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Abstract

System identification is very important to technical and nontechnical areas. All physical
systems are nonlinear to some extent and it is natural better to use nonlinear model to
describe a real system. The Wiener and Hammerstein systems are proved to be good
descriptions of nonlinear dynamic systems in which the nonlinear static subsystems and
linear dynamic subsystems are separated in different order. Descriptions of different
nonlinear systems need different Wiener and Hammerstein model structures.

The aim of this doctoral dissertation is to develop an unified new recursive identification
method in the prediction error method and model scheme for Wiener and Hammerstein
systems; to derive the identification algorithms for a class of Wiener and Hammerstein model
structures with continuous and discontinuous nonlinearities and to implement and test the
algorithms with simulation examples in a MATLAB/Simulink environment.

With the definition and extraction of intermediate variables by using the key term separation
principle, a Wiener and Hammerstein system can be described by a nonlinear pseudo-
regression model. If some suitable submodel structures are selected, such a nonlinear
pseudo-regression model could be pseudo-linear and can be approximately transformed into
a pseudo-linear MISO system.

The intermediate variables can be estimated recursively. The errors in estimated parameters
and in intermediate variables affect strongly the identification procedure and results.
Therefore, the estimated parameters or rather the intermediate variables should be
smoothed by using smoothing techniques. Under some common assumptions and by using
the adaptive recursive pseudo-linear regressions (RPLR), satisfied parameter estimates of
the Wiener and Hammerstein system can be obtained in the presence of a white or a
coloured measurement noise without parameter redundancy.

The new method gives good results for all considered Wiener and Hammerstein systems and
for some comparable examples, the results are also better. The major advantage of the new
method is its unity and efficiency. It can be easily extended to identify other block-oriented
nonlinear dynamic systems.



Eine neue Identifikationsmethode fur Wiener und Hammerstein Systeme

Zusammenfassung

Systemidentifikation ist sehr wichtig fur technische und nichttechnische Bereiche. Alle
physikalischen Systeme sind mehr oder weniger nichtlinear, und es ist naturlich besser, mit
einem nichtlinearen Modell ein reales System zu beschreiben. Die Wiener und Hammerstein
Systeme beschreiben solche nichtlinearen dynamischen Systeme gut, bei denen die
nichtlinearen statischen Teilsysteme und die linearen dynamischen Teilsysteme immer
getrennt und in verschiedenen Ordnungen angeordnet sind. Beschreibungen der unter-
schiedlichen nichtlinearen Systeme brauchen unterschiedliche Wiener und Hammerstein
Modell Strukturen.

Das Ziel und die Aufgaben der vorliegenden Dissertation sind: eine neue ldentifikations-
methode und einige Konzepte im Rahmen der Fehler-Vorhersage-Methode und —Modell-
strukturen zu entwickeln; rekursive Identifikationsalgorithmen fur eine Klasse Strukturen von
Wiener und Hammerstein Systemen mit kontinuierlichen und diskontinuierlichen Nicht-
linearitdten abzuleiten; alle abgeleiteten Algorithmen mit MATLAB/Simulink zu implemen-
tieren und Simulationsbeispiele durchzufihren. Die Ergebnisse werden auch ausgewertet.

Durch die Definitionen und das Herausziehen der Zwischenvariablen mit dem sogenannten
"key term separation” Prinzip kann ein Wiener und Hammerstein System durch ein nicht-
lineares Pseudoregressionsmodell beschrieben werden. Wenn geeignete Teilmodell-
strukturen gewdahlt werden, kann das nichtlineare Pseudoregressionsmodell pseudo-linear
sein und es kann naherungsweise zu einem pseudo-linearen MISO System umgeformt
werden.

Die Zwischenvariablen kdnnen rekursiv geschatzt werden. Aber die Schéatzungsfehler der
Parameter und Zwischenvariablen wirken stark auf die Identifikationsverfahren und die
Ergebnisse. Deshalb sollen die geschétzten Parameter bzw. die geschatzten Zwischen-
variablen durch Glatt- und Filtertechnik geglattet werden. Unter etwas allgemeinen
Voraussetzungen und durch adaptive rekursive pseudo-lineare Regression (RPLR) kann
man zufriedenstellende Parameterschiatzungen vom Wiener und Hammerstein System mit
der Anwesenheit von einem weil3en oder verfarbten Ausgangsrauschen ohne Parameter-
redundanz erhalten.

Die neue Identifikationsmethode gibt gute Ergebnisse fir alle beriicksichtigten Wiener und
Hammerstein Systeme und fiir manche vergleichbaren Beispiele sind die Ergebnisse besser.

Der Hauptvorteil der neuen Methode ist ihre Einheitlichkeit und Anwendbarkeit fir viele
unterschiedliche Modelltypen und ihre Wirksamkeit. Sie kann leicht erweitert werden, um
andere blockorientierte nichtlineare dynamische Systeme zu identifizieren.
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Notation

Symbol

u(t)
u; (t)
y()
y (t)
y(t)
y(t)
w(t)
w, (t)

= D D D
= *

*

S o o %= =
~—+
N—r

g(t)
g(u(t), )
9" ()
Q)

x(t)

()
G(q™)

G (q™,0)
G, (q_119k)
N, ()
N(m)
A@Q™)
A(q)

B (q7)
B.(q™)
B.(a™)

F(@@™)
F.@™)

Explanation

System input

j —th system input signal to a MISO Wiener and Hammerstein system
System output

System output without measurement noise

Predicted system output

Separated part from a Feedback-Hammerstein system
Intermediate variable

k —th intermediate variable

Parameter vector of linear dynamic subsystem

Parameter vector of linear dynamic subsystem without key term
Parameter vector of the k —th linear dynamic subsystem
Parameter vector of nonlinear static subsystem

Parameter vector of nonlinear static subsystem without key term
Parameter vector of the k —th nonlinear static subsystem
Parameter vector

Parameter vector at time t

Smoothed parameter vector at time t

Pseuso-regression vector

Impulse response
A general model of nonlinear system

Nonlinear polynomial function of degree m

k —th basis function of nonlinear static subsystem

Input of nonlinear static subsystem

Output of nonlinear static subsystem
Transfer function
Transfer function without key term

k —th linear dynamic subsystem

k —th nonlinear static subsystem

Nonlinear static subsystem without key term

System output polynomial
Another form of system output polynomial

Nominator polynomial linear dynamic subsystem without the key term
Nominator polynomial of the k —th linear dynamic subsystem
Nominator polynomial of the k —th linear dynamic subsystem without

the key term
Denominator polynomial of linear dynamic subsystem

Denominator polynomial of the k —th linear dynamic subsystem
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Abbreviation

ARX
ARMAX
NARMAX
BJ

FIR
FSF
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OE
PEM
RTF
RPEM
PLR
RPLR

k —th coefficient of A(q™")

k —th coefficient of B(q™")

k —th coefficient of B;(q™")

k —th coefficient of a nonlinear polynomial N(:,n)
k —th coefficient of a nonlinear polynomial N; (-, ;)
White measurement noise

Colored measurement noise

Noise filter

Parameter vector of H(q™,&)

Nominator of H(q ™", &)

Denominator of H(q ™, &)

Order of the nominator C(q™")

Order of the denominator D(q ™)
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Multi input number to a MISO system

Order of a nonlinear system

Order of a linear system

Order of the k —th nonlinear static subsystem

Order of the k —th linear dynamic subsystem
An integer in the interval [0,n —1]

Discrete frequency response of the linear system
k —th frequency

Output of the k —th frequency sampling filter
Constant parameter

Forgetting factor
Moving window length
Parameter identification error

Avarage parameter identification error

Explanation

AutoRegressive with eXogenous (or eXternal) input
AutoRegressive Moving Average with eXogenous inputs
Nonlinear AutoRegressive Moving Average with eXogenous inputs
Box-Jenkins

Finite Impulse Response

Frequency Sampling Filter

Single Input-Single Output system

Multi Input-Multi Output system

Output Error

Prediction Error Minimization

Rational Transfer Function

Recursive Prediction Error Minimization

Pseudo-Linear Regressions

Recursive Pseudo-Linear Regressions

v



Introduction

1. Introduction
1.1. General problems in system identification

System identification is of fundamental importance in automatic control. The key task of system
identification is to find out a best suitable mathematical model between the inputs, outputs and
disturbances of areal system. Models can be useful for gaining a better understanding of the system
and to predict or simulate a system's behavior. Advanced control techniques for the design and
analysis of controllers, optimization, supervision, fault detection and diagnosis components are also
based on models of real systems. The quality of the model typically determines an upper bound on the
quality of the final problem solution. Therefore, there is a strong demand for system modeling and
identification schemes.

If the physical laws governing the behavior of the system are known, it is so called a white-box model
in which all parameters and variables can be interpreted in terms of physical entities and al parameters
are known. On the other hand, a black-box model is constructed only from system input and output
data without any knowledge of physical insight. But in many practical cases, it often occurs that one
knows only a little bit about the system, that is, the system modeling is based on the recorded input
and output data with some prior knowledge about the system, e.g., the structure and order of the
system. By analyzing and extracting information from the system and using the identification methods
for black-box model, a gray-box model will be constructed.

System identification is concerned with a black-box model or a gray-box model which has the
following basic items (Zadeh, 1962; Astrom and Eykhoff, 1971): observed data and prior information
from the real system, a model set and an identification criterion. That is, according to some
identification criterion and guided by prior information, a"best" model is chosen from the model set to
fit the observed data best. It can not be said this model is the best and an unique model for a system.
There must be some approximations in system identification. A best suitable model is only under the
meaning of a definite optimization criterion.

System identification must be a procedure with analysis, synthesis, selection and optimization. To
identify a system, i.e., to establish a model for the system, one should get a physical insight into the
system as much as possible. It depends greatly on how much details one knows about the system a
prior, eg., if it is a linear system or a nonlinear system, a time-invariant system or a time-variant
system, a continuous system or a discontinuous system, a single input-single output (SISO) system or
a multi input-multi output (MIMO) system, an open-loop system or a closed-loop system and so on.
One should aso know how the system can be influenced, i.e., which input and output signals can be
selected to measure, which disturbance signals can disturb the system and where they can appear in
the system and how measurement experiments can be designed and realized. Therefore, different
systems need different model structure selections. In most cases it is convenient and sufficient to use
some standard model structures. Actualy, identification methods and agorithms are always related
directly with model structures and optimization criterionsto get a better datafit.

After selecting the model structure and possible identification strategies, based on the inputs and
outputs, the parameters of the model will be determined by an optimization process with minimization
or maximization of a linear or nonlinear criterion to solve a least-squares (data-fitting) problem. It is
clear that most optimization problems benefit from good starting points, i.e., initial values which
improve the execution efficiency and can help to locate the global minimum instead of a local
minimum.

System identification can carry out off-line or on-line recursively. Most system identifications are
related with process control purpose to get on-line better control performance. Then the identification
and control criterion will be considered at the same time, i.e.,, so called control-relevant system
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identification. Therefore, on-line recursive identification methods are more significant. At last, the
identification results should be verified and improved iteratively till they are satisfactory.

Therefore, a system can be identified with the following iterative steps.

1. Optimal experiment design and data collection. Choice of the excitation signals, the sampling
time and the interesting inputs and outputs to be measured.

2. Model structure selection. Select a suitable model structure with suitable order.

3. Model estimation. Given a suitable model structure and measured data, some suitable
identification methods and optimal agorithms are available and the parameters in the model
structure can be estimated by optimizing some criterion or loss function.

4. Model validation. The model is ssimulated using "fresh" data and the estimated outputs are
compared with the measured outputs. Verify if the identified model is valid and if it is exact or
suitable enough for special purposes.

System identification is a well-established field with a number of approaches and algorithms. The
methods for black-box identification of linear, time-invariant dynamical systems with given discrete-
time data are broadly studied. They can be classified into: the prediction error methods (e.g., Ljung.
1987); the subspace methods (e.g., Van Overschee and De Moor, 1993); the nonparametric correlation
and spectral analysis methods (e.g., Billings and Fakhouri, 1978; G. Bretthauer,1983). Other
references can be found in Schwarz, 1967; Eykhoff, 1974; Strobel, 1975; Isermann, 1988 and
Wernstedt, 1989.

1.2.ldentification of nonlinear systems

Identification of linear systems has become a routine task. A number of successful methods are
available to solve the problem in the time or in the frequency domain, using iterative and non iterative
identification schemes. The basic reason for this success is the appealing simplicity of linear models.
They give alot of insight and are often used as the basis for many design techniques. The price for this
"simplicity" is the use of a strong assumption: the underlying physical process exhibits qualitatively
similar dynamic behavior to the linear model in the operating area of interest.

Actualy, all physical systems are nonlinear to an extent. A system is caled nonlinear if the input-
output steady state relation is nonlinear. Because nonlinear models are able to describe the system
behavior in a much larger operating region than corresponding linear models, it is reasonable and
necessary to characterize or predict the behavior of real nonlinear processes directly using nonlinear
models to improve identification performance over their whole operating range. Therefore, it leads to
the development of approaches for nonlinear modeling and analyzing of nonlinear systems. This Ph.D.
work is concerned with nonlinear system identification.

The most difficult task in nonlinear system identification is to dea with the curse of dimensionality.
This is a common characteristic of nonlinear model structures since nonlinear systems usually exhibit
a variety of complex dynamic behavior. From the nonlinear regression perspective, there is no much
difference in identifying a linear system or a nonlinear system. The linear identification methods are
like aroot of the tree of system identification. Any other nonlinear identification methods can be seen,
to some extent, coming from or ending at that root. As in linear cases, the crucia step in the
identification of nonlinear systems is to select the model structure and to establish suitable
identification schemes and some parameterization (e.g., function expansion) of the predictor.
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The basic nonlinear system identification concept is depicted from a general modeling point of view in
Fig. 1.1.

sit)

¥y ey
Frocess
z(t) +]  elf)
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glu(t), 9 yiE)

Fig. 1.1 Process and model

A nonlinear model g(u(t),$) maps the input u(t) to the measured output y(t) which is corrupted
with noise £(t). The model is parameterized by minimizing the error e(t) = y(t) — y(t) to get the
parameter vector .9 suchthat y(t) = g(u(t),9) .

It is useful to subdivide general nonlinear system identification into two categories:

» Structure-identification. This deals with so-called structure optimization techniques and the
problem of searching an optimal model structure, i.e., the optimal kind of function g(u(t),%) and

the optimal number of parameters. This typically leads to a combinatorial optimization problem
which grows rapidly in complexity with the problem size.

» Parameter-identification. Having decided the type and size of the nonlinear model structure, it
remains to find reasonable parameter values. The goa of a parameter optimization technique is to
find the "best" approximation y(t) to the measured output Yy(t), which may be disturbed by

noise &(t), by adapting the parameter vector 4. It leads to the nonlinear local and global
optimization problems and methods, especially prediction error minimization (PEM) methods.

For general nonlinear systems there are no universal identification techniques. All of them depend on
prior knowledge of the system, i.e., of its mathematical representation. Differences in the dynamic
behavior of these models can be extremely significant, and they are entirely due to the different ways
these model components are combined. A survey of it is given by Unbehauen (1996). L eontaritis and
Billings (1985) proposed a general approach for the identification and structural determination of
nonlinear systems approximated by dynamic polynomial representations. The available nonlinear
identification techniques have been subdivided by several authors (Billings and Fakhouri, 1978;
Korenberg, 1985) into three basic classes:

1. Cascade or block-oriented structured approaches.
2. Kernd or nonparametric approaches. (e.g., Wiener and V olterra representations).
3. Parametric approaches. (e.g., NARMAX models).

Parametric additive approaches split the high-dimensional problem into a sum of lower dimensional
problems. The justification of the additive structure can be drawn from a Taylor series expansion of
the process. Thus, any (smooth) process can be approximated by an additive model structure. The
important issue in practice is, of course, how fast the additive approximation converges to the true
process behavior if the model complexity increases. This depends on the usually unknown structure of
the process and the particular construction algorithm applied for building the additive model. The
world of expansions in terms of artificial neural networks, wavelet transforms, fuzzy models, etc., are

3
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also important for nonlinear dynamic systems which will not be considered in this thesis. We only
concern with the known parametric additive structures to identify the system parameters and consider
the nonlinear parameter identification problemsin prediction error method schemes.

The type of PEM algorithms to be applied depends on whether the parameters enter the model
structure in a linear or in a nonlinear way. The latter situation leads to a nonlinear |east-squares
problem. When all parameters enter the structure in a linear form, one usually talks about a pseudo
linear least-squares prablem, i.e., linear-in-the-parameters-identification. Among the identification and
optimization techniques, linear identification and optimization techniques are the most mature and
most straightforward to be applied. It offers a number of highly desirable features such as an analytic
one-shot solution, an unique global optimum, and a recursive formulation that allows an online
application. Many robust and fast linear identification and optimization implementations are available
in toolboxes, e.g.,, MATLAB Identification Toolboxes (Ljung, 1997). Powerful and very efficient
structure identification and optimization techniques and software packages are also available.

The polynomial autoregressive moving average model with exogenous inputs (NARMAX) model
provides an important general representation of nonlinear time-invariant systems. And roughly

speaking, it is always valid for systems with analytic nonlinearities. If a finite number of past inputs
u(t) and outputs y(t) with measurement noise £(t) are collected, then the NARMAX modd is

given by
y(t) =g"ut),u(t-1),--ut—n),yt-1,y(t-2),--, yt—n)] +&(t) (11

where g™ is a nonlinear function of degree m. For m=1 the resulting model is a linear
autoregressive moving average model with exogenous inputs (ARMAX) model.

There is no restriction in the nature of the excitation in the NARMAX procedure. But it should be note
that the estimation of the parameters can be computationally expensive due to the number of
parameters that increase exponentially with the degree of the kernel. And the discontinuous
nonlinearities such as saturation, backlash, hysteresis and dead zone cannot be modeled using it.

The NARMAX representation includes a family of other nonlinear representations and provides an
alternative to block oriented structured model (Pearson, 1999), such as.

» Kolmogorov-Gabor polynomial
It is aso the general NARMAX representation as shown in Eq. (1.1).

» Non-parametric Volterra-series

y(t) =g"[u@®),u(t-1),---,ut—n)+ (). (1.2
Since no feedback isinvolved the Volterra-series model is guaranteed to be stable.

» Parametric Volterra-series

y® =g "u®.ut-1), - ut-nl-ayt-N-ayt-2)---—ayt-n+et). (13

It isasimplified version of the Kolmogorov-Gabor polynomia and realizes a linear feedback (the first
order output) and models a nonlinearity only for the inputs. Its stability can be easily proven by
checking the dynamics of the linear feedback. It can also be seen as an extension of the Volterra-series
model if the order n is chosen large. It can be argued that in this case the additional linear feedback
would help to reduce the dynamic order compared with the non-parametric Volterra-series model.
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» Nonlinear differential equation (NDE)
y(t) =but) +but -1 +---+but—n)+g"[y(t—-2), -, y(t —n)] + &(t) . (1.4)

It can be considered as the counterpart of the parametric Volterra-series model since it is linear in the
inputs (the first order input) but nonlinear in the outputs. It arises frequently from modeling based on
theoretical analysis and should be applied only if its structure matches the process structure realy
well.

1.3.Wiener and Hammerstein system

In order to describe adequately the nonlinear behavior of the system over the entire range of operating
conditions, a nonlinear block-oriented model is often used and the identified system is generally
subdivided into linear dynamic subsystems (or linear dynamic blocks) and nonlinear static subsystems
(or nonlinear static blocks). The well-known Wiener systems and Hammerstein systems are nonlinear
models that are used in many domains for their smplicity and physical meaning, where the system
steady-state behavior is determined completely by the static-nonlinearities, while the system dynamic
behavior is determined by both the nonlinearities and the linear dynamic model components. For
example, a Wiener system (Figure 1.2) consists of a linear dynamic block followed by a nonlinear
static block. A Hammerstein system (Figure 1.3) is just a Wiener system structurally reversed, that is,
a nonlinear static block is followed by a linear dynamic block. The nonlinearities in Wiener and
Hammerstein systems could be continuous and discontinuous. An advantage of the distinction into
nonlinear and linear blocks is that the system stability is determined solely by the linear parts of the
model, which can be easily checked. Sometimes, it is assumed that the steady-state behavior is known
and uses this knowledge to determine the linear dynamic subsystem (Pearson, 2000).

st
u(z) wiz) yo L yig)
— Fg7.0) o W (w(E), ) = ,

e

Fig. 1.2 Wiener system

s(2)
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Fig. 1.3 Hammerstein system

Some other cascade or block-oriented structured systems include a MISO Wiener system, a MISO
Hammerstein system, a mixed MISO Wiener and Hammerstein system, a Wiener-Hammerstein
system (LNL) and a Hammerstein-Wiener system (NLN).
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1.4. Aims and Outline

It is clear that there exists no general valid descriptions for the full class of nonlinear systems. For that
reason, a very wide variety of models and identification methods is proposed in the literature. As a
natural extension of the linear system identification approach, it alows to carry over many of the
methods of the linear modelling approach to the nonlinear world, maintaining their simplicity, user
friendliness, and "short" experiment time to identify them.

The main purpose of thisthesisisto develop an unified and efficient identification methodology for a
special class of block-oriented structured SISO, MISO and cascade nonlinear time-invariant systems,
that is, a class of Wiener and Hammerstein systems with continuous or discontinuous nonlinearities. It
is aso from some common and suitable model structures and only based on the observed input and
output data and a prior knowledge about the behavior of nonlinearities without the assumption that the
steady-state behavior is known. Under this identification scheme, we derive the special algorithms for
each possible case, and analyze and verify the correctness of the derived algorithms by simulation
examples.

The outline of thisthesisis as follows:

> In chapter 2, nonlinear system identification will be discussed from a new identification
perspective. System descriptions, the key term separation principle and the new identification
method for the identification of Wiener and Hammerstein systems will be introduced.

> In chapter 3, the identification agorithms for SISO and MISO Wiener and Hammerstein
systems will be derived and their efficiency will be shown by simulation results.

> In chapter 4, identification algorithms for a Wiener system with general discontinuous
nonlinearities will be developed. Again, some simulation results will be discussed.

> In chapter 5, the identification algorithms will be extended and derived for a class of cascade
Wiener and Hammerstein systems and their efficiency will be illustrated by simulation
results.

> In Chapter 6, the identification algorithms will be extended and derived for generalized
Wiener and Hammerstein systems, which are simplified from a parametric Volterra-series.
There, some simulation results will also be discussed.

> Finaly, in Chapter 7, conclusions will be given.
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2. Concept of a new identification method for Wiener and Hammerstein
systems

2.1.General description

Many nonlinear dynamic systems can be approximated by Wiener and Hammerstein systems. An
earliest identification algorithm of this kind of systems was developed by Narendra and Gallman
(1966). They estimated separately and sequentially the linear dynamic transfer function and the
nonlinear static polynomial by the iterative least squares scheme. A noniterative version of the method
was proposed by Chang and Luus (1971). However, there is a certain amount of redundancy in the
parameters to be estimated and each parameter of the static nonlinear model has severa estimates. To
obtain an unbiased estimator in the case of correlated noise and output, Stoica and Soderstrém (1982)
developed instrumental variable techniques. Rosenthal (1985) studied identification algorithms and
two-step strategy for open and closed loop Wiener system and Hammerstein system. Pearson (2000)
introduced an identification method for a Wiener system, a Hammerstein system and a feedback-
Hammerstein system but with known nonlinear blocks.

An approach based on the combination of the correlation analysis and the least squares (LS) method
was developed by Haber (1979). For nonparametric methods, Billings and Fakhouri (1982, 1997) and
Greblicki (1994, 1998, 1999) presented algorithms for identification based on correlation anaysis.
Schetzen (1981) and Hunter and Korenberg (1986) use Gaussian input and estimate the linear and
nonlinear subsystems iteratively. The linear system is estimated from the cross-correlation function,
and the nonlinear system is described with a polynomial.

In Wiener and Hammerstein systems, the nonlinear blocks are sometimes supposed to be invertible. It
should be a strong assumption. This approach will be referred to as the internal error approach, since it
aims to minimize the intermediate error between the output of the linear subsystem and the input of
the nonlinear subsystem. Pajunen (1992) identified the static nonlinearity of the Wiener system in
terms of its inverse. Greblicki (1992) followed a similar approach but did not impose any parametric
restrictions on the functional form of the nonlinearity. Wigren (1993) proposed a recursive
identification algorithm for the Wiener model, the linear block with a transfer function operator and
the nonlinear block as piecewise linear and the static nonlinearity as opposed to its inverse and thus
one can handle nonlinearities which are not single valued. Kalafatis (1995) used a least squares
algorithm to simultaneously estimate the parameters of the linear subsystem and the inverse static
nonlinearity and assumed that the static nonlinearity is continuous, differentiable to the polynomial
order m and single valued in the region which the input-output data span. Hagenblad (1999) used
finite impulse response (FIR) model for the linear subsystem and B-splines for the inverse of the
system nonlinearity.

In a Wiener and Hammerstein system, the linear dynamical blocks and the nonlinear static blocks are
always separated. One problem is that if the linear and nonlinear subsystems are parameterized
separately, the Wiener and Hammerstein systems are over-parameterized in some presented algorithms
(Boutayeb, 1994; Kalafatis 1997; Hagenblad, 1998; Zhu, 1998). Numerical problems will occur if the
over-parameterization is not addressed. That is, a constant gain can be distributed arbitrarily between
the linear and nonlinear subsystems. In order to get a unique solution, the gain of one or some
subsystems must be fixed. A simpler solution is to just fix some of the parameters of the linear or
nonlinear subsystems, without loss of generality, let them be constant during the minimization. Some
other possible constraints in the minimization will not be considered here.

It can be concluded from the literature that the most important attempt is always trying to reduce
parameter redundancy by using special linear and nonlinear model structures. Some other attempts are
to select a parameterization and approximations or relax algorithms to simplify the computation
procedures to fit the individual nonlinear model situations to process data.
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2.2.Linear and nonlinear submodels

In a Wiener and Hammerstein system, many different linear and nonlinear submodel structures have
been considered. Pajunen (1992) treated the problem of model reference adaptive control of a Wiener
system. The linear system was represented as a transfer function and the inverse of the nonlinearity
was represented with B-splines. Voros (1995) used a transfer function for the linear subsystem and a
polynomial for the nonlinearity. In Bruls et a. (1997), a state space model was used for the linear
system and Chebyshev polynomials for the nonlinearity. In Kalafatis et a. (1997), FIR or the
frequency sampling filter (FSF) model were suggested for the linear subsystem and a power series or
B-splines for the nonlinearity. In Zhu (1999), high order autoregressive with exogenous input (ARX)
model was used for linear subsystem and cubic splines for the nonlinearity.

2.2.1. Model structures for linear dynamic subsystems
2.2.1.1. Rational transfer function model (RTF)
Assume that the linear dynamic system is time invariant, causal, and stable. Such a system is

completely described by its impulse response g(t), t =1,2,---,0. For agiven input u(t), the linear
dynamic system output y(t) isasfollows

y(t) => gkut-k), t=12 0. 2.1)
k=0
The transfer function G(q ™) of the system is described by
G(@™) =2 9(k)g™ (2.2)
k=0

and the linear system output can then be written as y(t) = G(q )u(t) .

If G(q™") isstable, then

g (k)] < . 23)
k=0

Although a system is uniquely determined by its impulse response, it is no practical way to work with
this in general infinite sequence. Furthermore we need an expression where the system G(q‘l) is
characterized by a finite number of parameters. The parameters can be collected into a parameter
vector @, and the transfer function can be written as G(q*,0) .

A common choice is to select the transfer function as a rational function where the numerator and
denominator coefficients are the parameters. Without loss of generality, we suppose the orders of
numerator and denominator are the same, n.

G(q,0) = E((ZI; (2.42)
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where
B(g™)=b,+bg*+b,q%+--+b,gq”" (2.4b)
FqY)=1+fq +f,qg%++fq™". (2.4c)

B(q™) and F(q™) are coprime. It is also possible to redefine the B(q™) polynomia to include
extradelays. The parameter vector is 0" =[f, f,,--, f,,by,b,,--,0,].

L)

2.2.1.2. Finite impulse response model (FIR)

Asaspecial case of the low order rational transfer function model, a stable linear dynamic system may
be represented by the FIR model of order n

y(t) =G(a™,8)u(t)

= Y b.u(t—k) (29
k=0

where the parameter vector 0" =[b,,b,,---,b,].

A FIR model of order n can only describe a system whose impulse response has maximum length of
n time steps, but if we let n tends to be infinity, any given stable system will be possible to describe

accurately. That is, by selecting n large enough, a FIR model can always describe a stable G(q ™, 0)
accurately enough.

But FIR methods are inefficient parameter estimators because more parameters are necessary to
represent the process, that is, more data will be required to estimate those parameters than for a
parsimonious parametric model. We might need many parameters to describe a FIR model, and we do
not beforehand know how many. Luckily, the cost for using more parameters is not too large in terms
of time when we use the linear regression estimate. The limited number of data available in practice
does, however, put a limit of the number of parameters we can estimate. Trying to estimate too many
parameters may cause numerical problems, and the estimates are more influenced by noise if we have
only a few data. Therefore, if an output variable is measured infrequently, a very time-consuming
response test may be required to gather enough data to estimate FIR coefficients. But because of the
simple linear regression algorithm a satisfied result can also be got. And, in addition, the FIR model
can also be converted to another model structure if desired.

2.2.1.3. Frequency sampling filter model (FSF)

Alternatively, as another form of FIR model, the FSF model can be used to represent the linear system
(Bitmead and Anderson, 1981). Since the FSF model is abtained from a linear transformation of the
FIR model and consists of a set of narrow bandpass filters, they have a common model order. A FSF
model of order n isgiven by

YO =Y P (1) 26)
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2
where p, is the discrete frequency response of the linear system at @, :—ﬂk and w, (t) for
n

k =1,2,---,n isthe output of the k —th frequency sampling filter defined as

-n

u(t). (2.7)

1 1-
="
n

1-el™q™
The parameter vectoris 0" = Pos Pty Poal -

The same reason as in the FIR model case, the number of parameters of a FSF model to be estimated
can also be quite large. However, only alimited amount of information about the linear system in the
frequency domain may be required. In this case, we can make use of the orthogonal properties of the
FSF model under periodic excitation to drastically reduce the number of parameters of the linear
system to be estimated.
j2mt

Goberdhansingh et a. (1992) showed that when a periodic input signal of the form u(t)=1e " ,
where y isaninteger intheinterval [0,n—1], is passed through the bank of FSF filters, only the FSF

filter with center frequency 27y /n will have a nonzero output. For example, if we choose the input

signal to be a sinusoid consisting of a single frequency @, = % which is the center frequency of
n

the k —th FSF filter, Eq. (2.6) can then be described by
y() = Py () + Pk (O (2.8)
where the parameter vectoris 8" =[p,, p, . ]-

That is, the model parameters can be dramatically reduced. This can be easily extended to the case
where the input signal is composed of multiple sinusoids, i.e., each additiona frequency will add two
more terms, that is, two more parameters in Eg. (2.8). Then the number of parameters to be estimated
is generaly fewer than the number required by the FIR model to describe a system accurately enough.

2.2.2. Common linear MISO model structure

At first, we define the measurement noise. In areal system, there is always noise and the filter of this
noise should also be identified. The model structure depends also on the structure of noise filter which
iswritten as

e(t)=H(@ ", e(t)

-1 2.9
_ C(q_l) (t) (2.99)
D(q™)
where
C(q™")=1+cq*+---+c,q " (2.9b)
D(q™")=1+d,q7" +---+d, g™, (2.90)

10
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The orders of C(q™") and D(q™') are n_ and n,. Here, e(t) is white noise. The noise filter

parameter vector is &" =[d,,d,,---,d, ,¢;,Cp000C, 1
The most popular linear representation isthe ARMAX model which is discussed by Ljung (1987)
N, n ne
y(t) =Y a;yt—j)+ > but—j)+> celt-j) (2.10)
j=1 j=0 j=0
where n, is order of the system output polynomial, a, for j=1---,n are the autoregressive
parameters of the system and C, =1. The parameter vector is o' :[al,az,---,ana N PN JRETN Ny

Note that this model can be extended directly to multiple-input ARMAX models by adding terms to
the second sum, corresponding to the delayed values of additional exogenous inputs.

A general linear MISO model structure of i inputsis described by

A@,0,)Y(t) =G, (a7,0,)uy(t) + G, (a0, )u, (1) ++-+G;(a7,0,)u; (1) + &(t)

N - (g7t K 2.11
SB@) e By B gy G o (2119
F.(a7) F,(a7) F (™) D(a™)
where
A@™*.0,)=1+aq9" +--+a,q"™ (2.11b)
Bj(q‘l)=bj0+bj1q‘1+-~+bjnjq‘”j (2.11¢)
Fi@)=1+f,q" ++f,q", (2.11d)

0, and 0, for j=12,--,iare the corresponding parameter vectors. B;(q™) and F;(q™") are

coprime and have the same order n; for j=12,---,i. It is aso possible to redefine the Bj(q‘l)

polynomia to include extra delays. Eqg. (2.11a) contains several specia model structures, some of
them arelisted in Table 2.1.

Table2.1 Some linear M1SO model structures as special cases of Eq. (2.11)

Polynomials used in Eq. (2.114) Name of the MISO model structure
B.(q™) FIR
]
A(@™.0,). B;(@™) ARX
A(@™,0,). B;(g™).C(a™), ARMAX
B;(a™)., F;(a™) OE
B;(a™"), Fj(a™).C(a™), D(@™) BJ

In Table 2.1 the acronyms FIR, ARX, ARMAX, OE and BJ denote: Finite Impulse Response,
AutoRegressive with eXogenous inputs, AutoRegressive Moving Average with eXogenous inputs,
Output Error and Box-Jenkins, respectively.

11
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Actually, Eqg. (2.114a) can be rewritten as

y(©) = A (07,0,)y(t-1)+G,(q,0,)u,(t) + G,(q™",0,)u, (t) +---+G; (a7, 0;)u; (t)

2.12
+&(t) (212

where A"(q7,0,) =-a,—a,q " —---—a, ™" and y(t-1) at the right side of Eq. (2.12) can
also be regarded as a pseudo-input of the system.

2.2.3. Model structures for nonlinear static subsystems

In the following we consider two cases:
» Continuous nonlinearities

To express the continuous nonlinear static subsystem N(-,m), one can use a function expansion of
order m with basis functions Q, (-) and parameters S, for k =1,2,---,m. The main structure is
given by

y() =N(x(t),n)

=3 B, -0, (2 (1) 213
k=1

where y(t) istheinput of nonlinear static subsystem. (t) is the output nonlinear static subsystem.
The parameter vectoris " =[5, B0+ B ]

If the internal parameters of the basis functions are fixed, the output is a linear function of the
parameters [ B, B, .,] . A simple caseisapolynomial Q, (¥(t)) = z*(t) for k =1,2,---,m

Y= B2 0). (2.14)

The polynomial representation has the advantage of more flexibility and of asimpler use. It is widely
used in literature. Naturally, the nonlinearity can be approximated by a single polynomial. An
aternative structure is to use a polynomial of the inverse of the nonlinear static subsystem for Wiener
system (Kalafatis 1995).

Another useful case are splines which are also nice functions, since they are computationally very
simple and can be made as smooth as desired. But it requires the choice of break points (knots).
Hagenblad (1999) and Zhu (1999) used B-splines and cubic splines, respectively, to describe inverse
of the nonlinear subsystem in Wiener system.

» Discontinuous nonlinearities
By introducing some switching functions, one can get models for discontinuous nonlinearities, like

direction-dependent nonlinearity, preload nonlinearity, dead-zone nonlinearity, saturation nonlinearity,
and so on.

12
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2.3.New concept of the recursive identification method for Wiener and
Hammerstein systems

2.3.1. Recursive pseudo-linear regressions (RPLR)

Supposing a genera SISO block-oriented time-invariant nonlinear system with input u(t) and output
y(t) , the data are assumed to be collected in discrete time. At time t, we have:

the observed system input vector u” (t) = [u(2),u(2),---,u(t)],

the observed system output vector y"* (t) =[y(1), y(2),---, y(t)] and

r unmeasurable intermediate variable vectors, w'(t) =[w; (t), W (t),---,w, (t)], where
w, (t) =[W, (D, W, (2),---,W, (t)] for k =1,2,---,r. They can be seen as states of the system
and can be recursively estimated by using the estimated parameters.

The main problem is how to find a good parameterization and how to deal with it. The general form of
such aregression model is given by

w(t +1) R

{ I }= g(u(t),w(t),y(t-1),9) +e(t) (2.15)
where § is a constant whole parameter vector to be identified 3" =[0,1,&]. e(t) is arandom error
in the measured output y(t) values.

The functiong(u(t), w(t),y(t —1),9) can been considered as a concatenation of two mappings:

1. Taking the observation u(t), y(t—1) and estimation w(t) and mapping them into a finite
dimensional regression vector, ¢(t) = @(u(t),w(t),y(t -1)).
2. Taking thisregression vector @(t) by choosing g(¢(t),9) to the output space.

Then the estimated system output y(t) is given by

y(t) = g(o(t),9) . (2.16)

We consider the identification problem in a prediction error method and model scheme. To identify
the parameter vector, we compare the predicted output y(t) with the measured output y(t) in the
following prediction error criterion:

g=argmin Y. Z[(y() - JOI" 247)

It is the same for al linear and nonlinear dynamical systems and according to the different model
structures it turns out the choices of parameter-depended regression vector ¢(t) and lead to different

identification algorithms.

As Ljung (1987) pointed out: no matter how @(t) isformed, it is the known data at time t and it can
contain arbitrary transformations of measured and estimated data. Because ¢(t) depends on w(t)

which contains information given by the model at early time instants, the model (2.16) is regressive.
g(e(t),9) can be pseudo-linear. A pseudo-linear regression is defined as a model structure where the

13
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prediction is linear in the parameters ¢ but nonlinear in data @(t). Then the regression parameter

vector 9 can be caculated by LS or PEM estimator. That is the so called pseudo-linear regressions
(PLR)

j) =o' (1)-9

T . . (2.18)
=0, (1) G +0,(t) % +--+o, (1) .
Eq. (2.18) can be regarded as a finite-dimensional parameterization of a general, unknown nonlinear
predictor. The problems are how to choose the regressors ¢(t) according to the physical insight into
the system and how to determine the predictor in some recursive fashion to arrive at the recursive
pseudo-linear regressions (RPLR) estimates.

Eq. (2.18) can also be seen as atransformation result from a S pseudo inputs pseudo-linear system

9(t) = Gl(qil’el)ul(t) + Gz(qil’ez)uz(t) teeet Gs (qil’es)us (t) : (2-19)

A specia exampleisto identify the parameters of a single nonlinear static model of order m

J(t) = By + Bu(t) + Bu?(t) +---+ S u" (). (2.20)

Because the parameters enter the model linearly, Eq. (2.20) can be written directly into a pseudo-linear
regression form

yO=0" ()9 (2.21)

where @ (t) =[Lu(t),---,u™ ()] and 3" =[Sy, By, ", B, ], namely transforming this problem into

alinear MISO FIR model (Ljung, 1995) which has m+1 inputs: ,u(t),u”(t),---,u™(t) . With the

known LS or PEM algorithms for linear regression models, the parameter vector ¢ in Eqg. (2.21) can
beidentified correctly.

Based on the analysis above, we transform a SISO cascade time-invariant nonlinear system into a
pseudo-linear M1SO system with multiple pseudo-inputs as shown in Eq. (2.19). Then a pseudo-linear
MISO prediction error model can be formulated. With the same principle, it can be extended to MI1SO
systems to obtain the corresponding identification algorithms. The aim of this thesis is to make such a
unified and efficient identification methodology for a class of Wiener and Hammerstein systems
available by transforming the nonlinear identification problem into a general pseudo-linear M1SO
identification problem.

2.3.2. Key term separation principle and estimation

To write out the description of the whole model with explicit parameters, it presents usually
nonlinearities or redundancy in parameters, because of the substitutions from or into nonlinear or high
order terms and products between parameters. This identification problem can be solved by LS or
PEM method but suffering from the too much redundant parameters and its complicated computation.

Instead of direct substitution, one can compress or merge the redundant terms by introducing some
possible intermediate variables to form a RPLR estimates. Because of the separation of linear
subsystems and nonlinear subsystemsin a Wiener and Hammerstein system, the intermediate variables
become definitively. It is naturally sometimes to take the variables between the subsystems as the
intermediate variables.

14
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Voros (1995) used the key term separation principle to identify Wiener system and Hammerstein
system. The basic idea of the key term separation principle is a form of half-substitution, that is, only
the separated key terms will be substituted with their front expressions. Then, with an analytic additive
form, the system output y(t) with a minimum number of parameters can be determined. Weiillustrate

the key term separation principle by a Wiener system and a Hammerstein system in detail.

2.3.2.1. Wiener system

Considering a Wiener system shown in Fig. 1.2, the variable relationships can be written as

w(t) =G(a™,0)u(t) (2.23)
and
y(t) = N(w(t),n) + &(t) . (2.24)

Substituting Eq. (2.23) into Eq. (2.24) directly, the system output is given by

y(t) = N(G(q,0)u(t),m) +&(t) . (2.25)
But we can also estimate the intermediate variable w(t) and use the key term separation principle to

write an alternative form for Eq. (2.25). According the key term separation principle, the nonlinear
subsystem function in Eq. (2.24) can be separated as

y(t) = p-w(t) + N"(w(t). ') +&(t) (2.26)
where W(t) in p-w(t) istheso caled key term. p isa constant coefficient.

If the substitution of Eq. (2.23) into Eq. (2.24) is only done for the key term w(t) (half-substitution),
we have

y(t) = p-G(a,8)u(t) + N" (w(t),n’) +&(t). (2.27)
The key term w(t) can be recursively estimated by Eq. (2.23) with the estimated parameters. And Eq.

(2.27) could also be written in a linear regression form in which the parameters are in a linear form
and without parameter redundancy.

2.3.2.2. Hammerstein system

Considering a Hammerstein system as shown in Fig. 1.3, the variabl e relationships can be written as

w(t) = N(u(t),n) (2.28)
and
y(t) = G(q™,8)w(t) + £(t). (2.29)

Because of the special model structure in Hammerstein system, Eq. (2.29a) can also be written as an
ARMAX model form

15
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A@™)Y(t) = B(a w(t) +&(t). (2.290)

Substituting Eqg. (2.28) into Eq. (2.29a) or Eqg. (2.29b) directly, the system output is as follows:

y(t) =G(a ™, 0)N(u(t),n) + &(t) (2.30a)
or
A@™)y(t) =B(g )N (u(t),n) +&(t) . (2.30b)

If we use the key term separation principle, the linear subsystem function in Eqg. (2.29a) and Eqg.
(2.29b) can be separated as

y(t) = p-w(t)+G (g0 )w(t) + &(t) (2.31a)
or
A@@™)y(t) = p-w(t)+ B (g )w(t) + £(t) (2.31b)

where W(t) in p-w(t) isthekey term. p isaconstant coefficient.

If the substitution of Eq. (2.28) into Eq. (2.314) or Eq. (2.31b) is only for the key term w(t) (half-
substitution), we have

y(t) =p-Nu(t),m)+G (a0 )w(t) +&(t) (2.32a)
or
A@™)y(t) = p- N(u(t),n) + B (@ )w(t) + &(t) (2.320)

The key term w(t) can be recursively estimated by Eq. (2.28). Eq. (2.32a) and Eq. (2.32b) could also

be written in a linear regression form in which the parameters are in a linear form and without
parameter redundancy.

In the same way, other Wiener and Hammerstein systems can also be described by using recursively
estimated intermediate variables, i.e., key termsto form RPLR estimates.

2.3.3. Concept of the Identification method

In the following we describe the single steps of the identification method in a more detail.
» Initial values of parameters

A good choice of initial values of parameters can make the identification algorithm stable and can give
convergence to the global minimum. Some suggestions on how to initialize the search algorithm for
nonlinear black-box models can be found in Sjéberg (1997). The result from one identification method
can be used as initia value of other methods. To illustrate the efficiency of the new identification
method we set al the initial values of parametersto zero.
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» Smoothing techniques to estimate intermediate variables

In a RPLR identification the parameter variation will strongly affect identification quality. The
estimation of the intermediate variables depends on the corresponding estimated parameters of the
front submodels from last time instant. Because of these unmeasurable intermediate variables or their
combinations, the constructed regressive nonlinear dynamic models are especially sensitive to the
estimated intermediate variables and could not converge to a good minimum. Therefore smoothing
and filtering in the estimation of these intermediate variables are necessary.

One can smooth and filter the historical values of intermediate variables directly or the historical
values of corresponding submodel parameters which are used to calculate the intermediate variables.
Various data smoothing techniques provide possibility to mitigate the estimate errors of intermediate
variables and to avoid the possible oscillations to achieve better convergence.

We use the moving average parameter smoothing technique (Brown, 1963) which means
exponentially averaging the parameter vector 9, with afixed moving window length mov

4 =ad +all-a)d_ +al-a)’9_,++a@-a)" G .o+ L) 8 . (233)
where « isaconstant value between zero and one and the sum of the weight coefficientsis 1.
a+all-a)+al-a)’ ++al-a)"™? +(1-a)™ " =1. (2.34)
In further, the double exponential smoothing (Brown, 1963) can be used.

*k

4 =ad +(1-a)9, (2.353)
% =a9” +(1-a)d_, (2.35h)

The smoothed parameter vector §t can be used to estimate the intermediate variables. A serious

problem is the choice of the smoothing parameter « . The role of such a parameter is to damp out
random fluctuations. It must be specified to minimize the smoothing errors. This can be done by trial
and error method over a past time interval. In general, small values have a stronger smoothing effect
than large values.

In order to facilitate specification of o and to improve alertness ability of the smoothing, another
aternative adaptive smoothing method (Trigg and Leach, 1967) can be used.

G,=a8 +(L-a,)s (2.36a)
K, =9 -8 (2.36b)
E, =px, +(1-p)E, (2.36¢)
M, = p|1(t|+ a@-p)M,, (2.36d)
a, =|E M| (2.360)

where p isusualy set at 0.1 or 0.2. Finaly, «,,, is computed instead of ¢, to alow the system to
"settle" alittle by not being too responsive to changes.
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Other smoothing methods are a piecewise line of polynomial fitting approach using a moving window
with another fixed window length, Kalman filter, fuzzy sets and so on.

» Adaptive identification method

Adaptive identification methods are generaly for time-variant dynamic systems, especialy under the
white or colored measurement noise. In our new recursive identification algorithm, because there are
intermediate variables estimation in every time instant, the reconstructed identification model can be
regarded as a linear time-variant dynamic model. In order to guarantee and accel erate the convergence,
we use the forgetting factor approach with a variant forgetting factor,
A) = At -+ (1-A(t-1) AL to adaptation and to identify the parameters.

The general adaptive recursive algorithm (Ljung, 1987) is given by

S(t) = $(t 1) + K(t)(y(t) - y(t)) (2.37)
y©) =o' (0)9(t-1 (2.38)
K(t) = Q(t)o(t) (2.39)
P(t—1)
t)= 2.40
A= 0 o P Do) (240)
Mppn_ o PE-DoMe" ()P(E-1)
P(t) = [P(t 1) 7010 OPC Do) j/l(t) . (2.41)

Therefore, concept of the new identification method is the following:

1. Suppose the system input u(t) is persistently excited and the Wiener and Hammerstein system is
stable.

2. Select the linear and nonlinear submodel structures and use the key term separation principle to
extract the key terms and to define the intermediate variables or their combinations as pseudo
multiple inputs.

3. Transform the Wiener and Hammerstein system into a pseudo-linear MISO system with all
explicit system parameters and form a prediction error model.

4. Fix some parameters to obtain a unique parameterization.

5. ldentify the original parameters of the Wiener and Hammerstein system by using smoothing
techniques and the adaptive recursive pseudo-linear regression (RPLR) method.

This new concept will be applied now to different cascade and block-oriented structures of Wiener and
Hammerstein systems.
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3. Identification of SISO and MISO Wiener and Hammerstein systems
3.1. SISO Wiener and Hammerstein systems

In this section, we apply the new identification method described in section 2.3.3 to identify:

aWiener system (Fig. 3.1),

aHammerstein system (Fig. 3.2),

a Feedback-Wiener system (Fig. 3.3) and

a Feedback-Hammerstein system (Fig. 3.4).

£(t)
u(z) wiz) yo L yig)
— Fg7.0) o W (w(E), ) W

Fig. 3.1 Wiener system

s()
2 (t) wit) ¥'ie) +L ¥t}
— Muit)n) | G(g7.8) W =

Fig. 3.2 Hammerstein system

£(2)

7z u(t) ¥ e, J yit)
2 MN((g),m) K =

Glg™.0)

Fig. 3.3 Feedback-Wiener system

2l

r® u(t) —— y‘.:;;.J 0
— & GI:Q'_ ,Hj 2 +

N(yiz)m) p

Fig. 3.4 Feedback-Hammerstein system
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In the above Figures r(t) isthe reference signal, u(t) isthe systeminput, y(t) isthe system output,

and Yy (t) is the unmeasurable system output without measurement noise. In Fig. 3.1 and Fig. 3.2,
w(t) isan unmeasurable intermediate variable. In Fig. 3.3 and Fig. 3.4, u(t) is also an unmeasurable
intermediate variable and « is an unknown constant gain which is used to distribute the whole system
gain. O is a parameter vector determining linear dynamic subsystem G(q,0). n is a parameter
vector determining nonlinear static subsystem N (-, ). £(t) is the colored measurement noise which

is the result of a white noise e(t) through a linear filter H(q™*,&). All functions are defined as
before.

3.1.1. Wiener system

In Fig. 3.1, the linear dynamic block G(q*,0) isaRTF model of order n

B(q™)
w(t) = u(t). 3.1
w(t) = F@) u(t) (31)

The nonlinear static block N (w(t),n) is described by a polynomial of order m

Y )= A, W)
k=t (3.2)

= Bow®)+ Y B W (1)

and w(t) inthefirst part of Eq. (3.2) isthe key term.

Half-substituting Eq. (3.1) into the key term w(t) of Eq. (3.2), the system output of a Wiener system
can be written as

y(t) =y () +e&(t)

A (B(_?)l)u(t)@ﬁk we )+ @)

(q—l) ot (3.3
DY) e(t).

To avoid the over-parameterization problem, one parameter of £,,b,,b;,---,b, in Eq. (3.3) should be

fixed. It is shown that a Wiener system can be transformed approximately into a pseudo-linear MI1SO
system which has m independent inputs: the system input u(t) and the recursively estimated

intermediate variables w*(t) for k =2,3,---,m according to Eq. (3.1). All the parameters in this
pseudo-linear M1SO system Eg. (3.3) are explicitly given.

3.1.2. Hammerstein system

Considering Hammerstein system as shown in Fig. 3.2. The nonlinear static block N (u(t),n) isagain
apolynomial of order m
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w(t) = iﬂk uk(t). (34)

The linear dynamic block G(q™*,0) isaRTF model of order n

B -1
= F ) w0
5 () (352)
= b, - () + — L wt)
Ch
-1
where we separate apart b, - w(t) from the transfer function B(q _1) w(t) . According to the function
*r -1
definitions before, B (q™) in the second part ?:((q_l)) is
q
B' (@) =bg " +byq* +--+byq" (3.5b)
with
bj =b; by - f, (3.50)

for j=1,2,---,n and w(t) inthefirst part of Eq. (3.59) isthe key term.

Half-substituting Eq. (3.4) into the key term w(t) of Eq. (3.5a), then the system output of a
Hammerstein system can be written as

YO =y (0 + &)
3.6
—Zb U0+ ((q )) w(t) + Eq ; e(t) 59

We can also get another aternative description. Because of the specia structure of Hammerstein
system, it is also convenient to use an ARMAX model of order n to describe the linear block

G(q',0), that is

A(@)y(t) =B(q)w(t) + C(q e(t)

. (3.7)
= b, -w(t) + B (g 7)w(t) + C(q)e(t)

where we also separate a part by, -w(t) from B(q ‘)w(t). According to the function definitions
before, B (q ") inthe second partis B (q™) =b,q ™" +b,q +---+b_q™" which s not the same as
in Eq. (3.5b). Again w(t) inthefirst part of Eq. (3.7) isthe key term.

Half-substituting Eq. (3.4) into the key term w(t) of Eqg. (3.7), the system output of a Hammerstein
system can also be written as
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Mwﬂwo=fwmﬂruW0+BY¢ﬂw®+cm*mm. (3.8)

Both Eq. (3.6) and Eq. (3.8) can be used to identify Hammerstein systems and it can be expected that
the model in Eqg. (3.8) is simpler than the model in Eq. (3.6). To avoid the over-parameterization

problem, one parameter of by, £,, £,,:-, B, in Eq. (3.6) and Eq. (3.8) should be fixed. It is shown
that a Hammerstein system can be transformed approximately into a pseudo-linear MISO system
which has m+1 independent inputs: u*(t) for k =1,2,---,m and the recursively estimated w(t)

according to Eq. (3.4). The parametersin Eq. (3.6) and Eq. (3.8) can be identified without redundancy
and the original nominator parameters of the linear block in Eq. (3.5a) can be recal culated according to
Eq. (3.5¢).

3.1.3. Feedback-Wiener system

Considering a stable Feedback-Wiener system as shown in Fig. 3.3. We make use of a RTF model of
order n to describe the linear block G(q™,0). Because of its feedback characteristics, the linear

block G(q™,0) should contain a time delay, that is, B(q™) =h,q™" +b,q” +---+b,q™", so that
the Feedback-Wiener system is well defined.

Then the input of the nonlinear static block can be derived as

it =a r(t)—ﬂyo (39
F(g™)

The nonlinear static block N (u(t),n) is described by a polynomial of order m

Y ) =3 4 uk®)
- (3.10)
=ﬂﬂm+2ﬂwwm

where u(t) inthefirst part isthe key term.

Half-substituting Eq. (3.9) into the key term u(t) of Eg. (3.10), we get the system output of a
Feedback-Wiener system

y(t) =y () +&(t)

:ﬂl-a~r(t) ﬁl (q_l)

@) o (311)
F@) 0

y(t)+2/3k u (t)+C( ;

To avoid the over-parameterization problem, one parameter in S,,a,b;,b,,---,b, should be fixed.
Eq. (3.1) shows that a Feedback-Wiener system can be transformed approximately into an open-loop
pseudo-linear MISO system which has m + 1 independent pseudo-inputs: the reference signa r(t),
the system output —Yy(t) and the recursively estimated intermediate variables u*(t) for
k =2,3,---,m according to Eqg. (3.9). All the parametersin Eq. (3.11) are explicitly given.

22



Identification of SISO and MISO Wiener and Hammerstein systems

3.1.4. Feedback-Hammerstein system
Considering a stable Feedback-Hammerstein system as shown in Fig. 3.4. We use a polynomial of

order m to describe the feedback nonlinear static block N (y(t),n) . Therefore, the input of the linear
dynamic block can be derived as

TORTRIOE WA (3.12)

Because of the structure of Hammerstein-type system and in order to simplify the derivation, we use
an ARMAX model of order n to describe the linear dynamic block G(q ™, 0)

A@™)y(t) =B(g)u(t) +C(a™)e(t). (3.13)

And because of its feedback system characteristics, the linear block G(q™,0) should contain atime
delay, that is, B(q')=b,g™" +b,q*+---+b,q™", so that the Feedback-Hammerstein system is
well defined.

Substituting Eq. (3.12) into Eq. (3.13), we get
A@)y(t) = B(Q‘l){a r(t) - ki, B y* (t)} +C(qe(t). (3.143)
From Eq. (3.14a) we find

[A@™)+ 4. -B(@ )yt = B(Q‘l)[a r(t) - gﬂk -y (t)} +C(qe(t). (3.14b)

Now we define two equivalent expressions:

n

B(q_l) = blq_l + bzq_z +e-t bnq_

* (3.15)
=bg™+B(q7)
with B (q™") =b,q* +b,q ™ +---+b,q ™" and
A* -1 _ A -1 B -1
(9 ) 1 (q* )‘2"/31 (q* ) (3.16a)
=1+a,0" +a,q  +--+a,q"
with
fork=12,---,n.

And we define a new combined intermediate variable in Eq. (3.14b)
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y() =b1-[a~r(t)—2ﬁk 'yk(t)] (3.17)
k=2
Then Eq. (3.14b) can be rewritten as

A (@)Y =B(a )y +Cae()

-1+ 2 E)q_ )51+ Cc(qH)e(t)

(3.18)

where the separated part Y (t —1) isthe key term.

Half-substituting Eq. (3.17) into the key term y(t —1) in Eq. (3.18), we get the system output of
Feedback-Hammerstein system

y(t)+C(a™)e(t). (3.19)

A (a)y() =b1-a-r(t—1)—ib1 By =D+ B*E)q_l) y

1

To avoid the over-parameterization problem, one parameter in b,,«, £,, f5,--, B,, should be fixed.

Eqg. (3.19) shows that a Feedback-Hammerstein system can be transformed approximately into an
open-loop pseudo-linear MISO system of m-+1 independent pseudo-inputs. the reference signal

rit-1), —y*(t-1) for k =2,---,m and the combined intermediate variable y(t) which can be
recursively estimated with Eq. (3.17). It should be noted that only a, for k =1,2---,n in Eq. (3.19)
are identifiable because of the inherent dependence. Actually, the term S, y(t) in the nonlinear static
block N(y(t),n) in the feedback path will cause a linear feedback identification problem. And only
under some special assumptions, for example, if A, is a known or fixed, the original parameters a,
for k =1,2---,n in Eq. (3.144) can be uniquely determined by Eq. (3.16b).

3.1.5. Simulation results

We now consider the application of the new identification method to the following four special SISO
Wiener and Hammerstein systems.

For the Wiener system and the Hammerstein system, two standard examples are used (Kortmann,
1989). In order to compare the identification results with Kortmann (1989), we use the same
identification conditions and signals. A uniformly distributed random signal with an amplitude + 0.5
is used as input u(t). Another independent random numbers is as zero mean white noise e(t).

N =1000 data points are collected.

The linear dynamic subsystem is described by

~0.1333q7 +0.0667q
1-1.597"+0.7q°

G(q™,0) (3.20)

and the nonlinear static subsystem by
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y() =N(z(t),n)

2 3 (3.21)
=y +3y°(t)+1.57°(t)

where y(t) isthe input of the nonlinear block and y(t) is the output of the nonlinear block. We fix
the first power parameter in nonlinear subsystem g, =1.

For the Feedback-Wiener system, the linear and nonlinear blocks are also described by the Egs. (3.20-
3.21). The original constant gain a in the Feedback-Wiener systemis” rfa = 0.1".

For the Feedback-Hammerstein system, we assume it consists of an ARMAX model

(1-1.597" +0.797%) y(t)

(3.22)
= (013339 + 0.0667q 2)u(t) + (1+ 0.29 ™" + 0.1 )e(t)

and a nonlinear static feedback block Eq. (3.21). The original constant gain a is "rfa =1".
According to the derivation, an equivalent Feedback-Hammerstein system can be formed as

(1-1.3667q"" + 0.7667q ) y(t)
— 0.1333r(t —1) — 0.3999y2 (t — 1) — 01999yt — 1) + 0.5004 (t — 2) (3.29)
+(1+0.297" +0.1g %)e(t).

A standard random numbers are used as the reference signal r(t) for the Feedback-Wiener system and

the Feedback-Hammerstein system. Another independent random numbers is as zero mean white noise
e(t). N = 2000 data points are collected.

For the Wiener system, Hammerstein system and Feedback-Wiener system, the linear filter for a
colored measurement noise is given by

1+0.297"+0.1g7°

H(g™,g) = . 3.25

@8 1-0.99™" +0.85q > (3.25)
The Noise-Signal ratio is defined as

Varly(t)], -0 (3.24)

T Varly (g |

We consider different measurement noise levels for the four different block-oriented structures.
Besides the non-noisy case, N./S.=5%, 10% and 20% white and 10% colored measurement noise
are added to the system output, respectively.

In order to calculate the unmeasurable intermediate variable w(t) in Wiener system and Hammerstein
system and the unmeasurable intermediate variable u(t) in Feedback-Wiener system and Feedback-

Hammerstein system, we use the adaptive exponentially moving average smoothing technique to filter
the estimated parameters. The moving window with a fixed length is Mov = 4. Then the standard
recursive prediction errors method (RPEM) function for linear M1SO system with various forgetting
factors A(0) =0.7 and A4 =0.01 in MATLAB is applied. The initial values of all the unknown

parameters are taken as zero.

25



Identification of SISO and MISO Wiener and Hammerstein systems

Identification results with different measurement noises are shown in Tables 3.1A-3.4A. The
identification processes with a N./S.=10% colored measurement noise are shown in Figs. 3.5-3.8. The
red linesin Figs. 3.5-3.8 are the real values of parameters. We calculate single parameter identification

error Ap and the avarage identification error |A| of each structure according to:

lactimated — 2 o
|Ap| = [estimated —true| and |A|= a ¢ is the parameter number. Parameter identification

errors with different measurement noises are shown in Tables 3.1B-3.4B. Comparison of avarage
parameter identification errors |A| of the four structuresis shown in Table 3.5.

Table 3.1A Identification results of the Wiener system

N =1000 b, b, fy f, B B
10% C. N. 0.1314 0.0623 -1.5119 0.7111 2.9940 1.7155
20% W. N. 0.1332 0.0723 -1.5046 0.7015 2.9175 1.1322
10% W. N. 0.1323 0.0659 -1.5085 0.7048 2.9974 1.4243
5% (Kortm.) 0.1453 0.0489 -1.5043 0.6986 3.0161 1.4477
5% W. N. 0.1315 0.0675 -1.5050 0.7033 3.0711 1.5087
Non-noise 0.1333 0.0667 -1.5000 0.7000 3.0000 1.5000
True values 0.1333 0.0667 -1.5000 0.7000 3.0000 1.5000
N =1000 C, C, d, d, - -
10% C. N. 0.1774 0.0832 -0.8880 0.8490 - -
True values 0.2000 0.1000 -0.9000 0.8500 - -

Table 3.1B Parameter identification errors of Wiener system

N=1000 | |ab| |Ab,| |Af| |Af,| AB,| AB;| A

10% C.N. | 0.0019 0.0044 0.0119 0.0111 0.0060 0.2155 0.0418

20% W. N. 1E-04 0.0056 0.0046 0.0015 0.0825 0.3678 0.0770

10% W.N.| 0.0010 0.0008 0.0085 0.0048 0.0026 0.0757 0.0155

5% (Kort.) 0.0120 0.0178 0.0043 0.0014 0.0161 0.0523 0.0173

5% W. N. 0.0018 0.0008 0.0050 0.0033 0.0711 0.0087 0.0151

Table 3.2A I dentification results of the Hammerstein system

N =1000 B Bs b, b, f) f,
10% C. N. 3.1206 1.3557 0.0954 0.1407 -1.4964 0.7047
20% W. N. 3.2751 2.2686 0.1250 0.0236 -1.4225 0.6539
10% W. N. 3.0861 1.6330 0.1341 0.0311 -1.5010 0.7034
5% (Kortm.) 3.0240 1.5191 0.1414 0.0526 -1.5067 0.7385
5% W. N. 3.0315 1.5051 0.1373 0.0469 -1.5016 0.6983
Non-noise 2.9974 1.4913 0.1334 0.0671 -1.4999 0.7000
True values 3.0000 1.5000 0.1333 0.0667 -1.5000 0.7000
N =1000 C, C, d, d, - -
10% C. N. 0.2738 0.3924 -0.8619 0.7379 - -
True values 0.2000 0.1000 -0.9000 0.8500 - -
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Table 3.2B Parameter identification errors of Hammerstein system

N=1000 | Jag,[ | A8 | [Afy [Af| [Ab | [Ab,| A
10% C.N. | 0.1206 0.1443 0.0379 0.074 0.0036 0.0047 0.0641
20% W.N.| 0.2751 0.7686 0.0083 0.0431 0.0775 0.0461 0.2031
10% W. N.| 0.0861 0.1330 0.0008 0.0356 0.0010 0.0034 0.0433
5% (Kort.) | 0.0240 0.0191 0.0081 0.0141 0.0067 0.0385 0.0184
5% W. N. 0.0315 0.0051 0.004 0.0198 0.0016 0.0017 0.0106
Table 3.3A I dentification results of the Feedback-Wiener system
N = 2000 rfa b, b, f, f, B, Ji
10% C.N. | 0.1005 0.1323 0.0334 -1.5297 0.7446 3.0081 0.2417
20% W. N. | 0.0997 0.0562 0.0757 -1.4984 0.7671 2.9780 2.6249
10% W. N. | 0.0997 0.0802 0.0754 -1.4957 0.7411 3.0027 2.4885
5% W. N. 0.0998 0.0997 0.0729 -1.4962 0.7243 3.0222 2.3083
Non-noise | 0.1000 0.1333 0.0667 -1.5000 0.7000 3.0001 1.5007
Truevalues | 0.1000 0.1333 0.0667 -1.5000 0.7000 3.0000 1.5000
N = 2000 C, C, d, d, - - -
10% C.N. | 0.3564 0.3152 -0.7950 0.7171 - - -
Truevalues | 0.2000 0.1000 -0.9000 0.8500 - - -
Table 3.3B Parameter identification errors of Feedback-Wiener system
N=2000 |aa] | [ab| | JAby| | (AR | (AR | (A | [AB] | A
10% C. | 0.0005 0.001 0.0333 | 0.0297 0.0446 0.008 1.2583 | 0.1953
20% W. | 0.0003 | 0.0771 0.0090 | 0.0016 0.0671 0.0221 1.1249 | 0.1828
10%W. | 0.0003 | 0.0531 | 0.0087 | 0.0043 0.0411 0.0026 | 0.9885 | 0.1565
5% W. | 0.0002 | 0.0336 0.0062 0.0038 | 0.0243 | 0.0221 | 0.8083 | 0.1252
Table 3.4A I dentification results of the Feedback-Hammerstein system
N = 2000 ai a; rfa b, i i ﬂ*
10% C.N. | -1.3617 | 0.7489 0.1348 0.0680 0.3122 0.1124 0.4556
20% W.N. | -1.3732 | 0.7520 0.1353 0.0666 0.2750 0.0757 0.3664
10% W.N. | -1.3719 | 0.7559 0.1347 0.0666 0.3208 0.1257 0.4456
5% W.N. | -1.3700 | 0.7592 0.1343 0.0667 0.3506 0.1540 0.4545
Non-noise | -1.3667 | 0.7667 0.1333 0.0667 0.3999 0.1998 0.4999
Truevalues | -1.3667 | 0.7667 0.1333 0.0667 0.3999 0.1999 0.5004
N = 2000 C, C, - - - - -
10% C.N. | 0.3004 0.1649 - - - - -
Truevaues | 0.2000 0.1000 - - - - -
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Table 3.4B Parameter identification errors of Feedback-Hammerstein system
N = 2000 ‘ Aa. ‘Aa; Ac] |Ab, | AL, | [AB] ‘AIB* Al
10%C. | 0.0050 | 0.0178 | 0.0015 | 0.0013 | 0.0877 | 0.0875 | 0.0448 | 0.0225
20% W. | 0.0065 | 0.0147 | 0.0020 1E-04 0.1249 | 0.1242 0.134 0.0403
10%W. | 0.0052 | 0.0108 | 0.0014 1E-04 0.0791 | 0.0742 | 0.0548 | 0.0216
5% W. | 0.0033 | 0.0075 | 0.0010 | 0.0000 | 0.0493 | 0.0459 | 0.0459 | 0.0152

Table3.5 Comparison of avarage parameter identification errors |A| of the four structures

N = 2000 Wiener Hammerstein Feedback- Feedback- Best accuracy
Wiener Hammerstein
10% C. 0.0418 0.0641 0.1953 0.0225 Feedback-Ha.
20% W. 0.0770 0.2031 0.1828 0.0403 Feedback-Ha
10% W. 0.0155 0.0433 0.1565 0.0216 Wiener
5% W. 0.0151 0.0106 0.1252 0.0152 Hammerstein
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Fig. 3.5 The Wiener system identification process
with aN./S.=10% col ored measurement noise
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Fig. 3.6 The Hammerstein system identification process
with aN./S.=10% colored measurement noise
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Fig. 3.7 The Feedback-Wiener system identification process
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Fig. 3.8 The Feedback-Hammerstein system identification process
with aN./S.=10% col ored measurement noise

The simulation results show that:
» The new identification method gives good results for all the four structures.

» The accuracy for the two standard examples of the Wiener system and the Hammerstein system is
better than in Kortmann (1989).

» From Table 3.5, we can see that which one of the four structures has the best accuracy results
under different measurement noises.

3.2.MISO Wiener and Hammerstein systems

Some known identification methods for MISO Wiener and Hammerstein systems were introduced in
literature. For example, in Boutayeb and Darouach (1994), two recursive identification methods were
extended to a MI1SO Hammerstein system along the lines of the basic Kalman filter. Kortmann (1987)
extended the identification method for a SISO Wiener system and a Hammerstein system to MISO
cases with a second procedure based on the recursive prediction error method. In this section, the new
identification method is used to identify:

aMISO Wiener system (Fig. 3.9),
aMISO Hammerstein system (Fig. 3.10) and
aMISO mixed Wiener and Hammerstein system (Fig. 3.11).
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Fig. 3.11 MISO mixed Wiener and Hammerstein system

In the above Figures, we make use of the following notations: u, (t),---,u, (t),u, ,(t),---,u,(t) arei
system inputs, Y(t) is the single system output, Yy  (t) is the unmeasurable system output without
measurement noise. Y, (t),-++, Y, (t), Y., (t),---,y; (t) are i unmeasurable outputs of the branches.
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The intermediate variables w,(t),---,w,(t), w,,(t),---,w,(t) can not be measured.
0,,--,0,,0,,,,---,0, ae parameter vectors determining linear dynamic subsystems,
Gl(q_l’el)"”’GI(q_l'el)’GHl(q_l’eHl)"”’Gi(q_liﬂi)7 respectively. Mg, My, Myyqe s M

are parameter vectors determining nonlinear static subsystems,
N, Gy NGy ) N Gmyay) o N () o respectively. g(t) is the colored measurement

noise which is a white noise e(t) through a linear filter H(q™,&). In MISO mixed Wiener and

Hammerstein system (Fig. 3.11), there are |-inputs for Wiener branches and s-inputs for
Hammerstein branches, and | +s =1i.

3.2.1. MISO Wiener system

Considering the j—th branch, j=1---,i, of a MISO Wiener system which consists of 1 single
Wiener branches as shown in Fig. 3.9. The linear dynamic subsystem G, (q‘l,Oj) can be described
by using aRTF model of order n;

Ej 843 u; (t) (3.268)

w;(t) =
where B;(q™) and F;(q™") for j=1,---,i arecoprimeand
Bj(q‘l)=bj0+bj1q‘1+-~+bjnjq‘”j (3.26b)
Fi@)=1+fq"++f,q". (3.26c)
The static nonlinear subsystem N ; (w; (t),n;) isassumed to be apolynomial of order m;
y} )= Z/Bjk 'Wl; ®

- (3.27)
:ﬂjl'wj(t)+2ﬂjk 'W'j((t)

k=2

and w; (t) inthefirst term of Eq. (3.27) isthe key term.
Half-substituting Eq. (3.263) into the key term w, (t) of Eq. (3.27), we get the whole system output
y©) =2y, +e(t)

j=1
) (3.28)
1
' @), L C@)

U () + D By Wi () [+ e(t).

Z F, ( 1) Z 3 D(a™)

To avoid the over-parameterization problem, one parameter in ﬂjl,bjl,bj2,~--,bjn for j=1,---,1,
that is, i parameters in Eq. (3.28) should be fixed. From Eq. (3.28) it can be concluded that a MISO
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Wiener system can be transformed approximately into a pseudo-linear MISO system which has

Zm ; independent inputs: u;(t) and the recursively estimated intermediate variables

WH (), WS (t),---, )" (t) according to Eq. (3.26a) for j =1.---,i. All the unknown parameters of the
above pseudo-linear MI1SO system are explicitly given.

3.2.2. MISO Hammerstein system

Considering the j—th branch, j=1,---,i, of a MISO Hammerstein system which consists of i
single Hammerstein branches as shown in Fig. 3.10. The nonlinear static subsystem N (u; (t),n;) is

assumed to be apolynomial of order m;

w; (t) =Z,Bjk uk(t). (3.29)

Using a RTF model of order n; for the dynamic linear subsystem G, (q‘l,ej),wefind

B.(q!
'():FJEZ*; ®
A (3.30a)
b, w(t)+B"(q )w()
] ] Fj(q—l) ]

B,(q™)

T~ W;(t). According to the

As in the SISO case, here we separate a part b, -w;(t) from
j
function definitions before, B} (q™*) in the second part is

Bi(q™)=buat+b,q%+--+ by q" (3.30b)
with
b;k =by —bjo - (3.30c)

for k =12,---,n,. Thefirstterm w; (t) of Eq. (3.30a) isthe j —th key term.

Half-substituting Eq. (3.29) into the key term w;,(t) of Eg. (3.30a), then the output of MISO
Hammerstein system can be written as

YO =3y, + £(0)
- (3.31)

i m;

' Bi (@) c@@™
Z Zb,o By -uk () + Fah" O |+ 5 2O
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We can also get another alternative. Because of the specia structure of MISO Hammerstein system,
Eq. (3.30a) can be simplified and transformed into an equivalent ARMAX model. Kortmann and
Unbehauen (1987) also used such a model to identify M1SO Hammerstein systems.

From Eq. (3.30a) the whole system output can be rewritten in an equivalent linear MISO ARMAX
model form

A@ YO = Y8, w, 0+C(a et

| | (3.32)
=D b w; (1) + DB (@ )w; (1) +C(q™)e(t)
j=1 j=1
where the common denominator A" (q ™) can be formed as
AQ=TTF.(a"
@) H (@) 533
=1+3,q" +8,q 2 +---+a,q"
with the order N = z n; and the corresponding extended nominator in the j —th branchis
j=1
B;(a7") = (bjo+bya ™ +--+b, a™) - [[F (@™
-l (3.34)

k#j

= Ejo + Ejlq‘l +oeet Ejﬁ_q"ﬁ"

]

i
with the order i, =n; +>"n, .

k=1

k#j

In Eq. (332, a part Ejo-wj(t) is separated  from §j(q‘1)wj(t) with

B/ (q)= Ejlq’l +lﬂ)~j2q’2 +~--+l')~jﬁjq’ﬁj .Andthe w, (t) in Bjo -w; (t) isthekey terminthe j—th
branch.

Half-substituting Eq. (3.29) into the key term w (t) of Eq. (3.32), the whole system output of MISO a
Hammerstein system can be written as

A@)Y(R) =2 D bjo- By -uj(©)+Bj(a™)w (1) [+C(a™)e(t). (3.35)
j=1| k=1

Both Eqg. (3.31) and Eq. (3.35) can be used to identify MISO Hammerstein system. But in Eqg. (3.35),

only the equivalent parameters a, for k =1,---,n and b, for kzl,---,ﬁj, j=21,---,i inlinear

dynamic block can be directly identified. To avoid the over-parameterization problem, one parameter

in bjo,ﬂjl,ﬂjz,---,ﬂjm orin bjo,ﬂjl,ﬂjz,---,ﬂjm for j=1,---,i, that is, i parameters in Eq.

(3.31) or Eg. (3.35) should be fixed. From Eq. (3.31) and Eqg. (3.35), it follows that a MISO
Hammerstein system can be transformed approximately into a pseudo-linear MISO system which has
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D (m; +1) independent inputs: u;(t),u?(t),---,u;" (t) and recursively estimated unmeasurable
=1

intermediate variables w; (t) according to Eq. (3.29) for j =1,---,i. All the unknown parameters of
the pseudo-linear M1SO system are explicitly given.

3.2.3. MISO mixed Wiener and Hammerstein system

Considering MI1SO mixed Wiener and Hammerstein system of Fig. 3.11 which consists of a | Wiener
branches and s Hammerstein branches, and | +s =1i. In the j—th branch of the MISO Wiener

system for j=1,---,1, the linear dynamic subsystem G, (q’l,ﬂj) can be described by using a RTF
model of order n; and the nonlinear static subsystem N (w; (t),n;) is assumed to be a polynomial
of order m;. On the other hand, in the j—th branch of the MISO Hammerstein system for
J=1---,s, the nonlinear static subsystem N (u;(t),n;) is assumed to be a polynomial of order
m; and the linear dynamic subsystem Gj(q’l,ﬂj) is described by using a RTF model of order n;.

According to the derivation in section 3.2.1 and 3.2.2, half-substituting Eq. (3.26a) and Eqg. (3.29) into
the corresponding key terms, the output of a MISO mixed Wiener and Hammerstein system can be
written as

m

y(t) = Z{ Eq_liu(mzﬂ,k w(t)}

m, (3.36)
+Z{Zb}o B U+ B (a™w, (t)} Cla_ )e(t)

=1 | k=1 D@™)

To avoid the over-parameterization problem, one parameter of ﬂjl,bjl,bjz,---,bjn for j=21,---,1,

that is, | parameters in the MISO Wiener systems should be fixed and one parameter of

bjo,ﬁjl,ﬂjz,-u,ﬁjm for j=1,---,s, that is, S parameters in the Hammerstein systems should be

fixed. EQ. (3.36) shows that a MISO mixed Wiener and Hammerstein system can be transformed
| S

approximately into a pseudo-linear M1SO system which has > m; +>"(m; +1) independent inputs:
j=1 j=1

u;(t) and wi(t),wi(t),---,wi'(t) for j=L---1; uj(t),us(t),--,u’(t) and w,(t) for

j=1---,s. The unknown intermediate variables can be estimated recursively according to the

corresponding equations Eq. (3.26a) and Eqg. (3.29). All the unknown parameters of the pseudo-linear
MISO system Eq. (3.36) are explicitly given and can be identified without parameter redundancy.
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3.2.4. Simulation results
In this section the simulation results for three simple examples will be given, namely for,

> aMISO Wiener system of the following two branches (wefix £, =1 and S, =1):

0.04308q " + 0.0315q
1-1.3139q " + 0.3886q

w, (t) = U, (t)

(3.37)

yp (t) = wy (t) + 4wy (t) + 2w (t)
and

0.0305q " + 0.0254q 2
1-1.5218q ™" + 0.5778q >

w, (t) = U, (1)

(3.39)

V2 (t) = W (£) + 3w (1) + 2w; (1)
> aMISO Hammerstein system of the following two branches (wefix b,; =1 and b,, =1):

w, (t) = u, (t) +3uZ(t) + L.5u’(t)

G s (3.39)
1+0.1333q™" + 0.0667q

1-1.597" +0.7q?

y; (£) = w, (t)

and

W, (t) = u, (t) + 4u; (t) + 2u3(t)

3.40
1+0.4q97"+0.3q°? (340)

1-0.997' +0.6q72

Yo (t) = w, (t)

> a MISO mixed Wiener and Hammerstein of the following two branches (we fix £, =1 and
b,, =1):

0497 +034°
1-09q7t+0.6q2 *

Wy (t) =
(3.41)

y; (£) = wy (t) + 4wy (t) + 2w, (t)

and
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W, (t) = u, (t) +3u; (t) + 1.5u3 (t)

. S (3.42)
1+0.1333q™ + 0.0667q

1-1597"+0.79°

y,(t) = w, ().

For the al three MISO systems, two random numbers of zero mean are used as system inputs u, (t)
and U,(t). The third independent random numbers is used as white measurement noise e(t).
N = 2000 data points are collected for each case.

An average smoother using a moving window with fixed length Mov = 4 will be used in order to
filter the corresponding estimated parameters to calculate the unmeasurable intermediate variables

w, (t) and w,(t).

Then the standard recursive prediction errors method (RPEM) function for linear MISO system with
forgetting factor algorithms in MATLAB will be applied. The agorithm variable settings are
A(0) =0.7, A1 =0.01. Theinitia estimates of the unknown parameters are taken as zero.

The linear filter for a colored measurement noise is given by

1+0.297" +0.19°
1-09q*+0.85q72%

H@™8) = (343)

We consider different measurement noise levels for the Three MISO Wiener and Hammerstein
systems. Besides the non-noisy case, N./S.=5%, 10% and 20% white and 10% colored
measurement noise, are added to the system output, respectively.

Identification results with different measurement noises are shown in Tables 3.6A-3.8A. The
identification processes with a N./S.=10% colored measurement noise are shown in Figs. 3.12-3.14.
Thered linesin Figs. 3.12-3.14 are the real values of parameters.

Tables 3.6B-3.8B show:

every parameter identification error Ap,

2.1,
g\

A= 2 18p, |
g

the average parameter identification error |A1| = for thefirst branch, ¢, isthe parameter
number of the first branch,

the average parameter identification error for the second branch, &, is the
parameter number of the second branch,

the average parameter identification error |A|= of each structure with different

2.1Ap)
g
measurement noises, ¢ is the whole parameter number.

Comparison of the average parameter identification errors |A| of the three structuresis shownin Table
3.9.
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Table 3.6A Identification results of the MISO Wiener system
N = 2000 by, by, fiy fi P Pz
10% C. N. 0.0450 0.0237 -1.3725 0.4420 4.3116 2.2480
20% W. N. 0.0466 0.0206 -1.3946 0.4627 4.2612 0.8760
10% W. N. 0.0453 0.0239 -1.3700 0.4401 4.3001 1.8561
5% W. N. 0.0450 0.0249 -1.3614 0.4321 4.3113 2.1100
Non-noise 0.0431 0.0315 -1.3139 0.3886 4.0000 1.9999
True values 0.0431 0.0315 -1.3139 0.3886 4.0000 2.0000
N = 2000 b,, b,, fs fs B2 P
10% C. N. 0.0256 0.0305 -1.5228 0.5789 2.8777 2.1427
20% W. N. 0.0340 0.0168 -1.5704 0.6203 2.8423 2.0197
10% W. N. 0.0323 0.0210 -1.5484 0.6008 2.9889 2.0986
5% W. N. 0.0316 0.0222 -1.5419 0.5952 2.9861 2.0621
Non-noise 0.0305 0.0254 -1.5218 0.5778 3.0000 2.0000
True values 0.0305 0.0254 -1.5218 0.5778 3.0000 2.0000
N = 2000 C, d, d, - -
10% C. N. 0.2568 0.1943 -0.8703 0.8237 - -
True values 0.2000 0.1000 -0.9000 0.8500 - -
Table 3.6B Parameter identification errors of the MISO Wiener system
N=20001 |aby| | |ab,| | |Afu| | [Afu| | [ABL| | [ABS| | A A
10% C. | 0.0019 | 0.0078 0.0586 | 0.0534 | 0.3116 | 0.2480 | 0.1135 | 0.0798
20% W. | 0.0035 | 0.0109 | 0.0807 | 0.0741 0.2612 1.1240 | 0.2590 | 0.1529
10% W. | 0.0022 | 0.0076 0.0561 | 0.0515 | 0.3001 0.1439 | 0.0935 | 0.0605
5% W. 0.0019 | 0.0066 0.0475 | 0.0435 | 0.3113 | 0.1100 | 0.0868 | 0.0532
N = 2000 |Ab21| |Ab22| |Af21| |Af22| |Aﬂ22| |Aﬂ23| |A2| )
10% C. | 0.0049 | 0.0051 0.001 0.0011 0.1223 | 0.1427 0.0461 -
20% W. | 0.0035 | 0.0086 0.0486 | 0.0425 | 0.1577 0.0197 0.0467 -
10%W. | 0.0018 | 0.0044 | 0.0266 | 0.0230 | 0.0111 | 0.0986 | 0.0278 -
5% W. 0.0011 | 0.0032 0.0201 0.0174 | 0.0139 | 0.0621 | 0.0196 -
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Table 3.7A Identification results of the MISO Hammerstein system
N = 2000 Pu P Pz by, by, fi fi
10% C.N. | 0.7637 3.1767 1.8290 0.1144 0.0690 -1.4991 0.7010
20% W.N. | 1.2362 3.2883 0.9522 0.1628 0.1087 -1.4951 0.7003
10% W. N. 1.1684 3.1985 1.1184 0.1447 0.0968 -1.4974 0.7010
5% W. N. 1.1187 3.1384 1.2280 0.1418 0.0760 -1.5014 0.7028
Non-noise | 1.0005 3.0005 1.4995 0.1321 0.0671 -1.5001 0.7000
Truevaues | 1.0000 3.0000 1.5000 0.1333 0.0667 -1.5000 0.7000
N = 2000 P B2 B b,, b,, f fy
10% C.N. | 0.4765 4.0301 3.2280 0.3677 0.2911 -0.9058 0.6028
20% W.N. | 0.7458 4.1500 2.1288 0.3591 0.3564 -0.8837 0.6180
10% W. N. | 0.8235 4.0770 2.0893 0.3972 0.3075 -0.8945 0.6088
5% W. N. 0.8803 4.0327 2.0403 0.4013 0.2781 -0.9052 0.6077
Non-noise | 0.9996 4.0006 2.0011 0.4002 0.2999 -0.9000 0.6000
Truevaues | 1.0000 4.0000 2.0000 0.4000 0.3000 -0.9000 0.6000
N = 2000 C, C, d, d, - - -
10% C.N. | 0.2153 0.0901 -0.8484 0.0035 - - -
Truevaues | 0.2000 0.1000 -0.9000 0.8500 - - -
Table3.7B Parameter identification errors of the MISO Hammerstein system
N=20001 |ABy| | [ABy| | |ABu| | |Aby| | [Aby| | [Afy] A | (A
10% C. | 0.2363 | 0.1767 | 0.329 | 0.0189 | 0.0023 | 0.0009 | 0.0010 | 0.1091 | 0.1851
20% W. | 0.2362 | 0.2883 | 0.5478 | 0.0295 | 0.042 | 0.0049 | 0.0003 | 0.1641 | 0.1282
10% W. | 0.1684 | 0.1985 | 0.3816 | 0.0114 | 0.0301 | 0.0026 | 0.0010 | 0.1132 | 0.0822
5% W. | 0.1187 | 0.1384 | 0.272 | 0.0085 | 0.0093 | 0.0014 | 0.0028 | 0.0783 | 0.0549
N=2000\ |ABy| | |ABa| | [AB| | |Aby| | |Aby| | |Af,)| A, ]
10% C. | 0.5235 | 0.0301 | 1.2280 | 0.0323 | 0.0089 | 0.0058 | 0.0028 | 0.2612 -
20% W. | 0.2542 | 0.1500 | 0.1288 | 0.0409 | 0.0564 | 0.0163 | 0.0180 | 0.0923 -
10% W. | 0.1765 | 0.077 | 0.0893 | 0.0028 | 0.0075 | 0.0055 | 0.0088 | 0.0512 -
5% W. | 0.1197 | 0.0327 | 0.0403 | 0.0013 | 0.0219 | 0.0052 | 0.0077 | 0.0315 -
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Table 3.8A Identification results of the MI1SO mixed Wiener and Hammerstein system
N =2000 by, by, fiy fi, P Pz
10% C. N. 0.3688 0.3642 -0.8977 0.5340 3.6810 1.2669
20% W. N. 0.3686 0.4144 -0.8300 0.5399 4.2654 1.9924
10% W. N. 0.3664 0.3973 -0.8385 0.5617 4.2437 2.0838
5% W. N. 0.3731 0.3710 -0.8505 0.5731 4.2533 2.1117
Non-noise 0.4054 0.2927 -0.9082 0.6023 3.9122 1.9183
True values 0.4000 0.3000 -0.9000 0.6000 4.0000 2.0000
N= 2000 ﬂ 21 IB 22 IB 23 b21 b22 f21 f22
10% C.N. | 1.1164 2.6320 1.3696 0.2478 0.1195 -1.4665 0.6675
20% W.N. | 0.8167 3.1847 1.7072 0.0456 0.0535 -1.5219 0.7143
10% W. N. | 0.8603 3.1397 1.6690 0.0754 0.0656 -1.5135 0.7098
5% W. N. 0.8998 3.1046 1.5872 0.0489 0.0708 -1.5165 0.7117
Non-noise | 1.0063 3.0335 1.5238 0.0874 0.0926 -1.4995 0.7000
Truevalues | 1.0000 3.0000 1.5000 0.1333 0.0667 -1.5000 0.7000
N = 2000 C, C, d, d, - - -
10% C.N. | 0.2883 0.0841 -0.8763 0.6439 - - -
Truevalues | 0.2000 0.1000 -0.9000 0.8500 - - -

Table 3.8B

Parameter identification errors of the M1SO mixed Wiener and Hammerstein system

N = 2000

|Ab,,|

|Aby, |

|Af |

|Af,|

|A,B12|

88| | |

4

10% C.

0.0312

0.0642

0.0023

0.0660 0.

3190

0.7331

0.1618

20% W.

0.0314

0.1144

0.0700

0.0601 0.

2654

0.0076

0.0966

10% W.

0.0336

0.0973

0.0615

0.0383 | O.

2437

0.0838

0.0844

5% W.

0.0269

0.0710

0.0495

0.0269

0.

2533

0.1117

0.0741

N = 2000

AB|

AB|

AB|

|Ab,,|

|Ab,, |

|Af |

|Af |

10% C.

0.1164

0.368

0.1304

0.1145

0.0528

0.0335

0.0325

20% W.

0.1833

0.1847

0.2072

0.0877

0.0132

0.0219

0.0143

10% W.

0.1397

0.1397

0.1690

0.0579

0.0011

0.0135

0.0098

5% W.

0.1002

0.1046

0.0872

0.0844

0.0041

0.0165

0.0117

Table 3.9 Comparison of the average parameter identification errors |A| of the three structures

N = 2000 MISO Wiener | MISO Hammerstein | Mixed MISO W. H. Best accuracy
10% C. N. 0.0798 0.1851 0.1618 MI1SO Wiener
20% W. N. 0.1529 0.1282 0.0966 MixedM1SO W.H.
10% W. N. 0.0605 0.0822 0.0844 MISO Wiener
5% W. N. 0.0532 0.0549 0.0741 MISO Wiener
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Fig. 3.12 The MISO Wiener system identification process
with aN./S.=10% colored measurement noise
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Fig. 3.13 The MISO Hammerstein system identification process
with aN./S.=10% colored measurement noise
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Fig. 3.14 The MISO mixed Wiener and Hammerstein system identification process
with aN./S.=10% colored measurement noise
The simulation results show that:
» The new identification method gives good results for all the three structures.

» From Table 3.9, we can see that which one of the three structures has the best accuracy results
under different measurement noises.
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4. Identification of a Wiener system with different discontinuous
nonlinearity

It is usually desirable to find a model as simple as possible for the data. Actualy, there is an implicit
(sometimes explicit) tradeoff between the acceptable model complexity and how well it matches the
data. It isclear that some complicated continuous polynomials can also be used to approximate some
discontinuous nonlinearities. But direct identification of these discontinuous nonlinearities with
parameters of linear dynamic block together is no doubt more efficient.

Several researchers mainly studied identification methods for Hammerstein system with some simple
discontinuous nonlinearities. Voros (1997) identified directly some discontinuous nonlinearities in a
Hammerstein system. Ba (2002) used also the same identification principle to identify the simple
discontinuous nonlinearities in a Hammerstein system. Zeng (1999) identified some simple
discontinuous nonlinearities in a Hammerstein and a Wiener system but with the inverse of the
nonlinearities. The key technique is to definite some switch functions and intermediate variables to
write the discontinuous nonlinearities in a continuous form.

In this chapter, we use the new identification method to identify the parameters of a Wiener system
(Figure 3.1) with different discontinuous nonlinearities as the nonlinear static subsystem N (w(t),n),
respectively. For it the following discontinuous nonlinearities are taken into consideration:

Direction-dependent nonlinearity (Figure 4.1 (a)),
Preload nonlinearity (Figure 4.1 (b)),

Dead-zone nonlinearity (Figure 4.1 (c)) and
Saturation nonlinearity (Figure 4.1 (d)).

The other discontinuous nonlinearities or their combinations can also be considered in the same
principle.

y.(l) y.(ﬁ) ¥ y‘(f')
T o
o Lo wiz) A W) , ”
H H P
<y ’ o & 7 0 & C 0 4
i o 3
)

(@ (b) (©) (d)
Fig. 4.1 Discontinuous nonlinearities
(@) Direction-dependent nonlinearity (b) Preload nonlinearity
(c) Dead-zone nonlinearity (d) Saturation nonlinearity

The corresponding nonlinear relationshipsin Fig. 4.1 are as.

» Direction-dependent nonlinearity

v O :{51~[W(t)—zo]+co w(t) 2 Z, (4.1)

S, - [w(t)-2Z,]+C, w(t) < Z,.

Here, the slopes S,, S, and the cross-point (Z,,C,) are parameters to be identified. It is noted that
S,,S,,Z,,C, can be positive or negative. We assumethat S, and S, are nonzero.
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» Preload nonlinearity

S -w()+C, w(t) >0
y (t) = 0 w(t)=0 (4.2)
S, -w(t)+C, w(t) <O.

Here, the slopes S,, S, and the cross-point values C,,C, are parameters to be identified. It is noted
that S,,S,,C,,C, canaso be positive or negative. We assumethat S, and S, are nonzero.

» Dead-zone nonlinearity

S-[w(t)-2,]+C, w(t) > Z,
y () = C, Z,<w(t)<Z, (4.3)
S-[w(t)-Z,]+C, w(t) < Z,.

Here, the slope S and the cross-point values C,,Z,,Z, are parameters to be identified. It is noted
that S,C,,Z,,Z, canbe positive or negative. We assumethat S isnonzeroand Z, > Z,.

» Saturation nonlinearity

c e C, w(t) > Z,
y* (t) = ﬁ : (W(t) - Zl) + C1 Zz < W(t) < Zl (4.4)
v c, w(t) < Z,.

Here, the cross-point values Z,,7Z,,C,,C, are parameters to be identified. They can be positive or
negative. We assumethat Z, > Z,.

4.1.Wiener system

As shown in Fig. 3.1, the linear dynamic block G(q™,0) is described by aRTF model of order n

B(a™)

"= e

u(t). (4.5)

The nonlinear static block N (w(t),n) is one of the above discontinuous nonlinearities (Fig. 4.1(a)-
(d)), respectively. The resulting system for each single nonlinearity will be described now.

4.1.1. Direction-dependent nonlinearity

We define a switching sequence

0 w(t) > Z,

1 w(t)<Z,. (40

hl(t) :{
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Then the direction-dependent nonlinearity Eq. (4.1) can be rewritten as
y (1) = Sy -w(t) + (S, —S;) - w(t)h, (t) + (S, —S,) - Zo - h () +(Cy — S, - Z) 4.7)
where w(t) inthefirstterm S, - w(t) isthe key term.

Half-substituting Eq. (4.5) into the key term w(t) in Eq. (4.7) , then the output y(t) of a Wiener
system with direction-dependent nonlinearity is given by

y(t) =y () +e&(t)

_ SlF%(j;)u(t) (S, —S,) - W(h, (1) + (S, = S,) - Zg -y (t) + (Co = S, - Z,) 48)
C@™) .
R

To avoid the over-parameterization problem, one parameter in S,,b,,b,,---,b, should be fixed. Eq.
(4.8) shows that a Wiener system with direction-dependent nonlinearity can be transformed into a
pseudo-linear MISO system with four independent inputs, u(t), w(t)h,(t),h(t) and 1. The
unmeasurable intermediate variable w(t) can be recursively estimated according to Eq. (4.5). All the

parameters in this pseudo-linear MISO system are explicitly given. Although some parameters of
direction-dependent nonlinearity in Eq. (4.8) are combined, the original parameters can be easily
solely recalculated.

4.1.2. Preload nonlinearity

We define another switching function

O w(t) >0
h,(t) = {1 w(t) < O. *9)

Then the preload nonlinearity Eq. (4.2) can be rewritten as
y* (t) = Sl 'W(t) + (52 - Sl) 'W(t)hz (t) + (Cz - Cl) ’ hz (t) + Cl (4.10)
where w(t) inthefirstterm S, - w(t) isthekey term.

Half-substituting Eq. (4.5) into the key term w(t) in Eq. (4.10) , the output y(t) of a Wiener system
with preload nonlinearity is given by

y(t) =y () +&(t)

_S-B@) 3. _c)).- c@?)
= TF@) u(t) +(S; = S,)-wth,(t) +(C, -Cy) hz(t)+Cl+D(q_l)e(t)-

(4.11)

To avoid the over-parameterization problem, one parameter in S;,b,,b,,---,b, should be fixed. Eq.
(4.11) shows that a Wiener system with preload nonlinearity can be transformed into a pseudo-linear
MISO system with four independent inputs, u(t), w(t)h,(t), h,(t) and 1. The unmeasurable
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intermediate variable w(t) can be recursively estimated according to Eq. (4.5). All the parameters in

this pseudo-linear MISO system are explicitly given. Although some parameters of preload
nonlinearity in Eq. (4.11) are dso combined, the original parameters can be solely recalcul ated.

4.1.3. Dead-zone nonlinearity

In order to simplify the derivation, here we use the dead-zone width B, whichis B, =Z, -Z, and

Z,+Z
the center point of the dead-zone Z, with Z, = —*——2.

We make use of the standard sign function sgn(:) , then the dead-zone nonlinearity Eq. (4.3) can be
rewritten as

1+sgn<522—|w<t)—zo|) 1—sgn(322—|w(t)—zo|)

y ) =S-wt)-S- w(t)=S-Z,-
B 2 2 (4.129)
B, SIN( —[wt)-Zo) -1
+S.-2. sgn(w(t) —Z,) +C,.
2 2
We define the following intermediate variables:
BZ
L+sgn(=- - W(t) ~ Z,)
g,(t)=- > w(t) (4.12b)
BZ
1-sgn(—- - W(t) ~Z,))
9,(t) =- > (4.12¢)
BZ
Sgn(7 —w(t) - Z,[) -1
9;(t) = 2 sgn(w(t) - Z,). (4.12d)
Then Eq. (4.12a) can be simplified as
y* t)=S-w(t)+S- gl(t) +S-Z,- gz(t) +S-B, - gs(t) +C, (4.13)

where w(t) inthefirstterm S, - w(t) isthe key term.

Half-substituting Eq. (4.5) into the key term w(t) in Eq. (4.13), the Wiener system output y(t) is
described in the following form,

C(a™)

y(t) :S'B—(q_l)u(t)"'s ’ gl(t)+s 'Zo : gz(t)+s : Bz 'g3(t)+co + 1
D(g™)

F(Q™)

Eg. (4.14) shows that a Wiener system with a dead-zone nonlinearity can be transformed
approximately into a pseudo-linear M1SO system with five independent inputs, u(t), g,(t), g,(t),

e(t). (4.14)
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g;(t) and 1. The unmeasurable intermediate variables w(t), g,(t), g,(t) and g,(t) can be

recursively estimated according to Eq. (4.5) and Egs. (4.12b)-(4.12d). All the parameters in this
pseudo-linear MISO system are explicitly given and there is no over-parameterization problem.
Although some parameters of the dead-zone nonlinearity in Eq. (4.14) are combined and replaced by

their equivalent values B, and Z,,, the original parameters Z, and Z, can be solely recalculated
Z,+7Z,

accordingto B, =7, -7, and Z, = 5

4.1.4. Saturation nonlinearity

In order to simplify the derivation, here we use the two widths B, and B. between the two saturation
boundaries which are B, =Z, -7, and B, =C, —C,. We also use the center point of the linear

Z,+7, C,+C,

part (Z,, C,)with Z, = and C, = 12

We make use of the standard sign function sgn(-) . Then the saturation nonlinearity Eq. (4.4) can be
rewritten as

. Bc B B, B
y ()= 28, -w(t) + 28, ~sgn(7 [w(t) = Zo)w(t)

1+sgn<522—|vv(t)—zo|)

_Be 5, (4.153)
B, 2
BZ
L+ sgn(w(t) - Z,| - %)
+B, - y sgn(w(t) — Z,) +C,.
We define the following intermediate variables:
BZ
Sgn(7 —w(t) — Z,|w(t)
g,(t) = > (4.15b)
BZ
-1- Sgn(7 ~[w(t) - Z,))
g,(t) = > (4.15c¢)
BZ
L+ sgn(w(t) - Z| - 7)
0,(t) = 2 sgn(w(t) - Z,) - (4.150)
Then Eq. (4.15a) can be simplified as
R Bc B B
y (t)= 5 W) +—=-09,(t) + == Z,-9,(t) + B¢ - 95 () + C, (4.16)
BZ BZ BZ
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BC

where w(t) inthefirst term -w(t) isthe key term.

z

Half-substituting Eq. (4.5) into the key term w(t) in Eq. (4.16), a Wiener system output y(t) isgiven
by

_ B B 4y, Be Be 7. . @)
V0= 55 FqD O+ 5 B0+ 5 Zo 00+ B g0+ Cor 5 e (417

Egs. (4.17) shows that a Wiener system with a saturation nonlinearity can be transformed
approximately into a pseudo-linear M1SO system with five independent inputs, u(t), g,(t), g,(t),
g;(t) and 1. The unmeasurable intermediate variables w(t), g,(t), g,(t) and g,(t) can be

recursively estimated according to Eqg. (4.5) and Egs. (4.15b)-(4.15d). All the parameters in this
pseudo-linear MISO system are explicitly given and there is also no over-parameterization problem.
Although some parameters of saturation nonlinearity in Eq. (4.17) are combined and replaced by their

equivalent values B, , Z,, B, and C,, the origina parameters Z,,Z,,C, and C, can be solely
Z,+7, C,+C,

recalculated accordingto B, =72, -7,, B, =C, -C,, Z, = >

and C, =

4.2.Simulation results

In this section some simulation results will be given for a Wiener system with the four different
discontinuous nonlinearities.

The linear dynamic block in the Wiener system is described by

-1 -2
G(q™,0) = g +0.5004q

- 4.18
1-1.59"+0.79 (418)

where we fix b, =1 for the cases of direction-dependent and preload nonlinearities. The nonlinear
static block is one of the following discontinuous nonlinearities, respectively.

» Direction-dependent nonlinearity:

. 0.45w(t) - 2|+1 w(t) > 2

y (t)= [ ] (4.19)
1.2w(t) - 2]+1 w(t) < 2

with the parameters: S; =0.45, S, =12, 7Z,=2 and C, =1.

» Preload nonlinearity
0.45w(t) + 1.55 w(t) >0

y () = 0 w(t)=0 (4.20)
1.2w(t) - 2.7 w(t) <0

with the parameters: S, =0.45, S, =12, C, =155and C, =-2.7.
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» Dead-zone nonlinearity

[W(t) —3]+1 w(t) >3
y () = 1 —1<w(t) <3 (4.21)
[w(t) +1]+1 w(t) < -1

with the parameters: S =1, Z, =3, Z,=-1and C, =1.

» Saturation nonlinearity

7 w(t) >5
y (1) =< w(t) -7<w(t)<5 (4.22)
-5 w(t) < -7

with the parameters: Z, =5, 2, =-7,C, =7,and C, = -5.

A standard random numbers with zero mean is used as input u(t) . Another independent zero mean
random numbersis used as white noise e(t) . N = 2000 data points are collected.

Besides the non-noisy case, N./S.=5%, 10% and 20% white and 10% colored measurement noise,
are added to the system output, respectively. The colored measurement noise filter is given by

1+0.29 7 +0.1g°

H(Q™g) = .
@9 1-1.29"+0.5q7°

(4.23)

A exponentially average smoother using a moving window with fixed length Mov = 4 will be used to
filter the estimated parameters to calculate the constructed intermediate variables.

Then apply the standard RPEM function in MATLAB with forgetting factor algorithm for linear
MISO system with the algorithm variable settings 4(0) = 0.7 and A4 = 0.01. The initial estimates

of the unknown parameters are also taken as zero.

Identification results with different measurement noises are shown in Tables 4.1A-4.4A. The
identification processes with a N./S.=10% colored measurement noise are shown in Figs. 4.2-4.5. The
red lines in Figs. 4.2-4.5 are the rea values of parameters. The single parameter identification error

Ap and the average parameter identification error |A| of each case with different measurement noises
are calculated and shown in Tables 4.1B-4.4B. Comparison of average parameter identification errors
|A| of the four casesis shown in Table 4.5.
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Table4.1A Identification results with direction-dependent nonlinearity
N = 2000 b, fy f, S, S, Z, Co
10% C. N. 0.5485 -1.5190 0.7262 0.5331 1.1607 2.1309 1.1159
20% W.N. | 0.5739 -1.4958 0.7002 0.4811 1.1764 2.0048 1.0269
10% W. N. | 0.5528 -1.4971 0.7004 0.4685 1.1903 1.9459 0.9864
5% W. N. 0.5378 -1.4982 0.7006 0.4468 1.1910 2.0301 1.0612
Non-noise | 0.5005 -1.4999 0.6999 0.4561 1.2004 1.9737 0.9694
Truevalues | 0.5004 -1.5000 0.7000 0.4500 1.2000 2.0000 1.0000
N = 2000 C, C, d, d, - - -
10% C. N. 0.2728 0.0988 -1.1200 0.4371 - - -
Truevaues | 0.2000 0.1000 -1.2000 0.5000 - - -
Table4.1B Parameter identification errors with direction-dependent nonlinearity
N=2000 Jao,| | [af] [ Jaf; s [ azdf | lac | T
10% C. 0.0481 0.0190 0.0262 0.0831 0.0393 0.1309 0.1159 0.0660
20% W. | 0.0735 0.0042 0.0002 0.0311 0.0236 0.0048 0.0269 0.0234
10% W. | 0.0524 0.0029 0.0004 0.0185 0.0097 0.0541 0.0136 0.0216
5% W. 0.0374 0.0018 0.0006 0.0032 0.009 0.0301 0.0612 0.0204
Table 4.2A I dentification results with preload nonlinearity
N = 2000 b, f, f, S, S, C, C,
10% C. N. 0.4914 -1.5090 0.7024 0.4989 1.2480 1.1628 -2.2870
20% W.N. | 0.6183 -1.4914 0.6982 0.4841 1.1803 1.5344 -2.4335
10% W. N. | 0.5868 -1.4944 0.6995 0.4575 1.1762 1.6201 -2.5299
5% W. N. 0.5603 -1.4962 0.6998 0.4568 1.1862 1.5910 -2.5513
Non-noise | 0.4993 -1.5002 0.7002 0.4504 1.2029 1.5483 -2.6821
Truevalues | 0.5004 -1.5000 0.7000 0.4500 1.2000 1.5500 -2.7000
N = 2000 C, c, d, d, - - -
10% C. N. | -0.2650 0.2086 -1.1270 0.4777 - - -
Truevalues | 0.2000 0.1000 -1.2000 0.5000 - - -
Table4.2B Parameter identification errors with preload nonlinearity
N=2000 |ab,| | |af| | af) as.| [ lac) | Jac] | Xa
10% C. 0.0090 0.0090 0.0024 0.0489 0.0480 0.3872 0.4130 0.1310
20% W. | 0.1179 0.0086 0.0018 0.0341 0.0197 0.0156 0.2665 0.0663
10% W. | 0.0864 0.0056 0.0005 0.0075 0.0238 0.0701 0.1701 0.0520
5% W. 0.0599 0.0038 0.0002 0.0068 0.0138 0.0410 0.1487 0.0391
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Table 4.3A Identification results with dead-zone nonlinearity

N = 2000 b, b, f, 2
10% C. N. 0.9524 0.4941 -1.5190 0.7163
20% W. N. 0.9551 0.5844 -1.4944 0.6994
10% W. N. 0.9807 0.5411 -1.4978 0.7008
5% W. N. 0.9805 0.5440 -1.4969 0.6994
Non-noise 0.9999 0.5005 -1.5000 0.7000
True values 1.0000 0.5004 -1.5000 0.7000
N = 2000 S Z, z, C,
10% C. N. 0.9613 3.0278 -0.9390 1.1288
20% W. N. 0.9530 2.9547 -0.7995 1.1232
10% W. N. 0.9671 2.9954 -0.9093 1.0693
5% W. N. 0.9619 3.0036 -0.9293 1.0419
Non-noise 0.9998 3.0002 -0.9998 1.0000
True values 1.0000 3.0000 -1.0000 1.0000
N = 2000 c, C, d, d,
10% C. N. 0.2252 0.1556 -1.1390 0.4378
True values 0.2000 0.1000 -1.2000 0.5000
Table 4.3B Parameter identification errors with dead-zone system
N=2000] |Aby| | [Ab,| | [Af| | (AR | [AS] | [AZy] | |AZy] | |AC,| | DA
10% C. | 0.0476 | 0.0063 | 0.0190 | 0.0163 | 0.0387 | 0.0278 | 0.0610 | 0.1288 | 0.0431
20% W. | 0.0449 | 0.0840 | 0.0056 | 0.0006 | 0.0470 | 0.0453 | 0.2005 | 0.1232 | 0.0688
10% W. | 0.0193 | 0.0407 | 0.0022 | 0.0008 | 0.0329 | 0.0046 | 0.0907 | 0.0693 | 0.0325
5% W. | 0.0195 | 0.0436 | 0.0031 | 0.0006 | 0.0381 | 0.0036 | 0.0002 | 0.0419 | 0.0273
Table 4.4A Identification results with saturation nonlinearity
N = 2000 b, b, f, fa
10% C. N. 1.1999 0.6661 -1.5150 0.7232
20% W. N. 0.8575 0.6192 -1.4900 0.6974
10% W. N. 1.4182 0.5744 -1.4924 0.6969
5% W. N. 1.0591 0.5279 -1.4979 0.7001
Non-noise 0.9996 0.5004 -1.5000 0.7000
True values 1.0000 0.5004 -1.5000 0.7000
N = 2000 Z, Z, C, C,
10% C. N. 4.8750 -1.7094 5.7951 -7.4845
20% W. N. 7.2212 -51.4095 5.9162 -62.1279
10% W. N. 3.8340 -1.0738 3.0517 -5.5874
5% W. N. 6.6062 -4.3157 4.8726 -6.8159
Non-noise 5.0001 -7.0021 7.0002 -5.0027
True values 5.0000 -7.0000 7.0000 -5.0000
N = 2000 c, C, d, d,
10% C. N. 0.2009 0.1071 -1.0587 0.4111
True values 0.2000 0.1000 -1.2000 0.5000
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Table 4.4B Parameter identification errors with saturation system
N-2000) jAb) | jAb,| | AR | AR | [AZ,] | [AZy| | |AC,| | |AC,| | DA
10% C. | 0.1999 | 0.1657 | 0.0150 | 0.0232 | 0.1250 | 5.2906 | 1.2049 | 2.4845 | 1.1886
20% W. | 0.1425 | 0.1188 | 0.0100 | 0.0026 | 2.2212 | 44.4090 | 1.0838 | 57.1270 | 13.1370
10% W. | 0.4182 | 0.0740 | 0.0076 | 0.0031 | 1.1660 | 59262 | 3.9483 | 0.5874 | 1.5162
5% W. | 0.0591 | 0.0275 | 0.0021 | 1E-04 | 1.6062 | 2.6843 | 2.1274 | 1.8159 | 1.0403

Table4.5 Comparison of average parameter identification errors |A| of the four cases

N=2000 | Directiondependent| Preload Dead-zone | Saturation Best accuracy
10% C. 0.0660 0.1310 0.0431 1.1886 Dead-zone
20% W. 0.0234 0.0663 0.0688 13.137 Direction dependent
10% W. 0.0216 0.0520 0.0325 1.5162 Direction dependent
5% W. 0.0204 0.0391 0.0273 1.0403 Direction dependent
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Fig. 4.2 A Wiener system identification process with direction dependent nonlinearity

with aN./S.=10% colored measurement noise
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Fig. 4.5 A Wiener system identification process with saturation nonlinearity
with a N./S.=10% colored measurement noise

The simulation results show that:

>

discontinuous nonlinearities, respectively.

different measurement noises.

The new identification method gives good results for a Wiener system with all the four

From Table 4.5, we can see that which one of the four cases has the best accuracy results under
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5. Identification of cascade Wiener and Hammerstein systems

A Wiener-Hammerstein system (LNL, Fig. 5.1) is defined as a linear dynamic subsystem in cascade
with a nonlinear static subsystem followed by another linear dynamic subsystem and A Hammerstein-
Wiener system (NLN, Fig. 5.2) is defined as a nonlinear static subsystem in cascade with a linear
dynamic subsystem followed by another nonlinear static subsystem.

Billings et al. (1982, 1997) proposed an identification algorithm for Wiener-Hammerstein system
based on correlation analysis. However, their algorithm suffered from some restrictive assumptions for
the input sequences to preserve the separability principle and computational requirements. Y oshine et
al. (1992) suggested another approach for identification of the LNL system which consists of
estimating impulse responses of the linear subsystems and the parameters of the nonlinear element.
Based on a formulated model, Boutayeb (1995) developed a recursive method to separately estimate
parameters of the linear and nonlinear parts of the LNL system. Bai (1998) introduced an optimal two-
stage identification a gorithm for Hammerstein-Wiener system.

In this chapter, the new identification method is used to identify

aWiener-Hammerstein system and
aHammerstein-Wiener system

with continuous and discontinuous nonlinearities, respectively.

=)
() m®) H () Yo, | »o
— Gl'i@'_ljﬂ' W Ny O (2], ) y Gﬂ(f}'_lsﬂﬂ W *
Fig. 5.1 Wiener-Hammerstein system (LNL)
2(t)
4 (e) W) "2 () Yo, | e
— M) f Gilg™.8,) 5 vy (2), Mg ) Ha *

Fig. 5.2 Hammerstein-Wiener system (NLN)

In the above Figures, u(t) isthe system input, y(t) is the system output, y*(t) isthe unmeasurable
system output without measurement noise. W, (t) and w, (t) are unmeasurable intermediate variables.
0, and 0, are parameter vectors determining the linear dynamic subsystems Gl(q‘l,ﬁl) and
Gz(q‘l,ez), respectively. m, and m, are parameter vectors determining the nonlinear subsystems
N,(,m,) and N,(-m,), respectively. g(t) is the colored measurement noise which is a white noise
e(t) through alinear filter H(q™",£).
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A rational transfer function of order n, will be used as the linear block G,(q™*,0,). For Wiener-
Hammerstein system (LNL), because it is a Hammerstein-type system we use an ARMAX model of
order n, to describe the linear block G, (q~,90.,).

If the nonlinearities in both Wiener-Hammerstein and Hammerstein-Wiener systems are continuous, a
polynomial function of order m; will be used to describe the nonlinear static subsystem

N; (x;(t),m;). For the output we get

70 =2 B2 (0 (5.1)
k=1

where 7, (t) istheinput of the nonlinear static block and y (t) is the output of the nonlinear static

block for j=1.2.

In the case of discontinuous nonlinearities, here only a typical symmetrical dead-zone nonlinearity
(Figure 5.3 (a)) and a symmetrical saturation nonlinearity (Figure 5.3 (b)) are considered.

Falt) 7, (£t
5, ‘I
-0 Xalt) -z %, ()
0o o 0 Z
Sy I
(a) (b)
Fig. 5.3 (a). Dead-zone (b). Saturation

In the above Figures, y,(t) is the input of the dead-zone nonlinearity, 7, (t) is the output of the

dead-zone nonlinearity; . (t) istheinput of the saturation nonlinearity and y, (t) isthe output of the
saturation nonlinearity.

The dope S, and the cross-point values D, Z and L are nonzero parameters to be identified. For
L
convenience, the slope S is also used with S = Z . In order to simplify the derivation, we assume

D, Z and L are positiveand S, S, can be positive or negative. More general descriptions of a

dead-zone and a saturation or other discontinuous nonlinearities can be defined and derived in the
same principle.

The dead-zone relationship is given by

Sa[xs(t)-D] xs)>D
7a(t) = 0 ~D<y,(t)<D (52)
Sq [xe()+D] 24 () <-D.
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The saturation nonlinear relationship is given by

L xy.t)>Z
7s(t) =155 x5 (t) -Z<y)<Z (5.3)
-L x. () <-Z.

By introducing the standard sign function sgn(-) , Eq. (5.2) can be rewritten as

1+sgn(D — |z, (1))

7a®) =Sy -y () =S, - > Zq (1)
(D7, ®) -1 oo
n — —
#8, D 2 (1)
and Eq.(5.3) can be rewritten as
S Z —|y.(t 1 M-z
=308, BEEO, g 2IEOD g, ) s
We define the following intermediate variables:
1+sgn(D -z, (t
w0 =IO O 9)
Dy, () -1
- By, oy )
Z |y (t
() - T 53
1 t)-z
) - S IEOD . 59
Then, Egs. (5.4) and (5.5) can be simplified as
Ya®) =Sy xg(®)+Sy-wy(t)+S, -D-vy(t) (5.10)
70=25 2,045, WO LY, 0, (511)

These equations for the dead-zone and the saturation nonlinearities will be used in the next two
sections.
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5.1.Identification of a Wiener-Hammerstein system (LNL)

As shown in Fig. 5.1, the first linear dynamic subsystem G,(q*,0,) of order n, isgiven by

B.(a7)
F@™)

w, (t) = u(t)

with

B,(q7") =hy +b,q7 +bypq 7+ +by, g7

F@™)=1+f,q" +--+f,q™

and, in addition, B,(q™") and F,(q™") are coprime.

The second linear dynamic block G,(q™,0,) of order n, isgiven by

A@ )Y (t) = B, (g )w, () + C(a)e(t)
= byo - W, (1) + B, (a7 )w, (1) + C(a e(t)

with the following notations:

A@")=1+aq”+--+a,q"
Bz(q_l) = bzo + b21q_1 +,,,+b2n2q—nz
B,(07") =byq ™ +b,q ™ 4+ 4 banq_nz

C(@Y)=1l+cqg™ +o4C, Q"

(5.123)

(5.12b)

(5.12¢)

(5.133)

(5.13b)

(5.13¢)

(5.13d)

(5.13¢)

We separate aterm b, - W, (t) in Eq. (5.13a). Then w, (t) in the first term b,, - W, (t) of Eq. (5.138)
is one key term. To avoid the over-parameterization problem, two parameters in the Wiener-
Hammerstein system should be fixed. Without loss of generality, let b,, =1 and the other one will be

fixed later.

5.1.1. Continuous nonlinearity

If the nonlinear block N, (w, (t),n,) between the two linear blocks is a continuous nonlinearity, that

is, apolynomial of order m,, then we have
my ‘

Wz(t) = Zﬂk - Wy ®)
k=1

T RIOR W AR

(5.14)
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where W, (t) in the separated term - w,(t) of Eq. (5.14) is the other key term. Without loss of
generality, let B, =1.

Half-substituting Eq. (5.12a) into the key term w, (t) in Eq. (5.14) and then half-substituting Eq.
(5.14) into the key term w,(t) in Eqg. (5.13a) respectively, the system output of a Wiener-
Hammerstein system with a continuous nonlinearity can be given by

B.(a7)
F@™)

A@)y(t) = u(t) + iﬂk Wy (1) + B, (7w, () + C(a )e(t). (5.15)

Eq. (5.15) shows that the Wiener-Hammerstein system with a continuous nonlinearity can be
approximately transformed into a pseudo-linear M1SO system which has m, +1 independent pseudo-

inputs: u(t), w(t),---,w;™(t) and w,(t). The unmeasurable intermediate variables w, (t) and
W, (t) can be recursively estimated respectively, according to Eq. (5.128) and Eq. (5.14). All the
parameters in this pseudo-linear M1SO system are explicitly given.

5.1.2. Discontinuous nonlinearity

In the same way, we consider the Wiener-Hammerstein system with a discontinuous nonlinearity, e.g.,
with a dead-zone.

Using Egs (5.6) and (5.7) in the form:

1+sgn(D — |w, (t)])

w, (1) = - . w, (1) (5.16)
1,0 = TCO) ey 617
and with Eq. (5.10) we find

W,(t) =S, -w(t)+S, -wy(t)+S, -D-v,(t) (5.18)

where w, (t) inthefirstterm S, - w; (t) in Eq. (5.18) isthe other key term. Without loss of generality,
let S, =1.

Half-substituting Eq. (5.12a) into the key term w,(t) in Eq. (5.18) and then half-substituting Eq.
(5.18) into the key term w,(t) in Eq. (5.13a) respectively, the system output of a Wiener-
Hammerstein system with a dead-zone can be given by

Ay =29 ey s w, )+ D v, (1) + B (@, 1) + C(q et (5.19

F@™)

Eg. (5.19) shows that the Wiener-Hammerstein system with a dead-zone can be approximately
transformed into a pseudo-linear MISO system with four independent corresponding pseudo-inputs:

u(t), wy(t), v, (t) and w,(t). The unmeasurable intermediate variables w, (t), w, (t), v, (t) and
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W, (t) above can be recursively estimated according to Eg. (5.128) and Egs. (5.16)-(5.18),

respectively. All the parameters in this pseudo-linear MISO system are explicitly given. Other
discontinuous nonlinearities can also be considered in the same way.

5.2.Identification of a Hammerstein-Wiener system (NLN)

As shown in Fig. 5.2, the linear block G, (q™*,0,) of order n, isgiven by

B -1
wy) =249 )y, )
F.(a7)
v, 4 (5.20a)
“ by vy (1) + 229 Dy
F.(a7)
where
B,(@™") =by +b,q ™ +-- 40, g7 (5.20b)
F@h)=1+fq" +--+f,q™ (5.200)
B, (@) =b,q" +b,q +---+b,q" (5.20d)
with
b;k =Dy —by, - fy (5.20e)
for k=212,---,n,.

In Eq. (5.20a), we separate a term b, - W, (t) , then w, (t) in this term is one key term. To avoid the

over-parameterization problem, two parameters in the Hammerstein-Wiener system should be fixed.
Without loss of generality, let b, =1 and the other one will be fixed later.

5.2.1. Two continuous nonlinearities

If there are two continuous nonlinearities in Hammerstein-Wiener system, we use a polynomia model
of order m, to describe the first nonlinear block N, (u(t),n,)

W)= By u (1) (5.21)

and use another polynomial model of order m, to describe the second nonlinear block N, (w, (t),n,)
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YO =Y By WD)
P (5.22)

= B )+ B W D).

Then w, (t) in the separated term S, - W, (t) in Eq. (5.22) is the other key term. Without loss of
generality, let 3, =1.

Half-substituting Eq. (5.21) into the key term w,(t) in Eq. (5.208) and then half-substituting Eq.
(5.20a) into the key term W, (t) in Eq. (5.22) respectively, the system output of a Hammerstein-
Wiener system with two continuous nonlinearities can be given by
y©) =y () +e(t)

m, e (5.23)
W ARHOR @)

k=1

B,(q7) ) e(t).

F@™)

W)+ o W (D) +

Eqg. (5.23) shows that the Hammerstein-Wiener system with two continuous nonlinearities can be
approximately transformed into a pseudo-linear MISO system which has m, + m, independent

pseudo-inputs:  U(t),u’(t),---,u™(t), and w,(t),w2(t),ws(t),---,wj(t). The unmeasurable
intermediate variables w, (t) and w, (t) can be recursively estimated with Eq. (5.21) and Eq. (5.20a),
respectively. All the parametersin this pseudo-linear MI1SO system are explicitly given.

5.2.2. Two discontinuous nonlinearities

Here, we consider two cases:

Deadzone-Linear-Saturation system and
Saturation-Linear-Deadzone system.

The corresponding equations will be derived now.
» Deadzone-Linear-Saturation system
According to the descriptions of a dead-zone and a saturation nonlinearities in Egs. (5.6)-(5.11), the

variable relationships for the two nonlinear blocks in a Deadzone-Linear-Saturation system can be
described by the following equations:

1+sgn(D —|u(t)|)

wy (1) =— 5 u(t) (5.24)
v, (=20 _l“ )L o) 525
w, (1) = I ;'WZ O, 0 (5.26)
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) - IO o 627
and

W (t) =S, -u(t)+S, -w, (t)+S, -D-v,(t) (5.28)
V(0= W)+, w0+ L, 0 (529

S
where W, (t) in thefirst term ES-WZ (t) isthe other key term. Without loss of generality, let S, = 2.

Half-substituting Eq. (5.28) into the key term w,(t) in Eq. (5.20a) and then half-substituting Eq.
(5.20a) into the key term W, (t) in Eq. (5.29) respectively, the system output of Deadzone-Linear-
Saturation system can be given by

y(t) =y () +&(t)

=S, -u(t)+S, -w,(t)+S, -D-v,(t)+ %0)

B,(q™) C(a™)
F )W(t)+2 w,(t) + LV, (t)+D( y (t)

» Saturation-Linear-Deadzone system

According to the descriptions of dead-zone and saturation in Egs. (5.6)-(5.11). The variable
relationships for the two nonlinear blocks in Saturation-Linear-Deadzone system can be described by
the following equations:

w, (t) =

sn(z —u®) ;'u(t)p u(t) (5.31)

1+ sgn(lu(t)| - Z)

Vi (t) = > sgn(u(t)) (5.32)
w, (1) =9 DZ_ LGN (5.33)
v, (1) = 20~ ';V D=L, 1) (5.3
and

w, (t) :S—zs-u(t)+SS W, (1) +L-v (1) (5.35)
Yy (t)=S, -W,(t)+S, -w, (t)+S,-D-v,(t). (5.36)

where W, (t) inthefirstterm S, - w, (t) isthe other key term. Without loss of generality, let S, =1.
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Half-substituting Eq. (5.35) into the key term w,(t) in Eq. (5.208) and then half-substituting Eq.
(5.20a) into the key term w,,(t) in Eq. (5.36) respectively, the system output of a Saturation-Linear-
Deadzone system can be given by

YO =y O+
=S+, w0+ L0+ c@? 5:37)

B;(a) o0

Fl(q’l) w, () +w, (t) + D-v, (t) + DY)

Eq. (5.30) and Eq. (5.37) show that the Hammerstein-Wiener system with two discontinuous
nonlinearities (Deadzone-Linear-Saturation system or Saturation-Linear-Deadzone system) can also be
approximately transformed into a pseudo-linear MISO system which has six independent

corresponding pseudo-inputs, u(t), wy(t), v,(t), w(t), v (t) and w,(t). The unmeasurable
intermediate variables w, (t), w, (t), v4(t), w,(t), v,(t) and w,(t) can be recursively estimated

according to the corresponding equations. All the parameters in this pseudo-linear M1SO system are
explicitly given.

From the derivations above we can conclude that in Wiener-Hammerstein or Hammerstein-Wiener
systems any continuous and discontinuous nonlinearities or their combinations can be considered and
identified in the same principle. The important problem is to write the nonlinearities in continuous
forms and according to the separated key term principle to form a pseudo-linear MI1SO prediction error
model.

5.3.Simulation results

In the following we consider five test systems, namely

a Wiener-Hammerstein system with a continuous nonlinearity,

a Wiener-Hammerstein system with a dead-zone,
aHammerstein-Wiener system with two continuous nonlinearities,
a Deadzone-Linear-Saturation system and

a Saturation-Linear-Deadzone system.

The Wiener-Hammerstein system with a continuous nonlinearity consists of the following linear and
nonlinear blocks:

0.1333q " +0.0667q >
1-1.597"+0.79°

w, (t) = u(t) (5.38)

W, (t) = w, (t) + 3w? (t) + 15w (t) (5.39)
(1-0.997" +0.859?)y(t) = (1+0.1333q " + 0.0667q *)w, (t) + (L+0.29 " + 0.1g *)e(t) (5.40)
The Hammerstein-Wiener system with two continuous nonlinearitiesis given by:

w, (t) = 0.3u(t) + 0.4u”(t) + 0.5u°(t) (5.41)

1-0.79 7" +0.1292
1-1.597" +0.7q 2

W, (t) = w, (t) (5.42)
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1+0.297" +0.1g°
1-1.297" +0.5q7°

y(t) = W, (t) + 0.8wW2 (t) + 0.9w3 (t) + e(t) (5.43)

The discontinuous dead-zone and saturation nonlinearities are:

xs(t)—05 xq4(t)>05
7q () = 0 —-05< 4, () <05 (5.44)
74(t)+05 x4 () <-05
1 r.(t)>1
7 () =< 7. (1) 1<y (H) <1 (5.45)
-1 () <-1

A random numbers of zero mean is used as the system input u(t). Another independent random
numbers as white measurement noise e(t) . N = 2000 data points are collected for each case.

Because the relatively simple examples above are used, here we consider only for each cascade
Wiener and Hammerstein system with a non-noise, a N./S.=5% white measurement noise and a
N./S.=5% colored measurement noise, respectively.

An exponentially average smoother using a moving window with fixed length Mov = 4 will be used
to filter the estimated parameters to calculate the intermediate variables.

Then apply the standard RPEM function in MATLAB with forgetting factor algorithm for linear
MISO system with the algorithm variable settings 4(0) = 0.7 and A4 = 0.01. The initial estimates

of the unknown parameters are also taken as zero.

Identification results with different measurement noises are shown in Tables 5.1A-5.5A. The
identification processes with a N./S.=5% colored measurement noise are shown in Figs. 5.4-5.8. The
red lines in Figs. 5.4-5.8 are the real values of parameters. The single parameter identification error

Ap and the average parameter identification error |A| of each case with different measurement noises

are calculated and shown in Tables 5.1B-5.5B. Comparison of average parameter identification errors
|A| of the al five cases is shown in Table 5.6. Comparison of average parameter identification errors

|A| of the two systems with continuous nonlinearities is shown in Table 5.7. Comparison of average

parameter identification errors |A| of the two systems with discontinuous nonlinearities is shown in
Table 5.8.
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Table5.1A Identification results of the Wiener-Hammerstein system with a continuous nonlinearity
N = 2000 by, by, fir fi P> Bs
5% C. N. 0.1348 0.0626 -1.4941 0.6990 2.9655 1.4219
5% W. N. 0.1327 0.0723 -1.4932 0.6963 2.9940 1.5419
Non-noise 0.1333 0.0665 -1.5000 0.7000 3.0023 1.5021
True values 0.1333 0.0667 -1.5000 0.7000 3.0000 1.5000
N = 2000 8 a, by bz, Gy C,
5% C. N. -0.8879 0.8380 0.1843 0.0479 0.2175 0.0613
5% W. N. -0.8961 0.8404 0.1281 0.0680 - -
Non-noise -0.9000 0.8500 0.1344 0.0665 - -
True values -0.9000 0.8500 0.1333 0.0667 0.2000 0.1000
Table5.1B  Parameter identification errors of the Wiener-Hammerstein system
with a continuous nonlinearity
N'= 2000 |Ab,| |Ab,| AT |Af,| AB,| A
5% C. N. 0.0015 0.0041 0.0059 0.0010 0.0345 0.0219
5% W. N. 0.0006 0.0056 0.0068 0.0037 0.0060 0.0085
N =2000 |Aa,| [Aa,| |Ab| [Ab,| A5 )
5% C. N. 0.0781 0.0121 0.0120 0.0510 0.0188 -
5% W. N. 0.0419 0.0039 0.0096 0.0052 0.0013 -
Table5.2A Identification results of the Wiener-Hammerstein system with a dead-zone
N = 2000 by, by, fiy f1 D )
5% C. N. 0.1295 0.0743 -1.4974 0.7005 0.4957 -
5% W. N. 0.1294 0.0757 -1.4985 0.6998 0.4980 -
Non-noise 0.1333 0.0667 -1.5000 0.7000 0.5000 -
True values 0.1333 0.0667 -1.5000 0.7000 0.5000 -
N = 2000 8 a by bz, C C,
5% C. N. -0.8917 0.8464 0.1265 0.0635 0.2361 0.1446
5% W. N. -0.8944 0.8434 0.1226 0.0621 - -
Non-noise -0.9000 0.8500 0.1333 0.0667 - -
True values -0.9000 0.8500 0.1333 0.0667 0.2000 0.1000
Table 5.2A Parameter identification errors of the Wiener-Hammerstein system with a dead-zone
N=2000 | lab| | fabg| | || [ [af[ [ [aD] | o
5% C. N. 0.0038 0.0076 0.0026 0.0005 0.0043 0.0005
5% W. N. 0.0039 0.0090 0.0015 0.0002 0.0020 0.0005
N = 2000 |Aa,| |Aa,| |Ab,,| |Ab,,| -
5% C. N. 0.0083 0.0036 0.0068 0.0032 - -
5% W. N. 0.0056 0.0066 0.0107 0.0046 - -
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Table 5.3A Identification results of the Hammerstein-Wiener system
with two continuous nonlinearities

N = 2000 b, b, f, fa
5% C. N. -0.6742 0.0877 -1.4952 0.6910
5% W. N. -0.6964 0.1296 -1.4936 0.6956
Non-noise -0.6988 0.1207 -1.4990 0.6995

True values -0.7000 0.1200 -1.5000 0.7000

ﬂ 11 IB 12 ﬂ 13 ﬂ 22 ﬂ 23
0.2506 0.3946 0.4208 0.7219 0.8052
0.3055 0.4044 0.4771 0.6573 0.8381
0.3014 0.4013 0.4920 0.7810 0.9135
0.3000 0.4000 0.5000 0.8000 0.9000

N = 2000 c, C, d, d,
5% C. N. -0.1289 0.3297 -0.8471 0.7871

True values 0.2000 0.1000 -1.2000 0.5000

Table 5.3B Parameter errors of the Hammerstein-Wiener system with two continuous nonlinearities

N=2000 | |Ab| [Ab,| At jAf,| [ABy| Al
5% C. N. 0.0258 0.0323 0.0048 0.0090 0.0494 0.0421
5% W. N. 0.0036 0.0096 0.0064 0.0044 0.0055 0.0291
N = 2000 |Aﬂ12| |Aﬂ13| |Aﬂ22| |A/323| ) )
5% C. N. 0.0054 0.0792 0.0781 0.0948 - -
5% W. N. 0.0044 0.0229 0.1427 0.0619 - -

Table 5.4A I dentification results of the Saturation-Linear-Deadzone system

N = 2000 b, b, f, f,
5% C. N. -0.7191 0.1327 -1.5188 0.7131
5% W. N. -0.6863 0.1055 -1.5069 0.7054
Non-noise -0.7001 0.1197 -1.5000 0.6999
True values -0.7000 0.1200 -1.5000 0.7000
N = 2000 L Z D -
5% C. N. 1.0050 0.9803 0.4990 -
5% W. N. 0.9660 1.0083 0.4929 -
Non-noise 1.0002 0.9999 0.5000 -
Rea 1.0000 1.0000 0.5000 -
N = 2000 c, c, d, d,
5% C. N. 0.2682 0.2811 -0.9682 0.3015
True values 0.2000 0.1000 -1.2000 0.5000

Table 5.4B Parameter identification errors of the Saturation-Linear-Deadzone system

N-2000 [ [ap)] b, o] af B
5% C. N. 0.0191 0.0127 0.0188 0.0131 0.0128
5% W. N. 0.0137 0.0145 0.0069 0.0054 0.0128
N = 2000 AL |AZ| |AD| - -
5% C. N. 0.0050 0.0197 0.0010 - -
5% W. N. 0.0340 0.0083 0.0071 - -
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Table 5.5A I dentification results of the Deadzone-Linear-Saturation system
N = 2000 b, b, f, fa
5% C. N. -0.6870 0.1306 -1.4954 0.7000
5% W. N. -0.6918 0.1219 -1.4998 0.7032
Non-noise -0.7007 0.1205 -1.5000 0.7000
True values -0.7000 0.1200 -1.5000 0.7000
2000 S, D z -
5% C. N. 0.9843 0.4748 1.0235 -
5% W. N. 1.0469 0.5189 0.9987 -
Non-noise 1.0010 0.5004 0.9998 -
True values 1.0000 0.5000 1.0000 -
N = 2000 C, C, d, d,
5% C. N. 0.2467 0.1717 -1.1220 0.4273
True values 0.2000 0.1000 -1.2000 0.5000
Table5.5B Parameter errors of the Deadzone-L inear-Saturation system
N = 2000 |Ab| [Ab| At [Af| A
5% C. N. 0.013 0.0106 0.0046 0.0000 0.0132
5% W. N. 0.0082 0.0019 0.0002 0.0032 0.0115
N = 2000 |AS,| |AD| AZ| - -
5% C. N. 0.0157 0.0252 0.0235 - -
5% W. N. 0.0469 0.0189 0.0013 - -

Table5.6 Comparison of average parameter identification errors |A| of the five cases

N = 2000 L-N-L L-D-L N-L-N SL-D D-L-S Best accur.
5% C. N. 0.0219 0.0005 0.0421 0.0128 0.0132 L-D-L
5% W. N. 0.0085 0.0005 0.0291 0.0128 0.0115 L-D-L

Table5.7 Comparison of average parameter identification errors |A| of the two systems

with continuous nonlinearities

N = 2000 L-N-L N-L-N Best accuracy
5% C. N. 0.0219 0.0421 L-N-L
5% W. N. 0.0085 0.0291 L-N-L

Table5.8 Comparison of average parameter identification errors |A| of the two systems

with discontinuous nonlinearities

N = 2000 L-D-L SL-D D-L-S Best accuracy
5% C. N. 0.0005 0.0128 0.0132 L-D-L
5% W. N. 0.0005 0.0128 0.0115 L-D-L
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Fig. 5.4 The Wiener-Hammerstein system identification process
with continuous nonlinearity with a N./S.=5% colored measurement noise
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Fig. 5.8 Saturation-Linear-Deadzone system identification process
with aN./S.=5% colored measurement noise
The simulation results show that:

» The new identification method gives good results for al two cascade Wiener and Hammerstein
systems with continuous and discontinuous nonlinearities, respectively.

» From Tables 5.6-5.8, we can see that which one of the five cases has the best accuracy results
under different measurement noises, respectively.
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6. Identification of generalized Wiener and Hammerstein systems

In this chapter, the new identification method for Wiener and Hammerstein systems will be extended
to identify a more general nonlinear dynamic system. The relationship among Wiener and
Hammerstein systems and parametric Volterra-series will also be highlighted. And so-called
generalized Wiener and Hammerstein systems will be proposed and identified.

It is known that the parametric Volterra-series provide an important general representation for atime-
invariant stable nonlinear dynamic system. It is, roughly speaking, always valid for nonlinear dynamic
systems with analytic nonlinearities. A discrete parametric Volterra-seriesis described as

YO =Yo +Za y(t- J)+Zb IS EDIANIEISACEYS
11=01J=h (61)
#3030 St Ut - )ut - )+

h=0Jo=11 Js=1>

with u(t) as the system input, y(t) a the system output and y, as a mean value. a; are the
b.. . ,--- arethe 0-th, first, second, third

hiz2 * Mieds?

- Volterra kernels which will trend towards zero as j > ©, j, >, ], > o, j; —>00,-,
(Kurth, 1996).

autoregressive parameters of the system and a, b b.

This class of systems is very broad, but to be practically useful, the sums must be truncated to some
finite upper limit n and the number of sums included must also be made finite m . Therefore, Eq.
(6.1) can be approximated by

y(t) =Y, +Za Y(t—J)+Zb U(t—j)+22b“2 — jult—J,)
h=0j2=11 (62)
Tt Z Z thth Jm Jl)u(t Z)U(t - Jm) +S(t)

h=0j2=1I1 im=lm-1
where &(t) isthe sum of cutting error and the measurement noise.

Direct identification of parametric Volterra-series results to estimate the parametric Volterra kernels
on the basis of input-output data sequences u(t) and y(t). In principle, Eq. (6.2) can be identified
using least squares method with the help of various types of deterministic as well as stochastic inputs.
But in the normal case there are too many parameters (>10000) to be identified (Kurth, 1996). This
has been proved to be a nontrivial task. Therefore, a particular problem is to deal with the large
number of potentially necessary parameters. Kurth (1996) developed a method for identification of
modified compressed discrete Volterra-series by introducing basis functions and structure selection.

Here, by using shifting operators (q~*,q;%,d,",-+,q;") and according to the definition of the
generalized transfer function, we write Eq. (6.2) in the form

y(t) = Yo +Go(a7)y(t-2) + G, (a)u(t) + G,(a;",a,")u’ (1)
+o 4G (07,0, A U™ (1) + £ (1)

(6.3)
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with ngy,n;,n,,---,n as the orders of the corresponding generalized transfer functions

m

Go(@™),G,(a™).G, (A, a5"), .G (0,4, 95"+, 0y ) , respectively.

Eq. (6.3) shows that the nonlinear dynamic system output Yy(t) consists of the mean vaue y,, the
autoregressive part G,(q ") y(t—1), the linear dynamic part G,(q *)u(t) and different nonlinear
dynamic parts from different inputs u(t),---,u™(t) .

In Eq. (6.3), because y(t—1), u(t), u®(t),---,u™(t) are independent, they can be regarded as
pseudo inputs which specify particular nonlinearities and drive their corresponding dynamic
subsystems G, (q),G,(d7),G,(0,",9,"),+,Gn (0, ", 0;",++,0, ) to thesingle output y(t) . This
isillustrated in Fig. 6.1.

In this sense we transform a nonlinear dynamic system approximately into a pseudo-linear MISO
system with the pseudo inputs: y(t—1), u(t), u®(t),---,u™(t). On the one hand they are pseudo

inputs of the nonlinear dynamic system and on the other hand they illustrate aso the nonlinear
couplings between the pseudo multiple inputs.

u(t) — A0 Yo 0
— GilgT)

+ + vt

u?(f) T
— Glgy .qr )

Gu(q_lj" fi'_l

O | S — M
—'Gm(gl rqj ru.qu:I

Fig. 6.1 Parametric Volterra-series model

6.1.Generalized Wiener and Hammerstein systems

A modd is aways a system description in some approximation level. Different approximations to a
nonlinear dynamic system can be got by regularization, shrinking, pruning and partly selecting of
different terms of the parametric Volterra-series EqQ. (6.3). For example, the linear dynamic model is
just the simplest approximation. Actualy, the block-oriented systems as well as the Wiener and
Hammerstein systems are all approximations of the parametric Volterra-series. This is handled by
making the number of ‘used' parameters considerably less than the number of 'offered’ parameters.

From Eg. (6.3) we can derive the following different approximations of a nonlinear dynamic system:

> Linear model

y(t) = Yo +Go(@ )yt 1) + Gy (q u(t) + &(t). (6.4)

Itisaso alinear predication error model as shown in Ljung (1987).
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» Hammerstein model

y(t) = Yo +Go(@ )Yt -1 + G () +[B, -u(@®) +---+ B, -u"(IG,(a7") +&(t). (659

Eq. (6.5a) shows that a Hammerstein model is an approximation of the parametric Volterra-series with
the following assumptions:

Go(@",8;) = £, Gu(a™) (65b)
ém(ql‘l,q?,---',qﬁ) =B -Gi(a,) (6.50)
where B, for j =2,3,---,m are defined as constant parameters.

> Wiener model

Y1) = Yo +Go (@)Yt =2 + G (q () + S, - W () +-++ By - W" (1) + £(1). (6.62)

Eq. (6.6a) shows that a Wiener model is an approximation of the parametric Volterra-series with the
following assumptions:

Gz(ql_l’qz_l) = ﬂz 'Gl(q_l) ’ Gl(q_l)

(6.6b)
G (05" 0,2) = A -Gula?) -Gy (a5)- (6.60)
mtimes
The unmeasurable intermediate variable w(t) in Eq. (6.6a) is defined as
w(t) = Gy(q u(t) (6.7)

and ; for j=23,---,m aredefined as constant parameters.
» Wiener-Hammerstein model
y(t) = Yo +Go(a )Yt -1 + G (q ) +[ S, - W () ++-+ B, W' (DIG,(a7) +(t)  (6.89)

Eqg. (6.8a) shows that a Wiener-Hammerstein model is an approximation of the parametric Volterra-
series with the following assumptions:

G,(a;%0;") = 4,-G(a™) -G, (q™)-G,(a™) (6.8b)

G, (0,05 .00 ) = B - Gy(a) -Gy (a;1) - G,(q7Y) . (6.8¢)

m times

The unmeasurable intermediate variable w(t) in Eq. (6.8a) is defined as Eq. (6.7) and f; for
j =23,---,m are constant parameters.
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In the same principle, we propose three generalized Wiener and Hammerstein models which are better
approximations of the parametric Volterra-series Eq. (6.3).

» Generalized Bilinear model

V) = Yo +Go(q ™)yt 1) + G, (q™1u(t) + Gy (q 1)U (t) + Gy (q H)[ut)u(t - 1]

y (6.99)
+-+ G, (@) [ut)u(t —m)] + &(t)

In the generalized Bilinear model, only terms to the second power are selected from the parametric
Volterra-series. It is an approximation model with the following assumptions:

G,(0:,9;)) = G,(a™) =G,(q™) (6.9b)
:Gs(ql‘ ,q;)=:Ga(q‘)-q‘ =G.(@a") (6.90)
G, (69" 8,) =G (@™ - =G, (7). (6.90)

> Generalized Hammerstein model

Y1) = Yo +Go(a )Yt -1 +G(qu(t) + G,(a Hu (M) +---+ G, (@ )" (M) +£(t)  (6.208)

The generalized Hammerstein model is an approximation of the parametric Volterra-series with the
following assumptions:

G,(0,5,9,")=G,(a™)

(6.10b)
G,(g;",95"+,0,) =G, (q™). (6.10c)
> Generalized Wiener model
_ -1 _ -1 “1\5,2
V(1) = Yo + Go(@ )Y (t -1+ Gy(aHu()) + G, (@I () 6114

+o-+ G, (qHW™ (1) + &(1).

The generalized Wiener model is an approximation of the parametric Volterra-series with the
following assumptions:

G,(0,",9,") =G,(a™)-G,(a™")-G,(q ) (6.11b)

G,(a;",9;",0,) =G, (a7 -G, (a;) -G, (") - (6.110)

m times

The unmeasurable intermediate variable w(t) in Eq. (6.114) is defined again asin Eq. (6.7).

It should be noted that the Hammerstein system (Eq. (6.5d)) is a specia case of the generalized
Hammerstein system (Eg. (6.10a)). The Wiener system (Eq. (6.68)) and the Wiener-Hammerstein
system (Eq. (6.8a)) are just special cases of the generalized Wiener system (Eq. (6.11a)).
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In Egs. (6.4)-(6.11), the rational transfer functions G;(q™") of order n; as well as éj (q) for
j=012,---,m aredescribed by

B.(q™*
G;(q ™M)= ’(q,l) (6.123)
Fi@™)
with
B;(@")=bj,+b,q " +--+b,, g™ (6.12b)
Fj (q71)=1+ fj1q71+”'+ fjnjq_nJ : (6.120)

Itisassumedthat B;(q~") and F;(q™) for j =012,---,m are coprime.

It should be noted that the autoregressive part G,(q~*)y(t —1) would help to reduce the parametric
Volterra-series order. And in practice, in order to enhance the system performance, it is reasonable to
choose a nonlinear dynamic model architecture which also contains a linear dynamic model G, (q )
as a gpecia case. For the nonlinear dynamic model Egs. (6.5)-(6.11), it can be advantageously to
establish a linear dynamic model G,(q ™) in paralel. So the overall model output is the sum of the

linear and the nonlinear model parts. This strategy is very appealing because it ensures that the overal
nonlinear model performance is better than that of the linear model.

Now, the new identification method will be used to identify the generalized Hammerstein and
generalized Wiener systems as shown in Figs. 6.2 and 6.3.

Yo &(£)
(L) +| +

T Gl("-?_lj ﬂf‘_ t
Niu(e)g™) Gylg™) g™

Fig. 6.2 Generalized Hammerstein system

Mo &)

ey 1 wiz) +] +] xiE)
— Gl(g_ :I L ﬁ ¥ ~| b
Niwit),g ™) Gylg™) g™

Fig. 6.3 Generalized Wiener system
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In these Figures, N(x(t),q™) is defined as a nonlinear dynamic polynomial of order m but only
with high power terms

y(t)=N(x@®).q7)

36, (@) 2°0) 613
k=2

where y(t) is the input of the nonlinear dynamic block and y(t) is the output of the nonlinear
dynamic block. G, (q™*) are the corresponding linear dynamicsof y*(t) for k = 2,---,m.

From Eg. (6.10a) and Fig. (6.2), we can see that the generalized Hammerstein system can be directly
transformed approximately into a pseudo-linear MISO system which has m + 2 independent pseudo-

inputs: 1, y(t—1) and u“(t) for k =1---,m. All the parameters are explicitly given without
redundancy.

Actually, the generalized Bilinear system Eq. (6.9a) can also be directly transformed approximately
into a pseudo-linear M1SO system which has m + 4 independent pseudo-inputs: 1, y(t —1), u(t) and
u(t)u(t—k) for k =0,---,m and the parameters are also explicitly given. In these forms as in Egs.

(6.9a) and (6.10a), both generalized Bilinear and Hammerstein systems can be identified using the
identification method for pseudo-linear M1SO dynamic system.

Considering the generalized Wiener system Eg. (6.11a) and Fig. (6.3), athough there is an
unmeasurable intermediate variable w(t) , it can be estimated recursively according to Eq. (6.7). Then

the generalized Wiener system can be transformed approximately into a pseudo-linear M1SO system
which has m+2 independent pseudo-inputs: 1, y(t—1), u(t) and the recursively estimated

intermediate variables w*(t) for k =2,---,m. All the parameters are also explicitly given and
without redundancy.

6.2.Simulation results

In the following the new identification method will be applied to three different special nonlinear
systems, namely

ageneralized Bilinear system,
ageneralized Hammerstein system and
ageneralized Wiener system.

They are described asfollows:

» Generalized Bilinear system

y(t) = Yo +Go(a ) y(t-2) + Gy (q u(t)

(6.14)
+G, (@ Huu(t -1 + G, (g Hut)u(t — 2) + £(t).
» Generalized Hammerstein system
V(1) = Yo + Go(a)y(t -1+ Gy(a)u(t) 615

+G, (@ u* (1) + G, (q () + £(1).
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» Generalized Wiener system

y(t) = Yo +Go(a ) y(t-2) + Gy (q u(t)

(6.16)
+G,(a7)W* (1) + Gy (@)W (1) + (1)
The corresponding linear dynamicsin the above equations are as follows:
- 0.1333g ™" +0.0667q >
Go(q™) = 9 & (6.17)
1-1.59" +0.7q
G,(qY) = 0.4q'+0.397° (6.18)
! 1-0.99 7 +0.8q72 '
G,(q ) =230 +020" (619
2 1-1.297* +0.59 2 '
ol 0.2q°'+0.197°
G;(q7) = (6.20)

- 1-1797+09q7%°

For the generalized Wiener system Eq. (6.16), the intermediate variable w(t) is given by

w(t) =G,(q)u(t)
-1 -2 6.21
_ 04q _:rO.Bq U, (6.21)
1-0.99 " +0.8q

A random numbers of zero mean are used as system input u(t) . An independent random numbers as
white measurement noise £(t) . Because of the increase of the parameter number, 4000 data points are

collected for each case. Each system will be tested with non-noisy (N. N.) and with a N./S.=5% white
measurement noise (5% W. N.).

By identifying the generalized Wiener system, in order to improve aertness ability, we use the
adaptive moving average parameter smoothing (Trigg and Leach, 1967) which means recursively

adaptive exponentially averaging and smoothing the estimated parameters of G, (q ) using amoving
window with fixed length Mov =5. Brown's double exponential smoothing application (Brown,
1963) is used to mitigate the estimate of the unmeasurable intermediate variable w(t) .

The standard recursive prediction errors method (RPEM) with forgetting factor for linear MISO
systemin MATLAB will be applied. The algorithm variable settings are A(0) = 0.7, AA =0.01. The

initial estimates of the unknown parameters are taken as zero.

The identification results are shown in Tables 6.1A-6.3A. The identification processes with a
N./S.=5% colored measurement noise are shown in Figs. 6.4-6.6. The red linesin Figs. 6.4-6.6 are the
true values of parameters. The single parameter identification error Ap and the average parameter

identification error |A| of each case are calculated and shown in Tables 6.1B-6.3B. Comparison of

average parameter identification errors |A| of the three casesis shown in Table 6.4.
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Table6.1A Identification results of the generalized Bilinear system
N'=4000 b01 b02 fOl fOZ bll b12 fll f12
5% W.N.| 0.1217 0.0833 | -1.4820 | 0.6854 0.4004 | 0.2963 | -0.9035 | 0.8066
N. N. 0.1316 0.0691 | -1.4975 | 0.6979 0.4012 0.2993 | -0.9005 | 0.8007
Trueval. | 0.1333 0.0667 | -1.5000 | 0.7000 0.4000 0.3000 | -0.9000 | 0.8000
N'=4000 b21 b22 f21 f22 bSl b32 f31 f32
5% W. N.| 0.3373 0.1886 | -1.1499 | 0.4432 0.2052 0.0822 | -1.7032 | 0.9046
N. N. 0.2975 0.2033 | -1.1972 | 0.4980 0.2011 0.0985 | -1.6996 | 0.8995
Trueval. | 0.3000 0.2000 | -1.2000 | 0.5000 0.2000 0.1000 | -1.7000 | 0.9000
Table 6.1B Parameter identification errors of the generalized Bilinear system
N =000 Jaby| | [Abg| | [Afw| | [Afg| | [Aby| | |Aby| | [Af] | (At | A
5% W. | 0.0116 | 0.0166 | 0.018 | 0.0146 | 0,0004 | 0.0037 | 0.0035 | 0.0066 | 0.0163
N=4000 |Ab,| | [Aby| | [Afy| | [Af,| | |Aby| | |Abgy| | [Afy| | [Afy]
5% W. | 0.0373 | 0.0114 | 0.0501 | 0.0568 | 0.0052 | 0.0178 | 0.0032 | 0.0046
Table 6.2A Identification results of the generalized Hammerstein system
N'=4000 bOl b02 fOl f02 bll b12 f11 f12
5% W.N.| 0.1216 0.0768 | -1.4877 | 0.6931 0.3979 0.3015 | -0.9035 | 0.8038
N. N. 0.1291 0.0726 | -1.4936 | 0.6948 0.4042 0.2986 | -0.9011 | 0.8010
Trueval. | 0.1333 0.0667 | -1.5000 | 0.7000 0.4000 0.3000 | -0.9000 | 0.8000
N'= 4000 b21 b22 f21 f22 b31 b32 f3l f32
5% W.N.| 0.2911 0.3095 | -1.0938 | 0.4495 0.1945 0.0974 | -1.6973 | 0.9012
N. N. 0.3037 0.2008 | -1.1970 | 0.4998 0.1904 | 0.1089 | -1.6982 | 0.8990
Trueval. | 0.3000 0.2000 | -1.2000 | 0.5000 0.2000 0.1000 | -1.7000 | 0.9000
Table 6.2B Parameter identification errors of the generalized Hammerstein system
N=4000 JAby| | [Abg| | [Afe| | [Afg| | [Aby| | |Aby| | [Af] | (AT | A
5% W. | 0.0117 | 0.0101 | 0.0123 | 0.0069 | 0.0021 | 0.0015 | 0.0035 | 0.0038 | 0.0212
N=4000 [Aby| | |Aby| | [Afy| | [Afy| | [Aby| | [Abg| | |Afa| | [Afy | -
5% W. | 0.0089 | 0.1095 | 0.1062 | 0.0505 | 0.0055 | 0.0026 | 0.0027 | 0.0012 -
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Table 6.3A Identification results of the generalized Wiener system
N'= 4000 bOl b02 fOl f02 bll b12 fll le
5% W. N.| 0.1058 0.0732 | -1.4826 | 0.7096 0.4002 0.3074 | -0.9041 | 0.8051
N. N. 0.1307 0.0747 | -1.4898 | 0.6884 0.3999 0.2964 | -0.9003 | 0.8012
Trueval. | 0.1333 0.0667 | -1.5000 | 0.7000 0.4000 0.3000 | -0.9000 | 0.8000
N'= 4000 b21 b22 f21 f22 b3l b32 f31 f32
5% W.N.| 03925 | 0.0614 | -1.3228 | 0.6051 0.0028 0.2720 | -1.1816 | 0.5180
N. N. 0.3172 0.1395 | -1.2831 | 0.5542 0.1440 0.1793 | -1.6844 | 0.8882
Trueval. | 0.3000 0.2000 | -1.2000 | 0.5000 0.2000 0.1000 | -1.7000 | 0.9000
Table 6.3B Parameter identification errors of the generalized Wiener system
N=4000 [Aby| | |Abg| | [Afe| | [Afe| | |Aby| | JAD| | [Afu] | [Af] | A
5% W. | 0.0275 | 0.0065 | 0.0174 | 0.0096 | 0.0002 | 0.0074 | 0.0041 | 0.0051 | 0.1129
N=4000 |Ab,| | [Aby| | |Afu| | [Afy,| | [Aby| | |Aby| | |Afy| | |Afy] -
5% W. | 0.0925 | 0.1386 | 0.1228 | 0.1051 | 0.1972 | 0.172 | 0.5184 | 0.3822 -

Table6.4 Comparison of average parameter identification errors |A| of the three systems

N = 4000 Generdliz. Bilinear | Generaliz. Hamm. | Generaliz. Wiener Best accuracy
5% W. 0.0163 0.0212 0.1129 Generaliz. Bilinear
1 2 1 4
%‘*’g— \
0 0 0 Wf 2
bl b12 bo1 . b02
-1 -2 -1 0
0 2000 4000 O 2000 4000 O 2000 4000 O 2000 4000
5 10 5 5
0 0 N’/Lw 0 ]‘PM 0 o,
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0 f11 0 f12 0 ‘H fo1 0 W f02
18 -1 -2 -1
0 2000 4000 O 2000 4000 O 2000 4000 O 2000 4000
2 1 2 1
o
0 ” 0 f22 0 Om 82
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-2 -1 2 -1
0 2000 4000 O 2000 4000 O 2000 4000 O 2000 4000

Fig. 6.4 The generaized Bilinear system identification process
with aN./S.=5% colored measurement noise
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Fig. 6.5 The generalized Hammerstein system identification process
with aN./S.=5% colored measurement noise
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Fig. 6.6 The generalized Wiener system identification process
with aN./S.=5% colored measurement noise

The simulation results show that:

» The new identification method gives good results for all three generalized Wiener and
Hammerstein systems.

» From Table 6.4, we can see that the generalized Bilinear system has the best accuracy results.
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7. Conclusions

Nonlinear models can provide an accurate description and prediction of physical systems that have a
nonlinear behaviour. Modelling nonlinear systems has become an important issue with many practical
applications. However, there exist no general valid descriptions for the full class of nonlinear systems
and finding the model parameters for given measurements is an open question.

Wiener systems and Hammerstein systems are nonlinear models that are used in many domains for
their simplicity and physical meaning. Different nonlinear systems with different nonlinearities should
use different Wiener and Hammerstein structures.

In this thesis a new identification method and unified identification concepts for a class of Wiener and
Hammerstein systems have been developed. The new identification method is based only on the
observed input and output data and the recursively estimated intermediate variables.

For continuous nonlinearities, polynomial functions are applied because they are common used and
their key terms can be easily separated. For the typical discontinuous nonlinearities, it is necessary to
establish some extra independent intermediate variables as the key terms. We use RTF and ARMAX
models to describe the linear subsystems.

After having selected the suitable model structures for each subsystem in a Wiener and Hammerstein
system, by constructing intermediate variables and using the key term separation principle, such a
Wiener and Hammerstein system can be approximately transformed into a pseudo-linear MI1SO
system. Then we have considered our identification problems based on recursive pseudo-linear
regressions (RPLR) in the prediction error and model framework.

The constructed intermediate variables are recursively estimated. In order to deduce oscillations and
get better convergence, the parameters are smoothed with smoothing and filtering techniques to
estimate the intermediate variables. After that, a general prediction error model is formed and satisfied
parameter estimates of the Wiener and Hammerstein system are obtained in the presence of a white or
a colored measurement noise without parameter redundancy.

In this thesis we have derived new algorithmsfor:

» four SISO Wiener and Hammerstein systems with continuous nonlinearities,

» aWiener system with one of four general discontinuous nonlinearities, respectively,
» three MISO Wiener and Hammerstein systems with continuous nonlinearities,

» two cascade Wiener and Hammerstein systems with continuous and discontinuous nonlinearities,
respectively,

» and finally, three generalized Wiener and Hammerstein systems which are ssmplified from the
parametric Volterra-series.

All the derived algorithms have been tested by simulation examples. The new identification method
gives good results for al the considered Wiener and Hammerstein systems. From the derivations and
the simulation results, it can be concluded that the new developed identification method and
identification concepts are clear and efficient. It can be easily extended to other block-oriented
nonlinear systems with different nonlinearities.

Compared with the known methods, the major advantage of the new nonlinear identification method is
its unity and efficiency. We have built a "bridge” from the known linear modelling techniques, over

82



Conclusions

the new nonlinear identification method developed in this thesis, to the complex but accurate full
blown nonlinear models.

Nonlinear system identification is a new and broad research area. There are still many problems to
study. For the future investigation:

>

>

The developed identification method and concepts are expected to be used in practice.

The difficult convergence problem of PLR in nonlinear data case should also be theoretically
concentrated.

Suitable initial parameter values are no doubt important and necessary. The developed
identification method and concepts can also be combined with other identification methods for
nonlinear systems to get more better results.

Develop a corresponding toolbox with graphical user interface (GUI) for a class of Wiener and
Hammerstein systems with different nonlinearities.

The model structures that the system noise disturbs Wiener and Hammerstein systems from
different positions should also be studied.
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