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Solutions of Dissimilar Material Singularity
and Contact Problems

Abstract

Due to the mismatch of the material properties of joined components, after a homoge-
neous temperature change or under a mechanical loading, very high stresses occur near
the intersection of the interface and the outer surface, or near the intersection of two
interfaces. For most material combinations and joint geometries, there exists even a
stress singularity. These high stresses may cause fracture of the joint. The investigation
of the stress situation near the singular point, therefore, is of great interest. Especially,
the relationship between the singular stress exponent, the material data and joint ge-
ometry is important for choosing a suitable material combination and joint geometry.
In this work, the singular stress field is described analytically in case of the joint having
a real and a complex eigenvalue. Solutions of different singularity problems are given,
which are two dissimilar materials joint with free edges; dissimilar materials joint with
edge tractions; joint with interface corner; joint with a given displacement at one edge;
cracks in dissimilar materials joint; contact problem in dissimilar materials and loga-
rithmic stress singularity. For an arbitray joint geometry and material combination,
the stress singular exponent, the angular function and the regular stress term can be
calculated analytically. The stress intensity factors for a finite joint can be determined
applying numerical methods, e.g. the Finite Element Method (FEM). The method to
determine more than one stress intensity factor is presented. The characteristics of the
eigenvalues and the stress intensity factors are shown for different joint conditions.

Losungen fur Spannungssingularitats- und
Kontaktprobleme in Stoffverbunden

Zusammenfassung

In Stoffverbunden entstehen aufgrund der unterschiedlichen Materialeigenschaften bei
mechanischer Belastung oder nach einer Temperaturidnderung hohe Spannungen in der
Nahe des freien Randes der Grenzfliche oder in der Néhe einer inneren Ecke. In
den meisten Fallen treten Spannungssingularitiaten auf, die zum Versagen des Bauteils
fithren konnen. Die genaue Berechnung des Spannungsfeldes und der Einfluss der Mate-
rialeigenschaften und der Geometrie des Verbundes auf die Spannungen ist von grofer



Bedeutung fiir die Werkstoffauswahl und die geometrische Gestaltung des Verbun-
des. Die Spannungen im Nahfeld werden in analytischer Form fiir reelle und komplexe
Eigenwerte dargestellt. Losungen fiir verschiedene Probleme werden angegeben: Zwei-
stoffverbunde mit freien Randern oder mit belasteten Riandern, Verbunde mit inneren
Ecken, Verbunde mit vorgegebener Verschiebung am Rand, Risse in Stoffverbunden,
Kontakt von zwei verschiedenen Werkstoffen. Logarithmische Spannungssingularitét
wird auch beriicksichtigt. Die Singularitatsexponenten, die Winkelfunktionen und
der bei thermischer Belastung auftretende regulire Spannungsterm kénnen analytisch
berechnet werden. Der Spannungsintensitiatsfaktor wird mit der Methode der Finiten
Elemente berechnet. Dies ist auch moglich, wenn mehrere singuliare Terme auftreten.
Die Eigenschaft der singularen Spannungsexponenten und der Spannungsintensitits-
faktoren werden fiir Stoffverbunde mit verschiedenen Randbedingungen aufgezeigt.
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Nomenclature

Ry

s

Xl
Pij, Gij
q

Ky

K or K;
Hy, Hy

stress function

temperature change

Young’s modulus

Poisson ratio

thermal expansion coefficient

Dundurs parameters

polar coordinates

angle of the material 1 and 2

displacement, component in the r direction
displacement component in the 6 direction
stress tensor

regular stress tensor

normal stress component

shear stress component

real eigenvalue

complex eigenvalue

coefficients in real stress function
coefficients in complex stress function
stress exponent

angular faction

Gs/Gq

Ey/Ey

see the equation under Eq. (3.1.113)

real and imaginary part of the complex eigenvalue
see the equation under Eq.(3.2.1)

r/R

R is a characteristic length of a joint
interface length

quantities in the Mellin domain

radius with temperature change in a semi-infinite joint
Ry/R

Mellin transform parameter

determinant of [a;;] in Eqgs. (3.2.29 - 3.2.32)
see Eq. (3.2.45)

see Egs. (3.2.66) and (3.2.67)

unknown factor in the regular stress term
i=1 or 2 or LL or H, stress intensity factors
height of material 1 and 2 in a quarter plane joint
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regular stress term according to temperature change
regular stress term according to remote mechanical loading
regular stress term according to edge traction

(r/R)'oLT(6) is the higher order regular stress term
according to edge traction
for logarithmic singularity see Eq.(7.1.5) or Eq.(7.2.11)

or Eq.(7.2.12)

~— ——

(
for logarithmic singularity see Eq.(7.1.6
for logarithmic singularity see Eq.(7.1.7)
for logarithmic singularity see Eq.(7.1.39)
or for r¥ singularity see Eqs. (8.2.20) and (8.2.21)
friction coefficient
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Chapter 1

Introduction

In many technical areas two or more dissimilar materials have to be joined together
to take the advantage of the properties of the different materials. The joining of ce-
ramic to metal to combine the ceramic’s wear resistance, high temperature strength,
and low thermal or electrical conductivity with the ductility of the metal is especially
important. Examples of the application of ceramic - metal joints are heat engines
[1], turbocharger rotors [2], electronic or microelectronic components [3], and nuclear
fusion components [4]. Another example of materials joint is a coated structure for
thermal protection, wear resistance, and corrosion resistance. In the electronic field
many dissimilar material layers are joined together as chips.

With increasing use of bonded joints, their behavior is of interest in many engineer-
ing disciplines. Both mechanical and thermal loading at fabrication or in service are
relevant. For the reliable design of such components, and for choosing a material com-
bination and a joint geometry, a stress analysis is required for elastic, elastic - plastic
or viscoplastic material behavior. In particular, the effect of residual stresses caused
by thermal mismatch of the joined components needs to be investigated, because these
residual stresses may lead to fracture of joints directly after the fabrication of cooling
from high temperature.

For two-dimensional problem the stress distribution, in the range far away from the
edges of a simple joint geometry, can be calculated analytically by using the plate or
beam theory [5, 6, 7]. Near the bonded edges, the stresses can be calculated applying
the numerical method, e.g. the Finite Element Method (FEM) or the Boundary Ele-
ment Method (BEM).

Due to the mismatch of the material properties of the joined components after a homo-
geneous temperature change or under a mechanical loading, very high stresses occur
near the intersection of the interface and the outer surface, or near the intersection of
two interfaces. For most material combinations and joint geometries, there exists even
a stress singularity. This intersection point is called singular point. These high stresses



may cause fracture of the joint. Therefore, the investigation of the stress situation near
the singular point is of interest. Due to the singularity, the stresses directly near the
singular point calculated from FEM are not accurate. To determine the stress and dis-
placement fields in the neighborhood of the singular point, a combination of analytical
and numerical methods has to be applied.

Material 1

Material 2

Figure 1.1: A general two dissimi- Figure 1.2: A joint with edge trac-
lar materials joint with free edges. tions.

In the presented work, the stress and displacement field near the singular point are
studied for 2-D problem, in which the joint geometry may have arbitrary angles 6y, 0,
(see Figs. 1.1 - 1.9).

The focuses are:

(a) to describe the stress and displacement field near the singular point analytically
with some unknown parameters, which are the so called stress intensity factors;

(b) to give the methods and solutions for calculating all quantities used to describe the
stress and displacement field;

(c) developing empirical relations between the stress intensity factors, the geometry
and the material properties of the joint.

The aim of this work is to give explicit solutions for calculating the stress and dis-
placement field near the singular point. This means that, for example, to determine
the singular stress exponent an explicit transcendental equation will be given, not only
the determinant, or to calculate the angular function the explicit equations for the
coefficients are presented, not only the linear equations system, and so on. This is
convenient for the engineer to analyze the singular stress field without deriving and
solving the complicated equations system.

For a given material combination and joint geometry, the singularity behavior depends
on the conditions at the interface and at the outer surfaces. By selecting a suitable



Materia 1

Material 1

] 02
!
Material 2
Figure 1.3: A joint with an inter- Figure 1.4: Joint with a given dis-
face corner. placement at one edge.
Material 1 Material 1
Material 2
Figure 1.5: Joint with a crack termi- Figure 1.6: Joint with a crack perpen-
nating at the interface. dicular to the interface.

material combination, joint geometry and boundary conditions, stress singularities can
be avoided or weakened. In the following Sections, some of the typical boundary
conditions will be treated.

The usually appeared two dissimilar materials joint in the practice is a joint with per-
fect interface and two free edges (see Fig. 1.1), which is considered in Chapter 3.
One special case, i.e. a notch or a crack in a homogeneous material, is discussed in
Chapter 4. If the edges of the joint is not stress free, but with edge tractions (see
Fig. 1.2) the stress analysis is given in Chapter 5. For a joint with two interfaces and
having an interface corner (see Fig. 1.3), the singularity behavior differs to that one
of a joint with free edges, see Chapter 6. On rare occasions, the logarithmic stress
singularity appears in a dissimilar materials joint, which is investigated in Chapter 7.
If the displacement at one edge of the joint is given (see Fig. 1.4), the singularity is



stronger than a joint with a free edge or edge with traction for the same joined materi-
als and geometry (the details are described in Chapter 8). Due to the different material
properties of the joined components, cracks often exist in the joint. The analytical de-
scription of the stress field near the singular point in a joint with different type of cracks
(see Figs. 1.5 - 1.8) is presented in Chapter 9. Finally, a special case of a joint, i.e.
the contact problem of two dissimilar materials (see Fig. 1.9), is studied in Chapter 10.

Material 1
Material 2
Materia 2
Figure 1.7: Joint with an interface Figure 1.8: Joint with an interface
crack. corner crack.

Material 1
Vil
Interface with
ﬁwithout friction
0,
Materia 2

Figure 1.9: Contact problem of two dissimilar materials.

All calculations are performed for elastic isotropic material behaviour.



Chapter 2

Review on the Stress Singularities
in Dissimilar Material Joints

In a dissimilar materials joint, the boundary and interface conditions may be different.
The following boundary conditions may be assumed: (a) the edge is stress free; (b) the
edge is loaded with tractions; (c) the edge has a given displacement. At the interface
there may be a perfect bond or sliding with friction.

The methods to analyze the stresses near the edges can be divided into three groups:
(I) The approximate or semi-analytical method.

This method is based on the elasticity theory and on some assumptions (see e.g. [7]
- [23]). The special assumption may be, for example, one stress component decreases
exponentially with increasing distance from the interface, or the shear stress in a thin
layer varies linearly [11]. In these calculations, the stress singularity is not considered.
Anisotropic material has been considered in [17, 23] applying semi-analytical methods.
(IT) Numerical method.

To calculate the stress distribution near the edges, conventional finite element method
or the boundary element method is often used (see e.g. [24, 25, 26]). Due to the
singularity, however, the stresses very close to the singular point cannot be determined
accurately. Therefore, some special elements, the so-called singular elements, have be
developed [27, 28, 29, 30, 31]. To use the singular element, the singularity behavior
(i.e. the singular stress exponent) of the joint has to be known. For each joint, one
finite element calculation has to be done to obtain the stress distribution near the
edges. Another disadvantage of this method is that the dependency of the stresses on
the material data, the joint geometry, and the boundary conditions is not explicit.
(IIT) Asymptotic description of the singular stress field.

To study the dependency of the singular stress on the material data, the joint geometry,
and the boundary conditions, it is useful to find an analytical description of the stress
field near the singular point. Willams [32] has found that the stress singularity can be
“ where r is the distance from the singular point and w is
approaches infinity for » — 0. The well known

described by the term r~

called stress exponent. If w > 0, r=¢

case is a homogeneous material with a crack, where w = 0.5. For a two dissimilar



materials joint, in general, w is not equal to 0.5, it may be smaller or larger than 0.5
(e.g. in a joint with a given displacement at one edge, or in a joint with a delamina-
tion crack, not an interface crack). In the last 20 years, numerous investigations were
performed on the stress singularity of a dissimilar materials joint.

Joint with free edges

In this section, a joint with a perfect bonding at the interface and the edges being
stress free is considered. Different methods have been used to determine the stress
exponent w, e.g. using an Airy’s stress function, or a displacement function, or anal-
ysis complex functions, or using the Mellin transform method (see [5], [32] - [83] ).
The joint may be made of two dissimilar isotropic materials (see e.g., [5, 33, 34, 35,
37, 39, 40, 41, 46, 47, 55, 56, 83, 84, 86, 87]), or two dissimilar anisotropic materi-
als (see e.g., [36, 44, 45, 49, 57, 58, 59, 60, 61]). A special case is a homogeneous
(isotropic or anisotropic) material with a notch or a crack, which was considered in
[32, 38, 42, 43, 48, 49, 50, 51, 52, 53, 54]. The stress exponent depends on the ma-
terial data and the contact angles #,,65. However, the stress exponent w is not the
only parameter to describe the singular stress field as it will be shown below. For
convenience, the joint will be divided into two groups: (A) quarter planes joint with
6, = 90°, 60, = —90°, which is often used in engineering, (B) joint with arbitrary 6y, 6s.

(A) Quarter planes joint
For this joint geometry, there exists only one singular term and the singular stress field
can be described by

K
(r/R)~
where the stress exponent w can be determined by solving a transcendental equation

[34, 37, 62]. The angular function f;;(#) can be calculated analytically [34, 41, 62, 63,
64, 65, 66]. The regular stress term 0;;0(#) for thermal loading can be obtained analyt-

045(r,0) = fi5(0) + 0ij0(0)

ically as well [34, 62, 63]. The quantity R is a characteristic length of the joint, e.g. the
length of the interface. The parameter K is called stress intensity factor. This definition
is different from that one used in fracture mechanics, because the distance r is divided
by R. The advantage of this definition is that the value of factor K is independent of
the absolute size of the joint and that the factor K has the unit of a stress. For a finite
joint, in general, the factor K cannot be determined analytically. However, it can be
calculated by means of numerical methods, e.g. FEM ([41, 62, 63, 67, 68, 69]), the
boundary collocation method ([34, 70, 71, 72]), the weight function method [73], the
boundary integral method ([74]) or the path independent integral method [75, 76, 77].
For the convenience of engineers, some empirical equations have been developed to
calculate the stress intensity factors without using any numerical methods [78, 79, 80].



(B) Joint with arbitrary angle.

For a joint with arbitrary angles 6, >, there may be more than one singular term
([39, 81]) and the analytical description of the stress field is more complicated than
that one in a quarter planes joint. In general, the stresses can be calculated from

N Kn
oij(r,0) = > ,FTnfijn(g) + 00 fijo(0)

n=1

for a joint with real eigenvalues [81, 82] and

N
K, e
0oij(r,0) = > — { cos[pnlnt]fi:, (0)

n=1

+ sin[p,InT] fjn(ﬁ)} + 00 fijo(0)

for a joint with complex eigenvalues [83], where the real part w, and the imaginary part
pn of the eigenvalues can be determined by solving a transcendental equation [35, 39).
The angular functions fij,(#) can be calculated analytically [84] and f£,(0), f;5,(0)
also [83]. The regular stress term oy f;jo(¢) can be determined analytically as well
[85, 86, 87]. If there is only one singular term (i.e. N=1), the determination of factor
K is easy, like for a quarter plane joint. If there are two singular terms, the factors
K, Ky corresponding to wy,wq (w; > we) were determined in [88] as follows: (a) cal-
culate the stresses in the whole joint by using FEM (or another numerical method);
(b) determine K from the stress values for very very small r by using only one term;
(c) determine K, from the stress values for a little larger r and using the known K.
In this process, only one factor K can be determined at each time. This method can
be used only when the absolute value of w; is much larger than that one of wy. If the
values of w; and ws are similar, the stresses calculated from the asymptotic equation
by using the determined K-factor values are accurate only for a very small distance r,
which is not in the range of practical interest. In [81] a method is given to determine
more than one factor K at the same time.

One special case is #; = 180°,0y, = —180°, which is the well-known case of a joint
with an interface crack (see [89] - [102]). For this case, the eigenvalues are 0.5 =+ ic,
i.e. the eigenvalues are always complex. Due to the terms sin[eln7] and cos[eln7], the
stresses oscillate in the range very, very close to the singular point. For most joint
material combinations, the value of ¢ is very small. Therefore, the oscillation effect can
be neglected [92]. To avoid the stress oscillation, some models have to be developed
[91, 93, 95].

Another special case is a homogeneous (isotropic or anisotropic) material with a notch
under mechanical loading. The stress singularity has been studied in many publica-
tions [32, 38, 42, 43, 103, 104, 105, 106, 107].



Joint with edge tractions

Comparing to a joint with free edges, there are a few publications considering a joint
with edge tractions. Most of them focused on the study of stress singular exponents
[35, 36, 37]. The stress solution has been studied only for a quarter planes joint under
a constant edge traction [108, 109].

In the analytical description of the singular stress field, the stress exponent, the angu-
lar functions, and the method to determine the factor K are the same as that one in
a joint with free edges. For satisfying the boundary conditions, however, higher order
regular stress terms have to be considered [110)].

Joint with two interfaces

There are many applications, in which the joint has an interface corner, i.e. the ma-
terials occupy an angle of 360° and there are two interfaces (see Fig. 1.3). At the
intersection point of the interfaces, stress singularity exists for most cases. To describe
the singular stress field analytically, the stress exponents can be determined by solving
a transcendental equation [111, 112, 113]. The calculation of the angular functions is
given in [114]. The regular stress term is considered in [115] and the stress intensity
factor is discussed in [115, 116].

Joint with a given displacement at the edge

Investigations of a two dissimilar materials joint mostly concentrate on joints having
stresses at the edges as boundary condition. If displacement is given at the edge, the
singularity behavior of the joint is more complicated than that of a joint with a free
edge. In [32, 38, 46, 103, 117] the determination of the stress exponent is studied. Most
studies focus on a homogeneous material with a notch or a crack. For a dissimilar ma-
terials joint, there may be three singular terms and the stress exponent may be larger
than 0.5.

Logarithmic stress singularity

For most material combinations and joint geometries, the stress singularity can be de-
scribed by r~“. For a given joint geometry, however, some material combinations exist
or for a given material combination some joint geometries exist, where the singular
stress field cannot be described by the type of r~¢ singularity. In these cases, the sin-
gular stress field should be described by In(r) or 7=¢ In(r), which are called logarithmic
singularity. Bogy and Dempsey [33, 35, 46, 111, 118] described the conditions of a two
dissimilar materials joint with the type of In(r) or r~“In(r) singularity. In [45, 119, 120],
the logarithmic singularity problems have also been discussed. Bogy [118] studied the
type of In(r) singularity in a quarter planes joint under edge tractions. Dempsey [121]



examined special cases with an r~“In(r) singularity. In fact, the conditions of a two
dissimilar materials joint with the type of In(r) or r~“In(r) singularity is also depen-
dent on the loading condition [122].

Contact problem in dissimilar materials

For a two dissimilar materials contact problem, in which the interface is friction free or
with friction, still stress singularity exists for most material combinations and contact
geometries. The stress singularity can also be described by r~*. Dempsey and Sinclair
[33] have given the equations to determine the stress exponent w for interfaces with
and without friction. Adams and Bogy [125, 126] have studied the friction free contact
problem in semi-infinity bodies, in which the stresses can be determined by solving
singular integral equations. Dundurs and Lee [127] have considered the friction free
contact problem with the contact geometry fy = 180° and 6; being arbitrary, in which
the dependency of the stress exponent on the Dundurs parameter « is given. In [128]
experimental results are presented for the contact geometry corresponding to that one
used by Dundurs and Lee. Comninou [95] and [129] discussed the interface crack
problem with friction.



Chapter 3

Two Dissimilar Materials Joint
with Free Edges

In a two dissimilar materials joint with free edges, after a homogeneous temperature
change or under a mechanical loading very high stresses occur near the intersection
of the interface and the edges due to the difference of the material properties and
the thermal expansion coefficients of the joined components and due to the free edge
effect. In most cases, stress singularities exist at the intersection point for elastic
material behaviors. It is called singular point. The stresses near the singular point can
be described analytically as

MK
045(r,0) = Z ,FTZfijn(g) + 0 fijo(0) (3.0.1)

n=1
for a joint with real eigenvalues and

N
K, e
oi(r8) =Y =" { coslpnlnr] £5,,(0)

7 + sin[p,,In7] f']n(ﬁ)} + 09 fijo(0) (3.0.2)

for a joint with complex eigenvalues, where 7=r/R and R is a characteristic length of
the joint. In Egs. (3.0.1) and (3.0.2) w,, is the stress exponent, which corresponds the
real part of the eigenvalue, p, is the imaginary part of the eigenvalue, f;;,,(6), fijo(6),
iin(0) and f7,
term, which is independent of the distance from the singular point. K, is called stress
intensity factor and has the unit of a stress, because the distance r is divided by R

(for the coordinates see Fig. 3.1). The quantities wy,, fijn(6), fijo(0), f5n(0), f5n(6),

»Jign y Jign

(0) are the angular functions, the term oy f;;o(6) is called regular stress

and oy can be calculated analytically for an arbitrary joint geometry (with 6;,65) and
for an arbitrary material combination (i.e. FEy, Ey, v, vs, aq,an being arbitrary). The
quantity K, cannot be calculated analytically for a finite joint, it should be determined
applying a numerical method, for instance, the Finite Element Method (FEM) or the
Boundary Element Method (BEM).
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Material 2

Figure 3.1: A general two dissimilar materials joint with the coordinates system.

In Sections 3.1, 3.2, 3.3 and 3.4 methods to determine the quantities wy,, pn, fijn(0),
fijo(0), f5n(0), f5n(0), 00, and K, will be given for a joint with free edges under
thermal and mechanical loading.

The behaviour of the quantities w, and K, for some joint geometries and material
combinations will be shown in Section 3.5 to prove and apply the given methods.
Especially, empirical relations will be given to calculate the stress intensity factors K,
without using FEM. In Section 3.6 the displacement field near the singular point is
discussed. The size effect on the stress distribution near the singular point is presented

in Section 3.7.

3.1 Determination of the Stress Exponents and the
Angular Functions

3.1.1 Joint with Real Eigenvalues

For a two-dimensional problem of a joint under mechanical loading or after a homoge-
neous change of temperature, without body force, the stresses can be calculated from
the Airy’s stress function. This function has to satisfy the equation

Vio(r,0) =0, (3.1.1)

where in polar coordinates there is

V4 — 8_4_|_28_3_ia_2+l£
ot rard r2or2 3 0r
4 02 1 0t 2 0 2 o

T e T T moree | r2orog

(3.1.2)
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For a singular stress problem, its solution in a series has the following form
=3 pr(2=An) { Agp sin(A,0) + By, cos(A,0)
+ Crosin[(2 = Ap)0] + Dy cos[(2 = An)0]},  (3.1.3)

where k= 1 and 2 are for materials 1 and 2. The exponent A, and the coefficients
Agn, Bin, Cin, Dy are unknown.
The stresses can be calculated from the stress function by

10%(r,0) N 1 .0°®(r,0)

= 1.4
o) = L g 1
0?d(r, 0
0-06’(7aa 9) = %7 (315)
0 ,109(r,0)
: 1.
Org (T, 9) 87" (7" 89 ) (3 6)
Inserting Eq. (3.1.3) into Eqs. (3.1.4, 3.1.5, 3.1.6) yields:
oroie(r, 0) Zr An) { Akn (2 + An) $in(An0) + Bin(2 + An) cos(Anf)
Cln(2 = An) sin[(2 = Ap)0] — Dgn(2 = An) cos[(2 = A0},
(3.1.7)
oo (1, 0) Z A= A\ (2 — )\n){Akn sin(\,0) + By, cos(A,0)
+ Chnsin[(2 = Ap)0] + Dy cos[(2 = A,)0]}, (3.1.8)
orr(r,0) = Zr {Akn)\ co8(Ap0) — Bep Ay sin(A,0)
+ Crn(2 = M) c08[(2 = An)0] = Dgn (2 — An) sin[(2 = A,)0] }.
(3.1.9)
The strains for plane stress can be calculated from
1
err(r,0) = E[JM(T, 0) — vogy(r,0)] + oT, (3.1.10)
1
cgo(r,0) = E[O’gg(?“, 0) — vo..(r,0)] + oT, (3.1.11)
1
erg(r,0) = —0,9(r, 0) (3.1.12)

2G
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where E is the Young’s modulus, v is the Poisson’s ratio, G is the shear modulus, «
is the thermal expansion coefficient, and T is the homogeneous temperature change in
the joint. For plane strain, E should be replaced by = 2, v by %, and a by a(l1+v).
The displacements can be obtained from

ou
e =5 (3.1.13)
v 10v
oo =~ + 20 (3.1.14)
lau ov v

where u and v are the displacements in the direction of r and 6, respectively. By using
the relations between the stresses, strains, and the displacements we have:

r(1=2n)
up(r,0) = o { Al201 = v) + An(1 + )] sin(A,0)
+  Bin[2(1 — vg) + A (1 + vg)] cos(A,0)
= Chn(1 4 1) (2 = A) sin[(2 = Ap)0)]
— Din(1+ 1) (2 = A\y) cos[(2 — A\n)0 ]} +ragT
(3.1.16)
r(1=2n)
ve(r,0) =3 o { Al2(1 = w) + (2 = \) (1 + )] cos(An0)
— Ba[2(1 = 1) + (2 = \) (1 + )] sin(An0)
— Cha(L+ 1) (2 = M) cos[(2 — \a)0)]
+ Din(1+1)(2 = Xo) sin[(2 = An)0]}, (3.1.17)

where the rigid body displacements are neglected by setting u=0 and v = 0 at r=0.
In Egs. (3.1.7, 3.1.8, 3.1.9, 3.1.16, 3.1.17), the term according to A = 0 is not given
separately as in [86].

If the exponent A, and the coefficients Ay, Bin, Cin, Di,, are known, the stress field
and displacements can be calculated from Eqs. (3.1.7, 3.1.8, 3.1.9, 3.1.16, 3.1.17). To
determine the unknowns, boundary conditions have to be used. For a joint with free
edges the boundary conditions are:

at the interface

uy(r,0) = wuy(r,0),
v1(r,0) = wy(r,0),
0901(1,0) = 0pp2(,0),
orp1(r,0) = 0792(r,0), (3.1.18)



for the free edges

0991(7", 91) =0,
ogga(r,02) = 0,
orgr(r,01) =0,
Gr92(r, 02) = 0. (3.1.19)

From these eight conditions the following equations hold
S s ABpf2(1 = 1) + A(1+ 1)) = Dipa(1+11)(2 = \n)
—Bon[2(1 = 12) + (1 + 12)] + Don(1+1)(2 = M) }
= TTEQ(CYQ — Oél) (3120)
Sr e LA 201 = m) + (2= M) (14 )] = Crapr(1+ 1) (2 = A)

— A [2(1 = 1) + (2= M) (L + 1)) + Con(1 + 12)(2 = M) } =0

(3.1.21)
Sor M x (1= X)(2 = M) {Bin+ D1 — Bay — Dy} =0 (3.1.22)
ST (1= M) {Ain A + Cia(2 = M) — Agpdy — Con(2— X)) =0
n (3.1.23)
Sord o (1= M) (2= A){Arnsin(An:) + By cos(An01)
' + Cipsin[(2 = Ap)0] + Dip cos[(2 = A,)f1]} = 0 (3.1.24)

S (1= M) {Aindn cos(Anb) — Bin Ay sin(Anf:)

+ Cin(2 = M) cos[(2 = Ap)fi] = Din(2 = Ay sin[(2 = )11} = 0
(3.1.25)

Sr o (1= M) (2 = An){Azo sin(Anf) + Bay cos(An0)

n

+ Copsin[(2 = An)0s] + Doy cos[(2 = Ay)fa]} = 0 (3.1.26)

Z rn o (1 - )\n){A%)\n cos(Apf2) — Bap Ay sin(\,02)

n

+ Con(2 = M) c08[(2 = Ap)fa] — Dap(2 = A sin[(2 = An)ba]} = 0
(3.1.27)
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where 4 = Ey/E; for plane stress. Because in Egs. (3.1.20 - 3.1.27) r is arbitrary, from
Eq. (3.1.20) it follows that if EyT (e — 1) # 0, there must be a solution with \,, = 0.
Therefore, the solution of this equations system is made of two groups: (I) the solution
according to A, = 0, (II) the solution according to A, # 0.

(I) The solution according to A, = 0.

From Eqgs. (3.1.7, 3.1.8, 3.1.9) it is known that the corresponding stresses are indepen-
dent of the distance r for A, = 0. This stress is called regular stress term. The solution
for A\, = 0 will be discussed in Sections 3.2 and 3.3.

(IT) The solution according to A, # 0.

For A, # 0,1,2 and for an arbitrary r, Eqs. (3.1.20 - 3.1.27) hold, if the following
equations are satisfied

Blnﬂ[2(1 — V1) + )\n(l + Vl)] - Dlnﬂ(l + l/1)(2 - )‘n)
— Bou[2(1 —wo) + A\u(1 + 12)] + Do (1 +15)(2 — A\y) =0
(3.1.28)

App2l =) + 2—=2)A+wm)] = Crp(1 +11)(2 — \p)
— Ap2(1 =) + (2= AN) (L + 12)] + Con(1+ 1) (2= A,) =0

(3.1.29)
Bin + Din — Bop — Doy = 0 (3.1.30)

Aipsin(A,01) + Biy cos(Apb)
+ Cipsin[(2 — A\,)01] + Dy cos[(2 — Ap)01] =0 (3.1.32)

AppApcos(Apf1) — BipApsin(\,0;)
+ Cin(2 = A\p)cos[(2 = A\p)Bi] — Din(2 — A\y) sinf(2 — X\,)601] =0

(3.1.33)

Aoy sin(A,0y) +  Bay, cos(A,62)
+ Oy, sinf(2 — A\y)02] + Doy cos[(2 — \p)B] =0 (3.1.34)
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AQn)\n COS()\nQQ) — BQn)\n sin()\nﬂg)
+ O, (2 — A\p) cos[(2 = A\p)ba] — Dop (2 — Ay) sinf(2 — \,)0s] = 0.
(3.1.35)

This equations system can be rewritten in a matrix form as

[Alsxs{ X }8x1 = {0}sx1 (3.1.36)

where there is {X}sx1 = {Aun, Bin, Cin, Din, Aon, Bon, Con, Doy}, and [Algxs is its
coefficients matrix. {X }gy; is unknown and [A]gygs includes the unknown exponent A,
the material properties (Fj, g, k=1,2 for materials 1 and 2) and the geometry angles
(61,02). Equation (3.1.36) has a nonzero solution, if and only if

is satisfied. In Eq. (3.1.37) the only unknown is the exponent \,. Its solutions are the
eigenvalues of this problem. Because this is a transcendental equation, there are infinite
solutions of A\, (n=1,2,3,...), and they may be real or complex. If the eigenvalues are
complex, the stress function Eq. (3.1.3) cannot be used directly. In this section only
the real solutions are considered.

From Eq. (3.1.16) and Eq. (3.1.17) it is known that the displacements are proportional
to r(1=) Because the displacements must be finite at the singular point (r=0), there
must be 1 — A\, > 0. This means that only the solutions with A, < 1 can be used
to describe the stress field. From Eqs. (3.1.7, 3.1.8, 3.1.9) we can see that if A\, =
1, all stresses at any point are zero. On the other hand, according to A, = 1 the
displacements are nonzero (see Eqgs. (3.1.16, 3.1.17)). Therefore, the solution with
An = 1 refers to the rigid body displacement, which is not included in the following
equations. For the description of stresses near the singular point, only eigenvalues in
the range of —0.5 < A, < 1 will be used. Here, the negative eigenvalues in the range
of —0.5 < A, are considered, because they are also important to describe the stresses
near the singular point (see examples given in [84]).

For an arbitrary geometry (6, 6:), the expansion of Det([A]sxs) = 0 reads

Det([Alsxs) =|| X ||= X10® + X582 + Xsaf + Xya + X584+ X =0 (3.1.38)
where
X, = (sp +1)?Fy — Fsg + Fs. — (5, + 1)%(25% + 45, + 1) Fy,

+285 (5 + 1)% (85 + 2)F1p — 2(sp, + 1) +3(s, + 1) =1 (3.1.39)

Xy = 2{ = (s +1)'"Fic+ (sn + 1)*Fyp + (50 + 1250 (50 + 2) Fyy
—5n(sn + 2)Fyp — Fs. — 52(5, + 2)2} (3.1.40)
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X3 = 2{2(s0 + 1)'Fic = (50 + 1)’ F3p — (50 + 1)%(25% + 45, + 1) I,

+25, (50 + 1)% (50 +2) + (50 + 1) Fap } (3.1.41)
Xy =2{ (50 + 1)’ F3, + 5,(5n + 2) o, } (3.1.42)

X5 = 2{F1, — Fo, + F3,}(sn + 1)? (3.1.43)

Xo = —(5, + 1)?(Fys + Fy.) + Fys + Fso + 5p(5, + 2) (3.1.44)

where «, 8 are the Dundurs parameters (their definitions see the following).
The quantities Fig, by, Fip, Fyp, ... are

Fiy, = cos(205) — cos(26,) (3.1.45)
Fp = c08[2(5, + 1)0a] — cos[2(s, + 1)64] (3.1.46)

Fy, = cos[2(s, + 1)05] cos(20;) — cos[2(s, + 1)6;] cos(26,) (3.1.47)
Fi, = cos(26,) + cos(26,) (3.1.48)

Fyp = cos[2(s, + 1)85] + cos[2(s, + 1)01] (3.1.49)

Fyp = cos[2(s, + 1)05] cos(201) + cos[2(s,, + 1)04] cos(262) (3.1.50)
Fy, = sin(26,) sin(26;) (3.1.51)

Fje = cos(26,) cos(26,) (3.1.52)

Fs, = sin[2(s, + 1)65] sin[2(s, + 1)61] (3.1.53)

Fi, = cos[2(s, + 1)0a] cos[2(s, + 1)01] (3.1.54)

Fi = sin(26;) cos(205) (3.1.55)

Fyy = sin(26,) cos(20)). (3.1.56)
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The relation between the solution (s,) of || X ||= 0 and the singular stress exponent
T
wn, = Re(2 + s,,). (3.1.57)
If we take s, + 1 = g, the coefficients in Eq. (3.1.38) will be replaced by
Xl = q2F4s - F5s +F5c - qr2z(2qr2z - 1)F4c
+2q2(q2 — 1) F1p — 2¢p + 3¢ — 1 (3.1.58)

Xy = 2{ —qiFi+ @ Fy + (¢ — V) Fy,
—(gs — 1) Fy — Fso — (42 — 1)*} (3.1.59)

X5 = 2{2qiFi — ¢ Fy — 2242 — 1)y,

+202(q2 — 1) + g2 Fyy | (3.1.60)

Xo=2{ ~ ¢ F + (a5 — 1) Fon} (3.1.61)

X5 =2{F\,, — Py, + F3,}¢* (3.1.62)

Xo = =g (Fis + Fic) + Fss + Fo + (g7 — 1) (3.1.63)
and

Fi,, = cos(205) — cos(26,) (3.1.64)

Fy, = cos[2q,0] — cos[2¢,,01] (3.1.65)

F3, = c08[2¢,05] cos(260;) — cos[2q,0:] cos(262) (3.1.66)

Fy, = cos(26,) + cos(26,) (3.1.67)

Fy, = cos[2¢,02] + cos[2q,01] (3.1.68)

F3, = cos[2gn02] cos(26,) + cos[2¢,,0, ] cos(262) (3.1.69)

Fys = sin(26,) sin(26,) (3.1.70)

Fy. = cos(26,) cos(26,) (3.1.71)
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F5s = sin[2q,, 0] sin[2q,,01] (3.1.72)

Fs5. = co0s[2q,05] cos[2q, 6, ] (3.1.73)
Fiy = sin(26,) cos(26,) (3.1.74)
Fgl = sin(292) COS(291). (3175)

From Eqs. (3.1.58-3.1.75) we can see that for ¢, and -¢, the quantities X;, Xs, ..., Xj
and Fi,, Fop, ..., F5; are the same. This means that if ¢, is the solution of | X [|= 0,
-, is also its solution.

The relation between w,, and g, is

Wp = qp + 1. (3.1.76)

Therefore, if w, is the eigenvalue of the problem, 2 —w, = —¢, +1 is also the eigenvalue
of the problem. If w, is in the range of —0.5 < w,, < 1, however, 2 — w,, is not.

For a joint with 6; = —fy the quantities X7, X5, X3, ... can be simplified as

X1 = su(sn + 1)%(s5 + 2)[cos(26,) — 1] (3.1.77)

Xy = {cos(201)(s + 1)* = cos[2(s, + 1)01]}
+85(8n + 2){2 cos[2(s, + 1)01] — 2c08(201) (s, + 1)* + sn(sy + 2)}

(3.1.78)
X3 = 2{ — c0s%(20,) (s, 4+ 1)* 4 cos[2(s,, + 1)0] cos(26,) (s, + 1)

+08(201 ) (55, + 1)%(252 + 4sy, + 1) — cos[2(s, + 1)01] (s, + 1)?
~(5n +1)%sn (50 + 2)} (3.1.79)
X, = X5 =0 (3.1.80)
Xg = (sn + 1) cos?(20,) — cos?[2(s,, + 1)01] — 5, (sn + 2). (3.1.81)
(3.1.82)

In particular, for 6; = —fy = 90°
| X ||= {5 cosZ(gsn) + (a— B)(sn + 1)2}2 + sinZ(gsn) COSZ(gSn) —a?(sp +1)?

(3.1.83)
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or in another form as
Det([Alsxs) = Ay — 2){62[0052(g)\n) — (M = D+ X (N, — 1)2 (N, — 2)
+ 2B, — 1)2[c052(g)\n) — (= 1)+ COSQ(gAn)sm%gAn)} -
(3.1.84)
For w,=0, i.e. s,=-2 the differential of || X || is

d| X |
ds,,

|s,— 2 = constant X {1 —a? +4af+2a [ —1+a- 25] cos(26;)
-2 [1 + a] [6;sin(201) + 2« [1 +a— 26] cos(26,)
+2[1 = a] B0 sin(205) + 2 [ — a + 8] cos [2(01 + 62)]
—i—[— 1 —a2+2a6] cos [2(60; — 69)]
+H=a+ 8] [0:(1+0) = 02(1 — a)| sin [2(6) + 6,)]

+[(—1—a+5+a6) 0, +(1—a+58—ap) 92]Siﬂ[2(91—92)]}

(3.1.85)
where «, § are the Dundurs parameters [130]. They are defined as
Mg — gmy
o —_ e —
ma + gmi
—-2)— -2
p = m2=2—glm -2 (3.1.86)
my + gmy
with
o (liy) for plane stress
4(1 —v) for plane strain
and g = g—f
Directly using the material constants
E, - Ey
E, + E, ( )
1 El(l — 1/2) — E2(1 — Vl)
= - 3.1.88
P 2 E,+ E, ( )
are obtained for plane stress. For plane strain, there is
I O
171/% 171/%
1—1/% 1—1/3
1E(1 1—2uy) — E5(1 1-2
g== 1(1+ v)( va) — Ea(1 4 1n)( 1/1). (3.1.90)

2 Ei(1—v3)+ Ey(1 — 1))
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In general, for a two dissimilar materials joint, the four elastic constants Ey, Fy, vy, v
can be reduced to two independent parameters. These are the Dundurs parameters
a, 3. Following the definition of the Dundurs parameters, o and  may take the values
in the range of —1 < a <1 and —0.5 < § < 0.5. This means that all possible material
combinations can be found as a point in the Dundurs diagram, in which « is plotted
versus (3. For plane stress and plane strain, the values of o and 3 corresponding to all
possible physically relevant material combinations, are restricted to an area within a
parallelogram. For plane stress, the four limit lines are

a=—1, g from —0.5 to —0.25
a=1, g from 0.5 to 0.25
3 1
b=37"3
3 1
= - — 3.1.91
b = ga+g, (3.1.91)
and for plane strain, the four limit lines are
a=-—1, g from —0.5 to 0
a=1, g from 0.5 to 0
1 1
b =307
1 1
= - - 3.1.92
f = q0+7 (3.1.92)

which are plotted in the following Dundurs diagrams as dashed lines for plane stress
and as solid lines for plane strain.

As now the eigenvalues )\, are known, we can calculate the stress exponent w, and the
angular functions f;;,(6). For a joint with real eigenvalues, the stress exponent is

Wy = Ap (—0.5 < A, < 1). (3.1.93)

Because Eq. (3.1.36) is a homogeneous equations system, its solution A1, Bin, Cipn, Din,
Agn, Bay, Cay,, and Dy, is not unique. To obtain unique angular functions for each given
eigenvalue ),, they are normalized as

O-rrkn(ra 9) Orrkn (Ta 0)

frrkn(e) - Uemn(?", 0) B 0992n(7”a 0)’ (3'1'94)

Uaekn(T, 9) U%kn(ra 9)
A(0) = = , 3.1.95
fookn ) T9o1n(1,0)  Tggan(r, 0) ( )

O-ré‘k:n(ra 9) O-ré‘k:n(ra 9)
roun(6) T991n(1,0)  Tggan(r,0) ( )
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This means that there is always fgg1,(0 = 0) = fpg2n(6 = 0) = 1. Using Eqs. (3.1.7 -
3.1.9) for each eigenvalue )\, the angular functions can be calculated from

frren(0) = {Akn(2 + wy) sin(wyf) + Bin (2 + wy) cos(wpl) — Cin(2 — wy) X
X sin(2 — wn)0] — Dga(2 — wn) cos[(2 — wn)0] } /{(2 — wn) (Bin + Dia) },

(3.1.97)
foorn(0) = {Akn sin(wp#) + By cos(wp) + Cy sinf(2 — wy, ) 0]
+ Dy cos[(2 = wn)0]}/(Bin + Din) (3.1.98)
Fromn(0) = —{ Apnwn c08(wnf) — Brnwn sin(wn) + Chn(2 — wn) cos[(2 — w,)f]
- Dkn(2 - wn) SHI[(Q - wn)e]}/{(Q - wn)(Bkn + Dkn)}a (3199)

with k = 1 and 2 for materials 1 and 2.

Considering all singular stress exponents (N terms) and the regular stress term, and
using the definition of the angular functions f;;,(#), the stresses near the singular point
can be described analytically by

N

Uijk(r, 9) = Z %f”kn(ﬁ) + Ugfijkg(e) (3.1.100)

n=1
where the factor K, is unknown, which should be determined from the stress analysis
of the total joint (method will be presented in Section 3.4). Here, the distance r is
normalized by a characteristic length R (7 = r/R), so that the factor K,, has the unit
of a stress. The determination of the regular stress term oy f;;x0(6) will be discussed in
Sections 3.2 and 3.3 for thermal and remote mechanical loading.
In principle, for an arbitrary geometry (6;,6s), the coefficients Ay,, By, Cin, Din,
Agn, Bay, Coy, and Dy, (according to A,) in Eqgs.(3.1.97 - 3.1.99) can be obtained
analytically by solving a 7 x 7 linear equations system, but they cannot be calculated
from a simple explicit form.
Only for the special joint geometry #; = —6f, = 90°, the coefficients Ay, B, Cin, Din,
Ao, Bay, Cyy,, and Dsy, can be simplified as
D,

Aj By, Cy
= —= By, = —- Crn = —2 Dy, = 3.1.101
Z k 7 k VA k 7 ( )

Akn
with
Z = B[COSQ(gwn) + (1= wn)(3—wy)] = a2 —wp)(1 —wy,) =1+ cosQ(gwn)
(3.1.102)
Ay, =7 (3.1.103)
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B, = —tan(gwn){B[COSQ(gwn) F (1= w)?] = a2 —wp)(1 — wy) + COSQ(gwn)}

(3.1.104)
. 43w, . o, 9, T

Cr, = —6[(2 m—v sin (§wn) — (2 = wp)wp] — aw, (1 — w,) + sin (§wn)
(3.1.105)

D}, = tan(gwn){ — 2= ) [COS2(gwn)(3wn —4) — wy(1 — wy)?]
— awn(1 — wy) — COSQ(gwn)} (3.1.106)

Ay = — {022 = wa) (1 — ) (2w
n l+a " "

)
+28%[—(2 — wy,) sin® ( ) + (2 — wy)wy]
+a5[cosZ( = ) (2wn — 3) +4(2 — wy)? —9(2 — wp)? +6(2 — w,) — 1]

+a[— cos (2 ) (2wn —3) 4+ (2 —wn)? — 3(2 — wy) +1]

+ B[~ sin? (gwn)(an —3) — (2 — wy)?] + sin (g )} (3.1.107)
B = —mfgrigj‘){a?(z ) (1 — w) (2 — 1)

+26%(1 — wy) COSZ(gwn) — (2= wn)? +3(2 —wp)? —3(2 —wy) +1]
+Oz6[COSZ(gwn)(2wn C3) 42— w)® = 11(2 — wn)? +10(2 — wy) — 3]
+al— cos2(gwn)(2wn —3) = (2= wp)? + (2 — wy)]

+B[cos2(gwn)(2wn —3)+ (2 —wp)? + 2w, — 3] + COSQ(gwn)} (3.1.108)

« 1 2 _ 2 _ —
cr = 1+a{awn[2(2 wn)? = 3(2 — wy) + 1]

+26%w, [~ COSZ(gwn) + (2= wp)? —2(2 —wy,) +1]

N fﬁwn) [cos2(gwn

+alcos? (2 wp)(1 = 2w,) — (2 — wp)? + (2 — wy) + 1]

)(2w2 — Bwy, 4+ 4) — dwp + 17w3 — 26w2 + 17w, — 4]

+

=) [cosQ(gwn)(wal — Bwp +4) +wd — 6w + 9w, — 4] — sin2(gwn)}

(3.1.109)
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tan(5wy)

D;, = A {02wn[2(2 = wn)? = 3(2 = wy) +1]
+287[(1 = wn) cos*(5wn) = (2 = wn)® +3(2 —wn)? = 8(2 = wn) + 1
—ﬁ[coﬁ(gwn)@wi — 5wy, +4) — dw? + 1903 — 3402 + 27w, — 8]
+afcos”(Gwn) (1 = 2wn) — wn(1 = wn)]
+(2_76wn)[cos2(gwn)(2wz — 5w + 4) = wn (L — wn)?] = cos”(Gwn)

(3.1.110)

3.1.2 Joint with Complex Eigenvalues

If the eigenvalues of Eq. (3.1.37) are complex, the stress function given in Eq. (3.1.3)
cannot, be used directly to describe the stresses near the singular point. The analysis
can be performed applying complex functions for the stresses and displacements.
Based on the elasticity theory for a two-dimensional problem under thermal or me-
chanical loading, the stresses and displacements can be calculated from the following
complex relations in Cartesian coordinates [131]

Ok (T, Y) + Oyyi (2, y) = 2(1!(2) + P! (2)) (3.1.111)

Oy (T,Y) — Opuk (T, y) + 20Ty (7, y) = 2(ZPp!(2) + i/ (2)) (3.1.112)

2G Uk (2, y) + iuye(z, y) — eroz] = &t (2) — 20x!(2) — Yi(2) (3.1.113)

with
3—uy,
gk — (1+Vk) fOI' plane StreSS
3 — 4y, for plane strain
and

L T+ 1y _ it
R
where R is a characteristic length of the joint and k= 1, 2 for materials 1 and 2. e
are the thermal strains with

(3.1.114)

T for plane stress
€k0 =

(14 vg)oy T for plane strain

for a homogeneous change in temperature. The real and imaginary parts of the complex
functions ¢(z) and 1(z) are harmonical functions. For a stress singularity problem the
following complex functions are chosen:

O(2) = 3 Az + Y Bz (3.1.115)
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Ye(2) = Y Cuaz™ + Y Dinz™ (3.1.116)

where n=1, 2, 3, ..., A, is a complex number and Ay,, Bin, Cxn, Din are complex co-
efficients, which are unknown. A, is the conjugate number of A,. Substitution of
Egs. (3.1.115) and (3.1.116) by Egs. (3.1.111), (3.1.112), and (3.1.113) provides for

Uxxk(xay) + O.yyk(xay)
= 4Re{ Y Az + Y B Rz MV =10 (3.1.117)

Oyyk (1‘7 y) — Ogzzk (-'L', y) + 2”—myk (1‘, y)
= 2 Z AknAn(An o I)Z(Animz +2 Z BknAn(An - 1)Z(An72)2

23 CnApz™ Y 423 Dy Az = o720y, (3.1.118)

2Gk[ugk(2,y) + iugr(w,y) — ero?] ) i
= gk[ZAanAn + Z BanAn] - Z -’Likn]\nil\ni1Z

— N BT = 3 Gt = Y Dyt (3.1.119)

The stresses and displacements in polar coordinates can be obtained by using the
transformation

Ok (T, Y) + Oy (2, Y) = Opri (7, 0) + 0p0i(r, 0) (3.1.120)
Oyyk (l', y) — Ozxk (l', y) + QiTmyk (l‘, y) - 6722-0[0-0916 (T; 0) — Orrk (T; 0) + 21.7}9]6(7", 9)]
(3.1.121)

2Gk[ugk(z,y) + iuy (T, y) — epoz] = 2G [(uk(r, 0) + vy (r, 9))6” — skoz] (3.1.122)

In order to determine the unknown coefficients Ayn, Bin, Ckn, Din and the exponent A,
for an arbitrary joint geometry (6, 6,), the boundary conditions in polar coordinates
have to be used. For a joint with free edges they are

[0001(r,0) + iTrg1(r, 0)] l9—0= [0992(r, 0) + iTyg2 (7, 0)] |90 (3.1.123)
[y (r, 0) + ivi(r,0)] |g=0= [ua2(r,0) + iva(r, 0)] |9=o (3.1.124)
(0901 (r, 0) + iT01(7, 0)] [g=0,= O (3.1.125)

(00027, 0) + iTr2(7, )] lg=0,= 0 (3.1.126)
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where u and v are the displacements in the direction of r and 6, respectively. For
each A, if the exponent A, is not equal to 1, substituting Egs. (3.1.117 - 3.1.119) by
Eqgs. (3.1.123 - 3.1.126) and due to r being arbitrary, eight equations can be obtained

Ay + By + Cin — Agu Ay — Boy — Coy =0 (3.1.127)

Ain + BinAy + Dy — Aoy — BoyAy — Doy = 0 (3.1.128)
gl&1Ain — AuBin — Din] — & Ao + AuBon + Doy = 0 (3.1.129)
9l=AnAin + & Bin — Cin] + An Aoy — &Bon + Con] = 0 (3.1.130)
Ay + Bppe 200 ) o200 — (3.1.131)

Ain + By Ape 20Dl D o720l — (3.1.132)
AgnAy + Bype 2Dl o) o202 — (3.1.133)

Agp + By Ao a2 D) o= 2i0nl2 — ) (3.1.134)

where g= G9/G,. From Egs. (3.1.117) and (3.1.118), it is known that A, = 1 cor-
responds to the stress term, which is independent of the distance r. It is called the
regular stress term and will be treated in Sections 3.2 and 3.3.

Equations (3.1.127) to (3.1.134) can be rewritten in a matrix form as

[Frlsxs{Xn}sx1 =0 (3.1.135)

where {X,} = {A,, B, Cin, Din, Aon, Bon, Con, Doy } T, and [F,]sxs is the coefficients
matrix. This is a homogeneous equations system. Only if the determinant of [F,] is
equal to zero, Eq. (3.1.135) has a nonzero solution. In [F},] the exponent A, is the only
unknown. The solutions A,, of

Det([F,]sxs) = 0 (3.1.136)

are the eigenvalues of the problem. For each given A, (A, # 1), the corresponding
coefficients Ay, Bin, Cin, Din, Ao, Bon, Cony Doy can be determined from Eq. (3.1.135)
or Egs. (3.1.127-3.1.134), but one of them is arbitrary.

In order to obtain the explicit form for calculation of the stresses, the quantities A,, and
Axn, Bin, Cin, Din must be separated into a real and an imaginary part. The definitions

A = AY +iAL,
Bo = By +iBL,
Cn = Cio +iCy,
Dy, = Dy +iDy,
Aw = tp+ipn (3.1.137)
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are used. The stress components can be calculated from Eqs. (3.1.117), (3.1.118),
(3.1.120), and (3.1.121) as

oo () = %Re(l’[k Ty (3.1.139)
1
Uggk(r, 9) = iRe(Hk + Fk) (3.1.139)
1

After inserting Eq. (3.1.137) into Eqgs. (3.1.117) and (3.1.118), then separating the
real and imaginary parts, the stresses for each A, can be described by

Trrkn (1, 0) = KT {cos [pn In(F)] F 1., (0) + sin [pn In(7)] 7, (0) }

(3.1.141)
o0 (1, 0) = Ko7 {c0s [pn In(r)] Fgp, (0) + sin [py In(r)] Fpp., ()}

(3.1.142)
Tookn (1, 0) = K7 {cos [pp In(7)] Fpp, (0) + sin [py In(7)] Flyy, (0) }

(3.1.143)

where K is an unknown real constant and w, = {(1 —¢,) | 0 < (1 —t¢,) < 1}. The
functions Frcrkn(e) Frsrkn(e)a FHCan(e)J F;an(e)a Frcmcn(e)a Ffekn(e) can be determined as
follows

Frn(0) = 6"’”9{ sin((t, — 1)0]{pn AL (2tn — 3) — AL, (P2 — t2 + 3t,)
puBE e®P?(2t, — 3) — BL e®f(p2 — t2 + 3tn)}
+ sin[(ty + 1)0{paCl, + taCly — e DY, + toe™ D}, }
+ cos[(ty — DO AR, (D2 — t2 + 3tn) + PnAly (260 — 3)
+BR e (p? — 2 4 3t,) — puBL e (2t, — 3)}

+ cos|( 9]{ tnCR 4 puCL — toe®P /DR — pneQPHHDIIm}}
(3.1.144)
Fn(0) = e"’””{sin[(tn — 1)O){ — AR, (p2 — t2 + 3tn) — PaAl, (2tn — 3) +
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+BR 2?2 — (2 4 3¢,) — BL e’ (2t, — 3)}
+ sin|(¢, + 1)9]{tann — PuCi,, — tae®'DR pneQP“GDIIm}
+ cos[(ty — DO pnAR, (2tn — 3) — Al (P} — t2 + 3ty)
+pn B e (2t — 3) + Bl,e™’ (p2 — t2 + 3t,) }
+ cos|(tn + D)) puCl + taCiy + Pre™ "D, — tne2pn9D{m}}

(3.1.145)

Fipen(®) = —e{ sinl(t, = DO{ALpa (2t +1) = AL (02 — 2 — 1)
—puBR 22026, 4 1) — BL e??(p2 — t2 — tn)}
+ sin[(ty + 1)0){pnCl, + taCly — D™ "D, + tne™ D}, }
+ cos|(tn — DO AR (D2 = 62 = tn) + ALyDa(2tn + 1)
Be™’(p} — t2 — tn) — Bipne™’ 2ty + 1)}
+ cos[(tn + 1)0){ = taCli + PuCiy, — tne™ "D, — pne2pn9D{m}}

(3.1.146)

Fipn(8) = =L sinl(ta — DI = AR (52 = 12— ) = oy (2t + 1)
+Be?(p2 — t2 — ) — puBL,e?™ (2t, + 1)}
+ sinl(t, + 1)9]{15,,C1§1 — PuCh, — tne® DR — pneQPI‘ngIm}
+ cos[(tn — 1O pu AR (2t + 1) — Al (0] — t2 — ta)
+pnBine™? 2ty + 1) + Bp,e®(p2 — t2 — t,)
+ cos[(tn + 1)0){ puC, + taCh, + Pr™ "D, — tneZP“HDIIm}}

(3.1.147)

(@) = e st~ DO~ AL~ 12 4 0) — puAl (26— 1)
_Bfnezpng(pi - t121 + tn) + pnBllme2pn0(2tn - 1)}
+ sin[(ty + 1)0){tnCl — DuCly + tne™ DE, + pre™ D}, }
+ cos((ty — DO pnAl, (2ta — 1) — Al (D] — t2 + 1)
—paBine®™’ 2ty — 1) = Ble™’(p2 — t2 + t,) }
+ cos|(t, + 1)) {pnC& + taCL, — pne® DR+ tneQP“GDIIm}}

(3.1.148)
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Fra(®) = 7 {sinl(ts = DO = puAll 2t — 1) + Ay (07 = €+ 1)

—paBine™? 2ty — 1) — Ble™’(p2 — t2 + ) }

+ sin[(t, + )9]{ — pnCi — taChy — Pue® DY + tneZP“eDl{n}

+ cos[(tn — )01 — AR (D — t2 + tn) — Paly (2tn — 1)
R 2pn0(p t2 +t ) - pann62pn0(2tn - 1)}

+ cos|(t, +1)0 {t CR —paCl — t,e® DR — pneQP“QDIIm}}.

The angular functions used to describe the stresses are normalized as

ES,.. (0
Wl = E2G

E? .. (0
SURS w0
foorn(0) = %
fianl®) = T
vokn(0) = %
@) = 0

which means that always f§,., (0 = 0) = 1. The angular functions ff,,,.(0),

(3.1.149)

(3.1.150)

ffrkn(e)ﬂ

T60in(8)s fookn(0)s floen(0), and f2,,..(6) can be calculated analytically for each given
eigenvalue A,. They are dependent on the eigenvalue A,, the material properties

(Ek, k), and the geometry (6;,62). By considering all stress exponents w,, which are

in the range of —0.5 < w, < 1, and the regular stress term, the stresses
singular point in a joint with complex eigenvalues can be calculated from

orri(r,0) = 21;(7:{008 [P In(7)] £ (0) =+ sin [p In(7)] £, (0) }
+Urrk0(0)
Y K, : _
ooor(r,0) = er_{cos [P ()] fg01n (0) + sin [pn In(F)] fp1(0) }
+000k0(0)
Y K, _ : _
Tron(r,0) = 2_:1 o 1008 [Du In(7)] fro4n (0) + sin [pn In(7)] frppn (0)}
+Tr0k0(9)
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where k = 1 and 2 denote materials 1 and 2, 0;;40(¢) is the regular stress term, which will
be given in the next section, and K, are unknown constants, which can be determined
from a numerical method, e.g. the Finite Element Method (FEM). From Eqs. (3.1.151)
- (3.1.153) we know that due to the terms sin[p, In(7)] and cos[p,, In(7)], if p,, # 0, the
stresses oscillate in the range very near to the singular point. The frequency of the
stress oscillation is dependent on the absolute value of p,.

In [132] the complex eigenvalue problem has been studied as well, but used another
method.

3.2 Determination of the Regular Stress Term for
a Joint under Thermal Loading

In Section 3.1 the singular stress term, i.e. the singular stress exponent and the corre-
sponding angular functions, have been studied in detail. But for the stresses near the
singular point and in particular for a joint with free edges under thermal loading, the
regular stress term, which is independent of the distance from the singular point, is also
very important. In this section the method to calculate the regular stress term, which
corresponds to the solution of A\, = 0 in Section 3.1.1 and of A, = 1 in Section 3.1.2,
will be given for a joint with an arbitrary geometry (6, 6,) under thermal loading. For
several special geometries, simple explicit forms will be presented as well.

There are three methods to determine this regular stress term, which are: (a) Method
using a special Airy’s stress function [86]; (b) using a general Airy’s stress function
and applying mathematical limit method [85]; (¢) the Mellin transform method [87].
In this section the Mellin transform method will be used, because it is a more general
method for the singularity problem.

Solution in the Mellin Transform Domain

When thermal loading is taken into account and body forces are disregarded, the stress
function, ®, should satisfy the equation

Ve +qVPT =0 (3.2.1)
with

ak
(1-v

{ aF  for plane stress
q ==

) for plane strain ’

where T is the temperature change, E the Young’s modulus, v Poisson ratio, and « is
the thermal expansion coefficient. To use the Mellin transform, a semi-infinite bonded
component with the temperature change

{T forr < R,y

0 forr > Ry
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is considered at first.
The Mellin transform of a function, ®(7, 6), is defined as

b(s,0) = / Y o(F, )V dr (3.2.2)
0

where s is a parameter of the Mellin transform, and 7 is dimensionless (7=r/R). The
parameter s should be chosen so that the integration in Eq. (3.2.2) is valid. The
property of the Mellin transform is

/fpwf(sl)df: (_1)@%&)(5—1—2}—(],9) (3.2.3)

where I'(z) is the [-function.
The Mellin transform of the first term in Eq. (3.2.1) is

o0 2

) 0?
—4xv4 — s—1
0/7“ VI(r, ) dr = (57 + =5l(s +2) + 551805, ) (3.2.4)
and the second term is
/r gVETFOVdr = [(s +2)? + an]T(s +9) (3.2.5)
0
with .
T(s+2) = / T gr = 41 p+2) (3.2.6)
s+ 2

0
where Ry = Ry/R. The Mellin transform of Eq. (3.2.1) then reads

2 2

9 9
5%+ 5515 +2)7 + 692@(3 )+ [(s +2)* + 5511 (s +2) = 0. (3.2.7)

If s is considered as a parameter, Eq. (3.2.7) is an ordinary differential equation of the
variable 6. Its solution is

Tk(S + 2)

@k(s,e) — Akeis‘g _i_Akefise +Bk6i(s+2)0 +Bke’i(s+2)9 . _
S

(3.2.8)

where A, By, ( Ay, By is the conjugate complex number of Ay, By,) are unknown complex
constants. In order to determine the unknown A, and By, the boundary conditions
expressed by the Mellin transform are used. For a joint with free edges they are:

for the free edges

0=01: Tro1+ 10991 =0
0 = 92 : 7A'r92 —+ 26'992 =0 (329)
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at the interface

0=0: T+ 190001 = Tro2 + 10002
0=0: iy +ity =iy + 0y (3.2.10)

where u and v are the displacements in the directions r and 6, respectively. The physical
meaning of Eq. (3.2.9) is that along the free edges the normal and shear stresses are
zero. Equation (3.2.10) means that along the interface the normal and shear stresses,
and the displacements v and v are continuous.

In the Mellin domain, stresses can be calculated from the stress function by

5’,",«(8,9) (302 - 8) (8’ )
Ggo(s,0) = (s + )5 (s,0)
(s

Fo(5,0) = (s + 1)2260) (3.2.11)
From the relation between the strains, stresses and displacements we obtain for the
displacements:
ou 1 [0 0% m q
— =t — (1= —)V?® + =kT 3.2.12
or G{r6r+r2892 ( 4) }+EK ’ ( )
ou ov v 1 [ 0d 0?d
== — 3.2.13
70 or TG {ﬂae F@F@H} (3.2.13)
with
o (liy) for plane stress
4(1 —v) for plane strain

{ 1 for plane stress
K =

(1 —v?) for plane strain.

The Mellin transform of the displacement u is calculated from

ou
-2 Y% _(s-1) o ~
0/ e dr (s + Da(s+1,6)
1 82 m 82 A K -
= ﬁ{—s+w—(1—z)[s(s+l)—s+w}@(3,0)+ET(5+2).
(3.2.14)
For s # —1
R B m s m 0 . mT(s +2)
2Gu(8+1’9)_{8_2(3+1) _4(s+1)892}@( )_Z (s+1)°
(3.2.15)
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The Mellin transform of the displacement v can be obtained from

T of0u v v\ . ou(s+1,0) .
23 BT O Co ) S et S A
0/7" {rae+ar r}r ar 90 s+ 1) +1]o(s +1,6)
1 [0%(s,0)  0%(s,0)
= G{ 20 +s 50 . (3.2.16)
For s # —1, —2 there is
2G0(s +1,0)
o m s N P (s, 0) m 1 Pd(s,0)
B 4 (s+1)(s+2) o0 4 (s+1)(s+2) 06
(3.2.17)
The complex form of stresses and displacements in the Mellin domain is
10(s,0) +i0g0(s,0) = (s + 1) (& + is)®(s,0) (3.2.18)
and
R . B KJT(S +2)
QG{U(3+1,9) + ZU(S"—l,H)}——m
0 k(S —is) (& —i(s+2)), .
+ (s—z%){le s +1)(5+2) 1®(s,0).
(3.2.19)

Insertion of Eq. (3.2.8) into Eqgs. (3.2.18) and (3.2.19) and then into Eqs. (3.2.9) and
(3.2.10) for s # —1 yields

A

T1 (S + 2)

sA; + (54 1)Bpet — Bje 206+ _ 5 e 0 = (3.2.20)
S
: _ T 2) _.
§Ay + (54 1) Bye™ — Bye 1002 %e—“@ =0 (3.2.21)
S
T 2 _ T 2
SA1+(S+1)B1—BI—%:SA2+(S+1)B2—BQ—%
(3.2.22)
_ T (s + 2
g{sAr + (s+1)Bi+Bi(my 1) - M}
2s
_ T 2
= SAQ + (8 + 1)32 + BQ(mQ - 1) - % (3223)
S
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with g = &2. Equations (3.2.20) and (3.2.21) yield

Ti(s+2) : = i
sA; = 1(82+ _) e 0 (S + 1)3161291 + B16722(s+1)01 (3-2-24)
S
To(s+2) : = i
sAy = —2(32+—)6”"2 — (54 1) Bae™” + Bye (10 (3.2.25)
S

Inserting Eqs. (3.2.24) and (3.2.25) into Eqs. (3.2.22) and (3.2.23) gives:
Bi(s+1)(1 — €)= Bj(1—e 26t
— By(s+1)(1 — €2%2) 4 By(1 — e 25102
Ti(s +2) Ty(s + 2)

— 1 — —isf1)
—s— (1 —e") 55

1 — e 02 3.2.26
> (L—e ™) (32.26)

gBi(s +1)(1 — ) 4 gB(e7?6H0 1 — 1)
— By(s+1)(1 — e2%2) — By(e 2+ 4y, 1)
Ti(s +2) Ty(s +2)

— 1— —is01\
g 2s ( ¢ ) 2s

To obtain a real expression of the stresses and displacements, the coefficients, A, B;

(1—e %) (3.2.27)

and Ay, B,, are separated as

A1201+iD1 ; A2202+iD2
Bl == F1 + ZH1 y B2 == F2 + ZH2 (3228)
If s is real, the coefficients CY, Dy, F}., H; can be determined from the following relations

by inserting Eq. (3.2.28) into Eqs. (3.2.26) and (3.2.27) and separating their real and
imaginary parts:

Fllau + H{an + F2,013 + Héa14 = R1 (3229)
Fllagl + H{QQQ + FQIGQ?, + Héa24 = R2 (3230)
Flla31 + H{a32 + F2,033 + Héa34 = R3 (3231)
Fl'a41 + H{a42 + F2,043 + Héa44 = R4 (3232)
with
2 2
- p2et2 :;2))
TRy
F, = B £l —:Jj))
TRO
2 2
H{ == Hlis(:g (_:+2))
TRy
H, = H, 25(5+2) ;Lj))
TRy
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and

ai
a12
a3
Q14
Q21
22
Q23
24
as1
a3z2
a33
34
a4
42
Q43

Q44

(s +1)(1 —cos(260;)) — 1 + cos[2(s + 1)8]
(s + 1)sin(260;) — sin[2(s + 1)6]

—(s+1)(1 —cos(26,)) + 1 — cos[2(s + 1)6,]
—(s + 1) sin(260) + sin[2(s + 1)6,]

—(s +1)sin(260,) — sin[2(s + 1)6, ]

(s +1)(1 —cos(26y)) +1 — cos[2(s + 1)6,]
(s + 1)sin(262) + sin[2(s + 1)6,]

—(s 4+ 1)(1 — cos(263)) — 1 + cos[2(s + 1)65]
g(my + ayy)

gai2

gaz

g(az —m;)

24 + Mo

Ry
Ry
Rs
Ry

(1 —cos(sb))q1 — (1 — cos(s62))go
sin(s6y)q; — sin(s62)qo

g(1 —cos(sby))q1 — (1 — cos(s62))qo
gsin(shy)q; — sin(sbs)qs.

Let || X || be the determinant of the matrix (a;;)sx4 and @; (1=1,2,3,4) the determinant,
in which the l-th column of (a;;j)4x4 is replaced by {R}4x1. After using Cramer’s law,

we have the following solution for the coefficients:

Q1 TR"™  Fr TR

F = = 3.2.33
T X 1 2s(s+2) T || X | 2s(s + 2) ( )
g @ TR Fy TR (3.2.34)
2T X | 2s(s+2) || X [[2s(s +2) o
= TR _ Hp TR, (3.2.35)
PTIX 1 2s(s+2) T | X [ 25(s + 2) -
5 (s+2) . (542)
TR H: TR
H, = @ 0 = 2 0 (3.2.36)

X 125(s+2) T || X || 25(s+2)°
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From Egs. (3.2.24), (3.2.25), (3.2.28), (3.2.33), (3.2.34), (3.2.35), and (3.2.36) the
coefficients C1, Cy, D1, Dy can be determined as:

1 TRO(S+2)

C, = HXM2§@+2ﬂm”XWC%@&)
+ Qpcos2(s+ 1)01] — Qqsin[2(s + 1)61] — Q1(s + 1) cos(20y) + Qa(s + 1) sin(201)}
_Cr TR
= X567 (3.2.37)
B 1 TRO(S+2)

Cy = HX”2§@+2ﬂ%HXWC%@@)

+ Q3cos[2(s+ 1)0] — Q4sin[2(s + 1)6s] — Q3(s + 1) cos(26;) + Qa(s + 1) sin(292)}

s TRS™1
X [25(s+2)s

(3.2.38)

5 (s+2)
1 TR, |
D, = B N ;
1 || X || 232(8 + 2){ QI || || SIH(S 1)
— Qusin[2(s +1)01] — @2 cos[2(s +1)01] — Qi (s + 1) sin(2601) — Qa(s + 1) Cos(291)}
DT T_R_0(8+2) l
X267

(3.2.39)

5 (s+2)
1 TRy .
Dy, = — X 0
2 = Xyl @ X TsinGe)
— Q3sin[2(s + 1)f2] — Qacos[2(s + 1)02] — Q3(s + 1) sin(2602) — Qu(s + 1) cos(292)}
* 542
D; TR 1
| X || 2s(s + 2)
Now the coefficients Cy, Dy, F}, Hy are well-known. Therefore, the Mellin transform of
the stress function
dp(s,0) = 2{Chcos(s0) — Dysin(sh) + Fcos((s + 2)0)

_me«&+m)}__iii@3 (3.2.41)

(3.2.40)

is known as well. Finally, the stress components in the Mellin domain can be calculated
from

1 TR—O(s-i—Q)
| X || 2s(s + 2)

Grrk(5,0) {2q;,c | X || =C;2(s + 1)cos(s0) + D;2(s + 1)sin(s0)

—F;2(s 4+ 55 + 4)cos((s + 2)0) + H;2(s* + 55 + 4)sin((s + 2)9)}

Prrk( 9)

(8; (3.2.42)
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1 TRU(S+2)
Goor(s,0) = X255 9) (s + 1){0,’;2003(39) — D;2sin(s0)

+F;2s cos((s +2)0) — Hi2s sin((s +2)8) — 2q; || X || }

Poor(s,0)

= 00 (3.2.43)
1 TR
Gror(s,0) = — TX 2505 2)2(3 + 1){0,’;3@'71(89) + Djcos(s0)
+Fi(s+2)sin((s +2)0) + Hj (s + 2)cos((s + 2)9)}
_ Bar(s,9)
= “06 (3.2.44)
where
Ff = @
Hi = @
Fy = Qs
Hy = Q4

C; = q || X || cos(s0y) + Fy cos[2(s + 1)61] — H{ sin[2(s + 1)6,]
—F7(s+1)cos(2601) + H (s + 1) sin(26,)
D} = —q || X || sin(s#y) — F} sin[2(s + 1)01] — H cos[2(s + 1)0]
—F(s+1)sin(26,) — H{ (s + 1) cos(26,)

= %

Cs = qa || X || cos(sty) + Fy cos[2(s + 1)02] — Hj sin[2(s + 1)0s]
—F5(s+ 1) cos(202) + Hj(s + 1) sin(26,)

Dy = —q || X || sin(sb) — Fy sin[2(s + 1)03] — H; cos[2(s + 1)0s]
—Fy(s+1)sin(20y) — Hy(s + 1) cos(263).
In Eqgs. (3.2.42 - 3.2.44), Q(s)=(s +2) || X || and P;jx(s, ) are the rest terms, i.e.

Pij(s,0) = gij(s){Alijk(S)COS(Sg) + Agiji(s)sin(s0) + Asiji(s)cos((s + 2)0)
+Auiji(s)sin((s +2)0) + A5ijk(3)} = 0, (5)Pijx(s, 0) (3.2.45)

where
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for the component in rr direction,

2s
—2(s+1)C},

2(s+1)Dy,
—2(s* + 55 + 4) F},
2(s* + 55+ 4)H;,
2qk || X |,

for the component in #0 direction,

900(5)
Aloor
Asgor
Asgor
Ayoor

A56’0k

Ty R+
2s
20},
-2,
2sFy;,
—2sHp,
—2q, [| X |,

(s +1),

for the component in rf direction,

gro(s)
Atror
Aok
Aszrok
Adror

A5r6‘k

. (s +1),

Dy,

Ck,

(s + 2)Hj,
(s + 2)Fy,
0.

Solution in a Polar Coordinate System

From the definition of the reversion of the Mellin transform, the stresses in a polar

coordinate system can be obtained by

Y4200

O'ijk(f, 9) = %

where v must chosen so that the integration in Eq. (3.2.46) exists. Following the

6ijk(s, 9)777(s+2)d8

Y—100

residual principle the stresses can be calculated from

oijk(r,0) = Zres{&ijk(smg)f—(snw)}

Sn <7y
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1 . d(Mfl)

-z (M —1)! Jim (s = sn) M oui(s, g)F(++2))

Sn<7Y
1 dM=1) P(s,0)
= lim {(s — sp)M 02/ __m=(s+2)]
527 (M — 1)l s=sn ds(M-1) | X || (s+2)

(3.2.47)

where s, is the M-th order pole of ;;;(s,#). The definition of the M-th order pole is:
if limg s, (5 — 5,) M V6,54 (s,0) — oo is satisfied, s, is the M-th order pole of 6;;x(s, ).
In this section we are only interested in the regular stress term, which is independent
of the distance r. From Eq. (3.2.47) we know that it is the solution according to s=-2
as the first-order pole of &;;x(s, 0).

For s=-2, we always have:

X0 =
Cy
Cy
Dy
D,
B
Fy
H = 2my(g1mig — gams){sin[2(0s — 0;)] + sin(26;) — sin(2605)}
H; = 2myg(gimig — gams){sin[2(0s — 01)] + sin(26;) — sin(2605)}.

o O O o o o o

It can be seen that in general, Hy and H, are nonzero for an arbitrary geometry
(01,05). However, from Eqs. (3.2.42- 3.2.44) it can be seen that H; and H, always
combinate with sin[(s + 2)6] or (s + 2). Therefore, for s=-2, always P,;(s, ) =0, but
@'(,’;s(&h:_g # 0. The condition of s=-2 as the first-order pole of &;;x(s,0) is that
|| X || |s:—2 =0, but %|s:—2 7‘é 0.

Finally, from Eq. (3.2.47) the regular stress term can be calculated by

After simplifying the equations, we have

O',«,«kg(g) = 2{Ak09 + BkO - CkO sm(29) - DkO COS(29)} (3249)

O'ggko(g) = 2{Ak09 + Bk() + Ckg Sin(29) + Dkg COS(29)} (3250)
1

O'rgkg(g) = —2{§Ak0 + Ckg COS(29) — Dkg sm(29)} (3251)
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where the coefficients Ay, Bro, Cro, Do can be determined analytically from Eq. (3.2.48)
and the corresponding equations.
The regular stress term can be rewritten as

gijko(0) = 00 fijro(6) (3.2.52)

with
0o = 2(B1gp + D1o) = 2(B2y + Do) (3.2.53)

and

frrkg(e) = {Ak[)e + BkO — Ckg SIH(QH) — Dk[) COS(QG)}/(BN —+ DIO) (3254)

fggko(g) = {Akog + BkO + CkO S1n(29) + Dk() COS(29)}/(310 + Dlg) (3255)

Fonol0) = {5 Avo + Chacos(26) — Diosin(20)} /(B + D) (3.2.56)

where always fgg10(0) = fpa20(0) = 1.
In the next sections explicit relations to calculate the coefficients Ayg, Bro, Cro, Dio will
be given for an arbitrary joint geometry (6;,6s), and for several special geometries.

3.2.1 Joint with an Arbitrary Geometry 6, 6

The coefficients Ayg, Bro, Cro, Do can be calculated from

Az B; Cy D;
AkU - ZkU, BkO = ZkU, CkO = ZkU, DkU = Z]CU,

with
Z = o’[Fi;— (01 + 02)(Fiz + For) — 3F)c + 2Fy, — 1]
+208((Fyr — sin(202))02 + [Frz — sin(201)]01 + 2Fy — 2, + 2]
+20[ Py — Fiafy + Fi]
+2B[(Fip — sin(2601))0, — (Fy1 — sin(26,))0]
+[ = Fis+ (01 = 05) (For — Fi) — Fye +1] (3.2.57)

A = %(a - 1){[F — sin(265)] — [Fio — sin(20,)]) (3.2.58)
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1
Biko = ZQ{Q[F“ — 2(F21 - F12 + Sin(291))91 — 2Sin(292)92 + F4C — 2F1p — Fln + 3]
+[Fis = 2(Far — Fip +in(201))01 + 25in(205)0, + Fie + Fip — 1]} (3.2.59)

Ciy = EQ{Q[QFALS(& + 0y) + (Fy1 — sin(26s)) + 3(Fi2 — sin(26y))]

H[2F (01 — 02) + (Fan — sin(205)) — (Fiz — sin(261))]} (3.2.60)

|
Diy =~ a{alFi = 2Fn (01 +6) = 3Fic + 2Fy, — Fiy — 1
+[Fis + 2Fy1 (02 — 01) + Fuo + Fi — 1]} (3.2.61)
1 . .
Ay = —5 (o= D)a{[Fo —sin(20,)] — [Fi. — sin(201)]} (3.2.62)

1
B;O = ZQ{Q[FALS + 2(F21 — F12 + sin(292))92 — 2Sin(291)91 + F4c — 2F1p — Fln + 3]

+[~Fyy — 2(Fa1 — Fip — sin(26,))60, — 25in(201)0, — Fie + Fi, + 1]} (3.2.63)

Cy = EQ{Q[QFALS(& + 6y) + (Fi2 — sin(26y)) + 3(Fy; — sin(26;))]

H[2F (01 — 02) + (Fan — sin(205)) — (Fiz — sin(261))]} (3.2.64)

1
Dy = —a{alFi = 2Fa(6, +0,) = 3Fic + 2Fy, — Fiy — 1]
+[=Fus + 2F1(0; — 01) — Fie + Fip + 1]} (3.2.65)

where the quantities Fiy, Fi,,, Fio, Foi, Fy, Fys are a function of 0, 6, and s, which are
given in the Section 3.1 (see Eqgs.(3.1.45) - (3.1.56)). The quantity ¢ is defined as

B o] — o a—+1
§=To—r = To(oy — a3) By : (3.2.66)
BT
for plane stress and
B 1+v))a; — (1 4+ 1) E a—+1
q= To( 11)_1/21 (1—1/2 2) o — TO[(l +uv)ag — (14 y2)a2] - 2 ' -
= L4 = 2 — U5
1 2
(3.2.67)

for plane strain, where a7 and ay are the thermal expansion coefficients in materials 1
and 2, and « and 8 are the Dundurs parameters.

It should be mentioned that the regular stress term can be determined analytically,
whereas the K-factors of the singular terms have to be determined by a numerical
method and they are dependent on the overall geometry and the loading conditions.
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Materia 1 Material 1

6
:) 0—m/2
-6 Material 2
Material 2

Figure 3.2: Joint with 6; = —0,. Figure 3.3: Joint with 6; — 6, = 90°.

3.2.2 Joint with 91 = —92

For this joint geometry (see Fig. 3.2) the quantities A}, By, Cro, Dio» and Z can be
simplified as

7Z = —a*(cos(260,) — 1)? + 2aB(cos(260;) — 1)[sin(26,)6, + cos(260;) — 1]
+sin?(26,) — 2sin(26;) cos(26, )6, (3.2.68)
Al = —%cj(a + 1) sin(26;)[cos(260,) — 1] (3.2.69)
B, = %q‘{a[cos(?@l) — 1][2sin(26,)6; + (cos(26,) — 1)]

+ sin(261)[2 cos(2601)0; — sin(261)]} (3.2.70)
= iqsin(%l){a[cos(%l) 1] - cos20) + 1—25in(28)0 ) (3:2.71)

1
Dy = —Zq{ — alcos(260;) — 1]? + 2sin(26;) cos(26,)0; + cos?(26,) — 1}

(3.2.72)
An, = %(j(a 1) sin(261)[cos(26,) — 1. (3.2.73)

By, = icj{a[cos(%l) — 1][2sin(26,)6; + (cos(26,) — 1)]
— sin(20;)[2 cos(260,)0; — sin(26;)]} (3.2.74)
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Coy = —%qsin(%l){a[cos(%l) — 1]+ cos(201) — 1+ 2sin(201)61}  (3.2.75)
D3, = icj{a[cos(%l) —1]% + 25sin(26,) cos(26,)0; + cos®(260;) — 1}. (3.2.76)
3.2.3 Joint with 91 — 92 = 7T/2
For this joint geometry (see Fig. 3.3) there is:
7 = o®[cos(20))sin(20,)(20, — 7/2) — 2sin?(26,) + 1]
+afsin(260,)[2sin(260;) — cos(260,)(260, — 7/2) — /2]
+a cos(260;)[sin(20,)7/2 — 2]
—[sin(26y)[cos(20,)7/2 + (26, — 7/2)] — 1 (3.2.77)
Aty = 5o+ 1)sin(20)7 (3.2.78)
B, — —iq{a[— cos(260,) + sin(26,)7/2 — 1]
+cos(201) + sin(20,) (26, — 7/2) + 1} (3.2.79)
cr = —iq{asin(?ﬂl)p cos(26,) + sin(26,)(20, — 7/2) + 1]
+sin(261)[sin(201)7/2 — 1]} (3.2.80)
Diy = —a{alfcos(26,) + 1+ cos(26,) sin(26,)(26; — 7/2) — 25in’(26,)]
+sin(201) cos(201)7/2 — cos(26;) — 1} (3.2.81)
A5y = %(1 — ) sin(26,)q. (3.2.82)
By = —iq{a[cos(%l) + sin(26,)7/2 — 1]
+cos(20;) -+ sin(20) (20, — 7/2) — 1} (3.2.83)
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= —iq{asin(291)[2cos(291)+sin(291)(291—7r/2)—1]

+sin(201)[sin(201)7/2 — 1]} (3.2.84)
Dip = —i{al-cos(26,) + 1+ cos(26,) sin(26,)(26) — /2) — 25in’(261)]
+5in(201) cos(20,)/2 — cos(260,) + 1}. (3.2.85)

3.2.4 Joint with 01 — 02 =T

Material 1

-
)91— T

Material 2

Figure 3.4: Joint with 6; — 6y = 180°.

Materia 1

0,

<N

0,-3m/2

Material 2

Figure 3.5: Joint with 6; — 6y = 270°.

For a joint with 6; — 0, = 7 (see Fig. 3.4), the following relations are valid,

Al[) - A20 :0 (3286)

By =—

q

4 Blcos(26;) — 1] — accos(26,)

(3.2.87)

010 = — Sin(201)B10 (3288)

D10 = — COS(291)BlO (3289)
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By = B
Cy = Ch
Doy = Dap. (3.2.90)

The regular stresses in polar coordinates are

O'm«g(g) = 4B10 C0S2(91 — 9)
0'990(9) = 4310 SiIl2 (91 — 9)
T,ng[)(e) = 4810 sin(91 — 0) 008(91 — 0) (3291)

By using the transformation of the stress component from polar to Cartesian coordi-
nates

oz(z,y) = 0,(r,0) cos?(0) + ag(r, 0) sin?(0) — 27,4(r, ) sin(f) cos(f)  (3.2.92)
o, (x,y) = 0,.(r,0) sin?(0) + oy (r, 0) cos®(0) + 27,4(r, ) sin(0) cos(9)  (3.2.93)

Tuy(2,y) = [0:(r,0) — op(r,0)] sin(0) cos(0) + Tr4(r, 0)[cos?(0) — sin*(0)]  (3.2.94)

the regular stresses in Cartesian coordinates can be obtained as

Opr0 = 4B10 COS2(01)
Oyyo = 4310 SiHQ(gl)
Teyo — 4310 sin(@l) COS(gl). (3295)

It can be seen that in Cartesian coordinates the regular stresses are independent of the
coordinates, i.e. the regular stress term in Cartesian coordinates is a constant.

3.2.5 Joint with 91 — 92 = 37‘(’/2

The joint geometry is shown in Fig. 3.5. The simplified relations are:

7Z = a*[cos(20;)sin(26,)(20, — 37/2) — 2sin*(260;) + 1]
+afsin(260,)[2sin(260;) — cos(26,)(20, — 37/2) — 37/2]
+a cos(26,)[sin(26,)37 /2 — 2]
— [ sin(26,)[cos(2601)37/2 + (26, — 37/2)] — 1 (3.2.96)

1
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1
Biy = —a{ol-cos(26)) + sin(26:)37/2 ~ 1]

+cos(201) + sin(20,)(26, — 37/2) + 1} (3.2.98)

cr, = —iq{asin(291)[2 cos(20,) + sin(26,) (26, — 37/2) + 1]
+sin(201)[sin(26,)37/2 — 1]} (3.2.99)

Diy = —qi{alcos(260,) + 1+ cos(26,) sin(26,)(26) — 37/2) — 2sin’(26,)]
+ sin(26;) cos(26,)37w/2 — cos(260) — 1} (3.2.100)
A = %(1 — o) sin(26,)q. (3.2.101)
1 |
B, = —Zq{a[cos(%l) + sin(26,)37/2 — 1]

+cos(20;) +sin(260;) (26, — 37/2) — 1} (3.2.102)

g = —iq{asin(291)[2 cos(26,) + sin(260,)(20, — 37/2) — 1]
+sin(2601) [sin(261)37/2 — 1]} (3.2.103)

Diy = —qi{al-cos(26,) + 1+ cos(26,) sin(26,)(26) — 37/2) — 2sin”(26,)

+ sin(26;) cos(260;)3m /2 — cos(260;) + 1}. (3.2.104)

3.2.6 Joint with 91 — 92 =27

This is the case of a joint with a crack (see Fig. 3.6). It can be shown that the relations
to calculate the regular stresses are the same as those of a joint with #; — 6, = 7 (see
Eqgs. (3.2.86) to (3.2.95)), except for #; = 180°.

3.2.7 Joint with #; = 7 and 6, being Arbitrary

For this joint geometry (see Fig. 3.7) the regular stress term is very simple. The
coefficients Agg, Byro, Cro, Dio take the following values:

Alg = 010 = A20 == BQO == 020 == DQO = 0, (32105)
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Materia 1

Material 1

91—211061

e,

Material 2 Material
Figure 3.6: Joint with 6; — 65 = 360°. Figure 3.7: Joint with #; = 180° and 6,
being arbitrary.
Bip = —Do (3.2.106)
and
D,y = L 7 (3.2.107)
Y72 1-qa -
where 6, # —m. The regular stress term in polar coordinates is
Omko = —4Dygcos?(0)
Opoko — —4Dk0 SiHQ(g)
orgko = 4Dy sin(0) cos(h), (3.2.108)
and in Cartesian coordinates takes
9
Opzi0 = —4Dy = 1
a—1
Ogx20 = 0
Oyy10 = Oyy20 = Ozy10 = Ozy20 = 0, (32109)

which is independent of the coordinates, i.e. the regular stress term in Cartesian

coordinates is a constant.

3.2.8 Joint with 91 = —02 =T

This is a special case covered by Section 3.2.2. However, the equations in Section 3.2.2

for calculating the coefficients can not be used directly, because the denominator is zero
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Material 1 Material 1

Figure 3.8: Joint with an interface Figure 3.9: A quarter planes joint.
crack.

for §; = 180°. A separate treatment has to be applied (see [85]). For this special case
(see Fig. 3.8), i.e. a joint with an interface crack, the coefficients Ao, Byo, Cko, Dko are

A =Cro= Ay =Cyn =0 (3.2.110)
By = j%
Dy = %
By = % )
Dy = —%. (3.2.111)

The regular stress term in a polar coordinate system is

ko = —2Dpo[cos(26) + 1]
oooko = 2Dgp[cos(20) — 1]
Growo = 2Dy sin(26). (3.2.112)

and in Cartesian coordinates reads

Oggrio = —4Dyp=—q
Opp20 = —4Dy =q
Oyy10 = Oyy20 = Ogy10 = Ogzy20 = 0. (32113)

From Eq. (3.2.113) it can be seen that for a joint with an interface crack under thermal
loading the regular stress term, which is the called T-stress term, can be calculated
analytically!
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3.2.9 Joint with 91 = —92 = 71'/2

The quarter planes joint (see Fig. 3.9) is a special case covered by Section 3.2.2 or
3.2.4, which is often used in practice. For this joint

Ay = Ayp=Cip=0Cyn=0

q
puy fr— .
Big Byg = D1g = Dy = 128 —a)

Following the definition of the Dundurs parameters (see Eq. (3.1.86)), the coefficients

(3.2.114)

can be calculated from

T (CYl - OZQ)

1
Bio=7 —w—w (3.2.115)
E.  E»
for plane stress and
. 1 T [a1(1 + Vl) - a2(1 + 1/2)]
By = 1 ) (it (3.2.116)
B By
for plane strain. The regular stresses in Cartesian coordinates are
Opz0 = 0
Oyyo — 4By
Too = 0. (3.2.117)

This result was also obtained by Mizuno et al. [62].

3.3 Determination of the Regular Stress Term for
a Joint under Remote Mechanical Load

For the same joint geometry and material combination, the regular stress term depends
strongly on the type of loading. In Section 3.2 the regular stress term for a joint with
free edges under thermal loading has been given in an explicit form for an arbitrary
geometry (6, 6;) and for some special geometries. In general, the regular stress term is
nonzero for thermal loading. Regarding a joint under remote mechanical loading (see
Fig. 3.10), however, the regular stress term is zero for most joint geometries and mate-
rial combinations. Only for some geometries and material combinations is the regular
stress term nonzero. In this section the method and the explicit form to calculate the
nonzero regular stress term will be given for a joint with an arbitrary geometry (61, )
under remote mechanical loading and for several special geometries. In this case, the
Airy’s stress function is used.
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Materia 2

R,

Figure 3.10: A joint under remote mechanical loading.

For the determination of the regular stress term, the following stress function
Do (r,0) = r°[Axof + Byo + Cxo sin(26) + Dy cos(26)] (3.3.1)

can be used, where the coefficients Ayg, Bio, Cxo, Dxo are real unknowns. The stresses
in polar coordinates are

UT‘T‘kO(Ta 9) = 2[Ak09 + Bkg - CkO sm(29) — Dkg COS(29)] (332)

UQGkO(T, 9) = 2[Ak09 ~+ Bio + Cxo Sin(29) + Do COS(29)] (333)
1

O',«Qk()(?“, 9) = —2[5./41(0 + CkO COS(29) — DkO sm(29)] (334)

From the relations between the stresses, strains, and displacements, the following can
be obtained (see [86] and [124]):

2r

ukg(r, 9) = Ek [Akgg(l — Vk) + Bkg(l - l/k)
—Cro (1 + ) sin(20) — Do (1 + ) cos(26)] (3.3.5)
vro(r,0) = %[—Cko(l 1) c08(20) + Do (1 + 1) sin (20)]
T For — 2000 (3.3.6)

Ex
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where, to avoid the rigid body displacements, . = 0 and v = 0 at r=0 is used, and F},
are real integration constants (see [86]). To determine the coefficients Ayg, Bxo, Cko, DPxo,
and Fio, boundary conditions have to be used. For a joint with free edges, the regular
stress term should also satisfy Eqgs. (3.1.18) and (3.1.19), which lead to

2u[Bio(1 — 1) — Dio(1 4+ v4)] — 2[Bap(1 — v5) — Dap(1 4+ 12)] = 0, (3.3.7)
2u[—Cio(1 4 11)] — 2[—Ca0(1 + v2)] + Ea(F19 — Fag) = 0, (3.3.8)
pAro — Az = 0, (3.3.9)

(Big + Dyo) — (Bag + Day) =0, (3.3.10)

(Aig + 2C10) — (Agp +2Cx) = 0, (3.3.11)

A0 + By + Cigsin(26,) + Dy cos(26,) = 0, (3.3.12)

Asofs + Bag + Cag sin(2605) + Doy cos(2605) = 0, (3.3.13)

Aso + 2C10 c0s(2601) — 2Dygsin(26;) = 0, (3.3.14)

Asg + 2Ca0 cos(2602) — 2Dy sin(2605) = 0. (3.3.15)

From Eqs. (3.3.7, 3.3.9 - 3.3.15) the coefficients Ayg, Bio, Cxo, Pxo can be determined,
and then from Eqs. (3.3.8) the difference of the coefficients Fiy and Fyg is known. For
the regular stress term only the coefficients Ayg, Bio, Cxo, Dxo are of interest. Equations
(3.3.7, 3.3.9 - 3.3.15) can be rewritten in a matrix form as

[AoJsxs{ Xo}sx1 = {0}sx1 (3.3.16)

where {Xo}sx1 = {A1o, Bio, Ci0, D10, A0, Bao, Coo, Dao }*, and [Aglsxs is its coefficient
matrix, which includes the material properties (FEj, vy, k=1,2 for materials 1 and 2)
and the geometry angles (1, 6;). Equation (3.3.16) has a nonzero solution, if and only
if

Det([AoJsxs) = 0 (3.3.17)

is satisfied. If Det([Ag]sxs) # 0, the regular stress term is always zero. In the following
sections the explicit form of Det([Ag]sxs) will be given for an arbitrary geometry and
for several special geometries. In case of Det([Aplsxs) = 0, the nonzero coefficients
Ao, Bro, Cro, Do can be determined analytically. They are proportional to one arbi-
trary constant. Relations to calculate these coefficients will be presented below.
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3.3.1 Joint with an Arbitrary Geometry 6,6

For an arbitrary joint geometry with 6y, 65, there is

Det([Ao]gxg)

or

Det([Ao|sxs)

32
(1+a)?
-2 [1 + a] [6;sin(201) + 2« [1 +a— 25] cos(26,)
+2 [1 - a] [ 0ssin(20,) + 2« [ —a+ B] cos [2(01 + 02)]
+[— 1 —a2+2a6] cos [2(6; — 69)]
+[—a+ 8] [0/(1+a) = 02(1 — a)] sin[2(61 + 0)]

{1—a2+4a5+2a[—1+a—26]c0s(291)

+H(-1—a+B+aB) 0, +(1—a+pB—ap) b sin[2(91—92)]}
(3.3.18)

32
(1+ «a)?
+a2[ —1+2cos(20;) —cos[2 (0; —02)] + 2 cos(205)
=2 cos[2 (0 +02)] — (0, + 02) sin[2 (0, + 05)]]
+af [4 —4cos(26;)+2 cos[2 (0 —0s)] — 4 cos(26;)
+2 cos[2 (0; +02)] —20; sin(26,) + (0, — 02) sin[2 (0, — 05)]
=20, sin(20) + (0, + 02) sin[2 (0, + 05)]]
+a[ —2c08(26;) +2 cos(2602) — (0; +65) sin[2 (6; — 05)]
+ (=0 +05) sin[2 (0, + 05)]]
+B[ =20, sin(20,) + (0, + 02) sin[2 (6, — 0,)]

{1 —cos[2(6y — 02)] + (0 — 01) sin[2(6; — 09)]

+20; sin(20) + (0, — 05) sin[2 (0 + 05)]] } (3.3.19)

From Egs. (3.3.18) and (3.3.19) we can see that in general Det([Ap]sxs) is nonzero,
i.e. the regular stress term is zero. However, for a given geometry 6,6, material
combinations with «, 3 exist, which lead to Det([Ap]sxs) = 0 (using Eq. (3.3.19) makes
it easier to find the material combinations). Or, for a given material combination with
a, 3, a geometry with 6y, 0y exists, which leads to Det([Ap|sxs) = 0 (using Eq. (3.3.18)
makes it easier to find the joint geometries).

It can be shown that Det ([Ap]sxs) equals to d(det[A])/dw |,—o (comparing Eq. (3.3.18)
and Eq. (3.1.85) in Section 3.1) except of a constant. This means that if w = 0 is the
second order eigenvalue of the problem, for a joint under remote mechanical loading
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the regular stress term may be nonzero.

In case of Det([Ag]sxs) = 0, the nonzero coefficients Ay, Bxo, Cko, Dxo given as

A = Kodj,
By = KoByy,
Cro = KoCp,
Dyro = KoDyy,

can be determined from

A, = 2(1+ a){l —a+28 —2Fcos(260,) + (=1 + ) cos[2 (0 — 65)]

+2 (a — B) cos(20) + (—a + ) cos[2 (01 + 92)]} (3.3.20)

By, = { —2(1+a)(1 —a+28)0; +2(1 — a)(1 + )b cos[2 (6, — 65)]

+4(1 + @) (8 — @)0; cos(205) +2(1 — &) (a — BB cos[2 (61 + 605)]
+[40(1 = @) = 2(1 = 3a) A sin(260:) + [1 — a+ 207 + (1 — 3a) B] sin[2 (61 — 0s)]

+(1 = 3a)(f — a)sin[2 (6, + 92)]} (3.3.21)

Ciy = {4a(a —1)+2(1—-3a)B+ [1 —a?—2(1 - 3a) 5] cos(26,)

+[a(l 4+ a) + (1 — 3a) B]cos[2 (6; — 65)]

+ [—1 + 20 — 5a% — 2 (1 — 3a) 6] cos(20y)

+[a(l+a)+ (1 —3a) f]cos2 (0 + )] — 2 (1 — «) BO2sin[2 (6 — 05)]
+2(1 = ) [(1 + @)y — (1 — a + 23) 2] sin(26,)

Dj, = {4 (14+a) B —2(1 — )y cos[2 (6, — 0s)]

+2(1+0) [ (14 a = 28) 01 — (1 — a)ba] cos(260) + 2 (1 — @) B0 cos[2 (61 + 0)]
+[=1+0a”+2(1 - 3a) ] sin(261) + [~a(1 + @) + (—1 + 3a) B] sin[2 (61 — 02)]

+ (1 = a?)sin(260y) + [~a(1 + a) + (=1 + 3) B sin[2 (0; + 92)]} (3.3.23)
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50 = 2(a-— 1){ —1l+a—28+2Fcos(20,) + (1 — ) cos[2 (61 — 65)]

+2 (—a + ) cos(26;) + (o — ) cos[2 (6, + 92)]} (3.3.24)

By, = (1— a){ —2(14+a)bf +2(1—p)0yc08[2 (0 — 05)] + 4 (—a + [3) O3 cos(26,)
+2 (v — ) O3 cos[2 (01 + 02)] + 2asin(26;) + (1 — ) sin[2 (6, — 65)]

+2 (CY - B) sin(292) + (—CY + 5) Sin[2 (91 + 92)]} (3325)

Cyp = (1— a){ — 20+ 204+ (1 4+ a —20) cos(261) + (—a + () cos[2 (6 — 6)]
+ (=14 a —28)cos(26;) + (a+ B) cos[2 (61 + 0)] — 28602 sin[2 (61 — 05)]
+204a)f; +2(—1+ a—20) 0] sin(260y) + 256, sin[2 (0; + 92)]}

(3.3.26)

Dy, = (a— 1){ — 280y cos[2 (61 —0)] +[-2(1 + )0 +2(1 — a+ 2[) 03] cos(205)
—2005 cos[2 (01 + 02)] + (1 — «) sin(261) + (o — B) sin[2 (0 — 05)]

+ (=1 + a—28)sin(20) + (o + 5) sin[2 (61 + 92)]}. (3.3.27)

The regular stress term in polar coordinates can be calculated from

ko (1, 0) = Ko Aol + Big — Ci sin(20) — Dy, cos(20)] (3.3.28)

O'ggkg(T, 9) = K() [Alt()g + Bi() + Cf{ko Sln(29) + Dio COS(29)] (3329)
1

aroko(r, 0) = —K0[§Af§0 + Cyp cos(26) — Dy, sin(26)] (3.3.30)

where Kj is an unknown constant, which is proportional to the remote loading and
has to be determined from the stress analysis of the total joint, e.g., using the Finite
Element Method (FEM). The method to determine K from the stresses calculated
from FEM will be explained in Section 3.4.
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3.3.2 Joint with 91 = —92

For a joint geometry with 6; = —0, (see Fig. 3.2),

Det ([Ao]sxs) i i4a)2 sin(91){ [1-30%+608]sin(0;) — 261 [1+ o B] cos(8))
~20,[1—ap| cos(30,) + [1+a” = 2a 5] sin(3 91)} (3.3.31)
Det([Aolsxs) = ﬁ sin(91){ [ — 26, cos(f;) —260; cos(36;) +sin(f,) + sin(3 91)]

—|—a2[ — 3 sin(#;) + sin(3 91)]
+2a/ [— 6, cos(6;)+60; cos(360,)+ 3 sin(f,) — sin(3 91)] }
(3.3.32)

For the given joint geometries (6; = 45°,60°,90°,120° and 135°), the possible material
combinations, which satisfy Det([Ag]sxs) = 0, are plotted in a Dundurs diagram in
Fig. 3.11. For these joints, the regular stress term is nonzero.
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Figure 3.11: Material combinations, for Figure 3.12: Material combinations, for
which the regular stress term is nonzero which the regular stress term is nonzero
in a joint with #; = —60,. in a joint with #; — f, = 90°.

In case of Det([Ap]sxs) = 0, the nonzero coefficients Aj,, By, Ciy, Dio can be determined
from

T = 8(1+a) sin2(91){1 —a+ 0+ (1-7) Cos(201)} (3.3.33)
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{2 —1—a+2a°— 1+3a)ﬁ]91

+4(1 4+ a)(f — a)91 cos(26,) — 2(1 — a)(1 + ()0, cos(46,)
+2[2a(1 —a)+ (—1+3a) 5] sin(26,)

+[1—a+2%+ (1 - 3a) ] sin(491)} (3.3.34)
Ci, = 25in(91){ —2(1 —a)(2+ p)b cos(0y) + 2 (1 — «) p6, cos(36;)
+[a(=3 4 5a) + 3 (1 — 3«) B] sin(6,)

+[—a(l+a)+ (—1+3a) ] sin(391)} (3.3.35)

Dy, = {2 (1+3a) B0, +4(1 + a)(1 — 3)0; cos(26,)
+2(1 = a) B0y cos(46;) + 2 [~1+ o® + (1 — 3a) B] sin(20;)

+[—a(l+a)+ (=1 + 3a) f] sin(491)} (3.3.36)
Asy = 8(1—a) sinQ(Gl){l —a+8+(1-5) cos(291)} (3.3.37)

By, = (1—a){2(—1—2a+5)91—1—4(04—5)91(305(201)

+2 (=1 + ) 6, cos(40y) + 2(sin(26,) + (1 — 5) sin(491)} (3.3.38)

Co = 2(1—a) sin(&l){ —2(24 B) 6y cos(0y) + 200, cos(36,)

+ (—a+38)sin(6y) + (o — B) sin(391)} (3.3.39)
Dy, = —(1-— a){2691 —4(1+ B) 6y cos(20y) + 26, cos(46,)
+2 (1 — a+ B)sin(26,) + (a — B) sin(491)}. (3.3.40)

The regular stress term in polar coordinates can be calculated from Eqs. (3.3.28 -
3.3.30).
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3.3.3 Joint with 91 — 92 = 71'/2

For a joint geometry with 6; — 6y = 7/2 (see Fig. 3.3),

Det([Aglsxs) a i4a)2 sin(01){ — 20, [1 + Ozﬁ] cos(6y) + [1 —3a% + 6aﬁ] sin(6,)
+26, [Ozﬁ — 1] cos(36,) + [1 +a? — QQB] sin(391)} (3.3.41)
64 . . .
Det([Aolsxs) = Trap s1n(91){ [ = 261[cos(301) + cos(0)] + sin(361) + sin(6y)]

+0?[sin(30;) — 3 sin(6y)]
+2a [91 [cos(36;) — cos(6y)] — sin(361) + 3 sin(Gl)] }
(3.3.42)

For the given joint geometries (6; = 30°,45°,60°, due to the restriction of ; — 0, = m/2
here 6; takes different values as in Section 3.3.2), the possible material combinations,
which satisfy Det([Ap|sxs) = 0, are plotted in Fig. 3.12.

In case of Det([Ag]sxs) = 0, the nonzero coefficients Aj, By, Cio» Dy are

A, =201+ a){Q —a+f—2acos(26;) + (a — B) cos(491)} (3.3.43)

B, = {(1—a)(1+6)7r+2 2+ a+0a”—(3+0a)B| 0
+4(1 + a)(a — B)0; cos(201) + (o — B)(1 — ) (7 — 260;) cos(40;)

+22a(1 — ) — (1 = 3a) f] sin(20;) + (o — B) (1 — 3cx) sin(46;)

(3.3.44)
Cly = {a(—5 +3a)+ (1 —3a) [ +2 (1 —a+ 2&2) cos(26;)
+[ —o(l+a)+(—1+3a) B] cos(46,)
+(1 = ) [(a— 1= 28)7 + 4(8 — )6 ] sin(26,)
+(1 — a)p(m — 26;) sin(491)} (3.3.45)
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Dj, = { [(—1 +a)m+2(3 + a)ﬂl]ﬁ - (1+a) [(1 —a)m + 4(a — 6)91] cos(26,)
+(1 = a)B(m — 20) cos(461) + 2 [~ 1+ o® + (1 — 3) ] sin(20;)

+a(l+a)+ (1 —3a)f] sin(491)} (3.3.46)
A = 2(1— a){Q —a+ f—2acos(260;) + (o — B) cos(401)} (3.3.47)

By = (- 0-prr22-a+
+2(8 — a)(m — 26y) cos(26;) + (a — B) (7 — 26;) cos(46, )

+20sin(26,) + (o — 5) sin(491)} (3.3.48)
Cypy = —(1— a){a — B —2co0s(26,) + (a + B) cos(46,)
+[(1 —a+28)7+4(a— ) 0:]sin(26,)
—B(m — 26y) sin(491)} (3.3.49)

Dy, = (1-— a){ 1-p)rm—22+a—pB)6 +2(8— a)(m — 26,) cos(26,)

+(a — B)(m — 26y) cos(46,) + 25sin(260y) + (o — ) sin(491)}.

(3.3.50)
3.3.4 Joint with 01 — 02 =T
For a joint geometry with 6; — 6y = 7 (see Fig. 3.4),
128 )
Det([Aplsxs) = Tra)? sin(f;) [6 + a cos(26;) — B cos(2 91)] X
X [ —mcos(f;)+amcos(0;) —2ab; cos(0;) +2a sin(01)]
(3.3.51)

or

Det([Ao]gxg) = m

+aﬁ[ — 1+ cos(2 91)] [— 7 cos(f;) +26; cos(6;) — 2 sin(Qj)]

128 5 sin(f;) {a2 cos(26;) [7r cos(f;) —26; cos(6;) + 2 sin(Qj)]

—a[ﬂ cos(f;) cos(2 01)] + pm cos(6;) [— 1+ cos(2 91)] } (3.3.52)
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For the given joint geometries (#; = 30°,45° 60°,90°, 120°,135°,150°), the possible
material combinations, which satisfy Det([Ag]sxs) = 0, are plotted in Fig. 3.13.

0.5 5

L1
AN}

Figure 3.13: Material combinations, for Figure 3.14: Material combinations, for
which the regular stress term is nonzero which the regular stress term is nonzero
in a joint with 6, — 6, = 180°. in a joint with 6, — 6, = 270°.

In case of Det([Aglsxs) = 0, the nonzero coefficients A, By, Ciy, Dy, can be determined
from

o = 8(1+a) sin2(91){5 + (= p) cos(291)} (3.3.53)

B, = {—2(1—a)(1+5)7r—2[a(1—a)+(1+3a)6]91
+4(1 4+ ) (8 — )b cos(261) — 2(1 — a)(a — B) (7 — 61) cos(46;)
+2[2a(1 — a) — (1 — 3a) B] sin(261) + (1 — 3a) (B — «) sin(46;)

(3.3.54)

Ciy, = 25in(91){2(1 — ) [(1 —a+ f)r+ (20 — 5)01] cos(6y)
+2(1 — ) B(—m + 60;) cos(301) + [a(—3 + ba) + 3 (1 — 3a) [ sin(6,)

+[—a(l+a)+ (=1 4+ 3a)F] Sin(391)} (3.3.55)

D}, = {2 (1—a)pr+2(1+3a)80; +2(1+a) [(1 —a)r+2(a— 3)0;] cos(26)
+2(1 — a)f(—m + 6;) cos(40;) + 2 (1 — 3a) Bsin(26;)

+[—a(l+a)+ (—1+3a) ] sin(401)} (3.3.56)
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Ay = 8(1—a) sin2(91){ﬁ + (o — B) cos(291)} (3.3.57)

By, = —(1-— a){2 1-08)m+2(a+B)0 +4(a— B)(—m + 01) cos(26,)

+2(a — B) (7 — 0y) cos(46,) + 2 (—2a + () sin(26,) + (o — B) sin(491)}

(3.3.58)
Cy = —2(1—a) sin(ﬂl){2 (-1+a—B)m+ (—2a+ ) 0] cos(6:)
+253 (m — 0y) cos(361) + 3 (o — ) sin(0y) + (o + ) sin(301)}
(3.3.59)
Dy, = —(1— a){26(7r —60)+2[(-1+a—-20)r+2(—a+ () 0] cos(26;)
+203 (m — 0y) cos(461) — 25sin(20;) + (a + ) sin(491)}. (3.3.60)
From Eq. (3.3.51), it follows that Det([Ap]sxs) = 0 if
_ Blcos(26,) — 1]
= s (3.3.61)
B mcos(f)
“= 7 cos(fy) — 260, cos(fy) + 2sin(f;) (3:3.62)
For this «, the regular stress term can be simplified. For
_ Blcos(20,) — 1]
= S 2 (3.3.63)
the regular stress term in Cartesian coordinates is
B _ 64cos?(6;)[B + cos(261) — 3 cos(26;)]
Oaalo = Caz20 = [cos(26,) + [ cos(260,) — ]2 Ko
X {691 — mcos(201)(1 + ) + B cos(46y)(m — 61) — 25sin(260;) + Bsin(401)}
(3.3.64)
. . Siﬂ2(91)
Oyy10 = Oyy20 = COSQ(gl)UIIIU (3365)
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sin(6;)

Tey10 = Tzy20 = M%mm- (3.3.66)
For
7 cos(f)
= 3.3.67
T cos(6y) — 26 cos(6;) + 2sin(6;) ( )
it holds
16 sin*(6,)

KOX

Oaal0 = 70 cos(6y) — 61 cos(0y) + sin(6;)

x {2 (28 + (1 = 2B) 70, + 4863 | cos(61) + 2 [~28 + (1 — 28) 70y + 4507 cos(36,)

+ 28 (m+ 26,)sin(6,) + 25 (7 — 66,) sin(361) — [2 0 + sin(29)]Aﬂ} (3.3.68)
B 16 sin?(6;)
Oyylo = 71'(;05(01) — 01 COS(Gl) n Sin(el)KO{ — 271'91 COS(91) — 271'91 COS(301)
—2msin(6y) + 27 sin(360,) + [260 — sin(29)]A7r} (3.3.69)

_ 16sin”(6,)
o = QICOS(QIHSM)KO{[(1—6>7r+65911cos(91>

+[(1+ B) ™ — 6801] cos(361) + 2 (=33 + Bty — 2667 sin(6y)

+2/3 (1 + 7l — 20%) sin(36;) — cos(ZH)A,r} (3.3.70)
_ _16sin’(00)[0h cos(6) — sin(6)]
Ozz20 = [7‘(‘ COS(gl) — 0, COS(gl) + sin(@l)]Q o X

X {2 (25 — 72 + 287 + 7y — 6870, + 4593) cos(6;)
+2 (=28 — n” + 267 + w0 — 64370, + 45807 ) cos(30,)
+203 (=31 + 26,) sin(0y) + 25 (57 — 66,) sin(36,) — [20 + Sin(29)]Aﬂ}

(3.3.71)

_ 16sin*(6,)[6; cos(f;) — sin(6;)] o o
Tyy20 = [ cos(61) — 61 cos(0y) + sin(91)]2K0{2 (=m =+ 61) cos(61)

+27 (=7 + 61) cos(361) + 2msin(0;) — 27 sin(36;) — [20 — sin(29)]Aﬂ}
(3.3.72)
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_ 16sin*(61)[6; cos(6:) — sin(6;)] . o o
Tay20 = [ cos(6y) — 61 cos(6y) + sin(Hl)]ZKO{ (=7 +5p 6361) cos(th)

+ (=7 — 5Bm + 650;) cos(301) + 28 (3 + 7% — 30y + 267 ) sin(6))

+20 (—1 + 72 — 3mh) + 29%) sin(360;) + COS(QQ)AW}, (3.3.73)
with
Ay =1[(1+p)m —2861]cos(by) + [(1 — B) m + 2561] cos(36,) + 65 sin(#;) — 2/5sin(36;).

(3.3.74)

3.3.5 Joint with 01 — 02 = 37‘(’/2

For a joint geometry with 6; — 6y = 37/2 (see Fig. 3.5),
16
(14 «)?
+20 [37r —3am — 491] sin(26;)

Det([Aolsxs) = {4(1 + af) —8acos(20) + 4« [a - 5] cos(46;)

+(a—pB) [3r—3ar+4a0,| sin(491)} (3.3.75)

or

1
Det([Aglsxs) = 6 5 {4 + a? [4 cos(40;) — 3w sin(46;) + 46, sin(4 91)]

(1+a)
+2a3 sin(26;) [— 3m+3mcos(20,) —460; cos(20;) + 4 sin(2 91)]
+2 v cos(261) [—4 4+ 37 sin(26;)]

+43 cos(0;) [37 — 40, — 37 cos(20,)] sin(ﬁj)}. (3.3.76)

For the given joint geometries (A; = 45°,60°,90°,135°,180°,210°,225°), the possible
material combinations, which satisfy Det([Ag|sxs) = 0, are plotted in Fig. 3.14.
In case of Det([Ag]sxs) = 0, the nonzero coefficients Ay, By, Cio, Diy take

o= 201+ a){Q —a+ f—2acos(260,) + (o — B) Cos(491)} (3.3.77)

B, = {(1—a)(1+ﬁ)37r+2[_2+a+a2— (3+0a) B0
+4(1 + o) (o — BBy cos(26,) + (1 — o) (o — B) (3w — 26,) cos(46,)
+2[2a(1 — o) — (1 — 3) B]sin(26;) + (1 — 3a) (o — B) sin(46;)
(3.3.78)
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Cly = {a(—S +3a)+ (1 —3a)8+2 (1 —a+ 2&2) cos(26;)

+[—a(l + a) + (=1 + 3a) 5] cos(46,)
+(1 = a)[(a = 1 = 28)37 +4(8 — @)y ] sin(261)

+5(1 — «)(37 — 26,) sin(491)} (3.3.79)

D;, = {3(—1+a)ﬁ7r+2(3+a)591
+(1+ ) [3m(a = 1) +4(8 — @)1 | cos(201) + (1 — a) (3 — 261)3 cos(46) )
+2 [=1+a” + (1 - 3a) B] sin(201) + [+ o® + (1 - 3a) B] sin(491)}

(3.3.80)

Ay = 2(1— a){2 —a+ B —2acos(260,) + (o — B) cos(491)} (3.3.81)

By, = (l—a){?;(l —B)r+2(-2—a+p)0
+2(av — ()(260, — 37) cos(260;) + (o — ) (37 — 26,) cos(46;)

+24sin(260;) + (o — ) sin(491)} (3.3.82)

Cyp = —(1— a){a — B —2co0s(26,) + (a + B) cos(46,)
+[(1—a+28)31+4(a— ) 61]sin(26)

+8 (=37 + 20,) sin(401)} (3.3.83)

Dy, = (1— a){ﬁ(?nr —260,) + [(—1 +a—26)3r+4(—a+5) 91] cos(26,)
+03 (37 — 260y) cos(461) + 2 (—1 + a — ) sin(26,)

+ (a+ 5) sin(491)}. (3.3.84)
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3.3.6 Joint with 91 — 92 =27

For a joint geometry with 6; — 0y = 27 (see Fig. 3.6),

Det([Ao]sxs) % sin(f;) [ﬁ + a cos(26;) — B cos(2 91)] [— 7 cos(6;)
+am cos(f;) —af; cos(f;) + « sin(01)] (3.3.85)
Det([Aolsxs) = % sin(Hl){Oz2 cos(26,) [m cos(0;) — 0, cos(0;) + sin(f;)]

+2 a3 sin®(f;) [7r cos(0;) — 0; cos(0;) + sin(&l)]
—a[w cos(f;) cos(2 91)] + pmcos(6y) [ -1+ COS(291)] }
(3.3.86)

For the given joint geometries (0; = 45°,90°, 135°,225°,270°,315°), the possible mate-
rial combinations, which satisfy Det([Ap]sxs) = 0, are plotted in Fig. 3.15.
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Figure 3.15: Material combinations, for Figure 3.16: Material combinations, for

which the regular stress term is nonzero which the regular stress term is nonzero

in a joint with 6; — 6, = 360°. in a joint with #; = 180° and #, being
arbitrary.

In case of Det([Aglsxs) = 0, the nonzero coefficients A, By, Ciio, Dio read

o= 2(1+ a){2 —a+ f—2acos(260,) + (a — B) cos(491)} (3.3.87)
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B, = {4(1—a)(1+ﬁ)7r+2 2+ a+0a’—(3+0a)B| 0
+4(1 + a)(a — B)01 cos(201) + 2(1 — a)(a — ) (27 — 0y) cos(46;)

+22a(1 — a) — (1 = 3a) f]sin(26;) + (1 — 3a)(a — B) sin(491)}

(3.3.88)
Cly = {a(—5 +3a)+ (1 —3a) [ +2 (1 —a+ 2&2) cos(26;)
+[—a(l + a) + (=1 + 3a) ] cos(46,)
+4(1 = a)[(a = 1= 28)7 + (8 — )6 ] sin(26,)
12(1—a) BT —0) sin(401)} (3.3.89)

D, = {4 (—1+0a)Br+2(3+a) B01 +4(1 + o) [(& — 1)1 + (8 — )03 | cos(20;)
+2(1 = a) B(2r — 01) cos(401) + 2 [~1 + o® + (1 — 3a) 8] sin(261)

+a(l+a)+ (1 —3a)f] sin(491)} (3.3.90)
Ay = 2(1— a){2 —a+ f—2acos(260,) + (o — B) cos(491)} (3.3.91)

By, = (1- a){él 1-p)m+2(—2—a+p)0 +4(a— F)(0 — 27) cos(26)

+2 (a— B) (2 — 0y) cos(46,) + 25 sin(20,) + (o — ) sin(491)} (3.3.92)

Cyp = —(1— a){a — B —2cos(26,) + (a+ ) cos(46;)
+4[(1 —a+28) 7+ (o — B) 6] sin(26,) + 28 (=27 + 6,) sin(491)}
(3.3.93)
Dy, = (1-— a){25(27r —01)+4[(-1+a—28)7+ (—a+ ) 0] cos(26,)

+208 (2 — 0y) cos(461) + 2 (—1 + o — ) sin(260y) + (a + ) sin(491)}.
(3.3.94)
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From Eq. (3.3.85), it follows that Det([Ao]sxs) = 0 if
_ Blcos(260;) — 1]

cos(@0) (3.3.95)
or
B mcos(f)
- cos(f1) — 60y cos(fy) + sin(6;) (3:3.96)
For
_ Blcos(20,) — 1]
= s @0) (3.3.97)
the regular stress term can be simplified as
64 cos?(61)[3 + cos(26,) — B cos(26,)]
pu— —_ K
Fzal0 Ona20 [cos(26;) + [ cos(2601) — [)? 0
X {591 — 2mcos(2601)(1 + B) + Bcos(40:)(2m — 6,)
—2B3sin(20;) + B sin(491)} (3.3.98)
sin?(
Uyyl() = O'nyO == F((gll))gmmm (3399)
sin(6;)
Try10 = Tzy20 — K(ell)axxl[]- (33100)
For
B 7 cos(f)
“= mcos(6y) — 6y cos(6y) + sin(6;) (3:3.101)
it holds
32sin%(6,) )
Kyq2 (8 — 2 -2
Oaal0 [27 cos(01) — 01 cos(fy) +sin(6)] ° (ﬁ w0, + 26m0, 501) cos(361)
-2 (5 + 76, — 207l + 250%) cos(0y) — 23 (m + 60;) sin(6)
+25 (—m + 361) sin(361) + [20 + sin(29)]A2w} (3.3.102)
32sin?(6,)
= Kyq —2 -2
w10 [27 cos(01) — 01 cos(fy) +sin(6)] ° T cos(th) — 26 cos(36,)

—2msin(6,) + 27 sin(360,) + [26 — sin(29)]A2w} (3.3.103)
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_ 32sin?(6);)
Terld = o os(0h) — 6y cos(0) + sm(el)]KO{ (m = B+ 356:) cos(61)

+ (7 + B — 356,) cos(36,) + 5 (—3 + 2716, — 20%) sin(6;)

+3 (1 + 20, — 267) sin(30,) — cos(29)A2w} (3.3.104)

_ 32sin*(6;)[6; cos(6;) — sin(6;)] "
Oaa20 = [27 cos(61) — By cos(fy) + sin(6,)]2 "

X {2 (5 — 27 + 4872 + 70, — 6870, + 269%) cos(6;)
+2 (=B — 2% + 467" + w0y — 64370, + 2807 ) cos(30,)
+203 (=31 + 0y) sin(0y) + 20 (bw — 36, ) sin(36,) — [26 + sin(29)]A2w}

(3.3.105)

_ 32sin*(6;)[#; cos(6:) — sin(6;)] (o o
Ty = [27 cos(61) — 61 cos(y) + sin(ﬁl)]QKO{2 (=2m + 61) cos(6)

+2m (=27 + 61) cos(361) + 2w sin(fy) — 27 sin(36;) — [26 — sin(29)]A27r}
(3.3.106)
32sin?(0,)[0; cos(#y) — sin(0y)]

Tay20 = 27 cos(01) — 6 cos(1) + sin(91)]2K0{ (=7 + 557 = 3661) cos(6)

+ (—m — 5087 + 3/36,) cos(30,) + 5 (3 + 47? — 670, + 20%) sin(6;)

+B3 (=1 4 4% — 670y + 267 ) sin(30) + cos(29)A2w} (3.3.107)

with

Nogp = (7 + pr — B0y) cos(6y) + (7 — fr + £0y) cos(361) + 3B sin(0,) — B sin(36,).
(3.3.108)

3.3.7 Joint with #; = 7 and 6, being Arbitrary

For a joint geometry with ¢; = w and 0y being arbitrary (see Fig. 3.7),

Det([Aglsxs) a —?—4a)2 (1 — «) sin(fy) {7r cos(0z) + am cos(fz) — 0, cos(fz)
+afy cos(fz) + sin(fy) — « sin(Hg)} (3.3.109)
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or

64
(1+a)?
—a? [71' cos(fz) + 05 cos(0z) — Siﬂ(92)]

Det([Aolsxs) =

sin(6,) {7r cos(6y) — 65 cos(f2) + sin(6y)

+20 [y cos(fs) — sin(ﬁg)]}. (3.3.110)

For the given joint geometries (#; = 30°,45°,60°, 75°,90°,120°, 135°, 150°), the possible
material combinations, which satisfy Det([Ag|sxs) = 0, are plotted in Fig. 3.16.
In case of Det([Ag]sxs) = 0, the nonzero coefficients Aj, By, Cio» Do are

0 = 4(1+a) (1 —a)sin?(6) (3.3.111)
B, = (1+ a){Q (—1+a—-20)m+22(—a+p) 7+ (1 — a)b] cos(262)

—(1-a) sin(202)} (3.3.112)

Cly = 2(1—a) sin(92){2 [(1+a)7+ (=1 + a)by]cos(f) + (1 — 3a) sin(92)}
(3.3.113)

Dy, = (1+ a){457r +2[(1+a—-208)1+ (=1 + a)b]cos(26,) + (1 — ) sin(292)}

(3.3.114)
0 = 41— a)?sin’(6,) (3.3.115)

By, = —(1— a){2 (14+a)m+2(—1+ )by cos(263) + (1 — «) sin(292)}
(3.3.116)

Coy = 2(1—a) sin(92){2 (14 a)m+ (=14 )] cos(f) + (1 — ) sin(92)}
(3.3.117)

Dy, = (1-— a){2 [(1+a)m+ (=1 + a)by]cos(260,) + (1 — ) sin(292)}.

(3.3.118)
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From Eq. (3.3.109) or Eq. (3.3.110), it follows that Det([Ag]sxs) = 0 if

a=1 (3.3.119)
_ (= 65) cos(f) + sin(6s)
“= (7 + 63) cos(6y) — sin(6y) (8:3.120)
For

_(m —6;) cos(f) + sin(6,)
O T T 0) cos(0) —sin(6s)’ (3:3.121)

the regular stress term in Cartesian coordinates can be simplified as

. 327 SiHZ(gg)KO
Taal0 = 6, cos(6y) — sin(fy)

{20 cos(6y) + cos(6) sin(26)

—2(1 — 28) sin(fy) — 2(7 + 207 + 236,) Cos(02)} (3.3.122)

32w cos(f:) sin®(02) Ky _
Oyyto = 9, cos(0y) — sin(0y) 27 4 260 — sin(20) (3.3.123)
647 cos(f) sin?(02) Ky .
= 3.124
Tay10 6, cos(fy) — sin(fy) sin”(6) (3:3.124)
877'2 sin2 (292)K0

= -2 2 in(2 3.12

03220 0y cos(02) — sin(02)]2{ 6y + 260 + sin( 0)} (3.3.125)

3272 cos(6) sin? () K
= 20 fy) — 260 )
Tyy20 [0 cos(6s) — sin(6s)]? cos(6) 2 05(02)

— cos(fy) sin(20) + 2 sin(%)} (3.3.126)
1672 sin?(260,) K, 9
= i 3.12
Taa20 [0 cos(6s) — sin(6s)]? sin”(9) (8:3.127)

where 0 cos(6y) — sin(fy) # 0, i.e. a # —1.
For a =1,

Oerto = 64T Ko[—5 — cos(202) + [ cos(26)]
= 0

Oyy10 = Oyy20 = Ozyl0 = Ozy20 = 0. (33128)

Ozx20
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3.3.8 Joint with 91 = —92 =T

For a joint geometry with 6; = —f0; = 7 (see Fig. 3.8), there is always
Det([Ag]gxg) =0 (33129)

according to Eq. (3.3.31) or (3.3.32) or (3.3.85) or (3.3.86). This means that for a
joint with an interface crack, in general, the regular stress is nonzero. The nonzero
coefficients Ay, By, Cio, Do are

10=Cly=A5=C3=0 (3.3.130)
Bjy = —Dj, = ¢ (3.3.131)
10 = 0= 3.
B3y = —D3 = —1, (3.3.132)
for a # 1.
The regular stress term in Cartesian coordinates is

Oxx10 — 4K031‘0 = o—1
Oxz20 — 4KOB)2KU = —4K0

Oyy10 = Oyy20 = Ozy10 = Ozy20 = 0. (33133)

3.3.9 Joint with 91 = —02 = 7T/2

For a joint geometry with 6; = —fy = 7/2 (see Fig. 3.9),

2060 ~(26 - a) (3.3.134)

Det([Ao]sxs) = (ETSE

according to Eq. (3.3.31) or (3.3.32) or (3.3.51) or (3.3.52). It can be seen that if
a =28, or =0 and [ is arbitrary (see Fig. 3.13 for #; = 90°), the regular stress is
nonzero. The nonzero coeflicients A, By, Csy, and Dy in case of a = 23 are:

To = CTOZA;OZC;OZO
B, = Dj, =B85 =D; =1. (3.3.135)

The regular stress term in Cartesian coordinates is

Oyy10 = Oyy20 = 4K

Ozz10 = Ogzz20 = Ozylo = Ozy20 — 0. (33136)
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For @ = 0 and S being arbitrary, the coefficients are

0 = 2 = 167
o = Djo=—2r(1+2p)
o = Cy =280
D, = By, =2n(26-1) (3.3.137)

Short summary: For a joint with free edges under remote mechanical loading, the
regular stress term is zero for most joint geometries and material combinations. In
case of the regular stress term being nonzero, it can be calculated analytically with one
arbitrary constant, which has to be determined from the stress analysis of the total
joint, as for the determination of the stress intensity factors.

3.4 Determination of the Stress Intensity Factor

From the earlier sections it is known that in a two dissimilar materials joint the stresses
near the singular point can be described analytically by
Y K
n
O'Z'j (’I“, 9) = Z fTﬂfUn(g) + UijO (9) (341)

n=1

for a joint with real eigenvalues and by

7(r0) = 3 22 coslpuln(]5, (0

+sin[p, In(7)] £5,,(0) } + 0j0(0) (3.4.2)
for a joint with complex eigenvalues, where for thermal loading
Uz’jO(g) = UOfijO(g) (3-4-3)
and for remote mechanical loading
gijo(8) = Ko fijo(0) (3.4.4)

apply. The quantity oy can be determined analytically, however, K, has to be deter-
mined by using the stress analysis of the total joint.

In Section 3.1 the singular stress exponent w,, the imaginary part p, and the corre-
sponding angular functions fi;,(0), f£,(0), £, (0), which are independent of loading,
have been studied in details. The regular stress term oy f;jo(f) for thermal loading
has been presented in Section 3.2. In Section 3.3 the regular stress term Ky f;o(6) for
remote mechanical loading has been discussed. All the quantities in Eqgs. (3.4.1) and
(3.4.2), except the stress intensity factors K, and K, for a remote mechanical loading,

can be calculated analytically. To determine the stress intensity factors K, and K,
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the stress analysis of the total joint has to be done by using a numerical method, e.g.,
the Finite Element Method (FEM), the Boundary Element Method (BEM), or the
boundary collocation method.

If there is only one unknown in Eq. (3.4.1) or Eq. (3.4.2), it is easy to determine the
stress intensity factor K. For each point with (r,d) near the singular point it holds

ofi"M(r,0) — oo fijo(0) _,

K="
fij (0)

(3.4.5)

for a real eigenvalue or

UFEM(Ta 0) — Uofijo(g)

K= cos[p ln(Z;)] 55(6) + sin[pIn(r)] f5(6)

for a complex eigenvalue. The averaged value of M points can be taken as the K-value

[ (3.4.6)

of the problem.

If there are more than one unknown in Eq. (3.4.1) or Eq. (3.4.2), the least square
method has to be used to determine the stress intensity factors at the same time.
Methods to determine the unknowns are presented below for different cases.

3.4.1 Joint under Remote Mechanical Loading or after Ho-
mogeneous Temperature Change

In Eq. (3.4.1) or Eq. (3.4.2) the left side is known from the FEM. To determine all
unknowns at the same time, following the least square method, the quantity II;; is
defined as

N o, k YK ’
HZ] = Z {UZ] (Tla 9!) _ O.ijnown(’]"l; 0[) - Zﬁ /FlTnfzjn(el)} (347)
for the real eigenvalue or

M
L; = > {Ufj-EM(Tz,@l) — o (1, 0) —
I=1

=3 gt coslpa G115 00 + sinp )00}
(3.4.8)

for the complex eigenvalue, where ij=rr,#f and rf), M is the number of points used

for determining K. of*"(r,6;) is one term on the righthand side of Eq. (3.4.1) or
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Eq.(3.4.2), which can be determined analytically. For example, for a joint under ther-
mal loading, it holds

O_knoum(r 9[) Uofijg(el) (349)

L

and £ = 1. For a joint under remote mechanical loading, the factor Ky in regular stress

term is unknown. Therefore

gknown (p0,) =0 (3.4.10)

L]

& =0 and wy =0.
According to the least square method, the minimum of II;; with respect to the values
of K, has to be found. It is given by

OTl;;
=0 (n=6..N). (3.4.11)
This leads to N (or N+1) equations
> - [ _FEM k L
Z Kn Z 7" n+wq fl]" el)fZJQ(el) Z |:0.ij (7"[, 01) - zynown(r 91)] ,';qufile(el)
n=¢& =1 =1
(g=¢&,...,N), (3.4.12)

for the real eigenvalue or

Z K, Z p— {cos P In(7)] Zjn(Hl) + sin[p, ln(ﬁ)]fljn(ﬁl)}

x{cos[pq In(71)] fi54(61) + sin[pg In(77)] 75, (6 )}
,0))

i[ FEM 7,, ijnown(r el)];wq x

=1 i

><{ cos[pg In(77)] £, (61) + sin[pg In(7)] £, (0 )} (q=¢&,..,N).
(3.4.13)

for the complex eigenvalue. The values of K,, are obtained by solving these equations.
For a joint under remote mechanical loading the stress intensity factors K,, are propor-
tional to the remote loading (e.g. 0 ). For a joint after a homogeneous temperature
change, K, is proportional to the temperature change (T).

3.4.2 Joint after an Inhomogeneous Temperature Change

For a joint after an inhomogeneous temperature change, the stresses near the singular
point can also be described by Eq. (3.4.1) or Eq. (3.4.2). However, the regular stress
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term op fijo(#) is not the same as that one given in Section 3.2 for a homogeneous
temperature change.

In general, the temperature change may be arbitrary. In this section we consider the
case in which the temperature change only takes place in the direction perpendicular
to the interface of the joint, i.e. 7' = f(y). The function f(y) may be continuous or
non-continuous at the interface. As most functions can be expanded in a polynomial,
for convenience, we consider the temperature change in a polynomial as

Tuly) = 3 x(y/ Hi) (3.414)

where Hj (k=1,2) is the thickness of the k-th material and y;; is the coefficient of
the polynomial (unit in °K) while y denotes the coordinates (see Fig. 3.1). The tem-
perature change at the interface in material 1 is T(y = 0) = xp; and in material 2
To(y = 0) = xo02. For xo1 = Xxo02 a continuous temperature change takes place at the
interface.

For the temperature change described in Eq. (3.4.14), the regular stress term can be
calculated from the equations given in Section 3.2 by replacing ¢ in Eq. (3.2.66) or
Eq. (3.2.67) by

B o] — o a—+1
q= w = (xo1ou — a2X02) Eo (3.4.15)
1 2
for plane stress and
_ Xor(I+1)ag — xoo(1 + 1) Ey a+1
q= or{ ll)ﬂ,zl 1,012,5 2)os = {X01(1 +vi)ar — xoo(1 + V2)6¥2] 722 —
L 2 1-— 125) 2
2 12
(3.4.16)

for plane strain [133].

In the following sections, it is assumed that the temperature change is known. By
fitting the well-known temperature change in a polynomial, the coefficients y;; can be
determined.

In principle, the stress intensity factor for a given temperature change can also be
determined by using the method presented in Section 3.4.1 directly, but the relation
between the temperature change and the stress intensity factor is not clear. To obtain
a more general relation between the temperature change and the stress intensity factor,
we determine the stress intensity factor in another way.

If the temperature change can be described by a linear superposition of different terms,
as given in Eq. (3.4.14), in linear elasticity the stresses and the stress intensity factors
can be obtained by a linear superposition of the corresponding results. Therefore,
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for a given joint geometry and material combination calculations were performed for
the case of temperature changes, which are 7" = 0 in one material and a power law
(i.e.,xik(y/Hg)") in another material. These temperature changes are described only by
the coefficient y;i,. For each temperature change (i.e., T} (y) = 0 and Ty (y) = xi2(y/Hz)"
or To(y) = 0 and Ty (y) = xi1(y/H)") we can use the method given in Section 3.4.1
to determine the corresponding stress intensity factor (i.e., K or K;). The stress
intensity factor K;; or Kj; is proportional to the coefficient y;» or x;;. The factor
of proportionality is denoted as K, i.e. K = Kixik (k=1,2 and i=0,1,2,...,I). For
the temperature change given in Eq. (3.4.14) the total stress intensity factor can be
calculated from

2 I
k=1i=0
In case of x¢1 = Y02 it holds
2 I
K = KhT + Z ZlcikXik (3418)
k=1i=1

where K} is the stress intensity factor for a homogeneous temperature change of 1
Kelvin, and T is the temperature change at the interface [133]. In Eq. (3.4.17) or
Eq. (3.4.18) the quantities Ky, are dependent on the material combination and the
overall geometry, i.e., 01,60y, Hi /L, Hy/L. They have to be determined from FEM for
the corresponding temperature change y;x(y/Hy)'. As long as the coefficients Ky for
a given material combination and given geometry have been determined for a given
temperature change, the stress intensity factor can be calculated from Eq. (3.4.17) or
Eq. (3.4.18) for an arbitrary temperature change as described by Eq. (3.4.14) (i.e.
with arbitrary x;,) without further FEM calculation.

3.5 The Characteristics of the Eigenvalues and the
Stress Intensity Factors

)

fin(0), 00, fijo(0), K, are needed (see Egs. (3.0.1) and (3.0.2)). The general equation

)

To describe the stress field near the singular point, the quantities wy, pn, fijn(0), f5,(0),

to determine the eigenvalues (wy,, p,) of the singularity problem is given in Section 3.1
as a function of the Dundurs parameter « and . Since Eq. (3.1.37) or Eq. (3.1.38)
is a transcendental equation of A, or s,, it has to be solved numerically. In Sec-
tion 3.5.1 the characteristics of the eigenvalues, e.g. the number of singular terms, the
eigenvalues being real or complex, and so on, will be shown for some special geometries.

The angular functions f;;,(0), f5,.(0), f5.(0), and fi;jo(#) have the following mathemat-

yJign y Jign
ical expressions:

fij(0) = Asin(wh) + B cos(wh) + C'sin[(2 — w)#] + D cos[(2 — w)b] (3.5.1)
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for real eigenvalues (see Section 3.1.1) and

500),£5(0) = e P?{Asin(wh) + B cos(wh) + C'sin[(2 — w)f] + D cos[(2 — w)]}
+ e"?{ A, sin(wh) + B, cos(wh) + Csin[(2 — w)f] + Dy cos[(2 — w)0] }
(3.5.2)

for complex eigenvalues (see Section 3.1.2) and
fijo(8) = Aof + By + Cysin(260) + Dy cos(20) (3.5.3)

for the regular stress term (see Sections 3.2 and 3.3), where the constants A, B, C,
D, Ay, By, Cp, and D, are functions of w, p,, 61,0, «, and 3, but Ay, By, Cy, Dy only
depend on 6,605, a, and 3. As far as their mathematical expression is concerned, the
characteristics of the angular functions are clear.

In the regular stress term oy fi0(#), oo can be calculated analytically for thermal load-
ing, whereas for remote mechanical loading oy (in Section 3.3 denoted as Kj) has to
be determined numerically by using the stress analysis of the overall joint.

In general, the factors K, for the singular terms have to be determined numerically
from the stress field of the total joint. The characteristics of K, will be shown in Sec-
tion 3.5.2. For the joint geometry with #; = —f, = 90°, in particular, some empirical
equations will be given to calculate the K - factor without using FEM.

3.5.1 The Behaviors of the Eigenvalues

For a given joint geometry, if the behavior of the eigenvalue versus the material data
is known, the material combination can be found, which produces no stress singularity
or the singularity is weaker. The characteristics of the eigenvalues, e.g. with which
material combinations and joint geometries the eigenvalues are real only, or complex
only, or real and complex; which joint has only one singular stress term and which joint
has more than one singular terms; in which case the singular stress exponent is larger
than 0.5 (a homogeneous material with a crack having a singular exponent equal to
0.5), and so on, will be shown for 7 joint geometries, which often appear in engineering
structures. These informations are useful for the material selection.

For a joint with #; = —f, = 90° (see Fig. 3.9), the stress exponent w, = s, + 2 can be
determined from (see Section 3.1)

det(A] = {Beos' () + (0 = B)(sa + 1)

+ sinZ(gsn) COSZ(gSn) —a?(s, +1)* = 0. (3.5.4)
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The second-order eigenvalue can be determined from
d(det[A
% =[(= (sn + D%+ (1/2 + 52 + 25,)8%) sin(ws,) + 1/4(1 — 52) sin(27s,)| 0
Sn
+ 2(s,+1) [ﬁ(a — B) cos(msn) + (252 + 4s, + 1)a® — (28, + 3) (25, + 1)

+ (252 +4s, +1)8% =0. (3.5.5)

The isoline of the stress exponent (—0.5 < w < 1) is plotted in a Dundurs diagram
in Fig. 3.17. It can be seen that: (a) For all material combinations there is only
one singular term. (b) Along the lines of & = 0 and 8 = «/2 (they are plotted in
the figure as dotted lines), zero is the second-order eigenvalue. In fact, for s, = —2
(i.e. wo = 0) d(det[A])/d(sn) =2a(a — 23) (see Eq. (3.5.5) ) (c) There are a lot of
material combinations, in which the stress exponent is negative, i.e. there is no stress
singularity. (d) There is only a very small range in the Dundurs diagram where the
eigenvalues are complex, but they are not singular stress term. This means that for
this joint geometry the singular stress term is always corresponding to a real eigenvalue.

e

complex, but w<0

(fomplex, but a)<0'0-5_

Figure 3.17: Stress exponent distribution in a Dundurs diagram for a joint with
91 = —92 == 900.

For a joint with #; = 120° and ¢, = —60° (see Fig. 3.18), the isoline of the stress
exponent (—0.5 < w < 1) is plotted in Fig. 3.19. It is obvious that: (a) For most
material combinations there is only one singular term, however, in a small area of «a
and [ there are two singular terms (see Fig. 3.19, where the positive isoline is interest).
(b) Along the lines f = «/3 and o & —0.69638 (they are plotted in the figure as dotted
lines), zero is the second order eigenvalue. (¢) There are a lot of material combinations,
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Figure 3.18: A joint with #; = 120° and Figure 3.19: Stress exponent distribution
6y = —60°. in a Dundurs diagram for a joint with 8; =
120° and 6, = —60°.
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Figure 3.20: Stress exponent distribution Figure 3.21: Stress exponent distribution
for material combinations along the line for material combinations along the line of
of @« = 2f in a joint with §; = 120° and S = 0.35a in a joint with #; = 120° and
0y = —60°. 0y = —60°.
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Figure 3.22: A joint with #; = 135° and Figure 3.23: Stress exponent distribution
Oy = —45°. in a Dundurs diagram for a joint with 8; =
135° and 0y = —45°.
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complex and w>0

o, 055 @; P

Figure 3.24: Stress exponent distribution Figure 3.25: Stress exponent distribution
for material combinations along the line for material combinations along the line
of @« = 2f in a joint with §; = 135° and of § = 0.1« in a joint with #; = 135° and
Oy = —45°. Oy = —45°.
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Figure 3.26: A joint with #; = 120° and Figure 3.27: Stress exponent distribution
6y = —120°. for material combinations along the line
of @ = 2/ in a joint with ; = 120° and
0, = —120°.
6 complex and w>0
0.5- p

Figure 3.28: Stress exponent distribution in a Dundurs diagram for a joint with 6; =
— 0, = 120°.
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Figure 3.29: A joint with #; = 135° and Figure 3.30: Stress exponent distribution
0y = —135°. for material combinations along the line
of @« = 2f in a joint with #; = 135° and

02 - —1350.

Figure 3.31: Stress exponent distribution in a Dundurs diagram for a joint with 6; =
—92 - 1350.
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Figure 3.32: A joint with 6; = 90° and Figure 3.33: Stress exponent distribution

6, = —180°. for material combinations along the line
of @ = 20 in a joint with #; = 90° and
6, = —180°.

in which the stress exponent is negative, i.e. there is no stress singularity. (d) There
are singular terms with complex eigenvalues. To see these clearly, another plot is shown
in Fig. 3.20, in which o and  assume values along the line o = 23, the corresponding
eigenvalues are plotted versus a.. In Fig. 3.21 the eigenvalues distribution is along the
line of § = 0.35cv. It can be seen that for small o (o < —0.7), the eigenvalues may be
complex (see Fig. 3.20) or there are two singular exponents (see Fig. 3.21).

For a joint with 0, = 135° and 0, = —45° (see Fig. 3.22), the isoline of the stress expo-
nent (—0.5 < w < 1) is plotted in Fig. 3.23. It can be seen that: (a) For most material
combinations there is only one singular term, however, in the range of —1 < o < —0.85
there are two singular terms. (b) Along the lines § = 0 and o &~ —0.8798 (they are
plotted in the figure as dotted lines), zero is the second order eigenvalue. (c) In the area
B >0 and a > —0.9, the stress exponent is negative, i.e. there is no stress singularity.
(d) There are singular terms with complex eigenvalues (v < —0.85). These can be
seen clearly from Fig. 3.24 along the line of § = /2 and Fig. 3.25 along the line of
B = 0.1a. Here, for very small o, the eigenvalues may be complex or two real singular
exponents.

For a joint with #; = —fy = 120° (see Fig. 3.26), the isoline of the stress exponent
(—0.5 <w < 1) is plotted in Fig. 3.28. As the geometry is symmetrical, following the
definition of a, # given in Eq. (3.1.86), it is known that the isoline of the eigenvalue is
point-symmetric to point @ = 0 and 8 = 0, which can be seen in Fig. 3.28. In addition,
the following features apply to this joint geometry: (a) For all material combinations,
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Figure 3.34: Stress exponent distribution in a Dundurs diagram for a joint with #; = 90°
and 6, = —180°.

singular stress terms exist (one or two singular terms). (b) Along a curve, which is
plotted in the figure as dotted lines and difficult to describe in an equation form, zero
is the second order eigenvalue. (c) In the area 8 > 0.4 and a > 0.5, or § < —0.4 and
a < —0.5, the stress exponents are complex. (d) At points f = 0, « = +1, there is only
one singular exponent (w = 0.47525). Point (c) can be seen clearly from Fig. 3.27, in
which for small & (o < —0.75) or large « (o« > 0.75) the eigenvalues are complex.

For a joint with §; = —6y = 135° (see Fig. 3.29), the isoline of the stress exponent
(—0.5 <w < 1) is plotted in Fig. 3.31. It can be seen that the isoline of the eigenvalue
is point-symmetric to point & = 0 and S = 0. In addition, the following applies to this
joint geometry: (a) For all material combinations two singular terms exist, except for
the points # = 0 and o = £1 (at the two points there is w = 0.4899). (b) Only at
points § = 0 and o = £1 zero is the second order eigenvalue. (¢) In the area 5 > 0.35
and a > 0.4, or f < —0.35 and a < —0.4, the stress exponents are complex. This can
be seen clearly from Fig. 3.30, in which for small o (v < —0.6) or large o (v > 0.6),
the eigenvalues are complex.

For a joint with ¢; = 90° and #; = —180° (see Fig. 3.32), the isoline of the stress
exponent —0.5 < w < 1 is plotted in Fig. 3.34. It can be seen that: (a) For most
material combinations the eigenvalues are real and always two singular terms exist. (b)
Along the line & = —1, zero is the second-order eigenvalue. (c) In the area > 0 and
a > 0.7, the stress exponents may be complex. This can be seen clearly from Fig. 3.33,
in which for most « the eigenvalues are real and there are two singular terms.
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Figure 3.35: A joint with #; = 90° and Figure 3.36: Stress exponent distribution
Oy = —270°. in a Dundurs diagram for a joint with 8; =
90° and 6, = —270°.
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Figure 3.37: Stress exponent distribution Figure 3.38: Stress exponent distribution
for material combinations along the line for material combinations along the line
of @ = 20 in a joint with #; = 90° and of § = 0.05« in a joint with #; = 90° and
Oy = —270°. Oy = —270°.
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For a joint with #; = 90° and ¢; = —270° (see Fig. 3.35), the isoline of the stress
exponent is plotted in Fig. 3.36. It can be seen that: (a) For all material combinations
two or three singular terms exist, even the singular exponent is larger than 0.5. (b)
Along the line § = «/2 (they are plotted in the figure as dotted lines), zero is the
second-order eigenvalue. (c) In the range of o > 0, most material combinations yield
complex eigenvalues. This can be seen clearly from Fig. 3.37 along the line of 8 = a/2
and from Fig. 3.38 along the line of § = 0.05a. Along the line of 5 = 0.05« there are
three singular terms, in the range of 0 < a < 0.25 two eigenvalues are complex, but
the imaginary part is very small (< 0.001, it cannot be seen in the figure). Along the
line of f = /2, for @ < 0 there are two real singular stress terms, and for o > 0 the
eigenvalues are complex and the real part is larger than 0.5.

3.5.2 The Characteristics of the Stress Intensity Factors

A quarter planes joint, i.e. the joint with #; = —f, = 90°, is the most often used
geometry in engineering structures. At first, the behavior of the stress intensity factors
for this joint geometry is studied. For a quarter planes joint, only one singular term
exists. It is possible to find some empirical relations for calculating the stress intensity
factor without using the finite element method.

For other joint geometries, there may be two or three singular terms. It is then very
difficult to find some empirical relations for the determination of the stress intensity
factor. The general behavior of the stress intensity factor will be shown in some figures
only.

The Stress Intensity Factors for a Quarter Planes Joint

The aim of this section is to obtain a general relation between the stress intensity factor,
the joint geometry (the ratio of the height and length, H,/L, Hy/L, see Fig. 3.39), and
the material data (the Dundurs parameters o and (3). At first, the relationship between
the K-factor and the ratios of Hy/L, Hy/L is studied for a given material combination.
In Eq. (3.0.1) the characteristic length R may be the interface length L or the height
of the joint Hy or H,. For one singular term case, if the coordinate r is normalized by
the interface length L, it holds

K
(r/L)®
where sometimes K is also denoted as K7,.

For different ratios of H;/L, Hy/L the K-factor was calculated from FEM and using
the equations given in Section 3.4. A plot of K versus H/L (for H; = Hy=H) is shown

oij(r,0) = fii(0) + o0 fij0(0), (3.5.6)

in Figs. 3.40 and 3.41 on a linear and semi-logarithmic scale for thermal loading. It
can be seen that for H/L > 2 the factor K is a constant. This means that for the
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Figure 3.39: A quarter planes joint with the definition of H;, Hs, and L.

joint geometry with Hy/L > 2 and Hy/L > 2 (see Fig. 3.42), the stress intensity
factor is independent of the overall geometry. Based on this knowledge for a joint
with H,/L = Hy/L = 2 under thermal and remote mechanical loading (0,,), the stress
intensity factor are calculated by FEM for material combinations with different w. The
obtained K-factors are plotted in Fig. 3.43 versus the stress singular exponent. An
unique curve can be seen for K/oy (0 is the factor of the regular stress term) vs. w
under thermal loading, or for K/o, vs. w under remote mechanical loading, and they
are the same. From this unique curve, an empirical equation is found between the
K-factor and the stress exponent w by using the least square method. It is

~Kjog=K/o,=1-280w+11.4w? —51.9 w* + 135.7w" — 1358 w°.  (3.5.7)

The fitted curve and all FEM points are plotted in Fig. 3.44. It can be seen that
Eq. (3.5.7) can describe the FEM results very well. A number of other FE calculations
show that for a practically relevant Poisson’s ratio, i.e. 0.2 < v < 0.4, Eq. (3.5.7)
can be also used very well for joints with 2 > H,/L > 1 and 2 > Hy/L > 1 (see [84])
and even for joints with a negative stress exponent (—0.5 < w < 0, see [79]). For very
small (v < 0.1) or very large (v > 0.45) Poisson’s ratios, the K-factor calculated from
Eq. (3.5.7) is not accurate (see [79]).

For joints with H,/L < 1 or Hy/L < 1, the coordinate r in Eq. (3.0.1) should be
normalized by the height of the joint Hy or Hs, then the K-factor is denoted as Ky,
or Ky,. The factors K, Ky, and Ky, are not independent. The relationship between
them is

KIL¥ = Ky, HY = K, HY. (3.5.8)
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Figure 3.40: The stress intensity factor Figure 3.41: The stress intensity factor
Ky, vs the ratio of H/L for a quarter Ky, vs the ratio of H/L for a quarter
planes joint with Hy = Hs on a linear planes joint with H; = H, on a semi-
scale (E; = 280 GPa, v; = 0.26, ay = logarithmic scale.

2.5%1075/K, Ey = 72 GPa, 1, = 0.3,
ar = 18.95 % 100/ K).

To show the behavior of the stress intensity factor, the factor Ky is plotted versus L/H
on a semi - logarithmic scale for a joint with Hy/Hy = 1 (the material data are E; = 280
GPa, v, = 0.26, a; = 2.5 % 10°°/K, E; = 72 GPa, 1, = 0.3, ap = 18.95 x 107 %/K)
in Fig. 3.45. For other ratios of H,/H,, Ky, is plotted versus L/H; in Fig. 3.46 and
Ky, is plotted versus L/H, in Fig. 3.47. It is obvious that for very large L/H; (or
L/H,, see Fig. 3.48), the Ky, (or Ky,) approach a constant for each ratio of Hy/Ho,
denoted as Ky oo (0r Kp,o0). If the values of Ky, are plotted versus Hy/H, (see
Fig. 3.49, for Ky, it is similar), K, again approach a constant (denoted as K7, )
at a very large ratio of H,/H, (see Fig. 3.50). Similar to K7, ., the value of K7  will
be obtained at a very large ratios of L/H; and H,/H;. In summary, there are three
stress intensity factors, which describe the stress for limit cases (see [78, 134]):

H, H
Koo = Ki(7 =) (3.5.9)
2 min(Hy /L,Ha/L)>2
H, L
Koo = KHI(FI, =) (3.5.10)
2 442 |Hy/H,>20,L/H;>10
H, L
Koo = KH2(F1, =) : (3.5.11)
2 %2 |H,/Hy>20,L/Hy>10

Based on the results obtained by FEM for determining the K-factors of different mate-
rial combinations, an empirical relation between K, and the ratios Hy/L and H;/H,
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Figure 3.42: A quarter planes joint Figure 3.43: The normalized stress in-
with H; > L and Hy, > L. tensity factor calculated by FEM for a

joint with Hy/L = Hy/L = 2 vs. the
stress exponent w.

has been found for joints after a homogeneous temperature change (see [80]):

Ky, =A [1 — exp {— (Kiwy (H%)WH . (3.5.12)

K* n HI nw 1/n
A=Kj o |1- — | e <—> 3.5.13
Hjyo0 [ 6‘Tp{ (KZ[200> HQ ? ( )
where Ko can be determined from Eq. (3.5.7). The parameters Kj; ., K7, and n

can be determined from the following empirical equations:

K*

with

— M — 0.9919 4 0.1523 vy — 2.3825 w — 8.0247 vy w — 0.5966 12
0o
+14.5589 v3 w + 15.3373 w? — 16.7054 vy w? — 3.5281 v3 w?  (3.5.14)
K*
——he — 10137 — 0.1867 vy — 2.8641 w + 10.3654 15 w + 0.6783 v2
00

—17.5983 v3 w + 2.3556 w? — 17.454 v, w? + 36.2823 V2 wW? (3.5.15)

n = 483 —110.7 vy — 479 w + 340.8 v w + 1200.7 v
— 3377.9 V3 w+ 2056.3 w? — 3025.5 v, w? + 5534.1 v w? (3.5.16)

where the indication of materials 1 and 2 should satisfy
B B

141 Vy

(3.5.17)
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Figure 3.44: The normalized stress in- Figure 3.45: Stress intensity factor Ky
tensity factor for a joint with Hy/L = obtained by FEM vs. L/H for a joint
Hy/L = 2 vs. the stress exponent w with Hy/Hy = 1.

(the line is obtained from the empirical
relation Eq(3.5.7))

for plane stress, which corresponds to o > 2. If Ky, is known from Eq. (3.5.12), the
factors Ky, and K, can be calculated from Eq. (3.5.8). These empirical equations can
be used for joints with w > 0.01 and with arbitrary ratios of H;/H,, H;/L to calculate
the stress intensity factor. In case of w < 0.01, the values of the singular term and the
regular term are in the same order, but with a different sign, except for a very small
distance r. In this case, the accuracy of the calculated stresses depends strongly on the
accuracy of the determined K-factor. Therefore, the empirical equations should not be
used for w < 0.01.

In summary, the stress field near the singular point can be determined without any FE
calculation for a quarter planes joint with arbitrary overall geometry.

The Stress Intensity Factors for an Arbitrary Joint Geometry

For a joint with an arbitrary geometry (61, 6,), it is impossible to find any empirical
relation between the geometry parameters (61, 0, Hy, Hy, L), the material data («, /),
and the stress intensity factor. The reasons are: (a) There may be more than one
singular stress exponent, (b) the ratios of H;/H, and H;/L cannot determine the
overall geometry uniquely (see for example, in Fig. 3.51 the geometry parameters L
and L, are needed in addition, where L; is the upper surface length and L, the lower
surface length).

The aim of this section is to show some general behavior of the stress intensity factor
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Figure 3.46: lg(Kpg,) vs. lg(L/H;) for Figure 3.47: lg(Kpg,) vs. lg(L/H,) for
different H,/H,, E; = 400 GPa, v, = different H,/H,, E; = 400 GPa, v, =
0.3, ay = 4% 10 %/K, E, = 70 GPa, 0.3, y = 4% 10°°/K, Ey = 70 GPa,
vy =02, 0 =8x107%/K. vy =02, 0 =8x107%/K.

for joints with an arbitrary geometry (0, 6;). As an example, the joint geometry with
0, = 165°,05 = —55° (see Fig. 3.51) and material data of E; = 280 GPa, v; = 0.26,
vy = 0.3, a; = 2.5x 107/K, cp = 18.95 x 107% /K are chosen, where E, may vary from
E>/E; = 0.001 to Ey/E; = 1000. For this joint, the factors K; and K, are calculated
from the method given in Section 3.4. In Fig. 3.52 the quantities K, K5, 0y, wy, and
wy are plotted versus the ratio of Ey/E; for thermal loading AT = 1°C. The ratio of
K;/oy (i=1,2) is presented in Fig. 3.53 versus w;. From Figs. 3.52 and 3.53 it is obvious
that (a) if one stress exponent (e.g. w) goes through zero, the corresponding K-factor
(K1) goes towards infinity and the regular stress constant oq also goes towards infinity
with a different sign, (b) the ratio of K;/op at wy = 0 or Ky/oy at wy = 0 is finite
and equal to -1, (c¢) the K-factor is not unique function of the stress exponent w,. The
case of K; = 00 and oy = Foo at w; = 0 or Ky = +00 and oy = Foo at we = 0 has
no physical meaning. However, the fact that K;/op = —1 at w; = 0 or Ky/0p = —1
at ws = 0 ensures that the stresses are finite. In fact, in case of w; = 0 or wy = 0
and for thermal loading, Eq. (3.0.1) cannot be used to calculate the stress field near
the singular point, the type of log(r) singularity should be considered to describe the
singular stress field (see Chapter 7).

For mechanical loading (the load is o, = 05 = 1 at the interface) and for the same
joint as above, the quantities K7, Ky, w;,wy are plotted in Fig. 3.54 versus Fy/FE;. It
can be seen that the values of K; and K, are always finite for mechanical loading.
By comparing Figs. 3.53 and 3.54, it can be seen that the curves of K /oy, Ky/0q for
thermal loading are not similar to K /o,, Ky/0, for mechanical loading.

A short summary on the behavior of the K-factor in an arbitrary geometry is: (a) The
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Figure 3.48: A joint with L > H; Figure 3.49: Lg(Kpy,00) vs. lg(Hi/Hs),
and L > H,. E; =400 GPa, v; = 0.3, a; = 4%107% /K,

Ey =70 GPa, 1, = 0.2, ap = 8% 107/K

quantity K /oy is not an unique function of the stress exponent w. (b) The quantity
K /oy for thermal loading is not similar to K /o, for mechanical loading.

For a joint with arbitrary angles (6,6:) and the overall geometry being infinite, a
method based on the Mellin transform has been found to determine the factors K;
(i=1,2,3,...,N) analytically (see [135]). Banks-Sills and Sherer have used a conservative
integral for the bimaterial notch under mechanical loading to calculate stress intensity
factor (see [136]).

3.6 The Displacement Field near the Singular Point

In Sections 3.1 to 3.4 the determination of the stress field near the singular point has
been discussed. In the present section the displacement field will be considered.

Joints with real eigenvalues
For joints with real eigenvalues, Eqs. (3.1.16) and (3.1.17) can be used to calculate the

displacement. To see the contribution of the singular term and the regular term as it
was done for the stresses, the displacement is calculated from

ug(r, 0) = ug(r, 0) + ugo(r, 0) + roy,T (3.6.1)
v (1, 0) = g (7, 0) + vko(r, 0) (3.6.2)
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Figure 3.50: A joint with L > Hy and Figure 3.51: A joint with ; = 165° and

H, > H,. 0, = —55° (H,/L = 0.984, Hy/L =
0.816, Ly /L = 2.016, Ly/L = 0.432.)

where for plane stress

N p(w, i
Uy (r,0) = z_:l K, B ) { Arn2(1 — vg) + win (1 + vg)] sin(w,0)
+ B[2(1 — 1) + wn(1 + 13)] cos(w,0)
— (E*;m(l + v)(2 — wy) sin[(2 — wy,) 0]
— Din(1+ ) (2 = wa) cos[(2 — w,)f]}  (3.6.3)
N p(w X
o (r,0) = ;Kn o ) { Apn2(1 = vg) + (2 — wp) (1 + )] cos(w,b)

— l—:3,m[2(1 —u) + (2 — wp) (1 + )] sin(w,)
— Cin(1 4+ vg)(2 — wy) cos[(2 — wy)0]

+ Dyn(1+ ) (2 — wy) sinf(2 — wn)H]}, (3.6.4)
with

Apn =Y X Apy (3.6.5)

Bkn =Y x Bkn (366)

Cin =Y X Chn (3.6.7)
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Figure 3.52: Stress intensity factor K, Figure 3.53: Normalized stress inten-
regular stress term o and the stress ex- sity K /o vs. the stress exponent w for
ponent w vs. E,/FE; for a joint with f#; = 165° and 6, = —55° under ther-
f#; = 165° and 6, = —55° under ther- mal loading.
mal loading.
and
Ren
Y = (3.6.9)

(2 - wn)(l - wn)(Bkn + Dkn)

The coefficients Ay, Bin, Cins Din, Ky, R and w,, are the same as those for the calcu-
lation of the stresses. The displacements according to the regular stress term are

2r
Uk()(?", 0) = E[Akge(l — l/k) + Bkg(l — Vk)
—Cro(1 4+ vg) sin(20) — Dyo(1 + vy,) cos(26)] (3.6.10)
2
vko(r,0) = EZ[—CkU(l + vy) cos(20) + Dyo(1 + v) sin(26)]
4A
4 Fror — —2p In(r). (3.6.11)
Ej

The coefficients Agg, Bro, Cro, Dro are the same as those for the regular stress term
and they can be calculated analytically. The constant Fjq has to be determined from
FEM.

Joints with complex eigenvalues

For joints with complex eigenvalues, Eqs. (3.6.1) and (3.6.2) are valid as well. However,
the contribution of the singular terms should be replaced by:
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a joint with 6, = 165° and #y = —55° r/L) in a quarter planes joint under
under mechanical loading. thermal loading.

&k(r, 9)

6k(r, 9)

+ 4+ 4+ o+ o+

N Kt

= 2Gy
(=& AL, + to AL+ po AR ) sin[In(r) p, + 0 £, — 6]

CE cos[In(r) py + O t, + 0] + CL sin[In(r) p, + 0 £, + 9]}6’9”"
{(—pn BL —t, BE 4+ & BE) cos[—In(r) pn + 0 t, — 6]

(=& Bl +t, Bl — p, BE ) sin[—In(r) p, + 0 t, — 6]

{{(—tn AR 6 AR 1 p, AL ) cos[In(r) py + 08, — 0] +

DE cos[—In(r) py + 0 t, + 0] + DL, sin[—In(r) p, + 01, + 9]}69”"}
(3.6.12)

N Kt

2. 56,

n=1
(tn AR — p, AL 4 & AR )sin[In(r) p, + 0 t, — 6]

Cly cos[In(r) py + 0 ty + 0] + CJf sin[In(x) py + 0 £, + 0] e 7"
{(tn Bl — p, BE 4+ ¢ Bl ) cos[—In(r) py + 0 t, — 6]

(tn BE + pp BL + & BE ) sin[—In(r) p, + 0 t, — 0]

{{(tn AL+ p, AR+ & AL ) cos[In(r) py + 0 £, — 6]

DI cos[—In(r) py + O t, + 0] + DE sin[—In(r) p, + 0 £, + 9]})69”"}

(3.6.13)
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with ¢, = 1 — w,, and

"Ztl?n = chom X AkRn
Ain = chom X Ain
Blfn = chom X BII}n
Blgn = chom X BII{II
CE = Yipm x C},
CNIﬁn = chom X ClEn
ﬁl?n = chom X DII}n

N I
Dkn - Yvwm X Dkn

and
_ an

Ycom =
(AEH + Bl}}n)(p% - tr21 - tn) + (A{(n - Bin)pn(2tn + 1) - (Cl}}n + Dl}}n)tn + (CII<n - D%{n)pn

(3.6.14)

where the coefficients AR, AL, BE, BL,, C&, CL., D}, and D, are the same as those

for the calculations of the stresses.

3.7 The Size Effect on the Stress Distribution

The stress field near the singular point can be described by Eq. (3.0.1) or (3.0.2). The
quantities wy, pn, fijn(0), fi;,(0), and f7, () are dependent on the material data and
the joint geometry. The regular stress term oy f;jo(f) and the stress intensity factors
K, in addition, depend on the loading, but not on the absolute size of the joint. This
is because the distance r is divided by a characteristic length R of the joint. The stress
distribution near the singular point is, however, dependent on the absolute size of the
joint, i.e. the absolute value of the quantity R. To show this effect, the stress oy along
the interface of a joint with ¢ = —fy = 90° and H,/L = Hy/L = 2 (see Fig. 3.39) is
plotted vs. the distance r for different interface lengths R (R=L=1cm, 10cm, 100cm)
and different material combinations in Figs. 3.55, 3.56 and 3.57.
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Figure 3.56: Stress component oy along Figure 3.57: Stress component oy along
the interface vs. the distance r (not the interface vs. the distance r (not
r/L) in a quarter planes joint under r/L) in a quarter planes joint under me-
thermal loading, in the range very close chanical loading.

to the singular point.

As the first material combination, the material data are: F; = 100 GPa, E; = 1 GPa,
v =0.2,v, =0.3, a1 = 2.5x107%/K, and ap = 8.5%x107%/ K, which leads to w=0.27805.
For thermal loading 0¢y=-0.02077 MPa and K=0.0114 MPa. For mechanical loading it
follows 0¢p=0 and K=0.5475 MPa.

As the second material combination, the material data are: E; = 100 GPa, Fy = 50
GPa, v; = 0.2,15 = 0.3, a; = 2.5 % 107%/K, and ay = 8.5 107%/K, which leads to
w=0.04498. For thermal loading 0y=-1.4907 MPa and K=1.3251 MPa. For mechanical
loading it reads 0p=0 and K=0.8889 MPa.

It should be noted that in the figures the distance r is not normalized by a characteristic
length R. Figures 3.55 and 3.56 are for thermal loading (T" = —1°C'), and Fig. 3.57
corresponds to mechanical loading (0, = 1 MPa at the upper and lower surface). From
Figs. 3.55, 3.56, and 3.57, it can be seen that

(a) The absolute value of the quantity R has an obvious effect on the stress distribution
near the singular point. The larger the value of w is, the stronger is the effect of the
size on stress.

(b) For thermal loading the stress near the singular point, corresponding to larger value
of w, is not always higher than the stress in a joint with a smaller w (see Fig. 3.55),
except for very small distances r (see Fig. 3.56). However, for mechanical loading the
following holds: The larger is the w, the higher is the stress near the singular point
(see Fig. 3.57). (c¢) For material combinations with small w, the size effect for thermal
loading is larger than that one for mechanical loading (comparing Figs. 3.55 and 3.57).
This is due to the existence of the regular stress term (oy).
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Chapter 4

Notches and Cracks in a
Homogeneous Material

A homogeneous material with a notch or crack is the special case of a two dissimilar
materials joint. For homogeneous material the Dundurs parameters are zero. In prin-
ciple, the equations presented in Chapter 3 for the analysis of stress singularity and
of the regular stress term are also valid for a homogeneous material with a notch or
a crack by putting @« = 0 and § = 0. In the following the simplified results will be
presented.

In a homogeneous material there is no interface. Therefore, the location of the line
0 = 0 can be defined arbitrarily. We define the coordinate system so that both edges
have the same angle 6, (see Fig. 4.1).

0.5 o
) 0.25-
‘\' S o0~
‘j S 1
o -0.25—
'0-57\\\\\\\\\\\\\\\\\\\\\\
75 100 125 150 175
o
Figure 4.1: Notch in a homogeneous Figure 4.2: Stress exponent w as a func-
material. tion of the notch angle 6.
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Now, we can replace the quantities in Chapter 3 by

Aln = A2n = Ana Bln = BZn = Bn;
Cln = C2n = Cna Dln = D2n = Dna

The boundary conditions for a notch with free edges are

opg(r,01) =0,
ogg(r, —01) = 0,
org(r,01) =0,
ovg(r, —0;) = 0. (4.0.2)

4.1 Homogeneous Material with a Notch

Homogeneous material with a notch means that the angle 6, is smaller than 180°. The
notch with #; = 180° is called a crack. In this section, the case with #; = 180° is not

considered.

4.1.1 Determination of the Stress Exponent and the Angular
Function

From Eqs. (3.1.8), (3.1.9), (4.0.1), and (4.0.2), the following basic equations can be
obtained for each n:

A, sin(A,01) + By, cos(A\,01) + Cpsin[(2 — N,)01] + Dy, cos[(2 — \,)61] =0
(4.1.1)

— Ay sin(Ap01) + By, cos(A\01) — Cpsinf(2 — A\,)01] + Dy cos[(2 — A,)0:] =0

(4.1.2)
Ap Ay cos(Apb1) — By, sin(Ay01) + Cr(2 — Ap) cos[(2 — \,)64]
—D, (2 —\,)sin[(2 = ),)0:] =0 (4.1.3)
ApAp cos(Apb1) + Bp, sin(A,01) + Ch(2 — Ay) cos[(2 — A\,) 4]
+D,(2 — \p)sin[(2 — \,)0:] = 0. (4.1.4)
Equations (4.1.1 - 4.1.4) are equivalent to
By, cos(A\,01) + Dy, cos[(2 — \,)0:1] =0 (4.1.5)
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A, sin(A,0;) + Cysinf(2 — Ay )01] =0 (4.1.6)
A, cos(Ab1) + Cr(2 — Ap) cosl[(2 — A\)01] =0 (4.1.7)

By Ansin(An01) + D, (2 — Ap) sinf(2 — A,)04] = (4.1.8)

It is obvious that Eqs. (4.1.5) and (4.1.8) are independent of Eqs. (4.1.6) and (4.1.7).
They can be rewritten as

[ cos(Ap01) cos[(2 — \p)01] ] { B,

[ Ansin(Ap01) (2 — A,)sinf(2 — A,)01] | } = [App{XpBp} =0

= [AA(;]{XA(;} = 0

sin( A1) sin[(2 — \)] ] { Ay, }
Ancos(Apf1) (2 — Ay)cos[(2 — \,)b4] ]

Equations (4.1.5-4.1.8) are a homogeneous linear equations system. The condition of
this problem having a nonzero solution is that the determinant of [Agp] or [Ac] is
zero. This leads to

Det[App] = cos(A.01)(2 — Ay sin(2 — A,) 0] — cos[(2 — A\p)01] A, sin(N,0,) =0
(

4.1.9)

or

Det[Aac]| = sin(A,01)(2 — \,) cos[(2 — A\p)01] — sin[(2 — A,)01] A, cos(N,01) = 0.
(4.1.10)
After simplifying Eq. (4.1.9) and Eq. (4.1.10), it holds

Det[App] = sin[2(1 — A,)0y] + (1 — A,) sin(26;) = 0 (4.1.11)

or
Det[Asc] = —sin[2(1 — A,)01] + (1 — Ap) sin(26,) = 0. (4.1.12)

The solutions A, of Eq. (4.1.11) and Eq. (4.1.12) are the eigenvalues of this problem.

For a given eigenvalue, the corresponding eigenvector can be determined. Since the
Eqgs. (4.1.5) and (4.1.8) are independent of Eqgs. (4.1.6) and (4.1.7), the corresponding
eigenvectors are independent as well. We will discuss them in two cases.

(I) The case of Det[Agp] =0
We assume that A/, is the solution of Det[Agp] = 0. Then,

sin[2(1 — X)))01] = —(1 — X)) sin(26,) (4.1.13)
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and
Det[Aac] = 2(1 — X)) sin(26). (4.1.14)

If \l, #1 or 0, # m/2 and 7, Det[Asc] # 0. This means that for A, # 1 or 6 # /2
and 7, the coefficients A,, and C}, must be zero.

From Section 3.1 we know that the solution with A\ = 1 corresponds to the rigid
body displacement, and this is not needed for stress analysis. In this section, we have
0, # w. For 6 = m/2 (this is a slab without a notch), Det[A4¢] = 0, i.e. A4, and C,
may be nonzero. From Eq. (4.1.13) we know that for §; = 7/2 the eigenvalues are
Al =0,£1,4£2, 43, .... In the range of 0 < X/, < 1, the only possible solution is A}, = 0.
This means that according to the eigenvalue X/, except for A, =0, 4, = C,, = 0 is
true. The stress term according to A/, = 0 will be discussed in the next section.

For X/, the coefficients B,, and D,, are nonzero. From Eq. (4.1.5) we have

cos[(2 — A\ )0]

B, = -D, 4.1.15
cos(A!61) ( )
for cos(\, 61) # 0, or from Eq. (4.1.8)
(2= A)sin[(2 — \))64]
B, = —D, n/ > n 4.1.16
A sin( N 6y) ( )
for X sin(\ 6;) # 0. For the given X/ | the corresponding stress term is
N : 1 C0s[(2 = A3)04] /
Opra(r,0) = 71— X)Du{ = (2+ X)) oo cos(\.0)
—(2 = X,) cos[(2 = \)0] (4.1.17)
N cos[(2 — A )0:]
Ooon(r.0) = 17 (L= N2 = N)Dof — — = o) o)
+cos[(2 — \,)0]} (4.1.18)
_ -, / ! COS[(2 — )‘In)gl] : !
O.T‘QTL(T7 0) - -r (1 - )\n)DTL{)\n COS()\;LQI) Sln()\ne)
—(2 = X,)sin[(2 = A,)0] (4.1.19)

where D,, is an arbitrary constant and we assume cos(\! 6;) to be nonzero. If cos(\ ;) =
0, there must be A/ sin(\, 6;) # 0. Therefore, Eq. (4.1.16) should be used instead of
Eq. (4.1.15).
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The corresponding displacements for plane stress are

pr(1=20)
un(r,f) = — {Ba[2(1 = v) + N, (1 + )] cos(N,0)

—Dy(1 4 v)(2 = A,) cos[(2 = X,,)0]}
) {cos[(2 — \)6]

[2(1 = v) + AL (1 + v)] cos(N,0)

E cos(A 6y)
+(1+v)(2 = \,) cos[(2 — )0}, (4.1.20)
A1)
va(r,0) = z { — B,2(1 —v)+ (1 +v)(2 = \,)]sin(X;,0)

+Dp(1+2)(2 = Ay) sin[(2 = X,)0]}

) {cos[(2 — \))0i]
E cos(\ 61)

+(L+v)(2 = X,)sin[(2 — X,)0]}. (4.1.21)

2(1—v)+ (1 +v)(2—\)]sin()\,0)

(IT) The case of Det[A¢] =0

From Eq. (4.1.12) it is known that A = 0 always is the solution of Det[A 4¢] = 0, which
will be discussed in next section. We assume that A} is the solution of Det[A 4] = 0.
Then,

sin[2(1 — A)0;] = (1 — \') sin(26,) (4.1.22)
and
Det[App| = 2(1 — \) sin(26,). (4.1.23)

If AV # 1 or 6y # n/2 and , there is Det[App] # 0. This means that for \!! # 1 or
0, # 7/2 and 7, the coefficients B,, and D,, must be zero. In analogy to (I), we know
that according to the eigenvalue A\, there always is B, = D,, = 0, except for A\ = 0.

Corresponding to A, the coefficients A, and C,, are nonzero. From Eq. (4.1.6) we
obtain
sin[(2 — \")61]
A, =-C,— < 4.1.24
sin(A”6;) ( )
for sin(A6,) # 0 or from Eq. (4.1.7),
(2 = A") cos[(2 — A6, ]
A, =—C, n n 4.1.25
A cos(A"0;) ( )
for Al cos(A”6,) # 0. For the given A, the corresponding stress term is
_ =\ " " Sin[(2 - )‘2)91] . "
Oren(r,0) = (1= XN)CW{ = (24 X)) SO0 sin(\0)
—(2— \J)sin[(2 — A)0] } (4.1.26)
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B sin[(2 — \")61]

Oon(r,8) = (L= X2~ X)Cuf S0 sin(\"6)
+sin[(2 — \7)0]} (4.1.27)
" " " Sin 2 — )\Ir; 9 "
O-rﬂn(’ra 9) = —7“_/\”(1 - )‘n)on{ o )‘n s[i(n()\”91; 1] COS()‘ng)
+(2 = \y) cos[(2 — Ap)6] | (4.1.28)

where C), is an arbitrary constant and we assume that sin(\”6;) is nonzero. If sin(\!0;) =
0, there must be A cos(Alfy) # 0. Therefore, Eq. (4.1.25) should be used instead of
Eq. (4.1.24).

The corresponding displacements for plane stress are

,',.(17)\’,;)

un(r.f) = ——% {An2(1 = v) + N/(1+ v)]sin(\}0)
—C(1+v)(2 = Ap) sin[(2 — \)6]}
B _7"(1_’\%) {sin[(2 — \N6,]

[2(1 —v) + X (1+ v)]sin(\)6)

E sin(\6;)
+(L+v)(2 = X)sin[(2 — A7)0] }, (4.1.29)
r(1=X)
(0 = —— {Au[2(1 = v) + (1 +2)(2 = A})] cos(A,0)

—Co(1+2)(2 = A cos[(2 — X;)0]}
r(1=2n) sin[(2 — A)64]
E { sin(A’6)
+(1+v)(2 = Ay) cos[(2 — Ap)0] }. (4.1.30)

2(1 = v) + (1+v)(2 = AD]cos(\!0)

From Chapter 3 it is known that for the singular stress term all eigenvalues in the range
of 0 < A, <1and 0 < A <1 should be taken into account. Equations (4.1.11) and
(4.1.12) only have one solution in this range, respectively. Finally, the singular stress
term can be calculated from

oS (r,0) = (%)‘”(1 - MK{ -2+ A’)% cos(N'0)
~(2 = X) cos[(2 = X)0]}
+ (%)_X'a —NE" - (2+ X')Sins[i(f1 (;”2391] sin(\"6)
—(2 = \")sin[(2 — \")0]} (4.1.31)
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ap(r,0) = (%)_X(l —X)(2 - MK - %

+cos[(2 — X)0]}

cos(\'0)

+ () M( @i T ()

+sin[(2 — \")0]} (4.1.32)

org(r0) = _(%)X(l—)\')K’{X%sin()\'ﬁ)

—(2 = X\)sin[(2 — )\')9]}
- () e e o)

+(2 = ) cos[(2 — \)0]} (4.1.33)

where K’ = D/R» and K" = C//R"", which have the unit of the stress and should be
determined from the stress analysis by FEM.

The corresponding displacements are:

u’(r,0) = —{ (%)(IA%)K'{COSC[(()S(X 91;91] [2(1 = v) + AL (1 + v)] cos(N,0)
+H(L+v)(2 = X,) cos(2 — \,)0]}
()P E L 1 - ) 4 sinG)
-Hl+ﬂ@—Ab$ﬂ@—Abﬂ% %, (4.1.34)

cos(A6y)

()" eI b o) 14 iz = s
+u+-x2—X)mm@—Aqm}

()" S 20 =)+ 1) 2= KD eos()
H4 e = oosi2 - e} | (1..35)

From Eqgs. (4.1.17 - 4.1.19) and Eqs. (4.1.26 - 4.1.28) it follows that the stresses cor-
responding to the eigenvalue A/ are symmetric and the stresses corresponding to the
eigenvalue A\ are antisymmetric to #. The solutions of Egs. (4.1.11) and (4.1.12)
in the range of —0.5 < A < 1 are plotted in Fig. 4.2 versus the angle #; (half
of angle occupied by the material). The solution of Eq. (4.1.11) is denoted as A,
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and as Ay if the solution is obtained from Eq. (4.1.12). It can be seen that: (a)
In the shown range (—0.5 < w < 1), Eq. (4.1.11) has three solutions, of which
two are always negative and may be complex (A = w + i p), and Eq. (4.1.12) has
one solution only. (b) For a notch angle of ; < 90°, there is no singular term, for
90° < #, < 128.7267° there is one singular term only, which corresponds to the sym-
metric stress term, and for 128.7267° < #; < 180° there are two singular terms corre-
sponding to both symmetric and antisymmetric stress term. (c¢) There are only three
notch angles, i.e. #; = 90°,128.7267°, and 180°, zero being the second-order solution
of Det[Agp] x Det[A 4] = 0. It should be noted that A = 0 always is the first-order
solution of Det[App] x Det[A 4] = 0.

4.1.2 The Regular Stress Term

It is known from Chapter 3 that the regular stress corresponds to the stress term with
An = 0.

For a homogeneous material with a notch, the stresses are always zero for thermal
loading. For remote mechanical loading, setting of & = 0 and 8 = 0 in Eq. (3.3.32)
yields

Det([Aolsxs) = 64sin(201) | — 26; cos(26;) + sin(26;)]. (4.1.36)

If Det([Ao)sxs) # 0, the regular stress term is always zero. If Det([Aglsxs) = 0, the
regular stress is nonzero. This means that if

sin(26,) = 0 (4.1.37)
or
—26, cos(26;) + sin(260;) = 0 (4.1.38)
ie., if
6, = 1/2 (4.1.39)
or
b, — %tan(%l) (6, = 128.7267°) (4.1.40)

the regular stress term is nonzero.
For 6, = m/2 (this is a trivial case of a tensile bar),

Oyyo = 4K0
Oxz0 — UzyOZO- (4141)
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according to Section 3.3.9. The corresponding displacements can be obtained from
Egs. (3.3.135), (3.3.5), and (3.3.6) as

Uy = %Kg{l —v—(1+v) cos(29)} (4.1.42)
vo = 2—L:K0{(1 +v)sin(20) }. (4.1.43)

It should be noted that for a notch in homogeneous material the quantity F in
Eq. (3.3.6) is equal to zero, because it corresponds to the rigid body rotation. The
displacements in polar coordinates (u,v) can be transferred to Cartesian coordinates
(ug, uy) by using

Uy = ucos(f) — vsin(0) (4.1.44)

u, = usin(#) + v cos(8). (4.1.45)

In Cartesian coordinates the displacements are

4K,
Ugo = —V—EO:E (4.1.46)
4K,
Uyo = Foy (4.1.47)

For 6; = itan(26;) (6, = 128.7267°), and @ = 8 = 0, the equations in Section 3.3.2
can be simplified. The regular stress term in polar coordinates is:

omo(f) = 8Kosin(201){ sin(2601)0 + sin(26) 6, | (4.1.48)
ooo(0) = 8Kosin(20:){ sin(201)0 — sin(20) 6, } (4.1.49)
Tupo(0) = —4Kqsin(20;){ sin(261) — cos(20) 20, | (4.1.50)

and in Cartesian coordinates it is:

Ouo = 4K, [29 + sin(29)] sin?(26,)
Oy = 4Ko[20 — sin(20)] sin®(261)
Orp = AKo[201 — cos(20) sin(26,)] sin(261) (4.1.51)

The displacements are

"y = %7" Ko sin(20,){0(1 — v) sin(26;) + (1 + v)0; sin(20) (4.1.52)
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Figure 4.3: Notch with 6, = 128.7267° Figure 4.4: Notch with 6, = 128.7267°
for a symmetric overall geometry. for an unsymmetric overall geometry.
8
vy = ET Ky sin(201){6: (1 + ) cos(26) — 25in(26;) In(r) }. (4.1.53)

Finally, the stresses and displacements near the notch tip are calculated from
a3 (r,0) = a3 (r,0) + 7ijo(6), (4.1.54)
and

u;j(r,0) = ufj(r, 0) + wijo(0). (4.1.55)

For this special geometry, the regular stress term is nonzero only for unsymmetrical
case. To show the effect of the regular stress term on the stresses and displacements,
a notch geometry with 6; = 128.7267° and in plane strain will be considered. The
material data are E=1 GPa and v = 0.25. For this notch angle, A = 0.431886,
A’ =0, and the regular stress term is, in general, not zero.

As the first example, a symmetrical overall geometry is used (see Fig. 4.3, here only
the left half is shown). The load is 0, = 1 MPa. Due to the symmetry of the geometry
and the load, the displacement v along the line § = 0 is always zero. From Eq. (4.1.53),
Ky = 0 can be obtained, i.e. for this symmetrical overall geometry the regular stress
term is zero. The factor K’ has been determined from the stress field near the notch
tip, which was obtained by using FEM. The used FE mesh is also shown in Fig. 4.3.
From the stresses o, and oy along § = 0 in the range of 10°7 < r/L < 1073, the factor
K’ is calculated and the averaged value is taken as K’. For the given overall geometry
as in Fig. 4.3, K’ = 0.4358 MPa. Using this K-factor, the stresses and displacements
along the line of # = —90° are calculated analytically from Eqs. (4.1.31-4.1.33) and
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Figure 4.5: Comparison of the stresses Figure 4.6: Error analysis of the stresses,

calculated from FEM and the asymptot- eIror = |CpEM —0 Asymp. |/opEN X 100.
ical solution, along the line of § = —90°.

(4.1.34-4.1.35) (it should be noted that for this example there is only one singular
term and the regular term is zero). A comparison and error analysis of the stresses and
displacements obtained from FEM and the analytical calculation are given in Figs. 4.5,
4.6 , 4.7, and 4.8. Tt can be seen that in the range of r/L < 1072, the stresses and
displacements calculated from the analytical equations are in good agreement with
those of FEM.

As the second example, an unsymmetrical overall geometry is used (see Fig. 4.4, here
only the left half is shown). The load is 0, = 1 MPa. Due to the unsymmetry
of the geometry, the displacement v along the line # = 0 is not zero. Therefore,
Ky is not zero (see Eq. (4.1.53)), i.e. the regular stress term is not zero. From
Eqs. (4.1.31 - 4.1.33) and (4.1.51) it is known that along the line of § = 0, the
stress components o, and oy contain the unknown factor K’ only, while the stress
component 0,9 includes the unknown Kj only. For this unsymmetrical overall geometry,
the factor K’ has therefore been determined from the stress components o,, 0y along
f = 0 as above, and K has been obtained from the stress component o,9. The obtained
values are: K’ = 0.5707 MPa, K;=0.028 MPa. Using these determined K-factors, the
stresses and displacements along the line of § = —90° are calculated analytically from
Eqgs. (4.1.54) and (4.1.55) with only one term and with both singular and regular terms.
A comparison and error analysis of the stresses and displacements obtained from FEM
and the analytical calculation are given in Figs. 4.9, 4.10, , 4.11, and 4.12. From the
error analysis it can be seen that if only the singular term is used, the agreement for
the stresses and the displacements is good in a very small range (r/L < 10~*) only, but
if both singular and regular terms are used, the agreement is good in a larger range
(r/L < 1072). To describe the stress and displacement field in a practically relevant
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6 = —90°.

range of r/L, in the analytical equations the regular stress term should be considered
if it is nonzero.

In Fig. 4.6 (also in Fig. 4.10) the fact of the duplicate curves is due to the results from
FEM for the nodes at element corner and at the middle have a slight difference.

4.2 Homogeneous Material with a Crack

A homogeneous material with a crack means that the angle 6, is equal to 180°.

4.2.1 Determination of the Stress Exponent and the Angular
Function

For §; = 7w, Egs. (4.1.11) and (4.1.12) are valid as well. Therefore
Det[App| = sin[2(1 — \,)7] (4.2.1)
and
Det[A4¢] = —sin[2(1 — A,)7]. (4.2.2)

We can see that in the range of 0 < A < 1 there is only one solution of Det[App| = 0
and of Det[A 4¢] = 0, and they are the same. It is A = 0.5.
For §; = 7w and A =1/2, Eq. (4.1.8) yields

B=3D (4.2.3)
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ical solution, along the line of § = —90°,

for the unsymmetric case.

and Eq. (4.1.6) gives
A=C, (4.2.4)

where Eq. (4.2.3) corresponds to mode I loading (symmetric case) and Eq. (4.2.4)
corresponds to mode IT loading (antisymmetric case) .

Finally, from Eqs. (3.1.7) to (3.1.9) the singular stress term can be calculated as
follows:

o5 (r,0) = i(r/R)U'E’{K’ 5 cos(g) - Cos(3—29)] +K"[5 sin(g) - 3sin(3_9)] }

2
(4.2.5)
o) = 3o/ R cos(§) + o] + 387 sin(§) +sin3)] |
(4.2.6)
o5 8) = 30r/R) 0K fsin) 4 sin(] - K o)+ 3eos )]
(4.2.7)

where K’ = % and K" = %, which should be determined from the stress analysis
by FEM. From Egs. (3.1.16) and (3.1.17), the displacements for plane stress are:

R
S _
u’(r,0) = z

N——

% z " {K’ [(5 30 Cos(g) (140 005(3—29)] n
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" . 9 . 39
+K" (5 - 3v) sm(§) —3(1+v) sm(?) (4.2.8)

K l(7 ) cos(g) _3(1+) 005(3—29)] } (4.2.9)

In the following sections, two special cases of load and overall geometry shall be dis-
cussed.

(I) Crack under Model I Loading

If the geometry and loading are symmetric to the crack line, the stress tensor in the
elasticity is also symmetric to the crack line. This means that

Urr(ra 9) - Urr(ra _0)

0'99(7“, 9) = 0'99(7“,—9)

O'T,g(?”, 9) = —O'TQ(T,—G). (4.2.10)
Model I loading is the type, which is symmetric to the crack line. Therefore, the

stress tensor according to mode I loading is symmetric to the crack line. To satisfy
Eq. (4.2.10), the factor K" in Eqs. (4.2.5 - 4.2.7) must be zero.
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Finally, for a crack under mode I loading the singular stress term is

1 6 6
o (r,0) = ~(r/R) "K' [5 cos(=) — COS(S—)] (4.2.11)
4 2 2
1 6 6
) = 20/ [3cos( D) + cos(2)] (4.2.12)
1
o5 (r,0) = Z(T/R)_0'5K’[sin(g) + sin(%e)]. (4.2.13)
Transforming the stress components from polar coordinates into Cartesian coordinates
results in:
K’ 6 6 30
S _ , :
oS (r,0) = D cos(§)[1 —sin(;) sm(;)] (4.2.14)
K’ 6 6 30
s _ v A
0,,(r,0) = (7 R) COS(2) [1 + sm(2) sin( 5 )] (4.2.15)
Kl
oy, (r,0) = ——= sin(g) cos(g) cos(3—0). (4.2.16)

(r/R)"s 9! g 2

Equations (4.2.14 - 4.2.16) are the same as those in fracture mechanics, but the defini-
tion of factor K’ is different due to r being normalized by R.

(IT) Crack under Model IT Loading

If the geometry is symmetric and the loading is antisymmetric to the crack line, the
stress tensor in the elasticity is antisymmetric to the crack line. This means that

O (r,0) = — 0op(r,—0)
09 (’I“, 9) = — 0'99(7“, —9)
O'TQ(T, 9) = Urg(T,—e). (4.2.17)

Model II loading is the type, which is antisymmetric to the crack line. Therefore, the
stress tensor according to mode II loading is antisymmetric to the crack line. To satisfy
Eq. (4.2.17), the factor K’ in Eqgs. (4.2.5 - 4.2.7) must be zero.

Finally, for a crack under mode II loading the singular stress term is

oS (r,0) = i(r/R)_MK” 5 sin(g) - 3sm(3—29)] (4.2.18)
o5 (r,0) = %(T/R)—O-f)f("[sm(g) + sin(%e)] (4.2.19)
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o (r,0) = —%(T/R)U'E)K”[COS(%) + 3005(%0)]. (4.2.20)

Transforming the stress components from polar coordinates into Cartesian coordinates
results in:

o2 (r,0) = 7” sin(g) [2 + cos(g) cos(%g)] (4.2.21)

K" . 0 6 30
r,6) = LR sm(§) 008(5) cos(;) (4.2.22)

K cos(g) [1- sin(g) sin(%g)]. (4.2.23)

Opy(r,0) = _W 5

Equations (4.2.21 - 4.2.23) are the same as those in fracture mechanics, but the defini-
tion of factor K" is different.

4.2.2 The Regular Stress Term

For a homogeneous material with a crack under thermal loading the stresses are always
zero. For remote mechanical loading, setting of « = 0 and 8 = 0 in Eq. (3.3.133) yields
the regular stress term in Cartesian coordinates:

Oxzd — _4K0
Oyyo = O';L-y():o. (4224)

This regular stress term is the called T-stress (see [137]). The displacements for plane
stress are:

ug(r, 0) = %KO r {—(1—v)+ (1+v)cos(20)} (4.2.25)

vo(r, 0) = —2—;(0 r {(1+v)sin(20)} . (4.2.26)

For a crack under mode I loading, the regular stress term satisfies the condition in
Eq. (4.2.10). This means that the regular stress term may be nonzero. But for a
crack under mode II loading, the regular stress term does not satisfy the condition in
Eq. (4.2.17). To satisfy this condition, K, must be zero. Therefore, the regular stress
term for a crack under mode II loading is zero.
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4.2.3 Summary

The stresses and displacements near the crack tip are calculated from

0ij(r, 0) = a3;(r, ) + 0ijo(6), (4.2.27)

u;j(r,0) = u%(r, 0) + wijo(0). (4.2.28)

The relations for determining the stresses and displacements in a homogeneous material
with a crack are well known from fracture mechanics. The equations given in this
section are identical with those of fracture mechanics, only the definitions of K’ and
K" are different due to the coordinate r being normalized by R, where K’ and K"
have the unit of the stress. The relationships between K', K" and K, K;; (defined in
fracture mechanics) are

K[ =V 27TRK,, K]] = —V 27TRK”. (4229)
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Chapter 5

Dissimilar Materials Joint with
Edge Tractions

From Chapter 3 it is known that the singular behavior in a joint is independent of
loading. In a dissimilar materials joint with edge tractions, therefore, the singularity
behavior corresponds to that one of the same joint with a free edge, i.e. the singular
stress exponents and their angular functions in the asymptotic solution of the stresses
near the singular point are the same. However, to satisfy the boundary conditions along
the edges, higher order regular stress terms have to be considered. Numerical calcula-
tions show that the regular stress terms are also important for the stress distribution,
even very close to the singular point.

N Ei V1,00

\S
< X
Co Jy 6 T T

0

E2! Vo ,(Xz

&
<&
4
Gy / 0, T
‘ //T
¥
¥

T

Figure 5.1: An arbitrary joint with edge tractions.
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In this section a joint is considered (see Fig. 5.1), which is subjected to three different
types of loading;:

(a) Remote mechanical loading (RM);

(b) Thermal loading, e.g. a homogeneous temperature change in the joint (TH);

(c) Edge tractions (ET).

For cases (a) and (b) the solutions are known from Chapter 3. Following the superpo-
sition principle, only the case (c) is needed to be studied in details for elastic material
behavior.

The stress field caused by the edge traction can be described by the superposition of
some singular terms with corresponding the stress intensity factors K; and higher order
regular stress terms.

If the edge tractions can be expanded in a polynomial, the higher order regular stress
terms can be calculated analytically. In Section 5.1 the equations to calculate these
terms will be given in an explicit form. For a quarter planes joint, the behavior of the
stress intensity factor (K) and some empirical relations to calculate K will be given in
Section 5.2 for a normal edge traction and in 5.3 for a shear edge traction.

5.1 Basic Equations for Determination of the Higher-
order Regular Stress Terms

In this section it is assumed that the tractions on the edges can be described by a
polynomial. They have the following form:

at 0 — 91
N
ogr =p1+ Y Air? (5.1.1)
i=1
Ny
Tro1 =t + Y Bjr’ (5.1.2)
j=1
at 0 = 92
M
oop2 =2+ Y Chr” (5.1.3)
k=1
M,
Tro2 — t2 + Z Dﬂ“l. (514)

=1

This means that the tractions ogg, 7.9 at & = 6, and 6 = 0y may be described by
polynoms of different order. We take M = max{NI, Ny, My, MQ}, then the boundary
conditions for this problem are:
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for 8 =6, :

ogor (r,01) = p1 + ZA;T (5.1.5)
1=1
M —
Too1(r,01) = t1 + > Byr! (5.1.6)
=1
for 8 =0, :
M —
0'992(7", 02) = P2 —+ Z Cﬂ"l (517)
=1
M —
Tro2(r,02) = ta +»_ Dyr! (5.1.8)
=1
for 6 =0° :
o991(r,0) = 0g2(r,0),  Trp1(r,0) = Tpg2(r, 0) (5.1.9)
uy(r,0) = ug(r,0),  wvi(r,0) = vy(r,0), (5.1.10)

where A4, =0 (for | = Ny +1to M), By =0 (for | = Ny+1to M), C, =0 (for | =
M, +1to M), D, =0 (for | = My +1to M). The stresses and the displacements
near the singular point can be described by Egs. (3.1.7) to (3.1.9) and Egs. (3.1.16) to
(3.1.17), considering the regular term as given in Egs. (3.3.2) to (3.3.6). The boundary
conditions lead to the following eight equations for plane stress:

Z (2 = wp) (1 — wy) { Ajp sin(wpby) + Byy, cos(wy,by)
+ Cipsin[(2 = wy)01] + Diy cos[(2 = wy)04] |

M
+ ogoro(0h) =p1+ > At (5.1.11)

Yo (wn — 1) { Aintn cos(wnbh) — Bipwn sin(wn b))

n

+ Cin(2 = wp) c0s[(2 = wn)01] = D1n(2 = wy) sin[(2 = w,)04] |

M
+ Tro0(01) =t + Y By’ (5.1.12)
=1
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Srrn 2= wa) (1= wn) { Appsin(wnfs) + Bay cos(wnb)

n

+ Copsin[(2 = w)fa] + Doy cos[(2 — w, )] |

M
+ opex(02) =p2+ > Cir! (5.1.13)
=1

Yo (wn — 1) { Aznwn c08(wn ) — Banwn sin(wnbs)

n

+ Con(2 = wy) €08 [(2 = wn)s] — Doy (2 — wy) sin[(2 = wy)0s] |

M
+ Tro20(02) =t2+ > Dy’ (5.1.14)

=1

o2 = we)(1 - Wn){(Bln + D) — (Ban + D2n)} + 0910(0) — 0p920(0) = 0

n

(5.1.15)

=5 (1 — ) Ao+ Con@ = 00) = Az — Con(2 = )} + 70

n

— Trp20(0) = 0 (5.1.16)

Sl { BlnM[Q(l — 1) +wu(1+ Vl)] — Dypp(1+11) (2 — wn)

n

— Bon[2(1 = v2) + wn(1+ 12)| + Don(1+ 1)(2 — wy) }
+  wip(r,0) — ug(r,0) = rT X Ey(ay — ay) (5.1.17)

St {0 App[201 = m1) + (2 = wa) (14 01)] = Crap(1+11)(2 — wy)

n

Agn [2(1 = 1) + (2= wa) (1 + 12)] + Con(1+12)(2 — wn) }
+ Um(?", 0) — ’Ugo(?”, 0) =0 (5118)

where = Ey/E; and w, # 0 ( w, = 0 is concluded in the terms with o;j). The
quantities corresponding to the regular term, 0,10, 0ij20, U10, U20, V10, V20, have the same
form as those given in Egs. (3.3.2) to (3.3.6).

To solve Eqgs. (5.1.11 - 5.1.18) different cases should be considered:

(I) r-independent stress term;

(IT) r-dependent stress terms: (a) w, = —1,—2,... = [,...,—M; (b) 0 < w, < 1.

(I) The r-independent stress term.

From Egs. (5.1.11 - 5.1.18) and Eqgs. (3.3.2) to (3.3.6), the r-independent stress term
has to fulfill the following boundary conditions:

o0910(01) = p1 (5.1.19)
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Trglg(gl) = tl (5120)

0020(02) = o (5.1.21)

Tro20(02) = t2 (5.1.22)

0910(0) — 09g20(0) = 0 (5.1.23)

77010(0) — Trg20(0) = 0 (5.1.24)

wio(r, 0) = usg(r,0) = rT X Ey(cs — ) (5.1.25)
v19(7, 0) — vog(r, 0) = 0. (5.1.26)

Solving Eqs. (5.1.19 - 5.1.26), the coefficients Ao, Bko, Cko, Dro in Egs. (3.3.2) to
(3.3.4) can be determined analytically. From Eqs. (5.1.19 - 5.1.26), we can see that the
solution is made up of two parts; one is the contribution of the constant mechanical
tractions pi,tq,p2, and t5. The other is the contribution of thermal loading with the
temperature difference T. The solution according to the constant mechanical edge

traction is denoted as o7{;(#) and according to thermal loading as ¢;1(f). The term

0}iko(0) is known from Section 3.2. Here, only the solution for the constant mechanical
traction will be given, i.e. in Eqgs. (5.1.19 - 5.1.26) let T = 0.

To determine the coefficients Ayg, Bro,Cro, and Dy, for an arbitrary joint geometry with
0 and 05, generally, an 8 x 8 linear equations system has to be solved directly. The
disadvantage of directly solving an 8 x 8 linear equations system is that the relationship
between the coefficients, the material properties (e.g. the Dundurs parameters), the
joint angles 6,0, and the loading are not clear. For some special geometries, e.g.
0, = —0y or 6 — 0y = 180° (A < 0), the solution of Egs. (5.1.19 - 5.1.26) can be
simplified. As an example, the solution of Eqgs. (5.1.19 - 5.1.26) will be given explicitly
below for a joint with #; = —6, = 90°.

The coefficients in Eqs. (3.3.2 -3.3.4) can be calculated from Agy = Ajy/Z, Bro =
Bjy/ 7, Cro = Ciy/Z, and Dyy = Djy/7Z with

Z=4p—1)[(n—1)—28(u+1)] (5.1.27)
Ay =2t — t2)[(n = 1) = 2B(p+1)] (5.1.28)

Biy= (1= m{pi[2B(n+1) = 2u—1)] +p2} + g(tl — 1) (28 + 26— 3u+1)
(5.1.29)
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Cy = [2u—1) = to] [(1 = 1) = 28(u+ 1)] (5.1.30)

Dip = (1— M){pz — DN [25(,“ +1)+ 1]} + g(t2 —t)(p+1)(26+1)
(5.1.31)

Ay =2p(ts — t2) [(n — 1) = 28(u + 1)] (5.1.32)

By = (1= m){ = ppr +p2[28(n+ 1) +2 = p] } +gu(t2 — 1) (28— pu+ 28 + 3)

(5.1.33)
C3y = [t + ta(n = 2)] [(— 1) = 2B8(u+ 1)) (5.1.34)

Diy = (n—1{pipn+p2[2B(n+1) - p]} + gu(h —t2)(n+1)(28-1)
(5.1.35)

where Z # 0 and [ is the Dundurs parameter. The relation between p and « is

1+«
Cl-a

1

Using the coefficients calculated with Egs. (5.1.27 - 5.1.35), the stress term o};1,(6)
can be obtained from Eqs. (3.3.2 -3.3.4). In case of Z = 0 and Ay # 0 or By # 0 or
Cro # 0 or Dy # 0, there is a logarithmic singularity.

(IT) The case of w, = —1,—-2,... — [,...,— M.
Following Eqs. (5.1.11 - 5.1.18), to fulfill the r-dependent edge tractions for each
w, = —[ the boundary conditions lead to:

—Aysin(l0y) + Bycos(l6y) + Cusin[(Q + Z)GI]

+ Dycos|(2+1)61] = m (5.1.36)

Ayleos(10y) + Bylsin(l0,) — Cy(2 + l)cos[(Q + Z)GI]

Sy

+ Du(2+Dsin|(2+1)0] = z+l1 (5.1.37)

—Agsin(lfy) + Bycos(l6y) + CQlSin[(Q + Z)GZ]

C

CERTE] (5.1.38)

+ Dglcos[(Q —l—l)t%] =
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Aglcos(l0z) +  Bylsin(l0) — Coy(2 + l)cos[(Z + l)92:|

D

: !
+ Dy(2+D)sin|(2+1)0] = 5 (5.1.39)

(Bi+ Du) — (Ba + Do) =0 (5.1.40)
—Aul+Cu(2+l) + Ayl — 021(24—[) =0 (5.1.41)

Bup[2(1 =) — 1(1+w)| = Dup(l+v1)(2+1)

— Bul2(1 =) = I(1+w)| + Du(1+1)(2+1) =0
(5.1.42)

Auu[200=m) + Q+D(1+m)] = Cup(1+1)(2+1)

— Ay21 - 1)+ 2+ D1+ w)| + Cu(l+m)(2+1) =0
(5.1.43)

By solving Eqgs. (5.1.36 - 5.1.43), the coefficients Ay, By, Cki, Dyy (k=1,2) can be
determined analytically. Generally, an 8 x 8 linear equations system has to be solved
directly for an arbitrary joint geometry with ; and 6. To see the relationship between
the solution and the Dundurs parameters o and 3, we need to describe the solution
in an explicit form. For an arbitrary joint geometry the explicit form is very long and
complicated. The coefficients for a joint with #; = —fy = 90° will be given below. We
take

’Zl, By = l;;l, Cr = Z’zl, Dy = l;’;l (5.1.44)
with 1 = 2N - 1 for odd numbers of 1 and I = 2N for even numbers of 1. They can be
calculated from

Z = 256NN + D{4N? 25 = SN2 3 + (AN? — 1) + SN 8?
— (BN? = 2)u+AN?B + BB + AN? — 1} (5.1.45)

Akl =

Af = 3202N + 1)(—1)”{4/\/%%% — (4N — 12N 12 BA + (2N — 1)2N 1°A
+ S8NZuBPA + 2N puBA — (4N + 1) (2N — 1)uA + 2N psC
— (2N = D)uC +AN?B*A + 8N?BA + (4N? — 1)A + 2N BC + 2N — 1)C}

(5.1.46)
B, = 3202N + 1)(—1)W—1>{4/\/2u2521§ — (4N + 12N 126B + (2N +1)2N 11°B
+ 8N?uB’B — 2N ufBB — (4N — 1)(2N + 1)uB — 2N 8D
+ (2N 4+ 1)uD + 4N?5°B + SN?BB + (4N? — 1)B — 2N 8D — (2N + 1)13}

(5.1.47)
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Ch = 32(-1)M{AN? 2N = 1)pB°A = 2[(4N? = BN + 2)(2N + 1) — 2| u?BA
+  (4N? = 1)2N A + 8N (2N — 1) A
— 2NN + DpBA — (AN? — 1) (4N — 1)pA
— 2N (2N + 1)uBC + (4N? — 1)uC + (2N — 1)AN?B°A + 8N? (2N — 1) A
+ (2N = 122N + 1A — 2N (2N +1)8C — (4N? - 1)C} (5.1.48)
Dy = 32(=D)N{ANZ2N + 1)p?8B — 2[ (2N + 1)(4N? = BN +2) + 4N? — 2| BB
+ (AN? = 1)2N1°B + SN? (2N + 1) uB’B
+ 2N (2N — 1)uBB — (4N? — 1) (4N + 1)uB
+ 2N (2N = 1)pBD — (4N? — 1)uD + AN? (2N + 1) 3°B + 8N*(2N + 1) 5B
+ (2N —1)(2N +1)’B+ 2N (2N — 1)8D + (4N — 1)D} (5.1.49)
Ay = 320N + 1)(-DN{2Np?BA — 2N = 1)?A — AN 2BC
+ 8NZU?BC — (4N? — 1) p*C + 2N pBA + (2N — 1) pA — SN2 uB*C
+ 2N uBC + (4N + 1)2N — D)uC — 4N?B*C — 2N (4N — 1)BC
— 2N(2N - 1)C} (5.1.50)
By = 322N+ 1)(-D)N{2N 2B — 2N + 1)1°B + AN 6°D
— SNZU2BD 4 (AN? — 1)i®D + 2N BB + (2N + 1) uB + SN2 u3?D
+ 2NupD — (4N — 1)(2N + 1)uD + 4N?5?D 4 2N (4N 4 1)D
+ 2N(2N +1)D} (5.1.51)
Cy = 32(—1)W*1>{2N(2N + 1)p2BA — (4N? — 1) A 4+ AN? (2N — 1) 3*C —
— SNZ(2N — 1)i?BC + (2N — 1)* (2N + 1)p®C + 2N (2N + 1) upA
+  (4N? = 1)pA + 8N (2N — D)pB?C + 2N (2N + 1) upC
— (4N = 1)(4N? — D)uC + 4N? (2N — 1)5°C
+ 2[(2N + 1)(AN? = BN +2) — 2] BC + 2N (4N? - 1)C} (5.1.52)
Dy = 32(=D)N{2N (2N = 1)i2BB — (4N? — 1)iB — AN (2N + 1)123°D

SN2(2N + 1) BD — (2N — 1) (2N +1)%1?D + 2N (2N — 1)ufB

(AN? — 1)uB — SN2 (2N + 1)pB*D + 2N (2N — 1)uD

(AN? — 1) (4N + 1)uD — 4N (2N + 1)5°D

— 2[2N + 1)(4N? = BN +2) + 4N? — 2| D — 2V (4N? — 1)D}  (5.1.53)

+ + +
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for the odd numbers of | and

Zy = 256(N + 122N ANV + 1B — 202N + 1)%28 + (AN (N + 1) + 1)y
+ 2(2N 4+ 1)2 = 1)uB® — 202N + 1)2u + 4N (N 4 1) 52
+ 22N+ 1B+ ANV +1) +1} (5.1.54)
N +1)?
Ay, = 128 E2N++ i)( 1) {W(/\/+ D B2A — 2N (AN + 3)p? BA + (2N + 1)2N 2 A
+ SN(N 4+ 1)uB?A + 2N + 1)pBA — (AN + 1)(2N + 1) pA — 2(N + 1)upC
+ N+ 1)uC + 4N (N + 1)5%°A + 22N + 1)°BA
+ (AN +1)+ 1A -2V +1)8C — 2V +1)C} (5.1.55)
Bj, = 128 ((/;/A;Li)f\)/(—1)ﬂf{4/\/(/\/+ 1)*3°B — 2[/\/(4N+ 5) + 1],ﬂﬁ]§
+ 2N +1)2(N + 1)p?B + 8N (N + 1)uB’B — 2N ufB — (4N + 3)(2N + 1)uB
+ 2NupBD — (2N + 1)uD + AN (N + 1)3°B + 2(2N + 1)°5B
+ (AN(N+1)+1)B+2N 8D+ (2N +1)D} (5.1.56)
Ccr o= 128((/;//\7 1)3/(—1)N{4M(N+1) 2B°A — 2[N (4N +5) + 2| u?BA
+ 2N+ 1)(2N + 1)p®A + SN (N + 1) uB*A
— 2(/\/+ DuBA — (4N +3)(2N + 1)puA
+ 2N+ D)upC — 2N + 1)uC + (N + 1)4NB%A + 24N (N + 1) + 1) A
+ (AN +1)+DA+2 +1)8C+ 2V +1)C} (5.1.57)
Di, = 128((/;//\733/(—1)(N—1>{4N(N+ 1)p?B°B — 2(4N? + 3N + 1)p* BB +
+ (2N + 12N 1B + SN (N + 1)ufB°B + 2N uBB — 2N + 1) (4N + 1)uB
— 2NuBD+ 2N + 1)uD + 4N (N + 1)°B + 24N (N + 1) + 1)5B
+ (AN(N+1)+1)B—2NBD — (2N + 1)D} (5.1.58)
Ay = 128((';\.//\/++1i2) (—1)N{2(/\/ + D) BA — N + 1) A + 4N (N + 1)*g*C
— 2UN N +1) + 1)p?BC + (AN(N + 1) + 1)p*C
+ 2N+ DuBA + 2N + 1)pA
+ 8NN+ 1)uB?C —2(N + 1)upBC — (AN + 1)(2N + 1)uC
+ ANV +1)3C + 2N (4N + 3)8C + 2N (2N +1)C} (5.1.59)
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By = 128%(—1)N{ — 2N 2BB 4+ 2N + 1)i?B + AN (N + 1) 2 5°D
— 22N +1)?1°BD + (AN (N + 1) + 1)p°D — 2N uBB — (2N + 1)uB
+ 8NN + 1)pBD + 2N puBD — (4N + 3)(2N + 1)uD
+ ANV +1)8°D + 2N (4N +5) +1)BD + 2(N + 1)(2V + 1)D}

(5.1.60)

Cy = 128%(—1)/“{ — 2N + D)p?BA + 2N + 1) p*A + AN (N + 1) p?B*C
— 2NN +1) + D)p?BC + (AN (N + 1) + 1)p*C — 2(N + DuBA — (2N + 1)pA
SN(N + 1)uB’C + 2N + 1)uBC — (4N + 3)(2N + 1)uC + 4N (N + 1)5°C

2[N (4N +5) + 2| BC + 2(N + 1) (2N + 1)C} (5.1.61)

+ +

D} = 128%(-1%””{2}\//353 — 2N + 1)p®B + 4N (N + 1)p?°D
— 24NN +1) + 1)i*BD + ANV + 1) + 1)p°D + 2N ufB + (2N + 1)uB
+ SN(N + 1)uB°D — 2N uBD — (2N + 1)(4N + 1)uD + 4N (N + 1)3°D
+ 2[4N? + 3N +1]D + 2V (2N + 1)D} (5.1.62)
for the even numbers of 1. In Eqs. (5.1.45 - 5.1.62), there is a logarithmic singularity
if Zy=0and A}, #0or B, # 0 or C};; # 0 or D;; # 0.

The stress term according to w, = =l is 7' 5/[)(9) with

g0 = (1+ l){ — Api(2 = 1)sin(10) + Byi(2 — l)cos(19) —
— Cu(2+D)sin[(2+1)0] — Du(2+eos[(2+1)0]}  (5.1.63)

Gom(®) = 2+ D)1 +D{ = Apsin(10) + Bucos(if)
+ C’klsm[(Z + l)H] + Dyycos {(2 + 1)9] } (5.1.64)

Tou(®) = (1+ l){AmlCOS(l@) + Bylsin(10)
- Cu(2+ l)cos[(Q + Z)G] + Dri(2 + l)sin[(Q + 1)0] } (5.1.65)

It should be noted that 577,(#) do not have the unit of stress, the total 7' /7[,(f) has

a unit of a stress. Therefore, a normalized definition
oisw(0) = R' 55(0) (5.1.66)

is used. Where R is a characteristic length of the joint. Finally, the higher-order reg-
ular stress term according to w, = —I is (r/R)' o;},(9), where o;f,(0) has a unit of a
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stress.

(IIT) The case of 0 < w, < 1.

For this case the stress term is denoted as o (r 0), because for this w,, stress singularity
exists. The stress term according to 0 < w,, < 1 has the same expression as that one
for the same joint with a free edge (see Section 3.1), i.e

o (r Z s fijkn(0) (5.1.67)

n= 1

for the real eigenvalue and

”k Z {cos [pnln(r/R)]fijknc(H) + sin [pnln(r/R)]fijkns(G)}

(5.1.68)

for the complex eigenvalue. In Egs. (5.1.67) and (5.1.68) w,, corresponds to the real part
of the eigenvalue, p, is the imaginary part of the eigenvalue, fijen(0), fiixn(0), and f5.,(0)
are angular functions, N is the number of the singular terms. All parameters in
Eqgs. (5.1.67) and (5.1.68), except for the factor K,,, can be determined analytically and
are the same as those in a joint with a traction free edge (see Section 3.1), which are
independent of the loading. Only the stress intensity factor K, depends on the applied
loading. Generally, the stress intensity factor should be determined by a numerical
method, e.g the Finite Element Method (FEM) (see Section 3.4). For elastic behavior,
the factor K, in Egs. (5.1.67) and (5.1.68) can be separated as

K,=K™ 4 gFT ¢ g (5.1.69)

where KE{M, KE)T, and K,:fH correspond to the remote mechanical loading, the edge
tractions, and the thermal loading, respectively.

Finally, in a two dissimilar materials joint under the three types of loading, the stresses
near the singular point can be calculated from

M
oii(r,0) = 0 (r,0) + 0lk0(0) + o (0) + ol (0) + > (r/R) ol (6)
=1
N
= (0) + o510 (0) + o0 (0) + oo ( +Z (r/R)'ol 1 (0)
n:l

(5.1.70)

for the real eigenvalue. In Eq. (5.1.70) the terms o];1{(0), o/i2((f), and components

of al]k(r, 0) are the same as those for the same joint with a free edge, except for the
K-factor. The term o/f(f) can be calculated from Egs. (3.3.2 -3.3.4) with the coef-
ficients given in Egs. (5.1.27 - 5.1.35). The quantities ¢/7,(r,#) can be obtained from
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Egs. (5.1.63 - 5.1.66) using the coefficients given in Eqs. (5.1.45 - 5.1.62) for a joint

with #; = —6, = 90°. It should be noted that for most joint geometries and material

combinations, the term 05%(0) is zero, as shown in Section 3.3.

Now, all the regular stress terms, constant and higher-order, are well-known. In the
next sections the behavior of the stress intensity factor will be studied in details by
using the method given in Section 3.4.

5.2 Empirical Relations of the Stress Intensity Fac-
tor in a Joint under Tension Edge Traction

o
)

J
b

Figure 5.2: A quarter planes joint with edge tractions.

From the results of a joint with a free edge, it is known that for an arbitrary geometry
(01, 0) the relationship between the K-factors and the stress exponents is very compli-
cated, and it is impossible to find an empirical relation for the stress intensity factor in
a finite joint geometry. However, for a quarter planes joint (6; = —fy = 90°), empirical
relations have been found to determine the K-factors (see Section 3.5.2). Therefore, in
this section only quarter planes joints are considered.

The polynomial of the tension edge traction is

M
ou(y) = Y Ay + Ao, (5.2.1)

=1
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Klg,

where Ay is introduced for the convenience of mathematical description, Ay may be p;
in Eq. (5.1.1) or py in Eq. (5.1.3) (the coordinate see Fig. 5.2). For linear elasticity
the stress field under the loading given in Eq. (5.2.1) is the same as that obtained
from the sum of each loading o’ (y) = A;y' (1=0,1,2,...,M). Therefore, we will focus
on the loading o' (y) = A4;y' below and study the corresponding characteristics of the
K-factor.

If the geometry is L > H, the coordinate r in Eq. (3.0.1) is normalized by H (K
is denoted as Kp); if the geometry is H > L, the coordinate r in Eq. (3.0.1) is
normalized by L (K is denoted as K, or K). The relation between K and Ky is given
in Eq. (3.5.8). It is known from Section 3.5.2 that for a quarter planes joint with a free
edge and under thermal loading, the factor K7, is a constant (i.e. K is independent
of H/L) if H/L > 2; if Hy/L < 0.1 (or Hy/L < 0.1), the factor Ky, (or Ky, ) is a
constant (i.e. Kp, (Kp,) is independent of H;/L (Hy/L)). To see whether this is also
true for a joint under a tension edge traction, the stress intensity factors are calculated
from FEM for different ratios of H/L (H; = H,) under ol (y) =| y/H |' (1=0, 1, 2, 3,
4, 5) (i.e. the loading is symmetrical to the interface for all values of 1).

-0.4— 37
] ] —+— 1st order
-0.5- 2| —— 2nd order
i 7 —=— 3rd order
— — —a— 4th order
7 © 1 —e—s5thord
0.6 - S 1- order )
0.7+ 0= \
'0-87\\\\\\\\\\\\\\\\ '17\\\\\\\\\\\\\\\\
10° 10" 10° 10" 10° 10° 10" 10° 10" 10°
H/L H/L

Figure 5.3: Normalized stress intensity Figure 5.4: Normalized stress intensity
factor K1 /oy at the edge traction of o, factor Kj/o; at the edge traction of
= constant vs. H/L. ol(y)=|y/H | (1=1,2,3,4,5) vs. H/L.

As an example, the material data F; = 1GPa, F, = 7TGPa, v; = 0.2, and v, = 0.4
are chosen. For this material combination, the stress exponent of the singular term is
w = 0.104. It should be noted that the values of the K-factor in Eq. (3.0.1) and of
o/;h(0) in Eq. (5.1.66) are dependent on the absolute size of R, because the loading
o' (y) = (y/H)" is dependent on the absolute size of H (here R=H). They also depend
on the overall geometry form, e.g. the ratio of H,/L, Hy/L. However, the ratio of
K/ol(0) is independent of the absolute size of R. In Fig. 5.3 the ratio of K /oy is
plotted versus H/L for the case of o, = constant, where oo = 0yg10(0) = 0gg20(0) is
calculated from Eqs. (3.3.2 - 3.3.4) with the coefficients from Eqs. (5.1.27 - 5.1.35).

In Fig. 5.4 the ratio of K1 /o, is plotted versus H/L for the case of o' (y) =| y/H |
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Ko,

(1=1,2,3,4,5), where o, = o7 (0 = 90°) and is calculated from Eqgs. (5.1.66) and (5.1.63)
with the coefficients from Eqs. (5.1.45 - 5.1.62) (here R=L). On the other hand, in
Fig. 5.5 the ratio of Kpy/oy is plotted versus L/H for the case of o, = constant.
The ratio of Ky /oy is plotted versus L/H in Fig. 5.6 for the case of ol (y) =| y/H |
(1=1,2,3,4,5), where R=H is used for the calculation of o, in Eq. (5.1.66). From
Figs. 5.3, 5.4, 5.5, and 5.6 it can be seen that if H/L > 10, the ratio of K /o,
(1=0,1,2,3,4,5) is a constant and if L/H > 10, the ratio of Ky /oy (1=0,1,2,3,4,5) is a
constant. In fact, for small 1 (1=0,1,2) the ratio of K /o, always is a constant like that
one in a joint with a free edge, if H/L > 2.

-0.5- 3+
| | —— 1storder
- Zj —&— 2nd order

-0.6— - —=— 3rd order
| e} ] —2— 4th order 4
i N 19— sthorder

-0.7 .
] 07

-0.8 T T[] T T T T T T T T 1] -17\\\\\\\\\\\\\\\\
10? 10" 10° 10! 10° 10? 10" 10° 10! 10°

L/H L/H

Figure 5.5: Normalized stress intensity Figure 5.6: Normalized stress intensity
factor Kg/op at the edge traction of o, factor Kpy/o; at the edge traction of
= constant vs. L/H. ol(y) =|y/H |' 1=1,2,3,4,5) vs. L/H.

By using the finite element method (FEM), the stress intensity factors K and Ky are
calculated for different material combinations (various ratios of Ey/FE; and vy /1), dif-
ferent geometries (various H/L), and different loadings (o,(y) = 4;y' (1=0,1,2,3,4,5)).
As an example, the normalized stress intensity factors K /oy and K /oy are plotted
vs. w for o, = constant and o, =| y/H | in Figs. 5.7 and 5.8. It can be seen that
for o, = constant a unique relation exists between K, /oy and w, and for o, =| y/H |
there is no direct unique relation between K, /oy and w. However, between the quantity
(Kp/o1)w®? and w there is a unique relation, see Fig. 5.9, where the fitting param-
eters are x=1.1 and y=1/1.45. Analogously to o, = constant and o, =| y/H |, some
empirical relations to calculate the stress intensity factor for o,(y) = Ayt (1=2,3,4,5)
have been obtained for the joint geometry with H/L = 0.1, 2, and 8.

Below the notations of

v = 1 for Ey/Ey > 1,
vV = s for EQ/El <1, (522)

if 141 % vy, and
sign = 1 for Ey/Ey < 1
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Figure 5.7: The normalized stress intensity factor K, /oy vs. the singular stress expo-
nent w for H/L=2 and o,(y) = constant.

sign = -1 for E5/Ey > 1. (5.2.3)

are used.
(I) Empirical relations for the joint geometry with H/L = 2.

(a) If the loading o,(y) is constant, the stress intensity factor K; can be calculated
from

K1Y = 0y (—0.9850 + 2.2212 w — 2.297 w?) (5.2.4)

(b) For the loading 0,(y) =| y/H | (i.e. the loading is symmetrical to the interface),
the stress intensity factor K can be calculated from

fnl

(1) _
Ky =—1o wl1y(1.0/1.45) | (5.2.5)
with
far =05 (0.08164w + 1.872 w” — 6.312 w* + 6.784 w") (5.2.6)

(c) For the loading o, (y) = (y/H) (i.e. the loading is antisymmetric to the interface),
the stress intensity factor K can be calculated from

0.9499,/70.5481)

KW = sign 10/m/@ (5.2.7)
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Figure 5.8: The normalized stress inten-
sity factor K, /oy vs. the singular stress
exponent w for H/L=2 and o,(y) =

| y/H |.
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Figure 5.9: The modified stress inten-
sity factor K /ojw®vY vs. the singular
stress exponent w for 0, (y) =| y/H | and
H/L=2.

with

—0.009705 — 2.423 w + 9.741 w?
—54.25 w® 4+ 140.3 w* — 138.4 W°

fnl -
(5.2.8)

(d) For the loading o,(y) = (y/H)?, the stress intensity factor K, can be calculated
from

K = 10/ (5.2.9)
with
fn2 = —0.7906 — 1.933 w (5.2.10)

(e) For the loading o, (y) =| y/H |3, the stress intensity factor K can be calculated
from

Kég) _ _lofns/(w—O.OOSZOQV0.05761) (5211)
with
fn3 = —0.9430 — 2.109 w (5.2.12)

(f) For the loading o,(y) = (y/H)?, the stress intensity factor K can be calculated
from

1.022V—0.2724)

K® = sign 10//@ (5.2.13)
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with

fos = —0.002966 — 2.963 w + 4.156 w?
—5.982 w? — 0.05717 w* + 2.036 w® (5.2.14)
(g) For the loading o, (y) = (y/H)", the stress intensity factor K, can be calculated
from
KD = 10/ @) (5.2.15)
with
fna = —0.09568 — 2.70 w (5.2.16)
(h) For the loading o,(y) = | y/H |°, the stress intensity factor K can be calculated
from
KO = 107/ (@2 05200025) (5.2.17)
with
fas = —0.01177 — 2.318 w (5.2.18)
(i) For the loading o,(y) = (y/H)?, the stress intensity factor Ky can be calculated
from
K™ = —1In (fo5/w) (5.2.19)
with
fas = —0.0003693 + 1.006 w. (5.2.20)

(IT) Empirical relations for the joint geometry with H/L = 0.1.

(a) If the loading o, (y) is constant, the stress intensity factor Ky can be calculated
from

KW = 54(—0.9983 4 2.719w — 6.985w? + 6.090w") (5.2.21)

(b) For the loading o.(y) =| y/H |, the stress intensity factor Ky can be calculated
from

fnl

1) J—
KY =— | o) — e
H 1
(0-4562,,0.9976

| (5.2.22)
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with

fa1 = —0.0002005 + 1.040 w — 7.633 w?
+53.96 w? — 169.7 w* 4+ 195.7 W° (5.2.23)
(c) For the loading o,(y) = (y/H), the stress intensity factor Ky can be calculated
from
1 _ 0.7844 0.5222
K}’ = sign In (fnl/(w v )) (5.2.24)
with

fa1 = 0.004572 4 1.058 w + 1.641 w?

—16.20 w* + 51.77 w* — 52.97 W° (5.2.25)
d) For the loading o, = H)?, the stress intensity factor Ky can be calculated
( g o.(y) = (y/H)", y
from
@ fn2
Ky = (1-498,,0.6323 (5'2'26)
with
faz = 0.00008791 — 0.02705 w — 0.2085 w?
—0.06308 w® +2.271 w* — 4.151 W° (5.2.27)
e) For the loading o, = H 3, the stress intensity factor Ky can be calculated
(e) g ox(y) =y : y
from
KS) _ _10fn3/(w0'788011_0'3815) (5228)
with
fos = —0.002264 — 1.843 w + 5.948 w?
—35.63 w? +93.70 w* — 85.34 W° (5.2.29)
f) For the loading o, = H)3, the stress intensity factor K can be calculated
( g o.(y) = (y/H)’, y
from
Ky = sign 107w/ 0007 (5.2.30)
with
fas = 0.003659 — 0.9672 w — 2.416 w?
+16.83 w® — 53.74 w* + 67.77 W° (5.2.31)

(g) For the loading o,(y) = (y/H)", the stress intensity factor Ky can be calculated
from

Kgl) _ _10fn4/(w0'9267u_0'3069) (5232)
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with
fas = 0.0003382 — 1.127 w — 0.2943 w?
—1.998 w?® + 3.681 w* + 3.658 w® (5.2.33)

(h) For the loading 0, (y) = | y/H |°, the stress intensity factor Kz can be calculated
from

Kg)) _ _10fn5/(w0.8535y—0.2650) (5234)
with
fos = —0.001671 — 1.519 w + 1.455 w?
—~7.438 w® + 11.73 w* 4 0.1310 w° (5.2.35)
(i) For the loading o,(y) = (y/H)?, the stress intensity factor K can be calculated
from
K§) = sign 10/s/"* 20700 (5.2.36)
fas = 0.003666 — 1.283 w — 3.344 w?
429.26 w® — 94.73 w* + 112.6 w° (5.2.37)

(ITT) Empirical relations for the joint geometry with H/L = 8.

For the edge traction of o,(y) = (y/H)' with 1=0,1,2, the ratio of K /o; for H/L=8
is the same as for H/L = 2 (see Fig. 5.4). Therefore, the empirical equations given
in section (I) can be used here. For a higher-order edge traction of o,(y) = (y/H)'
with 1=3,4,5, the ratio of K /o, for H/L=8 differs from that one for H/L = 2. Some
approximate relations will be presented below.

(a) If the loading is 0,(y) = (y/H)?, the stress intensity factor Ky can be calculated
from

(3) _ Jn3 6
KL = Slgn Wlo (5238)
with
fns = —0.3592 + 170.9w + 664.3w>
—572.8w° — 5397w* + 9162w° (5.2.39)

(b) If the loading is o,(y) = (y/H)", the stress intensity factor K, can be calculated
from

fn4

w—0.2562;,—0.2989

KW = sign 1076 (5.2.40)
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with

faa = —1240 + 10872w — 19693w>
—9583w? — 3558w* — 12320w° (5.2.41)

(c) If the loading is 0,(y) = (y/H)", the stress intensity factor K, can be calculated
from

fn5

w1-2394,1.120

K™ = sign 1078 (5.2.42)

with

fus = 0.5579 — 164.2w — 1003w
+3165w® — 845.8w* — 131w°. (5.2.43)

For an arbitrary tension edge traction of

op(y) = Ao + g}fll (%)l (5.2.44)

where Ay and A; (1=1, 2, 3, 4, 5) are known constants, according to the superposition
principle, the stress intensity factor can be calculated from

M
Kp=AKD +3 AKY (5.2.45)

=1

in case of H/L > 2, where Kg) (1=0, 1, 2, 3, 4, 5) can be determined from Egs. (5.2.4
- 5.2.20) or Egs. (5.2.38 - 5.2.43), and from

M
Ky =AKY +3 AKY (5.2.46)
=1

in case of H/L < 0.1, where K\ are given in Egs. (5.2.21 - 5.2.37). In Eqs. (5.2.44),
(5.2.45), and (5.2.46) the max M is 5.

For joints with H/L > 2, the K, value obtained from the empirical equations given
in sections (I) and (ITI) are almost the same if the edge traction is o,(y) = (y/H)'
(1=0,1,2,3) because Kg)/al with 1=0, 1, 2, 3 is almost constant; but for the edge trac-
tion o,(y) = (y/H)" (1=4, 5), the K;, value calculated from the empirical equations
given in sections (I) and (IIT) are different. Due to the fact that the absolute values of
Kg) for I=4 and 5 are much smaller than those for 1=0, 1, 2, 3, the values calculated
from the empirical equations for H/L=2 in section (I) (i.e. from Eqs. (5.2.4 - 5.2.20))
can be used approximately for joints of 8 > H/L > 2, as long as the absolute values of
Ay and Aj in Eq. (5.2.44) are not much larger than A,. Examples will be given below
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to show this.

Many test calculations, in which the stresses obtained from FEM and from Eq. (5.1.70)
with the K factor value from the empirical equations are compared, have shown that
if the Poisson’s ratio is in the range of 0.2 < v < 0.4, the stress exponent w > 0.05
and the absolute values of A, and A5 in Eq. (5.2.44) are not much larger than A, the
empirical equations given above can be used to calculate the stress distribution near
the singular point in the range of /R < 0.01 (R is H or L). The general situation is:
(a) The larger the stress exponent w is, the more accurate is the K factor obtained
from the empirical equations.

(b) The smaller the value of M in Eq. (5.2.44) is, the more accurate is the K factor
obtained from the empirical equations.

(c) In Eq. (5.2.44), the smaller the absolute value of A4 and A5 compared to Ay is, the
more accurate is the K factor obtained from the empirical equations.

(d) For an antisymmetric loading, the value of the K-factor obtained from the empirical
equations is more accurate than that for a symmetrical loading.

(e) Under the same loading, the value of the K-factor obtained from the empirical
equations for a joint with H/L > 2 is more accurate than that for a joint with H/L <
0.1, especially if the absolute values of A4 and Ajs in Eq. (5.2.44) are not smaller than

o

MPa
AR

ay,
Y

'
w

10° 10" 10” 10°
r/L
Figure 5.10: Comparison of the stresses Figure 5.11: Comparison of the stresses
obtained from FEM and the asymptoti- obtained from FEM and the asymptoti-
cal equation using the K-factor from the cal equation using the K-factor from the
empirical relations, for example 1 and empirical relations, for example 1 and
H/L=2. H/L=3.

Below, two examples will be given to show the agreement of the stresses calculated
from the FEM and from Eq. (5.1.70) by using the empirical equations for the K-factor.
The material data of the joint are £y = 10 GPa, v; = 0.2, E5, =5 GPa, v, = 0.3 and
the corresponding stress exponent is w = 0.0449768.
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As Example 1 the edge traction is

oo(y) =143 <2> +5 (ﬁ>2 +7 <i>3 +9 <2>4 11 <£>5. MPa  (5.2.47)
H H H H H

For H/L=2, the K-factor obtained from the empirical equations is K; =-2.302 GPa.
Using this K-factor value, the stresses near the singular point are calculated from
Eq. (5.1.70), and they are compared with those obtained from FEM in Fig. 5.10 along
different directions. It can be seen that they are in good agreement in the range of
r/L < 0.01 (the relative error is smaller than 5%). For a joint with H/L=0.1 and
the loading corresponding to that one given in Eq. (5.2.47), the K-factor obtained is
Ky =-4.352 GPa. The agreement of the stresses is a little worse (the relative error is
about 5%). For a joint with H/L=3 and the loading corresponding to that one given in
Eq. (5.2.47), the K-factor obtained is K =-1.649 GPa by using Eqgs. (5.2.38 - 5.2.43).
The stresses are compared in Fig. 5.11. It can be seen that they also agree very well
in the range of /L < 0.01 (the relative error is smaller than 5%). This shows that the
empirical equations for H/L=2 and H/L=8 can be used for a joint with H/L > 2.

Ot 0.0
1 ]
& E 0 '0'25i
§~ 27 7 —*— 1st order
S ] —%— 2nd order
3] -0.5- —a— 3rd order
7] 7 —=— 4th order
— : —o— bth order
-4 I I I I T 17 1 1 117 1 1T 17 T T 1]
10° 10* 10° 10° 10? 10" 10° 10 10°
H L/H

Figure 5.12: Comparison of the stresses  Figure 5.13: The stress intensity factor
obtained from FEM and the asymptoti- Ky (not Kpy/o;) at the edge traction of
cal equation using the K-factor from the ol (y) =| y/H |' (1=1,2,3,4,5) vs. L/H.
empirical relations, for example 2 and

H/L=0.1.

The edge traction for Example 2 reads

2 3 4 5

ou(y) =1+ (%) + (%) + (%) + <%> + (%) . MPa (5.2.48)
For H/L=0.1, the K-factor obtained is Ky =-1.795 GPa. Using this K-factor value,
the stresses near the singular point are calculated from Eq. (5.1.70), and compared
with those from FEM in Fig. 5.12. It can be seen that they are in very good agreement
in the range of r/L < 0.01 (the relative error is smaller than 5%). Under this loading
and for H/L=2, the agreement of the stresses also is very good.
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o

A

Figure 5.14: Comparison of the stresses obtained from FEM and the asymptotical
equation using the K-factor from the empirical relations, for example 2 and H/L=0.06.

The only difference between this and the last example is that in this example the values
of Ay and As in Eq. (5.2.44) is not larger than Ay, whereas in the last example they
are much larger than Ay.

The same results as in Fig. 5.6, but only Ky (not Ky/oy), is plotted vs. L/H in
Fig. 5.13. It can be seen that for joints of L/H> 2 (i.e. H/L < 0.5) the factors Kg)
are constant. Therefore, the empirical equations for H/L=0.1 can also be used for a
joint with H/L < 0.5. As an example, a joint with H/L=0.06 under the edge traction
as given in Eq. (5.2.48) is considered. The Ky factor is the same as that one for the
joint with H/L=0.1. The stresses obtained from FEM and Eq. (5.1.70) are compared
in Fig. 5.14. For H/L.=0.06, the agreement also is very good.

The short summary is that the empirical relations for H/L=2 can be used approxi-
mately for joints with H/L> 2 to calculate the factor K and the empirical equations
for H/L=0.1 can be applied for joints with H/L< 0.5 to evaluate the factor K.

5.3 The Behavior of the Stress Intensity Factor in
a Joint under Shear Edge Traction

From the results of Section 5.2 it is known that for a joint under tension edge traction
o.(y) = (y/H)" (i=0, 1, 2, 3, 4, 5), the normalized stress intensity factor K /o; is
constant, if the ratio of H/L is very large (e.g. for 1=0, 1, 2, H/L > 2 and for 1=3, 4,
5, H/L> 8) and the normalized stress intensity factor Ky /o; is constant for very large
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L/H (e.g. L/H > 2). For a joint with shear edge traction, the question is whether the
factors K, and Ky have the same behavior as that one in a joint with a tension edge

traction.
2.0
2.0+ 1
b°l.5*
R ¥
5 b
4 i
1.0 |
0.9-] 1.0 I — I 1
0.1 03 06 1.0 30 6.0 100
0.8 \ 1 \ . L/H
0.1 03 06 1.0 30 6.0 10.0

H/L

Figure 5.15: Normalized stress intensity = Figure 5.16: Normalized stress intensity
factor K /oy at the edge traction of 7 = factor Kp /oo at the edge traction of 1, =
—1land 7, =1 vs. H/L. —1 and 7 =1 vs. L/H.

Below, it is assumed that the shear edge traction can be expanded in a polynomial, i.e.

N
m(y) =Y Buy" + By. (5.3.1)
n=1

where By = t; in Eq. (5.1.2) or 5 in Eq. (5.1.4).
To answer the question, the stress intensity factors are calculated from FEM for differ-
ent ratios of H/L (H, = H,) under the edge traction 7(y) = £B, and 7(y) = +y/H.
The material data are F; = 1GPa, Fy = 5GPa, v; = 0.2, and 1, = 0.3. For this
material combination, the stress exponent is w = 0.0834.
As for the tension edge traction, the values of K-factor in Eq. (3.0.1) and ¢/3[,(f) in
Eq. (5.1.66) are dependent on the absolute size of R, because the loading 7™ (y) =
(y/H)" is dependent on the absolute size of H (here R=H).
For the edge traction 77 = —1 MPa and 7, = 1 MPa (in polar coordinates) the normal-
ized stress intensity factor K /oy (where oy = o7 (6 = 0), see Section 5.1) is plotted
vs H/L in Fig. 5.15 and the normalized stress intensity factor Ky /oy is plotted vs
L/H in Fig. 5.16. It can be seen that under shear edge traction, at a very large ratio
of H/L, the normalized factor K, /oy is not constant, and with increasing of H/L the
absolute value of K, /oq increases. However, for very large ratio of L/H the normalized
factor Ky /og is constant.
For the edge traction 71 = 7,9(f = 0;) = —1 MPa and 7, = 7,4(# = 65) = —1 MPa
the normalized stress intensity factor K /oq (because of olj5(0 = 0) = 0, see Section
5.1, here g is defined as oy = 750 (0 = 0)) is plotted vs H/L in Fig. 5.17, and
the normalized stress intensity factor Ky /oy is plotted vs L/H in Fig. 5.18. Again,
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at a very large ratio of H/L, the normalized factor K}, /oy is not constant, and with
increasing H/L the absolute value of K, /oy increases, whereas for a very large ratio of
L/H the normalized factor Ky /oy is constant.

7.0
7.0
4.0
4.0
$2.0
22.0 X
b
N 1.0
1.0 0.7-
0.7
0.4 T 1 T I
0.4 0.1 03 0.6 1.0 3.0 6.0 10.0
\ 1 \ 1 L/H
0.1 03 06 1.0 3.0 6.0 10.0

H/L

Figure 5.17: Normalized stress intensity = Figure 5.18: Normalized stress intensity

factor K /oy at the edge traction of 7 = factor Kp /oo at the edge traction of 1, =
—1 and 7, = —1 vs. H/L. —1 and 7 = —1 vs. L/H.
For a shear edge traction of linear function 4 = r/H MPa and 7, = —r/H MPa

(in polar coordinates) the normalized stress intensity factor K /oy (o7 = o}l (6 = 0)
and R=L) is plotted vs H/L in Fig. 5.19, and the normalized stress intensity factor
Kg/oy (o1 = ol (6 = 0) and R=H) is plotted vs L/H in Fig. 5.20. It can be seen
that under a shear edge traction of linear function, at a very large ratio of H/L, the
normalized factor K /oy is not constant, and with increasing H/L the absolute value
of K /oy increases, whereas the quantity K, (L/H) is constant for a large ratio of H/L
(see Fig. 5.19). For very large ratio of L/H the normalized factor Ky /oy is constant.
For an edge traction of linear function m = —r/H MPa and 7, = —r/H MPa, the
normalized stress intensity factor K, /oy is plotted vs H/L in Fig. 5.21. The normalized
stress intensity factor Ky /oy is plotted vs L/H in Fig. 5.22. Here, due to the K-factor
value being negative, only K, (or Kp), not log(K7), is plotted in the figures. Again,
at a very large ratio of H/L, the normalized factor K /o is not constant, and with
increasing H/L the absolute value of K, /o; increases, whereas the quantity Ky (L/H)
is constant for a large ratio of H/L (see Fig. 5.21). At a very large ratio of L/H, the
normalized factor Ky /oy is constant.

Now, we have seen that the behavior of the stress intensity factors for a shear and for
a tension edge traction is different, especially for the factor K. Due to the fact that
the factor K, is not constant at a large ratio of H/L, finding the empirical relation for
the calculation of the factors K and Ky under shear edge traction will not be studied
any more.
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Figure 5.19: Normalized stress intensity
factor K /oy at the edge traction of 7 =
r/H and 7, = —r/H vs. H/L.
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Figure 5.21: Normalized stress intensity
factor K /oy at the edge traction of 7 =
—r/H and 15 = —r/H vs. H/L.
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Chapter 6

Joint with Interface Corner

In a dissimilar materials joint with an internal interface corner (see Fig. 6.1), which
is made of two interfaces, singular stresses near the intersection of the two interfaces
may also occur for mechanical or thermal loading. The stresses near the corner can be
described by an analytical form with one, two or three singular terms and a regular
stress term. The stress exponents, the angular functions, and the regular stress term
can be determined analytically. They will be given in Sections 6.1 and 6.2. For various
geometries and material combinations, the general behavior of the stress exponents is
shown in Section 6.3. The corresponding stress intensity factors have to be determined
by means of the stress analysis of the whole joint using the Finite Element Method
(FEM). The characteristics of the stress intensity factors are presented in Section 6.4. It
can be seen that the behavior of the stress intensity factor for a joint under mechanical
loading is much simpler than that one under thermal loading. The stresses near the
corner calculated from FEM and the analytical description are compared in Section 6.5.
It is shown that for most joint geometries and material combinations more than one
singular term exists, and all of them are important to the contribution to the stresses
near the singular point, even close to the singular point.

6.1 Determination of the Stress Exponents and the
Angular Functions

For a joint with an interface corner the boundary conditions are
at the interface 6 = 0

uy(r,0) = wuy(r,0),
v1(r,0) = wvy(r,0),
o991(r,0) = 0g2(r, 0),
or1(r,0) = ora(r,0), (6.1.1)

140



Material 1

Material 2

Figure 6.1: A joint with an interface corner.

and at the interface 0 = 6,

(5} (T, 91) U2 (’I“, 92),
U1 (7", 91) = V9 (7", 02),
0901(7”, 91) = 0902(7", 92),
Org1 (T7 91) = Org2 (T, 92)7 (612)
where 0y = — (27 — ;) and 6 < 0 in material 2.

For plane stress and thermal loading, insertion of Eqgs. (3.1.7-3.1.9) and (3.1.16-3.1.17)
into Eqs. (6.1.1) and (6.1.2) yields

370 Bud2(1 = 1) 4 Aul1 )] = D1 +)(2 = )

— Bou[2(1 —vo) + Ay (1 4+ v2)] + Doy (1 + 1) (2 — An)} = rTEy(as — ay)

(6.1.3)

ZT(IM){AmM[Q(l — 1) + (2= ) (1 +1)] = Crnpa(1 +11)(2 = M)

n

— A 201 — 1) + (2 = M) (1 + 12)] + Con(1 4+ 1)(2 — )\n)} =0 (6.1.4)

ZT_/\”{BM + Dln - Bgn - Dgn} =0 (615)

n

ZT)‘"{AM,)\“ + Cln(2 o )‘n) - AZn)\n - 0271(2 o )\n)} =0 (616)

n
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Z re {Am sin(An01) + Biy cos(Apb1) + Cipysinf(2 — A,)64]
+ Dy cos[(2 — \,)b] — {AQn sin(Apf2) + By, cos(A,02)

4 Copsin](2 — )] + Doy cos[(2 — An)@]}} ~0 (6.1.7)

Z pAn {Aln)\n cos(Apb1) — Bin Ay sin(\,0;)
+ Cia(2 = Ay)cos[(2 = Ap)01] — Din(2 — A\y) sinf(2 — A, )64 ]
— {Azn A cos(Anflz) — BanAn sin(Anfa) + Con(2 = Ay) cos[(2 = \,)f]

— Dyn(2— \y)sin[(2 — A )92]}} =0. (6.1.8)

ZT(IA"){M{AM[QU — 1) + A (1 + 1) ]sin(A,0,)

Bin[2(1 — v1) + A (1 + v1)]cos(An01)
Cin(1+11)(2 = An)sin[(2 = An)0i] = Din(1 + 1) (2 = Ap)cos[(2 — An)01]}

{A2n[2(1 = 1) + (1 + 12)]5in(Ana) + Ban[2(1 = 13) + An(1 + 11)]cos(Anb2)

Con(1 + 15)(2 — A\p)sin[(2 — A\p)02] — Do (1 + 1)(2 — A\y)cos[(2 — )02]}}
T Ey(ag — ) (6.1.9)

Zr(l_)‘”){u{AlnD(l — 1)+ (2= ) (1 + v1)]cos(Anby)
B, [2(1 — 1) + (2 = M) (1 4 vy)]sin(A,01)

Cin(1+11)(2 = Ap)cos[(2 — M\p)b1] + Dy (1 4+ 14)(2 — Ap)sin[(2 — A )91]}
{Azn[2(1 = 12) + (2 = M) (1 + 1) Jcos(An)

Bon[2(1 — v2) + (2 — \) (1 4 v2)]sin(N,02) — Cop(1 4+ 15)(2 — Ap)cos[(2 — A,) 2]
Dan(1+ 1) (2 = Ap)sin[(2 — )92]}} (6.1.10)

For mechanical loading, Eqs. (6.1.3) through (6.1.10) are also valid by setting T=0 in
Egs. (6.1.3) and (6.1.9). This means that the right hand side of Eqs. (6.1.3) through
(6.1.10) is zero.

Because r in Egs. (6.1.3- 6.1.10) is arbitrary, for each n and A, # 0 this equation
system can be rewritten in a matrix form as

[Alsxs{ X }sx1 = {0}sx1 (6.1.11)
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where {X}SXI = {Alna Bln; Clna Dln; Agn, Bgn, an, DQn}t and [A]gxg denotes its coeffi-
cient matrix. {X }gy; is unknown and [A]gxs includes the unknown exponent \,, the
material properties (FEy, v, k=1,2 for materials 1 and 2), and the geometry angle (6;).
For A\, =0,

[Ao]sxs{ Xo}ex1 = {So}sx1 (6.1.12)

where {Xo}sx1 = {A10, Bio, Cio, D10, A20, Boo, C20, Dao }, [Aolsxs is its coefficient ma-
trix, and {Sp}sx1 = {TF2(ay — @1),0,0,0,0,0, T Ey(cs — a1),0} is the right hand side
of Egs. (6.1.3) to (6.1.10). This case will be discussed in Section 6.2.

Equation (6.1.11) has a nonzero solution, if and only if

is satisfied. In Eq. (6.1.13) the only unknown is the exponent A,. Its solutions are the
eigenvalues of this problem. Because this is a transcendental equation, there are infinite
solutions of A\, (n=1,2,3,...) and they may be real and complex. If the eigenvalues are
complex, the stress function Eq. (3.1.3) cannot be used directly. The relations given
in Section 3.1.2 for complex eigenvalues should be applied. In this section, the real
solutions are considered only.

For an arbitrary joint geometry with 0; the expansion of Eq. (6.1.13) is

512(1 + ty,)?

Det([Alss) T {a4y1 B 4 028, 1 aBY) 4 aPBY:

+ B+ ?BYr + af?Ys + oYy + B7Yi0 + Y1 + Y12}
(6.1.14)

with
Yy = 8{ sin’[t(x — 0,)] — 12 sin*(01)} (6.1.15)
Yy = 8sin®(t,0,) — t2 sin”(6,)] [sin2 [tn(2m — 60,)] — £2 sinQ(Gl)] (6.1.16)
Yy = —16sin’[t, (7 — 6;)] cos®(t,7)(1 + 2t2 sin?(6,))
2

+  4sin®[2t, (7 — 01)] + 16¢2 sin?(0,)[3t2 sin?(0,) — sin®(t,7)]  (6.1.17)
Yi = 16t sin®(0y) [sin®[t, (27 — 01)] + sin®(£,01) — 2t2 sin®(6)) ] (6.1.18)

Ys = 322 sin®(01) [sin’[t, (7 — 01)] — £ sin*(01)] (6.1.19)
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Ys = —16¢2 sin(2t,,7) sin[2t, (7 — 0;)] sin*(0,) (6.1.20)

Y =Yg (6.1.21)

Ys = —2Y; (6.1.22)

Yo = —16 [sin’[t, (7 — 01)] + £ cos[2t, (r — 01)] sin®(61)] sin®(t,m)  (6.1.23)

Yip = —16 [sin[t, (27 — 01)] sin(tn01) + £ cos[2t, (m — 0)] sin®(61)] sin® (t, )

(6.1.24)
Yi1 = 32t2 cos[2t, (7 — 61)] sin® (¢, 7)sin*(6;) (6.1.25)
Yy = 8sin*(¢,7) (6.1.26)

where ¢, = 1 — \,. From Eqgs. (6.1.14) through (6.1.26) it can be seen that if ¢,
(tn, # —1) is the solution of Eq. (6.1.14), -t, is also. This means that if A, is the
eigenvalue of the problem, 2-), is as well. If )\, is in the range of 0 < )\, < 1, however,

2 — )\, is not. Therefore, only the eigenvalue ), is used to describe the singular stress
field.

For a special case of #; = 90°, Eq. (6.1.14) can be simplified as

512(1 + ty,)?
(14 a)?
— 8t,(8 —a)*(a” + %) + 81, (8 — )"

~ 2a-p) [<a+ﬁ><—1 202~ 57

Det([A]SXS) {3 — 4&2 —+ 3a4 — 252 _ 2a262 + 254

+ 2t2(B —a) (—1 + 202 — 28 + 52) ] cos(t, )

+ [(0® = %)% +4(1 — a?)(8* — 1)] cos(2t,7)
— 2(a—B)(1+B)[(a+B)(1— B) +2(1+ B)(8 — a)t2] cos(3t,r)

+ (B2 —1) cos(4tn7r)}, (6.1.27)
and the coefficients of the angular functions can be calculated from
T 2 2 3 2 3
A = (1+1,) Cos(§tn){25tn = 2= 3 (1+ 6ty +4t,%) + o® (3 + 2t — 48, — 4t,°) +
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2% (2,2 — 1) b, + 0® (3 — 2, — 4t + 8Bt, + 128t,%) +

o (—2 — 2, + 8Bty (1 + t,) — 52 (1 4,2+ 12tn3)) +(1+a)

[1 — 402 + 362 + 2at, — 202, — 28t, — 2aBt, + 45%t, +

40%t,? — 8aft,’ + 452tn2] cos(rty,) +

(14 «) [2 + o? — 35% + 2at, — 26t, + 2a5t, — 252tn] cos(27t,) +

+ + + + o+

+

(1+5) [—1 —a+ B+ aB —2at, + 26t, — 2a6t, + 252tn] cos(37rtn)} (6.1.28)

Bin = (1+1,) sin(gtn){ — 2= 28(1+t,) + B (1= 2t +48,%) + 0® (1 + 21, — 4t,,%)

+ 28° (1 =ty — 2% + 2t,°) + 0 (1 4+ 2t, + 4, + 4Bty (—1 — 1, + 3t,7))
+ a2ty — 88t + B (—1+ 4ty + 88,2 — 12,7 ) ) +

+ (1+a) [—1+2a—2a2—25+2aﬁ+32+2atn—2a2tn—2ﬁtn+

+ 6aft, — 46%t, + 40°t,? — 8afit,’ + 462tn2] cos(mty,) +

+(1+ ) [2 — 20+ a? + 28 —2aB — B — 2at, + 26t, — 2a3t,, + QBZtH] cos(2mt,,)
+ (1+70) [1 —a+ B+ af —268% —2at, + 28t, — 2apbt, + QBZtH] cos(37rtn)}

(6.1.29)

Cin = cos(gtn){Q + 2ty + 28 (=1 +t,) t, + 2%, (1 —t, — 2t 2+ ztng) I

+ B2 (1=t — 26,2+ 48,%) + 0 (=3 — 1, + 61,7 — 42, 1) +
+ o (=3 = bty + 26,2 + 4t,° + 4B, (1 — 28, — 1, + 3t,%) )
+ (2262 4+ 4,8 (1= 2t0%) + 87 (1 = Bty + 4t,” + 88, — 126,*) ) +

+ (1+a) [ —1+40® — 38 — t, + 2at, + 2a°%t, — 26t, — 6aft, + 53°t,

+ 2at,? — 60’t,> — 2Bt,% + 6abt,? — 40°t,? + 8aft,> — 452tn3] cos(mty) +
+ (1+a) [—2—a2+352—2tn+2atn—aZtn+25tn+2a6tn—

— 3B%, +2at,” — 2B, + 2apBt,” — 2°,%| cos(2nt,,) +

+ (1+0) [1+a—ﬁ—aﬁ+tn—atn+5tn+aﬁtn—
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Dln =
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23%t, — 2at,? + 26t,2 — 206t + 25215,3] cos(37rtn)} (6.1.30)

sin(gtn){ — 2= 2, +28(1+t,)" + 3 (1 —t, — 10t,,% + 4tn3) _

2% (1= 3t + 2t,") + 0® (1 — t, — 20,2 + 48, + 48, ") +
0 (1 =ty + 2,2 + 4t,* + 4847 (2 = 2t, — 3t,%) ) +
o (=2tn — 2t + 4Bty (14 2tn — 2t,2) + 52 (=1 =t — 126, + 48, + 121, %) )

1+ a) [—1+2a—2a2+2ﬁ—2aﬁ+62—tn+ﬁ2tn—2atn2+

602t + 26t,2 + 2a8t,% — 85%t,% + 4a’t,> — 8aft,® + 45%,5’] cos(mty) +
1+ a) [2—2a+a2—25+2a6—52+2tn+a2tn—4Btn+

(%, + 2at,? — 28t,% + 2a6t,? — 25%}] cos(2mt,,) +

(1+08) ll—a—3ﬁ+aﬁ+2ﬁ2+tn+atn—ﬁtn—aﬁtn+2atn2—

26t,% + 20t — 252tn2] cos(37rtn)} (6.1.31)

Agy = (1+1,) cos(gtn){ — 2= 2Bty — 37 (14 6t, +4t,%) + 41, 8° (1 — 1,) +

+
+

+

% (—3 — At, + 48,2 + 4tn3) +a? (3 — 2, — 4t,% + 2B, (3 — 4, — 6tn2))
o (24 2ty + 8Bty (1+ ) + 87 (1 — 6t, + 48, + 121,°) ) +

[1 + B2 (3+ 8tn + 4t,%) + 0 (4 + 6t — 48,2 — 8t,) + 26, 8% (=3 + 4t,%) +
202 (=2 + 2, + Bty (=5 + 4t + 126,%) ) +

a (—1 — 8Bty (1 + ) + 2 (—3 +10t, — 4t,% — 24tn3)) l cos(t,) +
[2 —2a+a? —a® — 382 + 303? — 2at, + 2%, — 20°t, + 20t, +
40 Bt, — 282t — 4a8%t, + 25315”] cos(2mt,)

(-1+ a0+ —ap?) Cos(37rtn)} (6.1.32)

(1+t,) sin(gtn){ — 2448 (1 = t) t 2+ 28 (1 +t,) + 32 (1 — 2t, + 4tn2) X
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+ 0P (L4 46,%) + a? (14 2ty + 48,7 — 28 (1 + £, — 28,2 + 6t,%) ) +
+ o (=2t — 8Bty + B2 (—1 + 2t — 81,2 +126,%) ) +

+ l— 1+ B2 (1+4,2) +26° (=1 + 1, + 4,7 — 48,%) +

+ 2% (=1 =ty + 2, + 4t,°) + 207 (2,2 + B (1 + 38, — 128,%) )

+ « (1 — 8B, + B2 (1 — 6t, — 12t,% + 24tn3)) ] cos(t,) + l2 —a’+a’
— 28— B2 —aB®+28 + 2at, — 2a%t, + 2a°t, — 26t, — 40> Bt, +

+ 2B%, + 4af’t, — 253tn] cos(2rt,,) + (1 —a— B+ Oz52) cos(37rtn)} (6.1.33)

Cyy, = cos(gtn){Q +2t, +28(1 —t,) t, — 453(—1 + tn)2tn (1+t,)+

+ B2 (1=t — 267+ 48,°) +0® (1 +1,) x
X (=3= 2, — 2B, + 48,7 + 1681,% — 1284,°) +o® (3 — 1, — 8t,” + 4t,") +
+ o (=2+2t,7 + 48,8 (1 — 2t,2) + 52 (=1 + 5t, — 10t,% — 88, + 12,") ) +

+ l— 1—t, —4Bt, + (—3 b 4 At — 4tn3) +283%, (3 — 3t, — 4t,2 + 4tn3)

+ 207 (=2 + b, + 58,2 — 28, — 4t,1) +
+ o (L4ty — 48,8 (1 = 2,2) + 52 (3 — Tt + 148,” + 12t,° — 24t,")) +

+ o? (4+4t, — 4,7 — 48, + 21,8 (1 - 9t, + 12t,°)) ] cos(mtn) +

+ l—2—2tn+25(—1+tn)tn+253(—1+tn)tn+ﬁ2 (3 8t, —2t,2) +
+ of (1 —t, - 2tn2) 1 a2 (—1 4t 22+ 45tn2) T

+ (2 + 4Bt, — 2,2 + B2 (—3 + 5t, — 4tn2)) ] cos(2t,) +

+ 1—a)(1+p6)(1—pF+t,+30t,) Cos(37rtn)} (6.1.34)

Dy, = sin(gtn){ —2—2t, — 28(1 4+ t,)* + p* (1 —t, — 10t,% + 4tn3) +

+ o (1 +t, — 4t — 4tn4) — 4¢,26° (1 - tﬁ) +
+ o (2t + 20 + 4Bty (14 2ty — 26,) + 87 (= 1+t + 68, — 48,5 — 128,1) ) +
+ 0 (L=t + 267+ 48,> + 28 (1 — 1,2 +4t,° +6t,") ) +

+ l—1—tn—4ﬁtn+52(1—3tn—12tn2+4tn3)—
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— 248 (1 — 3t +2t,° + 4tn4) + 233 (1 — 5,2+ 4tn4)
+ o (Lt + 4Bty (142, — 26,7) + B2 (14 38, + 108, — 4t,° — 248,1)) +

+ o (4,7 + 48, — 28 (14 3t,” — 4t,,* — 12tn4))] cos(mt,) +

+ [2 + 2t +28(1+1,)° + 0 (1 =ty — 2,2) + B2 (=1 + £, — 2t,%) —
= 28° (1= ta®) + 0 (~1+1t, + 26,7 +46t,7) —

— (2tn + 4Bt + 2t,2 + B2 (1 +t, + 4tn2)) ] cos(2nt,) +

+ 1=a)(1+8)(1 =B+, +36t) Cos(37rtn)} (6.1.35)

where ¢, = 1—\,. The angular functions can be calculated from Eqgs. (3.1.97- 3.1.99).

6.2 Determination of the Regular Stress Term

6.2.1 Joint under Thermal Loading

To determine the regular stress term, corresponding to the solution of A\, = 0 in the
last section, the stress function Eq. (3.3.1) given in Section 3.3 will be used. The
stresses and the displacement v have the same relations as in Section 3.3. Only for
thermal loading, the displacement w is given by

2
uko(r, 0) = E—:[Akog(l — ) + Bio(l — i) — Cio(1 + 1) sin(26)
— Dio(1 4 i) cos(20)] + rayT. (6.2.1)

Converting Eqs(3.3.3, 3.3.4, 3.3.6, 6.2.1) into Eqgs. (6.1.1-6.1.2) yields

—2010/1,(1 + 1/1) + F10E2 + 2020(1 + V2) — F20E2 =0 (622)
/LAH) - A20 =0 (623)

Biop(1 —v1) — Diyop(1+1v4) — Bao(1 — 1) + Dag(1 + 1)

= Ey/2T (0 — 1) (6.2.4)
Bio+ Do — Byg — Doy = 0 (6.2.5)
AIO —|— 2010 - A20 - 2020 - 0 (626)
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Ampﬂl(l - V1) + Bloﬂ(l - I/l) - /LC’lo(l + l/1) sin(291) — HDIO(I + l/1) COS(291)
— A2002(1 — VQ) — Bzo(l — 1/2) + 020(1 + V2) sin(292) + D20(1 —+ VQ) COS(292)
== E2/2T(O[2 — CYl) (627)

—2010#(1 + l/1) COS(291) + 2D10M(1 + l/1) sin(291) + F10E2
+ 2020(1 + V2) COS(292) - 2D20(1 + 1/2) sin(292) - F20E2 =0

(6.2.8)
Alggl + B10 + 010 Sin(291) + D10 COS(291)
— A2092 - 320 - 020 sin(292) - DQO COS(292) =0 (629)
A+ 2Ccos(261) — 2Dqgsin(26;)
— A20 — 2020 COS(292) —+ 2D20 sin(292) =0 (6210)

for plane stress with p = Ey/FE;. The regular stress term is independent of the coeffi-
cients Fjo. Therefore, the coefficient Fjqo is not considered any more.
Solving the Eqs. (6.2.4-6.2.10) yields

Alg - AQO — 010 — 020 — D10 - D20 — 0 (6211)
E3 . w1+
B10 = BQO = —72T(O[2 - O[l) 45 (6212)

with E} = E; and o} = o for plane stress and E} = E/(1—v?) and of = (1 + vy) oy,
for plane strain. From Eqgs. (3.3.2-3.3.4) the regular stress term in polar coordinates

reads
Org = Opp = —EZT(OéQ — al)w (6213)
T = 0 (6.2.14)
and in Cartesian coordinates is
Oz0 = Oyo = —EZT(OéQ — al)w (6215)
Tay = 0, (6.2.16)

which is independent of the joint geometry 6.
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6.2.2 Joint under Mechanical Loading

For joints under mechanical loading Eqs. (6.2.2-6.2.10) are still valid, in which T" should
be replaced by zero. From Eqs. (6.2.15-6.2.16) it follows that in the general cases the

regular stresses are zero for T' = 0. However, for some special material combinations

and geometries the regular stress term is nonzero.

Equation system Eqs. (6.2.4-6.2.10) is homogeneous for 7' = 0. The condition of it

having a non-zero solution is that the determinant of its coefficient matrix is zero, it is

(a — B)2Bsin®(0;)
(14 a)?

This means that if

a=[3
or
£ =0 and « arbitrary
or
6, = m (no corner)
or
o = m cos(61) and (3 arbitrary

(m — 01) cos(6y) + sin(6y)
the regular stress term is non-zero.

The case of 8 = 0 corresponds to

E2_1—1/2
E1_1—1/1

for plane stress and

By  (1—21)(1+1)

By (1—=2v)(1+w)

for plane strain.

The case of a = [ is identical to G; = GG, for plane stress and plane strain.

In case of e = (3, the coefficients of the regular stress term are

AIO :AZO :BIO :BZO =0

010 :Cg() :K&/Q
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{ — mcos(f) + Oz[(ﬂ —0y) cos(6,) + sin(Gl)]} =0 (6.2.17)

(6.2.18)

(6.2.19)

(6.2.20)

(6.2.21)

(6.2.22)

(6.2.23)

(6.2.24)

(6.2.25)



Dy = Dyy = K2 /2. (6.2.26)

From Eqs. (3.3.2-3.3.4) the regular stress term is

o0 = —Kjsin(20) — K{ cos(26)
og0 = K;sin(20) + K¢ cos(260)
o0 = —K;cos(20) + Kj sin(20) (6.2.27)

where there are two arbitrary constants K} and KZ.
In case of f = 0 and « arbitrary, the coefficients of the regular stress term are

AIU — A20 — 010 — 020 — D10 — D20 — 0 (6228)

BIO — 820 — K0/2 (6229)

The regular stress term reads

or0 = 0gop = Ko,  Trgo =0, (6.2.30)
or
Oz0 = Oyo = K(), Troo — 0. (6231)
For o = (ﬂ—&l)t(;:;)(séf)lj-sin(ﬂl) the coefficients of the regular stress term are
Ao = Ko (6.2.32)
—f,
Blg == KOT (6233)

cot(6,) (6%91 cos(0y) — B6,% cos(0,) — wsin(6;) + (6, sin(Hl))

Cro = R0 (rcos(Br) — fm cos(@1) + 6 cos(Br) — Bsin(By)) (6.2.:34)
Do = — K, SE;((Z?) 0 (6.2.35)

Az = Ko -2 cose(lﬂ(i())sieéz (;)Ss(lgl()el—) sin(6,) (6.2.36)

Bao = Ko 2= 45, (6.2.37)

2
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Cy = Kycot(h) [0 cos(6r) —sin(6,)] {26%2 cos(6y) — 3876, cos(6,) + 36,* cos(6;) +
+ 7sin(fy) + 26w sin(0;) — B6; sin(61) } /{2 (27 cos(01) — b1 cos(61) + sin(6y))

X (mcos(fy) — B cos(6y) + B0y cos(6y) — Bsin(6r)) | (6.2.38)
_ 4 sin(6)
Doy = —Ko— ( 91)020 (6.2.39)

The regular stress term can be calculated from Egs. (3.3.2-3.3.4).

For the special joint geometry with #; = 90° the regular stress term is nonzero, if
a = 3, or B =0 and arbitrary «, or @« = 0 and arbitrary (3 (see Eq. (6.2.17)). In case
of @« = 3, or § =0 and arbitrary «, the regular stress term is independent of the joint
geometry, which can be calculated from Eqs. (6.2.27), (6.2.30), and (6.2.31). In case
of @« = 0 and arbitrary 3, the coefficients of the regular stress term can be simplified

as
Aio = Ko (6.2.40)
By = —Kor/4 (6.2.41)
Cio =0 (6.2.42)
Dy = Kog(l —2/p) (6.2.43)
Agy = K, (6.2.44)
Bao = 37 /4K, (6.2.45)
Co =0 (6.2.46)
Dy = —KU%(Q +38). (6.2.47)

In general, for a joint under thermal loading, the regular stress term always is nonzero
and it can be determined analytically. The regular stress term is independent of the
joint geometry. However, for a joint under mechanical loading the regular stress term
for most joint geometries and material combinations is zero. In some special cases,
the regular stress term is non-zero. It can be determined analytically with one or two
arbitrary constants, which have to be determined from the stress analysis of the total
joint.
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Figure 6.2: Stress exponent distribution in Figure 6.3: Enlargement of Fig. 6.2.

a Dundurs diagram for a joint with #; =
45°.

6.3 The Characteristics of the Eigenvalues

From Eqs. (6.1.14) through (6.1.26) it follows that A, = 0 (i.e. ¢, = 1) always is the
first-order solution of Det([A]sxs) = 0, which corresponds to the regular stress term
(see Section 6.2). For some joints, A, = 0 may be the second or higher-order solution
of Det([A]sxs) = 0. For a joint with interface corner, it is easy to find the condition
when \,, = 0 is the second or higher-order solution of Det([A]sxs) = 0. The differential
of Eq. (6.1.14) at A\, =0 is

Det([A]gxg) 2048

d)\n 0 = m(a — /8)2/8 Sin3(91){—ﬂ' COS(91)
+ «afmcos(fy) — 0y cos(6r) + sin(0y)]}. (6.3.1)
From Eq. (6.3.1) it can be seen that if:
(a) a = or
(b) =0 or
(c) sin(6y) = 0, i.e. 6, =0 or 7 or 27 (no corner) or
_ m cos(61)
(d) a= (w—01) cos(01)+sin(01)’

Det([4]sxs)
dAn An=0
Det([A]sxs) = 0. Its physical meaning is that if one of the above conditions (a) -

yields = 0, i.e. A, = 0 is the second or higher-order solution of

(d) is satisfied, (i) the eigenvalue curve goes through zero in the Dundurs diagram (see
the following figures), (ii) for thermal loading, the stress field is described by the type
of In(r) singularity (see Chapter 7), not the type of 7~ singularity; (iii) for mechanical
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loading, the regular stress term is nonzero.

In Figs.6.2 through 6.14 the distributions of the eigenvalues are shown in the Dundurs
diagram for some special value of #;. From these figures, the range of Dundurs pa-
rameters with complex eigenvalues or with more than one singular terms or with no
singular term can be seen clearly.

05 - 05
Ba ('07 p /// (01 Ba (D7 p ('01
,
0.25+ Py
®, g
w,
1 1 S 1 Ol
-1 -05 : 1
o ot
o
7 a=23
05+ 05+
Figure 6.4: Stress exponent distribution Figure 6.5: Stress exponent distribution
for material combinations along the line for material combinations along the line
of @« = 2( in a joint with #; = 45°. of 5 = —0.0l in a joint with 6; = 45°.

For the joint geometry with 6, = 45°, the eigenvalues distribution in the Dundurs dia-
gram is shown in Figs. 6.2 and 6.3. For this joint geometry, the material combinations
corresponding to § > 0 almost always have real singular terms, except for a very small
range near o« = —1. However, for § < 0 and o > 3, a lot of material combinations
have complex singular terms. To illustrate this, another plots of the eigenvalues are
shown in Figs. 6.4 and 6.5, in which the eigenvalues are given continuously for the
material combinations along the lines of a = 23 and of f§ = —0.01a. From Figs. 6.2
and 6.5 it can be seen that (a) For f < 0 there are at least two singular terms. If
a > 0, one singular term is very weak (see Fig. 6.5). (b) For 5 > 0, the most material
combinations have only one singular term. (c¢) For @« < —0.9 and « > 0.9 there may
be three singular terms, which may be three real singular terms or one real and two
complex singular terms (see Fig. 6.5).

For the joint geometry with #; = 60°, the eigenvalues distribution in the Dundurs dia-
gram is shown in Figs. 6.6 and 6.7. For this joint geometry, the material combinations
corresponding to # > 0 almost always have real singular terms, except for the range
with a < —0.75. However, for § < 0 and o > 3, a lot of material combinations have
complex singular terms. To illustrate this, another plots of the eigenvalues are shown
in Figs. 6.8 and 6.9, in which the eigenvalues are given continuously for the material
combinations along the lines of @« = 25 and of f = —0.0la. From Figs. 6.6 and 6.9
it can be seen that (a) For § < 0 there are at least two singular terms. According to
« > 0, one singular term is very weak (see Fig. 6.9). (b) For 5 > 0, the most material
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combinations have only one singular term. (c¢) For @« < —0.8 and « > 0.8 there may
be three singular terms, which may be three real singular terms or one real and two
complex singular terms (see Fig. 6.9).
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Figure 6.6: Stress exponent distribution in Figure 6.7: Enlargement of Fig. 6.6.

a Dundurs diagram for a joint with 6, =
60°.

For the joint geometry of 6; = 90°, the eigenvalues distribution in the Dundurs diagram
is shown in Fig. 6.10. For this joint geometry, the material combinations corresponding
toa > ffor § >0, and a < 8 for § < 0 always have real singular terms. However,
the material combinations corresponding to o < 3 for f > 0, and o > 3 for g < 0
almost always have complex singular terms. To see this clearly, another plot of the
eigenvalues is shown in Fig. 6.11, in which the eigenvalues are given continuously for
the material combinations along the line of & = 2. From Fig. 6.11 it can be seen
that along the line of & = 25 there are always two real singular terms. Along another
line of & = —1004, the distribution of the eigenvalues is plotted in Fig. 6.12. It can
be seen that the material combinations with a small and large value of a correspond
to three real singular terms, those combinations with the values of o lying in-between
also have three singular terms, but one pair is complex.

For the joint geometry of #; = 135°, the eigenvalues distribution in the Dundurs di-
agram is shown in Fig. 6.13. For this joint geometry, the material combinations
corresponding to § < 0 always have a real singular term. For § > 0 and a < 3, there
is a range where the singular terms are complex. To see this clearly, another plot of
the eigenvalues is shown in Fig. 6.14, in which the eigenvalues are given continuously
for the material combinations along the line of & = 2. From Fig. 6.14 it can be seen
that along the line of o = 24, for a < 0 there is only one real singular term, for a > 0
there are two singular terms. In fact, for 5 > 0 two singular terms always exist.

Conclusions: For a joint with an interface corner, there may be three singular terms,
which are three real terms or one pair is complex. For most material combinations there
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are two singular terms. The maximum value of the singular stress exponent is 0.5.
In comparing to a joint with a free edge, the solution for a joint with interface corner
is more complicated.
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Figure 6.8: Stress exponent distribution Figure 6.9: Stress exponent distribution
for material combinations along the line for material combinations along the line
of @« = 2( in a joint with #; = 60°. of # = —0.01l in a joint with 6; = 60°.
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Figure 6.10: Stress exponent distribution in a Dundurs diagram for a joint with 6, =
90°.
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Figure 6.11: Stress exponent distribu-
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Figure 6.13: Stress exponent distribution in a

Dundurs diagram for a joint with 6, = 135°.
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6.4 The Behavior of the Stress Intensity Factors

It is obvious from Section 6.3 that for most material combinations and joint geometries
there are two or three singular terms. Therefore, to find an empirical relationship
between the stress intensity factor and the stress exponent (as for a joint with free
edge) is almost impossible, even for a special joint geometry (e.g. #; = 90°). Below
an example will be presented to show the behaviors of the stress intensity factor for a
joint with an interface corner.

Material 1 | H1 W,

o
M\H%
>
©

TT\T\T\T?LO(
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5 wz_ (A)g

l\\\\;%\\\\

Material 2 H,

W

47
1

o

T

Figure 6.15: A joint with an interface cor- Figure 6.16: Stress exponent in a Dundurs
ner and #; = 90°. diagram for 14 = 0.3, v, = 0.26, and vary-
ing Eg/El (91 = 900).

The joint geometry of the example is §; = 90° (see Fig. 6.15). The used Poisson’s ratios
are v; = 0.3 and v, = 0.26, the ratio of the Young’s modulus varies. For these given
Poisson’s ratios and for plane strain the possible material combinations correspond to
the line of 5 = 0.019305 + 0.30502 « in the Dundurs diagram (see Fig. 6.16). In
Fig. 6.16 the distribution of the stress exponents is plotted for all possible material
combinations. It can be seen that for most cases there are two real singular terms and
there is a small range (« is near zero) where the singular terms are complex, but their
real part is very small (see Fig. 6.18). The same stress exponents are plotted versus the
ratio of Young’s modulus in Figs. 6.17, 6.18, and 6.19 to see the relationship between
the stress exponents and the material data. It can be seen that if a =  or § = 0, one
or more of the stress exponents go through zero (as explained in Section 6.3).

For this example the stress intensity factors are calculated using FEM. The thermal
loading is T = —100°C and a; = 18.95 % 10 % ay = 2.5 x 10°%. The distribution of
the regular stress term is shown in Fig. 6.20. Because the definitions of the stress
intensity factors for real and complex stress exponents are different (see Chapter 3),
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the distribution of the stress intensity factors versus the ratio of the Young’s modulus is
not continuous. On the other hand, if the stress exponent goes through zero, the type of
In(r) singularity appears (as mentioned in Section 6.3), then the definition of the stress
intensity factor is different from that one of the type of r= singularity. Therefore,
the distribution of the stress intensity factors is plotted in 4 figures (Figs. 6.21, 6.22,
6.23, and 6.24) for 4 ranges. Comparing Figs. 6.17, 6.18, and 6.19, and Figs. 6.21,
6.22, 6.23, and 6.24 it can be seen that (a) at a = [ the stress exponents wy, ws and
ws go through zero (see Fig. 6.18), the value of the regular stress is very large, the
factors Ky and K3, too. They are, however, finite (see Fig. 6.21), (b) at § = 0 the
stress exponent wy goes through zero (see Fig. 6.19), the corresponding factor Ky and
the regular stress term oy go to infinity, but with different signs (see Fig. 6.22). This
is clearly from Eq. (6.2.15) that the regular stress term oy = 0,0 = 00 approaches
infinity for § — 0. The stresses are finite. Therefore, the stress intensity factor has
to approach infinity with an opposite sign. (c) near 8 = 0, at the point of ending the
complex stress exponents (see Fig. 6.19, it should be noted that at this point 5 # 0),
two stress exponents (wy = w3) are the same, the corresponding K-factors (K3 and K3)
go to infinity, but with different signs (see Fig. 6.23). Here, the regular stress term is
finite. In fact, at this point the stress field should be described by the type of r=“ In(r)
singularity (see Chapter 7).
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Figure 6.17: Stress exponent w vs. Ey/FE;  Figure 6.18: Extended range of Fig. 6.17,
for 11 = 0.3 and 1, = 0.26 (6; = 90°). in which the eigenvalues are complex.

As the distribution of w; is continuous, its K-factor is also continuous (see Fig. 6.25).
A plot of (Ky + K3) /0y is shown in Fig. 6.26. It can be seen that (a) at the points of
a = f and = 0, the ratio of (K + K3) /0y is always finites. Therefore, the stresses at
these points are finite as well. (b) At the point of 3 = 0, only one stress exponent (ws)
goes through zero, the ratio of (Ky+ K3) /0y is equal to -1; However, at the point o = 3,
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more than one stress exponent (wy,ws,ws) go through zero, the ratio of (K + K3)/oy
is not equal to -1.

2¥10° 1*10°
1+10° {N / 5+ 10°
e g
3 0*10° = 0%10°
1%10° -5¥10°
'2*10-37\\\\\\\\\{\\\\\\\\\ '1*106“{““N““\
1.1625 1.163 1.1635 10 11 12
E,/E, E./E,
Figure 6.19: Extended range of Fig. 6.17 Figure 6.20: Distribution of the regular
near = 0. stress term.

In general, it applies to a joint with an interface corner under thermal loading that if
f — 0 and w; goes through zero, its corresponding K-factor (K;) and the regular stress
term oy go to infinity with a different sign. If w; goes towards w; and it is the point of
ending complex eigenvalues, the corresponding K-factors K; and K; go towards infinity
with different signs, but the regular stress term is finite.

For the same joint under mechanical loading (see Fig. 6.27, at the upper and the lower
surface homogeneous loads (o,,) are applied), the regular stress term for most cases is
zero and for the cases of & =  and f = 0, the regular stress term is finite (see Section
6.2), the distribution of the stress intensity factors is continuous, which is plotted in
Fig. 6.28.

We can conclude that for the same joint under different loading the behavior of the
stress intensity factor is strongly different.
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6.5 Stress Distribution near the Singular Point

In Section 6.3 it was mentioned that for a joint with an interface corner, in general,
there are two or even three singular terms and the singularity is strong, i.e. one of
the stress exponents is large. In the following section, an example will be given to
show how many terms should be used to describe the singular stress field and whether
the so-called dominant singular term is enough to determine the stress field near the
singular point.

The geometry, the material data, and the loading for the example are:

6, =90°, T'=100°C

E; = 100GPa, v; = 0.05, a; =5 % 107%/K

Ey = 1.93GPa, v, = 0.4988, ap = 10 x 107 % /K.

For plane strain the stress exponents are

wi; = 0.40104, we =0.05534, w3 = 0.03099, (6.5.1)

i.e. there are three real singular terms, but two of them are very weak. The regular
stress term for this example is

Oz = Oyo = 1284MP&, Teyo = 0 (652)
*10°
-0.15— 9 v
| 2o o
0]
_ — U]
— V0]
0.2 11 © %
§ : § o  0.0001111
z - K, (1 term) z
X 0,25 X
B -1
i 40 o K, (3terms)
0.3 o -0.2989 2
\ \ w \ \ \ \ \ \
10° 10" 10* 10° 10° 10* 10° 10°
r/L (©=0) r/L (9=0)

Figure 6.29: The determined stress inten- Figure 6.30: The stress intensity factor K
sity factor K, if the so-called dominant determined with all three singular terms.
term w; is considered only.

To determine the stress intensity factors, the method and equations given in Section 3.4
are used. If the dominant singular term (i.e. wy) and the regular term are considered
only, no constant value of K; can be obtained when different numbers of points are
used to determine the factor K in the range of /L > 107 (see Fig. 6.29, in which the
value of r/L means that to obtain its corresponding K-factor, the stresses calculated
from FEM at the points with r between 10~7 and r/L are used). Therefore, three
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singular terms should be used. When three singular and the regular terms are used, a
relatively constant value of K-factor can be obtained (see Figs. 6.30 and 6.31). The
values at r/L = 1072 are used as the determined K-factors. They are:

K; =0.0001111MPa, K, = 156.2MPa, K3 = —284MPa, (6.5.3)

where the stress component o, along the line § = 0 is used.

Using the K-factors determined, stresses along different lines (with different values of )
are calculated from Eq. (3.0.1) analytically, where the angular functions are obtained
from the equations given in Section 6.1 (for the coefficients Eqs. (6.1.28) to (6.1.35) are
used). A comparison of the stresses obtained from FEM and Eq. (3.0.1) is presented
in Figs. 6.32 and 6.33 for § = 90° and # = —90°. Along the line of # = 90°, it is not
plotted in the figure as the stress component o, is not continuous. From the figures it
can be seen that using three singular and one regular terms, the analytical equation
may describe the stresses very well in the range of /L < 10~2. However, using the so-
called dominant singular term only, the analytical equation cannot describe the stresses
near the singular point well, even in the range of r/L < 107*.

300 100.0
: DW 7
250j
« ] o 1007
a7 & K, (3terms) a :
=200+ 0 K, (3terms) =
¢ 4 s & o FEM (o)
T a 1.0 o FEM (-T,)
150 — 4 - —— ANA (3terms)
100 | I I I ] 0.1 I T I T I I [ I |
10° 10* 10° 10° 10° 10° 10* 10° 10°
r/'L (6=0) r/lL (0=90°)

Figure 6.31: The stress intensity factors Figure 6.32: Comparison of the stresses
Ky, K3 determined with all three singular  calculated from FEM and Eq. (3.0.1)
terms. along the line of 6 = 90°.

6.6 The Interface Condition Effect on the Singular
Stress Field

To see the effect of interface conditions on the stresses near the singular point, another
case is considered, in which the joint also has [0;| + |f#2] = 360°, but one interface
(01 = 90°) is stress free (see Fig. 6.34). This is the case of a joint with a delamination
crack. The material data and loading are the same as those used in Section 6.5. From
the equations given in Section 3.1 (for #; = 90°, f; = —270°), the corresponding stress
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Figure 6.33: Comparison of the stresses Figure 6.34: A joint with a free edge and
calculated from FEM and Eq. (3.0.1) 6, =90°,0, = —270°.
along the line of § = —90°.

singular exponents can be obtained. For plane strain they are:
wy = 0.69986, wy = 0.56839, w3 = 0.18800, (6.6.1)

i.e. there are three real singular terms, which are much stronger than those of a joint
with an interface corner. The regular stress term for this case is

oy, = 25174 MPa, o0, =174 =0 (6.6.2)

The distributions of the stress intensity factors determined using one, two or three
singular terms plus the regular term are shown in Figs. 6.35, 6.36, and 6.37. It can
be seen that for this case with only one so-called dominant singular term one range
with a constant value of the K-factor exists. In the following sections, the values at
r/L = 1072 are used as the determined K-factors. They are:

K, = —0.05452 MPa (6.6.3)
if only one dominant singular and the regular stress term are used,
K, =-0.07761 MPa, K, =0.17541 MPa (6.6.4)
when two singular and the regular stress terms are considered,
K; = —0.08022 MPa, K, =0.1993 MPa, K3 = —1.3422 MPa, (6.6.5)

for including three singular and the regular stress terms, where the stress component
o, along the line § = 0 is used.
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Figure 6.35: The stress intensity factor K; Figure 6.36: The stress intensity fac-

determined with the so-called dominant tors K, Ky determined with two singu-

term w; only for a joint with a delami- lar terms for a joint with a delamination

nation crack. crack.

Using the K-factors determined, stresses along different lines are calculated analytically
from Eq. (3.0.1), where the angular functions are obtained from the equations given
in Chapter 3. A comparison of the stresses obtained from FEM and Eq. (3.0.1) with
one, two or three singular terms plus the regular stress term is presented in Figs. 6.38
through 6.43 for & = 0°, § = 90°, and § = —90°. From the figures it can be seen
that using three singular and one regular terms, the analytical equation may describe
the stresses very well in the range of /L < 1072. If two singular terms are used,
the analytical equation may describe the stresses well only in the range of r/L < 107.
However, when using the so-called dominant singular term only, the analytical equation
may describe only some stress components well, even in the range of 7/L < 104,

To sum up, it may be states that (a) for joints with the same material combination,
loading, and geometry, but with different interface conditions, the joint with a delam-
ination crack (i.e. the interface being stress free) has much stronger singular stress
exponents than a joint with an interface corner (interface being perfectly joined), it
is even larger than 0.5. (b) To describe the stress field near the singular point in a
larger range, all singular terms plus the regular stress term should be used. Use of the
so-called dominant singular term only is not sufficient to describe the singular stress

field in the range of r/L > 107".
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Figure 6.38: Comparison of the stresses
calculated from FEM and Eq. (3.0.1) with
one or two or three singular terms along
the line of # = 0° for stress component 7.

10° %

=

B

£

g1

o

s

AR ANA (1 term)

2 ANA (2 terms)
—— ANA (3terms)

W T T
10°  10° 10" 10" 10

riL (9=90")

Figure 6.40: Comparison of the stresses
calculated from FEM and Eq. (3.0.1) with
one or two or three singular terms along
the line of § = 90° for stress component
oy.

167



~

ANA (2 terms)
—— ANA (3terms)
T 1T T 1T T 1

10° 10° 10" 10° 10°

r/L (0=-90"

Figure 6.41: Comparison of the stresses
calculated from FEM and Eq. (3.0.1) with
one or two or three singular terms along
the line of § = —90° for stress component
Og-

- o FEM
o ANA (1 term)
,,,,,,,,,,, ANA (2 terms)
| —— ANA (3terms)
g 10°
b>\ — T Irmeeee
0
10° %
] %
O
]
L D B
10°  10°  10°  10°  10°

riL (0=-90°)

Figure 6.42: Comparison of the stresses
calculated from FEM and the Eq. (3.0.1)
with one or two or three singular terms,
along the line of § = —90° for stress com-
ponent oy.

10" -
£
s 10"
=
T 10" -
L I ANA (Lterm) f 1~y o
----------- ANA (2terms) ' &
2
10°4  —— ANA (3terms) ‘
| ‘ | | | |
10° 10° 10" 10° 10°
r/L (0=-909)

Figure 6.43: Comparison of the stresses calculated from FEM and the Eq. (3.0.1) with
one or two or three singular terms, along the line of # = —90° for stress component

Tey-

168



Chapter 7

Logarithmic Stress Singularities in
a Joint under Thermal Loading

In Chapters 3 through 6 the type of r~* singularities have been studied. However,
there is also another type of stress singularity. Bogy and Dempsey [see [109], [35],
[111], [46]) described the conditions of a two dissimilar materials joint having the type
of In(r) and r “In(r) singularity. Bogy (see [109]) studied the type of In(r) singularity
in a quarter-planes joint under edge tractions. Dempsey (see [121]) examined special
cases with an r~“In(r) singularity. The asymptotical description of the stress distribu-
tion for the type of In(r) and r“In(r) singularity are investigated in [122, 123] for a
two dissimilar materials joint under thermal loading. Further, in Section 7.1 the type
of In(r) stress singularity and in Section 7.2 the type of r~“In(r) stress singularity shall
be treated by the Mellin transform method for a joint with free edges under thermal
loading. For an arbitrary joint angular functions are given. In a special case, i.e. for
a quarter-planes joint, angular functions are presented even in an explicit form. The
angular functions for a joint under thermal loading are different from those shown by
Bogy for a quarter planes joint under edge tractions. As example, the unknown factor
K used to describe the stress in a finite joint is determined numerically.

Although the type of In(r) or »~“In(r) singularity is on rare occasions in a real joint,
the intention of this study is to complete the solution of the singularity problems. On
the other hand, the most important application of the solution for the type of In(r)
singularity is that it can be used to describe approximately the singular stress field for
material combinations with very small stress exponent w of r=* singularity, which will
be illustrated by the examples given in Section 7.3. For joints under thermal loading
this is useful, because for material combinations with very small stress exponents w
(w — 0) the solution based on the type of r~“ singularity is numerically not stable.
The solution for the type of r~“In(r) singularity can be used to describe approximately
the singular stress field for material combinations with two almost the same stress
exponents w (i.e. w; = w;= w) of r~* singularity.

For a joint with an interface corner or a joint with edge tractions, the method used in
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the following sections is the same. Only the boundary conditions are different.

7.1 Asymptotic Description of In(r) Singular Stress
Field

In this section the type of In(r) singularity is studied. The asymptotic description of
the singular stress field will be presented.

7.1.1 Determination of Angular Functions and Asymptotic
Description of the Stresses

In case of a semi-infinite joint with the temperature change

T— Ty forr < R,
R for r > Ry,

the following relations for stresses in the Mellin domain were given in Section 3.2:

Pijic(s, 0)gij ()

with
Pij(s,0) = {Alijk(S)COS(SH) + Agiji(s)sin(s) + Asiji(s)cos((s + 2)0)
+A4Z-jk(s)sin((s + 2)9) + A5ijk(5)} (712)

where all quantities and their coefficients are given in Section 3.2 and k=1 for # > 0
and k=2 for # < 0. Our aim is to calculate the stresses in a polar coordinate system,
i.e. 0;(r,0), which is the reversal transform of ;;(s,#). For the calculation of the
reversal of 6;;(s,#) we need the poles of 6;;(s,6), which are defined as follows: If
limg_,,, 6:;(s,0) — 00, s, is the pole of 6;;(s,6). From Eq. (7.1.1) it can be seen that
the possible poles of 6;;(s, ) are the solutions of || X ||=0 and s=-2.

According to the residual principle, the stresses in a polar coordinate system can be
obtained from (see Eq. (3.2.47))

1 dM-D Piik(s, )i (5)
n(r0) = I —s) T T s 2 )T
U]k(ra ) Z (M _ 1)' slgi ds(M_l){(S ° ) || X || (8 + 2)T

Sn <7y

21 (7.1.3)

where s, is the M-th order pole of ;;(s,#). In this section, we only consider the
case with M=2 and s, = —2, i.e. s=-2 is the second order pole of &;;(s,#), which
corresponds to the type of In(r) singularity. From Eq. (7.1.3) and the equations given
in Section 3.2 for P;;(s, ) and g,;(s), we know that this is the case with || X || [s=—2 =
% s—_2=0, djg” ls=—2 # 0 and Pj(s, 0)|s=—2 = 0, 37)%(;’9) |s= 2 # 0, because for s=-2
there always is g;;(s) # 0 for Ty # 0. For the case with M > 2, the calculation of stress
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reversal &;;(s,#) is more complicated, but the procedure is similar to that one given
here for M=2. For M > 2, the stress field has the type of In" (r) (where N=M-1 >1)
singularity.

For M=2 and s=-2, the stresses in polar coordinates can be calculated from

. d —(s+2) Pi(s, 0)gii(s)
q(r ) = 1 2)25 (s+2) 1i\5, U)8ij(5)
U](Ta ) S_I)IEIQ dS{(S_'_ ) ||X || (S+2)}
_ o Pils,0)(s +2)
- _gij(s) 8:72ln(r) 81_1}{12 || X ||
OPii(s,0)
i ’ PR (5 4+ 2) || X || + [| X || Pys, 0) — UL (s + 2)Py(s,0)
95 (s) im
s=—9 s——2 || X ||
dgi;(s) . Pyls, 0)(s +2)
1 . 7.1.4
T s |, X 1
In the following sections, the definitions of
. 1 .. Pij(s,ﬁ)(s+2)
SPij(s,Q)
= —0s 7.15
d2||X||LQ (715)
ds?
D (s 4 2) || X || 4 [ X Pyls, 0) — SR (s + 2)Py(s,0)
i) =, B3k
& || X || 0°Py(s,0)  2d° || X || OPy(s,0)
_ ds? 0s? n 3 5133 Os (7.1.6)
d* || X | —2
ds?
and
s=—2
will be used, where [,, = —%, log = % and l,g = —=2. From Eq. (3.2.45) we have
dgij(s) 1
= LK + [ 1.
G| =K+ (7.18)
with K = 2In(Ry) and I, = 1,Ipp = —1,I,y = —1. Finally, the stresses near the
singular point in polar coordinates can be rewritten as
0ij(r,0) = lij{—=2In(r /L) fi;(0) + t;;(0) + (K + L;;) fi;(0)}. (7.1.9)
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In Eq. (7.1.9) K is dimensionless, f;;(f) and ¢;;(#) have the unit of Ejy x oy, and [;; has
the unit of temperature. The quantities f;;(¢) and ¢;;(#) can be calculated analytically
from Eqgs. (7.1.5) and (7.1.6), because Pj(s,#) and || X || are known from Section 3.2.
They depend on the material parameters (F1, Fy, vy, V9, aq, ) and the angles 6; and
0. l;; is proportional to the temperature change. For a semi-infinite joint the factor K
is known, because Ry is well known (see Section 3.2).

Generally, the quantities f;;x(6) and t;;,(f) (k=1,2 for material 1 and 2) have the
following form:

fijk (9) = Flijkcos(%) + FQZ]kSZn(QG) —+ F3ijk + F4ijk0 (7110)

tz’jk(g) = Tlijk003(29) + ngjksm(29) + T3z'jk:

The coefficients Fy;;, and T}, with i = rr, 00,70 ;1=1,2,3,4, and n=1,2,3,4,5,6, can be
calculated analytically by inserting Eq. (3.2.45) into Egs. (7.1.5) and (7.1.6). For an
arbitrary joint geometry with 6y, 0,, the relations between the coefficients Fy;ji., Thiju,
the material properties (F1, Fs, v1, Vs, a4, ), and the geometry 60y, 6, have a very long
form. However, for a quarter-planes joint (i.e., #; = —fy = 90°) they are simple and
given below in an explicit form by using the REDUCE code. For the coefficients Fj;jj
it holds:

Fuijr, =0 (7.1.12)
FLijl = FLZ'jQ for L:1,2,3 (7113)
16Q«
Firp = =Fypr = Fioor = Fapo = —2F501 = g (7.1.14)
Fr.on =0, forL=1,3 (7.1.15)
FQ]Jk = 0, for IJ:T’I“, 06. (7116)
For the coefficients T,;;, there is:
Tipr1 = 166 Z 0? 0?
i = = (Z(+ 26— 67) +32(0 — B)[(B — 26) (= 26) + 6])  (7.1.17)
T—16QZ 28 + 62 2 2 2 0> 1.1
e = = (Z(a+26 +67) +32(a — §)[(Ba— 26) (0 — 26) +6])  (7.1.18)
16
Terl = —7Q(CY - 1)91 (7]_]_9)
16
TQ,«,«Q = 762(& + 1)91 (7120)



T4]Jk =0 for IJ:T’I“, 00

(7.1.21)

T5rr1 — T5rr2 — ?a (7122)

— 12—? (Z[(2a+1)67 — (a = 28)] + 32(a — B)[(3a — 28)(a — 28) + 67])
(7.1.23)

Tyrpo = 12—52 (Z](20 = 1)67 — (o — 28)] + 32(a — B)[(3a — 28) (o — 28) + 67))
(7.1.24)
Tﬁrrl == %(a 1)01 (7125)
Torra = %(a —1)0, (7.1.26)

Z
Tio01 = 12—? (Z(a — 28+ 07) - 32(a — B)[(3a — 2B) (o — 28) + 9%]) (7.1.27)
Tiop2 = 12—53 (Z(a =28 - 6}) = 32(a — B)[(3a — 28)(a — 28) + 67]) (7.1.28)
TNggk == TNrrk for N:2,5 (7129)
TNggk = _TNrrk for N:3,6 (7130)
Tiro1 = —Torr2/4 (7.1.31)
Tiroo = Torr2/2 (7.1.32)
Toror. = —Thoor/2 (7.1.33)
T47"0k = T5rrk/2 (7134)
T3r6‘1 = T2rr2/2 (7135)
T3rp2 = Top1 /2 (7.1.36)
Tyroe =0 for N=5.6 (7.1.37)
with
Z = 8(—2a0; + 0; + 5a” — 10a3 + 45%) (7.1.38)
A«

Q= % n % (7.1.39)

FE, =
b for plane strain ’

, E, for plane stress
Ey

2
]'_Vk

where «, § are the Dundurs parameters.
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For a quarter-planes joint transforming f;;l/;; from polar coordinates to Cartesian co-
ordinates yields

fml:v =0
T, T,
foly = EOme = ?OFwaz
f:vylxy = 0. (7140)

From Eqs. (7.1.9) and (7.1.40) we know that in Cartesian coordinates the stress com-
ponents o, and 7,, are independent of r. Therefore, o, and 7,, are not singular. Only
the stress component o, is singular.

7.1.2 Example of Use of the Asymptotic Description

In this section an example will be presented to show the use of the asymptotic solution
for the logarithmic singular stress field in a quarter-planes joint. The stresses calcu-
lated from FEM and the analytical description as given in Eq. (7.1.9) are compared.

Although Eq. (7.1.9) is deduced in case of a semi-infinite joint, it can be used in a
finite joint with a homogeneous temperature change to calculate the stresses near the
singular point (it should be noted that this solution can be used only in the area near
the singular point). This means that the angular functions are the same for a finite
joint as for a semi-infinite joint. However, for a finite joint the quantity Ry is unknown
and hence, the factor K in Eq. (7.1.9) is unknown. It has to be determined from the
stresses calculated by FEM.

To determine the factor K in a finite joint, we can define one quantity II:

Iy = > {Uf;EM(Tlagl) —Lii{ = 2n(ri/ L) f:5(0) + t;5(0) + (K + fij)fij(gz)}}

=1

(7.1.41)

where ij=xx, yy, xy, or rr, 60, 6, M is the number of points used for the determination
of the K factor. In principle, any stress component at any point (r;,6;) near the
singular point can be used. In general, we use the points along a line, i.e. #; is a
constant. According to the least square method, the factor K can be determined from

e =0 (7.1.42)

The results given below apply to plane strain. The geometry is H;/L = Hy/L=2 (see
Fig. 7.1). Thermal loading is a temperature change of —100°C'.

The material data used in this example are
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Figure 7.1: A quarter planes joint with H,/L = Hy/L=2.

E; =100 GPa, 1 =3, a3 =25%107%/K,

E, =54 GPa , =02 ay=85>5x 1076/K

For this joint the stress exponent is

w =0,
and
axn o,
ds |,_ , ’
d’ || X |
_— 0.
ds? e 9 7

This corresponds to the case of o = 2/ for a quarter-planes joint.
The factor K in Eq. (7.1.9) was determined using Eq. (7.1.42) and FEM. For this
example

K = 0.4424,

which is the averaged value of those calculated from Eq. (7.1.42) with 6, = —90°,
90°, —45°, 45°, and 0. Using the K-factor as determined, we can calculate the stresses
analytically at an arbitrary point with Eq. (7.1.9). Comparison of the stresses obtained
from FEM and Eq. (7.1.9) along § = 0 is shown in Fig. 7.2. The quantities used to
calculate the stresses with Eq. (7.1.9) in the Cartesian coordinate system are

6° o fij ,GPa/K tij,GPa/K
Oz 0 —2.1863 % 10~

0 o, —1.4899x% 10~ 6.8670 % 104
Toy 0 —3.5106 + 10~ .
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The results show that the stresses calculated by FEM and Eq. (7.1.9) are in excellent
agreement in the range near the singular point. It can therefore be concluded that for
thermal loading Eq. (7.1.9) can describe very well the stresses near the singular point
analytically for the type of In(r) singularity.
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25—

Oi

_ gy,

B L T
-25— 7

I B B B O B B T T T T [ T 1T T T [ T 1T T 1T 11T 7T171]
-10.0 -7.5 -5.0 -25 0.0 -10.0 -7.5 -5.0 -25 0.0
In(r/L) aong the line ©=0 In(r/L) along the line©=0

Figure 7.2: Comparison of the stresses ob- Figure 7.3: Stresses obtained from FEM
tained from FEM and Eq. (7.1.9) along along 6 = 0 for mechanical loading, the
6 = 0 for thermal loading. same joint as in Fig. 7.2.

For the same joint, but with remote mechanical loading, i.e. the upper and lower
surfaces of the joint are subjected to homogeneous stress (e.g., o, = —1 MPa), the
stress distribution in the joint was calculated by FEM. The stress distribution along
6=0 is plotted in Fig. 7.3. It can be seen that there is no stress singularity in the same
joint under remote mechanical loading.

Therefore, we can say that || X || [s=—2 =0, d”X” |s=—2 = 0, and & ”X” ls=—2 # 0 are
not all conditions for the type of In(r) singulanty. It also depends on the loading.

A short summary: In general, if s=-2 (i.e. w,=0) is the second-order pole of 6;;(s, ) =

% in the Mellin domain, In(r) singularity appears. This is the case with || X ||

|s:—2 =0, d”X” |s_ 2=0, d2HXH |s——2 7A 0 and PIJ(S 9)|s——2 =Y, %£Jﬁ|s:—2 7é 0.

In an arbitrary finite joint under thermal loading, stresses near the singular point can be
calculated from Eq. (7.1.9). The angular functions f;;(#) and t;;() can be calculated
analytically, but in a longer form. However, for a quarter-planes joint (¢; = —fy = 90°)

the angular functions f;;(6) and t;;() in polar coordinates are simple and given in an
explicit form (see Eqs(7.1.10) through (7.1.39)). The K factor has to be determined
using the stresses calculated from FEM and the least squares method.

So far, the equations to determine the quantities in the asymptotic description of the
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type of In(r) singular stress field has been given for a joint with free edges under thermal
loading. For a joint with an interface corner under thermal loading or a joint with edge
tractions the method shown in this section to determine the asymptotic description
of the type of In(r) singular stress field is the same, only the boundary conditions are
different. For a joint with edge tractions, constant and the higher order regular stress
terms should be added.

7.2 The Type of r“In(r) Stress Singularities in a
Joint with Free Edges

In this section the type of r~“In(r) is treated. Emphasis is placed on the analytical

description of the stress distribution near the singular point in a finite joint under

thermal loading. The angular functions and the K factors used to describe the stress
distribution near the singular point are given.

7.2.1 Angular Functions in the Asymptotic Description

From Section 7.1 it is known that the stresses in a polar coordinate system can be
calculated from

(M_l) e oo
oije(r,0) = > ! im & _Sn)Mw ~(s42)

1 ,
O -1 8 ot o T (g

§n <Y

(7.2.1)

where s, is the M-th-order pole of &;;(s, #). The case of a joint with s=-2 as a second-
order pole of 6;;(s,6) was studied. In this section, we consider the case of M=2 and
Sp # —2. It generally is the case with || X || =5, = 0, d'g” |ls=s, =0, deHS)z(H|s:sn # 0,
and Pj(s, 0)|s=s, # 0. In case of M > 2, calculation of stress reversal 6;;(s, ) is more
complicated, but the procedure is similar to that one for M=2. The case of M> 2
corresponds to the type of »~In™ (r) stress singularity (with N=M-1 >1).

For s = s,, and M=2, the stresses in polar coordinates can be calculated from

‘ o Pii(s, 0)gii(s)
) _ a . 2=—(s+2) " u\» VJoy\>/
Pun(r0) = Jim Z{ls =) T A T G r )

= _fFun lirri {{ —In(7)gi;(s)Py(s,0) || X ]| (s —s0)?(s +2)

HB5p (s, 0) + PO )6 — s +2) X

ds
—%gzj(s)ﬂ-(s, 0)(s — sn)%(s +2)

Hoton + P60 X I G-s)f/IXIF ) (722
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with w, =2 + s,,.
After using ’'Hopital’s rule,

2 oY _ dgj (s) dP;; (s, 0)
O'i]‘n(’l“, 9) = w—nm{ — lTL(T)gij(S)Pij(S, 9) + ds PIJ( ,9) + ds IJ(S)
d3||)3f|| 1
3 d2d||sX|| 9ij(s)Py(s,0) — w_gij(S)Pi'(Sa 9)} s=sp - (7.2.3)
ds? n
From Eq. (3.2.45) we have
gij|s:sn — jonlijn; (724)
dg R(()S+2)T0 _
r _ o ‘0 _1
s 542 <ln(R0) s ),
dgg R(()s+2)T0 < B >
—_— = —— 1 -1
ds 242 ln(RU)( +S)S ) )
d . R(s+2)T B
5: = —OTO (ln(Ro) s(1+s) — 1). (7.2.5)
Taking
Kln - RBU”,
KQn = RS’”ZTL(R()),
lrrn - E;
25,
Tg(Sn + ].)
logn = e
Sn
TO (Sn + 1)
lrﬂn = T
Sn
Irrn = _lrrn/sna
[0971 — _lrrn/sna
Irﬂn = 2lrrn/3na (726)
Eqgs. (7.2.4) and (7.2.5) can be rewritten as
Gijls=sn = Kinlijn, (7.2.7)
dgij .
—s=sn = Kinlijn + Konlijn. (7.2.8)
ds
By using the definitions of
d* || X ||
X n = 05 S§=8n 2
= o e, (7.29)
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X

Xan s=sus 21
3 ds? n (7.2.10)
and
fin(®) = ——Py(s.0)
n — wnX2n ij S, S=5n
2 .
= X {Alz‘jk(sn) COS ((wn — 2)0) + Agijk(s,) sin ((wn — 2)9)
+A3ijk(5n) COS(wnG) + A4ijk(8n) sin(wnﬁ) + A5ijk(5n)}a (7211)
2 dpij (S, 9)
tz]n(e) wnX2n dS S=Sn
_ 2 [dAu(s) d Ay (s) _
= wnX2n{ ds |s:sn CcoSs ((Wn — 2)0) + T|s:sn sin ((wn — 2)9)
dA?)ijk(S) dA4ijk(3) . dA5ijk(S)
+ s ls=s, cos(wpf) + ¥R |ls=s, sin(w,0) + . -
—Ayiji(sn)fsin ((wn - 2)9) + Agijk(sn)0 cos ((wn - 2)9)
— Asiji(50)08in (wn0) + Auiji(50)0 cos (wn) } (7.2.12)

with k=1 for § > 0 and k=2 for § < 0, finally corresponding to s, (w, = s, + 2), the
stresses near the singular point can be calculated from the relation of

Oijn(r,0) = —r"In(7) Kinlijn fijn(6) + T_wn{Kinijnfijn(g)
Xan 1
+K1n{jijnfijn(9) + lijn [tz]n(g) - ﬁfz]n(g) - w_fl]n(g)] }}

(7.2.13)

In Eq. (7.2.13) Ky, and Kj, are dimensionless, f;;,(f) and ¢;;,(¢) have the unit of
Ejyxay, and l;;, and I;;, have the unit of temperature. The coefficients A;;;, (1=1,2,3,4,5)
are given in Section 3.2. They depend on the material properties (Ey, vy, Eq,15), the
angles 6,60y, and s,. For each given s, the functions f;;,(0) and t;;,(#) can thus be
calculated analytically from Eqs. (7.2.11) and (7.2.12). The quantities l;;,, and I;;,, are
proportional to the loading and well known. The quantities f;;n(0), ijn(0), lijn, Lijn are
independent of the overall geometry of the joint; only the factors K, and Ky, depend
on the overall geometry, i.e., Ry. For a semi-infinite joint under thermal loading the
factors K;, and K5, are well known. For a finite joint the quantity Ry is unknown.
Therefore, the factors Ki, and Ky, in Eq. (7.2.13) are unknown. They should be
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determined by a numerical method, such as the finite element method. They are a
function of the material properties (E1, v, Eo, s, aq, (), the angles 6,605, the overall
geometry, and the loading.

For any two dissimilar materials joint under thermal loading, s=-2 (i.e. w = 0) always
is the first-order pole of ;;(s, #) (the case with s=-2 as a second-order pole of ;;(s,0)
is not considered; it was presented in Section 7.1). For a given geometry and material
combination, there may be more than one s, (n=1,2,...,.N) as a second-order pole of
,j(s,0). Therefore, the stresses near the singular point for the case of more than one
s, (n=1,2,...,N) as a second-order pole of 6;;(s, ) can be described by

0ij(r,0) = > 0iju(r,0) + 040(0)

n=1
N
= Y { — 77 In(7) Kinlijn fijn (0) + T_w”{Kmlijnfijn(@)
n=1
X Xsn 1

(7.2.14)

where the regular stress term o;;0(6) is independent of the distance r.
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Figure 7.4: A joint with 6; = 165° and Figure 7.5: The stress exponent (real and

0, = —55° (H;/L = 0.984, Hy/L = 0.816, imaginary part) vs. the ratio of Young’s

L,/L =2.016, Ly/L = 0.432.) modulus for the joint with §; = 165° and
0y = —55°, 1, = 0.2, = 0.3.

Generally, the functions f;;, (), tij»(6) and 0;;0(#) have the following expression:

fijn(0) = Fiijncos[(wy — 2)0] + Fyijnsinf(w, — 2)0] + Fsijncos(wnb) + Fuijnsin(w,b) + Frij

t”n(g) = TlianOS[(wn — 2)9] —+ TgijnSin[(wn — 2)9] —+ Tgi]‘nCOS(wng) =+ T4Z~jnsin(wn9) —+ T5ij
+TGijnbcos[(wn — 2)0] + Trijndsin[(w, — 2)0] + Tsijnfcos(wypl) + Toijnbsin(w,0)
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O'ijg(e) = Slij608(29) + SQWSZTL(29) + S3ij9 + S4ij-

In this section, the determination of the coefficients Fj;j, and Tg;;, is given. They
can be calculated analytically from Eqs. (7.2.11) and (7.2.12). Calculation of o;j
is well known from Section 3.2. Only the factors K;, and K, cannot be calculated
analytically for a finite joint.

7.2.2 Examples and Discussions

Two examples will be given to show the agreement of the stresses near the singular point
calculated by FEM and from Eq. (7.2.14). The loading is a homogeneous temperature

change of Ty = —100 K. For convenience the components rr and 06 are replaced below
by r and 6.

10 .
] 10
0 i
g - g o
O .10 © -
S s
'20i _107

-307\\\\\\\\\\\\\\\ I I R I N N I N A R

10° 10* 10° 10° 10" 10° 10* 10° 10° 10"
r/L aong the line ©=68.75 r/L aong the line ©=110°

Figure 7.6: Comparison of the stresses ob- Figure 7.7: Comparison of the stresses ob-
tained by FEM and Eq. (7.2.14) along tained by FEM and Eq. (7.2.14) along
the line of § = 68.75° for the joint with the line of # = 110° for the joint with
0, = 165° and 6, = —55°. 0, = 165° and 6, = —55°.

Example 1

The geometry (see Fig. 7.4) and the material data for Example 1 are

0, = 165°, 0y = —55°,
E; = 1000 GPa, n =02, o =25%10"%/K,
B, = 26359.8973406 GPa, 1, =0.3, a=18.95x107%/K.

For this joint, the stress exponent is

wy, = 0.35140544186
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and N=1 in Eq. (7.2.14). For this w, (s, = w, — 2), there is || X |[|< 107! and
%L@:sn < 1078, As the relation between the material data, the angles 0;, 6, and w,
is very complicated, it is difficult to find a material combination and an w, so that
|| X || |s=s, = 0 and %L:sn = 0 are satisfied exactly. It can be said that example 1
nearly is the case, in which s, is a second-order pole of &;;(s,#). This w, is very close
to the transient point from a real eigenvalue to a complex eigenvalue for these angles
01,0 and vy, o, and for various ratios of Ey/FE; (see Fig. 7.5).

FEM has been used to determine the two unknown factors K; and K, in Eq. (7.2.14).
The method for determining K; and K from the stresses calculated by FEM is similar
to that one given in Section 3.4. The factors obtained for this example are

Ky = —2.4229 , Ky =133.38.

Using the K-factors as determined, we can calculate the stresses analytically with
Eq. (7.2.14). The quantities used to calculate the stresses with Eq. (7.2.14) are

Xop = 25358 , Xan = —860

6° oij  fij, GPa/K  t;;, GPa/K 0yj0,GPa
68.75 o, -0.0001803 -0.002781 0.09460
68.75 o0y -0.001929 -0.08719 -2.5504
68.75 o, 0.00002715 0.003391 0.3792

110 o, 0.0008027  0.03912 -0.7817
110 oy -0.001144 -0.04970 -1.7903
110 o, 0.0005258  0.02372 -1.2271
165 o, 0.002019 0.08671 -2.7271
-95 o, -0.003834 -0.1311 1.7446 .

Comparisons of the stresses obtained by FEM and from Eq. (7.2.14) are shown in
Figs. 7.6, 7.7, 7.8, and 7.9 along different directions and for different components. The
results show that they have very good agreement, except for a very small distance r.
The stresses for a very small distance r as obtained by FEM are not accurate because
of the stress singularity.

Example 2

The geometry (see Fig. 7.10) and the material data for Example 2 are

0, = 120°, 0, = —120°,
E, = 1000 GPa, v =0.1, ap = 2.5 %1078 /K,
B, = 9141.3623351 GPa, 1, = 0.4, s = 18.95 % 1070 /K.
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Figure 7.8: Comparison of the stresses ob-
tained by FEM and Eq. (7.2.14) along
the line of # = 165° for the joint with
f; = 165° and 0y = —55°.
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Figure 7.9: Comparison of the stresses ob-
tained by FEM and Eq. (7.2.14) along
the line of # = —55° for the joint with
61 = 165° and 0, = —55°.

For this joint, the stress exponent is
wy, = 0.17998265382

and N=1. For this w,, there is || X ||< 1077 and %L:sn < 107%. We can say this
nearly is the case, in which s, is a second-order pole of &;;(s,#). This w, is very close
to the transient point from a real eigenvalue to a complex eigenvalue for these angles
01,0> and vy, 5, and various ratios of Fy/E; (see Fig. 7.11).

The K-factors obtained for this example are

K, =11029 ,  K,=1.1266.

Using the K-factors as determined, we can calculate the stresses analytically with
Eq. (7.2.14). The quantities used to calculate the stresses with Eq. (7.2.14) are:

Xo, = 10038 , X3, = 129024
0° oij  fij, GPa/K t;;, GPa/K 059, GPa
0 op  0.08579 0.2478 -14.5072
0 o9 0.01921 -0.02237 10.0897
120 o, -0.0977 -0.0755 -21.9573
-120 o, 0.006196 -0.2597 8.8239
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Comparisons of the stresses obtained by FEM and from Eq. (7.2.14) are shown in
Figs. 7.12, 7.13, and 7.14 along different directions and for different components. The
results show that they have very good agreement, except for a very small distance r. So
we can say that in a joint with 7~“In(r) singularity under thermal loading Eq. (7.2.14)
can analytically describe the stresses near the singular point very well.

‘ 0.5+ W1
0.25
Hy
\ < 0.0
0 3
‘/‘62 ‘ -0.25
H2 -0.5 T T T T T T T T T
10° 10° 10* 10° 10° 10° 10°
E,/E

Figure 7.10: A joint with 6; = 120° and Figure 7.11: The stress exponent (real and

0, = —120°, and H,/L = Hy/L = 1.732.  imaginary part) vs. the ratio of Young’s
modulus for the joint with #; = 120° and
0, = —120°, v, = 0.1, 1 = 0.4.

Both examples have demonstrated that near the singular point of a joint with the type
of r~“In(r) singularity under thermal loading the stresses calculated by FEM and the
analytical description based on Eq. (7.2.14) are in excellent agreement.

7.3 Application of the Asymptotic Description of
In(r) Singularity

In this section, use of the asymptotic description of In(r) singularity to evaluate an-
alytically the singular stresses without using any numerical method will be presented
for joints with very small w in the type of »~* singularity.

Theoretically, if the stress exponent w, (w, = 2+s,, and s, is the solution of || X ||=0)
is nonzero (may be very small), the stresses near the singular point in a joint under
thermal loading should be described by

LEURDS (T/Kﬁhijn(e) + oi0(6), (7.3.1)
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Figure 7.12: Comparison of the stresses Figure 7.13: Comparison of the stresses
obtained by FEM and Eq. (7.2.14) along obtained by FEM and Eq. (7.2.14) along
the line of # = 0° for the joint with #; = the line of § = 120° for the joint with 8, =
120° and 6, = —120°. 120° and 6, = —120°.

where 0;j0(f) is the regular stress term (see Sections 3.2 and 3.3), w,, is the singular
stress exponent (see Section 3.1), h;;, () are the angular functions for non-logarithmic
stress singularity (here, the angular functions h;j;,(f) are the same as those given in
Section 3.1 for f;;n(#)). They can be determined analytically. The factors K, should
be determined from the stress analysis using FEM.

If the value of w, is very small, however, use of Eq. (7.3.1) is questionable. As the
equation || X ||= 0 is a transcendental equation, a numerical method has to be used to
solve it. For very, very small w (w < 107%), the solution is sensitive to the explicit form
of || X [|. If for the same || X || explicit form different numerical methods are used
to solve || X ||=0, the solution is different as well. This means that it is difficult to
determine the accurate value of w for a material combination with a very, very small w.
Use of Eq. (7.3.1) to describe stresses near the singular point in a joint under thermal
loading is difficult as well. In practice and from the physical point of view, the exact
value of w is not important to a joint with very, very small w. On the other hand,
due to the effect of the regular term o;;0(6), for a two dissimilar materials joint under
thermal loading the case of w — 0 does not mean that the stress singularity disappears.
However, this cannot be seen from Eq. (7.3.1).

From mathematics it is known that if w,, — 0, there is also %b:sn — 0 (s = wp—2).
Now, the question arises whether Eq. (7.1.9) can be used to calculate the stresses near
the singular point in a joint with very small w, for thermal loading. If so, how small
may w, be? Examples will be given to answer these questions. The results given below
are for a quarter planes joint with H;/L = Hy/L = 2 and for plane strain. The loading
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Figure 7.14: Comparison of the stresses Figure 7.15: A comparison of the stresses
obtained by FEM and Eq. (7.2.14) along obtained from FEM and Eq. (7.1.9) along
the line of § = —120° for the joint with 6 = —45° for example 1.

0, = 120° and 6, = —120°.

is a temperature change of —100°C.

The material data for Example 1 are

E; =100 GPa, v, =0.333, a; =25%107%/K,
Ey=54CGPa, 1,=02, ay=85%10"/K.

For this joint, the stress exponent is

w=16.0222%107°

and
Mbmn — 1.3880 % 10™*.
ds

Although the conditions for the type of In(r) singularity are not satisfied exactly,

Eq. (7.1.9) is used to calculate the stresses near the singular point. The K factor
obtained in Eq. (7.1.9) is

K = 0.3856.
The quantities used to calculate the stresses with Eq. (7.1.9) are

6° oy fij;GPa/K tij .GPa/K
—45° o, 7.44588 % 107° 7.79347 %« 1076
—45° gy —7.44588 % 107° 6.94198 x 10~*
—45° 1,9 —3.72294%107° 2.38395%107* .
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Figure 7.16: A comparison of the stresses Figure 7.17: A comparison of the stresses
obtained from FEM and Eq. (7.1.9) along obtained from FEM and Eq. (7.1.9) along
0 = —45° for example 1, K=0, K=0.3865 6 = 45° for example 2.

(solid line), and K=1.

A comparison of the stresses obtained from FEM and Eq. (7.1.9) along 6 = —45° is
given in Fig. 7.15. The results show that for this material combination (i.e. the stress
exponent w approximately is 6 * 107°) Eq. (7.1.9) can be also used to describe the
stresses near the singular point very well, and that the stress singularity is obvious,
although the stress exponent w is very small.

Since the absolute value of the term K f;;/;; is relatively smaller than that one of the
term In(r) f;;1;; for a very small distance r, from Eq. (7.1.9) we know that the stresses
calculated from Eq. (7.1.9) are not sensitive to the accuracy of the determined K factor
value. Figure 7.16 shows an example. In Fig. 7.16 the solid line indicates the results
with K=0.3856, the dashed line is that one with K=1, and the dotted line is for K=0.
It can be seen that the effect of the K value on stress is not strong. If the absolute
value of K is lower, the effect of the accuracy of K on stress is smaller.

Another two examples will show that Eq. (7.1.9) can be also used to calculate the
stresses for a larger singular stress exponent.

The material data for Example 2 are

E; =100 GPa, v, =0.328, a; =25%107%/K,
Ey, =54 GPa , Uy =0.2, g = 8.5 % 1076/K .

For this joint, the stress exponent is

w = 9.5167076 x 10~*.
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Figure 7.18: A comparison of the stresses Figure 7.19: A comparison of the stresses
obtained from FEM and Eq. (7.3.1) along obtained from FEM and Eq. (7.1.9) along
0 = 45° for example 2, the dashed line rep- 6 = —45° for example 3.

resents the results from Eq. (7.3.1) with

K=7.7436, solid lines indicate the results

with 1.00025 K.

A comparison of the stresses obtained from FEM and Eq. (7.1.9) in Cartesian coordi-
nates is shown in Fig. 7.17, where K=0.0525. The results show that for this material
combination (i.e. the stress exponent w approximately is 107*) Eq. (7.1.9) may well
be used to describe the stresses near the singular point.

On the other hand, a comparison of the stresses calculated from FEM (as symbol)
and from Eq. (7.3.1) with K=7.7436 (K was calculated from Eq. (3.5.7), as dashed
lines) is plotted in Fig. 7.18, in which the solid lines are the results from Eq. (7.3.1)
with 1.00025 K. It can be seen that for very small w, the stresses calculated from the
equations for the type of r~* are affected strongly by the accuracy of the K-factor value
determined.

The material data for Example 3 are

E, =100 GPa, v, =0.3, a; =25%107%/K,
By =50 GPa, 15 =02, as=85%10 /K.

For this joint, the stress exponent is
w = 9.6826076 * 107°.

For this material combination stresses were calculated by FEM and from Eq. (7.1.9).
The K factor obtained in Eq. (7.1.9) for this example is

K =0.094.
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The quantities used to calculate the stresses with Eq. (7.1.9) are

6° oy fij;GPa/K ti; ,GPa/K
—45° o, 7.4797%107° —2.1864 % 107°
—45° oy —T7.4797x107°  6.8028 % 1074
—45° T, —3.7399 % 107°  2.3596 % 107,

A comparison of the stresses obtained from FEM and Eq. (7.1.9) along 6 = —45° is
given in Fig. 7.19. The results show that for this material combination (i.e. the stress
exponent w approximately is 1072), Eq. (7.1.9) can be used to describe the stresses
near the singular point well, although the condition %L@:sn = ( is not satisfied.

Other comparisons of the stresses calculated from FEM and Eq. (7.3.1) show that for
w being about 0.01, the stresses calculated from the equations for the type of = are
also affected strongly by the accuracy of the K-factor value determined.

Below two examples will be given to show for which material combination Eq. (7.1.9)
with K=0 can be used to calculate the stress distribution near the singular point.

As example 4 a real material combination is chosen, which is a SizN,;/W joint. The
material data are

E, =314 GPa, 1, =028, o =27%10"%/K,
B> =411 GPa, 15 =028, ay=45%105/K.

For this joint, the stress exponent is
w = 0.0056.

The stresses were calculated by FEM and from Eq. (7.1.9) with K=0. The quantities
used to calculate the stresses with Eq. (7.1.9) are

6° o0y fij,GPa/K tij ,GPa/K
—45° o, —4.7979%107° 7.9641 % 10~*
—45° oy 4.7979 % 107° 3.3018 % 10~
—45° 1,9 —2.3990 % 107° 6.5716 % 107> .

A comparison of the stresses obtained from FEM and from Eq. (7.1.9) with K=0 along
0 = —45° is shown in Fig. 7.20. The results show that for this material combination
(i.e. the stress exponent w approximately is 0.006) Eq. (7.1.9) with K=0 can be used to
describe the stresses near the singular point well (with an error of < 6% for r/L< 0.01).

For the same joint as used in example 3, i.e. the stress exponent is w = 9.6826 x 1072,
a comparison of the stresses obtained from FEM and Eq. (7.1.9) with K=0 along
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Figure 7.20: A comparison of the stresses Figure 7.21: A comparison of the stresses
obtained from FEM and Eq. (7.1.9) with obtained from FEM and Eq. (7.1.9) with
K=0 along 6 = —45° for example 4. K=0 along § = —45° for example 3.

6 = —45° is shown in Fig. 7.21. The results demonstrate that for this material combi-
nation (i.e. the stress exponent w approximately is 1072?) Eq. (7.1.9) with K=0 can be
used to describe the stresses near the singular point with an error smaller than 10%
for r/L< 0.01.

From Figs. 7.20 and 7.21, it can be seen that the equations for the type of In(r)
singularity with K=0 can be used to calculate stresses near the singular point, if the

w

stress exponent w in the type of r~* is very small (say w < 0.01). The advantage is
that for a joint with very small w, FEM is not needed to calculate the stresses near the
singular point when Eq. (7.1.9) with K=0 is applied.

For practically relevant materials, i.e. 0.2 < 1y, < 0.4 and 0.2 < v, < 0.4, material
combinations with 0.6 < E,/F; < 2 usually have a very small stress exponent w,
see Fig. 7.22 (curve 1 is for v; = 0.2, = 0.3; curve 2 for v; = v, = 0.2; curve 3
for 11 = vy, = 0.3; curve 4 for v; = 0.25,v, = 0.35). Therefore, application of the
asymptotic description of the logarithmic singular stress field is of interest. Numerical
calculations show that if w is negative and its absolute value very small, Eq. (7.1.9)
with K=0 can be used to calculate stresses near the ”singular point” as well.

We can conclude: (a) The case of w — 0 does not mean that the stress singularity
disappears for a joint with a free edge under thermal loading. (b) For joints with very
small w (w < 1072) in the type of r™“ singularity, stresses near the singular point
can also be described by the equations for the type of In(r) stress singularity. (c¢) The
equations for the type of In(r) stress singularity with K=0 can be applied to calculate
stresses near the singular point for joints with w < 0.01 and H,/L > 1, and Hy/L > 1.
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'001 LA A R R
10 15 2.0
EJ/E,
Figure 7.22: Stress exponent for real material combinations (curve 1 is for v, = 0.2, 15 =
0.3; curve 2 for v; = vy, = 0.2; curve 3 for v; = v, = 0.3; curve 4 for v; = 0.25, 15 =
0.35).

This means that the stresses near the singular point can be calculated without using
any FEM. The error is less than 10% for w < 0.01 and r/L< 0.01. For w < 0.005 the
error is less than 5%. If the corresponding value of K in Eq. (7.1.9) is used, the error
is even smaller.

7.4 Displacement Field Corresponding to the Log-
arithmic Stress Singularity

The analytical description of the logarithmic singular stress field is known from Sections
7.1 and 7.2 (see Egs. (7.1.9) and (7.2.14)). By inserting Eq. (7.1.9) or Eq. (7.2.14)
into Eqs.(3.1.10), (3.1.11), and (3.1.12) the strains &,,, g9, and &,9 can be calculated
as a function of the polar coordinates r and €. For the type of In(r) stress singularity,

err(1,0) = 11 (ln(r), sin(260), cos(20), 0) (7.4.1)
coo(r,0) = Yo (ln(r), sin(260), cos(20), 9) (7.4.2)
grg(r,0) =13 (ln(r), sin(260), cos(20), 0) (7.4.3)

are true. From Eq. (3.1.13) the displacement u in r direction can be obtained:

u(r,0) = /y1 (ln(r),sm(29),cos(29),9)dr+h(9)
= Y} (ln(r), sin(20), cos(20), 9) + h(0) (7.4.4)
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and from Eq. (3.1.14) the displacement v in # direction is
v(r,0) = / [y2 (ln(r), sin(20), cos(20), 0) r— u(r, 9)] df + f(r)
= rY, (ln(r), sin(20), cos(20), 9) + f(r). (7.4.5)

Due to the requirement of v = v = 0 at r=0, there must be h(#) = 0. The unknown
function f(r) should be determined from Eq. (3.1.15), i.e.

Y3 (ln(r), 8in(29),003(29),9) = (ﬁ + 0(rYs) ~Y, +

00 or 2 or r

(010

of(r) _ f(r)>

1
2
1
2

After simplifying, Eq. (7.4.6) yields

%?_QQ+H:0 (7.4.7)

The general solution of Eq. (7.4.7) is
f(r)=Cr —rin(r)H, (7.4.8)
where C is an unknown constant. Finally, the displacements can be calculated from

u(r,0) =rY; (ln(r), sin(260), cos(20), 0) (7.4.9)

v(r,0) =rY; (ln(r), sin(26), cos(20), 9) + Cr —rin(r)H. (7.4.10)
For the type of r=“In(r) stress singularity, there is

err(r,0) = 71 (r_“, r=In(r), sin[(w — 2)0], cos[(w — 2)0)], sin(wh), cos(wh), 9) (7.4.11)
g09(r,0) = 7 (r"", r-“In(r), sin[(w — 2)0], cos[(w — 2)0], sin(wh), cos(wh), 9) (7.4.12)

grg(r,0) = 73 (r_“, r=In(r), sin[(w — 2)0], cos[(w — 2)8)], sin(wh), cos(wh), 9) (7.4.13)
In analogy,

u(r,0) = r'"“v; (ln(r), sin[(w — 2)0], cos[(w — 2)0], sin(wh), cos(wh), 9) (7.4.14)

v(r,0) = rl_“’}_fg(ln(r), sin[(w — 2)6], cos[(w — 2)0], sin(wb), cos(wh), 9) + f(r),(7.4.15)

where the determination of f(r) is the same as for f(r) in Eq. (7.4.7), but H should be

replaced by H.
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Figure 7.23: A comparison of the dis-
placements calculated from FEM and Egs.
(7.4.16) through (7.4.19) for example 1 in

r/L (along the line of ©=0)

Section 7.1 along the line of § = 0°.
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Figure 7.24: A comparison of the dis-
placements calculated from FEM and Egs.
(7.4.16) through (7.4.19) for example 1 in
Section 7.1 along the line of 6 = 90°.

For an arbitrary geometry the function Y7, Y5, and the constant H or Y;,Y5, and the
constant H can be determined analytically, but in a very long form. As an example,
the displacements will be given below for a joint with #; = —f; = 90° and for the type

of In(r) stress singularity. For plane stress the displacements in materials 1 and 2 are:

w0

_Te
Nz

(r/L) {8 [(v1 +1)cos(20) + vy — 1] Za In(r/L)

+2(a—1)7Z (v +1)sin(20) —8 Za (v1 + 1)sin(20) 0 +4 (o + 1) 7 Z (1 —14) 0
+ [—2560°+64 (7 +8) Ba’ + (—64(4 + 1) +87 — 4 ZK) a

—7Zr* -8 Zﬁ] (r1 4+ 1) cos(26)

Vlz

+ 2560% — 64(r* 4+ 8)B o’ + (64(w2 + 4B —272n* + 47K — 8 1) a
vy —

+ 8ZB— ZH} + o T(r/L)

o

ra
2E, 72

(7.4.16)

— < _(r/L) { — 16 sin(20)Za In(r/L) (v + 1) + {[1280 (4 + 72) §°
16 (~640° + Z — 80’7%) B+ 2 (40 K — 8a+ 7°) Z + 5120°| sin(20)

4 (0= 1) 7 Zcos(20) — 16 cos(20)0 Z} (vy + 1) —32aez} -



QT (v + 1)
- Bz (r/L)In(r/L) + Cy (r/L) (7.4.17)

By Z?
—2(1+a)nZsin(20) (o +1) —8Zasin(20)0 (vo+1) —4 (a—1)7 Z0 (1 — 1)
+ [—2560°+64 (72 +8) Bo’ + (—64(4+ ) +4(2— K)Z)
+ Z7r2—8Z6] (V2+1)Cos(29)+256a3—64(7r2+8)6a2

W2 = LQ (T/L){8((1/2+1)Cos(29)—1+V2)Zaln(r/L)

- <2(7r? —2K +4—2 )7 — 64723 —25652> @
1+
+ (7T2 +8 5) Z} +ayT(r/L) (7.4.18)
V@ — % (r/L) { —16(1+ w) o Zsin(20) In(r/L) + {[5120® — 128 (7* + 8) B’

+ (128(4+ 7))+ 8 (K —2) Z) a — 2 Zn* + 16 Z] sin(20)

— 4 (1+a)mZcos(20) — 16« cos(29)9Z} (V2+1)—32a9Z}

81QT (o — 1) 2(ve+1)mgT (a+1)
— gz /in(r/L) + { %
It VI)EWET =1, Ci ) r/L) (7.4.19)

where Q and Z result from Eqs.(7.1.38) and (7.1.39). The quantity C; should be
determined from the numerical stress analysis, as it was done for the K-factor. For this
joint geometry the constant H in material 1 is

81QT (v + 1)
H=——>*"\" -/ 7.4.20
and in material 2 reads
81QT (v — 1)
H=-— - 7 7.4.21

For the example given in Section 7.1 the displacements have been calculated from
FEM and Eqs.(7.4.16) through (7.4.19). Here, the unknown constant C is determined
from the displacement v at § = 0 and r/L.=0.01, which gives C; = 3.8499 x 107°. In
Figs. 7.23, 7.24, and 7.25 the results along # = 0,0 = 90°, and # = —90° are compared.
It can be seen that they are in good agreement in the range of r/L < 0.1. Especially
for a very small value of r/L, the analytical equations may describe the displacements
very well. To see this clearly, the absolute values of the displacements, which are the
same as those in Figs. 7.23, 7.24, and 7.25 are plotted vs. r/L on a double logarithmic
scale in Figs. 7.26, 7.27 and 7.28.
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Figure 7.25: A comparison of the dis-

placements calculated from FEM and Eqgs.
(7.4.16) through (7.4.19) for example 1 in
Section 7.1 along the line of § = —90°.
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Figure 7.27: The same as in Fig. 7.24, but
on a double-logarithmic scale.
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Figure 7.26: The same as in Fig. 7.23, but
on a double-logarithmic scale.
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Figure 7.28: The same as in Fig. 7.25, but
on a double-logarithmic scale.
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Chapter 8

Joint with a Given Displacement at
One Edge

In this Section a joint with a free edge and a given displacement edge will be considered.
The analytical description of the stress field near the singular point will be studied in
details. In Sections 8.1 and 8.2 the determination of the stress exponent, angular
functions, and regular stress term will be given. The general behavior of the stress
exponents is shown in Section 8.3 for various geometries and material combinations. It
will be shown that for the same joint geometry and material combination the singularity
of a joint with a given displacement at one edge is much stronger than that one of a
joint with free edges. For a joint with a given displacement at one edge the stress
exponent may take the value about 1 and there may be three strong singular terms.

8.1 Determination of the Stress Exponents and the

Angular Functions

For a joint with a free edge and a given displacement edge (see Fig. 8.1) the boundary
conditions are:
at the interface

uy(r,0) = wuy(r,0),
v1(r,0) = wvy(r,0),
o901(r,0) = 0pga(r,0),
or1(r,0) = orga(r,0), (8.1.1)

for the free edge

O-THI(Ta 91) - 07 (812)
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for the given displacement edge

arp2(r,602) = 0,
’UQ(T, 02) =0. (813)

This also represents the case of a symmetrical problem as shown in Fig. 8.2.

Material 1

Material 2

! 0,
Material 2
Material 1
Figure 8.1: A joint with a free edge and Figure 8.2: A symmetric joint geome-
a given displacement edge. try.

To solve this problem, the stress function as given in Eq. (3.1.3) will be used. From
these eight conditions, the following equations hold for A, # 0, 1,2 (n=1,2,3,...)

Binp2(1=v1) + An(l+01)] = Dinpe(1 +11)(2 = An)
Bon2(1 — va) + A\p(1 4+ 12)] + Dop(1 +12)(2 = \,) =0
(8.1.4)

App20 —v) + 2=2A)0 4+ 1)) = Crap(l+1v1)(2 = \y)
— Ap2(1—10) + (2= AN) (1 + 12)] + Con(1+ 1) (2= \,) =0

(8.1.5)
Bln + Dln - BZn - D2n =0 (816)

Ay sin(A,01) + By, cos(A,6,)
+ Chipsin(2 — A\,)01] + Dyy, cos|[(2 — A,)01] =0 (8.1.8)
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Aln)\n COS()\ngl) — Bln)\n sin()\nﬂl)
+ C1n(2 = Ap)cos[(2 = A\p)01] — Din(2 — A\y) sinf[(2 — A\,)01] =0
(8.1.9)

AQn)\n COS()\nQQ) — BZn)\n sin()\nﬂg)
+ (2 — A\p) cos[(2 — A\p)BO2] — Dop(2 — Ay) sinf(2 — A\,)02] =0

(8.1.10)
A2 =) 4+ (2= \)(1 4+ v2)]cos(Anbs) —
— Bon[2(1 —p) + (2 = \p) (1 4 v3)]sin(\,02)
— Con(1412)(2 — A\y)cos[(2 — \,)b2] +
+ Dop(14+12)(2 = A\y)sin[(2 — \p)bs] = (8.1.11)

They are the same for mechanical loading and thermal loading. This equation system
can be rewritten in a matrix form as

[Alsxs{X }sx1 = {0}sx1 (8.1.12)

where {X}sx1 = {A1n, Bin, Cin, Din, Aon, Bon, Con, Dan }t and [A]gys is its coefficient
matrix. {X }gy; is unknown and [A]gys includes the unknown exponent A, the material
properties (Fg, v, k=1,2 for materials 1 and 2), and the geometry angles (6;,6s).
Equation (8.1.12) has a nonzero solution, if and only if

Det([A]sxs) = 0 (8.1.13)

is satisfied. In Eq. (8.1.13) the only unknown is the exponent A,. Its solutions are the
eigenvalues of this problem.
The expansion of Eq. (8.1.13) for an arbitrary joint geometry with 6y, 65 is

Det([Alsxs) = —%{tn cos(20,) sin(26;) + cos(2t,,02) sin(2t,6,) —

—  t, co8(26,) sin(265) — cos(2t,0;) sin(2t,0,) +

262[ —1+t,2 —t,2cos(20;) + cos(2tn91)] (t,, sin(2602) + sin(2t,602)) +
B[2t, 5in(20;) — 21, cos(2t,01) sin(20;) + 21, sin(2t,02) —

— 2t,%cos(26,) sin(2tn92)] + a[2tn cos(2t,6,) sin(260s) + 2 sin(2t,,65) —

—  2t,%sin(2t,0,) + 2t,” cos(26;) sin(2tn92)] +

+ a[2t, sin(20,) — 4t,* sin(20,) + 4t,° cos(20;) sin(202) —

— 2, cos(2t,0,) sin(26,) — 2t,,% sin(2t,,0) + 2t,* cos(26,) sin(2tn92)] +
+ o[ = tysin[2 (01 — 02)] + 7 sin[2 (1 — 02)] — 2t, sin(20,) +

+ 2t,%sin(20,) — t,” sin[2 () + 6,)] — sin[2t,, (0; + 92)]] }, (8.1.14)
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where «, § are the Dundurs parameters and ¢,=1-),. The expansion of Eq. (8.1.13)
in A\, form (not in ¢,) follows

Det([Alses) = —%{Ksm[%ﬂ  YVysin[2(0, — 0y)]
+ Yasin[2(01 + 62)] + Yasin[2(1 — \,)0)
+ Yasin[2(1 — A\p) (01 — 02)] + Yesin[2(1 — X,) (61 + 65)]
+ Yzsin[2((1 — Ay)0 — 02)] + Yesin[2((1 — A,) 01 + 03)]
+ Yosin[2(0h — (1= An)02)] + Yiosin[2(01 + (1 — A\,)6)]}

(8.1.15)
with

Yi= (1 - )‘n){25 - 2&5[2(1 - )‘n)2 - 1] + a22)‘n()‘n - 2) + 622)‘n()‘n - 2)}
(8.1.16)

Vo= (1= M) {1 —2aB(1 = \n)? + oA (M — 2) + B2(1 — \,)%) (8.1.17)
Vs = (a—B)*(\, — 1) (8.1.18)

Ya=2{A" X\ = 2) + B(1 = Aa) + adn(2 = An) —aB(1 = X,)?}  (8.1.19)

Vs =1-— B (8.1.20)

Vs = 3% — o? (8.1.21)
Vi=(a=8)(B -1 =) (8.1.22)
Yy = —Y; (8.1.23)

Yo =—(a—B)(B+1)(1-\) (8.1.24)
Yip = —Y. (8.1.25)

The stress exponent w, is equal to A,,.
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For the special case of ; = —0s, there is

Det([Alsxs) = —%{8@2% (1 — th) cos(6;)sin(6,)* +

+ B[ = 2t,sin(201) + 2t, cos(2t,01) sin(20,) — 2t,% sin(2t,0,) +
+  2t,% cos(26) sin(2tn91)] + a[ — 2t,, cos(2t,01) sin (26, )

— 2sin(26,01) + 26,7 sin(26,01) — 2t,% cos(201) sin(26,01)] +

+ Ozﬁ[ — 2t, sin(26)) + 4t,,* sin(20,) + 2t,, cos(2t,,0,) sin(26,) —
— 2t,%sin(46,) + 2t,%sin(2t,0;) — 2t,,* cos(26,) sin(2tn91)] +
32 [2tn sin(26;) — 2t,,%sin(26,) — 2t,, cos(2t,0,) sin(26,) +

tn® sin(46;) + 2sin(2t,0,) — 2¢,% sin(2t,0;) — sin(4t,,0,)

+ o+ o+

21,7 cos (201 ) sin(2t,01)] + t, sin(46;) + sin(4tn91)}. (8.1.26)

At 0; = —0, = /4, the determinant is

64(1+1,)° (. ) _
- 2at, (1 —t,°) + sin(nt,

Tty . Ty,
+ B[ — 2t, + 2t, COS(T) —2t,° sm(7)] +

Det([A]gxg) =

Tty . Tty 9 . Ty
+ a[ — 2t, 605(7) - 251n(7) + 2t, SIH(T)] +

ty ) ty
+ 2aﬁtn[ —1+2t,%+ COS(%) + 1, sm(%)] +
tn . Tty . Ty, .
+ B [2tn —2t,% — 2t, cos(%) + 2sm(%) — 2t,° s1n(%) — s1n(7rtn)] }
(8.1.27)
For 6, = —0, = 7/2 the determinant can be simplified as
_128(1 4 t,)? sin(t,m) o (22 B -«
Det([A]sxs) = 1+ a)? 1-5 ){m(ﬁ —a) - 1-p52 COS(th)}-
(8.1.28)
For 6, = —0y = 7, i.e. a joint with an interface crack, in which one crack surface has
a given displacement, the determinant can be simplified as
128(1 + t,,)%sin(2t,7) (o — B2 — (1 — 3?%) cos(2t,,m)
Det([A]sxs) = ( ) (8.1.29)

(14 a)?

It follows from Eq. (8.1.29) that t, = 0.5, i.e. A\, = 0.5 always is the solution of
Det([A]sxs) = 0 irrespective of the material data. In addition, eigenvalues exist, which
do not equal 0.5, and they depend on the material combination (see figures in Section

8.3).

200



From Eqgs.(8.1.14-8.1.29) it can see that if ,, (¢, # —1) is the solution of Det([A]sxs) = 0,
—t, is also. This means that if )\, is the eigenvalue of the problem, 2 — )\, is also.

Now the eigenvalues )\, (\, = 1 —t,) are known. The stress exponent w, and the
angular functions f;;,(6) can then be calculated. The stress exponent is

Wy, = Ap, (0.5 < A, < 1). (8.1.30)
The coefficients of the angular functions for 6; = —0y = 7/2 are

A= @)1+ (=3 +4x, - 222) +

TA,

+ 02X (=14 Ay) — (1 + B) cos(mA,) } sin ) (8.1.31)
B = (2—\) cos(%)\n){l +B(1=2X2) = 200 (1 - \,) +
— (14 B)cos(mh,)} (8.1.32)
Cro= { =M +B8(2-Th+8)2-2X3) +a2), (2- 38X, +A2) +
+ [ +B8(=2+3\)] Cos(7r)\n)} sin(”;") (8.1.33)

An
D, = — cos(%){)\n + 8 (2 — 3\, +4N2 — 2)\5’1) +
+ 02X (2= 8A + AZ) + [< A+ B (=2 + 3\ cos(mAn) ) (8.1.34)
(2= \n)

T {18360 +2X2) +28° (~1+ 5\, — 6)2 +203) +

+ 02X, (35, 4+ 202) + o [1— 4N, + 202 + B (5 — 18X, + 22)% — 813 )]
+ (= 14287 (1= ) + B (=1 +2),) +

TAp
5 )

+ afl =20, + B (=1 +2),)]] cos(mAn) } sin (8.1.35)
(2—=\n) cos(%)
(1+ «)

— 02X, (3 =5 +202) +afl — 4N, +2X2 + B (=14 10X, — 18A2 +8)3) |
+ [ =1+ B(1=2X) + 28" + o (=1 + B (1 = 2),) +2),) | cos(mA,) } (8.1.36)

B, = {1=8(1=2x +2X2) = 22X, (1 - 4), +222) —
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S
I

ﬁ{—)\n+ﬁ(2—7)\n+6)\i—2)\i)+

822X, (1= 5X + 602 = 2X3) + 02X, (2= TA, + 722 — 2)3) +
al Ay —4AX2 +2X3 + B (2 — 15\, + 3002 — 2603 +8)\*) | +

— Ao+ B(=24+3\, —2X2) — 8220, (1 — \,) +

[ ( )

T,

=3\, +2X\2 + 3 (—2 + 3\, — 2)\2)]] Cos(7r)\n)} sin( 5

+ o+ o+ o+

) (8.1.37)

COS(E%E)
(1+a)

0?20, (2= Ty + A2 = 2X3) + 822X, (2= 90, +8X2 — 203) +

o = Ay + 4N — 203 + B (2 — 19, + 3802 — 30X3 + 8AL) | +

A+ 8 (=2+ 38X, — 2X2) = B%2), (2= M) +

o[=3A +2)2 + B (=2 + 3), — 2)2)]] cos(mAn) }. (8.1.38)

Ds {= X +B(2-30 — 222 +2)3) +

+ + + +

The angular functions can be calculated from Eqs. (3.1.97- 3.1.99).

8.2 Determination of the Regular Stress Term

8.2.1 Joint under Thermal Loading

To determine the regular stress term, which corresponds to the solution of A\, = 0
in the last section, the stress function given in Section 3.3 (see Eq. (3.3.1)) is used.
The stresses and the displacement v have the same relations as in Section 3.3 (see
Egs. (3.3.2, 3.3.3,3.3.4,3.3.6)). Only for thermal loading the displacement u (see
Eq. (3.3.5)) should be replaced by

2
Uko(r, 9) = E:[Akoe(l — Vk) + Bk()(l — Vk) — Ckg(l —+ Vk) sm(20)
— Dio(1 + vi) cos(20)] + ray T, (8.2.1)

where the thermal strain a7 (for plane stress) has been considered.
Insertion of Eqgs. (3.3.3, 3.3.4, 3.3.6, 8.2.1) into Eqs. (8.1.1-8.1.3) gives

Bl()/,b(]_ — Vl) — Dl()/,b(]. + 1/1) — Bgo(]_ — 1/2) + D20(1 + VQ)

== EQ/QT(CYZ - Oél) (822)
—2010,&(1 + V1) + F10E2 + 2020(1 + 1/2) - F20E2 =0 (823)
,LLAlO — A20 =0 (824)
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By + Dy — By — Doy =0

Ao+ 200 — Ay — 205 =0

A1091 + Bl() + Cl[) sin(291) + Dm COS(201) =0

AIO + 2010 COS(201) — 2D10 sin(291) =0

AQO + 2020 COS(292) - 2D20 sin(292) =0

2[—020(1 + VQ) COS(292) + D20(1 + 1/2) sm(292)] + F20E2 =0

A20:0

(8.2.5)

(8.2.6)

(8.2.7)

(8.2.8)

(8.2.9)

(8.2.10)

(8.2.11)

for plane stress with y = E5/E;. The regular stress term is independent of the coeffi-

cients Fo. From Egs. (8.2.4) and (8.2.11) it follows
Ajg = Ay = 0.
Solving the Egs. (8.2.2, 8.2.5 - 8.2.9) yields

_ Qsin(26,)
v
Q sin(291) sin(292)

Cio = — Ao

@ cos(26,) sin(26,)
Arpg

ATH
C’20 - CIO

@ cos(265) sin(26,)
Arpg

Doy = —

203

(8.2.12)

(8.2.13)

(8.2.14)

(8.2.15)

(8.2.16)

(8.2.17)

(8.2.18)



where

Arg = _Hioz{(l + ) sin[2(6; — 0)] + 28 sin(263) + (a — B) sin[2(6; + 92)]}
(8.2.19)
Q= %T[Ch — ay] (8.2.20)

for plane stress and

Ey
Q= MT[OQU + 1) — ai(1 +v1)] (8.2.21)
for plane strain.
For the special case of 8y = —6;, there is
2@) sin(2
B, = 29sin(20) (8.2.22)
Arg
2Q) sin” (20
Oy = 2050 (26)) (8.2.23)
Ary
in(4
Dy, = 9500 (8.2.24)
Ary
By — 2Q[— sin(26,) + sin(46,)] (8.2.25)
Ary
Ch = Cho (8.2.26)
Doy = —Dho (8.2.27)
with
in(2
Ay = 851%(21){5 — cos(201) — Bcos(26,)}. (8.2.28)

The regular stress term can be determined analytically from Eqs. (3.3.2- 3.3.4).

If b = —0; = w/2 or 7, it can be seen from Eq. (8.2.28) that Ay is always zero
for « # —1. Therefore, the regular stress term cannot be determined directly from
Eqgs. (8.2.22-8.2.27). By using the I’'Hospital principle at the points of # = —6; = 7/2
and m, the six coefficients Big, Cg, D19 Bog, Ca9, Dog can be determined. They are

1+«

(1+2p)
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Cio=Co =0 (8.2.30)

Dy = Big (8.2.31)
Bsyy = 3By (8.2.32)
Dyy = —Biy, (8.2.33)
for ) = —6, = w/2 and
By Q(lj @) (8.2.34)
Cio=Cy =0 (8.2.35)
D1y = —Big (8.2.36)
Byy = —Big (8.2.37)
Dy = By (8.2.38)
for §; = —f0; = w. The regular stress term in polar coordinates can be calculated from

Eqgs. (3.3.2- 3.3.4). In Cartesian coordinates the regular stress term can be simplified

as
Ozz10 = Tzylo =0
1+«
Uyle - _Ql + 25
Ozz20 = 2Uyy10
Oyy20 = Oyylo
Try20 = 0. (8239)
for 0 = —0, = w/2 and
Oyy10 = Tzylo = Oyy20 = Txy20 = 0
Ozzi0 = —0Ogp20 = Q(1+ ) (8.2.40)
for §; = —f, = m. This means that for a joint with ; = —0, = 90° the shear stress

component of the regular stress term and the stress component parallel to the interface
in material 1 are always zero in Cartesian coordinates. For a joint with an interface
crack, only the stress component parallel to the interface is nonzero.
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8.2.2 Joint under Mechanical Loading

For joints under mechanical loading Eqs. (8.2.2-8.2.11) are still valid, in which T" should
be replaced by zero. From Egs. (8.2.13-8.2.18) it is known that for 7' = 0 (i.e. Q=0) the
coefficients and hence the regular stress term are zero in the general cases. However, for
some special material combinations and geometries the regular stress term is nonzero.
Equation system (8.2.2 - 8.2.11) is a homogeneous one for AT = 0. The condition of
it having a non-zero solution is that the determinant of its coefficient matrix is zero,

%{(1 + 5) Sin[2(91 - 92)] + 24 sin(292) 4+ (a — ﬁ) sin[2(01 + 92)]} —0.
(8.2.41)
This means that if
o= (14 ) sin[2(0; — 65)] + 28 sin(265) 82.42)

Sin[2(6; + 02)]

with 0y # —0,, the regular stress term may be non-zero.

For a = 3 — (1+8 )Singﬁ;(—zﬁ]giﬁ sin(202) and 6, # —01, in case of an arbitrary geometry

the coefficients of the regular stress term in Eqgs. (3.3.28-3.3.30) are

Ay =45,=0 (8.2.43)
B, =1 (8.2.44)
Ci, = —sin(26,) (8.2.45)
D}, = — cos(26,) (8.2.46)
. 2cos(f — 20,)sin(6,)
B, = (25 (8.2.47)
Cs = CY (8.2.48)
cos(265) sin(26;)

Dy, = — 2.4

2 sn(20,) (8.2:49)

with sin(26,) # 0, i.e. 6y # —7/2 or —7.

In case of 6 = —7/2 or 0 = —7 (i.e. sin(262) = 0), Eq. (8.2.41) is true only, if
sin(260;) = 0, i.e 6, = w/2 or §; = m, where o and [ are arbitrary. This may be true in
four cases, (a) 0, = 7/2, 0y = —7/2, (b) 0 =7/2, 0, = —7, (¢) 0, =7, 0y = —7/2,
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(d) 6, = 7, 6, = —m. Cases (a) and (d) correspond to the joint with #; = —6;, which

will be discussed later on.

For the case (b) (i.e. §; = /2,0, = —m) the regular stress term always is non-zero and
B, = 1_1:7:‘45 (8.2.50)

Clo=0C3 =0 (8.2.51)

Dy = B, (8.2.52)

Bjy = % (8.2.53)

Dy = 1. (8.2.54)

In Cartesian coordinates the regular stress term can be simplified as

Ozzi0 = Tzylo = 0
1+
= 4Kjp————
yy10 1 —a+48
a— 203
Ozx - PR
20 “1—a+48
Oyy20 = Oyylo0
Try20 = 0. (8255)
For the case (¢) (i.e. 6§y = m, 0, = —m/2) the regular stress term always is non-zero and
1+«
Bj, = — 8.2.56
=1 (5.2.56)
Ciy=0C5%=0 (8.2.57)
Di, = —Bj, (8.2.58)
By, =—1 (8.2.59)
Dj, = 1. (8.2.60)
The regular stress term in Cartesian coordinates is:
1+«
we10 = —4K, 8.2.61
Ozz10 0T, ( )
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Oyy10 = Tgylo = 0 (8262)
and

Ouz20 = —4Ko (8.2.63)

Oyy20 = Tgy20 = 0. (8264)
In case of 0 = —6; Eq. (8.2.41) is simplified as

sin(26,)[(1 + B) cos(26,) — ] = 0. (8.2.65)

cos(261)

This means that if §; = 7/2, or §; = 7 and «, § arbitrary, or § = the regular

1—cos(2601)

stress term may be non-zero.

Materia
61

| | [

Materia 2 Materia 2

J

Figure 8.3: A joint: One material oc- Figure 8.4: The joint is symmetric to
cupies the angle of 180°, the other is the line of # = 90° and material 2 oc-
arbitrary. cupies the angle of 180°.

In case of f; = —0; = 90° (this is case (a)), the regular stress term always is non-zero,
which is the same as that one of a joint with 6; = 7/2,0, = —x (i.e. case (b)). It can
be calculated from Egs. (8.2.50-8.2.55).

In case of f; = —@; = 180° (this is case (d)), the regular stress term always is non-zero,
which is the same as that one of a joint with 6; = 7,6, = —7/2 (i.e. case (c)), and can

be calculated from Eqs. (8.2.56-8.2.64).
cos(20
1— co(s (210)1 )

In case of g = (01 # 180°) the coefficients of the regular stress term are

1

Bj, =
107 cos(26,)

(8.2.66)

Sin(291)
=2 2.
Clo cos(26;) (8:2.67)
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Diy =—1 (8.2.68)

1
Byy=—-2+—17— 2.
20 * cos(26;) (8.2.69)
Ciy = O (8.2.70)
Diy = 1. (8.2.71)

In general, the regular stress term always is non-zero and can be determined analytically
for a joint under thermal loading. However, for a joint under mechanical loading the
regular stress term of most joint geometries and material combinations is zero. In some
special cases, the regular stress term is non-zero. It can be determined analytically with
an arbitrary constant Ky to be determined from the stress analysis of the total joint.

8.3 The Characteristics of the Eigenvalues in a Joint
with a Given Displacement Edge

Materia 1

Materia 2

Figure 8.5: A joint with | 6; | + | 6, |= 180°.

The equation to determine the eigenvalues of the problem (i.e. the stress exponents) is
given in Section 8.1. Since Det([A]) =0 in Eq. (8.1.14) is a transcendental equation of
t, or A\, =1 —t,, the characteristics of the eigenvalues is not obvious. In this section
the behaviors of the eigenvalues will be discussed for three types of geometry. The first
type of geometry is that one material has the angle of 180°, while the other is arbitrary

209



(see Fig. 8.3). The second type of geometry is that the joint is symmetrical to the line
of § = 90° (see Fig. 8.4, this corresponds to #; being arbitrary and f#y = —90°). The
third type of geometry is that the materials occupy the angle 180° (see Fig. 8.5).

For a joint with #; = 45° and 6, = —180° the isoline of the stress exponent 0 < w <1
is plotted in a Dundurs diagram in Fig. 8.6. It can be seen that for this joint geometry:
(a) Two singular terms exist for all material combinations. To see this clearly, another
plot is shown in Fig. 8.7, in which the singular stress exponents are plotted along a
line of @ = 2 as a dotted line. (b) For all material combinations there are only real
singular terms. (c) For a large value of o (o > 0.95, i.e. Ey > E») the singular stress
exponent is very large (w > 0.8).

For a joint with #; = 60° and f; = —180° and a joint with #; = 90° and #, = —180°,
the isoline of the stress exponent 0 < w < 1 is plotted in Figs. 8.8 and 8.9, for clarity
also in Figs. 8.10 and 8.11. The behavior of the stress exponents is similar to that one

of the joint with #; = 45°. For the same material combination the singularity of the
joint with 6; = 90° is slightly larger than that one of the joint with §; = 60° and with
01 = 45°. Singularity of the joint with #; = 60° is larger than that one of the joint with
91 = 450.

0.2
=01 —
0.501 -0.5-
Figure 8.6: The isoline of the stress ex- Figure 8.7: The singular stress expo-
ponent in a Dundurs diagram for a joint nents along the line of & = 2/ for a
with 6, = 45° and 6y = —180°. joint with 6; = 45° and 6, = —180°.

For a joint with #; = 135° and 6y = —180° the isoline of the stress exponent is plotted
in Figs. 8.12 and 8.13. In this case with #; > 90°, there is a large range where
the eigenvalues are complex, and there are almost always three singular terms (see
Fig. 8.13).

In case of a joint with an interface crack, i.e. #; = —f#; = 180°, the isoline of the stress
exponent is plotted in Figs. 8.14 and 8.15. It can be seen that: (a) For this joint there
are always three singular terms, in which w = 0.5 is true for all material combinations,
the other two singular exponents may be real or complex (see Fig. 8.15). (b) The real
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part of the eigenvalue may be smaller or larger than 0.5. (¢) If one singular exponent
is real and wy = ¢ # 0.5, then 1-c is the other real singular stress exponent. (d) If one
crack surface has a given displacement in the direction perpendicular to the crack, there
is only a small range in the Dundurs diagram, in which the eigenvalues are complex.
This is very different from a joint with an interface crack having free edges. There, the
eigenvalues are always complex as long as 5 # 0.

ﬁ . 0.8

0.5

Fao1 5]

Figure 8.8: The isoline of the stress ex- Figure 8.9: The isoline of the stress ex-
ponent in a Dundurs diagram for a joint ponent in a Dundurs diagram for a joint
with #; = 60° and 6y = —180°. with #; = 90° and 0y = —180°.

For a joint with #; = 45° and 0y = —90° the isoline of the stress exponent 0 < w < 1 is
plotted in Figs. 8.16. It can be seen that for this joint geometry: (a) For all material
combinations only one real singular term exists. To see this clearly, another plot is
shown in Fig. 8.17, in which the singular stress exponents are plotted along a line
of @ = 2f, as indicated by the dotted line. (b) For large value of o (o > 0.9, i.e.
E, > Fj) the singular stress exponent is very large (w > 0.8).

For a joint with #; = 60° and f; = —90° and a joint with #; = 90° and 6, = —90°, the
isoline of the stress exponent 0 < w < 1 is plotted in Figs. 8.18 and 8.19, for clarity
see also Figs. 8.20 and 8.21. The behavior of the stress exponents is similar to that
one of the joint with #; = 45°. For the same material combination singularity of the
joint with 6; = 90° is slightly larger than that one of the joint with §; = 60° and with
6, = 45°. Singularity of the joint with 6; = 60° is slightly larger than that one of the
joint with 6; = 45°.

For a joint with #; = 45° and #, = —135° the isoline of the stress exponent 0 < w <1
is plotted in Figs. 8.22. It can be seen that for this joint geometry: (a) If 5 > 0,
there are two singular terms. If 5 < 0, there exists only one singular term. To see
this clearly, another plot is shown in Fig. 8.23. (b) There is a very small range in the
Dundurs diagram (o > 0.95,| 8 |< 0.05), where the eigenvalues are complex. Its real
part is very small (< 0.05). (c¢) For a large value of a (a > 0.95, i.e. E; > Es) the
singular stress exponent is very large (w > 0.8).
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For a joint with #; = 60° and 6, = —120° and a joint with #; = 135° and 6, = —45°,
the isoline of the stress exponent is plotted in Figs. 8.24 and 8.28, for clarity see also
Figs. 8.25, 8.26, and 8.27. It can be seen that with an increasing absolute value of 6,
the range of complex eigenvalues is larger. For the joint with #; = 60° and 6, = —120°

there may be three singular terms for oo > 0.9 (see Fig. 8.26).

Figure 8.10: The singular stress expo- Figure 8.11: The singular stress expo-
nents along the line of a = 24 for a nents along the line of a = 24 for a
joint with 6; = 60° and f; = —180°. joint with 6; = 90° and Ay = —180°.

The results may be summed up as follows:

(a) For the type of joint with one material having the angle 180° and the other being
arbitrary, there are at least two singular terms. When 6; < 90° all singular terms
correspond to real eigenvalues. On the contrary, if 6; > 90°, there is a range of «, 3,
where the eigenvalues are complex. For the joint with #; = 180° and #, = —180° there
are three singular terms, in which one singular exponent is equal to 0.5. If the other
two exponents are real, one is smaller than 0.5, the other larger than 0.5. The sum of
them is equal to 1. If the other two exponents are complex, the real part is equal to 0.5.
(b) For the type of joint with a symmetrical line of # = 90° (i.e. 6, arbitrary and
0, = —90°), there is only one singular term and it corresponds to a real eigenvalue.
(c) For the joints, where the materials occupy the angle of 180°, there always is a range
of a, 4, in which the eigenvalues are complex, except for the case of §; = —fy = 90°.
There may be one or two real singular terms. If the eigenvalues are complex, there are
even three singular terms. For this type of joint, if « = f = 0 (i.e. for homogenous
material), always w = 0.5.

Comparing the eigenvalue behaviour of a joint with free edges and a joint with a given
displacement edge (see Figs. 3.17 and 8.19, Figs. 3.23 and 8.28, Figs. 3.34 and 8.9)
it follows that: (i) For the same material combination the singular stress exponent
of a joint having a given displacement at one edge is larger than that one of a joint
with free edges. (ii) For a joint with free edges, in Dundurs diagram there is an area
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where there is no singular stress exponent (i.e. w < 0), however, in a joint with a given
displacement at one edge, there exists at least one singular stress exponent. (iii) In a
joint with a given displacement edge the maximum singular exponent is close to 1.

The stress field near the singular point can also be calculated from:
N Kn
03(r,0) = Y FTnfijn(g) + 00 fijo(0) (8.3.1)

n=1

for real eigenvalues, and from

O'Z] r, 9 { COos panLT] zgn( )

||M2

‘SI

+sin[pyIn7] £55,,(0) } + o0 fijo(0) (8.3.2)

for complex eigenvalues. It should be noted that if w is very large and N # 1, it is
difficult to obtain a constant K-factor value by using the method presented in Section

3.4, because the mesh has a strong effect on the stresses very close to the singular point.
To obtain the correct K-factor value, the FE mesh and the FE stress used should be
chosen carefully.

Figure 8.12: The isoline of the stress Figure 8.13: The singular stress expo-
exponent in a Dundurs diagram for a nents along the line of & = 2/ for a
joint with 6; = 135° and 6, = —180°. joint with 6; = 135° and 6, = —180°.
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Figure 8.14: The isoline of the stress Figure 8.15: The singular stress expo-
exponent in a Dundurs diagram for a nents along the line of a = 24 for a
joint with 6; = 180° and 6, = —180°. joint with 6; = 180° and #; = —180°.

\\H-ﬁﬂu

w=01 . -0.5-

-0.
Figure 8.16: The isoline of the stress Figure 8.17: The singular stress expo-
exponent in a Dundurs diagram for a nents along the line of & = 2/ for a
joint with 6; = 45° and 6, = —90°. joint with 6; = 45° and 6, = —90°.

214



03
0.2
ol 0.5
Figure 8.18: The isoline of the stress Figure 8.19: The isoline of the stress
exponent in a Dundurs diagram for a exponent in a Dundurs diagram for a
joint with 6; = 60° and f; = —90°. joint with 6; = 90° and f; = —90°.

-0 -0

Figure 8.20: The singular stress expo- Figure 8.21: The singular stress expo-
nents along the line of & = 2/ for a nents along the line of & = 2/ for a
joint with 6; = 60° and 6, = —90°. joint with 6; = 90° and 6, = —90°.
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04s6. oS
05 - 0.
Figure 8.22: The isoline of the stress Figure 8.23: The singular stress expo-
exponent in a Dundurs diagram for a nents along the line of a = 24 for a
joint with 6; = 45° and fy = —135°. joint with 6; = 45° and Ay = —135°.

0.205 @70
B e s 5_0(
. 0.7
0.15 0.6
01} complex and w>0
0.05f 0.5
0.01
0.38€ -0.
Figure 8.24: The isoline of the stress Figure 8.25: The singular stress expo-
exponent in a Dundurs diagram for a nents along the line of & = 2/ for a
joint with 6; = 60° and 6y = —120°. joint with 6; = 60° and 0y = —120°.
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Figure 8.26: The singular stress expo-
nents along the line of & = 105 for a
joint with 6; = 60° and 6y = —120°.

Figure 8.27: The singular stress expo-
nents along the line of a = 24 for a
joint with 6; = 135° and 6, = —45°.
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Figure 8.28: The isoline of the stress exponent in a Dundurs diagram for a joint with

61 = 135° and y = —45°.
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Chapter 9

Cracks in a Dissimilar Materials
Joint

In a dissimilar materials joint adhesion at the interface mostly is the weaker position
due to the different expansion coefficients of the joined components. In practice, cracks
exist or are initiated near or at the interface. Different cracks can be considered in a
dissimilar materials joint (see e.g. [90], [99], [138] - [142]). Of special interest are
interface cracks or cracks terminating at the interface. For cracks with crack tips near
the interface, the stress singularity is the same as in a homogeneous material [99]. This
means that the singular stress exponent still is 0.5 (i.e. o;;(r,0) ~ /T, see Chapter 4).
The effect of the existence of the other joined component on the stresses is included in

the stress intensity factor.

Material 1 Material 1
Material 2
Figure 9.1: A joint with a crack termi- Figure 9.2: A joint with a crack per-
nating at the interface under an arbi- pendicular to the interface.

trary angle.

In this section cracks terminating at the interface are considered. Four types of cracks
are considered: (a) Cracks with an arbitrary angle terminating at the interface (see
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Fig. 9.1), (b) cracks perpendicular to the interface (see Fig. 9.2), (c¢) interface cracks
(see Fig. 9.3), (d) delamination cracks or interface corner cracks (see Fig. 9.4), which
are under thermal and mechanical loading. Determination of the stress exponent, the
angular functions, and the regular stress term will be discussed in Section 9.1 for type
(a), in Section 9.2 for type (b), in Section 9.3 for type (c¢), and in Section 9.4 for type
(d). Some examples will be given to show the agreement of stresses calculated from
the analytical description and FEM.

Material 1
Material 1
o
Material 2
Figure 9.3: A joint with an interface Figure 9.4: A joint with a delamination
crack. crack.

9.1 Crack Terminating at the Interface

In this section a joint with a crack terminating at the interface under an arbitrary
angle #; will be studied. The stress distribution near the crack tip will be described
analytically. The analytical solution can be used on the scale of practical interest. The
quantities used to calculate the stresses, like the stress exponent, the angular functions,
the regular stress term, and stress intensity factors will be presented analytically and
numerically.

9.1.1 Determination of the Stress Exponent

For a two dissimilar materials joint with a crack terminating at the interface (see
Fig. 9.1), there are three material ranges. The boundary conditions for this problem
are:
at the interface 6 = 0
u(r,0) = u?(r,0),

r
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oy (r,0) = of(r,0), (9.1.1)

o'y =0, (9.1.2)

O-g;) - 07
oy =0, (9.1.3)
and at the interface 0 = —7x
u(r,—m) = u®(r,—m),
vg?’) (r,—m) v§2) (r,—m),
of (r,=m) = oy (r, ),
0-7(‘:;) (’I", —7T) = 0-1%) (’I", _7T)7 (914)

where the superscripts (1), (2), and (3) denote the ranges 1, 2, and 3, respectively.
Airy’s stress function given in Eq. (3.1.3) is used here. By inserting Eqgs. (3.1.7-
3.1.9, 3.1.16-3.1.17) into Eqs. (9.1.1-9.1.4) for thermal loading and for plane stress, the
following 12 equations are obtained:

Zr(l)‘"){BlnuD(l — 1)+ A1+ 1)) = Dipp(1 + 1) (2 = \p)

n

— Bou[2(1 —vo) + Ay (1 4+ v2)] + Doy (1 + 1) (2 — An)} = rTEy(as — ay)

(9.1.5)

ZT(IM){AmM[Q(l — 1) + (2= ) (1 +1)] = Cropa(1 +11)(2 = )

n

— Aon[2(1 — 1) + (2 = M) (1 + )]+ Con (1 + 1)(2 — )\n)} ~0 (9.1.6)

Zr_/\”(l - )\n)(2 - )‘n){Bln + Dln — B2n - DZn} =0 (917)

n

dor(l- )‘n){Aln)\n + C1n(2 = An) — Az Ay — Con (2 — An)} =0  (9.1.8)

n
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Z Ti/\"(l — )\n)(2 — )\n){Aln sin()\nﬂl) + Bln COS()\ngl) + Cln S1n[(2 — )\n)gl] +

n

+ Dy, cos[(2 — )\n)91]} =0 (9.1.9)

> (1 — )\n){Aln)\n cos(A\01) — BipAnsin(A,01) + C1n(2 — A\y) cos[(2 — A\,)04]

n

— Dyn(2 = Ay)sin|(2 — An)el]} =0  (9.1.10)

Z ’r—/\n(l - )\n)(2 - )‘n){ - A3n Siﬂ[)\n(2ﬂ' — 91)] + Bgn COS[)\n(27T — 91)] —

— Cypsinf(2 — A\p) (21 — 01)] + D3y cos[(2 — \,) (21 — 91)]} =0
(9.1.11)

ST (1 - )\n){A3n)\n cos[Ap (21 — 61)] + Bsu A sin[\, (27 — 61)] +

+ C3,(2 = A\p)cos[(2 = \p)(2m — 61)] + D3, (2 — Ny sinf(2 — A,) (2 — 91)]} =0
(9.1.12)

> (1= \)(2 — )\n){ — Az, sin(A, ) + Bs,, cos( A\, ) + Csy, sin(\,7) + Dsy, cos(A, )

n

+ Ay, sin(A\,m) — By, cos(A,m) — Cop sin(A,m) — Doy, COS()\nﬂ')} =0 (9.1.13)

Zr’)‘"(l — )\n){Agn)\n cos( A7) 4+ Bap A sin(A,m) + Cs,(2 — Ap,) cos(A,7)

— D3, (2 = \,)sin(\,7) — Ao Ay cos(A,m) — Boy Ay sin( A7)
— C9(2 = \y) cos(Apm) + Doy (2 — \y) sin()\nﬂ)} =0 (9.1.14)

> r(l)‘"){ — Azpp[2(1 — v1) + An(1 4+ 1q)] sin( A, )

+ B3pu2(1 — 1) + A\(1 4 v1)] cos(Apm) — Canpn(1 + 11)(2 — Ap) sin(\,7)
— Dgpp(14+1v1)(2 = Ap) cos(Apnm) + A2 [2(1 — 112) + Ap(1 + 10)] sin(A, )
— Bon[2(1 — 5) + A\ (1 + 119)] cos(\m) + Con (1 + 15)(2 — Ap) sin(A,m)

+ Dop(1+12)(2—N\,) cos()\nﬂ)} =rTEy(ag — o) (9.1.15)
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ZT(IA"){AQMMD(I —v1)+ (2= ) (1 4+ vq)] cos(A, )

+ Bsnpu2(1 — 1) 4+ (2 = M) (1 + 1)) sin(Apm) — Cappe(1 4 14)(2 — Ay) cos(Apm)
+ Dspu(1+11)(2 = Ap)sin(A,7) — Agn[2(1 — 10) + (2 — X)) (1 + 11)] cos (A7)

— Bon[2(1 = v2) + (2= M) (1 + v)] sin(Ay7) + Cop (1 + 1) (2 — \py) cos( A, )

— Do(14+12)(2—-\,) sm()\nﬂ)} =0 (9.1.16)

As rin Egs. (9.1.5- 9.1.16) is arbitrary, this equation system can be rewritten in the
following matrix form for each n and A, # 0,1, 2:

[Al1zx12{ X }12x1 = {0}1251 (9.1.17)

where {X }iox1 = {Ain, Bin, Cin, Din, Aoy, Boy, Cony Do, Asn, Ban, Csy, D3, } and [A]1ax10
is its coefficient matrix. {X }12x; is unknown and [A];2y12 includes the unknown expo-
nent \,, the material properties (Ej, vx, k=1,2 for materials 1 and 2), and the geometry
angles 6.

For A\, =0,

[AoJizx12{Xo}12x1 = {So}rax (9.1.18)

where {X0}12><1 = {Alo,Bm,Cm,Dm,Am,B20,020,D20,A30,B30,C30,D30}t, [A0]12x12
is its coefficient matrix, and {Sp}12x1 = {TE2(as — a4),0,0,0,0,0,0,0,0,0, 7 Fy(as —
a1),0} is the right hand side of Egs. (9.1.5) through (9.1.16). This case will be dis-
cussed in next section.

Equation (9.1.17) has a nonzero solution, if and only if
Det([A]12><12) =0 (9]_]_9)

is satisfied. In Eq. (9.1.19) the only unknown is the exponent A,. Its solutions are
the eigenvalues of this problem. As it is a transcendental equation, there are infinite
solutions A, (n=1,2,3,...) and they may be real or complex. If the eigenvalues are
complex the stress function of Eq. (3.1.3) cannot be used directly and Eqgs. (3.1.115-
3.1.119) should be used.

For an arbitrary joint geometry with #; the expansion of Eq. (9.1.19) is

512(1+t,)% [, .

W{Qsm%?ﬂtn) —

— 332 t,,% cos(mt, ) cos|t,, (1 — 26)]sin®(rt, )sin’(6;) +

+a 16 cos(7t,) cos[t, (7 — 26,)]sin*(nt,,) [Qtnzsin (01) — ]

Det([A]) =

+ af? 8 sin®(7t,) [ — 2+ cos[2t,, (m — 6;)] + cos(2t,0:) +
+2t,, (4 — cos[2t, (m —6;)] — Cos(2tn91))sin (61) — 16t,, sin4(01)] +
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+ a3 16 £, sin’ (mt, )sin®(61) [2 — cos[2t, (1 — 01)] — cos(2t,01) — 4t2sin®(6))]
+ 3 16 £, sin’ (mt, )sin?(61) [2 + cos[2t, (1 — 01)] + cos(2t,01) — 4t,sin? (0]
+a?p? [2 — 2cos(2mt,,) — 2 cos[2t, (m — 261)] + cos[4t, (7 — 0;)]
+cos(4t01) + 32ty "sin’ (t, )sin” (0]
+a? [2 — 2cos(2mt,,) + 2 cos[2t,, (m — 260)] — cos[4t, (7 — 0;)]
— cos(4t,0;) — 32t,%sin?(rt,, )sin®(6y) + 32tn4sin2(7rtn)sin4(01)]
+ 8% 4 sin®(7t,) [ — 1 —2cos(27ty,) — cos[2t, (m — 201)] + 2 cos[2t,, (7 — 6,)]
+2 cos(2t,0;) — 8t,% cos(mty,) cos[t, (m — 260;)]sin*(6;) + 8tn4sin4(91)]
+a?B 32 t,sin?(7t, )sin?(6),) [Qtn2sin2(91) - 1]
+ 816 t,sin® (7, )sin® (01) | — 2 + cos[2t, (m — 01)] + cos(2t,01) + 4t sin’(61) ]
+ 84168, — 2 + cos[2t, (1 — 01)] + cos(2t,01) )sin® (t, )sin® (0;)

+32t,*sin?(7t,,)sin*(6,) + 8(Cos[tn (2 —6,)] — Cos(tnﬁl))2sin2(tn01)] },
(9.1.20)

where t, = 1 — A,. From Eq. (9.1.20) it can be seen that if ¢, is the solution of
Eq. (9.1.20), -t,, is also. Therefore, if A, is the eigenvalue of the problem, 2-), is as
well, but only one corresponds to the singular term.

For a special case with 6, = 7/4,

Det([4]) = 51(21(1—*;;’)2{16 02812 [~1 + 1] + 4 026 [1 + 24, — cos(nt,)] -

16 Bt, cos(mt, /2) cos(mty,) + 16 [—1 + th] cos(mty, /2) cos(rt,,) +
8 cos?(mt,) + 4 a2 [1 — dt,? + 2t,* + cos(nt,)] +
8 aff’t,’ [2 — 2t,% — cos(mt,/2) — cos(37rtn/2)] +
8 aBty? [2 — 24,2 + cos(mt, /2) + cos(3rt, /2)] +
8 Btn? [ =2+ 2t,% + cos(mt,, /2) + cos(3rt, /2)] +
8 a62[ — 2+ 4t,2 — 4t + cos(mt, /2) — t,% cos(mt,/2) +
+cos(3mty /2) — 2 cos(3mt,/2)| +
+ 4 62[ — 1+ 2t," + 2cos(rt,/2) — 2t,% cos(mt, /2) —
—cos(mt,) + 2 cos(37t, /2) — 2t,% cos(3nt, /2) — 2 Cos(27rtn)] +

+ o+ + + o+

+ 48 [2 — 4t + 2t," — 2 cos(7t, /2) + 2t,° cos(mt,,/2) + cos(mt,) —
—2cos(37t,/2) + 2t,° cos(3nt, /2) + cos(27rtn)] }sinz(wtn). (9.1.21)
For each given eigenvalue A\, = 1 — t,, the coefficient Ay, Bin, Ckn, D (k=1,2,3) of
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the angular function can be determined with one arbitrary constant from Eqs. (9.1.5-
9.1.16). Then the normalized angular functions are known. For an arbitrary angle
0, the equations to calculate the coefficient Ay, Bn, Ckn, Din (k=1,2,3) are very long
and, hence, not given here. For some special cases, e.g. 6, = 90° and 6; = 180°, the
angular functions will be given in Sections 9.2 and 9.3.

9.1.2 The Regular Stress Term

For Thermal Loading

For the determination of the regular stress term, the following equations should be
solved:

Bl()/,b(]_ — Vl) — Dl()/,b(]. + l/1) — Bgo(]_ — 1/2) + D20(1 + VQ)

= Ey/2T (e — o) (9.1.22)

—2Chop(1 + 11) + Fio By + 2Ch0(1 + 1) — FagBy = 0 (9.1.23)
(A1 — Asg =0 (9.1.24)

Bio + Do — Byy — Doy = 0 (9.1.25)

Arg + 2010 — Agg — 2Ca0 = 0 (9.1.26)

Aqoby + Byg + Ciosin(261) + Dygcos(26,) =0 (9.1.27)

Ajg + 2Ch0 c0s(26,) — 2Dy sin(26,) = 0 (9.1.28)
—A3o(21 — 01) 4+ Bsg + Cspsin(26;) + D3g cos(2601) = 0 (9.1.29)
Aszg + 2C30 cos(261) — 2D3g sin(26,) =0 (9.1.30)

—Asop(1 — 1) + Baop(1 — 1) — Dygpu(1 4+ v1) + Ago(1 — vo)7
—820(1 — V2) + D20(1 + 1/2) = EQ/QT(OQ — CYI) (9131)

—2030/1,(1 + 1/1) —+ F30E2 —+ 2020(1 —+ V2) — F20E2 =0 (9132)
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/LA:),O - A20 =0 (9133)

—A307T + B30 + D30 + A207T - B20 - D20 =0 (9134)

A30 + 2030 - A20 - 2020 = 0, (9135)

with u = Ey/E; and for plane stress. The regular stress term depends only on the
coefficients Ao, Byo, Cro, Dro (k=1,2,3). Equations (9.1.24) and (9.1.33) yields

Ago = Ay, (9.1.36)
From Eqs. (9.1.26), (9.1.35), and (9.1.36),

C30 = Cho. (9.1.37)
Following Egs. (9.1.28), (9.1.30), (9.1.36), and (9.1.37) we have

D3y = Dap. (9.1.38)

From Egs. (9.1.25), (9.1.34), (9.1.27), (9.1.29), (9.1.26), (9.1.36), (9.1.37), and (9.1.38)

Cl[) :CQ[) - 030 (9139)

can be obtained. Now, only five coefficients By, Cio, D1o, Bag, Doy are independent.
To determine them, four independent equations, i.e. Eqgs. (9.1.22), (9.1.25), (9.1.27),
(9.1.28) exist. Therefore, one coefficient is arbitrary. If Dy is assumed to be the
arbitrary constant and takes the value of Ky, the solution for the coefficients is:

K,
By = —%(1+a)+f(1+a) (9.1.40)
K,
Cro = %(1 + ) sin(261) — (1 + ) sin(26)) (9.1.41)
Dy = %(1 + ) cos(26;) — %(1 + ) cos(26,) (9.1.42)

By = —%(1 + ) sin?(6;) + %[1 + a — 20 — 2a.cos(2601) + 23 cos(26,)]
(9.1.43)

D20 - KO (9144)
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with
A =20 — cos(26,)[1 — a + 24], (9.1.45)

and Q from Eq. (8.2.20) for plane stress and Eq. (8.2.21) for plane strain. The quantity
Q is proportional to the thermal loading AT. The quantity Ky depends, however, on
the total loading. If there is no mechanical loading, Ky is also proportional to the
thermal loading AT. Otherwise, K is not proportional to AT. Using the coefficients
determined the regular stress term in a polar coordinate system can be calculated from
Eqgs. (3.3.2-3.3.4).

As in this case there always is A = Asy = A3y = 0, the regular stress term in Cartesian
coordinates is very simple and is a constant in each material, i.e.

Ouzio = 2(Bio — Dip)
Oyyio = 2(Bio+ D)
TacyiO = _201'07 (9146)

where i=1 and 2.

For displacement the coefficients Fg, Fy, F3p are needed. From Eqs. (9.1.23), (9.1.32),
and (9.1.39) Fip = F3¢ can be obtained. The difference Fjy — F» can be determined
from Eq. (9.1.23). For the determination of K, and the separated values of Fy, and
Fyg, stress analysis of the total joint is required.

In case of A =0in Eq. (9.1.45), i.e. a =1+ 25 — 2/3/ cos(26;), the solution is

By = —Sm]é”gl) (9.1.47)

Cio = K (9.1.48)

Dy = K, Zi?((szll)) (9.1.49)

By = Ko% - % (9.1.50)
Dy = % (9.1.51)

for cos(26;) # 0 and sin(26;) # 0. The cases of cos(26,) = 0 and sin(26;) = 0, i.e.
0, =m/4 or §; = w/2 or §; = 7, will be treated below.

If §; = 7 /4, the coefficients can be simplified as follows based on Egs. (9.1.40) through
(9.1.45):

BIOZKO _Q

(9.1.52)



Cio = —Bug (9.1.53)

1+a—-2 1+«
B = K, 25 b _ Q 15 (9.1.55)
DQO = KO (9156)

for § # 0. For g = 0 the coefficients are:

Co=—Ko — % (9.1.58)
B20 - K[] (9160)

(9.1.61)

For joints with ¢; = 7/2 and 6, = 7 (i.e. sin(26;) = 0) and for thermal loading the
solutions cannot be obtained directly from Eqs. (9.1.22-9.1.35). Special additional
conditions have to be used (see Sections 9.2 and 9.3).

For Mechanical Loading

For a joint under mechanical loading the solutions of the coefficients given in Eqs. (9.1.36)
- (9.1.61) are still valid by setting Q=0 (due to AT = 0). It can be seen that for a joint
with a crack terminating at the interface, the regular stress term always is non-zero for
mechanical loading. The regular stress term in Cartesian coordinates can be simplified
as:

4(1 + @) cos?(6,)

Ogz1o = Ko (9.1.62)

2{1+a— 45 —cos(20;)[1 — 3a + 45]}
A

(9.1.63)

Oza20 = Ko
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4(1 4 «) sin®(6;)

Oyy10 = Oyy20 — K, (9164)
2(1 + «) sin (26
Tay1o = Tay20 = Ko ( )A (261) (9.1.65)
for A # 0. For A =0 there is

cos(fy)
Owal0 Osm(01) ( )

sin(@l)
Fza20 % cos(6,) ( )
Oyy10 — Oyy20 — Oxx20 (9168)
Tey10 = Txy20 — _QK[]; (9169)

with sin(f;) # 0 and cos(6;) # 0, i.e. 0; # 7/2 and 6, # 7. For §; = 7/4 and 3 = 0,
the results are

Opa10 = Oga20 = Oyylo = Oyy20 = Taylo = Tay20 = 2Kj. (9.1.70)

In Section 9.2 the case of #; = m/2 and in Section 9.3 the case of 6; = 7 will be
discussed.

The stress field near the singular point can be calculated from Egs. (3.0.1) and (3.0.2)
for real and complex eigenvalues with the quantities given in this section. For the
displacements the equations given in Section 3.6 should be used.

9.2 Crack Perpendicular to the Interface

In this section an important special case in practice will be considered. It is a joint
with a crack perpendicular to the interface (see Fig. 9.2). In a coated structure this
kind of crack usually occurs when the coating is made of ceramic or brittle material.
The stress distribution near the crack tip will be described analytically on the prac-
tically interesting scale. The quantities used to calculate the stresses, like the stress
exponent, the angular functions, the regular stress term, and stress intensity factors
will be presented.

9.2.1 The Singular Stress Exponent

A joint with a crack perpendicular to the interface is a special case of Chapter 8 with
0, = —6y = 90° (because at 6, = —90° the conditions v = 0 and 7,4 = 0 satisfy if a
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semi-infinite joint is considered) or Section 9.1 with §; = 90°. In this case, the equation
to determine the eigenvalue is

128(2 — \,)?sin(\, ) 2(1 — \,)? B -« B
1+ 0) (1—52){W(5—a)—1_752+008(7T)\n)}—0,
(9.2.1)
from Chapter 8 or
4096(2 — \,)? sin? (A7) 2(1 — A)? 3 —a 2
dta) (1_52)2{W(5—Q)— ey +cos(7r)\n)} =0,

(9.2.2)

from Section 9.1. From Eq. (9.2.1) or Eq. (9.2.2) it is known that )\, = 2 and
A = 0,£1,42,...,4£n are always the eigenvalue of this problem. However, as the
displacements at the singular point (i.e. r=0) are finite, only the eigenvalues A, < 1
have a physical meaning (see Eqgs. (3.1.16-3.1.17)). Only eigenvalues 0 < A, < 1 are
responsible for the singular stress term. The case of A, = 1 corresponds to a rigid
body displacement. Therefore, the equation for determining the stress exponent of the
singular term is

2(1 = M\)?(1+ B)(B— ) — (B2 — a) + cos(mA,) (1 — 5%) =0, (9.2.3)

for a # —1 (Eqgs. (9.2.1) and (9.2.2) offer the same singular stress exponents).

For a given eigenvalue A, the angular function can be determined. The coefficients
of the angular functions can be determined from Eqs. (8.1.31) through (8.1.38). The
angular functions can be calculated from Eqgs. (3.1.97- 3.1.99). It should be noted that
in terms of geometry and material, this problem is symmetric to the crack surface.
Therefore, the solutions in Section 9.1 are the same for material ranges 1 and 3.

9.2.2 The Regular Stress Term

In case of a joint with a crack perpendicular to the interface, which is the case of

0, = —fy = 1/2 in Section 8.2, the regular stress term in Cartesian coordinates is
Oz2z10 — Txylo — 0 (924)
(1+ «)
= — 9.2.5
Uyle Q 1 + 26 ( )
Orz20 — 20yy10 (926)
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Oyy20 = Oyyl0 (9.2.7)

Try20 — 0, (928)
for thermal loading and
Oz2z10 = Txylo — 0 (929)
I+a
Oyy10 = 4K0 (9210)

1—a+4p

a—203
2220 = SKg——— 9.2.11
Tre20 = ST 4B (9.2.11)
Oyy20 = Oyyl10 (9212)
Try20 = 0, (9213)

for mechanical loading, where K, has to be determined by the stress analysis of the
total joint, e.g. using FEM. It can be seen that in Cartesian coordinates the shear
stress component of the regular stress term and the stress component parallel to the
interface in material 1 always are zero for thermal and mechanical loading.

9.3 Joint with Interface Crack

Now an important special case in the practice will be considered. It is a joint with an
interface crack (see Fig. 9.3).

9.3.1 The Singular Stress Exponent

A joint with an interface crack is a special case of Chapter 3 with #; = 180° and
0, = —180° or Section 9.1 with #; = . From Section 9.1 it is known that
_2048(2 — \,)?sin?* (A7) (1 — )2

Det[A] = L {1 + % 4+ cos(2m A, ) (1 — 52)}, (9.3.1)

with A, = t, + ip,. From Chapter 3 the eigenvalues ¢ + ip can also be obtained by
setting ¢; = 180° and #; = —180° in equations (3.1.127-3.1.134) and (3.1.136). For this
case Eq. (3.1.136) can be simplified as
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with
Zy = [cos(t,m)(e*"™ — 1) — i sin(t,7)(1 + e*"™)]? (9.3.3)
and
Zy = 2"7(1 + B%) + cos(2t,m)[1 — B2 + e — p2etrnT]
+ i sin(2t,7)[1 — B2 — P 4 BT (9.3.4)
By expanding Eq. (9.3.1) in a real and an imaginary part, it can be shown that in the
range of 0 < ¢, < 1, the solutions of Det[A] = 0 in Eq. (9.3.1) are the same as those
of Zy =0 in Eq. (9.3.4).
The solution of Z; =0 is
Pn=0, t,=0,+1,42 43, ... +n (9.3.5)
The solutions of Z, = 0 are
tn=0,41/2,4+3/2,+5/2,+7/2, ..., (9.3.6)
while p,, satisfies
26277 (1 + 2) + cos(2t,m)[1 — % + e*Pn™ — B2e*Pn™] = 0. (9.3.7)

The displacement at the singular point must be finite. From Egs. (3.1.113) through
(3.1.116) and (3.1.137) it is known that the displacement is proportional to r'». There-
fore, the value of ¢, cannot be negative. This means that only ¢,=0, 1/2, 3/2, 5/2,
7/2, ..., n/2 should be considered. From Eq. (3.1.111) and Eq. (3.1.112) it can be
seen that the stresses are proportional to r'»~!. As singular stress terms, only #,=0
and t,=1/2 are possible. If ¢,=0, Eq. (9.3.7) reads

2e*m T (1 + %) + (1 — B%)(1 + e'"™) = 0. (9.3.8)

Due to 3 < 1/2, €?»™ > 0 and €™ > 0, there is no solution of p, (p, is a real
value), so that Eq. (9.3.8) is satisfied. Therefore, the only singular term corresponds
to t,=1/2. For t=1/2 the solution of Eq. (9.3.7) is

1 1+ 8
p= i%ln [1 — B] , (9.3.9)

where 3 is the second Dundurs parameter.

9.3.2 The Angular Functions of the Singular Terms

At the eigenvalues determined, Eqgs. (3.1.127-3.1.134) can be solved for the coefficients
A, Bin, Cin, Dy and Ay, Bon, Con, Day, including one arbitrary complex constant.
For the eigenvalue t +ip = 1/2 + iiln [%] the solution is

1+ 5 0.5—1ip

A T T 1-5025+p?

(9.3.10)
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For the eigenvalue t +ip = 1/2 — i%ln [T] the solution is

B =

Clz

Dlz

ﬁZZAl

1+8
B

A =0

145 05—14p

1—50.25+ p?

0.5 —ip
0.25 + p?

I

=

—_

=

Ay =0

By =0

Co =B,

752:1.

(9.3.11)

(9.3.12)

(9.3.13)

(9.3.14)
(9.3.15)
(9.3.16)

(9.3.17)

(9.3.18)

(9.3.19)

(9.3.20)

(9.3.21)

(9.3.22)
(9.3.23)
(9.3.24)

(9.3.25)

In this special case with #; = 180°, 6, = —180° and ¢ = 0.5, the angular functions
defined in Eqs. (3.1.144-3.1.150) for £p (p is given in Eq. (9.3.9)) have the relationship

of

z'cjk(ea p) = icjk(ea —p)
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and

From Egs. (3.1.151-3.1.153) it can be seen that both eigenvalues ¢ £ ip give the same
information concerning the stresses, but have only one independent undetermined stress
intensity factor K. Therefore, the definition given in Section 3.1.2, Eqs. (3.1.144)
through (3.1.153), cannot be used for the angular functions and the K-factors in case of
an interface crack. Now, we have to use another definition for the angular functions and
the K-factors. If in Eqs. (3.1.117-3.1.119) the coefficients Ay, By, Cy, Dy are formally
normalized by a complex constant K = K; + Ky , i.e.

A, = A /K B =By/K
e =C /K D =Dy/K (9.3.28)

the singular stress terms are

oijk(r,0) = (rﬁ)w {cos [p In <%>} 7 (0) + sin [p In <Z>} f}lk(ﬁ)}

Ia {cos [pln <%>} ik (0) +sin |pln <%>} %I’“I(g)}

(r/L)
(9.3.29)

where w =1 —t.
The angular functions in Eq. (9.3.29) can be calculated from

F:,{(e):e—p"{ (~1.25a; +1.25 b€ — 20, p — 2b,€?" p— a; p + b; €?P? p?) c0s(0.50)

+ (0.5 ¢ci—0.5d;e**’ + ¢, p+d, 62”0]0) cos(1.50)
+ (1.25 ar —1.25b,€??% — 24, p — 2b; *?’ p + a, p* — b, e*P? 2) sin(0.5 6)
+ (0.5 ¢ —0.5d,e?P? — ¢;p — d; €27’ ) sin(1.5 9)} (9.3.30)

F,?,{(H):e_pa{ (1.25 ar +1.250, 2P —2a;p+ 20, ¢*?’ p + a, p* + b, €2p0p2) c0s(0.560)

+ (—0.5 ey —0.5d, €% + ¢;p— d; 62”‘919) cos(1.50)
+ (1.25 a; +1.25b; "% +2.a,p— 2b, 2"’ p + a; p* + b; 62”9;02) sin(0.56)

+ (0.5 ¢ +0.5d;e*?’ + ¢, p—d, e2p9p) sin(1.5 9)} (9.3.31)

F;J(H):e”g{ (—0.75 a; +0.750;€*?" —2a,p — 20, €*"" p + a; p* — b; e*7? 2) cos(0.50)
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+ (—0.5 ci +0.5d;e??? — ¢, p—d, ergp) cos(1.560)
+ (0.75 ar — 0.75b,. 2% —2a;p — 2b; 2% p — a, p® + b, 2P? 2) sin(0.5 6)
+ (—0.5 ¢, +0.5d, " + cip+ d; 62”910) sin(1.5 9)} (9.3.32)

Fg{,’(e):ep"{ (0.75 a, +0.75 b, €*P? — 2 a;p +2b;€*?’ p — a, p* — b, 2P’ 2) cos(0.50)

(05cr+05d e’ — cip + d;e??? )cos(1.59)
+ (075 a;+0.75b;€*’ +2a,p — 2b, €' p — a; p* — b; "’ p?) sin(0.50)

+ (=056 —05d; e’ — ¢, p+ dpe®p) sin(15 9)} (9.3.33)

F5(0) = e‘pg{ (—0.25 ar +0.25 b, €?? — 4, p* + b, *P? 2) c0s(0.560)

(0 ¢y — 0.5d,e*?? — ¢;p — d; e*P? )cos(1.59)
+ (=0.250;+0.25b; " — a;p* + b; €2"” p?) sin(0.50)

~0.5¢; +0.5d;€**? — ¢, p — d, e*** ) sin(1.50)} (9.3.34)

Fg) = e—Pﬂ{ (—0.25a; — 0.25 b; € — a; p — b; €*"” p?) c0s(0.50)

0.5¢;+0.5d;e*?? + c.p— d, 62”9;0) cos(1.50)
0.25 a, + 0.25 b, €*?” + a4, p* + b, > p?) sin(0.50)

+

+
/N N N

0.5 ¢, +0.5dr >’ — ¢;p+ di "’ p) sin(1.5 9)} (9.3.35)
and

F:ff(e):ep(’{ (~1.25a, +1.25b, ¢ + 2a;p+ 2b;€*"" p — 4, p* + by €* p*) c05(0.50)

+ (0.5 ¢r —0.5d.e2P% — ¢;p — d; 2P? ) cos(1.560)
+ (—1.25 a; +1.250;€??% — 24, p— 20, €*"? p — a; p* + b 62”‘9]02) sin(0.5 6)
+ (—0.5 ¢; +0.5d;e’?’ — ¢, p—d, P’ ) sin(1.5 9)} (9.3.36)

Fﬁ{f(e):e—p"{ (-1.25a; — 1.25b; €’ — 20, p+ 2 b, €’ p— a;p — b; €??” p?) c0s(0.50)
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(0.5 ¢i +0.5d;e*?’ + ¢, p—d, erap) cos(1.50)

+
+ (1.25 ar +1.25b,¢**% —2a;,p+2b; 2 p+ a, p> + b, 62p9p2) sin(0.5 )

+ (0.5 ¢ +0.5d.e*P? — ¢ip + d; e“‘)p) sin(1.5 9)} (9.3.37)

F;gf(e):e”"{ (~0.75.a, + 0.75 b, € + 2a;p + 2 b; > p + 4, p* — by €* p*) c05(0.50)

+ (—0.5 ¢ +0.5d,€2?% + ¢; p + d; *P° ) cos(1.5 6)
+ (—0.75 a; +0.750;¢2?% — 24, p — 20, 2P p + a; p* — b; 277 2) sin(0.5 6)
+ (0.5 ¢ —0.5d;e*” + c,p+d, 62”910) sin(1.5 9)} (9.3.38)

FHCGII(H):@”Q{ (—0.75 a; —0.75b; 2P — 24, p+ 20, €*?? p+ a; p* + b, 62”‘9]02) cos(0.560)

+ (—0.5 ¢i —0.5d; 2P — ¢, p+ d, e2P? ) cos(1.560)
+ (0.75 ar +0.75 0, 2P — 24, p+2b;¢*?’ p — a4, p* — b, 621’0;02) sin(0.5 6)
+ (—0.5 ¢y —0.5d, €2P? + ¢;p — d eWp) sin(1.5 9)} (9.3.39)

FIN0) = e”g{ (0.25 a; — 0.25 b; > + a; p* — b; 62p0p2) cos(0.50)

+ (—0.5 ¢ +0.5d; e’ — ¢, p—d, *?? ) cos(1.50)
+ (—0.25 a, +0.25b, €27 — a, p* + b, *P? 2) sin(0.56)

+ (—0.5 ¢, +0.5d, " + cip+ d; 62”‘9]0) sin(1.5 9)} (9.3.40)

ngl(ﬁ) = epe{ (—0.25 ar — 0.25 b, e?P? — g, p* — b, P! 2) cos(0.560)

0.5¢, +0.5d,e*?? — ¢;p+ d; 62”9;0) cos(1.50)
—0.25a; —0.25b; e*P? — a;p® — b; 62p9p2) sin(0.5 )

+
/N NN

~0.5¢; —0.5d;€*?? — ¢, p+ d, e*** ) sin(1.5 9)} (9.3.41)

where
ar = Re[Ai],  a; = Im[A]
b, = Re[By],  b; = Im[By]
¢y = RelC], ¢ = Im|C)
d, = Re[Dy],  d; = Im[Dy). (9.3.42)
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for the angular functions of K; and

a, = Re[Ay],  a; = Im[Ay]
b, = —Re[Br], b = —Im|[By]
k)

= Re[ék], ¢; = Im[Cy
dr = —Re[ﬁk], dz = —Im[ﬁk]

(9.3.43)

for the angular functions of Kj;;. The values of /Ik,l’;’k,CNk,f)k can take those of
Eqgs. (9.3.10-9.3.17) or Egs. (9.3.18-9.3.25). For example, for the eigenvalue t + ip =

1/2+igIn [145]

1-5
. 14+ 8 0.5—1ip
A =—
1—0£0.254p?
B =0
s 1+p
=123
= _ 0.5 —1p
T 025 +p2
~ 0.0 —ip
A= i
Bg ==
Cr=1
- 1+ 58 0.5—1ip
DZ = - )
1—/£0.25+p?
are true. The angular functions are normalized as
s Fy(9)
T‘T‘I(g) = FC[
59 (0)
Fcl(g)
Fi(0) = 25
Fi3(0)
FSI(Q)
7 09
S 9 —
"= Fdo)
Fc[(e)
1 99
C. 9 —
WO = Fi0
a(0) = 220
3 (0)
()= 0
iy (0)

(9.3.44)

(9.3.45)

(9.3.46)

(9.3.47)

(9.3.48)

(9.3.49)

(9.3.50)

(9.3.51)

(9.3.52)



ie. f§f = 1 at # = 0. According to the definition of the angular functions in
Eq. (9.3.29), both eigenvalues t + ip with two independent stress intensity factors
give the same information for the stresses and

ok (0) = —f(0) (9.3.53)
and
R 0) = [7.(0). (9.3.54)

This definition of the angular functions is identical to that one used in fracture me-
chanics.

9.3.3 The Stress Intensity Factors and the Stress Distribution
near the Singular Point

In order to describe the stresses near the singular point over a larger range, which is of
practical relevance, both singular stress terms and the regular stress term have to be
used in the asymptotic solution. The stresses near the singular point can be calculated

by
oije(r,0) = W {cos [p In <%>} ffk(ﬁ) +sin |pln <%>} Z’}Ik(ﬁ)}

+ (rf([f)lo.s) {COS [p In <%>} zcjlkl(g) +sin |pln <%>} ffkl(ﬁ)}
7ijo(0). (9.3.55)

In Eq. (9.3.55) the quantities p, fi.(0), f5,.(0), f1(0), £33 (0), the regular stress term
0ijo(f) (which is called T - stress term, see Eq. (3.3.133) for mechanical loading, and
Eq. (3.2.113) for thermal loading) are known.

The regular stress term is

0zz10 = Q(1 + ) (9.3.56)
Ozz20 = —O0zz10 (9357)
for thermal loading and
4(1
Ozl = Koﬂ (9.3.59)
a—1
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Oga20 = —4K) (9.3.60)

for mechanical loading.

By using the method given in Section 3.4, the unknown factors K, K, K;; can be
determined. Now, two examples shall be given to illustrate the agreement of the
stresses from FEM and Eq. (9.3.55), and the effect of the T - stress term on the
stresses close to the singular point.

The material data of example 1 are chosen as

E, =1000 GPa, v, =0.3
E2 = 100 GPa s Vo = 0.2

which gives @ = 0.826872, f = 0.317793, and p=0.1048. Loading is a remote tensile
stress perpendicular to the interface, oo, =1 MPa. The regular stress term is

Ogaro = —42.20Ky,  0gg20 = —4K

oyy10 = 0, Oyy20 =0
Ozyl0 = 0, Ozy20 = 0. (9362)
p
J L N I 10
5 W 10—
Materia 1 : Hl
5 & 10'—
« L - J =
1 x 0
! © 107 o FEM
! —— ANA (3terms)
: 10t ANA (2 terms)
| P Hp ‘
i 10° | | | | | !
i 10° 10° 10° 10° 10° 10° 10°
R p* P19 r/L along the line ©=-90°
Figure 9.5: A finite joint with an inter- Figure 9.6: Comparison of the stresses
face crack, Hy/L = H,=2. The geome- obtained from FEM and Eq. (9.3.55)
try is symmetric, here only the left half with two (dashed line) or three (solid
joint is shown. line) terms along the line of §# = —90°

for the component o, of example 1.

The results given below hold for plane strain. For the FEM calculation the ABAQUS
code was used with an 8-nodes standard element. The mesh near the singular point is
fine. The smallest length in the element is about 107°L (L see Fig. 9.5).
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To determine the unknown K-factors and in particular the T - stress term (here Kj),
points in the range of 107% < r/L < 10~* are used. The K-values obtained are those
calculated from 6, = 90° applying the stress exponent o,.

The K-factors determined are

K; =9.2858 MPa , K, =0.8540 MPa

when only two terms are used and
Ky, =0.1004 MPa ,

K, =9.3189 MPa , K, =0.8992 MPa

when the T - stress term is considered.

10° 10°—
10°—
10°
©
(a8
= 10 =
o 10"~ ©  FEM
1007 —— ANA (3terms)
e ANA (2 terms)
10 \ \ \ \ \ \ 10° \ \ \ \ \ \
10° 10° 10* 10° 10° 10° 10° 10° 10° 10* 10° 10® 10° 10°

r/L along the line ©=-90°

Figure 9.7: Comparison of the stresses
obtained from FEM and Eq. (9.3.55)
(with 3 terms) along the line of # =
—90° for the components o, and 7, of
example 1.

r/L along the line =135

Figure 9.8: Comparison of the stresses
obtained from FEM and Eq. (9.3.55)
with two (dashed line) or three (solid
line) terms along the line of # = 135°
for the component o, of example 1.

Using the K-factors as determined, stresses have been calculated from Eq. (9.3.55)
with only two singular terms and all three terms. Comparisons of the stresses obtained
from FEM and Eq. (9.3.55) along § = —90° and 6 = 135° are shown in Figs. 9.6, 9.7,
9.8, and 9.9. It can be seen that if the singular terms are used only, they are in good
agreement in the range of /L < 1073 only (see Fig. 9.8). But if the regular stress
term is considered, they are in good agreement in a very large range near the singular
point (r/L < 107!, see Figs. 9.6, 9.7, 9.8, and 9.9).

The material data of the example 2 are chosen as

E; = 100 GPa,
By = 200 GPa ,

vy = 0.2
Vg = 0.3

239



which gives o = —0.35689, f = —0.163544, and p=-0.052202. The regular stress term
is

Ozzi0 = —1.8958Kg,  0up20 = —4K)y
Oyy10 = 0, Oyy20 — 0
Ozyl0 = 0, Ozy20 = 0 (9363)

To determine the unknown K-factors and in particular the T - stress term, points in the
range of 107% < r/L < 1072 are used. The K-values are those obtained from 6, = 90°
applying the stress exponent o,.

‘f 101t Oy
=
N 0
© 10 © FEM
—— ANA (3terms)
10t~ ANA (2 terms) :
10° \ \ \ \ \ \
10° 10° 10" 10° 10° 10% 10° 10° 10° 10" 10° 10° 10! 10°

r/L along the line =135 r/L aong the line ©=135

Figure 9.9: Comparison of the stresses
obtained from FEM and Eq. (9.3.55)
(with 3 terms) along the line of # =
135° for the components o, and 7, of
example 1.

Figure 9.10: Comparison of the stresses
obtained from FEM and Eq. (9.3.55)
with two (dashed line) or three (solid
line) terms along the line of # = 135°
for the components o, o, of example 2.

The K-factors obtained are
K, =19.4224 MPa , K, = —0.5059 MPa
when only two terms are used and
Ky =1.3447 MPa , K;=19.3752 MPa, K, = —0.4408 MPa

when the T - stress term is considered. Using the K-factors as determined, stresses
have been calculated with Eq. (9.3.55) using two terms only and all three terms.
Comparisons of the stresses obtained from FEM and Eq. (9.3.55) along 6 = 135° and
6 = —90° are shown in Figs. 9.10, 9.11, and 9.12. It can be seen that if the singular
terms are used only, they are in good agreement in the range of /L < 1072 or smaller
only (see Fig. 9.11). But if the regular stress term is considered, they are in good

240



agreement over a very large range near the singular point (r/L < 107!, see Fig. 9.10,
9.11, and 9.12).

The results have demonstrated that to obtain a good description of the stresses near
the singular point over a large range from Eq. (9.3.55), the regular stress term should
be considered, also for the joint with a large singular stress exponent.

10°
O FEM
10°— —— ANA (3terms)
———————— ANA (2 terms)
& 10"
s
B 10°
10"
10° \ \ \ \ \ \ 10 \ \ \ \ \ \
10° 10° 10* 10° 10® 10° 10° 10° 10° 10* 10° 10® 10° 10°

r/L along the line ©=-90° r/L along the line ©=-90°

Figure 9.11: Comparison of the stresses
obtained from FEM and Eq. (9.3.55)
with two (dashed line) or three (solid
line) terms along the line of # = —90°

Figure 9.12: Comparison of the stresses
obtained from FEM and Eq. (9.3.55)
along the line of # = —90° for the com-
ponents o, and 7, of example 2.

for the component o, of example 2.

9.4 Joint with Delamination Crack

In a two dissimilar materials joint with free edges, a special case is | 0; | + | 0, |= 27
(see Fig. 9.4). This case is called delamination crack, because it corresponds to a
joint with an interface corner (see Chapter 6) and one interface delaminated. The
stress distribution near the crack tip will be described analytically on the practically
interesting scale.

9.4.1 The Singular Stress Exponent

A joint with a delamination crack is a special case of Chapter 3 with 6, = —(27 — 6;).
For this case Eq. (3.1.37) can be simplified as

64t + 1)

Det[A] 0+0)

{sin2(27rtn) + 5tn2[ — cos[2t,, (2m — 61)] cos(26,) +
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+ cos(26,) cos(2t,01) — 2sin(2nt,) sin[2t,, (1 — 91)]] +
+ af = 2sin(2rt,) sin[2t, (7 — 01)] + £, cos[2t, (27 — 01)] cos(260,) —
— cos(26,) cos(2t,0,) + 2 sin(2xt,) sin[2t, (7 — 91)])] +
+ o[sin?[2t, (7 — 0,)] — 4, %in?(01) + 4t *sin’ (01)] +
+ B [1 — 2cos(2mt,,) cos[2t,, (1 — 61)] + cos[2t,, (27 — 6;)] cos(2t,01) +
+4t, sin (61) + £, (2 cos(2mty ) cos[2t,, (m — 0y)] —
— cos[2t, (27 — 01)] cos(260;) — cos(20,) cos(2t,6,) — 4sin2(91))] +
+ aﬁ[ — 8t,*sin*(0,) + tn2( — 2c08(27ty,) cos[2t, (T — 61)] +

+ cos[2t, (21 — 01)] cos(26;) + cos(26,) cos(2t,61) + 4sin2(91))] },
(9.4.1)

or simplified as

det[A] = %{ — sin®(2rt,) + 26t,%[1 — cos(261)] sin(2rt,,) sin[2t,, (7 — 61)]

2a[1 —tn? + 1,2 cos(201)] sin(2mt,,) sin[2t,, (7 — 0;)] +

4o Bty sin®(0;) [ — 1+ cos(2nt,) cos[2t, (m — 61)] + 2tn28in2(91)] +
o? [ = sin®[2t, (r — 01)] + 4t,sin?(0;) — 4t,'sin’ (61)] +

462[ — t,*sin(0,) + t,,%sin*(6,) (1 — cos(2rt,,) cos[2t, (1 — 01)]) -

+ + + +

—sin?[t, (27 — 01)]sin’ (£,01)] } (9.4.2)

with £, = 1 — \,, where )\, is the eigenvalue of the problem, which may be complex.
In the special case of #; = 90°, there is

64(t, + 1)
B (14 «)?
— af2(1 - 2t2) sin(rt,) sin(27t,)] + 02 [ sin®(wt,) + 442 (] — 1)]

Det[A] = { sin?(27t,) — B[Sti cos(mty,) sin2(7rtn)]

+ B [1 — 412 + 4t} + cos(37ty,) cos(mty,) + 2(2t2 — 1) cos(27t,) cos(wtn)]
+ apat? [1 — 212 — cos(27t,) COS(ﬂ'tn)]} (9.4.3)

and for #; = 180°

256(t, +1)

Det[A] = d+a) sinZ(Trtn){B2 sin?(rrt,,) + cos” (Trtn)}. (9.4.4)

By expanding Eq. (9.4.4) in a real and an imaginary part, it can be shown that
Egs. (9.3.1), (9.3.2), and (9.4.4) have the same eigenvalues for the singular stress terms.
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9.4.2

The Angular Functions of the Singular Terms

For a given real eigenvalue )\, the normalized angular functions can be determined
from Eqs. (3.1.97) through (3.1.99). If the eigenvalues are complex, the angular func-
tions should be calculated from Eqs. (3.1.144-3.1.150). The coefficients of the angular
functions under an arbitrary joint geometry #; with real eigenvalues are:

Aln =

Dln =

16(1 + t,,)?
(14 )

48[ = tnsin(2t, (m — 01)] sin(601) sin(t,01) +

sin(ty, (2 — 01)] sin[(1 — £,) 01] sin(ta01) — t’sin(61) sin[27t,, — 01 — £,01]]

2a[cos[(1 — ty,) 01 sin[2t,, (7 — 0;)] — 2t,, cos[2t, (7 — 61)] cos(t,0) sin(f;) —

{2 cos[(1 — t,) 01] sin(27t,,) +

—2t,?sin’ (0y) sin[27t, — 0 — 1,01]] } (9.4.5)

16(1 +t,,)?
(1+ «)

B2t (sinft, (27 — 361)] — Bsinft, (27 — 61)]) sin(0y) +

4t,% cos[2nt, — 0y — t,0,]sin?(0;) + 4 cos[(1 — t,,) 01] sin[t,, (27 — 6))] sin(tnﬁl)]

o] = 4t,? cos[2rt, — Oy — t,01]sin’ (01) + 2sin[2t, (r — 01)]sin[(1 — t,) 0] +

{ — 2sin(2nt,,) sin[(1 — t,) 64] +

+4t,, cos[2t, (m — 01)] sin(0;) sin(t,0,)] } (9.4.6)

16(1 +t,)
(14 «)
4B [tn (sin(2rt,) sin(61) + sinft, (27 — 01)] sin[(1 = £,) 64]) sin(t,0,) +
tn?sin(61) (sinft, (27 — 01)]sin(201) — sin[(—1 + £,,) 61] sin[27t,, — 01 — 2t,01])
t, sin?(0;) sin[2rt, + 0y — t,01] — sint, (27 — 6,)] sin(t,01) sin[(1 + £,) 61]] +
20 cos[(1 + t) 01] sin[2t,, (7 — 01)] + 2t, sin’ (0y) sin[27t,, + 0 — 1,01]
+2t,% cos[(1 + t,) 01] cos[27t,, + 0 — 2t,0]sin(0;) +

{2 (=1 +t,) cos[(1 + ty,) O1] sin(27t,,) +

o (= coslty (27 — 01)] sin(601) — cos(tnfy) sin[2rt, + 0 — 2tn91])]} (9.4.7)

16(1 +t,)
(1+a)
43 [tn3 cos[2mt, + 0 — t,0,]sin*(01) + cos[(1 + t,,) O1] sin[t, (27 — ;)] sin(¢,0;)

{2 (1 —t,)sin(2wt,,) sin[(1 + t,) 61] —
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tn?sin(61) ( cos(20;) sinft, (27 — 01)] + cos[2t, — Oy — 2t,01] sin[(t, — 1) 64])
tn/2(sint, (2 — 01)] sin[(1 — 2t,) 6] + sin(6) sin[ty (27 + 61)] )|

2a[2tn3 cos[2mt, + 0, — t,0,]sin*(0;) — sin[2t, (7 — 0;)]sin[(1 +t,) ;] —
—2t,,% cos[2t, + 0; — 2t,0;]sin(60;) sin[(1 + t,) 01] +

+y ((sinft, (2 — 601)]sin(0) + sin(t,01) sin[27t, + 01 — 2tn91])]} (9.4.8)

C16(1 +t,)?
(14 «)?

—t, cost, (2 — 01)]sin(0y)| (sin®(taf1) — t.” sin®(0,)) +

2a[cos[(1 + t,,) 01] sin(27t,,) + cos[(1 — t,,) 61] sin[2¢,, (7 — 60;)] —

—2t, cosft, (2 — 01)] cos(2t,01) sin(6r) — 2t,sin(01) sin[2mt, — 0y — t,01]] +

20°[ = cos[(1+t,) 03] sin[2t, (7 — 01)] + 2ty cosft, (2 — 01)] sin(61) —

—At,* cos[ty (2 — 01)]sin®(6,) + 2t, sin® (0) sin[2rt,, + 01 — t,01] +

{ — 2cos[(1 — t,) 0] sin(2rt,) — 862[ cos(01) sinft, (27 — 01)] -

48[ = 2ty cosft, (2 — 01)] sin(01)sin® (£,01) + t, sin’ (01) sin[27t, — 0 — 1,01]
+sin?(ty ) sin[2rt, + 01 — ta61]] +

4aﬁ[ — 2t,, cos|t, (2m — 01)]sin(0))sin(¢,0,) + sin®(t,0,) sin[27t, + 0; — t,01]
+t,2( = sin®(0,) sin[2mt, — 01 — t,01] — 25in®(6)) sin[27t, + 0y — £,01]) +

+4t,® cos[ty (27 — 01)]sin® (61)] } (9.4.9)
%{ _ 2sin(2nt,) sin[(1 — £,) 6] +

862[ -1+ tn] sinft,, (2m — 6,)] sin(Gl)(siHZ(tnﬁl) — 1,2 sin2(01)) +

43 [th cos[2mt, — 0; — t,0,]sin?(0,) — cos[2mt, + 0, — t,0,]sin’(t,0,) —

—2t,, sinft, (27 — 0))sin (0 )sin®(£,6,)] +

2a[ — 2t,, cos(2t,0,) sinft,, (2m — 0;)]sin(0,) — 2t,% cos[2nt,, — O, — t,0;]sin*(6;)
+sin[2t, (m — 01)] sin[(1 — t,) 03] + sin(2mt,) sin[(L + £,) 64]] +

20%[2t, sinft, (2 — 01)]sin(61) — 2t,” cos[2mt, + 01 — t,01]sin*(0;) —

—4t,* sint, (27 — 0y)]sin® (61) — sin[2t,, (7 — 0,)] sin[(1 + 1) 61]] +

20,3(8t,* sinlt, (27 — 01)]sin® (61) — 4t, sinft, (27 — 0)] sin (61 )sin®(t,01) +

+t, ( — 2cos[27t, — 0) — t,0,]sin’(0;) + 4 cos[2nt,, + 0 — tnﬁl]siHQ(Hl)) —

—sin(t,0,) sin[27t,, + 60,] + sin(¢,0,) sin[27t, + 6, — 2tn91]] } (9.4.10)
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CQn

C16(1 +tn)

(1+a)? {2 (1 = t,) cos[(1 +t,) 01] sin(2t,) +

+ 20 = cos[(1 — t,) 0] sin(2rt,) — cos[(1 + ) 03] sin[2t,, (m — 01)] +

2 sin(Hl)( — 2cos|(1 + t,) 01] cos|2nt,, + 6, — 2t,,0,] + 2sin(27t,,) sin(tnﬁl))
+2t,c08° (t,01) sin[27t,, + 0) — t,0,] — 2t,,*sin®(0,) sin[27t,, + 0, — ¢ 91]] +

+ 2a2[cos[(1 — tn) 1] sin[2t,, (7 — 0,)] — 4t," cos[t, (27 — 0;)]sin’(6;) +

—|—tn2(3 coslt, (2m — 61)] — cos[27t, — 26, — tnﬁl]) sin(f;) +
—i—tn( — cos[t, (2m — 61)]sin(6,) — cos(t,b,) sin[2nt,, + 01 — 2tn91])
+2t,,3sin?(0, ) sin[27t,, + 0, — tnﬂl]] +

+ 452[ — 2t,* cos|t, (2m — 0;)]sin®(0,) + 2 cos(0;) sin[t, (27 — 0,)]sin?(¢,0,) +

. sin(01) (= sinft, (27 — 01)]sin(201) + 2 cos[ty (27 — 0y)]sin®(ta01)) +
+2t,%sin®(0,) sin[27t,, + 0 — t,01] — 2t,sin®(t,0,) sin[27t, + 0; — tnel]] +

+ 4dap [4tn cos[t, (21 — 6,)]sin®(0)) + t,sin®(t,0,) sin[27t, + 601 — t,01]

2 sin(01) (= sin(2rt,) sin(tafr) + sin[(1+t,) 0] sin[2t,, + 0y — 26,01]) +
+sin®(t,0,) sin[27t,, — ) — t,0,] — 3t sin?(0,) sin[27t, + 0, — tnél]] +

+ 4Bty sin(01)( — sinft, (27 — 01)]sin(20;) — sin(27t,) sin(t,01) +

—+ sm[(—l —+ tn) 91] sin[27rtn — 01 — 2tn91]) + sinZ(tnﬁl) sin[27rtn — 91 — tnﬁl]

+t,sin?(0;) sin[27t,, + 0) — t,01] + tpsin®(,0,) sin[27t, + 0 — tnﬁl]] } (9.4.11)

16(1 +t,)
(1+a)?

46[ — t,2 cos[2mt, + 0y — t,01]sin?(0;) + ¢, sin(@l)( — cos(t,0,) sin(27t,,) +

+ cos(261) sint, (2 — 61)] + cos[27t, — 61 — 2t,60:] sin[(—1 + ¢,) 01]) +

+ cos[2mt, — 0 — t,01]sin?(t,0,) + t,, cos[2mt, + 0; — t,0,]sin’(t, 01)]

40 8] — t,® cos[2mt, + 01 — t,01]sin*(0;) — 4t," sinlt, (27 — 01)]sin® (61) +

+ cos[2mt,, — O — t,01]sin?(t,0) + t, cos[2nt,, + O — t,0,]sin?(t,0,) +

+? (= cos[2t, + 0y — t01]sin® (01) + 2sinft, (27 — 01)]sin(61)sin® (t,01) )| +

20[2t," cos[2mty, + 0; — t,01]sin®(01) — sin(2t,) sin[(1 — t,) 61] -

—2t,, cos[2mt, + 0y — t,0,]sin®(t,0,) — sin[2t, (7 — 6;)]sin[(1 + ,) 0;] +

+t,2 sin(01)(2 cos(t,0y) sin(2nt,) — 2 cos[27t, + 01 — 2t,61]sin[(1 + ¢ )91])] +

20 [2tn3 cos[2mty, + 0y — t,0:]sin®(0,) + 4t,,* sinft,, (27 — 0;)]sin®(6;) +

{832[ — 1+ t,?] sinft, (27 — 61)]sin(6) (£, sin®(61) — sin*(t,01) ) +

+t, ( sin[t, (27 — 0,)]sin(0) + sin(t,0,) sin[27t,, + 05 — 2t,61]) +
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+t,? sin(@l)( — 3sinft, (27 — 61)] + sin(27t,, — 26, — tnﬁl)) +
+ sin[2t, (m — 60y)]sin[(1 — t,,) 91]] +2(1 — t,) sin(27t,,) sin[(1 + ¢,) 91]}
(9.4.12)

where t, = 1— )\, and )\, is the eigenvalue of the problem. The singular stress exponent
wy, is equal to A,. The angular functions can be calculated from Eqs. (3.1.97-3.1.99)
with the coefficients given above.

For the special case with #; = 90°, the coefficients are simplified as

2(2 - \,)° An An
Ay, = 5 (1 - ) sin(7T2 ){ —40082(%)608(70\”) +
«
+ 5[ — 4+ 6N, — 2)\2 — Tcos(mA,) + 10X, cos(m),) — 4X2 cos(T),) — cos(27r)\n)]
+ a[l — 4\, +2)2 + cos(TA,) — 6, cos(TA,) + 42 COS(T(')\n)] } (9.4.13)
320207 T
By, = o cos( 5 ){4 sin (T) cos(mA,) +

+ B[ — 20 + 2X2 4 cos(mA,) + 20, cos(TA,) — 4)2 cos(mA,) — cos(27r)\n)] +
+ a[ — 144X, — 2)2 + cos(T ) — 6\, cos(mA,) + 42 COS(W)\n)]} (9.4.14)
32(2—\)

I1+a
— 110, cos(mA,) + 14A2 cos(m A, ) — 4A2 cos(m,) — 2cos(2m\,) + 3, cos(27r)\n)]

An
— 4\, cos T2%) cos TAn) + B — 4\, + 622 — 2X3 + 2 cos(m )\,
4\, cos? 5 2 3

TAp

5 )
(9.4.15)

+ a)\, [1 — 4\, + 202 + 5c08(TA,) — 10), cos(mA,) + 4)2 COS(?T)\n)] } sin(

22—\,
Dy, = %{o&\n [1 — 4, + 222 —5cos(mA,) + 10X, cos(mA,) — 4)2 COS(ﬂ')\n)]

+ 5[2)\2 — 202 —2c0s(mA,) + 3\, cos(mA,) — 6A2 cos(mAy,) + 4A2 cos(TA,) +

£ 2c05(2mA) — 3, cos(2mA,)] — 40, sinQ(ﬂT)\")cos(ﬂ)\n)}cos(ﬂ;") (9.4.16)

16(2 = A\
(1+a)’

+ 2 [3 — 6 + 222 4 cos(TA,) — 2\, COS(?T)\n)] sin(

{852[ — 14 A <—(1 — )’ + cosZ(”_;n)> Sin(377'2)\n) N

3T A,
)+

A2n
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31\,
2

+ 2045[ — 54+ 18\, — 222 +8X3 + cos(mA,) — 2\, COS(ﬂ')\n)] sin( )+

3mAn
+ 2a[ — 144\, — 2X2 —cos(mA,) + 2\, cos(7r)\n)] sin( 7; )+
3T, SWAn)__

8\ sin(37r2)\n )] +2 Cos(%)\n) sin(27r)\n)} (9.4.17)

An , : An :
+ o [sin(%) + sin( ) — 12, sm(?ﬂr2 ) + 202 sin(

162 =) e ) 5, TAn
By, = W{EBB )\n[— (1 —Ap)°+cos (T)] cos(

+ 26[ — 142X, — 2X2 4 cos(mA,) — 2\, COS(?T)\n)] cos(

37r)\n) n
2

3T A,
)+

+ 2a6[ — 1+ 10X, — 182 + 8)3 + cos(m\,) — 2\, COS(W)\n)] cos(
31\,
) +

) — 2072 cos(37r2)\n) +

31\,

)+

+ 2&[1 — 4\, + 2X2 — cos(TAn) + 2\, COS(?T)\n)] cos(

3T\ 3T\
d ) + 12, cos( T

— o [cos(%)\") — cos(

3T\,

+8X2 cos( )] +2 sin(%)\n) sin(27r)\n)} (9.4.18)

16 (2 — A\,
_6(72){26!2)\7%[ — 34 14X, — 1422 +4)\3 — Tcos(m),) +
(1+ «)

2n—

+28),, cos(mA,) — 28)2 cos(mA,) + 83 COS(W)\n)] sin(ﬂ;\"

)+

+ 48— 14 A) A [1— 40, + 202 — cos(m),)] Sin(37r2)\n) .
3T\,

)_

— 2B [2 — TAn 4+ 622 —2)2 —2cos(mA,) + 3\, cos(mA,) — 202 cos(7r)\n)] sin(

+ 204)\7;[ — 144\, — 22 + 3cos(mA,) — 2\, Cos(7r)\n)] sin(
3T A,

)
+ 208 = 2415\, — 30A2 + 2603 — 8X} + 2 cos(m\,) — BA, cos(mA,) +

202 cos(mh)] sin(37r2)\n) + oM, Cos(%)\n) sin(27r)\n)} (9.4.19)

__16(2-—-An)
o (1+a)’
—28)\,, cos(mA,) + 28)2 cos(mA,) — 83 cos(7r)\n)] +
37r)\n) n
2

+ 2&)\,,[ — 144X\, — 2A2 — 3cos(m\,) + 2\, COS(W)\n)] cos(

An
{20&2% cos(%) [ — 3+ 14N, — 14X\2 +4)\} + Tcos(m\,) —

+ 86%(2— M) M [(—1 + )% — cosz(%)\n)] cos(
3T A,
2

)+
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3T A,

+ 20 [2 — 3\ — 22 + 202 — 2cos(mA,) + 3\, cos(mA,) — 2)2 COS(T(')\n)] cos( 5 )
+ 2ap [2 — 19X, + 38)\2 — 30)2 +8A} — 2cos(mA,) + 3\, cos(TA,) —
—2X2 cos(mA,)] cos( ) — 21, sin(%)\”) sin(27r)\n)}. (9.4.20)

The regular stress term was given in Sections 3.2 for thermal loading (see Section 3.2.6)
and in 3.3 for remote mechanical loading (see Section 3.3.6) . For thermal loading the
regular stresses in Cartesian coordinates are the same in materials 1 and 2, and in
general, they are non-zero. Under remote mechanical loading, the regular stress term
is zero in most cases. When the regular stress term is non-zero (conditions see Section
3.3), the regular stresses in materials 1 and 2 in Cartesian coordinates may be the same
or not, depending on the Dundurs parameters.

For a joint with a delamination crack the value of the singular stress exponent may be
larger than 0.5, and there may be three real singular terms. Although the dominant
singular stress exponent is very large, the other singular terms and the regular stress
term should be considered for stress calculation, even very close to the singular point.
An example was presented in Section 6.6 (see Figs. 6.38 through 6.43).
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Chapter 10

Contact Problem in Dissimilar
Materials

So far, a dissimilar materials joint with a perfect interface was assumed. This means
that at the interface both displacement components, the stress component perpendicu-
lar to the interface and the shear stress, are continuous. In real situation, the interface
may be imperfect. In this section a two dissimilar materials contact problem will be
considered, in which the interface may be friction free or with friction (see Fig.10.1).
The determination of the stress exponent and the angular functions for a friction free
interface and an interface with friction will be given in Sections 10.1 and 10.2. The
regular stress term will be discussed in Section 10.3. For various geometries and mate-
rial combinations the general behavior of the stress exponents is presented in Section
10.4.

10.1 Determination of Stress Exponents and Angu-
lar Functions for a Friction Free Interface

For a joint with free edges and a friction free interface the boundary conditions are:
at the interface

v1(r,0) = wy(r,0),
o9o1(r,0) = 0gp2(r,0),
orp1(r,0) = 0
Org2(r,0) = 0 (10.1.1)

for the free edges

o1 (r,01) =0, (10.1.2)
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Materia 1

61
Interface with
ﬁwithout friction
0,
Material 2

Figure 10.1: Two dissimilar materials contact problem with or without friction.

ogga(r,02) = 0,
oro2(r, 02) = 0. (10.1.3)

The stress function as given in Eq. (3.1.3) will be used. From these eight conditions
the following equations hold for A, # 0,1,2 (n=1,2,3,...):

Apu20 =) + 2 =X)L+ 1) — Ao 2(1 — o) + (2= A) (1 + 0)] —

—Capt(1 4+ 11)(2 = M) + Con(1+ 1) (2= An) = 0 (10.1.4)
Bin + Din — Bay — Doy =0 (10.1.5)

Apdn +Cra(2 = A) =0 (10.1.6)

Aspd + Con(2 = Ay) =0 (10.1.7)

Aln sin()\nﬁl) + Bln COS()\ngl) + Cln SIH[(2 — )\n)el] +
+D1p,cos[(2 — A\p)bh] =0 (10.1.8)

A A cos(Apb1) — BipAgsin(Apbr) + Cin(2 — A\y) cos[(2 — N\,)01] —
—D1,(2 — \p)sin[(2 = N,)61] =0 (10.1.9)
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Materia 1
e1

Interface with or
without friction

Materia 2

\_

Figure 10.2: Two dissimilar materials contact: One material occupies the angle of 180°

and the other is arbitrary.

Agn sin()\nQQ) + Bgn COS()\nQQ) + CQn SIH[(2 — )\n)eg] +
+ Doy, cos[(2 — A\y)ba] =0 (10.1.10)

Aon Ay c08(Ap82) — BapApsin(A,0s) + Con(2 — Ay) cos[(2 — Ap)ba] —
— Doy, (2 — \p) sin[(2 — A\,)62] = 0. (10.1.11)
This equation system can be rewritten in a matrix form as

[Alsxs{X }sx1 = {0}sx1 (10.1.12)

Where {X}SXI = {Alna Blna Clna Dln; Agn, Bgn, an, DQn}t and [A]gxg iS ltS COGfﬁCith
matrix. {X }gx; is unknown and [A]gyg includes the unknown exponent A, the material
properties (Ej, v, k=1,2 for materials 1 and 2), and the geometry angles (6, 65).

Determination of the Stress Exponent

Equation (10.1.12) has a nonzero solution, if and only if
Det([A]sxs) =0 (10.1.13)

is satisfied. In Eq. (10.1.13) the only unknown is the exponent A,. Its solutions are
the eigenvalues of this problem.
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The expansion of Eq. (10.1.13) for an arbitrary joint geometry with 6y, 65 is

C16(1 + 1)
1+«

+2sin(t,0y) sinlt,, (01 — 02)] sin(t,02) +

+t,, (sm (t,01) sin(26,) — sin (26, )sin®(t,,0,) ) +

+t, (s1n(2t 0,)sin*(,) — sin®(f,) sin(2t,, 92)) +

+ [t (sm (tabh) sin(260y) + sin(26); )sin®(,,05) )
—ty, (sm(2t 0,)sin®(6) + sin®(6,) sin(2t,, 02))
—2t,%sin () sin(6y) sin(6; + 0) +

Det([A]) { — 2t,%sin(#;) sin(6; — 0,) sin(6y) +

+2sin(tn01) sin(t,0y) sinft, (01 + 0,)]] } (10.1.14)

with ¢, = 1 — A,. From Eq. (10.1.14) it can be seen that if ¢, is the solution of
Eq. (10.1.13), -t, is also. Therefore, if A, is the eigenvalue, 2-), is as well for a fric-
tion free contact problem. In addition, the eigenvalue is independent of the Dundurs
parameter [3.

For the special case of 8, = —0, there is
16(1 + 1,
Det([A]) —%{ [ —1+t,% — t,2 cos(20;) + cos(2tn91)] X
X [tn sin(260;) + sin(2tn91)] } (10.1.15)

It can be seen that for these geometries the eigenvalues are independent of the material
data, i.e. A, is independent of the Dundurs parameters a and [.
92 = —91 = 7T/2 y1€ldS

16(1 + t,)

Det((4) =~

{ =14 22 + cos(mty) } sin(rty,). (10.1.16)
In the considered range (i.e. 0 < A, < 1) Eq. (10.1.16) equaling zero has no solution.
For 92 = —91 =T

64(1 + t,)

1 Ta cos(mt,,) sin®(t,,). (10.1.17)

Det([A]) = —
In the range of 0 < A, < 1, the solution of Det([A]) = 0is A = 0.5.
If the joint geometry is #; = —7 and @, arbitrary, which is the general case of a contact
problem, the eigenvalue should be determined from

_16(1 + )

Det([A]) o

{tn2 sin(2mt,, )sin® () — t,sin®(xt,,) sin(26;) —
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—2sin(7t,) sin(t,01) sin[t, (7 + 6;)]
+ Oz[tn2 sin(27t,, )sin? () + t,sin®(nt,,) sin(26;) —

—2sin(mty ) sin(t,01) sin[t, (—7 + 0,)]] } (10.1.18)
In case of §; = 7/2 and 0, = —7
Det([Alsxs) —W{ — cos(mty,) + 2t,% cos(mt,) + cos(2t,,) +
+a[1 — cos(mt,) + 2t,° COS(th)] } sin(rt,,). (10.1.19)

Determination of the Angular Functions

For a given eigenvalue ), the coefficients of the angular functions under an arbitrary
geometry with 6, #, can be determined from

App = 8(1 4 t,)* [t 5in(20;) + sin(26,601)] [tn cos(tn0s) sin(fy) + cos() sin(t,02)]
(10.1.20)

B, = 8(1+41t,)°[1 —t, +t,cos(20;) — cos(2t,0;)] x
X [t cos(t,02) sin(fy) + cos(6) sin(t,02)] (10.1.21)

Clin = 8 (tn? = 1) [tn sin(201) + sin(2t,01)] [tn cOS(tn02) sin(62) + cos(62) sin(t,02)]
(10.1.22)

D, = 8 (—1 + th) [—1 — t, + t,, cos(20;) + cos(2t,0;)] x
X [tn cos(t,02) sin(fy) + cos(6s) sin(t,02)] (10.1.23)

8(1—a)(l+t,)”
1+a
+ cos(fa) sin(tnf)] (10.1.24)

A2n

[t Sin(201) + sin(2t,01)] [tn cos(t,02) sin(6>)

8(1+t,) ([, : .
Bs, = o tn [— 2 cos[fy — Oy — t,05] sin(6y) + cos () cos(t,02) sin(260;) +
o

+a(2 cos[fy + Oy + t,05] sin(6;) — cos(fz) cos(t,05) sin(291))] +
+ 2cos[tybh — Oy — t,0s] sin(t,01) — 2 cos[tnby + Oy + t,05] sin(t,61) —
— cos(fy) cos(t, ) sin(2t,0,) + a cos(by) cos(t,b) sin(2t,0;) +

+ 2(a—1)t,cos[(1+t,)6]sin[(1 —t,) 6;]sin(6s) sin(tnﬁg)} (10.1.25)
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_ 2 _
o, = U f‘l(t" D (1, 5i0(20,) + sin(26060,)] [t cOS(1a5) sin(6)
(0%
+ cos(fy) sin(tn02)] (10.1.26)
D, = e tn [— 2cos[th — Oy + t,05] sin(6) + cos(6y) cos(t,,02) sin(26,) +

+o (2 cos[by + O — t,05] sin(0y) — cos(By) cos(t,65) sin(291))] -
—  2cos[tyby + 0y — t,05] sin(t,01) — v cos(f2) cos(t,02) sin(2t,61) +
+ 2(a—1)t,cos[(1 —t,)6:]sin[(1 + t,) 61] sin(B) sin(t,02) +

+ 2acos|t,f; — 0 + t,05] sin(t,01) + cos(fs) cos(t,02) sin(2tn91)}, (10.1.27)
with ¢, = 1 — )\, and Ay, # 0. The angular functions can be calculated from
Eqs. (3.1.97- 3.1.99).

In case of 5 = —6; the coefficients can be simplified as

Aty = —8(1 +t,)* [tn cos(tnby) sin(By) + cos(8y) sin(tn6:)] [tn sin(260y) + sin(2t,0;)]
(10.1.28)

By, = —8(1+1t,)"[1 —t, +t,cos(20y) — cos(2t,0;)] x
X [t cos(t,071) sin(fy) + cos(6) sin(t,01)] (10.1.29)

Cin = =8 (tn” = 1) [tn cos(tnf) sin(01) + cos(0y) sin(t01)] [ty sin(261) + sin(2t, 01 )]

(10.1.30)

Dy, = -8 (tn2 - 1) [—1 — t,, + t, cos(20;) + cos(2t,0;)] x
X [t cos(t,01) sin(0;) + cos(6y) sin(t,01)] (10.1.31)

2
A, — S0 f‘l(l ) 1y cos(tafh) sin(6h) + cos(8)) sin(ta0h)] X
o
X [t,, sin(26;) + sin(2t,60,)] (10.1.32)
1
By, = 8(1%{ nZ[ — 2cos[(2 + t,) 1] sin(61) + 2a cos(t,0,)sin®(6;) +

+ cos(6;) cos(t,b1) sm(291)] — 2acos(By) sin(t,01) + 2 cos[(1 + 2t,,) 0] sin(t,0;)
+ 2(a—1)t,cos[(1+t,)6]sin(6;)sin[(1 — t,) 01] sin(¢,01) —
)

— cos(fy) cos(t,b,) sin(2t,01) +acos(ﬂl)cos(tnﬁl)sin(2tn91)} (10.1.33)
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Con = _8(1_;)‘1(’;’; ~ D {1, cos(t6) sin(8:) + cos(@) sin(t,0,)] x

% [t sin(26,) + sin(2t,0,)] (10.1.34)

_ 2
Dy, = W{tﬁ[ —2cos[(2 — t,,) 01] sin(01) + 2a cos(t,0;)sin® (0,

o
cos(6y) cos(t,6,) sin(201)] + 2a.cos () sin(t,6,) — 2 cos[(1 — 2t,) 01] sin(t,61)

cos(6y) cos(t,b1) sin(2t,0,) — accos(by) cos(t,01) sin(2t,0;) +

+ +

+ 2(—14 a)t,cos[(1 —t,)6]sin(0;) sin(t,6;) sin[(1 + t,,) 01]}. (10.1.35)

For 0, = —0; = 7/2 there is

to .
App = —8tu(1 + t,)? Cos(%) sin(rt,) (10.1.36)
In
Bin = 8to(1 + ) cos(%) [—1 + 2t, + cos(nt,)] (10.1.37)
9 Tl .
Cin = =8 (tn” = 1) 1 cos( ") sin(rt,) (10.1.38)
tn
Din =8 (t,> = 1)1, cos(%) 1+ 2t, — cos(rty)] (10.1.39)
8(1— tn .
Ay, = _%tn(l + 1) cos(%) sin(7t,,) (10.1.40)
8(1+t,) tn
By, = % COS(%) [ — 24 t, — at, + 2,2 + 2at,* + 2 cos(nt,) —
—t,, cos(mty,) + aty, COS(ﬂ'tn)] (10.1.41)
8(1— toy .

Cop = —% (tn2 — 1) tn cos(%) sin(rt,) (10.1.42)

8(1—1t,? tn

Dy = —(1 n a_) COS(%) 2+t — oty — 2t,” — 20t,” — 2cos(rt,) —
—t,, cos(mty,) + aty, COS(?Ttn)] (10.1.43)
and for 0 = -0, =7
9 Tty .

Ay = =8t (1 + ty,) COS(T) sin(27t,,) (10.1.44)
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b .
By, = —16t,(1 +t,)* Cos(%)sm2(7rtn) (10.1.45)

bny .
Cin=—8 (tn2 - 1) tn cos(%) sin(2rt,,) (10.1.46)
9 Tly\ . o
Dip =16 (t,” = 1)t cos( =" )sin® () (10.1.47)
Aoy = — Sy 4 V2 o5 (T sin(2rt,) (10.1.48)
n=———>t, n —) sin(27t,, 1.
? 1+a 2
32(1+t,)°  wty
Ba, 1o Cos(7) [ —1—a—2cos(rty,) + t, cos(mt,) —
. o, Ty
—at, COS(?Ttn)]SHI (7) (10.1.49)
1 - bn\ .
Con = _% (ta = 1)t cos(%) sin(27t,,) (10.1.50)
2 (t,* — 1 tn
Dy, = % COS(%) [ — 1 —a—2cos(rty,) — t,cos(nt,) +
. 9, Tty
+arty cos(rt,) |sin (5" (10.1.51)
If 5 = —m and 6, arbitrary, the coefficients read
Ay, = 8(1 4 t,)* sin(nt,) [t, sin(26;) + sin(2t,6;)] (10.1.52)
By, =8(1+1t,)’ [1 — ty, + t, cos(260;) — Cos(2tn01)] sin(rt,,) (10.1.53)
Cin =8 (ta? = 1) sin(mty) [tn sin(201) + sin (2,01 )] (10.1.54)

Dip =8 (> = 1) [ = 1 =ty + 1, c08(201) + cos(2t,01)] sin(rt,)  (10.1.55)

1 _
, = %g 1) sin(ty) [ty sin(26) + sin(26,60)] (10.1.56)
(6
1+1t,)
B, — %{ ~2(1+ ) ta? sin(rt,)sin(6;) +

+ 2acos[t, (1 — 01)]sin(t,01) — 2 cos[t, (7 + 61)]sin(t,0;) +

+ cos(7ty,) sin(2t,6,) — a cos(nt,) sin(2tn91)} (10.1.57)
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Con == (ta? = 1) sin(rt,) [ty sin(261) + sin(2t,01)] (10.1.58)
8 (—1+t,> _ _
Ds, = %{2 (1 + a) t,?sin(nt,)sin?(6;) —
—2a cos(t, (m — 61)]sin(t,01) + 2 cos[t, (7 + 61)]sin(t,0;) —
— cos(mty,) sin(2t,6,) + a cos(nt,) sin(2tn91)} (10.1.59)
For 6, = m/2 and 0, = —m, which usually occurs in practice, the coefficients are
Ay, = 8(1 + t,) sin®(nty,) (10.1.60)
Bi, = 8(1 4 t,)*[1 — 2t, — cos(t,)] sin(nt,,) (10.1.61)
Clin = 8 (ta” — 1) sin’(rt,) (10.1.62)
Dy =8 (ta* = 1) [-1 = 2t,, + cos(rt,)] sin(rt,) (10.1.63)
8 (1 — a) (14 t,)’sin®(xt,
Ay = S = 0) (L tn) sin”(mt) (10.1.64)
14+«
Boy = 8(1 + ) [1 = 2t,” — cos(rt,)| sin(wt,,) (10.1.65)
8 (1 — a) (t,2 — 1) sin?(rt,,
Oy = 2= )sin () (10.1.66)
1+«
Dap =8 (ta? = 1) [=1 + 2t,” + cos(rt,)| sin(t,,) (10.1.67)

It should be mentioned that the equations to calculate the angular functions are also
valid for non-singular eigenvalues (i.e. ¢, > 1).

10.2 Determination of Stress Exponents and Angu-
lar Functions for an Interface with Friction

For a contact problem with friction, at the interface the relationship between the normal
and shear stress is

| 079(r,0) [< 1 | 0pp(r,0) | . (10.2.1)
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In the following only the limit case
| 079(r,0) |[= 1 | 0g9(r,0) | (10.2.2)

is considered.
For an interface with friction contact problem, the boundary conditions are:
at the interface

v1(r,0) = wy(r,0),
o991(r,0) = 0gp2(r,0),
001(r,0) = 092(r,0)
| 0r91(1,0) | = 1 | 0ger(r,0) | (10.2.3)

for the free edges

o1 (r,01) =0, (10.2.4)

o992(r, 02) = 0,

oro2(r,02) =0, (10.2.5)
where 1 is the friction coefficient. The case of n = 0 corresponds to a friction free
contact problem.

The stress function as given in Eq. (3.1.3) is used. From these eight conditions, the
following equations hold for A\, # 0,1,2 (n=1,2,3,...)

Appl2(1— 1)+ (2= A)(1+ 10)] — Agal2(1— 1) + (2 — A)(L+ )] —

—Crnpt(1+11)(2 = M) + Con(1 + 1) (2 = A) =0 (10.2.6)
By + Dip — Bop — Doy, =0 (10.2.7)

Aipdn + Cin(2 = An) — Agpdyy — Can(2 — A\p) =0 (10.2.8)

| At dn + C1n(2 = A0) | =1 | (2= An)(Bin + D1) |=0 (10.2.9)

(this equation is equivalent to
A Ay +C(2—=X) £ (2= A)(Bin + D1,) =0 (10.2.10)

where it is assumed that the sign of the stress 0,9 and oy does change vs. the distance

r.)

Aln sin()\ngl) + Bln COS()\ngl) + Cln Sln[(2 — )\n)gl] +
+Dyy, cos[(2 — Ap)01] =0 (10.2.11)
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Ain Ay cos( A1) — BipApsin(A01) + Cin(2 — Ay) cos[(2 — Ap)b1] —
—D1,(2 = \,)sin[(2 — A\,)0,] =0 (10.2.12)

Agn sin()\n92) + Bgn COS(}\nQQ) + CQn SIH[(2 — )\n)gg] +
+ Dy, cos[(2 = \p)fa] = 0 (10.2.13)

Ao A c0s(Apba) — Bop Ay sin(An6a) + Con(2 — Ay) cos[(2 — \,)bs] —
—Do, (2 — \p) sin[(2 — \,)65] = 0. (10.2.14)

This equations system can be rewritten in a matrix form as

[Alsxs{X }sx1 = {0}sx1 (10.2.15)

Where there iS {X}SXI = {Alna Blna Clna Dln; Agn, Bgn, an, Dgn}t, and [A]gxg iS ltS CO-
efficients matrix. {X}gy; is unknown and [A]g.s includes the unknown exponent \,,
the material properties (Ej, vk, k=1,2 for materials 1 and 2) and the geometry angles

(01,02).

Determination of the Stress Exponent

Equation (10.2.15) has a nonzero solution, if and only if

is satisfied. In Eq. (10.2.16) the only unknown is the exponent A,. Its solutions are
the eigenvalues of this problem.
The expansion of Eq. (10.2.16) for an arbitrary joint geometry with 60y, 65 is

16(1 +t,)
14+«

+2in(ty01) sinfty (61 — 02)] sin(taf2) + t, (sin®(£,01 ) sin(265) —

— sin(26); )sin? (tnﬁg)) + tn2(sin(2tn91)sin2(02) — sin?(6;) sin(2tn02)) +
+ a[tn (sinZ(tnﬁl) sin(26,) + sin (26, )sin® (tnﬁg)) -

—t,? ((sin(2t,01)sin?(02) + sin®(61) sin(2t,02) ) —

det[A] = — { — 2t,%sin(#;) sin(f; — 0,) sin(6y) +

—2t,% sin(6,) sin(fy) sin(0; + ;) + 2sin(t,0;) sin(t,02) sinft,, (0, + 92)]]}

8(1 +t,)
1+«

+ dat, (1+t,) [ — 2t,%sin? (0, )sin?(0y) + sin?(¢,,0; )sin?(0y) + sin?(f, )sin® (tnﬁg)]

+ 7 {85[ — t,2sin?(0)) + sin2(tn01)] (—tn2 sin?(fy) + sin2(tn92)) +

+ t(14ty) [cos(291) — c08(26;) + 2 cos(2t,0)sin’(6;) — 2 cos(2tn91)sin2(92)] }

(10.2.17)
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with ¢, = 1 — A,. From Eq. (10.2.17) it can be seen that if ¢, is the solution of
Det(A)=0, -t,, is not for n # 0. This means that if \, is the eigenvalue, 2-),, is not for
a contact problem with friction.

For the special case with #; = —0, there is
32(1 + ¢, ) . .
det[A] = —%{2%3 cos(f,)sin®(6;) — t, sin(26, )sin®(£,0;) —
«

—  2cos(t,0)sin®(t,0,) + t,%sin?(0,) sin(2tn91)}

+ W{B[ — t,2sin®(0;) + sin2(tn91)]2
+ at,(1+t,) [ — t,2sin"(0,) + sin2(91)sin2(tn91)] } (10.2.18)

For 0, = —0; = /2 yields

det[A] = —W( — 1+ 2t,” + cos(rt,) ) sin(ty,)
W{(l — 2t,% — COS(ﬂ'tn)) X
X [ﬁ + 2at, + 2at,? — 26, — Bcos(ﬂtn)] }, (10.2.19)
and for 0y = —0, =7
det[A] = Wsin?’(mn){ cos(rty) + 1 5sm(mn)}. (10.2.20)
If the joint geometry is # = —7 and @, arbitrary, which is the general case of a contact

problem, the eigenvalue should be determined from

16(1 + ¢, ) . . .
det[A] = —%{t,ﬁ sin(27t, )sin?(0,) — t,sin®(wt,) sin(260;) +

+ a[th sin(27t,, )sin®(0;) + t,sin®(7t,) sin(26;) —
—2sin(rt,) sin(t,0) sin[t, (—7 + 01)]] —

—  2sin(nt,,) sin(t,01) sin[t, (7 + 91)]}

8(1+ty)
1+«

+ b, (1+1,) [ — 1+ cos(26,) +2 cos(27rtn)sin2(91)] +

+ 7 {4atn (1 +t,) sin?(7t, )sin?(0;) +

+ 8Bsin’(mt,) [ — t,? sin’(0) + sin®(tnf1))] } (10.2.21)

260



In case of #; = 7/2 and 6, = —7 there is

16(1 + ¢,
det[A] = —%{a[l — cos(mt,) + 2t,° COS(ﬂ'tn)] +

+ [ — cos(t,) + 2t, cos(mt,) + COS(Qﬂ'tn)] } sin(7t,)

32(1 + t,)

T {6 —to+at, — .2+ at,? — 26,2 — Bcos(ﬂtn)}siHZ(ﬂtn).
«

(10.2.22)

Friction free is a special case of a contact problem with friction. Therefore, the equa-
tions given in this section should be the same as those in Section 10.1 by setting n = 0.

Determination of the Angular Functions

In case of Ay, # 0 and 6,6, being arbitrary, the coefficients in Eqs.(3.1.97 - 3.1.99)
can be determined from
A, = 8(1+ tn)2 [tn sin(26;) + sin(2t,0;) — 2n (tnsin2(01) + sin2(tn01))] X
X [tn cOS(tnf>) sin(62) + cos(62) sin (t,02) ] (10.2.23)

By, = 8(1+ tn)2 [1 — cos(2t,0,) — 2t,sin?(6;) +n ( — t, sin(260;) + sin(2tn91))] X
X [tn cos(t,0;) sin(fz) + cos(6s) sin(tn02)] (10.2.24)

8(1+1,) [ (cos(2tn91) — 1+ ty[cos(2t,01) — cos(20y)] + 2tn28in2(91)) +
+ .7 sin(20;) — sin(26,01) + £, ( — sin(260;) + sin(2t,0,)) ] x
X [tn cos(t,02) sin(fz) + cos(fz) sin(thQ)] (10.2.25)

Dy, = 8(1+1t,) [(—1+t) (= 1+ cos(2tnfh) — 2t,sin*(61)) +
+ 7 (tn sin(260y) + t,, [sin(26,) — sin(2t,0,)] — sin(2t,,6, )]
X [tn cos(t,0,) sin(fz) + cos(6s) sin(tn02)] (10.2.26)

Ay = Bq.(10.1.24) +
T %{—2tn260s(tn92)sin2(91)sin(ﬂg)—260s(92)sin2(tn91)sin(tnﬁg)
+ [ sinf(1 — ) 1] sin[(1 + #,) 01] sin[(1 — t,) 0] — sin[(1 + t,) 0] +

+cos[(1 — t,,) 0] cos[(1 + t,) 6] sin[(1 + £,) 6] +
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B2n

CQn

+ 45[sin2(tn91) — tn sin2(91)] [t,, cos(t,02) sin(f2) + cos(6s) sin(t,62)] +
+ af4t,® cos(ty02)sin’(0;) sin(6) — 2 cos(0)sin? (t,01) sin(t02) —
—t,sin?(0y) [ sin[(1 — £) 2] — Bsin[(1+1,) 0,]] +
o [ = sin[(1 — £) 0] + cos[(1 — £) 1] cos[(1 + t,) 01] sin[(1 — t,) o] +

+sin[(1 — t,) 64] sin[(1 + t,,) 64] sin[(1 + ¢, 92]]}} (10.2.27)
= Eq (10.1.25) +
+ {4 —1+t,) sm (t,0)) — t,*sin (01)] sin(fy) sin(t,602) +

+ [— 2t, cos(02)cos(t 05)sin®(601) + 2 cos(fy) cos(t,02)sin?(t,01) +
+ty, [— cos(261) + cos(2t,01)] sin(6y) s1n(tn92)]
+ a[ — 2t,% cos(6) cos(t,0:)sin’ (61) + 2 cos(fy) cos(t,0)sin®(t,0;) +

+  tn[=2 + cos(201) + cos(2t,0;)] sin(fy) sin(t,0y) + 4t, sin?(6;) sin(fs) sin(thQ)] }

(10.2.28)
= Eq.(10.1.26) +
1+1, . . . .
+ 7 5 (1 : ) {2tn3 cos(t,0)sin®(6,) sin(fy) — 2 cos(6y)sin®(t,0,) sin(t,0;) +
o

+tn2(cos(2tn91) cos(tpf2) sin(fy) + cos(fz) sin(t,02) — cos(26,) sin[(1 + ¢,) 92]) —
—tn(cos(thQ) sin(6y) + cos(26;) cos(6y) sin(t,02) — cos(2t,01) sin[(1 + ¢,,) 92]) +
+ 28] = 2t," cos(tnfy)sin®(61) sin(0) + 26, sin’(01) sin[(1 — t,) 6] —
—2t,sin?(t,0,) sin[(1 — t,) B3] — 2 cos(fy)sin?(¢,,0;) sin(t,0;) +

7 (= sin[(1 — #,) 01] sin[(1 +t,) 0] sin[(1 — £,,) 0] +

+sin[(1 + £) 0] — cos[(1 — t,) 01] cos[(1 + t,) 1] sin(1 + £,) 6a])| +

+ a[4tn4 cos(t,0)sin(6;) sin(fy) + tn2( — cos(t,fs) sin(fy) +

+¢08 (201 ) cs(tn02) sin(f) — 2sin”(61) sin[(1 — #,) a]) —

—2cos(0y)sin®(t,0,) sin(t,0) — tn3sin2(91)(sin[(1 —t,) 02] — 3sin[(1 + ¢,) 92]) +

—i—tn( — cos(0y) sin(t,0;) + cos(20;) cos(fs) sin(t,0:) — 2sin?(t,,0) sin[(1 + t,,) 92])] }
(10.2.29)

Dy, = Eq.(10.1.27) +
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16(1 +1,)°
W{tﬁ cos(0y) cos(t,0;)sin?(0;) — cos(6y) cos(t,f;)sin®(t,0:) —

— tysin[(1 —t,) 6] sin[(1 + ¢,,) 01] sin(6s) sin(,,605) +
+ 2B(=1+ty) [ta? sin®(01) — sin®(t,61)] sin(62) sin(t,0) +
+ a[tn cos(0) cos(t,0;)sin?(0;) — cos(fy) cos(t,f)sin®(t,0;) +
+t,, sin(0s) sin(t,60o) — t,, cos[(1 — t,,) 01] cos[(1 + t,,) 01] sin(By) sin(t,0,) —

—~2t,*sin’(0,) sin(6) sin(£,05) } (10.2.30)

In case of 8, = —60,

Ay, = 8(1+41t,)% [ty cos(t,0;) sin(6y) — cos(6:) sin(t,0;)] x
X [tnsin(201) + sin(2t,01) — 20 (tsin®(61) + sin®(t,01))]  (10.2.31)

By, = —8(1+t,)’ [1 — ty, + tn cos(20;) — cos(2t,01) — n (tn sin(26,) — sin(2tn91))] X
X [t cos(t,b) sin(6y) + cos(6) sin(t,01)] (10.2.32)
Cin = —8(1+ty)[tncos(t,)sin(6;) + cos(fy) sin(,0;)] X
x{n [ — 1+ cos(2t,01) + t, [— cos(20;) + cos(2t,01)] + 2tn2sin2(91)] +
. sin(201) — sin(2tn01) + t [ sin(261) + sin(2t,01)] | (10.2.33)
Dy, = —-8(1+ty,) [tn cos(t,01) sin(6y) + cos(6y) sin(tnﬁl)] X

x{ (=1 + 1) [=1 + cos(2t,01) — 2t,sin®(61)] +
+1) [t $in(2601) + £,% 8in(201) — sin(2t,601) — b, sin(26,60)] ] (10.2.34)

Ayy = Fq.(10.1.32) +

8(1+ty)
+ s {Qtn cos(t,01)sin®(0;) + 2 cos(f; )sin® (t,0;) —

— 46[s1n (tnhy) — t,° sin (91)] [t, cos(t,0y1) sin(61) + cos(0y) sin(¢,01)] +
+ a[ — 4t,% cos(t,0,)sin®(6;) — 2t, cos[(1 +t,,) 01]sin(6;) sin[(1 — ¢,) 61] sin(,0,)
+2 cos(f)sin® (£,01) + t,%sin? (0,) (sin[(1 — #,) 6] — 3sin[(1 + £,,) 61])]

+2t,, cos[(1 — t,,) 01] sin(0;) sin(t, 0 ) sin[(1 + ¢,) 91]} (10.2.35)

By, = FEgq.(10.1.33) +

8(1+ty)

2
s {45 (1 —t,)sin(fy) sin(t,0;) [n sin?(0;) — sinz(tnﬁl)] -
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- [2tn2 cos(0y) cos(t,0;)sin®(0;) + tn(cos(291) - cos(2tn91)) sin(fy) sin(t,01) —
—2cos(f) cos(tnﬁl)siHQ(tnﬁl)] -
- a[Qtn2 cos(0y) cos(t,0; )sin?(0,) + t, (2 — cos(26;) — Cos(2tn91)) sin(6;) sin(t,,0;)

—4t,%sin®(0,) sin(t,0,) — 2 cos(6,) cos(tnﬁl)siHZ(tnﬁl)]} (10.2.36)

3
S
[

Fq.(10.1.34) +
8 (1 +ty)
1+«

—tn2(cos(tn01) cos(2t,0) sin(0;) + cos(6;) sin(t,0;) — cos(26;) sin[(1 + ¢,,) 91])

+t, ( cos(t,01) sin(f;) + cos(0y) cos(26;) sin(t,01) — cos(2t,0;) sin[(1 + ¢,,) 91])
+ a[ — 4t,* cos(t,0,)sin®(0;) + 2 cos(6, )sin®(¢,0,)

+t,? ( cos(t,0;) sin(f;) — cos(t,01) cos(2t,0;) sin(f) + 2sin?(0;) sin[(1 — ¢,,) 91])

+t,3sin?(61) (sin[(1 — £,) 1] — Bsin[(1+t,) 04])

+t,, ( cos(y) sin(t,0,) — cos(0y) cos(26,) sin(t,0;) + 2sin®(t,0,) sin[(1 + t,,) 91])]
+ ﬁ[4tn4 cos(t,01)sin’(0;) — 4t,*sin?(0,) sin[(1 — t,,) 0] +

+dt, sin[(1 = t,) O1]sin® (£a01) + 4 cos(01)sin® (t,01) — 2 (2sin[(1+ t,) 03] —

+

{ — 2t,% cos(t,0;)sin®(61) + 2 cos(6)sin® (,,0;) —

—2sin”[(1 — #,) 1] sin[(1 + t,) 0] — cos[(1 — t,) 01]sin[2 (1 +1,) 01] ) } (10.2.37)

Dy, = Eq.(10.1.35) +
16(1 + t,)°
1+«

+ 2B (=1 + ty) sin(01) [t sin®(01) — sin® (£,01)] sin(t,01) +
+ a[tn2 cos(0;) cos(t,0,)sin?(0;) — 2t,sin®(0;) sin(t,0;) — cos(6;) cos(t,0;)sin® (t,0,)
+t, sin(0y) sin(t,,01) — t,, cos[(1 — t,,) 01] cos[(1 + t,,) 61] sin(6;) sin(tnﬁl)] -

{tn2 cos(0;) cos(t,0)sin®(0;) — cos(6y) cos(t,0:)sin®(t,0;) +

— tpsin(fy)sin[(1 — ¢,) 64] sin(t,01) sin[(1 + ¢,) 91]}. (10.2.38)
In case of §; = —0, = 7/2

n .

Apy =8t (1 +1,)° cos(%) [77 (1 + 2t, — COS(?Ttn)) - sm(mﬁn)] (10.2.39)
t ,

Bin = —8tn(1 + ) cos(%) [1— 2t, — cos(rt,) + 7 sin(nty)]  (10.2.40)
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Ty,
Cin = —8t, (1+1,)cos(— 2 ){77 [— 1+ t, + 2t,° + cos(mt,,) + tn COS(?Ttn)] —

—sin(7ty,) + t, sin(m }

(10.2.41)

Dy = —8t, (141, )COS(TZ ) (=14 t) [=1 = 2ty + cos(mty)] = 7 (1 + t) sin(rrt,,)]

Oln

8t,(141t,)°  wty

= Fq.(10.14

ta [1 = 2t, — 4t,” = cos(rt,)| + 28 [~1+ 28, + cos(rt,)] }

By, = FEq.(10.1.41) +
8(1+t,)

2
+ {a (4" + ta[=3 + cos(mty)]| + 1, [1 + cos(rt,)] +

1+«

os(—= 5 ){1 + 2t,, — cos(mty,) +

(10.2.42)

(10.2.43)

+ 28— 1+2t,% = 2t,° +1, [1—cos(wtn)]+cos(ﬂtn)]}sin(%tn) (10.2.44)

Con, = Eq.(10.1.42) +
8(1+1,)
1+«

+ 2B(=1+ty) by [—1 + 21,2 + cos(nt,)| +

Tty

+ tn(l —t, — 2t,% — cos(mty,) — t, COS(ﬂ'tn))}

Dy, = Fq.(10.1.43) +
8(1+t,)°

1+«

+ 28(=1+t,) [—1 + 2t,° + COS(th)] }51n(7T;f ).

Incase of 0y = -0, =7

Ay, = 16(1 + t,) sin®(nt, ) [cos(nt,) — n sin(nt,,)]
By, = 16(1 + t,,)’sin®(wt,) [ cos(nt,) + sin(nt,,)]

=8 (1 +¢,) sin(nt,) [—277 (1 +t,)sin®(rt,) — sin(27t,,) + t, sin(27rtn)]

_ 2tnCOSZ(7T—tn) + at, |3 — 4t,* — cos(mt,)| +
2

05(7){@” (1+t,) [1 + 2t, — 4t,% — cos(wtn)] +

(10.2.45)

(10.2.46)

(10.2.47)

(10.2.48)

(10.2.49)

Dy, =8 (1+t,) sin(rt,) [2 (1 — t,) sin?(rt,) — 5 (1 +t,) sin(2t,)|  (10.2.50)
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16
Ay = Eq.(10.1.48) + 1 T (=1 — a+283) (1 + t,)sin®(rt,) (10.2.51)
(6%

By, = FEq.(10.1.49) —n 16(1 + t,)* cos(nt, )sin?(xt,,) (10.2.52)

Con = Eq.(10.1.50) —

16 (1 +t,) .3
- [1+ 0 (1+t,) + tn + 28 (1 — 1) |sin® (wt,) (10.2.53)
Don = FEq.(10.1.51) 47 16(1 +t,)* cos(rt,)sin®(rt,). (10.2.54)
In case of 8, = —7 and 6; being arbitrary
Ay, = —8(1+t,)° [tn cos(t, 01 ) sin(f) + cos(6;) sin(tnﬁl)] X

X [tn 5in(201) + sin(2t,0,) — 20 (tsin®(61) + sin®(£,01)) | (10.2.55)

B, = —-8(1+t,)’ [1 — ty, + t, cos(20y) — cos(2t,0,) — n (tn sin(260;) — sin(2tn91))] X
X [tn cos(t, 0 ) sin(0y) + cos(6;) sin(tnﬁl)] (10.2.56)
Cin = —-8(1+1t,) [tn cos(t,0;) sin(6;) + cos(6y) sin(tnﬁl)] X
><{77 [ — 14+ cos(2t,01) + t, [— cos(20;) + cos(2t,01)] + 2tn25in2(01)] +
. sin(201) — sin(2tn01) + £ [ sin(261) + sin(2t,01)] | (10.2.57)
Dy, = —8(1+t,) [tn cos(t,0,) sin(#) + cos(6;) sin(tnﬁl)] X

x{ (=1 +tn) [~ 1+ cos(2t,01) — 2t,sin*(0)] +
+1) [t $in(2601) + £,% $in(201) — sin(24,61) — b, sin(2,60)] ) (10.2.58)

8(1+t,)
1+«

+ 26[1 — t,? 4+ t,% cos(20;) — cos(2tn91)] +

Ay, = Eq.(10.1.56) +n { — 1 —t, + t,cos(20;) + cos(2t,0;) +

+ a[ — 14ty +2t,% — t, cos(20;) — 2t,% cos(26,) + cos(2tn91)] } sin(rt,,)

(10.2.59)

By, = Fq.(10.1.57) +
+ 0 8(1+t,)% cos(nty,) [ —14+t,% —t,%cos(20;) + Cos(2tn01)] (10.2.60)

266



Con = Fq.(10.1.58) +

+ w sin(Trtn){ (1+1t,) [ — 1+, — t, cos(20;) + Cos(2tn01)] +
o

+ a(l+t,) [ — 1 —ty + 2t,% + t, cos(20;) — 2, cos(26,) + Cos(2tn91)] +
+ 28(1—ty) [ = 1+, — 1,7 cos(20,) + cos(2tn91)]} (10.2.61)

Dow = Eq.(10.1.59) +
+ 1 8(1+t,) cos(nty,) [1 —tn? + 1,7 cos(20;) — cos(2tn91)] a. (10.2.62)

In case of 0; =7/2,0, = —

Apy =8t (1 +1,)° cos(ﬁg ) [77 (1 + 2t,, — cos(7t, )) — sin(ﬂtn)] (10.2.63)

th .
Bin = —8ta(1 + 1) Cos(%) [1— 2t, — cos(rt,) +nsin(rt,)]  (10.2.64)
ity
Cin = —8t,(1+t,)cos(— 2 ){77 [ 1+ t, + 2t,% + cos(wt,) + t, COS(ﬂ'tn)] —
—sin(rty) + t, sin(rt,) | (10.2.65)
th
Dy, = =8ty (1+1t, )cos(”2 ) (=14 t,) [=1 = 2t + cos(t,)] —
— 0 (1+t)sin(mt,)] (10.2.66)
8(1 +t,)°

Ay, = FEq.(10.1.64) +n { — 1 —2t, + cos(nt,) +

1+«

+ 28 [1 = 2t,% — cos(mty)| + a [=1+ 2, + 4t,” + cos(nt,)] } sin(rt,)  (10.2.67)

By = Eq.(10.1.65)+ 1 8(1+t,)’cos(mty) [~1+ 28, + cos(rt,)| (10.2.68)

C2n

Fq.(10.1.66) +
8(1+t,)
1+«

+ a(l+1,) [~1 = 2t, + 4, + cos(rt,)| +

sin(ﬂtn){Zﬁ (1—t,) (—1 +2t,% + cos(mtn)) +

+ [—1 + tn + 2t,° + cos(Tt,) + cos(mfn)] } (10.2.69)

Dy = Eq.(10.1.67)+n 8(1+1t,)" [I = 2t,% — cos(rt,)| cos(rt,)  (10.2.70)

It should be mentioned that if +n is used for the determination of the eigenvalue,
Eqgs. (10.2.23) through (10.2.70) can be used for the calculation of the angular func-
tions. Otherwise, -7 should replace n in Eqs. (10.2.23) through (10.2.70).
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10.3 Determination of the Regular Stress Term for
a Contact Problem

To determine the regular stress term, which corresponds to the solution of A\,, = 0 in
the previous Section, the stress function (see Eq. (3.3.1)) given in Section 3.3 is used.
For a contact problem the displacement u in r-direction at the interface is not used as a
boundary condition. The stresses and the displacement v have the same relations as in
Section 3.3 for thermal loading and mechanical loading. Therefore, the regular stress
term for a contact problem is the same for thermal loading and mechanical loading.
Inserting Eqs. (3.3.3, 3.3.4, 3.3.6) into Eqgs. (10.2.3-10.2.5) yields

—2C10u(1 + 1) + FioFE2 + 2C5% (1 + v5) — FyoFEy =0 (10.3.1)
pA1g — Asg =0 (10.3.2)

Bio+ Dig — Bag — Doy =0 (10.3.3)

Ajg + 2C10 — Agy — 2059 = 0 (10.3.4)

Ao+ 2C10 £ 7 2(Big + Dig) = 0 (10.3.5)

A1oby + Byg + Ciosin(26) + Dygcos(26,) =0 (10.3.6)
Aqo + 2C cos(26,) — 2D sin(2601) =0 (10.3.7)

Agofs + Bag + Cop sin(2603) + Dog cos(26,) = 0 (10.3.8)
Agg + 2C5 c08(263) — 2Dog sin(26,) = 0 (10.3.9)

for plane stress with u = Fy/E;. For plane strain, E should be replaced by %, v by
7, and a by a(1+v). For the regular stress term the coefficients Fjo are not relevant.
From Egs. (10.3.2) - (10.3.9) the coefficients Ayq, B1g, C0, D10,A420,B20,C20,D2 can be
determined. Equations (10.3.2) - (10.3.9) make up a homogeneous system. Therefore,
its solution is zero in the general case. If and only if the determinant of its coefficient
matrix is zero, the equation system has a non-zero solution. The determinant of its

coefficient matrix under arbitrary geometry (6;,0s) is

64
+
+ (1 — a) Oy cos

Det [Acont.] —

sin(6;) sin(92){ — (14 @) 0y cos(6) cos(f) +

01) cos(fy) + sin(f; — 03) + asin(fy + 0) +

+n [(a — 1) Oy cos(fs) sin(f1) + (1 + «) 0y cos(6;) sin(f) — 2asin(6,) sin(%)] }
(10.3.10)
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For the geometry (6, f2) and material combination («, 1), which leads to Det[Aqon:.]=0,
the regular stress term is non-zero.
In case of 65 = —0;, there is

Det[Agone | = 11% 16, cos(8:) — sin(6,)] sin? (6 ) [cos(6:) + an sin(6y)]. (10.3.11)

If 92 = —91 = 7T/2,

128
Det[Acont] = — T . (10.3.12)
This means that for the geometry 6y = —6; = 7/2 the regular stress term is always

zero as long as 7 # 0 and a # 0.
Following Eq. (10.3.10) it can be seen that for §; = 7 and 6, being arbitrary or y = —m
and #; being arbitrary, there always is

Det[Acont.] = 0. (10.3.13)

Therefore, for these geometries the regular stress term always is non-zero.
For an arbitrary geometry (fy,6;) the coefficients of the regular stress term can be
calculated as Ayy = KoAjy, Bro = KoBjy, Cro = KoCjy, Do = KoDj, with

Aty = 32sin(6)) [~ cos(0;) +n sin(f;)]sin®(6s) (10.3.14)

Biy = 8] = 1+ cos(261) + 20y sin(261) + 1 [20; cos(20;) — sin(20y)] |sin®(62)
(10.3.15)

Cy = 16sin(01)[ cos(01) + 1 [~201 cos(0) + sin(6)] |sin® (62) (10.3.16)

Dj, = 8[ — 14+ cos(261) +n [—26 cos(20;) + sin(26)] ]sin2(02) (10.3.17)

* * l -«
Ay = A1°1+—a (10.3.18)
Bjy = 4?1(21) {4 (1 —a)bycos(6r) —4 (1 + )b cos(0y) cos(26) +

+ (34 a)sin(f; — 265) + (1 + 3a) sin(6; + 265)
+ 27 [2 (= 1) Oysin(fy) + 2 (1 + «) 64 cos(fy) sin(262) — (1 + 3«r) sin(6) sin(292)]}

(10.3.19)
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16sin(#,)
I+a
+  «a[—26, cos(6,) + 3sin(0;)] ]} (10.3.20)

Csy = sin2(92){ cos(fy) — acos(y) +n [ — 26, cos(fy) +sin(0;) +

Di = 8;%(21){2 (14 ) 61 cos(81) +2 (=1 + ) B cos(61) — 2sin(6:) +
+ cos(6y) sin(20:) — o [2sin(6;) + cos(6)) sin(26,)]
+ 1 [2(1 = @) fysin(01) — 2 (1 + @) 0 cos(0y) sin(202) + (1 + 3a) sin(6y) sin(205)] }
(10.3.21)

The regular stress term can be determined from Eqgs. (3.3.28-3.3.30), where K is an
unknown constant, which has to be calculated from the stress analysis of the total
contact problem.

The coefficients of the regular stress term in case of §; = —f, are

Aty = 3201° (=1 + 1 61) cos (1) (10.3.22)

B}, = 80,%cos?(6,) [ — 1+ cos(26,) + 26, sin(260,) +n (291 cos(260;) — sin(291))]
(10.3.23)

Cty =160, (1 — 1 0,) cos*(6,) (10.3.24)
D7y = 80,cos®(6,) [ —1+cos(26,) +n ( — 26, cos(26,) + sin(291))] (10.3.25)

. -«

Asp = A1°1+—a

(10.3.26)

40, cos(61)

B = 1+«

{91 cos(6y) [ — 5+ a—4cos(20;) — 4a cos(291)] +

+ (34 «)sin(36;) + 2 (1 — ) n 64 cos(#y) [260; — sin(26,)] } (10.3.27)

16 (1 —a) 6, (1 —n 6)cos*(6,)

Co = o (10.3.28)
8(—1
D;y = %91 (=141 6,) cos®(6,) [26, — sin(26,)] (10.3.29)
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for sin(6;) = 6, cos(6;), and

Aty =32(1 +a)nsin(0)) (10.3.30)

B}, = 8sin?(6,) [ — 1+ cos(26;) + 260, sin(26,) +n [26; cos(260;) — sin(291)]] (10.3.31)
Cty =161 (1 — a + 2an 6;)sin*(6)) (10.3.32)

Djy = 8sin®(01)[ — 1+ cos(2601) +n (= 201 cos(201) +sin(261))]  (10.3.33)

L 1 —a

Ago = A10 1—1——&

(10.3.34)

8sin? (6, )

B;OZ 1+a

{1 — a + 3c0s(20,) + acos(20,) + 2a (1 + «) 5 %0, sin(26,) +

+ 7 [291 (1 — o + acos(20,) + o? Cos(201)) + sin(26;) 4 3« sin(291)]}

(10.3.35)
Cio =160 [1+ a + 2an 6;]sin*(8)) (10.3.36)
D3y = —8sin?(6;) |2 + 2am 26, sin(26,) + n (260, + sin(260;) + asin(26,
20

(10.3.37)

for cos(6;) = —n asin(6y).
In case of #; = 7w and 6, being arbitrary (but 0y # —m) the regular stress term in
material 1 is

Oga10 = Ko
Oyy10 = Tgylo = 0. (10338)

In material 2 the regular stress term is zero, i.e.
Oxx20 = Oyy20 = Txy20 — 0. (10339)
If 6 = m and 0y = —m, the regular stress term is
ozz10 = Kig
Oyy10 = Txylo = 0 (10340)
Ozz20 = Koo
Tyy20 = Tay20 = 0, (10.3.41)

with two unknown constants K, and Ky.
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10.4 The Behavior of the Eigenvalues in a Contact
Problem

In Sections 10.1 and 10.2 the essential equations to determine the eigenvalues were
given for a contact problem with and without friction. For a friction free contact
problem, the eigenvalue depends on the contact geometry (6;,6s) and the Dundurs
parameter « only. For a contact problem with friction the eigenvalue depends on the
contact geometry (f,6,), both Dundurs parameters «, 3, and the friction coefficient
n. As these equations are transcendental equations of A\, or t,, the characteristics
of the eigenvalues are not obvious. In this section the behaviors of the eigenvalues,
e.g. for a given joint geometry how many singular terms exist or for which material
combination the eigenvalues are real and complex or how large is the possible singular
stress exponent or what is the dependence of the eigenvalue on the friction coefficient
n and so on, will be discussed for two types of contact geometry that often appear in
engineering structures. The first type of geometry is that one material has the angle
180° while the other is arbitrary (see Fig. 10.2). The second type of geometry is that
0, = —0y = 90° (see Fig. 10.3).

T\
Material 1
Interface with or
without friction
Material 2

~

Figure 10.3: Two dissimilar materials contact: #; = —f, = 90°.

Friction free contact problem

In this case, the behavior of the eigenvalues is very simple. The singular stress expo-
nents depend on one Dundurs parameter « only. For the first type of contact geometry
the singular stress exponents (here w = \) are plotted in Fig.10.4 at variable values
of ¢;. From Fig.10.4 it can be seen that (a) for all contact geometries, there is one
singular term only and it is real. (b) For the contact geometry with 6; = 45°, there
exists singular stress exponent only when « is very large (o > 0.8). With increasing
01, the range of « increases where the stress exponent is singular, and for the same
material combination the value of the stress exponent increases. (¢) For §; > 90° there
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always exists a singular stress exponent. (d) For o = 1 always w = 0.5. (e) In a friction
free contact problem the maximum value of the singular stress exponent is 0.5.

0.5— w (6,/0,)=135°/180° _ w
il 0.5
0.4— 7
| 0.4
0.3+ ]
k 0.3+
S |
0.2 $ 0.2
i \§ =
0.1 ¢/ |8 01
OO o e e o s S s e s s O OB e e e e e I e L B e e
-1.0 -0.5 0.0 0.5 10 100 125 150 175
X Ol
Figure 10.4: The singular stress expo- Figure 10.5: The singular stress expo-
nent w vs. the Dundurs parameter o nent w vs. the contact angle 6; for fric-
for friction free contact with different tion free contact with 8, = —6,.

contact angles.

For a contact geometry with 6; = —fy = 180° always w = 0.5 (see Eq. (10.1.17)).

For the second type of contact geometry (i.e. 6; = —fy = 90°) there is no singular
stress exponent (see Eq. (10.1.16)).

For the contact geometry with §; = —6, it can be seen from Eq. (10.1.15) that the
eigenvalue depends not on o and (3, and on 6; only. In Fig. 10.5 the singular stress
exponent is plotted vs. the angle 6;. It is obvious that for ; < 90° no singular stress
exponent exists.

Contact problem with friction

For a contact problem with friction the eigenvalues depend on the contact geometry
(01, 605), the material data («, ), the friction coefficient (n), and the sign of the stress
components gy and 7,9 at the interface. If the sign of oy and 7,4 at the interface is the
same, Eq. (10.2.10) yields

Ay + C1n(2 = N) +1 (2= X)) (B + Diy) = 0. (10.4.1)
On the contrary, if the sign oy and 7,4 at the interface is different,

has to be applied. For mathematical simplification the last two equations can be
written as

Ay +C1n(2=X) +1 (2= XN) (B + D1) =0 (10.4.3)
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where the value of 7 is positive if the sign of gy and 7,9 at the interface is the same.
If the sign of 0y and 7,4 at the interface is different, the value of 1 should be negative.
Therefore, the parameter n in the following figures takes the value from -1 to 1. It
should be mentioned that the negative value of 1 has no physical meaning. Here, it is
only used for mathematical simplification.

For a contact geometry with #; = 45° and #; = —180° the isoline of the singular stress
exponent 0 < w < 1 is plotted in a Dundurs diagram in Fig. 10.6 for n = 0.5 (solid
lines) and for n = —0.5 (dotted lines). It can be seen for this contact geometry: (a)
There is only one singular term, and the eigenvalue is real. (b) Only for a large value
of a (a > 0.7 for positive n and o > 0.9 for negative 7)), a singular stress exponent
exists, i.e. for o < 0.7 there is no stress singularity. To see the effect of the friction
coefficient n on the stress exponent, Fig. 10.7 shows w plotted vs. 7 for variable pairs
of (e, B), which are the limit points in the Dundurs diagram. It is clear that: (a) If
« < 0, no singular stress exponent exists, irrespective of the value of . (b) At a small
value of «, a singular stress exponent only exists when 7 takes a large value. (c) At
very large values of «, the singular stress exponent may exceed 0.5. (d) At the point
of a =1 and g = 0, always w = 0.5, irrespective of the value of 7.

W (a.8)
(1, 0.5)
0545
0.0
| ©, 025)/,\ (-1, -0.5)
'0-5\\\\\\\\\\\\\\\l;’.y\\\\
-1.0 -0.5 0.0 0.5 1.0
T
Figure 10.6: The isoline of the singu- Figure 10.7: The singular stress expo-
lar stress exponent w in a Dundurs di- nent w vs. the friction coefficient 7 for
agram at a friction coefficient of n = different pairs of («, 3), and 6; = 45°
0.5 (solid lines) and n = —0.5 (dotted and 0y = —180°.

lines), and #; = 45° and 6, = —180°.

For the contact geometries with #; = 60°,90°, 135°, and #y; = —180° the isoline of the
singular stress exponent is plotted in Figs. 10.8, 10.9, and 10.10 for n = 0.5 (solid lines)
and for n = —0.5 (dotted lines). In Figs. 10.11, 10.12, and 10.13 w is plotted vs. 7 for
different pairs of (o, ). Comparing Figs. 10.6, 10.8, 10.9 and 10.10, and Figs. 10.7,
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10.11 10.12 and 10.13, it can be seen that: (a) In a Dundurs diagram, the area where
the singular stress exponent exists increases with increasing value of the angle ;. (b)
For the same material combination (i.e. the same value of «, 3, and 7), it is almost
true that the larger the value of 6, is, the larger is the singular stress exponent. To
explain (b) clearly, in Fig. 10.14 the singular stress exponent is plotted vs. the angle
6, at variable (a, 3,7).

Figure 10.8: The isoline of the singu- Figure 10.9: The isoline of the singu-
lar stress exponent w in a Dundurs di- lar stress exponent w in a Dundurs di-
agram at a friction coefficient of n = agram at a friction coefficient of n =
0.5 (solid lines) and n = —0.5 (dotted 0.5 (solid lines) and n = —0.5 (dotted
lines), and #; = 60° and 6, = —180°. lines), and #; = 90° and 6, = —180°.

For the special case of a = 1, Eq. (10.2.21) can be simplified as
det[A] = —32(1 + t,) sin(rt,,) [t2 sin?(0;) — sin?(£,01)| | cos(rt,,) &+ nfBsin(rt,)].(10.4.4)

From Eq. (10.4.4) it is known that (a) at 8 = 0, the singular stress exponent is 0.5,
irrespective of the angle #; and the friction coefficient 7. (b) In case of 8 # 0, the
singular stress exponent is independent of the angle #;, but depends on n. This is
clearly evident from Figs. 10.7, 10.11, 10.12, and 10.13.

For the contact geometry with 8, = —f, = 90° and #; = —6, = 180° the behavior
of the singular stress exponent is shown in Figs. 10.15, 10.16, 10.17, and 10.18. As
the geometry is symmetric to the line of § = 0, the singular stress exponent should be
the same when exchanging material 1 and 2 (i.e. the signs of @ and (3 change). From
Figs. 10.15, 10.16, 10.17, and 10.18 it can be seen that this is true, if the sign of 7 is
also changed. From the physical point of view, this means that due to the exchange
of materials 1 and 2, the sign of the shear stress is changed. Consequently, the sign
of 1 should be changed in the calculation. The effect of the friction coefficient 1 on
the singular stress exponent is very clear from Figs. 10.16 and 10.18. For the contact
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geometry with #; = —fy = 90°, there is no stress singularity if n=0 (i.e. friction free
contact). However, the singular stress exponent may be larger than 0.5 for contact with
friction. For the contact geometry with #; = —fy = 180°, the singular stress exponent
is always 0.5 if =0 (i.e. friction free contact). However, for contact with friction the
singular stress exponent may be smaller or larger than 0.5.

g

0.5+ :
a “10.43 W (@)
] 0.75+
0.5 | : (1,0.5)
0.4 - ]
-~ m=05 T 05 (0, -0.25)
T T \j;}»i,::\ o X | (t.0) /&/)0' 0)
0.45 : ///«!7
555 0-25j 1, _O.S)ﬁ,;ﬂ_(o, 0.25)
: ¢ -1,0
i / (-1,0)
O R o o o e s e
-1.0 -0.5 0.0 0.5 1.0
T
Figure 10.10: The isoline of the singu- Figure 10.11: The singular stress expo-
lar stress exponent w in a Dundurs di- nent w vs. the friction coefficient 7 for
agram at a friction coefficient of n = different pairs of («, 3), and 6; = 60°
0.5 (solid lines) and n = —0.5 (dotted and 0y = —180°.

lines), and #; = 135° and 6, = —180°.

To study the behavior of the singular stress exponent as a function of the contact
geometry, three material combinations are considered. The first example is a homoge-
neous material contact problem. The isoline of the singular stress exponent is plotted
in Fig. 10.19 for n = 0.2 and n = —0.2. Here, the x-axis is the angle #; and the y-axis
is the angle 5. Since the material is homogeneous, if we exchange the value of #; and
0y, and the sign of n, the singular stress exponent should be the same, which can be
seen in Fig. 10.19.

As the second example, a real material combination of S;C / Al is considered. The
material data are F;=410 GPa, v1=0.24, F,=71 GPa, 15,=0.35, which gives a =
0.686371, 3 = 0.140934. The isoline of the singular stress exponent is plotted in
Fig. 10.20 for n = 0.2 and n = —0.2. As the last example, the material combina-
tion of carbon steel / Al,O3 is chosen. The material data are E;=215 GPa, v1=0.28,
Ey=375 GPa, 1,=0.27, which gives a = —0.268428, 5 = —0.078540. The isoline of
the singular stress exponent is plotted in Fig. 10.21 for n = 0.2 and n = —0.2. From
Figs. 10.20 and 10.21 it can be seen that for a given material combination stress
singularity disappears at a number of contact angles.
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Figure 10.12: The singular stress expo-
nent w vs. the friction coefficient n for
different pairs of («, 3), and 6; = 90°
and 6, = —180°.

0-0\;\‘/\\\\\\\\\\\\
50 100 150
1
Figure 10.14: The singular stress ex-
ponent vs. the angle #; at different
(o, B,m) and By = —180°.
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Figure 10.13: The singular stress expo-

nent w vs. the friction coefficient 7 for
different pairs of («, ), and 0; = 135°
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Figure 10.16: The singular stress expo-
nent w vs. the friction coefficient n for
different pairs of («, 3), and 6; = 90°
and fy = —90°.

w (o)
0.75—
i (-1,-05)
T T - (0,-025)
05 TR
1o T T=--(0,0.25)
. (1,05)
0.25
00 FT T T T T 1T T T 7 T T T T T T T T T
-1.0 -0.5 0.0 0.5 1.0
M

Figure 10.18: The singular stress expo-
nent w vs. the friction coefficient 7 for
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and 6, = —180°.
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Chapter 11

Conclusion

Stress singularities in dissimilar materials joints may occur under mechanical or thermal
loading at the intersection point of a free edge and an interface or at an interface corner.
For isotropic material the stress distribution near the singular point depends on the
joint geometry, the loading and on the two Dundurs parameters, which are functions of
the four elastic constants of the two materials. The stress distribution can be obtained
by using the Airy stress function, or the corresponding relations with complex functions,
or the Mellin transform method.

In this work, solutions of different singularity problems in a dissimilar materials joint
are studied. The problems considered are: two dissimilar materials joint with free
edges; dissimilar materials joint with edge tractions; joint with interface corner; joint
with a given displacement at one edge; cracks in dissimilar materials joint; contact
problem in dissimilar materials. The stress singularity can be divided into two groups:
a r* singularity with the eigenvalue w and a r“In(r) singularity. For the r¥ singularity
and a real eigenvalue the stress distribution near the singular point is given by

N
Uzg T, 9 Z ’I“/R fzgn )+00f230 + Z T/R m 57{;( ) (1101)

The first term is the singular term, the second term is called the regular term and is
especially important for thermal loading. The third term is important for edge traction
loading. For complex eigenvalues A = w + ip the stress distribution is given by

() = 3 e coslpudn(r/ 5,0

+ sinfpaln(r/R)|f5,(0)} + 00 fio(0) + S (r/R)" ol (0). (11.0.2)

m=1

In case of a logarithmic singularity the stress distribution near the singular point can
be obtained from:

oij(r,0) = lij{ —2in(r/R) fi;(0) + t:;(0) + (K + Iij)fij(g)} (11.0.3)
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or

Oijn(r,0) = —(r/R)*"In(r/R) Kinlijn fijn(0) + (T/R)“”{Kznlijnfz‘jn(g)
X3n 1
+K1n{[ijnfijn(9) + lijn [tijn(e) — mfijn(e) — w—nfijn(9)] }}

(11.0.4)

The eigenvalues and the angular functions of the singular term depend on the notch
angles and the elastic constants. The regular stress term depends on the notch angles,
the elastic constants and the loading. For thermal loading the regular stress term
always is nonzero. It can be determined analytically. However, for mechanical loading
the regular stress term for most joint geometries and material combinations is zero. In
some special cases, the regular stress term is non-zero. It can be determined analytically
with one or two arbitrary constants, which have to be determined from the stress
analysis of the total joint, as for the determination of the stress intensity factor. The
stress intensity factors K, are proportional to the applied mechanical or thermal load.
They depend also on the notch angles and the elastic constants, additionally on the
overall size of the joint.

Equations to calculate the stress exponents w, p,, (for complex eigenvalue), the angular
functions fijn(0), f5,(0), f5,(0) and the regular stress term o;j0(¢) for thermal and
mechanical loading are given for an arbitrary joint geometry. The methods to determine
more than one stress intensity factors K, at one time have been presented.

In general, it is true that if w is the eigenvalue of the problem, 2 — w also is the eigen-
value of the problem, except for a dissimilar materials contact problem with friction.

The most important results for each case are:
(I) Two dissimilar materials joint with free edges

e Explicit expressions are presented for the determination of the stress exponent and
the regular stress term for an arbitrary joint geometry, and the angular functions for
0, = —0, =90°.

e An empirical relation for the determination of the stress intensity factor K was
found for the most important joint with #; = —f, = 90°.

e For 6; — 0, < 180° (A < 0), i.e. the materials occupy an angle smaller than 180°,
always there is a range in Dundurs diagram where no stress singularity exists (w < 0).
With increasing total angle of the material occupied in a joint, there may exist one,
two even three (e.g. for #; — f; = 360°) singular terms. The singular stress exponent
may be larger than 0.5.

e The regular stress term for thermal loading is independent on the overall geometry
of the joint.
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e If one stress exponent (e.g. wy) goes through zero and the regular stress constant
0o goes to infinity, the corresponding K-factor (K;) also goes towards infinity with a
different sign, and the ratio of K;/og at w; = 0 is equal to -1.

e For thermal loading the stress near the singular point, corresponding to the larger
value of w, is not always higher than the stress in a joint with a smaller w, except for
very small distances r. However, for mechanical loading the following holds: the larger
is the w, the higher is the stress near the singular point.

e For thermal loading the stress, also very close to the singular point, is strongly
influenced by the regular term with the consequence that the stresses are not related
to w only.

e The absolute size of the joint has a obvious effect on the stress distribution near
the singular point. The larger the value of w is, the stronger is the effect of the size on
stresses.

(IT) Dissimilar materials joint with edge tractions

e The eigenvalues and the angular functions are the same as those for a joint with
free edges.

e Equations to calculate the constant regular stress term o;;0(¢) and higher order
i
edge tractions. In particular, explicit expressions are presented for the determination

regular stress terms o;.. (f) are given for an arbitrary joint geometry under arbitrary
of these regular stress terms for joint with #; = —6, = 90°.

e For joint with #; = —0; = 90° and H/L < 0.5 or H/L > 2, under tension edge
traction the stress intensity factor K can be obtained from the found empirical relations.

(ITIT) Joint with interface corner

e Explicit expressions are presented for the determination of the stress exponent and
the regular stress term for an arbitrary joint geometry, and the angular functions for
6, = 90°.

e For a joint with an interface corner, there may be three singular terms, which are
three real terms or one pair is complex. For most material combinations there are two
singular terms. The maximum value of the singular stress exponent is 0.5.

e For thermal loading the regular stress term is independent of the joint geometry
(i.e. 6y).

e For joints with the same material combination, loading, and geometry, but with
different interface conditions, the joint with a delamination crack (i.e. the interface
being stress free) has much stronger singular stress exponents than a joint with an
interface corner (interface being perfectly joined).

e For the same joint under different loading (thermal and mechanical loading) the
behavior of the stress intensity factor is strongly different, even for ; = 90°.
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(IV) Joint with a given displacement at one edge

e Explicit expressions are presented for the determination of the stress exponent and
the regular stress term for an arbitrary joint geometry, and the angular functions for
0, = —0, =90°.

e For the same material combination and joint geometry, the singular stress exponent
of a joint having a given displacement at one edge is larger than that one of a joint
with free edges.

e For a joint with free edges, there is an area in Dundurs diagram where there is no
singular stress exponent (i.e. w < 0), however, in a joint with a given displacement at
one edge, there always exists at least one singular stress exponent.

e In a joint with a given displacement edge the maximum singular exponent is 1.

(V) cracks in dissimilar materials joint

e Four types of cracks are considered: cracks with an arbitrary angle terminating at
the interface, cracks perpendicular to the interface, interface cracks and delamination
cracks or interface corner cracks, which are under thermal and mechanical loading.

e Explicit expressions are presented for the determination of the stress exponent and
the regular stress term for an arbitrary joint geometry, and the angular functions for
joint with interface cracks and delamination cracks.

e The results have demonstrated that to obtain a good description of the stresses
near the singular point over a large range analytically, the regular stress term should
be considered, also for the joint with a strong singular stress exponent.

(VI) Contact problem in dissimilar materials

e The explicit expressions for calculating the stress exponents w,p, (for complex
eigenvalue), the angular functions f;;, (), and the regular stress term o;;(6) are given
for an arbitrary joint geometry.

e If w is the eigenvalue of the problem, 2 —w also is the eigenvalue only for friction free
contact problem. For contact problem with friction 2 — w is not more the eigenvalue.
In addition, for a friction free contact the eigenvalue is independent of the Dundurs
parameter [3.

e In a friction free contact problem the maximum value of the singular stress exponent
is 0.5. In a contact problem with friction the maximum value of the singular stress
exponent may be larger than 0.5 depending on the friction coefficient and Dundurs
parameters. For all considered contact geometries, there is maximal one singular term
and it is real.

e The regular stress term for a contact problem is the same for thermal loading and
for mechanical loading, which is zero for most joint geometries and material combina-
tions. In some special cases, the regular stress term is non-zero. It can be determined
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analytically with one or two arbitrary constants, which have to be determined from the
stress analysis of the total joint, as for the determination of the stress intensity factor.

(VII) Logarithmic stress singularities in a joint under thermal loading

e For the type of In(r) and r~“In(r) stress singularity, equations to calculate the angu-
lar functions f;;(#) and t;;(¢) are given for an arbitrary joint geometry. In particular,
explicit expressions are presented for a joint geometry with ; = —6, = 90° and for the
type of In(r) stress singularity.

e The case of w — 0 does not mean that the stress singularity disappears for a joint
with a free edge under thermal loading.

e For joints with very small w (w < 1072) in the type of r~“ singularity, stresses near
the singular point can also be described by the equations for the type of In(r) stress
singularity.

e The equations for the type of In(r) stress singularity assuming K=0 can be applied
to calculate stresses near the singular point for joints with w < 0.01 and H;/L > 1,
and Hy/L > 1. This means that the stresses near the singular point can be calculated
without using any FEM. The error is less than 10% for w < 0.01 and r/L< 0.01. For
w < 0.005 the error is less than 5%. If the corresponding value of K in Eq. (11.0.3) is
used, the error is even smaller.

e The solution for the type of r“In(r) singularity can be used to describe approx-
imately the singular stress field for material combinations with two almost the same
stress exponents w (i.e. w; = wj= w) of r~* singularity.

The general rule is that: To describe the stress field near the singular point in a larger
range, all singular terms plus the regular stress term (if it is not zero) should be used.
Use of the so-called dominant singular term only is not sufficient to describe the sin-
gular stress field in the range of r/L > 1077,

The solutions of the singularity problem obtained in this work are useful for the se-
lection of the material combination or the selection of the joint geometry to avoid or
weaken the singularity. It can also be applied for the stress analysis near the singular
point and for the optimization of the joined structure. Though only two isotropic mate-
rials joint is considered, the methods presented in this work can be used for more than
two materials joint and for anisotropic materials. As long as in continuum mechanics,
the solutions are also valid in micro-mechanics area.
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