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Hofstadter’s Law:

It always takes longer than you expect,

even when you take Hofstadter’s Law into account.





Zusammenfassung:

Wechselwirkung und Phasenrelaxation in ungeordneten

Nanodrähten und Quanten-Hall-Systemen

Die vorliegende Arbeit untersucht das Wechselspiel von Elektron-Elektron-
Wechselwirkung und Unordnung in mesoskopischen Systemen.

Der Einfluß von inelastischen Prozessen auf Aharonov-Bohm-Oszillationen in metalli-
schen Ringen wird mit der Pfadintegralmethode untersucht. Es ergibt sich eine Phasen-
relaxationslänge, die sich parametrisch von der bekannten Relaxationslänge für schwa-
che Lokalisierung unterscheidet. Der Unterschied entsteht dadurch, daß für Aharonov-
Bohm-Oszillationen die Länge relevanter Trajektorien durch die Systemgröße gegeben
ist (obwohl die Phasenrelaxationslänge viel kürzer ist), da nur Trajektorien die den Ring
umlaufen zu Aharonov-Bohm-Oszillationen beitragen.

Ferner wird die Amplitude mesoskopischer Leitwertfluktuationen im Nichtgleichge-
wicht berechnet. Diese zeigt eine nichtmonotone Spannungsabhängigkeit, die durch meh-
rere Mechanismen entsteht. Eine Erhöhung der Fluktuationen ergibt sich durch den
Einfluß von Variationen des elektrochemischen Potentials auf alle Leitungselektronen im
verfügbaren Energiefenster. Bei sehr hohen Spannungen werden Leitwertfluktuationen
durch inelastische Prozesse unterdrückt. Diese sind ortsabhängig, so daß die Leitwert-
fluktuationen durch die Teile der Probe in der Nähe der Reservoire bestimmt sind.

Schließlich wird der Einfluß von Eichfeldfluktuationen auf Quanteninterferenzeffekte
untersucht. Typische Eichfeldfluktuationen sind viel langsamer als die Zeitskalen des
Elektronentransports. Daher entstehen Dephasingeffekte vor allem durch Ensemblemit-
telung und Brechung der Zeitumkehrsymmetrie. Diese Effekte werden in zwei- und quasi-
eindimensionalen Systemen untersucht. Die resultierenden Phasenrelaxationsraten sind
wesentlich größer als die Rate, die den Verlust des Phasengedächtnisses des einzelnen
Teilchens beschreibt.



Abstract:

Interaction and phase relaxation in disordered nanowires

and Quantum Hall Systems

This thesis investigates the interplay of electron-electron interaction and disorder in
mesoscopic systems.

The suppression of Aharonov-Bohm oscillations in metallic rings is calculated using
the path-integral method. The resulting dephasing length is parametrically different
from the usual dephasing length applicable to weak localiation. The difference is due to
the length of relevant trajectories being given by the system size, even if the dephasing
length is much shorter, since Aharonov-Bohm oscillations arise only from trajectories
encircling the ring.

Further, the voltage dependence of mesoscopic conductance fluctuations in the
nonequilibrium situation is calculated. The amplitude of conductance fluctuations is
a nonmonotonic function of the voltage due to several different effects. An enhancement
results from variations of the electrochemical potential affecting all electrons in the en-
ergy window available for transport. At very high voltages, inelastic processes lead to a
suppression of the conductance fluctuations. The dephasing effect is position dependent,
with the residual conductance fluctuations originating from the regions of the sample
close to the reservoirs.

Finally, the effect of transverse gauge field fluctuations on quantum interference effects
is investigated. Typical gauge field fluctuations are much slower than the timescales
set by the electron motion. Therefore dephasing effects are mainly due to ensemble-
averaging and time-reversal breaking. These effects are investigated for two- and quasi-
onedimensional systems. The resulting dephasing rates are very high compared to the
rate describing the loss of phase memory of the single particle.



Deutsche Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit dem Wechselspiel von Elektron-Elektron-
Wechselwirkung und Unordnung in mesoskopischen Systemen. Gerade in niedrigen Di-
mensionen, also in zweidimensionalen Filmen und quasi-eindimensionalen1 Drähten, sind
Wechselwirkungseffekte besonders ausgeprägt, weil sich diffusiv bewegende Leitungselek-
tronen länger miteinander wechselwirken als ballistische und in niedrigen Dimensionen
die Rückkehrwahrscheinlichkeit zu einem gegebenen Punkt höher ist. Ferner sind auf-
grund von Phasenraumargumenten in niedrigen Dimensionen kleine Impulse (von der
Größenordnung der inversen Systemgröße) besonders relevant für das Verhalten der Sy-
steme, so daß nichttriviale Geometrien interessante Effekte haben.

In Kapitel 2 wird daher die Aharonov-Bohm Ringgeometrie untersucht. Interferenz
von Pfaden, die den Ring umlaufen, führt zu Oszillationen des Leitwerts als Funktion
des magnetischen Flusses durch den Ring mit einer fundamentalen Periode von h/e
bzw. h/2e . Diese Effekte entsprechen den bekannten mesoskopischen Leitwertfluktua-
tionen bzw. der schwachen Lokalisierung. Durch Anpassung des Pfadintegralformalismus
[18, 29, 85] auf die Ringgeometrie, insbesondere eine Formulierung der abgeschirmten
Coulombwechselwirkung im Ortsraum, wird eine mikrosopische Theorie des Einflusses
inelastischer Prozesse auf Aharonov-Bohm-Oszillationen entwickelt. Es zeigt sich, daß
die durch Gln. (2.30), (2.33) gegebene Unterdrückung von Aharonov-Bohm-Oszillationen
sich parametrisch von der Unterdrückung schwacher Lokalisierung oder mesoskopischer
Leitwertfluktuationen unterscheidet. Dies ergibt sich daraus, daß in niedrigdimensionalen
Systemen inelastische Prozesse mit kleinen Impulsüberträgen (von der Größenordnung
der inversen Systemgröße) dominieren. Während der Infrarotcutoff für schwache Lo-
kalisierung und mesoskopische Leitwertfluktuationen selbstkonsistent gesetzt wird (die
Probe kann gedanklich in kohärente Segmente von der Größe der Phasenrelaxationslänge
Lϕ geteilt werden), entstehen Aharonov-Bohm-Oszillationen nur durch Trajektorien, die
den Ring umlaufen und daher nicht kürzer als der Ringumfang sein können. Diese Be-
dingung, die selbst bei starkem Dephasing (Lϕ ¿ R , wobei R der Ringradius ist) erfüllt
sein muß, führt zu dem Verhalten (2.33), das sich durch die Dekohärenzlänge (2.34)
beschreiben lässt. Die Formulierung mit Hilfe einer Dekohärenzlänge, die von der Sy-

1Hiermit sind Drähte gemeint, deren Breite viel größer ist als die elastische freie Weglänge, aber viel
kleiner als ihre Länge. Die Diffusionsbewegung der Leitungselektronen kann daher eindimensional
beschrieben werden. Es handelt sich nicht um streng eindimensionale Systeme, die als Luttinger-
flüssigkeit zu beschreiben wären.



stemgröße abhängt, ist physikalisch motiviert durch den systemgrößenabhängigen Gehalt
an relevanten Fluktuationen.

Ferner wurde in Kapitel 2.3 die in [85] aufgestellte Beziehung (2.41) zwischen schwa-
cher Lokalisierung und mesoskopischen Leitwertfluktuationen durch eine Formulierung
mit Hilfe von Pfadintegralen auf eine allgemeinere Basis gestellt und u.a. auf die Ring-
geometrie verallgemeinert (siehe Gleichung (2.48)). Die für h/e-Oszillationen entwickel-
te Theorie läßt sich also direkt auf h/2e-Oszillationen übertragen. Eine experimentelle
Bestätigung der Ergebnisse von Kapitel 2 ist vor kurzem erfolgt [104].

Eine andere interessante Situation ist eine mesoskopische Probe im Nichtgleichgewicht.
Durch die kompliziertere Form der Verteilungsfunktion der Elektronen haben auch
Wechselwirkungseffekte einen qualitativ anderen Charakter. Insbesondere hat eine endli-
che Spannung einen qualitativ anderen Effekt als eine endliche Temperatur. In Kapitel 3
wird das Verhalten von mesoskopischen Fluktuationen des differentiellen Leitwerts als
Funktion der angelegten Spannung untersucht. Die Ergebnisse bestätigen Experimente
neueren Datums, die ein interessantes nichtmonotones Verhalten mit steigender Span-
nung beobachtet haben. Für hohe, aber nicht zu hohe Spannungen V , Vc ¿ V ¿ gVc

(wobei g der dimensionslose Leitwert und eVc die Thoulessenergie ist) spielen inelasti-
sche Effekte keine wesentliche Rolle. Die Elektron-Elektron-Wechselwirkung ist aller-
dings auch in dieser Situation wichtig, denn erst die Abschirmung der Wechselwirkung
zwischen den Leitungselektronen durch eben diese Leitungselektronen ermöglicht die De-
finition des elektrochemisches Potentials. Variationen des elektrochemischen Potentials
beeinflussen alle Elektronen im zur Verfügung stehenden Energiefenster der Breite eV ,
das für eV À eVc in unkorrelierte Intervalle der Breite eVc zerfällt, und führen dadurch
zu einem Anstieg der Leitwertfluktuationen mit der Spannung, der asymptotisch linear
mit der Spannung verläuft [34]. Die mit Hilfe der Keldysh-Diagrammtechnik gewonnenen
Ergebnisse zeigen, daß dieser Anstieg nach einem steilen Verlauf im Crossover-Bereich
sehr flach verläuft und von Termen dominiert wird, die formal von höherer Ordnung
sind.

Die Notwendigkeit, inelastische Elektron-Elektron-Streuung zu berücksichtigen, zeigt
sich schon darin, daß für Spannungen V À g2Vc die Leitwertfluktuationen die
Größenordnung des Leitwerts erreichen würden, so daß Spannungsbereiche mit nega-
tivem differentiellem Widerstand auftreten müssten. Dies ist an metallischen Proben
nie beobachtet worden, stattdessen zeigen alle Experimente bei genügend hoher Span-
nung einen Abfall der Leitwertfluktuationen. Eine genaue Betrachtung von Dephasing-
effekten im Nichtgleichgewicht findet in Kapitel 3.3 statt. Es zeigt sich, daß Depha-
singeffekte für Spannungen V & gVc relevant werden, und damit der Bereich V & g2Vc

nicht im nichtwechselwirkenden Bild beschrieben werden kann. Für starkes Dephasing
(V À gVc) ergibt sich der durch Gleichung (3.99) beschriebene Abfall der Leitwertfluk-
tuationen. In diesem Regime kann die Probe nicht durch eine konstante Relaxationslänge
Lϕ beschrieben werden, sondern die Stärke inelastischer Prozesse ist ortsabhängig. Die
Leitwertfluktuationen (3.99) entstehen im wesentlichen in den Teilen der Probe in der
Nähe der Reservoire. In diesen Bereichen ist der Effekt inelastischer Prozesse auch bei



hohen Spannungen klein. Die in Kapitel 3 präsentierten Ergebnisse stimmen gut mit
experimentellen Daten [86, 87] überein.

Prinzipiell existieren in ungeordneten Metallen nicht nur skalare Fluktuationen, son-
dern auch transversale magnetische Fluktuationen. In gewöhnlichen Metallen sind diese
relativistisch klein gegenüber den skalaren Fluktuationen und von eher konzeptionel-
lem Interesse. Eichfeldfluktuationen mit den gleichen qualitativen Eigenschaften treten
aber auch in Modellen stark korrelierter Systeme auf, wie zum Beispiel der Composite-
Fermion-Beschreibung [45, 47, 52, 71] des halb gefüllten Landau-Niveaus im Quanten-
Hall-Effekt. Die Quasiteilchen dieses Systems, sogenannte Composite Fermions, entste-
hen durch eine statistische Transformation aus den Leitungselektronen und bewegen sich
in einem reduzierten magnetischen Feld (das bei halber Füllung gerade verschwindet),
wechselwirken aber andererseits mit einem Chern-Simons-Eichfeld, wobei die Kopplungs-
konstante von der Größenordnung 1 ist. Composite Fermions lassen sich als Elektronen
mit zwei an sie gebundenen magnetischen Flußquanten auffassen. Aus der ungeord-
neten Bewegung der Elektronen resultiert daher automatisch auch ein fluktuierendes
ungeordnetes Magnetfeld, bzw. Fluktuationen des Chern-Simons-Eichfelds. Die Compo-
site Fermions wechselwirken miteinander über den Austausch von Eichfeldfluktuationen
wesentlich stärker als über die Coulombwechselwirkung. In Kapitel 4 werden dadurch
verursachte Dephasingeffekte untersucht. Charakteristisch für die betrachteten Systeme
sind die unterschiedlichen Zeitskalen: Die Dynamik des Eichfeldes ist viel langsamer als
die der Composite Fermions. Daher kann die Eichfeldkonfiguration für ein einzelnes Fer-
mion als statisch betrachtet werden; allerdings verändert sie sich zwischen verschiedenen
Messungen. Die Dephasingeffekte beruhen also vorwiegend auf dem Auseinanderlaufen
der Phasen im Ensemble der quasistatischen Eichfeldkonfigurationen, und lassen sich
auf topologische Effekte zurückführen. Die entsprechende Phasenrelaxationsrate ist we-
sentlich höher als die inverse Temperatur, allerdings stellt sich heraus daß das Bild der
Fermiflüssigkeit [3] gültig bleibt, da die Zeitskala auf der das einzelne Fermion seine Pha-
senkohärenz verliert viel länger ist. Während in zwei Dimensionen, bedingt durch mehrfa-
che Rückkehrprozesse eine logarithmische Korrektur zur Dekohärenzrate entsteht (siehe
Gl. (4.40)), ergibt sich in der quasi-eindimensionalen Geometrie die durch Gl. (4.47) gege-
bene Dekohärenzrate proportional zur Temperatur. Diese entsteht auf nichttriviale Weise
aus dem Wechselspiel zwischen Rückkehrprozessen und der geometrischen Beschränkung
der quasi-eindimensionalen Trajektorien. Aufgrund der Abwesenheit von Infrarotdiver-
genzen unterscheidet sich auch die Relaxationsrate für Aharonov-Bohm-Oszillationen
(4.58) nicht qualitativ von derjenigen im einfachen Draht, im Gegensatz zur in Kapitel 2
betrachteten Coulombwechselwirkung.

Obwohl bei oberflächlicher Betrachtung schwache Lokalisierung und Leitwertfluktua-
tionen auf verschiedene Weise durch langsame Eichfeldfluktuationen unterdrückt werden
(schwache Lokalisierung durch Brechung der Zeitumkehrinvarianz und Leitwertfluktua-
tionen durch Ensemblemittelung über die quasistatischen Konfigurationen), gilt eine der
in Kapitel 2.3 bewiesenen vergleichbare Beziehung zwischen schwacher Lokalisierung und
Leitwertfluktuationen auch für den Fall von Eichfeldfluktuationen: Die Effekte von Bre-



chung der Zeitumkehrinvarianz und Ensemblemittelung werden gerade aufeinander ab-
gebildet. Da in beiden Fällen kein “echtes” Dephasing (Verlust des Phasengedächtnisses
des einzelnen Fermions) vorliegt, stellt sich die Frage ob die Effekte von “langsamen” und
“schnellen” Eichfeldfluktuationen (ωgf ≷ 1/τϕ) voneinander getrennt werden können, al-
so die Phasenrelaxation des einzelnen Fermions beobachtet werden kann. Theoretisch
gibt es zur schwachen Lokalisierung in zweiter Ordnung in 1/kF l Beiträge, die nur auf
schnelle Eichfeldfluktuationen sensibel sind. Leider scheinen diese nicht sinnvoll für Ex-
perimente zugänglich zu sein. Eine selbstkonsistente Berechnung der nur durch schnelle
Fluktuationen verursachten Relaxationsrate für schwache Lokalisierung in erster Ord-
nung in 1/kF l bestätigt das Bild der Fermiflüssigkeit für typische Quanten-Hall-Systeme
bei ν = 1/2 im experimentell relevanten Parameterbereich.

Wechselwirkungs- und Unordnungseffekte in niedrigen Dimensionen bleiben ein span-
nendes Thema. Zwar ist das Verhalten von wechselwirkenden Elektronen in ungeord-
neten Metallen gut verstanden, aber zum Verhalten von Composite-Fermion-Systemen
bleiben noch offene Fragen. Insbesondere das Verhalten des Composite-Fermion-Systems
unterhalb der durch Gleichung (4.68) gegebenen Temperatur konnte im Rahmen dieser
Arbeit nicht untersucht werden. Das verfügbare Spektrum von thermischen “schnellen”
Eichfeldfluktuationen (mit Frequenzen größer als die inverse Phasenrelaxationsrate) ver-
schwindet unterhalb dieser Temperatur. Die Eigenschaften des Systems bei noch tieferen
Temperaturen sind bisher nur unzureichend verstanden.
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1 Introduction

1.1 Quantum interference and phase relaxation effects

in disordered metals

Quantum interference effects in the transport theory of disordered metals arise from the
fact that the probability of a classical trajectory needs to be replaced by a quantum-
mechanical complex probability amplitude. Considering two trajectories connecting the
same initial and final points, the probability for a conduction electron to travel from the
initial to the final point is given by the absolute square of the sum of the amplitudes,

|A1 + A2|2 = |A1|2 + |A2|2 + 2 Re A1A
∗
2 , (1.1)

with the quantum interference term (the last term) usually oscillating quickly on the
scale of the Fermi wavelength λF , which is much shorter than the elastic mean free
path l. The interference term therefore usually averages out, one exception being the
weak localization correction (see Section 1.1.1), where the phase relation between the
paths under consideration is fixed. Another phenomenon is the case of mesoscopic
conductance fluctuations (see Section 1.1.2), which are due to the fact that, unlike in
the classical case, for a quantum-coherent sample the conductance is not a self-averaging
quantity. Instead, as is typical for a mesoscopic system (i.e. a system with a size of the
order of the phase-coherence length), details of the microscopic configuration carry over
to the macroscopically observable conductance.

For all quantum interference phenomena, it is important to describe how the phase
memory (with respect to the initial point) along a trajectory gets lost. This generally
happens through processes which scatter the particle into a new quantum state. As
a result, characteristic phase coherence times τϕ and lengths Lϕ arise, beyond which
quantum interference effects are suppressed.

At low temperatures (. 1 K), spin-flip scattering from magnetic impurities and
electron-electron interaction are the most important dephasing processes. While spin-flip
scattering can be regarded as an extrinsic dephasing source and can be highly suppressed
in a suitable setup [88], electron-electron interaction is an intrinsic property of the con-
duction electrons, raising the need for a well-understood theoretical treatment.

In low dimensions, the interplay of disorder and interaction is particularly interesting
because the disorder enhances the interaction between diffusively moving electrons [29]:
A ballistic electron moves through a region of size 1/q , where q is the momentum

1



1 Introduction

transfer of the collision, in the time 1/qvF , where vF is the Fermi velocity. When this
region is crossed by diffusion, the time instead is 1/Dq2 (D is the diffusion constant),
so that the interaction time is given by the diffusion time or by the inverse energy
transfer [29]. As a result, of particular interest in low dimensions are processes with
small energy transfers. These do not alter the trajectory in a substantial way, the do
however change the phase of the wave function in an appreciable way. Also, in low
dimensions interference phenomena depend more sensitively on the large-scale cutoffs
τϕ , Lϕ , due to the momenta governing the behaviour of the system being of the order of
the inverse system size. A well-established theory of inelastic electron-electron collisions
in disordered systems is available [18, 29, 72, 85].

This thesis considers effects of electron-electron interaction in several situations which
are characterized by a rich interplay of different effects.

In Chapter 2, the Aharonov-Bohm configuration [5, 17, 25, 48, 88] is considered. Due
to the importance of low momentum transfers combined with the complicated geometry,
a real-space formalism is needed which properly accounts for the geometry, including
the boundary conditions. Surprisingly, up to now the treatment of dephasing in this
situation has happened mainly on a phenomenological level [17, 37, 38]. Chapter 2
presents a microscopic theory which refines the previously available results and indeed
shows some remarkable differences compared to them.

Another situation in which electron-electron interaction gains extra features is the
nonequilibrium situation. When a mesoscopic sample is subject to a finite voltage, the
electron distribution function becomes position-dependent, making the electrochemical
potential (which is ultimately due to interactions and can only be defined on length-
scales larger than the screening length) position-dependent. Already on this level, the
nonequilibrium situation is remarkably different from the equilibrium one [34]. More-
over, also the phase space available for inelastic processes is more complicated than in
the situation of a thermally broadened distribution function. In Chapter 3, a theory of
mesoscopic conductance fluctuations in nonequilibrium is presented, which takes these
features into account. A rich behaviour with several different regimes is found.

In some situations, electron-electron interaction results in the forming of new, strongly
correlated states. One example is the half-filled lowest Landau level [20, 45, 47, 52, 57,
67, 71], which can be described in terms of new quasiparticles (“Composite Fermions”)
which can be thought of as electrons with two magnetic flux quanta attached. As a
result, they move in a magnetic field which is diminished by the absorbed flux quanta
(and thus vanishes at half filling), but interact via a Chern-Simons gauge field in addition
to the Coulomb interaction. The quasi-particle picture of Composite Fermions forming
a Fermi sea [3] at half filling is supported by the Composite Fermions showing many of
the transport phenomena known from electrons (see e.g. Refs. [54, 70, 84], for a review
see Ref. [66]). In Chapter 4, the effect of the Chern-Simons interaction on transport
properties of Composite Fermions is analyzed. From the properties of the Chern-Simons
field, several issues arise which do not exist in the case of the Coulomb interaction,
for example breaking of time-reversal symmetry and the appearance of new timescales

2



1.1 Quantum interference and phase relaxation effects in disordered metals

different from the scales set by the electron dynamics. As a result, the dephasing of
Composite Fermions is dominated by geometric effects rather than those arising from
energy exchange along the trajectories.

1.1.1 Weak localization

The weak localization of electrons in a disordered conductor is an effect of quantum
interference of the conduction electrons. While the phase associated with an electron
trajectory usually oscillates quickly as a function of small variations of the trajectory for
most trajectories (and therefore just averages away), a path and its time-reversed version
visit the same impurities and therefore feature a fixed phase relation (see Fig. 1.1). The
interference is constructive because in the presence of time-reversal symmetry the phases
accumulated along the direct and the time-reversed trajectory are identical. As a result,
the probability to diffuse away from the origin of the trajectory is diminished (this is
sometimes referred to as coherent backscattering), and the conductivity is decreased
compared to the result obtained by the classical Drude-Boltzmann theory.

An estimate of the magnitude of the weak-localization effect can be obtained in the
following way (see e.g. Refs. [29, 72]): The classical probability for a diffusive particle
to return into a volume element dV is given by

dP =
dV

(Dt)d/2
, (1.2)

where D is the diffusion constant and d the number of dimensions. The relevant volume
element is given by dV = vF dt λd−1

F , i.e. by a cylinder of diameter λF and length vF dt
where the returning trajectory may interfere with its initial part. On average, the
returning trajectory will be directed opposite to the initial direction, so the correction
to the conductivity is negative.1 The weak localization correction δσWL is therefore
estimated as

δσWL

σ
= −vF λd−1

F

∫
dt

(Dt)d/2
, (1.3)

where, if necessary in the dimensionality under consideration, the integral is cut off
at the lower limit by the elastic scattering time τ (since a returning trajectory needs
to visit at least one scattering site) and at the upper limit by the dephasing time τϕ .
In particular, the weak localization correction diverges at the upper limit in one and
two dimensions if no cutoff τϕ is taken into account. This ultimately means that for
arbitrarily weak disorder all one-particle states are localized in one and two dimensions
and therefore no states are available for conduction [4, 13, 14].

1For strong spin-orbit coupling, the opposite situation is the case (weak antilocalization). Since the
direction of the spin is locked to the direction of the trajectory, and thus rotated on average by π
for a closed trajectory, the returning trajectory acquires an extra phase factor of −1.
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1 Introduction

Figure 1.1: Left: Two paths visiting different impurity sites interfere with a random
phase. Summing over all paths, most of the interference is averaged away.
Right: Two paths visiting the same impurities but some in reversed order.
These paths interfere constructively, thus reducing the probability for the
particle to diffuse away. This is the origin of the weak localization correction.

Since weak localization requires interference with the time-reversed trajectory, it de-
pends on the presence of the time-reversal symmetry. Time-reversal symmetry is broken
by magnetic fields, and the weak localization effect then is destroyed because the di-
rect and the time-reversed trajectory acquire opposite phases from the magnetic flux
they enclose. This gives rise to the well-known negative magnetoresistance [16], since
in strong magnetic fields only short trajectories enclosing less than one magnetic flux
quantum give an appreciable contribution to the interference.

The weak localization correction has been calculated more rigorously [15, 16, 32] to
be

δσWL

σ
= −

τϕ∫

τ

dt C(r, r, t) , (1.4)

where the Cooperon C satisfies (see Fig. 1.2)
{

∂

∂t
+ D (−i∇− e a(r, t/2) − e a(r,−t/2))2

}

C(r, r′, t) = δ(r − r′) δ(t) . (1.5)

The Cooperon can also be represented as a path integral [18],

C(r, r′, t) =

r(t)=r∫

r(−t)=r′

D[r(t)] exp






−

t∫

−t

dt′
[
ṙ2(t′)

4D
+ ie ṙ(t′) ·

[

a(r, t′/2) + a(r,−t′/2)
]]






.

(1.6)
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1.1 Quantum interference and phase relaxation effects in disordered metals

Figure 1.2: Top: diagrammatic representation of the Cooperon. The maximally crossed
impurity lines result from the impurities visited in reverse order by the elec-
tron and hole trajectories. Here GR denotes the retarded (electron) Green’s
function and GA denotes the advanced (hole) Green’s function. Lower left:
equivalent diagram for the Cooperon. In the presence of time-reversal sym-
metry, this is equal to the diffuson (lower right).

Without a magnetic field, a = 0 , the Cooperon has the same form as the diffuson due
to time-reversal symmetry, while the Cooperon is suppressed in the presence of a vector
potential a . Evaluating Eq. (1.4), the result is

δσWL = −e2
√

Dτϕ

π

1

[−ln Ai (τϕ/τH)]′
, d = 1 , (1.7)

δσWL = − e2

2π2
ln

τHτϕ

τ(τH + τϕ)
, d = 2 , (1.8)

where τH is the timescale on which the magnetic field breaks time-reversal symmetry
[16, 29, 72].

The weak localization effect is robust against thermal averaging, since the time-
reversed version of a trajectory has the same energy even if the electron distribution
function is thermally broadened. A temperature dependence of the weak localization
arises from inelastic electron-electron collisions, which occur with increasing rate as the
temperature is increased.

The dephasing rates due to inelastic processes have been calculated [18, 29, 72] for

5



1 Introduction

different dimensions d to be

1

τϕ

∼ T 2/3

ν2/3D1/3
, d = 1 , (1.9)

1

τϕ

∼ T

νD
ln kF l , d = 2 , (1.10)

where T is the temperature, D is the diffusion constant, l is the elastic mean free path,
and ν is the density of states at the Fermi energy EF = k2

F /2m . The corresponding

dephasing lengths are given by Lϕ = (Dτϕ)1/2. In particular, for a quasi-onedimensional
wire

Lϕ ∼ ν1/3D2/3

T 1/3
, d = 1 . (1.11)

Recently it has been shown [85] that the same dephasing length also applies to the
suppression of mesoscopic conductance fluctuations by inelastic electron-electron scat-
tering (see Section 1.1.2, the connection between the two effects is investigated further
in Section 2.3).

1.1.2 Mesoscopic conductance fluctuations

Universal conductance fluctuations [23, 24, 26, 33, 36] are one of the most prominent
manifestations of quantum coherent transport in disordered conductors. When quantum
coherence is retained over the entire sample, i.e. the dephasing length Lϕ is larger than
the system size, the variance 〈δg2〉 of the dimensionless conductance g (the conductance
G measured in units of the conductance quantum e2/h = e2/2π) over the ensemble of
disorder realizations assumes a value of order unity, which depends only on the spatial
dimensionality and on global symmetries (time-reversal and spin-rotation) of the Hamil-
tonian. In particular, the variance of the conductance does not depend on the system
size (the conductance is not self-averaging as long as quantum coherence is preserved
over the entire sample) and does not depend on the average value of the conductance.
This effect is due to different microscopic impurity configurations of macroscopically
identical samples. The interference pattern of electron trajectories, and therefore the
conductance, depends on these microscopic details (see Fig. 1.3).

The variance of the conductance at zero temperature can be calculated using the
standard impurity diagram technique [7, 36, 39, 41, 42]. To obtain the variance of
the conductivity, two conductivity bubble diagrams should be connected in all possible
ways with diffuson or Cooperon imputiry ladders. In principle, diagrams with up to
four ladders exist, however it has been shown [33, 39] that diagrams with three and
four ladders cancel in the leading order in 1/kF l , so that only the three two-diffuson
diagrams shown in Fig. 1.4 and the corresponding Cooperon diagrams need to be taken
into account.

To calculate the conductance from the conductivity (which is in general a long-ranged
tensor), the conductivity should be convolved with the so-called “flow function” [39]

6



1.1 Quantum interference and phase relaxation effects in disordered metals

Figure 1.3: Trajectories visiting different impurities interfere with a random sample-
specific amplitude. This results in a variance of the conductance over the
disorder ensemble which is of order e2/h .

and integrated over the sample. The flow function depends on the sample geometry
and in general has a nontrivial structure.2 For a quasi-onedimensional wire it is just
a constant equal to the inverse of the system size. The conductance fluctuations of a
quasi-onedimensional wire can thus be evaluated as

〈
δg2

〉
= 8

∫

sample

drdr′
[

2 |D(r, r′)|2 + ReD2(r, r′)

+ 2 |C(r, r′)|2 + Re C2(r, r′)

]

, (1.12)

where the (rescaled) diffuson D(r, r′) satisfies
{

−∇2 − iω

D
+

1

Dτϕ

}

D(r, r′) = δ(r, r′) , (1.13)

and the rescaled Cooperon C(r, r′) is equal to the diffuson in the absence of a time-
reversal breaking magnetic field. For zero temperature (1/τϕ = 0) and in the linear
response (ω = 0), Eq. (1.12) simplifies to

〈
δg2

〉
= 48

∫

sample

drdr′ |D(r, r′)|2 . (1.14)

In particular, for a quasi-onedimensional wire the variance of the conductance can be
calculated as

〈δg2〉 = 48 Tr |D|2

= 48
∑

n>0

1

(q2
n L2)2 , qn = nπ/L

=
8

15
. (1.15)

2A comparison with the Keldysh formalism (see Section 3.2.1) shows that the flow function φ(r0, r)
of Ref. [39], where r0 is located at a reservoir, is related to the impurity-averaged diagonal Keldysh
function

〈
GK

ε (r)
〉

by φ(r0, r) = − 1

4πiν

∫
dε
eV ∇

〈
GK

ε (r)
〉

; this follows from Eqs. (3.35), (3.36), and the
equation for the flow function given in Ref. [39].
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Figure 1.4: Diffuson diagrams contributing to the correlation of conductivity compo-
nents

〈
δσαβ(r1, r2) δσγδ(r3, r4)

〉
resulting in Eq. (1.12). The wiggly lines

denote external velocity vertices, GR and GA the retarded and advanced
Green’s functions, respectively, and the dashed lines the impurity potential
correlator. The impurity ladders (diffusons) are given by Eq. (1.13).
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1.1 Quantum interference and phase relaxation effects in disordered metals

This value is in equal parts due to diffuson and Cooperon contributions. The diffuson
diagrams are shown in Fig. 1.4. For broken time-reversal symmetry, the Cooperon
contribution is suppressed and Eqs. (1.15), (1.12) should be multiplied with 1/2 . In
the case of strong spin-orbit coupling, spin-rotation symmetry is broken and the singlet
and (three) triplet contributions to the diffuson and the Cooperon should be treated
separately. The triplet propagators acquire a mass due to the spin-orbit coupling, so
that only the singlet contributions survive over long distances. As a result, the variance
of the conductance is suppressed by another factor of 4.

Experimentally, the ensemble average is replaced by an average over a range of mag-
netic fields. Changing the interference pattern by sweeping the magnetic field over a
sufficiently wide range, the statistical properties extracted from the magnetofingerprint
are be equivalent to the properties of the ensemble average. The condition for this can
be expressed as the condition that the range of magnetic fields swept through should be
much larger than the correlation field (which is given by one flux quantum Φ0 = h/e be-
ing added to a region of the length scale of the phase-breaking length Lϕ), meaning that
the scattering pattern should be completely rearranged many times for the equivalence
to be valid. This is widely referred to as the ergodic hypothesis, for a careful discussion
see Ref. [91].

At nonzero temperature, mesoscopic conductance fluctuations are suppressed by ther-
mal averaging: Since each individual sample from the disorder ensemble is averaged over
a range of energies available for conduction, the variance of the conductance over the
disorder ensemble decreases because the phase distribution becomes thermally broad-
ened on the lengthscale of the thermal length LT = (D/T )1/2. In addition to thermal
smearing, the conductance fluctuations are suppressed by phase-breaking processes like
scattering off magnetic impurities or inelastic electron-electron collisions. As a result,
a characteristic length scale Lϕ arises beyond which the phase of a conduction electron
is randomized. The fluctuations of the conductance of a wire of length L À Lϕ can be
understood as the result of L/Lϕ fluctuating resistances which add up incoherently. The
fluctuations thus partially average out.

For the wire geometry at finite temperature, the amplitude of mesoscopic conductance
fluctuations depends on the thermal length LT and the phase-breaking length Lϕ given
by (1.11) in the following way [27, 36],

〈
δg2

〉
∼

(
LT

L

)2
Lϕ

L
, LT ¿ Lϕ ¿ L . (1.16)

Recently, in Ref. [85] it has been demonstrated that the amplitude of mesoscopic con-
ductance fluctuations and the weak localization correction are suppressed by dephasing
effects originating from inelastic electron-electron collisions in precisely the same way,
allowing to establish a formal relation between the two quantities without specifying
their values. This can serve as a tool to examine the nature of dephasing effects. In Sec-
tion 2.3 this relation is re-examined and derived in a more fundamental way, allowing for
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1 Introduction

a straightforward generalization to a similar relation between h/e and h/2e Aharonov-
Bohm oscillations (see Section 1.1.3 for an introduction). In Section 4.3 this relation is
further generalized to the case of interaction through a transverse gauge field.

As the voltage difference of the reservoirs the sample is connected to is increased
beyond the linear-response regime, the amplitude of mesoscopic conductance fluctuations
becomes a nontrivial function of the voltage [34, 60, 78, 79, 86, 87]. This is examined in
Chapter 3.

1.1.3 Aharonov-Bohm oscillations of conductance

In a multiply-connected geometry (a ring), electrons acquire topological phase factors
(Aharonov-Bohm phases) when encircling the ring enclosing a vector potential [5]. As a
result, quantum interference of paths encircling the ring in different directions becomes
a function of the flux of vector potential enclosed by the ring (for reviews, see Refs. [38,
48, 64]). Two types of Aharonov-Bohm effects in metallic rings have to be distinguished:
the weak-localization Aharonov-Bohm effect (h/2e effect) and the mesoscopic Aharonov-
Bohm effect (h/e effect).

The h/2e effect is closely related to weak localization: It is the result of Cooperon paths
encircling the ring. While in the bulk material the weak localization effect is destroyed
by an applied magnetic field due to paths enclosing different areas and acquiring different
phases, in a narrow ring all Cooperons with winding number one acquire the same phase.
Therefore the weak localization effect is recovered if an integer number of magnetic flux
quanta is threading the ring, and the conductance of the ring becomes a periodic function
of the flux, with the fundamental period of h/2e due to the Cooperon coupling to the
magnetic field with the charge 2e. Higher harmonics of this effect exist due to Cooperons
with winding numbers greater than one. The h/2e effect, like weak localization in
bulk, is insensitive to ensemble averaging because it is symmetric in the flux, rather
than featuring a sample-specific phase. Similar to the bulk weak localization effect,
the h/2e Aharonov-Bohm effect is suppressed when a magnetic flux of the order of the
flux quantum Φ0 threads the wires forming the sample, as opposed to the area enclosed
by the ring. At this scale of magnetic field, which for narrow rings is a much larger
scale than the one related to the oscillations, the phase differences between different
Cooperon paths of winding number one become appreciable, resulting in cancellation of
interference amplitudes similar to the suppression of the bulk weak-localization effect.
Since the h/2e effect survives ensemble averaging, oscillations with the fundamental
period of h/2e also occur in hollow metal cylinders threaded by an axial magnetic field
[17], the cylinder representing an average over rings of small thickness, and in networks
of rings [95, 104].

The h/e effect, on the other hand, arises in a similar fashion as mesoscopic conduc-
tance fluctuations in a singly-connected geometry: Due to sample-specific microscopic
impurity configurations, the interference of trajectories with a relative winding num-
ber one acquires a sample-specific phase, which varies periodically as a function of the
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1.1 Quantum interference and phase relaxation effects in disordered metals

Φ Φ

Figure 1.5: Left: the analog of Fig. 1.3 in the ring geometry. Paths encircling the ring
in opposite directions give rise to conductance oscillations as a function of
the magnetic flux Φ with a fundamental period of h/e with a sample-specific
amplitude and phase. Taken over a large range of magnetic fields, these
oscillations are ensemble-averaged. Right: A trajectory encircling the ring
interferes constructively with the one visiting the same impurities in reversed
order, similar to the interference shown in the right part of Fig. 1.1. As a
result, at zero flux the probability of the particle to diffuse through the ring
is diminished, reducing the conductance. When the ring is threaded by a
magnetic flux Φ, the interference is modulated with a fundamental period of
h/2e due to the two trajectories accumulating opposite phase factors.

magnetic flux enclosed by the sample, with a fundamental period of h/e . On ensemble
averaging this phase averages to zero. However, the harmonics of the variance of the
conductance over the ensemble take characteristic values which depends on some details
of the geometry [89, 94]. On the field scale of a flux quantum threading the metal,
the sample-specific phase gets randomized relative to its value at zero field due to the
magnetic field altering the interference pattern within the sample, as opposed to the
topological Aharonov-Bohm phase acquired upon encircling the ring.

The h/e oscillations, including higher harmonics due to paths with relative winding
numbers greater than one, can be written as

δg(Φ) = δg0 + 2
∞∑

n=1

δgn cos

(
2πnΦ

Φ0

+ θn

)

, (1.17)

with the sample-specific amplitudes δgn and phases θn , the flux enclosed by the ring
Φ and the flux quantum Φ0 = h/e . Eq. (1.17) is valid over a not too large range of
magnetic fields where θn can be regarded as constant, i.e. over a range corresponding to
the flux through the wires changing by less than a flux quantum.3 The amplitudes δgn

3The condition that the phases θn remain constant over a large enough range of magnetic field is
that the area enclosed by the ring is much larger than the area of the metal itself, leading to well-
separated scales of h/e oscillations and aperiodic fluctuations [24, 25]. For theoretical work on rings
with finite linewidth see Ref. [50].
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are determined by the diffuson diagrams for conductance fluctuations, while the phases
θn are determined by the corresponding Cooperon diagrams [89, 94]. It should be
emphasized that the Cooperon diagrams determine the phases only, not the amplitudes.
It has been directly observed [30] that the mesoscopic oscillations have random phases
associated, while the weak-localization oscillations do not.

When taking a magnetofingerprint of an Aharonov-Bohm sample over a large range
of magnetic fields, at the same time an ensemble average over the disorder is performed
(ergodic hypothesis). The peaks seen in a Fourier transformation of the magnetofinger-
print therefore are the ensemble-averaged amplitudes 〈δg2

n〉 . These can be evaluated by
calculating Eq. (1.12) in the ring geometry with appropriate boundary conditions and
extracting the Fourier components. This has been performed in Refs. [89, 94] for the
zero-temperature situation (without any dephasing) with the result

〈
δg2

n

〉
=

1

30

(
γ1/2 − 1

)2n (
γ1/2 + 1

)−2n
γ1/2 (γ + 1)

[
9 − 10γ + 9γ2 + 20 n γ1/2 (γ + 1)

]
,

(1.18)
where γ is a coefficient related to the geometry4 of the ring and the leads, γ =
(resistance of ring)/(resistance of total sample) = R1/(R1 + R2) with the resistances
R1 and R2 defined as shown in Fig. 1.6. By definition, 0 ≤ γ ≤ 1 . The coefficient

2R

R  /22R  /2

2R1

1

2

Figure 1.6: Two-terminal Aharonov-Bohm sample geometry which in the noninteracting
limit shows the mesoscopic conductance oscillations (1.18). The geometrical
coefficient γ is defined as γ = R1/(R1 + R2) .

of Eq. (1.18) should be multiplied with an extra factor 1/4 in the presence of strong
spin-orbit interaction. The first four harmonics as given by Eq. (1.18) are plotted in
Fig. 1.7. Clearly, even without dephasing the fundamental (n = 1) harmonic is much

4Eq. (1.18) is strictly valid only for a two-terminal configuration. In a four-terminal setup extra
contributions appear [39, 41, 42], since the Onsager symmetries [1] allow for an antisymmetric part
of the response to the magnetic flux.
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Figure 1.7: The ensemble-averaged amplitudes 〈δg2
n〉 of the first four harmonics of meso-

scopic Aharonov-Bohm oscillations. The coefficient is calculated for systems
without spin-orbit interaction. For systems with strong spin-orbit interac-
tion, the 〈δg2

n〉 are reduced by an extra factor of 1/4 .

larger than the higher ones. This is due to the probability of escaping to the reservoirs if
the lead lengths are finite, γ > 0 . With dephasing, the higher harmonics are even more
suppressed compared to the fundamental one, and for n > 2 are hardly ever observed
in disordered metallic samples.5 In the limit of short leads (γ → 1), Eq. (1.18) agrees
with the results of Ref. [49] (where the leads were modelled by introducing an escape
probability at two opposite points of the ring) in the absence of spin-flip scattering.

Superimposed onto the mesoscopic oscillations are also the aperiodic mesoscopic fluc-
tuations of the wires forming the ring. Early experiments [21], which used rather small
rings, could not resolve the h/e oscillations from the aperiodic background since the
field scales for a flux quantum threading the ring and for a flux quantum penetrating

5It should be noted that in a ballistic high-mobility semiconductor heterostructure, harmonics up to
n = 6 have been observed [81]. Eq. (1.18) does not apply to ballistic systems. Also, in Ref. [98] mea-
surements on a network of metallic rings are reported which display h/e oscillations with observable
harmonic content, however these systems do not compare directly to single rings [76].
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the wire coincided. In larger rings composed of narrow wires [25], the aperiodic fluc-
tuations happen on much larger field scales than the h/e oscillations, making the h/e
oscillations well observable.

Experimentally [25, 28, 40, 30, 37, 78, 79, 82, 88, 95], h/e Aharonov-Bohm oscillations
of conductance have the advantage that they are not sensitive to breaking of time-reversal
symmetry by a strong magnetic field penetrating the wires, and can therefore be used
to analyse quantum-coherent transport in situations not accessible to weak-localization
measurements. A beautiful example is the demonstration that even concentrations of
magnetic impurities as low as 1 ppm can have a considerable impact on quantum co-
herence [88]. When those impurities are aligned by a strong magnetic field, spin-flip
scattering is suppressed, greatly enhancing coherence. The sample and a magnetofin-
gerprint from Ref. [88] are shown in Fig. 1.8. For a theoretical treatment of the effect
of magnetic impurities see Ref. [100]. When the magnetic impurities are aligned by the
magnetic field, inelastic electron-electron collisions are the dominating source of phase-
breaking processes. While this regime is accessible via measurements of h/e oscillations,
the weak-localization correction is suppressed already by the time-reversal breaking due
to the magnetic field, prohibiting measurements of the dephasing of the weak-localization
correction. The experiment reported in Ref. [88] has been performed at very low tem-
peratures. As a result, the amplitudes of Aharonov-Bohm oscillations at high magnetic
fields approach the maximum values (Eq. (1.18), multiplied by 1/4 to account for strong
spin-orbit interaction) expected from perfectly coherent samples [89, 94]. Chapter 2 of
this thesis considers the opposite limit, when dephasing due to Coulomb interaction be-
tween conduction electrons is strong. It is found that the dephasing of Aharonov-Bohm
oscillations differs from the dephasing of weak localization and mesoscopic fluctuations
in singly-connected geometries in a remarkable way.
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1.1 Quantum interference and phase relaxation effects in disordered metals

Figure 1.8: Image of an Aharonov-Bohm ring and a magnetofingerprint of this sample,
both taken with kind permission from Pierre and Birge [88]. The raw data
clearly show Aharonov-Bohm oscillations of the conductance (right inset),
superimposed by aperiodic mesoscopic fluctuations on larger field scales. It
is also immediately visible from the raw data that at high magnetic fields
(right inset) the Aharonov-Bohm oscillations are much stronger than at low
magnetic fields (left inset).
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2 Effect of Coulomb interaction on

Aharonov-Bohm oscillations

2.1 Dephasing on a phenomenological level

The following formula has been given in Refs. [17, 38] for the weak localization correction
(h/2e amplitude) to the conductance of a ring,

∆G = −e2

h
Lϕ

sinh
2πR

Lϕ

cosh
2πR

Lϕ

− cos
4πΦ

Φ0

, (2.1)

where G is the conductance per unit length, R is the ring circumference, Φ is the mag-
netic flux threading the ring, and Φ0 = h/e is the magnetic flux quantum. The dephasing
length Lϕ is here a phenomenological parameter without a microscopic derivation, in-
troduced via a mass of the Cooperon given by the (constant) dephasing rate 1/τϕ ,

{

− D∇2 − iω +
1

τϕ

}

Cω(r, r′) = δ(r − r′) (2.2)

and using Lϕ = (Dτϕ)1/2. For dephasing by electron-electron interaction, usually the
dephasing length (1.11) is inserted into Eq. (2.1), however no microscopic derivation
exists which would justify this. However, due to lack of a better theory, Eq. (2.1)
together with (1.11) has been widely used to describe experimental data [37, 88].

In this chapter it is shown that in fact a more sophisticated treatment of inelastic
collisions is necessary. Following the ideas of Refs. [18, 29, 85], a microscopic theory
of inelastic collisions with small energy transfers in the Aharonov-Bohm geometry is
developed. This is performed for mesoscopic (h/e) oscillations first. Later it is shown in
Section 2.3 that the result can be directly transferred to weak-localization (h/2e) oscil-
lations too. It is shown that the amplitude of h/2e oscillations in the strong-dephasing
regime can be written in a form similar to Eq. (2.1), but with a dephasing length that
is parametrically different from Eq. (1.11).
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2 Effect of Coulomb interaction on Aharonov-Bohm oscillations

2.2 Dephasing of h/e Aharonov-Bohm oscillations by

Coulomb interaction

2.2.1 Screened Coulomb interaction in real space

In low dimensions (d = 1, 2), phase relaxation is dominated by electron-electron collisions
with small (ω ¿ T ) energy transfers [18, 29]. Therefore, the effective electron-electron
interaction can be conveniently represented [18, 29, 72, 85] by a time-dependent random
classical potential ϕ(r, t), with the correlator 〈ϕ(r, t) ϕ(r′, t′)〉 given by the fluctuation-
dissipation theorem [6]:

〈
ϕα(r, t) ϕβ(r′, t′)

〉

ω
= −Im U(r, r′; ω) δαβ δ(t − t′) coth

ω

2T
, (2.3)

where the indices α, β denote different measurements taken. The dynamically screened
Coulomb interaction U is given in the random-phase approximation [2, 29] (RPA, see
Fig. 2.1) by

Figure 2.1: Random-phase approximation for the screened Coulomb interaction. Sum-
ming up the series results in Eq. (2.4).

U(q, ω) =
1

U−1
0 (q) + Π(q, ω)

' Π−1(q, ω) , (2.4)

where U0(q) is the bare Coulomb interaction,

Π(q, ω) =
νDq2

Dq2 − iω
(2.5)

is the polarization operator due to diffusive motion of the conduction electrons and coin-
cides with the density-density correlation function [29], and ν is the density of states at
the Fermi energy. In a diffusive system, the screening length (which is of the order of the
Fermi wavelength) is much smaller than typical diffusive length scales (for an Aharonov-
Bohm ring set by the ring diameter). This allows one to neglect the bare Coulomb
interaction compared to the polarization, resulting in the last approximate equality in
Eq. (2.4). The interaction is thus entirely dominated by the diffusive dynamics of the
conduction electrons.
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2.2 Dephasing of h/e Aharonov-Bohm oscillations by Coulomb interaction

Since small momentum transfers (of the order of the inverse system size, as will be seen
later) are the important ones, the nontrivial geometry of the Aharonov-Bohm ring is best
treated in a real-space calculation. To generalize Eqs. (2.3), (2.4) to real space, consider
first the eigenfunctions Ψi of the Laplace operator,∆Ψi = εiΨi . These eigenfunctions
satisfy the completeness relation

∑

i |Ψi〉〈Ψi| = 1 . Therefore the polarization is given
by

Π = ν
∑

i

|Ψi〉〈Ψi|
εi − iω

= ν

[

I + iω
∑

i

|Ψi〉〈Ψi|
εi − iω

]

= ν
∑

i

|Ψi〉〈Ψi|
εi

εi − iω
, (2.6)

which in momentum space is just Eq. (2.5). In real-space notation the inverse Π−1 is
equal to

Π−1 =
1

ν

∑

i

|Ψi〉〈Ψi|
εi − iω

εi

,

Im Π−1(r, r′) = −ω

ν

∑

i

Ψi(r)Ψi(r
′)

εi

= − ω

Dν
D(r, r′) (2.7)

(note that the Ψi are real), where D is the solution of the Laplace equation,
−∆D(r, r′) = δ(r − r′) , with zero boundary conditions at the contacts with the bulk
electrodes. As a result, the generalization of Eq. (2.4) to real space reads, as might be
naively expected,

Im U(r, r′; ω) ' Im Π−1(r, r′; ω) = − ω

νD
D(r, r′) , (2.8)

For relevant frequencies ω ¿ T , the approximation coth
ω

2T
' 2T

ω
may be used, and the

correlator of the random potential is therefore

〈
ϕα(r, t) ϕβ(r′, t′)

〉
=

2T

νD
D(r, r′) δαβ δ(t − t′) , (2.9)

requiring in particular knowledge of the Laplace propagator D(r, r′) in the ring geometry
with the appropriate boundary conditions.
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2 Effect of Coulomb interaction on Aharonov-Bohm oscillations

2.2.2 Effect of Coulomb interaction on Aharonov-Bohm

interference

In the presence of a fluctuating potential ϕ(x, t) the diffuson propagator D satisfies in
each quasi-onedimensional wire the equation

{
∂

∂t
− D

∂

∂x2
+ i

[

ϕα(x, t) − ϕβ(x, t)
]}

Dαβ
δΦ(x, t; x′, t′) = δ(x − x′) δ(t − t′) , (2.10)

supplemented by appropriate matching conditions at the junctions of the ring and leads.
Here δΦ = Φ1 − Φ2 is the difference in the magnetic flux between the two measurements,
which is incorporated in the matching conditions via a phase factor exp{2πiΦ/Φ0} which
is acquired upon encircling the ring.

When inelastic processes are taken into account, a difference arises between “true”
diffusons and the impurity ladders in Fig. 2.2, which have been named “CF diffusons” in
Ref. [85]. In the diagrams describing mesoscopic conductance fluctuations, the impurity
ladders connect Green’s functions corresponding to two different measurements. While
the impurity configuration of a specific sample remains the same for both measure-
ments, the configurations of the fluctuating electric potential for the two measurements
are uncorrelated. Therefore, interaction lines may not connect Green’s functions cor-
responding to different measurements [85]. As a result, the CF diffuson is sensitive
to electron-electron interaction, unlike the “true” diffuson, for which particle number
conservation ensures that self-energy and vertex corrections exactly cancel. At high
temperatures T À Ec , where Ec = D/L2 is the Thouless energy and L is the system
size, the variance of the conductance can be written [85] as1

〈
δG(Φ1) δG(Φ2)

〉
=

4e4D2

3πTL4

∫

sample

dr1dr2

∫

dt dt′ δ̃(t − t′)
〈

D12
δΦ(r1, r2, t)D21

δΦ(r2, r1, t
′)
〉

,

(2.11)
where the angular brackets denote averaging over the fluctuating fields ϕ . The function
δ̃(t− t′) arises from thermal smearing of the distribution functions and is explicitly given
by

δ̃(t − t′) = 12πT

∫
dε1

2π

dε2

2π
f ′(ε1) f ′(ε2) exp

{

i (ε1 − ε2) (t − t′)
}

= 3π T 3 (t − t′)
2
sinh−2 [πT (t − t′)] . (2.12)

The function δ̃(t−t′) is peaked around t − t′ = 0 and has a width of 1/T . In the following
it will be replaced by the true delta function δ(t − t′), neglecting dephasing during the

1The Cooperon contribution to the correlation function is discarded, since it does not influence the
variance 〈g2

n〉 of harmonics of the AB oscillations but only the statistics of the oscillation phase, see
Refs. [89, 94].
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2.2 Dephasing of h/e Aharonov-Bohm oscillations by Coulomb interaction

Figure 2.2: Diagrammatic representation of Eq. (2.11). The wiggly lines represent the
RPA-screened Coulomb interaction. Since two separate measurements are
involved, interaction lines only connect Green’s functions corresponding to
the same measurement.

time difference t − t′ ∼ 1/T . To justify this, consider two paths with durations t and
t′, respectively. During the time difference t − t′ there will be a strong effect of bare
fluctuations ∼ exp

{
−

〈
[ϕα(r1)]

2〉/T
}

(as opposed to the cancellation in Eq. (2.15)).
The resulting suppression factor (which should be negligible for the two paths of slightly
unequal durations to contribute) can be estimated2 as

exp

{

−
〈
[ϕα(θ1)]

2〉

T

}

∼ exp

{

− 2TL

νDT

}

∼ exp

{

−L

ξ

}

, (2.13)

where ξ is the localization length of the system. When the conductance of the system
is large compared to the conductance quantum e2/h ' (25 kΩ)−1 (the sample is well
into the metallic state), the localization length is much larger than the system size and
the suppression factor (2.13) can be replaced by 1. This condition is well satisfied in
typical experiments, therefore allowing to replace δ̃(t − t′) → δ(t − t′) . The diagram
corresponding to Eq. (2.11) is shown in Fig. 2.2. However, the diagrammatic technique
suffers from divergences due to the infrered behaviour of the screened Coulomb interac-
tion and is not convenient to use in the present situation.

2This estimate gives an upper boundary on the dephasing during the time difference t − t′ . Due
to gauge invariance requirements, the dephasing is even weaker than this estimate. For example,
fluctuations with zero wavenumber (a uniform change of the background potential, not leading to
any electric field) should not result in extra dephasing.
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θ=π/2

θ=0
2R

R  /2
2

R  /2

2R
1

1

θ=π,−π

θ=−π/2
2

Figure 2.3: The sample geometry and the angular coordinate θ suitable to describe
the motion along the ring. The paths representing the saddle-point solution
derived in Section 2.2.3 are shown. The geometric parameter γ is defined as
the ratio of the resistance of the ring without the leads to the resistance of
the total sample, γ = R1/(R1 + R2) .

A more suitable method is to express Eq. (2.11) with the help of path integrals. It is
convenient to introduce an angular coordinate θ describing the location on the ring as
shown in Fig. 2.3. The leads will not need detailed description since, as will be discussed
below, in the regime of strong dephasing the important paths do not extend into the
leads.

Expressing the CF diffuson propagator D12 as a path integral,

D12(θ1, θ2) =

∞∫

0

dt

θ1∫

θ2

D[θ(t)] exp






−

t∫

0

dt′

[

R2θ̇2(t′)

4D
+ i

[

ϕ1[θ(t
′), t′] − ϕ2[θ(t

′), t′]
]
]





,

(2.14)
the nth harmonic δgn of the conductance variance 〈δg(Φ) δg(Φ)〉 with respect to the flux
Φ is then given, up to a geometrical coefficient, by

〈
δg2

n

〉
∼ D2

TR4

π∫

−π

dΘ1

π∫

−π

dΘ2

∞∫

0

dt

Θ1∫

Θ2

D[θ1(t)]

Θ1∫

Θ2

D[θ2(t)]

× exp






−

t∫

0

dt′

[

R2θ̇1
2

4D
+

R2θ̇2
2

4D
+ V (θ1, θ2)

]





, (2.15)

where the path integral goes over pairs of paths θ1(t), θ2(t) which have a relative winding
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2.2 Dephasing of h/e Aharonov-Bohm oscillations by Coulomb interaction

number n, and the “potential” V (θ1, θ2) is given by

V (θ1, θ2) =
〈[

ϕα(θ1) − ϕα(θ2)
]2

〉

, (2.16)

where the formula 〈exp{iϕ}〉 = exp{−〈ϕ2〉/2} for Gaussian variables ϕ has been used.
To explicitly calculate the “potential” V (θ1, θ2) , the solution D(r, r′) of the Laplace
equation in the ring is required, which is [89]

D(θ1, θ2) =
R

8πγ
(1 − γ)

[
π2 + 4γ θ1 (π − θ2)

]
(2.17)

for |θ1| ≤ π/2, π/2 ≤ θ2 ≤ π (coordinates in different arms of the ring) and

D(θ1, θ2) =
R

8πγ

[
π2 (1 + γ) − 4γ (1 + γ) θ1θ2 + 4πγ |θ1 − θ2|

]
(2.18)

for −π/2 ≤ θi ≤ π/2 (both coordinates in the same arm of the ring). The geometrical
coefficient γ is defined in the same way as in Section 1.1.3 and shown again in Fig. 2.3.
The expression for the ranges of θi not stated follow from symmetry considerations.
Using the correlator (2.9), the “potential” V (θ1, θ2) is

V (θ1, θ2) =
2TR

νD

[
π

2
− 1 + γ

2π
θ2
1 −

1 + γ

2π
(π − θ2)

2 − 1 − γ

π
θ1 (π − θ2)

]

(2.19)

for coordinates in different arms of the ring, |θ1| ≤ π/2, π/2 ≤ θ2 ≤ π, and

V (θ1, θ2) =
2TR

νD

[
∣
∣θ1 − θ2

∣
∣ − 1 + γ

2π

(
θ1 − θ2

)2
]

, (2.20)

for coordinates in the same arm of the ring, |θi| ≤ π/2 .
The amplitude 〈δg2

n〉 is now mapped to the problem of a particle of mass R2/2D
moving in the twodimensional potential V (θ1, θ2) (or, equivalently, two particles with
the coordinates θ1 and θ2 moving in one dimension and interacting via the potential
V (θ1, θ2) ). The solution of the full twodimensional problem is not attempted here,
however is is considerably simplified at high temperatures, when the potential V (θ1, θ2)
is high, TR/νD À 1 , and dephasing is strong.

2.2.3 Analytic solution of the strong-dephasing case

Consider first the fundamental harmonic of the Aharonov-Bohm oscillations, which is
due to pairs of paths half-encircling the ring in opposite directions. At high enough
temperature, when the dephasing effect is strong, the path integral in Eq. (2.15) can be
evaluated with the help of the saddle-point method.

The saddle-point (instanton) method [19] is valid in the regime of strong dephasing
(when the tunnelling amplitude of the fictitious particle is strongly suppressed). In this
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2 Effect of Coulomb interaction on Aharonov-Bohm oscillations

case, since the action [22] of every path is large, the path integral Eq. (2.15) is dominated
by paths with actions close to the minimal action only. The leading exponential factor
is then given by the action of the optimal path.

The optimal pair of paths can be identified in the following way: First, the paths do
not extend into the leads since exploring part of a lead and returning into the ring to
complete the path would only increase the action of that part. Moreover, the optimal
configuration will be a pair of paths with a maximum amount of symmetry, with the
common start- and endpoints located either at the junction of the ring with the leads,
θ1(t) − π/2 = −(θ2(t) − π/2) ≡ θ̃, or on the ring at the points with maximal distance
from the leads, θ1(t) = −θ2(t) ≡ θ . Within the saddle-point approximation (within ex-
ponential accuracy), the problem then reduces to the description of a quantum particle
moving in a onedimensional potential.

The optimal path configuration can be easily found from Eqs. (2.19), (2.20): For the
situation with the start- and endpoints located at the junctions of the ring with the
leads, the leading contribution to the result is given by a one-dimensional Schrödinger-
type equation,

〈
δg2

n

〉
∼ D2

TR4

∞∫

0

dt

π∫

0

D[θ̃(t)] exp






−

t∫

0

dt′

[

R2 ˙̃θ2

2D
+ Ṽ (θ̃)

]





, (2.21)

with the potential

Ṽ (θ̃) =
4TR

νD
×







[

θ̃ − 1

π
θ̃2

]

, 0 ≤ θ̃ ≤ π

2[

(π − θ̃) − 1

π
(π − θ̃)2

]

,
π

2
≤ θ̃ ≤ π

(2.22)

while for paths θ1(t) = −θ2(t) the motion is described by

〈
δg2

n

〉
∼ D2

TR4

∞∫

0

dt

π∫

0

D[θ(t)] exp






−

t∫

0

dt′

[

R2θ̇2

2D
+ V (θ)

]





, (2.23)

and the potential (see Fig. 2.4)

V (θ) =
4TR

νD
×







[

θ − γ + 1

π
θ2

]

, 0 ≤ θ ≤ π

2[

(π − θ) − γ + 1

π
(π − θ)2

]

,
π

2
≤ θ ≤ π

. (2.24)

This potential is composed of two quadratic parts, and for finite lead length is always
lower than the potential Ṽ (θ̃) , Eq. (2.22). As a result, the optimal paths are charac-
terized by θ1(t) = −θ2(t) ≡ θ , where θ is the coordinate of a quantum particle of mass
R2/D moving from θ = 0 to θ = π in the potential (2.24).
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Figure 2.4: The potential V (θ) of the tunnelling problem, Eq. (2.24), plotted in units of
4TR/νD for different values of the geometrical coefficient γ. The leads at-
tached to the perfect reservoirs result in a suppression of the field fluctuations
in the vicinity of the junctions, resulting in the dip in the potential.

Performing a Wick rotation to the imaginary time domain,

t ≡ −iτ , (2.25)

the optimal path now is the solution of the classical equation of motion describing a
particle with zero energy in the potential minus Eq. (2.24), the sign arising from the
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2 Effect of Coulomb interaction on Aharonov-Bohm oscillations

rotation to imaginary time. The classical action Scl is easily calculated from Eq. (2.24):

Scl = 2

π/2∫

0

dθ p(θ) ,
p2

2m
=

4TR

Dν

[

θ − γ + 1

π
θ2

]

, m =
R2

D

= 2

√

2R2

D

√

4TR

Dν

π/2∫

0

dθ

√

θ − γ + 1

π
θ2

= 2

√

2R2

D

√

4TR

Dν

π3/2
[

2γ
√

1 − γ2 + π + 2 arcsinγ
]

16 (γ + 1)3/2

= Cγ
T 1/2 R3/2

ν1/2 D
(2.26)

where it is convenient to introduce Cγ as a geometry-dependent coefficient of order unity,

Cγ =

[
π

2 (γ + 1)

]3/2 [

2γ
(
1 − γ2

)1/2
+ π + 2 arcsin γ

]

, (2.27)

which increases monotonically with increasing length of the leads (lowering γ). In the
limits of long leads (γ → 0) or short leads (γ → 1), this expression takes the values

Cγ =







π5/2

23/2
, γ → 0

π5/2

4
, γ → 1

(2.28)

The result for the lowest harmonic of the h/e Aharonov-Bohm oscillations therefore is

〈δg2
1〉 ∝ exp

{
−S

}
(2.29)

with the instanton action

S = Cγ
T 1/2 R3/2

ν1/2 D
. (2.30)

The dependence of the action on the type of the leads via the coefficient Cγ arises since
short leads let the optimal paths come very close to the perfect reservoirs when the paths
are separated the most, therefore diminishing the impact of the fluctuations on coher-
ence. A somewhat related dependence of the dephasing rate on the lead configuration
in a ballistic Aharonov-Bohm interferometer has been found in Ref. [92]. The influence
of the leads is also visible in the shape of the instanton solution, Fig. 2.5. The classical
motion in the potential (2.24) satisfies

θ̇2 =
8T

νR

(

θ − γ + 1

π
θ2

)

, 0 ≤ θ ≤ π/2 , (2.31)
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Figure 2.5: The shape of the instanton solution in the potential (2.24), Fig. 2.4, plotted
for short leads (γ = 0.9). The effect of the proximity of the reservoirs on the
solution is clearly visible from the instanton solution slowing down in the
vicinity of the junction (located at θ = π/2).

and is completed in the time (see Appendix A)

τopt =

(
νR

8T

)1/2
π1/2 (π − arccos γ)

(γ + 1)1/2
, (2.32)

The generalization to higher harmonics (with period h/ne) of the Aharonov-Bohm
oscillations is straightforward: The optimal paths for odd n still begin at θ1,2 = 0 and
end at θ1,2 = π for odd harmonics, while the optimal paths for even n begin and end at
θ1,2 = 0 for even harmonics. They perform n/2 windings each to give a relative winding
number of n. The corresponding instanton action is just the action of tunnelling through
the potential landscape shown in Fig. 2.4 n times, yielding the action Sn = nS (the
instantons do not interact for strong dephasing).

To find the preexponential factor in (2.30) for the variance of the amplitude of the AB
oscillations, it is necessary to perform several Gaussian integrations over small deviations
from the instanton solution in the path integral (2.15). This in performed in Appendix A.
The final result for the variance of the harmonics of the mesoscopic Aharonov-Bohm
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oscillations reads, up to a numerical prefactor,

〈
δg2

n

〉
∼

(
LT

R

)7/2 (
νD

R

)3/4

exp{−nS} , (2.33)

where n = 1, 2, . . . , and the action S is given by Eq. (2.30). Numerical prefactors,
including powers of n, are not calculated explicitly here.

Very recently, Texier and Montambaux [102] presented results for both strong and
weak dephasing, which also allow to include another dephasing mechanism (e.g. spin-flip
scattering) in addition to electron-electron interaction. In the case of strong dephasing
by electron-electron interaction and negligible other dephasing effects, the results of
Ref. [102] reproduce the exponential behaviour of Eqs. (2.33), (2.30), Ref. [93].

2.2.4 Aharonov-Bohm dephasing time and dephasing length

Some physical insight can by obtained from the action (2.30) by defining the system-size
dependent Aharonov-Bohm dephasing length

LAB
ϕ =

2π

Cγ

ν1/2 D

T 1/2 R1/2
(2.34)

which, by the absorption of a factor R1/2, allows to rewrite the suppression factor in a
simple exponential form,

〈
δg2

n

〉
∼

(
LT

R

)2
(

LAB
ϕ

R

)3/2

exp

{

−2πnR

LAB
ϕ

}

, (2.35)

compatible with the phenomenological formula (2.1), although the definition of LAB
ϕ , not

being independent of R, may at first sight seem unusual.
The Aharonov-Bohm dephasing length (2.34) corresponds to an Aharonov-Bohm de-

phasing rate 1/τAB
ϕ = D/

(
LAB

ϕ

)2
which is given by

1

τAB
ϕ

=

(
Cγ

2π

)2
TR

νD
, (2.36)

which is parametrically different from the well-known result [29] for a quasi-
onedimensional wire. The difference arises from a different type of low-momentum cut-
off: Calculating perturbatively the dephasing rate in a diffusive system with screened
Coulomb interaction,

1

τϕ

=

∫
dq

2π

T

νDq2
. (2.37)

For mesoscopic (universal) conductance fluctuations in a simple wire or in a twodimen-
sional sheet [29, 72, 85], the infrared divergence is cut off self-consistently, since only
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processes with energy transfers larger than the inverse dephasing time, ω & τ−1
ϕ , con-

tribute. Therefore the lower cutoff in Eq. (2.37) is of the order of L−1
ϕ , resulting in the

well-known result (1.11). The situation is different in the case of Aharonov-Bohm os-
cillations because paths contributing to the lowest (or nth) harmonic must encircle the
ring once (or n times), irrespective of how short the “conventional” dephasing length
Lϕ may be. Since shorter paths simply cannot contribute at all to the effect of interest,
path with lengths of at least the circumference of the ring have to be kept. The phase
coherence of those paths is affected by momentum transfers which are larger than the
path length, therefore the low-momentum cutoff in Eq. (2.37) is set by the inverse sys-
tem size when considering Aharonov-Bohm oscillations. This estimate results, up to the
numerical coefficient, in the dephasing rate 1/τAB

ϕ ∼ TR/νD , reproducing Eq. (2.36).
So the fact that Aharonov-Bohm oscillations are due to coherent paths extending over a
finite minimum distance (unlike universal conductance fluctuations or weak localization)
is responsible for the difference between the conventional dephasing length (1.11) and
the Aharonov-Bohm dephasing length (2.34), which is the one to be used in Eq. (2.1).

In a naive calculation, inserting τ−1
ϕ as a (constant) mass into the denominator of the

CF diffusion propagator, one could also expect from the relation L2
ϕ = Dτϕ a suppression

factor of the form exp{−S} = exp
{
− (R/Lϕ)2}. However, typical paths contributing to

Aharonov-Bohm-oscillations are not typical diffusive ones with a displacement growing
as the square root of the elapsed time. Indeed, due to the fixed minimum path length
of half the circumference of the ring, as the dephasing length gets much smaller than
the circumference, S À 1, extraordinary straight and direct paths (as shown in Fig. 2.5)
give the main contribution to the surviving Aharonov-Bohm signal: The instanton has
the duration given by Eq. (2.32), much faster than a typical diffusive path. As dephasing
becomes stronger (when increasing the temperature or the ring radius), the instanton
solution changes its character, becoming even faster and thus leading to the suppression
factor governed by (2.34).

The definition (2.34) of a system-size dependent dephasing length may seem counter-
intuitive at first sight.3 The reason for this is that for the simple wire geometry it is
difficult to distinguish between the length of the wire and the direction of propagation of
the electron trajectories. In particular, due to the self-consistent cutoff in Eq. (2.37) for
the wire geometry, a wire of length L À Lϕ can often be thought of as being composed
of a number of similar but shorter wires which are simply concatenated. This is not
possible for the ring which features a nontrivial geometry on the scale of the system
size. The dependence of the dephasing length (2.34) on the ring circumference indicates
that the content of fluctuations contained in the ring which are relevant for dephasing
of Aharonov-Bohm oscillations depends on the system size.

3The reader who remains uncomfortable with this definition may choose to rewrite the action (2.30)

as exp{−S} = exp
{

− (R/Lϕ)
3/2

}

. Using this definition, it is seen that Lϕ = D2/3ν1/3/C
2/3
γ T 1/3 ,

which is parametrically just the result (1.11) for the quasi-onedimensional case.
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2.2.5 Relation to experiments

Some experiments on ring samples similar to the geometry calculated here have been
performed by groups in Saclay/Michigan [88, 90], in Basel [86, 87], and in Karlsruhe
[78, 79]. A similar experiment on a network of rings has been set up in Paris [95].
Since the optimal paths do not extend into the leads, the differences between the two-
terminal and the four-terminal geometry do not enter the exponential suppression factor,
so a comparison to the four-terminal measurements of the Saclay/Michigan and Basel
groups is justified in the strong-dephasing regime. However it should be noted that the
no-dephasing limit (1.18) as well as the geometrical coefficient Cγ are calculated exactly
only for the two-terminal setup, while the Saclay-Michigan experiment and the Basel
experiment were performed in the four-terminal configuration.

The Saclay-Michigan experiment was done with the goal of demonstrating the effect
of dilute magnetic impurities, and therefore performed on a high-purity copper ring of
radius R = 0.75 µm at temperatures down to T = 40 mK . It is no surprise that at this
temperature with the given sample data dephasing is weak and the instanton action
(2.30) evaluates to4

S ≈ 0.05 Cγ ≈ 0.3 , (2.38)

where Cγ ≈ 5.5 . . . 6 has been estimated using Eq. (2.28) and the sample geometry shown
in Ref. [88]. In other words, the sample of the Saclay-Michigan experiment has been
taken to a high level of coherence when the magnetic impurities were frozen out, and the
saddle-point calculations of Section 2.2.3 cannot be applied. On the contrary, a compar-
ison with the zero-temperature calculations [89] shows that at T = 40 mK the observed
Aharonov-Bohm amplitudes are close to the maximum ones (1.18) to be expected. The
difference of the observed Aharonov-Bohm amplitudes at T = 40 mK and T = 100 mK is
to a large extent due to thermal averaging rather than true dephasing, since the thermal
length was LT ≈ 1 µm , of the same order as the ring radius. A detailed treatment of
the weak-dephasing regime can be found in Ref. [102].

The Experiment of the Basel group was done in the context of the voltage-dependence
of quantum interference effects (related to the calculations presented in Chapter 3),
and therefore, due to the high applied voltages, performed at a higher temperature of
T = 0.3 K on a gold ring with a radius of R = 0.5 µm . For this configuration the action
(2.30) is estimated as

S ≈ 0.08 Cγ ≈ 0.45 . (2.39)

The thermal length of the Basel sample was LT ≈ 0.5 µm . The calculated results (2.33),
(2.30) are well compatible with the measured Aharonov-Bohm amplitudes in the low-
voltage limit, which were lower by a factor ∼ 2.5 compared to the Saclay/Michigan
experiment.

4In calculating the values given in this section, the threedimensional densities of states
νAu
3 = 1.14 · 1047 J−1m−3 and νCu

3 = 1.56 · 1047 J−1m−3 from Ref. [90] have been used.
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2.3 Relation of h/e oscillations and h/2e oscillations

The Karlsruhe group performed their measurements on several samples, where their
Sample 3 was a copper sample in two-terminal configuration with very similar dimensions
as the gold sample of the Basel group, but with a higher resistance and at a temperature
of T = 90 mK . From the given parameters, a diffusion constant D ≈ 43 cm2/s and a
thermal length LT ≈ 0.6 µm can be extracted, resulting in

S ≈ 0.064 Cγ ≈ 0.33 , (2.40)

where Cγ = 5.2 has been calculated from the resistances given in Ref. [82]. The re-
ported Aharonov-Bohm amplitudes, which are lower by a factor ∼ 3 than those seen
in the Basel experiment, and lower by a factor ∼ 7 than those of the Saclay/Michigan
experiment, do not agree with this, but correspond to much stronger dephasing. How-
ever, the authors themselves have extracted a dephasing length of Lϕ = 0.8 µm from
the correlation field of universal conductance fluctuations. This indicates that another
dephasing mechanism than electron-electron interaction probably dominates, possibly
magnetic impurities included in the copper, as the authors of Refs. [88, 90] have shown.

The temperature-dependence of Aharonov-Bohm oscillations has been studied in a
series of experiments in Paris [95]. It has first been reported that the temperature
dependence of Eq. (2.34) has not been observed in a network of 106 semiconductor
rings. Instead, comparing the first two harmonics of Aharonov-Bohm oscillations, a ratio
∼ exp

{
−T 1/3

}
was measured instead of the ratio ∼ exp

{
−T 1/2

}
which would follow from

Eq. (2.30). These experiments were mostly performed at temperatures below the strong-
dephasing regime LAB

ϕ ¿ R , for which Eq. (2.30) is written. More recent measurements
[104] from the same samples have recently confirmed that the dephasing length for
the lowest harmonic of Altshuler-Aronov-Spivak (h/2e) oscillations indeed crosses over
from a T−1/3 dependence to a T−1/2 dependence as the temperature range where Lϕ

given by Eq. (1.11) is shorter than the periodicity of the network is entered. This
temperature dependence is at variance with the dephasing length extracted from the
magnetoresistance envelope (weak localization) and confirms the result (2.34).

2.3 Relation of h/e oscillations and h/2e oscillations

It has been shown in Ref. [85] that the dephasing rate for mesoscopic conductance
fluctuations is precisely the same as for weak localization. Moreover, in Ref. [85] the
following relation was established for quasi-onedimensional5 geometry:

〈
δG(H1) δG(H2)

〉
=

e2D

3TL2

∣
∣
∣
∣
δGWL

(
H1 − H2

2

)

+ δGWL

(
H1 + H2

2

)∣
∣
∣
∣

, (2.41)

assuming that the temperature is larger than the Thouless energy D/L2 and spin-orbit
interaction is absent. In the rest of this section, the second term of Eq. (2.41) will be

5In two dimensions the relation (2.41) becomes more complicated due to logarithmic dependencies on
the short-scale physics; this is discussed at the end of this section.
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2 Effect of Coulomb interaction on Aharonov-Bohm oscillations

discarded, corresponding to measuring mesoscopic conductance fluctuations in a high
magnetic field where many flux quanta are threading the body of the sample.6 How-
ever, the presented derivation can be straightforwardly generalized to the case of weaker
magnetic field, the result acquiring a form analogous to Eq. (2.41).

As demonstrated below in this section, Eq. (2.41) can be obtained from the path
integral representations of both phenomena. It is shown within this framework that a
relation analogous to Eq. (2.41) exists between the h/e (mesoscopic) Aharonov-Bohm
oscillations and the h/2e (weak-localization) Aharonov-Bohm oscillations. These arise
from mesoscopic conductance fluctuations and weak localization, respectively, when the
path integral is restricted to the ring geometry and only pairs of paths with relative
winding number one or Cooperon paths with winding number one, respectively, are taken
into account. For convenience of notation, the derivation of the connection between the
two phenomena is carried out for the quasi-onedimensional Aharonov-Bohm situation, it
can, however, be directly transferred to the twodimensional singly-connected geometry
and therefore serve as an alternative proof of Eq. (38) of Ref. [85].

As has been discussed before, for mesoscopic Aharonov-Bohm oscillations only inter-
action lines within the same measurement are to be drawn. Furthermore, the correlator
〈ϕϕ〉 is local in time, so the interaction lines connect points on the two paths corre-
sponding to the same time. This results in the structure shown in Fig. 2.6. For weak
localization, the path interferes with its time-reversed version. Therefore the local-in-
time interaction lines always connect a point on the positive-time part of the path with
its corresponding image for negative time.

The path integral for the fundamental harmonic of the mesoscopic (h/e) Aharonov-
Bohm oscillations can be written in the absence of spin-orbit interaction as (see
Eqs. (2.11), (2.14))

〈
δG2

h/e

〉
=

4e4D2

3πT (2πR)4

∫

dΘ1

∫

dΘ2

∞∫

0

dt

θ1(t)=Θ1∫

θ1(0)=Θ2

D[θ1(t)]

θ2(t)=Θ1∫

θ2(0)=Θ2

D[θ2(t)]

×
〈

exp







t∫

0

dt′

[

− R2θ̇2
1(t

′)

4D
+ iϕ1 [θ1(t

′), t′] − iϕ2 [θ1(t
′), t′]





+

t∫

0

dt′

[

− R2θ̇2
2(t

′)

4D
− iϕ1 [θ2(t

′), t′] + iϕ2 [θ2(t
′), t′]

]






〉

(2.42)

(Performing the Gaussian averaging over the fields ϕ, one finds Eq. (2.15)).

6When Aharonov-Bohm oscillations are considered, the Cooperon contribution only affects the phases
of mesoscopic Aharonov-Bohm oscillations, not the amplitudes [89]. For h/2e oscillations, the low-
field amplitudes are considered. In the bulk geometry, at low magnetic field the second term in
Eq. (2.41) is equal to the first one, and the Cooperon contribution enhances the conductance fluc-
tuations by a factor of 2.
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Figure 2.6: Comparison of the pairs of paths contributing to mesoscopic (h/e)
Aharonov-Bohm oscillations to the closed paths contributing to weak-
localization (h/2e) Aharonov-Bohm oscillations. For the h/e Aharonov-
Bohm effect (mesoscopic conductance fluctuations), the correlator of the
scalar potential is local in time and only connects diffuson paths correspond-
ing to the same measurement. Two copies of the paths, corresponding to the
two measurements, are shown. For the h/2e Aharonov-Bohm effect (weak
localization), the correlator connects points with opposite time coordinates
on the closed path and its time-reversed version. These properties of the
allowed interaction lines have the effect that the path integral expressions
can be transformed into each other by re-parametrizing the path segments,
combining the pair of paths into one closed loop.

It is now demonstrated that the path integral (2.42) describing the mesoscopic oscil-
lations can be mapped to the path integral describing the h/2e Aharonov-Bohm oscil-
lations (in the general case: weak localization) by the parametrization

θ(t′) =







θ1(t + t′) , −t ≤ t′ ≤ 0

θ2(t − t′) , 0 ≤ t′ ≤ t
(2.43)

(see Fig. 2.6), which joins the two separate paths into a single one of the double length
by parametrizing one path in reversed direction. Strictly speaking, this transformation
is only valid up to an accuracy LT , since the durations of the two paths in a pair may
differ up to an amount of the order of 1/T , during which the length LT is travelled. How-
ever, since for quasi-onedimensional systems the expressions for both weak localization
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2 Effect of Coulomb interaction on Aharonov-Bohm oscillations

and conductance fluctuations are entirely dominated by the low-momentum behaviour,
this has no effect on the result for the quasi-onedimensional case. Performing the trans-
formation (2.43), the details are as follows: Starting from the expression (2.42) for h/e
oscillations, the action may be rewritten using Eq. (2.43) in the following way:

〈
δG2

h/e

〉
=

4e4D2

3πT (2πR)4

∫

dΘ

∞∫

0

dt

θ(t)=Θ∫

θ(−t)=Θ

D[θ(t)]

×
〈

exp

{ t∫

0

dt′
[

− R2θ̇2(t′)

4D
− R2θ̇2(−t′)

4D

+ iϕ1[θ(−t′), t − t′] − iϕ1[θ(t
′), t − t′]

− iϕ2[θ(−t′), t − t′] + iϕ2[θ(t
′), t − t′]

]}〉

. (2.44)

Keeping only field correlators for the same measurement and dropping the corresponding
indices, performing the average over Gaussian variables ϕ results in

〈
δG2

h/e

〉
=

4e4D2

3πT (2πR)4

∫

dΘ

∞∫

0

dt

θ(t)=Θ∫

θ(−t)=Θ

D[θ(t)]

× exp

{

−
t∫

0

dt′

[

R2θ̇2(t′)

4D
+

R2θ̇2(−t′)

4D

]

−
t∫

0

dt′dt′′
〈(

ϕ[θ(−t′), t − t′] − ϕ[θ(t′), t − t′]
)

(

ϕ[θ(−t′′), t − t′′] − ϕ[θ(t′′), t − t′′]
)〉}

, (2.45)

where two equal fluctuation terms have been added up. Since the correlator 〈ϕϕ〉 is
local in time,7 only correlators connecting time coordinates with opposite signs on the

7local in the time parametrizing the original paths in Eq. (2.42).
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2.3 Relation of h/e oscillations and h/2e oscillations

original two paths should be kept, and therefore it may be written equivalently as

〈
δG2

h/e

〉
=

4e4D2

3πT (2πR)4

∫

dΘ

∞∫

0

dt

θ(t)=Θ∫

θ(−t)=Θ

D[θ(t)]

× exp

{

−
t∫

−t

dt′
R2θ̇2(t′)

4D

−
t∫

0

dt′dt′′
〈(

ϕ[θ(−t′), t − t′] − ϕ[θ(t′′), t − t′′]
)2

〉}

=
4e4D2

3πT (2πR)4

∫

dΘ

∞∫

0

dt

θ(t)=Θ∫

θ(−t)=Θ

D[θ(t)]

× exp

{

−
t∫

−t

dt′
R2θ̇2(t′)

4D

−
t/2∫

−t/2

dt′dt′′

〈(

ϕ

[

θ
( t

2
− t′

)

,
3t

2
− t′

]

− ϕ

[

θ
( t

2
+ t′′

)

,
3t

2
− t′′

])2
〉}

,

(2.46)

where the last transformation is just a shift of the variables. Performing the change of
variables t − t′ ≡ t/2 + η/2 , t − t′′ ≡ t/2 − η′/2 , this expression simplifies to

〈
δG2

h/e

〉
=

4e4D2

3πT (2πR)4

∫

dΘ

∞∫

0

dt

θ(t)=Θ∫

θ(−t)=Θ

D[θ(t)]

× exp

{

−
t∫

−t

dη
R2θ̇2(η)

4D

− 1

2

t∫

−t

dη dη′

〈(

ϕ[θ(η/2), t + η/2] − ϕ[θ(η′/2), t − η′/2]
)2

〉}

.

(2.47)

The factor 1/2 in front of the fluctuation term is the combination of a factor 1/4 arising
from the Jacobian of the transformation to the new time coordinates and a factor 2 from
rescaling the field correlator in time. Shifting the time arguments of the random fields
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Figure 2.7: Unlike in the quasi-onedimensional case (see Fig. 2.6), in two dimensions
mesoscopic conductance fluctuations and weak localization depend logarith-
mically on the short-scale physics. The respective cutoffs are different: For
conductance fluctuations, the thermal factor arising from the distribution
functions imposes the condition that the two paths have to reach the com-
mon endpoint after times t1, t2 differing by no more than t1 − t2 ∼ 1/T ,
meaning that after the same time t = min(t1, t2) both paths should end at

coordinates within a distance LT = (D/T )1/2. For weak localization, the
short-distance cutoff is given by the elastic mean free path l, since one con-
tinuous path is considered.

by t, Eq. (2.47) can be identified with the path integral representation of the Cooperon
in a fluctuating external field [18, 29]. As a result, the fundamental harmonics of h/e
and h/2e Aharonov-Bohm oscillations are related by

〈
δG2

h/e

〉
=

e2D

3T (2πR)2

∣
∣δGWL

h/2e

∣
∣ . (2.48)

Eq. (2.48) is the equivalent to Eq. (38) of Ref. [85], without the need to actually carry
out any of the path integrals or assuming a specific form of the correlator

〈
ϕαϕβ

〉
other

than being local in time.

The generalization to higher harmonics of both effects is obvious: Pairs of paths with
relative winding number n are related to weak localization paths with winding number
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2.4 Summary

n by
〈
δG2

h/ne

〉
=

e2D

3T (2πR)2

∣
∣δGWL

h/2ne

∣
∣ , (2.49)

connecting the nth harmonic of the mesoscopic Aharonov-Bohm effect with the nth
harmonic of the h/2e Aharonov-Bohm effect, measured in low magnetic fields.

It immediately follows from the relation between h/e and h/2e oscillations that also
the dephasing length must be the same for both effects.

The presented arguments for the ring geometry can be directly used in the bulk ge-
ometry too, proving the relation (2.41) on a more fundamental level. While this is
straightforward in the quasi-onedimensional situation, a little extra care is needed in
the twodimensional case since in two dimensions at finite temperature T À Ec both
the weak localization correction and mesoscopic conductance fluctuations depend loga-
rithmically on the short-scale cutoff, δgWL ∼ ln(Lϕ/l) [85] and 〈δg2〉 ∼ ln(Lϕ/LT ) [36],

where LT = (D/T )1/2 and l is the elastic mean free path. The transformation (2.43)
joining the two paths is not applicable below a length scale of LT : The pairs of paths
contributing to conductance fluctuations are only required by the thermal factor to have
durations which differ by no more than the order of the inverse temperature [85]. Equiv-
alently, after the same duration the two paths only end within a distance of LT , not l, of
each other. The condition for a closed loop contributing to weak localization is stronger
since it must be continuous down to the scale of the elastic mean free path l. This can
be written as

〈
δG2

〉
=

e2D

3TL2

∣
∣
∣δGWL(H = 0)

∣
∣
∣
l → LT

, d = 1, 2 , (2.50)

meaning that the elastic mean free path l in the result for the weak localization amplitude
is to be substituted by LT ; this only changes the result in two dimensions.

2.4 Summary

In this chapter, the theory of inelastic electron-electron collisions in low dimensions
from Refs. [18, 29] has been generalized to the case of Aharonov-Bohm interference in
multiply-connected metallic samples (metallic rings). Using a real-space version of the
formalism, the result in the strong-dephasing regime given by Eqs. (2.33), (2.30) has
been derived. The corresponding dephasing length (2.34) differs from the one for the
singly-connected (wire) geometry in a remarkable way: Although the Aharonov-Bohm
dephasing length (2.34) is much shorter than the system size in the regime of interest, it
is determined by inelastic processes with momentum transfers of the order of the inverse
system size (instead of the inverse dephasing length). This leads to the temperature
dependence LAB

ϕ ∼ T−1/2 instead of the usual Lϕ ∼ T−1/3 behaviour.
This can be understood from the properties of the contributing paths, which have

a fixed minimum length given by the ring circumference, while paths contributing to
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2 Effect of Coulomb interaction on Aharonov-Bohm oscillations

the weak localization amplitude or mesoscopic conductance fluctuations in a singly-
connected geometry are not restricted in this way and may be arbitrarily short. There-
fore, the low-momentum cutoff for inelastic processes contributing to the dephasing of
the paths relevant for the Aharonov-Bohm effect is set by their inverse length, i.e. the
system size, while for weak localization and conductance fluctuations it is set by the
inverse of their typical length, i.e. selfconsistently by the inverse of the dephasing length
itself.

As a result, typical electron trajectories contributing to the Aharonov-Bohm inter-
ference are of special character. Since their minimum length is fixed, as the dephasing
length LAB

ϕ decreases the class of typical contributing paths changes, narrowing down to
paths which feature a more directed motion than average diffusive trajectories.

The close relation between weak localization and mesoscopic conductance fluctuations
first demonstrated in Ref. [85] has been proven above on a more fundamental level. The
path-integral formulation makes it possible to express the relation between the two
quantities without specifying the geometry, allowing a straightforward generalization to
the similar relation (2.48) between the amplitudes of h/e (mesoscopic) and h/2e (weak-
localization) Aharonov-Bohm oscillations as well.

The obtained results (2.33), (2.30) for the dephasing of Aharonov-Bohm oscillations
have been confirmed by recent experimental data [104].
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3 Nonequilibrium mesoscopic

conductance fluctuations

3.1 Overview of previous results and available

experimental data

When the regime of linear response is left, the voltage dependence of mesoscopic con-
ductance fluctuations exhibits a rich behaviour. In an early theoretical paper, Larkin
and Khmelnitskii [34] predicted an enhancement of the fluctuations of the differential
conductance g with the voltage. Specifically, they found the asymptotically linear en-
hancement of the variance of the differential conductance g = dI/dV ,

〈
δg2

〉
∼ V

Vc

, V À Vc . (3.1)

Here eVc = D/L2 is the Thouless energy, D the diffusion constant, and L the system size.
Eq. (3.1) is valid in any geometry as long as inelastic processes are negligible. The coef-
ficient of Eq. (3.1) is geometry-dependent and was not calculated in Ref. [34]. Eq. (3.1)
in particular implies that, if inelastic processes remain negligible, the fluctuations of
the differential conductance will be of the order of the conductance itself at a voltage
V ∼ g2Vc , leading to the appearance of regions of negative differential conductance in
the IV -characteristics.

As is discussed in more detail in Section 3.2.2, the enhancement of conductance fluc-
tuations given by Eq. (3.1) is due to the fact that fluctuations of the electrochemical
potential affect all electrons in the energy window contributing to transport. As a result,
the voltage has a different effect than just a finite temperature in the way that an applied
voltage changes the (position-dependent) electrochemical potential in the sample in ad-
dition to making an energy window of width eV available for transmission, while the
temperature just averages over an energy range of width T while leaving the potential
profile in the sample unchanged.

Early measurements [40, 43, 51] could not reliably confirm the prediction (3.1), how-
ever more recent experiments [60, 78, 79, 86, 87] did observe a nontrivial voltage depen-
dence of both mesoscopic fluctuations and Aharonov-Bohm oscillations of the differen-
tial conductance. A common observation in all experiments was that at sufficiently high
voltages the amplitude of the conductance fluctuations decreases again. In particular,
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3 Nonequilibrium mesoscopic conductance fluctuations

negative differential conductance has not been observed experimentally. Clearly, the as-
sumption entering Eq. (3.1) that inelastic scattering can be neglected is not valid above
a certain voltage, since the phase space available for inelastic processes increases with
the voltage. However, a quantitative theory of inelastic electron-electron scattering has
not been developed before. Larkin and Khmelnitskii [34] introduced a phenomenological
inelastic out-scattering time τin and out-scattering length Lin =

√
Dτin , but no theory

for the voltage dependence of τin was given. The authors of Refs. [86, 87] estimated the
effect of inelastic processes by using the equilibrium dephasing length Lϕ(T ) given by
Eq. (1.11) and replacing the temperature with the voltage, T → eV , however the result
they obtained was inconsistent with the observed behaviour, 〈δg2〉 ∝ V −1.28 for a quasi-
onedimensional wire at high voltages. The authors of Refs. [86, 87] therefore concluded
that electron-phonon scattering should lead to the observed suppression of conductance
fluctuations.

In this chapter a systematic theory of the voltage dependence of conductance fluc-
tuations of mesoscopic wires is presented. After a brief recapitulation of the Keldysh
formalism for disordered systems, in Section 3.2.2 the behaviour of the fluctuations of
the differential conductance 〈δg2〉(V/Vc) as a function of the applied voltage is calcu-
lated quantitatively over the entire voltage range from the linear-response limit to the
asymptotic behaviour (3.1) of the noninteracting system. The coefficient of Eq. (3.1),
which has not been evaluated before, is calculated for the wire geometry. It is found
that in addition to the linear asymptotic behaviour a nontrivial crossover regime oc-
curs. In Section 3.2.3, the effect of a finite temperature on the results of Section 3.2.3 is
considered. As may be naively expected, the finite temperature does not have a strong
influence on the high-voltage behaviour of the conductance fluctuations. An evaluation
of the effect of inelastic processes is performed in Section 3.3. The results are in rea-
sonable agreement with the available experimental data at high voltages [86, 87], and
explain them without the need to include electron-phonon scattering.
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3.2 Voltage dependence of conductance fluctuations in

a noninteracting system

3.2.1 Keldysh diagrammatic method for disordered systems

This section briefly reviews the Keldysh formalism [8] (see Refs. [35, 99] for extended
reviews) applied to disordered systems for later reference.

To describe nonequilibrium processes, Green’s functions are used which describe ex-
pectation values that are averaged over arbitrary states (not necessarily equilibrium
states):

iG12 = 〈n| T̂ Ψ1Ψ
†
2 |n〉 , (3.2)

where Ψi ≡ Ψ(ri, ti) are the field operators, T̂ is the time-ordering operator, and |n〉
is an arbitrary state. Using the notation 〈n| · · · |n〉 ≡ 〈· · · 〉 , the following four Green’s
functions can be defined:

iG−−
12 =

〈

T̂ Ψ1Ψ
†
2

〉

(3.3)

iG+−
12 =

〈

Ψ1Ψ
†
2

〉

(3.4)

iG−+
12 = ∓

〈

Ψ†
2Ψ1

〉

(3.5)

iG++
12 =

〈
ˆ̃T Ψ1Ψ

†
2

〉

, (3.6)

where ˆ̃T is the anti-timeordering operator, and the upper/lower sign is for Fermi/Bose
operators respectively. Note that G−− is equal to the “usual” zero-temperature Green’s
function. For equal time arguments t1 = t2 ≡ t , the function G−+ is related to the
one-particle density matrix by

G−+(r1, t; r2, t) = ±iNρ(r1, r2, t) , (3.7)

where N is the particle number. By definition the four functions defined above are not
independent, but satisfy

i(G+−
12 − G−+

12 )t1=t2 = δ(r1 − r2) (3.8)

G−−
12 + G++

12 = G−+
12 + G+−

12 (3.9)

G−−
12 = −

(
G++

21

)∗
(3.10)

G−+
12 = −

(
G−+

21

)∗
(3.11)

G+−
12 = −

(
G+−

21

)∗
. (3.12)

The retarded and advanced Green’s functions are given by

GR = G−− − G−+ = G+− − G++ (3.13)

GA = G−− − G+− = G−+ − G++ . (3.14)
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In Fourier space, the field operators can be written as

Ψ =
1√
V

∑

p

âp exp
{

i
[
pr − (ε − µ) t

]}

, (3.15)

where the annihilation and creation operators â , â† are related to the distribution func-
tion n by

〈â†
pâp〉 = np , 〈âpâ†

p〉 = 1 ∓ np . (3.16)

As a result [12],

G+−(ω,p) = −2πi (1 ∓ np) δ(ω − ε + µ) (3.17)

G−+(ω,p) = ±2πinp δ(ω − ε + µ) (3.18)

GR(ω,p) = (ω − ε + µ + i0)−1 (3.19)

GA(ω,p) = (ω − ε + µ − i0)−1 (3.20)

G−−(ω,p) = P
{

1

ω − ε + µ

}

+ iπ (±2np − 1) δ(ω − ε + µ) , (3.21)

where P denotes the operation of taking the principal value. For an ideal gas, the
unperturbed Green’s functions G(0) satisfy the equations of motion [12]

(

i
∂

∂t
+

∇2

2m
+ µ

)

G
(0)−−
12 = δ(r1 − r2) δ(t1 − t2) (3.22)

(

i
∂

∂t
+

∇2

2m
+ µ

)

G
(0)++
12 = −δ(r1 − r2) δ(t1 − t2) (3.23)

(

i
∂

∂t
+

∇2

2m
+ µ

)

G
(0)+−
12 = 0 (3.24)

(

i
∂

∂t
+

∇2

2m
+ µ

)

G
(0)−+
12 = 0 . (3.25)

For the Hamiltonian H = H0 + V with the perturbation V , a perturbation series can
be constructed [12] in complete analogy to the standard Green’s function formalism.
Consider the Green’s function

iG−−
12 =

〈

Ŝ−1T̂
[
Ψ1Ψ

†
2Ŝ

]〉

(3.26)

with the evolution operator

Ŝ = T̂ exp






−i

∞∫

−∞

dt V (t)






(3.27)

and Ψ and V taken in the interaction representation. Expanding Ŝ and Ŝ† and using
Wick’s theorem, the averaging over an arbitrary state also leads to contractions involving
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3.2 Voltage dependence of conductance fluctuations in a noninteracting system

field operators from Ŝ−1 appearing, at variance with the standard Green’s function
formalism, which averages over the ground state. This structure can be accounted for
using a 2 × 2 matrix notation for the Green’s function and self-energy,

Ĝ =

(
G−− G−+

G+− G++

)

, Σ̂ =

(
Σ−− Σ−+

Σ+− Σ++

)

, (3.28)

leading to the self-energy equation

Ĝ12 = Ĝ
(0)
12 +

∫

d43 d44 Ĝ
(0)
14 Σ̂43 Ĝ32 . (3.29)

and the equation of motion
{

i
∂

∂t
+

∇2

2m
+ µ

}

Ĝ
(0)
12 = τ̂z δ(r1 − r2) δ(t1 − t2) (3.30)

with τ̂z ≡
(

1 0
0 −1

)

. Combining these two equation, the equation of motion for the

full Green’s function reads
{

i
∂

∂t
+

∇2

2m
+ µ

}

Ĝ12 = τ̂z δ(r1 − r2) δ(t1 − t2) +

∫

d43 τ̂z Σ̂13 Ĝ32 . (3.31)

Due to Eqs. (3.17), (3.18), the matrix equations reduce to the (−−) component and
therefore to the usual zero-temperature diagrammatic technique when a Fermi system in
equilibrium is considered (when n is replaced by the zero-temperature Fermi distribution
function).

Exploiting the relations between the various Green’s functions, one component of
the Green’s function matrix can be made equal to zero. Different conventions exist
[8, 12, 35, 99], the Larkin-Ovchinnikov one [10, 35] being

Ĝ =

(
GR GK

0 GA

)

(3.32)

with the Keldysh Green’s function GK = G−− + G++ = G−+ + G+−. The notation
(3.32) has the property that Ĝ satisfies the equation of motion

{

ε +
1

2m
∇2 − U(r) − eφ(r)

}

Ĝε(r, r
′) = I δ(r − r′) , (3.33)

where the disorder potential U and the electrochemical potential φ couple via a unit
matrix in Keldysh space.

It is seen from Eqs. (3.17), (3.18) that the disorder averaged diagonal Keldysh function
GK(r) ≡ GK(r, r) is related to the distribution function by

GK(r, r) = 2πiν
[
2n(r) − 1

]
(3.34)
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3 Nonequilibrium mesoscopic conductance fluctuations

and satisfies the kinetic equation (see Appendix B) [34]

∇2
〈
GK

ε (r)
〉

= 0 . (3.35)

Moreover, the average current can be expressed by the disorder averaged diagonal
Keldysh function in the following way,

〈 I 〉 =

=
e

4πi
D∇

∫

dε
〈
GK

ε (r)
〉

. (3.36)

Here D is the diffusion constant, ν is the density of states, GR, GA, and GK denote
the retarded, advanced, and Keldysh Green’s functions respectively, and the wiggly line
denotes the external current vertex, with which an operator (−e)v̂ is associated.

3.2.2 Voltage-induced enhancement of conductance fluctuations in

a quasi-onedimensional wire

In this section, a quasi-onedimensional metallic sample (a wire) of length L attached to
two reservoirs which are at a finite voltage difference V is considered.

The diagrams for current fluctuations can be obtained from Eq. (3.36) by connecting
two current diagrams by impurity ladders (diffusons or Cooperons, assuming unbroken
time-reversal symmetry) in all possible ways, leading to the six1 diagrams shown in
Figs. 3.1, 3.2. Similar to the standard impurity diagram technique, the diagrams con-
sist of (short-ranged) electronic vertices (Hikami boxes) which are connected by (long-
ranged) diffuson and Cooperon ladders. The Hikami boxes take into account the pos-
sibility of inserting additional impurity lines connecting electronic Green functions of
the same type (retarded with retarded, or advanced with advanced) without crossings.
For the hexagonal vertices of the diagrams c-diff and c-coop, only the insertions con-
tributing to the leading (zeroth) order in the external momenta are shown. Due to the
different number of impurity ladders (the diagrams c-diff and c-coop contain only one),
all diagrams are thus evaluated to the same order of the diffuson/Cooperon momenta.
The vertex factors may be evaluated in momentum space, since they decay exponen-
tially on the scale of the mean free path l, and thus are of much shorter range than

1Note that the diagrams c-diff and c-coop, as well as some possibilities of inserting additional impurity
lines in the Hikami boxes, are missing in Fig. 1 of Ref. [34]. However, the expression given in Ref. [34]
correctly states the sum of all diagrams, Eq. (3.37).
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3.2 Voltage dependence of conductance fluctuations in a noninteracting system

Figure 3.1: The diagrams describing conductance fluctuations are obtained by connect-
ing two diagrams of the type shown in Eq. (3.36) by impurity ladders. With
diffuson ladders, these three diagrams can be constructed. R, A, and K
denote the retarded, advanced, and Keldysh Green’s function respectively,
while the wiggly lines denote the external current vertex. The vertex factors
are presented in Appendix C. The three diffuson diagrams sum up to half of
Eq. (3.37).
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3 Nonequilibrium mesoscopic conductance fluctuations

Figure 3.2: In analogy to the diffuson diagrams shown in Fig. 3.1, these three Cooperon
diagrams can be constructed. All diffuson and Cooperon diagrams add up
to Eq. (3.37). Note that, while diagram c-diff of Fig. 3.1 evaluates to zero in
the leading order, diagram c-coop gives a nonzero contribution.
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3.2 Voltage dependence of conductance fluctuations in a noninteracting system

the diffuson/Cooperon ladders. The technical details of the calculation are presented in
Appendix C. The result for the sum of all contributions to the variance of the current
is as follows,

〈
δI(V1) δI(V2)

〉
= − e2

(2π)2

(
1

2πν

)2 ∫

dε1dε2

∫
dx1dx2

L2

∂

∂x1

〈
GK

ε1
(x1)

〉 ∂

∂x2

〈
GK

ε2
(x2)

〉

×
[
2 |Dε1−ε2(x1, x2)|2 + ReD2

ε1−ε2
(x1, x2)

]
, (3.37)

where D is a rescaled diffusion propagator satisfying the equation
{

∂2

∂x2
+

iω

D
+

ie

D

[

φ1(x) − φ2(x)
]}

Dω(x, x′) = −δ(x − x′) (3.38)

with the potential profiles φ1,2(x) = (x/L)V1,2 corresponding to the voltage differences
V1,2 between the reservoirs. The boundary conditions for Eq. (3.38) are that D = 0 if
one of the coordinates x, x′ lies at one of the reservoirs at 0 or L.

The prefactor of Equation (3.37) is written for spinless electrons and unbroken time-
reversal symmetry, or alternatively, for spinful electrons in the limit of strong spin-
orbit interaction, when only the spin-singlet channel contributes. If the spin rotation
symmetry is preserved, Eq. (3.37) should be multiplied by a factor 4 to account for the
spin. If time-reversal symmetry is broken, Eq. (3.37) should be multiplied by an extra
factor of 1/2 because the Cooperon contribution is absent.

Although the individual diagrams do not feature this property, when the complete
set of diffuson/Cooperon diagrams (including c-diff and c-coop) is taken into account
they combine so that only the spatial derivative of the Keldysh function enters the result
(3.37). This could be expected because only the electrons in the energy window of width
V contribute to the transport, and the result should not depend on an overall offset of
the energy scale.

In this section it is assumed that the temperature of the reservoirs is sufficiently low,
T ¿ eVc (the thermal diffusion length LT = (D/T )1/2 is much larger than the system
size). This allows to set T = 0 for the rest of this section. At low voltage the system
is therefore in the regime of universal conductance fluctuations. The behaviour with
increasing voltage at T = 0 is the subject of the rest of this section, while the effect of
a finite temperature, T À eVc , will be analyzed in Section 3.2.3.

When the wire is connected to two perfect reservoirs with different Fermi energies, the
distribution function of noninteracting electrons in the wire is not a Fermi function, but
has a double-step shape [65, 96], since there is no energy exchange between the electrons
originating from the two reservoirs. A plot of the distribution function for different
positions on the wire is shown in Fig. 3.3. In the Keldysh formalism, this can be easily
obtained from the kinetic equation for the averaged diagonal Keldysh function (3.35)
with the boundary conditions that the distribution function assumes a zero-temperature
Fermi shape with the respective Fermi levels at each of the two reservoirs,

〈
GK

ε (x)
〉

= −2πiν ×
{

1 − 2f(ε) , x = 0
1 − 2f(ε − eV ) , x = L ,

(3.39)
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(ε)n

µµ +eV ε

1

(ε)n

µµ +eV ε

1

Figure 3.3: The electron distribution function of a wire with negligible energy exchange
connected to two reservoirs with electrochemical potentials µ and µ + eV
takes a double-step shape, with the height of the intermediate plateau de-
pending on the position. Left: The distribution function at a position close
to the reservoir which is at µ + eV . Right: distribution function of the same
wire taken at equal distances to the reservoirs.

where f is the Fermi function. As a result, the Keldysh function is a linear function of
the spatial coordinate,

〈
GK

ε (x)
〉

= −2πiν
{

1 − 2f(ε) + 2
x

L

[
f(ε) − f(ε − eV )

]}

. (3.40)

This yields (now including a factor 4 to account for the spin)

〈
δI(V1) δI(V2)

〉
= 16 V 2

c

V1/Vc∫

0

dz1

V2/Vc∫

0

dz2 Ξz1−z2
(V1 − V2) , (3.41)

where

Ξz(V1 − V2) =

1∫

0

dy1dy2

[
2 |Πz(y1, y2)|2 + Re Π2

z(y1, y2)
]
≡ Tr

[
2 |Πz|2 + Re Π2

z

]
(3.42)

with {
∂2

∂y2
+ iz + iαy

}

Πz(y, y′) = −δ(y − y′) , (3.43)

now written in dimensionless variables y = x/L , z = ω/eVc , and α = (V1 − V2)/Vc .
To get the fluctuations of the differential conductance 〈δg(V ) δg(V )〉, Eq. (3.41) is

differentiated with respect to both voltages before setting V1 = V2 ≡ V . The result has
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3.2 Voltage dependence of conductance fluctuations in a noninteracting system

the form
〈
δg2

〉
=

〈
δg2

〉

0
+

〈
δg2

〉

1
+

〈
δg2

〉

2
, (3.44)

where

〈
δg2

〉

0
= 16 Ξ0

∣
∣
α=0

=
8

15
, (3.45)

〈
δg2

〉

1
= 32

V/Vc∫

0

dz
∂

∂α
Ξz−V/Vc

∣
∣
∣
α=0

, (3.46)

〈
δg2

〉

2
= −16

V/Vc∫

0

dz1dz2
∂2

∂α2
Ξz1−z2

∣
∣
∣
α=0

. (3.47)

The three contributions (3.45), (3.46), and (3.47) to the variance of the differential
conductance arise from two physically different mechanisms: In the low-voltage (linear-
response) regime V ¿ Vc , the effect of a voltage increment dV is to change the elec-
trochemical potential in the reservoirs, making the states with energies in the window
dV available for electron transmission. The corresponding conductance fluctuations are
given by the term (3.45), reproducing the well-known UCF result [36], 〈δg2〉 = 8/15 ,
which is due to the fact that at a different electrochemical potential the conduction
electrons explore a different realization of disorder. The two other terms (vanishing
at low voltages) describe true non-equilibrium effects. Out of equilibrium the effect of
the applied voltage is not only to change the chemical potential in the reservoirs, but
also to alter the (position-dependent) electrochemical potential φ(x) in the sample. The
shift dV of the voltage induces the variation dφ(x) = (x/L)dV of the potential, and this
variation affects all the electrons in the energy window of width eV by changing the
disorder realization explored by them. However, electrons at different energies move in
different disorder realizations which are essentially uncorrelated if the energies differ by
more than the Thouless energy eVc , and also fluctuate independently, with the fluctu-
ations adding up incoherently. This is the mechanism responsible for the third term,
Eq. (3.47). The second term, Eq. (3.46), is a cross-term due to correlations between the
above two random contributions to dI/dV .

To evaluate the derivatives in Eqs. (3.46) and (3.47), the diffusion propagator Π can
be expanded up to second order in the dimensionless voltage difference α,

Πz = Π(0)
z + iαΠ(0)

z yΠ(0)
z − α2Π(0)

z yΠ(0)
z yΠ(0)

z + O(α3) , (3.48)

where Π
(0)
z ≡

(
− ∂2

y − iz
)−1

. This expression can be evaluated using the representation

diagonalizing Π
(0)
z ,

(

− ∂2

∂y2
− iz

)

=
∑

n>0

λn |n〉〈n| , |n〉 =
√

2 sin(nπy) , λn = (nπ)2 − iz . (3.49)
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Figure 3.4: The relevant range of voltages for Eq. (3.47). The integrand is of appreciable
magnitude in the shaded area z1 − z2 . 1 only. For V/Vc À 1 , the integra-
tion over the dimensionless energy difference z may be extended to infinity,
while the integration over the sum Z gives just an overall factor V/Vc .

The matrix elements of the position operator y in this representation are given by

〈n|y|m〉 =
4
[
(−1)m+n − 1

]
m n

(m − n)2 (m + n)2 π2
, n 6= m ,

〈n|y|n〉 =
1

2
. (3.50)

Consider first the asymptotic behaviour of 〈δg2〉 in the limit V À Vc . Only the term
proportional to |Π|2 needs to be kept in Eq. (3.42) to find the asymptotics, since the
poles of Re Π2

z are in the same half of the complex z-plane. It is then easy to see that
the leading contribution (proportional to V/Vc) is due only to Eq. (3.47) with the term
second order in α of Eq. (3.48). Changing the variables z1, z2 to Z ≡ (z1 + z2)/

√
2 ,

z ≡ (z1 − z2)/
√

2 , the integration over Z gives just a factor V/Vc since the integrand of
Eq. (3.47) only depends on z (see Fig. 3.4). Using the expansion (3.48), the term second
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3.2 Voltage dependence of conductance fluctuations in a noninteracting system

order in α is

Tr |Πz|2order α2 = α2
∑

m,n>0

[

1
∣
∣(nπ)2 − iz

∣
∣
2 〈n|y|m〉 1

∣
∣(mπ)2 − iz

∣
∣
2 〈m|y|n〉

− 1
∣
∣(nπ)2 − iz

∣
∣
2

1

(nπ)2 + iz
〈n|y|m〉 1

(mπ)2 + iz
〈m|y|n〉

− 1
∣
∣(nπ)2 − iz

∣
∣
2

1

(nπ)2 − iz
〈n|y|m〉 1

(mπ)2 − iz
〈m|y|n〉

]

. (3.51)

The integration over z may be extended to infinity. Evaluating the z-integrals via the
residue theorem, the result is

〈
δg2

〉

V ÀVc
= −32

V

Vc

∞∫

−∞

dz
∂2

∂α2
Tr |Πz|2

∣
∣
∣
α=0

= c1
V

Vc

, (3.52)

with the coefficient

c1 = 64
∑

m,n>0

1

π5

[
1

n4 (m2 + n2)
− 1

m2n2 (m2 + n2)

]

〈n|y|m〉2

= 7.785 · 10−4 . (3.53)

Although the large-V asymptotics is in principle indeed of the form ∼ V/Vc obtained
by Larkin and Khmelnitskii, the corresponding numerical coefficient c1 for the quasi-
onedimensional wire (which was not evaluated in Ref. [34]) is extremely small.

The evaluation of the full crossover behaviour of 〈δg2〉 as a function of (arbitrary) V/Vc

can be done in a similar way, although the evaluations turn out to be more complicated.
First, also the contribution of Eq. (3.46) must be taken into account. Second, in both
Eqs. (3.46) and (3.47) the part ∼ Re Π2

z cannot be neglected. All these contributions
saturate towards constants as V/Vc → ∞ , but give nontrivial results in the crossover
range. Finally, all the z-integrals in Eqs. (3.47) and (3.46) must be evaluated for finite
(not infinite) voltage V . The detailed calculations are presented in Appendix D. The
result is shown in Figs. 3.5 and 3.6.

As is seen from these plots, the linear behaviour (3.52) predicted by Larkin and Khmel-
nitskii only emerges at very high voltages, V/Vc & 50 . Moreover, the corresponding
coefficient c1 is so small that the linear behaviour dominates the other terms only at
V/Vc & 1000 . For V/Vc & 50 the subleading contributions saturate but still numerically
dominate the result for 〈δg2〉 , which is well described by the following formula including
a constant term in addition to the one linear in V ,

〈
δg2

〉
=

8

15
+ c0 + c1

V

Vc

, V À Vc , (3.54)
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Figure 3.5: Variance of the differential conductance, 〈δg2〉 , as a function of
the applied voltage V normalized to the Thouless energy eVc = D/L2.
The dashed line represents the high-voltage asymptotic behaviour,
〈δg2〉 = 8/15 + c0 + c1V/Vc with c0 = 0.8964 and c1 = 7.785 · 10−4, see
Eq. (3.54).

with c1 given by Eq. (3.53) and c0 = 0.8964. In other words, the extremely weak linear
behaviour of 〈δg2〉 is almost indistinguishable from a saturation, while the crossover
regime is very broad and features an increase of the conductance fluctuations by roughly
a factor of 3.

Experimentally [86, 87] an increase of 〈δg2〉 has been observed in the range
V/Vc . 200 , followed by a decrease at higher voltages. The observed enhancement
is clearly on a voltage scale too low for the asymptotic slope to be present and is due to
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Figure 3.6: The same as Fig. 3.5, but plotted on a voltage scale where the convergence
towards the asymptotic behaviour, Eq. (3.54), is clearly visible. Note the
very large voltage scale on which this occurs.

the crossover contributions which have not been considered in Ref. [34]. As is shown in
Section 3.2.3, in the intermediate-voltage range the result is slightly modified by finite
temperature, further broadening the crossover and leading to an approximately linear
behaviour over a certain voltage range before the asymptotic slope is realized. On the
other hand, as will be discussed in Section 3.3, inelastic scattering processes limit the
voltage range showing the linear behaviour (3.54) from above, potentially eliminating
it entirely. The comparison with experiment is repeated in detail in Section 3.3.3, after
the effects of temperature and of inelastic scattering have been discussed.

It is important to note that, although the calculation seems to be performed within
a noninteracting picture, electron-electron interaction is contained implicitly in the def-
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inition of the electrochemical potential, which ultimately is a result of the screened
Coulomb interaction. An evaluation of the conductance variance in the framework of
scattering theory, using noninteracting electrons with different concentrations entering
the sample from the left and right reservoirs, would miss the contributions (3.46) and
(3.47) which give the voltage-dependent enhancement. The reason is that the system
size is much larger than the screening length, and therefore the effect of changing the
electrochemical potential in the reservoirs is to alter the potential profile in the wire
rather than changing the concentration of electrons. A change of the electrochemical
potential implies that all electrons in the relevant energy window of width V are af-
fected and will explore different disorder realizations, leading to the enhancement of
conductance fluctuations given by Eq. (3.54).

3.2.3 Effect of finite temperature

In this section, the effect of finite temperature on the nonequilibrium conductance fluc-
tuations is considered. Throughout this section it is assumed that the temperature is not
too high, so that at low voltages the inelastic scattering can be neglected (the dephasing
length Lϕ(T ) is large compared to the system size). The temperature however influences
the result via the change of the electron distribution function in the reservoirs. At a
finite temperature, Eqs. (3.45)–(3.47) are modified in the following way (now written in
dimensionful voltages for clarity),

〈
δg2

〉

0
=

16

e2

∫

dε1dε2 ∆f ′
1 ∆f ′

2 Ξε1−ε2 , (3.55)

〈
δg2

〉

1
=

16

e2

∫

dε1dε2 ∆f ′
1 ∆f2

∂

∂V2

Ξε1−ε2

+
16

e2

∫

dε1dε2 ∆f1 ∆f ′
2

∂

∂V1

Ξε1−ε2 , (3.56)

〈
δg2

〉

2
=

16

e2

∫

dε1dε2 ∆f1 ∆f2
∂2

∂V1∂V2

Ξε1−ε2 , (3.57)

where ∆fi = f(εi) − f(εi + eVi) (f is the Fermi function) and ∆f ′
i = ∂

∂Vi
∆fi . Again the

derivatives are taken at V1 = V2 = V .
Evaluation of the full crossover (i.e. the conductance fluctuations at arbitrary V/Vc

and T/eVc) is too cumbersome. Therefore this section deals with the limit T À eVc ,
when the temperature strongly affects the conductance fluctuations at low voltages (in
the opposite limit, T ¿ eVc , the temperature is irrelevant for all voltages, so that the
results of Section 3.2.2 apply). This condition is reasonably fulfilled in most of relevant
experiments, where the temperature is usually several times higher than the Thouless
energy.

Further distinction is necessary between the two limits of low (V ¿ Vc) and high
(V À Vc) bias voltages. In the first case, V/Vc → 0 , only the voltage-independent con-
tribution 〈δg2〉0 survives. For T À eVc the thermal smearing strongly suppresses this
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contribution compared to its zero-temperature (UCF) value. Eq. (1.12) is then modified
to

〈
δg2

〉

0
= 16

∫

dε1dε2 f ′(ε1) f ′(ε2)
1

L4

∑

n

2
1

∣
∣
∣
∣
q2
n − i

(ε1 − ε2)

D

∣
∣
∣
∣

2 , (3.58)

where for the wire geometry qn = nπ/L , and only the leading contribution has been
kept. Changing to the variables ε = (ε1 + ε2)/2D , ω = (ε1 − ε2)/D , the arguments of
the Fermi distributions can be set to ε, since typical ω are of the order eVc ¿ T . The
result then is

〈
δg2

〉

0
= 16

1

6T

1

L4

∑

n

2

∫

dω
1

( ω

D
− iq2

n

) ( ω

D
+ iq2

n

)

= 16
1

6T

1

L4

∑

n

2
πD

q2
n

, (3.59)

and finally
〈
δg2

〉

0
=

8π

9

eVc

T
, T À eVc . (3.60)

In the opposite limit, when eV, T À eVc (the ratio eV/T can be arbitrary), the high-
voltage behaviour (3.54) is modified by thermal smearing of the distribution function in
the following way,

〈
δg2

〉
= a

(
eV

T

)

· c0 + b

(
eV

T

)

· c1
V

Vc

, V À Vc (3.61)

where c1 is given by Eq. (3.53) and the functions a(eV/T ) and b(eV/T ) have the form

a

(
eV

T

)

= 2

∫

dε
[

f(ε) − f(ε + eV )
](

−∂f

∂ε

)

=
sinh

eV

T
− eV

T

cosh
eV

T
− 1

, (3.62)

b

(
eV

T

)

=
1

eV

∫

dε
[

f(ε) − f(ε + eV )
]2

= coth
eV

2T
− 2T

eV
. (3.63)

It is worth emphasizing that for any T at sufficiently high bias voltages the T = 0
result is recovered up to the missing offset of 8/15 . The characteristic feature of the
distribution function at high voltage is the double-step shape with a width eV of the
intermediate step. This shape is responsible for the enhancement (3.54) of conductance
fluctuations. In contrast to the zero-voltage (UCF) limit, the high-voltage contributions
(3.56), (3.57) are only affected by high temperatures T ∼ eV . In other words, in the
noninteracting picture the enhancement of conductance fluctuations at high voltage is
quite robust against thermal smearing and the variance of the differential conductance
always increases monotonically.
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Figure 3.7: The voltage dependence of the conductance fluctuations as given by the
interpolation formula (3.64), for the temperatures T = 20 eVc and T =
50 eVc . The T = 0 result (see Figs. 3.5, 3.6) is also shown for comparison. It
is clearly seen that only the offset (3.45), but not the slope of the asymptotic
linear behaviour (3.53) is changed by the temperature, and the crossover
towards the linear asymptotics is broadened on a voltage scale of the order
of the temperature.

Adding the term 〈δg2〉0 , Eq. (3.60), to (3.61) results in the following interpolation
formula, which is parametrically justified in the regime V À Vc and has the correct
limit at V/Vc → 0 :

〈
δg2

〉
=

8π

9

eVc

T
+

sinh
eV

T
− eV

T

cosh
eV

T
− 1

· 0.8964 +

[

coth
eV

2T
− 2T

eV

]

· 7.785 · 10−4 V

Vc

. (3.64)
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3.3 Effect of Coulomb interaction at high voltage

This formula can thus be used as a convenient approximation for 〈δg2〉 in the full range of
voltages at T À eVc . The resulting voltage dependence of the conductance fluctuations
is shown in Fig. 3.7 for the temperatures T = 20 eVc and T = 50 eVc . These theoretical
results are compared with experimental data in Section 3.3.3 below.

3.3 Effect of Coulomb interaction at high voltage

3.3.1 Nonequilibrium noise: Boltzmann-Langevin approach

In quasi-onedimensional diffusive systems, dephasing is dominated by scattering pro-
cesses with small energy transfers (ω ¿ T in the case of temperature-driven fluctuations,
and therefore ω ¿ eV for high voltages eV & T ). This allows to replace the dynamically
screened Coulomb interaction by a fluctuating classical potential acting on the electrons.
At a high bias voltage, the fluctuations of the electric field can be described by an effec-
tive temperature Teff(V ) which is defined below. Since the problem has a semiclassical
character, it is feasible to use the Boltzmann-Langevin approach [9, 62, 68] to describe
the field fluctuations. The fluctuations of the local current density j can be expressed in
the following way:

δj = − iDq δρ + σ δE + δjext . (3.65)

Here the first term on the right hand side of the equation is of diffusive origin and due
to density fluctuations δρ and the second term is driven by fluctuations of the electric
field δE via the conductivity σ = e2νD . The last term is due to elastic scattering from
impurities. These Langevin fluctuations can be obtained from the fluctuation-dissipation
theorem in equilibrium, while out of equilibrium they are known from shot noise theory
[74]. The correlator of the Langevin current fluctuations in a wire is2

〈
δjext

x (x, t) δjext
x (x′, t′)

〉
= 2σ Teff δ(x − x′) δ(t − t′) , (3.66)

with the effective temperature Teff(x, V ) given by

Teff =

∫

dε nε(x)
[
1 − nε(x)

]
. (3.67)

Here nε(x) is the electron distribution function which can (and in the present case will)
be a nonequilibrium distribution. The shape of this function in the strong-dephasing
regime addressed in this chapter deserves some additional thoughts.

It has been shown [29, 72] that in low dimensions the phase relaxation rate arising
from electron-electron interaction greatly exceeds the energy relaxation rate. Therefore,
in the regime of strong dephasing energy relaxation is still weak, Lϕ ¿ L ¿ Lε . So to
treat the regime of strong dephasing, in this section a sample with weak energy exchange

2The indices α, β denoting the measurements are suppressed. It is understood that δαβ should be
inserted when two measurements are considered, which see independent configurations.
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3 Nonequilibrium mesoscopic conductance fluctuations

will be considered, which in a parametrically broad range of voltages features a double-
step distribution function which is essentially identical to the noninteracting one. In
Section 3.3.3 it is discussed how this assumption can be relaxed, based on the results
from the calculation using the double-step distribution function which are performed in
Section 3.3.2.

Using the double-step distribution function with Eq. (3.67), the effective temperature
in the wire is found to be

Teff(x) = eV
x

L

(

1 − x

L

)

. (3.68)

The effective temperature is position-dependent, taking its maximum in the middle of
the wire and approaching zero at the contacts with the reservoirs.

The density fluctuations δρ can be expressed by the current fluctuations via the con-
tinuity equation,

δρ =
q

ω
δj . (3.69)

The current fluctuations δj can be expressed by δjext in the following way: The potential
fluctuations δφ, which satisfy δE = −∇φ, are determined by the density fluctuations,

e2 δφ(q) = δρ(q) U (0)(q) , (3.70)

where U (0) (|r − r′|) = e2/|r − r′| is the bare Coulomb interaction. Substituting δρ and
δE in Eq. (3.65) gives

δjx =
−iω

−iω + Dq2 [1 + νU (0)(q)]
δjext

x . (3.71)

For the metallic samples under consideration, νU (0)(q) À 1 is satisfied. As a result, the
field fluctuations δEx are determined by the Langevin current fluctuations:

σ δEx(q) = − δjext
x (q) , q 6= 0 , (3.72)

while the q = 0 component of δEx is determined by the boundary conditions: At T = 0
there are no potential fluctuations at the contacts to the perfect reservoirs, and therefore
the q = 0 -component of δEx must vanish. At T ¿ eV , the voltage-induced fluctuations
dominate over the temperature-induced ones everywhere except in a very close vicinity
of the reservoirs, which still allows to neglect thermal fluctuations in the calculation of
the voltage-driven fluctuations. The electric field fluctuations in real space, taking the
absence of the q = 0 component correctly into account, are therefore given by

δEx(x) = − 1

σ

[

δjext
x (x) − 1

L

∫

dx δjext
x (x)

]

. (3.73)

Using Eq. (3.66), the electric field correlator can now be obtained,

〈
δEx(x) δEx(x

′)
〉

=
2

σ

[

Teff(x) δ(x − x′) − 1

L
Teff(x) − 1

L
Teff(x′) +

∫
dx̃

L2
Teff(x̃)

]

,

(3.74)
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3.3 Effect of Coulomb interaction at high voltage

(for convenience the factors δαβ δ(t − t′) are suppressed from now on), and the corre-
sponding potential correlator 〈ϕϕ〉 is explicitly found by spatial integration after the
insertion of the effective temperature.

3.3.2 Strong-dephasing limit

Inserting the effective temperature (3.68) into Eq. (3.74) and integrating over the spatial
coordinates, the correlator of quasiclassical potential fluctuations is

〈
ϕ(x) ϕ(x′)

〉
=

2

σ





x<∫

0

dx̃ Teff(x̃) − x<

L

x>∫

0

dx̃ Teff(x̃)

− x>

L

x<∫

0

dx̃ Teff(x̃) +
x< x>

L2

1∫

0

dx̃ Teff(x̃)





=
2

σ
eV

x<(L − x>)

3L3

×
[

x<(L − x<) + x>(L − x>) − L

2
(x> − x<)

]

, (3.75)

where x< = min(x, x′) and x> = max(x, x′) . At this point it is convenient to switch
to dimensionless variables θ = ϕ/eVc , y = x/L , τ = eVct (remember the suppressed
δ(t − t′)). The correlator of the dimensionless potential θ is

〈
θ(y) θ(y′)

〉
=

2V

3gVc

y<(1 − y>)

[

y<(1 − y<) + y>(1 − y>) − (y> − y<)

2

]

, (3.76)

Ist is seen that the dimensionless parameter V/gVc describes the strength of the inelastic
processes. The results of Sections 3.2.2 and 3.2.3 are valid at voltages V . gVc . In par-
ticular, voltages of order V ∼ g2Vc are excluded by this condition and cannot be treated
in the noninteracting picture. These voltages would be required, as has been discussed
in Section 3.1, to make conductance fluctuations exceed the conductance and thus result
in appearance of regions with negative differential resistance in the IV characteristics.
A preliminary conclusion therefore is that for voltages V & gVc , well below the range re-
quired for negative differential conductance, the enhancement discussed in Section 3.2.2
begins to compete with dephasing effects. A detailed analysis is needed to investigate
whether the dephasing effects from electron-electron interaction alone can lead to the
observed nonmonotonic behaviour of the conductance fluctuations as a function of the
voltage. In the rest of this section the case of strong dephasing, V À gVc , is considered.

As described in Section 3.2.2, at high voltages only the contribution ∼ |Π|2 of Eq. 3.42
gives the asymptotic behaviour. The CF diffusion propagator Π may be expressed as
a path integral in the dimensionless variables y = x/L , τ = eVct , θ = φ/eVc introduced
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in the previous section,

Tr |Πz|2 =

1∫

0

dy1dy2

∞∫

0

dτ1dτ2 exp{iz(τ1 − τ2)}
ξ1(τ1)=y1∫

ξ1(0)=y2

D[ξ1(t1)]

ξ2(τ2)=y1∫

ξ2(0)=y2

D[ξ2(t2)]

× exp







τ1∫

0

dt1

[

− ξ̇1
2

4
− i(V1 − V2)

Vc

ξ1(t1) − iθ[ξ1(t1), t1]

]

+

τ2∫

0

dt2

[

− ξ̇2
2

4
+

i(V1 − V2)

Vc

ξ2(t2) + iθ[ξ2(t2), t2]

]





. (3.77)

At sufficiently high voltage V À gVc , this path integral is dominated by pairs of paths
which stay close to each other, |ξ1(t) − ξ2(t)| ¿ 1 , allowing to expand the dephasing
terms in the action in |ξ1(t) − ξ2(t)|. In this regime the averaging over Gaussian fluctu-
ations using Eq. (3.76) and 〈exp{iθ}〉 = exp{−〈θ2〉/2} results in

〈
Tr |Πz|2

〉
=

1∫

0

dy1dy2

∞∫

0

dτ1dτ2 exp{iz(τ1 − τ2)}
ξ1(τ1)=y1∫

ξ1(0)=y2

D[ξ1(t1)]

ξ2(τ2)=y1∫

ξ2(0)=y2

D[ξ2(t2)]

× exp







τ1∫

0

dt1

[

− ξ̇1
2

4
− i(V1 − V2)

Vc

ξ1(t1)

]

+

τ2∫

0

dt2

[

− ξ̇2
2

4
+

i(V1 − V2)

Vc

ξ2(t2)

]

− 2V

gVc

F (y2)
∣
∣τ1 − τ2

∣
∣

− 2V

gVc

min(τ1,τ2)∫

0

dt
∣
∣ξ1(t) − ξ2(t)

∣
∣ f(y2)






, (3.78)

where

F (y) =
〈
θ(y)2

〉
=

2

3

[

y2(1 − y2)
]2

(3.79)

and

f(y) =
∂

〈
[θ(y) − θ(y + ξ)]2

〉

∂ξ

∣
∣
∣
∣
ξ=0

= y (1 − y) . (3.80)

Note that, within the high-voltage approximation of expanding in the separation of the
paths, the factors F (y2) and f(y2) in the dephasing terms could be equally well written

60



3.3 Effect of Coulomb interaction at high voltage

as F (y1) and f(y1) , respectively. The last two terms in the exponent of Eq. (3.78)
represent the dephasing effects induced by the applied voltage. Clearly, paths ξ1, ξ2

which experience large separations |ξ1(t) − ξ2(t)| ∼ 1 cannot contribute significantly to
the path integral since their action, due to the last term representing dephasing during
the propagation of both diffusons, is large in the parameter V/gVc À 1 . The next to
last term represents the dephasing during a small time difference |τ1 − τ2| between the
durations of the two diffuson trajectories and is of order 1/g , since after the integration
over the dimensionless frequency z the characteristic values of |τ1 − τ2| are of order Vc/V ,
cancelling the voltages from the prefactor of this term. It is therefore justified to keep
only the second dephasing term in Eq. (3.78).

Instead of calculating Ξz , Eq. (3.77), is is convenient to take advantage of the Fourier
transformation

Ξz = 2

∞∫

0

dτ exp{izτ} Ξ̃(τ) .

∞∫

−∞

dz Ξz = 2π Ξ̃(0) (3.81)

The leading high-voltage contribution (3.47) to the conductance variance,

〈
δg2

〉

2
= 16 V 2

c

∂2

∂V1∂V2

∣
∣
∣
∣
V1=V2=V

V/Vc∫

0

dz1dz2 Ξz1−z2
(V1, V2) (3.82)

can be written as (using z = z1 and ε = z1 − z2)

〈
δg2

〉

2
= 16 V 2

c

∂2

∂V1∂V2

∣
∣
∣
∣
V1=V2=V

V/Vc∫

0

dz

z∫

z−V2/Vc

dε Ξε

= 16 V 2
c

∂2

∂V1∂V2

∣
∣
∣
∣
V1=V2=V






0∫

−V/Vc

dε

(
V

Vc

+ ε

)

Ξε +

V/Vc∫

0

dε

(
V

Vc

− ε

)

Ξε






= 16 V 2
c

∂2

∂V1∂V2

∣
∣
∣
∣
V1=V2=V

V/Vc∫

−V/Vc

dε

[
V

Vc

− |ε|
]

Ξε (3.83)

Substituting the Fourier transformation (3.81) into this equation, the integration over ε
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is easily done:

〈
δg2

〉

2
= 32 V 2

c

∂2

∂V1∂V2

∣
∣
∣
∣
V1=V2=V

∫

dτ Ξ̃(τ)

×




V

Vcτ
sin(ετ)

∣
∣
∣
∣

V/Vc

0

−
(

ε

τ
sin(ετ) +

1

τ 2
cos(ετ)

)
∣
∣
∣
∣
∣

V/Vc

0





= 64 V 2
c

∂2

∂V1∂V2

∣
∣
∣
∣
V1=V2=V

∞∫

−∞

dτ Ξ̃(τ)
1

τ 2
sin2

(
V τ

2Vc

)

(3.84)

For high voltages V À Vc , the approximation

1

τ 2
sin2

(
V τ

2Vc

)

' πV

2Vc

δ(τ) (3.85)

may be made, and therefore the asymptotic behaviour of the high-voltage term3 (3.47)
at V À gVc is given by

〈
δg2

〉

2
= 32π V Vc

∂2

∂V1∂V2

∣
∣
∣
∣
V1=V2=V

Ξ̃(0) , (3.86)

where Ξ̃(0) ≈ Tr
[
2 |Π0|2

]
(see Eq. (3.42), again as explained in Section 3.2.2 the second

term does not contribute to the leading behaviour) is twice Eq. (3.78) with τ1 set to τ2.
Transforming to the sum and the difference of the coordinates, ζ1 = (ξ1 + ξ2)/

√
2 and

ζ2 = (ξ1 − ξ2)/
√

2, it is seen that the path integral over the sum ζ1 is not affected by the
fluctuations and is equal to Θ(τ)/

√
2, while the path integral over the difference ζ2 can

be transformed back to the solution of a differential equation:

〈
δg2

〉

2
= 32

√
2 πV Vc

∂2

∂V1∂V2

∣
∣
∣
∣
V1=V2=V

1∫

0

dy

∞∫

0

dτ Iy(0, τ) , (3.87)

where Iy(ζ, τ) obeys the equation
[

∂

∂τ
− ∂2

∂ζ2
+ i

√
2

(V1 − V2)

Vc

ζ +
2V

gVc

√
2 y(1 − y) |ζ|

]

Iy(ζ, τ) = δ(ζ) δ(τ) . (3.88)

The dimensions can be scaled out of the differential equation by a transformation to the
variables

t = p2/3τ (3.89)

η = p1/3ξ (3.90)

I = p−1/3I (3.91)

v = i
√

2
(V1 − V2)

Vc p
, (3.92)

3it is verified later that this term remains the dominating one at strong dephasing.
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where

p =
2V

gVc

√
2 y(1 − y) . (3.93)

Substituting the rescaled variables into Eq. (3.88),

〈
δg2

〉

2
= 64

√
2 π

V

Vc

∂2

∂v2

1∫

0

dy

p7/3

∞∫

0

dt Iy(0, t) , (3.94)

and performing the integration over t results in

〈
δg2

〉

2
= 8π

(
Vc

V

)4/3

g7/3 ∂2

∂v2
Q(v, 0)

∣
∣
∣
∣
v=0

1∫

0

dy

[y(1 − y)]7/3
, (3.95)

where Q satisfies
{

− ∂

∂η2
+ |η| + vη

}

Q(v, η) = δ(η) . (3.96)

It is seen that the integral over the position y diverges in the vicinity of the reservoirs
y → 0, 1 . This is because the expansion in small |ξ1 − ξ2| is not valid in these regions
since the effective temperature, Eq. (3.68) vanishes when the reservoirs are approached.
The separation of the paths can therefore be larger in the vicinity of the reservoirs and
these small regions with very weak dephasing dominate the conductance fluctuations.

An exact evaluation of the path integral (3.78) without the expansion in |ξ1 − ξ2|
would lead to the solution of a two-dimensional Schrödinger-type differential equation
instead of the one-dimensional one (3.88). The result can however be obtained up to
a numeric prefactor in the following way: The integral in Eq. (3.95) should be cut off
at a distance Lyc to the reservoirs, which is of the order of the local phase-breaking
length corresponding to the local effective temperature at this position. This leads to
the following self-consistency condition for the cutoff yc ,

Lyc ∼ Lϕ(yc) = [Dτϕ(Teff(yc))]
1/2 , (3.97)

where Teff(y) = eV y(1 − y) and τϕ(Teff) ∼ (Dν2/T 2
eff)

1/3
. The cutoff is found to be

yc ∼
(

gVc

V

)1/4

(3.98)

and the amplitude of conductance fluctuations, dominated by the segments of length
∼ Lyc next to the contacts, is

〈
δg2

〉

2
∼ g2 Vc

V
,

V

Vc

À g . (3.99)
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A smooth matching of this asymptotic high-voltage behaviour and the noninteracting
case (3.61) shows a maximum at V/Vc ∼ g before the decay towards the 1/V power law
sets in. It is necessary to verify that the two subleading terms, 〈δg2〉0 and 〈δg2〉1 , remain
smaller than the leading term, 〈δg2〉2 , when the regime of strong dephasing is entered.
This is done in Appendix E.

The result (3.99) can be understood qualitatively in the following way: Let the wire
be split in incoherent segments of length Lϕ , which is not constant along the wire. The
variance of the conductance of one segment can in analogy to Eq. (3.57) be estimated
as

〈
δg2(Lϕ)

〉
∼ 1

eVc(Lϕ)

∫

dε
[
∆fLϕ

(ε)
]2

, (3.100)

where eVc(Lϕ) = D/L2
ϕ is the Thouless energy corresponding to the length Lϕ , and

∆fLϕ
(ε) is the difference between the distribution functions at the left and right bound-

aries of the segment of length Lϕ . For the double-step distribution function with
position-dependent intermediate plateau, ∆fLϕ

(ε) is equal to Lϕ/L for energies ε in
the window of width eV given by the reservoir potentials, and zero otherwise, resulting
in

〈
δg2(Lϕ)

〉
∼ 1

eVc(Lϕ)
eV

(
Lϕ

L

)2

. (3.101)

Expressing Vc(Lϕ) through the Thouless voltage of the entire sample Vc ,
Vc(Lϕ)/Vc = (L/Lϕ)2, the conductance fluctuations of the single segment are given by

〈
δg2(Lϕ)

〉
∼ V

Vc

(
Lϕ

L

)4

. (3.102)

Since the resistances of the segments are additive, a fluctuation δg(Lϕ) of the conduc-
tance of a single segment induces a fluctuation δg of the conductance of the whole sample
given by

δg ∼
(

Lϕ

L

)2

δg(Lϕ) , (3.103)

so that
〈
δg2

〉
∼

(
Lϕ

L

)8
V

Vc

. (3.104)

Replacing Lϕ by the local dephasing length of the segments adjacent to the reservoirs

(where the dephasing is weakest), Lϕ = Lyc with yc ∼ (Vc/V )1/4 given by Eq. (3.98), the
voltage dependence of the result (3.99) is reproduced and thus supported by a physical
picture.
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3.3.3 Comparison with experimental data

In this section, the results calculated in Section 3.3.2 are compared with measure-
ments performed at the University of Basel [86, 87]. In these experiments, mag-
netoconductance traces of a gold wire with a length of L = 1.5 µm and a Thou-
less energy of eVc ≡ D/L2 = 3.4 µeV were taken at a moderately high temperature of
T = 300 mK ' 7.6 eVc over a voltage range up to V ' 3.7 mV ≈ 1000Vc . The dimen-
sionless conductance of the wire was g ≈ 1400 . Fig. 3.8 shows the theoretical results for
both the non-interacting limit (3.64) at not too high voltages and the strong-dephasing
limit (3.99) at very high voltages, compared with the measured data. It is seen that
there is a reasonably good agreement between the theory and the experiment in the
overall shape of 〈δg2〉(V/Vc) and in the magnitude of its enhancement at the maximum.
The voltage where the maximum is positioned also is of the correct order of magnitude,
V ∼ gVc .

The main deviation is that the initial increase of the conductance variance is consid-
erably less steep than on the theoretical curve. This may be attributed to the following
factors: First, the full (low-voltage) curve in Fig. 3.8 is obtained from the formula (3.61),
which takes into account the crossover at eV ∼ T but not the crossover at V ∼ Vc . Al-
though the temperature was larger than eVc by a factor ∼ 8 in the experiment, it has
been calculated in Section. 3.2.2 that the V/Vc crossover region is rather broad, extend-
ing up to V/Vc ∼ 50 . Thus the V/Vc crossover is expected to overlap with the eV/T
crossover under the experimental conditions, making the total crossover region broader.
Second, in the low-voltage region the effect of dephasing has not been taken into account
(the full curve is the result for noninteracting electrons). It is easy to see from Eq. (3.78)
that, as the voltage is increased and dephasing effects start to set in, this will first lead
to a relative correction of order V/gVc , which will provide a smooth matching with the
strong-dephasing (high voltage) regime, Eq. (3.99).

An important conclusion is that the linear behaviour (3.52) could not be accessed
reliably in this experiment, since it requires, in view of the very small value of the
numerical coefficient (3.53), very large voltages V/Vc & 1000 , while the dephasing was
setting in at voltages several times smaller. The observed strong enhancement of the
conductance variance is due to the same physics as the asymptotic behaviour found by
Larkin and Khmelnitskii [34], resulting from changes of the electrochemical potential
affecting all electrons which contribute to conduction. However, the observed behaviour
of the conductance fluctuations is not due to the high-voltage asymptotics (3.1), but
rather a smeared out version of the steep theoretical increase in the crossover region
preceding the linear asymptotics. A reliable observation of the linear behaviour pre-
dicted by Larkin and Khmelnitskii thus requires samples with still larger values of the
dimensionless conductance g in order to better separate the crossover coming from low
voltages and the crossover to the asymptotic decay.

At high voltages, the experimentally observed decay of the conductance fluctuations
is consistent with the predicted 1/V decay (3.99). Indeed, the experimentally obtained
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Figure 3.8: Comparison of the results of Section 3.3.2 with experimental data taken
from Refs. [86, 87]. The diamonds are the data from Fig. 5.4 of Ref. [87].
The solid line represents the interpolation formula (3.64), multiplied by an
overall factor of 1/8 to account for the strong spin-orbit interaction in gold
and the broken time-reversal symmetry at high magnetic fields. The dashed
line represents the asymptotic suppression, Eq. (3.99), with the numerical
coefficient adjusted to fit the data for high voltages.

value γ = 1.28 ± 0.12 of the exponent of the power-law decay 〈δg2〉 ∝ V −γ is in good
agreement with the theoretical result γ = 1 , taking into account that the measurements
do not extend very far into the corresponding voltage range V À Vc where the the-
oretical result is valid. The results obtained in Section 3.3.2 thus disagree with the
conclusion of the authors of Ref. [86] who argued, based on a naive estimate of the
dephasing effect, that the electron-electron scattering was not sufficient to suppress the
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3.4 Summary

Larkin-Khmelnitskii enhancement mechanism to the observed fall-off, and concluded
that this behaviour would be due to electron-phonon scattering. On the contrary, the
measurements performed in the Basel group are quite well compatible with the effect of
electron-electron scattering leading to the results presented in Section 3.3.2.

Seeing that the range of the asymptotic 1/V power law has hardly been entered, it
should be noted that experiments on samples with lower conductances might give more
data in the strong-dephasing range V À gVc and thus allow a more accurate experimen-
tal determination of the exponent of the power law.

Although throughout the calculations a sample with weak energy exchange has been
considered, the results also apply to samples with a higher level of energy exchange:
In the strong-dephasing limit the conductance fluctuations (3.99) are dominated by
regions close to the contacts, where the distribution function is strongly influenced by
the Fermi distributions in the respective nearby reservoirs [80]. So although there may
be a considerable amount of energy exchange, in the regions relevant for the conductance
fluctuations the distribution function retains a shape quite close to the double-step shape.
Therefore the results of Section 3.3.2 remain valid even if a sample is considered which
features a thermalized distribution function in its main part.

In a similar experiment performed in Karlsruhe [78], measurements on the voltage-
dependence of Aharonov-Bohm oscillations are reported. The qualitative behaviour
of the oscillations as a function of the current through the sample (and therefore of
the voltage) is similar to the results for wire geometry. In particular, the oscillation
amplitude increases towards a maximum which is located at a voltage of the order of
gVc , followed by a suppression at higher voltages. The position of the maximum at
a voltage of order gVc is confirmed by a second measurement on a sample with much
longer leads. In view of the results obtained in Section 3.2.2 for the noninteracting
regime, the observed increase of the oscillation amplitude should also for this experiment
be attributed to the crossover regime rather than the asymptotics found by Larkin and
Khmelnitskii. It should be noted that the calculations performed in the strong-dephasing
regime for the wire geometry cannot be directly transferred to the ring geometry since
the Aharonov-Bohm oscillations are due to the global geometry of the sample and cannot
be extracted from a treatment of the regions in the proximity of the reservoirs.

3.4 Summary

In this chapter the amplitude of mesoscopic fluctuations of the differential conductance
of a metallic wire has been calculated for arbitrary bias voltages.

For the noninteracting regime the variance of the conductance 〈δg2〉 increases mono-
tonically with the applied voltage V . The origin of the this behaviour is that changes
of the electrochemical potential influence all electrons in the available energy window of
width V . Asymptotically the linear behaviour first predicted by Larkin and Khmelnitskii
is confirmed, although with a surprisingly small parameter and at very large voltages
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only. Formally subleading contributions give an enhancement which dominates over the
linear asymptotics up to surprisingly high voltages, covering all the range V . gVc in
which inelastic effects can be neglected. The asymptotic slope is thus very difficult to
access experimentally.

The existence of an electrochemical potential on diffusive length scales is assumed in
the derivation of the voltage-induced enhancement. This implicitly takes into account
some level of interaction, because the electrochemical potential arises from the screened
Coulomb interaction on length scales much larger than the screening length. A truly
noninteracting calculation in the framework of scattering theory would miss this effect.

The effect of finite temperature on the enhancement of the conductance fluctuations is
quite limited. The crossover regime broadens and assumes a range eV ∼ T if T À eVc .
Additionally, the offset of the asymptotic linear behaviour is changed. However the
asymptotic slope is not affected, since it is due to features of the distribution function
on the scale V , while thermal broadening happens only on the scale T .

The effect of dephasing induced by the Coulomb interaction has been examined using
a quasiclassical approach. The effect of inelastic collisions has been found to become
important for voltages V & gVc , so that the regime V & g2Vc , in which negative differ-
ential conductance could be expected in the noninteracting picture, is excluded. With
the effect of inelastic processes taken into account, 〈δg2〉 becomes a nonmonotonic func-
tion of V , reaching a maximum at a voltage V ∼ gVc and decaying ∼ 1/V for V À gVc .
The effect of inelastic processes is distributed in a non-uniform way along the wire. In
the strong-dephasing regime the conductance fluctuations are dominated by coherent
regions of length ∼ L (gVc/V )1/4 adjacent to the reservoirs, where the dephasing effect
is small.

The calculated result are in good agreement with available experimental data, repro-
ducing both the nonmonotonic voltage dependence and the correct scales of voltages
and conductance fluctuations.
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4 Effect of gauge-field interactions on

quantum interference

4.1 Coupling to transverse gauge fields

In addition to electric potential fluctuations, electrons in disordered metals are sub-
ject also to transverse gauge field fluctuations. The full correlator of electromagnetic
fluctuations is for ω ¿ T given by [6, 18, 29, 46]1

〈
aα aβ

〉

k,ω
=

2T

σ

c2

ω2








δ⊥αβ(k)
1

1 +

(
c2k2

4πσω

)2 + δ
||
αβ(k)








, (4.1)

with the transverse and longitudinal projectors

δ⊥αβ(k) = δαβ − kαkβ

k2
(4.2)

δ
||
αβ(k) =

kαkβ

k2
, (4.3)

and the light velocity c (written for clarity in this equation only). The longitudinal part
of Eq. (4.1) can be gauge transformed [72] to represent a fluctuating scalar potential ϕ
with the correlator

〈
ϕϕ

〉

k,ω
=

2T

σ

1

q2
(4.4)

in momentum space, or, in real space, Eq. (2.9)2. Therefore, in the following only the
transverse part of the correlator (4.1) will be considered,

〈
aα aβ

〉

k,ω
=

2T

σ

1

ω2 +

(
k2

4πσ

)2 δ⊥αβ(k) . (4.5)

1Ref. [18] contains a typographical error in this equation.
2the indices denoting the measurements in that equation should not be confused with the vector indices

in Eq. (4.1).
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Using the Einstein relation σ = e2νD, the transverse part of the electromagnetic corre-
lator (4.1) is seen to be small in the parameter vF /c relative to the longitudinal one,
and usually is safe to neglect. A fluctuating gauge field with the correlator of a form
similar to (4.5) also occurs in another situation: In the Composite-Fermion model of
the fractional Quantum Hall effect [45], electrons are converted to so-called Compos-
ite Fermions by attachment of an even number (for half filling, two) of magnetic flux
quanta. The Composite Fermions experience an average magnetic field which is reduced
by the number of flux quanta attached to them, and vanishes for Composite Fermions
containing two flux quanta when the external magnetic field corresponds to half filling
of the lowest Landau level.

In a field-theoretical description [47], the Composite Fermions are obtained from elec-
trons by a statistical transformation, which leads to the appearance of a fictitious Chern-
Simons gauge field coupling to the Composite Fermions. Unlike the coupling of electrons
to magnetic fluctuations (4.1), the coupling of composite fermions to the Chern-Simons
fluctuations is not small, but of order unity. The effect of the gauge field interaction
may therefore greatly exceed the effect of the Coulomb interaction.

Although the average magnetic field seen by the composite fermions is cancelled by
the Chern-Simons gauge field at half filling, fluctuations of the Chern-Simons field play
an important role: Impurities in the metal (which by themselves represent only scalar
disorder) are screened by the composite fermions, resulting in a static random gauge field.
Additionally, the random motion of the composite fermions, which carry flux quanta of
the gauge field, induces dynamic fluctuations of the gauge field. A treatment of the
gauge-field fluctuations in the random-phase approximation (RPA) has been developed
in Ref. [52] (reviews can be found e.g. in Refs. [67, 71], for work related more closely to
the current chapter see also Refs. [56, 58, 59, 61, 63, 103]). The transverse part of the
gauge field correlator at RPA level has the form

〈
aα aβ

〉

k,ω
=

2T

σ

1

ω2 +

(
χ(k)k2

σ

)2 δ⊥αβ(k) , (4.6)

which is of the same form as the transverse electromagnetic correlator (4.5) if a short-
range interaction is considered, which leads to a constant susceptibility χ [52, 59, 63].
When the conductivity is large, Eq. (4.6) is sharply peaked around ω = 0 , allowing for
the static approximation which collects all the weight in a δ-function. The result for the
case of short-range interaction is

〈
aα aβ

〉

k,ω
=

T

χk2
δ⊥αβ(k) 2πδ(ω) . (4.7)
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This is equivalent to a static random magnetic field h with the correlator

〈h h〉k =
T

χ
,

〈
h(r) h(r′)

〉
=

T

χ
δ(r − r′) . (4.8)

The gauge field correlator (4.7) will be considered in the main calculations of this chapter.
The validity of the static approximation and the possibility of relaxing it will be discussed
in more detail in Sections 4.4.1 and 4.6.

4.2 Previous results on dephasing in fermion-gauge field

systems

The path integral for the CF diffuson propagator in the presence of quasistatic gauge
field fluctuations a(r, t) can be written in analogy to Eq. (2.14),

D12(r1, r2) =

∞∫

0

dt

r1∫

r2

D[r(t)] exp






−

t∫

0

dt′
[
ṙ2(t′)

4D
+ ie ṙ ·

[

a1[r(t
′), t′] − a2[r(t

′), t′]
]]






.

(4.9)
Unlike Eq. (2.14) the action in Eq. (4.9) is nonlocal in time due to the slow dynamics of
the gauge field. A treatment in the path-integral formalism thus is much less convenient
than for the situation with Coulomb interaction. Examination of the path integral
however shows some properties of the system: For example, a static gauge field drops
out of Eq. (4.9), as expected. The two measurements may however be separated by
a time which is not short on the scale of the gauge field dynamics. If the gauge field
configurations a1 , a2 are completely uncorrelated, but the gauge field can be regarded
as static on the timescale of the electron motion, the dephasing term in the action of
Eq. (4.9) is a purely geometrical effect without any reference to the dynamics of the
trajectories, as may be expected from motion in a static random magnetic field with the
correlator (4.8).

Moreover, it is easy to see that for a closed trajectory (or a pair of trajectories forming
a closed loop), a static uniform gauge field drops out, as expected by gauge invariance.
The path integral formulation also allows to derive a relation between weak localization
and mesoscopic conductance fluctuations in a similar way as has been done in Section 2.3
for Coulomb interaction. This calculation is presented in Section 4.3. As a result, the
weak localization correction may be calculated instead of the amplitude of mesoscopic
conductance fluctuations whereever it is more convenient.
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4 Effect of gauge-field interactions on quantum interference

For the static case (4.7), Aronov and Wölfle [53, 55] obtained the Cooperon amplitude

〈C(0, 0, t0)〉 =

r(t0)=0∫

r(−t0)=0

D[r(t)] exp
{
− S0 − ∆S

}
(4.10)

with the dephasing action

∆S = − 1

2π

e2T

χ

t∫

−t

dt1dt2 ṙ(t1) ṙ(t2) ln
|r(t1) − r(t2)|

l

= − 1

2π

e2T

χ

∮

dr1 ·
∮

dr2 ln
|r1 − r2|

l

= 2
e2T

χ

∫

dA1

∫

dA2 δ(r1 − r2) . (4.11)

If a part of the enclosed area A is encircled n times, this area should be weighted with
the factor n2 since the δ-function can be satisfied in n different ways for each of the
integrations,

∆S =
2e2T

χ

∑

i

n2
i Ai , (4.12)

where ni ∈ Z is the number of times the area Ai is encircled. The area weighted with
the square of the winding numbers is known as the non-oriented (Amperean) area.

For an estimate of Eq. (4.12), the authors of Ref. [55] argued that for weak disorder
the factors n2

i in Eq. (4.12) can be replaced by 1. Inserting the area covered by a diffusive
particle in the time t0 , A = Dt0 , into Eq. (4.12), the action ∆S becomes linear in time.
Using the free-fermion result for the susceptibility, χ = e2/12πm = e2D/12πg with the
dimensionless conductance g, the estimate results in

1

τϕ

∼ gT . (4.13)

This estimate, however, has some limitations as the temperature ls lowered: As de-
phasing becomes weaker, longer trajectories will contribute more to the path integral.
As a result, the probability of multiple return processes increases with decreasing tem-
perature. This temperature dependence is not accounted for in Eq. (4.13). Indeed, in
Ref. [75] Wölfle obtained a logarithmic correction factor to Eq. (4.13) using a quasiclas-
sical propagator accounting for diffusive and ballistic propagation. In Section 4.4.1 this
result is reproduced from a different starting point, eliminating the need to account for
ballistic propagation explicitly. This is possible since the multiple-return processes are
a large-scale effect which do not depend sensitively on details of the disorder.
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4.3 Relation of weak localization and conductance

fluctuations

In this section, the relation between weak localization and conductance fluctuations first
demonstrated in Ref. [85] and more generally proven in Section 2.3 is examined for the
situation when slow transverse gauge field fluctuations are present in a system where
the time-reversal symmetry is not broken except by the gauge field fluctuations.3 The
static approximation (4.7) is used to describe the gauge field fluctuations. Moreover,
the following hierarchy of timescales is assumed:

L2

D
¿ ω−1

gauge field ¿ measurement duration ¿ experiment time . (4.14)

This means that an individual electron experiences a static gauge field configuration
during the time it spends in the sample, but in contrast the duration of a measurement
is long enough relative to the gauge field dynamics to perform a complete ensemble
average over the gauge field configurations. Finally, the two measurements are well
separated in time so there are no correlations between the gauge field configurations
seen by different measurements.

For convenience, instead of writing down a relation analogous to Eq. (2.41), again
only the diffuson part of the conductance fluctuations will be considered, assuming that
the conductance fluctuations are measured at a sufficiently high average magnetic field
superimposed over the fluctuating contribution, or that harmonics of the Aharonov-
Bohm effect are considered, where the amplitude of the harmonics is determined solely
by the diffuson part [89].

Consider first the situation l ¿ LT ¿ Lϕ : In this case the regime of interest is
T À Ec , and the function (2.12) can be approximated as a delta function in the same
way as done in Section 2.3. For a static gauge field configuration a(r), the amplitude of
mesoscopic conductance fluctuations can be written in analogy to Eq. (2.42) as

〈
δG2

〉
=

4e4D2

3πTL4

∫

ddR1

∫

ddR2

∞∫

0

dt

r1(t)=R1∫
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〈
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+ ie ṙ1(t

′
1)

[

a1[r1(t
′
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′
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]]

−
t∫

0

dt′2

[
ṙ2
2(t

′
2)

4D
+ ie ṙ2(t

′
2)

[

a1[r2(t
′
2)] − a2[r2(t

′
2)]

]]
}〉

. (4.15)

3This is not the case for the Composite-Fermion system: due to the static screening of the impurities
the disorder also breaks the time-reversal symmetry. In this situation, the Cooperon should be
regarded as an auxiliary quantity useful for the calculation of mesoscopic conductance fluctuations,
as is done in the next section.
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Clearly, a static gauge field, a1 = a2 , drops out of Eq. (4.15). In the opposite limit (4.14),
correlators between different measurements vanish, 〈a1a2〉 = 0 . Performing the average
over Gaussian variables a(r) results in 16 gauge-field induced terms in the exponent. Half
of them correlates gauge fields from the same measurement (giving identical terms), so
that in the static approximation given by Eq. (4.14) the result is

〈
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〉
=

4e4D2

3πTL4

∫
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∫
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∞∫
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dt
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. (4.16)

Using the transformation (2.43), this is equal to

〈
δG2

〉
=

4e4D2

3πTL4
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ddR
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−t

dt′
ṙ2
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. (4.17)

This can be related to the weak localization correction evaluated in the presence of a
static random gauge field a(r) by rescaling the gauge field correlator by a factor 2,

〈
δG2

〉
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. (4.18)
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mesoscopic conductance fluctuations weak localization
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Figure 4.1: The transformation (2.43) can also be used in the presence of quasistatic
gauge field fluctuations to establish the connection between weak localization
and mesoscopic conductance fluctuations. The effects of ensemble averaging
on conductance fluctuations is mapped onto the effect of time-reversal break-
ing on weak localization. The extra gauge field lines compared to Fig. 2.6
indicate that the gauge field correlator is static in the present case, as op-
posed to local in time in the case of screened Coulomb interaction. As a
result, the allowed gauge field lines for the case of conductance fluctuations
are more restricted than for the Cooperon, modifying the relation (4.20)
compared to Eq. (2.50).

For thermal gauge field fluctuations this is equivalent to changing the temperature by a
factor of 2,

〈
δG2

〉
(T ) =

e2D

3TL2

∣
∣
∣
∣
δGWL

(
T

2

)∣
∣
∣
∣

, d = 1 , LT ¿ Lϕ , (4.19)

while in two dimensions, due to the different short-scale cutoffs (see Section 2.3), the
result is

〈
δG2

〉
(T ) =

e2D

3TL2

∣
∣
∣
∣
δGWL

(
T

2

)∣
∣
∣
∣
l → LT

, d = 1, 2 , LT ¿ Lϕ . (4.20)

This result applies to the dephasing effect of transverse magnetic fluctuations given by
Eq. (4.5), which is small in the parameter vF /c . For the Composite-Fermion system,
as is seen in the following sections, the dephasing effect of gauge field fluctuations is
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strong, l ¿ Lϕ ¿ LT , so that the thermal factor (2.12) should be evaluated in the limit
T ¿ Ec , as presented in detail in Appendix F. The result is most conveniently expressed
by introducing an extrinsic dephasing rate 1/τ ∗

ϕ ,

〈
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〉
(T ) =

3e2D

2πL2

∣
∣
∣
∣
∣

∂

∂
(
1/τ ∗

ϕ

) δGWL

(
T

2

)
∣
∣
∣
∣
∣

, LT À Lϕ . (4.21)

It should be emphasized that the different prefactors in Eqs. (4.20), (4.21) arise from
the different regimes in which the thermal factor is evaluated. The information about
the dephasing effects is contained in the quantities δG2 and δGWL and their respective
temperature arguments only. In particular, the dephasing rates associated with both
quantities are the same up to a numerical coefficient.

Compared to the case of Coulomb interaction, Eq. (2.50), in Eq. (4.20) and (4.21) a
relative factor of 2 is present in the temperature arguments. The reason for this is that,
as indicated in Fig. 4.1, the gauge field correlators should in the static case be drawn
between all points on the time-reversed paths, while for conductance fluctuations the
limitation applies that the two measurements are uncorrelated.4

Again, as has been discussed in Section 2.3, the presented transformation connects
harmonics of the h/e and of the h/2e Aharonov-Bohm effect as well, just by restricting
the path integrals to include only paths with the desired winding numbers. It has thus
been shown that the relation between weak localization and conductance fluctuations
(or between the h/e and the h/2e Aharonov-Bohm effect) is valid in the presence of
transverse gauge field fluctuations just as it is in the case of scalar potential fluctuations.

The validity of Eqs. (4.20), (4.21) is not trivial, since weak localization is insensitive
to ensemble averaging but suppressed by breaking of time-reversal symmetry, but on
the other hand the diffuson part of mesoscopic conductance fluctuations is suppressed
by ensemble averaging and not by time-reversal breaking. However, since the gauge
field fluctuations are slow on the scale of the electron motion and break time-reversal
symmetry, the different suppression effects on the two quantities are mapped onto each
other.

Since the relations (4.20), (4.21) can be traced back to the gauge field breaking the
time-reversal symmetry, slow external noise not breaking time-reversal symmetry [31]
will lead to an ensemble averaging effect during a measurement but not to a suppression
of weak localization. The relations5 (2.50) and (4.20) or (4.21) are therefore useful to
distinguish between different sources of dephasing.

4Another situation where the relation between weak localization and conductance fluctuations is
modified is the case of spin-orbit scattering [85].

5note that for Coulomb interaction even the Aharonov-Bohm dephasing length (2.34) is larger than

LT (by a factor ∼ (ξ/R)
1/2

, where ξ is the localization length), and therefore it is not necessary to
formulate Eq. (2.50) for the opposite situation.
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4.4 Weak localization with slow transverse gauge field

fluctuations

4.4.1 Two-dimensional case

In this section, the Cooperon amplitude and the weak localization correction are calcu-
lated for a system of electrons coupled to a fluctuating gauge field with the correlator
(4.7). In the half-filled lowest Landau level, time reversal symmetry is broken by the
strong magnetic field. The calculation of the weak-localization correction should then
be taken just as a convenient way to calculate mesoscopic conductance fluctuations via
the relation (4.20).

The object of interest is the Cooperon C(0, 0, t0), which in the presence of static
transverse gauge field fluctuations can be written as a path integral,

C(0, 0, t0) =

r(t0)=0∫

r(−t0)=0

D[r(t)] exp
{
− S0 + iS1

}
(4.22)

with

S0 =

t0∫

−t0

dt
ṙ2(t)

4D
(4.23)

and6

S1 = −2e

t0∫

−t0

dt ṙ(t) · a[r(t)] . (4.24)

Averaging over the gauge field configurations with Gaussian weight, using
〈exp {iϕ}〉 = exp {−〈ϕ2〉/2} for Gaussian variables ϕ, the result is (see also Eq. (4.10))

〈C(0, 0, t0)〉 =

r(t0)=0∫

r(−t0)=0

D[r(t)] exp
{
− S0 − ∆S

}
(4.25)

with

∆S = 2e2

t0∫

−t0

dt1

t0∫

−t0

dt2 ṙα(t1)
〈

aα[r(t1)] aβ[r(t2)]
〉

ṙβ(t2) . (4.26)

6for ease of reading, the coupling constant describing the fermion-gauge field coupling will be set equal
to the electron charge, as applicable to the Composite-Fermion system.
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It is convenient to define an averaged action 〈∆S〉(t0) with the property [75]

〈C(0, 0, t0)〉 = exp
{
−〈∆S〉(t0)

}
r(t0)=0∫

r(−t0)=0

D[r(t)] exp
{
−S0

}

= exp
{
−〈∆S〉(t0)

}
C(0)(0, 0, t0) , (4.27)

where C(0)(0, 0, t0) = (4πDt0)
−d/2 is the unperturbed Cooperon in d dimensions.

To second order in the coupling constant e, 〈∆S〉 can be evaluated as the average of
∆S weighted with the unperturbed Cooperon,

〈∆S〉(t0) =
1

C(0)(0, 0, t0)

r(t0)=0∫

r(−t0)=0

D[r(t)] exp
{
−S0

}
∆S

[
r[t], t0

]
(4.28)

The integral can be identified as the term second order in e of an expansion of the
Cooperon C = (−D∇2)

−1
= (Dq̂2)

−1
after coupling to the gauge field by the substitution

−i∇ → (−i∇− ea) , q̂ → (q̂ − ea) ,

C = C(0) + eDC(0) {aα, q̂α} C(0) − e2DC(0)aαaαC(0) + e2D2C(0) {aα, q̂α} C(0) {aβ, q̂β} C(0) ,
(4.29)

where {·, ·} is the anticommutator. Averaging over the gauge field fluctuations,

〈C〉 = C(0) − e2D C(0) 〈aαaα〉 C(0) + e2D2C(0)
〈
{aα, q̂α} C(0) {aβ, q̂β}

〉
C(0) . (4.30)

The second and third term of the right hand side are the complete set of terms second
order in e and therefore must add up to the integral in Eq. (4.28). The corresponding
processes are shown in Fig. 4.2. The averaged action 〈∆S〉 can thus be written as

〈∆S〉 = (4πDt0)
d/2

∫
dω

2π
exp{iωt0}

∫
ddq

(2π)d

∫
ddk

(2π)d

1

(Dq2 − iω)2 e2D

×
[

−
〈
aαaα

〉

k
+ 4D

1

D (q − k)2 − iω

(

q − k

2

)

α

〈
aαaβ

〉

k

(

q − k

2

)

β

]

(4.31)

with the static transverse gauge field correlator given by Eq. (4.7). In d = 2, the action
can be written as7

〈∆S〉 = 4πDt0
e2DT

χ

∫
dω

2π
exp{iωt0}

∞∫

0

q dq

2π

∞∫

0

k dk

2π

2π∫

0

dϕ

2π

1

(Dq2 − iω)2

× 1

k2

[

− 1 + 4D
q2 sin2ϕ

Dq2 − 2Dqk cosϕ + Dk2 − iω

]

, (4.32)

7note that Eq. (4.32) bears a close similarity to Eq. (21) of Ref. [75], which was derived in a different
way (including ballistic propagation). Here the first term (−1) in brackets takes the role of the
ballistic term of Ref. [75]. As a result, the following derivation of Eq. (4.36) follows closely Ref. [75].
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Figure 4.2: Return processes second order in the interaction with static gauge field
fluctuations. The processes correspond to the second and third term of
the right hand side of Eq. (4.30). The solid lines denote the unperturbed
Cooperon, while the dashed lines denote the gauge field propagator 〈a a〉k
given by Eq. (4.7).

where ϕ is the angle between the directions of the momenta q and k. In writing down
Eq. (4.32) the fact was used that the gauge field correlator is transverse, projecting onto
the direction perpendicular to k.

This integral is dominated by small q, ω ∼ Dq2 and larger k: Power-counting shows
that the k-integral is logarithmic, where the upper cutoff will be the inverse elastic mean
free path l−1 beyond which the diffusive description is invalid. Furthermore, knowing
that a static uniform gauge field must have no effect, it can be anticipated that the
integrand must vanish for k → 0 . The second term in brackets will serve as a low-k
cutoff for the first one, cancelling it in the limit k → 0. The k-integral will thus be
logarithmic in the interval [L−1

ω , l−1], where Lω = (D/ω)1/2. Since most of the weight is
located at k well above typical q ∼ L−1

ω , it is possible to neglect the term 2Dq · k in the
denominator of Eq. (4.32) compared to Dk2. However, it is useful to keep the term Dq2:
since then the approximation is valid for both q ¿ k and q À k it will allow to check
that the integrand indeed vanishes for k → 0.

It serves as a consistency check to verify gauge invariance: A longitudinal part of the
gauge field correlator should not contribute to Eq. (4.31), since a static longitudinal gauge
field should have no observable effect. It is easily checked in the limit of q, ω → 0 that
the second term of Eq. (4.31 cancels the first one. To verify the cancellation exactly
for all q and ω would require a calculation beyond the diffusion approximation. The
results of the present calculation are however due to large-scale (diffusive) physics and
insensitive to short-scale details.

The angular integration in Eq. (4.32) is trivial after neglecting the term dependent on
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4 Effect of gauge-field interactions on quantum interference

the angle between q and k,

〈∆S〉 = 4πDt0
e2DT

χ

∫
dω

2π
exp{iωt0}

∞∫

0

q dq

2π

∞∫

0

k dk

2π

× 1

k2

[

− 1 + 2D
q2

Dq2 + Dk2 − iω

]

, (4.33)

and integrating over q results in

〈∆S〉 = 4πDt0
e2DT

χ

1

4πD

∫
dω

2π
exp{iωt0}

∞∫

0

dk

2π

× 1

k

[
1

iω
− 2

Dk2
+ 2

iω − Dk2

(Dk2)2 ln
−iω

Dk2 − iω

]

, (4.34)

where the first term in brackets is the result of the first term in brackets of Eq. (4.33) and
the other two terms are the result of the second term of Eq. (4.33). It is seen that the
first term in brackets gives a logarithmic integral with the upper cutoff setby the elastic
mean free path l, beyond which the diffusive description is not valid, and the lower cutoff
set by the other two terms at the scale Lω (see also Fig. 4.3). In the limit k → 0 the
integrand indeed vanishes ∝ k , so that the leading contribution to the integral is given
by the logarithmic term:

〈∆S〉 = 4πDt0
e2DT

χ

1

4πD

∫
dω

2π
exp{iωt0}

[
1

iω

1

2π
ln

Lω

l
+ subleading terms

]

' 4πDt0
e2DT

χ

1

8π2D

∫
dω

2π

sin ωt0
ω

ln
Lω

l
. (4.35)

Since this integral is dominated by ω ∼ 1/t0 , it can be evaluated to logarithmic ac-

curacy by substituting ln
Lω

l
' 1

2
ln

t0
τ

, where τ is the elastic scattering time. Using

the Landau diamagnetic susceptibility of free fermions [11], χ = 1/12πm , to substitute
e2D/χ = 12πg with g the dimensionless conductance, the result is

〈∆S〉 =
3

2
gT t0 ln

t0
τ

, (4.36)

which is identical to Eq. (25) of Ref. [75]. This result has thus been reproduced in
a purely diffusive calculation without the need of taking ballistic propagation into ac-
count in detail. This could be expected since the relevant physics happens on the large
length scales of diffusive propagation and does not depend on the details of microscopic
scattering processes.
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Figure 4.3: Plot of the absolute value of the integrand of Eq. (4.34) as a function of the
gauge field momentum k. In the transverse gauge, the logarithmic contri-
bution arises from the first term in brackets and is regularized at the lower
limit by the other terms.

Once 〈∆S〉(t0) is known, the amplitude of the weak-localization correction can be
evaluated as

δσWL = −2e2D

π

∞∫

τ

dt0 〈C(0, 0, t0)〉

= −2e2D

π

∞∫

τ

dt0 C(0)(0, 0, t0) exp
{
−〈∆S〉(t0)

}

= −2e2D

π

∞∫

τ

dt0
1

4πDt0
exp

{

− 3

2
gT t0 ln

t0
τ

}

= − e2

2π2

∞∫

1

dx

x
exp

{

− 3

2
gTτ x lnx

}

, (4.37)
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At very low temperatures,

T ¿ 2

3gτ
, (4.38)

the exponential factor serves just as a cutoff for the logarithmic integral (4.37), with the
result

δσWL = − e2

2π2
ln

τϕ

τ
, (4.39)

where τϕ is defined by 〈∆S〉(t0 = τϕ) = 1 ,

1

τϕ

=
3

2
gT ln

2

3gTτ
. (4.40)

The logarithmic correction to τϕ , which was first found in Ref. [75], is due to the pos-
sibility of paths forming multiple loops [55, 75], which results in an enhancement of the
non-oriented area enclosed. The dephasing rate (4.40) is large in the parameter g À 1
and much larger than the dephasing rate induced by the Coulomb interaction, which is
[29, 72] proportional to the sheet resistance instead of the conductance.

A typical dephasing length arising from Eq. (4.40) is calculated in Appendix G,

Lϕ ∼ 0.3 µm , (4.41)

satisfying Lϕ > l at temperatures T . 30 mK .
It should be emphasized that, although the dephasing rate (4.40) is much larger than

the inverse temperature, this does not indicate a breakdown of the Fermi liquid picture.
The dephasing rate (4.40) is mostly the result of an ensemble average8 over slow gauge
field fluctuations, which are approximately static on the timescale of the electron motion.
Individual particles retain phase coherence much longer than stated by Eq. (4.40). A
related situation has also been found in Ref. [83] for the dephasing rate applicable
to mesoscopic fluctuations of the Coulomb drag between two layers with each layer
containing a half-filled Landau level.

At higher temperatures, T À 2/3gτ , the integral (4.37) is dominated by x ∼ 1 , i.e. by
t0 ∼ τ , and the results derived for the diffusive regime cannot be used. However, in
view of the large dephasing rate (4.40), the regime of interest for quantum interference
phenomena is clearly the low-temperature regime given by Eq. (4.38).

A comment is in order here regarding the static approximation (4.7) for the gauge field
fluctuations. In the transversal gauge, the leading contribution to the action (4.36) comes
from the first process shown in Fig. 4.2 alone. For this process the integrals over the
momenta and frequencies of the particle and the gauge field factorize. The results (4.36),
(4.39), (4.40) obtained in this section therefore do not require the static approximation
for their validity. However, the static approximation is checked in Appendix G and
found to be well satisfied for typical semiconductor samples.

8The notion of ensemble averaging of course applies when mesoscopic conductance fluctuations are
calculated using the relation (4.20). If actually weak localization is considered, the dephasing rate
(4.40) is due to time-reversal breaking.
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4.4 Weak localization with slow transverse gauge field fluctuations

4.4.2 Quasi-onedimensional case

In view of the fact that multiple returns give rise to a logarithmic correction to the phase
relaxation rate in two dimensions, it is interesting to consider the quasi-onedimensional
case. Two effects can be expected to compete: The probability of returning to a given
point decays more slowly with increasing time in quasi-one dimension than in two di-
mensions. On the other hand, the confinement in the transverse direction limits the
geometric area which can be enclosed by diffusive paths. It is therefore not trivial what
happens to the non-oriented area enclosed by a typical path in quasi-one dimension.

In the following, the device of interest will be a wire of length L and width b, where
l ¿ b ¿ L . The momenta of the electrons, q = (q||, q⊥), and of the gauge field fluctua-
tions, k = (k||, k⊥), are therefore quantized in the transverse direction.

In general, the directions of q, k, and the || direction can all be different. The quasi-
onedimensional version of Eq. (4.31) then is

〈∆S〉 = (4πDt0)
1/2

∫
dω

2π
exp{iωt0}

∫
dq||
2π

∑

q⊥

∫
dk

2π

1

b

∑

k⊥

1
(

Dq2
|| + Dq2

⊥ − iω
)2

× e2D

[

−
〈
aαaα

〉

k
+ 4D

1

D (q − k)2 − iω

(

q − k

2

)

α

〈
aαaβ

〉

k

(

q − k

2

)

β

]

,

(4.42)

where the indices α, β run over the directions ||,⊥ . From Eq. (4.42) it is seen that higher
modes of the transverse component of the electron momentum, q⊥ > 0, are less impor-
tant than higher modes of the gauge field momentum k. This allows to consider only the
lowest (zeroth) transverse mode of q, as could be expected from a quasi-onedimensional
diffusive system. However both components of the momentum k of the gauge field fluc-
tuations need to be kept, since in strictly one dimension (with no transverse components
of the momenta taken into account) Eq. (4.42) would trivially reduce to zero.

When keeping only the || component of q, for consistency also only the component a||

should be kept in Eq. (4.29). Eq. (4.42) can thus be reduced to

〈∆S〉 = (4πDt0)
1/2

∫
dω

2π
exp{iωt0}

∫
dq

2π

∫
dk

2π

1

b

∑

k⊥

1

(Dq2 − iω)2 e2D

×
[

−
〈
a||a||

〉

k
+ 4D

1

D (q − k)2 − iω

(

q − k

2

)

||

〈
a||a||

〉

k

(

q − k

2

)

||

]

, (4.43)

where the gauge field correlator is again given by Eq. (4.7), and the momenta are given
by q = (q, 0) and k = (k, k⊥) . Again, as in Eq. (4.32), gauge invariance is satisfied in
the limit of small q, ω, which is what is to expect from the diffusive formulation. Similar
to the twodimensional case, in the transversal gauge (4.7) only the first term in brackets
of Eq. (4.43) gives the leading contribution, the difference to the twodimensional case
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4 Effect of gauge-field interactions on quantum interference

being that the second term is not needed for regularization. Consequently, since the
first term is independent of the gauge field frequency the static approximation can be
relaxed also in the wire geometry, however, as shown in Appendix G, it is well satisfied
for typical parameters.

It is important to remember that the integral over q is the continuum limit of a discrete
sum over momenta allowed by the system size L. Therefore, when the integrals over q
and ω do not commute, the integral over ω should be taken first. This is the case in
quasi-one dimension for the first term in brackets, which would give a divergence for low
ω if the q-integral would be performed first. For the leading contribution (the first term
in brackets in Eq. (4.43)), performing the ω-integration results in

〈∆S〉 = (4πDt0)
1/2 e2DT

χ

∫
dq

2π
t0 exp

{
−Dq2t0

}
∫

dk||

2π

1

b

∑

k⊥

1

k2
|| + k2

⊥

. (4.44)

The k-sum/integral thus factorizes from the rest and the sum over
k⊥ = nπ/b , n = 1, 2, . . . (the term with n = 0 vanishes, δ|| || − k||k||/k

2
|| = 0) is cut

off at the upper limit at the scale of the inverse elastic mean free path l−1,

1

b

∫
dk||

2π

∑

k⊥

1

k2
|| + k2

⊥

=
1

b

∑

k⊥

1

2 |k⊥|
=

1

2π

(

γ + ln
b

l

)

' 1

2π
ln

b

l
, (4.45)

where γ ≈ 0.577 is Euler’s constant. The q-integral can now be taken without discretiza-
tion,

〈∆S〉 = 6 g¤T t0 ln
b

l
, (4.46)

where (again) g¤ is the dimensionless conductance of a square segment of the wire.
Note that the system size L does not appear explicitly, as expected for a quantity which

should not need this cutoff, since for “short” times t0 ¿ D/L2 the closed trajectories of
duration t0 should not be influenced by the system size.

So compared to Eq. (4.36) the logarithm is cut of by the wire width b, instead of
Lω in two dimensions. The two competing effects, confinement of the geometry and
enhancement of the return probability, almost cancel in their effect on the non-oriented
area enclosed by a typical closed diffusive path, the difference being only that the
logarithmic factor is absent. The dephasing rate in quasi-one dimension, defined by
〈∆S〉(t0 = τϕ) = 1, is found to be

1

τϕ

= 6 g¤T ln
b

l
. (4.47)

Remarkably, as already indicated by the form of the action (4.46) being linear in t0 , there
are no infrared singularities arising in quasi-one dimension, resulting in the dephasing
rate (4.47) linear in the temperature. This is in contrast to the twodimensional result
(4.36), which features the additional factor logarithmic in t0 . In view of the gauge field
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4.4 Weak localization with slow transverse gauge field fluctuations

correlator (4.7) being very singular at low momenta and the phase space volume in
quasi-one dimension favouring low momenta, this deserves extra attention. In strictly
one dimension of course no magnetic field exists. For the quasi-onedimensional wire this
does not apply, but a related feature of Eq. (4.43) is that the zeroth transverse mode of
the gauge field fluctuations does not contribute to the action. Intuitively, this follows
from the fact that it can not contribute to the random flux of magnetic field which
is encircled by a closed path. For the higher transverse modes, any possible infrared
problems are already cut off by the width of the wire, so that on length scales larger
than the wire width no peculiarities of the infrared cutoff can arise.

As a result, it can be expected that the dephasing rate for the Aharonov-Bohm geome-
try does not differ from the dephasing rate for the singly-connected quasi-onedimensional
geometry in the same significant way as it does for the case of Coulomb interaction (con-
sidered in Chapter 2). In Section 4.5 this question is addressed and it is confirmed that
the dephasing rate for the Aharonov-Bohm situation is indeed up to a numerical factor
the same as Eq. (4.47).

The weak localization amplitude is easily calculated from Eq. (4.46),

δσWL = −2e2D

π

∞∫

τ

dt0 〈C(0, 0, t0)〉

= −2e2D

π

∞∫

τ

dt0
1

(4πDt0)
1/2

exp
{
−〈∆S〉(t0)

}

= − e2

√
6 π

g
−1/2
¤

(
D

T

)1/2 (

ln
b

l

)−1/2

; (4.48)

this equation is valid in the regime in which the two-dimensional dephasing length
Lϕ = (Dτϕ)1/2 with τϕ given by Eq. (4.40) is larger than the transverse dimension of
the wire b. For typical semiconductor samples this is calculated in Appendix G, where
a dephasing length of

Lϕ ∼ 0.15 µm (4.49)

is found. The quasi-onedimensional description introduced in this section therefore ap-
plies to wires with a width of the order of 0.1 µm or less.

The result for the action (4.46) should be related to the twodimensional result (4.36) in

the following way: A factor t
1/2
0 can be attributed to the typical geometrical area enclosed

by paths of duration t0 ; this factor is the equivalent of the factor t0 in Eq. (4.36). Another
factor is due to the effect of multiple returns, which have an enhanced probability in low
dimensions so that instead of the logarithmic correction in Eq. (4.36) an extra algebraic

factor t
1/2
0 arises in Eq. (4.46). This factor can be understood in the following way (see

Fig. 4.4): A closed path covers an area of size ∼ t
1/2
0 in every unconstrained dimension.

In quasi-one dimension, the area enclosed extends ∼ t
1/2
0 in the longitudinal direction,
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Figure 4.4: Left: a typical closed path in two dimensions. Right: a similar closed path
in quasi-one dimension, obtained by reflecting the twodimensional version
at the boundaries. The confinement in the transversal direction makes the
trajectory return more often to a given area, which is encircled in a random
direction each time.

and a given cross-section of the wire is visited ∼ t
1/2
0 times. The path winds around this

given point with a random sign each time, the winding number being therefore ∼ t
1/4
0 .

The non-oriented area is obtained by adding up all enclosed patches weighted with the
square of the respective winding numbers. As a result, the power of t0 entering Eq. (4.46)

is
(
t
1/4
0

)2
t
1/2
0 = t0 , and as a result the dephasing rate in quasi-one dimension (4.47) is

proportional to the temperature, the temperature thus appearing to the same power as
in the twodimensional case (4.40). This differs from the Coulomb interaction [29, 85] in
the remarkable way that the different geometric effects combine in quasi-one dimension
to eliminate infrared divergences.

4.5 Aharonov-Bohm oscillations with slow transverse

gauge field fluctuations

When considering h/2e Aharonov-Bohm oscillations of rings formed of quasi-
onedimensional wires, only Cooperon paths with winding number one contribute. In
Chapter 2 it has been shown that the finite minimum length of these paths leads to a
parametrically different dephasing rate which is much larger than the dephasing rate
for weak localization. This reflects the fact that in the regime of strong dephasing the
probability of retaining coherence throughout such a path is small and paths which are
not typical diffusive paths, but rather atypically straight ones, contribute most to the
Aharonov-Bohm amplitude.

On the other hand, in the case of gauge-field fluctuations the action (4.46) and the
dephasing rate (4.47) for the simple wire show no sign of long-time/infrared divergence.
It may therefore be expected that the dephasing rate applicable to Aharonov-Bohm
oscillations will not exceed the one for the plain wire in the same way as in the case of
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4.5 Aharonov-Bohm oscillations with slow transverse gauge field fluctuations

Coulomb interaction, where the difference in the dephasing rates arises from the different
cutoff procedures applicable to the respective situations (see Section 2.2.4).

In Section 2.2.3 it has been argued that in the strong-dephasing situation it is suffi-
cient to consider paths which do not extend into the leads, since this will lead to extra
dephasing, effectively removing these paths from the class giving the leading contribu-
tion to the Aharonov-Bohm interference. The same argument holds when dephasing is
caused by gauge field interactions. It should be noted that the effect of a static random
gauge field depends only on the geometry of the trajectory under consideration, not on
the dwell time which could be spent in the leads. One might try to imagine a situation
where the gauge field interaction is absent or weak in the leads. In this case the part
of the trajectory exploring the lead can just be removed and the discussion can also be
restricted to trajectories within the ring.

The difference to the calculations in Sections 4.4.1 and 4.4.2 is that, instead of closed
Cooperon paths, Cooperons with winding number one in the ring geometry are consid-
ered. In other words, the Cooperon paths now have endpoints with a separation of 2πR
in unfolded coordinate space, where R is the radius of the ring. The action corresponding
to Eq. (4.43) then becomes

〈∆S〉2πR =
1

C(0)(0, 2πR, t0)

∫
dω

2π
eiωt0

∫
dq

2π
eiq 2πR

∫
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∑
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〉

k
+ 4D

1

D (q − k)2 − iω

(

q − k

2

)

||

〈
a||a||

〉

k

(

q − k

2

)

||

]

, (4.50)

with the unperturbed Cooperon with winding number one

C(0)(0, 2πR, t0) =
1

(4πDt0)
1/2

exp

{

−(2πR)2

4Dt0

}

. (4.51)

Along the lines of the calculation presented in Section 4.4.2, the result is

〈∆S〉2πR =
1

C(0)(0, 2πR, t0)

e2DT

χ

1

2π
ln

(
b

l

)

t0

∫
dq

2π
exp

{
iq 2πR − Dq2t0

}

=
1

C(0)(0, 2πR, t0)

e2DT

χ

1

2π
ln

(
b

l

)

t0

exp

{

−(2πR)2

4Dt0

}

(4πDt0)
1/2

= 6 g¤T t0 ln
b

l
, (4.52)

in other words 〈∆S〉 averaged over Cooperons with winding number one is the same as
averaged over all closed Cooperon paths in the plain wire geometry, Eq. (4.46). The
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amplitude of h/2e Aharonov-Bohm oscillations then is

〈δg〉h/2e = Ch/2e D

∞∫

0

dt0 〈C(0, 2πR, t0)〉

= Ch/2e D

∞∫

0

dt0 C(0)(0, 2πR, t0) exp
{
−〈∆S〉2πR

}

≡ Ch/2e D

∞∫

0

dt0
1

(4πDt0)
1/2

exp
{
−SAB

}
. (4.53)

Here SAB(t0) is defined as

SAB(t0) =
(2πR)2

4Dt0
+ 〈∆S〉2πR , (4.54)

b is the linewidth of the ring, and Ch/2e is a coefficient related to the geometry [89] which
will not be evaluated here. In the regime of strong dephasing, the action SAB(t0) is large
for all t0 and the integral can be evaluated by the saddle-point method:

〈δg〉h/2e = Ch/2e D
1

(
4πDtopt

0

)2 exp
{
−Sopt

AB

}√
2π

[
∂2

∂t20
SAB

]−1/2

t0=topt
0

, (4.55)

where topt
0 is the time where SAB(t0) assumes its minimum value Sopt

AB . The evaluation
of the saddle-point is performed in Appendix H, with the result

〈δg〉h/2e = Ch/2e

√
6 g

−1/2
¤

(
D

T

)1/2 (

ln
b

l

)−1/2

× exp

{

−
√

6 g
1/2
¤ (T tAB)1/2

(

ln
b

l

)1/2
}

, (4.56)

where the time tAB is defined as the timescale set by the ring circumference,

tAB =
(2πR)2

D
. (4.57)

In particular, the saddle-point is located at topt
0 ¿ tAB (see Eq. (H.1)), meaning that the

optimal paths are much straighter than typical diffusive ones. Eq. (4.56) is valid in the
strong-dephasing regime Sopt

AB À 1 (see Eq. (H.2)). Writing the exponential factor of the

Aharonov-Bohm amplitude (4.56) in the form exp
{
−2πR/Lϕ

}
= exp

{
−

(
tAB/τAB

ϕ

)1/2}
,
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4.6 Fast versus slow gauge field fluctuations

equivalent to introducing 1/τAB
ϕ as a mass of the CF diffuson propagator [17, 38], the

dephasing rate 1/τAB
ϕ is found to be

1

τAB
ϕ

= 6 g¤T ln
b

l
, (4.58)

which, as expected from the long-time behaviour of the action (4.46), is the same as the
dephasing rate for the quasi-onedimensional wire, Eq. (4.47).

4.6 Fast versus slow gauge field fluctuations

Having seen that mesoscopic conductance fluctuations of the fermion-gauge field system
are strongly suppressed by an ensemble averaging effect rather than “true” decoherence
(i.e. loss of phase memory of the individual particles), a question to be asked is whether
the effects of “slow” gauge field fluctuations (with frequencies ω . 1/τϕ) and “fast”
gauge field fluctuations (with frequencies ω & 1/τϕ) can be separated. Then the (loss of)
phase memory of the individual particles could be accessed, which would have important
consequences for the validity of the Fermi-liquid picture of the half-filled lowest Landau
level. Unfortunately, both conductance fluctuations and weak localization do to leading
order not allow this. What is needed is a quantum interference effect which is sensitive
to neither time-reversal breaking nor ensemble averaging.

The weak-localization contribution of second order in the disorder is such a quan-
tity. Several contributions to it are given by diffusons only, and therefore insensitive
to time-reversal breaking by gauge-field fluctuations (see Figs. 4.5, 4.6). Since weak
localization also is an ensemble-averaged quantity, it is also insensitive to fluctuations
which are static on the timescale of the coherent electron motion (ω . 1/τϕ). So the
two-diffuson contributions to weak localization fulfil both requirements, being sensitive
only to fluctuations with frequencies ω & 1/τϕ . The different interference effects and by
which type of fluctuations they are affected are summarized in Table 4.1.

The process shown in the left of Fig. 4.5 can be characterized by the following path
integral:

δg2−loop
WL ∼

∫

[r]=[r1]+[r2]

D[r(t)] exp






−

t0∫

−t0

dt′
ṙ2

4D

− ie

t0∫

−t0

dt′
[

ṙ1(t
′) a[r1(t

′), t′] − ṙ2(t
′) a[r2(t

′), t′]
]






, (4.59)

89



4 Effect of gauge-field interactions on quantum interference

Figure 4.5: Left: A set of two trajectories visiting the same two sets of impurity sites,
each set in the same order but one trajectory visiting one set first and the
other trajectory visiting the other set first, returning to the origin in be-
tween. The two trajectories thus accumulate the same phase, independent
of breaking of time-reversal symmetry, and interfere constructively, giving a
contribution second order in 1/g to the weak localization effect. Right: An-
other set of trajectories with the same feature of accumulating the same
phase although visiting the impurity sites in different orders.

where the two paths r1 , r2 visit the same sets of impurities,9

r2(t
′ ≥ 0) = r1(t

′ − t0) ,

r2(t
′ ≤ 0) = r1(t

′ + t0) ,

r1(t
′ = ±t0) = r1(t

′ = 0) . (4.60)

This allows to write the path integral as

δg2−loop
WL ∼

∫

r1,2(0)=r1,2(t)

D[r1(t)]D[r2(t)] exp






−

t0∫

0

dt′
[

ṙ2
1

4D
+

ṙ2
2

4D

]

− ie

t0∫

0

dt′

[

ṙ1(t
′)

[

a[r1(t
′), t′] − a[r1(t

′), t′ − t0]
]

− ṙ2(t
′)

[

a[r2(t
′), t′] − a[r2(t

′), t′ − t0]
]
]





. (4.61)

9Here it is assumed for simplicity that the times spent visiting each of the two sets of impurities are
equal. This simplifies the notation but does not affect the general argument.
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4.6 Fast versus slow gauge field fluctuations

Figure 4.6: Diagrammatic representations of the processes shown in Fig. 4.5.

effect
affected by

mesoscopic
conductance
fluctuations

weak
localization
(1-loop)

weak localization
(2-loop)

scalar fluctuations
with ω . 1/τϕ

(yes)∗ no no

scalar fluctuations
with ω & 1/τϕ

yes yes yes

vector fluctuations
with ω . 1/τϕ

yes, by
ensemble
averaging

yes, by
time-reversal
breaking

yes, by time-reversal
breaking (Cooperon part),
no (diffuson part)

vector fluctuations
with ω & 1/τϕ

yes yes yes

Table 4.1: Overview to which type of electromagnetic fluctuations the different quantum
interference phenomena are sensitive. “Fast” fluctuations with frequencies
ω & 1/τϕ always lead to “true” dephasing, while “slow” fluctuations with fre-
quencies ω . 1/τϕ result in ensemble-averaging and (for vector fluctuations)
time-reversal breaking effects, to which not all quantities are sensitive. In
particular, the diffuson contribution to weak localization in two-loop order
is sensitive to neither ensemble averaging nor time-reversal breaking. In any
case, the fluctuations need to have momenta larger than the inverse dephas-
ing length (or the inverse system size for the Aharonov-Bohm configuration),
since otherwise they can be gauged away by a global gauge transformation.
∗ note that the screened Coulomb propagator has not enough weight at low
frequencies for this to be important. However, similar considerations apply
to external (i.e. not arising from diffusive electron motion) slow fluctuations
which do not break time-reversal symmetry, e.g. 1/f noise [31, 44, 73, 101].
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4 Effect of gauge-field interactions on quantum interference

It is immediately obvious that a (quasi)static random gauge field which does not change
on the time scale t0 drops out, and this two-loop contribution to weak localization is
only affected by gauge field fluctuations which are fast on the time scale of the electron
motion.10

However, it seems that second-order weak localization is not reliably accessible in
experiments. Being second order in 1/g , where g is the dimensionless conductance, it
is a very small quantity from the start. Since it is (as required) insensitive to magnetic
fields, it cannot be examined by magnetoresistance effects. Its temperature dependence
is masked by the temperature dependences of Altshuler-Aronov type corrections [29] in
first order in 1/g and cannot be accessed separately.

It is instructive to compare the effect of fast gauge field fluctuations on one-loop weak
localization to the effect of all fluctuations, which has been considered in Section 4.4.1.
As has been discussed in Section 4.4.1, the first term in brackets of Eq. (4.34), giving the
leading contribution, does not depend on the validity of the static approximation. There-
fore a direct comparison is possible. Restricting the frequency integration to frequencies
ωgf & τ true

ϕ , where τ true
ϕ is the “true” dephasing rate denoting the loss of phase memory of

a single (non-ensemble averaged) particle and should be determined self-consistently,11

the result is

∫

|ωgf |&1/τ true
ϕ

dωgf

2π

〈
aα aβ

〉

k,ωgf
=

∫

|ωgf |&1/τ true
ϕ

dωgf

2π

2T

σω2
gf + σ

(
χk2

σ

)2 δ⊥αβ(k)

=
2T

πχk2
δ⊥αβ(k) arctan

χk2τ true
ϕ

σ
(4.62)

instead of Eq. (4.7). The low-k behaviour of the first term in brackets in Eq. (4.34) is
now regularized by the arctan factor of Eq. (4.62) instead of the second term in brackets.
The logarithmic contribution to the integral vanishes completely if the dephasing time
τ true
ϕ satisfies

τ true
ϕ . 12πg2τ , (4.63)

because then the arctan can be expanded for all momenta up to the order of l−1 (see
Fig. 4.7).

As a result, the action corresponding to fast gauge field fluctuations evaluates to

〈∆Sfast〉 '
Tt0τ

true
ϕ

8π2gτ
, (4.64)

10For Coulomb interaction, it has been found in Ref. [69] that diffuson and Cooperon propagators decay
in the same way in the long-time limit.

11note that while the conditions k & L−1
ϕ and ω & τ−1

ϕ are equivalent for the screened Coulomb inter-
action, due to the slow dynamics of the gauge field here k & L−1

ϕ is the stronger condition.
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4.6 Fast versus slow gauge field fluctuations

Lω
-1

l
-1

(σ/χτφ
true

)
1/2

k

1/χk

2τ φ
tru

e k/π
σ

Lω
-1

l
-1

k

1/χk

2τφ
true

k/πσ

Figure 4.7: Left: the contribution of fast gauge field fluctuations with frequencies
ωgf & 1/τ true

ϕ to the action (4.64) (solid line) compared to the contribution
of all gauge field fluctuations (dashed line) to the action (4.36). While the
contribution of all gauge field fluctuations arising from the first term in
brackets of Eq. (4.34) is regularized for low momenta by the other terms
at the scale L−1

ω (see also Fig. 4.3), the contribution of fast fluctuations is
regularized self-consistently by the arctan factor in Eq. (4.62) at the scale

kmin =
(
σ/χτ true

ϕ

)1/2
=

(
12πg2/τ true

ϕ

)1/2
. For not too long dephasing times

τ true
ϕ . 12πg2τ this contribution degenerates to the one shown in the right,

with the logarithmic contribution vanishing. The dephasing rate (4.66) due
to fast fluctuations is smaller than the inverse temperature in a wide param-
eter range, confirming the Fermi liquid picture.

while the action corresponding to the effect of all gauge field fluctuations is given by
Eq. (4.36). From Eq. (4.64) is is seen that

〈∆Sfast〉 . Tt0 for τ true
ϕ . 8π2gτ , (4.65)

in agreement with the Fermi liquid picture, and the “true” dephasing rate is evaluated
self-consistently by the condition 〈∆Sfast〉(t0 = τ true

ϕ ) = 1 to be

1

τ true
ϕ

=

(
T

8π2gτ

)1/2

, (4.66)

which is well compatible with the diffusive regime Tτ ¿ 1 considered in this chapter.
Using the dephasing rate (4.66), the condition (4.63) for τ true

ϕ used in the evaluation of
the action (4.64) translates to the condition on the temperature

T &
1

18g3τ
. (4.67)
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4 Effect of gauge-field interactions on quantum interference

This means that the condition (4.63), allowing the expansion of the arctan factor in
Eq. (4.62), is justified for every realistic sample, and the spectrum of fast fluctuations
contributing to “true” dephasing (shown in the right of Fig. 4.7) is very different from the
one shown in Fig. 4.3, which leads to an ensemble-averaging or time-reversal breaking
effect only.

A more interesting restriction is set by the temperature scale

T ≈ 1

8π2gτ
, (4.68)

at which even the dephasing rate (4.66) due to fast fluctuations only becomes of the order
of the temperature. At this temperature, the interval for thermal gauge field fluctuations
with frequencies ωgf in the range 1/τ true

ϕ . ωgf . T collapses. The scale given Eq. (4.68)
computes to less than 1 mK for typical samples and therefore is of little experimental
relevance, however what happens at such low temperatures deserves a more detailed
theoretical study.

All the above arguments can also be directly transferred to the wire geometry once
the momentum scale set by the arctan factor in Eq. (4.62) exceeds the scale set by the
inverse wire width.

So indeed, as has been argued in Section 4.4.1, the dephasing rate due to “fast”
gauge field fluctuations, Eq. (4.66), is much smaller than the dephasing rate arising from
all gauge field fluctuations, Eq. (4.40), which is mostly due to an ensemble averaging
effect. The “true” dephasing rate, Eq. (4.40), being smaller than the temperature in a
parametrically large region of the diffusive regime, is compatible with the Fermi liquid
picture for the composite fermions in the presence of a fluctuating Chern-Simons field
in the parameter range of experimental relevance.

4.7 Summary

This chapter has focused on the effect of transverse gauge field fluctuations on quantum
interference phenomena.

While the effects of transverse electromagnetic fluctuations on electrons are relativis-
tically small, for composite-fermion systems, where the electron-gauge field coupling is
of order unity, the dephasing rates in both two and quasi-one dimensions exceed the
dephasing rates arising from Coulomb interaction by orders of magnitude.

For good metals (when the conductance is large), characteristic frequencies of the
gauge field are much slower than the electron dynamics, so that each of the electrons
essentially moves in a static gauge field configuration. Unlike the small energy transfers
associated with Coulomb scattering in low dimensions, the random phases associated
with the trajectories in the presence of gauge field fluctuations are a topological effect,
which can be described in terms of the geometry of the trajectories alone. While earlier
estimates [55] related the dephasing in a straightforward way to the area enclosed by
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typical paths, a refined argument [75] produces an additional logarithmic correction.
This correction is due to the fact that, as already pointed out in Ref. [55], it is actually
the non-oriented area enclosed by a path which should be taken instead of the geometrical
area. The non-oriented area is defined as the geometrical area weighted with the square
of the number of times a particular part is encircled. Compared to the estimate from
Ref. [55], where the non-oriented area was set equal to the geometrical area, the non-
oriented area is enhanced by the effect of multiple returns to a given point. This turns
out to be particularly important in low dimensions.

In Section 4.4.1, it has been shown that the earlier result of Ref. [75] can be obtained,
using a perturbative expansion in the coupling to the gauge field, in a diffusive for-
mulation without explicitly taking ballistic propagation into account. The logarithmic
correction to the dephasing rate, Eq. (4.40), compared to the estimate from Ref. [55],
is due to multiple return processes which happen on large scales and do not depend on
the details of the short-scale physics.

In Section 4.4.2, the diffusive formulation of Section 4.4.1 has been transferred to
quasi-onedimensional wires. Due to the confined geometry an algebraic correction ∼ t

1/2
0

arises instead of the logarithmic one in two dimensions. Since the important quantity
is the non-oriented area enclosed by closed paths, the effect of multiple returns on the
non-oriented area thus almost neutralizes the effect of the confinement in the lateral
direction. As a result, the dephasing rate in two dimensions (4.40) differs from the one
in quasi-one dimension (4.47) only by a logarithmic factor. Remarkably, the different
effects in the wire geometry combine in a way that no infrared divergences arise in the
fermion-gauge field system. The differences in the low-momentum cutoffs applicable
to the two geometries, which have been discussed in Section 2.2.4, thus are irrelevant
in the context of transverse gauge field fluctuations. As a result, the dephasing rates
due to gauge field fluctuations in the wire geometry (4.47) and in the Aharonov-Bohm
geometry (4.58) are the same, unlike in the case of Coulomb interaction. The dephasing
effect can be thought of to happen in a local fashion along the wires forming the ring,
and thus does not differ from the dephasing in the singly-connected geometry.

The validity of the static approximation for the gauge field fluctuations has been con-
firmed for typical parameters of semiconductor samples. Moreover the calculations have
shown that the results are quite insensitive to a relaxation of the static approximation,
as in the leading order the integrations over the frequencies of the fermions and the
gauge field fluctuations factorize.

The relation of weak localization and mesoscopic conductance fluctuations in the pres-
ence of Coulomb interaction [85], which has been traced back in Section 2.3 to the two
quantities being given by the same path integral, has been shown in Section 4.3 to
exist in a similar way also in the presence of slow transverse gauge field fluctuations.
Ultimately this is caused by the ensemble averaging effect of the static gauge field fluctu-
ations having the same effect on conductance fluctuations as the time-reversal breaking
of the gauge field fluctuations has on the weak localization amplitude. The calculated
results on weak localization can therefore be used via the relation (4.20) or (4.21) to
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4 Effect of gauge-field interactions on quantum interference

express mesoscopic conductance fluctuations of a fermion-gauge field system.
The results presented in this chapter have some interesting implications for the observ-

ability of quantum interference in transport phenomena of composite fermion systems:
To access the diffusive temperature regime, for which this chapter is written, low but
accessible temperatures of the order of 30 mK are needed. Typical dephasing lengths
to be expected are of the order of tenths of microns. Further, the quasi-onedimensional
regime can be realized using wires with widths of the order of 0.1 µm . The dephasing
lengths in simple wires and in the Aharonov-Bohm geometry are similar to the dephasing
length in two dimensions and differ from it only by numerical and logarithmic factors.

Although the calculated dephasing rates exceed the thermal broadening by large fac-
tors, this does not invalidate the Fermi liquid picture [3] of the fermion-gauge field
systems: The dephasing rates (4.40), (4.47) are mainly due to an ensemble averaging
effect over the gauge field configurations. The phase distribution of the fermions within
the ensemble broadens much faster than the individual particle loses its phase memory.
In Section 4.6, it has been explicitly checked that the “true” dephasing rate due to fast
gauge field fluctuations, Eq. (4.66), is smaller than the inverse temperature down to very
low temperatures. The dephasing rate (4.40), due to ensemble averaging over the gauge
field fluctuations, exceeds the “true” one by a factor which is parametrically large in
the conductance g. The Fermi liquid picture thus remains valid in the experimentally
relevant parameter range, since the individual particles keep their phase memory much
longer than the time needed to broaden the phase distribution of the ensemble. The
“true” dephasing rate of the individual particles is accessible through neither mesoscopic
conductance fluctuations nor one-loop weak localization, since the former are suppressed
by the ensemble averaging and the latter is suppressed by the time-reversal breaking of
the slow fluctuations. The diffuson contribution to two-loop weak localization would in
principle give access to the effect of the fast fluctuations alone, since it is not affected
by either ensemble averaging or time-reversal breaking. However, it seems that this is
difficult to measure experimentally due to its insensitivity to magnetic fields and the
small magnitude of this effect compared to the Altshuler-Aronov correction. It remains
to be seen whether there exists another experimental setup in which the “true” phase
coherence of Composite Fermions could be better observed.

At very low temperatures, as given by Eq. (4.68), the “true” dephasing rate due to fast
gauge field fluctuations alone cannot be easily estimated by Eq. (4.66), since the details
of the spectrum of thermal fluctuations need further consideration. The properties of
the fermion-gauge field system at such low temperatures call for a closer examination,
which is beyond the limits of this thesis.
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The interplay of interaction and disorder is one of the key topics in mesoscopic physics.
Especially lowdimensional samples show a rich variety of phenomena related to both.
This thesis has focused on dephasing effects in quantum transport arising from electron-
electron interaction.

For diffusive lowdimensional systems, momenta and momentum transfers of the order
of the inverse system size dominate the behaviour. Chapter 2 has considered Aharonov-
Bohm oscillations of conductance in a ring formed of quasi-onedimensional wires. While
h/e and h/2e oscillations are related to mesoscopic conductance fluctuations and weak
localization respectively, they differ from them in the way that Aharonov-Bohm inter-
ference takes place on a global scale between topologically different paths. Important
trajectories therefore have a minimum length which is set by the size of the ring. This
condition hold even when the dephasing length becomes much smaller than the path
length, and therefore differs from the usual self-consistency condition that only inelastic
processes with momentum transfers greater than the inverse dephasing length contribute
to dephasing. Instead, momentum transfers of the order of the inverse system size deter-
mine the dephasing, resulting in the dephasing length (2.34), which differs from the usual
one given by Eq. (1.11). The naive assumption (2.1) should therefore be replaced by the
presented results (2.30), (2.33), which are derived from a microscopic theory. Using the
path-integral formalism, the relation (2.41) between weak localization and mesoscopic
conductance fluctuations has also been proven on a more general ground and naturally
extended to the equivalent relation (2.48) between h/e and h/2e Aharonov-Bohm oscil-
lations.

When a sample is far from equilibrium, several new phenomena arise. Chapter 3 devel-
oped a theory of conductance fluctuations out of equilibrium. Several different regimes
result in an interesting nonmonotonic behaviour of the conductance fluctuations as a
function of the voltage. When the voltage V is increased beyond linear response, there is
a broad regime Vc ¿ V ¿ gVc in which inelastic effects are negligible but fluctuations of
the electrochemical potential result in an enhancement of conductance fluctuations. This
can ultimately be traced back to be an effect of electron-electron interaction, as the elec-
trochemical potential arises from screening of the Coulomb interaction on lengthscales
larger than the screening length. A fully noninteracting picture treated by scattering
theory, assuming just different concentrations of charge carriers, would miss this effect.
As the phase space for inelastic scattering effects is opened up further with increasing
voltage, it turns out that these become important at voltages V & gVc . For the strong-
dephasing regime V À gVc , the asymptotic behaviour (3.99) has been found. It is the
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result of a position-dependent dephasing effect, which is due to the available phase space
changing with the position-dependent electron distribution function along the sample.
The power law (3.99) is given by regions with weak dephasing in the vicinity of the reser-
voirs and the scaling of these regions with the voltage. The experimental results from
Refs. [86, 87] are explained well by the presented theory on the basis of electron-electron
interaction alone, without the need to consider electron-phonon scattering.

Finally, Chapter 4 addressed the effect of gauge field fluctuations. The systems under
consideration differ from electrons interacting only via the Coulomb interaction in a re-
markable way: The dynamics of the gauge field introduce new timescales, being much
slower than the electron motion. Moreover, the dephasing due to the transverse part of
the gauge field is not related to energy exchange, but rather to topological properties of
the electron trajectories, and is mostly a broadening of the phase within the ensemble
average over quasistatic gauge field configurations rather than loss of phase memory of
the single particle. Remarkably, a relation between weak localization and mesoscopic
conductance fluctuations can be derived similar to the case of Coulomb interaction, the
effects of time-reversal breaking on weak localization and the effect of ensemble averag-
ing on mesoscopic conductance fluctuations being mapped onto each other. While the
(apparent) dephasing rate (4.40), including those effects, is much larger than the inverse
temperature, the “true” dephasing rate (4.66) describing loss of phase memory of the
single Composite Fermion remains smaller then the inverse temperature for experimen-
tally relevant parameters, in agreement with the Fermi liquid picture of the half-filled
lowest Landau level. However, no reasonably accessible effect displaying this “true” de-
phasing rate has been identified so far, second-order weak localization being of mostly
theoretical interest. Interestingly, although the gauge field correlator is very singular
at low momenta and the momenta characteristic for the behaviour of lowdimensional
systems are given by the lowest available momenta in a more pronounced way as the
dimensionality is lowered, the quasi-onedimensional fermion-gauge field system exhibits
a dephasing rate which is linear in the temperature. The logarithmic correction of the
twodimensional system turns out to be absent in the wire. As a result, the peculiari-
ties of the infrared cutoff from Chapter 2 do not carry over to the fermion-gauge field
system, and the dephasing rates for the singly-connected wire geometry and for the
Aharonov-Bohm geometry are identical.

While the behaviour of interacting electrons in disordered systems is understood quite
well, some open questions exist regarding the properties of Composite Fermion systems.
Most directly encountered in the present thesis was the existence of the temperature
scale given by Eq. (4.68), at which the estimated “true” dephasing rate becomes of
the order of the temperature and the spectrum of thermal gauge field fluctuations with
frequencies ωgf . T vanishes. The behaviour of the system in this regime has not yet
been understood and calls for further investigation.
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A Preexponential factor of

Aharonov-Bohm oscillations

In this appendix, the preexponential factor accompanying the exponential factor (2.30)
is calculated by the standard method of performing Gaussian integrations over small de-
viations from the optimal solution [19]. Only the parametric dependence of the prefactor
will be considered, neglecting numerical factors of order unity.

First, consider small offsets of the initial and final points of the paths from their
optimal position. The second-order variation of the action δ2S will be a quadratic form
of the offsets, δ2S = uij δΘi δΘj , where i = 1, 2 . Using that δ2S ∼ 1 for δΘi ∼ 1 , it
follows that

(
det uij

)−1/2 ∼ 1

S
. (A.1)

Second, there is a possibility for small deviations of the paths from the instanton
solution, θi = θopt

i + δθi . The fluctuation term

0∫

0

D[δθ1(τ
′)]

0∫

0

D[δθ2(τ
′)] exp

{

− 1

2

δ2S

δθ̇iδθ̇j

δθ̇iδθ̇j

∣
∣
∣
∣
θopt

i,j

− 1

2

δ2S

δθiδθj

δθiδθj

∣
∣
∣
∣
θopt

i,j

}

(A.2)

factorizes from the action of the optimal paths due to the quadratic form of the exponent
in Eq. (2.15). It can be identified as the path integral representation of the propagator
of an harmonic oscillator with parameters m ∼ R2/D and mω2 ∼ RT/Dν, There are
two such factors (one for each of the paths), yielding together

[

(mω)1/2
]2

∼ T 1/2R3/2

ν1/2D
. (A.3)

Eqs. (A.1), (A.3) thus cancel in the preexponential factor.
Finally, there is a Gaussian integration over the deviations of the time τ spent on

the path from its optimal value τopt ∼ (νR/T )1/2. The corresponding factor can be
estimated as

(
∂2S

∂τ 2

)−1/2

τ=τopt

∼
(

S

τ 2
opt

)−1/2

∼ ν3/4D1/2

T 3/4R1/4
. (A.4)

Alternatively, it can be obtained in the following way: To account for deviations from
the optimal duration τopt of the paths, consider the particle tunnelling not with zero
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energy, but with a small energy E0 , which can be viewed as a function of the time τ
elapsed on the path. The action then is

S =

τ∫

0

dτ ′

{
8TR

νD

[

θ(τ ′) − 2

π
θ2(τ ′)

]

+ E0(τ)

}

(A.5)

and its second derivative with respect to τ is

∂2S

∂τ 2
=

8TR

νD

[

θ̇(τ) − 4

π
θ(τ) θ̇(τ)

]

+ 2
∂E0(τ)

∂τ
+ t

∂2E0(τ)

∂τ 2
. (A.6)

Setting τ = τopt (which is equivalent to setting E0 = 0), the first term vanishes

since θ̇ = 0, and the second term vanishes since
∂τ

∂E0

∼ −D1/2ν

TE
1/2
0

at E0 → 0 . Using

∂2E0

∂τ 2
= − τ ′′(E0)

[τ ′(E0)]3
, as well as

τopt = 2

π/2∫

0

dθ

θ̇

=

π/2∫

0

dθ
[

8T
νR

(
θ − γ+1

π
θ2

)]1/2

=

(
νR

8T

)1/2
π1/2 (π − arccos γ)

(γ + 1)1/2
(A.7)

(see also Eqs. (2.30), (2.31)), it is seen that

(
∂2S

∂τ 2

)

τ=τopt

∼ R1/2T 3/2

Dν3/2
, (A.8)

which is equivalent to Eq. (A.4).
Combining Eqs. (A.1), (A.3), and (A.4) with the exponential factor (2.30), the result

is Eq. (2.33).
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B Keldysh diagram for the current

Here the derivation of Eq. (3.36) is given, which relates the current to the impurity
averaged diagonal Keldysh function.

We begin by expressing the averaged Keldysh function
〈
GK(x1, x2)

〉
using the aver-

aged diagonal Keldysh function
〈
GK(x, x)

〉
. The self-energy equation for the matrix

Green’s function can be written as

, (B.1)

with the plain lines denoting the unperturbed Green’s function Ĝ(0) and the double lines
denoting the full Green’s function Ĝ (in the following impurity averaging is implied).
Using Eq. (3.33), this results in the equation of motion

(

i
∂

∂t
− H

)

Ĝ(r, t; r′, t′) = I δ(r − r′) δ(t − t′) +
1

2πντ

∫

dt′′ Ĝ(r, t; r, t′′) Ĝ(r, t′′; r′, t′)

(B.2)

with H = − 1

2m
∇2 + U(r) + eφ(r) . Changing to the Fourier representation and using

Eq. (3.34) as well as GR,A(r, r) = ∓iπν with Eq. (B.2) and the corresponding equation
with the operators acting from the right, the matrix Green’s function satisfies

(ε − H) Ĝ = I +
i

2τ

(
−1 2

[
2n(r) − 1

]

0 1

)(
GR GK

0 GA

)

, (B.3)

Ĝ (ε − H) = I +
i

2τ

(
GR GK

0 GA

)(
−1 2

[
2n(r) − 1

]

0 1

)

. (B.4)

Adding Eqs. (B.3), (B.4), the off-diagonal component is equal to

(

ε − Ĥ
)

GK + GK
(

ε − Ĥ
)

=
i

τ

[
(2nε − 1) GA + GR (2nε − 1)

]
. (B.5)

Using the gradient expansion [35], one finds

GK(r,p) =
i

τ

{

[2nε(r) − 1] GR(p) GA(p)

+ i∇nε(r)
[
GR(p) ∇pG

A(p) − GA(p) ∇pG
R(p)

] }

. (B.6)
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B Keldysh diagram for the current

Figure B.1: Diagrammatic representation of the relation between the averaged
Keldysh function

〈
GK(r1, r2)

〉
and the averaged diagonal Keldysh function

〈
GK(r, r)

〉
, Eq. (B.7), which is used in the derivation of Eq. (3.36).

This is equivalent to the relation

〈
GK(r1, r2)

〉
=

1

2πντ

∫

dr
〈
GR(r1, r)

〉 〈
GK(r, r)

〉 〈
GA(r, r2)

〉
. (B.7)

This relation can be easily understood diagrammatically, see Fig. B.1. Using the relation
(3.7) between the function G−+ = (GK + GA − GR)/2 and the electron density matrix
ρ, one finds

Ix(r) =
(−e)

m

∫
dε

2π
∇G−+(r, r′)

∣
∣
∣
r′=r

. (B.8)

The contribution from the term GA − GR is proportional to the spectral density and
does not depend on the state of the system. Therefore only the Keldysh function GK

contributes to the current [35], which can now conveniently calculated by a change to
momentum space,

〈Ix(r)〉 =
(−e)

2m

∂

∂x

∫
dε

2π

〈
GK

ε (r, r′)
〉
∣
∣
∣
r′=r

=
(−e)

2

∫
dε

2π

∫
ddp

(2π)d
GR

ε (p + q) GA
ε (p)

ipx

m

1

2πντ

〈
GK

ε (r, r)
〉

=
−ie

2

∫
dε

2π

∫
ddp

(2π)d

pq

m

px

m

(
GR

ε

)2
GA

ε

1

2πντ

〈
GK

ε (r, r)
〉

=
−iep2

F

2m2d
2πiντ 2 qx

1

2πντ

∫
dε

2π

〈
GK

ε (r, r)
〉

=
e

2
Dqx

∫
dε

2π

〈
GK

ε (r, r)
〉

=
e

4πi
D

∂

∂x

∫

dε
〈
GK

ε (r, r)
〉

, (B.9)
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which is just Eq. (3.36).
To obtain the kinetic equation (3.35), one subtracts Eqs. (B.3), (B.4), and obtains

(ε − H) GK − GK (ε − H) = 0 . (B.10)

The commutator is in the quasiclassical approximation equal to the Poisson bracket
{
(ε − H) , Ĝ

}
. For a stationary situation,

p

m

∂

∂r
GK(r,p) −∇

[
U(r) + eφ(r)

] ∂

∂p
GK(r,p) = 0 . (B.11)

Averaging over the disorder potential, on diffusive lengthscales this describes a random
walk, resulting in Eq. (3.35).
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C Keldysh diagrams for current

fluctuations

In this appendix, the diagrams are calculated which arise in the Keldysh technique and
contribute to the correlation function of currents (see Sec. 3.2.2). We will show that the
sum of all the diagrams is equal to Eq. (3.37).

We begin by presenting the expressions for the vertex factors (Hikami boxes). Because
of their local character (the electron Green’s function decays exponentially on the scale
of the mean free path l, which is much smaller than the system size L), they can be
calculated in the momentum space.

The right Hikami box (containing two Keldysh vertices) of the diagram a-diff is of
second order in the incoming momenta q:

= 2πνDτ 4
(
− 2q2q4 + q2

1 + q2
3

)
, (C.1)

where D is the diffusion constant, ν is the density of states, τ is the elastic scatter-
ing time, the qi are the incoming momenta, and q1 + q2 + q3 + q4 = 0 . The left box,
containing two velocity vertices, is thus only needed to zeroth order:

= 4πνDτ 2 . (C.2)

For the diagram b-diff the vertex factors are needed to first order in the momenta:

= 4πiνDτ 3q4 . (C.3)

The vertex factors of a-coop and b-coop are the same as the vertex factors of b-diff up to
extra signs arising from the direction of the Greens functions. The vertex factors of the
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C Keldysh diagrams for current fluctuations

diagrams c-diff and c-coop are only needed to zeroth order. Since these diagrams contain
only one diffuson/Cooperon, this gives a result of the same order in the momenta as the
other diagrams (containing one more diffuson/Cooperon) evaluated up to second order
in the momenta.

= 0 , (C.4)

= −4πνDτ 4 . (C.5)

Calculating the vertex factors, the formulas

∫
dpd

(2π)d

(
GR

)n (
GA

)m
= 2πν im−n

(
m + n − 2

n − 1

)

τm+n−1 (C.6)

and ∫
ddp

(2π)d
(p · q1) (p · q2) =

∫
ddp

(2π)d

p2

d
q1 · q2 (C.7)

have been used.
Using the vertex factors (C.1)–(C.5) and changing to real space representation, the

expressions corresponding to the diagrams shown in Figs 3.1, 3.2 are (written for a
quasi-onedimensional wire)

〈δI(V1) δI(V2)〉a−diff =
( e

4πi

)2
(

1

2πντ

)2

4πνDτ 4 2πνDτ 2

∫

dε1dε2

∫
dx1dx2

L2

×
[

2
∂

∂x1

GK
ε1

(x1)
∂

∂x2

GK
ε2

(x2) Pε1−ε2 Pε2−ε1

− ∂2

∂x2
1

Pε1−ε2 Pε2−ε1 GK
ε1

(x1) GK
ε2

(x2)

− Pε1−ε2

∂2

∂x2
2

Pε2−ε1 GK
ε1

(x1) GK
ε2

(x2)

]

, (C.8)

〈δI(V1) δI(V2)〉b−diff =
( e

4πi

)2
(

1

2πντ

)2
(
4πνDτ 3

)2
∫

dε1dε2

∫
dx1dx2

L2

×
[

∂

∂x1

Pε1−ε2

∂

∂x2

Pε1−ε2 GK
ε1

(x1) GK
ε2

(x2) + c.c.

]

,(C.9)

〈δI(V1) δI(V2)〉c−diff = 0 , (C.10)
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〈δI(V1) δI(V2)〉a−coop =
( e

4πi

)2
(

1

2πντ

)2
(
4πνDτ 3

)2
∫

dε1dε2

∫
dx1dx2

L2

× Pε1−ε2 Pε2−ε1

∂

∂x1

GK
ε1

(x1)
∂

∂x2

GK
ε2

(x2) , (C.11)

〈δI(V1) δI(V2)〉b−coop =
( e

4πi

)2
(

1

2πντ

)2
(
4πνDτ 3

)2
∫

dε1dε2

∫
dx1dx2

L2

×
(

∂2

∂x1∂x2

Pε1−ε2

)

Pε1−ε2 GK
ε1

(x1) GK
ε2

(x2) , (C.12)

〈δI(V1) δI(V2)〉c−coop =
( e

4πi

)2
(

1

2πντ

)2
(
−4πνDτ 4

)
∫

dε1dε2

∫
dx1dx2

L2

× δ(x1 − x2) Pε1−ε2 GK
ε1

(x1) GK
ε2

(x2) , (C.13)

where Pε1−ε2(x1, x2) is the diffusion propagator satisfying the equation

{

D
∂2

∂x2
1

+ i
[

ε1 + φ1(x1) − ε2 − φ2(x1)
]}

Pε1−ε2(x1, x2) = − 1

2πντ 2
δ(x1 − x2) , (C.14)

and φ1,2 are the electrochemical potentials corresponding to the voltages V1,2 . Using the
identity

1

4

∂2

∂x1∂x2

P2(x1, x2) =

[
∂2

∂x1∂x2

P(x1, x2) −
1

4πνDτ 2
δ(x1 − x2)

]

P(x1, x2) , (C.15)

the diagrams combine to

〈δI(V1) δI(V2)〉a−diff + b−diff = − e2

(2π)2

(
Dτ 2

)2
∫

dε1dε2

[

|Pε1−ε2 |2 +
1

2
ReP2

ε1−ε2

]

× ∂

∂x1

GK(x1)
∂

∂x2

GK(x2) , (C.16)

〈δI(V1) δI(V2)〉c−diff = 0 , (C.17)

〈δI(V1) δI(V2)〉a−coop = − e2

(2π)2

(
Dτ 2

)2
∫

dε1dε2

∫
dx1dx2

L2
|Pε1−ε2|2

× ∂

∂x1

GK(x1)
∂

∂x2

GK(x2) , (C.18)

〈δI(V1) δI(V2)〉b−coop + c−coop = − e2

(2π)2

(
Dτ 2

)2
∫

dε1dε2

∫
dx1dx2

L2

1

2
ReP2

ε1−ε2

× ∂

∂x1

GK(x1)
∂

∂x2

GK(x2) . (C.19)

Adding up these equations and rescaling the propagator by a factor 2πνDτ 2,
D = 2πνDτ 2P , the result is Eq. (3.37).
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D Crossover between the linear

response and the high-voltage

enhancement

In this appendix, the variance 〈δg2〉 is calculated as a function of the bias voltage in
the full range from the UCF regime V/Vc ¿ 1 to the Larkin-Khmelnitskii asymptotic
regime V/Vc À 1 .

In addition to the asymptotics given by Eq. (3.52), there are contributions to the
variance of the conductance which do not grow proportionally to V/Vc asymptotically
but dominate in the intermediate regime. First of all, there is a constant contribution,
Eq. (3.45),

〈
δg2

〉

0
=

8

15
, (D.1)

which gives the familiar UCF result in the limit of zero bias voltage. Second, there are
the contributions from the term 〈δg2〉1 , Eq. (3.46), containing one energy integration,
which can be evaluated as

〈
δg2

〉

1,Abs
= 32

V/Vc∫

0

dz
∂

∂α
Tr

[

2
∣
∣ΠV/Vc−z

∣
∣
2
]

α=0

= 64
∞∑

n=1

(V/Vc)
2

2n8π8 + 2n4π4 (V/Vc)
2

=
1

45

(
Vc

V

)2
{

720 + 16

(
V

Vc

)2

− 360 (−1)1/4

√

V

Vc

[

cot

{

(−1)1/4

√

V

Vc

}

+ coth

{

(−1)1/4

√

V

Vc

}]}

(D.2)
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and

〈
δg2

〉

1,Re
= 32

V/Vc∫

0

dz
∂

∂α
Tr Re Π2

V/Vc−z

∣
∣
∣
∣
α=0

=
8

45
− 16

∞∑

n=1

(V/Vc)
2 − n4 π4

[
n4 π4 + (V/Vc)

2]2 . (D.3)

In the limit V/Vc → ∞ , the sum of Eqs. (D.2) and (D.3) saturates at 8/15 . Then
there is the part of 〈δg2〉2 containing Re Π2 , which also does not contribute to the linear
asymptotic behaviour but gives a contribution which saturates towards a constant as
the voltage is increased:

〈
δg2

〉

2, Re
= −16

V1/Vc∫

0

dz1

V2/Vc∫

0

dz2
∂2

∂α2
Tr Re Π2

z1−z2

∣
∣
∣
α=0

= 32
∑

m,n>0

2 (V/Vc)
2 [

m4π4 + m2n2π4 + n4π4 + (V/Vc)
2]

m2 n2 π4
[
m4π4 + (V/Vc)

2] [
n4π4 + (V/Vc)

2]

(

〈n|y|m〉
)2

V →∞−→ 0.1905 , (D.4)

where again |n〉 =
√

2 sin(nπy) . Finally, the |Π|2 contribution to 〈δg2〉2 is also modi-
fied at finite V/Vc compared to its asymptotics given by Eq. (3.52). It is evaluated in
detail in Ref. [89]. The sum of all the contributions is the result shown graphically in
Figs. 3.5, 3.6.
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E Subleading terms in the high-voltage

strong-dephasing regime

In this appendix it is shown that the two subleading terms, 〈δg2〉0 and 〈δg2〉1 , remain
indeed smaller than the leading term, 〈δg2〉2 , in the strong-dephasing regime. Taking
again advantage of the Fourier transform (3.81), the cross-term 〈δg2〉1 is evaluated as
follows,

〈
δg2

〉

1
= 32 Vc

∂

∂V1

∣
∣
∣
∣
V1=V2=V

V1/Vc∫

(V1−V2)/Vc

dε Ξε

= 32 Vc
∂

∂V1

∣
∣
∣
∣
V1=V2=V

∞∫

−∞

dτ Ξ̃(τ)

V1/Vc∫

(V1−V2)/Vc

dε [cos ετ + i sin ετ ]

= 32 Vc

∞∫

−∞

dτ
∂

∂V1

∣
∣
∣
∣
V1=V2=V

Ξ̃(τ)
1

τ

[

sin
V τ

Vc

+ i − i cos
V τ

Vc

]

+ 32

∞∫

−∞

dτ Ξ̃(τ)

[

cos
V τ

Vc

− 1 + i sin
V τ

Vc

]

. (E.1)

Using the approximation
1

τ
sin

V τ

Vc

' π δ(τ) (E.2)

valid for V À Vc , and the fact that
∂

∂V1

Ξ̃(τ)
∣
∣
V1=V2=V

is even in τ , this is to leading order

in Vc/V equal to

〈
δg2

〉

1
= 32

[

πVc
∂

∂V1

Ξ̃(0)
∣
∣
∣
V1=V2

+

∫

dt Ξ̃(t)

]

. (E.3)

The last term in brackets is equal to twice the equilibrium term 〈δg2〉0 , and can be
neglected if that one can. Using the rescaled variables (3.89)–(3.93), the first term in
brackets evaluates to

〈
δg2

〉

1
= 32

√
2 π

∂

∂v
Q̃

∣
∣
∣
∣
v=0

1∫

0

dy

p1/3
, (E.4)
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where
{

− ∂

∂η2
+ |η| + ivη

}

Q̃(v, η) = δ(η) . (E.5)

Eq. (E.5) can be treated using the same cutoff procedure as used in the evaluation of
(3.99), resulting in

〈
δg2

〉

1
∼

(
gVc

V

)5/4

. (E.6)

This clearly decays faster than Eq. (3.99) in the strong-dephasing regime V À gVc and
is smaller than Eq. (3.99) by a factor of 1/g at the beginning of the strong dephasing
regime V ∼ gVc . It thus can be safely neglected.

The check of 〈δg2〉0 goes a slightly different route. Setting V1 = V2 = V in Eq. (3.78)
leads to

Ξ0 = 2

1∫

0

dy1dy2

∞∫

0

dτ1dτ2

ξ1(τ1)=y1∫

ξ1(0)=y2

D[ξ1(t1)]

ξ2(τ2)=y1∫

ξ2(0)=y2

D[ξ2(t2)]

× exp






−

τ1∫

0

dt1
ξ̇1

2

4
−

τ2∫

0

dt2
ξ̇2

2

4

− 2V

gVc

F (y2)
∣
∣τ1 − τ2

∣
∣ − 2V

gVc

min(τ1,τ2)∫

0

dt
∣
∣ξ1 − ξ2

∣
∣ y2(1 − y2)






. (E.7)

The above equation represents two trajectories with durations τ1, τ2, respectively. Dur-
ing the time interval between the shorter and the longer of these times there is only one
trajectory, resulting in strong suppression of interference by bare fluctuations. Therefore
relevant trajectories will have similar durations, τ1 ≈ τ2 , allowing to factorize the sup-
pression arising from the time difference and the suppression arising from the relative
coordinate:

Ξ0 = 2
√

2

1∫

0

dy

∞∫

0

dτ1

τ1∫

0

dτ2

× exp

{

− 2V

gVc

F (y) |τ1 − τ2|
}

×
ξ(τ1)=0∫

ξ(0)=0

Dξ(t1) exp






−

τ1∫

0

dt

[

ξ̇2

4
+

2V

gVc

√
2 |ξ| y(1 − y)

]





. (E.8)
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The integral over τ2 can now be performed,

Ξ0 =
√

2
gVc

V

1∫

0

dy

F (y)

∞∫

0

dτ

(

1 − exp

{

− 2V

gVc

F (y) τ

})

×
ξ(τ)=0∫

ξ(0)=0

D[ξ(t)] exp






−

τ∫

0

dt

[

ξ̇2

4
+

2V

gVc

√
2 |ξ| y(1 − y)

]





, (E.9)

as well as the reduction of the path integral to a dimensionless differential equation using
the variables (3.89)–(3.93):

Ξ0 =
√

2
gVc

V

1∫

0

dy

F (y)
[

2V
gVc

√
2 y(1 − y)

]1/3

∞∫

0

dt

×




1 − exp







−
2V
gVc

F (y) t
[

2V
gVc

√
2 y(1 − y)

]2/3










 I(0, t) , (E.10)

where {
∂

∂t
− ∂

∂η2
+ |η|

}

I(η, t) = δ(η) δ(t) . (E.11)

This integral is again dominated by y close to the reservoirs at 0 or 1, and should be
cut off at a distance ∼ yc , where yc is given by Eq. (3.98). Note that the exponential

function cannot be expanded in y and 1 − y since by the cutoff relation yc ∼ (gVc/V )1/4

the coefficient in the exponent is of order 1. It is however sufficient to calculate an upper
bound of the expression by neglecting the exponential function compared to unity. The
result is

〈
δg2

〉

0
∼ g

Vc

V
, (E.12)

which has the same asymptotic power law as Eq. (3.99) but is smaller by a factor ∼ 1/g.
It is thus proven that the term dominating the conductance fluctuations in the strong-
dephasing regime is given by Eq. (3.99).
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F Thermal averaging factor for T ¿ Ec

In this appendix, the expression (2.11) for conductance fluctuations is evaluated for the
regime of interest for Composite Fermion systems, l ¿ Lϕ ¿ LT , resulting in Eq. (4.21).
The dephasing effects on weak localization and mesoscopic conductance fluctuations
are purely geometrical and do not contain any reference to the dynamics of the elec-
trons. Therefore only the thermal factor appearing in the relation (4.20) needs to be
re-evaluated.

Since due to the strong dephasing effect the temperature is much lower than the Thou-
less energy, the thermal factor (2.12) needs to be taken in the limit of small T (t − t′) ,

δ̃(t − t′) =
3

π
T , T (t − t′) ¿ 1 . (F.1)

As a result, the expression (2.11) for conductance fluctuations contains two time in-
tegrations, and the transformation (2.43) cannot be used directly. It is convenient to
introduce an extrinsic dephasing rate 1/τ ∗

ϕ , which represents a mass of the diffuson and
Cooperon propagators. 1/τ ∗

ϕ may be set to zero in the end of the calculation. The
conductance fluctuations can now be written as

〈
δG2

〉
=

4e4D2

π2L4

∫

dr1dr2

∞∫

0

dt1dt2 D(r1, r2, t1) exp
{
−t1/τ

∗
ϕ

}
D(r2, r1, t2) exp

{
−t2/τ

∗
ϕ

}
.

(F.2)
Using the transformation

r(t′) =







r1(t1 + t′) , −t1 ≤ t′ ≤ 0

r2(t2 − t′) , 0 ≤ t′ ≤ t2

(F.3)

to join the paths in analogy to Eq. (2.43) (see Fig. F.1), the result is

〈
δG2

〉
=

4e2D2

π2L4

∫

dr1

∞∫

0

dt1dt2 D(r1, r1, t1 + t2) exp
{
−(t1 + t2)/τ

∗
ϕ

}

=
4e2D2

π2L4

∫

dr1

∞∫

0

dt t C(r1, r1, t) exp
{
−t/τ ∗

ϕ

}

=
4e2D2

π2L4

∫

dr1

∞∫

0

dt

(

− ∂

∂
(
1/τ ∗

ϕ

)

)

C(r1, r1, t) exp
{
−t/τ ∗

ϕ

}
, (F.4)
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F Thermal averaging factor for T ¿ Ec

mesoscopic conductance fluctuations weak localization

<a(t’)a(−t’)>

t’=0

t’=t

2 1

1

2 2

1

rr

<a (t’)a (t’)>

<a (t’)a (t’)>

t’<0
t’>0

t’=−t

t’=t
2 t’=0

1

2

t’=t
1

r(t’)

Figure F.1: When the thermal factor (2.12) is evaluated at low temperatures T ¿ Ec ,
the two paths do not need to have equal durations, in contrast to the high-
temperature case for which Fig. 4.1 is drawn. Using the transformation
(F.3), the relation (4.21) between conductance fluctuations and weak local-
ization is derived, which differs from Eq. (4.20) only in the thermal factor.
The mapping between the dephasing effects associated with both quantities
holds at all temperatures.

where the diffuson propagator has been replaced by the Cooperon propagator assuming
that the disorder alone does not break time-reversal symmetry. Interchanging differen-
tiation and integration and restoring the dephasing terms resulting from the coupling to
the gauge field fluctuations results in

〈
δG2

〉
(T ) =

e2D

πL2

∣
∣
∣
∣
∣

∂

∂
(
1/τ ∗

ϕ

) δGWL

(
T

2

)
∣
∣
∣
∣
∣

, LT À Lϕ . (F.5)

At low temperatures, the part ∼ ReD2 of Eq. (1.12) also needs to be taken into account.
As a result, the conductance fluctuations are enhanced by a factor of 3/2 , leading to
the stated result, Eq. (4.21).
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G Consistency checks for the

fermion-gauge field system

In this appendix, some consistency checks for the fermion-gauge field system considered
in Sections 4.4.1, 4.4.2 are performed. A typical semiconductor sample with

dimensionless conductance g = g¤ ∼ 30 (G.1)

Fermi energy EF ∼ 30 K (G.2)

temperature T ∼ 30 mK (G.3)

elastic scattering time τ ∼ 1 K−1 (G.4)

electron sheet density n ∼ 1015 m−2 (G.5)

is assumed, which is well in the diffusive regime Tτ . 1 considered in Chapter 4.

Although not needed to obtain the result (4.36), an estimate shows that for typical
gauge field frequencies the static approximation is indeed valid: In two dimensions,
typical gauge field frequencies ωgf are given by ωgf ∼ χk2/νD with typical k from the
range L−1

ω . . . l−1 ¿ kF . Together with Eq. (4.40), it is seen that relevant gauge field
frequencies satisfy

ωgfτϕ ∼ χk2

νD

2

3gT ln
2

3gTτ

∼ 1

36 π2

k2

k2
F

︸︷︷︸

¿1

1

g2

︸︷︷︸

∼10−3

EF

T
︸︷︷︸

∼103

1

ln
2

3gTτ
︸ ︷︷ ︸

≈1

¿ 1 , d = 2 (G.6)

for typical semiconductor samples with parameters as stated above. In other words,
for these samples during the time τϕ in which the phase memory of the ensemble gets
randomized the gauge field configuration of an ensemble member does not change much.

The validity of the static approximation for the wire geometry is checked in a similar
way as in the twodimensional case. Typical gauge field frequencies ωgf are given by
ωgf ∼ χk2/σ = k2/12πg¤ν with k = π/b, 2π/b, . . . , π/l . Using ν = m/π = k2

F /(2πEF )
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G Consistency checks for the fermion-gauge field system

and Eq. (4.47), it can be estimated that

ωgfτϕ ∼ 1

72 π

k2

νg2
¤T

1

ln(b/l)

∼ 1

36

1

g2
¤

︸︷︷︸

∼10−3

EF

T
︸︷︷︸

∼103

k2

k2
F

︸︷︷︸

¿1

1

ln(b/l)
︸ ︷︷ ︸

<1

¿ 1 , d = 1 . (G.7)

Another consistency check to perform in two dimensions is that Lϕ > l in order for

the diffusive description to be valid. Using Lϕ = (Dτϕ)1/2 with τϕ given by Eq. (4.40),
the result is

kF Lϕ =







4DmEF

3gT ln
2

3gTτ







1/2

=

(
4

3

)1/2 (
EF

T

)1/2 (

ln
2

3gTτ

)−1/2

≈
(

EF

T

)1/2

. (G.8)

Comparing this to kF l = EF τ , the condition for Lϕ > l in two dimensions is

T .
1

E2
F τ

∼ 30 mK , (G.9)

which is a regime of experimental relevance. An estimate of the dephasing lengths Lϕ

to expect can be obtained in the following way from Eq. (4.40): Using Lϕ = (Dτϕ)1/2

with D = g/m and D = vF τ/2 gives

Lϕ =







2D

3gT ln
2

3gTτ







1/2

=







4EF

3k2
F T ln

4EF

3Dk2
F Tτ







1/2

=
2√
3

1√
4πn

(
EF

T

)1/2 (

ln
8EF

3Tk2
F l2

)−1/2

. (G.10)
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The argument of the logarithm is of order unity, and the dephasing length for a typical
sample as characterized above is estimated as stated in Eq. (4.41),

Lϕ ∼ 0.3 µm . (G.11)

Typical gauge field frequencies at wavevectors of the order of L−1
ϕ are

ωgf ∼
χL−2

ϕ

σ

=
L−2

ϕ

12πgν

=
L−2

ϕ 2πEF

12πgk2
F

=
EF

24πngL2
ϕ

≈ 2 · 107 s−1 . (G.12)

For the wire of width b, instead of checking that Lϕ > l , the relation Lϕ > b needs to
be verified. Using D = g¤/m , kF =

√
4πn , and approximating the logarithm by unity,

the dephasing length is calculated from Eq. (4.47) as

Lϕ = (Dτϕ)1/2

=

(
1

6 mT ln(b/l)

)1/2

=

(
1

12 π

)1/2
1√
n

(
EF

T

)1/2 (

ln
b

l

)−1/2

∼ 0.15 µm , d = 1 , (G.13)

which is slightly less than the corresponding result (4.41) in two dimensions and sets the
scale for a wire with the given parameters to be considered as quasi-onedimensional.
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H Saddle-point evaluation of the h/2e
amplitude with gauge field

fluctuations

In this appendix the details of the evaluation of the saddle-point equation (4.55) are
presented for reference. The factors entering Eq. (4.55) are given by

topt
0 =

1

2
t
1/2
AB

(

6 g¤T ln
b

l

)−1/2

(H.1)

Sopt
AB = t

1/2
AB

(

6 g¤ ln
b

l

)1/2

T 1/2 (H.2)

∂2SAB

∂t20

∣
∣
∣
∣
t0=topt

0

= t
−1/2
AB

(

6 g¤ ln
b

l

)3/2

T 3/2 , (H.3)

where the time tAB is defined as the timescale set by the ring circumference,

tAB =
(2πR)2

D
. (H.4)

Combining the factors, the result is Eq. (4.56). Note that in the regime of strong
dephasing considered, the saddle-point is located at topt

0 ¿ tAB , indicating the special
character of the paths giving the leading contribution.
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