate beteiligt sind. Es konnte weiter gezeigt werden, daß neben der Kondensation von Chlorphenolen auch die Reaktion zwischen Chlorphenolen und aromatischen Ringsystemen, die noch über Kohlenstoffatome mit dem Kohlenstoffgerüst kovalent verbunden sind, eine bedeutende Rolle spielt.

Das Isomerenmuster der ${}^{12}C_6/{}^{13}C_6$ -PCDF lieferte Indizien dafür, daß für die Bildung gemischtringiger PCDF zwei Kondensationsreaktionen verantwortlich sind: Neben der Kondensation von Chlorphenolen spielt auch die Reaktion zwischen Chlorbenzolen und Chlorphenolen eine Rolle. Als Zwischenprodukte kommen hier - ebenfalls wie bei den PCDD - Diphenylether-Strukturen in Frage. Die C-C-Bindung wird vermutlich erst im zweiten Reaktionsschritt gebildet.

Daß Chlorphenole als Zwischenprodukte bei der PCDD-Bildung fungieren, konnte in Versuchen mit Modellflugaschen, dotiert mit ¹²C-2,4,6-Cl₃Ph und ¹³C-markiertem Kohlenstoff, gezeigt werden.

Um die aus den Experimenten mit Modellflugasche gewonnenen mechanistischen Aspekte auf reale Flugaschen übertragen zu können, wurden abschließend *De-Novo-Versuche* mit Göppinger- und US-EPA-Flugasche durchgeführt, die mit ¹³C-markiertem Kohlenstoff dotiert wurden. Damit konnte gezeigt werden, daß zum einen der verwendete ¹³C-Kohlenstoff ein ähnliches Bildungspotential für PCDD/F wie der Restkohlenstoff aufweist. Zum anderen konnten die Verhältnisse von Kondensationsreaktionen zu *direkter De-Novo-Synthese*, die auf den synthetischen Mischungen gefunden wurden, bestätigt werden.

Auch der oxidative Abbau des ¹³C-Kohlenstoffs erfolgt im gleichem Umfang wie der des Restkohlenstoffs. Diese Experimente zeigen, daß der verwendete amorphe Kohlenstoff und insbesondere auch der ¹³C-markierte Kohlenstoff geeignete Modellsubstanzen für die Aufklärung des PCDD/F-Aufbaus aus Restkohlenstoff darstellen.

Zur weiteren Aufklärung der PCDD/F Bildung aus Chlorphenolen als Vorläuferverbindungen wurden Experimente sowohl mit Flugasche als auch mit Modellmischungen durchgeführt, die mit 2,4,6-Cl₃Ph dotiert wurden. Die Versuche zeigten, daß Chlorphenole hauptsächlich

zur Bildung von PCDD führen. Bei den Tetrachlordibenzodioxinen handelt es sich um direkte Kondensationsprodukte von Trichlorphenol, sowie um daraus durch *Smiles-Umlagerung* resultierende Isomere. Für die Bildung höherchlorierter Dibenzodioxinisomere kommen sowohl die Kondensation von Trichlorphenol mit höherchlorierten Chlorphenolen als auch die Weiterchlorierung der Tetradibenzodioxinisomere in Frage. Eine Unterscheidung zwischen diesen beiden Wegen war nicht möglich. Die PCDF-Bildung aus dem verwendeten Trichlorphenol war sowohl auf Flugasche als auch auf Modellflugasche etwa 100fach kleiner als die der PCDD-Bildung.

Die Studie zweier Dotierungstechniken: einmaliges Dotieren der Matrices mit der Vorläuferverbindung vor Versuchsbeginn verglichen mit einer kontinuierlichen Dosierung des Trichlorphenols in die Gasphase während der thermischen Behandlung zeigte, daß letztere Technik zu einem höherem Umsatz des Trichlorphenols zu PCDD führt. Es wurden Chlorphenolkonzentrationen von 1-5 mg/g Reaktionsmischung bzw. 0-470 ng 2,4,6-Cl₃Ph/ml Gasphase verwendet. Mit der ersten Dotierungstechnik wurden auf EPA-Flugasche ca. 1 % und auf Modellflugasche 0,7 % des 2,4,6-Cl₃Ph zu PCDD umgesetzt. Mit der Gasphasendotierung wurde auf EPA-Flugasche ein 6fach höherer und auf Modellflugasche ein 3fach höherer Umsatz erhalten.

Weitere Untersuchungen mit einer konstanten Konzentration von Trichlorphenol auf der Modellflugasche unter Variation von Reaktionstemperatur und Zeit zeigten, daß mit zunehmender Reaktionstemperatur die Reaktionsgeschwindigkeit für die Zersetzung schneller ansteigt als die der Bildungsreaktion, so daß bei einer Temperatur von 300 °C ein Konzentrationsmaximum durchlaufen wird.

Aus dem Isomerenmuster der Chlorbenzole wurde für den Bildungsmechanismus der Chlorbenzole aus 2,4,6-Cl₃Ph eine ipso-Substitution der Hydroxylgruppe gegen eine Chlorfunktion postuliert. Durch anschließende Dechlorierung bzw. Weiterchlorierung des 1,2,3,5-Cl₄Bz können die in den höchsten Konzentrationen gebildeten Chlorbenzolisomere erklärt werden.

Die online-Messung der oxidativen Abbauprodukte CO und CO₂ zeigte, daß Trichlorphenol trotz dreifacher Chlorierung einem starken Abbau zu CO und CO₂ unterliegt. Für Reaktionstemperaturen ab 300 °C weist das CO₂-Konzentrationsprofil zwei Maxima auf. Das erste Konzentrationsmaximum resultiert aus dem Abbau des Trichlorphenols und das zweite Maximum kann mit dem Abbau der PCDD korreliert werden.

7 Literaturverzeichnis

- 1 Olie, K., Vermeulen, P.L., Hutzinger, O.: Chlorodibenzo-p-dioxins and Dibenzofurans are Trace Components of Fly Ash and Flue Gas of some Municipal Waste Incinerators in the Netherlands, *Chemosphere* **1977**, 8, 455-459
- 2 Buser, H.R., Bosshardt, H., Rappe, C.: Identification of Polychlorinated Dibenzo-p-dioxinlsomers Found in Fly Ash, *Chemosphere* **1978**, 2, 165-172
- 3 DOW, Chemical Co. Midland, MI, USA The Trace Chemistries of Fire A Source of and Routes for the Entry of Chlorinated Dioxins into the Environment **1978**
- 4 Hutzinger, O., Fiedler, H.: Entstehung und Vorkommen polychlorierter Dibenzo-p-dioxine (PCDDs) und Dibenzofurane (PCDFs), *VDI Berichte Nr. 634* **1987**, 17-35
- 5 Clement, R.E.: Sources, Emissions, Transport and Fate, *Chemosphere* **1989**, 18(1-6), 1329-1330
- 6 Marklund, S., Andersson, R., Tysklind, M., Rappe, C.: Emssions of PCDDs and PCDFs in Gasoline and Diesel Fueled Cars, *Chemosphere* **1990**, 20(5), 553-561
- 7 Oehme, M., Müller, M.: Levels and Congener Patterns of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in Solid Residues from Wood-Fired Boilers. Influence of Combustion Conditions and Fuel Type, Chemosphere 1995, 30(8), 1527-1539
- 8 Lahl, U.: Sintering Plants of Steel Industry PCDD/F Emission Status and Perspectivus, *Chemosphere* **1994**, 29, 1939-1954
- 9 Harnly, M., Stephens, R., McLaughin, C., Marcotte, J., Petreas, M., Goldman, L.: Polychlorinated Dibenzo-p-dioxin and Dibenzofuran Contamination at Metal Recovery Facilities, Open Burn Sites, and a Railroad Car Incineration Facility, *Environ. Sci. Technol.* **1995**, 29(3), 677-684
- 10 Morimoto, K., Kenji, T.: Effect of Humic Substances on the Enzymatic Formation of OCDD from PCP, Organohalogen Compounds **1995**, 23, 387-392
- 11 Fortin, C., Caldbick, D.: Are Dioxins and Furans Predominantly Anthropogenic? *Organohalogen Compounds* **1997**, 32, 417-421
- 12 Czuczwa, J.M., Hites, R.A.: Historical Record of Polychlorinated Dioxins and Furans in Lake Huron Sediments, *Chlorinated Dibenzodioxns and -furans in the Total Environment II, Butterworth, Stoneham MA* **1985**, 59-63
- 13 Winters, D., Anderson, S., Lorber, M., Ferrario, J., Byrne, C.: Trends in Dioxin and PCB Concentrations in Meat Samples from Several Decades of the 20th Century, *Organohalogen Compounds* **1998**, 38, 75-77
- 14 Neidhard, H., Herrmann, M.: Abbau, Persistenz, Tranport polychlorierter Dibenzodioxine und Dibenzofurane in der Umwelt, *VDI Berichte Nr. 634* **1987**, 303-316
- 15 Erste Allgemeine Verwaltungsvorschrift zum Bundes-Immissionsschutzgesetz vom 27.02.1086 (GMBI S.95)
- 16 Siebzehnte Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes (Verordnung über Verbrennungsanlagen für Abfälle und ähnliche brennbare Stoffe 17. BImSch V) vom 23.11.1990); BGBI. I, S. 2545, berichtigt S. 2382, *Abfallwirtschaftsjournal* **1991**, 3, 110-119
- 16 Sambeth, J.: Der Seveso-Unfall, Nachrichten für Chemie, Technik und Labor 1982, 30(5), 367-371
- 17 Sandermann, W.: Die Entdeckungsgeschichte des 2,3,7,8-Tetrachlorodibenzo-p-dioxins (TCDD, Dioxin, Sevesogift), *Naturwissenschaftliche Rundschau* **1984**, 37(5), 173-178
- 18 Hutzinger, O., Fink, M., Thoma, H.: PCDD und PCDF: Gefahr für Mensch und Umwelt? *Chemie in unserer Zeit* **1986**, 20(5), 165-170
- 19 Fiedler, H.: Dioxine in Produkten und Abfällen, VDI Berichte Nr. 1298 1996, 231-246

- 20 Ballschmiter, K.: Chemie und Vorkommen der Halogenierten Dioxine und Furane, Nachr. Chem. Tech. Lab. 1991, 39(9), 988-1000
- 21 Neubert, D.: Medizinische Schlußfolgerung und Vorschläge zur Abschätzung und Verminderung des Risikos einer Exposition gegenüber PCDDs und PCDFs, VDI Berichte Nr. 634 1987, 665-674
- 22 Cikryt, P.: Dioxine: Wirkungsmechanismen und Risiken, Nachr. Chem. Tech. Lab. 1991, 39(12), 1405-1406
- 23 Cikryt, P.: Die Gefährdung des Menschen durch Dioxin und verwandte Verbindungen, *Nachr. Chem. Tech. Lab.* **1991**, 39(6), 648-656
- 24 Lenoir, D., Sandermann, H.: Enstehung und Wirkung von Dioxinen, *Biologie in unserer Zeit* 1993, 23(6), 363-369
- 25 Eikmann, T., Fischer, A.B., Eikmann, S.: Toxikologie und Belastungspfade von Dioxinen, VDI Berichte Nr. 1298 1996, 1-15
- 26 Yang, J.-H.: Alterations of Signal Transduction Pathways Involved in 2,3,7,8-Tetrachlorodibenzop-dioxin Induced Malignant Transformation of Human Cells in Culture, *Chemosphere* **1998**, 36(14), 3015-3031
- 27 Ballschmiter, K., Bacher, R.: Dioxine, VCH Verlag, Weinheim 1996
- 28 Oehme, M.: Handbuch Dioxine, Spektrum, Akademischer Verlag 1998
- 29 Ballschmiter, K., Braunmiller, I., Niemczyk, R., Swerev, M.: Reaction Pathways for the Formation of Polychloro-dibenzodioxins (PCDD) and -dibenzofurans (PCDF) in Combustion Processes: II. Chlorobenzenes and Chlorophenols as Precursors in the Formation of Polychlorodibenzodioxins and -dibenzofurans in Flame Chemistry, *Chemosphere* 1988, 17(5), 995-1005
- 30 Shaub, W.M., Tsang, W.: Dioxin Formation in Incinerators, *Environ. Sci. Technol.* **1983**, 17, 721-730
- 31 Shaub, W.M., Tsang, W.: Overview of Dioxin Formation in Gas and Solid Phases under Municipal Incinerator Conditions, in Keith, L.H., Rappe, C., Choundhary, G.: "Chlorinated Dibenzodioxins and Dibenzofurans in the Total Environment II", Butterworth Publishers, Stoneham, MA 1985, 469-487
- 32 Nottrodt, A., Düwel, U., Ballschmiter, K.: Ursachen und Minderung von PCDD/PCDF-Emissionen bei Müllverbrennungsanlagen-Neue Untersuchungsergebnisse, VDI Berichte Nr. 634 1987, 595-635
- 33 Vogg, H., Stieglitz, L.: Thermal Behaviour of PCDD/PCDF in Fly Ash from Municipal Incinerators, Chemosphere 1986, 15(9-12), 1373-1378
- 34 Stieglitz, L., Vogg, H.: On Formation Conditions of PCDD/PCDF in Fly Ash from Municipal Waste Incinerators, *Chemosphere* **1987**, 16(8/9), 1917-1922
- 35 Stieglitz, L., Vogg, H.: Bildung und Abbau von Polychlordibenzodioxinen und -furanen in Flugaschen der Müllverbrennung, *GIT Fachzeitschrift für das Laboratorium* **1988**, 2(4-11)
- 36 Stieglitz, L., Zwick, G., Beck, J., Roth, W., Vogg, H.: On the De-Novo-Synthesis of PCDD/PCDF on Fly Ash of Municipal Waste Incinerators, *Chemosphere* **1989**, 18(1-6), 1219-1226
- 37 Stieglitz, L., Zwick, G., Beck, J., Bautz, H., Roth, W.: The Role of Particulate Carbon in the De-Novo-Synthesis of Polychlorinated Dibenzodioxins and -Furans in Fly Ash, *Chemosphere* 1990, 20(10-12), 1953-1985
- 38 Stieglitz, L., Zwick, G., Beck, J., Bautz, H., Roth, W.: Carbonaceous Particles in Fly Ash -A Source for the De-Novo-Synthesis of Organochlorocompounds, *Chemosphere* 1989, 19(1-6), 283-290
- 39 Jiménez Leal, P.: Umsetzung von Kohlenwasserstoffen an Flugaschen unter besonderer Berücksichtigung der Bildung von aromatischen Chlorverbindungen, Dissertation, Universität Heidelberg 1998

- 40 Albrecht, I.D., Naikwadi, K.P., Karasek, F.W.: Investigation of the De Novo Process Using ¹³C-Amorphous Carbon, *Organohalogen Compounds* **1992**, 8, 217-220
- 41 Milligan, M.S., Altwicker, E.R.: Mechanistic Aspects of the De Novo Synthesis of Polychlorinated Dibenzo-p-dioxins and Furans in Fly Ash from Experiments Using Isotopically Labeled Reagents, *Environ. Sci. Technol.* **1995**, 29(5), 1353-1358
- 42 Stieglitz, L., Bautz, H., Roth, W., Zwick, G.: Investigation of Precursor Reactions in the De-Novo-Synthesis on Fly Ash, *Chemosphere* **1997**, 34(5-7), 1083-1090
- 43 Stöckli, H.F.: Microporous Carbons and their Characterization: The Present State of Art, *Carbon* **1990**, 28(1), 1-6
- von Kienle, H., Bäder, E.: Aktivkohle und ihre industrielle Anwendung, Enke Verlag, Stuttgart
 1980
- 45 Eichberger, M.: Zusammenhang zwischen der Kohlenstoffstruktur und der Bildung organischer Spurenstoffe auf Flugaschen, Dissertation, Universität Heidelberg **1995**
- 46 Akhter, M.S., Chuchtai, A.R., Smith, D.M.: Aromaticity of Elemental Carbon (soot) by ¹³C CP/MAS and FT-IR Spectroscopy, Carbon 1985, 23(5), 593-594
- 47 Stieglitz, L., Schwarz, G.: Formation of Organohalogen Compounds in Fly Ash by Metal-Catalyzed Oxidation of Residual Carbon, *Chemosphere* **1992**, 25(3), 277-282
- 48 Stieglitz, L., Eichberger, M., Schleihauf, J., Beck, J., Zwick, G., Will, R.: The Oxidative Degradation of Carbon and its Role in the De-Novo-Synthesis of Organohalogen Compounds in Fly Ash, *Chemosphere* **1993**, 27(1-3), 343-350
- 49 Schwarz, G.: Bildung und Verhalten von organischen Spurenstoffen auf Flugaschen der Müllverbrennung, *Dissertation, Universität Heidelberg* **1991**
- 50 Milligan, M. S., Altwicker, E.R.: The Catalytic Gasification of Carbon in Incinerator Fly Ash, *Carbon* **1993**, 31(6), 977-986
- 51 Milligan, M.S., Altwicker, E.R.: The Relationship between de Novo Synthesis of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans and Low-Temperature Carbon Gasification in Fly Ash, *Environ. Sci. Technol.* **1993**, 27(8), 1595-1601
- 52 Weber, P.: geplante Veröffentlichung 1999
- 53 Ranish, J.M., Walker, P.L.: Models for Roughening of Graphite during its Catalyzed Gasification, *Carbon* **1990**, 28(6), 887-896
- 54 Stieglitz, L., Vogg, H., Zwick, G., Beck, J., Bautz, H.: On Formation Conditions of Organohalogen Compounds from Particulate Carbon of Fly Ash, *Chemosphere* 1991, 23(8-10), 1255-1264
- 55 Jay, K., Stieglitz, L.: On the Mechanism of Formation of Polychlorinated Aromatic Compounds with Copper (II) chloride, *Chemosphere* **1991**, 22(11), 987-995
- 56 Stieglitz, L., Bautz, H., Zwick, G., Roth, W.: On the Dual Role of Metal Catalysis in the De-Novo-Synthesis of Organochlorine Compounds on Fly Ash from Municipal Waste Incinerators, Organohalogen Compounds **1996**, 27, 5-9
- 57 Griffin, D.: A New Theorie of Dioxin Formation in Municipal Solid Waste Combustion, *Chemosphere* **1986**, 15(9-12), 1987-1990
- 58 Addink, R., Paulus, R.H.W.L., Olie, K.: Unterdrückung der Bildung von PCDD und PCDF -Einschränkung der De Novo-Synthese auf Müllverbrennungsflugasche, Abfallwirtschaftsjournal 1995, 7(5), 312-316
- 59 Naikwadi, K.P., Karasek, F.W.: Prevention of PCDD Formation in MSW Incinerators by Inhibition of Catalytic Activity of Fly Ash Produced, *Chemosphere* **1989**, 19(1-6), 299-304

- 60 Lippert, T., Wokaun, A., Lenoir, D.: Surface Reactions of Brominated Arenes as a Model for the Formation of Chlorinated Dibenzodioxins and -furans in Incineration: Inhibition by Ethanolamine, *Environ. Sci. Technol.* **1991**, 25(8), 1584-1489
- 61 Nonhebel, D.C.: Copper-catalysed Single-electron Oxidations and Reductions, *Chem. Soc.* (London) Spec. Publ. **1970**, 24, 409-437
- 62 Hoffman, R.V., Eiceman, G.A., Long, Y.-T., Collins, M.C., Lu, M.-Q.: Mechanism of Chlorination of Aromatic Compounds Adsorbed on the Surface of Fly Ash form Municipal Incinerators, *Environ.Sci. Technol.* **1990**, 24(11), 1635-1641
- 63 Hagenmaier, H. Kraft, M., Brunner, H., Roland, H.: Catalytic Effects of Fly Ash from Waste Incineration Facilities on the Formation and Decomposition of Formation and Decomposition of Polychlorinated Dibenzo-p-dioxins and Polychlorinated Dibenzofurans, *Environ. Sci. Technol.* **1987**, 21(11), 1080-1084
- 64 Gullett, B.: The Effect of Metal Catalysts on the Formation of Polychlorinated Dibenzo-p-dioxin and Polychlorinated Dibenzofuran Precursors, *Chemosphere* **1990**, 20(10-12), 1945-1952
- 65 Gullett, B., Bruce, K.R., Beach, L.O., Drago, A.M.: Mechanistic Steps in the Production of PCDD and PCDF during Waste Combustion, *Chemosphere* **1992**, 25(7-10), 1387-1392
- 66 Born, J.G.P.: On the Formation of Dibenzo-p-dioxin and Dibenzofurans in Combustion Processes, *Ph.D. Thesis, Leiden University, The Netherlands* **1992**
- 67 Wehrmeier, A., Lenoir, D., Sidhu, S., Taylor, P., Rubey, W., Kettrup, A., Dellinger, B.: Role of Copper Species in Chlorination and Condensation Reactions of Acetylene, *Environ. Sci. Technol.* 1998, 32(18), 2741-2748
- 68 Schleihauf, J.: Der Einfluß von HCl und SO₂ auf die Bildung von Organochlorverbindungen auf Flugasche, *Dissertation, Universität Heidelberg* **1996**
- 69 Addink, R.: Mechanisms of Formation and Destruction of Polychlorinated Dibenzo-p-dioxins and -Dibenzofurans in Heterogenous Systems, *Ph.D. Thesis, Amsterdam University, The Netherlands* **1995**
- 70 Addink, R., Olie, K.: Critical Review of Formation and Destruction of Polychlorinated Dibenzo-pdioxins and Dibenzofurans in Heterogeneous Systems, *Environ. Sci. Technol.* 1995, 29(6), 1425-1435
- 71 Karasek, F.W.: An Overview of Dioxin Formation in Combustion Processes, Organohalogen Compounds 1995, 23, 315-317
- 72 Tuppurainen, K., Halonen, I., Ruokojärvi, P., Tarhanen, J., Russkanen, J.: Formation of PCDDs and PCDFs in Municipal Waste Incineration and its Inhibition Mechanisms: A Review, *Chemosphere* **1998**, 36(7), 1493-1511
- 73 Olie, K., Addink, R., Schoonenboom, M.: Metals as Catalysts During the Formation and Decomposition of Chlorinated Dioxins and Furans in Incineration Process, *Journal of the Air & Waste Management Association* **1998**, 48, 101-105
- 74 Nito, S., Takeshita, R.: Identification of Phenolic Compounds in Fly Ash from Municipal Waste Incineration by Gas Chromatography and Mass Spectrometry, *Chemosphere* 1996, 33(11), 2239-2253
- 75 Oehme, M., Manø, A., Mikalsen, A.: Formation and Presence of Polyhalogenated and Polycyclic Compounds in the Emissions of Small and Large Scale Municipal Incinerators, *Chemosphere* **1987**, 16(1), 143-153
- 76 Aittola, J.-P., Vänni, P.: Effect of Combustion Opimization on Emissions of Chloroaromatics from a Semimodern Municipal Solid Waste Combustion (MSW) Plant, Orangohalogen Compounds 1992, 8, 213-216
- 77 Ballschmiter, K., Kirschmer, P., Zoller, W.: Experiments in High-Temperature Chemistry of Organohalogens, *Chemosphere* **1986**, 15(9-12), 1369-1372

- 78 Jay, K., Stieglitz, L.: Identification and Quantification of Volatile Organic Components in Emissions of Waste Incineration Plants, *Chemosphere* **1995**, 30(7), 1249-1260
- 79 Norström, A., Andersson, K., Rappe, C.: Studies on the Formation of Chlorodibenzofurans by Irradiation or Pyrolysis of Chlorinated Diphenyl Ethers, *Chemosphere* **1977**, 5, 241-248
- 80 Buser, H.R.: Formations of Polychlorinated Dibenzofurans (PCDF) and Dibenzo-p-dioxins (PCDD) from the Pyrolysis of Chlorobenzenes, *Chemosphere* **1979**, 6, 415-424
- 81 Lindahl, R., Rappe, C.: Formation of Polychlorinated Dibenzofurans (PCDFs) and Polychlorinated Dibenzo-p-dioxins (PCDDs) from the Pyrolysis of Polychlorinated Diphenyl Ethers, Chemosphere 1980, 9, 351-361
- 82 Kuhlmann, F.: Herstellung und Quantifizierung von Polychlordibenzodioxin-Standards, Fresenius Zeitschrift für Analytische Chemie 1986, 323, 11-18
- 83 Froese, K.L., Hutzinger, O.: Chlorinated Aromatic Hydrocarbons in Heterogeneous Combustion Reactions of C₂-Aliphatics. Part II. Ethylene and Ethane, *Organohalogen Compounds* **1995**, 23, 339-342
- 84 Froese, K.L., Hutzinger, O.: Chlorinated Aromatic Hydrocarbons in Heterogeneous Combustion Reactions of C₂-Aliphatics. Part I. Acetylene, *Organohalogen Compounds* **1995**, 23, 335-338
- 85 Mulder, P.; Jarmohamed, W. Oxychlorination and Combustion of Propene on Fly-ash. Formation of Chlorinated Benzenes, Dibenzodioxins and Dibenzofurans, *Organohalogen Compounds* **1993**, 11, 273-276
- 86 Addink, R., Cnubben, P.A.J.P., Olie, K.: Formation of Polychlorinated Dibenzo-p-dioxins/-Dibenzofurans on Fly ash from Precursors and Carbon Model Compounds, *Carbon* 1995, 33(10), 1463-1471
- 87 Nestrick, T.J., Lamparski, L.L., Crummett, W.B.: Thermolytic Surface-Reaction of Benzene and Iron (III) chloride to Form Chlorinated Dibenzo-p-dioxins and Dibenzofurans, *Chemosphere* **1987**, 16(4), 777-790
- 88 Altwicker, E.R., Milligan, M.S.: Formation of Dioxins: Competing Rates Between Chemically Similar Precursors and De Novo Reactions, *Chemosphere* **1993**, 27(1-3), 301-307
- 89 Sommeling, P.M., Mulder, P., Louw, R.: Formation of PCDFs during Chlorination and Oxidation of Chlorobenzene in Chlorine/Oxygen Mixtures around 340°C, *Chemosphere* 1994, 29(9-11), 2015-2018
- 90 Behrooz Ghorishi, S., Altwicker, E.R.: Rapid Formation of Polychlorinated Dioxins/Furans during the Heterogeneous Combustion of 1,2-Dichlorobenzene and 2,4-Dichlorophenol, *Chemosphere* **1996**, 32(1), 134-144
- 91 De Leer, W.B., Lexmond, R.J., de Zeeuw, M.A.: De-novo-synthesis of Chlorinated Biphenyls, Dibenzofurans Dibenzo-p-dioxins in the Fly Ash Catalyzed Reaction of Toluene with Hydrochloric Acid, *Chemosphere* **1989**, 19, 1141-1152
- 92 Jiménez Leal, P.: Zum Einfluß von gasförmigem Toluol auf die Bildung von Organochlorverbindungen in Flugaschen, *Diplomarbeit, Universität Heidelberg* **1994**
- 93 Jiménez Leal, P., Stieglitz, L., Zwick, G., Will, R.: Formation of Chlorinated Compounds from Toluene in the Gas Phase and Particulate Carbon in a Model Fly Ash, Organohalogen Compounds 1996, 27, 153-158
- 94 Dickson, L.C., Karasek, F.W.: Mechanisms of Formation of Polychlorinated Dibenzo-p-dioxins Produced on Municipal Incinerator Flyash from Reactions of Chlorinated Phenols, *Journal of Chromatography* **1987**, 389, 127-137
- 95 Born, J.G.P., Mulder, P., Louw, R.: Fly Ash Mediated Reactions of Phenol and Monochlorophenols: Oxychlorination, Deep Oxidation, and Condensation, *Environ, Sci. Techn.* 1993, 27(9), 1849-1863

- 96 Born, J.G.P., Louw, R., Mulder, P.: Fly Ash Mediated (Oxy)chlorination of Phenol and its Role in PCDD/F Formation, Chemosphere 1993, 26(12), 2087-2095
- 97 Shiu, W.-Y., Ma, K.-C., Varhanickova, D., Mackay, D.: Chlorophenols and Alkylphenols: A Review and Correlation of Environmentally Relevant Properties and Fate in an Evaluative Environment, *Chemosphere* **1994**, 29(6), 1154-1224
- 98 Milligan, M.S., Altwicker, E.R.: Chlorophenol Reactions on Fly Ash. 1. Adorption/Desorption Equilibria and Conversion to Polychlorinated Dibenzo-p-dioxins, *Environ. Sci. Technol.* 1996, 30(1), 225-229
- 99 Sakurai, T., Kobayashi, T., Watanabe, T., Kondo, T.: Formations of PCDD/Fs from Chlorophenols (CPs) on Fly Ash Produced by Municipal Solid Waste Incinerators, Organohalogen Compounds 1996, 27, 183-187
- 100 Ross, B.J., Naikwadi, K.P., Karasek, F.W.: Effect of Temperature, Carrier Gas and Precursor Structure on PCDD and PCDF Formed from Precursors by Catalytic Activity of MSW Incinerator Fly Ash, Chemosphere 1989, 19(1-6), 291-298
- 101 Becker, M., Phillips, E., Safe, E.: Polychlorinated Diphenyl Ethers A Review, *Toxicological and Environmental Chemistry* **1991**, 33, 189-200
- 102 Wilhelm, J.: geplante Veröffentlichung
- 103 Scholz, M.: Reaktionen von Polychlorierten Biphenylen an Flugaschen von Müllverbrennungsanlagen, *Dissertation, Universität Heidelberg* 1997
- 104 Scholz, M., Stieglitz, L., Will, R., Zwick, G.: The Formation of PCB on Fly Ash and Conversion to PCDD/PCDF, Organohalogen Compounds 1997, 31, 538-541
- 105 Schoonenboom, M. H., Olie, K.: Formation of PCDDs and PCDFs from Anthracene and Chloroanthracene in a Model Fly Ash System, *Environ. Sci. Technol.* **1995**, 29(8), 2005-2009
- 106 Schneider, M., Stieglitz, L., Will, R., Zwick, G.: Formation of Polychlorinated Naphthalenes on Fly Ash, Organohalogen Compounds **1996**, 27, 192-195
- 107 Wilhelm, J. Die Halogenierung von polycyclischen Aromaten auf Modellflugaschen, Diplomarbeit, Heidelberg **1997**
- 108 Nestrick, T.J., Lamparski, L.L., Stehl, R.H. Synthesis and Identification of the 22 Tetrachlorodibenzo-p-dioxin Isomers by High Performance Liquid Chromatography and Gas Chromatography, Analytical Chemistry 1979, 51(13), 2273-2281
- 109 Zoller, W., Ballschmiter, K.: Formation of Polychlorinated Dibenzodioxins and Dibenzofurans by Heating Chlorphenols and Chlorophenates at Various Temperatures, *Fresenius Zeitschrift für Analytische Chemie* **1986**, 323, 19-23
- 110 Kende, A.S., Decamp, M.R. Smiles Rearrangement in the Synthesis of Hexachlorodibenzo-pdioxins, *Tetrahedron Letters* **1975**, 33, 2877-2280
- 111 Tuppurainen, K., Halonen, I., Ruuskanen, J.: Diaxospiro-type Structures as Intermediates in the Formation of Polychlorinated Dibenzo-p-dioxins. A Semi-empirical AM1 Molecular Orbital Study, *Chemosphere* **1996**, 32(7), 1349-1356
- 112 Gray, A.P., Cepa, S.P., Cantrell, J.S. Intervention of the Smiles Rearrangement in Synthesis of Dibenzo-p-dioxins, *Tetrahedron Letters* **1975**, 33, 2873-2876
- 113 Milligan, M.S., Altwicker, E.R.: Chlorophenol Reactions on Fly Ash. 2. Equilibrium Surface Coverage and Global Kinetics, *Environ. Sci. Technol.* **1996**, 30(1), 230-236
- 114 Sidhu, S., Dellinger, B.: The Effect of Hydrocarbons on PCDD/F Formation in the Gas-Phase Oxidation of 2,4,6-Trichlorophenol, *Organohalogen Compounds* **1997**, 31, 469-474
- 115 Weber, R., Hagenmaier H.: On the Mechanism of the Formation of Polychlorinated Dibenzofurans from Chlorophenols, *Organohalogen Compounds* **1997**, 31, 480-485

- 116 Born, J.G.P., Louw, R., Mulder, P.: Formation of Dibenzodioxins and Dibenzofurans in Homogeneous Gas-Phase Reactions of Phenols, *Chemosphere* **1989**, 19(1-6), 401-406
- 117 Miguel, A.H., Natusch, D.F.S.: Diffusion Cell for the Preparation of Dilute Vapor Concentrations, *Analytical Chemistry* **1975**, 47(9), 1705-1707
- 118 McKelvey J.M., Hoelscher, H.E.: Apparatus for Preparation of Very Dilute Gas Mixtures, Analytical Chemistry 1957, 29, 123
- 119 Altshuller, A.P., Cohen, J.R.: Application of Diffusion Cells for the Preparation of Dilute Vapor Concentrations, *Analytical Chemistry* **1960**, 32, 802-810
- 120 Nelson, G.O.: Gas Mixtures, Lewis Publishers 1992, 109-183
- 121 Verein Deutscher Ingenieure: Messen von Emissionen Messen von Reststoffen Messen von polychlorierten Diebenzodioxinen und -furanen im Rein- und Rohgas von Feuerungs-anlagen mit der Verdünnungsmethode Bestimmung in Filterstaub, Kesselasche und in Schlacken, *VDI-Richtlinien* **1990**
- 122 Ryan, J.J.: Gas Chromatographic Separations of all 136 Tetra- to Octachlorinated Dibenzo-pdioxins and Polychlorinated Dibenzofurans on Nine Different Stationary Phases, *Journal of Chromatography* 1991, 541, 131-183
- 123 Groll, P.: Auswertesoftware GCMS 2.3, ITC-CPV, Forschungszentrum Karlsruhe GmbH 1995
- 124 Broschüre der Firma Leybold-Heraus GmbH Theoretische Grundlagen der Massenspektrometrie
- 125 Kosower, E.M., Cole, W.J., Wu, G.-S., Cardy, D.E., Meisters, G.: Halogenation with Copper II. I. Saturated Ketones and Phenols, *J. Org. Chem.* **1963**, 28, 630-633
- 126 Kosower, E.M., Wu, G.-S.: Halogenation with Copper II. II. Unsaturated Ketones, J. Org. Chem. 1963, 28, 633-638
- 127 Weber, R., Sakurai, R., Hagenmaier, H.: Formation and Destruction of PCDD/PCDF During Heat Treatment of Fly Ash from Fluidized Bed Incinerators, *Organohalogen Compounds* 1998, 36, 41-46
- 128 Addink, R., Altwicker, E.R.: Role of Copper Compounds in the De Novo Synthesis of Polychlorinated Dibenzo-p-dioxins/Dibenzofurans, *Environ. Sci. Technol.* **1998**, 15(1), 19-27
- 129 Luijk, R., Akkerman, D. M., Slot, P., Olie, K., Kapteijn, F.: Mechanisms of Formation and Destruction of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in Heterogeneous Systems, *Environ. Sci. Technol.* **1994**, 28(2), 312-321
- 130 Kurz, J., Ballschmiter, K.: Isomer-specific Determination of 79 Polychlorinated Diphenyl Ethers (PCDE) in Cod Liver Oils, Chlorophenols and in Fly Ash, *Fresenius Journal of Analytical Chemistry* **1995**, 351, 98-109
- 131 Passivirta, J., Tarhanen, J., Soikkeli, J.: Occurence and Fate of Polychlorinated Aromatic Ethers (PCDE; PCA, PCV, PCPA and PCBA) in Environment, *Chemosphere* **1986**, 15(9-12), 1429-1433
- 132 Akermark, B., Eberson, L., Jonsson, E., Pettersson, E.: Palladium-Promoted Cyclization of Diphenyl Ether, Diphenylamine, and Related Compounds, *Journal of Organic Chemistry* 1975, 40(9), 1365-1367
- 133 Norström, A., Andersson, K., Rappe, C.: Palladium(II)Acetate Promoted Cyclization of Polychlorinated Diphenyl Ethers to the Corresponding Dibenzofurans, *Chemosphere* 1976, 6, 419-423
- 134 Norström, A., Andersson, K., Rappe, C.: Formation of Chlorodibenzofurans by Irratiation of Chlorinated Diphenyl Ethers, *Chemosphere* **1976**, 1, 21-24
- 135 Nilsson, C.-A., Andersson, K., Rappe, C., Westermark, S.-O.: Chromatographic Evidence for the Formation of Chlorodioxins from Chloro-2-phenoxyphenols, *Journal of Chromatography* 1974, 96, 137-147
- 136 Jay, K., Stieglitz, L.: Interferences in the Analysis of Mixed Halogenated Dibenzofurans with Diphenyl Ethers, *Chemosphere* **1997**, 35(6), 1227-1231

8 Anhang

8.1 Abkürzungsverzeichnis

AED	Atomemissionsdetektor
BET	Brunauer, Emmett, Teller
CIL	Cambridge Isotope Laboratories
DD	Dibenzo-p-dioxin
DF	Dibenzofuran
DPE	Diphenylether
EPA	Environmental Protection Agency
FA	Flugasche
FSt	Feststoff
g	gasförmig
GP	Gasphase
GP-FA	Göppinger Flugasche
HRGC	hochauflösende Gaschromatographie
HRMS	hochauflösende Massenspektrometrie
LM	Lösungsmittel
LRMS	niedrigauflösende Massenspektrometrie
MFA	Modellflugasche
MVA	Müllverbrennungsanlage
ng	nanogramm
n.g.	nicht gebildet
n.u.	nicht untersucht
p. a .	pro analysi
PCB	polychlorierte Biphenyle
PCBz	polychlorierte Benzole
PCDD	polychlorierte Dibenzo-p-dioxine
PCDF	polychlorierte Dibenzofurane
PCN	polychlorierte Naphthaline
PCPh	polychlorierte Phenole
SIM	selective ion mode
S	solid (Feststoff)
TIC	Totalionenchromatogramm
μΙ	mikroliter

Abkürzungen für die Chlorierungsstufen:

8.2 Verwendete Chemikalien und Geräte

¹³C-PCDD und PCDF (Promochem; ¹³C: 99 %) 1-Brom-2,3,7,8-tetrachlordibenzofuran (Promochem; ¹³C: 99 %) 2,6-Dichlor-4-fluorphenol (Aldrich, 99 %) 1,3,5-Trichlor-2,4,6-trifluorbenzol (Aldrich, 98 %) 3,4,5-Trichlorbenzotrifluorid Kohlenstoff (Cambridge Isotope Laboratories): ¹²C (amorph, 99,95 %) ¹³C (amorph, 99 %) 2,4,6-Trichlorphenol (Fluka, 97 %) Diphenylether (Fluka, 98 %) Florisil[®](Aldrich, 60-100 mesh) Kupfer II chloriddihydrat (p.a. Merck) Kaliumchlorid (p.a. Merck) Silica (ICN Biomedicals, 63 - 200 mesh, active, 60 A) Alumina (ICN Biomedicals, Alumina B Super I) Schwefelsäure konz. (p.a. Merck) Natriumsulfat (p.a. Merck) Organische Lösungsmittel: n-Hexan, Toluol und Dichlormethan (Suprasolv für die organische Spurenanalyse, Merck) Tetradecan (Lancaster, 99 %) Prüfgas (Messer Griesheim) Glasperlen (Aldrich) K₂CO₃ (p.a. Merck) Acetanhydrid (p.a. Merck)

Apparatur I:Ströhlein Röhrenofen: Model MTF 12/25A, Temperaturregler: Eurotherm 91E
Temperaturmeßgerät: PME 919 Trithermscanner (Paskovsky-Messelektronik
GmbH)
Thermoelemente: NiCrNi
Gasflußmesser: Optiflow 520, Digital Flowmeter, Humonics

Apparatur II: Lindberg hevi Duty - Röhrenofen PID Temperaturregler (Omega CN 9000A) Thermoelemente: Chromel-Alumel Gasflußregler: Model FC - 260 Gasflußmesser: Glasbürette mit Seifenblasen.

8.3 Ergebnistabellen

Tab. 8.1Konzentrationen [ng/g MFA] der PCPh, PCBz und PCDD/F der thermischen Experimente
mit MFA-A (12C) und MFA-B (13C), Reaktionstemperatur: 300 °C, Reaktionszeit: 2 h

	MFA-A (¹² C)						MFA-B (¹³ C)					
	¹² C ₈ -PCPh			¹³ C ₆ -PCPh			¹² C ₆ -PCPh			¹³ C ₆ -PCPh		
	FSt GP		Summe	FSt	GP S	Summe	FSt	GP S	Summe	FSt	GP	Summe
Cl ₂	20	0	20	0	0	0	0	0	0	0	0	0
Cl ₃	0	22	22	0	0	0	0	0	0	0	0	0
Cl₄	104	16	120	0	0	0	0	0	0	121	10	131
~	408	13	421	0	0	0	0	0	0	756	22	778
Cl ₅	-00	10		0	•	-	U U	•	-	100		
Summe		51 2C8-PCB	583 2	0	0 C6-PCBz		0	0 Se-PCBz		876	32 C ₆ -PCBz	908
Summe	532	51 2C8-PCB	<u>583</u> 2	<u> </u>	0 C ₆ -PCBz	0	0 0	0 C6-PCBz	0	876	32 С ₆ -РСВ2	908
Cl ₅ Summe	532 532	51 2018-PCB	583 z Summe	0 13 FSt	O C ₆ -PCBz GP \$	0 Summe	0 120 FSt	0 C6-PCB2 GP \$	0 Summe	876 675	32 C ₆ -PCB2	908 908 Summe
Cl ₅ Summe	532 532 1: FSt 73	51 2C8-PCB GP 1124	683 2 <u>Summe</u> 1197	0 13 FSt 95	0 C ₆ -PCBz GP \$ 884	0 3umme 979	0 12 FSt 0	0 C6-PCBz GP \$ 0	0 Summe 0	876 676 FSt	32 C₆-PCBz GP 372	908 Summe 372
Cl ₅ Summe	532 532 1 FSt 73 270	2 6 6 7 7 7 8 7 8 7 7 8 7 7 7 7 7 7 7 7 7	583 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0 13 FSt 95 82	0 C ₆ -PCBz GP \$ 884 1752	0 3umme 979 1834	0 12 FSt 0 116	0 C, PCBz GP S 0 60	0 5umme 0 176	876 876 FSt 0 129	32 C₆-PCB2 GP 372 2976	908 5umme 372 3105
Cl ₅ Summe Cl ₂ Cl ₃ Cl ₄	532 532 11 FSt 73 270 1965	51 C ₈ -PCB GP 1124 5921 22886	583 2 500000000000000000000000000000000000	0 0 13 FSt 95 82 145	0 C6-PCBz GP \$ 884 1752 1435	0 Summe 979 1834 1580	0 120 FSt 0 116 263	0 6 60 144	0 3umme 0 176 407	876 876 FSt 0 129 1594	32 C₆-PCBz GF 1 372 2976 16037	908 Summe 372 3105 17631
Cl ₅ Summe Cl ₂ Cl ₃ Cl ₄ Cl ₅	532 532 12 FSt 73 270 1965 12295	51 C ₈ -PCB C ₈ -PCB 1124 5921 22886 32555	583 583 2 500000 5000 24851 44850	0 13 13 95 82 145 416	0 C ₆ -PCBz GP \$ 884 1752 1435 917	0 3umme 979 1834 1580 1333	0 12 FSt 0 116 263 16	0 2 6-PCBz GP \$ 0 60 144 106	0 3umme 0 176 407 122	FSt 0 129 1594 9990	32 C ₆ -PCBz GP 372 2976 16037 19629	908 Summe 372 3105 17631 29618
Cl ₅ Summe Cl ₂ Cl ₃ Cl ₄ Cl ₅ Cl ₆	532 532 13 FSt 73 270 1965 12295 24095	51 C ₈ -PCB GP 1124 5921 22886 32555 11403	583 583 2 50000 24851 44850 35498	0 13 95 82 145 416 384	0 C ₆ -PCBz GP \$ 884 1752 1435 917 111	0 3000000 979 1834 1580 1333 495	0 112 FSt 0 116 263 16 526	0 GP S 0 60 144 106 0	0 50000000 50000000 500000000000000000	100 876 FSt 0 129 1594 9990 12163	32 C6-PCB2 GP 372 2976 16037 19629 4471	908 Summe 372 3105 17631 29618 16634

_	MFA-/	A (¹² C)	MFA-B	(¹³ C)
-	¹² C ₁₂ -PCDD	¹³ C ₁₂ -PCDD	¹² C ₁₂ -PCDD	¹³ C ₁₂ -PCDD
Cl₄	29	0,0	2,0	49
Cl ₅	256	0,3	2,7	207
Cl ₆	580	0,4	2,9	454
Cl ₇	591	0,5	2,8	609
Cla	482	1,0	1,5	280
Summe	1938	2,2	12	1599
-	¹² C ₁₂ -PCDF	¹³ C ₁₂ -PCDF	¹² C ₁₂ -PCDF	¹³ C ₁₂ -PCDF
Cl₄	141	0,4	16,3	134
Cl ₅	610	0,3	14,7	527
Cl ₆	1437	0,4	24,2	1309
Cl ₇	1109	0,8	9,5	1268
Cl ₈	1010	1,1	4,5	888
Summe	4307	3,0	69	4126

Tab. 8.2Konzentrationen [ng/g MFA] der PCPh und PCBz der thermischen Experimente mit
MFA-C (12C:13C=1:1), MFA-D (12C:13C=1:2) und MFA-E (12C:13C=2:1)
Reaktionstemperatur: 300 °C, Reaktionszeit: 2 h

	MFA-C (¹² C: ¹³ C=1:1)			MFA-D (¹² C; ¹³	C=1:2)	MFA-E	MFA-E (¹² C: ¹³ C=2:1)			
				12 _C	¹² C ₆ -PCPh						
	FSt	GP	Summe	FSt	GP	Summe	FSt	GP	Summe		
Cl ₂	21	0	21	7	0	7	0	6	6		
Cl ₃	24	14	38	12	33	45	38	52	90		
Cl₄	105	18	123	38	31	69	72	14	86		
Cl ₅	542	33	574	232	40	273	370	45	415		
Summe	692	65	757	289	104	393	480	117	597		
				¹³ C	a-PCPh						
	FSt	GP	Summe	FSt	GP	Summe	FSt	GP	Summe		
Cl ₂	0	0	0	0	0	0	0	0	0		
Cl ₃	0	0	0	0	10	10	0	0	0		
Cl₄	112	18	130	102	46	148	42	5	47		
Cl ₅	864	33	896	568	73	641	312	6	317		
Summe	976	50	1026	670	129	799	353	-11	364		

	 A state of the state state of the state of t			¹² C ₆ -PCBz					
	FSt	GP	Summe	FSt	GP	Summe	FSt	GP	Summe
Cl ₂	36	1003	1039	30	609	639	91	1460	1551
Cl ₃	106	2693	2799	104	2477	2581	143	4367	4510
Cl₄	478	6440	6918	208	6303	6511	557	10702	11259
Cl₅	2009	5507	7516	995	12106	13101	1944	10398	12342
Cl ₆	2298	951	3249	1883	6459	8342	1992	1863	3855
Summe	4928	16593	21521	3220	27954	31174	4727	28789	33516

				¹³ C ₆ -PCBz					
	FSt	GP	Summe	FSt	GP	Summe	FSt	GP	Summe
Cl ₂	0	211	211	13	164	177	0	89	89
Cl ₃	36	1401	1437	51	2079	2130	38	1163	1201
Cl₄	466	6952	7418	526	13868	14394	317	6622	6939
Cl ₅	2601	7226	9827	3024	31124	34148	1465	8105	9570
Cl ₆	2820	1218	4038	5670	20319	25989	1405	1358	2764
Summe	5924	17007	22931	9284	67554	76838	3226	17337	20564
Tab. 8.3Konzentrationen [ng/g MFA] der PCDD/F der thermischen Experimente mit MFA-C
(12C:13C=1:1), MFA-D (12C:13C=1:2) und MFA-E (12C:13C=2:1)
Reaktionstemp. 300 °C, Reaktionszeit: 2 h

	MFA-C (120	C: ¹³ C=1:1)	MFA-D (¹²	-D ($^{12}C;^{13}C=1:2$) MFA-E ($^{12}C;^{13}C=:$ PCDD $^{12}C_{12}$ -PCDF $^{12}C_{12}$ -PCDD $^{12}C_{12}$ 6 51 24 86 195 210 279 554 364 414 567 425				
	¹² C ₁₂ -PCDD	¹² C ₁₂ -PCDF	¹² C ₁₂ -PCDD	¹² C ₁₂ -PCDF	¹² C ₁₂ -PCDD	¹² C ₁₂ -PCDF		
Cl₄	14	87	6	51	24	135		
Cl ₅	97	294	86	195	210	522		
Cl ₆	215	617	279	554	364	1056		
Cl ₇	191	406	414	567	425	793		
Cl ₈	128	266	547	834	364	702		
Summe	645	1670	1332	2201	1387	3208		
	¹³ C ₁₂ -PCDD	¹³ C ₄₂ -PCDF	¹³ C ₁₂ -PCDD	¹³ C ₁₂ -PCDF	¹³ C ₁₃ -PCDD	¹³ C ₁₂ -PCDF		
Cl4	20	91	18	100	20	96		
Cl ₅	113	344	168	457	106	324		
Cl ₆	238	774	609	1451	211	557		
Cl ₇	305	662	1185	1827	357	772		
Cla	195	392	855	2289	263	566		
Summe	871	2263	2834	6124	957	2315		
	12C8/13C6-PCDD	¹² C ₆ / ¹³ C ₆ -PCDF	¹² C ₆ / ¹³ C ₆ -PCDD	¹² C ₆ / ¹³ C ₈ -PCDF	¹² C ₆ / ¹³ C ₆ -PCDD	¹² C ₆ / ¹³ C ₆ -PCDF		
Cl₄	9	6	5	4	10	5		
Cl ₅	34	13	30	10	34	12		
Cl ₆	103	20	159	18	125	22		
Cl7	120	11	289	17	148	13		
Cl ₈	102	6	587	17	160	8		

Summe

	28	250 °C		300 °C			350 °C			400 °C		
						¹² C ₆ -P(CPh		,			
	FSt	GP S	Summe	FSt	GP S	Summe	FSt	GP S	umme	FSt	GP S	umme
Cl ₂	7	8	15	10	7	18	6	8	14	22	26	48
Cl ₃	28	6	34	10	19	28	0	124	124	12	290	302
Cl₄	224	0	224	78	18	96	7	116	123	23	77	99
Cl ₅	992	52	1044	311	11	323	17	73	90	274	24	298
Summe	1251	66	1317	409	56	465	30	321	361	330	417	748
	e ^{de} e e e e e e e e e e		t. dik.			¹³ C ₆ -P(\$Ph					
	FSt	GP S	Summe	FSt	GP S	Summe	FSt	GP S	umme	FSt	GP S	umme
Cl ₂	0	0	0	0	0	0	0	0	0	0	0	0
Cl ₃	9	0	9	6	0	6	0	38	38	0	27	27
Cl₄	225	0	225	81	17	98	5	111	117	12	49	61
Cl₅	1970	4	1975	579	14	593	19	110	128	68	26	94

Tab. 8.4Konzentrationen [ng/g MFA] der PCPh und PCBz der thermischen Experimente mit
MFA-C (12C:13C=1:1) in Abhängigkeit von der Reaktionstemperatur, Reaktionszeit: 2 h

						¹² C ₆ -P	CBz					
	FSt	GP 9	Summe	FSt	GP	Summe	FSt	GP	Summe	FSt	GP	Summe
Cl ₂	269	174	443	397	607	1004	188	2485	2673	443	1194	1637
Cl ₃	381	259	641	669	1890	2559	268	8230	8498	654	5773	6427
Cl₄	336	77	413	343	2258	2601	11	10719	10730	24	16431	16455
Cl ₅	1294	51	1345	1679	2679	4358	21	14982	15003	441	22685	23126
Cl ₆	858	14	872	2136	706	2842	17	6338	6355	3721	8268	11989
Summe	3139	575	3714	5225	8140	13365	505	42753	43258	5283	54351	59635

Summe

•	¹³ C ₆ -PCBz													
	FSt	GP S	Summe	FSt	GP	Summe		FSt	GP	Summe	FSt	GP	Summe	
Cl ₂	0	0	0	0	34	34		0	366	366	0	462	462	
Cl ₃	21	19	40	36	529	565		0	2948	2948	0	4133	4133	
Cl₄	485	119	604	437	2654	3091		8	13849	13857	25	20612	20636	
Cl ₅	2315	91	2406	2653	3903	6556		30	22275	22304	473	29692	30165	
Cl ₆	1695	27	1722	3778	1228	5006		23	10851	10874	4535	11133	15668	
Summe	4515	257	4772	6903	8348	15261		61	50289	50349	5033	66032	71065	

Tab. 8.5	Konzentrationen [ng/g MFA] der PCDD/F der thermischen Experimente mit MFA-C
	(¹² C: ¹³ C=1:1) in Abhängigkeit von der Reaktionstemperatur, Reaktionszeit: 2 h

2	50 °C		3	300 °C		3	50 °C		400 °C			
					¹² C ₁₂ -P	CDD		in the de-	đ _a , s			
FSt	GP S	umme	FSt	GP S	umme	FSt	GP S	Summe	FSt	GP S	umme	
0	0	0	6	0,2	6	19	2	20	3	2	4	
5	0	5	54	1,1	55	199	9	209	17	10	27	
27	0	27	157	3,1	160	447	17	463	28	15	44	
51	0	51	217	1,9	219	400	10	410	22	10	32	
74	0	74	243	2,5	245	386	10	395	36	11	47	
158	0	158	676	9	685	1450	48	1498	106	48	154	
	-			i pa	¹³ C ₁₂ -P	CDD						
-	23 FSt 0 5 27 51 74 158	250 °C FSt GP S 0 0 5 0 27 0 51 0 74 0 158 0	250 °C FSt GP Summe 0 0 5 0 27 0 51 0 74 0 158 0	250 °C 3 FSt GP Summe FSt 0 0 6 5 0 5 27 0 27 51 0 51 217 74 217 74 0 74 158 0 158	250 °C 300 °C FSt GP Summe FSt GP S 0 0 0 6 0,2 5 0 5 54 1,1 27 0 27 157 3,1 51 0 51 217 1,9 74 0 74 243 2,5 158 0 158 676 9	250 °C 300 °C ¹² C12-P FSt GP Summe 0 0 5 0 5 5 27 0 27 157 31 160 51 0 74 0 74 0 676 9 685 158 0 158 158 1676 9 132 132	250 °C 300 °C 3 ¹² C ₁₂ -PCDD FSt GP Summe FSt GP Summe FSt 9 0 0 0 6 0,2 6 19 19 5 0 5 54 1,1 55 199 27 0 27 157 3,1 160 447 51 0 51 217 1,9 219 400 74 0 74 243 2,5 245 386 158 0 158 676 9 685 1450	250 °C 300 °C 350 °C ¹² C ₁₂ -PCDD FSt GP Summe FSt GP Summe FSt GP Summe 0 0 0 6 0,2 6 19 2 5 0 5 54 1,1 55 199 9 27 0 27 157 3,1 160 447 17 51 0 51 217 1,9 219 400 10 74 0 74 243 2,5 245 386 10 158 0 158 676 9 685 1450 48	250 °C 300 °C 350 °C ¹² C12-PCDD FSt GP Summe FSt GP Summe FSt GP Summe 0 0 0 6 0,2 6 19 2 20 5 0 5 54 1,1 55 199 9 209 27 0 27 157 3,1 160 447 17 463 51 0 51 217 1,9 219 400 10 410 74 0 74 243 2,5 245 386 10 395 158 0 158 676 9 685 1450 48 1498	250 °C 300 °C 350 °C 4 ¹² C12-PCDD FSt GP Summe FSt GP Sum GI Sum	250 °C 300 °C 350 °C 400 °C ¹² C12-PCDD ¹² C12-PCDD FSt GP Summe FSt GP S 0 0 0 6 0,2 6 19 2 20 3 2 5 0 5 54 1,1 55 199 9 209 17 10 27 0 27 157 3,1 160 447 17 463 28 15 51 0 51 217 1,9 219 400 10 410 22 10 74 0 74 243 2,5 245 386 10 395 36 11 158 0 158 676 9 685 1450 48 1498 106 48	

					612-40							
	FSt	GP S	Summe	FSt	GP S	umme	FSt	GP :	Summe	FSt	GP S	umme
Cl4	1	0	1	11	0,2	11	29	3	32	3	2	5
Cl ₅	6	0	6	61	1,1	62	181	11	191	14	7	20
Cl ₆	31	0	31	181	2,5	183	413	17	430	21	13	34
Cl ₇	92	0	92	263	4,4	268	624	21	645	24	9	33
Cla	133	0	133	380	4,2	384	492	16	507	28	7	35
Summe	262	Ū	262	896	12	908	1738	67	1806	89	38	127

				¹² C ₆ / ¹³ C ₆ -PCDD									
	FSt	GP 8	Summe	FSt	GP	Summe	FSt	GP S	umme	FSt	GP	Summe	
Cl4	• 1	0	1	3	0,1	3	3	0	4	1	0	1	
Cl ₅	4	0	4	10	0,2	11	20	1	21	1	1	3	
Cl ₆	19	0	19	44	1,0	45	86	5	90	4	3	7	
Cl ₇	33	0	33	46	1,1	47	108	5	113	3	3	5	
Cl ₈	67	0	67	97	1,8	99	138	7	144	8	3	11	
Summe	123	0	123	201	4	205	354	18	372	17	11	28	

					¹² C ₁₂ -PCDF						- 1	
	FSt	GP S	umme	FSt	GP	Summe	FSt	GP S	Summe	FSt	GP	Summe
Cl ₄	3	0	3	35	1,0	36	98	11	109	27	18	44
Cl ₅	10	0	10	146	2,5	149	574	38	611	99	79	178
Cl ₆	48	0	48	426	5,4	432	2038	89	2127	323	244	567
Cl ₇	77	0	77	440	4,2	444	1367	39	1406	301	152	453
Cl ₈	141	0	141	630	5,6	635	585	17	601	62	33	95
Summe	279	0	279	1677	19	1696	4662	193	4855	812	526	1338

				¹³ C ₁₂ -PCDF								
-	FSt	GP S	umme	FSt	GP	Summe	FSt	GP S	Summe	FSt	GP	Summe
Cl ₄	2	0	2	36	0,6	36	137	18	154	34	21	55
Cl ₅	12	0	12	158	2,3	160	655	53	708	116	82	198
Cl ₆	76	0	76	551	7,0	558	2158	113	2271	330	226	556
Cl ₇	160	0	160	698	8,0	706	2249	82	2330	400	151	552
Cl ₈	262	0	262	966	9,1	975	734	27	762	57	18	75
Summe	512	0	512	2409	27	2436	5933	293	6226	938	499	1437

•						12Ce/13C6	-PCDF					
	FSt	GP Su	mme	FSt	GP S	umme	FSt	GP S	umme	FSt	GP S	umme
Cl₄	0	0	0	2	0,0	2	3	1	4	1	2	2
Cl ₅	0	0	0	4	0,1	4	15	1	17	1	4	5
Cl ₆	1	0	1	13	0,1	14	52	3	55	3	8	11
Cl ₇	1	0	1	9	0,1	9	43	2	44	2	7	8
Cl ₈	1	0	1	11	0,1	11	16	1	16	1	1	1
Summe	4	0	4	39	0	39	129	7	136	7	21	28

Tab. 8.6Konzentrationen [ng/g MFA] der PCPh und PCBz der thermischen Experimente mit MFA-
C (12C:13C=1:1) in Abhängigkeit von der Reaktionszeit, Reaktionstemperatur: 350 °C

	15 min			<u>30 min</u>			6	0 min		240 min			
					¹² C ₈ -P(CPh							
•	FSt	GP S	umme	FSt	GP S	umme	FSt	GP S	umme	FSt	GP	Summe	
Cl ₂	13	4	18	6	4	10	0	6	6	5	11	17	
Cl ₃	15	4	18	0	35	35	0	59	59	0	67	67	
Cl₄	41	0	41	19	19	37	0	46	46	7	114	122	
Cl₅	293	4	297	98	15	113	29	24	53	23	102	125	
Summe	362	12	373	123	73	196	29	136	165	35	294	329	

-	¹³ C ₈ -PCPh											
	FSt	GP S	umme	FSt	GP S	umme	FSt	GP S	umme	FSt	GP S	umme
Cl ₂	0	0	0	0	0	0	0	0	0	0	0	0
Cl ₃	0	0	0	0	9	9	0	7	7	0	25	25
Cl₄	41	0	41	18	20	38	0	23	23	0	86	86
Cl ₅	339	0	339	144	14	158	31	28	58	13	135	148
Summe	380	0	380	162	44	205	31	58	88	13	246	259

	¹² C ₆ -PCBz												
	FSt	GP S	Summe	FSt	GP	Summe	FSt	GP	Summe	FSt	GP	Summe	
Cl ₂	485	147	633	536	614	1151	649	892	1541	437	1306	1743	
Cl ₃	813	359	1171	732	2148	2880	1005	2950	3955	655	6355	7011	
Cl4	427	156	582	132	3750	3882	30	6208	6238	35	18403	18437	
Cl ₅	1535	79	1614	527	3909	4436	124	5997	6121	33	16609	16642	
Cl ₆	1682	29	1711	969	1236	2205	201	2058	2259	25	5886	<u>591</u> 1	
Summe	4942	770	6711	2896	11658	14554	2008	18106	20114	1185	48559	49744	

-	¹³ С ₆ -РСВz												
-	FSt	GP S	Summe	FSt	GP	Summe	FSt	GP	Summe	FSt	GP	Summe	
Cl ₂	0	3	3	0	104	104	0	191	191	0	480	480	
Cl ₃	23	39	62	10	937	948	0	1687	1687	9	5118	5128	
Cl₄	305	115	421	144	3940	4084	33	7049	7082	35	21523	21558	
Cl5	1809	99	1908	863	5535	6399	182	8831	9013	35	23458	23493	
Cl ₆	2484	44	2528	1670	1862	3531	277	3286	3562	34	8546	8580	
Summe	4621	299	4921	2688	12379	15066	492	21043	21535	113	59125	59239	

	15 min						A min		240 min			
	1	o min	·····	3	v min					24	in miu	
						¹² C ₁₂ -I	PCDD					
	FSt	GP S	Summe	FSt	GP S	Summe	FSt	GP S	Summe	FSt	GP (Summe
Cl ₄	1	0	1	16	0,4	17	20	1	21	14	8	22
Cl ₅	8	0	8	71	1,9	73	113	4	117	64	14	77
Cl ₆	26	2	28	141	4,9	146	254	9	262	171	8	180
Cl ₇	29	4	33	89	4,3	93	164	7	171	166	5	171
Cl ₈	55	11	66	93	3,2	96	177	5	181	268	2	269
Summe	120	17	137	410	15	424		25	7.53	683	36	719
						¹³ C ₁₂ -	CDD			e e la segu		
	FSt	GP S	Summe	FSt	GP S	Summe	FSt	GP S	Summe	FSt	GP	Summe
Cl4	1	0	1	22	0	22	37	1	38	23	16	39
Cl ₅	6	0	6	79	2	82	165	4	169	91	16	108
Cl ₆	19	1	20	156	4	160	304	7	311	191	12	203
Cl ₇	30	1	31	151	4	155	353	7	360	327	9	336
Cl ₈	63	13	75	127	4	130	228	5	232	295	1	296
Summe	119	14	133	534	14	549	1087	23	1111	927	55	982
				gan di gan di		¹² C ₆ / ¹³ C	-PCDD					
	FSt	GP S	Summe	FSt	GP	Summe	FSt	GP S	Summe	FSt	GP	Summe
Cl4	4	3,2	8	10	4	14	13	5	18	6	2	9
Cl ₅	2	0,1	2	15	0	15	23	1	24	7	2	9
Cl ₆	8	0,3	8	42	2	44	77	3	80	29	3	32
Cl ₇	8	0,4	9	35	2	37	58	2	61	36	1	37
Cl ₈	15	0,4	15	37	2	39	104	2	106	80	1	81
Summe	37	4	42	138	11	148	275	12	288	158	9	167
						¹² C ₁₂ -F	CDF					
	ESt	GP S	Summa	FSt	GP S	Summe		GP 9		ESt	GP (Summa
CL	13	1	14	97	3	99	118	5	123	80	98	178
Cl ₅	37	2	39	342	7	349	561	16	576	522	131	653
Cl ₆	76	4	80	650	14	664	1292	31	1322	1399	122	1521
Cl ₇	75	8	83	306	10	316	603	16	619	843	27	870
Cl ₈	162	25	187	285	9	294	423	11	434	288	3	292
Summe	363	40	404	1681	42	1723	2996	79	3075	3132	382	3514
:						"C ₁₂ -F						
	FSt	GP 8	Summe	FSt	GP 8	Summe	FSt	GP S	Summe	FSt	GP 8	Summe
Ul4 Cl	5 24	0,3	5 77	90	2	92 347	100	4	170	139	162	301
	21	0,9	22	310	10	042	4592	13	090	1520	100	181
	100	3,0	04	794	19	813	1000	33	1018	1556	131	1067
	100	3,6	110	000	15	623	1213	24	1237	1506	51	1557
	202	5,6	208	419	10	429	623	12	635	326	3	329
Summe	415	14	429	2222	52	2274	4267	88	4355	4106	535	4641
				a at A ta ta		¹² C ₆ / ¹³ C	-PCDF					u sa bete
	FSt	GP S	umme	FSt	GP 8	Summe	FSt	GP S	umme	FSt	GP 8	Summe
Cl4	0,4	0,0	0	4	0,0	4	6	0,0	6	2	4	6
Cl ₅	1,3	0,0	1	11	0,2	11	19	0,4	19	10	4	14
Cl ₆	2,9	0,1	3	21	0,4	22	40	0,9	41	30	2	32
Cl ₇	1,4	0,1	1	9	0,2	9	17	0,4	18	21	1	22
	2,1	0,1	2	6	0,1	6	15	0,1	15	6	0	6
Summe	<u> </u>	0	8	51	1	52	96	2	98	69	10	80

Tab. 8.7Konzentrationen [ng/g MFA] der PCDD/F der thermischen Experimente mit MFA-C
(1²C:¹³C=1:1) in Abhängigkeit von der Reaktionszeit. Reaktionstemperatur: 350 °C.

Гаb. 8.8	Konzentrationen [ng/g MFA] der PCPh und PCBz der thermischen Experimente mit MFA-
	F, MFA-G und MFA-H (¹² C: ¹³ C=1:1) in Abhängigkeit von der Kupferkonzentration
	Reaktionstemperatur: 350 °C, Reaktionszeit: 1 h

-	0,05 % Cu			0,1	% Cı	1	0,2 % Cu		
-		·····	h						
-	FSt	GP S	umme	FSt	GP	Summe	FSt	GP	Summe
Cl ₂	23	0	23	58	0	58	83	0	83
Cl ₃	34	0	34	24	44	68	131	51	182
Cl₄	22	0	22	27	0	27	67	33	100
Cl ₅	37	0	37	43	0	43	141	41	182
Summe	117	0	117	152	44	196	422	125	647

	¹³ C ₆ -PCPh										
	FSt	GP S	umme	FSt	GP S	umme	FSt	GP	Summe		
Cl ₂	0	0	0	0	0	0	0	0	0		
Cl ₃	0	0	0	0	0	0	0	22	22		
Cl4	25	0	25	55	0	55	123	56	179		
Cl ₅	43	0	43	91	0	91	200	85	284		
Summe	68	0	68	146	0	146	323	163	485		

				: 1	² C ₆ -PCB	Ż			
	FSt	GP S	Summe	FSt	GP	Summe	FSt	GP	Summe
Cl ₂	48	473	521	0	451	451	0	702	702
Cl ₃	45	728	772	0	2657	2657	0	6311	6311
Cl₄	48	820	868	171	4536	4708	140	16035	16175
Cl ₅	146	507	653	470	3681	4150	435	26085	26521
Cl ₆	214	154	368	355	588	943	520	12458	12978
Summe	501	2682	3183	996	11913	12909	1096	61591	62687

-	¹³ C ₈ -PCBz										
	FSt	GP	Summe	FSt	GP	Summe	FSt	GP	Summe		
Cl ₂	0	165	165	0	408	408	0	623	623		
Cl ₃	0	333	333	0	2368	2368	0	5246	5246		
Cl4	45	850	895	276	8183	8459	176	25996	26171		
Cl₅	308	915	1223	1095	8026	9121	647	50290	50937		
Cl ₆	583	287	870	1108	1609	2717	967	32113	33080		
Summe	936	2550	3486	2479	20594	23073	1790	114267	116057		

Tab. 8.9Konzentrationen [ng/g MFA] der PCDD/F der thermischen Experimente mit MFA-F,
MFA-G und MFA-H (12C:13C=1:1) in Abhängigkeit von der Kupferkonzentration
Reaktionstemperatur: 350 °C, Reaktionszeit: 1 h

	0,05 % Cu		0,1	% Cu		0,2 % Cu				
					12-PCDE)	:			
	FSt	GP S	umme	FSt	GP S	Summe	FSt	GP S	Summe	
Cl₄	1	0,2	1	4	0,2	4	7	0,7	8	
Cl ₅	3	0,7	4	31	0,9	32	68	2,9	71	
Cl ₆	5	0,8	6	59	2,3	61	256	9,4	266	
Cl7	3	0,5	3	19	0,7	20	195	7,8	203	
Cl ₈	4	1,2	5	16	1,2	17	348	14,5	362	
Summe	15	. 3	19	129	5	134	874	35	909	
				¹³ C	12-PCDD)				
	FSt	GP S	umme	FSt	GP S	Summe	FSt	GP S	Summe	
Cl4	1	0,2	1	14	0,3	14	11	1	12	
CI ₅	3	0,6	4	50	1,0	51	91	4	94	
Cl ₆	6	1,1	7	73	1,7	75	307	10	317	
Cl7	7	1,3	8	48	1,5	60	461	16	477	
Cla	0	1,1	2	32	1,9	34	803	24	826	
Summe	18	4	22	217	6	223	1672	55	1726	
							, 	unium an an a' Craitean		
				'*C ₆ /'	°C ₆ -PCI	DD				
	FSt	GP S	umme	FSt	GP S	lumme	FSt	GP S	Summe	
Cl₄	1,1	0,2	1	5	0,1	5	5	0,9	6	
Cl ₅	2,7	0,5	3	19	0,5	20	28	1,3	30	
Cl ₆	2,7	0,5	3	24	0,9	25	99	3,7	103	
	1,3	0,3	2	6	0,3	7	84	3,3	87	
Cl ₈	1,1	0,2	14		0,0	8		8,0	228	
Ounane								17.		
				¹² C	12-PCDF					
	FSt	GP S	umme	FSt	GP S	Summe	FSt	GP S	Summe	
Cl4	8	3	10	41	1,5	43	55	6	61	
Cl ₅	17	4	21	54	1,7	56	126	7	133	
Cl ₆	18	4	22	144	3,7	148	608	26	634	
Cl ₇	11	2	13	50	2,0	52	622	21	643	
Cla	10	2	12	23	2	24	522	15	537	
Summe	63	15	78	312	11	323	1932	76	2008	
				¹³ C	12-PCDF					
	FSt	GP S	umme	FSt	GP S	Summe	FSt	GP S	Summe	
Cl₄	8	1	9	61	2	63	63	6	69	
Cl ₅	22	4	26	138	3	141	266	14	279	
Cl ₆	44	8	52	324	7	331	1126	40	1166	
Cl ₇	38	7	45	162	4	167	1551	44	1595	
	22	4	26	68	0	68	1480	34	1514	
summe	133	24	168		16	770	4487	137	4524	
	*******		an ta an	¹² C ₆ / ¹	³ C ₆ -PC)F				
	FSt	GP S	umme	FSt	GP S	umme	FSt	GP S	iumme	
Cl4	3,1	0,6	4	8	0,2	8	17	1,7	19	
Cl ₅	3,0	0,5	4	7	0,2	7	17	0,8	18	
Cl ₆	2,2	0,4	3	10	0,2	11	44	1,4	46	
Cl ₇	0,7	0,1	1	3	0,1	3	29	0,8	29	
Cl ₈	0	0	0	1	0	1	17	0	17	
Summe	9	2	11	29	1	30	125	5	130 p	

Tab. 8.10	Konzentrationen [ng/g MFA] der PCPh, PCBz und PCDD des thermischen Experiments
	mit MFA, dotiert mit 2,4,6-Cl₃Ph (1,1 mg/g) und ¹³ C-markiertem Kohlenstoff (40 mg/g)
	Reaktionstemperatur: 300 °C, Reaktionszeit: 2 h

-	12	C ₆ -PCPI	1 ,	¹³ C ₆ -PCPh				
-	FSt	GP	Summe	FSt	GP S	umme		
Cl ₂	0	102	102	0	0	0		
Cl ₃	906	13448	14354	0	21	21		
Cl₄	28	302	330	57	50	107		
Cl ₅	939	9274	10213	436	167	603		
Summe	1872	23126	24998	493	238	731		

	12	C ₆ -PCBz		13	¹³ C ₆ -PCBz				
_	FSt	GP	Summe	FSt	GP	Summe			
Cl ₂	39	1905	1944	0	535	535			
Cl ₃	44	6101	6146	14	3812	3826			
Cl₄	49	6388	6436	450	23895	24346			
Cl ₅	98	4282	4380	2508	41397	43906			
Cl ₆	93	635	728	3638	16941	20579			
Summe	323	19311	19634	6611	86560	93191			

		PC	DD		-	arianya.	PC	DF	
	¹² C ₁₂	¹³ C ₁₂	¹² C ₆ / ¹³ C ₆	Summe		² C ₁₂	¹³ C ₁₂	² C ₆ / ¹³ C ₆	Summe
Cl₄	762	27	77	867		37	107	22	166
Cl₅	1490	236	274	2000		56	560	70	686
Cl ₆	3383	729	478	4590		54	1757	79	1891
Cl ₇	735	1253	302	2290		12	2090	22	2124
Cl ₈	736	953	316	2005		4	1340	11	1355
Summe	7106	3199	1447	11752		164	5854	204	6221

Tab. 8.11Verunreinigung des eingesetzten 2,4,6-Cl₃Ph mit PCPh, PCBz und PCDD/F
[ng/5 mg 2,4,6-Cl₃Ph]

	PCPh	-	PCBz	 	PCDD	PCDF
Cl ₂	6	Cl ₂	9	Cl4	2	1
Cl4	11	Cl ₃	93	Cl ₅	1	3
Cl₅	0	Cl₄	2567	Cl ₆	0	3
Summe	17	Cl ₅	66	Cl ₇	1	0
		Cl ₆	0	Cl ₈	0	0
		Summe	2735	Summe	4	7

Tab. 8.12	Blindwerte [ng/g FA] und Konzentrationen [ng/g FA] der PCPh, PCBz und PCDD/F und
	der thermischen Experimente mit EPA-FA und GP-FA, mit und ohne Zusatz von
	¹³ C-Kohlenstoff, Reaktionstemperatur: 350 °C, Reaktionszeit: 1 h

	2 ¹⁹ 9	EPA	-FA			1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	GP	-FA		<u> </u>
	Blind- wert	ohne ¹³ C	Zugab ¹² C:	e von ¹³ C ³ C =1:1		Blind- wert	ohne ¹³ C	Zugat ¹² C:	e von ¹³ (¹³ C =1:1	<u> </u>
		PC	Ph				PC	Ph		
	¹² C _e	¹² Cr	¹² C _F	¹³ Ce		12Cz	¹² Cs		¹³ C ₆	
Cl ₂	8	46	13	0	0	21	195	15	1	0
Cla	11	178	54	2	0	37	1045	90	4	0
Cla	14	56	19	7 1	94	78	715	14	1 1	30
	39	0	12	0 1	10	177	0	37	'9 E	48
Summ	e 72	280	98	9 3	04	313	1955	157	5 8	78
		PC	Bz				PC	Bz		Jaga San Cita
	12C.	12Cr	12Cr	1 ³ C.		¹² C.	¹² C.	12Ge	¹³ C	
<u> </u>	16	24168	1110	7 11	23		44983	3681	0 43	577
Cl ₂	5	12886	1813	777	14	15	51171	5726	8 291	79
Cl	11	8023	2145	0 301	01	13	31700	6662	0 663	82
Cl ₅	28	2513	1167	0 290	29	15	9253	1724	3 264	133
Cl ₆	36	7923	212	9 93	92	11	1297	79	2 10)92
Summ	e 96	56513	6449	3 773	59	67	138404	17873	3 1274	63
-	Blind- wert	ohne ¹³ C	Zug 12(abe von C: ¹³ C =1:	¹³ C 1	Blind- wert	ohne ¹³ C	Zug 12	labe von C: ¹³ C =1:	¹³ C 1
-		P	CDD				P	CDD		
-	¹² C ₁₂	¹² C ₁₂	¹² C ₁₂	¹³ C ₁₂	¹² C ₆ / ¹³ C ₅	¹² C ₁₂	¹² C ₁₂	¹² C ₁₂	¹³ C ₁₂	¹² C ₆ / ¹³ C ₆
Cl₄	0	86	54	53	45	0	179	110	113	67
Cl₅	0	248	118	144	167	0	209	188	207	166
Cl ₆	5	218	113	147	138	2	157	108	112	83
Cl ₇	23	113	32	74	34	5	35	17	28	11
Cl ₈	103	31	18	23	16		12	5	5	2
Summe	131	697	335	441	400	27	592	426	465	329
-		P	CDF	a start			F	CDF		
-	¹² C ₁₂	¹² C ₁₂	¹² C ₁₂	¹³ C ₁₂	¹² C ₆ / ¹³ C ₅	¹² C ₁₂	¹² C ₁₂	¹² C ₁₂	¹³ C ₁₂	¹² C ₆ / ¹³ C ₆
Cl₄	2	399	507	399	65	2	2238	1644	1028	143
Cl₅	3	596	263	503	46	2	1831	683	1013	66
Cl ₆	6	462	300	660	40	2	945	540	776	50
Cl ₇	7	102	68	235	7	3	148	67	148	6
Cl ₈	9		5	20	1	5	54	3	6	0
Summe	27	1567	1143	1818	159	14	5216	2936	2971	265

Tab. 8.13Konzentrationen [ng/g EPA-FA] der PCDD/F der Experimente in Abhängigkeit von der
Konzentration an 2,4,6-Cl₃Ph im Gasstrom
Reaktionstemperatur: 300 °C, Reaktionszeit: 30 min

				d an dia		5 % EP	A-FA					
	0	ng/ml		18	52 ng/n	nl	20)5 ng/n	1	26	i7 ng/i	ml
•			144 - 24 24			PCI	D	an a				
•	FSt	GP S	Summe	FSt	GP	Summe	FSt	GP	Summe	FSt	GP	Summe
Cl₄	567	19	586	1662	13688	15350	1024	21135	22159	1242	28232	29474
CI ₅	341	22	363	2116	5530	7646	1330	6236	7566	1552	8551	10103
Cl ₆	410	28	438	1502	1726	3228	1054	1863	2917	1010	2684	3694
Cl ₇	189	7	196	240	132	372	114	100	214	115	170	285
Cl ₈	108	3	111	38	18	56	37	0	37	14	17	31
Summe	1615	79	1694	5558	21094	26652	3559	29334	32893	3933	39654	43587
•						PCI)F					
•	FSt	GP S	umme	FSt	GP	Summe	FSt	GP	Summe	FSt	GP	Summe
Cl₄	147	0	147	0	19	19	0	99	99	0	149	149
CI ₅	182	0	182	0	42	42	0	97	97	0	121	121
Cl ₆	215	0	215	0	8	8	0	14	14	0	332	332
Cl ₇	159	0	159	0	22	22	0	16	16	0	15	15
Cla	31	0	31	0	2	2	0	5	5	0	0	0
Summe	735	0	735	0	93	93	0	231	231	0	617	617

Tab. 8.14Konzentrationen [ng/g Matrix] der PCDD/F der Experimente in Abhängigkeit von der
Konzentration an 2,4,6-Cl₃Ph auf dem Feststoff
Reaktionstemperatur: 300 °C, Reaktionszeit: 30 min

	1000 µg/g FA	2000 µg/g FA	3000 µg/g FA	5000 μg/g FA	3000 µg/g MFA	5000 µg/g MFA
			P	CDD		
Cl4	6425	8179	10518	25264	5619	9495
Cl ₅	2261	3015	2978	4864	2628	4715
Cl ₆	1371	2440	2643	2834	3401	7429
Cl ₇	358	709	391	377	625	1451
Cl ₈	167	293	225	218	360	1020
Summe	10582	14635	16755	33667	12633	24110

			PCDF		· · · · · · · · · · · · · · · · · · ·	
Cl ₄	1101	420	164	252	107	80
Cl ₅	1036	483	90	340	71	168
Cl ₆	580	321	159	323	83	166
Cl ₇	196	181	98	178	16	58
Cl ₈	29	30	31	59	0	5
Summe	2942	1434	542	1152	277	477

Tab. 8.15Konzentrationen [ng/g EPA-FA] der PCDD/F der Experimente in Abhängigkeit von der
Konzentration an 2,4,6-Cl₃Ph im Gasstrom
Reaktionstemperatur: 300 °C, Reaktionszeit: 30 min

			10 9	6 EPA-F	A/90 %	Glaspe	rlen			
	0	ng/m		1	8 ng/n	1	5	55 ng/ml		
-		ut et i			PCDD		· · · · · · · · · · · · · · · · · · ·			
-	FSt	GP	Summe	FSt	GP	Summe	FSt	GP	Summe	
Cl4	45	149	194	96	1046	1141	1007	3603	4611	
Cl ₅	60	63	123	142	1497	1639	943	2942	3885	
Cl ₆	102	341	443	197	1637	1834	589	1657	2246	
Cl ₇	124	368	491	75	418	493	197	299	496	
Cl ₈	105	448	553	34	94	128	66	74	140	
Summe	435	1369	1805	544	4692	5235	2802	8575	11377	
-					PCDF					
-	FSt	GP	Summe	FSt	GP	Summe	FSt	GP	Summe	
Cl4	58	306	364	0	449	449	0	201	201	
Cl ₅	82	227	309	0	308	308	100	285	386	
Cl ₆	96	252	348	0	145	145	121	226	347	
Cl ₇	74	96	169	0	54	54	64	133	197	
Cl8	15	19	33	0	11	11	73	10	83	
Summe	324	900	1223	0	967	967	359	855	1214	

			10 9	% EPA-F	A/90 %	Glaspe	rlen		
	<u></u> 18	86 ng/n	nl	4	00 ng/r	nl	467 ng/ml		
				PCDD					
	FSt	GP	Summe	FSt	GP	Summe	FSt	GP	Summe
Cl4	3567	26396	29963	804	179797	180601	373	172348	172721
Cl ₅	1789	5071	6860	461	19038	19499	633	39241	39874
Cl ₆	1478	1903	3381	465	3924	4389	716	14009	14725
Cl ₇	205	150	355	246	1589	1835	433	3437	3870
Cl ₈	66	21	87	59	479	538	158	602	760
Summe	7105	33541	40646	2036	204827	206863	2313	229637	231950

	PCDF										
	FSt	GP	Summe	FSt	GP	Summe	FSt	GP	Summe		
Cl4	5	164	169	0	376	376	0	766	766		
Cl ₅	0	131	131	0	1104	1104	0	927	927		
Cl ₆	12	57	69	0	502	502	0	918	918		
Cl ₇	11	27	38	0	399	399	0	522	522		
Cla	10	0	10	0	29	29	0	0	0		
Summe	39	379	418	0	2410	2410	0	3133	3133		

Tab. 8.16Konzentrationen [ng/g EPA-FA] der PCDD/F der Experimente in Abhängigkeit von der
Reaktionstemperatur bei annähernd konstanter Konzentration an 2,4,6-Cl₃Ph im
Gasstrom, Reaktionszeit: 30 min

	69	ng/m	l	11	0 ng/n	nl	10	8 ng/n	nl
•	2	50 °C		3	00 °C			325 °C	: .
				l	CDD				
	FSt	GP	Summe	FSt	GP	Summe	FSt	GP	Summe
Cl4	3214	11	3225	5094	291	5385	4612	1359	5971
Cl₅	871	7	878	278	303	581	2971	639	3610
Cl ₆	367	20	387	1605	200	1805	2287	344	2631
Cl ₇	97	9	106	154	26	180	327	19	346
Cla	31	0	31	55	7	62	98	0	98
Summe	4580	47	4627	7186	827	8013	10295	2361	12656
				1	PCDF				
	FSt	GP	Summe	FSt	GP	Summe	FSt	GP	Summe
Cl₄	20	0	20	124	26	150	49	147	196
Cl ₅	3	0	3	129	12	141	105	55	160
Cl ₆	24	0	24	87	0	87	100	0	100
Cl ₇	28	0	28	21	1	22	55	0	55

	1	13 ng/n	nl	10	100 ng/ml			
		350 °C			400 °C			
	1		PC	DD				
	FSt	GP	Summe	FSt	GP	Summe		
Cl₄	783	77334	78117	42	68550	68592		
Cl ₅	1045	15154	16199	31	11252	11283		
Cl ₆	703	6429	7132	25	3178	3203		
Cl ₇	278	886	1164	1	464	465		
Cl ₈	6	212	218	4	141	145		
Summe	2815	100015	102830	103	83585	83688		

 CI_{ϑ}

Summe

	PCDF										
_	FSt	GP	Summe	FSt	GP	Summe					
Cl4	11	319	330	0	105	105					
Cl ₅	22	517	539	0	377	377					
Cl ₆	35	713	748	0	354	354					
Cl ₇	8	311	319	0	106	106					
Cla	0	32	32	0	8	8					
Summe	76	1892	1968	0	950	950					

Tab. 8.17Konzentrationen [ng/g MFA] der PCDD/F der Experimente in Abhängigkeit von der
Konzentration an 2,4,6-Cl₃Ph im Gasstrom
Reaktionstemperatur: 300 °C, Reaktionszeit: 30 min

	2,6 ng/ml			3,9) ng/n	nt	6,2 ng/ml		
•				F	PCDD				
	FSt	GP	Summe	FSt	GP	Summe	FSt	GP	Summe
Cl₄	54	85	139	19	658	677	42	250	292
Cl ₅	32	12	44	22	181	203	17	89	106
Cl ₆	29	1	30	0	73	73	150	48	198
Cl ₇	0	0	0	0	14	14	39	6	45
Cl ₈	0	0	0	0	3	3	11	2	13
Summe	115	98	213	41	929	970	259	395	654

-				F	PCDF					
	FSt	GP	Summe	FSt	GP	Summe	FSt	GP	Summe	
Cl₄	0	0	0	0	0	0	0	0	0	
Cl ₅	0	0	0	0	0	0	0	0	0	
Cl ₆	0	0	0	0	0	0	0	0	0	
Cl ₇	0	0	0	0	0	0	0	0	0	
Cl ₈	0	0	0	0	0	0	0	0	0	
Summe	0	0	0	0	0	0	.0	0	0	

		166 ng/ml			l6 ng/n	nl	41	nl		
					PCDD					
	FSt	GP	Summe	FSt	GP	Summe	FSt	GP	Summe	
Cl₄	3382	6847	10229	3413	12550	15963	401	52276	52677	
Cl ₅	4352	1129	5481	11393	3577	14970	389	13826	14215	
Cl ₆	4551	238	4789	31440	1581	33021	874	9371	10245	
Cl ₇	655	11	666	6026	92	6118	523	1072	1595	
Cl ₈	229	0	229	5917	14	5931	353	272	625	
Summe	13169	8225	21394	58189	17814	76003	2540	76817	79357	

_		PCDF							
	FSt	GP	Summe	FSt	GP	Summe	FSt	GP	Summe
Cl₄	0	10	10	0	43	43	2	214	216
Cl ₅	0	0	0	0	24	24	3	254	257
Cl ₆	0	0	0	0	5	5	8	172	180
Cl ₇	0	0	0	0	0	0	0	43	43
Cl ₈	0	0	0	0	0	0	0	2	2
Summe	0	10	10	0	72	72	13	685	698

Tab. 8.18Konzentrationen [ng/g MFA] der PCPh und PCBz der Experimente mit 2,4,6-Cl₃Ph
dotierter MFA in Abhängigkeit von der Reaktionstemperatur und -zeit

				PC	Ph			
		250 °	C		300 °C			
	1 min	15 min	30 min	60 min	1 min	15 min	30 min	60 min
Cl ₂	1904	787	690	181	387	477	519	239
Cl ₃	994028	439035	242132	121285	409619	146620	135480	170431
Cl₄	14154	9851	5148	4066	7137	5150	4922	4728
Cl ₅	10671	14709	10217	7175	20194	8080	6148	5303
Summe	1020757	464381	258187	132708	437338	160327	147069	180701

		350 °	C		400 °	C				
	1 min	15 min	30 min	60 min	1 min	15 min	30 min	60 min		
Cl ₂	570	777	707	317	600	206	83	93		
Cl ₃	139646	153965	176065	112036	190665	105101	31687	58833		
Cl₄	5362	8495	8448	5465	6716	4616	3310	2356		
Cl ₅	2943	4235	3500	3024	5702	2296	_1886	2027		
Summe	148521	167473	188720	120842	203683	112219	36966	63310		

	<u>. Taka aka ka</u> ta			PC	Bz				
		250 °	0			300 °C			
	1 min	15 min	30 min	60 min	1 min	15 min	30 min	60 min	
Cl ₂	60	0	0	0	251	339	228	492	
Cl ₃	306	336	759	1157	801	3349	4282	6527	
Cl₄	612	1493	3085	3971	2858	10257	17222	25884	
Cl₅	0	55	133	239	114	1479	3677	5584	
Cl ₆	11	41	125	210	101	989	3294	3813	
Summe	989	1925	4102	5578	4125	16413	28702	42300	

		350 °	°C	······	·	400 °	C	
	1 min	15 min	30 min	60 min	1 min	15 min	30 min	60 min
Cl ₂	212	483	499	775	1263	2708	4102	2708
Cl ₃	4984	9944	11652	11559	9506	22578	22249	22578
Cl₄	9640	15954	21313	31049	45011	63596	53540	63596
Cl ₅	2027	4358	5402	9234	13699	19308	15147	19308
Cl ₆	1933	6155	4969	10750	9849	14086	8117	14086
Summe	18797	36894	43835	63368	79328	122275	103155	122276

Tab. 8.19Konzentrationen [ng/g MFA] der PCDD/F der Experimente mit 2,4,6-Cl₃Ph dotierterMFA in Abhängigkeit von der Reaktionstemperatur und -zeit

		250	°C			300	°C	
				PCD	D			
	1 min	15 min	30 min	60 min	1 min	15 min	30 min	60 min
Cl4	2052	4607	5054	5801	8550	6591	1106	534
CI ₅	488	1738	2453	2335	3847	7593	3026	888
Cl ₆	959	4835	7331	8762	13230	21634	12019	7682
Cl ₇	89	779	1103	1046	2188	4765	9239	8610
Cl8	117	1504	2329	2671	4691	11376	6219	9463
Summe	3705	13463	18270	20615	32506	61959	31609	27177
				PCD	F			
	1 min	15 min	30 min	60 min	1 min	15 min	30 min	60 min
Cl₄	9	8	10	10	13	35	8	6
Cl ₅	0	5	10	19	13	106	190	112
Cl ₆	0	6	7	0	0	189	334	535
Cl7	0	5	0	8	2	75	533	388
Cl ₈	0	31	0	5	0	51	62	82
Summe	9	55	27	42	28	456	1127	1123
		350	°C	······································		400	°C	
				PCD	D			
	1 min	15 min	30 min	60 min	1 min	15 min	30 min	60 min
Cl₄	2194	526	356	79	578	235	421	1580
Cl ₅	6845	521	215	69	478	734	878	1445
Cl ₆	20583	1670	547	127	1401	1987	1852	1286
Cl ₇	7654	4300	563	161	2768	634	722	785
Cl _ð	6874	9439	2902	555	8054	476	509	728
Summe	44150	16456	4583	990	13279	4066	4382	5824
				PCD	F			
	1 min	15 min	30 min	60 min	1 min	15 min	30 min	60 min
Cl4	31	14	8	7	8	7	6	26
Cl ₅	62	42	4	112	78	58	60	160
Cl ₆	313	339	97	236	424	50	56	80
Cl ₇	198	1194	668	388	845	105	100	172
Cl ₈	27	255	261	82	430	39	30	80

Summe

		250 °C	300 °C	350 °C	400 °C
1 min	со	0	0	0,18	0,39
	CO ₂	0,10	0,22	0,96	1,45
15 min	СО	0	0,1	0,36	0,43
	CO ₂	0,23	0,41	1,66	1,92
30 min	СО	0	0,11	0,39	0,42
	CO ₂	0,40	0,55	2,10	1,98
60 min	СО	0	0,17	0,57	0,68
	CO2	0,43	1,03	2,61	2,19

Tab. 8.20a) Volumen [ml/g MFA] an CO und CO2 der Experimente mit 2,4,6-Cl3Ph dotierterMFA-I in Abhängigkeit von der Reaktionstemperatur und -zeit

b) Umsatz [%] des 2,4,6-Cl₃Ph zu CO und CO₂ auf MFA in Abhängigkeit von der Reaktionstemperatur und -zeit

		250 °C	300 °C	350 °C	400 °C
	СО	0,0	0,0	4,8	10,6
1 min	CO ₂	2,6	5,9	25,5	38,8
	Summe	2,6	5,9	30,3	49,3
	СО	0,0	2,6	9,5	11,5
15 min	CO ₂	6,1	11,0	44,1	51,3
	Summe	6,1	13,6	53,6	62,7
	СО	0,0	2,9	10,4	11,2
30 min	CO ₂	10,6	14,6	56,1	52,6
_	Summe	10,6	17,4	66,5	63,7
	CO	0,0	4,6	15,2	16,6
60 min	CO ₂	11,6	27,5	69,5	58,5
	Summe	11,6	32,1	84,7	75,1

Tab. 8.21Konzentrationen [ng/g EPA-FA] der PCPh, PCBz und PCDD/F der Experimente mit
Modellflugasche dotiert mit Diphenylether
Reaktionstemperatur: 300 °C, Reaktionszeit: 30 min

	I synthetische Luft			ll-a :	Sticksto	ff	II-b synthetische Luft		
•					PCPh				
	FSt	GP	Summe	FSt	GP	Summe	FSt	GP	Summe
Cl ₂	177	152	329	218	1892	2110	125	14	139
Cl ₃	802	2589	3390	433	11309	11742	267	295	562
Cl₄	48	42	90	56	250	306	12	15	27
Cl ₅	54	72	126	839	342	1181	35	24	59
Summe	1081	2855	3936	1545	13793	15338	438	348	786

	PCB									
	FSt	GP	Summe	FSt	GP	Summe	FSt	GP	Summe	
Cl ₂	81	664	745	121	28	148	28	1399	1427	
Cl ₃	71	703	774	125	45	170	53	1343	1396	
Cl4	113	1175	1288	159	595	754	55	675	730	
Cl ₅	90	225	315	128	70	199	47	313	360	
Cl ₆	94	53	147	142	6	148	48	110	158	
Summe	449	2820	3269	675	744	1419	230	3841	4071	

				PCDD					
	FSt	GP	Summe	FSt	GP	Summe	FSt	GP	Summe
Cl ₄	595	55	650	223	26	249	287	12	299
Cl ₅	412	7	419	412	4	416	355	1	356
Cl ₆	728	10	738	639	0	639	458	1	458
Cl ₇	181	2	183	235	0	235	111	0	111
Cl ₈	270	2	272	304	0	304	108	0	108
Summe	2186	76	2262	1814	30	1843	1318	14	1332

	PCDF								
	FSt	GP	Summe	FSt	GP	Summe	FSt	GP	Summe
Cl4	209	15	224	416	2	418	231	5	236
CI ₅	62	1	63	126	3	129	58	0	58
Cl ₆	34	0	34	62	0	62	32	0	32
Cl ₇	11	0	11	29	0	29	14	0	14
Cl ₈	4	0	4	6	0	6	4	0	4
Summe	319	16	336	638	6	644	337	5	342