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Abstract 
The mechanical properties of thin metal films are strongly influenced by size through the 

films thickness and grain size. The best known example of a length scale effect in film 

mechanical properties is the increase in yield stress with decreasing film thickness or grain 

size. This effect is usually attributed to the inhibition of dislocation motion and nucleation in 

small volumes. In addition, previous work indicates a length scale effect on fatigue behavior 

in thin Cu films. Therefore, this study will present a systematic investigation of the effect of 

length scale on fatigue life and damage formation in thin Cu films at both room temperature 

and 200°C and with and without surrounding Ta layers. 

 

Fatigue testing of Cu films with thicknesses between 50 nm and 3.0 µm on Kapton substrate 

has been performed and the fatigue damage has been investigated using scanning electron and 

ion beam microscopy. It is observed that the extrusions decrease in number and size with 

decreasing film thickness or grain size, while the cracks increase in number. The fatigue life is 

also clearly influenced by size in that a higher strain range or more cycles are required in 

thinner films to form damage and cause failure. This transition in damage morphology and 

fatigue life with length scale is explained by a transition in mechanism from dislocation 

controlled plasticity in the thicker films to cracking along interfaces and boundaries in the 

thinner films. In order to gain better insight into the deformation mechanisms, synchrotron 

diffraction studies were performed on the thin films during cyclic loading. 

The fatigue damage of the Cu films loaded at 200°C is similar to that at room temperature, 

except that the extrusions are more rounded and the grain boundary grooves are larger. This 

indicates that diffusion processes play an important role during fatigue damage formation and 

likely account for the clearly reduced fatigue life at 200°C.  

  

The presence of surrounding Ta layers has a clear influence on the fatigue behavior of the Cu 

films. A Ta under-layer does not change much in the Cu film fatigue behavior, but a Ta over-

layer leads to a dramatic improvement in fatigue life in the thicker Cu films. This is likely due 

to the observed inhibition of extrusion formation by the presence of the over-layer. In contrast, 

the Ta over-layer has little effect on the fatigue life of the thinner Cu films. This is 

presumably an indication that the Ta over-layer does not influence crack formation and is 

consistent with the transition to failure by crack growth in the thinner films. 
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Ermüdungsverhalten dünner Cu-Schichten: 

Größeneffekte und Grenzflächeneffekte  

 

Kurzzusammenfassung 
Größeneffekte in Bezug auf die mechanischen Eigenschaften von Werkstoffen zeigen sich an 

vielen Stellen. Ein prominentes Beispiel ist die Zunahme der Fließspannung dünner Metall-

schichten mit Abnahme der Schichtdicke. Diese wird in der Regel durch eine Behinderung 

der Versetzungsbewegung und limitierte Versetzungsbildung in eingeschränkten 

Dimensionen erklärt. Darüber hinaus wurde auch ein Größeneffekt für das  Ermüdungs-

verhalten dünner Metallschichten gefunden. Im Rahmen der vorgelegten Arbeit sollte deshalb 

das Ermüdungsverhalten dünner Cu-Schichten systematisch in Bezug auf Lebensdauer und 

Schädigung in Abhängigkeit von der Schichtdicke (50 nm bis 3,0 µm) bei Raumtemperatur 

und erhöhten Temperaturen sowie der Einfluss einer Deckschicht untersucht werden.  

Die mikroskopischen Arbeiten, die mithilfe der Rasterelektronen- und Focused Ion Beam-

Mikroskopie durchgeführt wurden, zeigen, dass sich die Schädigungsmorphologie in 

Abhängigkeit von der Schichtdicke  deutlich verändert, und zwar nimmt die Zahl und die 

Größe von Extrusionen, die sich durch die zyklische Verformung bilden, mit Abnahme der 

Schichtdicke und Korngröße ab. Auf der anderen Seite wurden mehr Risse in den dünneren 

Schichten beobachtet.  Der Größeneffekt auf die Lebensdauer ist ebenfalls sehr deutlich aus-

geprägt. Es wurde nachgewiesen, dass deutlich höhere Dehnungsamplitude aufgebracht 

werden müssen um in dünneren Schichten eine Schädigung zu erzeugen. Auf Grund der 

Änderung in der Schädigungsmorphologie und der Lebensdauer, wird ein Wechsel im 

Ermüdungsmechanismus von versetzungsgetragener Extrusionsbildung zu einer Rissbildung 

an existierenden Defekten vorgeschlagen.  Um hier einen besseren Einblick in das 

Verformungsverhalten zu erlangen, wurden Röntgenmessungen an einer Synchrotronquelle 

durchgeführt.    

Des Weiteren wurde beobachtet, dass das Ermüdungsverhalten der dünnen Cu-Schichten bei 

200°C ähnlich ist wie bei Raumtemperatur, aber Extrusionen weniger scharfe Kanten auf-

weisen und an Korngrenzen Furchen entstehen. Das deutet darauf hin, dass Diffusions-

prozesse eine wichtige Rolle bei der Schädigungsentstehung spielen, wobei die Lebensdauer 

deutlich reduziert ist. 



 vi 

Auch eine Ta-Deckschicht hat einen offensichtlichen Einfluss auf das Ermüdungsverhalten 

der Cu-Schichten. Mit der Ta-Deckschicht werden in einer 1 µm dicken Ta/Cu/Ta-Schicht 

weniger und kleinere Extrusionen als in Cu-Schichten gleicher Dicke beobachtet. Dabei wird 

die Lebensdauer dramatisch erhöht. Dieser Effekt ist für die Lebensdauer eines Ta/Cu/Ta 

Schichtstapel mit 100 nm dicken Cu weit weniger ausgeprägt, da vermutlich die Extrusions-

bildung hier eine viel kleinere Rolle spielt und die Lebensdauer durch Rissbildung bestimmt 

wird. Diese Beobachtungen sind in Einklang mit dem vorgeschlagenen Mechanismuswechsel. 
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1 Introduction 
 

With the rapid development of microelectronics (ME), micro-electro-

mechanical systems (MEMS), and macroelectronics (such as flexible displays), thin 

metal films have been placed under increasingly demanding conditions over the last 

several decades in their application as interconnects and components. The reliability 

of such devices or systems depends partially on the mechanical properties of the thin 

metal films or structures. Many investigations of thin films show clearly different 

mechanical behavior from that of their bulk counterparts. In particular it is observed 

that flow stress increases with decreasing film thickness and/or grain size which is 

attributed to the inhibition of dislocation motion and nucleation stressing small 

volumes. Furthermore, surrounding films or materials also have a large influence on 

the mechanical response of thin films since they also typically hinder dislocation 

motion in the film.  

Recently, mechanical studies of thin films have been extended to fatigue 

studies. The results show that there are length scale effects here as well, namely 

thinner films need either more cycles or higher applied strain or stress range to cause 

failure. Moreover, such studies show that characteristic fatigue dislocation structures 

and surface damage morphology change as the films are made thinner. Therefore, 

investigations of fatigue behavior in thin metal films give not only direct indication 

of reliability threats in various applications, but also give important insights in basic 

material science at small length scales. 

In Chapter 2, a brief overview of thin film mechanical testing methods and 

fatigue behavior in bulk metals and thin metal films will be introduced. Chapter 3 

depicts fabrication of the samples and the experimental methods. All representative 

experimental results are described in Chapter 4. In the first section of Chapter 4, the 

microstructure of the thin films is described. In the second section, results of 

systematic studies of high cycle fatigue behavior in Cu films with different thickness 

(50 nm to 3.0 µm) are given. The third section shows the results of stress 



1 Introduction 

 2 

determination using synchrotron x-ray in fatigued films. The fourth section present 

results of fatigue behavior of thin Cu films at 200°C. Results of investigations of the 

effects of Ta over- and under-layers on fatigue behavior of thin Cu film will be 

summarized in last section. The implications and proposed explanations of these 

results will be presented in Chapter 5. 
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2 Literature Review 
 

There are clear differences between the mechanical and fatigue behavior of 

thin metal films and their bulk counterparts. In this chapter, a brief overview of 

mechanical testing methods and properties of thin films will be summarized from 

recent literature, with a focus on length scale effects in yield stress. Then, a summary 

of the extensive literature on fatigue behavior in bulk metals will be introduced and 

compared with the recent literature on fatigue in thin metal films. 

 

2.1  Mechanical testing and properties of thin metal films 

With the development of the microelectronics industry in the last several 

decades, more and more attention has been devoted to investigating mechanical 

properties of thin films. Novel testing methods have been developed to investigate 

the mechanical properties of thin films. In this section, mechanical testing and 

mechanical properties from the literature are briefly reviewed, and the applicability 

of the mechanical testing techniques to fatigue testing is discussed. 

 

2.1.1 Mechanical testing of thin films 
Mechanical properties of thin films can not be simply deduced from those of 

their bulk counterparts due the constraint of dimension and microstructure on various 

processes such as dislocation activation [Nix1989, Arzt1998]. Therefore, it is 

necessary to experimentally investigate the length scale effects and microstructure 

effects on mechanical behavior in thin films, and several specialized testing 

techniques have been developed [Nix1989, Brotzen1994, and Kraft2001a]. 

The wafer curvature method was developed for stress measurement during a 

temperature change, when film and substrate have different thermal expansion 

coefficients [Flinn1987, Keller1998, Keller1999, and Venkatraman1992]. The radius 

of curvature of the substrate is used to calculate the stress in the film. If the 
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temperature change is cyclically repeated, the thermal fatigue behavior of thin film 

can be studied [Mönig2004].  

Bulge test is also a specialized method for thin films, in which a freestanding 

film is pressurized from one side and the resultant bulge height is measured to 

determine both elastic and plastic behavior [Vlassak1992, Xiang2002, and 

Xiang2005]. Fig. 2-1 illustrates the bulge test of thin film. Special fabrication 

processes are required for this method and it is not clear that is applicable to fatigue 

testing. 

 

 

Fig. 2-1 Schematic illustration of a bulge test on thin film. 

 

Microbeam bending is used to investigate elasticity, plasticity and fracture in 

thin films [Weihs1988, Florando2005]. Normally the specimen is fabricated using 

deposition, lithography, etching and other microfabrication techniques. Fig. 2-2 

depicts the set-up of the bending test. As the microbeam is repeatedly loaded, fatigue 

behavior of thin films can be studied with this method [Schwaiger1999]. 

Microtensile testing can also be used for thin films. Both freestanding films 

and films on substrates can be used. Tests with freestanding films have higher 

requirements of specimen preparation and handling, but the stress can be determined 

directly. Films on substrates are much easier to handle, but extra steps must be taken 

to determine the stress in the film. In some cases, x-ray diffraction is used to measure 

the elastic strain in the thin film, from which the stress can be calculated 

[Hommel1999, Hommel2001, and Boehm2004]. If the substrate is sufficiently thin 

and compliant, the stress of the metal film can be obtained by subtracting the 

contribution of the substrate from the total force [Yu2004]. In addition, an obvious 

difference between tests on freestanding films and on films deposited on substrate is 
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that freestanding films can only be stressed in tension, while films on substrate can 

be stressed in both tension and compression [Hommel1999]. Fatigue behavior of thin 

Cu films on Kapton substrate has been studied using the cyclic tensile testing 

[Schwaiger2003, Kraft2001, Kraft2002, Zhang2003, Zhang2005, and Zhang2006]. 

 

 

Fig. 2-2 Schematic illustration of set-up for bending test. 

 

Indentation is also a widely used method to determine the mechanical 

properties for thin films. However it leads to very inhomogeneous stresses and 

strains and is difficult to use for quantitative determination of fatigue behavior. A 

more detailed review of mechanical testing of thin films is given in [Nix1989, 

Brotzen1994, and Kraft2001a]. 

 

2.1.2 Mechanical properties of thin films 
Mechanical properties of thin metal films are different from those of their 

bulk counterparts due to length scale effects. The small sample dimensions and grain 

sizes of thin films inhibit dislocation motion and limit dislocation nucleation, leading 

to an increase in yield stress [Nix1989, Arzt1998]. Several literature results for the 

yield stress of Cu thin films are summarized in Fig. 2-3 [Hommel2001, Yu2004, and 

Nicola2006]. The size effect is seen in the increase in the yield stress with decreasing 

film thickness (and corresponding decreasing grain size). Over-layers also increase 

the strength, due to constraint of dislocation motion at the interface produced with 

the over-layer [Keller1998, Arzt1998, and Nicola2006]. 
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Fig. 2-3 Yield stress at 0.1% plastic strain [Hommel2001] and 0.2% plastic strain 

[Yu2004, Nicola2006] in thin Cu films. 

 

Different models have been developed to describe the increasing strength in 

thinner films. The Nix model depicts the confinement effects based on dislocation 

channeling through the thickness [Nix1989, Nix1998]. As response to applied stress, 

the threading segment of dislocation moves forward to reduce strain energy, while 

the deposited segment of dislocation becomes longer and costs energy. This leads to 

a threshold stress for dislocation motion, and as result, the driving stress to move the 

threading segment scales with inverse of film thickness. When grain size is similar to 

thickness, grain size decreases with decreasing film thickness. Hall-Petch effect is 

also considered for the strengthening due to dislocation pile-up at grain boundaries. 

This means that strength increases with decrease of film thickness/grain size. 

Thompson extended the Nix model to include the deposition of dislocations at grain 

boundaries, creating an additional term to describe the grain size effect on yield 

stress of polycrystalline thin films [Thompson1993]. In fact, a separation of thickness 

effect and grain size effect in strengthening was studied by [Venkatraman1992]. 

Further more, the classical Taylor relation between the strength and dislocation 

density was also applied in thin films to study work hardening [Keller1998]. A 

comparison of strengthening due to Nix dimensional constraint, Hall-Petch effect and 

Taylor relation was summarized by [Baker2001]. More over, it is argued that 
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dislocation sources are limited in thin film or small dimensional structures and 

thereby the strength increases with decrease of thickness [Arzt2001, 

Blanckenhagen2001, and Blanckenhagen2003]. As film thickness decreases, 

dislocation nucleation becomes more difficult and plasticity is source-limited. 

Freestanding thin metal films rupture at small strain (<2%) [Huang2000]. 

Thin Cu films on Kapton substrate can sustain much larger strain (>7%) without the 

presence of cracks [Gruber2004]. This is proposed to be due to that the strain 

localization (necking) which causes a local elongation is on the order of the film 

thickness, while the substrate inhibits strain localization when the film is on a 

substrate [Li2005]. Cracking in films on a substrate depends on the stress and 

mechanical properties of substrate and film and, as a result, is very complicated. 

Extensive reviews of research work of crack in film on substrate using fracture 

mechanics are given in [Hutchinson1991, Evens1995]. In addition, Xiang and his 

colleagues [Xiang2005a] have reported that the rupture strains of Cu films are 

sensitive to their adhesion to the polyimide substrate. This implies that the rupture 

strain depends on the interface quality. Furthermore, it is reported that patterned thin 

metal films on polymer substrates have a better stretchability than unpatterned thin 

metal films on polymer substrates [Li2005, Lacour2006]. 

Besides the plastic and fracture properties, Young’s modulus in thin films or 

multilayer was often observed to be smaller than that of their bulk counterparts 

[Huang2000, Kalkman2001, and Yu2004]. Modulus deficit results presumably from 

more compliant grain boundaries [Huang2000], grain boundary sliding 

[Kalkman2001] or reversible microplasticity [Huang2000, Nucci2005]. 

 

2.2 Fatigue in bulk metals  

Fatigue is understood as damage or failure in materials due to suffering a 

repeated load. It can be termed mechanical fatigue or thermal fatigue and others 

according to loading type. But generally fatigue is referred as mechanical fatigue, in 

which a repeated stresses or strains are applied. The fatigue behavior has an 

important implication on the reliability of a material. 
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2.2.1 Fatigue life approaches 
Fatigue life, defined as the total number of cycles until failure, is mainly 

studied by two approaches, the stress-life approach and the strain-life approach. The 

stress-life approach was first introduced by Wöhler in the 1860s [Woehler1860], 

where the stress amplitude is controlled during cyclic loading of a specimen. 

Fatigue cycles of sinusoidal waveform with nonzero mean stress are shown 

schematically in Fig. 2-4. In this case, the stress parameters, namely the stress range, 

Δσ, the stress amplitude, σa, and the mean stress, σm, which all affect the fatigue life, 

are defined as: 

minmax σσσ −=Δ       (2.1) 

2
minmax σσ

σ
−

=a      (2.2) 

2
minmax σσ

σ
+

=m      (2.3) 

In a fully reversed, constant amplitude fatigue test, the relation of the stress 

amplitude, σa to fatigue life, 2Nf is expressed by Basquin equation [Basquin1910]: 

b
ffa N )2('

2
σσσ

==
Δ                                             (2.4) 

where σ´f is the fatigue strength coefficient, b the fatigue strength exponent. 

 

 

Fig. 2-4 Nomenclature for stress parameters. The variation of stress σ with time t is 

shown. 
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As the stress amplitude increases, fatigue life is reduced, which is 

schematically shown in Fig. 2-5. Here, the stress amplitude of an uniaxial fatigue test 

is plotted versus the fatigue life, number of cycles to failure 2Nf, for metallic 

materials. This is because crack initiation as well as crack propagation is faster with 

larger stress amplitudes. In addition, there is a mean stress effect on fatigue life. 

Different S-N (stress amplitude - life) responses are induced by different mean stress 

level, σm1, σm2, σm3. Generally, fatigue life decreases with increasing mean stress 

value.  

 

 

Fig. 2-5 Typical stress amplitude - life plot showing mean stress effect on fatigue life. 

 

In analogy, in the strain-life approach, the strain amplitude is controlled to 

test for the fatigue life. Independently in 1954, Coffin and Manson proposed to 

characterize fatigue life based on the relation with the plastic strain in low cycle 

fatigue regime [Coffin1954, Manson1954]. This relation can be written as 

c
ff

p N )2('
2

ε
ε

=
Δ

     (2.5) 

where Δεp/2 is the plastic strain amplitude, ε´f the fatigue ductility coefficient and c 

the fatigue ductility exponent. 

The total strain amplitude Δε/2 can be rewritten as the sum of elastic strain 

amplitude, Δεe/2, and plastic strain amplitude, Δεp/2: 
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222
pe εεε Δ

+
Δ

=
Δ       (2.6) 

using Basquin equation (Eq. 2.4) and noting that 

EE
ae εσε

+
Δ

=
Δ

22
      (2.7) 

where E is Young’s modulus, it is found that 

b
f

fe N
E

)2(
'

2
σε

=
Δ

      (2.8) 

Combining Eqs. 2.5, 2.6 and 2.8 one obtains 

c
ff

b
f

fpe NN
E

)2(')2(
'

222
ε

σεεε
+=

Δ
+

Δ
=

Δ   (2.9)   

 

 

Fig. 2-6 The total strain amplitude Δε/2 versus fatigue life. The variations of elastic 

and plastic strain amplitude, Δεe/2, andΔεp/2, leading to transition in the relation. 

 

On the right side of Eq. 2.9, the first and second term are the fatigue lives 

with respect to the elastic and plastic component in the total strain, respectively. A 

schematic representation of Eq. 2.9 is given in Fig. 2-6. For low cycle fatigue, the 

macroscopic strain is predominantly plastic and the first term in Eq. 2.9 is dominant. 

For high cycle fatigue, the macroscopic strain is elastic and the second term becomes 

dominant. Fig. 2-6 describes the logarithmic relation between total strain amplitude 

and fatigue life, showing a clear transition from low cycle regime to high cycle 
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regime. For most metallic materials, the transition between the two regimes occurs at 

about 104 cycles. 

 

2.2.2 Fatigue damage 
Fatigue damage, particularly in face-centered cubic (f.c.c.) metals, includes 

the formation of characteristic dislocation structures, surface damage and fatigue 

cracks.  

Dislocation structures, such as persistent slip bands (PSBs), labyrinth 

structures and dislocation cells, form by self-ordering of dislocations over long 

distances in a crystal with typical feature dimensions in the micrometer regime. They 

form due to dislocation interaction in the early fatigue stage of cyclic deformation in 

both single and polycrystalline f.c.c. bulk metals [Mughrabi1979, Ackermann1984]. 

For example, Fig. 2-7 shows a TEM micrograph of dislocation structures (PSBs) in a 

fatigued Cu crystal [Mughrabi1979]. The exact nature of the dislocation structure is 

very complicated and depends on crystal orientation, strain/stress amplitude and 

number of cycles. 

 

 

Fig. 2-7 TEM image of dislocation structures (PSBs) in a fatigued Cu crystal 

[Mughrabi1979]. 

 

Detailed investigations show the surface damage (extrusion and intrusion) is 

associated with PSBs [Lukáš2004], which represent zones of cyclic plastic strain 

localization. This is shown schematically in Fig. 2-8. More slip activity can occur in 
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the plastic PSBs than in the surrounding matrix. While coarse slips cause extrusion 

and intrusion formation at the intersection of PSBs with the surface, fine slip leads to 

only to much smaller slip traces at the surface of the matrix. 

 

 

Fig. 2-8 A rough surface consisting of hill and valleys produced by cyclic plastic 

strain [Suresh1998]. 

 

In the next stage of fatigue, such extrusions/intrusions lead to the formation 

of cracks from surface intrusions, leading eventually to failure [Essmann1981, 

Ma1989]. Another mode is that cracks are initiated at grain boundaries, where PSBs 

impinge [Essmann1981, Zhang1999]. Heinz and Neumann have also reported twin 

boundaries as crack initiation sites in high cycle fatigued austenitic stainless steel 

[Heinz1990]. Twin boundaries are regarded as stress raisers due to the elastic 

anisotropy between the crystals on either side of the twin boundary. In addition, the 

twin boundary orientation strongly influences the density and propagation of twin 

boundary cracks [Blochwitz2003, Blochwitz2005]. Twin boundaries are also 

observed as preferred sites for early PSB nucleation [Llanes1992, Peralta1994].  

In summary, bulk metals come to fatigue failure in following sequence: (i) 

formation of dislocation microstructures (like PSBs), (ii) surface roughening in terms 

of surface extrusions and intrusions induced by intersecting dislocation structures at 

the surface, (iii) crack initiation at surface intrusion, (iv) stable growth of cracks with 

characteristic crack face striations, and (v) rapture of the whole specimen.     
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2.3 Fatigue behavior of thin metal films 

In recent years several studies have been focused on the fatigue behavior of 

thin metal films [Read1998, Kraft2001, Kraft2002, Schwaiger2003, Schwaiger2003a, 

Zhang2003, Zhang2005, and Zhang2006]. Thermal fatigue of thin Cu films due to 

repeated temperature change has also been studied [Moenig2004, Park2006, and 

Park2007]. Besides, fatigue behavior of thin metal films was studied at ultra high 

frequency based on surface acoustic wave (SAW) technique [Eberl2006, 

Eberl2006a]. 

 

  

Fig. 2-9 TEM observations of dislocation structures in fatigued Cu thin films: (a) 3.0 

µm thick film with a [001] zone axis, (b) 0.4 µm thick film with [123] zone axis 

[Zhang2003]. 

 

These studies have shown that size effects in fatigue are significant at the 

micrometer and sub-micrometer length scale. As the film thickness or grain size is 

reduced, the fatigue life at constant applied total strain is increased [Kraft2002, 

Schwaiger2003a, and Moenig2004]. Similarly, characteristic fatigue dislocation 

structures are not present in thin films for thickness or grain size below 1 µm 

[Zhang2003, Zhang2005, and Zhang2006]; instead just single dislocations are found. 

This is illustrated in Fig. 2-9 (a) and (b), which show the TEM images of fatigued 3.0 
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µm thick and 0.4 µm Cu films, respectively. Furthermore, the surface extrusions 

decrease in size and number with decreasing film thickness or grain size and are 

replaced by cracks along boundaries in mechanical fatigue [Zhang2003, Zhang2005, 

and Zhang2006], and grain boundary grooves in thermal fatigue [Moenig2004, 

Park2006, and Park2007]. 

 

2.4 Perspectives of this work 

Thin metal films show very different mechanical and fatigue behavior than 

their bulk counterparts. The previous literature on fatigue in thin Cu films shows a 

clear effect of film thickness or grain size on fatigue damage and suggests that 

fatigue life increases with decreasing film thickness.  

In this work, the fatigue behavior of thin Cu films of different thicknesses (50 

nm to 3.0 µm) and with Ta under- and over-layers has been investigated. The goal is 

to understand the effects of film thickness, grain size, and surrounding layers (or 

interface quality) on fatigue damage evolution and fatigue life. These studies differ 

from previous studies in that they extend the investigations to: (1) higher cycle 

numbers and lower total strains, which are closer to the conditions present in 

technological applications; (2) thinner films and smaller grains; (3) quantitative 

analysis of damage evolution for different applied strains; (4) fatigue behavior of thin 

Cu films at 200°C; (5) fatigue behavior in Cu films with Ta under- and over-layers; 

and (6) studies of the stress-strain response during fatigue testing using synchrotron 

x-ray diffraction. The plastic strain is real driving force for fatigue, and the 

determination of plastic strain using synchrotron x-ray diffraction technique will help 

to understand the fatigue mechanism in thin metal films.    
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3 Experimental Details 
 

3.1 Fabrication of thin film samples 

Kapton (polyimide) has been shown to be a suitable substrate material for 

mechanical testing of thin metal films [Hommel1999, Kraft2000, and Hommel2001], 

because it is compliant and can be deformed homogeneously and reversibly up to 

large strains (>3%) [Hommel2001]. By using a reversibly deformable substrate, one 

can study the behavior of thin films not only in tension, but also in compression 

[Hommel1999]. As long as the film adheres to the substrate, which is the case for Cu 

on Kapton [Hommel1999], removing the external load after plastic deformation of 

the films under tension allows contraction of the elastic substrate and drives the film 

into compression. For the samples studied here, 125 µm thick dog-bone shaped 

Kapton-HN (DuPont) sheets were used as the substrate for all thin film samples. The 

sample geometry is depicted schematically in Fig. 3-1 and the schematic stress-strain 

response during cyclic tensile testing is shown in Fig. 3-2. 

 

 

Fig. 3-1 Schematic illustration of sample geometry. 

 

Two series of samples were fabricated and investigated in this work. In the 

series A, Cu films with thicknesses between 50 nm and 3.0 µm were deposited on the 

Kapton substrates at the Thin Film Central Facility of the Max-Planck-Institute for 

Metal Research in Stuttgart. The Kapton substrates had been machined into dog-bone 
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shaped tensile specimens (gauge lengths of 9 and 20 mm). The Cu films were 

deposited by Ar sputtering under UHV conditions (base pressure: 10-8 mbar) at a 

power of 100 W. Different thicknesses of Cu (50 nm, 100 nm, 200 nm, 500 nm, 1.0 

µm, 3.0 µm) were deposited by controlling the sputtering time. After deposition, the 

specimens were annealed at 400 °C in vacuum for 2 hours to allow for grain growth. 

Several specimens of 100 nm thick Cu film were annealed 40 minutes more. 

 

 

Fig. 3-2 Schematic illustration of the stress-strain responses of the Kapton substrate 

and the adherent metal film during tensile testing. 

 

In the series B samples, different Cu, Cu/Ta and Ta/Cu/Ta thin film stacks, 

shown schematically in Fig. 3-3, were deposited on the Kapton substrates also at the 

Thin Film Central Facility of the Max-Planck-Institute for Metal Research. The Ta 

layers and Cu films were deposited without breaking vacuum by Ar sputtering under 

UHV conditions (base pressure: 10-8 mbar) at a power of 150 W and 100 W, 

respectively. The goal of fabrication of this series of samples is to study the influence 

of under- and over-layers on the fatigue behavior in thin Cu films. Ta was chosen for 

the under- and over-layer material because it had already been shown to adhere well 

to Kapton and Cu and to not significantly modify the microstructure of the Cu layer 

[Gruber2004]. Cu film thicknesses in the series B were 1.0 µm and 100 nm thick and 
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the Ta over- and under-layers were 10 nm thick. The gauge length and width of the 

samples with 1.0 µm thick Cu films were 12 mm and 3 mm, respectively, while these 

were 9 mm and 2 mm for the 100 nm thick Cu film samples. 

 

 

Fig. 3-3 Schematic illustration of the Cu, Cu/Ta and Ta/Cu/Ta thin film stacks on 

Kapton substrate. 

 

  

Fig. 3-4 SEM images at 52° tilt of delamination and buckling in a Ta/100 nm Cu/Ta 

sample after annealing at 400°C for 2 hours in vacuum: (a) surface image showing 

“telephone cord” buckling and (b) image of a FIB cross-section through the sample 

showing that delamination has occurred at the Ta/Kapton interface.  The Pt layer was 

deposited to protect the sample during FIB cross-sectioning (see Section 3.2 for more 

details). 

 

After deposition, the 1.0 µm thick Cu films with and without Ta layers were 

annealed at 400 °C in vacuum for 2 hours to allow for grain growth. The 100 nm 

thick Cu films with and without Ta layers were annealed at a lower temperature of 

350°C in vacuum for 0.5 hours. This lower temperature was used since annealing the 

Ta/100 nm Cu/Ta samples at 400°C caused delamination at the Ta/Kapton interface 



3 Experimental Details 

 18 

and “telephone cord” buckling (Fig. 3-4). No delamination was observed in the 100 

nm thick Cu film stack samples after annealing at 350°C (or in the 1.0 µm thick Cu 

film stack samples after annealing at 400°C). 

 

3.2 Microstructure characterization 

The microstructure of the films was characterized using scanning electron 

microscopy (SEM) and focused ion beam (FIB) microscopy in a Dual Beam 

Workstation (FEI Nova NanoLab 200), which reveals the grain structure through 

crystal channeling contrast. FIB images were obtained at four different tilt angles (0°, 

7°, 12°,17°) and overlaid to determine the grain boundary locations accurately. Fig. 

3-5 shows a typical FIB image of the grain structure in a 1.0 µm thick Cu film. Both 

grains and twins can be easily recognized. The grain size was determined by the 

linear intercept method without taking twin boundaries into account.  

 

 
Fig. 3-5 FIB image of a 1.0 µm thick Cu film showing grain and twin contrast. 

 

The out-of-plane crystallographic texture of the Cu films was estimated using 

x-ray diffraction (XRD) with help from Prof. Alexander Wanner and Dr. Brando 

Okolo (IWK1, University Karlsruhe). θ-2θ XRD measurements were performed in a 

Seifert virtual axes type diffractometer. Cu-Kα x-rays were generated from a rotating 
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anode source allowing for a high intensity parallel beam. The diffraction scans were 

conducted over the 2θ range 38° to 95°.  

 

3.3 Fatigue tests 

For the series A samples, most of the fatigue tests were performed using a 

Dynamical Mechanical Analyzer (DMA) (Netzsch DMA 242), which load cell is 

driven from an oscillator. The samples were mounted in a tensile test holder and 

fatigue tests were performed under displacement control at a frequency of 100 Hz. 

Mounting of the samples had to be performed with care to avoid inhomogeneous 

stresses in the sample during testing. The homogeneity has been confirmed by the 

observation that fatigue-induced surface damage is distributed homogenously over 

the surface of the film. To minimize oxidation of the Cu during both room 

temperature and 200 °C tests, the furnace chamber enclosing the sample and the 

grips was supplied with a steady flow of nitrogen gas (flow rate of 100 ml/min) 

throughout the tests.  

 

Film thickness Strain range Δε (%), RT Strain range Δε (%), 200 °C 

3.0 µm 0.2/0.4 0.2 

1.0 µm 0.15/0.2/0.4 0.2 

500 nm 0.2/0.4/0.8 0.4 

200 nm 0.2/0.3/0.4/0.6/0.8 0.6 

100 nm 0.4/0.8/1.0 0.6 (2x) 

50 nm 0.8/1.0/1.2 0.6 

Table 3.1 Mechanical fatigue tests performed on the series A Cu film samples at 

room temperature (RT) and 200 °C. The number of tests performed at a particular 

strain is indicated in parentheses, if more than one. 

 

In order to investigate fatigue damage formation in the Cu films, the fatigue 

tests were periodically interrupted and the films were studied using dual-beam 

(scanning electron microscopy (SEM) and FIB) microscopy (FEI Nova NanoLab). 

Interruption intervals of less than 104 cycles were not possible with DMA at 100 Hz; 
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longer intervals were often chosen to allow for sufficient damage development. 

Fatigue damage was studied using both surface imaging as well as using FIB cross-

sections. Following damage characterization, the samples were remounted in the 

DMA and fatigue testing was continued. These interruptions were performed 

iteratively to record the damage evolution during the fatigue process. Table 3.1 lists 

the strain ranges that were used for the fatigue experiments on the first series of Cu 

films. 

 

Cu film thickness Sample type Strain range Δε (%) 

Cu 0.2/0.3 

Cu/Ta 0.2/0.3 1.0 µm 

Ta/Cu/Ta 0.2/0.3/0.4 

Cu 1.0 

Cu/Ta 0.8/1.0 100 nm 

Ta/Cu/Ta 0.8/1.0 

Table 3.2 Mechanical fatigue tests performed on the series B Cu film samples (with 

and without 10 nm thick Ta under- and over-layers) at room temperature. 

 

For a few of the fatigue tests, an electro-mechanical testing apparatus 

(EnduraTEC ELF 3200) was used. This machine has a magnetically driven load cell 

and was used instead of the DMA because it can accommodate the larger samples 

(20 mm gauge length) necessary for the in-situ synchrotron x-ray diffraction 

determination of the film stress. These tests were displacement controlled. 

The series B samples (with Ta layers) were tested using the DMA under the 

same loading conditions as used for the first series of Cu film samples (displacement 

control, loading at 100 Hz, nitrogen gas flow). As in the tests on the first series of 

samples, the damage evolution was characterized by periodically interrupting the 

fatigue tests for SEM and FIB microscopy. Table 3.2 lists the strain ranges that were 

used for the fatigue tests on the second series of Cu film samples. 

Fatigue failure in bulk samples is usually defined as macroscopic rupture or 

fracture. However, this criterion cannot be used as a measure of fatigue failure for 

thin films on substrates, since the load is transferred to the substrate as the film 
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deteriorates. In the work presented here, a qualitative criterion for thin film failure is 

defined by the number of cycles when the evolution of extrusions or cracks begins to 

saturate. This will be described and discussed in later sections. 

 

3.4 Stress determination 

Fatigue damage formation and failure is driven by plastic strain. The plastic 

strain experienced by a film for a given applied strain depends on the yield stress of 

the film. Since the yield stress depends on film thickness and grain structure, the 

stresses and plastic strains need to be determined experimentally.  

However, the stresses in thin films on compliant substrates are difficult to 

measure. The wafer curvature method [Keller1998, Keller1999, and 

Venkatraman1992] is not accurate for compliant substrates and although the load 

applied to the Cu/Kapton film specimens can be measured, the contribution from the 

film is difficult to resolve when the films are thin and substrates are thick [Yu2004]. 

Recently, a synchrotron-based x-ray diffraction technique to determine stress in very 

thin metal films on compliant substrates has been developed [Boehm2004]. The 

"sin2φ" method is used to measure the lattice strains of <111> out-of-plane-oriented 

grains in the metal films as they are loaded under a controlled displacement in a 

microtensile tester. The lattice strains are converted to stresses using the known 

elastic constants for the metal, so that a stress-strain curve for the metal film can be 

obtained. But the strain is measured for the whole film containing not only <111> 

out-of-plane-oriented grains.  

In collaboration with Mr. Patric Gruber (Max-Planck-Institute for Metal 

Research) this method has been used to determine stress-strain curves at the ANKA 

synchrotron source (Forschungszentrum Karlsruhe). In these experiments, the 

samples (gauge length 20 mm) were mounted in the microtensile tester and strained 

in discrete steps to a maximum strain before unloading. At each step on loading and 

unloading, the total sample strain was measured using a laser extensometer (Fiedler 

Optoelektronik GmbH, Germany) and the change in stress in the film was 

determined using x-ray diffraction (absolute stress and lattice strains were not 

determined). The goal of these tests is to estimate the magnitude of the plastic strain 
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in the Cu films, to determine the effect of cyclic loading on the stress-strain behavior 

of the films, and to look for evidence of cyclic work hardening or softening. 

 

Experimental series Film thickness (nm) Cycle in which measured 

100 2 and 2x106 
1 

500 2 and 2x106 

100 2x104 
2 

500 5x104 

100 1 and 30 
3 

500 1 and 30 

500 1 through 14 
4 

100 1 through 14 

Table 3.3 Sample conditions used for stress-strain measurements performed by x-ray 

diffraction at ANKA. 

 

           Several series of in-situ x-ray experiments were performed on 500 and 100 nm 

thick Cu film samples, as summarized in Table 3.3. In the first and second series of 

experiments, samples were first fatigue tested in the ELF before mounting in the 

microtensile tester at ANKA to determine the stress during a subsequent cycle with a 

comparable total strain. This was done because the microtensile tests at ANKA are 

too slow to reach the large cycle numbers that were desired. The third and forth 

series of experiments were performed entirely in-situ with the microtensile tester at 

ANKA. 
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4 Experimental Results 
 

Experimental observations and results will be summarized in this chapter, 

starting with the sample microstructure (Section 4.1) and continuing with the fatigue 

behavior at room temperature (Section 4.2), the stress-strain response during fatigue 

testing (Section 4.3), the fatigue behavior at 200°C (Section 4.4), and finally the 

effect of Ta under-and over-layers on fatigue behavior (Section 4.5). 

 

4.1 Initial sample microstructure 

The mean grain sizes for all films in the series A and B samples (with and 

without Ta under- and over-layers) are summarized in Fig. 4-1 and listed in Tables 

4.1 and 4.2. They vary from 110 nm to 1.63 µm with increasing film thickness. The 

grain size of the 3.0 µm thick film is smaller than the film thickness and is non-

columnar; all other films have a columnar structure. The grain sizes of the series B 

Cu films are the same as those in the series A indicating that the mean size is not 

influenced by the Ta under- and over-layers. In order to determine the mean grain 

sizes of the Ta/Cu/Ta film stacks, the Ta over-layer was first removed by ion 

sputtering in the FIB to expose the Cu film. 

FIB images of the grain structure in 3.0 µm and 500 nm thick Cu films (series 

A) are shown in Fig. 4-2. The thinner film has smaller grains, as well as thinner twins 

and a higher twin density than the thicker film. This trend in microstructure with film 

thickness was observed for all films in the series A and B and has been reported 

before for Cu films [Yu2004]. 
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Fig. 4-1 Mean grain size of both annealed series A (■) and series B (□ for Cu, Δ for 

Cu/Ta, and ○ for Ta/Cu/Ta) Cu films as a function of thickness. The sketches 

indicate the regions of columnar and non-columnar structures. 

 

Thickness (µm) 3.0  1.0 0.5 0.2 0.1 0.05

Grain size (µm) 1.63 1.12 0.98 0.63 0.27 0.11

Table 4.1 Mean grain size of series A Cu films. 

 

Mean grain size of Cu films (µm)  

Thickness of Cu film Cu Cu/Ta Ta/Cu/Ta 

1.0 µm 1.16 1.13 1.23 

100 nm 0.26 0.27 0.27 

Table 4.2 Mean grain size of series B Cu films with and without Ta under- and over-

layers. 
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Fig. 4-2 FIB images showing the grain structure in 3.0 µm (a) and 500 nm (b) thick 

Cu films (series A). 

 

 

Fig. 4-3  θ-2θ XRD scans from the series A Cu/Kapton samples and from bare 

Kapton. The intensity is scaled logarithmically and displaced vertically for clarity. 

 

The results from θ-2θ XRD scans on the different series A Cu films are 

shown in Fig. 4-3. Only (111) and (200) peaks are present indicating that the films 

contain <111> and <100> out-of-plane-oriented grains. The twin orientation peaks 

are expected at higher 2θ angles than accessed in these scans. An XRD measurement 
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was also performed on a bare Kapton substrate and accounts for the features 

observed in the scans at 2θ∼47.5° in the thinnest films. 

After subtracting the background from the θ-2θ XRD scans, the ratio of the 

integrated peak intensities I(111)/I(200) was calculated and is shown in Fig. 4-4 for the 

series A samples. The data of the texture-free Cu powder sample with a value of 2.3 

is included taken from [Otte1961]. The plot shows that all the Cu thin films have a 

{111} texture since the values of their (111)/(200) ratio lie above that from a texture-

free sample. The ratio remains constant from 3.0 µm to 200 nm thick films, and then 

increases with decreasing film thickness. This suggests that the thinnest films (50 and 

100 nm thick) have a larger volume fraction of <111> out-of-plane-oriented grains 

than the thicker films (200 nm and thicker).  

 

 

Fig. 4-4 Ratio of intensities of the (111) and (200) peaks obtained from θ-2θ scans of 

the series A Cu films. The solid horizontal line represents intensity ratio (111)/(200) 

for texture-free Cu powder sample [Otte1961]. 

 

X-ray diffraction measurements were not performed on the series B samples, 

but based on previous measurements it is expected that the Cu films with Ta under-

layers will have a sharper <111> out-of-plane texture than the films without this 

under-layer [Gruber2004]. This sharpening of {111} texture may be driven by 
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energy minimization due to a proposed increase in energy of the Ta/Cu interface 

relative to the Kapton/Cu interface [Park2006a]. The Ta layers are expected to 

consist of the tetragonal β-Ta-phase [Lee1999] and are immiscible with Cu 

[Lee1999]. 

In the series B samples for 1.0 µm thick Cu films, the surface roughness 

decreases from the Cu films over the Cu/Ta film stacks to the Ta/Cu/Ta film stacks, 

which quite smooth. This difference in surface roughness can be distinguished 

qualitatively in SEM images (Fig. 4-5). In contrast, the surface roughness of all films 

with 100 nm thickness, Cu, Cu/Ta and Ta/Cu/Ta film stacks, is similar.   

  

   
Fig. 4-5 SEM images at 30° tilt of three types of film stacks (series B) with 1.0 µm 

thick Cu film: (a) Cu; (b) Cu/Ta; (c) Ta/Cu/Ta. 

 

4.2 Fatigue behavior of thin Cu films at room temperature 

4.2.1 Fatigue damage 
The effect of fatigue testing on the evolution of damage in a 1.0 µm thick Cu 

film is shown in Fig. 4-6. At the early stage of cyclic testing, the surface looks 

something different from that before the fatigue testing. Comparing with the film 

surface before fatigue testing showed in Fig. 4-6 (a), Fig. 4-6 (b) shows that surface 

features such as grain boundary grooves become sharper after 5.4x104 cycles. This 

increase in the sharpness of the surface relief is observed in all thickness films in 

early stage of cyclic testing before any other fatigue surface damage.    
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Fig. 4-6 SEM images of a series A 1.0 µm thick Cu film (first series): (a) before 

fatigue testing and (b) after 5.4x104 cycles (strain range 0.2%). 

 

  
tensile axis 

Fig. 4-7 SEM images of extrusions in (a) a series A 1.0 µm thick fatigued film (strain 

range 0.2%, 2.7x105 cycles) and (b) a series A 500 nm thick fatigued film (strain 

range 0.2%, 5.28x105 cycles). 

 

As the number of cycles is increased at a given applied strain range, surface 

extrusions and cracks begin to form and evolve at the surface of the Cu films. In 

general, extrusions decrease in size and number with decreasing film thickness, while 
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cracks increase in number but decrease in length. Fig. 4-7 is SEM images of surface 

extrusions in fatigued 1.0 µm and 500 nm thick Cu films illustrating the smaller size 

of extrusions in thinner films. 

Fig. 4-8 shows SEM images of typical fatigue damage in a 1.0 µm thick film. 

A single extrusion is shown in Fig. 4-8 (a), which is representative of the early 

damage that forms in the thicker films (200 nm, 500 nm, 1.0 µm and 3.0 µm). The 

individual extrusions are contained within single grains and typically run from one 

side of the grain to another. As the number of loading cycles is increased, 

neighboring grains form extrusions and the extrusions link up to form short chains 

such as shown in Fig. 4-8 (b). Eventually, a crack forms along the extrusion chain, 

such as shown in Fig. 4-8 (c). Once a crack is formed, it often propagates beyond the 

existing extrusion chain, accompanied by the formation of new extrusions. The 

individual extrusions, extrusion chains, and cracks all form roughly perpendicular to 

the tensile axis, which is horizontal in the images. 

 

   
tensile axis 

Fig. 4-8 SEM images of extrusions and cracks in a series A fatigued 1.0 µm thick Cu 

film (applied strain range 0.2%). (a) A single extrusion (after 2.7x105 cycles), (b) a 

short chain of extrusions and (c) a longer chain of extrusions surrounding a crack 

(after 3.24x105 cycles). The tensile axis is horizontal in the images. 

 



4 Experimental Results 

 30 

  
tensile axis 

Fig. 4-9 Ion images of a series A fatigued 1.0 µm thick Cu film (strain range 0.2%, 

2.7x105 cycles; room temperature). 

 

Fig. 4-9 is ion images of a fatigued 1.0 µm thick Cu film. Extrusions form 

preferentially near and parallel to twin (Fig. 4-9 (a)) and grain (Fig. 4-9 (b)) 

boundaries. This reveals the boundaries play an important role for extrusion 

formation.  

In order to investigate the extrusions in detail, several were cross-sectioned 

perpendicular to the extrusion lamella using FIB. Before cutting, platinum was 

deposited on the film surface in the FIB to protect the Cu during ion sputtering. Fig. 

4-10 shows SEM images of cross-sections in a fatigued 1.0 µm thick film. The 

extrusions (with heights up to about 400 nm above the original surface of the 1.0 µm 

thick film) are paired with intrusions of a similar size at the film/substrate interface. 

In Fig. 4-10 (a) several coherent twin boundaries can be seen within the film and are 

parallel to the slip direction of the extrusion/intrusion pairs. It is believed that crack 

initiates from extrusion/intrusion pair in thicker films [Kraft2002], and here Fig. 4-10 

(b) shows the direct evidence that a fine crack line indicated with arrow started from 

intrusion propagates along the slip plane to surface.  
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tensile axis 

Fig. 4-10 SEM images at 52° tilt of cross-sectioned extrusions (both (a) and (b)) in a 

series A fatigued 1.0 µm thick Cu film (strain range 0.2%; 3.78x105 cycles; room 

temperature). The arrow indicates a fine crack that has formed at an intrusion. In (b) 

under the intrusion, there is a very thin Cu layer adhered to the polyimide substrate, 

which is probably the consequence of re-deposition from the ion milling process. 

 

 
tensile axis 

Fig. 4-11 FIB image at 52° tilt of cross-sectioned extrusions in a series A fatigued 

1.0 µm thick Cu film (strain range 0.2%; 3.78x105 cycles; room temperature). 

 

A long cross-section through several extrusions was made in a fatigued 1.0 

µm thick film and imaged by FIB (Fig. 4-11). Before ion milling, Pt was deposited 

on the film in FIB for protection. Extrusions are observed both in a grain parallel and 

next to twin boundaries (indicated with double arrows) and in twin-free grain 

(indicated with tri-arrows). Intrusions are paired with extrusion at the interface. 

Several other grains contain also twins, but no extrusion/intrusion pair is observed in 

such grains. This indicates, when the primary slip system of dislocation is parallel to 
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a twin boundary, it may impel the formation of extrusions. In contrast, twin 

boundaries play a much smaller role for extrusion formation for the case of the 

primary slip system not being parallel to twin boundaries. A hillock indicated with a 

single arrow is seen near a grain boundary. The hillock does not have sharp 

crystallographic definition of the extrusions. 

While extrusions decrease in size with decreasing film thickness or grain size, 

the damage under extrusion of thinner films also differs somewhat from that of  

thicker films. Fig. 4-12 (a) and Fig. 4-12 (b) are SEM images of cross-sectioned 

extrusions in a fatigued 500 nm thick film. Fig. 4-12 (a) shows an extrusion with a 

height up to 380 nm above the original surface. Under the extrusion two very sharp 

wedge-like intrusions are observed. Fig. 4-12 (b) shows a cross-sectioned extrusion 

with a height of about 250 nm above the original surface. An intrusion at the 

film/substrate interface with a quite large volume extends under the extrusion almost 

through the thickness of the film. 

 

  

tensile axis 

Fig. 4-12 SEM images at 52° tilt of cross-sectioned extrusions in a series A fatigued 

500 nm (strain range 0.2%; (a) 3.54x105, (b) 5.28x105 cycles; room temperature). 

Under the left intrusion a very thin Cu layer adhered to the substrate is observed just 

like the case observed in Fig. 4-10 (b) due the re-deposition from the ion milling 

process. 

 

Fig. 4-13 (a) and Fig. 4-13 (b) are SEM and FIB images, respectively, of the 

same cross-sectioned extrusions, with heights up to 100 nm above the original 
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surface in a fatigued 200 nm thick film. Smaller intrusions, with size of about 60 nm 

above the interface, are found under the extrusion at the interface between film and 

substrate. Additionally, a fine crack line from the intrusion to surface is seen. The 

FIB image (Fig. 4-13 (b)) shows that extrusions are near to the twin boundaries. 

 

  
tensile axis 

Fig. 4-13 SEM (a) and FIB (b) images at 52° tilt of the same cross-sectioned 

extrusion in a series A fatigued 200 nm thick film (strain range 0.6%; 3.48x105 

cycles; room temperature). 

 

As shown in Fig. 4-8, extrusion formation is the dominant fatigue damage 

mechanism and cracks are formed at the chain of connected extrusions in 3.0 and 1.0 

films. As thickness is down to 500 nm and 200 nm, fewer extrusions appeared and 

cracks through the thickness were observed even in grains with single extrusions. 

Besides, cracks propagate intergranularly from single extrusions in to both directions 

perpendicular to the tensile axis, as shown in Fig. 4-14 for a fatigued 200 nm Cu film. 

The arrows indicate intergranular cracking. 

Fig. 4-15 shows an SEM image of cracks in a fatigued 100 nm thick Cu film. 

Well defined extrusions can be observed along cracks, which are observed along 

grain or twin boundaries. In some places along the crack, hillocks marked by arrows 

are observed. These hillocks do not have the sharp crystallographic definition of the 

extrusions observed in the 1.0 µm thick films, and are thus believed to be oxidized 

Cu [Zhang2005] and localized deformation caused by friction and wear of the crack 

faces after crack formation.     
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tensile axis 

Fig. 4-14 SEM image of a surface extrusion in a series A fatigued 200 nm thick film 

(strain range 0.6%, 9.48x105 cycles, room temperature). The arrows mark the 

occurrence of fine intergranular cracks. 

 

 
tensile axis 

Fig. 4-15 SEM image of a crack in a series A fatigued 100 nm thick Cu film (strain 

range 0.8%, 1.62x106 cycles, room temperature). 
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For the first time, fatigue in a 50 nm thin Cu film has been studied. Fig. 4-16 

shows a crack in a fatigued 50 nm thick Cu film. Well defined extrusions indicated 

with black arrow can be observed along cracks, which are typically observed along 

grain or twin boundaries. Similar hillocks as observed in fatigued 100 nm thick film 

are found here and marked with white arrows. This is first time illustration of fatigue 

damage in 50 nm thick Cu film. More investigations have supported that the damage 

of 50 nm thick film evolves in a similar way as the 100 nm thick films.   

Both plan-view and cross-sectional images support the idea that the cracks in 

the 100 nm and 50 nm thick films often initiate at existing defects (such as particles 

present on the substrate or created during deposition) or at the grain boundaries of 

large grains after higher cycle numbers. Once formed, the cracks propagate along 

grain or twin boundaries. Extrusions form after crack initiation and during crack 

propagation. 

 

 
tensile axis 

Fig. 4-16 SEM image of a crack in a series A fatigued 50 nm thick Cu film (strain 

range 1.2%, 2.4x104 cycles, room temperature).. 

 

Several SEM images of fatigue cracks are shown in Fig. 4-17. The cracks in 

the thicker films (1.0 and 3.0 µm) are always surrounded by extrusions, such as 

shown in Fig. 4-8 (c) and Fig. 4-17 (a). In somewhat thinner films, such as the 200 
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nm thick Cu film in Fig. 4-17 (b), the cracks connect up isolated extrusions. There 

are very few extrusions (marked by arrow) along cracks in the 100 nm thick Cu film 

(Fig. 4-17 (c)). Extrusion formation can be considered as a result of plastic 

deformation.  

 

   
tensile axis 

Fig. 4-17 Fatigue cracks in (a) 1.0 µm (strain range 0.2%; 3.24x105 cycles; room 

temperature), (b) 200 nm (strain range 0.6%; 9.48x105 cycles; room temperature), 

and (c) 100 nm (strain range 0.8%; 1.08x106 cycles; room temperature) thick series 

A Cu films. The tensile axis is horizontal in the images. 

 

Extrusions decrease in width, height and number with decreasing film 

thickness. The same trend was also reported in [Zhang2006]. It is also noted that in 

the thickest films, there is extensive extrusion formation before crack formation (1.0 

and 3.0 µm thick). Here, extrusions form first within single grains, and the extrusion 

lamella tend to lie perpendicular to the tensile axis. As fatigue proceeds in the 1.0 

and 3.0 µm thick films, new extrusions form in more single grains and also in 

neighboring grains and connect to form a line of extrusions. As more and more 

extrusions connect to each other, the crack initiates at the location of an 

extrusion/intrusion pair. Once cracks form along the extrusion chains, the extrusion 

chain and crack proceed cooperatively. In thinner films (200 and 500 nm thick), 

cracks initiate even at single extrusions and then propagate along grain or twin 

boundaries accompanied by the formation of additional extrusions. In the 200 nm 

thick films, a formation of extrusions is hardly observed at all. In the thinnest films 

(50 and 100 nm), the cracks initiate at existing defects or boundaries of large grains 
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without assistance of extrusion/intrusion pair and once formed, propagate along grain 

and twin boundaries, occasionally accompanied by formation of small extrusions and 

hillocks. 

 

4.2.2 Damage analysis 
Quantitative analyses of the evolution of extrusion density, crack density, and 

mean crack length were performed during fatigue testing. The extrusion density is 

defined as the number of extrusions per unit film area as estimated from SEM images. 

Within a chain of extrusions, the extrusion within each grain counts as a single 

extrusion. Extrusion densities were only measured in the thickest films (200 nm to 

3.0 µm) where they were large enough to be easily seen. The crack density is defined 

as the number of cracks (either with or without accompanying extrusion chains) 

having their midpoints within a given film area as estimated from SEM images. The 

mean crack length is the total length of cracks in a given area divided by the number 

of cracks. Crack length is defined as the distance between the ends of a crack, which 

is somewhat smaller than the true crack length since the cracks are not straight.  

The fatigue failure of a bulk material in cyclic uniaxial tensile testing can be 

defined as rupture or fracture of specimen. It is difficult to define fatigue failure 

because sample of thin film on substrate will not rupture due to constraint of the 

compliant substrate. Fatigue failure of thin films on Kapton can be defined as 

transition in mechanical energy loss decreases [Kraft2002]. However, the mechanical 

energy loss was too small to be measured in all but the thickest films and an 

alternative definition based on the damage evolution is used in this work. 

Representative examples of the evolution of extrusion and crack densities are 

shown in Fig. 4-18. The extrusion density in a 1.0 µm thick film (Fig. 4-18 (a)) 

increases after an initial incubation period until saturation, whereas crack growth 

only starts when the extrusion density has saturated. In a 200 nm thick film (Fig. 

4-18 (b)), both extrusion density and crack density increase linearly with the number 

of cycles until they reach saturation at a similar number of cycles. This indicates that 

the extrusions and cracks are formed simultaneously and that there is no clear period 

of extrusion formation before crack initiation. The crack density in a 100 nm thick 

film (Fig. 4-18 (c)) increases linearly with cycle number before reaching saturation. 

The extrusion density has not been systematically measured in this film because the 
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extrusions are too small to be identified unambiguously. Nevertheless, one data point 

was measured for the maximum number of cycles and a qualitative indication of 

extrusion evolution is indicated with the dashed curve. Extrusions are formed after 

crack initiation and during crack propagation.  

Fatigue failure is defined as onset of saturation of extrusion or crack density 

according to the construction shown in Fig. 4-18. Extrusion density for 500 nm, 1.0 

µm and 3.0 µm thick films and crack density for the 50 nm, 100 nm, and 200 nm 

thick films were chosen, respectively, because damage is dominated by extrusions in 

the thicker films and by cracks in the thinner films. Determination of other films is 

enclosed in Appendix A and a summary of all fatigue lives is shown in Fig. 4-22 

(Section 4.2.3). 

We have seen both extrusion density for thicker films and crack density for 

thinner films will reach saturation with increasing number of cycles (Fig. 4-18). Here 

the evolution of the mean crack length for all film thickness with increasing number 

of cycles is plotted in Fig. 4-19. Because of different applied strain ranges, films with 

different thickness come to failure in the similar range between 105 and 106 cycles. 

Crack lengths of all film thickness keeps constant with cycle number within the 

accuracy of the measurement, and to increase with film thickness. By the 

investigation of damage we have observed that existing cracks became longer while 

new cracks initiated with small crack length simultaneous. This leads to the mean 

crack length does not change much or even remains constant. 

The extrusion densities (200 nm to 3.0 µm) and crack densities at saturation 

(50 nm to 200 nm) and mean crack lengths are plotted as a function of film thickness 

in Fig. 4-20. The extrusion density at saturation increases with both applied strain 

range (1.0 µm and 3.0 µm) and with film thickness (200 nm to 3.0 µm). However, 

the influence of strain range on extrusion formation is clearly smaller than that of 

film thickness. Crack density at saturation increases with applied strain range and 

with decreasing film thickness. For the cracks, it is not clear whether the increase in 

crack density is a thickness effect or a result of the increased strain range. The crack 

densities in the thicker films are not shown since the total number of cracks was very 

low. However, the mean crack length could be determined for all film thickness and 

was observed to increase with film thickness.       
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Fig. 4-18 Extrusion (□) and crack (●) densities in (a) 1.0 µm, (b) 200 nm and (c) 100 

nm thick series A films (strain range: 0.2 %, 0.6% and 0.8%, respectively) as a 

function of cycle number. The onset of saturation, which is used as the criterion for 

failure, is indicated by vertical arrows. The error bars are calculated with in extrusion 

density and crack density dividing square roots of number of extrusions or cracks 

represent the uncertainties due to finite sampling size. 
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Fig. 4-19 Mean crack length perpendicular to the tensile axis as a function of cycle 

number. Thickness and applied strain ranges are shown next to data points. Error 

bars for mean crack length are estimated standard deviation. 

 

 

Fig. 4-20 Extrusion density (■) and crack density (Δ) at saturation, and mean crack 

length (●) as a function of film thickness. Applied strain ranges are shown next to 

each data point. Error bars for mean crack length are estimated standard deviation.   

 

Although extrusions decrease in size and height with decreasing thickness, 

the ratio of extrusion height to film thickness seems not to have the same trend. Fig. 
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4-21 is the plot of the ratio of extrusion height to film thickness versus film thickness 

and applied total strain range. As film thickness decreases from 3.0 µm to 200 nm, 

the ratio of extrusion height to film thickness increases. Due to difficulty to 

recognize extrusions in thinner films (like 100 nm and 50 nm), the ratio of extrusion 

height to film thickness for these films cannot be determined. Moreover, the ratio 

increases with decreasing applied strain range in 3.0 µm thick films (non-columnar 

structure), while there is no clear strain range effect on the ratio in other thickness 

films (columnar structure). 

 

 

Fig. 4-21 Ratio of extrusion height to film thickness versus film thickness. The given 

numbers refer to the applied total strain range. 

 

4.2.3 Fatigue life 
The determined fatigue lives of all films are summarized in Fig. 4-22. 

Applied total strain ranges were plotted as function of fatigue lives. The points (filled 

symbols) are the numbers of cycles required to cause failure of the thin Cu films. 

Data from the literature for Cu films [Kraft2002] and bulk Cu [Lukáš1987] are also 

included for comparison. The points with arrows indicate that the corresponding 

strain and cycle number did not cause observable surface damage in the films. Other 

than for the 1.0 µm thick films, which show a slightly shorter fatigue life than the 3.0 
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µm thick films, there is a clear trend of increasing fatigue life with decreasing film 

thickness and/or grain size. In other words, either higher strain ranges or more cycles 

are required to bring the thinner films to failure. Even though we have used a rather 

qualitative failure criterion, it is shown that no damage occurs in thinner films at 

small strain ranges (data points with arrows), while thicker films have failed under 

these conditions. All this indicates a clear length scale effect on fatigue life.  

 

   

Fig. 4-22 Fatigue life diagram for Cu. Data from high cycle fatigue of the thin Cu 

films on Kapton are shown as filled symbols. Low cycle fatigue data from Cu on 

Kapton samples (open symbols) [Kraft2002] and from large grained bulk Cu (solid 

lines) [Lukáš1987] are included for comparison. 

 

4.3 Stress determination 

The change in stress during cyclic loading was measured in some of the series 

A samples (gauge length 20 mm) using x-ray diffraction  and the method described 

in Section 3.4. The stress-strain curves were used to estimate the plastic strain in the 

films during cyclic loading and to look for evidence of cyclic strain hardening or 

softening. In all experiments the absolute stress could not be determined and, 

therefore, the yield stress was not evaluated. 
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Fig. 4-23 through Fig. 4-25 show the stress-strain behavior of 500 nm and 

100 nm thick Cu films determined by x-ray diffraction during micro-tensile testing at 

ANKA. Both the stress along the tensile direction, σ1, and the stress perpendicular to 

the tensile direction, σ2, are plotted. The initial residual stress state in the film before 

any loading is unknown but assumed to be equibiaxial. The stress along the loading 

direction σ1 becomes more tensile on applying tensile strain. On unloading, σ1 

decreases and a slight hysteresis in the stress-strain behavior is observed indicating 

that plasticity has occurred in the Cu films. The values of the transverse stresses σ2 

are small and do not change much during straining. This reveals that the difference 

between the Poisson ratios of the Cu and Kapton is small, although the slight positive 

slope shows that the Kapton Poisson ratio is smaller than that the Cu films. Poisson 

ratio is 0.34 for Kapton and (–2S11-10S12+S44)/(6S11+6S12+3S44) = 0.5 for <111> out-

of-plane-oriented Cu grains.  

 

a)  b)  

Fig. 4-23 Series A 500 nm thick Cu film: (a) In-situ stress-strain curves of samples 

previously loaded to 2, 5x104, and 2x106 cycles; (b) SEM images of sample surfaces 

after 2 cycles (upper) and after 2x106 cycles (lower). 

 

The stresses in the 500 nm thick film are slightly higher after 5x104 cycles 

than after 2 cycles, whereas there is no difference in the stress-strain behavior of the 
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100 nm thick Cu films that have experienced 2 and 2x104 cycles. SEM images of the 

films show that there are no cracks present after 2x104 cycles (100 nm thick film) 

and 5x104 cycles (500 nm thick film). It is not clear if the slight increase in stress in 

the 500 nm thick film is a real effect or due to a problem with measurement 

reproducibility. In contrast, the stresses along the tensile direction in both 100 and 

500 nm thick films are much lower after 2x106 cycles and the slope of transverse 

stresses σ2 decreases and even becomes slight negative. SEM images of the film 

surfaces after 2x106 cycles show that many cracks have developed in both 100 and 

500 nm thick films perpendicular to the tensile direction during fatigue loading. 

These cracks have certainly led to a reduction in the stiffness of the films and, as a 

result, to a reduced average film stress. 

 

a)  b)  

Fig. 4-24: Series A 100 nm thick Cu film: (a) In-situ stress-strain curves of samples 

previously loaded to 2, 2x104, and 2x106 cycles; (b) SEM images of sample surfaces 

after 2 cycles (upper) and after 2x106 cycles (lower).     

 

Fig. 4-25 shows the in-situ stress-strain curves from a 500 nm thick film for 

several of the first fourteen cycles. The first cycle has very large hysteresis probably 
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due to slip of samples during exposition in x-ray and the sample is remounted after 

the first cycle.  

 

 
Fig. 4-25 Stress-strain curves of a series A 500 nm thick film during several of the 

first 14 cycles. Filled symbols indicate σ1 parallel to tensile axis, open symbolsσ2 

perpendicular to loading axis. 

 

To look more carefully for changes in the stress-strain behavior prior to the 

onset of damage and crack formation, the change in stress-strain behavior at low 

cycle numbers was investigated by performing in-situ cycling at ANKA. Fig. 4-26 

shows the stresses in a 500 nm thick Cu film during the first and 30th loading cycles. 

Significant plastic deformation occurs in the loading portion of the first cycle. By the 

30th cycle, however, the decrease in hysteresis indicates that the amount of plasticity 

has decreased, probably due to cyclic hardening. 
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Fig. 4-26 Stress-strain curves of a series A 500 nm thick Cu film in the first and 

thirtieth cycles. Filled symbols indicate σ1 parallel to tensile axis, open symbolsσ2 

perpendicular to loading axis. 

 

Fig. 4-27 shows the in-situ stress-strain curves in a 100 nm thick film for 

several of the first fourteen cycles. During cycling, the stresses become progressively 

more compressive and the hysteresis systematically decreases. 

Both the 100 and 500 nm thick films exhibit almost reversible stress-strain 

behavior with a slope less than that expected based on the calculated Young’s 

modulus of <111> out-of-plane-oriented grains, which has a value of 130.3 GPa. On 

the one hand, the lower than expected stress-strain slope indicates contributions from 

plasticity, on the other hand, the small hysteresis indicates a lack of extensive 

plasticity. This discrepancy will be addressed in the Section 5.2. 
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Fig. 4-27: Stress-strain curves of a series A 100 nm thick film during several of the 

first 14 cycles. Filled symbols indicate σ1 parallel to tensile axis, open symbolsσ2 

perpendicular to loading axis. 

 

4.4 Fatigue behavior of thin Cu films at 200°C 

The series A Cu film samples were tested at 200°C under similar loading 

conditions used for testing the films at room temperature (Table 3.1). A comparison 

of the fatigue damage in the samples tested at room temperature and 200°C shows 

that, to first order, the general trends of damage formation are not changed by the 

increase in temperature. Extrusions are still dominant in the thicker films and cracks 

in the thinner ones. However, small systematic differences in the damage 

morphology can be found. For example, a comparison of the images in Fig. 4-28 

shows that the extrusions formed at 200°C are more rounded and smaller than those 

formed at room temperature. There are also fewer at 200°C than at room temperature 

after similar loading conditions. The many small white spots on the surface of the 

samples tested at elevated temperature (Fig. 4-28 (a) and Fig. 4-29) may be oxidized 

regions, which would indicate that the flow of nitrogen gas during the tests was not 

sufficient to completely avoid oxidation. 
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tensile axis 

Fig. 4-28 SEM images of extrusions in series A fatigued 1.0 µm thick films: (a) 

strain range 0.2%; after 8.1x105 cycles; at 200°C (b) strain range 0.2%; after 2.8x105 

cycles; room temperature. The loading axis is horizontal in the images. 

 

Fig. 4-29 shows an SEM image of damage in a fatigued 200 nm thick Cu 

films. Well defined extrusions and grain boundary grooves or cracks can be seen. A 

cross-section  (Fig. 4-30) of a 200 nm thick Cu film fatigued at 200°C shows that in 

addition to extrusions (in this case with a height of 100 nm, single arrow) there are 

intrusions at the Cu/Kapton interface, cracking (tetra-arrows), grain boundary 

grooving (tri-arrows) and grain thickening (double-arrows).  
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tensile axis 

Fig. 4-29 SEM image of a series A fatigued 200 nm thick Cu film (strain range 0.6%, 

after 5.4x104 cycles, at 200°C). The arrow marks a grain boundary crack. 

 

 
tensile axis 

Fig. 4-30 SEM image at 52° tilt of cross-sectioned extrusion in a series A fatigued 

200 nm thick Cu film (strain range: 0.6%, after 5.4x104 cycles, at 200°C). 
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tensile axis 

Fig. 4-31 SEM image (a) at 52° tilt and FIB image (b) at 47° tilt of a cross-sectioned 

extrusion in a series A fatigued 1.0 µm thick Cu film (strain range 0.2%; after 

1.89x106 cycles; at 200°C). 

 

The cracks formed at elevated temperatures are also slightly different in 

morphology than those formed at room temperature. In particular, pores were often 

found near cracks at grain or twin boundaries in films fatigued at 200°C (3.0 µm, 1.0 

µm, and 500 nm) but were never found in films fatigued at room temperature. An 

example of such a pore is shown in Fig. 4-31. In addition, in comparison with the 

room temperature cracks, the 200°C cracks have rounded edges, suggesting active 

diffusion during crack formation.  

Despite some differences in damage morphology at 200°C compared to room 

temperature, the same types of damage are observed and fatigue failure can be 

defined for both temperatures in the same way. Although damage statistics were not 

measured at 200°C, the fatigue lives could be roughly estimated by a qualitative 

determination of the number of cycles to reach saturation in crack or extrusion 

density.     

Fatigue lives of the series A Cu films at 200°C are plotted in Fig. 4-32 and 

compared with room temperature and bulk data. With the exception of the 1.0 µm 

thick films, the fatigue life is decreased by raising the temperature to 200°C. 

Although the fatigue failure definition is not always unambiguous, the general effect 

that increased temperature degrades the fatigue life is clear. The length scale effect 

on fatigue life is still present at 200°C, in that the fatigue life increases with 

decreasing film thickness. 
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Fig. 4-32 Fatigue life diagram for Cu. Data from tests at room temperature (filled 

symbols) and 200°C (open symbols). Data from Cu on Kapton samples (open 

symbols with error bars) [Kraft2002] and from large grained bulk Cu (solid lines) 

[Lukáš1987] are included for comparison. 

 

4.5 Fatigue behavior of thin Cu films with Ta layers 

In order to study the influence of interface character and constraining layers 

on fatigue damage and fatigue life, 1.0 µm and 100 nm thick Cu films with Ta under-

and over-layers were investigated. 

 

4.5.1 Fatigue damage in samples with 1.0 µm thick Cu film 
Fig. 4-33 shows SEM images of surface damage in fatigued 1.0 µm thick Cu 

films with and without Ta under- and over-layers (series B samples). In addition to 

the similar surface damage of the Cu films, which are chains of extrusions, with or 

without cracks, surface intrusions (white arrows) and surface roughening (black 

arrows) can be also observed in Cu/Ta film stacks (Fig. 4-34). The extrusions are 

often paired with intrusions at the interface between Cu film and Ta under-layer (Fig. 

4-35 (a)). But under some extrusions, intrusions are absent (Fig. 4-35 (b)) which has 

never been observed in Cu films. Surface intrusions can be clearly seen in Fig. 4-35 

(c), which are normally paired with surface extrusions. A more diffuse surface 
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roughening with many but small extrusions and intrusions (Fig. 4-35 (d)) is 

commonly observed in Cu/Ta film stacks but much less in Cu films without an the 

Ta under-layer. 

 

   
tensile axis 

Fig. 4-33 SEM images at 52° tilt of surface damage in fatigued different types (series 

B) of film stacks with 1.0 µm thick Cu film: (a) Cu (strain range 0.2%; 1.8x105 

cycles), (b) Cu/Ta (strain range 0.2%; 3.6x105 cycles) and (c) Ta/Cu/Ta (strain range 

0.4%; 3.6x105 cycles). 

 

    
tensile axis 

Fig. 4-34 SEM image at 52° tilt of surface damage in a fatigued series B Cu/Ta film 

stack with 1.0 µm thick Cu film (strain range 0.2%, 3.6x105 cycles). 
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tensile axis 

Fig. 4-35 SEM images at 52° tilt of cross-sections in fatigued series B Cu/Ta film 

stacks with 1.0 µm thick Cu film: (a) and (c) strain range 0.2%, 3.6x105 cycles, (b) 

and (d) strain range 0.3%, 5.4x104 cycles.  

 

In contrast, the Ta/Cu/Ta film stacks with 1.0 µm thick Cu films formed 

fewer and smaller extrusions, and then only after larger strain ranges or cycle 

numbers than used in the samples without a Ta over-layer.  The presence of cracks 

that are not surrounded by extrusions provides further evidence that extrusion 

formation is suppressed in the Ta/Cu/Ta film stacks. Instead of extrusions, the 

samples form uniformly distributed surface wrinkles as are shown in Fig. 4-36 (b).  

These wrinkles have heights amplitudes that are much smaller than the film thickness 

(~200 nm) and wavelengths comparable to the grain size (~1 µm). Normally, the 

regions near cracks are more strongly wrinkled than the crack-free regions. 

Intrusions are observed under extrusions at the interface between the Cu film and the 
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Ta under-layer (Fig. 4-37 (a)). Voids or intrusions are observed under the wrinkles at 

the interface between the Cu film and the Ta under-layer (Fig. 4-37 (b)). The Ta 

under-layer is deformed and seems to be thicker than 10 nm. This is probably due to 

the re-deposition from the ion milling process. Delamination at the interfaces of Ta 

and Kapton (Fig. 4-37 (a) and (b)) is often observed. 

 

  
tensile axis 

Fig. 4-36 SEM images at 30° of surface before fatigue testing (a) and at 52° tilt of 

wrinkled surface after fatigue testing (b) (strain range 0.4%, 3.6x105 cycles) in a 

Ta/Cu/Ta film stack (series B) with 1.0 µm thick Cu film. 

 

  
tensile axis  

Fig. 4-37 SEM images at 52° tilt in series B fatigued Ta/Cu/Ta film stacks with 1.0 

µm thick Cu film: (a) strain range 0.2%; 3.6x105 cycles, and (b) strain range 0.4%; 

3.6x105 cycles.   
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Not only do the Ta layers influence the nature of the fatigue damage, but also 

the damage evolution. In Cu films, extrusions first form in single grains paired with 

intrusions at the Cu/Kapton interface. Then extrusions form in neighboring grains so 

that chains of extrusions are developed. Finally, cracks initiate from the intrusions 

and grow along the extrusion chains (Section 4.2.1). The damage evolution in the 

Cu/Ta film stacks is similar to that in the Cu films despite some absence of intrusions 

under extrusions at the interface between the Cu film and Ta under-layer. In some 

cases, the Ta under-layer eventually cracks near extrusions or cracks in the Cu film. 

The damage evolution in the Ta/Cu/Ta film stacks is quite different and has the 

following sequence: (i) surface wrinkling and delamination at the interface between 

the Ta under-layer and Kapton, (ii) cracking in the Ta over-layer at locations of 

severe wrinkles, (iii) extrusion formation at the surface of the Cu film and intrusion 

formation at the interface between the Cu film and Ta under-layer at the sites where 

the Ta over-layer has cracked, (iv) crack nucleation at intrusions and extension from 

the intrusion to Cu film surface, (v) crack propagation along the film. 

 

4.5.2 Fatigue damage in samples with 100 nm thick Cu film  
In all of the series B samples with 100 nm thick Cu film, cracks are the 

dominant form of fatigue damage. The cracks propagate out perpendicular to the 

loading axis from pre-existing defects or grain boundaries (Fig. 4-38) and eventually 

a few extrusions form along the cracks as described in Section 4.2.1.  

The detailed morphology of cracks in the three types of series B film stacks is 

different. Fig. 4-39 shows SEM surface views and cross-sections of cracks in the 

three types of samples. In the Cu film (no Ta layers) the cracks lie along twin or 

grain boundaries and are accompanied with some well defined extrusions (Fig. 4-39 

(a)). The cross-section shows a clear crack opening displacement (Fig. 4-39 (b)). In 

the Cu/Ta film stack, cracks are accompanied by rounded hillocks instead of 

extrusions (Fig. 4-39 (c)). These hillocks are probably caused by friction and wear of 

the crack faces after crack formation. There is no clear crack opening displacement 

in the Cu/Ta film stack (Fig. 4-39 (d)) suggesting the presence of compressive stress 

in the Cu/Ta film stacks during the cyclic testing. In general, more extrusions and 

hillocks along cracks are observed in series B 100 nm thick Cu and Cu/Ta film stacks 

than those in series A 100 nm thick Cu films. In the Ta/Cu/Ta film stacks, overlap of 
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the film at the crack occurs without the presence of extrusions or hillocks (Fig. 4-39 

(e) and Fig. 4-39 (f)), suggesting large compressive stresses in Ta/Cu/Ta film stack 

during cyclic testing. 

 

 
tensile axis 

Fig. 4-38 SEM image of surface damage (crack pattern) in Cu/Ta film stack (series 

B) with 100 nm thick Cu film (strain range: 1%, 1.8x105 cycles). 
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tensile axis 

Fig. 4-39 SEM images of cracks and cross-sectioned cracks in series B samples with 

100 nm thick Cu film: (a) and (b) Cu film (strain range 1%, 1.2x105 cycles), (c) and 

(d) Cu/Ta film system (strain range 1%, 1.2x105 cycles), (e) and (f) Ta/Cu/Ta film 

system (strain range 1%, 0.6x105 cycles). (b), (d), (e) and (f) are at tilt of 52°. 

 

Quantitative analysis of the evolution of crack density was performed during 

fatigue testing for all series B samples with 100 nm thick Cu films. The crack 

densities increase linearly with cycle number and reach saturation at around the same 

cycle number for all three types of samples (Fig. 4-40). The crack density is highest 

in the Cu films and smallest in the Ta/Cu/Ta film stacks. 
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Fig. 4-40 Crack densities in Cu film (■), Cu/Ta film stack (●) and Ta/Cu/Ta film 

stack (▲) with 100 nm thick Cu film (strain range: 1%) as a function of cycle 

number. The error bars are calculated with in extrusion density and crack density 

dividing square roots of number of extrusions or cracks and represent the 

uncertainties due to finite sampling size. 

 

4.5.3 Fatigue life 
Fatigue life in the 100 nm thick series B samples is defined as the onset of 

saturation of the crack density (Section 4.2.2). Detailed analysis of this saturation 

point can be found in Appendix B. The definition of fatigue life in series B samples 

with the 1.0 µm thick Cu film is somewhat more difficult since the extrusions are 

difficult to identify in the Ta/Cu/Ta film stacks owing to their small size and small 

number. However, it was observed in the series A 1.0 µm thick Cu films that crack 

growth only starts after extrusion formation has saturated (Section 4.2). Therefore, 

the fatigue life of the 1.0 µm thick Cu film samples is defined as the cycle number 

where cracks first appear in the films or film stacks. 

Fatigue lives of the 100 nm and 1.0 µm thick Cu film samples (with and 

without Ta layers) are plotted in Fig. 4-41. Just as observed in a previous section 

(Section 4.2), there is a clear length scale effect on fatigue life in Cu films: higher 

strains or more cycles are required to cause failure in thinner films or film systems, 

whether they have Ta layers or not. In the 1.0 µm thick Cu film samples, there is a 
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slight increase in fatigue life due to the Ta under-layer, and a dramatic increase of 

fatigue life due to a Ta over-layer. Within the 100 nm thick Cu film samples, there is 

no significant increase in fatigue life due to either the Ta under- of over-layers.  

 

 

Fig. 4-41 Fatigue life diagram for Cu films (squares), Cu/Ta film stacks (triangles) 

and Ta/Cu/Ta film stacks (circles) with 1.0 µm (filled symbols) and 100 nm (open 

symbols) thick Cu film, respectively. The point with the arrow indicates that the 

corresponding strain and cyclic number did not cause observable surface damage in 

the film stack. 
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5 Discussion 
 

In this chapter, interpretations and mechanistic explanations of the 

experimentally observed trends in fatigue damage evolution and fatigue life in the 

thin Cu films will be discussed. 

 

5.1 Microstructures 

The metal films used in this study have microstructures typical of annealed 

sputtered Cu films: grains are columnar and in-plane equiaxed; the mean grain size is 

somewhat larger than and scales with the film thickness (up to some maximum film 

thickness); and twins are prevalent. The trend that the mean grain size scales with the 

film thickness [Hommel2001, Yu2004] is typically justified in terms of local 

minimization of grain boundary energy during grain growth [Mullins1958, Lita2000]. 

At sufficiently large film thicknesses and grain sizes, grain boundary pinning effects 

become dominant and presumably account for non-columnar microstructures and a 

deviation from this scaling behavior.  

Numerous twins are observed in the annealed Cu films studied here. In 

agreement with previous studies on sputtered Cu films, the twin lamella decrease in 

width and increase in density with decreasing film thickness [Yu2004]. In addition, 

the average twin size, width and spacing increase with distance from the interface 

between Cu film and Kapton substrate [Yu2004]. 

 The films used here have mixed (111) and (100) texture with the (111) 

component being dominant with a fairly constant ratio of <111> to <100> out-of-

plane oriented grains, except for in the thinnest films where a stronger (111) texture 

is observed. A general trend from a (100) to a (111) fiber texture with decreasing 

film thickness is expected based on a comparison of elastic strain energy with surface 

and interface energies [Thompson1996] and has recently been observed in Cu films 

with  thicknesses between 3 and 5 µm [Sonnweber-Ribic2006]. Although this model 
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is consistent with the trends presented here, it is not possible to confirm the model 

with certainty since studies of the pre-annealing grain sizes and textures were not 

performed. 

When interpreting trends in the influence of film thickness and/or grain size 

on fatigue behavior, it will be important to recall that: (1) pre-existing defects are 

found in many of the samples and should be distinguished from fatigue-induced 

damage; (2) according to recent studies, it is the minimum dimension of the grains in 

Cu films – either the film thickness or the in-plane grain size – that determines the 

fatigue behavior, and whether the grains are columnar or non-columnar does not play 

a role [Zhang2006]; (3) twin width and density change with film thickness in the 

samples studied here; and (4) (111) texture is stronger in the thinnest films. 

 

5.2 Stress-strain response 

Fatigue damage formation and failure are generated by plastic strain. In the 

tests performed here, loading is applied to the films by controlling the total strain in 

the samples, and an attempt is made to infer the plastic strains from synchrotron x-

ray diffraction measurements performed during cyclic loading. However, the stress-

strain response obtained from the diffraction studies reveals that the plastic strain at 

the small strains used for the fatigue tests is not unambiguously defined. The 

following sections will discuss issues with defining plastic strain as well as the 

measured elastic modulus, stress relief due to crack formation, and cyclic hardening. 

 

5.2.1 Young’s modulus 
According to the known elastic constants for bulk Cu [Landolt-Bornstein], 

the Young’s modulus for a <111> out-of-plane textured solid with random in-plane 

orientations is 130.3 GPa [Huang1998]. However, the initial elastic slopes of the 

stress-strain curves as determined by x-ray diffraction for both 100 nm and 500 nm 

thick films are considerably smaller than this value. Since the series A Cu films also 

contain <100> out-of-plane-oriented grains, possible contributions from these grains 

are estimated to see if they can account for the reduction in modulus. The Young’s 

modulus of <100> out-of-plane-oriented grains with a value of 93.2 GPa 

[Huang1998] is smaller than that of <111> out-of-plane-oriented grains. The elastic 
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slope measured using x-ray diffraction is the ratio of measured stress in <111> out-

of-plane-oriented grains to total sample strain. There are two extreme cases of 

distribution of <111> and <100> out-of-plane-oriented grains in films during the 

loading process (Fig. 5-1). In case (a), the total strain is influenced by <100> out-of-

plane-oriented grains and therefore the elastic slope will deviate the Young’s 

modulus of <111> out-of-plane-oriented grains; and in case (b), the total strain has 

the same value of <111> out-of-plane-oriented grains, so the elastic slope should be  

the same as the young’s modulus of <111> out-of-plane-oriented grains. In case (a), 

the slope can be calculated from 

><><><><

><><

∗+∗
∗

=
111100100111

100111

EVEV
EEE    (5.1) 

where V<111>
  and V<100> are volume fractions of <111> and <100> out-of-plane-

oriented grains, respectively. It should be noted that this simple analysis neglects the 

role of the substrate through which the grains are strained. Therefore, we have in 

general a situation closer to case (b). Nevertheless, Eq. (5.1) gives the lower bound 

for the modulus. 

      

 

Fig. 5-1 Schematic illustration of two extreme cases which may influence the elastic 

slope.    
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Fig. 5-2 is a graph of lower- and upper-bound elastic slope, representing the 

value calculated in the two extreme cases (Fig. 5-1). The lower-bound is volume 

fraction dependent. The smallest V<111> is about 0.85 (see Fig. 4-4) for 500 nm thick 

Cu films and then increases with decreasing film thickness. The corresponding 

calculated lower bound elastic slope is 122.7 GPa for 500 nm thick Cu films and 

increases with decreasing film thickness. In addition, Poisson’s ratio of <111> out-

of-plane-oriented grains is 0.5 [Huang1998] and larger than that of Kapton with a 

value of 0.34. So the <111> out-of-plane-oriented grains undergo biaxial tension 

during the loading, and therefore the corresponding lower bound elastic slope should 

be larger than 122.7 GPa which is calculated in uniaxial condition. However, the 

elastic slopes measured in unloading slope in stress strain curves after 2 cycles in Fig. 

4-23 and Fig. 4-24 are 92 GPa for 500 nm thick Cu films and 66 GPa for 100 nm 

thick Cu films, and smaller than the calculated lower bound and have inverse trend 

with thickness. So there is a significant deficit in the Young’s modulus. 

 

 

Fig. 5-2 A graph of upper-bound (dashed line, 130.3 GPa) and lower-bound (solid 

line, Eq. 5.1) elastic slope of Cu films containing both <111> and <100> out-of-

plane-oriented grains. Measured values indicated with arrows for both 500 nm and 

100 nm thick Cu films (series A) are included.  
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A reduction of Young’s modulus has been observed before in metal thin films 

[Huang2000, Yu2004, Kalkman2001, Read2001, Read2004, and Espinosa2004] 

including Cu films on Kapton [Yu2004], and has been attributed to compliant grain 

boundaries [Huang2000], grain boundary sliding [Kalkman2001] or reversible 

microplasticity [Huang2000, Nucci2005]. Due to imperfect packing, grain 

boundaries are more compliant than the bulk crystals and may lead to a decrease in 

film modulus with decreasing grain size. Similarly, room temperature grain boundary 

sliding can occur in thin metal films and lead to a significant apparent decrease in 

modulus for films with small grain sizes [Kalkman2001]. Furthermore, 

microplastisity such as reversible bowing of dislocation segments can produce 

reversible strain during loading and thereby reduce the effective stiffness 

[Huang2000]. Particularly in samples with initial local stress and strain 

inhomogeneities, such as have been observed in thin films [Phillips2004], 

microplasticity is expected to play a role [Nucci2005]. 

 

5.2.2 Definition of plasticity at small strains 
The reduced effective modulus in the films indicates that strain 

inhomogeneities and microplasticity are present. Therefore, we attempt to quantify 

the amount of cyclic plasticity is in the films. Although there is no obvious transition 

from the elastic to the plastic regime, hystereses appear in every stress-strain 

measurement. If the hystereses are due to plastic dissipation, as schematically shown 

in Fig. 5-3 (a), plasticity can be quantified by measuring the area of the hysteresis. 

On the other hand, the elastic slope in the measurements is smaller than that of bulk 

counterpart, what might be related to microplasticity and reversible grain boundary 

sliding. This can be quantified as the difference between the bulk elastic slope and 

the measured stress strain response, schematically shown in Fig. 5-3 (b).  

In the following, the hysteresis and the amount of microplasticity with the 

number of cycles have been studied. The difference of stress between loading and 

unloading in the same cycle has been determined at half applied total strain (0.6% for 

100 nm thick films and 0.25% for 500 nm thick films). This is shown schematically 

in Fig. 5-4 where (σ1-σ2) is the difference of stress characterizing the hysteresis and 

(σ3-σ1) is difference of stress characterizing microplasticity and reversible grain 

boundary sliding. The change of the differences with testing cycles indicates roughly 
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the change of hysteresis or microplasticity (and the contribution of reversible grain 

boundary sliding is ignored for following analysis) with cycles, respectively.  

 

 

Fig. 5-3 Schematic of plastic dissipation (shaded area) according to (a) hysteresis and 

(b) microplasticity and reversible grain boundary sliding. 

 

 

Fig. 5-4 Schematic of the characterization of the hysteresis by σ1-σ2, and of the 

microplasticity by σ3-σ1, where σ1, σ2 and σ3 are measured at half of the total applied 

strain range. 

 

Fig. 5-5 shows the change in stress due to hysteresis, σ1-σ2, with cycle 

number for both 500 nm and 100 nm thick films. The first cycle for both thicknesses 

is not included due to the measurement failure. In Fig. 5-5 (a), the stress difference 
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keeps constant with some scatter. For the 100 nm film, Fig. 5-5 (b) shows that the 

stress difference decreases with increasing number of cycles.  

Fig. 5-6 shows the change in stress due to hysteresis for all films that were 

studied. Both film thicknesses show a clear trend of a decrease in the hysteresis with 

cycle number. 

 

 

Fig. 5-5 Change of hysteresis (σ1-σ2) during the first 14 consecutive cycles of (a) a 

500 nm and (b) a 100 nm thick film. 

 

In contrast, the effect of microplasticity, (σ3-σ1) remains almost constant for 

both the 500 nm and 100 nm thick films from second cycle to 14th cycle, as shown in 

Fig. 5-7. The first cycle for both thicknesses is not included due to the measurement 
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failure. It is estimated that the reversible motion of 6 dislocations for 500 nm thick 

film and 8 dislocations for 100 nm thick film in every grain is required to correspond 

to the change of microsplasticity (σ3-σ1). These values are high but plausible for the 

grain dimension and estimated by ignoring the contribution of reversible grain 

boundary sliding. However, in Fig. 5-8 it is seen that the contribution from 

microplasticity becomes much larger somewhere between 2 - 5x104 and two million 

cycles.  

 

 

 

Fig. 5-6 Change of hysteresis (σ1-σ2) with cycles in (a) the 500 nm thick films and 

(b) the 100 nm thick films. 
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A possible interpretation of these results is presented by the evolution of 

cracks at the sample surfaces. A sufficient crack density to influence mechanical 

response (see next section) only evolves after many thousands of cycles at the given 

strain range. Therefore the cracks can not explain the change in hysteresis, which 

occurs starting with the first cycle, but can account for the increase in microplasticity. 

The decrease in hysteresis with cycle number is instead attributed to cyclic hardening, 

which begins from the first cycle in both 100 and 500 nm thick films. 

 

 

                     

Fig. 5-7 Change of microplasticity (σ3-σ1) during the first 14 consecutive cycles of 

(a) a 500 nm and (b) a 100 nm thick film. 
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However, the discrepancy is not expected that stronger cyclic hardening 

occurs in 100 nm thick film but with larger microplasticity. We have not found a 

good explanation. 

 

 

 

Fig. 5-8 Change of microplasticity (σ3-σ1) with cycles in (a) the 500 nm thick films 

and (b) the 100 nm thick films. The arrows indicate the cycle number at which a 

significant number of long cracks begin to form in the films. 

 

5.2.3 Cyclic hardening and stress relaxation due to crack formation 
The x-ray diffraction data shows that the film stress in the loading direction 

decreases with increasing cycle number. This decrease is seen in terms of a drop in 
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the slope in the stress-strain plots (Fig. 4-23 and 4-24), an increase in microplasticity 

(Fig. 5-8) and a reduction of the hysteresis width (Fig. 5-6) after 2x106 cycles. In this 

condition, images of the film surfaces show numerous cracks perpendicular to the 

loading direction. The opening of cracks is expected to decrease the tensile stresses 

in the films and to increase the compliance. The coincidence of the increase in 

microplasticity with the formation of a high density of long cracks perpendicular to 

the loading direction provides support for the role of cracks in influencing the 

mechanical response.  

Here a quantitative estimate of the change in compliance and resultant 

reduction in stress due to crack formation is presented. It is compared with the 

experimentally measured changes in stress and used estimate the possible 

contributions from work hardening. A two-dimensional model for crack pattern in 

thin films [Xia2000] is used. With this model, a stress drop perpendicular to an 

isolated semi-infinite straight crack can be calculated as: 

)exp(0 l
x

x
−

−=Δ σσ     (5.2) 

where σ0 is the initial longitudinal stress and l is a reference length which is a 

measure of the stress relaxation zone in the vicinity of a crack: 

hgl ),(
2

βαπ
=               (5.3)  

here α, β is Dundur’s parameters characterizing the elastic mismatch between the 

film and the substrate. The function g(α, β) given in [Xia2000] depends on α and is 

equal to 8 for the case of Cu film on Kapton (α = 0.95).  

According equation (5.3), the reference length l depends on film thickness 

and this agrees qualitatively with more cracks in thinner film (Fig. 4-20). For 500 nm 

thick film l = 6.28 µm and for 100 nm thick film l = 1.26 µm. These values are 

smaller than the measured mean crack spacing of fatigued 500 nm and 100 nm thick 

films with value of 9.2 µm and 2.9 µm as shown in Fig. 4-23 (b) and Fig. 4-24 (b). 

This implies that equation (5.2) can be used here to calculate the stress relaxation by 

cracking due to fatigue. 

 If x is the distance perpendicular to the crack and H is mean crack spacing, 

the average stress perpendicular to cracks σx in the film can be calculated: 
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This can be written as: 

lH
lHr x

2/
)2/exp(1

0

0

0

−−
=

−
=

Δ
=

σ
σσ

σ
σ    (5.5)                               

As result, r = 0.71 and 0.60, respectively, for the 500 nm and 100 nm thick 

films according. 

Using Hook’s law the relative stiffness is: 
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where Eeff and E are determined from the unloading slope of the stress strain curves 

after 2x106 cycles and 2 cycles, respectively Fig. 4-23 and Fig. 4-24. Eeff and E are 

26 GPa and 92 GPa for the 500 nm thick film, and 15 GPa and 66 GPa for the 100 

nm thick film. Now, we obtain r´ as equal to 0.72 and 0.78 for 500 nm and 100 nm 

thick films, respectively.  

 

 

Fig. 5-9 Schematic drawing of the effect of cyclic hardening (dotted arrow) and 

crack formation (dashed arrow) on the stress-strain response of the Cu films. 

 

We see within the limits of accuracy of this estimate that r´ is equal to r for 

the 500 nm indicating the consistency of the results and, therefore, that most likely 
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no or very little strain hardening had taken place. In contrast, for the 100 nm thick 

films r´ is larger than r. This difference is schematically depicted in Fig. 5-9. The 

solid line indicates the stress in the first cycle and the dotted line the stress after 

fatigue (with cracks present). It is reasonable that there is a difference indicated by 

the solid arrow between the stresses in the first cycle and after fatigue due to the 

stress relaxation related to cracking. But the fact that r´ is larger than r suggests that 

there is a larger difference indicated by dashed arrow. This implies that prior to the 

relaxation of stress by crack formation, some cyclic hardening during the fatigue 

tests in the 100 nm thick film occurred. The very small difference between r´ and r 

for the 500 nm thick films indicates that the cyclic hardening in 500 nm thick films is 

not significant compared to that in 100 nm thick films, agreeing with the results of 

analysis of hysteresis (in Section 5.2.2).    

An increase of experimentally determined work hardening rate with 

decreasing film thickness for monotonic testing from literature [Keller1998, 

Hommel1999a, Hommel2001, Weiss2001, Weiss2000, and Weihnacht2001] was 

summarized by Blanckenhagen and his colleagues [Blanckenhagen2004] and 

compared with the date from discrete dislocation simulation [Blanckenhagen2004]. It 

is argued that source-controlled deformation mechanism in thin films account for 

more significant hardening in thinner films, whereat the decrease of the number of 

dislocation sources with decreasing film thickness/grain size enhances the work 

hardening [Blanckenhagen2004]. In this work with cyclic testing, the experimental 

and calculated results show stronger cyclic hardening in thinner films consistently. It 

is believed that irreversible dislocation motion is responsible for the cyclic 

hardening, but it is not expected with larger microplasticity in thinner films. This 

discrepancy is difficult to explain.  

 

5.3 Length scale effect on fatigue behavior of thin Cu films 

A clear length scale effect on both fatigue damage morphology and fatigue 

life has been presented in Section 4.1. Specifically, it has been shown that extrusions 

form in the thicker films, where they act as sites for crack initiation, whereas in 

thinner films, extrusions are absent and the cracks form at boundaries and defects. 

The decrease in film thickness/grain size also leads to a marked increase in fatigue 
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life. In the following sections, this behavior will be compared with the fatigue 

behavior of bulk samples and length scale effects on each aspect of damage 

formation and fatigue life will be discussed. For structural metallic components 

without large extrinsic defects, different regimes for the evolution of damage during 

fatigue life can be distinguished in order of increasing cycle number: 

• Microstructural changes, such as the formation of dislocation structures in 

the interior of grains. 

• Extrusion and intrusion formation, at the sites where dislocations structures 

intersect the sample surface.  

• Crack initiation, usually at the surface intrusions. 

• Propagation of short cracks (short compared to microstructural features such 

as grain size) and then coalescence of small cracks to one large dominant 

crack, the growth of which can be described by linear elastic fracture 

mechanics. 

• Rupture of the specimen or component when the crack reaches a critical 

length for a given maximum stress according to the critical stress intensity. 

In the case of our thin films, the last stage cannot be reached since the film is 

supported by the substrate and rupture of the specimen does not occur. However, the 

first four regimes can be identified and they may be all subject to size effects related 

to film thickness and/or grain size. As a result, the interpretation of length scale on 

fatigue damage formation and fatigue life requires separate discussions of all of these 

regimes. 

 

5.3.1 Length scale effects on fatigue damage 

5.3.1.1 Dislocation structures  

In bulk, large-grained metals, the dominant modes for fatigue damage are the 

formation of long-range dislocation structures within grains such as persistent slip 

bands (PSBs). However, the dislocation structure formation is constrained in small 

crystal volumes. For example, no PSBs are observed in thin, fine-grained Cu films 

(200 nm to 3.0 µm thick) [Zhang2003, Zhang2005, and Zhang2006]. Nevertheless, 

dislocation walls are found in the largest grains of the thickest films (3.0 µm), while 
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only diffuse dislocation structures or individual dislocations are present as the grain 

size and film thickness decrease [Zhang2003, Zhang2005, and Zhang2006]. 

In addition, due to the anisotropy in the films, different stress distribution 

appears in different oriented grains [Baker2001a], and even in the same grains 

[Phillips2004]. The surface relief observed in earlier stage of fatigue tests in the films 

(Fig. 4-6) probably can be considered as the results early relaxation of 

inhomogeneous residual stress at grain boundaries. In general, besides the dominated 

thickness and grain size effects on fatigue damage, the strain homogeneity induced 

by structure is also an important factor to be considered. 

 

5.3.1.2 Extrusions and intrusions 

The damage that occurs in bulk samples where PSBs intersect the surface is 

typically in the form of extrusions surrounded by intrusions. This surface structure 

has been related to the rather complex structure of the PSBs [Essmann1981]. 

Typically, cracks are initiated at these surface intrusions. Despite the absence of 

PSBs, extrusions are observed in our films, albeit with decreasing dimensions when 

grain size and film thickness are decreased. It is argued that extrusion formation is 

controlled by the amount of local plastic strain in the film, whether carried by 

individual dislocations or by dislocation structures [Zhang2001]. The work presented 

here on even thinner films and smaller grains supports this picture: extrusions are 

very small and form rarely in the thinnest films and are only found in regions where 

the plastic strain is locally increased, e.g. along cracks. So the decrease of extrusions 

in size and number can be considered as the reflection of dependence of dislocation 

motion and nucleation on length scale. Furthermore, the films show extrusions at the 

surface and intrusions at the film/substrate interface. The fact that extrusions do not 

form at buried grain boundaries or at film/substrate interfaces, is not surprising given 

the mechanical constraint from the underlying material, and the known fact that 

coatings inhibit extrusion formation [Stoudt2000]. The formation of pairs of surface 

extrusions and interface intrusions in the thin films is an expected consequence of 

repetitive slip of individual dislocations. The fact that the intrusions form in the Cu 

on polyimide samples indicates that stress concentration produced by dislocations 

piling-up against the interface lead to the formation of intrusions. Dislocations 
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pushed up against interfaces and twin boundaries have been observed in these 

samples [Zhang2005]. In another thin films system, Ag on SiO2 [Schwaiger2003a], 

interface voids were found rather than intrusions. It can be argued that the void 

formation is related to the condensation of vacancies produced by annihilation of 

dislocations [Schwaiger2003a], or from stress concentrations from dislocation pile-

ups. This difference may suggest that the nature of interface damage is influenced by 

interface quality. 

For annealed films, grain size scales with film thickness. In this work, the 

effects on fatigue damage from thickness and grain size are not separated. However, 

the grain size clearly affects the extrusion formation based on the fact that extrusions 

are always found in larger grains [Zhang 2006]. Similar observation is also found in 

this work. Extrusions can not be observed within the small grains with small plane-

view grain size in thicker films (3.0 µm and 1.0 µm), while extrusions can even be 

observed within large grains with large plane-view grain size in 200 nm thick film. 

This means the glide length of dislocations in a crystal affects the formation of 

extrusions in effect. Furthermore, if twin boundaries would have been taken into 

account for the determined value of grain size, it would have decreased more quickly 

with film thickness than that plotted in Fig. 4-1 due to increase of twin density with 

decreasing film thickness. This corresponds to a quicker decrease in glide length of 

dislocations. In that case, of the change in twin density contributes to the size effect. 

This would be consistent with a contribution of twin boundaries to the strength of Cu 

films during monotonic testing as reported in [Yu2004]. 

Extrusions are found in both <111> and <100> out-of-plane-oriented grains 

of the Cu films. But the statistic analysis of influence of texture on damage formation 

has not been performed in presented work. However, <100> out-of-plane-oriented 

grains are more susceptible to damage formation reported in both Ag films on SiO2 

substrate using cyclic bending test [Schwaiger2003a] and Cu films on SiO2 substrate 

during thermal fatigue [Mönig2005]. It needs more quantitative investigation to 

know if the change in ratio of the integrated peak intensities I(111) / I(200) (Fig. 4-4) has 

an influence on damage change with thickness. 

Twin boundaries in bulk specimens are well-known sites for crack initiation 

[Heinz1990, Blochwitz2003, and Blochwitz2005] as well as for early PSB nucleation 

[Llanes1992, Peralta1994], presumably due to the high local stresses generated by 
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elastic crystal anisotropy. Twin boundaries play a similar role in the thin Cu films in 

that cracks often initiate in the boundaries in the thinner films and extrusion-intrusion 

pairs form next to and parallel to the boundaries in the thicker films. 

 

5.3.1.3 Crack initiation     

The studies show that the cracks in the thicker Cu films initiate at the 

intrusions at the film/substrate interface (Fig. 4-10), and not from the surface as for 

bulk samples. In the thinner films, the cracks form directly at pre-existing defects or 

at boundaries, without the aid of extrusions or intrusions. But it is not clear if cracks 

are initiated first at the surface, in the interior of film or at the interface between film 

and substrate, as schematically shown in Fig. 5-10. As the film thickness decreases, 

the ratio of surface roughness (especially at grain boundaries) to thickness becomes 

higher, and this leads to a more pronounced stress concentration. So it is possible that 

crack initiates from surface to interface as shown in Fig. 5-10 (a). Also, blocking of 

dislocations by grain or twin boundary can result in stress concentration in interior of 

film, and crack may initiate there, as shown in Fig. 5-10 (b). In addition, crack may 

initiate at the interface to the substrate (Fig. 5-10 (c)).  

 

 
Fig. 5-10 Schematic of crack initiation at boundaries from (a) surface, (b) interior 

film and (c) interface between film and substrate. 

 

Predicting the film thickness dependence of crack initiation is complicated, 

but it is expected to be more difficult at smaller length scales. The fact that the crack 

density at saturation (Fig. 4-20) increases with decreasing film thickness may 

therefore be a reflection of the increased applied strain range or the increased density 

of twin and grain boundaries in the thinnest films.  
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5.3.1.4 Crack propagation     

The ease of propagation of a “channel” crack in a film on a substrate depends 

on the stress and the substrate mechanical properties, among other things 

[Hutchinson1992, Xia2000]. Here, the large compliance of the polyimide substrate 

increases the crack opening displacements and the distance over which stresses are 

relaxed in the neighborhood of a crack. Estimates of the driving forces for channel 

crack propagation under monotonic loading show that very larges strains are 

necessary (~10%) in the absence of film delamination [Li2005].  Since we do 

observe cracks at much smaller strain ranges and we do not observe delamination, 

we argue that crack propagation under cyclic loading can proceed under much 

smaller strains, presumably through assistance by dislocation processes ahead of the 

crack tip. The influence of the film thickness on such a crack propagation mechanism 

is not obvious because it is influenced by the crack opening displacement, the size of 

the plastic zone ahead of the crack and the applied stress which all depend on each 

other in a complicated manner for our sample geometry.    

                                                                                                                                                                

5.3.2 Length scale effect on fatigue life 
There is a significant effect of length scale on fatigue life: larger strains are 

required to cause failure in thinner films. Even though we have used a rather 

qualitative failure criterion, it is shown in Fig. 4-22 that no damage occurs in thinner 

films at small strain ranges (data points indicated with arrows), while thicker films 

have failed under these same conditions. This shows that there is an unambiguous 

effect of film thickness/grain size on fatigue life in the high cycle fatigue regime.    

The fatigue failure data (Fig. 4-22) has been re-plotted in Fig. 5-11 to show 

the applied strain range required to cause failure after 106 cycles. This representation 

enables the definition of three regimes of fatigue behavior: a bulk-like regime, a 

transition regime, and a boundary-controlled regime. 

Bulk-like regime: Fig. 5-11 shows that the effect of film thickness or grain 

size on fatigue life is weak at lengths greater than 1.0 µm, in that the applied strain 

range required to cause failure in 106 cycles does not change much. This length scale 

independence is fairly easily understood in terms of fatigue induced dislocation 

structures: in samples with thicknesses or grain sizes larger than around 1 µm 

[Zhang2006], characteristic dislocation structures with length scales smaller than 1 
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µm form early on during fatigue. These dislocation structures dominate subsequent 

fatigue behavior and lead to a more or less length scale independent behavior. 

Transition regime: In the shaded region of Fig. 5-11 between 1.0 µm and 100 

nm, there is a large increase in the applied strain required for causing failure. The 

total strain required to produce 0.1% plastic strain (yield strain) [Hommel2001] 

under monotonic loading is also included in the figure and it parallels the strain 

needed to cause fatigue failure. Presumably, this parallel behavior is an indication 

that both effects are controlled by the same underlying phenomenon. The 

mechanisms that have been proposed for the increase in monotonic flow stress with 

decreasing sample size are most often based on the Orowan stress [Nix1989, 

Arzt1998] for dislocation motion [Nix1989, Thompson1993] and nucleation 

[Arzt2001]. This transition regime also corresponds to the length scale over which 

the nature of the dominant fatigue damage in the Cu films changes from extrusions to 

cracks. Typically, global or local plastic strains are the driving force for fatigue 

failure. Therefore, it is not surprising that an increase in applied strain range is 

required for causing failure since it corresponds to an increase in yield strength under 

monotonic loading (see solid line in Fig. 5-11). In other words, the effect of length 

scale on fatigue life is due to the same mechanisms that govern the effect of length 

scale on film strength, i.e. constraint effects on dislocation nucleation and motion 

owing to the small dimensions [Nix1989, Arzt1998, Arzt2001 and 

Blanckenhagen2003]. 

Boundary-controlled regime: The one data point for the 50 nm thick films is 

not significantly higher than the data point for the 100 nm thick films, indicating that 

the effect of length scale on fatigue may be weaker below 100 nm. Although this 

single data point is not “convincing”, in combination with the observed transition in 

fatigue damage nature and other observations in the literature [Moenig2004], it 

points to the possibility of a new regime at small length scales. 

The change in morphology of fatigue damage, from extrusion to crack 

dominated, supports the idea of a change in fatigue mechanism.  A simple scenario 

can be developed based on the idea that the stress necessary for dislocation 

nucleation and motion, and thus for extrusion formation [Zhang2006], increases with 

decreasing film thickness. When the thickness is below a certain value - 100 nm in 

our case - the stresses become high enough to allow for crack nucleation at existing 
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defects or at boundaries. If such a scenario is indeed accurate, predictions of the 

fatigue behavior for films with thicknesses below roughly 100 nm remains entirely 

open and will depend on the length scale dependence of crack initiation and 

propagation. 

 

 

Fig. 5-11 Applied strain range necessary to cause failure in 106 cycles in Cu films 

(square symbols) and in large grained bulk Cu (▲) [Lukáš1987]. The nature of the 

damage in the films is indicated by the symbols: extrusions ( ), cracks with 

occasional extrusions ( ), cracks along boundaries ( ). The solid lines show the 

strain range at 0.1% yield for Cu films under monotonic loading [Hommel2001]. 

 

5.3.3 Columnar structure vs non-columnar structure 
It is clear that the extrusion features is dependent dominantly on the volume 

size of crystals in effect whatever in columnar or non-columnar structures. This 

means extrusions form preferentially in grains with large volume size. However, Fig. 

4-21 shows that the ratio of extrusion height to thickness is much higher in 200 nm, 

500 nm and 1.0 µm thick films than in 3.0 µm thick films and strongly dependent on 

applied strain in 3.0 µm thick films. It is not sure if this is a thickness effect or 

structure effect (the 3.0 µm thick films have a non-columnar structure). In addition, it 

is observed that Ta over-layer leads to a more homogeneous plastic deformation in 
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1.0 µm Cu films. If the non-columnar structure has also a similar effect to lead to a 

more homogeneous plastic deformation, then we can explain the smaller ratio of 

extrusion height to thickness in 3.0 µm thick films. If such a scenario is indeed 

accurate, it may be also explain why the fatigue life of 3.0 µm thick Cu films is little 

longer than that of 1.0 µm thick films. 

 

5.4 Fatigue behavior of thin Cu films at 200 °C 

As temperature is raised, diffusion processes play a more important role. This 

may account for the more rounded shape of the extrusions and crack edges. It also 

may lead to stress relief and account for the slightly lower density of extrusions. The 

grain boundary grooving and local film thickening observed at 200°C may be 

evidence of stress relief mechanisms. Increased diffusion may also explain why 

pores are seen near cracks formed at 200°C and not near those formed at room 

temperature. Presumably, the driving force for pore formation at grain and twin 

boundaries is local stress concentration such as due to a pile-up of dislocations 

[Zhang2007].  

Yield stress decreases with increasing temperature [eg, Thouless1993], which 

means that for a given total strain range, the plastic strain range will increase with 

increasing temperature. If this effect dominates over the possible diffusion-controlled 

stress relief, it can explain the decrease of fatigue lives at 200 °C. In addition, during 

the testing starting process as temperature increasing from room temperature to 

200 °C, the initial stresses in Cu films should increase or be driven in tension due to 

lower thermal expansion coefficient in Cu (16.5x10-6/K) than Kapton (20x10-6/K). 

So, the increasing initial tensile stresses can also have a contribution to a decrease of 

fatigue lives at 200 °C. 

The probable oxide particles (white spots generated during the tests) could 

have some influence on fatigue life. Increased fatigue life in Cu is reported due to 

oxidation in literature and interpreted by a mechanism in which the oxide particles 

act to homogenize the strain and to increase the work-hardening capacity of the 

material [Eckert1987]. However, it is still not clear here whether the white spots 

influence the fatigue life of our Cu films at all. 
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Fig. 5-12 shows fatigue lives of Cu films on Kapton tested at 200 °C and Cu 

films on Si during thermal fatigue [Mönig2005]. Except that fatigue life of 100 nm 

thick Cu film at 200 °C is consistent with the data of thermal fatigue, fatigue lives of 

Cu films at 200 °C are larger than those of thermal fatigue generally. This may be 

explained by a simple temperature effect as the thermal fatigue is driven by the 

temperature cycling between room temperature and 400 °C [Mönig2005], reaching 

much higher temperature than 200 °C.       

 

 

Fig. 5-12 Fatigue life diagram for Cu. Data from tests at 200 °C (shown as filled 

squares). Data from Cu on Si during thermal fatigue (temperature between room 

temperature and 400 °C) shown as solid lines [Mönig2005] are included for 

comparison. 

      

5.5 Influence of Ta under- and over-layers on fatigue 

behavior 

There is a clear effect of Ta under- and over-layers on both fatigue damage 

and fatigue life in the Cu films. The presence of the Ta layers influences the nature of 

the damage that is formed, both at the surface and at the buried interface, and the 

presence of a Ta over-layer is found to improve the fatigue life in the thicker Cu 
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films. In addition, these influences changes with change of Cu film thickness. 

Possible explanations for these effects will be discussed in following sections. 

5.5.1 Influence of Ta layers on 1.0 µm thick Cu films 
Although dislocations pushed up against a Cu/Kapton interface have been 

observed [Zhang2005], it is still not clear what exact role such a metal/polymer 

interface plays on dislocation activities. However, the Cu/Ta interface has been 

studied and can serve as barrier of dislocations [Vidal2006]. The fact that the flow 

stress is increased due to Ta layers in submicron regime (Fig. 5-13) indicates that the 

Ta/Cu interface serves much more effectively as blocking boundary for dislocations 

than Cu/Kapton interface. However, as thickness is increased to 1.0 µm, the 

influence of Ta layers on flow stress is neglected because boundaries constraint 

effects on dislocation motion and nucleation are not significant in such length scale. 

Fig. 5-14 shows schematically the different constraint effects according to the 

proposed mechanisms for different flow stress shown in Fig. 5-13. The dislocation 

can glide freely to the Cu surface and Cu/Kapton interface or be partially blocked at 

the Cu/Kapton interface (Fig. 5-14 (a)). In Cu/Ta/Kapton film stack, dislocations can 

glide freely to Cu surface but deposit at the Cu/Ta interface surface (Fig. 5-14 (b)). 

However, dislocations are blocked in both sides at the Cu/Ta interfaces in 

Ta/Cu/Ta/polyimide film stack (Fig. 5-14 (c)). The absence of intrusions under some 

extrusions, the surface intrusions paired with surface extrusions and surface 

roughening (small surface extrusions and intrusions) in Cu/Ta film stacks are evident 

for more dislocations activity at the surface than at Cu/Ta interface, supporting the 

interface constraint model illustrated in Fig. 5-14.   

The increase of fatigue life in Cu/Ta film stacks with 1.0 µm thick Cu film is 

probably due to hindrance of intrusion formation at film/substrate interface induced 

by blocking of dislocations at Cu/Ta interface. Cracks initiate from intrusions to 

surface (Section 4.2.1) and therefore, the hindrance of intrusion formation can lead to 

an increase of fatigue life in Cu/Ta film stacks. The more significant increase of 

fatigue life results from another effect, namely the suppression of extrusion 

formation by a Ta over-layer. This is similar to the known fact that coatings inhibit 

extrusion formation [Stoudt2000]. Instead, the surface becomes wrinkled during the 

cyclic testing. Because strength of Ta is higher than that of Cu, Ta may first deform 

elastically, while Cu deforms plastically. Then, stress concentrations are produced by 
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piling-up of dislocations at the interface, so that the stress at the interface becomes 

high enough to allow plastic deformation in the Ta layer. The stress concentration is 

partially relaxed by the plastic deformation of Ta over-layer, leading to surface 

wrinkling. In addition, the replacement of extrusions by surface wrinkling reflects 

more homogenous plastic deformation due to the constraint of Ta over-layer. 

Extrusions are considered as the sites where serious stress concentration can result in 

crack initiation. Therefore, suppression of extrusion formation and more 

homogenous plastic deformation due to Ta over-layer lead to hindering and deferring 

the crack initiation and thereby fatigue life is improved dramatically. In addition, the 

initial stress state in Cu films before testing may be compressive due to Ta layers. 

The deformed Ta under-layer showed in Fig. 4-37 (b) is evident for the compression 

state. This compressive initial stress state can also contribute to the increase of 

fatigue life.     

 

 

Fig. 5-13 Flow stress at 0.5% plastic strain as a function of film thickness for Cu 

films, Cu/Ta and Ta/Cu/Ta film stacks. Ta layers are 10 nm thick. These data are 

replotted data from [Gruber2007]. 

 

Delamination has been clearly observed in fatigued Ta/Cu/Ta film stacks at 

the interface between the Ta under-layer and the polyimide substrate. Delamination 

suggests that the compressive stress in the films is large enough to reach the fracture 
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resistance of the interface. Due to the smaller thermal extension coefficient of Ta, it 

is argued that larger compressive residual stress can evolve in the Ta/Cu/Ta film 

stacks. But the fact that the delamination occurs at the interfaces under wrinkles or 

extrusions suggests that the initial compressive stress is not large enough for 

delamination without an additional driving force due to cyclic deformation. 

 

 

Fig. 5-14 Schematic of constraint effect of interface condition on dislocation 

motions: (a) unpassivated film on substrate with weak interface, (b) under-layer 

passivated film and (c) passivated film with both over-and under-layers. 

 

5.5.2 Influence of Ta layers on 100 nm thick films 
There is a clear length scale effect on fatigue life and damage in Cu films 

whatever with or without Ta layers. Fatigue life increases with decreasing film 

thickness and damage mode changes from extrusions (wrinkles for Ta/Cu/Ta film 

stacks) dominated to cracks dominated. In addition, we see the influence of Ta layers 

on fatigue behavior in 100 nm thick Cu films is very different from that in their 

thicker counterparts (1.0 µm). There is almost no change in fatigue life and nature of 

damage mode (crack as dominating damage) in 100 nm thick Cu films. Fig. 4-40 

shows that the three types of film stacks (Cu, Cu/Ta, and Ta/Cu/Ta) have similar 

trend of cracks evolution despite different crack density. In other words, the Ta over-

layer has large influence on the damage mode in thicker films in terms of 

suppression of extrusion formation, but much little influence on crack formation in 

thinner films as they start from pre-existing defects. From energetic viewpoint, the 

crack growth resistance for a material is given by the sum of plastic dissipation and 

surface energy of the generated crack faces. The plastic dissipation by cracking is 

decreased with decreasing film thickness [Litteken2005]. Therefore, it is argued that 

the Ta layers have almost neither a contribution to plastic dissipation, nor a 

contribution to surface energy due to their limited thickness. This implies that the Ta 
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layers almost does not change or influence the crack growth resistance of the film 

stacks. In summary, the fatigue life is hardly influenced by the Ta layers.  

There is a proposed fatigue mechanism transition in thin Cu films from 

dislocation mediated extrusion formation to crack formation with decreasing film 

thickness (see Section 5.3). The different influences of Ta layers, especially Ta over-

layer on fatigue life and damage in both 1.0 µm and 100 nm thick Cu films confirm 

this proposed mechanism transition. In addition, the fact that cracks formed in 

Ta/Cu/Ta film stacks with 100 nm thick Cu film without extrusions or hillocks along 

cracks as in Cu films or Cu/Ta film stacks support the scenario that when the 

thickness is below a certain value - 100 nm in our case - the stresses for extrusion 

formation become high enough to allow for crack nucleation at existing defects or at 

boundaries without assistance of extrusions. Extrusions formed along cracks in Cu or 

Cu/Ta film stacks after crack initiation and during crack propagation probably due to 

stress concentration at crack tip. In addition, the different mechanism (cracking 

dominated) in fatigue behavior of 100 nm thick film stacks than that (constraint of 

dislocation motion and nucleation) in flow behavior of monotonic test account for 

the increased flow stress of 100 nm thick Cu films due to Ta layers has no influence 

on fatigue life. 

The different crack densities (Fig. 4-40) are probably due to compressive 

stress states in Cu/Ta and Ta/Cu/Ta film stacks. The hillocks along cracks in Cu/Ta 

film stacks and the overlap of crack faces in Ta/Cu/Ta film stacks suggests 

compressive stress state in both Cu/Ta and Ta/Cu/Ta film stacks.  
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6 Summary and conclusion 
 

The ultimate goal of this work has been to gain insights into the mechanisms 

responsible for the length scale dependence of fatigue damage formation and failure. 

To this end, the fatigue behavior of Cu films with thicknesses between 50nm and 3.0 

µm has been investigated at both room temperature and 200°C. Through the 

incorporation of surrounding Ta layers, the influence of interfaces on fatigue 

behavior in Cu films has also been studied. The stress-strain response of the Cu films 

during in-situ fatigue testing has been determined using synchrotron x-ray diffraction 

and used to interpret the damage morphologies and failure lives. 

To study length scale effect on fatigue behavior in thin Cu films 

systematically, cyclic tensile testing of 50 nm to 3.0 µm thick Cu films deposited on 

compliant Kapton substrate was performed, and periodically interrupted to 

investigate fatigue damage evolution using SEM and FIB. There are clear length 

scale effects on both damage morphology and fatigue life. Extrusions decrease in 

number and size with decrease of thickness/grain size. More cracks are observed in 

thinner films. In thicker films, cracks initiate first from the locations of 

extrusion/intrusion pair and then propagate. But in very thin films (100 nm and 50 

nm), cracks initiate directly at pre-existing defects or grain or twin boundaries, and 

then few extrusions are formed after crack initiation and during crack propagation. 

There is a clear length scale effect on fatigue life in film thickness between 1.0 µm 

and 100 nm: higher strain or more cycles are required for thinner films to form 

damage. But the data of fatigue life in 50 nm thick films is not significantly higher 

than the data for the 100 nm thick films. Based on the observation of change in both 

damage morphology and fatigue life, we have proposed that there is fatigue 

mechanism transition from dislocation mediated extrusion formation to crack 

formation with decreasing film thickness. A simple scenario can be developed based 

on the idea that the stress necessary for dislocation nucleation and motion, and thus 

for extrusion formation, increases with decreasing film thickness. When the 
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thickness is below a certain value - 100 nm in our case - the stresses become high 

enough to allow for crack nucleation at existing defects or at boundaries. If such a 

scenario is indeed accurate, predictions of the fatigue behavior for films with 

thicknesses below roughly 100 nm remains entirely open and will depend on the 

length scale dependence of crack initiation and propagation. 

A similar investigation of fatigue behavior in thin Cu films (50 nm to 3.0 µm) 

has also been performed at 200°C. The same trend of length scale effects has been 

observed that fatigue damage changes from extrusion dominated to crack dominated 

as film thickness decreases and that higher strain or more cycles are required in 

thinner films to form damage. However, the fatigue damage at 200°C differs from 

that at room temperature clearly in that rounded extrusions, pores interior of Cu films, 

and grain boundary grooves are observed. All these differences support that diffusion 

processes are involved in damage formation. In addition, the fatigue life is clearly 

reduced at 200°C.  

100 nm and 1.0 µm thick Cu films were passivated with 10 nm thick Ta 

layers to study the interface effect on fatigue behavior in thin Cu films. Ta layers 

influence both fatigue damage and fatigue life. For Ta over-layers on 1.0 µm thick 

Cu films fewer and smaller extrusions, wrinkled surface and delamination at 

film/substrate interfaces were observed. In contrast, Ta layers do not change the 

dominance of cracks in fatigue damage for 100 nm thick Cu films, but influence the 

crack morphology. In the 1.0 µm thick Cu films passivated with both Ta over-and 

under-layers, there is a dramatic increase of fatigue life due to depression of 

extrusion formation owing to Ta over-layer. However, Ta layers have much smaller 

influence on fatigue life in 100 nm thick Cu films in which cracks are dominated 

damage. This indicates that the Ta over-layer have a large influence on extrusion 

formation but almost no influence on crack formation. The different influence of Ta 

over-layer on fatigue behavior between 1.0 µm and 100 nm thick Cu films confirms 

the proposed fatigue mechanism transition from dislocation mediated extrusion 

formation to crack formation as film thickness is decreased.   
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Appendix A. Determination of fatigue 

failure in Cu films  

 
In Section 4.2.2, the fatigue failure is defined as onset of saturation of 

extrusion evolution (500 nm, 1.0 µm and 3.0 µm) and crack evolution (50 nm, 100 

nm and 200 nm). Fatigue lives of 100 nm (strain range 0.8%), 200 nm (strain range 

0.6%) and 1.0 µm (strain range 0.2%) have also been thereby determined. Here the 

determination of fatigue lives of other films under other strain ranges is listed.  

Fig. A-1 through Fig. A-4 show evolution of extrusion (3.0 µm and 500 nm) 

and crack (50 nm) density as a function of number cycles. Fatigue failure is indicated 

with arrows as damage evolution reaches to saturation. 

 

 
Fig. A-1 Extrusion density in a series A 3.0 µm thick Cu film (strain range 0.2%) as 

a function of cycle numbers. Fatigue failure is indicated with arrow. 
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Fig. A-2 Extrusion density in a series A 500 nm thick Cu film (strain range 0.4%) as 

a function of cycle numbers. Fatigue failure is indicated with arrow. 

 

 
Fig. A-3 Crack density in a series A 50 nm thick Cu film (strain range 1%) as a 

function of cycle numbers. Fatigue failure is indicated with arrow. 
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Fig. A-4 Crack density in a series A 50 nm thick Cu film (strain range 0.8%) as a 

function of cycle numbers. Fatigue failure is indicated with arrow. 

 

Several data (3.0 µm and 1.0 µm, strain range: 0.4%; 500 nm, strain range: 

0.6%; 200 nm, strain range: 0.8%; 100 nm, strain range: 1%; 50 nm, strain range: 

1.2%) in fatigue life plot (Fig. 4-22) are not determined directly using damage 

evolution plots like showed in above 4 figures, because fatigue damage in these films 

after first testing interval using DMA, which is about 104 cycles (minimum of 

interval), is clear enough and qualitatively comparable with the damage state at 

saturation in other films. In these cases, the number of cycles in first interval is 

defined as fatigue life. 

 Appendix A
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Appendix B. Determination of fatigue 

failure in Cu films with Ta layers 

 
Fatigue failure determined here is also based on the principle of onset of 

saturation in damage evolution introduced in Section 4.2.2. Crack densities of 100 

nm thick Cu, Cu/Ta, and Ta/Cu/Ta film stacks under different strain ranges are 

plotted in Fig. B-1 to Fig. B-5 as function of number of cycles. Fatigue failure is 

indicated with arrows showing the onset of saturation of crack density.  

 

 
Fig. B-1 Crack density in a series B 100 nm thick Cu film (strain range 1%) as a 

function of cycle numbers. Fatigue failure is indicated with arrow. 
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Fig. B-2 Crack density in a series B Cu/Ta film stack with 100 nm thick Cu film 

(strain range 1%) as a function of cycle numbers. Fatigue failure is indicated with 

arrow. 

 

 
Fig. B-3 Crack density in a series B Ta/Cu/Ta film stack with 100 nm thick Cu film 

(strain range 1%) as a function of cycle numbers. Fatigue failure is indicated with 

arrow. 
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Fig. B-4 Crack density in a series B Cu/Ta film stack with 100 nm thick Cu film 

(strain range 0.8%) as a function of cycle numbers. Fatigue failure is indicated with 

arrow. 

 

 
Fig. B-5 Crack density in a series B Ta/Cu/Ta film stack with 100 nm thick Cu film 

(strain range 0.8%) as a function of cycle numbers. Fatigue failure is indicated with 

arrow. 

 

In Section 4.2.2, fatigue failure in 1.0 µm thick films is been defined as onset 

of saturation of extrusion density. But here in 1.0 µm thick Ta/Cu/Ta film stacks, 

extrusions are depressed by Ta over-layer and difficult to identify. But in 

Section4.2.2, we see the cracks appear at the site of saturation of extrusion density. 

So the fatigue failure here in 1.0 µm thick Cu, Cu/Ta and Ta/Cu/Ta film stacks is 

defined as appearance of cracks. 

 Appendix B
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