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Abstract 
 
 
System identification is very important to technical and nontechnical areas. All physical 
systems are nonlinear to some extent and it is natural better to use nonlinear model to 
describe a real system. The Wiener and Hammerstein systems are proved to be good 
descriptions of nonlinear dynamic systems in which the nonlinear static subsystems and 
linear dynamic subsystems are separated in different order. Descriptions of different 
nonlinear systems need different Wiener and Hammerstein model structures.  
 
The aim of this doctoral dissertation is to develop an unified new recursive identification 
method in the prediction error method and model scheme for Wiener and Hammerstein 
systems; to derive the identification algorithms for a class of Wiener and Hammerstein model 
structures with continuous and discontinuous nonlinearities and to implement and test the 
algorithms with simulation examples in a MATLAB/Simulink environment. 
 
With the definition and extraction of intermediate variables by using the key term separation 
principle, a Wiener and Hammerstein system can be described by a nonlinear pseudo-
regression model. If some suitable submodel structures are selected, such a nonlinear 
pseudo-regression model could be pseudo-linear and can be approximately transformed into 
a pseudo-linear MISO system.  
 
The intermediate variables can be estimated recursively. The errors in estimated parameters 
and in intermediate variables affect strongly the identification procedure and results. 
Therefore, the estimated parameters or rather the intermediate variables should be 
smoothed by using smoothing techniques. Under some common assumptions and by using 
the adaptive recursive pseudo-linear regressions (RPLR), satisfied parameter estimates of 
the Wiener and Hammerstein system can be obtained in the presence of a white or a 
coloured measurement noise without parameter redundancy.  
 
The new method gives good results for all considered Wiener and Hammerstein systems and 
for some comparable examples, the results are also better. The major advantage of the new 
method is its unity and efficiency. It can be easily extended to identify other block-oriented 
nonlinear dynamic systems.  

 



Eine neue Identifikationsmethode für Wiener und Hammerstein Systeme 
 
 
Zusammenfassung 
 
 
Systemidentifikation ist sehr wichtig für technische und nichttechnische Bereiche. Alle 
physikalischen Systeme sind mehr oder weniger nichtlinear, und es ist natürlich besser, mit 
einem nichtlinearen Modell ein reales System zu beschreiben. Die Wiener und Hammerstein 
Systeme beschreiben solche nichtlinearen dynamischen Systeme gut, bei denen die 
nichtlinearen statischen Teilsysteme und die linearen dynamischen Teilsysteme immer 
getrennt und in verschiedenen Ordnungen angeordnet sind. Beschreibungen der unter-
schiedlichen nichtlinearen Systeme brauchen unterschiedliche Wiener und Hammerstein 
Modell Strukturen. 
 
Das Ziel und die Aufgaben der vorliegenden Dissertation sind: eine neue Identifikations-
methode und einige Konzepte im Rahmen der Fehler-Vorhersage-Methode und –Modell-
strukturen zu entwickeln; rekursive Identifikationsalgorithmen für eine Klasse Strukturen von 
Wiener und Hammerstein Systemen mit kontinuierlichen und diskontinuierlichen Nicht-
linearitäten abzuleiten; alle abgeleiteten Algorithmen mit MATLAB/Simulink zu implemen-
tieren und Simulationsbeispiele durchzuführen. Die Ergebnisse werden auch ausgewertet. 
 
Durch die Definitionen und das Herausziehen der Zwischenvariablen mit dem sogenannten 
"key term separation" Prinzip kann ein Wiener und Hammerstein System durch ein nicht-
lineares Pseudoregressionsmodell beschrieben werden. Wenn geeignete Teilmodell-
strukturen gewählt werden, kann das nichtlineare Pseudoregressionsmodell pseudo-linear 
sein und es kann näherungsweise zu einem pseudo-linearen MISO System umgeformt 
werden. 
 
Die Zwischenvariablen können rekursiv geschätzt werden. Aber die Schätzungsfehler der 
Parameter und Zwischenvariablen wirken stark auf die Identifikationsverfahren und die 
Ergebnisse. Deshalb sollen die geschätzten Parameter bzw. die geschätzten Zwischen-
variablen durch Glatt- und Filtertechnik geglättet werden. Unter etwas allgemeinen 
Voraussetzungen und durch adaptive rekursive pseudo-lineare Regression (RPLR) kann 
man zufriedenstellende Parameterschätzungen vom Wiener und Hammerstein System mit 
der Anwesenheit von einem weißen oder verfärbten Ausgangsrauschen ohne Parameter-
redundanz erhalten. 
 
Die neue Identifikationsmethode gibt gute Ergebnisse für alle berücksichtigten Wiener und 
Hammerstein Systeme und für manche vergleichbaren Beispiele sind die Ergebnisse besser.   
 
Der Hauptvorteil der neuen Methode ist ihre Einheitlichkeit und Anwendbarkeit für viele 
unterschiedliche Modelltypen und ihre Wirksamkeit. Sie kann leicht erweitert werden, um 
andere blockorientierte nichtlineare dynamische Systeme zu identifizieren. 
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Notation 
 
 
Symbol  Explanation 
 

)(tu    System input 
)(tu j    thj −  system input signal to a MISO Wiener and Hammerstein system  

)(ty    System output 
)(* ty    System output without measurement noise 

)(ˆ ty    Predicted system output 
)(~ ty    Separated part from a Feedback-Hammerstein system 
)(tw    Intermediate variable 
)(twk    thk −  intermediate variable 

θ    Parameter vector of linear dynamic subsystem 
*θ    Parameter vector of linear dynamic subsystem without key term 
kθ  Parameter vector of the thk −  linear dynamic subsystem 
η  Parameter vector of nonlinear static subsystem 

*η  Parameter vector of nonlinear static subsystem without key term 

kη  Parameter vector of the thk −  nonlinear static subsystem 
ϑ    Parameter vector 

tϑ    Parameter vector at time t  

tϑ    Smoothed parameter vector at time t  
)(tφ    Pseuso-regression vector 
)(tg    Impulse response 

)),(( ϑtug   A general model of nonlinear system  
)(⋅mg    Nonlinear polynomial function of degree m  
)(⋅Ω k    thk −  basis function of nonlinear static subsystem 

)(tχ     Input of nonlinear static subsystem 
)(tγ     Output of nonlinear static subsystem 

)( 1−qG    Transfer function  
),( *1* θ−qG   Transfer function without key term 
),( 1

kk qG θ−   thk −  linear dynamic subsystem 
),( kkN η⋅   thk −  nonlinear static subsystem 

),( ** η⋅N   Nonlinear static subsystem without key term 
)( 1−qA   System output polynomial 
)( 1* −qA   Another form of system output polynomial 
)( 1* −qB   Nominator polynomial linear dynamic subsystem without the key term 
)( 1−qBk   Nominator polynomial of the thk −  linear dynamic subsystem 

)( 1* −qBk  Nominator polynomial of the thk −  linear dynamic subsystem without 
the key term 

)( 1−qF  Denominator polynomial of linear dynamic subsystem 
)( 1−qFk   Denominator polynomial of the thk −  linear dynamic subsystem 
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ka     thk −  coefficient of )( 1−qA  

kb     thk −  coefficient of )( 1−qB  

jkb    thk −  coefficient of )( 1−qB j  

kβ    thk −  coefficient of a nonlinear polynomial ),( η⋅N  

jkβ  thk −  coefficient of a nonlinear polynomial ),( jjN η⋅  
)(te    White measurement noise 
)(tε    Colored measurement noise 

),( 1 ξ−qH   Noise filter 
ξ    Parameter vector of ),( 1 ξ−qH  

)( 1−qC   Nominator of ),( 1 ξ−qH  
)( 1−qD   Denominator of ),( 1 ξ−qH  

cn  Order of the nominator )( 1−qC   

dn     Order of the denominator )( 1−qD  
1−q    Shift operator 

i    Multi input number to a MISO system 
m    Order of a nonlinear system 
n    Order of a linear system 

km  Order of the thk −  nonlinear static subsystem  

kn  Order of the thk −  linear dynamic subsystem  
γ   An integer in the interval ]1,0[ −n  

kp   Discrete frequency response of the linear system 

kϖ     thk −  frequency 
)(tkψ    Output of the thk − frequency sampling filter 

ρ    Constant parameter 
λ    Forgetting factor 
mov   Moving window length 

p∆    Parameter identification error 
∆    Avarage parameter identification error 

 
 
Abbreviation  Explanation 
 
ARX    AutoRegressive with eXogenous (or eXternal) input 
ARMAX   AutoRegressive Moving Average with eXogenous inputs 
NARMAX   Nonlinear AutoRegressive Moving Average with eXogenous inputs 
BJ    Box-Jenkins 
FIR    Finite Impulse Response 
FSF   Frequency Sampling Filter  
SISO   Single Input-Single Output system 
MISO   Multi Input-Multi Output system 
OE    Output Error 
PEM   Prediction Error Minimization 
RTF   Rational Transfer Function 
RPEM   Recursive Prediction Error Minimization 
PLR    Pseudo-Linear Regressions 
RPLR    Recursive Pseudo-Linear Regressions 
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1. Introduction  

1.1. General problems in system identification  
 
System identification is of fundamental importance in automatic control. The key task of system 
identification is to find out a best suitable mathematical model between the inputs, outputs and 
disturbances of a real system. Models can be useful for gaining a better understanding of the system 
and to predict or simulate a system's behavior. Advanced control techniques for the design and 
analysis of controllers, optimization, supervision, fault detection and diagnosis components are also 
based on models of real systems. The quality of the model typically determines an upper bound on the 
quality of the final problem solution. Therefore, there is a strong demand for system modeling and 
identification schemes. 
 
If the physical laws governing the behavior of the system are known, it is so called a white-box model 
in which all parameters and variables can be interpreted in terms of physical entities and all parameters 
are known. On the other hand, a black-box model is constructed only from system input and output 
data without any knowledge of physical insight. But in many practical cases, it often occurs that one 
knows only a little bit about the system, that is, the system modeling is based on the recorded input 
and output data with some prior knowledge about the system, e.g., the structure and order of the 
system. By analyzing and extracting information from the system and using the identification methods 
for black-box model, a gray-box model will be constructed. 
 
System identification is concerned with a black-box model or a gray-box model which has the 
following basic items (Zadeh, 1962; Aström and Eykhoff, 1971): observed data and prior information 
from the real system, a model set and an identification criterion. That is, according to some 
identification criterion and guided by prior information, a "best" model is chosen from the model set to 
fit the observed data best. It can not be said this model is the best and an unique model for a system. 
There must be some approximations in system identification. A best suitable model is only under the 
meaning of a definite optimization criterion.  
 
System identification must be a procedure with analysis, synthesis, selection and optimization. To 
identify a system, i.e., to establish a model for the system, one should get a physical insight into the 
system as much as possible. It depends greatly on how much details one knows about the system a 
prior, e.g., if it is a linear system or a nonlinear system, a time-invariant system or a time-variant 
system, a continuous system or a discontinuous system, a single input-single output (SISO) system or 
a multi input-multi output (MIMO) system, an open-loop system or a closed-loop system and so on. 
One should also know how the system can be influenced, i.e., which input and output signals can be 
selected to measure, which disturbance signals can disturb the system and where they can appear in 
the system and how measurement experiments can be designed and realized. Therefore, different 
systems need different model structure selections. In most cases it is convenient and sufficient to use 
some standard model structures. Actually, identification methods and algorithms are always related 
directly with model structures and optimization criterions to get a better data fit. 
 
After selecting the model structure and possible identification strategies, based on the inputs and 
outputs, the parameters of the model will be determined by an optimization process with minimization 
or maximization of a linear or nonlinear criterion to solve a least-squares (data-fitting) problem. It is 
clear that most optimization problems benefit from good starting points, i.e., initial values which 
improve the execution efficiency and can help to locate the global minimum instead of a local 
minimum.  
 
System identification can carry out off-line or on-line recursively. Most system identifications are 
related with process control purpose to get on-line better control performance. Then the identification 
and control criterion will be considered at the same time, i.e., so called control-relevant system 
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identification. Therefore, on-line recursive identification methods are more significant. At last, the 
identification results should be verified and improved iteratively till they are satisfactory.  
 
Therefore, a system can be identified with the following iterative steps: 
 
1. Optimal experiment design and data collection. Choice of the excitation signals, the sampling 

time and the interesting inputs and outputs to be measured. 
 
2. Model structure selection. Select a suitable model structure with suitable order.  
 
3. Model estimation. Given a suitable model structure and measured data, some suitable 

identification methods and optimal algorithms are available and the parameters in the model 
structure can be estimated by optimizing some criterion or loss function.  

 
4. Model validation. The model is simulated using "fresh" data and the estimated outputs are 

compared with the measured outputs. Verify if the identified model is valid and if it is exact or 
suitable enough for special purposes. 

 
System identification is a well-established field with a number of approaches and algorithms. The 
methods for black-box identification of linear, time-invariant dynamical systems with given discrete-
time data are broadly studied. They can be classified into: the prediction error methods (e.g., Ljung. 
1987); the subspace methods (e.g., Van Overschee and De Moor, 1993); the nonparametric correlation 
and spectral analysis methods (e.g., Billings and Fakhouri, 1978; G. Bretthauer,1983). Other 
references can be found in Schwarz, 1967; Eykhoff, 1974; Strobel, 1975; Isermann, 1988 and 
Wernstedt, 1989.  
 

1.2. Identification of nonlinear systems 
 
Identification of linear systems has become a routine task. A number of successful methods are 
available to solve the problem in the time or in the frequency domain, using iterative and non iterative 
identification schemes. The basic reason for this success is the appealing simplicity of linear models. 
They give a lot of insight and are often used as the basis for many design techniques. The price for this 
"simplicity" is the use of a strong assumption: the underlying physical process exhibits qualitatively 
similar dynamic behavior to the linear model in the operating area of interest. 
 
Actually, all physical systems are nonlinear to an extent. A system is called nonlinear if the input-
output steady state relation is nonlinear. Because nonlinear models are able to describe the system 
behavior in a much larger operating region than corresponding linear models, it is reasonable and 
necessary to characterize or predict the behavior of real nonlinear processes directly using nonlinear 
models to improve identification performance over their whole operating range. Therefore, it leads to 
the development of approaches for nonlinear modeling and analyzing of nonlinear systems. This Ph.D. 
work is concerned with nonlinear system identification.  
 
The most difficult task in nonlinear system identification is to deal with the curse of dimensionality. 
This is a common characteristic of nonlinear model structures since nonlinear systems usually exhibit 
a variety of complex dynamic behavior. From the nonlinear regression perspective, there is no much 
difference in identifying a linear system or a nonlinear system. The linear identification methods are 
like a root of the tree of system identification. Any other nonlinear identification methods can be seen, 
to some extent, coming from or ending at that root. As in linear cases, the crucial step in the 
identification of nonlinear systems is to select the model structure and to establish suitable 
identification schemes and some parameterization (e.g., function expansion) of the predictor.  
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The basic nonlinear system identification concept is depicted from a general modeling point of view in 
Fig. 1.1.  
 

 
 

Fig. 1.1    Process and model 
 

A nonlinear model )),(( ϑtug  maps the input )(tu  to the measured output )(ty  which is corrupted 
with noise )(tε . The model is parameterized by minimizing the error )(ˆ)()( tytyte −=  to get the 
parameter vector ϑ  such that )),(()(ˆ ϑtugty = .  
 
It is useful to subdivide general nonlinear system identification into two categories: 
 
¾ Structure-identification. This deals with so-called structure optimization techniques and the 

problem of searching an optimal model structure, i.e., the optimal kind of function )),(( ϑtug  and 
the optimal number of parameters. This typically leads to a combinatorial optimization problem 
which grows rapidly in complexity with the problem size.  

 
¾ Parameter-identification. Having decided the type and size of the nonlinear model structure, it 

remains to find reasonable parameter values. The goal of a parameter optimization technique is to 
find the "best" approximation )(ˆ ty  to the measured output )(ty , which may be disturbed by 
noise )(tε , by adapting the parameter vector ϑ . It leads to the nonlinear local and global 
optimization problems and methods, especially prediction error minimization (PEM) methods.  

 
For general nonlinear systems there are no universal identification techniques. All of them depend on 
prior knowledge of the system, i.e., of its mathematical representation. Differences in the dynamic 
behavior of these models can be extremely significant, and they are entirely due to the different ways 
these model components are combined. A survey of it is given by Unbehauen (1996). Leontaritis and 
Billings (1985) proposed a general approach for the identification and structural determination of 
nonlinear systems approximated by dynamic polynomial representations. The available nonlinear 
identification techniques have been subdivided by several authors (Billings and Fakhouri, 1978; 
Korenberg, 1985) into three basic classes: 
 
1. Cascade or block-oriented structured approaches. 
 
2. Kernel or nonparametric approaches. (e.g., Wiener and Volterra representations).  
 
3. Parametric approaches. (e.g., NARMAX models).  
 
Parametric additive approaches split the high-dimensional problem into a sum of lower dimensional 
problems. The justification of the additive structure can be drawn from a Taylor series expansion of 
the process. Thus, any (smooth) process can be approximated by an additive model structure. The 
important issue in practice is, of course, how fast the additive approximation converges to the true 
process behavior if the model complexity increases. This depends on the usually unknown structure of 
the process and the particular construction algorithm applied for building the additive model. The 
world of expansions in terms of artificial neural networks, wavelet transforms, fuzzy models, etc., are 
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also important for nonlinear dynamic systems which will not be considered in this thesis. We only 
concern with the known parametric additive structures to identify the system parameters and consider 
the nonlinear parameter identification problems in prediction error method schemes. 
 
The type of PEM algorithms to be applied depends on whether the parameters enter the model 
structure in a linear or in a nonlinear way. The latter situation leads to a nonlinear least-squares 
problem. When all parameters enter the structure in a linear form, one usually talks about a pseudo 
linear least-squares problem, i.e., linear-in-the-parameters-identification. Among the identification and 
optimization techniques, linear identification and optimization techniques are the most mature and 
most straightforward to be applied. It offers a number of highly desirable features such as an analytic 
one-shot solution, an unique global optimum, and a recursive formulation that allows an online 
application. Many robust and fast linear identification and optimization implementations are available 
in toolboxes, e.g., MATLAB Identification Toolboxes (Ljung, 1997). Powerful and very efficient 
structure identification and optimization techniques and software packages are also available. 
 
The polynomial autoregressive moving average model with exogenous inputs (NARMAX) model 
provides an important general representation of nonlinear time-invariant systems. And roughly 
speaking, it is always valid for systems with analytic nonlinearities. If a finite number of past inputs 

)(tu  and outputs )(ty  with measurement noise )(tε  are collected, then the NARMAX model is 
given by  
 

)()](,),2(),1(),(,),1(),([)( tntytytyntututugty m ε+−−−−−= LL    (1.1) 
 
where mg  is a nonlinear function of degree m . For 1=m  the resulting model is a linear 
autoregressive moving average model with exogenous inputs (ARMAX) model.  
 
There is no restriction in the nature of the excitation in the NARMAX procedure. But it should be note 
that the estimation of the parameters can be computationally expensive due to the number of 
parameters that increase exponentially with the degree of the kernel. And the discontinuous 
nonlinearities such as saturation, backlash, hysteresis and dead zone cannot be modeled using it.  
 
The NARMAX representation includes a family of other nonlinear representations and provides an 
alternative to block oriented structured model (Pearson, 1999), such as:  
 
¾ Kolmogorov-Gabor polynomial 
 
It is also the general NARMAX representation as shown in Eq. (1.1). 
 
¾ Non-parametric Volterra-series  
 

)()](,),1(),([)( tntututugty m ε+−−= L .       (1.2) 
 
Since no feedback is involved the Volterra-series model is guaranteed to be stable. 
 
¾ Parametric Volterra-series  
 

)()()2()1()](,),1(),([)( 21 tntyatyatyantututugty n
m ε+−−−−−−−−−= LL . (1.3) 

 
It is a simplified version of the Kolmogorov-Gabor polynomial and realizes a linear feedback (the first 
order output) and models a nonlinearity only for the inputs. Its stability can be easily proven by 
checking the dynamics of the linear feedback. It can also be seen as an extension of the Volterra-series 
model if the order n  is chosen large. It can be argued that in this case the additional linear feedback 
would help to reduce the dynamic order compared with the non-parametric Volterra-series model. 
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¾ Nonlinear differential equation (NDE) 
 

)()](,),1([)()1()()( 10 tntytygntubtubtubty m
n ε+−−+−++−+= LL .   (1.4) 

 
It can be considered as the counterpart of the parametric Volterra-series model since it is linear in the 
inputs (the first order input) but nonlinear in the outputs. It arises frequently from modeling based on 
theoretical analysis and should be applied only if its structure matches the process structure really 
well. 
 

1.3. Wiener and Hammerstein system 
 
In order to describe adequately the nonlinear behavior of the system over the entire range of operating 
conditions, a nonlinear block-oriented model is often used and the identified system is generally 
subdivided into linear dynamic subsystems (or linear dynamic blocks) and nonlinear static subsystems 
(or nonlinear static blocks). The well-known Wiener systems and Hammerstein systems are nonlinear 
models that are used in many domains for their simplicity and physical meaning, where the system 
steady-state behavior is determined completely by the static-nonlinearities, while the system dynamic 
behavior is determined by both the nonlinearities and the linear dynamic model components. For 
example, a Wiener system (Figure 1.2) consists of a linear dynamic block followed by a nonlinear 
static block. A Hammerstein system (Figure 1.3) is just a Wiener system structurally reversed, that is, 
a nonlinear static block is followed by a linear dynamic block. The nonlinearities in Wiener and 
Hammerstein systems could be continuous and discontinuous. An advantage of the distinction into 
nonlinear and linear blocks is that the system stability is determined solely by the linear parts of the 
model, which can be easily checked. Sometimes, it is assumed that the steady-state behavior is known 
and uses this knowledge to determine the linear dynamic subsystem (Pearson, 2000).  
 

 
 

Fig. 1.2    Wiener system 
 
 

 
 

Fig. 1.3    Hammerstein system 
 

Some other cascade or block-oriented structured systems include a MISO Wiener system, a MISO 
Hammerstein system, a mixed MISO Wiener and Hammerstein system, a Wiener-Hammerstein 
system (LNL) and a Hammerstein-Wiener system (NLN).  
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1.4. Aims and Outline 
 
It is clear that there exists no general valid descriptions for the full class of nonlinear systems. For that 
reason, a very wide variety of models and identification methods is proposed in the literature. As a 
natural extension of the linear system identification approach, it allows to carry over many of the 
methods of the linear modelling approach to the nonlinear world, maintaining their simplicity, user 
friendliness, and "short" experiment time to identify them.  
 
The main purpose of this thesis is to develop an unified and efficient identification methodology for a 
special class of block-oriented structured SISO, MISO and cascade nonlinear time-invariant systems, 
that is, a class of Wiener and Hammerstein systems with continuous or discontinuous nonlinearities. It 
is also from some common and suitable model structures and only based on the observed input and 
output data and a prior knowledge about the behavior of nonlinearities without the assumption that the 
steady-state behavior is known. Under this identification scheme, we derive the special algorithms for 
each possible case, and analyze and verify the correctness of the derived algorithms by simulation 
examples. 
 
The outline of this thesis is as follows:  
 
¾ In chapter 2, nonlinear system identification will be discussed from a new identification 

perspective. System descriptions, the key term separation principle and the new identification 
method for the identification of Wiener and Hammerstein systems will be introduced.  

 
¾ In chapter 3, the identification algorithms for SISO and MISO Wiener and Hammerstein 

systems will be derived and their efficiency will be shown by simulation results. 
 
¾ In chapter 4, identification algorithms for a Wiener system with general discontinuous 

nonlinearities will be developed. Again, some simulation results will be discussed. 
 
¾ In chapter 5, the identification algorithms will be extended and derived for a class of cascade 

Wiener and Hammerstein systems and their efficiency will be illustrated by simulation 
results. 

 
¾ In Chapter 6, the identification algorithms will be extended and derived for generalized 

Wiener and Hammerstein systems, which are simplified from a parametric Volterra-series. 
There, some simulation results will also be discussed. 

 
¾ Finally, in Chapter 7, conclusions will be given. 
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2. Concept of a new identification method for Wiener and Hammerstein 
systems 

2.1. General description 
 
Many nonlinear dynamic systems can be approximated by Wiener and Hammerstein systems. An 
earliest identification algorithm of this kind of systems was developed by Narendra and Gallman 
(1966). They estimated separately and sequentially the linear dynamic transfer function and the 
nonlinear static polynomial by the iterative least squares scheme. A noniterative version of the method 
was proposed by Chang and Luus (1971). However, there is a certain amount of redundancy in the 
parameters to be estimated and each parameter of the static nonlinear model has several estimates. To 
obtain an unbiased estimator in the case of correlated noise and output, Stoica and Söderström (1982) 
developed instrumental variable techniques. Rosenthal (1985) studied identification algorithms and 
two-step strategy for open and closed loop Wiener system and Hammerstein system. Pearson (2000) 
introduced an identification method for a Wiener system, a Hammerstein system and a feedback-
Hammerstein system but with known nonlinear blocks. 
 
An approach based on the combination of the correlation analysis and the least squares (LS) method 
was developed by Haber (1979). For nonparametric methods, Billings and Fakhouri (1982, 1997) and 
Greblicki (1994, 1998, 1999) presented algorithms for identification based on correlation analysis. 
Schetzen (1981) and Hunter and Korenberg (1986) use Gaussian input and estimate the linear and 
nonlinear subsystems iteratively. The linear system is estimated from the cross-correlation function, 
and the nonlinear system is described with a polynomial.  
 
In Wiener and Hammerstein systems, the nonlinear blocks are sometimes supposed to be invertible. It 
should be a strong assumption. This approach will be referred to as the internal error approach, since it 
aims to minimize the intermediate error between the output of the linear subsystem and the input of 
the nonlinear subsystem. Pajunen (1992) identified the static nonlinearity of the Wiener system in 
terms of its inverse. Greblicki (1992) followed a similar approach but did not impose any parametric 
restrictions on the functional form of the nonlinearity. Wigren (1993) proposed a recursive 
identification algorithm for the Wiener model, the linear block with a transfer function operator and 
the nonlinear block as piecewise linear and the static nonlinearity as opposed to its inverse and thus 
one can handle nonlinearities which are not single valued. Kalafatis (1995) used a least squares 
algorithm to simultaneously estimate the parameters of the linear subsystem and the inverse static 
nonlinearity and assumed that the static nonlinearity is continuous, differentiable to the polynomial 
order m  and single valued in the region which the input-output data span. Hagenblad (1999) used 
finite impulse response (FIR) model for the linear subsystem and B-splines for the inverse of the 
system nonlinearity. 
 
In a Wiener and Hammerstein system, the linear dynamical blocks and the nonlinear static blocks are 
always separated. One problem is that if the linear and nonlinear subsystems are parameterized 
separately, the Wiener and Hammerstein systems are over-parameterized in some presented algorithms 
(Boutayeb, 1994; Kalafatis 1997; Hagenblad, 1998; Zhu, 1998). Numerical problems will occur if the 
over-parameterization is not addressed. That is, a constant gain can be distributed arbitrarily between 
the linear and nonlinear subsystems. In order to get a unique solution, the gain of one or some 
subsystems must be fixed. A simpler solution is to just fix some of the parameters of the linear or 
nonlinear subsystems, without loss of generality, let them be constant during the minimization. Some 
other possible constraints in the minimization will not be considered here.  
 
It can be concluded from the literature that the most important attempt is always trying to reduce 
parameter redundancy by using special linear and nonlinear model structures. Some other attempts are 
to select a parameterization and approximations or relax algorithms to simplify the computation 
procedures to fit the individual nonlinear model situations to process data. 
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2.2. Linear and nonlinear submodels  
 
In a Wiener and Hammerstein system, many different linear and nonlinear submodel structures have 
been considered. Pajunen (1992) treated the problem of model reference adaptive control of a Wiener 
system. The linear system was represented as a transfer function and the inverse of the nonlinearity 
was represented with B-splines. Vörös (1995) used a transfer function for the linear subsystem and a 
polynomial for the nonlinearity. In Bruls et al. (1997), a state space model was used for the linear 
system and Chebyshev polynomials for the nonlinearity. In Kalafatis et al. (1997), FIR or the 
frequency sampling filter (FSF) model were suggested for the linear subsystem and a power series or 
B-splines for the nonlinearity. In Zhu (1999), high order autoregressive with exogenous input (ARX) 
model was used for linear subsystem and cubic splines for the nonlinearity. 
 

2.2.1. Model structures for linear dynamic subsystems 

2.2.1.1. Rational transfer function model (RTF) 
 
Assume that the linear dynamic system is time invariant, causal, and stable. Such a system is 
completely described by its impulse response )(tg , ∞= ,,2,1 Lt . For a given input )(tu , the linear 
dynamic system output )(ty  is as follows 
 

∑
∞

=

−=
0

)()()(
k

ktukgty ,   .,,2,1 ∞= Lt        (2.1) 

 
The transfer function )( 1−qG  of the system is described by 
 

∑
∞

=

−− =
0

1 )()(
k

kqkgqG           (2.2) 

 
and the linear system output can then be written as )()()( 1 tuqGty −= .  
 
If  )( 1−qG  is stable, then  
 

.)(
0

∞<∑
∞

=k
kg            (2.3) 

 
Although a system is uniquely determined by its impulse response, it is no practical way to work with 
this in general infinite sequence. Furthermore we need an expression where the system )( 1−qG  is 
characterized by a finite number of parameters. The parameters can be collected into a parameter 
vector θ , and the transfer function can be written as ),( 1 θ−qG .  
 
A common choice is to select the transfer function as a rational function where the numerator and 
denominator coefficients are the parameters. Without loss of generality, we suppose the orders of 
numerator and denominator are the same, n .  
 

)(
)(),( 1

1
1

−

−
− =

qF
qBqG θ           (2.4a) 

 
 



Concept of a new identification method for Wiener and Hammerstein systems 

 

 

9

where 
 

n
nqbqbqbbqB −−−− ++++= L2

2
1

10
1 )(        (2.4b) 

 
n

nqfqfqfqF −−−− ++++= L2
2

1
1

1 1)( .       (2.4c) 
 

)( 1−qB  and )( 1−qF  are coprime. It is also possible to redefine the )( 1−qB  polynomial to include 
extra delays. The parameter vector is ],,,,,,,[ 1021 nn bbbfff LL=Tθ .  
 

2.2.1.2. Finite impulse response model (FIR) 
 
As a special case of the low order rational transfer function model, a stable linear dynamic system may 
be represented by the FIR model of order n  
 

∑
=

−

−=

=
n

k
k ktub

tuqGty

0

1

)(

)(),()( θ
                 (2.5) 

 
where the parameter vector ],,,[ 10 nbbb L=Tθ .  
 
A FIR model of order n  can only describe a system whose impulse response has maximum length of 
n  time steps, but if we let n  tends to be infinity, any given stable system will be possible to describe 
accurately. That is, by selecting n  large enough, a FIR model can always describe a stable ),( 1 θ−qG  
accurately enough.  
 
But FIR methods are inefficient parameter estimators because more parameters are necessary to 
represent the process, that is, more data will be required to estimate those parameters than for a 
parsimonious parametric model. We might need many parameters to describe a FIR model, and we do 
not beforehand know how many. Luckily, the cost for using more parameters is not too large in terms 
of time when we use the linear regression estimate. The limited number of data available in practice 
does, however, put a limit of the number of parameters we can estimate. Trying to estimate too many 
parameters may cause numerical problems, and the estimates are more influenced by noise if we have 
only a few data. Therefore, if an output variable is measured infrequently, a very time-consuming 
response test may be required to gather enough data to estimate FIR coefficients. But because of the 
simple linear regression algorithm a satisfied result can also be got. And, in addition, the FIR model 
can also be converted to another model structure if desired. 
  

2.2.1.3. Frequency sampling filter model (FSF) 
 
Alternatively, as another form of FIR model, the FSF model can be used to represent the linear system 
(Bitmead and Anderson, 1981). Since the FSF model is obtained from a linear transformation of the 
FIR model and consists of a set of narrow bandpass filters, they have a common model order. A FSF 
model of order n  is given by 
 

∑
−

=

=
1

0
)()(

n

k
kk tpty ψ           (2.6) 
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where kp  is the discrete frequency response of the linear system at 
n
k

k
πϖ 2

=  and )(tkψ  for 

nk ,,2,1 L=  is the output of the thk −  frequency sampling filter defined as 
 

).(
1

11)( 1 tu
qe

q
n

t
kj

n

k −

−

−
−

⋅= ϖψ          (2.7) 

 
The parameter vector is ],,[ 110 −= nppp LTθ . 
 
The same reason as in the FIR model case, the number of parameters of a FSF model to be estimated 
can also be quite large. However, only a limited amount of information about the linear system in the 
frequency domain may be required. In this case, we can make use of the orthogonal properties of the 
FSF model under periodic excitation to drastically reduce the number of parameters of the linear 
system to be estimated. 

Goberdhansingh et al. (1992) showed that when a periodic input signal of the form n
tj

etu
πγ

λ
2

)( = , 
where γ  is an integer in the interval ]1,0[ −n , is passed through the bank of FSF filters, only the FSF 
filter with center frequency n/2πγ  will have a nonzero output. For example, if we choose the input 

signal to be a sinusoid consisting of a single frequency 
n
k

k
πϖ 2

= , which is the center frequency of 

the thk −  FSF filter, Eq. (2.6) can then be described by 
 

)()()( tptpty knknkk −−+= ψψ          (2.8) 
 
where the parameter vector is ],[ knk pp −=Tθ .  
 
That is, the model parameters can be dramatically reduced. This can be easily extended to the case 
where the input signal is composed of multiple sinusoids, i.e., each additional frequency will add two 
more terms, that is, two more parameters in Eq. (2.8). Then the number of parameters to be estimated 
is generally fewer than the number required by the FIR model to describe a system accurately enough.  
 

2.2.2. Common linear MISO model structure 
 
At first, we define the measurement noise. In a real system, there is always noise and the filter of this 
noise should also be identified. The model structure depends also on the structure of noise filter which 
is written as 
 

)(
)(
)(

)(),()(

1

1

1

te
qD
qC

teqHt

−

−

−

=

= ξε
          (2.9a) 

 
where 
 

c

c

n
n qcqcqC −−− +++= L1

1
1 1)(          (2.9b) 

 
.1)( 1

1
1 d

d

n
n qdqdqD −−− +++= L          (2.9c) 

 



Concept of a new identification method for Wiener and Hammerstein systems 

 

 

11

The orders of )( 1−qC  and )( 1−qD  are cn  and dn . Here, )(te  is white noise. The noise filter 

parameter vector is ],,,,,,,[ 2121 cd nn cccddd LL=Tξ . 
 
The most popular linear representation is the ARMAX model which is discussed by Ljung (1987) 
 

∑∑∑
===

−+−+−=
ca n

j
j

n

j
j

n

j
j jtecjtubjtyaty

001
)()()()(       (2.10) 

 
where an  is order of the system output polynomial, ka  for nj ,,1L=  are the autoregressive 

parameters of the system and 10 =c . The parameter vector is ],,,,,,,[ 1021 nn bbbaaa
a

LL=Tθ . 
 
Note that this model can be extended directly to multiple-input ARMAX models by adding terms to 
the second sum, corresponding to the delayed values of additional exogenous inputs. 
 
A general linear MISO model structure of i  inputs is described by 
 

)(
)(
)()(

)(
)(

)(
)(
)(

)(
)(
)(

)()(),()(),()(),()(),(

1

1

1

1

21
2

1
2

11
1

1
1

1
22

1
211

1
1

1

te
qD
qCtu

qF
qB

tu
qF
qB

tu
qF
qB

ttuqGtuqGtuqGtyqA

i
i

i

iiia

−

−

−

−

−

−

−

−

−−−−

++++=

++++=

L

L εθθθθ
             (2.11a) 

 
where 
 

a

a

n
na qaqaqA −−− +++= L1

1
1 1),( θ                   (2.11b) 

 
j

j

n
jnjjj qbqbbqB −−− +++= L1

10
1 )(                  (2.11c) 

 
.1)( 1

1
1 j

j

n
jnjj qfqfqF −−− +++= L                       (2.11d) 

 

aθ  and jθ  for ij ,,2,1 L= are the corresponding parameter vectors. )( 1−qB j  and )( 1−qFj  are 

coprime and have the same order jn  for ij ,,2,1 L= . It is also possible to redefine the )( 1−qB j  
polynomial to include extra delays. Eq. (2.11a) contains several special model structures, some of 
them are listed in Table 2.1. 
 

Table 2.1 Some linear MISO model structures as special cases of Eq. (2.11) 
 

Polynomials used in Eq. (2.11a) Name of the MISO model structure 
)( 1−qB j  FIR 

),( 1
aqA θ− , )( 1−qB j  ARX 

),( 1
aqA θ− , )( 1−qB j , )( 1−qC , ARMAX 

)( 1−qB j , )( 1−qFj  OE 

)( 1−qB j , )( 1−qFj , )( 1−qC , )( 1−qD  BJ 

 
In Table 2.1 the acronyms FIR, ARX, ARMAX, OE and BJ denote: Finite Impulse Response, 
AutoRegressive with eXogenous inputs, AutoRegressive Moving Average with eXogenous inputs, 
Output Error and Box-Jenkins, respectively.  
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Actually, Eq. (2.11a) can be rewritten as 
 

)(
)(),()(),()(),()1(),()( 1

22
1

211
1

1
1*

t
tuqGtuqGtuqGtyqAty iiia

ε+
++++−= −−−− θθθθ L

 (2.12) 

 
where 11

21
1* ),( +−−− −−−−= a

a

n
na qaqaaqA Lθ  and )1( −ty  at the right side of Eq. (2.12) can 

also be regarded as a pseudo-input of the system.  
 

2.2.3. Model structures for nonlinear static subsystems  
 
In the following we consider two cases: 
 
¾ Continuous nonlinearities 
 
To express the continuous nonlinear static subsystem ),( η⋅N , one can use a function expansion of 
order m  with basis functions )(⋅Ω k  and parameters kβ  for mk ,,2,1 L= . The main structure is 
given by 
 

∑
=

Ω⋅=

=
m

k
kk t

tNt

1

))((

)),(()(

χβ

χγ η
          (2.13) 

 
where )(tχ  is the input of nonlinear static subsystem. )(tγ  is the output nonlinear static subsystem. 
The parameter vector is ],,[ 21 mβββ L=Tη . 
 
If the internal parameters of the basis functions are fixed, the output is a linear function of the 
parameters ],,[ 21 mβββ L . A simple case is a polynomial )())(( tt k

k χχ =Ω  for mk ,,2,1 L=  
 

∑
=

⋅=
m

k

k
k tt

1
)()( χβγ .           (2.14) 

 
The polynomial representation has the advantage of more flexibility and of a simpler use. It is widely 
used in literature. Naturally, the nonlinearity can be approximated by a single polynomial. An 
alternative structure is to use a polynomial of the inverse of the nonlinear static subsystem for Wiener 
system (Kalafatis 1995).  
 
Another useful case are splines which are also nice functions, since they are computationally very 
simple and can be made as smooth as desired. But it requires the choice of break points (knots). 
Hagenblad (1999) and Zhu (1999) used B-splines and cubic splines, respectively, to describe inverse 
of the nonlinear subsystem in Wiener system.  
 
¾ Discontinuous nonlinearities 
 
By introducing some switching functions, one can get models for discontinuous nonlinearities, like 
direction-dependent nonlinearity, preload nonlinearity, dead-zone nonlinearity, saturation nonlinearity, 
and so on.  
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2.3. New concept of the recursive identification method for Wiener and 
Hammerstein systems  

2.3.1. Recursive pseudo-linear regressions (RPLR) 
 
Supposing a general SISO block-oriented time-invariant nonlinear system with input )(tu  and output 

)(ty , the data are assumed to be collected in discrete time. At time t , we have: 
 
- the observed system input vector )](,),2(),1([)( tuuut L=Tu ,  
- the observed system output vector )](,),2(),1([)( tyyyt L=Ty  and  
- r  unmeasurable intermediate variable vectors, )](ˆ,),(ˆ),(ˆ[)(ˆ 21 tttt r

TTTT wwww L= , where 
)](ˆ,),2(ˆ),1(ˆ[)(ˆ twwwt kkkk L=Tw  for rk ,,2,1 L= . They can be seen as states of the system 

and can be recursively estimated by using the estimated parameters. 
 
The main problem is how to find a good parameterization and how to deal with it. The general form of 
such a regression model is given by 
 

)()),1(),(ˆ),((
)(ˆ

)1(ˆ
tetttg

ty
t

+−=⎥
⎦

⎤
⎢
⎣

⎡ +
ϑywu

w
       (2.15) 

 
where ϑ  is a constant whole parameter vector to be identified ],,[ ξηθT =ϑ . )(te  is a random error 
in the measured output )(ty  values.  
 
The function )),1(),(ˆ),(( ϑ−tttg ywu  can been considered as a concatenation of two mappings:  
 

1. Taking the observation )(tu , )1( −ty  and estimation )(ˆ tw  and mapping them into a finite 
dimensional regression vector, ))1(),(ˆ),(()( −= tttt ywuφφ . 

2. Taking this regression vector )(tφ  by choosing ))(( ϑ,φ tg  to the output space. 
 
Then the estimated system output )(ˆ ty  is given by 
 

)),(()(ˆ ϑtgty φ= .          (2.16) 
 
We consider the identification problem in a prediction error method and model scheme. To identify 
the parameter vector, we compare the predicted output )(ˆ ty  with the measured output )(ty  in the 
following prediction error criterion: 
 

∑ −= 2)](ˆ)([(
2
1minarg tyty

ϑ
ϑ .         (2.17) 

 
It is the same for all linear and nonlinear dynamical systems and according to the different model 
structures it turns out the choices of parameter-depended regression vector )(tφ  and lead to different 
identification algorithms.  
 
As Ljung (1987) pointed out: no matter how )(tφ  is formed, it is the known data at time t  and it can 
contain arbitrary transformations of measured and estimated data. Because )(tφ  depends on )(ˆ tw  
which contains information given by the model at early time instants, the model (2.16) is regressive. 

))(( ϑ,φ tg  can be pseudo-linear. A pseudo-linear regression is defined as a model structure where the 
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prediction is linear in the parameters ϑ  but nonlinear in data )(tφ . Then the regression parameter 
vector ϑ  can be calculated by LS or PEM estimator. That is the so called pseudo-linear regressions 
(PLR) 
 

.)()()(
)()(ˆ

2211 ss ttt
tty

ϑϑϑ

ϑ

⋅++⋅+⋅=

⋅=
TTT

T

φφφ
φ

L
       (2.18) 

 
Eq. (2.18) can be regarded as a finite-dimensional parameterization of a general, unknown nonlinear 
predictor. The problems are how to choose the regressors )(tφ  according to the physical insight into 
the system and how to determine the predictor in some recursive fashion to arrive at the recursive 
pseudo-linear regressions (RPLR) estimates.  
 
Eq. (2.18) can also be seen as a transformation result from a s  pseudo inputs pseudo-linear system 
 

)(),()(),()(),()(ˆ 1
22

1
211

1
1 tuqGtuqGtuqGty sss θθθ −−− +++= L .    (2.19) 

  
A special example is to identify the parameters of a single nonlinear static model of order m  
 

)()()()(ˆ 2
210 tutututy m

mββββ ++++= L .      (2.20) 
 
Because the parameters enter the model linearly, Eq. (2.20) can be written directly into a pseudo-linear 
regression form  
 

ϑ⋅= )()(ˆ tty Tφ           (2.21) 
 
where )](,),(,1[)( tutut mL=Tφ  and ],,,[ 10 mβββϑ L=T , namely transforming this problem into 

a linear MISO FIR model (Ljung, 1995) which has 1+m  inputs: )(,),(),(,1 2 tututu mL . With the 
known LS or PEM algorithms for linear regression models, the parameter vector ϑ  in Eq. (2.21) can 
be identified correctly.  
 
Based on the analysis above, we transform a SISO cascade time-invariant nonlinear system into a 
pseudo-linear MISO system with multiple pseudo-inputs as shown in Eq. (2.19). Then a pseudo-linear 
MISO prediction error model can be formulated. With the same principle, it can be extended to MISO 
systems to obtain the corresponding identification algorithms. The aim of this thesis is to make such a 
unified and efficient identification methodology for a class of Wiener and Hammerstein systems 
available by transforming the nonlinear identification problem into a general pseudo-linear MISO 
identification problem. 
 

2.3.2. Key term separation principle and estimation 
 
To write out the description of the whole model with explicit parameters, it presents usually 
nonlinearities or redundancy in parameters, because of the substitutions from or into nonlinear or high 
order terms and products between parameters. This identification problem can be solved by LS or 
PEM method but suffering from the too much redundant parameters and its complicated computation.  
 
Instead of direct substitution, one can compress or merge the redundant terms by introducing some 
possible intermediate variables to form a RPLR estimates. Because of the separation of linear 
subsystems and nonlinear subsystems in a Wiener and Hammerstein system, the intermediate variables 
become definitively. It is naturally sometimes to take the variables between the subsystems as the 
intermediate variables. 
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Vörös (1995) used the key term separation principle to identify Wiener system and Hammerstein 
system. The basic idea of the key term separation principle is a form of half-substitution, that is, only 
the separated key terms will be substituted with their front expressions. Then, with an analytic additive 
form, the system output )(ty  with a minimum number of parameters can be determined. We illustrate 
the key term separation principle by a Wiener system and a Hammerstein system in detail. 
 

2.3.2.1. Wiener system 
 
Considering a Wiener system shown in Fig. 1.2, the variable relationships can be written as 
 

)(),()( 1 tuqGtw θ−=           (2.23) 
 
and 
 

)()),(()( ttwNty ε+= η .         (2.24) 
 
Substituting Eq. (2.23) into Eq. (2.24) directly, the system output is given by 
 

)()),(),(()( 1 ttuqGNty ε+= − ηθ .        (2.25) 
 
But we can also estimate the intermediate variable )(tw  and use the key term separation principle to 
write an alternative form for Eq. (2.25). According the key term separation principle, the nonlinear 
subsystem function in Eq. (2.24) can be separated as 
 

)()),(()()( ** ttwNtwty ερ ++⋅= η         (2.26) 
 
where )(tw  in )(tw⋅ρ  is the so called key term. ρ  is a constant coefficient. 
 
If the substitution of Eq. (2.23) into Eq. (2.24) is only done for the key term )(tw  (half-substitution), 
we have  
 

)()),(()(),()( **1 ttwNtuqGty ερ ++⋅= − ηθ .       (2.27) 
 
The key term )(tw  can be recursively estimated by Eq. (2.23) with the estimated parameters. And Eq. 
(2.27) could also be written in a linear regression form in which the parameters are in a linear form 
and without parameter redundancy.  
 

2.3.2.2. Hammerstein system 
 
Considering a Hammerstein system as shown in Fig. 1.3, the variable relationships can be written as 
 

)),(()( ηtuNtw =           (2.28) 
 
and 
 

)()(),()( 1 ttwqGty ε+= − θ .                              (2.29a) 
 
Because of the special model structure in Hammerstein system, Eq. (2.29a) can also be written as an 
ARMAX model form 
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)()()()()( 11 ttwqBtyqA ε+= −− .                  (2.29b) 
 
Substituting Eq. (2.28) into Eq. (2.29a) or Eq. (2.29b) directly, the system output is as follows: 
 

)()),((),()( 1 ttuNqGty ε+= − ηθ                   (2.30a) 
 
or 
 

)()),(()()()( 11 ttuNqBtyqA ε+= −− η .                 (2.30b) 
 
If we use the key term separation principle, the linear subsystem function in Eq. (2.29a) and Eq. 
(2.29b) can be separated as 
 

)()(),()()( *1* ttwqGtwty ερ ++⋅= − θ                   (2.31a) 
 
or 
 

)()()()()()( 1*1 ttwqBtwtyqA ερ ++⋅= −−                   (2.31b) 
 
where )(tw  in )(tw⋅ρ  is the key term. ρ  is a constant coefficient. 
 
If the substitution of Eq. (2.28) into Eq. (2.31a) or Eq. (2.31b) is only for the key term )(tw  (half-
substitution), we have 
 

)()(),()),(()( *1* ttwqGtuNty ερ ++⋅= − θη                  (2.32a) 
 
or 
 

)()()()),(()()( 1*1 ttwqBtuNtyqA ερ ++⋅= −− η                  (2.32b) 
 
The key term )(tw  can be recursively estimated by Eq. (2.28). Eq. (2.32a) and Eq. (2.32b) could also 
be written in a linear regression form in which the parameters are in a linear form and without 
parameter redundancy. 
 
In the same way, other Wiener and Hammerstein systems can also be described by using recursively 
estimated intermediate variables, i.e., key terms to form RPLR estimates. 
 

2.3.3. Concept of the Identification method 
 
In the following we describe the single steps of the identification method in a more detail. 
 
¾ Initial values of parameters 
 
A good choice of initial values of parameters can make the identification algorithm stable and can give  
convergence to the global minimum. Some suggestions on how to initialize the search algorithm for 
nonlinear black-box models can be found in Sjöberg (1997). The result from one identification method 
can be used as initial value of other methods. To illustrate the efficiency of the new identification 
method we set all the initial values of parameters to zero. 
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¾ Smoothing techniques to estimate intermediate variables 
 
In a RPLR identification the parameter variation will strongly affect identification quality. The 
estimation of the intermediate variables depends on the corresponding estimated parameters of the 
front submodels from last time instant. Because of these unmeasurable intermediate variables or their 
combinations, the constructed regressive nonlinear dynamic models are especially sensitive to the 
estimated intermediate variables and could not converge to a good minimum. Therefore smoothing 
and filtering in the estimation of these intermediate variables are necessary.  
 
One can smooth and filter the historical values of intermediate variables directly or the historical 
values of corresponding submodel parameters which are used to calculate the intermediate variables. 
Various data smoothing techniques provide possibility to mitigate the estimate errors of intermediate 
variables and to avoid the possible oscillations to achieve better convergence.  
 
We use the moving average parameter smoothing technique (Brown, 1963) which means 
exponentially averaging the parameter vector tϑ  with a fixed moving window length mov   
 

1
1

2
2

2
2

1
* )1()1()1()1( +−

−
+−

−
−− −+−++−+−+= movt

mov
movt

mov
tttt ϑαϑααϑααϑαααϑϑ L    (2.33) 

 
where α  is a constant value between zero and one and the sum of the weight coefficients is 1. 
 

1)1()1()1()1( 122 =−+−++−+−+ −− movmov αααααααα L .                (2.34) 
 
In further, the double exponential smoothing (Brown, 1963) can be used. 
 

**
1

*** )1( −−+= ttt ϑααϑϑ                    (2.35a) 
 

1
** )1( −−+= ttt ϑααϑϑ                    (2.35b) 

 
The smoothed parameter vector tϑ  can be used to estimate the intermediate variables. A serious 
problem is the choice of the smoothing parameter α . The role of such a parameter is to damp out 
random fluctuations. It must be specified to minimize the smoothing errors. This can be done by trial 
and error method over a past time interval. In general, small values have a stronger smoothing effect 
than large values.  
 
In order to facilitate specification of α  and to improve alertness ability of the smoothing, another 
alternative adaptive smoothing method (Trigg and Leach, 1967) can be used. 
 

ttttt ϑαϑαϑ )1(*
1 −+=+                    (2.36a) 

 

ttt ϑϑκ −= *                      (2.36b) 
 

1)1( −−+= ttt EE ρρκ                    (2.36c) 
 

1)1( −−+= ttt MM ρκρ                    (2.36d) 
 

ttt ME /1 =+α                     (2.36e) 
 
where ρ  is usually set at 0.1 or 0.2. Finally, 1+tα  is computed instead of tα  to allow the system to 
"settle" a little by not being too responsive to changes. 
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Other smoothing methods are a piecewise line of polynomial fitting approach using a moving window 
with another fixed window length, Kalman filter, fuzzy sets and so on.  
 
¾ Adaptive identification method 
 
Adaptive identification methods are generally for time-variant dynamic systems, especially under the 
white or colored measurement noise. In our new recursive identification algorithm, because there are 
intermediate variables estimation in every time instant, the reconstructed identification model can be 
regarded as a linear time-variant dynamic model. In order to guarantee and accelerate the convergence, 
we use the forgetting factor approach with a variant forgetting factor, 

λλλλ ∆⋅−−+−= ))1(1()1()( ttt  to adaptation and to identify the parameters.  
 
The general adaptive recursive algorithm (Ljung, 1987) is given by 
 

))(ˆ)()(()1()( tytyttt −+−= Kϑϑ         (2.37) 
 

)1()()(ˆ −= ttty ϑTφ           (2.38) 
 

)()()( ttt φQK =           (2.39) 
 

)()1()()(
)1()(

tttt
tt

φPφ
PQ T −+

−
=
λ

        (2.40) 

 

)(/
)()1()()(
)1()()()1()1()( t

tttt
ttttt λ

λ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

−−
−−=

φPφ
PtφφPPP T

T

.      (2.41) 

 
 
Therefore, concept of the new identification method is the following:  
 
1. Suppose the system input )(tu  is persistently excited and the Wiener and Hammerstein system is 

stable. 
 
2. Select the linear and nonlinear submodel structures and use the key term separation principle to 

extract the key terms and to define the intermediate variables or their combinations as pseudo 
multiple inputs. 
 

3. Transform the Wiener and Hammerstein system into a pseudo-linear MISO system with all 
explicit system parameters and form a prediction error model.  

 
4. Fix some parameters to obtain a unique parameterization.  
 
5. Identify the original parameters of the Wiener and Hammerstein system by using smoothing 

techniques and the adaptive recursive pseudo-linear regression (RPLR) method. 
 
This new concept will be applied now to different cascade and block-oriented structures of Wiener and 
Hammerstein systems. 
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3. Identification of SISO and MISO Wiener and Hammerstein systems 

3.1. SISO Wiener and Hammerstein systems 
 
In this section, we apply the new identification method described in section 2.3.3 to identify:  
 
- a Wiener system (Fig. 3.1), 
- a Hammerstein system (Fig. 3.2),  
- a Feedback-Wiener system (Fig. 3.3) and  
- a Feedback-Hammerstein system (Fig. 3.4).  
 

 
Fig. 3.1    Wiener system 

 

 
Fig. 3.2    Hammerstein system 

 

 
 

Fig. 3.3    Feedback-Wiener system 
 

 
 

Fig. 3.4    Feedback-Hammerstein system 
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In the above Figures )(tr  is the reference signal, )(tu  is the system input, )(ty  is the system output, 
and )(* ty  is the unmeasurable system output without measurement noise. In Fig. 3.1 and Fig. 3.2, 

)(tw  is an unmeasurable intermediate variable. In Fig. 3.3 and Fig. 3.4, )(tu  is also an unmeasurable 
intermediate variable and α  is an unknown constant gain which is used to distribute the whole system 
gain. θ  is a parameter vector determining linear dynamic subsystem ),( 1 θ−qG . η  is a parameter 
vector determining nonlinear static subsystem ),( η⋅N . )(tε  is the colored measurement noise which 
is the result of a white noise )(te  through a linear filter ),( 1 ξ−qH . All functions are defined as 
before. 
 

3.1.1. Wiener system 
 
In Fig. 3.1, the linear dynamic block ),( 1 θ−qG  is a RTF model of order n  
 

)(
)(
)()( 1

1

tu
qF
qBtw −

−

= .          (3.1) 

 
The nonlinear static block )),(( ηtwN  is described by a  polynomial of order m  
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and )(tw  in the first part of Eq. (3.2) is the key term.  
 
Half-substituting Eq. (3.1) into the key term )(tw  of Eq. (3.2), the system output of a Wiener system 
can be written as 
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      (3.3) 

 
To avoid the over-parameterization problem, one parameter of nbbb ,,,, 101 Lβ  in Eq. (3.3) should be 
fixed. It is shown that a Wiener system can be transformed approximately into a pseudo-linear MISO 
system which has m  independent inputs: the system input )(tu  and the recursively estimated 
intermediate variables )(twk  for mk ,,3,2 L=  according to Eq. (3.1). All the parameters in this 
pseudo-linear MISO system Eq. (3.3) are explicitly given.  
 

3.1.2. Hammerstein system 
 
Considering Hammerstein system as shown in Fig. 3.2. The nonlinear static block )),(( ηtuN  is again 
a polynomial of order m  
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∑
=

⋅=
m

k

k
k tutw
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)()( β .          (3.4) 

 
The linear dynamic block ),( 1 θ−qG  is a RTF model of order n  
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where we separate a part )(0 twb ⋅  from the transfer function )(
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definitions before, )( 1* −qB  in the second part 
)(
)(

1

1*

−

−

qF
qB

 is  

 
n

n qbqbqbqB −−−− +++= *2*
2

1*
1

1* )( L         (3.5b) 
 
with  
 

jjj fbbb ⋅−= 0
*            (3.5c) 

 
for nj ,,2,1 L=  and )(tw  in the first part of Eq. (3.5a) is the key term.  
 
Half-substituting Eq. (3.4) into the key term )(tw  of Eq. (3.5a), then the system output of a 
Hammerstein system can be written as 
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We can also get another alternative description. Because of the special structure of Hammerstein 
system, it is also convenient to use an ARMAX model of order n  to describe the linear block 

),( 1 θ−qG , that is  
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11*
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111

teqCtwqBtwb
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       (3.7) 

 
where we also separate a part )(0 twb ⋅  from )()( 1 twqB − . According to the function definitions 

before, )( 1* −qB  in the second part is n
nqbqbqbqB −−−− +++= L2

2
1

1
1* )(  which is not the same as 

in Eq. (3.5b). Again )(tw  in the first part of Eq. (3.7) is the key term.  
 
Half-substituting Eq. (3.4) into the key term )(tw  of Eq. (3.7), the system output of a Hammerstein 
system can also be written as  
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Both Eq. (3.6) and Eq. (3.8) can be used to identify Hammerstein systems and it can be expected that 
the model in Eq. (3.8) is simpler than the model in Eq. (3.6). To avoid the over-parameterization 
problem, one parameter of mb βββ ,,,, 210 L  in Eq. (3.6) and Eq. (3.8) should be fixed. It is shown 
that a Hammerstein system can be transformed approximately into a pseudo-linear MISO system 
which has 1+m  independent inputs: )(tu k  for mk ,,2,1 L=  and the recursively estimated )(tw  
according to Eq. (3.4). The parameters in Eq. (3.6) and Eq. (3.8) can be identified without redundancy 
and the original nominator parameters of the linear block in Eq. (3.5a) can be recalculated according to 
Eq. (3.5c). 
 

3.1.3. Feedback-Wiener system 
 
Considering a stable Feedback-Wiener system as shown in Fig. 3.3. We make use of a RTF model of  
order n  to describe the linear block ),( 1 θ−qG . Because of its feedback characteristics, the linear 
block  ),( 1 θ−qG  should contain a time delay, that is, n

nqbqbqbqB −−−− +++= L2
2

1
1

1 )( , so that 
the Feedback-Wiener system is well defined.  
 
Then the input of the nonlinear static block can be derived as 
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The nonlinear static block )),(( ηtuN  is described by a polynomial of  order m  
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where )(tu  in the first part is the key term.  
 
Half-substituting Eq. (3.9) into the key term )(tu  of Eq. (3.10), we get the system output of a 
Feedback-Wiener system 
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To avoid the over-parameterization problem, one parameter in nbbb ,,,,, 211 Lαβ  should be fixed. 
Eq. (3.1) shows that a Feedback-Wiener system can be transformed approximately into an open-loop 
pseudo-linear MISO system which has 1+m  independent pseudo-inputs: the reference signal )(tr , 
the system output )(ty−  and the recursively estimated intermediate variables )(tu k  for 

mk ,,3,2 L=  according to Eq. (3.9). All the parameters in Eq. (3.11) are explicitly given.  
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3.1.4. Feedback-Hammerstein system 
 
Considering a stable Feedback-Hammerstein system as shown in Fig. 3.4. We use a polynomial of 
order m  to describe the feedback nonlinear static block )),(( ηtyN . Therefore, the input of the linear 
dynamic block can be derived as 
 

∑
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⋅−⋅=
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k
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k tytrtu

1
)()()( βα .         (3.12) 

 
Because of the structure of Hammerstein-type system and in order to simplify the derivation, we use 
an ARMAX model of order n  to describe the linear dynamic block ),( 1 θ−qG   
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And because of its feedback system characteristics, the linear block  ),( 1 θ−qG  should contain a time 
delay, that is, n
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well defined. 
 
Substituting Eq. (3.12) into Eq. (3.13), we get 
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From Eq. (3.14a) we find 
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Now we define two equivalent expressions: 
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with n
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with  
 

kkk baa ⋅+= 1
* β                       (3.16b) 

 
for nk ,,2,1 L= . 
 
And we define a new combined intermediate variable in Eq. (3.14b) 
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Then Eq. (3.14b) can be rewritten as 
 

)()()(~)()1(~

)()()(~)()()(

1

1

1*

111*

teqCty
b
qBty

teqCtyqBtyqA

−
−

−−−

++−=

+=
       (3.18) 

 
where the separated part )1(~ −ty  is the key term. 
  
Half-substituting Eq. (3.17) into the key term )1(~ −ty  in Eq. (3.18), we get the system output of 
Feedback-Hammerstein system 
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To avoid the over-parameterization problem, one parameter in mb βββα ,,,,, 321 L  should be fixed. 
Eq. (3.19) shows that a Feedback-Hammerstein system can be transformed approximately into an 
open-loop pseudo-linear MISO system of 1+m  independent pseudo-inputs: the reference signal 

)1( −tr , )1( −− ty k  for mk ,,2 L=  and the combined intermediate variable )(~ ty  which can be 
recursively estimated with Eq. (3.17). It should be noted that only *

ka  for nk ,2,1 L=  in Eq. (3.19) 
are identifiable because of the inherent dependence. Actually, the term )(1 tyβ  in the nonlinear static 
block )),(( ηtyN  in the feedback path will cause a linear feedback identification problem. And only 
under some special assumptions, for example, if 1β  is a known or fixed, the original parameters ka  

for  nk ,2,1 L=  in Eq. (3.14a) can be uniquely determined by Eq. (3.16b). 
  

3.1.5. Simulation results 
 
We now consider the application of the new identification method to the following four special SISO 
Wiener and Hammerstein systems. 
  
For the Wiener system and the Hammerstein system, two standard examples are used (Kortmann, 
1989). In order to compare the identification results with Kortmann (1989), we use the same 
identification conditions and signals. A uniformly distributed random signal with an amplitude 5.0±  
is used as input )(tu . Another independent random numbers is as zero mean white noise )(te . 

1000=N  data points are collected. 
 
The linear dynamic subsystem is described by 
 

21

21
1

7.05.11
0667.01333.0),( −−

−−
−

+−
+

=
qq

qqqG θ                     (3.20) 

 
and the nonlinear static subsystem by 
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where )(tχ  is the input of the nonlinear block and )(tγ  is the output of the nonlinear block. We fix 
the first power parameter in nonlinear subsystem 11 =β . 
 
For the Feedback-Wiener system, the linear and nonlinear blocks are also described by the Eqs. (3.20-
3.21). The original constant gain a  in the Feedback-Wiener system is " 1.0=αrf ".  
 
For the Feedback-Hammerstein system, we assume it consists of an ARMAX model 
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and a nonlinear static feedback block Eq. (3.21). The original constant gain a  is " 1=αrf ". 
According to the derivation, an equivalent Feedback-Hammerstein system can be formed as 
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A standard random numbers are used as the reference signal )(tr  for the Feedback-Wiener system and 
the Feedback-Hammerstein system. Another independent random numbers is as zero mean white noise 

)(te . 2000=N  data points are collected. 
 
For the Wiener system, Hammerstein system and Feedback-Wiener system, the linear filter for a 
colored measurement noise is given by 
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The Noise-Signal ratio is defined as 
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We consider different measurement noise levels for the four different block-oriented structures. 
Besides the non-noisy case, =./. SN 5%, 10% and 20% white and 10% colored measurement noise 
are added to the system output, respectively.  
 
In order to calculate the unmeasurable intermediate variable )(tw  in Wiener system and Hammerstein 
system and the unmeasurable intermediate variable )(tu  in Feedback-Wiener system and Feedback-
Hammerstein system, we use the adaptive exponentially moving average smoothing technique to filter 
the estimated parameters. The moving window with a fixed length is 4=Mov . Then the standard 
recursive prediction errors method (RPEM) function for linear MISO system with various forgetting 
factors 7.0)0( =λ  and 01.0=∆λ  in MATLAB is applied. The initial values of all the unknown 
parameters are taken as zero.  
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Identification results with different measurement noises are shown in Tables 3.1A-3.4A. The 
identification processes with a N./S.=10% colored measurement noise are shown in Figs. 3.5-3.8. The 
red lines in Figs. 3.5-3.8 are the real values of parameters. We calculate single parameter identification 
error p∆  and the avarage identification error ∆  of each structure according to: 

trueestimatedp −=∆  and 
ζ

∑ ∆
=∆

p
. ζ  is the parameter number. Parameter identification 

errors with different measurement noises are shown in Tables 3.1B-3.4B. Comparison of avarage 
parameter identification errors ∆  of the four structures is shown in Table 3.5. 
 

Table 3.1A Identification results of the Wiener system  
 

1000=N  1b  2b  1f  2f  2β  3β  
10% C. N. 0.1314 0.0623 -1.5119 0.7111 2.9940 1.7155 
20% W. N. 0.1332 0.0723 -1.5046 0.7015 2.9175 1.1322 
10% W. N. 0.1323 0.0659 -1.5085 0.7048 2.9974 1.4243 

5% (Kortm.)  0.1453 0.0489 -1.5043 0.6986 3.0161 1.4477 
5% W. N. 0.1315 0.0675 -1.5050 0.7033 3.0711 1.5087 
Non-noise 0.1333 0.0667 -1.5000 0.7000 3.0000 1.5000 

True values 0.1333 0.0667 -1.5000 0.7000 3.0000 1.5000 
1000=N  1c  2c  1d  2d  - - 

10% C. N. 0.1774 0.0832 -0.8880 0.8490 - - 
True values 0.2000 0.1000 -0.9000 0.8500 - - 

 
 

Table 3.1B Parameter identification errors of Wiener system 
  

1000=N  
1b∆  2b∆  1f∆  2f∆  2β∆  3β∆  ∆  

10% C. N. 0.0019 0.0044 0.0119 0.0111 0.0060 0.2155 0.0418 
20% W. N. 1E-04 0.0056 0.0046 0.0015 0.0825 0.3678 0.0770 
10% W. N. 0.0010 0.0008 0.0085 0.0048 0.0026 0.0757 0.0155 
5% (Kort.) 0.0120 0.0178 0.0043 0.0014 0.0161 0.0523 0.0173 
5% W. N. 0.0018 0.0008 0.0050 0.0033 0.0711 0.0087 0.0151 

 
 

Table 3.2A  Identification results of the Hammerstein system  
 

1000=N  2β  3β  1b  2b  1f  2f  
10% C. N. 3.1206 1.3557 0.0954 0.1407 -1.4964 0.7047 
20% W. N. 3.2751 2.2686 0.1250 0.0236 -1.4225 0.6539 
10% W. N. 3.0861 1.6330 0.1341 0.0311 -1.5010 0.7034 

5% (Kortm.)  3.0240 1.5191 0.1414 0.0526 -1.5067 0.7385 
5% W. N. 3.0315 1.5051 0.1373 0.0469 -1.5016 0.6983 
Non-noise 2.9974 1.4913 0.1334 0.0671 -1.4999 0.7000 

True values 3.0000 1.5000 0.1333 0.0667 -1.5000 0.7000 
1000=N  1c  2c  1d  2d  - - 

10% C. N. 0.2738 0.3924 -0.8619 0.7379 - - 
True values 0.2000 0.1000 -0.9000 0.8500 - - 
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Table 3.2B Parameter identification errors of Hammerstein system 
  

1000=N  
2β∆  3β∆  1f∆  2f∆  1b∆  2b∆  ∆  

10% C. N. 0.1206 0.1443 0.0379 0.074 0.0036 0.0047 0.0641 
20% W. N. 0.2751 0.7686 0.0083 0.0431 0.0775 0.0461 0.2031 
10% W. N. 0.0861 0.1330 0.0008 0.0356 0.0010 0.0034 0.0433 
5% (Kort.) 0.0240 0.0191 0.0081 0.0141 0.0067 0.0385 0.0184 
5% W. N. 0.0315 0.0051 0.004 0.0198 0.0016 0.0017 0.0106 

 
 

 
Table 3.3A  Identification results of the Feedback-Wiener system 

 
2000=N  rfa  1b  2b  1f  2f  2β  3β  

10% C. N. 0.1005 0.1323 0.0334 -1.5297 0.7446 3.0081 0.2417 
20% W. N. 0.0997 0.0562 0.0757 -1.4984 0.7671 2.9780 2.6249 
10% W. N. 0.0997 0.0802 0.0754 -1.4957 0.7411 3.0027 2.4885 
5% W. N. 0.0998 0.0997 0.0729 -1.4962 0.7243 3.0222 2.3083 
Non-noise 0.1000 0.1333 0.0667 -1.5000 0.7000 3.0001 1.5007 

True values 0.1000 0.1333 0.0667 -1.5000 0.7000 3.0000 1.5000 
2000=N  1c  2c  1d  2d  - - - 

10% C. N. 0.3564 0.3152 -0.7950 0.7171 - - - 
True values 0.2000 0.1000 -0.9000 0.8500 - - - 

 
 

 
Table 3.3B Parameter identification errors of Feedback-Wiener system 

 
2000=N
 

α∆  1b∆  2b∆  1f∆  2f∆  2β∆  3β∆  ∆  

10% C.  0.0005 0.001 0.0333 0.0297 0.0446 0.008 1.2583 0.1953 
20% W.  0.0003 0.0771 0.0090 0.0016 0.0671 0.0221 1.1249 0.1828 
10% W.  0.0003 0.0531 0.0087 0.0043 0.0411 0.0026 0.9885 0.1565 
5%  W.  0.0002 0.0336 0.0062 0.0038 0.0243 0.0221 0.8083 0.1252 

 
 
 

Table 3.4A  Identification results of the Feedback-Hammerstein system 
 

2000=N  *
1a  *

2a  rfa  2b  2β  3β  *β  
10% C. N. -1.3617 0.7489 0.1348 0.0680 0.3122 0.1124 0.4556 
20% W. N. -1.3732 0.7520 0.1353 0.0666 0.2750 0.0757 0.3664 
10% W. N. -1.3719 0.7559 0.1347 0.0666 0.3208 0.1257 0.4456 
5% W. N. -1.3700 0.7592 0.1343 0.0667 0.3506 0.1540 0.4545 
Non-noise -1.3667 0.7667 0.1333 0.0667 0.3999 0.1998 0.4999 

True values -1.3667 0.7667 0.1333 0.0667 0.3999 0.1999 0.5004 
2000=N  1c  2c  - - - - - 

10% C. N. 0.3004 0.1649 - - - - - 
True values 0.2000 0.1000 - - - - - 
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Table 3.4B Parameter identification errors of Feedback-Hammerstein system 
 

2000=N
 

*
1a∆  *

2a∆  α∆  2b∆  2β∆  3β∆  *β∆  ∆  

10% C.  0.0050 0.0178 0.0015 0.0013 0.0877 0.0875 0.0448 0.0225 
20% W.  0.0065 0.0147 0.0020 1E-04 0.1249 0.1242 0.134 0.0403 
10% W.  0.0052 0.0108 0.0014 1E-04 0.0791 0.0742 0.0548 0.0216 
5%  W.  0.0033 0.0075 0.0010 0.0000 0.0493 0.0459 0.0459 0.0152 

 
 
 

Table 3.5    Comparison of avarage parameter identification errors ∆  of the four structures 
 

2000=N  Wiener Hammerstein Feedback-
Wiener 

Feedback- 
Hammerstein 

Best accuracy 

10% C.  0.0418 0.0641 0.1953 0.0225 Feedback-Ha. 
20% W.  0.0770 0.2031 0.1828 0.0403 Feedback-Ha. 
10% W.  0.0155 0.0433 0.1565 0.0216 Wiener 
5%  W.  0.0151 0.0106 0.1252 0.0152 Hammerstein 

 
 
 

 
Fig. 3.5     The Wiener system identification process 

   with a N./S.=10% colored measurement noise 
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Fig. 3.6    The Hammerstein system identification process  
     with a N./S.=10% colored measurement noise  

 

 
Fig. 3.7    The Feedback-Wiener system identification process 

  with a N./S.=10% colored measurement noise 
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Fig. 3.8    The Feedback-Hammerstein system identification process 

    with a N./S.=10% colored measurement noise 
 
 
The simulation results show that: 
 
¾ The new identification method gives good results for all the four structures. 
 
¾ The accuracy for the two standard examples of the Wiener system and the Hammerstein system is 

better than in Kortmann (1989). 
 
¾ From Table 3.5, we can see that which one of the four structures has the best accuracy results 

under different measurement noises. 
   
 

3.2. MISO Wiener and Hammerstein systems 
 
Some known identification methods for MISO Wiener and Hammerstein systems were introduced in 
literature. For example, in Boutayeb and Darouach (1994), two recursive identification methods were 
extended to a MISO Hammerstein system along the lines of the basic Kalman filter. Kortmann (1987) 
extended the identification method for a SISO Wiener system and a Hammerstein system to MISO 
cases with a second procedure based on the recursive prediction error method. In this section, the new 
identification method is used to identify: 
 
- a MISO Wiener system (Fig. 3.9),  
- a MISO Hammerstein system (Fig. 3.10) and 
- a MISO mixed Wiener and Hammerstein system (Fig. 3.11). 
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Fig. 3.9    MISO Wiener system 

 
 

 
Fig. 3.10    MISO Hammerstein system 

 
 

 
 

Fig. 3.11    MISO mixed Wiener and Hammerstein system 
 
 

 In the above Figures, we make use of the following notations: )(,),(),(,),( 11 tutututu ill LL +  are i  

system inputs, )(ty  is the single system output, )(* ty  is the unmeasurable system output without 
measurement noise. )(,),( **

1 tyty lL , )(,),( **
1 tyty il L+  are i  unmeasurable outputs of the branches. 
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The intermediate variables )(,),(1 twtw lL , )(,),(1 twtw il L+  can not be measured. 

ill θθθθ ,,,,, 11 LL +  are parameter vectors determining linear dynamic subsystems, 

),( 1
1

1 θ−qG , ,L ),( 1
ll qG θ− , ),( 1

1
1 +

−
+ ll qG θ , ,L ),( 1

ii qG θ− , respectively. ill ηηηη ,,,,, 11 LL +  
are parameter vectors determining nonlinear static subsystems, 

),(,),,( 11 llNN ηη ⋅⋅ L , ),(,),,( 11 iill NN ηη ⋅⋅ ++ L , respectively. )(tε  is the colored measurement 

noise which is a white noise )(te  through a linear filter ),( 1 ξ−qH . In MISO mixed Wiener and 
Hammerstein system (Fig. 3.11), there are l -inputs for Wiener branches and s -inputs for 
Hammerstein branches, and isl =+ . 
 

3.2.1. MISO Wiener system 
 
Considering the thj −  branch, ij ,,1L= , of a MISO Wiener system which consists of i  single 
Wiener branches as shown in Fig. 3.9. The linear dynamic subsystem ),( 1

jj qG θ−  can be described 

by using a RTF model of order jn  
 

)(
)(
)(

)( 1

1

tu
qF
qB

tw j
j

j
j −

−

=                    (3.26a) 

 
where )( 1−qB j  and )( 1−qFj  for ij ,,1L=  are coprime and 
 

j

j

n
jnjjj qbqbbqB −−− +++= L1

10
1 )(                  (3.26b) 

 
j

j

n
jnjj qfqfqF −−− +++= L1

1
1 1)( .                             (3.26c) 

 
The static nonlinear subsystem )),(( jjj twN η  is assumed to be a polynomial of  order jm  
 

∑

∑
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k
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β
         (3.27) 

 
and )(tw j  in the first term of Eq. (3.27) is the key term.  
 
Half-substituting Eq. (3.26a) into the key term )(tw j  of Eq. (3.27), we get the whole system output 
 

).(
)(
)()()(

)(
)(

)()()(

1

1

1 2
1

1
1

1

*

te
qD
qCtwtu

qF
qB

ttyty

i

j

m

k

k
jjkj

j

jj

i

j
j

j

−

−

= =
−

−

=

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⋅+

⋅
=

+=

∑ ∑

∑

β
β

ε

     (3.28) 

  
To avoid the over-parameterization problem, one parameter in jnjjj bbb ,,,, 211 Lβ  for ij ,,1L= , 
that is, i  parameters in Eq. (3.28) should be fixed. From Eq. (3.28) it can be concluded that a MISO 
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Wiener system can be transformed approximately into a pseudo-linear MISO system which has 

∑
=

i

j
jm

1
 independent inputs: )(tu j  and the recursively estimated intermediate variables 

)(,),(),( 32 twtwtw jm
jjj L  according to Eq. (3.26a) for ij ,,1L= . All the unknown parameters of the 

above pseudo-linear MISO system are explicitly given.  
 

3.2.2. MISO Hammerstein system 
 
Considering the thj −  branch, ij ,,1L= , of a MISO Hammerstein system which consists of i  
single Hammerstein branches as shown in Fig. 3.10. The nonlinear static subsystem )),(( jjj tuN η  is 

assumed to be a polynomial of  order jm  
 

∑
=

⋅=
jm

k

k
jjkj tutw

1
)()( β .         (3.29) 

 
Using a RTF model of order jn  for the dynamic linear subsystem ),( 1

jj qG θ− , we find 
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As in the SISO case, here we separate a part )(0 twb jj ⋅  from )(
)(
)(

1

1

tw
qF
qB

j
j

j
−

−

. According to the 

function definitions before, )( 1* −qB j  in the second part is  
 

j

j

n
jnjjj qbqbqbqB −−−− +++= *2*

2
1*

1
1* )( L                   (3.30b) 

 
with 
 

jkjjkjk fbbb ⋅−= 0
*                      (3.30c) 

 
for jnk ,,2,1 L= . The first term )(tw j  of Eq. (3.30a) is the thj −  key term.  
 
Half-substituting Eq. (3.29) into the key term )(tw j  of Eq. (3.30a), then the output of MISO 
Hammerstein system can be written as 
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We can also get another alternative. Because of the special structure of MISO Hammerstein system, 
Eq. (3.30a) can be simplified and transformed into an equivalent ARMAX model. Kortmann and 
Unbehauen (1987) also used such a model to identify MISO Hammerstein systems. 
 
From Eq. (3.30a) the whole system output can be rewritten in an equivalent linear MISO ARMAX 
model form 
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where the common denominator )( 1* −qA  can be formed as 
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with the order ∑
=

=
i

j
jnn

1

~  and the corresponding extended nominator in the thj −  branch is 
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with the order ∑
≠
=

+=
i

jk
k

kjj nnn
1

~ .  

 
In Eq. (3.32), a part )(~

0 twb jj ⋅  is separated from )()(~ 1 twqB jj
−  with  

j

j

n
njjjj qbqbqbqB

~
~

2
2

1
1

1* ~~~)(~ −−−− +++= L . And the )(tw j  in )(~
0 twb jj ⋅  is the key term in the thj −  

branch. 
 
Half-substituting Eq. (3.29) into the key term )(tw j  of Eq. (3.32), the whole system output of MISO a 
Hammerstein system can be written as 
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Both Eq. (3.31) and Eq. (3.35) can be used to identify MISO Hammerstein system. But in Eq. (3.35), 
only the equivalent parameters ka~  for nk ~,,1L=  and jkb~  for jnk ~,,1L= , ij ,,1L=  in linear 
dynamic block can be directly identified. To avoid the over-parameterization problem, one parameter 
in jmjjjb βββ ,,,, 210 L  or in jmjjjb βββ ,,,,~

210 L  for ij ,,1L= , that is, i  parameters in Eq. 
(3.31) or Eq. (3.35) should be fixed. From Eq. (3.31) and Eq. (3.35), it follows that a MISO 
Hammerstein system can be transformed approximately into a pseudo-linear MISO system which has 
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∑
=

+
i

j
jm

1
)1(  independent inputs: )(,),(),( 2 tututu jm

jjj L  and recursively estimated unmeasurable 

intermediate variables )(tw j  according to Eq. (3.29) for ij ,,1L= . All the unknown parameters of 
the pseudo-linear MISO system are explicitly given. 
 

3.2.3. MISO mixed Wiener and Hammerstein system 
 
Considering MISO mixed Wiener and Hammerstein system of Fig. 3.11 which consists of a l  Wiener 
branches and s  Hammerstein branches, and isl =+ . In the thj −  branch of the MISO Wiener 
system for lj ,,1L= , the linear dynamic subsystem ),( 1

jj qG θ−  can be described by using a RTF 

model of order jn  and the nonlinear static subsystem )),(( jjj twN η  is assumed to be a polynomial 

of  order jm . On the other hand, in the thj −  branch of the MISO Hammerstein system for 

sj ,,1L= , the nonlinear static subsystem )),(( jjj tuN η  is assumed to be a polynomial of  order 

jm  and the linear dynamic subsystem ),( 1
jj qG θ−  is described by using a RTF model of  order jn . 

 
According to the derivation in section 3.2.1 and 3.2.2, half-substituting Eq. (3.26a) and Eq. (3.29) into 
the corresponding key terms, the output of a MISO mixed Wiener and Hammerstein system can be 
written as  
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To avoid the over-parameterization problem, one parameter of jnjjj bbb ,,,, 211 Lβ  for lj ,,1L= , 
that is, l  parameters in the MISO Wiener systems should be fixed and one parameter of 

jmjjjb βββ ,,,, 210 L  for sj ,,1L= , that is, s  parameters in the Hammerstein systems should be 
fixed. Eq. (3.36) shows that a MISO mixed Wiener and Hammerstein system can be transformed 

approximately into a pseudo-linear MISO system which has )1(
11
∑∑
==

++
s

j
j

l

j
j mm  independent inputs: 

)(tu j  and )(,),(),( 32 twtwtw jm
jjj L  for lj ,,1L= ; )(,),(),( 2 tututu jm

jjj L  and )(tw j  for 

sj ,,1L= . The unknown intermediate variables can be estimated recursively according to the 
corresponding equations Eq. (3.26a) and Eq. (3.29). All the unknown parameters of the pseudo-linear 
MISO system Eq. (3.36) are explicitly given and can be identified without parameter redundancy.  
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3.2.4. Simulation results 
 
In this section the simulation results for three simple examples will be given, namely for, 
 
¾ a MISO Wiener system of the following two branches (we fix 111 =β  and 121 =β ): 
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¾ a MISO Hammerstein system of the following two branches (we fix 110 =b  and 120 =b ):  
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¾ a MISO mixed Wiener and Hammerstein of the following two branches (we fix 111 =β  and 

120 =b ): 
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and 
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For the all three MISO systems, two random numbers of zero mean are used as system inputs )(1 tu  

and )(2 tu . The third independent random numbers is used as white measurement noise )(te . 
2000=N  data points are collected for each case. 

 
An average smoother using a moving window with fixed length 4=Mov  will be used in order to 
filter the corresponding estimated parameters to calculate the unmeasurable intermediate variables 

)(1 tw  and )(2 tw .  
 
Then the standard recursive prediction errors method (RPEM) function for linear MISO system with 
forgetting factor algorithms in MATLAB will be applied. The algorithm variable settings are 

7.0)0( =λ , 01.0=∆λ . The initial estimates of the unknown parameters are taken as zero. 
  
The linear filter for a colored measurement noise is given by 
 

21

21
1

85.09.01
1.02.01),( −−

−−
−

+−
++

=
qq
qqqH ξ .        (3.43) 

 
We consider different measurement noise levels for the Three MISO Wiener and Hammerstein 
systems. Besides the non-noisy case, =./. SN 5%, 10% and 20% white and 10% colored 
measurement noise, are added to the system output, respectively. 
 
Identification results with different measurement noises are shown in Tables 3.6A-3.8A. The 
identification processes with a N./S.=10% colored measurement noise are shown in Figs. 3.12-3.14. 
The red lines in Figs. 3.12-3.14 are the real values of parameters.  
 
Tables 3.6B-3.8B show:  
 
- every parameter identification error p∆ ,  

- the average parameter identification error 
I

Ip
ζ

∑ ∆
=∆1  for the first branch, Iζ  is the parameter 

number of the first branch, 

- the average parameter identification error 
II

IIp
ζ

∑ ∆
=∆ 2  for the second branch, IIζ  is the 

parameter number of the second branch, 

- the average parameter identification error 
ζ

∑ ∆
=∆

p
 of each structure with different 

measurement noises, ζ  is the whole parameter number. 
 
Comparison of the average parameter identification errors ∆  of the three structures is shown in Table 
3.9. 
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Table 3.6A Identification results of the MISO Wiener system 
 

2000=N  11b  12b  11f  12f  12β  13β  
10% C. N. 0.0450 0.0237 -1.3725 0.4420 4.3116 2.2480 
20% W. N. 0.0466 0.0206 -1.3946 0.4627 4.2612 0.8760 
10% W. N. 0.0453 0.0239 -1.3700 0.4401 4.3001 1.8561 
5% W. N. 0.0450 0.0249 -1.3614 0.4321 4.3113 2.1100 
Non-noise 0.0431 0.0315 -1.3139 0.3886 4.0000 1.9999 

True values 0.0431 0.0315 -1.3139 0.3886 4.0000 2.0000 
2000=N  21b  22b  21f  22f  22β  23β  

10% C. N. 0.0256 0.0305 -1.5228 0.5789 2.8777 2.1427 
20% W. N. 0.0340 0.0168 -1.5704 0.6203 2.8423 2.0197 
10% W. N. 0.0323 0.0210 -1.5484 0.6008 2.9889 2.0986 
5% W. N. 0.0316 0.0222 -1.5419 0.5952 2.9861 2.0621 
Non-noise 0.0305 0.0254 -1.5218 0.5778 3.0000 2.0000 

True values 0.0305 0.0254 -1.5218 0.5778 3.0000 2.0000 
2000=N  1c  2c  1d  2d  - - 

10% C. N. 0.2568 0.1943 -0.8703 0.8237 - - 
True values 0.2000 0.1000 -0.9000 0.8500 - - 

 
 
 
 
 

Table 3.6B Parameter identification errors of the MISO Wiener system 
 

2000=N  
11b∆  12b∆  11f∆  12f∆  12β∆  13β∆  1∆  ∆  

10% C. 0.0019 0.0078 0.0586 0.0534 0.3116 0.2480 0.1135 0.0798 
20% W.  0.0035 0.0109 0.0807 0.0741 0.2612 1.1240 0.2590 0.1529 
10% W. 0.0022 0.0076 0.0561 0.0515 0.3001 0.1439 0.0935 0.0605 
5% W.  0.0019 0.0066 0.0475 0.0435 0.3113 0.1100 0.0868 0.0532 

2000=N
 

21b∆  22b∆  21f∆  22f∆  22β∆  23β∆  2∆  - 

10% C.  0.0049 0.0051 0.001 0.0011 0.1223 0.1427 0.0461 - 
20% W.  0.0035 0.0086 0.0486 0.0425 0.1577 0.0197 0.0467 - 
10% W.  0.0018 0.0044 0.0266 0.0230 0.0111 0.0986 0.0278 - 
5% W.  0.0011 0.0032 0.0201 0.0174 0.0139 0.0621 0.0196 - 
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Table 3.7A Identification results of the MISO Hammerstein system 
 

2000=N  11β  12β  13β  11b  12b  11f  12f  
10% C. N. 0.7637 3.1767 1.8290 0.1144 0.0690 -1.4991 0.7010 
20% W. N. 1.2362 3.2883 0.9522 0.1628 0.1087 -1.4951 0.7003 
10% W. N. 1.1684 3.1985 1.1184 0.1447 0.0968 -1.4974 0.7010 
5% W. N. 1.1187 3.1384 1.2280 0.1418 0.0760 -1.5014 0.7028 
Non-noise 1.0005 3.0005 1.4995 0.1321 0.0671 -1.5001 0.7000 

True values 1.0000 3.0000 1.5000 0.1333 0.0667 -1.5000 0.7000 
2000=N  21β  22β  23β  21b  22b  21f  22f  

10% C. N. 0.4765 4.0301 3.2280 0.3677 0.2911 -0.9058 0.6028 
20% W. N. 0.7458 4.1500 2.1288 0.3591 0.3564 -0.8837 0.6180 
10% W. N. 0.8235 4.0770 2.0893 0.3972 0.3075 -0.8945 0.6088 
5% W. N. 0.8803 4.0327 2.0403 0.4013 0.2781 -0.9052 0.6077 
Non-noise 0.9996 4.0006 2.0011 0.4002 0.2999 -0.9000 0.6000 

True values 1.0000 4.0000 2.0000 0.4000 0.3000 -0.9000 0.6000 
2000=N  1c  2c  1d  2d  - - - 

10% C. N. 0.2153 0.0901 -0.8484 0.0035 - - - 
True values 0.2000 0.1000 -0.9000 0.8500 - - - 

 
 
 
 
 
 

Table 3.7B Parameter identification errors of the MISO Hammerstein system 
 

2000=N  
11β∆  12β∆  13β∆  11b∆  12b∆  11f∆  12f∆  1∆  ∆  

10% C. 0.2363 0.1767 0.329 0.0189 0.0023 0.0009 0.0010 0.1091 0.1851 
20% W.  0.2362 0.2883 0.5478 0.0295 0.042 0.0049 0.0003 0.1641 0.1282 
10% W. 0.1684 0.1985 0.3816 0.0114 0.0301 0.0026 0.0010 0.1132 0.0822 
5% W.  0.1187 0.1384 0.272 0.0085 0.0093 0.0014 0.0028 0.0783 0.0549 

2000=N  
21β∆  22β∆  23β∆  21b∆  22b∆  21f∆  22f∆  2∆  - 

10% C.  0.5235 0.0301 1.2280 0.0323 0.0089 0.0058 0.0028 0.2612 - 
20% W.  0.2542 0.1500 0.1288 0.0409 0.0564 0.0163 0.0180 0.0923 - 
10% W.  0.1765 0.077 0.0893 0.0028 0.0075 0.0055 0.0088 0.0512 - 
5% W.  0.1197 0.0327 0.0403 0.0013 0.0219 0.0052 0.0077 0.0315 - 

 
 
 
 
 
 
 

 
 
 



Identification of SISO and MISO Wiener and Hammerstein systems 

 

 

40

 
 

Table 3.8A Identification results of the MISO mixed Wiener and Hammerstein system 
 

2000=N  11b  12b  11f  12f  12β  13β  
10% C. N. 0.3688 0.3642 -0.8977 0.5340 3.6810 1.2669 
20% W. N. 0.3686 0.4144 -0.8300 0.5399 4.2654 1.9924 
10% W. N. 0.3664 0.3973 -0.8385 0.5617 4.2437 2.0838 
5% W. N. 0.3731 0.3710 -0.8505 0.5731 4.2533 2.1117 
Non-noise 0.4054 0.2927 -0.9082 0.6023 3.9122 1.9183 

True values 0.4000 0.3000 -0.9000 0.6000 4.0000 2.0000 
2000=N  21β  22β  23β  21b  22b  21f  22f  

10% C. N. 1.1164 2.6320 1.3696 0.2478 0.1195 -1.4665 0.6675 
20% W. N. 0.8167 3.1847 1.7072 0.0456 0.0535 -1.5219 0.7143 
10% W. N. 0.8603 3.1397 1.6690 0.0754 0.0656 -1.5135 0.7098 
5% W. N. 0.8998 3.1046 1.5872 0.0489 0.0708 -1.5165 0.7117 
Non-noise 1.0063 3.0335 1.5238 0.0874 0.0926 -1.4995 0.7000 

True values 1.0000 3.0000 1.5000 0.1333 0.0667 -1.5000 0.7000 
2000=N  1c  2c  1d  2d  - - - 

10% C. N. 0.2883 0.0841 -0.8763 0.6439 - - - 
True values 0.2000 0.1000 -0.9000 0.8500 - - - 

 
 
 
Table 3.8B Parameter identification errors of the MISO mixed Wiener and Hammerstein system 

 
2000=N  

11b∆  12b∆  11f∆  12f∆  12β∆  13β∆  1∆  ∆  
10% C. 0.0312 0.0642 0.0023 0.0660 0.3190 0.7331 0.2026 0.1618 
20% W. 0.0314 0.1144 0.0700 0.0601 0.2654 0.0076 0.0914 0.0966 
10% W. 0.0336 0.0973 0.0615 0.0383 0.2437 0.0838 0.0930 0.0844 
5% W. 0.0269 0.0710 0.0495 0.0269 0.2533 0.1117 0.0898 0.0741 

2000=N  
21β∆  22β∆  23β∆  21b∆  22b∆  21f∆  22f∆  2∆  - 

10% C. 0.1164 0.368 0.1304 0.1145 0.0528 0.0335 0.0325 0.1211 - 
20% W. 0.1833 0.1847 0.2072 0.0877 0.0132 0.0219 0.0143 0.1017 - 
10% W. 0.1397 0.1397 0.1690 0.0579 0.0011 0.0135 0.0098 0.0758 - 
5% W. 0.1002 0.1046 0.0872 0.0844 0.0041 0.0165 0.0117 0.0583 - 

 
 
 

Table 3.9  Comparison of the average parameter identification errors ∆  of the three structures 
 

2000=N  MISO Wiener MISO Hammerstein Mixed MISO W. H. Best accuracy 
10% C. N. 0.0798 0.1851 0.1618 MISO Wiener 
20% W. N. 0.1529 0.1282 0.0966 MixedMISO W.H.
10% W. N. 0.0605 0.0822 0.0844 MISO Wiener 
5% W. N. 0.0532 0.0549 0.0741 MISO Wiener 
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Fig. 3.12    The MISO Wiener system identification process 
    with a N./S.=10% colored measurement noise 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.13    The MISO Hammerstein system identification process 
with a N./S.=10% colored measurement noise 
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Fig. 3.14    The MISO mixed Wiener and Hammerstein system identification process 
with a N./S.=10% colored measurement noise 

 
  
The simulation results show that: 
 
¾ The new identification method gives good results for all the three structures. 
 
¾ From Table 3.9, we can see that which one of the three structures has the best accuracy results 

under different measurement noises. 
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4. Identification of a Wiener system with different discontinuous 
nonlinearity 

 
It is usually desirable to find a model as simple as possible for the data. Actually, there is an implicit 
(sometimes explicit) tradeoff between the acceptable model complexity and how well it matches the 
data.  It is clear that some complicated continuous polynomials can also be used to approximate some 
discontinuous nonlinearities. But direct identification of these discontinuous nonlinearities with 
parameters of linear dynamic block together is no doubt more efficient.  
 
Several researchers mainly studied identification methods for Hammerstein system with some simple 
discontinuous nonlinearities.  Vörös (1997) identified directly some discontinuous nonlinearities in a 
Hammerstein system. Bai (2002) used also the same identification principle to identify the simple 
discontinuous nonlinearities in a Hammerstein system. Zeng (1999) identified some simple 
discontinuous nonlinearities in a Hammerstein and a Wiener system but with the inverse of the 
nonlinearities. The key technique is to definite some switch functions and intermediate variables to 
write the discontinuous nonlinearities in a continuous form. 
 
In this chapter, we use the new identification method to identify the parameters of a Wiener system 
(Figure 3.1) with different discontinuous nonlinearities as the nonlinear static subsystem )),(( ηtwN , 
respectively. For it the following discontinuous nonlinearities are taken into consideration: 
 
- Direction-dependent nonlinearity (Figure 4.1 (a)), 
- Preload nonlinearity (Figure 4.1 (b)), 
- Dead-zone nonlinearity (Figure 4.1 (c)) and 
- Saturation nonlinearity (Figure 4.1 (d)). 
 
The other discontinuous nonlinearities or their combinations can also be considered in the same 
principle. 
 
 

 
           (a)       (b)         (c)           (d) 
 

Fig. 4.1    Discontinuous nonlinearities  
(a) Direction-dependent nonlinearity  (b) Preload nonlinearity 

(c) Dead-zone nonlinearity  (d) Saturation nonlinearity 
 
 
The corresponding nonlinear relationships in Fig. 4.1 are as: 
 
¾ Direction-dependent nonlinearity 
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      (4.1) 

 
Here, the slopes 1S , 2S  and the cross-point ),( 00 CZ  are parameters to be identified. It is noted that 

0021 ,,, CZSS  can be positive or negative. We assume that 1S  and 2S  are nonzero. 
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¾ Preload nonlinearity 
 

⎪
⎩

⎪
⎨

⎧

+⋅

+⋅
=

22

11
*

)(
0

)(
)(

CtwS

CtwS
ty   

.0)(
0)(
0)(

<
=
>

tw
tw
tw

      (4.2) 

 
Here, the slopes 1S , 2S  and the cross-point values 21 ,CC  are parameters to be identified. It is noted 
that 2121 ,,, CCSS  can also be positive or negative. We assume that 1S  and 2S  are nonzero. 
 
¾ Dead-zone nonlinearity 
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Here, the slope S  and the cross-point values 210 ,, ZZC  are parameters to be identified. It is noted 
that 210 ,,, ZZCS  can be positive or negative. We assume that S  is nonzero and 21 ZZ > .  
 
¾ Saturation nonlinearity 
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Here, the cross-point values 2121 ,,, CCZZ  are parameters to be identified. They can be positive or 
negative. We assume that 21 ZZ > . 
 

4.1. Wiener system  
 
As shown in Fig. 3.1, the linear dynamic block ),( 1 θ−qG  is described by a RTF model of order n  
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)()( 1

1

tu
qF
qBtw −

−

= .          (4.5) 

 
The nonlinear static block )),(( ηtwN  is one of the above discontinuous nonlinearities (Fig. 4.1(a)-
(d)), respectively. The resulting system for each single nonlinearity will be described now. 
 

4.1.1. Direction-dependent nonlinearity 
 
We define a switching sequence 
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Then the direction-dependent nonlinearity Eq. (4.1) can be rewritten as 
 

)()()()()()()()( 01010211121
* ZSCthZSSthtwSStwSty ⋅−+⋅⋅−+⋅−+⋅=   (4.7) 

 
where )(tw  in the first term )(1 twS ⋅  is the key term.  
 
Half-substituting Eq. (4.5) into the key term )(tw  in Eq. (4.7) , then the output )(ty  of a Wiener 
system with direction-dependent nonlinearity is given by 
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  (4.8) 

 
To avoid the over-parameterization problem, one parameter in nbbbS ,,,, 101 L  should be fixed. Eq. 
(4.8) shows that a Wiener system with direction-dependent nonlinearity can be transformed into a 
pseudo-linear MISO system with four independent inputs, )(tu , )()( 1 thtw , )(1 th  and 1. The 
unmeasurable intermediate variable )(tw  can be recursively estimated according to Eq. (4.5). All the 
parameters in this pseudo-linear MISO system are explicitly given. Although some parameters of 
direction-dependent nonlinearity in Eq. (4.8) are combined, the original parameters can be easily 
solely recalculated. 
 

4.1.2. Preload nonlinearity 
 
We define another switching function 
 

⎩
⎨
⎧

=
1
0

)(2 th   
.0)(

0)(
<
≥

tw
tw

         (4.9) 

 
 Then the preload nonlinearity Eq. (4.2) can be rewritten as 
 

12122121
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where )(tw  in the first term )(1 twS ⋅  is the key term.  
 
Half-substituting Eq. (4.5) into the key term )(tw  in Eq. (4.10) , the output )(ty  of a Wiener system 
with preload nonlinearity is given by 
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To avoid the over-parameterization problem, one parameter in nbbbS ,,,, 101 L  should be fixed. Eq. 
(4.11) shows that a Wiener system with preload nonlinearity can be transformed into a pseudo-linear 
MISO system with four independent inputs, )(tu , )()( 2 thtw , )(2 th  and 1. The unmeasurable 
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intermediate variable )(tw  can be recursively estimated according to Eq. (4.5). All the parameters in 
this pseudo-linear MISO system are explicitly given. Although some parameters of preload 
nonlinearity in Eq. (4.11) are also combined, the original parameters can be solely recalculated. 
 

4.1.3. Dead-zone nonlinearity 
 
In order to simplify the derivation, here we use the dead-zone width ZB  which is 21 ZZBZ −=  and 

the center point of the dead-zone 0Z  with 
2

21
0

ZZZ +
= .  

 
We make use of the standard sign function )sgn(⋅ , then the dead-zone nonlinearity Eq. (4.3) can be 
rewritten as 
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We define the following intermediate variables: 
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Then Eq. (4.12a) can be simplified as 
 

03201
* )()()()()( CtgBStgZStgStwSty Z +⋅⋅+⋅⋅+⋅+⋅=     (4.13) 

 
where )(tw  in the first term )(1 twS ⋅  is the key term.  
 
Half-substituting Eq. (4.5) into the key term )(tw  in Eq. (4.13), the Wiener system output )(ty  is 
described in the following form, 
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Eq. (4.14) shows that a Wiener system with a dead-zone nonlinearity can be transformed 
approximately into a pseudo-linear MISO system with five independent inputs, )(tu , )(1 tg , )(2 tg , 
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)(3 tg  and 1. The unmeasurable intermediate variables )(tw , )(1 tg , )(2 tg  and )(3 tg  can be 
recursively estimated according to Eq. (4.5) and Eqs. (4.12b)-(4.12d). All the parameters in this 
pseudo-linear MISO system are explicitly given and there is no over-parameterization problem. 
Although some parameters of the dead-zone nonlinearity in Eq. (4.14) are combined and replaced by 
their equivalent values ZB  and 0Z , the original parameters 1Z  and 2Z  can be solely recalculated 

according to 21 ZZBZ −=  and 
2

21
0

ZZZ +
= . 

 

4.1.4. Saturation nonlinearity 
 
In order to simplify the derivation, here we use the two widths ZB  and CB  between the two saturation 
boundaries which are 21 ZZBZ −=  and 21 CCBC −= . We also use the center point of the linear 

part ( 0Z , 0C ) with 
2

21
0

ZZZ +
=  and 

2
21

0
CCC +

= .  

 
We make use of the standard sign function )sgn(⋅ . Then the saturation nonlinearity Eq. (4.4) can be 
rewritten as 
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We define the following intermediate variables: 
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Then Eq. (4.15a) can be simplified as 
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where )(tw  in the first term )(
2

tw
B

B

Z

C ⋅  is the key term. 

  
Half-substituting Eq. (4.5) into the key term )(tw  in Eq. (4.16), a Wiener system output )(ty  is given 
by 
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Eqs. (4.17) shows that a Wiener system with a saturation nonlinearity can be transformed 
approximately into a pseudo-linear MISO system with five independent inputs, )(tu , )(1 tg , )(2 tg , 

)(3 tg  and 1. The unmeasurable intermediate variables )(tw , )(1 tg , )(2 tg  and )(3 tg  can be 
recursively estimated according to Eq. (4.5) and Eqs. (4.15b)-(4.15d). All the parameters in this 
pseudo-linear MISO system are explicitly given and there is also no over-parameterization problem. 
Although some parameters of saturation nonlinearity in Eq. (4.17) are combined and replaced by their 
equivalent values ZB , 0Z , CB  and 0C , the original parameters 121 ,, CZZ  and 2C  can be solely 

recalculated according to 21 ZZBZ −= , 21 CCBC −= , 
2

21
0

ZZZ +
=  and 

2
21

0
CCC +

= . 

 

4.2. Simulation results 
 
In this section some simulation results will be given for a Wiener system with the four different 
discontinuous nonlinearities. 
 
The linear dynamic block in the Wiener system is described by 
 

21
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=
qq

qqqG θ                 (4.18) 

 
where we fix 11 =b  for the cases of direction-dependent and preload nonlinearities. The nonlinear 
static block is one of the following discontinuous nonlinearities, respectively. 
 
¾ Direction-dependent nonlinearity: 
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            (4.19) 

 
with the parameters: 45.01 =S , 2.12 =S , 20 =Z  and 10 =C . 
 
¾ Preload nonlinearity  
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with the parameters: 45.01 =S , 2.12 =S , 55.11 =C  and 7.22 −=C . 
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¾ Dead-zone nonlinearity 
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with the parameters: 1=S , 31 =Z , 12 −=Z  and 10 =C . 
 
¾ Saturation nonlinearity 
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with the parameters: 51 =Z , 72 −=Z , 71 =C , and 52 −=C . 
 
A standard random numbers with zero mean is used as input )(tu . Another independent zero mean 
random numbers is used as white noise )(te . 2000=N  data points are collected.  
 
Besides the non-noisy case, =./. SN 5%, 10% and 20% white and 10% colored measurement noise, 
are added to the system output, respectively. The colored measurement noise filter is given by 
 

21

21
1

5.02.11
1.02.01),( −−

−−
−

+−
++

=
qq
qqqH ξ .        (4.23) 

 
A exponentially average smoother using a moving window with fixed length 4=Mov  will be used to 
filter the estimated parameters to calculate the constructed intermediate variables. 
 
Then apply the standard RPEM function in MATLAB with forgetting factor algorithm for linear 
MISO system with the algorithm variable settings 7.0)0( =λ  and 01.0=∆λ . The initial estimates 
of the unknown parameters are also taken as zero.  
 
Identification results with different measurement noises are shown in Tables 4.1A-4.4A. The 
identification processes with a N./S.=10% colored measurement noise are shown in Figs. 4.2-4.5. The 
red lines in Figs. 4.2-4.5 are the real values of parameters. The single parameter identification error 

p∆  and the average parameter identification error ∆  of each case with different measurement noises 
are calculated and shown in Tables 4.1B-4.4B. Comparison of average parameter identification errors 
∆  of the four cases is shown in Table 4.5. 
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Table 4.1A    Identification results with direction-dependent nonlinearity 

 
2000=N  2b  1f  2f  1S  2S  0Z  0C  

10% C. N. 0.5485 -1.5190 0.7262 0.5331 1.1607 2.1309 1.1159 
20% W. N. 0.5739 -1.4958 0.7002 0.4811 1.1764 2.0048 1.0269 
10% W. N. 0.5528 -1.4971 0.7004 0.4685 1.1903 1.9459 0.9864 
5% W. N. 0.5378 -1.4982 0.7006 0.4468 1.1910 2.0301 1.0612 
Non-noise 0.5005 -1.4999 0.6999 0.4561 1.2004 1.9737 0.9694 

True values  0.5004 -1.5000 0.7000 0.4500 1.2000 2.0000 1.0000 
2000=N  1c  2c  1d  2d  - - - 

10% C. N. 0.2728 0.0988 -1.1200 0.4371 - - - 
True values 0.2000 0.1000 -1.2000 0.5000 - - - 

 
 

Table 4.1B Parameter identification errors with direction-dependent nonlinearity 
 

2000=N
 

2b∆  1f∆  2f∆  1S∆  2S∆  0Z∆  0C∆  ∑ ∆  

10% C.  0.0481 0.0190 0.0262 0.0831 0.0393 0.1309 0.1159 0.0660 
20% W.  0.0735 0.0042 0.0002 0.0311 0.0236 0.0048 0.0269 0.0234 
10% W.  0.0524 0.0029 0.0004 0.0185 0.0097 0.0541 0.0136 0.0216 
5%  W.  0.0374 0.0018 0.0006 0.0032 0.009 0.0301 0.0612 0.0204 

 
 
 

Table 4.2A     Identification results with preload nonlinearity 
 

2000=N  2b  1f  2f  1S  2S  1C  2C  
10% C. N. 0.4914 -1.5090 0.7024 0.4989 1.2480 1.1628 -2.2870 
20% W. N. 0.6183 -1.4914 0.6982 0.4841 1.1803 1.5344 -2.4335 
10% W. N. 0.5868 -1.4944 0.6995 0.4575 1.1762 1.6201 -2.5299 
5% W. N. 0.5603 -1.4962 0.6998 0.4568 1.1862 1.5910 -2.5513 
Non-noise 0.4993 -1.5002 0.7002 0.4504 1.2029 1.5483 -2.6821 

True values 0.5004 -1.5000 0.7000 0.4500 1.2000 1.5500 -2.7000 
2000=N  1c  2c  1d  2d  - - - 

10% C. N. -0.2650 0.2086 -1.1270 0.4777 - - - 
True values 0.2000 0.1000 -1.2000 0.5000 - - - 

 
 

Table 4.2B Parameter identification errors with preload nonlinearity 
 

2000=N
 

2b∆  1f∆  2f∆  1S∆  2S∆  1C∆  2C∆  ∑ ∆  

10% C.  0.0090 0.0090 0.0024 0.0489 0.0480 0.3872 0.4130 0.1310 
20% W.  0.1179 0.0086 0.0018 0.0341 0.0197 0.0156 0.2665 0.0663 
10% W.  0.0864 0.0056 0.0005 0.0075 0.0238 0.0701 0.1701 0.0520 
5%  W.  0.0599 0.0038 0.0002 0.0068 0.0138 0.0410 0.1487 0.0391 

 
 
 
 

 



Identification of a Wiener system with discontinuous nonlinearities 

 

 

51

 
 

Table 4.3A   Identification results with dead-zone nonlinearity 
 

2000=N  1b  2b  1f  2f  
10% C. N. 0.9524 0.4941 -1.5190 0.7163 
20% W. N. 0.9551 0.5844 -1.4944 0.6994 
10% W. N. 0.9807 0.5411 -1.4978 0.7008 
5% W. N. 0.9805 0.5440 -1.4969 0.6994 
Non-noise 0.9999 0.5005 -1.5000 0.7000 

True values 1.0000 0.5004 -1.5000 0.7000 
2000=N  S  1Z  2Z  0C  

10% C. N. 0.9613 3.0278 -0.9390 1.1288 
20% W. N. 0.9530 2.9547 -0.7995 1.1232 
10% W. N. 0.9671 2.9954 -0.9093 1.0693 
5% W. N. 0.9619 3.0036 -0.9293 1.0419 
Non-noise 0.9998 3.0002 -0.9998 1.0000 

True values 1.0000 3.0000 -1.0000 1.0000 
2000=N  1c  2c  1d  2d  

10% C. N. 0.2252 0.1556 -1.1390 0.4378 
True values 0.2000 0.1000 -1.2000 0.5000 

 
 

Table 4.3B Parameter identification errors with dead-zone system 
 

2000=N  
1b∆  2b∆  1f∆  2f∆  S∆  1Z∆  2Z∆  0C∆  ∑ ∆  

10% C.  0.0476 0.0063 0.0190 0.0163 0.0387 0.0278 0.0610 0.1288 0.0431 
20% W.  0.0449 0.0840 0.0056 0.0006 0.0470 0.0453 0.2005 0.1232 0.0688 
10% W.  0.0193 0.0407 0.0022 0.0008 0.0329 0.0046 0.0907 0.0693 0.0325 
5%  W.  0.0195 0.0436 0.0031 0.0006 0.0381 0.0036 0.0002 0.0419 0.0273 

 
 

Table 4.4A    Identification results with saturation nonlinearity 
 

2000=N  1b  2b  1f  2f  
10% C. N. 1.1999 0.6661 -1.5150 0.7232 
20% W. N. 0.8575 0.6192 -1.4900 0.6974 
10% W. N. 1.4182 0.5744 -1.4924 0.6969 
5% W. N. 1.0591 0.5279 -1.4979 0.7001 
Non-noise 0.9996 0.5004 -1.5000 0.7000 

True values 1.0000 0.5004 -1.5000 0.7000 
2000=N  1Z  2Z  1C  2C  

10% C. N. 4.8750 -1.7094 5.7951 -7.4845 
20% W. N. 7.2212 -51.4095 5.9162 -62.1279 
10% W. N. 3.8340 -1.0738 3.0517 -5.5874 
5% W. N. 6.6062 -4.3157 4.8726 -6.8159 
Non-noise 5.0001 -7.0021 7.0002 -5.0027 

True values 5.0000 -7.0000 7.0000 -5.0000 
2000=N  1c  2c  1d  2d  

10% C. N. 0.2009 0.1071 -1.0587 0.4111 
True values 0.2000 0.1000 -1.2000 0.5000 
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Table 4.4B Parameter identification errors with saturation system 
 

2000=N  
1b∆  2b∆  1f∆  2f∆  1Z∆  2Z∆  1C∆  2C∆  ∑ ∆  

10% C.  0.1999 0.1657 0.0150 0.0232 0.1250 5.2906 1.2049 2.4845 1.1886 
20% W.  0.1425 0.1188 0.0100 0.0026 2.2212 44.4090 1.0838 57.1270 13.1370
10% W.  0.4182 0.0740 0.0076 0.0031 1.1660 5.9262 3.9483 0.5874 1.5162 
5%  W.  0.0591 0.0275 0.0021 1E-04 1.6062 2.6843 2.1274 1.8159 1.0403 

 
 
 

Table 4.5    Comparison of average parameter identification errors ∆  of the four cases 
 

2000=N  Direction dependent Preload Dead-zone Saturation Best accuracy 
10% C. 0.0660 0.1310 0.0431 1.1886 Dead-zone 
20% W. 0.0234 0.0663 0.0688 13.137 Direction dependent 
10% W. 0.0216 0.0520 0.0325 1.5162 Direction dependent 
5%  W. 0.0204 0.0391 0.0273 1.0403 Direction dependent 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.2    A Wiener system identification process with direction dependent nonlinearity 
with a N./S.=10% colored measurement noise  
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Fig. 4.3    A Wiener system identification process with preload nonlinearity 
with a N./S.=10% colored measurement noise 

 
 
 

 

 
Fig. 4.4    A Wiener system identification process with dead-zone nonlinearity 

    with a N./S.=10% colored measurement noise 
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Fig. 4.5    A Wiener system identification process with saturation nonlinearity 

with a N./S.=10% colored measurement noise 
 

 
The simulation results show that: 
 
¾ The new identification method gives good results for a Wiener system with all the four 

discontinuous nonlinearities, respectively. 
 
¾ From Table 4.5, we can see that which one of the four cases has the best accuracy results under 

different measurement noises. 
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5. Identification of cascade Wiener and Hammerstein systems  
 
A Wiener-Hammerstein system (LNL, Fig. 5.1) is defined as a linear dynamic subsystem in cascade 
with a nonlinear static subsystem followed by another linear dynamic subsystem and A Hammerstein-
Wiener system (NLN, Fig. 5.2) is defined as a nonlinear static subsystem in cascade with a linear 
dynamic subsystem followed by another nonlinear static subsystem.  
 
Billings et al. (1982, 1997) proposed an identification algorithm for Wiener-Hammerstein system 
based on correlation analysis. However, their algorithm suffered from some restrictive assumptions for 
the input sequences to preserve the separability principle and computational requirements. Yoshine et 
al. (1992) suggested another approach for identification of the LNL system which consists of 
estimating impulse responses of the linear subsystems and the parameters of the nonlinear element. 
Based on a formulated model, Boutayeb (1995) developed a recursive method to separately estimate 
parameters of the linear and nonlinear parts of the LNL system. Bai (1998) introduced an optimal two-
stage identification algorithm for Hammerstein-Wiener system. 
 
In this chapter, the new identification method is used to identify  
 
- a Wiener-Hammerstein system  and  
- a Hammerstein-Wiener system  
 
with continuous and discontinuous nonlinearities, respectively.   
 

  
 

Fig. 5.1    Wiener-Hammerstein system (LNL)   
 

 

 
 

Fig. 5.2    Hammerstein-Wiener system (NLN)   
 
In the above Figures, )(tu  is the system input, )(ty  is the system output, )(* ty  is the unmeasurable 
system output without measurement noise. )(1 tw  and )(2 tw  are unmeasurable intermediate variables. 

1θ  and 2θ  are parameter vectors determining the linear dynamic subsystems ),( 1
1

1 θ−qG  and 
),( 2

1
2 θ−qG , respectively. 1η  and 2η  are parameter vectors determining the nonlinear subsystems 

),( 11 η⋅N  and ),( 22 η⋅N , respectively. )(tε  is the colored measurement noise which is a white noise 

)(te  through a linear filter ),( 1 ξ−qH . 
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A rational transfer function of order 1n  will be used as the linear block ),( 1
1

1 θ−qG . For Wiener-
Hammerstein system (LNL), because it is a Hammerstein-type system we use an ARMAX model of 
order 2n  to describe the linear block ),( 2

1
2 θ−qG . 

  
If the nonlinearities in both Wiener-Hammerstein and Hammerstein-Wiener systems are continuous, a 
polynomial function of order jm  will be used to describe the nonlinear static subsystem 

)),(( jjj tN ηχ . For the output we get 
 

∑
=

⋅=
jm

k

k
jjkj tt

1
)()( χβγ                     (5.1) 

 
where )(tjχ  is the input of the nonlinear static block and )(tjγ  is the output of the nonlinear static 

block for 2.1=j .  
 
In the case of discontinuous nonlinearities, here only a typical symmetrical dead-zone nonlinearity 
(Figure 5.3 (a)) and a symmetrical saturation nonlinearity (Figure 5.3 (b)) are considered.  
 
 

 
 

Fig. 5.3    (a). Dead-zone      (b). Saturation 
 
In the above Figures, )(tdχ  is the input of the dead-zone nonlinearity, )(tdγ  is the output of the 
dead-zone nonlinearity; )(tsχ  is the input of the saturation nonlinearity and )(tsγ  is the output of the 
saturation nonlinearity.  
 
The slope dS  and the cross-point values D , Z  and L  are nonzero parameters to be identified. For 

convenience, the slope sS  is also used with 
Z
LSs = . In order to simplify the derivation, we assume 

D , Z  and L  are positive and dS , sS  can be positive or negative. More general descriptions of a 
dead-zone and a saturation or other discontinuous nonlinearities can be defined and derived in the 
same principle. 
 
The dead-zone relationship is given by 
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The saturation nonlinear relationship is given by 
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By introducing the standard sign function )sgn(⋅ , Eq. (5.2) can be rewritten as 
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and Eq.(5.3) can be rewritten as 
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We define the following intermediate variables: 
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Then, Eqs. (5.4) and (5.5) can be simplified as 
 

)()()()( tvDStwStSt ddddddd ⋅⋅+⋅+⋅= χγ       (5.10) 
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These equations for the dead-zone and the saturation nonlinearities will be used in the next two 
sections. 
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5.1. Identification of a Wiener-Hammerstein system (LNL) 
 
As shown in Fig. 5.1, the first linear dynamic subsystem ),( 1

1
1 θ−qG  of order 1n  is given by 
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1 tu
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with 
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n qfqfqF −−− +++= L                   (5.12c) 

                   
and, in addition, )( 1

1
−qB  and )( 1

1
−qF  are coprime. 

 
The second linear dynamic block ),( 2

1
2 θ−qG  of order 2n  is given by 
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with the following notations: 
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We separate a term )(220 twb ⋅  in Eq. (5.13a). Then )(2 tw  in the first term )(220 twb ⋅  of Eq. (5.13a) 
is one key term. To avoid the over-parameterization problem, two parameters in the Wiener-
Hammerstein system should be fixed. Without loss of generality, let 120 =b  and the other one will be 
fixed later.  
  

5.1.1. Continuous nonlinearity  
 
If the nonlinear block )),(( 111 ηtwN  between the two linear blocks is a continuous nonlinearity, that 
is, a polynomial of order 1m , then we have 
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where )(1 tw  in the separated term )(1 tw⋅β  of Eq. (5.14) is the other key term. Without loss of 
generality, let 11 =β .  
 
Half-substituting Eq. (5.12a) into the key term )(1 tw  in Eq. (5.14) and then half-substituting Eq. 
(5.14) into the key term )(2 tw  in Eq. (5.13a) respectively, the system output of a Wiener-
Hammerstein system with a continuous nonlinearity can be given by 
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Eq. (5.15) shows that the Wiener-Hammerstein system with a continuous nonlinearity can be 
approximately transformed into a pseudo-linear MISO system which has 11 +m  independent pseudo-
inputs: )(tu , )(,),( 1

1
2
1 twtw mL  and )(2 tw . The unmeasurable intermediate variables )(1 tw  and 

)(2 tw  can be recursively estimated respectively, according to Eq. (5.12a) and Eq. (5.14). All the 
parameters in this pseudo-linear MISO system are explicitly given. 
 

5.1.2. Discontinuous nonlinearity 
 
In the same way, we consider the Wiener-Hammerstein system with a discontinuous nonlinearity, e.g., 
with a dead-zone. 
 
Using Eqs (5.6) and (5.7) in the form: 
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and with Eq. (5.10) we find 
 

)()()()( 12 tvDStwStwStw ddddd ⋅⋅+⋅+⋅=       (5.18) 
 
where )(1 tw  in the first term )(1 twSd ⋅  in Eq. (5.18) is the other key term. Without loss of generality, 
let 1=dS .  
 
Half-substituting Eq. (5.12a) into the key term )(1 tw  in Eq. (5.18) and then half-substituting Eq. 
(5.18) into the key term )(2 tw  in Eq. (5.13a) respectively, the system output of a Wiener-
Hammerstein system with a dead-zone can be given by 
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Eq. (5.19) shows that the Wiener-Hammerstein system with a dead-zone can be approximately 
transformed into a pseudo-linear MISO system with four independent corresponding pseudo-inputs: 

)(tu , )(twd , )(tvd  and )(2 tw . The unmeasurable intermediate variables )(1 tw , )(twd , )(tvd  and 
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)(2 tw  above can be recursively estimated according to Eq. (5.12a) and Eqs. (5.16)-(5.18), 
respectively. All the parameters in this pseudo-linear MISO system are explicitly given. Other 
discontinuous nonlinearities can also be considered in the same way. 
 

5.2. Identification of a Hammerstein-Wiener system (NLN) 
 
As shown in Fig. 5.2, the linear block ),( 1

1
1 θ−qG  of order 1n  is given by 
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with  
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for  1,,2,1 nk L= . 
 
In Eq. (5.20a), we separate a term )(110 twb ⋅ , then )(1 tw  in this term is one key term. To avoid the 
over-parameterization problem, two parameters in the Hammerstein-Wiener system should be fixed. 
Without loss of generality, let 110 =b  and the other one will be fixed later.  
 

5.2.1. Two continuous nonlinearities 
 
If there are two continuous nonlinearities in Hammerstein-Wiener system, we use a polynomial model 
of order 1m  to describe the first nonlinear block )),(( 11 ηtuN  
 

∑
=

⋅=
1

1
11 )()(

m

k

k
k tutw β           (5.21) 

 
and use another polynomial model of order 2m  to describe the second nonlinear block )),(( 222 ηtwN   
 



Identification of cascade Wiener and Hammerstein systems 

 

 

61

.)()(

)()(

2

2

2
22221

1
22

*

∑

∑

=

=

⋅+⋅=

⋅=

m

k

k
k

m

k

k
k

twtw

twty

ββ

β
         (5.22) 

 
Then )(2 tw  in the separated term )(221 tw⋅β  in Eq. (5.22)  is the other key term. Without loss of 
generality, let 121 =β .  
 
Half-substituting Eq. (5.21) into the key term )(1 tw  in Eq. (5.20a) and then half-substituting Eq. 
(5.20a) into the key term )(2 tw  in Eq. (5.22) respectively, the system output of a Hammerstein-
Wiener system with two continuous nonlinearities can be given by 
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Eq. (5.23) shows that the Hammerstein-Wiener system with two continuous nonlinearities can be 
approximately transformed into a pseudo-linear MISO system which has 21 mm +  independent 
pseudo-inputs: )(,),(),( 12 tututu mL , and )(,),(),(),( 2

2
3
2

2
21 twtwtwtw mL . The unmeasurable 

intermediate variables )(1 tw  and )(2 tw  can be recursively estimated with Eq. (5.21) and Eq. (5.20a), 
respectively. All the parameters in this pseudo-linear MISO system are explicitly given. 
 

5.2.2. Two discontinuous nonlinearities 
 
Here, we consider two cases: 
 
- Deadzone-Linear-Saturation system and 
- Saturation-Linear-Deadzone system. 
 
The corresponding equations will be derived now. 
 
¾ Deadzone-Linear-Saturation system 
 
According to the descriptions of a dead-zone and a saturation nonlinearities in Eqs. (5.6)-(5.11), the 
variable relationships for the two nonlinear blocks in a Deadzone-Linear-Saturation system can be 
described by the following equations: 
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and 
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where )(2 tw  in the first term )(
2 2 tw
Ss ⋅  is the other key term. Without loss of generality, let 2=sS . 

 
Half-substituting Eq. (5.28) into the key term )(1 tw  in Eq. (5.20a) and then half-substituting Eq. 
(5.20a) into the key term )(2 tw  in Eq. (5.29) respectively, the system output of Deadzone-Linear-
Saturation system can be given by 
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¾ Saturation-Linear-Deadzone system 
 
According to the descriptions of dead-zone and saturation in Eqs. (5.6)-(5.11). The variable 
relationships for the two nonlinear blocks in Saturation-Linear-Deadzone system can be described by 
the following equations: 
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where )(2 tw  in the first term )(2 twSd ⋅  is the other key term. Without loss of generality, let 1=dS .  
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Half-substituting Eq. (5.35) into the key term )(1 tw  in Eq. (5.20a) and then half-substituting Eq. 
(5.20a) into the key term )(2 tw  in Eq. (5.36) respectively, the system output of a Saturation-Linear-
Deadzone system can be given by 
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Eq. (5.30) and Eq. (5.37) show that the Hammerstein-Wiener system with two discontinuous 
nonlinearities (Deadzone-Linear-Saturation system or Saturation-Linear-Deadzone system) can also be 
approximately transformed into a pseudo-linear MISO system which has six independent 
corresponding pseudo-inputs, )(tu , )(twd , )(tvd , )(tws , )(tvs  and )(1 tw . The unmeasurable 
intermediate variables )(1 tw , )(twd , )(tvd , )(tws , )(tvs  and )(2 tw  can be recursively estimated 
according to the corresponding equations. All the parameters in this pseudo-linear MISO system are 
explicitly given.  
 
From the derivations above we can conclude that in Wiener-Hammerstein or Hammerstein-Wiener 
systems any continuous and discontinuous nonlinearities or their combinations can be considered and 
identified in the same principle. The important problem is to write the nonlinearities in continuous 
forms and according to the separated key term principle to form a pseudo-linear MISO prediction error 
model.  
 

5.3. Simulation results 
 
In the following we consider five test systems, namely 
  
- a Wiener-Hammerstein system with a continuous nonlinearity,  
- a Wiener-Hammerstein system with a dead-zone, 
- a Hammerstein-Wiener system with two continuous nonlinearities,  
- a Deadzone-Linear-Saturation system and  
- a Saturation-Linear-Deadzone system. 
 
The Wiener-Hammerstein system with a continuous nonlinearity consists of the following linear and 
nonlinear blocks: 
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The Hammerstein-Wiener system with two continuous nonlinearities is given by: 
 

)(5.0)(4.0)(3.0)( 32
1 tutututw ++=         (5.41) 

 

)(
7.05.11
12.07.01)( 121

21

2 tw
qq
qqtw −−

−−

+−
+−

=         (5.42) 

 



Identification of cascade Wiener and Hammerstein systems 

 

 

64

)(
5.02.11
1.02.01)(9.0)(8.0)()( 21

21
3
2

2
22 te

qq
qqtwtwtwty −−

−−

+−
++

+++=     (5.43) 

 
The discontinuous dead-zone and saturation nonlinearities are: 
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A random numbers of zero mean is used as the system input )(tu . Another independent random 
numbers as white measurement noise )(te . 2000=N  data points are collected for each case.  
 
Because the relatively simple examples above are used, here we consider only for each cascade 
Wiener and Hammerstein system with a non-noise, a N./S.=5% white measurement noise and a 
N./S.=5% colored measurement noise, respectively.  
 
An exponentially average smoother using a moving window with fixed length 4=Mov  will be used 
to filter the estimated parameters to calculate the intermediate variables. 
 
Then apply the standard RPEM function in MATLAB with forgetting factor algorithm for linear 
MISO system with the algorithm variable settings 7.0)0( =λ  and 01.0=∆λ . The initial estimates 
of the unknown parameters are also taken as zero. 
 
Identification results with different measurement noises are shown in Tables 5.1A-5.5A. The 
identification processes with a N./S.=5% colored measurement noise are shown in Figs. 5.4-5.8. The 
red lines in Figs. 5.4-5.8 are the real values of parameters. The single parameter identification error 

p∆  and the average parameter identification error ∆  of each case with different measurement noises 
are calculated and shown in Tables 5.1B-5.5B. Comparison of average parameter identification errors 
∆  of the all five cases is shown in Table 5.6. Comparison of average parameter identification errors 

∆  of the two systems with continuous nonlinearities is shown in Table 5.7. Comparison of average 

parameter identification errors ∆  of the two systems with discontinuous nonlinearities is shown in 
Table 5.8. 
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Table 5.1A    Identification results of the Wiener-Hammerstein system with a continuous nonlinearity 
 

2000=N  11b  12b  11f  12f  2β  3β  
5% C. N. 0.1348 0.0626 -1.4941 0.6990 2.9655 1.4219 
5% W. N. 0.1327 0.0723 -1.4932 0.6963 2.9940 1.5419 
Non-noise 0.1333 0.0665 -1.5000 0.7000 3.0023 1.5021 

True values 0.1333 0.0667 -1.5000 0.7000 3.0000 1.5000 
2000=N  1a  2a  21b  22b  1c  2c  

5% C. N. -0.8879 0.8380 0.1843 0.0479 0.2175 0.0613 
5% W. N. -0.8961 0.8404 0.1281 0.0680 - - 
Non-noise -0.9000 0.8500 0.1344 0.0665 - - 

True values -0.9000 0.8500 0.1333 0.0667 0.2000 0.1000 
 
 

Table 5.1B    Parameter identification errors of the Wiener-Hammerstein system  
with a continuous nonlinearity 

 
2000=N  

11b∆  12b∆  11f∆  12f∆  2β∆  ∆  
5% C. N. 0.0015 0.0041 0.0059 0.0010 0.0345 0.0219 
5% W. N. 0.0006 0.0056 0.0068 0.0037 0.0060 0.0085 

2000=N  
1a∆  2a∆  21b∆  22b∆  3β∆  - 

5% C. N. 0.0781 0.0121 0.0120 0.0510 0.0188 - 
5% W. N. 0.0419 0.0039 0.0096 0.0052 0.0013 - 

 
 
 

Table 5.2A    Identification results of the Wiener-Hammerstein system with a dead-zone  
 

2000=N  11b  12b  11f  12f  D  - 
5% C. N. 0.1295 0.0743 -1.4974 0.7005 0.4957 - 
5% W. N. 0.1294 0.0757 -1.4985 0.6998 0.4980 - 
Non-noise 0.1333 0.0667 -1.5000 0.7000 0.5000 - 

True values 0.1333 0.0667 -1.5000 0.7000 0.5000 - 
2000=N  1a  2a  21b  22b  1c  2c  

5% C. N. -0.8917 0.8464 0.1265 0.0635 0.2361 0.1446 
5% W. N. -0.8944 0.8434 0.1226 0.0621 - - 
Non-noise -0.9000 0.8500 0.1333 0.0667 - - 

True values -0.9000 0.8500 0.1333 0.0667 0.2000 0.1000 
 
 
Table 5.2A  Parameter identification errors of the Wiener-Hammerstein system with a dead-zone 

 
2000=N  

11b∆  12b∆  11f∆  12f∆  D∆  ∆  
5% C. N. 0.0038 0.0076 0.0026 0.0005 0.0043 0.0005 
5% W. N. 0.0039 0.0090 0.0015 0.0002 0.0020 0.0005 

2000=N  
1a∆  2a∆  21b∆  22b∆  - 

5% C. N. 0.0083 0.0036 0.0068 0.0032 - - 
5% W. N. 0.0056 0.0066 0.0107 0.0046 - - 
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Table 5.3A    Identification results of the Hammerstein-Wiener system  
with two continuous nonlinearities 

 
2000=N  1b  2b  1f  2f  

5% C. N. -0.6742 0.0877 -1.4952 0.6910 
5% W. N. -0.6964 0.1296 -1.4936 0.6956 
Non-noise -0.6988 0.1207 -1.4990 0.6995 

True values -0.7000 0.1200 -1.5000 0.7000 
11β  12β  13β  22β  23β  

0.2506 0.3946 0.4208 0.7219 0.8052 
0.3055 0.4044 0.4771 0.6573 0.8381 
0.3014 0.4013 0.4920 0.7810 0.9135 
0.3000 0.4000 0.5000 0.8000 0.9000 

2000=N  1c  2c  1d  2d  
5% C. N. -0.1289 0.3297 -0.8471 0.7871 

True values 0.2000 0.1000 -1.2000 0.5000 
 

Table 5.3B Parameter errors of the Hammerstein-Wiener system with two continuous nonlinearities 
 

2000=N  
1b∆  2b∆  1f∆  2f∆  11β∆  ∆  

5% C. N. 0.0258 0.0323 0.0048 0.0090 0.0494 0.0421 
5% W. N. 0.0036 0.0096 0.0064 0.0044 0.0055 0.0291 

2000=N  
12β∆  13β∆  22β∆  23β∆  - - 

5% C. N. 0.0054 0.0792 0.0781 0.0948 - - 
5% W. N. 0.0044 0.0229 0.1427 0.0619 - - 

 
Table 5.4A  Identification results of the Saturation-Linear-Deadzone system  

 
2000=N  1b  2b  1f  2f  

5% C. N. -0.7191 0.1327 -1.5188 0.7131 
5% W. N. -0.6863 0.1055 -1.5069 0.7054 
Non-noise -0.7001 0.1197 -1.5000 0.6999 

True values -0.7000 0.1200 -1.5000 0.7000 
2000=N  L  Z  D  - 

5% C. N. 1.0050 0.9803 0.4990 - 
5% W. N. 0.9660 1.0083 0.4929 - 
Non-noise 1.0002 0.9999 0.5000 - 

Real 1.0000 1.0000 0.5000 - 
2000=N  1c  2c  1d  2d  

5% C. N. 0.2682 0.2811 -0.9682 0.3015 
True values 0.2000 0.1000 -1.2000 0.5000 

 
Table 5.4B  Parameter identification errors of the Saturation-Linear-Deadzone system 

 
2000=N  

1b∆  2b∆  1f∆  2f∆  ∆  
5% C. N. 0.0191 0.0127 0.0188 0.0131 0.0128 
5% W. N. 0.0137 0.0145 0.0069 0.0054 0.0128 

2000=N  L∆  Z∆  D∆  - - 

5% C. N. 0.0050 0.0197 0.0010 - - 
5% W. N. 0.0340 0.0083 0.0071 - - 
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Table 5.5A  Identification results of the Deadzone-Linear-Saturation system  

 
2000=N  1b  2b  1f  2f  

5% C. N. -0.6870 0.1306 -1.4954 0.7000 
5% W. N. -0.6918 0.1219 -1.4998 0.7032 
Non-noise -0.7007 0.1205 -1.5000 0.7000 

True values -0.7000 0.1200 -1.5000 0.7000 
2000 

dS  D  Z  - 

5% C. N. 0.9843 0.4748 1.0235 - 
5% W. N. 1.0469 0.5189 0.9987 - 
Non-noise 1.0010 0.5004 0.9998 - 

True values 1.0000 0.5000 1.0000 - 
2000=N  1c  2c  1d  2d  

5% C. N. 0.2467 0.1717 -1.1220 0.4273 
True values 0.2000 0.1000 -1.2000 0.5000 

 
 

Table 5.5B  Parameter errors of the Deadzone-Linear-Saturation system 
 

2000=N  
1b∆  2b∆  1f∆  2f∆  ∆  

5% C. N. 0.013 0.0106 0.0046 0.0000 0.0132 
5% W. N. 0.0082 0.0019 0.0002 0.0032 0.0115 

2000=N  
dS∆  D∆  Z∆  - - 

5% C. N. 0.0157 0.0252 0.0235 - - 
5% W. N. 0.0469 0.0189 0.0013 - - 

 
 

Table 5.6    Comparison of average parameter identification errors ∆  of the five cases 
 

2000=N  L-N-L L-D-L N-L-N S-L-D D-L-S Best accur. 
5% C. N. 0.0219 0.0005 0.0421 0.0128 0.0132 L-D-L 
5% W. N. 0.0085 0.0005 0.0291 0.0128 0.0115 L-D-L 

 
 

Table 5.7    Comparison of average parameter identification errors ∆  of the two systems 
with continuous nonlinearities 

 
2000=N  L-N-L N-L-N Best accuracy 

5% C. N. 0.0219 0.0421 L-N-L 
5% W. N. 0.0085 0.0291 L-N-L 

 
 

Table 5.8    Comparison of average parameter identification errors ∆  of the two systems 
with discontinuous nonlinearities 

 
2000=N  L-D-L S-L-D D-L-S Best accuracy 

5% C. N. 0.0005 0.0128 0.0132 L-D-L 
5% W. N. 0.0005 0.0128 0.0115 L-D-L 
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Fig. 5.4    The Wiener-Hammerstein system identification process  
with continuous nonlinearity with a N./S.=5% colored measurement noise 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.5    Wiener-Hammerstein system identification process  
with a dead-zone with a N./S.=5% colored measurement noise 
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Fig. 5.6    Hammerstein-Wiener system identification process  

with two continuous nonlinearities with a N./S.=5% colored measurement noise 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.7    Deadzone-Linear-Saturation system identification process  
  with a N./S.=5% colored measurement noise 
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Fig. 5.8    Saturation-Linear-Deadzone system identification process  
   with a N./S.=5% colored measurement noise 

 
 
The simulation results show that: 
 
¾ The new identification method gives good results for all two cascade Wiener and Hammerstein 

systems with continuous and discontinuous nonlinearities, respectively. 
 
¾ From Tables 5.6-5.8, we can see that which one of the five cases has the best accuracy results 

under different measurement noises, respectively. 
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6. Identification of generalized Wiener and Hammerstein systems 
 
In this chapter, the new identification method for Wiener and Hammerstein systems will be extended 
to identify a more general nonlinear dynamic system. The relationship among Wiener and 
Hammerstein systems and parametric Volterra-series will also be highlighted. And so-called 
generalized Wiener and Hammerstein systems will be proposed and identified. 
 
It is known that the parametric Volterra-series provide an important general representation for a time-
invariant stable nonlinear dynamic system. It is, roughly speaking, always valid for nonlinear dynamic 
systems with analytic nonlinearities. A discrete parametric Volterra-series is described as 
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   (6.1) 

 
with )(tu  as the system input, )(ty  a the system output and 0y  as a mean value. ja  are the 

autoregressive parameters of the system and ja , jb , 
21 jjb , L,

321 jjjb  are the 0-th, first, second, third 

L,  Volterra kernels which will trend towards zero as ∞→j , ∞→1j , ∞→2j , L,3 ∞→j , 
(Kurth, 1996).  
 
This class of systems is very broad, but to be practically useful, the sums must be truncated to some 
finite upper limit n  and the number of sums included must also be made finite m . Therefore, Eq. 
(6.1) can be approximated by 
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where )(tε  is the sum of cutting error and the measurement noise.  
 
Direct identification of parametric Volterra-series results to estimate the parametric Volterra kernels 
on the basis of input-output data sequences  )(tu  and )(ty . In principle, Eq. (6.2) can be identified 
using least squares method with the help of various types of deterministic as well as stochastic inputs. 
But in the normal case there are too many parameters (>10000) to be identified (Kurth, 1996). This 
has been proved to be a nontrivial task. Therefore, a particular problem is to deal with the large 
number of potentially necessary parameters. Kurth (1996) developed a method for identification of 
modified compressed discrete Volterra-series by introducing basis functions and structure selection.  
 
Here, by using shifting operators ),,,,( 11

2
1

1
1 −−−−

mqqqq L  and according to the definition of the 
generalized transfer function, we write Eq. (6.2) in the form 
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with mnnnn ,,,, 210 L  as the orders of the corresponding generalized transfer functions 

),,,(,),,(),(),( 11
2

1
1

1
2

1
12

1
1

1
0

−−−−−−−
mm qqqGqqGqGqG LL , respectively. 

  
Eq. (6.3) shows that the nonlinear dynamic system output )(ty  consists of the mean value 0y , the 

autoregressive part )1()( 1
0 −− tyqG , the linear dynamic part )()( 1

1 tuqG −  and different nonlinear 

dynamic parts from different inputs )(,),(2 tutu mL .  
 
In Eq. (6.3), because )1( −ty , )(tu , )(,),(2 tutu mL  are independent, they can be regarded as 
pseudo inputs which specify particular nonlinearities and drive their corresponding dynamic 
subsystems ),,,(,),,(),(),( 11

2
1

1
1

2
1

12
1

1
1

0
−−−−−−−
mm qqqGqqGqGqG LL  to the single output )(ty . This 

is illustrated in Fig. 6.1.  
 
In this sense we transform a nonlinear dynamic system approximately into a pseudo-linear MISO 
system with the pseudo inputs: )1( −ty , )(tu , )(,),(2 tutu mL . On the one hand they are pseudo 
inputs of the nonlinear dynamic system and on the other hand they illustrate also the nonlinear 
couplings between the pseudo multiple inputs. 
 

 
Fig. 6.1  Parametric Volterra-series model 

 

6.1. Generalized Wiener and Hammerstein systems 
 
A model is always a system description in some approximation level. Different approximations to a 
nonlinear dynamic system can be got by regularization, shrinking, pruning and partly selecting of 
different terms of the parametric Volterra-series Eq. (6.3). For example, the linear dynamic model is 
just the simplest approximation. Actually, the block-oriented systems as well as the Wiener and 
Hammerstein systems are all approximations of the parametric Volterra-series. This is handled by 
making the number of 'used' parameters considerably less than the number of 'offered' parameters. 
 
From Eq. (6.3) we can derive the following different approximations of a nonlinear dynamic system: 
 
¾ Linear model 
 

)()()()1()()( 1
1

1
00 ttuqGtyqGyty ε++−+= −− .         (6.4) 

 
It is also a linear predication error model as shown in Ljung (1987). 
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¾ Hammerstein model 
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1
00 tqGtututuqGtyqGyty m

m εββ +⋅++⋅++−+= −−− L . (6.5a) 
 
Eq. (6.5a) shows that a Hammerstein model is an approximation of the parametric Volterra-series with 
the following assumptions: 
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where jβ  for mj ,,3,2 L=  are defined as constant parameters. 
 
¾ Wiener model 
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Eq. (6.6a) shows that a Wiener model is an approximation of the parametric Volterra-series with the 
following assumptions: 
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The unmeasurable intermediate variable )(tw  in Eq. (6.6a) is defined as 
 

)()()( 1
1 tuqGtw −=           (6.7) 

 
and jβ  for mj ,,3,2 L=  are defined as constant parameters.  
 
¾ Wiener-Hammerstein model 
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Eq. (6.8a) shows that a Wiener-Hammerstein model is an approximation of the parametric Volterra-
series with the following assumptions: 
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The unmeasurable intermediate variable )(tw  in Eq. (6.8a) is defined as Eq. (6.7) and jβ  for 

mj ,,3,2 L=  are constant parameters. 
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In the same principle, we propose three generalized Wiener and Hammerstein models which are better 
approximations of the parametric Volterra-series Eq. (6.3). 
 
¾ Generalized Bilinear model 
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In the generalized Bilinear model, only terms to the second power are selected from the parametric 
Volterra-series. It is an approximation model with the following assumptions: 
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¾ Generalized Hammerstein model 
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The generalized Hammerstein model is an approximation of the parametric Volterra-series with the 
following assumptions: 
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¾ Generalized Wiener model 
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The generalized Wiener model is an approximation of the parametric Volterra-series with the 
following assumptions: 
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The unmeasurable intermediate variable )(tw  in Eq. (6.11a) is defined again as in Eq. (6.7). 
 
It should be noted that the Hammerstein system (Eq. (6.5a)) is a special case of the generalized 
Hammerstein system (Eq. (6.10a)). The Wiener system (Eq. (6.6a)) and the Wiener-Hammerstein 
system (Eq. (6.8a)) are just special cases of the generalized Wiener system (Eq. (6.11a)). 
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In Eqs. (6.4)-(6.11), the rational transfer functions )( 1−qG j  of order jn  as well as )(~ 1−qG j  for 

mj ,,2,1,0 L=  are described by 
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with 
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It is assumed that )( 1−qB j  and )( 1−qFj  for mj ,,2,1,0 L=  are coprime. 
 
It should be noted that the autoregressive part )1()( 1

0 −− tyqG  would help to reduce the parametric 
Volterra-series order. And in practice, in order to enhance the system performance, it is reasonable to 
choose a nonlinear dynamic model architecture which also contains a linear dynamic model )( 1

0
−qG  

as a special case. For the nonlinear dynamic model Eqs. (6.5)-(6.11), it can be advantageously to 
establish a linear dynamic model )( 1

0
−qG  in parallel. So the overall model output is the sum of the 

linear and the nonlinear model parts. This strategy is very appealing because it ensures that the overall 
nonlinear model performance is better than that of the linear model. 
 
Now, the new identification method will be used to identify the generalized Hammerstein and 
generalized Wiener systems as shown in Figs. 6.2 and 6.3. 
 
 

 
 

Fig. 6.2    Generalized Hammerstein system  
 

 

 
 

Fig. 6.3    Generalized Wiener system 
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In these Figures, )),(( 1−qtN χ  is defined as a nonlinear dynamic polynomial of order m  but only 
with high power terms 
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where )(tχ  is the input of the nonlinear dynamic block and )(tγ  is the output of the nonlinear 
dynamic block. )( 1−qGk  are the corresponding linear dynamics of )(tkχ  for mk ,,2 L= . 
 
From Eq. (6.10a) and Fig. (6.2), we can see that the generalized Hammerstein system can be directly 
transformed approximately into a pseudo-linear MISO system which has 2+m  independent pseudo-
inputs: 1, )1( −ty  and )(tu k  for mk ,,1L= . All the parameters are explicitly given without 
redundancy.  
 
Actually, the generalized Bilinear system Eq. (6.9a) can also be directly transformed approximately 
into a pseudo-linear MISO system which has 4+m  independent pseudo-inputs: 1, )1( −ty , )(tu  and 

)()( ktutu −  for mk ,,0 L=  and the parameters are also explicitly given. In these forms as in Eqs. 
(6.9a) and (6.10a), both generalized Bilinear and Hammerstein systems can be identified using the 
identification method for pseudo-linear MISO dynamic system.  
 
Considering the generalized Wiener system Eq. (6.11a) and Fig. (6.3), although there is an 
unmeasurable intermediate variable )(tw , it can be estimated recursively according to Eq. (6.7). Then 
the generalized Wiener system can be transformed approximately into a pseudo-linear MISO system 
which has 2+m  independent pseudo-inputs: 1, )1( −ty , )(tu  and the recursively estimated 
intermediate variables )(twk  for mk ,,2 L= . All the parameters are also explicitly given and 
without redundancy.  
 

6.2. Simulation results 
 
In the following the new identification method will be applied to three different special nonlinear 
systems, namely 
 
- a generalized Bilinear system, 
- a generalized Hammerstein system and 
- a generalized Wiener system. 
 
They are described as follows: 
 
¾ Generalized Bilinear system 
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¾ Generalized Hammerstein system 
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¾ Generalized Wiener system 
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The corresponding linear dynamics in the above equations are as follows:  
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For the generalized Wiener system Eq. (6.16), the intermediate variable )(tw  is given by 
 

).(
8.09.01

3.04.0

)()()(

21

21

1
1

tu
qq

qq

tuqGtw

−−

−−

−

+−
+

=

=
                                    (6.21) 

 
A random numbers of zero mean are used as system input )(tu . An independent random numbers as 
white measurement noise )(tε . Because of the increase of the parameter number, 4000 data points are 
collected for each case. Each system will be tested with non-noisy (N. N.) and with a N./S.=5% white 
measurement noise (5% W. N.).  
 
By identifying the generalized Wiener system, in order to improve alertness ability, we use the 
adaptive moving average parameter smoothing (Trigg and Leach, 1967) which means recursively 
adaptive exponentially averaging and smoothing the estimated parameters of )( 1

1
−qG  using a moving 

window with fixed length 5=Mov . Brown's double exponential smoothing application (Brown, 
1963) is used to mitigate the estimate of the unmeasurable intermediate variable )(tw . 
 
The standard recursive prediction errors method (RPEM) with forgetting factor for linear MISO 
system in MATLAB will be applied. The algorithm variable settings are 7.0)0( =λ , 01.0=∆λ . The 
initial estimates of the unknown parameters are taken as zero.  
 
The identification results are shown in Tables 6.1A-6.3A. The identification processes with a 
N./S.=5% colored measurement noise are shown in Figs. 6.4-6.6. The red lines in Figs. 6.4-6.6 are the 
true values of parameters. The single parameter identification error p∆  and the average parameter 
identification error ∆  of each case are calculated and shown in Tables 6.1B-6.3B. Comparison of 

average parameter identification errors ∆  of the three cases is shown in Table 6.4. 
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Table 6.1A    Identification results of the generalized Bilinear system 
 

4000=N  
01b  02b  01f  02f  11b  12b  11f  12f  

5% W. N. 0.1217 0.0833 -1.4820 0.6854 0.4004 0.2963 -0.9035 0.8066 
N. N.  0.1316 0.0691 -1.4975 0.6979 0.4012 0.2993 -0.9005 0.8007 

True val. 0.1333 0.0667 -1.5000 0.7000 0.4000 0.3000 -0.9000 0.8000 
4000=N  

21b  22b  21f  22f  31b  32b  31f  32f  
5% W. N. 0.3373 0.1886 -1.1499 0.4432 0.2052 0.0822 -1.7032 0.9046 

N. N.  0.2975 0.2033 -1.1972 0.4980 0.2011 0.0985 -1.6996 0.8995 
True val. 0.3000 0.2000 -1.2000 0.5000 0.2000 0.1000 -1.7000 0.9000 

 
 

Table 6.1B    Parameter identification errors of the generalized Bilinear system 
 

4000=N
 01b∆  02b∆  01f∆  02f∆  11b∆  12b∆  11f∆  12f∆  ∆  

5% W. 0.0116 0.0166 0.018 0.0146 0,0004 0.0037 0.0035 0.0066 0.0163 
4000=N
 21b∆  22b∆  21f∆  22f∆  31b∆  32b∆  31f∆  32f∆   

5% W. 0.0373 0.0114 0.0501 0.0568 0.0052 0.0178 0.0032 0.0046  
 
 

 
 

Table 6.2A    Identification results of the generalized Hammerstein system 
 

4000=N  
01b  02b  01f  02f  11b  12b  11f  12f  

5% W. N. 0.1216 0.0768 -1.4877 0.6931 0.3979 0.3015 -0.9035 0.8038 
N. N.  0.1291 0.0726 -1.4936 0.6948 0.4042 0.2986 -0.9011 0.8010 

True val. 0.1333 0.0667 -1.5000 0.7000 0.4000 0.3000 -0.9000 0.8000 
4000=N  

21b  22b  21f  22f  31b  32b  31f  32f  
5% W. N. 0.2911 0.3095 -1.0938 0.4495 0.1945 0.0974 -1.6973 0.9012 

N. N.  0.3037 0.2008 -1.1970 0.4998 0.1904 0.1089 -1.6982 0.8990 
True val. 0.3000 0.2000 -1.2000 0.5000 0.2000 0.1000 -1.7000 0.9000 
 
 

Table 6.2B    Parameter identification errors of the generalized Hammerstein system 
 

4000=N
 01b∆  02b∆  01f∆  02f∆  11b∆  12b∆  11f∆  12f∆  ∆  

5% W. 0.0117 0.0101 0.0123 0.0069 0.0021 0.0015 0.0035 0.0038 0.0212 
4000=N
 21b∆  22b∆  21f∆  22f∆  31b∆  32b∆  31f∆  32f∆  - 

5% W. 0.0089 0.1095 0.1062 0.0505 0.0055 0.0026 0.0027 0.0012 - 
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Table 6.3A    Identification results of the generalized Wiener system  
 

4000=N  
01b  02b  01f  02f  11b  12b  11f  12f  

5% W. N. 0.1058 0.0732 -1.4826 0.7096 0.4002 0.3074 -0.9041 0.8051 
N. N.  0.1307 0.0747 -1.4898 0.6884 0.3999 0.2964 -0.9003 0.8012 

True val. 0.1333 0.0667 -1.5000 0.7000 0.4000 0.3000 -0.9000 0.8000 
4000=N  

21b  22b  21f  22f  31b  32b  31f  32f  
5% W. N. 0.3925 0.0614 -1.3228 0.6051 0.0028 0.2720 -1.1816 0.5180 

N. N.  0.3172 0.1395 -1.2831 0.5542 0.1440 0.1793 -1.6844 0.8882 
True val. 0.3000 0.2000 -1.2000 0.5000 0.2000 0.1000 -1.7000 0.9000 
 

Table 6.3B    Parameter identification errors of the generalized Wiener system 
 

4000=N
 01b∆  02b∆  01f∆  02f∆  11b∆  12b∆  11f∆  12f∆  ∆  

5% W. 0.0275 0.0065 0.0174 0.0096 0.0002 0.0074 0.0041 0.0051 0.1129 
4000=N
 21b∆  22b∆  21f∆  22f∆  31b∆  32b∆  31f∆  32f∆  - 

5% W. 0.0925 0.1386 0.1228 0.1051 0.1972 0.172 0.5184 0.3822 - 
 

Table 6.4    Comparison of average parameter identification errors ∆  of the three systems 
 

4000=N  Generaliz. Bilinear Generaliz. Hamm. Generaliz. Wiener Best accuracy 
5% W. 0.0163 0.0212 0.1129 Generaliz. Bilinear

 

Fig. 6.4    The generalized Bilinear system identification process 
             with a N./S.=5% colored measurement noise 
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Fig. 6.5    The generalized Hammerstein system identification process  

           with a N./S.=5% colored measurement noise 
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Fig. 6.6    The generalized Wiener system identification process  
               with a N./S.=5% colored measurement noise 

 
 
 
The simulation results show that: 
 
¾ The new identification method gives good results for all three generalized Wiener and 

Hammerstein systems.  
 
¾ From Table 6.4, we can see that the generalized Bilinear system has the best accuracy results.  
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7. Conclusions 
 
Nonlinear models can provide an accurate description and prediction of physical systems that have a 
nonlinear behaviour. Modelling nonlinear systems has become an important issue with many practical 
applications. However, there exist no general valid descriptions for the full class of nonlinear systems 
and finding the model parameters for given measurements is an open question. 
 
Wiener systems and Hammerstein systems are nonlinear models that are used in many domains for 
their simplicity and physical meaning. Different nonlinear systems with different nonlinearities should 
use different Wiener and Hammerstein structures. 
 
In this thesis a new identification method and unified identification concepts for a class of Wiener and 
Hammerstein systems have been developed. The new identification method is based only on the 
observed input and output data and the recursively estimated intermediate variables.  
 
For continuous nonlinearities, polynomial functions are applied because they are common used and 
their key terms can be easily separated. For the typical discontinuous nonlinearities, it is necessary to 
establish some extra independent intermediate variables as the key terms. We use RTF and ARMAX 
models to describe the linear subsystems. 
 
After having selected the suitable model structures for each subsystem in a Wiener and Hammerstein 
system, by constructing intermediate variables and using the key term separation principle, such a 
Wiener and Hammerstein system can be approximately transformed into a pseudo-linear MISO 
system. Then we have considered our identification problems based on recursive pseudo-linear 
regressions (RPLR) in the prediction error and model framework. 
 
The constructed intermediate variables are recursively estimated. In order to deduce oscillations and 
get better convergence, the parameters are smoothed with smoothing and filtering techniques to 
estimate the intermediate variables. After that, a general prediction error model is formed and satisfied 
parameter estimates of the Wiener and Hammerstein system are obtained in the presence of a white or 
a colored measurement noise without parameter redundancy.  
 
In this thesis we have derived new algorithms for:  
 
¾ four SISO Wiener and Hammerstein systems with continuous nonlinearities, 
 
¾ a Wiener system with one of four general discontinuous nonlinearities, respectively, 
 
¾ three MISO Wiener and Hammerstein systems with continuous nonlinearities, 
 
¾ two cascade Wiener and Hammerstein systems with continuous and discontinuous nonlinearities, 

respectively,  
 
¾ and finally, three generalized Wiener and Hammerstein systems which are simplified from the 

parametric Volterra-series. 
 
All the derived algorithms have been tested by simulation examples. The new identification method 
gives good results for all the considered Wiener and Hammerstein systems. From the derivations and 
the simulation results, it can be concluded that the new developed identification method and 
identification concepts are clear and efficient. It can be easily extended to other block-oriented 
nonlinear systems with different nonlinearities.  
 
Compared with the known methods, the major advantage of the new nonlinear identification method is 
its unity and efficiency. We have built a "bridge" from the known linear modelling techniques, over 
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the new nonlinear identification method developed in this thesis, to the complex but accurate full 
blown nonlinear models. 
 
Nonlinear system identification is a new and broad research area. There are still many problems to 
study. For the future investigation:  
 
¾ The developed identification method and concepts are expected to be used in practice.  
 
¾ The difficult convergence problem of PLR in nonlinear data case should also be theoretically 

concentrated.  
 
¾ Suitable initial parameter values are no doubt important and necessary. The developed 

identification method and concepts can also be combined with other identification methods for 
nonlinear systems to get more better results. 

 
¾ Develop a corresponding toolbox with graphical user interface (GUI) for a class of Wiener and 

Hammerstein systems with different nonlinearities.  
 
¾ The model structures that the system noise disturbs Wiener and Hammerstein systems from 

different positions should also be studied. 
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