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Abstract

The prediction of protein tertiary structure and the understanding of the folding process re-
mains one of the outstanding challenges in biological physics. While theoretical models for
protein structure prediction that partially rely on experimental information have shown con-
sistent progress, the development of de-novo stategies that rely on sequence information alone
is much more complicated. If one assumes that a protein is in thermodynamic equilibrium
with its environment, its native state corresponds to the global minimum of its free-energy
landscape. The free-energy of the system is accessible by ensemble averaging of the combined
internal energy of protein and solvent, or directly in a free-energy forcefield. Here an implicit
solvation model approximates interactions of the system protein and solvent as well as most of
the entropic contributions. As a major challenge remains the search for the global minimum
for which different stochastic optimization methods were developed and applied. Using these
methods it was possible to predict the structure of helical proteins from different protein fa-
milies ranging in size from 20 to 60 amino acids. Starting with random initial conformations
we achieved a high agreement with experimental data.

Freie Energie Simulationen mittels stochastischer Optimierungsmethoden
fiir die Proteinstruktur

Zusammenfassung

Die Vorhersage der Tertidrstruktur eines Proteins und das Verstindnis des zugehoérigen Fal-
tungsvorganges stellen eine grofle Herausforderung in der biologischen Physik dar. Obwohl
theoretische Modelle fiir die Proteinstrukturvorhersage, die auf experimentelle Daten zuriick-
greifen, standigen Fortschritt zeigen, ist die Entwicklung von Methoden, die einzig auf die Se-
quenzinformation zuriickgreifen, um ein vielfaches aufwéindiger. Unter der Annahme, dass der
native Zustand eines Proteins im thermodynamischen Gleichgewicht mit seiner Umgebung ist,
entspricht dieser dem globalen Minimum seiner freien Energie. Die freie Energie des Systems
ist entweder iiber eine Ensemble Mittlung der kombinierten inneren Energien von Protein und
Solvent zugénglich oder man greift direkt auf ein geeignetes Kraftfeld fiir die freie Energie
zuriick. In dieser Arbeit nédhert ein implizites Lésungsmittelmodell die Wechselwirkungen des
Systems Protein-Solvent sowie die wesentlichen entropischen Beitrige an. Es verbleibt die
Herausforderung der globalen Minimierung, fiir die verschiedene stochastische Optimierungs-
strategien entwickelt und angewandt worden sind. Mittels dieser Methoden war es moglich,
die native Struktur verschiedener helikaler Proteine der Gro8e 20 bis 60 Aminoséduren erfolg-
reich von zufilligen Startstrukturen ausgehend vorherzusagen. Diese Strukturen sind in hoher
Ubereinstimmung mit experimentellen Daten.
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The picture on the front page shows an overlay of measured and best estimation of the global
minimum in PFF01 using the Stochastic Tunneling method. The theoretical structure in the left
image shows a correctly folded protein and agrees well with the NMR result. The image on the right
is slightly misfolded but may represent an important intermediate step in the folding process. Title
Page of Phys. Rev. Letters 10th October 2003[105].
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Kapitel 1
Preamble

Proteins are the most versatile macromolecules in biological systems[11]. They fulfill a multi-
tude of different tasks from storing other molecules like oxygen in human blood to catalytic
function. They are responsible for the stability of macro-complexes, such as hair, and facili-
tate membrane transport or the transmission of electric signals in the human brain[124]. In
spite of this importance their properties and function are still far from being fully understood
by scientists. Their basic composition is that of linear polymers composed of sequences of
amino acids. This amino acid sequence is encoded by DNA. It already contains all necessary
information about the unique three-dimensional structure of a protein which is directly corre-
lated to its function. The formation of this three-dimensional structure in their physiological
environment, mostly water, out of its linear amino acid sequence takes place in a complex
process called protein folding. Regardless of the starting point or de-folding it by changing
the environmental conditions many proteins will finally always assume the same structure.
This unique three-dimensional structure is called the native state of a protein which can be
obtained to atomic resolution for many proteins by X-ray scattering or NMR. For lack of
suitable experimental techniques, time resolved information on the the actual folding process
is currently not available with similar detail.

In order to theoretically understand the process of protein folding scientists in different fields,
such as biology, information science, mathematics, biochemistry and physics, have pursued
various often interdisciplinary approaches. Knowledge based approaches use databases of ex-
perimentally determined structural information for proteins to predict structures for other
proteins[118, 36]. In recent years these methods have made steady progress towards de-novo
protein structure prediction, although they require substantial sequence similarity to yield
usable results. Unfortunately they give only indirect evidence regarding the mechanisms by
which proteins assume their unique three-dimensional structure.

The challenge for more sophisticated models motivated by physical ideas is the size and com-
plexity of the system. Proteins consist of numerous different amino acids with hundreds of
atoms but have no exploitable higher symmetries. In order to gain more insight into the

'Very few proteins show an alternative native state under minimal changes in environment like prions.
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folding process simple, but tractable lattice models representing protein structure have be-
en developed[58, 81]. The necessary simplifications however leave a wide gap between these
models and actual protein structure. The simulation of the protein folding process by mole-
cular dynamics using existing biomolecular forcefields like AMBER or CHARMM has yielded
increasingly valuable insights into the folding mechanisms. Such simulations permit the un-
derstanding of the folding process by an interpretation of the gained data, but are presently
limited to very small proteins by the extremely high computational demands[30, 112, 101].
One major source of complexity arises from the strong influence the environment has on the
folding process and protein structure. Thus the appropriate inclusion of solvent effects has
lead to controversial debates[120, 22, 91]. It is also presently unclear which families of proteins
are adequately folded using established forcefields with molecular dynamical simulations. In
some simulations the forcefields fail to stabilize the native state, which raises questions about
their applicability.

In this thesis the validity of an alternative, atomically resolved approach to the folding of
proteins based on models of the underlying physical interactions is investigated. The thermo-
dynamic hypothesis[3] postulates that most proteins are in thermodynamic equilibrium with
their environment. Therefore it should be possible to represent this unique native state as the
global minimum of an appropriate free-energy model[40, 42]. In this thesis we will use an all-
atom free-energy-forcefield based on physically motivated interactions called PFF01[53, 48]
to represent the underlying interactions governing protein structure formation. Starting from
random initial conditions we attempt to predict protein structure de-novo, by finding the
global optimum of the forcefield. The computational demands of this approach are signifi-
cantly less than molecular dynamical simulations while still allowing insight into the forces
responsible for stabilizing the native state or driving the folding process.

We will concretely validate the forcefield against experimental data, i.e. the experimentally
determined native state should correspond to the global minimum. Given the forcefield the
remaining challenge is finding this global minimum in the rough energy landscape represen-
ting the high-dimensional conformational space of a given protein.

Accordingly this thesis will address two central questions:

e Protein folding is ultimately governed by complicated quantum-mechanical effects, such
as the formation of hydrogen bonds, Fermi-repulsion of electronic clouds and interaction
of the protein surface with a complex environment: Can the folding of a protein be
understood and represented by a classical free-energy-forcefield and, if yes, how can it
be done in a computationally treatable way?

e Proteins have many degrees of freedom and no exploitable symmetries. It is known that
global minimization of rough and high-dimensional energy landscapes, like those in
spin-glass theory, is very difficult. Therefore: Due to the complexity of such a forcefield,
are there optimization methods allowing to find the global minimum and what about the
efficiency of these methods?



Kapitel 2
Basics of Proteins

Proteins occur in very many different activities in biological systems. Some exist in solvent
(water) only while others are fully or partially embedded in membranes. They fulfill a multi-
tude of different tasks from controlling the flow of ions and molecules in and out of cells over
giving stability to macroscopic structures to enzymatic functions[11, 124].

This chapter gives a short introduction to the chemical and physical properties of proteins. It
is shortly explained how they are built by peptide bonding and what their basic composition
is. Their biological function and importance is only touched.

2.1 Living Systems

The dry matter of biological systems consists to over 98% of a very limited set of elements:
C, N, O, H, Ca, P, K and S. ! The mechanism by which biological life has developed out of
these elements is still not completely understood. Different, competing scenarios exist. One
of these scenarios investigates the development and chemical interactions of the atmosphere
on early earth[11, 124].

About 4.5 billion years ago the atmosphere on early earth consisted of HoO, No, CO4, CHy,
N3, SOz and Hg. The ultraviolet radiation of the sun and/or electric discharge facilitated the
construction of more complex organic molecules like simple organic acids or amino acids[80].
The interaction and competition of these first molecules to develop forward to more complexity
or to break up again in their components lead to kind of critical moment in the development
of early life: the transition from randomly built molecules to small systems of molecules which
were capable of self-replication. During this process the first proteins have developed which is
also reflected in their name which derives from the Greek proteios, the first, primary. These
systems, including proteins, must have been able to deal with changing environments. Out of
these small systems finally cells formed which had the evolutionary advantage of protecting

!Other elements like Fe may play vital roles in some biochemical interactions, like Fe for the oxygen transport
in blood, but are very rare.
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their interior against the environment. After the emergence of cells, evolution of complex

life-forms on earth proceeded.

2.2 Amino Acids

For sake of simplicity when we speak in the following of amino acids (AA) we refer to the
20 standard amino acids commonly found in nature[124, 11]. 2 They belong to the group of
a-amino acids. The a-amino acids consist of a central carbon C,, surrounded by a primary
amino-group (-NHj), a carboxyl-group (-COOH), a hydrogen (-H) and a specific side-chain
(R).? In addition it is remarkable that all amino acids in proteins are of the L-form, with the
D-form absent. The reasons for this preference of the chiral L-form are unknown[124, 11, 24].
The general structure of an amino acid is shown in schema 2-1. The difference between the

H

|
HQN—Cla—COOH
R

Schema 2-1: The chemical structure of amino acids. The side-chains ('R’ for residue) differ
between the different amino acids and give them their unique chemical and physical properties.

20 amino acids lies in their side-chains, which show a different composition and therefore give
each amino acid unique chemical and physical properties. One classification divides these 20
amino acids into three groups by the polarity and charge of the side-chains[124]. A listing of
these amino acids is as follows:

2 Also less common amino acids exist in addition to the 20 standard amino acids.
3Proline is an exception from this rule since it consists of a secondary not a primary amino-group.



2.2. AMINO ACIDS

‘ Name ‘ Three-letter-code ‘ One-letter-code ‘ structural formula

Amino acids with apolar side-chains

H
HaN——COOH
Alanine Ala A CH3

H
HaN——COOH
Glycine Gly G H

H
HaN——COOH

Hy ¢ty

Isoleucine Ile I CH3z

Leucine Leu L H3C""'CHj3

Methionine Met M CH3

Phenylalanine Phe F

OOH
H-
Proline Pro P

Tryptophan Trp W H

Valine Val Vv H3C""'CHj3
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‘ Name ‘ Three-letter-code ‘ One-letter-code ‘ structural formula

Amino acids with uncharged apolar side-chains

H
HaN——COOH
CHy

Asparagine Asn N CONH;,

H
HaN——COOH
Cysteine Cys C CH2SH

Glutamine Gln Q CONH;

Serine Ser S CH,OH

Threonine Thr T CH3

Tyrosine Tyr Y OH
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‘ Name ‘ Three-letter-code ‘ One-letter-code ‘ structural formula

Amino acids with charged polar side-chains

H
HaN——COOH

Arginine Arg R HaN"™NH

Aspartate Asp D COOH

Glutamate Glu E COOH

Histidine His H N

Lysine Lys K CH3NH,

Tabelle 2.1: Overview of the different amino acids and a possible classification by charge and
polarity of the side-chains[124]. Each of the 20 standard amino acids is presented with its
one- and three-letter codes. In addition its chemical structural formula is shown.
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2.2.1 Peptide Binding and Peptides

Under physiological conditions the amino-group protonizes and the carboxyl-group deproto-
nizes. This can lead to peptide-bonding between two amino acids.:

R R R W
|1 /O | |2 H,O 1 | //O
HyN* —Ca—CC + H-N*—Ca—C00" ) HNt— Ca—C ? c/
L O | O~
H H i H

One very important aspect of peptide bonding is its m-bond-character. This reduces the de-
grees of freedom for the peptide since the m-bond-character constrains rotations around the
peptide bond to very small angles. In practice the peptide plane can be seen as rigid[24].
Longer chains of amino acids connected by this chemical reaction are simply called peptides.
One classifies them into di-,tri-,oligo- or poly-peptides when two, three, some (3-10) or many
amino acids are linked via this peptide-bond. These peptides are linear chains because every
amino acid can be linked only to two others. No covalent bonds between side-chains belonging
to different amino acids occur except in the special case of disulfide bridges *. The counting
of the amino acids starts with the N-terminus (or amino terminus) and stops at the amino
acid with the free carboxyl group, the C-terminus[124, 11].

2.2.2 Dihedral Angles

Due to the m-character of the peptide plane only the dihedral angles remain as degrees of
freedom for the main chain of a protein. In this case both bonds and the peptide plane are
seen as rigid. The dihedral angles are the two angles connecting the two planes which sit next
to the C, of each amino acid. They are, starting from the N-terminus, called ® and ¥[24]. The
normal arrangement of a protein is in trans form, as illustrated in figure 2.1. One can plot the
angles ® and ¥ against each other in form of a diagram, where each spot indicates a sterically
allowed conformation. Such a diagram is called Ramachandran-plot[99]. One example of such

a plot is given in figure 2.2.

2.3 Proteins

Proteins are molecules consisting of one or more poly-peptides with a well defined three
dimensional structure. Different kind of proteins exist. Globular proteins have their three-
dimensional structure with all atoms closely packed. They take their structures depending on
the solvent, which is normally water, and form a hydrophobic core. In appearance look like
spheres. Other proteins are called transmembrane proteins because they are partly or fully
embedded inside a membrane. Despite these differentiations all proteins have several common

structural elements. Since globular proteins are most common we will speak in the following

*A disulfide bridge is is a covalent linking between the sulfurs of two cysteins.
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Abbildung 2.1: This picture shows an maximally extended peptide chain with ® and ¥ = 180°
each. The indicated planes can be regarded as rigid due to the nature of peptide bonding.

of them when not specifically indicating other kind of proteins are meant.

A protein takes a unique three-dimensional structure during the folding process. This unique
structure is called its native state. It is possible to change this structure by changing the en-
vironmental conditions like temperature or PH-value. However given the same environmental
conditions afterwards again, a protein will always regain the same native state as before as
long as the amino acid sequence stays unchanged.

The figures 2.3, 2.4 and 2.5 illustrate the difficulty in properly displaying this three dimensio-
nal structure as measured in experiment. > In picture 2.3 already a simplification has taken
place since the atoms are displayed as hard spheres and not by the wavefunction of the elec-
trons. However this picture still lacks the ability to properly emphasize the important struc-
tural attributes of a protein. In figure 2.4 only the backbone including the peptide-bonding
is displayed which allows a good overview of the basic structure of this protein. Most com-
monly a presentational form as in figure 2.5 displays the backbone according to its secondary
structure.

The knowledge about structure of a specific protein can be put in a hierarchy. Different
common substructures arise in protein composition[124, 11]. This allows to characterize the
structural information depending on the level of details included. This data is normally given
for the native state of a protein.

e Primary structure is the information about the amino acid sequence of the protein alone.
No structural information about the three-dimensional conformation of the protein is
included. When numbering the amino acids one starts with the N-terminus of the protein
and ends with the C-terminus.

e Secondary structure includes information about basic properties of the three-dimensional
conformation. Each amino acid is classified as belonging to a specific secondary structure
element, such as heliz or 3-sheet.

5All figures show different presentations of the experimentally determined native conformation of the Bac-
terial Ribosomal Protein L20 (pdb[12]-code: 1GYZ) which was ab-initio folded in-silico[108].



14 KAPITEL 2. BASICS OF PROTEINS

Abbildung 2.2: This picture shows a typical Ramachandran plot. The plotted dihedral angles
(P and ¥ on horizontal and vertical axis respectively ranging each from —n (left bottom
corner) to 7 (upper right corner)) are taken from the native state of the Bacterial Ribosomal
Protein L20 shown in figures 2.3, 2.4 and 2.5 and plotted as yellow dots. In the diagram the
white areas correspond to conformations where atoms may clash according to calculations
on polypeptide chains with hard spheres. These regions are therefore sterically problematic.
The blue regions correspond to conformations where no steric clashes are possible and the
green areas show the regions computed by using slightly shorter van-der-Waals radii in the
calculations, i.e. the atoms are allowed to come a little closer to each other. The upper left
region is associated with S-sheets, the other two regions with helices. The lower left region is
related to right-handed a-helices, the upper right region to left-handed ones.
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Abbildung 2.3: This picture shows the experimentally determined structure of the Bacterial
Ribosomal Protein L20 1GYZ. The different atoms are colored according to their types (C
light blue, N dark blue, H white, S yellow, O red) and have sizes according to their van-der-
Waals-radii.

Abbildung 2.4: This picture shows the experimentally determined structure of the Bacterial
Ribosomal Protein L20 1GYZ. The different atoms are colored according to their types (C
light blue, N dark blue, H white, S yellow, O red) and have sizes according to their van-der-
Waals-radii. Displayed are only the backbone atoms.
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Abbildung 2.5: This picture shows the experimentally determined structure of the Bacte-
rial Ribosomal Protein L20 1GYZ. The coloring goes from the N-terminus (blue) to the
C-terminus (red). The protein is displayed according to its secondary structure. Helices are
displayed as areas with broad ribbons, coil-regions with strands. This method is called cartoon

representation and is the most common form of presentation for proteins.

e Tertiary structure includes complete spatial information about the full three-dimensional

structure of one amino acid sequence.

e Quarternary structure becomes important when proteins consist of multiple amino acid
sequences and describes how these different polypeptide units are organized three-

dimensionally with regard to each other.

2.3.1 Primary Structure

Primary structure describes the sequence of amino acids starting from the N-terminus and
ending with the C-terminus. The amino acids are normally given in one- or three-letter codes
as presented in table 2.1. Since undamaged proteins can unfold by the change of environmental
conditions and re-fold given the original conditions again all information needed for taking a
unique native state is already encoded in this primary sequence. This means that in principle
it should be possible to predict higher order structure information from the primary structure,
i.e. the amino acid sequence, alone[3]. This prediction of tertiary structure is the main topic
of this thesis.

2.3.2 Secondary Structure

Secondary structure describes the most often occurring elements of protein structure in a

convenient way. Each amino acid is classified as belonging to one specific secondary structure
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Abbildung 2.6: This picture shows the most common helix, the a-helix. 3.6 amino acids are
included per turn of the helix and one can see the hydrogen-bonding between the CO and
the NH groups. [124]. As an overlay the cartoon presentation of a helix is indicated. The
different atoms are colored according to their types (C black, N dark blue, H white, O red).

element. There are different possibilities describing it depending on how much one looks
into detail. The program DSSP[61] assigns each amino as belonging to one of eight different
states, including different kind of helices or bends. For us it is sufficient to describe secondary
structure in a one letter code as belonging to either Helix, Sheet (also E for Extended strand
is used) or Coil. This three state description will be used consistently in this thesis. Therefore
we coarsen the DSSP classification to these three states (see appendix A).

Helix

The helix is a very often occurring element of protein structure. It is stabilized by hydrogen
bonding between the C'O-group of amino acid A and the N H-group of amino acid A + N
(typically is N=4). Different kind of helices exist. They are defined by the number of amino
acids per turn of the helix n and the number of atoms m integrated into the hydrogen bonding
as Npy-helix. The most commonly occurring helical structure is the «(3.613)-helix (see figure
2.6). Others are the 31 or the m(4.4;6)-helix (see figure 2.7).

[3-Sheet

The SB-sheet is another commonly occurring secondary structure element. It consists of multi-
ple B-strands which are stabilized by hydrogen-bonding between the individual strands. There
are two variants of f—sheets, the parallel and the antiparallel one whose strands run in ac-
cording directions. The name sheet derives from its planar form (see figure 2.8). In proteins
this sheet is often slightly drilled in itself.
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Abbildung 2.7: This picture shows the difference between the different types of helices. [124].
The arrow indicates possible hydrogen bonds. The different atoms are colored according to
their types (C black, N dark blue, H white, O red).

One important difference is that helices are stabilized by local hydrogen bonding between ami-
no acids close in sequence. 3-sheets however are stabilized by long ranged hydrogen bonding
between amino acids which can be far apart in sequence.

Coil

Everything other than helix or §-sheet is referred to as coil. It is most often only poorly
defined and more loose in three dimensional protein structure than helix or sheet.

2.3.3 Disulfide Bridges

When two side-chains of cysteine become spatially close to each other disulfide bridging can
occur. This is bonding or bridging a single covalent bond between the oxidized sulfors of the
cysteine side-chains. Thereby the stability of the protein increases but a strong topological
constraint is put on the protein at the same time. This is the only covalent bond that can be
formed or broken during protein folding.

2.4 Protein Stability and Thermodynamic Hypothesis

Under physiological conditions most proteins assume their unique native state. Developing
this structure under these conditions is called the folding of the protein. Precisely the native
state is not a single state but a macro-state consisting of an ensemble of micro-states very
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Abbildung 2.8: -sheets are stabilized by hydrogen bonding as indicated in this schematics.
Please note their common zip-zap appearance[124]. The different atoms are colored according
to their types (C black, N dark blue, H white, O red, Side-chain violet).
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similar to each other. However a protein is stable in its structure only under very narrowly
defined circumstances[94, 95]. Slight changes in temperature or the PH-value of the solvent
can force the protein to adapt a new structure under these changed conditions[7]. By retur-
ning to the original conditions the protein develops the same structure as previously again,
including reforming possibly broken disulfide bridges, i.e. the protein re-folds.

Following the ideas of Anfinsen [3] the native state occupies the lowest free-energy for the
system protein and solvent. Therefore the folding of a protein is independent of the starting
point. The environment has a strong effect on protein structure. The native state is in thermo-
dynamic equilibrium for the system protein and environment. The amino acid sequence alone
determines the native three-dimensional structure. This native configuration can be described
as the lowest energy of its free-energy surface.

Protein stability can be understood as a gap in the inner energy between the native structure
and other competing compact structures[71, 102, 18]. This gap must be big enough to overco-
me entropy since the native ensemble occupies a much smaller region in conformational space
than the unfolded ensemble. The folding of a protein is believed to be the result of an equli-
brium between two dominant forces, the hydrophobic interaction and loss of conformational
entropy[7, 25, 26, 47]. It is believed that the contact order of a protein vastly determines the
folding speed[63] of a protein. It is the mean sequence-distance between residues forming con-
tact in the native structure. This can be rationalized by reminding that a low contact-order
allows a protein to form native-like contacts earlier since the average distance between theses
residues is low. However proteins with a high contact-order need most of its native structure
already be formed in order to have native contacts which slows folding down. However it is
still subject of discussion whether the relative or absolute contact order (see appendix A,
Absolute contact order) is more important[59, 63, 19].

These conclusions are also criticized because the correlation between the energy gap and fol-
ding ability is quite weak. Additionally this criterion concentrates on only a very small part
of the energy surface, whereas the folding process could depend on complex characteristics of
the entire energy landscape[17].

In an alternative approach to understand protein folding the energy landscape takes the form
of a folding funnel[27, 47, 89, 90, 109]. This is a set of convergent pathways leading to the
global minimum, i.e. the whole energy landscape is biased towards the native ensemble. The-
se different pathways make the global minimum kinetically accessible from the ensemble of
misfolded structures[67]. Both quantitative models and experimental data support this new
sight on protein folding. The probing of hidden parts of the free energy surface could allow a
microscopic theory of folding[40].

5This is the so called thermodynamic hypothesis.



Kapitel 3
Protein Structure Prediction

This chapter gives a short overview of methods for protein structure prediction, for which
several approaches have been developed in the last years. First of all one has to decide what
level of protein structure should be predicted. If it is sufficient to know the secondary structure
computationally inexpensive methods can be used. To predict ab-initio the tertiary structure
from the primary sequence much more computationally demanding methods are needed[118].
Further one has to distinguish between physical methods and knowledge based methods[36].
The first use physical approaches by modeling intra-molecular and inter-molecular interacti-
ons of the protein with its environment. The latter look for sequence similarities in existing
databases and derive structure by comparing the composition of similar proteins and esti-
mating from them a sensible prediction. Since the aim of this thesis is ab-initio structure
prediction with physical forcefields, other methods are only peripherally covered.

3.1 Protein Structure and Evolution

Protein structure is driectly correlated to their function in organisms. Especially the tertiary
structure determines the surface of a protein by which it interacts with its environment and
performs its function. During natural evolution mutations can change the amino acid sequence
of proteins. ! This can result in changes in tertiary structure which is related to the function
of a protein. It seems reasonable that changes in structure can render an organism unfit in
evolution since important tasks by mutated proteins can be done less (or sometimes more)
effectivly. Therefore two sequentially similar proteins often share a similar evolution and fulfill
also similar tasks in an organism. Defining sequential similarity between proteins should also
allow an estimation of their structural and functional similarity.

However the relation protein sequence to protein structure and function is not easy. Most of
the time only a very limited set of amino acids determines the task of a protein. There are
proteins which have almost identical tertiary structure but fulfill very different tasks in an

organism. One example would be the Lysozyme/Lactalbumin superfamily of proteins. They

'The amino acid sequence of proteins built by living cells is encoded by the DNA.
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have a very similar structure with an RMSD-B between Lysozyme (pdb-code[12]8LY Z) and
a-Lactalbumin (pdb-code 1ALC) of under 2 A. Their sequence has a 35% sequence identity
(determined with GAP[56]). But in spite of these similarities they fulfill different tasks in an
organism. Thus though the simplifying saying structure determines function is true in most
cases, there are exceptions like this one. Backbone structural similarity does not necessarily
imply functional similarity. There are also rare cases in which sequentially and structurally
dissimilar proteins fulfill similar tasks in an organism.

3.2 Homology Searching and Multiple Sequence Alignment

Searching for homologues is often a first step looking for similar folded proteins. It may help
later structure predictions[118]. For doing so the primary sequences are compared against
other sequences from databases with known tertiary structure. Different schemes exist for
this task. Most work with a 20x20 matrix whose entries stand for the similarities between two
given amino acids, i.e. amino acids with similar character give higher scores, those dissimilar
lower ones. One problem that arises now is the dealing with gaps or insertions in the sequence.
How familiar are two amino acid sequences of different length? For giving an answer to this
question gaps and insertion must be included in the comparison. This is done by comparing
all possible segments of sequence A with all possible segments of sequence B and taking the
highest score. Thus the comparison of two sequences gives a score for their similarity.
Multiple sequence alignment means considering not only two but many structures in the
alignment. This multiple sequence alignment results in a set of sequences which are similar
to the given starting sequence. Due to the connection between sequence and structure of a
protein this set with known structures serves as a good starting point for following structure
predictions.

3.3 Prediction of Secondary Structure

Secondary structure prediction should be computationally inexpensive since each amino acid
is dealt with only in a general and vague way. This prediction basically tries to assign each
amino acid of a sequence a probable element of according secondary structure, like helix or
[B-sheet, without detailed knowledge of the exact location of the atoms or amino acid groups.
Most methods use first homology searching and multiple sequence alignment to get a good
starting point. The methods for the prediction of secondary structure can be divided into two
broad fields of methods[118, 24]:

e Statistical methods
e Neural networks

Both methods require the amino acid sequence as an input. Each amino acid, a window of

surrounding amino acids and other parameters like total number of amino acid in protein
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and length of the amino acid sequence are variables to calculate probabilities for this amino
acid being part of a specific secondary structure element. Overall neural network methods are
more successful in accurate prediction but do not allow much insight into understanding the
forces driving the folding of a protein. Statistical methods allow more insight but seem to be
less accurate[82, 13, 65]. However, common to all these methods is, that helices are predicted
with far better accuracy than §-sheets. This can be easily understood by knowing that helices
are stabilized by local interactions (mostly hydrogen bonding) between amino acids close in
sequences (local interaction). However [-sheets are stabilized by hydrogen bonding between
amino acids often far apart in sequence (non-local interactions). These non-local interactions

are much more difficult to predict.

3.4 Prediction of Tertiary Structure

The prediction of protein tertiary structure is much more complicated than the prediction of
secondary structure since a position for each atom of a protein has to be calculated. Due to
the dense packing and the lack of higher symmetry this poses a big challenge. In principle two
different approaches can be made. On the one hand there is the homology modeling approach
in which, like in secondary structure prediction, by homology searching existing databases of
structures are investigated for likely similar structures. Afterwards these similar structures
are weightened and allow by combination the prediction of a possible structure.

On the other hand there are the physical methods which try to use forcefields for either mole-
cular dynamics or direct structure prediction by minimization. In the following chapters this
last approach will be investigated in detail by presenting the forcefield PFF01 and different
successful minimization methods.
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Kapitel 4
Forcefields for Protein Folding

This chapter deals with methods for protein modeling. Because a protein is normally not an
isolated molecule but in interaction with a solvent these methods have not only to describe the
protein itself but also its surrounding environment. During protein folding no new covalent
bonds are formed (with the notable exception of disulfide bridges). The energy is determined
by interactions between the atoms. An exact quantum mechanical calculation is not possible
due to the size of the system. However a description by a classical forcefield seems viable. !
Each point in conformational space is given an according energy or force. The solvent can
now be treated ezplicitly or implicitly. In the case of explicit treatment of the solvent not only
the positions of the atoms of the protein are taken into consideration but also many atoms of
the solvent, which results in high computational demands for calculations. A simplification is
the usage of an implicit solvent model which contains a term for the description of the solvent
according to the positions of the protein’s atoms. This approach will be discussed in detail in
the next chapter where the forcefield PFF01 will be described.

4.1 Thermodynamics

The thermodynamic hypothesis from Anfinsen [3] postulates that the native structure of a
protein corresponds to the global minimum of the free-energy. Therefore protein structure
can be predicted by describing the free-energy under physiological conditions and identifying
its global minimum.

Different forcefields use various approaches to achieve this aim. However certain common
features can be found. Most describe all atoms as points in space and characterize them
with classical attributes like mass, polarization and charge. It is important to note that two
forcefields might share the same functional form but use a different parameterization thus
resulting in different energies. So these two fragments of a forcefield, functional form and

'The term forcefield is applied both for functions describing potential energies and actual forces. This
derives from the fact that originally forcefields were used to calculate driving forces in molecular dynamics
simulations. Later the term was also applied to free energy potentials.
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parameterization are of equal importance[38]. The comparison between different forcefields
are empirical and speaking of applicable parameterization or functional form depends purely
on the results.

4.1.1 Interaction of chemically bonded atoms

Interactions between chemical bond atoms are described according to the number of sub-
sequent covalent bonds involved. They are named 1-2, 1-3 or 1-4 interactions counting the
number of the interacting atoms involved. Other interactions are taken as interactions of
non-bonded atoms, even though they might be atoms of the same molecule like atoms parti-
cipating in an inner-molecular hydrogen bond|[38].

Figure 4.2 illustrates these chemically bonded interactions.

1-2 interaction or bond stretch

The 1-2 interactions or bond stretch interactions are vibrations of the chemical bond. A good

description can be reached by the Morse function
V172 — k‘l(]. . 6—AA1‘)2

ko
2D,

This function requires the parameters D, which is the depth of the potential energy minimum,

A=

the force constants &, and the equilibrium bond length z( (included in Az = = — zy above).
This potential allows the dissociation of the bond but since this is computationally expensive
and most forcefield do not allow this dissociation very often not the Morse function but a
simple harmonic potential is used:

Vi_o = kAz?

(force constant k, Az indicates difference to equilibrium bond length). This reduces the needed
parameters to two and lowers computational demands. Another possibility is to add higher
order terms to the harmonic potential for an increase in accuracy:

k
Viep = S A2’ (1 + kola + ksAa® + kida® +.)
The Morse potential and the harmonic potential are plotted in figure 4.1

1-3 interaction or angle bend

Interactions of the 1-3 type or angle bends describe changes around the angle of bending 6.
Usually classical forcefields describe this also as harmonic, i.e.

Vi_g = kAB?
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1 2 3 4 5 6 7

Abbildung 4.1: Comparison of the bond-stretch potentials. Plotted in black is a simple har-
monic potential ~ Az? while in red the more sophisticated Morse potential ~ (1 — e~44%)2,

which also allows dissociation of bonds, is plotted. The units are arbitrary.

(k force constant, A# indicates difference to equilibrium angle of bending). Increasing accuracy
can be done by including higher order contributions:

Viez = ki AO? (1 + ko AO + k3 A0? + kg AG® + ...)

(kyp, force constants, A# indicates difference to equilibrium angle of bending).

1-4 interaction or torsional term

The third kind of chemical bonded interactions is the 1-4 type or torsional term. It describes
rotation around the angle of the plane spanned by the atoms one to four. This potential is
mostly described in the form:

Vieg = Z Vo (1 + cos(ng + 7))

(n gives the number of minima of the function during a full 3607 rotation with the phase 7
describing the exact point of the minimum, ¢ is the angle of torsional bend and the V,, are
often called barriers of rotation). A simple example to understand this potential would be
rotations around the central C-C bond in X-C-C-X configurations like ethane H3C — C Hj.
The hydrogens can block each other (non-bonded interaction of hydrogens belonging to the
two carbons) when the central bond is rotated. AMBER for example parameterizes this with
n =3 and v = 0.

It is worth noting that the torsional term has a close relationship with non-bonded 1-4 like
interactions of the involved atoms. AMBER for example mixes the 1-4 bonded and non-bonded
interactions by applying both a torsional term and scaling down the non-bonded Coulomb

term.
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— Az — . .
Q Q 1-2 interaction

~_ 1-3 interaction
Af

1-4 interaction
Ad

Abbildung 4.2: Tllustration of the different types of bonded interactions. Please note that
the length and angles Az, A and A¢ all designate changes from the original reference
configuration, i.e. equilibrium distance.

Cross-Terms

To allow combination of two or more bonded interactions in a forcefield cross-terms can be
introduced. One (simple) example would be the water molecule: reducing the angle 6 between
the H-O-H bonds results in extension of the O-H bond-length and therefore a combined
movement of 1-2 and 1-3 interactions. The above example could be described as

Ver = k(AJJl + A.TQ)AQ

(k force constant, Az, distance between O and H,, 6 angle H-O-H) or as a harmonic move-

ment of the atoms 1 against 3

V = kAri,

(k force constant, r13 is the spatial distance of the two atoms 1 and 3). Other combinations

of bonded interactions in a forcefield are -of course- also possible.

4.1.2 Interactions of non-bonded atoms

For sake of simplicity interactions of non-bonded atoms are usually understood as point-like
interactions. Though the atoms involved in these interactions may be of the same molecule

they are understood as non-linked and separated.
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Van-der-Waals-Interaction, Lennard-Jones-Potential

Fluctuations in the charge distribution of atoms can result in temporary dipoles. This is a
deviation from the ideal behavior and leads to dipole-dipole or dipole-induced-dipole inter-
actions. These forces are called Van-der-Waals forces and can be formulated as a Lennard-

T 12 T 6
&) =)
rij Tij

(Vi; give the strength of the interaction between atoms ¢ and j, V4 describes the depth of the

Jones-6-12-potential:

LJ—-6—-12 __
vy =y

potential well, 7 is the equilibrium distance and r;; gives the spatial distance of atoms i and
7)- The energy function is a combination of an attractive term resulting from the interaction
of induced dipoles by the power of 6 and a repulsive term resulting from the repulsion of
the electric hills according to Pauli’s principle by a power of 12. This formulation is only
qualitatively correct. The power of 12 can be quickly calculated by squaring the first term.
It is too large compared to experimental results. Often this error is corrected by a changed
parameterization of other terms.

In order to increase accuracy some forcefields use the Buckingham-potential with a replaced

repulsive term:

Vﬁuckingham _ v, 6 ooy _ @ (l)sl

a—=6 a—6 \1g
(Vi; gives the strength of the interaction between atoms ¢ and j, V4 describes the depth of the
potential well, 7 is the equilibrium distance and r;; gives the spatial distance of atoms 7 and
7). The new parameter « can be adjusted and gives a Lennard-Jones kind potential for values
between 14 and 15. Although this potential is more accurate than Lennard-Jones it has the
disadvantage of becoming attractive for very small values of r;; which can be overcome by
correction terms.

Coulomb interaction

The interaction V;; of two ions or charges g; and g; which are separated by a distance of r;;
in a medium with the dielectric constant €, is according to Coulomb’s law

_ 49

V;]C"oulomb —
47!'60 €rTij

(€0 is the dielectric constant of vacuum). One very difficult parameter is e, which describes
the effect of the medium. In the case of proteins the medium is often not homogeneous. For
example some water molecules might be trapped inside a protein which differ strongly in
their dielectric constant (= 80) from the rest of the protein (= 2 — 4). A distance depending
dielectric constant might be used as well as taking approximate values for the interior of
proteins[48].

The above Coulomb-energy has to be calculated for each pair of atoms which means the
computational costs are O(N?2). Another approach would be using the multi-pole expansion,



30 KAPITEL 4. FORCEFIELDS FOR PROTEIN FOLDING

based on electric moments of multi-poles like charges, dipoles, quadrupoles etc. This tech-
nique, sometimes called fast multi-pole expansion avoids some computationally demanding
calculations. Recent methods use fast Fourier transformations on multi-poles (FFTM) which
have a computational complexity of O(N®), where a ranges from 1.0 to 1.3 [88].

Hydrogen bonding

A hydrogen bond appears when a donor (hydrogen) is bonded to a strong electronegative
partner like oxygen in water or nitrogen in the backbone of an amino acid. This positive
polarized hydrogen can interact with a negative polarized partner like oxygen. Most often
this is described as dipole-dipole interaction. This interaction is very important for prote-
in structure since it stabilizes secondary structure like S-sheet or a-helix. The inclusion of
hydrogen bonding has been done in very different forms. Three examples, HB-1, HB-2 and
HB-3, are given below but a good functional form to include hydrogen bonding is still subject

of scientific discussions[41, 117].

HB-1 _ _99)
" drege,

A B

yiB-2_ 4 D

i 2D

_ A B Cc D
Vvi]I'-IB 3 = cos() (m - T) +(1— cos(@))(m + r_ﬁ)
1j 1

(V;;-{B ~% gives the strength of the interaction between atoms 7 and j, g; gives the charge of
atom %, ¢y and ¢, are the dielectric constants of vacuum and medium, A, B, C and D are
parameters determining the strength of hydrogen bonding, r;; is the spatial distance between
atoms 7 and j and € the angle of the hydrogen bond).

Solvent term

The inclusion of an appropriate solvent term is very difficult[22, 91]. One has to make sure
that the electrostatic both inner- and inter-molecular interactions are treated in a proper way,
which generates problems with the dielectric constant ¢,. A solution is including dielectric
functions or average values for e,.

Also one has to chose between including the solvent in an explicit or implicit way. In the
first case the computational demand rises strongly since not only the protein but also the
water molecules must be simulated. Depending on the actual implementation this can raise
the treated number of atoms to a tenfold compared to the protein alone. Less computationally
expensive but also less accurate are implicit solvent models. Following the work of Eisenberg
and McLachlan [31] one assumes that the contribution of an atom to the solvent energy is

proportional to its solvent-exposed surface:

VImplicitSolvent — Z UTiAi

Atoms
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(0; are parameters in (kcal/mol)- A=2 which give the energy contributions per solvent acces-
sible surface of each atom with respect to the type 7; the atom belongs to (please note that
the type of an atom can differ if belonging to different amino acids), A; is solvent accessible
surface area for each atom 7). This approximation can be considered as standard for implicit
solvent interactions. Comparing the accuracy of this approach with ones from explicit solvent
interactions [115] shows that applying implicit solvent interaction offer an excellent tradeoff.

Computational demands are strongly lowered while accuracy stays almost the same.

4.1.3 Molecular Dynamics

Molecular dynamical simulations were introduced by Alder and Wainwright [1]. Assuming that
all occurring forces are treated in an approximate way the forcefield allows the propagation
of a protein structure and its movement in time under classical theory. As starting point a
configuration of the protein is used (often the experimentally determined structure geometry-
optimized in the forcefield) and the velocities are randomized assuming a Maxwell distribution.
In all following equations z represents the atomic coordinates of the system.

The simplest way to do Molecular Dynamics is solving Newton’s equation of motion F =
ma = mi for this system

o, F; = m;a; = my 2

(V is the potential of the according forcefield, m; the atomic mass of atom i, a; the acceleration
of atom 7 and ¢ the time). This approach is used for simulations with explicit water treatment.
Another approach is using the Langevin equation, a stochastic differential equation, for all
atomic coordinates[87].

Mi + Ci 4+ VV(z) = DW

(M matrix of the system with atomic masses on the diagonal, C' damping matrix of the
system, V potential of the according forcefield, D random force of the system, W uniform
random noise (commonly white noise)). The diffusional matrix D and the damping matrix of
the system C have the following relation:

DDT = 2kpTC

(T the Temperature of the system, kp the Boltzmann constant). For low temperatures and
no damping this equation simplifies into Newton’s equation above. Typically one uses a scalar
damping constant v and C = vM.

By now typical molecular dynamics simulations are limited to small proteins of 20-40 amino
acids for a short period of time. They have difficulties in stabilizing the native structure
of the protein even when using high amounts of computational time[30] when not applying
parameters specifically adjusted to one protein.
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4.1.4 Established forcefields

This short paragraph tries to describe the basic properties of different forcefields. Commercial
available packages usually include them. Since our focus is not on the actual implementation
details of these packages will not be presented. A recent good overview with a detailed look
is given in [72].

Many forcefields use the following composition of the energy function following the ideas given
in the above sections. These forcefields are called class I force fields.

= Y Kya—m)?+ Y Ka0—6)+ Y Vi(1+cos(ng+7))

bonds angles torsions
T 12 T 6
+ O Viill—) —-2(—
Z ct( 0) Z i rij Tij
cross—term atoms
+ Z y %495
atoms TE0ErTij

(7 is a configuration of the protein, K, give different parametric constants, = is the bond
length, 6 the angle valence angle, ¢ the torsion angle, v phase angle, Y are cross-terms, V;;
the constants for the Lennard-Jones potential, 7;; the minimum interaction radii, the r;; the
spatial distance between atoms ¢ and j, ¢; the charge of atom i, ¢y the dielectric constant
in vacuum, ¢, the dielectric constant of the medium). This basic functional composition is
common to many force fields including AMBER[21], CHARMM [73], GROMOS [122] or
OPLS[60]. Forcefields which also use higher order functions than in the above equation like
the Morse potential are referred to as class II force fields. These terms allow an increase in
accuracy while having higher computational demands.

The following list gives a quick overview over the most commonly used forcefields. The given
functional forms may change slightly between different versions. For example earlier versions
of AMBER included hydrogen bonding in form of a 10-12-potential while later ones included
recalculated parameters for the forcefield which allowed inclusion of hydrogen bonding in the
Lennard-Jones potential.

The newly developed forcefield PFF01 [50, 53, 48] which was used for the simulations in this

thesis will be subject of the next chapter and discussed in detail there.

e AMBER (Assisted Model Building with Energy Refinement)[92, 93]
http://amber.scripps.edu
This forcefield was developed in the group of Peter Kollmann at UCSF. Different sets
for parameters exist. Its functional form is equivalent to the above formulation (Form.
4.1. Older version use a 10-12 potential for the hydrogen bonds:

v _ Cij Dy
AMBER—Hydrogen = Z ri2 10
H—bonds Lj Lj

v

(C and D are parameters, r;; the spatial distance between atoms ¢ and j), while newer
versions included hydrogen bonding in Lennard-Jones and electrostatics.
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e CHARMM (Chemistry at HARvard Molecular Mechanics)[73]
http:/ /yuri.harvard.edu/
CHARMM was developed, as the name suggests, in Harvard University and exists as
both academic (CHARMM) and commercial (CHARMm) version. All kinds of different
parameter sets exist. The development was started and is still run by Martin Karplus.
CHARMM uses the same basic composition as above (Form. 4.1). A Urey-Bradley
(cross-term)

Vi = Kyp(r —10)?

describes movements of the atoms 1 and 3 against each other (r spatial distance, r

equilibrium distance).

e CVFF/CFF (consistent valence forcefield)[74, 75]
htt:/ /struktur.kemi. dtu. dk/cff/cffhome.html
CFF was developed in the 1960’s and is one of the oldest forcefields. The basic functional
form of CFF is the same as above. Something special about this forcefield is the fact that
it is not empirical. The authors refer to it as a quantum mechanical forcefield since obser-
vables calculated by in-initio calculations determine the energy hypersurface[74]. These
values are slightly scaled afterwards since force constants derived from Hartree-Fock
calculations have the drawback of being too large while bond lengths are underestima-
ted.
CFF is especially known for a good description of spectroscopic properties. It also in-
cludes non-harmonic contributions up to the quadric term to increase accuracy at the
cost of higher computational demands.

e GROMOS (Groningen Molecular Simulation)[121]
http:/ /www.igc.ethz.ch/gromos
GROMOS is a package for molecular dynamics simulations. It was developed in Gronin-
gen in the Netherlands by Wilfred van Gunsteren and Hermann Berendsen. The recent
version is the Gromos 43A1 force field[110]. The form of the potential is equivalent
to the above general formulation. A special emphasis is put on the cross-terms. This
version has been especially optimized for proteins.

e ECEPP (Empirical Conformational Energy Program for Peptides)[86, 85, 32]
This force field differs from other force fields by lowering the degrees of freedom of
a protein. It fixes bond length and some angles inside a protein. Doing so reduces
the computational effort for calculating energies with the forcefield and minimizing its
energy. It is similar in functional from but dissimilar in parameterization from PFF01

with an additional torsional term:

Eiors = Z Ui(1 % cos(kndn))

; torsional barriers of rotation, k, multiplicity of the torsion angle ¢,).
U; torsional barri f rotation, k Itiplicity of the torsi 1
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4.1.5 Discussion on the Transferability of individual Forcefield Terms

The transferability of individual forcefield terms is very difficult. Especially in free-energy
forcefields directly transferring single energy terms is not possible: It is in general not possible
to simply add or exchange a energy term from another force field to improve accuracy. To
understand this behavior one starts with the idea of calculating the inner energy and adds a
new Hamiltonian to the existing one, as done in [48]. The results and major steps are discussed
below:

U=<H>=<H; >+< Hy>

(U inner energy, H Hamiltonians for inner energy, < X > thermal expectation values for
property X at a specific temperature). The free energy can be calculated:
_In< etPH >
B
(F free energy, 8 = ,%LT with T the temperature and kp the Boltzmann constant) By including
also the entropy in the form

_ OF <H> 1 oo BH
S = T - T +4 //dpdqe

(S is the entropy) one can expand the free energy by approximating the exponential and
logarithmic function. The free energy then becomes:

1
F=<H>+:p(< H?>> - <H>*)4+0(f*)=U-TS.
Thus

F = Fi+F+B(<HH,>—< H ><Hy,>)+0(3?
= F+FH-TS:=U,+U,—-TS8,5=51+ 852+ S12
£ P+ P

One can see that the total free energy F' consists of contributions from the individual free
energies F1 and F5 and another contribution from the entropy of the system. However sepa-
ration of the entropic contribution is difficult and depending on the possibility of decoupling
the system, for example the distinction between bond and non-bond interactions|72].

A simple exchange of parameters between two force fields is therefore in general not possible.
The interaction with the solvent has contributions from Lennard-Jones, electrostatics and
hydrophobic effects. However it is, for example, possible to exchange the functional form of
terms by re-parameterization like done between different versions of the AMBER force field.
The hydrogen bonding can be described by both a 10-12 potential or, using a re-parameterized
set of parameters, by a combination of the 6-12 potential and the electrostatic interaction.
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Protein Force Field 01, PFFO01

The forcefield PFF01 (Protein Force Field 01) is a refinement from prior works by the group
of Moult at CARB. It has been published in [50, 53, 48] where the formulas and parameters of
this paragraph have been taken from. It is an all-atom free-energy force field and ! designed
to make predictions of protein structure by finding the lowest free-energy for a given protein
following the thermodynamic hypothesis [3]. This global optimization neglects the actual
folding process by using efficient optimization methods. These methods are discussed in detail
in the following chapters.

The force-field is modeling physical interactions in a protein and between a protein and water
at a fixed temperature of 300K. The contributions to the forcefield are

e Electrostatics

e Hydrogen bonding

e Lennard-Jones-6-12

e Surface-depending implicit solvent model

No vibrational terms are included. The bond-length and the peptide planes are kept fixed.
The only degrees of freedom are the dihedral angles of both backbone and side-chains of the
protein. Therefore the spatial coordinates {7} can be directly translated into dihedral angles
{5} and vice versa. Both are equivalent descriptions of a specific conformation of a protein.

The parameters for these force field terms derive from a family of proteins. This family of
proteins was selected to represent a wide spread of different protein structures. However it
has proven necessary to further optimize these parameters. This has been done on the the
Villin headpiece, a protein intensively investigated by different groups using AMBER [30]
and ECEPP/2 [45]. Using these optimized parameters other non-homologous helical proteins
could be successfully folded without further optimization of the parameters, meaning that

! Apolar groups of the type C Hy are modeled as big super atoms. Modeling these hydrogens explicitly would
increase computational demands without increasing accuracy of the forcefield. All other atoms are modeled
explicitly.

35
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from random initial conditions the structure corresponding to the lowest found energy is
equivalent to the one found in experiment. By now this is the first force-field based on physical
interactions able to stabilize proteins from different sizes (up to 60 amino acids[108]) and
families of proteins (no homologue sequence identity) in their native states.

5.1 Interactions of the Forcefield

As said above PFF01 has contributions from different interactions. These interactions must
meet a balance between computational demands and accuracy in modeling the free-energy
surface. One important simplification was the exclusion of explicitly modeling the apolar
hydrogens in CHpy groups. The degrees of freedom for the forcefield are the dihedral angles
of the backbone and the side-chain. In the following ¥ means a configuration of the given

protein.

5.1.1 Potential Types

The atoms in the force field are classified according to their chemical characteristics. These
potential types are used for the values of the different force field parameters as in table 5.1.

Lennard-Jones

The Lennard-Jones interaction is included as a 6-12 potential.

()" (2
rij ri]-

(here 4, j represent the atoms included in the force field, r;; is the distance between these
atoms, R;; are the Lennard-Jones radii (R;; = /R;;Rj; ). The parameters for the Lennard-
Jones potential derive from a potential of mean application to experimental data. By fitting

V(P =Voy

ij

short-range (2A - 5 A) radial distributions of a set of 138 different proteins  we got as result
the radii given in table 5.2.

In our simulations the attractive part of the Lennard-Jones potential plays a very minor role.
Much more important is the repulsive part which prohibits clashes of atoms according to the

Pauli-principle.

>These proteins are believed to represent a wide span of different folds|6].
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Amino acid | Potential type

ALA CME

ILE 4xCME

LEU 4xCME

MET CME CME S CME
PHE CME 6x CR

PRO 3x CME

TRP CME 3xCR N; H 5xCR
VAl 3xCME

ASN CME CP O, N HH
CYS CME S

GLN CME 3xCR N; H 5xCR
SER CP O H

THR CP CME O; H

TYR CME 6xCR O; H

ASP CME CP O3 Oq

ARG 3xCME N; H CP 2x(N; H H)
GLU CME CME CP O3 O9
HIS CME CRN; H, CRCR N; H
LYS 3xCME CP N3 3xH
Main Chain | N; HM CME CP O,
N-terminus | Ns HH H CME CP O
C-terminus | N; HM CME CP O; Oq

Tabelle 5.1: List of the different potential types according to the amino acids. The list is
starting from the Cg atom outwards.

Potential type | Ry | o;

CME 4.10 | 84

CpP 4.10 | -6

CR 3.28 | 93

N, 3.55 | -30

Ny 3.55 | 15

N3 3.55 | -45

O 3.10 | -30

Oq 3.10 | 15

S 3.80 | 84

H 1.95 | according to bound partner
HM 2.25 | according to bound partner

Tabelle 5.2: This table gives the values for the Lennard-Jones Radii in A and the solvation
enthalpies in kcal/(mol A 2).
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g|1 2 3 4 5 6

1] 0.375731 | 0.375731 | 0 0.143396 | 0.143396 | 0.043222

2 0.375731 | 0.161852 | 0.143396 | 0.143396 | 0.031012

3 0 0 0.161852 | 0.045452

4 0.143396 | 0.143396 | 0.043222

5 0.143396 | 0.031012

6 0.013097

. . ) . - . -1 _ 1
Tabelle 5.3: Parameters for the inverse group-specific di-electrical constants €0i)el) = €9()ei)"

Electrostatics

The electrostatics can be divided into contributions from the main- and the side-chain.

qi9;
Veie() = Vinain (7) + Vside(F) = ) —————
ele 7 side %: €0€g(i)g(5)Tij

They are included in a standard way with group-specific dielectric constants (here i, j repre-
sent the atoms included in the force field, ¢; and ¢; are the according partial charges, r;;
is the distance between these atoms, eg is the dielectric constant, eg;4(;) are group-specific
dielectric constants). The group specific dielectric constants are given according to different
types of electrostatic interaction. This represents the characteristics of the atoms as being part
of different amino acids and takes their specific partial charges, orientation or accessibility
to the solvent into account. This is a crude approximation to the real situation, as only the
interacting amino acids and not the complete environment is taken into consideration. The
parameters for g(i) and g(j) are given in table 5.4, the parameters for e o) = €4(j)g(i) are
given in table 5.3. This parameterization excludes some parts or even complete side-chains
(like PHE, GLY, MET, PRO) from contributions to the electrostatics.

The parameters for g(i) = 1,2 are used to describe the hydrogen bonding for the main chain as
dipole-dipole interaction. They are the biggest contribution from electrostatics. g(i) = 3,4,5
describe interactions of the partially charged OH, CO and N H; groups of the (ASN,GLN,
SER, THR, TRP)-side-chains, which are smaller in their contributions. The interaction of
the charged COO~ and NH;(CH of (ASP, GLU, ARG, LYS, HIS, TRP) are the smallest
contributions to the electrostatic interaction.

The electrostatics of the side-chains contribute only in minor quantities to the total free energy

of the protein.
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Amino acid | atoms potential | g
Main chain | N nl 1

HN hn 1

C co 2

CcO ol 2
ASN CG cp 5
ASN OD1 02 5
ASN ND2 n2 4
ASN HNA, HNB h 4
ASP CB cme 6
ASP CG cp 6
ASP OD1, OD2 02 6
GLN CD cp 5
GLN OE1 02 5
GLN NE2 n2 4
GLN HNA, HNB h 4
GLU C,CDG cme 6
GLU OE1, OE2 02 6
SER CB cme 3
SER oG ol 3
SER HOG h 3
THR CB cme 3
THR 0G1 ol 3
THR HOG h 3
TYR CZ cr 3
TYR OH ol 3
TYR HOH h 3
ARG CD cme 6
ARG NE nl 6
ARG HNE, HHA, HHB, HHC, HHD | h 6
ARG CZ cp 6
ARG NH1, NH2 nl 6
LYS CD cme 6
LYS CE cp 6
LYS NZ n3 6
LYS HZA, HZB, HZC h 6
HIS CB cme 6
HIS CG, CD2, CE1 cr 6
HIS ND1, NE2 nl 6
HIS HD1, HE2 h 6
TRP NE1 nl 6
TRP HNE h 6

39

Tabelle 5.4: The parameters for g according to the atoms of the different amino acids. Please

note that for all other atoms not listed above g = 0.
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Hydrogen Bonding

Though experimental measurements of the effects of hydrogen bonding on protein folding
vary with between —2.8kcal/mol to +1.9kcal/mol strongly [5, 77] it is generally considered
a vital contribution to protein folding[11, 124]. It is especially important for the formation
of secondary structure in proteins. Hydrogen bonding can be modeled as part electrostatics
and part Lennard-Jones as done in some versions of CHARMM or AMBER. However in
PFF01 hydrogen bonding and solvent interaction are considered the two major contributions
to protein folding. Therefore special emphasis is placed on also including some quantum-
mechanical effects not modeled by pure electrostatics in this classical force field.

When taking only the dipole-dipole interaction of the amino- and carboxyl-groups of the
main-chain, long-range interaction are overemphasized due to cooperative effects

0.38 - 0.28¢2 1 1 1 1
Vhydrogen—ij—dipole = +

4meey TC;H; TCiN;  TO;H; TO;N;

(1,7 counts the amino acids with 7 possessing the carboxyl- and j the amino-group, e equals
one elementary charge, rx;y; gives the distance of the atoms X from amino acid ¢ and Y from
amino acid 7). Since this cooperative effect gets stronger for longer helices, difficulties when
including this equation alone exist. Therefore an additional short-ranged corrective term for
hydrogen bonding was included. It takes the alignment of the hydrogen bond with respect to
the donor and acceptor groups into account[114]:

Vhb = AVhydrogen—ij—dipole + (1 - A)VvCOW"

(A gives the strength of correction between [0..1] with A = 1 meaning that the hydrogen
bonding is modeled by pure dipole-dipole interaction. PFF01 uses as optimal value A = 0.75.).

Veorr = Vo 3 R(ri,0;) Mg, Bij)

tj

(Vo = —2.12 kcal/(mol A ), « is the NHO angle, § the angle between the CO and NH-dipoles,
R(r) gives the radial and A(«) the angular depending part of the correction potential).

R(r) = s2.4,0.075()

sa,p(z) = % [1 _ tanh (x ;A)]

2 2
o B
30 24

2

A, B) = 845,5(0)840,5(83)51.5,0.05
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NHO-angle.

Abbildung 5.1: Definition of the angles «, 8,7 occurring in hydrogen bonding.

Solvation effect

Since PFF01 is a forcefield describing the free energy of a given protein the inclusion of the
effect of the solvent occurs in form of an implicit solvent model. Implicit solvent model means
that the movement of the individual water molecules is not simulated. Instead the movement
of the water molecules and the resulting hydrogen bonding between water molecules and
protein is included in an averaged way. Thus the contribution of the entropy of the protein
and of the dynamic system water/protein is slightly less accurate than in other force fields
including explicit solvent. However this simplification saves large amounts of computational
time in the simulation of the protein.

In order to estimate the contribution of solving the protein in water we use the idea that
each atom has different physical/chemical properties and interacts with water mainly by its
surface. On the surface two different kind of interactions are important:

e hydrophobicity, entropy of the water molecules

e entropic contributions from configurational entropy of the protein, esp. from the side-

chains

The first part is easily understood as contributions from the solvent. The later however de-
mands some thought. On the surface of the protein side-chains are less limited in movement
than in the inner part with its dense packing. Therefore moving a side-chain from the surface
to the inner parts of a protein gives a loss in configurational entropy. Since the main-chain is
much more limited in movement its contribution to configurational entropy is minor.

In experiments the transfer-energy for bringing a peptide from the apolar octanole to water
has been measured. Octanole represents the inner of a protein. Thus the transfer energy from
octanole to water should represent bringing an inner amino acid to the surface of the protein.
Following the thoughts of Eisenberg and McLachlan which are widely used in biophysics [31]

two main ideas arise:

e transfer-energy of each atom is proportional to its surface exposed to water
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Abbildung 5.2: Schematics representing the calculations of the SASA-surface of a protein by
rolling a water-sphere of 1.4 A radius over two atoms. Each point on the surface belongs to
the closest atom and contributes to its SASA-surface.

e transfer-energy of an amino acid is the sum of the transfer energies of the individual

atoms

In PFFO01 we first calculate the Solvent Accessible Surface Area (SASA) of the protein[66].
Water is treated as a sphere with the radius 1.4 A. This sphere is rolled over the protein
surface which is defined by the Lennard-Jones-radii. The area is defined by the the position
of the middle of the water-spheres. Each point of the surface belongs to the nearest atom of
the protein. The whole process is illustrated in Fig. 5.2.

The SASA’s of the individual atoms allow a summation of the transfer-energies:

AF = Z O'PT(Z)A(Z)

(i counts all atoms, PT'(i) is the potential type of atom 4, opy(;) gives the Atomic Solvent
Parameter (ASP) according to the potential types,A gives the SASA of the atom 7). The pa-
rameters o are calculated using the above equation using data from experiment. These data
are the transfer energies from tripeptides in the form Gly-X-Gly from water to n-octanole[33].
In [33] the above thoughts about dividing the solvent contribution into hydrophobic effect and
configurational effect are elaborated. N-octanole is large than water and limits the movements
of the side-chains much stronger. Therefore a correction has to be made since the configura-
tional contribution in n-octanole can be estimated to be effectively zero. Later works include
further corrections for volume of the different solvents and hydrophobicity of different proteins
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[111, 16]. During the development of PFF(1 the Lennard-Jones parameters have been further
optimized, it was necessary to recalculate new solvation parameters[48]. These are given in
table 5.2. Since these parameters are measured at 300K in experiment our implicit solvent
model is fized at the physical temperature of 300K.
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Kapitel 6
Stochastic Minimization

The determination of an appropriate free-energy function as in the previous chapter is only
part of the task for protein structure prediction. Equally important is the actual search for
the global minimum as demanded by the hypothesis from Anfinsen. In this chapter various
approaches for this task, called global optimization, will be presented. We search for the global
minimum by stochastic minimization. Different methods are presented.

In general stochastic minimization has many different applications, may it be the famous
traveling salesman problem or wiring electronic circuits[62]. Many of these problems belong
to the class of NP-complete (nondeterministic polynomial time complete) for which no method
for their exact solution is available for big system sizes[37]. One typical problem is the high
frustration of spin-glasses[79, 4, 14]. Another one are Lennard-Jones clusters which also have a
high number of frustrated minima[35, 28]. In these problems a solution via divide-and-conquer
like approaches is impossible due to the frustration of the systems. However in this chapter
we want to concentrate on the application of stochastic minimization to the protein folding
problem[113, 34, 116, 44, 105, 46].

6.1 Stochastic Minimization

6.1.1 Introduction

Different major challenges appear in the search for the global minimum in protein-forcefields:

e frustrated and rough energy landscape with many local minima that occur far apart in
configurational space

e high-dimensional energy space, which grows exponentially with system size !

e 1no higher symmetries applicable which may help simplifying the problem

'Even very small proteins like the trp-cage protein (pdb-code 1L2Y, 20 amino acids) have more than 50
degrees of freedom.

45
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Since the native structure of a protein is found by the actual folding process in the huge
conformational space one can expect that the topology of the space simplifies the search.
This idea leads to the so-called funnel hypothesis[15, 14, 27, 47, 89] which means that the
topology of the free-energy space has a bias towards the global minimum. A molecular dy-
namics simulation tries to follow the folding process from a starting configuration. However
today‘s computational resources seem not be sufficient to allow this approach for any but the
smallest and simplest proteins for simulations on a timescale similar to the folding times of
proteins[30, 112]. To predict the structure of bigger proteins further simplifications need to
be made. One idea is to disregard the actual folding process altogether and just look for the
ending point, i.e. the global minimum of the free-energy landscape. The analytical solution
of such a problem is obviously impossible for above reasons, i.e. system size and lack of sym-
metry. Also a pure random search failed due to the size of the configurational space and its
high frustration. Another approach are stochastical minimization methods[78] which will be

presented now.

6.1.2 The basic Idea: Monte-Carlo

Statistical physics allows to calculate properties of a system out of its probability density

function

PO = T gepr@

(¢ designates an ensemble of protein structures in conformational space, H is the Hamiltonian,
B = kBLT, kp Boltzmann constant, 7' temperature). This function gives each state a statistic
weight. By using the equation

<X >= / 47X (D)p(@)

one can calculate expectation values of observables out of this probability density function.
In order to find the native state we want to find the global minimum of its free energy:

F=U-TS=8"tIn<e >

Strictly spoken the native state is not a single configuration but the ensemble close to the na-
tive state in conformational space. One can neglect vibrational terms in the protein structure
by assuming they contribute similarly for all structures. Then the difference in the free-energy
AF between between two structures of a given protein is:

AF = AE — TAS,on

The conformational entropy depends on the amount of low-energy minima next to the investi-
gated structure. For densely packed proteins the core of the protein is strongly constrained by
the repulsion of the atoms. Therefore the major contribution between well defined metastable
conformations comes from the surface area of the protein in contact with the solvent. Ob-
viously a protein tries to move its hydrophilic side-chains to the outside and the hydrophobic
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Abbildung 6.1: Plot of the Metropolis criteria (acceptance ratio) Ppi4new versus the energy
E. %‘1 for different temperatures T = {0K, 50K, 100K, 300K,1000K} which are drawn
black, blue, green, red, yellow respectively. For all temperatures P4 new €quals one for z < 0

and is drawn in black only.

side-chains away from the solvent to the core of a protein.
Now the Monte-Carlo (MC) algorithm allows to get an approximation of p(¢). This approxi-
mation is done by creating conformations §; with their weighted probabilities:

P@) _ (@) 1)

p(d;)
The theory of Markov Chains and the Metropolis algorithm helps in understanding its impli-

cations.

Markov Chain

The Markov Chain is a general concept often applied in computer science or numerical
systems[39]. The sentence the future depends on the past only through the present gives its
basic idea.

A short elaboration is as follows: Consider a set of states (also called sites) {S;} and transition
probabilities between these states p;; with Zj pij = 1. Thus p;; gives the probability leaving
state s; (or simply 7) and entering state j. When we now generate a sequence of states at
discrete times k the state at the time k£ + 1 only depends on where we are at the time k£ and
the transition properties p;;. The state at the time k£ — 1 is not important at all for the time
k+1.

Metropolis algorithm

We start a fictitious dynamical process in the configurational space, which shall sample confi-
gurations according to their thermodynamic relevance. We start at a random configuration g;,
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1 = 1 and apply a perturbation, or, in other words, a slight random change to the configuration
to generate a structure gpey. This structure gpey is accepted according to the probability

Pygnew = min (1, e B(Enew— old))

(Metropolis criteria, compare figure 6.1). If ¢pey is accepted Gj11 is equal to Gpew €lse Gi41 is
the same as §; = §,q- In this way we generate a chain of configurations {¢} and can calculate
expectation values as

In the limit of an infinitely long walk the sampling gives an appropriate description of the
important regions of the conformational space. The time average of < X > gives the expec-
tation value for X provided the free walk is ergodic. Therefore we do not have to save all
configurations {¢} but only the {X(q)}.

The Metropolis criteria fulfills the criteria of detailed balance. Both detailed balance and er-
godicity have their origin in statistical physics. Ergodicity means that each region of the
conformational space must be reachable by the algorithm. The probability for the dynamic
process MZZ]V reaching from configuration i in N steps the configuration j is:

N _ ; )
M;; = E Mg, My ey oo My kg Mgy

k1,k2,....kN
with
. — 1 FiaCi for i # j
1] — . .
I 1= Poi fori=j

(C;; probability for suggesting change from state 4 to j). To fulfill the demand for ergodicity
MZJJV > 0 has to be true for all 7, j with N > 0.

Detailed balance is a sufficient, but not necessary condition that all states or configurations
of the system appear according to the probability density distribution p(q):

Miip(qi) = M;ip(q;)

For very long random walks
p(q) = p(q) = limn—woMi?}

is valid.

The Monte-Carlo method can be therefore shortly described as specific Markov-chain using
the Metropolis algorithm. Figure 6.2 shows a sketch of an implementation. MC can be applied
in two different ways. One application calculates the expectation values or generates the p at
certain temperatures 7. In another application MC samples low-lying minima of the given
forcefield.
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Start with random configuration End: evaluation of simulation
A
Configuration @, energy E ~——| Increase step-number n or end
Random change Saving of values for step n
Trial configuration @', energy E'

|

Acceptance by criteria e #AF Discard of Q' Q' replaces Q

| |
Yes No

Abbildung 6.2: Simple flow diagram of a Monte-Carlo simulation. Please note that then end
of a Monte-Carlo simulation is only defined by the number of steps N for the simulation. This
number has to be sufficiently large to sample the conformational space.
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Remark on Temperature

In standard (equilibrium) thermodynamics the probability for finding a state is proportional
to the weight e #F (8 = 1/(kgT) with kp the Boltzmann constant and T' the temperature).
By applying MC to calculate expectation values the temperature in the MC-algorithm the-
refore defines a physical temperature.

However it is important to note that some forcefields, such as the forcefield PFF01, include
parts which are fixed at a certain temperature such as the implicit solvent model of PFF01
which is parameterized at a temperature of 300K. Often there is a non-trivial and unknown
dependence of the forcefield parameters on the temperature, which therefore cannot be easily
changed during simulation. In this case we have two different temperatures: the physical tem-
perature, for which the forcefield was parameterized, and the temperature of the optimization
algorithm. In this case the temperature of the algorithm loses its physical meaning.

Many Monte-Carlo based optimization algorithms change temperatures during the simulati-
on. If this change is non-adiabatic one must carefully consider the specific meaning of the
temperatures. In the course of this chapter we do not apply non-equilibrium thermodynamics
but use the temperature just as a tool for finding global minima. Therefore the temperatures
used by stochastic optimization methods have often no physical meaning.

6.1.3 Simulated Annealing

Simulated annealing (sa)[62] generalizes the concept of Monte-Carlo simulations to optimi-
zation problems. While during a Monte-Carlo simulation one stays at the same temperature
for the duration of the simulation simulated annealing tries to copy the natural relaxation
process in which complex structures are annealed, e.g. in the way a liquid or metal freezes.
We want to find the global minimum of the potential energy surface. Therefore we replace
the temperature T' at which a Monte-Carlo simulation is run with a fictitious temperature 7T,
which may change during the simulation at each step n. This fictitious temperature influences
the Boltzmann acceptance of new configurations. We start at a very high temperature which
is lowered during the duration of the simulation to adopt a specific final temperature. A high
temperature allows to overcome barriers separating local minima while a low temperature
confines the search to low-energy conformations. The idea of cooling down like in nature ex-
periences often the problems associated with the high frustration of protein forcefields (like
in spin-glasses).

The idea is to cool the system slow enough that the thermodynamic equilibrium is conserved
(adiabatic cooling). Using the theory of Markov-chains one can prove that it is possible to
generate a cooling schedule which guarantees finding the ground state:

Bn <€-ln(n),n € N

(for € small enough). For practical reasons this is far too slow since the necessary evaluation
of the forcefield at each step of the simulation adds up in taking a lot of time. For faster

temperature reduction one quenches the system which may cause entrapment in local minima.
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Therefore it is always necessary to run not single but many simulations to overcome these

entrapments. A geometric cooling schedule, i.e.
:Bn = ;80 : an’n € {1a27 "'aN}a

is often used, containing the specific parameters «, 8y, and N. The optimal parameter choices
depend on the problem and it is often a matter or trial-and-error to find good parameters as
the transferability of the parameters to other optimization problems is very limited.

6.1.4 Freezing Problem

One central problem which arises during stochastic optimization of a system is the freezing
problem. Standard sa experiences it strongly since quenching the system by quickly decrea-
sing the temperature often entraps the algorithm in local minima without finding the global
minimum. To understand this one has to remind oneself that a frustrated potential energy
surface is characterized by many local minima which are separated by high barriers.

To sample low-energy conformations and explore a minimum throughly downhill movement
which is connected to low temperature is needed. But at the same time this prevents the algo-
rithm from leaving these local minima due to the high barriers surrounding them. Therefore
the algorithm experiences freezing.

To escape local minima and overcome the high barriers one has to allow uphill movement on
the potential energy surface which is connected to high temperatures. However at the same
time high temperatures limit local optimization.

This competition between local optimization and need to overcome high energy barriers is the
central problem of stochastic optimization. Sa tries to solve it by starting at high temperatu-
res to overcome possible barriers and then quickly lowering temperature to explore possible
minima. However this often leads to local entrapment in case of strong frustration without

any chance of leaving a minimum again.

6.1.5 Stochastic Tunneling

Stochastic Tunneling (stun) [126] tries to overcome some of the encountered difficulties with
the frustration of the forcefield. The optimized function is subjected to a dynamic nonlinear
transformation. For sake of simplicity we speak of an energy to be optimized although stun
may also be applied to other problems.

E! =1— ¢ (En=Eo)

(E,, current non transformed energy at step m, Fy equals the best estimation of the global
minimum so far). In stun the conformational space is explored by a dynamic process on a
transformed potential energy surface. This resembles a normal MC with a Boltzmann accep-
tance not on AE but on AE’. Whenever a new lower energy is encountered Ej is set to this
new value. What this transformation now does is lowering high regions in the energy landsca-
pe while at the same time emphasizing deeper lying regions stronger. This allows to overcome
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high-energy barriers which are difficult to overcome in simulated annealing simulations or
comparable optimization schemes. In total local entrapment is reduced. An illustration is
shown in figure 6.3. Since the stun transformation limits the energy-surface to values € [0..1]
it cannot use the same temperatures as sa simulations as obviously visible by looking at the
Metropolis-criteria.

Applying this mechanism to protein folding showed the problem that high-energy regions
are, once a low-lying minimum has been found, practically equal to 1. They lose any gra-
dient showing in the direction of lower-lying structures. The landscape becomes golf-course
like, meaning it is practically flat and one can find the hole in it only by luck. Therefore we
adjusted the transformation slightly to have a stronger gradient also in high-energy regions
[105]:

By = tn (Y(Fn — Bo) + V(B — Bo)? +1)

The comparison between the two different transformations are shown in figure 6.4, where the
second transformation has been slightly modified to ease optical comparison. Both transfor-

mations need different values for 7.

6.2 Basin Hopping

This version of the basin hopping (bh) is a slight variation from the original idea [125, 29, 103].
Basin hopping simplifies the potential energy surface by mapping local points corresponding
to local minima. OQur version uses many subsequent sa-simulations with slightly changing
parameters between two runs. Each sa-run starts at a high-temperature and cools down to
a low temperature within N-sa-steps. This allows to overcome energetic barriers at high-
temperature and good local minimization during the low-temperature part of the simulation.
The exact values depend on the forcefield, for PFF01 the starting temperature were in the
range of 600K..1000K, with final temperatures being in the range of 1K..5K. After each such
sa-simulation using these temperatures bh decides whether to keep the ending configuration

by a simple comparison with the energy before the run via a threshold:

Epefore sa — Pafter sa > Pthreshold

If this criteria is met the ending configuration becomes the starting configuration of a new run
else it is discarded. One such sa-run with following threshold-acceptance is a single bh-step.
Basin hopping is now a multitude of these bh-steps following each other. It proved efficient to
increase the number of simulation steps in sa for later bh-steps. For the threshold values in
the range 3(kcal/mol)..5(kcal/mol) proved optimal. When no further gain in energy for many
subsequent bh-steps is noticed the lowest energy and corresponding conformation is taken as

good approximation of the global minimum.
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(R ALYV

Abbildung 6.3: In black a fictitious energy function is shown. This energy function is dynami-

cally transformed during a stun-simulation. When stun has found no lower energies than the
blue dot the energy function is transformed to the blue function. When stun finds new lower
energies the function gets dynamically transformed. When the low-lying energy at the green
dot has been found the new effective energy function is shown in green. Please note that it
becomes easier to overcome higher energy regions as lower energies are found. Here v equals
unity.
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Abbildung 6.4: Comparison of different stun-variants. The x-axis shows F,, — Fy and the y-axis
the transformed energy. In black and blue is the original transformation E, =1 — e~V(En—Eo)
with v = {1,2} respectively applied. In red and green (according again to v = {1,2}) is
E! =03-In (5 -Y(Ey — Eo) + /5 -v(En — Ep)? + 1) shown as transformed energy. The
important change is taking away the limitation of the transformation being € 0..1 therefore
allowing a gradient for higher values F,, — Ey and avoiding golf-curse scenarios.
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6.3 Genetic Algorithms

Genetic algorithms (ga) have been successfully applied to other optimization problems like
the Traveling-Salesman problem[64] or Lennard-Jones clusters[127]. There have also been
approaches applying it to simplified protein models[23]. Genetic Algorithms try to emulate
natural selection by optimization of a target. First we seed a starting population, consisting
of individuals. At each step this set of individuals is sorted according to a fitness function.
Now this set of individuals is slightly changed. One way of changing is exchanging genes (in a
meaning of attributes) between different individuals called crossing. Another possible change
is a random mutation to an individual. Afterwards the fitness function is applied again and
the whole procedure continues.

We applied a genetic algorithm to protein folding. As fitness function we took simply the
energy in the forcefield PFF01 after short local relaxation. The genes of each individual were
its dihedral angles or its secondary structure in form of constraints. However we ran into
several problems. Most important was the frequent clash of conformations after crossing.
Proteins are very densely packed and in almost all cases the repair of the atomic clashes was
impossible rendering the individual unfit. Another problem was the needed long relaxation
time even for non-clashing conformation making a quick test of the fitness of a new individual
a time-consuming step. In total we did not succeed in protein folding using genetic algorithms
even on small proteins like the trp-cage (pdb-code 1L2Y") with its 20 amino acids.

6.4 Distributed Computing: Server-Client Model using Screen

Savers
Aims

In protein folding the use of large amounts of computational power is required. Therefore
not only single CPU’s or dedicated computer clusters could be used but also desktop com-
puters with Internet connection in case of free resources (for example during the night). This
approach to protein folding is pursued by the group of Pande (folding@home)[128] who use
screen savers to do molecular dynamics simulations on proteins. In this they followed the idea
of seti@home[119], one of the first attempts gathering distributed computational resources on
a global scale.

We applied a similar implementation as server-client model. In this approach a central server
administrates the organization of the simulations run on the clients. Some important questions

are:
¢ What is an efficient scheme for running simulations?

e How to deal with problems of stability of the network? How to deal with interrupted

simulations or clients which are removed from our network?
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e Most people would allow screen savers to run on their computers as long they do not
save data and do not access local files. Which kind of optimization method can work
with these restrictions?

Implementation of the method

First a set of N starting structures {1..N} is created on the server sorted by total energy. Each
time a client connected to the server indicating is has free resources, one structure ¢seected
was selected out of this set and a sa-simulation started on the client. It has shown efficient
to increase the number of steps during these sa-simulations. So later sa-simulations get an
increased number of steps compared to earlier ones.After the simulation finishes the resulting
structure ¢’ is structurally compared against the set of structures. A comparison structure
out of the set of starting structures is chosen. First the structure is found with which ¢’ had
the lowest RMSD-values. If this value is not below a threshold, the structure highest in energy
was instead chosen, so one gets a comparison structure §¢; either by closeness according to
RMSD or because it is the structure worst (highest in energy) in the set. Now the energies
E(d') and E(q;) are compared and in case ¢ has the lower total energy it replaces g;, meaning
the losing structure is discarded. This process is repeated for a sufficient time to find low-lying
energetic structures. In case a client running a job is not responding for a defined amount
of time the corresponding calculation is given to another client again. Due to the nature of
stochastic optimization this ending is ill defined. Is is assumed that when for a long time,
i.e. many subsequent sa-simulations, no further gain in energy was noticed a continuation of

further simulations would make no sense. Therefore the simulations is then stopped.

6.5 Energy Landscape Paving

Energy landscape paving[45] (elp) is a stochastic optimization method which tries to avoid
entrapment in local minima. By performing Monte-Carlo simulations with a modified energy
expression the search is subtly steered away from regions in the energy space already visited:

w(E') = BT, B'(@) = B@) + {(Hp(@).1)

W is the weight of a configuration, 7" a (sufficient low) Temperature, ¢ a configuration of the
protein, E’ the modified energy expression of the energy E and f a function of the histogram
H(p(q),t)) which is depending on a pre-chosen order parameter p(q). We tested several para-
meters g like total energy, helicity and radius of gyration. Most successful proved the helicity,
as shown in the next chapter[109].

6.6 Adaptive Parallel Tempering

The parallel tempering technique was developed to overcome difficulties in the evaluation of
thermodynamic observables on rough energy surfaces|76, 70] and on protein folding [43, 10]. It
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is related to the replica exchange method and was previously applied to molecular dynamical
simulations[69, 100]. The idea of parallel tempering (pt) is to perform several concurrent
simulations of different replicas of the same system at different temperatures and to exchange
replica (or temperatures, which results in the same effect) between the simulations. Therefore
it allows to gain knowledge about thermodynamic expectation values over a wide range of
temperatures at the same time, as all simulations are in thermodynamic equilibrium with
regard to their specific temperatures.

The probability of exchange between two replicas is

P = min(1,e” i ~5)(E; — E;))

(By = 1(kyT,), T, the temperatures and FE, the energies of the replicas). This exchange
mechanism allows to overcome energetic barriers between metastable conformations for low-
temperature simulations. It guarantees that all simulations (replicas) remain in thermodyna-
mic equilibrium at their temperatures. The range of temperatures is selected on basis of the
system and its configurational space.

We want to use parallel tempering as an optimization technique. For the simulations on prote-
ins we used a span of temperatures between 2 and 600 K which allowed both local optimization
and a wide search of the configurational space.

The lowest temperature in general yields the best estimation for the global minimum while the
higher-temperature-replicas are needed to find new conformations. The computational effort
rises linearly with the number of replicas and the efficiency of pt therefore decreases when
more than the minimally needed number of replicas is used. Investigations on protein folding
with pt showed that the standard implementation is inferior to basin hopping[52, 51, 83]. The
major problem is that a high gap in energy between adjacent replicas results in prohibiting
exchanges between these temperature levels. This can happen between several replicas and
renders pt much less effective. One can imagine this effect as transforming pt into some kind
of independent MC-simulations at fixed temperatures.

Therefore we developed two mechanisms to overcome these difficulties in standard pt. One
is an adaptive temperature control. We monitored the rate of exchange between adjacent
temperatures. If the exchange ratio between temperatures ¢ and i + 1 was below 0.5% all
temperatures above T; were lowered by 10% of the difference t;1 — t;. If the exchange ratio
exceeded 2% the opposite mechanism took place and all these temperatures were increased
by the same amount.

The low-temperature states tend to find near native conformations but sometimes the over-
come of barriers by exchange between neighboring levels can be slow or cyclic (A exchanges
with B and later with A again with no other structures involved). A second mechanism which
further increased the efficiency of apt was the introduction of a replication step. Every 250,000
simulation steps the lowest-energy information replaced the conformation at the highest tem-
perature and was kept at the highest temperature for 10,000 steps with no possibility of
exchange. The latter was necessary to keep it at this temperature for a short time in order to

allow some structural change, otherwise it directly and rapidly falls down the temperatures
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again. This replication step allowed an alternative possibility to overcome barriers and results
in a rapid and large-scale exploration of the configurational space close the presently best

conformation.



Kapitel 7

Prediction of tertiary structures
with PFFO01

We investigated whether the forcefield PFF01 [53, 48], presented in chapter 5, was able to
predict the native structure for proteins of different sizes starting from random initial con-
ditions. Random initial conditions means that the starting structure has no clashes of the
atomic shells but otherwise totally randomized dihedral angles. We applied different stocha-
stic optimization methods finding that the structure with the lowest minimum found in the
simulations was equivalent to the native state of each protein. A summarization about the
folded proteins is given in table 7.1. These proteins are from different protein families and
show little or no sequence identity. They all include high amounts of helical content. In this
chapter we focus on proteins for which we have run sufficiently many simulations to obser-
ve reproducible folding. Other proteins like 1IENH have also been investigated, but no long
enough simulations from random starting conditions have been made so far to predictively
find the native state. Given the high computational costs for these simulations as shown in
table 7.1 we concentrated on selected proteins spanning a range of families in the possible
folds of proteins. Four out of five helical proteins investigated have been successfully folded
ab-initio from random starting conditions. In one case, Protein A (1BDD), the energy gap
between the folded state and with an RMSD-B of ~ 9 A dissimilar unfolded state is too small
to consider 1BDD ab-initio folded in PFF01. However also for this protein the best estimati-
on for the global minimum known is in the native folded state starting from initial random
conditions. Attempts to fold the protein 1BHI which contains a [-sheet failed by resulting
in non-folded conformations better in energy than those similar to the native state. This is
presented in figure 7.1. We conclude that PFF01 must be re-parameterized for prediction of
[-sheets.

To date PFFO1 is the only bio-molecular forcefield which is able to stabilize several proteins
in their respective native state. Even more PFF01 is not only stabilizing these proteins but
predicting their native state from random initial conditions.

The simulations reported here validate the forcefield PFF01 against experimental data for se-

59
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Protein PDB-Database | # Amino acids | RMSD-B | Costs
entry
Trp-Cage Protein 1L2Y 20 2.83A | 1/2
HIV-Accessory Protein 1F41 40 2.46 A 3
Villin Headpiece 1VII 36 3.65 A 4
Bacterial Ribosomal Protein L20 1GYZ 60 464 A 40
Protein A 1BDD 60 2.69 (*) | N/A

Tabelle 7.1: This table lists the proteins folded from random initial conditions with the for-
cefield PFF01. The RMSD-B gives the RMSD of the backbone of the structure with the
lowest energy found to the native structure. In case of multiple native measurements like in
NMR measurements the first structure given in the PDB database given is taken. The last
column gives the computational costs in accumulated CPU-years of standard off-the-shelf PC
(around 1GHz) for the described simulations. Protein A is a special case, as described in
the text. By now the energy gap between the folded state and a dissimilar unfolded state is
with = 1kcal/mol too small to say with certainty that we found the native state in ab-initio
prediction.

veral different proteins. Although not suitable for B-sheets this result demonstrates the effec-
tivity and feasibility, given present day computational resources, of protein tertiary structure
prediction using an all-atom free-energy forcefield During the optimization of these prote-
ins different stochastic optimization methods were tested and refined with regard to protein
structure prediction. We always noted a competition between good local optimization which
usually meant low temperatures for the optimization technique and high temperature for an
thorough investigation of the folding space. The previous chapter introduced basic concepts
of minimization techniques. We want to explain their application and adoption on the specific
problem of protein folding.

7.1 Test on theoretically modeled Ala,g — Gly; — Alaqg

This polypeptide is an artificial model. It has been modeled in simulation with ECEPP2[2].
Experimental data are not available for this polypeptide chain. However the limited size of 25
amino acids and its very easy sequence incorporating only two different kinds of sidechains
suggests it to take a two helix structure. In our simulations it quickly folded from random
initial conditions (using standard sa). It took a two helix structure with the bend lying in
the Gly region. When simulating without solvent we got a single long helix in contrast to the
Simulations of [2], which got the two helical structure also in vacuum. We conclude that our
forcefield stresses hydrophobicity more strongly than ECEPP2.
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Abbildung 7.1: Shown is on the left an overlay of the native structure (red) and the best
structure found during the simulations for the protein 1BHI. The RMSD-B is 4.75 A , which
is already pretty high for a protein with only 38 amino acids. In addition one can easily
see on the picture both slightly different topology and a different secondary structure of this
protein in the S-sheet part. The competing structure in blue indicates a possible bias of PFF01
towards helical structures and is typical for unfolded structure we gained for 1BHI. On the
right the according Cg matrix is shown. One can see the good agreement in the helical part
and the almost white part where the -sheet lies indicating no high agreement there.

Abbildung 7.2: Structures gained in simulations with PFF01 for the polypeptide Alaiy —
Glys — Alayy. The lowest energy structure is shown on the left. The structure on the right
is worse in energy using the implicit solvent term of PFF01, but wins in vacuum. Overlay

pictures or a Cg matrices are not possible since no experimental data are available.
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Sequence & Weight | # Atoms | # Atoms | RMSD-B
secondary structure in PFF01
NLYIQWLKDGGPSSGRPPPS | 2151D 304 189 2.83 A
CHHHHHHHCCHHHHCCCCCC

Tabelle 7.2: The basic data about the trp-cage protein 1L2Y. The structure is given in 1-
letter-code, the secondary structure in 3-state-code. The RMSD — B are between the best
folded structure and the experimentally measured structure. It consists of two helices which
are separated by a small coil region. The three prolines close to the C-terminus prevent helix-
formation in this part of the protein.

7.2 Trp-Cage Protein

With 20 amino acids the trp-cage protein is very small. The sequence of this protein was
artificially modified to generate a fast folder whose folding speed was measured to be 4us
only [84, 96]. It has been subject to many investigations and successfully folded in both
MD([112] and free-energy-minimization simulations[105, 107, 104].

The basic data about this protein are given in table 7.2.

Due the small size of this protein we tested several folding methods with regard to their

efficiency on this protein and refined them further.

7.2.1 Stochastic Tunneling

The basic idea of stun is flattening a rough landscape with high barriers between local minima
in all regions which lie significantly above the best estimate for the global minimum Fy in order
to search for the global minimum [126]. This can be understood since at finite temperatures
the dynamics of the system become diffusive for £ >> Ej independent of the relative energy
differences- which can be called tunneling through energy barriers. The applied transformation
was:

Espun1 (E) = 1 — e~ 71(F=F0)

Applying this original transformation to protein folding proved difficult. As soon as the first
atoms clashed this transformation created a golf-course landscape. Further clashes gave no
increase in energy due to the strong non-linear transformation. The entire clashing conforma-
tional space becomes a featureless plane with no gradient towards non-clashing conformati-
ons. Attempts to find applicable values for v or lowering the temperatures gave no satisfying
results. A typical simulation is presented in plot 7.3. Therefore we searched for new transfor-
mations. The important characteristic was the inclusion of a gradient also for high energies.
This should ensure that there is a mechanism for returning to non-clashing conformations
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Abbildung 7.3: Typical simulation with the original stun-transformation Fgy,1(E) = 1 —
e V(E—Eo) Tp the upper plot the total energy in kcal/mol is plotted on the vertical axis. In
the lower plot the transformed energy is shown. This transformed energy has no dimension.
The horizontal axis gives the number of steps. It can be seen that after some time stun
only continues to tunnel and does rarely go back to low energies for local optimization. This
problem did not appear in the modified stun-transformation. During this simulation the native
state was not found.
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easily. The transformation which proved best was

Estuns(E) = In (y(E — Eo) +V(E—Eo)® + 1)

in connection with changing the temperature for the optimization between low-temperature
local search and high-temperature global search/tunneling phases[105]. Finally we ran a si-
mulation with the optimized parameters (v = 0.5(kcal/mol) !, T adjusted during the simu-
lations as described later). We ran not a single but in total 25 simulations for one week each
on standard CPU’s (= 1GhZ) which corresponds to about 12,500,000 steps. As seen in table
7.3 6 out of 25 simulations resulted in estimates of the global minimum within 1kcal/mol
of the best energy found. All of these 6 give a good estimation of the experimentally found
NMR-structure (the first two were closer than 3 A RMSD-B). However even for this small
protein the best energy found in the individual simulations still spans a wide range. Therefore
it is necessary to run a multitude of simulations to gain a reliable estimation of the global
minimum.

As an example for one of these runs the simulation resulting in the best estimate of the global
minimum is shown in figure 7.6. Whenever a new lowest energy Fj is found the dynamic
transformation changes the effective energy to zero. This graph also illustrated the alteration
between low temperature local searches and high temperature tunneling phases. Whenever a
new promising local minimum was found an adaptive temperature algorithm slightly lowered
the temperature to facilitate finding the local minimum. Afterwards, when no further gain in
energy was expected, a tunneling phase was initiated in which a slight rise in temperature
enabled the stun-transformation to overcome high-energy barriers again. After some time the
temperature was lowered again to begin a new cycle starting with local optimization via low
temperature.

This approach results also in a large scale exploration of the conformational space. The
tunneling sometimes initiates a transition to a new and very different local minimum. This
exploration is needed to ensure a reliable search for global minimum and presented in figure .
When carefully comparing between predicted structures in the forcefield and experimentally
determined native states one sees that the secondary structure is predicted with high accura-
cy. The first helix from residues 1-10 is almost always predicted correctly and the second helix
from 11 to 14 often. The end of protein is quite sloppy and dominated by 3 helix-breaking
prolines. This part is most of the time correctly predicted as coil. In almost all simulations it
shows that the last 2 residues bend to the back as shown in the overlay picture 7.5. This can
be understood since a helix leaves little place for conformational deviations. A coil however is
more free and obviously the forcefield has difficulties in arranging it in the native orientation.
The NMR-measurement shows also that this coil region of the protein is not fixed in place.
When comparing these results to MD simulations [112] also using implicit solvent we gain a
comparable degree of accuracy. Explicit solvent simulations reach a higher degree of accuracy
but cannot be applied in the optimization approach since the entropic contributions of the
solvent must be parameterized. Therefore the application of the implicit solvent model may
be the factor limiting the precision of prediction with PFFO01.
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Abbildung 7.4: The vertical axis plots the RMSD-B to the native structure (upper) and the
helical content (lower) during the stun-simulation resulting in the best estimation of the
global minimum. The horizontal axis gives the number of steps in 1000s. It can be seen that
tunneling events happen (esp. after 9 Mio steps) resulting in strong changes in structure. Also
during the beginning of the simulation first the long helix close to the N-terminus forms while
the second helix forms much later after the tunneling event.
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93 %)

Abbildung 7.5: Upper picture: To the left an overlay of the native structure (red) and the
best structure found during the simulations is shown. The right presents an overlay of the
native structure (red) and the misfolded structure (*) (blue) in the table 7.3 missing the
second helix. One can see the difficulty in stabilizing the sloppy C-terminus. Lower picture:
The according Cg matrices.
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Abbildung 7.6: Total and effective energy in the simulation resulting in the best estimate of
the global minimum for the trp-cage protein using stun. The energy is given in kcal/mol,
the effective energy has no dimension. The horizontal axis gives the number of MC-steps in
millions. Due to the nature of the dynamic transformation whenever a new lowest total energy
is found the effective energy becomes zero.

In total stun applied to the force field PFF01 is able to predict the native state of the trp-cage
protein. By running a multitude of simulations reliable results are gained since the energy

gives a rational criterium for interpretation of individual runs against each another.

7.2.2 Adaptive Parallel Tempering

To test the efficiency of adaptive parallel tempering (apt) we performed a series of apt-
simulation with 4,8,14 and 30 replicas starting in all replicas with random conformations at
high temperatures [107, 104]. We investigated the optimum number of temperature levels (re-
plicas). Starting with high temperatures gives no bias and further demonstrates the feasibility
of the adaptive temperature control.

One such simulation is shown in figure 7.8. After an initial short period of relaxation the
temperatures converge to stable levels which only slightly fluctuate during the simulations.
The touching of the energies from neighboring replicas indicates exchanges between them.
During these simulations the structure with the lowest energy found is in excellent agreement
with the native structure (see figure 7.7) with a RMSD-B value of 2.01 A .
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Energy | RMSD-B-1 | RMSD-B-2 | Secondary structure
19.29 2.61 0.00 CHHHHHHHCCHHHHCCCCCC
-25.73 0.00 2.61 CHHHHHHHHCHHHHCECCCC
-25.79 1.81 2.83 CHHHHHHHHCHHHHCCCECC
-25.31 2.52 3.05 CHHHHHHHHCHHHHCCCCCC
-25.25 2.55 3.13 CHHHHHHHHCHHHHCCCCCC
-25.25 3.30 4.26 CHHHHHHHHCCHHHHCCCCC
-25.24 2.56 3.13 CHHHHHHHHCHHHHCCCCCC
-25.15 2.57 3.13 CHHHHHHHHHHHHHCCCCCC
-24.15 3.98 4.80 CHHHHHHHHCCECCCEEECC
(*) -24.06 4.43 4.73 CHHHHHHHHCEECEEECCCC
-23.99 | 4.50 4.95 CHHHHHHHHCCEECCECCCC
-23.64 | 3.50 3.86 CHHHHHCCCHHHHHCCCCCC
-23.64 3.70 4.54 CHHHHHHHHHCCCCEECECC
-23.45 2.58 3.18 CHHHHHHHHCHHHHCCCCCC
-23.30 2.96 3.83 CHHHHHHHHCCHHHHCCCCC
-23.27 2.51 2.72 CHHHHHHHHCHHHHCCCCCC
-22.82 4.67 4.73 CHHHHHHHHEECCCCCCCCC
-22.53 3.66 4.37 CHHHHHHCCEHHHHHCCECC
-22.49 5.10 4.87 CHHHHHHHHCCCEEEECCCC
-22.45 4.01 4.59 CHHHHHHHHHCEECCCCCCC
-22.23 | 4.68 5.08 CHHHHHHHHCEEECCECCCC
-21.27 3.43 2.88 CHHHHHHHHCHHHHCCECCC
-20.31 5.63 5.77 CHHHHHHHHHEECCCCEECC
-20.20 3.57 4.37 CHHHHHHHHHCEECCEEECC
-20.16 3.22 3.31 CHHHHHHHHECHHHHCCCCC
-19.82 | 3.78 3.89 CHHHHHHHHHCCCCCCCECC
-18.70 4.64 4.83 CHHHHHHEEEHHHHCCCECC

Tabelle 7.3: Overview of the lowest energy conformations found during 25 stun-runs. The first
two lines give data for the original/relaxed NMR structure. Energies given are in kcal/mol.
The RMSD-B are to the relaxed NMR (1) and the NMR-structure (2) and given in A .
The secondary structure was generated with DSSP and further refined to 3-State structure.
Structure (*) is presented as example for a misfolded structure in figure 7.5.
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# Replicas | # simulations | # simulations converged

to native conformation

4 ) 1
8 4 2
14 1 1
30 1 1

Tabelle 7.4: Results of the adapted pt runs with different number of replicas. Converged
to native conformation meant within 2 kcal/mol of the best known estimate of the global
minimum and an RMSD-B value smaller than 3 A . Simulations with low number of replicas
(< 8) are not as reliable as the simulations with higher number of replicas (14 or 30).

Table 7.4 evaluates the simulations with different numbers of replicas. The simulations with a
small number of replicas < 8 all had difficulties to converge. This can be rationalized, because
high and low temperatures are both needed in the simulations to make sure local optimization
as well as large-scale searching of the conformational space is done.

The dependence of the error of the simulation (energetic difference to the best known esti-
mation of global minimum) and their dependence on the number of replicas is not surprising.
Higher number of replicas yield a lower energy. We find kind of exponential convergence of the
method. A small number of replicas means that the simulation depends on rare events. Such
simulations get trapped in metastable local minima which are hard to leave without sufficient
exchange with other temperature levels. This interpretation is further underlined by table 7.4
since simulations with a low number of replicas tend to be unreliable (getting stuck in these
local minima). For larger number of replicas the reliability of the method increases until satu-
ration with 14 replicas. In the 30 replicas-simulation many replicas have temperatures below
1K and optimize only locally. After relaxation the remaining temperatures obey a geometric
distribution which is often applied in regular pt simulations.

7.2.3 Energy Landscape Paving

Energy landscape paving (elp) is one approach to overcome the multiple minima problem.
It does so by performing low-temperature Monte Carlo simulations with a modified energy
expression that steers the search away from regions already explored:

Eelp =FE+ f(H(qa t))

(f is a function weightening the histogram H(g,t) which depends on pre-chosen order para-
meters g and the time t). It follows that the probability of leaving a local minimum increases
with the time spent there. The histogram is biasing against re-visiting regions already visited
before.

We investigated elp on the trp-cage protein [109] for the histogram-function f(H(q,t)) =
cH(q,t) with ¢ being a free parameter. We chose different order parameters ¢ and varied
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Abbildung 7.7: To the left an overlay of native (red) and best folded structure (blue) during
the pt-simulation with 30 replicas of the trp-cage protein. They differ by an RMSD-B value
of 2.55 A. To the right the according Cg-matrix.

the strength of c¢. The simplest and most obvious choice for ¢ is the energy E. However
for a given energy different configurations of a protein exist. Therefore we also investigate
other parameters and combinations of them, like amount of helicity in the protein, energy
and helicity, energy and radius of gyration, energy and end-to-end distance or helicity and
end-to-end distance. In addition the temperature 1" was varied during the simulations. We
quickly learned that the deletion of the whole histogram when entering the high-energy re-
gion (E > 40kcal/mol) or finding a new local minimum improved the performance of elp.
The first re-setting ensures that the system loses all memory of its previous exploration after
reaching the high-energy region while the latter increases the time spent on exploring a new
local minimum.

In any good global optimization technique the goal is to explore low energy configurations
without getting trapped in local minima. Elp accomplishes this task by temporary smoothing
locally the energy landscape. The resulting walk into and out of local minima can be seen in
figure 7.9a where we show a typical elp run of the trp-cage protein. Here, we have chosen the
energy itself as order parameter, i.e. f(H(q,t) = cH(E,t), and T = 5 K. The simulation goes
over 10" MC updates. Besides the “physical” energy E we show also the paving term cH (E, t)
(with ¢ = 0.05). As the simulation progresses, the system, driven by the low-temperature,
may fall into a local minimum. But unlike a canonical low-temperature simulation it will
not become trapped as the paving term cH(E,t) increases the longer the system stays in
this local minimum. Hence, the effective energy barriers decrease and the system will finally
escape continuing its search for different local energy configurations. As a consequence, the
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Abbildung 7.8: Energies (upper plot in kcal/mol) and temperatures (in K) of the 30 replicas
adapted parallel tempering simulation of the trp-cage protein plotted against the number of
steps. Each color stands for a different temperature level. The closeness of the energy-levels in
the upper plot indicate high ratios of exchange. The vertical blue lines indicates the replication
step. The lower plot demonstrates the change of temperatures to gain stable rates of exchange

between neigherbouring levels during the course of the simulation.
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effective energy landscape of a protein is more smooth than the physical landscape. This can
be seen in 7.10 where we have enlarged a small part of the above simulation displaying both
physical energy E and effective energy Eey, = E + cH(E,t). Within this smoother lands-
cape the probability increases to find the native structure. We have shown in 7.11 both the
NMR structure of the trp-cage protein (PDB-code 1L2Y) and the lowest-energy configuration
(E = —18.4kcal/mol) found in this specific run. Both conformers differ by a RMSD-B of 3.2
A which is due to a differences in the unstructured coil of both configurations: neglecting the
last two amino acids in the floppy C-terminus reduces the RMSD-B to a value of 1.7 A .

What is the optimal temperature in an energy landscape paving run? In order to answer
this question we have performed elp simulations of the trp-cage protein at various tempera-
tures. The results are shown in figure 7.12 where we display both the mean and the median
of the distribution of minimal energies obtained at each temperature in 10 runs of 105 MC
updates. Note that the minimal energies have a broad distribution (resulting in larger error
bars for the mean) but decrease with temperature. The differences in energy are minimal and
for temperatures above T' = 50 K within the error bars. Substantially lower energies are found
below this temperature, but both mean and median seem to approach an optimal value of
Epin = —15 kcal/mol at T = 5K.

The performance of elp also depends on the factor ¢ by which the histograms are weighted
in the calculation of the effective energy E = E + cH(E,t). The upper plot in figure 7.12
displays this relation for various factors ¢ at the “optimal” temperature 7' = 5K. On average,
lower minimal energies are found when ¢ decreases until an optimal value of this factor at
¢ = 0.05 is reached. For even smaller factors, the performance of elp worsens again and
the values of the minimal energies found increase. While we did not find an expression to
determine a priori the optimal value of ¢, we note that its value is of order k7. This is
reasonable as c sets the energy scale.

Our above results are obtained for elp runs in which local minima are differentiated only
by their energy (type A simulations). However, many local minima exist that differ little by
their energy. One can therefore expect a better performance of elp if one distinguishes between
these minima. We have tested a number of different quantities such as helicity, end-to-end
distance, or TPR-cage-distance d._., but found the best improvement for the case where the
minima are characterized by both their energy and helicity n; (number of amino acids being
part of a helical structure), i.e. where E,, = E + cH(E,t) This result is not surprising as
the helicity is a natural reaction coordinate for the trp-cage protein which has only helices as
secondary structure elements. We display in figure 7.13 again both mean and median of lowest
energies (obtained in 10 elp runs of 106 updates each) as a function of temperature. As in the
previous case where local minima are only distinguished by their energies, the performance
of elp increases with decreasing temperature. While the temperature dependence is much
stronger an optimal value is again approached once the temperature is below T' = 10K. We
remark that the performance also depends on the factor ¢ with ¢ = 0.05 as an optimal value
(upper plot).

Comparing elp runs with the two different effective energy terms we find that differen-
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Abbildung 7.11: On the left side an overlay of the NMR-structure (red) and the lowest-energy
conformation found in elp-simulation of figure 7.9 (blue) is shown. Both configurations differ
by an RMSD-B of 3.2 A (1.7 A when neglecting the last two residues in the sloppy C-terminus).
The right side shows the according Cg matrix.
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Abbildung 7.12: The upper plot displays the mean and the median of lowest energies measured
in 10 elp runs as function of the factor ¢ for a temperature T' = 5K. The lower plot shows
the same quantities but for a factor ¢ = 0.05 and E,, = E + cH(E,t) as a function of
temperature.
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Abbildung 7.13: The plot shows the average energy < E > as a function of temperature the
mean and the median of lowest energies measured in 10 elp runs for a factor ¢ = 0.05 and
E =E+cH(E,ng,t).

tiating local minima not only according to their energies (type A runs) but also according
to their helicity (type B runs) leads to an improved sampling of low-energy configurations.
This can be seen in table 7.5 that summarizes the mean and median of the distribution of
lowest energies sampled in the various elp runs. Listed are also the lowest energies ever found

in these runs.

elp-variant FEpin | Mean | Median
Eep=E+0.05H(E,t), T = 250K -11.13 | -7.35 -7.15

Eep=FE+0.05H(E,t), T =5K -17.07 | -14.94 | -14.82
Eep=FE+0.05H(E,ng,t), T =250K | -12.05 | -7.07 -8.86

Eep=FE+0.05H(E,ng,t), T =5K -17.85 | -16.12 | -15.68
Eep=FE+0.05H(E,t), T =0K -14.69 | -12.48 | -12.93
Ep=FE +0.05H(E,ng,t), T =0K -17.78 | -14.99 | - 15.50

Tabelle 7.5: Lowest energy FE,,;, ever found mean and median of the lowest energy distribution
in 10 elp runs with the specified parameters.

However, not only are lower energies sampled in type B simulations than in such of type
A, but the low-energy region is also sampled faster. In order to demonstrate this point we
have measured in our elp runs the RMSD-B to the NMR structure. r,,;,,(t) is the lowest value
of this quantity found till time ¢. Its average < r,in(t) > (evaluated over 10 elp runs) as a
function of MC time is displayed in figure 7.14 for both elp runs with cH(E,T) (type ‘A’) and
cH(E,npg,t) (type ‘B’). Here we have chosen optimal values ¢ = 0.05 and T' = 5K. The elp
runs with the more discriminating paving term cH (E, ng,t) have over the whole time range
lower values < 7p,;,(t) > than the simple elp runs with f(q,t) = cH(E,t). This indicates
that on average native-like configurations are sampled earlier. In fact, configurations with a
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Abbildung 7.14: Investigation of the average minimal backbone RMSD < 7, (¢) > as calcu-
lated from 10 elp runs with E, = E + cH(E,t) and such with E,, = E + cH(E,ng,t). In
all runs, we have chosen ¢ = 0.05 and either 7" = 5K or the T' = 200K. The inset displays
the same quantities on a log-log scale.

backbone-RMSD of less than 3A are found in runs of type A on average after 5.6-10° sweeps,
while only 3.5 - 10° sweeps are needed in runs of type B. Note that the decrease in RMSD
seems to follow a power law as the data points fall in a log-log plot on a roughly straight line
(see inset of figure 7.14). However, the error bars of our data points are too large to allow

measuring the exponents.

Besides the size of energy bins and the choice of order parameters to distinguish local
minima, elp has two free parameters: the (low) temperature 7" in the Boltzmann-weight and
the factor ¢ by which the histogram entries are weighted (we have also investigated the
effect of different bin-sizes but these are minor in effect as long as enough bins in physically
interesting regions exist). Our analysis of the temperature dependence of elp above prompted
us to consider the possibility of a zero-temperature version of elp. For T — 0 only moves with
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Sequence & Weight | # Atoms | # Atoms | RMSD-B
secondary structure in PFFO1
TADNKFNKEQQNAFYEILHLPNLNEEQRNG | 6753 D 941 595 (¥) | 2.69 (*) A

CCCCCCCCCHHHHHHHHCCCCCCCHHHHHH
FIQSLKDDPSQSANLLAEAKKLNDAQAPKA
HHHHHHHCCCCHHHHHHHHHHHHHHHHCCC

Tabelle 7.6: The basic data about Protein A (1BDD). The structure is given in 1-letter-code,
the secondary structure in 3-state-code. (*) indicates numbers for our simulations, in which
part of the protein was cut off. These are shown in italics. Due to the length of the amino
acid chain the first column was cut in half after the first 30 amino acids. The last column
gives the RMSD-B from the native state to the best folded conformation. Please note that
due to the narrow energy gap between the folded state and a dissimilar state by now we do
not consider 1BDD folded ab-initio correctly.

AE < 0 will be accepted. This leads to an acceptance criterion:
AE + cAH(q,t) <0<+ cAH(g,t) < —AF (7.1)

where F is the physical energy. Hence, within elp the system can even at 7" = 0 overcome any
energy barrier. The waiting time for such a move is proportional to the height of the barrier
that needs to be crossed. Note that the factor ¢ sets now only the time scale and in this sense
the T' = 0 form of elp is parameter-free. We have plotted two examples for such 0K elp run
in figure 7.15. (Egp = E+ cH(E,t)) and figure 7.16 (E.y, = E+ H(E,ng,t)). Energy E and
helicity ng are shown as a function of MC time. Both figures illustrate that even at 7= 0 K
elp allows the crossing of energy barriers and the sampling of large parts of the configuration
space.

As in the case of elp runs at finite temperature, lower energies are found when the paving
term discriminates local minima not only according to their energy but also according to
their helicity. The respective values for mean and median of the lowest energies are listed
in table 7.5. While the minimal energies are slightly higher than the optimal ones found
at finite temperatures, these differences are within the error-bars. Similarly we find little
difference between the optimal finite temperature runs and the 200K-versions of elp in the
plots of < 7pin(t) > in Fig. 7.14. We also find that 0 K - elp runs have a comparable
efficiency with finite temperature runs (at optimal chosen temperatures) in locating native-
like configurations. More important than the temperature appears to be the construction of
the paving term that has to distinguish local minima according to coordinates describing the
system best(as the helicity in our case).

7.3 Protein A
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Abbildung 7.17: Shown is on the left an overlay of the native structure (red) and the best
structure found during the simulations for Protein A (1BDD). For these runs the first amino
acids of the N-terminus have been cut off as described in the text. The RMSD-B is 2.67 A.
On the right the according Cg-matrix is shown.

Protein A has proven to be a major challenge in prediction with the forcefield PFF01. To
lower computational demands we cut off part of the sloppy N-terminus. Running simulations
with different optimization methods Protein A proved highly expensive in computational
time. The simulations provided structures both similar and dis-similar to the native state.
One structure alike the experimentally measured conformation is shown in figure 7.17. It is
the lowest energy structure we gained during these simulations. However we also found dis-
similar structures within 1 kcal/mol which differ structurally strongly. The RMSD-B between
these competing structures and the native structure is in the order of 9 A [53]. The small
energy difference presented does not allow a rational distinction between these states. Due
to the limitation of stochastic optimization methods the energy gap must be sufficient large
to allow judging the quality of prediction. Presently we do not consider the Protein A being
reproducibly folded with PFF01 which may change as additional simulations are run.

7.4 HIV-Accessory Protein

We performed simulations on the HIV-Accessory Protein using its 40 amino acid head-
piece. We removed part of the sloppy C-terminus and applied adaptive parallel tempering
(apt)[106] as well as basin hopping[54]. We found in both cases lowest energy structures in
excellent agreement with experimental data (fore example apt-RMSD-B of 2.46 A). An over-



80 KAPITEL 7. PREDICTION OF TERTIARY STRUCTURES WITH PFF01

Sequence & Weight | # Atoms | # Atoms | RMSD-B
secondary structure in PFF01
QEKEATERLKALGFEESLVIQAYFACEKNE | 5162D 713 (*) 392 | (*) 2.46 A
CCHHHHCHHHHCCCCHHHHHHHHHCCCCCC

NLAANFLLSQNFDDE

HHHHHHHHHCCCCCC

Tabelle 7.7: Key parameters about the headpiece of the HIV-Accessory Protein 1F41. The
structure is given in 1-letter-code, the secondary structure in 3-state-code. (*) indicates para-
meters for our simulations, in which part of C-terminus was cut off. This is indicated by the
italics in the sequence. Due to the length of the amino acid chain the first column was cut
after the first 30 amino acids to a second line. The last column gives the RMSD-B between

the native state and the best folded conformation.

Sequence & Weight | # Atoms | # Atoms | RMSD-B
secondary structure in PFF01
MLSDEDFKAVFGMTRSAFANLPLWKQQNLK | 4172 D 596 364 3.56 A
CCCHHHHHCCCCCCHHHHCCCCHHHHHHHH

KEKGLF

HHCCCC

Tabelle 7.8: Key parameters for the Villin Headpiece 1VII. The structure is given in 1-letter-
code, the secondary structure in 3-state-code. Due to the length of the amino acid chain the
first column was cut after the first 30 amino acids to a second line. The last column gives the
RMSD-B between the native state and the best folded conformation.

lay is shown in figure 7.18. All low-energy conformations gained during the simulation are
close to the native state with RMSD-B values between 2 and 3 A. The protein seems to be
very stable in the forcefield PFF01. No competing structures appear within 5 kcal/mol of the
best estimate of the global minimum which have an RMSD-B of greater than 4.

7.5 Villin Headpiece

The Villin headpiece was investigated in different protein studies. An overview about its
basic properties is given in table 7.8. It is the protein the forcefield PFF01 was originally
developed for[50, 49, 53]. In prior versions of PFF01 several non-native structures competed
with the native state. We therefore pursued a rational decoy approach to improve our forcefield
in several iterations. We generate a large set of good candidates that energetically compete
with the native conformations. As long as one of these decoys has a better energy than
the native conformation, the forcefield was modified to stabilize the native conformation in
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Abbildung 7.18: Shown is an overlay of the experimentally measured native structure (red)
and the best structure found during the simulations of the HIV-Accessory Protein 1F4I (left
picture). For these runs the first amino acids of the N-terminus have been cut off like described
in the text. The RMSD-B is 2.46 A. The right picture shows the according Cg-matrix.

comparison to all other decoys. When this was achieved we generated a new set of decoys
by re-folding the Villin headpiece, which we again compared with the native conformation.
After several iterations of optimizing the parameters we found a final set of parameters which
provided a better (i.e. lower) energy for the native conformation than for all other competing
structures found during the simulations. This one set of parameters is now applied to all other
simulations presented here[49, 48, 53]. An overlay of the structure corresponding to the best
estimate found in the simulation for the Villin headpiece is given in figure 7.19.

7.6 Bacterial Ribosomal Protein L20

The Bacterial Ribosomal Protein L20 (1GYZ) [98] is the biggest protein (60 amino acids)
folded by an all-atom free-energy forcefield approach by now. Even with the simplifications
PFF01 does for modeling protein structure in a free-energy forcefield the simulations needed
about 40 accumulated CPU-years before no further improvement in free-energy was noticed.
We applied our evolutionary method on a server-client based system for these simulations.
Some basic information about the Bacterial Ribosomal Protein L20 is given in table 7.9. An
overlay of the best structure found in our simulations with the experimentally determined
native state is displayed in figure 7.20.

The Bacterial Ribosomal Protein L20 is by now the only protein for which we extensively te-
sted the evolutionary algorithm[104] by a server-client model. We did this in three phases. In
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Abbildung 7.19: Shown is an overlay of the native structure (red) and the best structure found
during the simulations for the Villin Headpiece 1VII (left picture). The RMSD-B is 3.65 A.
On the right is the according Cg matrix.

the first phase we created a starting set of conformation by running standard MC-simulations
at high temperatures (400 K) on random starting conformations. These simulations were sor-
ted by individual energy terms (Lennard-Jones, hydrogen bonding, solvent interaction and
electrostatics) to find structures for further optimization. We ranked them by these energy
terms, took for each the best 50 structures and eliminated duplicates. We gained a starting
set of 266 structures which we optimized by normal sa-simulations with increasing numbers
of steps (second phase). Whenever a client indicated available resources we randomly chose
one of the set of structures and ran a sa-optimization simulation on the client for it. The
resulting conformation was sorted in again by comparison with the existing set of structures.
We chose the one closest in RMSD-B and, when this values was lower than 3 A, discarded the
structure with the higher energy. When no structure was close in RMSD-B we compared with
the structure worst in energy of our present set and discarded one of these two after their
energetic comparison. This scheme results in both conformational diversity and good optimi-
zation of the energy as shown in figure 7.21. Also conformations far from the native state are
assumed during the evolutionary algorithm. In a third phase we selected the 50 structures
best in energy for further refinement. We gained a resulting structure best in energy in high
agreement with the experimentally measured native conformation. Additionally in the final
set of conformations six out of the ten energetically lowest conformations represented the
native state of the protein. We further noticed a significant increase of native content during
the simulations underlining the existence of a folding funnel. We also tested different selection
schemes for new simulations. We biased the starting conformations for further optimization
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Sequence & Weight | # Atoms | # Atoms | RMSD-B
secondary structure in PFF01
WIARINAAVRAYGLNYSTFINGLKKAGIEL | 6728 D 973 593 4.64 A

CCHHHHHHHCCCCCCCHHHHHHHHHHCCCC
DRKILADMAVRDPQAFEQVVNKVKEALQVQ
CCCCCHHHHHHCHHHHHHHHHHHHHHHCCC

Tabelle 7.9: The basic data about the Bacterial Ribosomal Protein 120 1GYZ. The structure
is given in 1-letter-code, the secondary structure in 3-state-code. Due to the length of the
amino acid chain the first column was cut after the first 30 amino acids to a second line. The
last column gives the RMSD-B from the native state to the best folded conformation.

according to their energetic ranking. The different selection scheme provided no significant
difference to a un-biased selection.

It showed that our ten energetically best conformations resulted from starting conformati-
ons selected by hydrogen bonding. This can be interpreted, that this energy term is highly
correlated to secondary structure. Obviously it proved difficult to form secondary structure
(i.e. here helices) when a compact structure has already formed. The resulting best structure
started from a conformation with an RMSD-B of 11.65 A to the native state indicating that
no native content was included in this starting structure.

7.7 Discussion on the Efficiency of Optimization Techniques

To compare the different optimization techniques[123] we chose the simulations of the trp-
cage protein for which we have the most data. Simple Monte-Carlo simulations failed in global
optimization of the free-energy function. Using simulations with 107 steps at temperatures
between 50K and 250K, low-lying energies were not found (lowest energies were higher than
—10 kcal/mol, simulations not shown). Also no near-native structures were found even at
higher energies. Similarly standard simulated annealing (sa) simulations did not succeed in
prediction of the native state(again no structures with total energies below —10 kcal/mol,
simulations not shown).

The application of a simple genetic algorithm (ga) proved difficult. The analysis of ga-
simulations indicated two major protein problems. Often the crossing and mutation of indi-
viduals provided clashing conformations. Repairing these clashes was computationally highly
expensive. Also the local relaxation of structures after each generation further raised these high
computational demands. Though they have been successfully applied to protein folding[97]
our simulations indicate ga being computationally too demanding in comparison with other
techniques.

The techniques stochastic tunneling (stun), evolutionary algorithm (not shown on 1L2Y),
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Abbildung 7.20: Shown is on the left picture an overlay of the experimentally measured native
structure (red) and the structure corresponding to the best estimate of the global minimum
found during the simulations for the Bacterial Ribosomal Protein 120 1GYZ. The RMSD-B
is 4.64 A. The right picture shows the according Cg-matrix.
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Abbildung 7.21: This graph gives the energy (in kcal/mol, upper plot) and the RMSD-B (in
A lower plot) of the lowest energetic structure of 1GYZ found by the evolutionary algorithm.
The horizontal axis gives the number of accepted runs from the end (left) to the start (right).
In the upper plot both the total energy (red) and the hydrogen bonding energy (green) are
displayed. Later runs are longer sa-simulations to allow for further improvement in energy.
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basin hopping (bh), energy landscape paving (elp) and adapted parallel tempering (apt) all
succeeded in prediction of the native state from random initial conditions. In comparison
the different techniques show each some advantages compared to the other techniques. The
evolutionary algorithm is not very efficient in its use of computational power but can use non-
homogeneous computer networks with unreliable network connections. It produced very good
estimates of the global minimum (—27.3 kcal/mol). Stun and apt use comparable amounts
of CPU-time to generate low-lying energies (—25.79 kcal/mol, —25.61 kcal/mol respectively)
but require a careful tuning of the various free parameters. In stun the temperature and the
transformation parameter 7y for its non-linear transformation are quite fickle. It is difficult to
find their optimal values to run the technique at peak efficiency. Similarly, the efficiency of
apt depends strongly on the parameters for adjusting the temperatures. However this auto-
matic adjustment of temperatures showed as strong improvement compared to normal pt. elp
generally generates worse estimates of the global minimum (—22.97 kcal/mol). However its
parameters for minimization are few and very robust. In the OK-variant of elp only bin size
and the order parameter(s) of the histogram remain. We experienced few runs which were
locally entrapped. The 0K variant is esp. interesting since it is totally eliminating the artificial
temperature from the simulations.

We also investigated whether the conformational space is explored thoroughly by the different
techniques. All these methods, stun, apt, elp and apt created strongly dislike conformations
during the simulations. RMSD-B values of the sampled conformations differed by more than
6 A even after the initial hydrophobic collapse.

From the compared techniques basing hoppin provided the best estimate of the global mi-
nimum (—29.22 kcal/mol). Also the starting and ending temperature of each sa-simulation,
the energy threshold for accepting such a simulation and the number of steps per simulations
are few and robust parameters. The values do not need to be optimal to provide a careful
exploration of conformational space.

The stability of the trp-cage protein proved remarkable. The above energy values all represent
this protein in its native ensemble but differ in the quality of locally optimizing this structure.
Therefore the quality of local relaxation seems to be the major difference between the applied
optimization methods.

This robustness of the native conformations underlines the possible existence of a folding
funnel in the energy landscape as illustrated in figure 7.22. The vast amount of low-lying
structures are at some point in conformational space connected to the cluster containing the

lowest energy structure.
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Abbildung 7.22: Illustration of the low-lying energy landscape of the trp-cage protein in the
forcefield PFFQ1. The horizontal axis counts different clusters of conformations while the
y-axis gives the lowest lying energies within such clusters in kcal/mol. In this picture only
the conformations belonging to low-lying energies below -25 kcal/mol are shown which are
around 1000. As the clusters accumulate structures they may unite. The thick lines designate
clusters which unite at higher energies and are separated by barriers in between. The thin lines
designate clusters which remain isolated in conformational space. This picture was created
with about 6000 low-energy structures gained from different simulations. For each structure
the RMSD-B values were generated against all other structures. Two structures belong to the
same cluster if any energetically lower lying structure in this cluster has an RMSD-B to this
structure of below 2 A .



Kapitel 8
Summary

The work in this thesis was motivated by two central questions:

e Protein folding is ultimately governed by complicated quantum-mechanical effects, such
as the formation of hydrogen bonds, Fermi-repulsion of electronic clouds and interaction
of protein surface with a complex environment: Can the folding of a protein be under-
stood and represented by a classical free-energy-forcefield and, if yes, how can it be done
in a computationally treatable way?

e Proteins have many degrees of freedom and no exploitable symmetries. It is known that
global minimization of rough and high-dimensional energy landscapes, like those in
spin-glass theory, is very difficult. Therefore: Due to the complexity of such a forcefield,
are there optimization methods allowing to find the global minimum and what about the
efficiency of these methods?

PFFO01[50, 49, 53, 48] combined with efficient stochastic optimization methods may be sui-
table to give one possible answer to these questions. We explored energy landscape pa-
ving (elp)[109], stochastic tunneling (stun) [105], temperature adopted parallel tempering
(apt)[52, 107, 106, 104], distributed computing [108] and the basin hopping method[54].
The classical free-energy forcefield PFF01 models the interactions in a protein. Quantum-
mechanical effects like hydrogen bonding which are relevant during the folding process of
proteins are included in a way accurate enough to allow predictive folding of helical proteins
but simple enough to be handled by present day computational resources. Much work and
effort has been put to the task of finding the global minimum in such a high-dimensional
conformational space by means of stochastic optimization methods. The results from the si-
mulations combining the forcefield PFF01 with these optimization methods are presented in
this thesis. They are in high agreement with experimental measurements of protein structure.
We have predictively ab-initio in-silico folded the trp-Cage protein (1L2Y, 20 amino acids)
[105, 107, 104, 107], the HIV-accessory protein (1F4I, 40 amino acids) [50, 54, 52, 51, 106, 104],
the Villin headpiece (1VII 36 amino acids) [50, 49, 54] and the Bacterial Ribosomal Protein
L20 (1GYZ, 60 amino acids) [104]. Thus both the validation of the forcefield for several non-
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homologous proteins and the practicability of the approach of predicting protein structure by
minimization of the free-energy forcefield PFF01 has succeeded.

Once we could establish that this forcefield correctly predicts the native states of several heli-
cal proteins, we can apply it to understanding the process of protein folding. The four major

contributions to the free energy in PFF01 are
e Lennard-Jones
e Implicit solvent interaction
e Hydrogen bonding
e Electrostatics

During the simulations we noticed the major energy difference between different low-energy
structures resulting from hydrogen bonding in competition with the implicit solvent interacti-
on. The solvent interaction leads to the collapse of the whole structure to compact conformati-
ons while the hydrogen bonding is the stabilizing term for secondary structure. Lennard-Jones
interactions mainly prevent the clash of atoms while electrostatics provides only minor effects
in this model. The gquantitative model arising from PFF(01 confirms arguments concerning
the importance of competition between hydrogen bonding and solvation effects for prote-
in folding[25, 26]. One major advantage in the consideration of all-atom forcefields, such as
PFFO01, arises from the complete free-energy landscape, including the characterization of the
native conformation in accordance with experimental measurements. The applicability of an
implicit solvent model, which has also been subject to some debate, is justified by the results
of the model. We note however, that the application of such a model appears to limit the
overall resolution of the model to 2-4 A, depending on the protein studied.

In addition these results also confirm the new view of protein folding, where a folding fun-
nel[27, 44, 47, 89, 90, 109] characterizes the landscape in vicinity of the native state. A
folding funnel embodies the concept that a major part in conformational space has a strong
bias towards the native state. The existence of a folding funnel was postulated to overcome
Levinthals paradox[68, 27, 55], which stipulated that the conformational space of a protein is
too large to be searched in a reasonable time, as exemplified by the following short model cal-
culation. The trp-cage protein with its 20 amino acids has in our model 63 degrees of freedom
(angles allowing rotations). If we estimate that each angle can assume only three spatially
allowed settings we gain a resulting conformational space of 3% ~ 1030 conformations, which
is far too large to be explored by a random walk.

Translated into computational effort we note that our code presently evaluates about 1,000,000
energies per day for the trp-cage protein on standard off-the-shelf hardware. An enumerative
search of the entire conformational space would require
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indicating that some guiding mechanisms must exist to permit the folding of the trp-cage
protein with PFF01 in only about 1 CPU week. In this time only a very tiny portion of
conformational space could have been explored. For the other, larger proteins investigated
the size of the overall conformational space is even more daunting. There must be a strong
bias towards the region of conformational space representing the native state of the protein.
In literature this bias is called the folding funnel.

Because proteins are products of natural evolution designed both towards stability and
functionality[9], one may speculate that they are selected by choosing versatility, stability
and fold-ability, as implied by the concept of the funnel mechanism in conformational space.
The existence of this folding funnel biases a development of native or native-like formations
of parts of the protein starting from each possible starting structure. It was demonstrated in
many experiments that protein folding is a reversible process. Therefore it might be possible
that proteins get stuck in kinetic traps during the folding process[8], which are energetically
low-lying and accessible regions in conformational space surrounded by high energetic barri-
ers. To leave them a protein has to unfold out of the trap and re-fold again into the folding
funnel. However the quick folding of many proteins suggests a single, smooth folding funnel
for these proteins. It seems unlikely that random amino acid sequences of proteins have these
properties. More likely they offer a multitude of metastable states mostly consisting of un-
structured coils and not one selected native ensemble. This indicates that the speed of protein
folding is not a simple function of amino-acid length but is dependent on the topology of the
energy landscape. A smooth folding funnel allows the rapid development of native structure
which results in short folding times. Kinetic traps or a general roughness in the energy lands-
cape lengthen folding time.

To allow a representation of the folding funnel we chose the trp-cage protein for which we did
a huge number of investigations. We sampled the conformational space in two experimentally
measurable coordinates, the amount of helical content and the end-to-end distance of N- and
C-terminus[109]. Figure 8.1 shows a funnel-like structure biased towards the native state in
the free-energy landscape.

Outlook

The results presented in this thesis lead to further questions in protein folding. First of all
remains the task of also including S—sheets in the forcefield PFF01. This forcefield is now well
tested for helical proteins but at the same time helical structure seems to be slightly overem-
phasized as secondary structure element in comparison with 3 structures. Another important
point is testing the forcefield for other, larger proteins with different folds. Furthermore re-
mains a possible analysis on the dynamics of protein folding. By now we only evaluated the
final point of our simulations and compare it with the native state. However one could do a
dynamics analysis of the low-energy decoy tree by assuming a diffusional process for related
structures using the master-equations[20]. This would allow to answer questions related to
two- or many-state folding or the existence of folding intermediates.
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Energy in keal/mol

Abbildung 8.1: Energy landscape of the trp-cage protein as obtained from a 0K ELP run with
a random configuration as starting point. As inset the structure corresponding to the lowest
found energy is displayed as overlay with the NMR-structure. The backbone RMSD is 3.2 A
(2.2 A when when neglecting the last two residues in the floppy C-terminus)[109].



Anhang A

Used programs and definitions

Absolute Contact Order

The absolute contact order (aco) is the mean separation in sequence by contacting atoms:

1 .
aco=—- S [l

Contacts

(M is number of atomic contacts, i — j separation in sequence between residues ¢ and j with
distance between atoms less than 0.6nm). The relative contact order (rco) is the absolute
contact order divided by the number of residues N: rco = aco/N. The contact order has a
close relation with the folding time of a protein. However it is still subject of discussion whether
the absolute or relative contact order is stronger correlated with folding times [59, 63, 19].

Cs-matrix

A Cg-matrix allows a quick optical comparison of two structures. To generate it the relative
distances of all Cs atoms of the two compared structures are calculated for each of the
structures. Then the difference for each entry in these two distance matrices is taken. If this
difference is less than 0.75 A the according dot on the Cg-matrix is turned black, for differences
between 0.75 A and 1.5 A it is turned grey and white for relative distances greater than 1.5
A.

This Cg-matrix gives a good overview about secondary structure relation between the two
compared structures since the position of the C is equal if the secondary structure is equal.
Also this matrix can serve as indication for the position of the sidechains (because we’re
taking the Cg and not C, atoms). Slightly problematic is the choose of the small intervals of
0.75 and 1.5 A since often experimental errors are larger. However these values also allow a
close comparison between different structures gained from our simulations.
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DSSP[61]

DSSP was used to characterize the secondary structure of proteins. The secondary structure
was afterwards further refined towards three-state characterization. H (a-Helix), G (3/10-
helix) and I (pi-helix) are considered as helix H. E (extended S-strand) and B (residue in
isolated (3-bridge) are considered as S-strand E. The other, i.e. T' (hydrogen bonded turn), C'
(coil) and S (extended strand), are considered as coil C.

Generation of a Random Starting Structure

In order to generate a random starting structure the program package POEM can be used.
One possibility is putting big artificial equal charges on the N- and the C-termini and running
a short simulation. Another possibility is running a simulation at a very high (for example
10'° K) which will totally randomize the structure since no energy bias except prevention of
clashing conformations exists anymore. Yet another possibility is using the function randomize
in POEM which will apply random changes to all degrees of freedom while still fulfilling the

Fermi-repulsion.

Gnuplot

All the graphs in this thesis were created with Gnuplot.
http://www.gnuplot.info/index.html

BETEX

The published format of this thesis was created using WTEX.
http://www.latex-project.org

Molscript

The overlay pictures were created with Molscript.
http://www.avatar.se/molscript/

PDB-database

The PDB (Protein Data Bank) lists around 30,000 structurally measured proteins (March
2005). It is available for free in the Internet[12].
http://www.rcsb.org/pdb/
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POEM

The program package POEM (Prediction by Optimization of an Energy Model) was used
for running all of the described simulations. It is a complex program allowing manipulation
of protein structure, calculation of energies in the forcefield PFF01 and running different
optimization methods. It is written in C. For compilation the gcc of Linux was used. It
includes a cross-compiling version for windows which allows calculation as a screen saver

using a simple server-client model.

RMSD

The RMSD (Root Mean Square Deviation) between two proteins is

ZatomSAz2+Ay2+Az2 %
)

RMSD = min( 7 Atoms ,
m

(*) denotes all possible spatial translations and rotations of the two proteins against each
another, which means an ideal superimposement of both structures. It is a common method
to quantize the similarity of two structures. The sum over all atoms can be replaced by sums
over specific atoms like only backbone-atoms in the RMSD-B value.

However the RMSD values can also be misleading. Although two proteins may incorporate
very similar secondary structure, they can arrange them in strongly dislike topologies. One
example would be a bundle of three helices. The third helix can be put top or bottom, which
means that though the secondary structure is equal, the topological arrangements results in
high RMSD values hiding this similarity.

VMD[57]

VMD was used for manipulation and pictures of proteins.
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