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Abstract

In this thesis we describe the current and shot noise properties of quantum dot sys-

tems. Their transport characteristics reveal information about interesting quantum

mechanical effects such as the energy quantization and electronic correlations due to

Coulomb interactions of electrons. Based on a diagrammatic real time approach we

developed a numerical method to describe the current and shot noise. The method

includes all relevant quantities such as the electron spin, the Coulomb interaction as

well as the delocalized nature of the electronic wavefunctions in coupled quantum dots.

Our approach is based on a perturbative expansion in terms of the coupling constant

to the leads and thus allows to describe sequential tunneling as well as co-tunneling

transport in local as well as non-local multilevel systems. For a system of a double

quantum dot we analyzed in detail the influence of asymmetries on the electronic trans-

port properties and found strong correlations. In contrast, larger systems such as three

and more coupled quantum dots display a strong noise enhancement even in fully sym-

metric situations due to their complex delocalized wavefunctions. Within the Coulomb

blockade transport is governed by co-tunneling processes. In particular we investigated

the regime of co-tunneling assisted sequential tunneling and described characteristic

features in the differential conductance as well as the noise properties.

Deutsche Zusammenfassung

Die vorliegende Arbeit befasst sich mit der Beschreibung des elektronischen Stromes

und des Schrotrauschens in Quantenpunkten. Deren charakteristische Transporteigen-

schaften geben Aufschluss über interessante quantenmechanische Effekte wie die Quan-

tisierung der elektronischen Energieniveaus sowie Korrelationseffekte, die z.B. durch

die Coulomb Wechselwirkung der Elektronen hervorgerufen werden. Basierend auf

einer Realzeit-Störungstheorie wurde eine numerische Methode zur Berechnung des

Stromes und des Schrotrauschens implementiert, die es erlaubt, relevante Grössen wie

den Spin der Elektronen, ihre gegenseitige Coulomb Wechselwirkung sowie die de-

lokalisierte elektronische Wellenfunktion in gekoppelten Quantenpunkten zu berück-

sichtigen. Unsere Methode beruht auf einer störungstheoretischen Entwicklung in

Ordnungen der Kopplungskonstanten zu den elektronischen Zuleitungen. Sie erlaubt

erstmals die vollständige Beschreibung eines elektronischen Systems mit mehreren

lokalen sowie nicht lokalen Niveaus unter Berücksichtigung sowohl sequentieller Tun-

nelprozesse als auch Kotunnel-Prozesse. Es wurde detailliert der Einfluss von Asymme-

trien auf das Strom- und Rauschverhalten in Doppelquantenpunkten untersucht und

gezeigt, unter welchen Bedingungen starke Korrelationen im elektronischen Transport

auftreten. Hingegen zeigen grössere Systeme, wie drei oder mehrere gekoppelte Quan-

tenpunkte aufgrund ihrer komplexen elektronischen Wellenfunktion ein stark erhöhtes

Rauschen auch in symmetrischen Konfigurationen. Innerhalb des Coulomb Block-

ade Regimes wurde insbesondere das Kotunneln-induzierte sequentielle Tunneln im

Leitwert als auch im Rauschen in Abhängigkeit einer Gatespannung charakterisiert.





Deutsche Zusammenfassung

Die vorliegende Arbeit befasst sich mit der Beschreibung des elektronischen Stromes

und des Schrotrauschens in nanoskaligen Systemen wie zum Beispiel Quantenpunk-

ten. Die charakteristischen Transporteigenschaften der Quantenpunkte geben Auf-

schluss über interessante quantenmechanische Effekte wie die Quantisierung der elek-

tronischen Energieniveaus sowie Korrelationseffekte, die durch elementare Wechsel-

wirkungsprozesse (Coulomb Wechselwirkung) der Elektronen hervorgerufen werden.

Basierend auf einer Realzeit-Störungstheorie wurde eine numerische Methode zur Be-

rechnung des Stromes und des Schrotrauschens implementiert, die es erlaubt, alle re-

levanten Grössen in Quantenpunktsystemen, also den Spin der Elektronen, ihre gegen-

seitige Coulomb Wechselwirkung sowie die delokalisierte elektronische Wellenfunktion

in gekoppelten Quantenpunkten zu berücksichtigen. Die numerische Methode beruht

auf einer störungstheoretischen Entwicklung in Ordnungen der Kopplungskonstanten Γ

zu den elektronischen Zuleitungen der Quantenpunktsysteme. Sie erlaubt erstmals die

vollständige Beschreibung eines komplizierten nanoskaligen, elektronischen Systems

mit mehreren lokalen sowie nicht lokalen Niveaus unter Berücksichtigung sowohl se-

quentieller Tunnelprozesse in erster Ordnung in Γ als auch Kotunnelprozesse in zweiter

Ordnung in Γ.

Als erstes System werden zwei kohärent gekoppelte Quantenpunkte betrachtet. Das

diskrete Energiespektrum des Doppelquantenpunktes wird durch Diagonalisierung be-

rechnet und es ergeben sich delokalisierte elektronische Zustände wie z.B. der soge-

nannte Bonding- und Antibonding-Zustand, bei denen ein Elektron auf beiden gekop-

pelten Quantenpunkten verteilt ist. Bei angelegter Spannung wird der Strom (I),

das Schrotrauschen (S) sowie insbesondere das Verhältnis der beiden, der Fano-Faktor

(F = S/2eI), untersucht. Für einen symmetrischen Doppelquantenpunkt steigt eine

typische Strom-Spannungskurve (I-V) stufenweise an, wobei die Stufenpositionen das

Spektrum der Quantenpunktstruktur widerspiegeln. Das Schrotrauschen ist relativ zu

unkorreliertem Transport wegen des Pauli-Prinzips unterdrückt. Besteht eine Asym-

metrie des Doppelquantenpunktes, beispielsweise durch ungleiche Kopplungen an die

elektronischen Zuleitungen oder durch nicht resonante Quantenpunktniveaus, resul-

tiert dieses in asymmetrischen Strom-Spannungskurven und einem asymmetrischen

Rauschverhalten für jeweils positive und negative Spannungen. Bei starker Asym-

metrie in beiden Fällen zeigt das System einen negativen differentiellen Leitwert sowie

erhöhtes Rauschen. Es wird beschrieben, dass dieses Verhalten auf Korrelationseffekte

der Elektronen zurückzuführen ist, welche durch die ausgedehnte Wellenfunktion in

Kombination mit der Coulomb Wechselwirkung in diesem System besonders stark her-

vortreten. Im Vergleich dazu zeigt das häufig untersuchte, “lokale” Anderson Modell

im Falle einer reinen rechts/links asymmetrischen Kopplung dieses Verhalten nicht.

Im Gegensatz zu dem oben diskutierten Doppelquantenpunkt kann auch ein völlig sym-



metrisches System, bestehend aus drei in Reihe gekoppelten Quantenpunkten, starke

Korrelationen im elektronischen Transport aufweisen, die sich in Form eines extrem

erhöhten Schrotrauschens zeigen. Bei einem solchen System ist der mittlere Quanten-

punkt nicht direkt mit den Zuleitungen gekoppelt. Die komplexe Struktur der elektron-

ische Wellenfunktionen, die insbesondere von der Stärke der Coulomb-Wechselwirkung

im Vergleich zum elektronischen Hüpfen zwischen den Quantenpunkten abhängt, hat

entscheidenden Einfluss auf die beobachteten Transporteigenschaften. Beispielsweise

wird durch eine starke Coulomb-Wechselwirkung zwischen benachbarten Quanten-

punkten die Triplet-Wellenfunktion dahingehend beeinflusst, dass sich zwei Elektronen

hauptsächlich auf den beiden äusseren Quantenpunkten aufhalten. Dadurch wird das

sequentielle Tunneln zu bestimmten elektronischen Zuständen wie dem Quadruplet

(drei Elektronen) unterdrückt. Es wird gezeigt, dass eine Konkurrenz zwischen den

oben beschriebenen Prozessen und anderen am Transport teilnehmenden, nicht un-

terdrückten Prozessen zu dem erwähnten stark erhöhten Schrotrauschen führt, allein

aufgrund der intrinsischen elektronischen Struktur. Das erhöhte Schrotrauschen ist

insbesondere für Experimente relevant, in denen die Messung des oft schwachen Schro-

trauschsignals vor dem Hintergrund des 1/f-Rauschens schwierig ist.

Die entwickelte numerische Methode erlaubt desweiteren eine Untersuchung von Ko-

tunnelprozessen in Quantenpunktsystemen, die vor allem die Transporteigenschaften

in Bereichen wie der Coulomb-Blockade entscheidend beeinflussen, in denen sequen-

tielles Tunneln unterdrückt ist. Eine Analyse des Anderson Modells im Coulomb

Blockade Regime zeigt, dass intrinsische Energieskalen wie die inelastische Kotunnel-

Anregung und die sequentielle Tunnelbarriere aus charackteristischem Verhalten des

Schrotrauschen bzw. Fano-Faktors bestimmt werden können.

Ein weiterer Transportprozess, der eine wichtige Rolle innerhalb der Coulomb-Blockade

spielt, ist das Kotunneln-induzierte sequentielle Tunneln (KIST), welches in einem

Quantenpunkt mit zwei oder mehreren Niveaus auftritt. Dieser Transportprozess zeigt

sich im differentiellen Leitwert als eine zweite Stufe, die nach der ersten inelastischen

Kotunnel-Stufe auftritt. Während die inelastische Kotunnel-Anregung von der Gate-

spannung unabhängig ist, variiert die Kotunnel-induzierte Anregung mit ihr. In dieser

Arbeit konnte erstmals auch im Schrotrauschen bzw. im Fano Faktor eine von der

Gatespannung abhängige charakteristische Energieskala der KIST-Prozesse in Form

eines Dreiecks innerhalb der üblichen Coulomb-Diamanten gesehen werden. Der Fano-

Faktor reflektiert den KIST-Transportbereich mit noch grösserer Sensitivität als der

differentielle Leitwert.

Zusammenfassend wurde in dieser Arbeit eine numerische Methode entwickelt, die den

elektronischen Transport sowie die Rauscheigenschaften von nanoskaligen Systemen

wie Quantenpunktsystem beschreibt. Es wurden neuartige physikalische Prozesse ge-

funden und erklärt, die zu einem besseren Verständnis experimenteller Transportmes-

sungen beitragen sowie von Bedeutung für mögliche technologischen Anwendungen sein

können.
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Chapter 1

Introduction

Recent years have witnessed an enormous progress in fabrication techniques for elec-

tronic devices working on the nanometer scale. With the reduction of feature sizes of

electrical components the motion of free carriers becomes more and more confined. The

strong confinement of charge carriers will eventually lead to quantum mechanical ef-

fects of which a thorough understanding is mandatory in the course of miniaturization.

A prominent example of a quantum mechanical effect is the conductance quantization

in quantum point contacts [1].

Owing to their smallness, nanoscale systems such as quantum dots, nanowires, single

molecules and short carbon nanotubes exhibit interesting transport characteristics [2,

3, 4, 5, 6, 7, 8, 9] which are based on their discrete energy structure and correlations in

the electronic transport process [10]. Additionally, interaction effects of electrons start

to play an important role which lead to well known phenomena such as the Coulomb

blockade [11] or the Kondo effect [12, 13, 14] at very low temperatures.

In the present work we will study the non-equilibrium transport through quantum dot

systems. We will focus on characteristic fingerprints of their electronic spectrum as

well as on correlation effects that are reflected in the transport properties.

Quantum dots are small, nanosize islands that are either structurally or electrostatically

isolated from the outside world. In analogy to real atoms quantum dots contain a small

number of electrons (e.g. 1-100) that are bound by a confining potential and have

discrete energies [2]. When studied in electronic transport experiments single quantum

dots exhibit atomic-like spectra with a shell structure and show a manifestation of

Hund’s first rule [15]. Similarly, several strongly coupled quantum dots allow electrons

to be delocalized over the entire dot system, resembling a molecular state. In this

case the inter-dot coupling has to be strong and coherent whereas the coupling of the

interfacial dots to the leads is usually much weaker. The described similarities to real

atoms and molecules have led to the terms “artificial atoms” and “artificial molecules”

5



6 CHAPTER 1. INTRODUCTION

for single and coupled quantum dots, respectively. These systems constitute excellent

candidates for studying electronic transport in molecular nanostructures on mesoscopic

length scales. Tunable tunneling barriers, a known fixed charge number on the dots

as well as additional gate electrodes to control the dots electrostatic potential are just

some of their advantages.

The Coulomb blockade is an important concept in describing single electron tunneling

effects in nanoscale systems which are coupled weakly to large reservoir leads. It

refers to a situation in which electronic transport is suppressed due to the Coulomb

repulsion between electrons below a certain bias threshold. In order to observe such

behavior, the charging energy which is essentially the energy needed to add an electron

to the nanoscale system, has to be large compared to the temperature. Experiments

on semiconductor quantum dot systems with their tiny capacitances (C ≈ 10−15 F)

are therefore performed at low temperatures in the range of 10−3K − 1K. Molecular

systems having still smaller capacitances (C ≈ 10−18 F) can display charging effects up

to room temperature [16] which makes them extremely interesting from a technological

point of view.

The interplay of charging effects as well as quantum confinement gives rise to a wide

range of interesting physics [2, 17, 18]. Research groups worldwide study current-

voltage curves (I-V’s) and the differential conductance (∂I/∂V) in electronic transport

measurements searching for characteristic fingerprints of the nanoscale systems. Typi-

cal I-V’s of quantum dots and molecules show Coulomb blockade behavior followed by

a non-linear stepwise increase of the current-voltage characteristics [19, 20]. The step

positions are defined by the discrete excitation spectrum and thus reflect the electronic

properties of the quantum system. Asymmetric I-V’s as well as regions of negative

differential conductance (∂I/∂V < 0) have been observed but are often difficult to re-

late to intrinsic properties of the molecule or quantum dot. One possible source of

asymmetric I-V’s are asymmetric contacts leading to coupling parameters of different

strengths. Since the current contains information only about a combination of the

coupling parameters, it can be difficult to determine them separately. Also the number

of the electronic states participating in transport as well as the relative strength of the

Coulomb interaction with respect to other intrinsic energy scales of the nanostructure

are not revealed in a current measurement alone.

One way to gain more information is to study the shot noise. The shot noise is a

general property of electrical conductors and is related to the correlations of current

fluctuations in time. In nanoscale systems where the current is carried only by few

electrons, statistical fluctuations in time can become very strong. They are due to

the discreteness of charge which is quantized in terms of the elementary charge e. In

contrast to the current which contains information about the transmission properties

of the system, the shot noise reflects the dynamical properties of the transport process.

It is known from theory [21, 22, 23] as well as from experiments [24, 25] that the
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shot noise is much more sensitive to the electron-electron interactions than the average

current. Furthermore it reveals details of the nanostructures low energy spectrum, in

particular when studied in the Coulomb blockade regime. The coupling parameters of

the quantum dot’s electronic states provide another energy scale that the shot noise is

very sensitive to. In fact, analytical expressions relating the plateau values of the shot

noise directly to the couplings to the left and right lead have been presented earlier

[26, 27, 28] and hence allow the extraction of coupling parameters from experimental

data. We will elaborate more on the aspect of asymmetries in chapter 4 in which

asymmetric couplings and non-resonant quantum dot levels for the case of an double

quantum dot, i.e. an artificial diatomic molecule, are discussed.

In mesoscopic systems it has become customary to use a dimensionless quantity, called

the Fano factor, instead of the shot noise. The Fano factor F is defined by the shot

noise S divided by 2e times the average current I, i.e. F = S/2eI. The denominator is

referred to as the Schottky or Poissonian noise value since it was originally discovered

by Schottky in vacuum tubes in which electron transport events obeyed a Poissonian

distribution function. In this case and in all other cases where electron transport

is due to uncorrelated, independent events the Fano factor turns out to be equal to

unity, F = 1, which is referred to as a Poissonian Fano factor. In fermionic systems

the Fano factor is mainly suppressed with respect to the Poissonian value due the

Pauli principle, leading to sub-Poissonian values F < 1. On the other hand in certain

asymmetric situations or as a consequence of strong interaction effects the Fano factor

can become even super-Poissonian, F > 1, which we will discuss in some detail in

chapter 4 and 5.

So far a weak coupling situation of the nanoscale system to the reservoir leads has

been considered. In this picture the electronic charge is transferred one by one which

is referred to as sequential tunneling. In theory these processes can be accounted for

within a first order perturbative expansion in the coupling strength Γ. In the Coulomb

blockade regime where sequential transport is exponentially suppressed second order

processes which appear within the perturbative expansion in the coupling Γ start to

be important. These processes are termed co-tunneling processes since they describe

the tunneling of two electrons at a time via an intermediate, virtual state of the dot

system. Electron co-tunneling leaves characteristic fingerprints both in the current and

in the shot noise. It has been observed in a number of experiments [5, 6, 29] at low

bias in the Coulomb blockade regime.

The aim of this thesis is to study non-equilibrium electron transport through the quan-

tum dot systems mentioned above. For that purpose a diagrammatic technique that

allows for a perturbative expansion of the current and shot noise is applied and ex-

tended within a computational approach to describe complex multilevel quantum dot

systems. We account for the most relevant parameters such as the spin of electrons,

their Coulomb interactions and the delocalized nature of the electronic wavefunctions.
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Sequential as well as co-tunneling effects in transport will be discussed and related to

experimental findings where possible.

About this thesis

This thesis is organized as follows. We start with an introductory chapter focusing on

basic concepts of electronic transport in nanoscale systems. Specifically we consider

quantum dot systems and discuss them in the context of their atomic- and molecular-

like spectra. We introduce the concept of Coulomb blockade which is a crucial effect in

tunneling transport in the presence of electronic interactions. In addition to the current

the shot noise is an important quantity which contains information about electronic

transport properties. We also provide an overview of classical noise sources as well as a

description of shot noise for mesoscopic conductors. We give a brief summary of recent

experimental findings on current and conductance as well as shot noise measurements

that relate to our theoretical results.

In the third chapter we resume some aspects of the real time transport theory developed

in references [30, 31, 32] as relevant to our problem. In particular the current and

shot noise are formulated within a diagrammatic approach up to second order in the

coupling constant following the work of [33]. As a major result of this thesis we sketch

the computational implementation of a general second order transport description for

the current as well as the shot noise for multilevel electronic systems. The crucial

ingredients in this approach are the second order transition rates which we explicitly

show how to calculate. Mathematical details involved in the calculation are presented in

appendix C. Furthermore several schemes to solve the resulting equations are identified

and their validity and usefulness are evaluated in various transport regimes.

The forth chapter concentrates on sequential transport in single quantum dots and

coupled quantum dot systems. As an introduction to basic features of the electronic

transport through quantum dots systems we first discuss a single two level quantum dot

including relaxation of the quantum dot states due to photon emission processes. In-

teresting effects such as negative differential conductance (NDC) and super-Poissonian

noise are identified and their origin explained. In order to study the influence of de-

localized electronic wavefunctions on the current and shot noise we focus on a double

quantum dot system (DQD) with strong inter-dot coupling [34]. The electronic wave-

functions now split into bonding and anti-bonding states where one electron is shared

between the two dots. Motivated by recent experimental setups we investigate the

effect of asymmetries such as asymmetric level coupling and detuned energy levels on

the current and shot noise and discuss how the the nature of the electronic wave-

function in combination with Coulomb interactions give rise to features like NDC and

super-Poissonian noise [34].

In contrast to the DQD longer chains of coupled quantum dots, where the middle
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dots are not directly coupled to the leads may show strong correlations in form of

super Poissonian noise even in symmetric situations [23]. We discuss a coherent triple

quantum dot in the presence of strong nearest neighbor Coulomb interactions. The

influence of the interactions on the nature of the electronic wavefunctions, specifically

the triplet and quadruplet states, is investigated and found to be responsible for the

strong noise enhancement above the sequential tunneling threshold.

In chapter 5 we focus on co-tunneling processes that become important when sequential

tunneling is suppressed. Whereas previous work mainly concentrated on the single level

Anderson model, we describe elastic and inelastic co-tunneling in a two level quantum

and analyze the dependence of the co-tunneling step features with varying temperature

and coupling constants Γ. In this system another interesting transport regime, namely

co-tunneling assisted sequential tunneling, shows up. We investigate in detail the gate

voltage dependence of the associated energy scale and present how a triangle structure

arises in the differential conductance as well as the Fano factor inside the typical

Coulomb diamonds.

Chapter 6 constitutes our conclusions on electronic transport in the discussed quantum

dot systems. A brief outlook is presented in the end. The appendices A, B and C

contain detailed information on the diagrammatic rules, the first order transition rates

and the second order transition rates, respectively. They mostly contain mathematical

definitions and solutions which are of interest if one desires to use our theoretical

approach or wishes to explore the details.
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Chapter 2

Basic concepts of electronic

transport in nanoscale systems

In the present chapter we describe the electronic properties of nanoscale systems, in par-

ticular quantum dots which exhibit similar transport features like atoms or molecules.

Furthermore we discuss the most prominent features of single-electron transport such

as the Coulomb blockade. Special emphasis is put on the discussion of the shot noise,

the dynamical current-current fluctuations, and the Fano factor as they have proved

to be very useful tools to study electronic correlations in mesoscopic systems. The

last section of this chapter focuses on recent experimental work which provides a back-

ground for our subsequent theoretical considerations.

We will start by characterizing different types of quantum dots such as vertical and

lateral setups. Specifically we discuss these systems in the context of their atomic-

and molecular-like spectra as revealed from transport experiments [15, 35]. Single

quantum dots display features of a shell structure which is characteristic for atoms.

Arrays of coupled quantum dots allow for delocalized electrons over the whole dot

structure. A double quantum dot with strong inter-dot coupling thus resembles a di-

atomic molecule. The described similarities to real atoms and molecules have led to

the terms artificial atoms or artificial molecules for single and coupled quantum dots

respectively. Quantum dot experiments with their defined control over system pa-

rameters therefore provide excellent systems to study atomic and molecular transport

properties on mesoscopic length scales.

2.1 Quantum dots: Artificial atoms and molecules

Quantum dots are nanosize “islands” on which electrons are confined in the three spa-

tial dimensions and isolated either structurally or electrostatically from the outside

11
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world [2]. Due to their small dimensions they have small capacitances and can display

a discrete energy spectrum. Typically quantum dots consist of many atoms ranging

from hundreds to millions but only a small number (< 100) of electrons that are re-

levant in the electronic transport can be free. There exist two types of quantum dots,

namely metallic and semiconducting quantum dots. The latter show energy quanti-

zation already at structure sizes around 100 nm while metallic dots having a much

higher density of states usually have a quasi continuous spectrum [36]. We will focus

on semiconducting quantum dots which can more easily be contacted with macroscopic

electrodes and thus be studied in electrical transport measurements.

Two fabrication techniques dominating the variety of experimental realizations of quan-

tum dots can be distinguished: Lateral and vertical quantum dot structures. Fig. 2.1

Figure 2.1: Scanning electron microscopy (SEM) picture of a lateral quantum dot

structure defined by six metallic gates on top of a GaAs/AlGaAs heterostructure.

The tunneling barriers are formed underneath the gate electrodes when a electro-

static potential is applied to them [19].

depicts a typical lateral quantum dot setup taken from [19]. A two dimensional elec-

tron gas (2DEG) is formed at the interface of the different semiconductor materials

GaAs/AlGaAs whereas the motion in the direction perpendicular to the surface plane

is confined. By means of negative voltages which are applied to the top “finger” gate

electrodes the 2DEG is depleted in the area underneath the gates and tunneling bar-

riers can be formed between the gate pairs F-1, F-2 and F-3. Thus the device can

be used to form a single quantum dot as well as a double quantum dot. Additionally

other gate electrodes (e.g. gate I, II in Fig. 2.1) can be used to vary the electrostatic

potential of the individual dots. The tunability of the tunneling barriers provides a

great advantage of the lateral quantum dot structures. However, in most experimental

setups the wanted effect of an additional gate electrode provokes the negative side ef-

fect, that the tunneling barriers are also influenced and thus can not be kept constant.
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In a typical transport measurement the coupling of the right and left contact region is

usually weak (of the order of 10 µeV ) which leads to single electron tunneling through

the structure. Since the charging energy (see following section 2.2) in these systems is

of the order 10-100 meV transport experiments must be performed at low temperatures

(0.1-1K).

Vertical quantum dots are formed of layered semiconducting heterostructures. Here

Figure 2.2: A vertical quantum dot structure made up of a zero dimensional region

sandwiched between semiconducting heterostructure layers taken from [37].

the current flows vertically with respect to the 2DEG plane inside the heterostructure.

The tunneling barriers are due to large bandgap material (indicated by AlAs layers

in the schematic sketch depicted in Fig. 2.2) and are usually very high (> 100 meV).

The lateral confinement is provided by pillars that are etched out of the layered het-

erostructure and have an extremely small diameter [15]. The contacts at the emitter

and collector electrodes can be easily defined. However it is much more difficult to

allow for an additional gate electrode that is usually structured by metallic coating

of parts of the pillar. On the other hand the tunneling barriers are very constant in

strength and thus less sensitive to external fluctuations [2].

Having discussed the experimental realizations of quantum dots we want to address the

issue why under certain conditions quantum dot systems can be regarded as molecular

nanostructures. As in real atoms small semiconductor quantum dots have a completely

discretized zero dimensional energy spectrum with a total charge that is restricted to

an integer number. In analogy to the Coulomb potential of a nucleus electrons are

bound in a quantum dot by the confining potential of the structure. Therefore they

are often referred to as artificial atoms. First transport experiments [15] on semi-

conductor vertical quantum dots have shown evidence for a shell structure together

with a manifestation of Hund’s first rule. However, it is worth mentioning some differ-

ences between these artificial atoms and their real counterparts. While real atoms and

molecules have a 1/r-potential the confining in quantum dots is much weaker and has

a power law ∼ rα behavior, where α denotes an integer number. Thus the resulting



14 CHAPTER 2. BASIC CONCEPTS OF ELECTRONIC TRANSPORT

IN NANOSCALE SYSTEMS

spectra are very different. Quantum dots have a size that is approximately three orders

of magnitude larger than real atoms. Thus they can be manipulated much more easily

than real atoms. For instance, the confining potential can be manipulated by means

of a gate electrode that is electrostatically coupled to the dot structure. Furthermore

the quantum dot states can be probed by a transport measurement using the attached

source and drain electrodes whereas in real atoms, experiments mostly rely on the use

of optical techniques.

In contrast to single atoms more molecules consist of a number of atoms where the

electrons are able to jump from one constituent atom to another thereby lowering the

total energy of the system. As a consequence molecules have a spatially delocalized

electronic wavefunction. To realize a molecular state in a quantum dot system several

single quantum dots need to be strongly coupled together in a coherent way. The outer

couplings of the interfacial dots to the reservoir electrodes are usually much weaker

and couple incoherently. The setup displayed in Fig. 2.1 allows for an experimental

realization of a molecular state in a double quantum dot (DQD) structure. One can

realize for instance a bonding (anti-bonding) state in which one electron is shared be-

tween the two dots. If the inter-dot tunnel coupling is large the situation resembles a

covalently bonded artificial molecule.

There is a huge general interest to study these systems since they provide a perfect

playground for experimentalists to observe atomic or molecular transport properties

on mesoscopic length scales. From an technological point of view quantum dot systems

have promising applications as optical memory elements, lasers, photodetectors etc. [2].

In particular double quantum dot structures are seen as potential candidates for a core

element of quantum computers, the q-bit [38, 39].

2.2 Tunneling transport and Coulomb blockade

Essentially the ability to observe single-electron tunneling effects relies on the Coulomb

blockade effect. Let us consider a small island that is tunnel-coupled to two electrodes.

The tunnel junctions are well described in a capacitative picture by CL and CR. Due to

the electrostatic Coulomb interactions between electrons the classical charging energy

Ech has to be overcome in order to populate the island with an additional electron. We

write

Ech = EC(N − nG)2 (2.1)

where N denotes the excess charge on the island and nG = 1
e
CGVG is the number of

external charges due to the applied gate voltage. The energy scale EC is given by

EC =
e2

2CΣ
. (2.2)
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Here CΣ is the effective total capacitance of the entire island structure. Eq. 2.1 describes

a parabola for different values of N . The external charge nG can be varied continously.

At low voltages and low temperature, i.e. EC >> max{kBT, eVbias}, the number of

island charges is fixed and corresponds to the charge of the ground state. At half

integer values of nG the energy of two successive charge sectors, for instance q = Ne

and q = (N + 1)e become degenerate which leads to a peak in the current (and the

conductance G = ∂I/∂V ). As a result the current periodically oscillates as a function of

the gate voltage (excess charge nG) which is known under the term Coulomb oscillations

[17]. In between the current is suppressed signalizing the Coulomb blockade.

This classical picture of the charging energy often holds also for quantum mechanical

systems. In small quantum dot systems quantization leads to a total energy of

EN (nG) = Ech(N, nG) +

Norb
∑

l

εlnl, nl ∈ 0, 1
∑

l

nl = N (2.3)

with Norb quantized quantum dot levels of energy εl (where we have neglected the

spin degrees of freedom for simplicity). The energy needed to populate the island

with an extra electron is now given by the charging energy EC plus the level spacing

∆εl = εl+1 + εl of the quantum dot. For our later discussion we will choose the level

spacing to be large compared to other energy scales meaning that the inclusion of one

or at mostly a few orbital quantum dot levels is a sensible assumption. Note that for a

very small level spacing (e.g. in the limit ∆εl → 0 ) a continuous spectrum is obtained

which describes a metallic island.

However, this classical picture has its limitations. So far we have assumed a weak

coupling of the quantum dot system to the leads, corresponding to opaque tunnel

barriers. In this picture electrons are transferred one by one through the system which

is referred to as sequential tunneling or a first order processes. Sequential tunneling can

be accounted for within a first order perturbative expansion in the coupling constant

Γ (Golden rule). Fig. 2.3 shows a sequential tunneling process. For a larger coupling
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Figure 2.3: First order or sequential tunneling process through a single quantum

dot level at non-zero bias defined by the difference of the chemical potentials µL, µR.

to the leads, corresponding to more transparent tunnel barriers, higher order tunneling
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processes such as the simultaneous tunneling of two electrons at a time become possible.

The latter is referred to as co-tunneling which will be discussed in detail in chapter 5.

2.3 Shot noise and Fano factor

Noise is a general property of electrical conductors. It is defined by the electri-

cal current-current correlations in time and may be of multiple origin. Usually ex-

perimentalists would like to get rid of the noise in order to obtain a clear signal.

However during the last decade the great potential of the study of noise, specifi-

cally the quantum shot noise in mesoscopic systems has been realized since the shot

noise properties of a system are fundamentally connected with the statistical prop-

erties of transport. This interest has led to a fast emerging subfield of mesoscopic

physics [40, 41, 42, 43, 44, 45, 46, 47, 48, 49].

In this chapter we will summarize some basic properties of noise (following [42]) to-

gether with an analysis of the different possible sources and its corresponding qualita-

tive behavior. We will focus on the most interesting contribution of the noise, namely

the non-equilibrium shot noise in mesoscopic systems. In addition we introduce the

Fano factor as a dimensionless parameter characterizing the strength of the shot noise

with respect to the Schottky (uncorrelated or Poisson) limit. Experimental results

on shot noise measurements in strongly correlated quantum systems can be found in

section 2.4.

2.3.1 Basic properties and sources of noise

As mentioned above noise can be of several origins. We start with the description of

two classical sources of noise [50], such as the Lorentzian and 1/f-noise. Lorentzian

noise is due to stochastic processes with a single time constant τ and present in many

electrical conductors. As a consequence the number of charge carriers (electrons) is

fluctuating in a random fashion around discrete values. Therefore Lorentzian noise is

often called random telegraph noise (RTN). The noise spectral density can be written

as

S(ω) ∼
τ

1 + ω2τ 2
. (2.4)

There are several examples for these type of fluctuations. On of them is the generation-

recombination noise which is often found in semiconductors with defects. Due to

electron-hole pair creation and annihilation the charge number fluctuates and Lorentzian

noise is produced [51].
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At low frequencies there is a dominant noise source termed 1/f-noise. The name origi-

nates from a noise spectral power density of the form

S(ω) ∼
1

ωα
, (2.5)

where the exponent α is a number approximately of the order of unity. As has been

mentioned before fluctuations that are due to a single time constant τ produce a

Lorentzian shape of the noise power. However, if there are several time constants the

superposition of many such events can lead to a long and slow time correlation which

can in turn result in a 1/ω behavior ([51] and references therein). This type of noise

has been observed in a variety of systems meaning that the microscopic origins must

be very different. From an experimental point of view one is able to avoid 1/f-noise by

moving to high frequencies. At some threshold the 1/f-noise finally vanishes and white,

frequency independent shot noise can be measured. The threshold frequencies differ

for various systems. Since typically the 1/f fluctuators are temperature activated the

frequency threshold value very much depends on the temperature of the system. For

noise measurements in quantum dot setups usually temperatures of few mK are used

which leads to frequency independent shot noise from frequencies ω ∼ 10 − 100kHz

onwards [52]. Single molecule experiments are often performed at much higher temper-

atures. Thus to measure the shot noise level one has to move to very high frequencies

such as for example GHz [5] which makes shot noise measurements extremely difficult.

Next we want to discuss the classical shot noise which is due to the discreteness of

the electric charge. Shot noise was first discovered by Schottky et al. [53] in vacuum

tubes. In these systems the current originates from thermal emission of electrons in

the cathode. Hence no electron correlation effects are present and transport events are

entirely random. Thus, the current can be understood as a sequence of delta peaks in

time where each peak corresponds to an electron pulse. The finite frequency noise is

defined as the Fourier transform of the current autocorrelation function and is given

by the expression

S(ω) =

∞
∫

−∞

dteiωt 〈δI(t)δI(0) + δI(0)δI(t)〉 , (2.6)

where δI(t) = I(t) − 〈Î〉 and 〈Î〉 is the time averaged expectation value of the current

operator Î. In the zero frequency limit (ω → 0) which is often satisfied in experiments,

S(ω) ≈ S(0). Hence in the following discussion we will always refer to the zero fre-

quency shot noise.

In the case of uncorrelated, independent transport events eq. 2.6 yields

SP = 2e〈I〉, (2.7)

where the characteristic shot noise value SP is referred to as the Schottky or Poissonian

noise. The name Poissonian relates to the fact that uncorrelated electron transport
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as it is found in the case of the vacuum tubes obeys a Poisson distribution function.

Eq. 2.7 implies that if the electric charge was not quantized also the shot noise would

vanish. Experiments with superconductors where the charge is carried in cooper pairs

(q = 2e) show Poissonian shot noise values of SP = 4e〈I〉. This suggests that the shot

noise can be used to determine the effective charge of the carrier entities [42].

Another source of noise is the thermal noise which is also called Nyquist-Johnson-noise.

At non-zero temperatures thermal noise is unavoidable. Thus typically the two types of

noise can not be separated in an experiment. In contrast to the pure non-equilibrium

shot noise thermal noise appears without any applied bias voltage. It derives from

the fluctuations of the occupation number of the system’s states. In thermodynamic

equilibrium the occupation number n is given by the Fermi distribution function, i.e.

〈n〉 = f . The probability for a state to be occupied is also given by f whereas the

probability for an empty state is (1−f). This leads to 〈(n−〈n〉)2〉 = f(1−f) at finite

temperatures and vanishes for T = 0. The occupation number fluctuations give rise to

equilibrium current fluctuations in an external circuit. Thermal noise is always white,

i.e. frequency independent.

Before we will move on to our discussion of shot noise in mesoscopic systems let us

introduce the dimensionless quantity

F =
S

2eI
(2.8)

which is called the Fano factor. The Fano factor is defined by the shot noise divided by

the Schottky noise value. In the absence of electron correlations its value is around unity

corresponding to Poissonian noise S = SP . Deviations from this value are called super-

and sub-Poissonian (F > 1 and F < 1 respectively) and can appear in mesoscopic

systems with strong correlations which is discussed in the following chapter.

2.3.2 Shot noise in mesoscopic systems

The above discussion of noise is based on an entirely classical statistical description.

When discussing shot noise in mesoscopic systems one has to treat the problem quan-

tum mechanically [42, 54, 55, 56]. In the following we will sketch briefly the Landauer-

Buettiker approach [42] and state the results for the current and noise in an equilibrium

and non-equilibrium situation. The two contributions of the shot noise, the thermal

noise in equilibrium and pure non-equilibrium shot noise are easily identified in this

approach. Strictly speaking the presented Landauer-Buettiker results apply to non-

interacting systems. However, for the systems we want to treat electron correlation

effects will be important. For that reason we additionally discuss shot noise properties

in correlated mesoscopic systems.

Let us start in a ballistic transport picture in which by definition no correlations

are present. The mesoscopic structure or scattering region is attached to two reservoir
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Figure 2.4: Sketch of a scattering region (e.g. a mesoscopic conductor) attached

to two electron reservoir leads. The lead electrons are assumed to be in thermal

equilibrium and thus their distribution function is given by the Fermi distribution

fL, fR.

leads which are in thermal equilibrium and can thus be described by Fermi functions

fL, fR (see Fig. 2.4). We assume that the scattering matrix which contains information

about the transmission and reflection properties of the mesoscopic conductor is already

known from a quantum mechanical calculation. Applying the Landauer-Buettiker for-

malism the average symmetrized current I = (〈IR〉 − 〈IL〉)/2 can be obtained by the

expression

I =
e

2π~

∑

n

∫

dE Tn(E)[fL(E) − fR(E)]. (2.9)

Here fr(E) = [e(E−µr)/kbT + 1]−1 denotes the Fermi functions for the leads r = L,R

and Tn(E) are the eigenvalues of a transmission matrix which are interpreted as the

transmission probabilities of an eigenchannel n. In the zero temperature limit and for

small bias the derivative of Eq. 2.9 with respect to bias voltage yields the Landauer

equation (for many channels n)

G =
e2

2π~

∑

n

Tn(E). (2.10)

for the conductance of the system. Eq. 2.10 shows that the conductance can be ex-

pressed in terms of transmission probabilities only.

In the case of the shot noise this is not possible anymore since in general it is the

product of transmission and reflection properties. Within the scattering approach the

shot noise is given by

S =
e2

π~

∑

n

∫

dE {Tn(E) [fL(E) (1 − fL(E)) + fR(E) (1 − fR(E))]

+ Tn(E)(1 − Tn(E)) [fL(E) − fR(E)]2
}

(2.11)

In an equilibrium situation the second part containing fL−fR vanishes and we are left

with the thermal noise

S = 4kBTG. (2.12)
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with the definition of the conductance G from Eq. 2.10. The above equation Eq. 2.12

is a manifestation of the fluctuation-dissipation theorem which states that equilibrium

fluctuations are proportional to the dissipation of the system (e.g. the conductance or

resistance).

In the opposite limit, where T = 0 and a finite bias Vb = µl − µR leading to fL 6= fR is

applied, pure non-equilibrium shot noise (also called partition noise) is obtained and

can be written in the eigenchannel basis as

S = eVb
e2

π~

∑

n

Tn(1 − Tn). (2.13)

Combining Eq. 2.9 and Eq. 2.13 yields for the Fano factor

F =

∑

n Tn(1 − Tn)
∑

n Tn

, (2.14)

which is always smaller than or equal to unity. If the scattering region was perfectly

conducting (corresponding to either
∑

n Tn = 1 or Tn0
= 1 and Tn 6=n0

= 0) the shot

noise as well as the Fano factor would vanish. On the other hand for nearly zero

transmission (Tn << 1) the shot noise (Eq. 2.13) becomes S = eVb
e2

π~

∑

n Tn = SP .

With the current given by I = VbG (for the expression of G see Eq. 2.10) this leads to

a Fano factor equal to unity.

Summarizing the above one finds the thermal noise dominating at low bias eVb << kBT

whereas the non-equilibrium shot noise dominates at higher bias eVb >> kBT . In [57]

Figure 2.5: STM tunneling experiment showing the crossover from thermal to non-

equilibrium shot noise (picture taken from [57]). The cases a) and b) correspond

to samples with lower and higher resistance, respectively.

the crossover from thermal noise to shot noise was investigated in an STM tunneling
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experiment. Fig. 2.5 shows the shot noise normalized by 2e as a function of the current.

The inset depicts the experimental setup with the STM tip and a single tunneling

barrier to the sample. At low bias corresponding to low current the Fano factor can

be approximated by the expression F = coth( eVb

2kBT
) implying a divergent Fano factor

at very low bias [58].

In fermionic systems in which electronic interactions are present the Fano factor is

usually reduced to values smaller than unity (sub-Poissonian). One of the first experi-

ments probing this was done by Reznikov et al. [47] showing that the shot noise in

a point contact is suppressed with respect to the non-interacting value. More recent

experiments on quantum dots [25, 51, 52, 59] similarly show sub-Poissonian Fano factors

in the transport regime above the Coulomb blockade. Inside the Coulomb blockade

regime, where transport is exponentially suppressed the Fano factor is equal to the

Poissonian value of one.

Generally in local quantum dot systems such as single or multilevel quantum dots the

Fano factor is typically sub-Poissonian above the sequential tunneling threshold. This

can be explained to be due to anti-bunching effects of electrons because of the Pauli

principle. If the level couplings are asymmetric (e.g. in the presence of magnetically

polarized electrodes or a left/right asymmetry in the contacts) the Fano factor can

become super-Poissonian [27, 34, 60]. Recently it was shown that enhanced noise can

also be found inside the Coulomb blockade region even in symmetric systems [34, 61].

The effect relies on the thermal occupation of excited quantum dot states at low bias.

On the other hand, for ’non-local’ systems, such as serially coupled quantum dots

super-Poissonian noise can develop even in fully symmetric situations and above the

sequential tunneling threshold [23] due to the complex internal level structure of the

dot system. We will discuss this system in some detail later in chapter 4.

2.4 Experiments: Transport measurements in quan-

tum dot systems and molecules

In this section we will review and comment on recent transport measurements in quan-

tum dot and single molecule systems that relate to our theoretical work. We will start

with the discussion of current and conductance measurements in single and coupled

quantum dots in the sequential as well as the co-tunneling regime. These measurements

allow to extract information about the quantum dot spectrum as well as underlying

asymmetries. However, more recent experimental activities include the analysis of shot

noise since additional insight into the quantum transport properties can be gained and

thus allow for a more detailed characterization of the nanostructure (see also chapters

2.3 and 4).

In the case of single molecules [62, 63, 64, 65, 66] one of the greatest scientific chal-
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lenges is to provide for the molecule-electrode contact in a reproducible way. Current

and conductance measurements on these systems show Coulomb blockade effects as

well as elastic and inelastic co-tunneling signatures [3]. Also phonon vibrations are fre-

quently observed. Only very few shot noise measurements are reported for molecular

systems [67]. We will discuss in detail a shot noise measurement [5] of a short car-

bon nanotube in the Coulomb blockade regime that fits well to our theoretical results

presented later in chapter 5.

2.4.1 Quantum dots

Due to their small dimensions quantum dots show Coulomb blockade behavior and

have a discrete energy spectrum. Transport measurements on lateral semiconductor

quantum dots [68, 69] in experimental setups similar to the ones depicted in Fig. 2.1 re-

veal non-linear current-voltage characteristics. Tuning the tunneling barriers by means

of the corresponding “finger electrodes” the lateral QDs can be weakly coupled to the

left and right reservoirs. To achieve transport a bias is applied (usually symmetrically)

between the two electrodes. At low bias sequential transport is suppressed by the

Coulomb blockade whereas with increasing bias the current rises in steps. Each step

position is defined by the dot’s energy excitation spectrum. The setup from Fig. 2.1

further allows to study two coupled quantum dots that may form molecular states

which are delocalized over the entire double dot structure. Depending on the inter-dot

coupling strength the two dots can form “ionic-like” states for weak inter-dot coupling

as well as “covalent-like” states in the case of strong inter-dot coupling. The latter

resembles very much a typical molecular state. In the experiments discussed in [19] the

current-voltage characteristics (I-V) were investigated for the case of weak inter-dot

coupling. Again Coulomb blockade was observed but additional features such as ne-

gative differential conductance (NDC) and peaks in the current were found. In chapter

4 we present our theoretical results on transport through a DQD with strong inter-dot

coupling. Similar to the experiment mentioned above we find features such as Coulomb

blockade and NDC. Current peaks are absent since they are due to resonant effects ap-

pearing in the ionic-like systems but not in the strongly coupled, covalent type of DQD

states.

There is a huge variety of systems including vertical as well as self assembled quantum

dot structures that contain a weak dot-electrode coupling and thus all display similar

transport features as described above. If the coupling to the electrodes is increased, for

instance up to the value of the temperature, higher order tunneling processes start to

play a role. Co-tunneling is a second order contribution and has been studied in many

experimental as well as theoretical works [6, 22, 29, 58, 69, 70]. We want to discuss

two experiments as a background for our theoretical results presented in chapter 5.

The first is a transport measurement in a single small semiconductor quantum dot
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with known total charge at very low temperatures (∼ 15mK). The setup allows for

an additional gate which manipulates the electrostatic potential of the dot. Coulomb

blockade behavior shows up in form of the Coulomb “diamonds” in a grey scale plot

of the conductance versus the applied bias and gate voltage (see Fig. 2.6). The left

Figure 2.6: Differential conductance vs. applied bias for two different fixed gate

voltages. The solid line corresponds to a lower gate voltage as the dashed line

as indicated in the left inset. The left inset shows measured Coulomb diamonds

where the diamond edges mark the onset of sequential tunneling and the vertical

gate voltage independent lines correspond to the onset of inelastic co-tunneling.

The picture was taken from [29].

inset displays the Coulomb diamond of the two electron ground state (N = 2). Due to

the strong dot-electrode coupling co-tunneling processes in which two electrons tunnel

simultaneously play a significant role in the Coulomb blockade (inside the Coulomb

diamond). Elastic co-tunneling processes occur via intermediate virtual states at arbi-

trary bias. Hence they do not introduce an energy scale inside the Coulomb diamond.

In contrast inelastic co-tunneling is only possible in a finite bias situation. Here one

electron tunnels into a high energy state while another one occupying a lower energy

state tunnels out of the dot. Thus the process requires some energy which is defined

by the spectrum and is called the inelastic co-tunneling energy εco. In the above ex-

periment inelastic co-tunneling can be observed in the region defined by the vertical,

gate voltage independent line and the Coulomb diamond edge. Depending on the the

dots low energy spectrum an inelastic co-tunneling process can directly be followed by

a sequential tunneling process. The combined process thus is applicable at the same

bias as the pure inelastic co-tunneling. The right inset depicts an inelastic co-tunneling

process which leaves the dot in an excited state and can thus be followed by a sequen-

tial tunneling process.
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A similar experiment in this regime was performed in [6]. Here the current and con-

ductance through a lateral quantum dot structure at non-zero magnetic field (lifting

the spin degeneracies) were studied. Similar transport features as in the Franceschi ex-

periment were observed (see Fig. 2.6). However, additionally diagonal lines inside the

Figure 2.7: Right: Differential conductance versus applied bias for two different

magnetic field B taken from [6]. Co-tunneling is observed in form of the horizontal

gate voltage independent lines. Diagonal lines inside the diamond correspond to

the co-tunneling assisted sequential tunneling regime. The excited state involved

in the process later gives a contribution in the sequentially dominated transport

regime outside the Coulomb diamond. Consequently the diagonal lines inside the

Coulomb blockade match or join the lines resulting from transport through excited

states. Left: AFM picture of the experimental setup of the quantum dot structure.

The electrode reservoirs are denoted by S (source) and D (drain), the lateral gates

G1, G2 are used to tune the tunneling barriers and the other gates P1, P2 to

manipulate the electrostatic potential and thereby the number of electrons of the

dot.

Coulomb blockade that join excitation lines outside the diamond structure were found.

This was interpreted as sequential tunneling out of an excited state that had been occu-

pied by a proceeding inelastic co-tunneling process. As a consequence the same excited

state plays a role in sequentially dominated transport outside the Coulomb diamond.

The region between the diagonal lines and the Coulomb diamond edge is referred to

as the co-tunneling assisted sequential tunneling regime. It has been discussed as the

limiting factor for the operation of single electron devices that rely on the Coulomb

blockade effect. We investigate this regime in detail in chapter 5 and additionally in-

clude a shot noise analysis to characterize the involved tunneling processes in more

detail.

Although shot noise measurements in single quantum dots or other nanostructures are

still rare, some experimental results are available in literature. The interest in shot

noise is mainly attributed to its known sensitivity to the correlations of the system as

well as to the coupling between the leads and the studied nanostructure. We want to
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discuss an experiment [25] in which the sub-Poissonian noise in self assembled InAs

quantum dots was measured. The grown dot structures form several vertical quantum

dots of different size in parallel. However only few dots really participate in the trans-

port measurement. The largest dot with the lowest level energy enters first into the

bias window. The current and Fano factor (here denoted by α) vs. bias voltage can be

seen in Fig. 2.8. For low bias the current is exponentially suppressed by the Coulomb

Figure 2.8: Current I and Fano factor α for a self assembled vertical quantum dot.

Different colors correspond to different temperatures. Measured data points are

denoted by triangles as well as circles. The Fano factor shows typical Poissonian

values in the Coulomb blockade and is reduced to sub-Poissonian values in the

sequential transport regime. The figure is taken from [25].

blockade. When the first excitation energy is matched by the applied bias the current

rises in form of a step. The next step that follows afterwards corresponds to another

individual quantum dot and not to a higher lying excitation energy of the first dot.

This is a peculiarity of the above experiment since many dots are being measured. The

step feature is followed by a plateau which linearly decreases due to bias dependent

tunnel couplings. The Fano factor α is Poissonian in the Coulomb blockade regime
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signalizing uncorrelated electron transport. When the dot ground state level enters

the applied bias window, sequential transport sets in. Due to the Pauli principle and

the Coulomb repulsion of electrons the tunneling events are anti-bunched leading to a

reduced Fano factor of values between one half and unity.

2.4.2 Molecules

In the following we describe transport measurements in real molecules which has been

studied in many works [3, 71, 72]. Single molecule setups are extremely sensitive to

their environment. In particular the coupling of macroscopic electrodes to the single

molecules is a scientific challenge. Therefore usually a large number of measurements is

performed and then statistically analyzed. A commonly used experimental technique

to fabricate nanoscopic electrodes is the mechanically controlled breakjunction tech-

nique [7, 16, 72, 73, 74, 75] in which a metallic wire (usually gold) on a flexible substrate

is bent by pushing a rod. During this process the wire breaks and a nano sized gap

is formed between two electrodes. The coupling of the molecules to the electrodes is

provided for instance by thiol end groups or other elements depending on the type of

molecule that is contacted and the desired coupling strength. In [4] a single molecu-

lar diode, made of a π-conjugated combination of phenyl-ethynyl rings was designed

showing unambiguously an asymmetric current-voltage curve. Similar to quantum dot

experiments step features in the current as well as peaks in the differential conductance

were found as a result of the discrete energy spectrum of the molecule.

Other interesting features such as negative differential conductance (NDC) were found

in [76] and in single molecule magnets (SMMs) [77]. The NDC effect is explained to

be a result of the spin blockade of the current which is completely suppressed in this

regime. A theoretical model using a sequential transport picture similar to ours (as

presented in chapter 4) but with additional terms in the Hamiltonian accounting for

the magnetic properties of the molecule was applied and found to explain well the

observed features.

In order to achieve a more profound understanding of the coupling situation in single

molecule experiments the shot noise may serve to be a useful tool. As mentioned be-

fore, the shot noise is very sensitive to asymmetries of the couplings to the left and

right electrode as well as to interaction effects between electrons on the small molecule.

However shot noise measurements for single molecules are extremely difficult. Up to

the present day only very few shot noise measurements on molecules are reported [67].

This may partly be due to the fact that in addition to the challenging experimental

setup one has to measure at very high frequencies (∼ GHz) to observe shot noise. In [5]

the shot noise in a carbon nanotube quantum dot in the co-tunneling regime has been

measured. A small gap semiconducting nanotube was placed between two electrodes
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Figure 2.9: Fano factor versus applied bias voltage at different gate voltages. The

curves show asymmetric behavior with respect to bias and a super-Poissonian Fano

factor at the inelastic co-tunneling energy scale (approximately around 2meV ).

Inset: Coulomb diamonds of the Fano factor vs. bias (vertical axis) and gate

voltage (horizontal axis). The color scale is defined from blue corresponding to the

Poissonian value of F = 1 to red for F = 2. The figure was taken from the work

of Onac et al. [5].

with a backgate below the isolating substrate. Tunneling barriers were formed at the

contacts. At low temperatures the nanotube exhibited Coulomb diamonds implying

that a quantum dot was formed. The shot noise was measured via a complex on-

chip detector consisting of a superconductor-insulator-superconductor (SIS) junction.

Fig. 2.9 depicts the Coulomb diamonds of the Fano factor as well as the traces at var-

ious fixed gate voltages. Considering the traces of the Fano factor at three fixed gate

voltages one finds that the Fano factor is Poissonian in the Coulomb blockade around

zero bias. In the case of the black trace which corresponds to a gate voltage near

the degeneracy point of the Coulomb diamond the Fano factor stays Poissonian also

above the sequential tunneling threshold (outside the diamond). All other traces show

a super-Poissonian Fano factor with values around F = 2 at a characteristic energy

scale of ε ∼ 2meV which is identified to be the inelastic co-tunneling energy scale. The

observed experimental data has been predicted earlier on a theoretical basis by [22]. In

chapter 5 we will discuss in detail the physical processes leading to the experimentally

observed noise enhancement above.
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Chapter 3

Real time transport theory

To describe electronic transport through mesoscopic systems one has a wide choice of

different theories and formalisms [30, 32, 78, 79, 80, 81, 82, 83, 84]. What determines

the advantages or disadvantages of a certain theory over another is their applicability

to the desired nanoscale structure in a specific transport regime. In the field of molecu-

lar electronics and quantum dot systems the demand to be able to account for electron

interaction effects on the central system as well as to include the impact of the reservoir

electrodes on the transport properties narrows this choice. The class of experiments

mentioned earlier in chapter 2.4 all show characteristic non-equilibrium transport be-

havior that is governed mainly by the following parameters: the coupling strength Γ

of the nanoscale island to the reservoir electrodes, Coulomb interaction effects between

electrons represented by a general parameter U and the temperature T . In general the

non-equilibrium transport properties of a mesoscopic system are of course influenced

not only by the parameters mentioned above but in manyfold ways. For instance the

geometry of the nanoscale island and/or the contacts, the environment, mechanical

and optical disturbances may have a strong impact. Such effects are disregarded in the

following theoretical discussion but could be additionally included, if needed.

The diagrammatic real time transport theory developed by Schoeller and König et.

al. [30, 32] is a powerful tool to describe non-equilibrium transport phenomena in the

nanoscale systems we are interested in. The basic idea of this approach is to integrate

out all reservoirs degrees of freedom and finally formulate an exact kinetic equation for

the reduced density matrix of the quantum dot or molecular system. The objects gov-

erning the time evolution of the reduced density matrix contain a series of irreducible

diagrams that can be calculated by applying diagrammatic rules (see appendix A) and

are identified as transition rates or self-energies. The current and shot noise or even

higher correlators are formulated in terms of these transition rates and can thus be

obtained by a systematic perturbative expansion in the tunnel coupling Γ. Formulas

for the current and shot noise have been derived in [33] and others [58, 85, 86, 87].

29
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In this chapter a compact description of the real time transport theory together with

diagrammatic expressions for the current, shot noise and the transition rates is given. It

will be shown explicitly how contributions up to second order in the coupling strength

Γ (so called co-tunneling contributions) have to be calculated. One of the main results

of this thesis is the formulation of a generalized numerical approach that is applicable

to real systems such as the ones discussed in chapter 2. Previous work [22, 26, 27]

mainly concentrated on simple models such as the single level Anderson model which

is reviewed in chapter 5 as an introduction to co-tunneling transport.

3.1 General Hamiltonian

Before we will start to derive the diagrammatic expressions for current and shot noise

it is useful to introduce a general Hamiltonian that is able to model our mesoscopic

system coupled to metallic leads. We write H = Hr+HD+HT = H0+HT as a standard

Hamiltonian that consists of three parts corresponding to the reservoirs (r), the dot

system (D) and the tunneling (T) between the central system and the reservoirs. The

unperturbed isolated system H0 accounts for non-interacting electrons in the left and

right lead (r=R,L) and interacting electrons on the central dot system. We write

H0 = Hr +HD with (3.1)

Hr =
∑

kσ

εkσra
†
kσrakσr r = R,L (3.2)

and

HD =

(

∑

ijσ

εijσc
†
iσcjσ +

∑

ijklσσ′

Vijklc
†
iσc

†
jσ′ckσ′clσ

)

. (3.3)

Here a†kσr, (akσr) and c†iσ, (ciσ) denote the Fermi creation and annihilation operators that

act on states of non-interacting electrons in the reservoirs and interacting electrons on

the central dot system, respectively. The energy of the electrons in the reservoirs

is given by εkσr where k and σ correspond to the electron’s wave vector and spin.

The electron’s energy on the dot system εijσ depends on the spin and orbital indices

i, j = 1, .., N , where N denotes the total number of dot levels. Interaction effects

are modeled by the term Vijkl(i, j, k, l = 1, .., N) that describes a general two particle

interaction. The above Hamiltonian can be applied to local systems such as single

multilevel quantum dots as well as non-local systems such as double quantum dots

(DQDs) and delocalized molecular systems. When discussing our results for different

systems in chapter 4 and 5 we will specify our parameter choice and the central dot
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Hamiltonian, respectively. Now tunneling from one reservoir r = R,L into or out of

the central dot system is modeled by

HT,r =
∑

ikσ

(

tkr
iσa

†
kσrciσ + h.c.

)

(3.4)

withHT =
∑

r=R,LHT,r and tkr
iσ being the tunneling matrix elements. These parameters

describe the coupling of the dot system to the electronic environment and hence lead to

a finite lifetime τ of the dot states that defines an intrinsic level broadening Γ = ~/τ .

The coupling strength to the reservoirs is related to these tunneling amplitudes via

Γiσ
r (ω) =

2π

~

∑

k

|tkr
iσ |

2δ(ω − εkr), (3.5)

where
∑

k δ(ω− εkr) = ρe(ω) is the density of states in the reservoirs. In the following

we will assume ρe to be constant as well as |tkr
iσ |

2 = |triσ|
2, meaning that the tunneling

amplitudes are chosen to be independent of k. This leaves us with an energy indepen-

dent coupling parameter Γiσ
r = 2π|triσ|

2ρe that allows for a left/right asymmetric, level

and spin dependent tunnel coupling. In section 3.3 of this chapter we will perform a

systematic perturbative expansion in this coupling parameter Γ.

The above model serves to describe transport through a central mesoscopic system and

can in principle be applied to a system with arbitrary complex electronic structure.

However, especially for molecular systems that are often measured at high tempera-

tures (for instance at room temperature) vibrations and relaxation effects of phonons

and photons might become important. We therefore add the Hamiltonian

HB =
∑

q

ωqd
†
qdq (3.6)

with d†q, dq being the Bose operators creating (annihilating) a boson with wave vector

q. The interaction of the boson bath with the dot structure is modeled by

HB−D =
∑

qσij

gij
q (d†q + dq)c

†
iσcjσ (3.7)

where gij
q is the coupling constant. Charge relaxation due to bosons takes place for

i 6= j whereas “boson-assisted tunneling ” occurs for i = j. In analogy to the fermionic

coupling strength Γ we define a bosonic coupling strength

αij(ω) =
2π

~

∑

q

|gi,j
q |2δ(ω − ωq). (3.8)

Again we assume the amplitudes gi,j
q to be independent of q which leads to αij(ω) =

2π|gij|2ρb(ω) where ρb(w) ∼ ω3 is the density of states of the bosonic bath. The

exponent accounts for a three dimensional photon field.

When including coupling to a bosonic bath the perturbative term of our Hamiltonian

HT (Eq. 3.4) becomes H̃T = HT +HB−D and the unperturbed part H̃0 = H0 +HB.
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3.2 Keldysh contour and diagrammatic approach

To study the electronic transport through our system we apply the non-equilibrium

transport theory based on a diagrammatic technique [30, 31]. Non-equilibrium is taken

into account by describing the electrons in the reservoirs by Fermi distribution functions

with a corresponding chemical potential µr=R,L. Tunneling is switched on adiabatically

at an initial time t0 which means that for t ≤ t0 the tunneling part of the Hamiltonian

HT (t) vanishes. As a consequence the initial density matrix ρ0 factorizes into parts

and thus can be written in the form

ρ0 = ρD
0 ρ

L
0ρ

R
0 or ρ0 = ρD

0 ρ
L
0ρ

R
0 ρ

B
0 . (3.9)

The latter expression applies if coupling to a bosonic bath is additionally included.

The equilibrium density matrix of the reservoirs reads

ρr
0 =

1

Zr
0

e−β(Hr−µrNr), (3.10)

and for the boson bath

ρB
0 =

1

ZB
0

e−βHB , (3.11)

where β = 1
kBT

is the inverse temperature and Nr =
∑

kσ a
†
kσrakσr the number operator

in the leads. The normalization factors Zr
0 and ZB

0 are determined by trρr
0 = 1 and

trρB
0 = 1 respectively, where the traces are taken over the reservoir and bath degrees of

freedom. What remains is the part of the dot electrons in a non-equilibrium situation.

Let {|χ〉} be an eigenvector basis set which labels the many body dot states and includes

all correlations within the central dot system. We may assume the dots initial density

matrix to be diagonal in this basis, i.e.

ρD
0 =

∑

χ

pinit
χ |χ〉〈χ|, where

∑

χ

pinit
χ = 1. (3.12)

In the stationary limit when the system has forgotten its initial distribution all physical

quantities become independent of the choice of the probabilities pinit
χ . Since we want to

calculate the average current and shot noise we need to know how a quantum statistical

expectation value of an arbitrary operator A at time t needs to be calculated. For this

procedure it is convenient to express the operator A in the interaction picture with

respect to H0. This implies

A(t)H = T̃ exp



−i

t0
∫

t

dt′HT(t′)I



A(t)IT exp



−i

t
∫

t0

dt′HT(t′)I



 , (3.13)

where the indices H (I) refer to the Heisenberg (interaction) picture respectively. The

operators T and T̃ denote time and anti-time ordering. Instead of the time integrals
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we can write Eq. 3.13 as contour integrals
∫

K
dt′ over the so called Keldysh contour

(see Fig. 3.1) in which the time t′ runs forward from t0 to t (where A(t) acts) and then

backwards in time from t to t0. The expectation value of the operator A(t) is hence

given by

〈A(t)〉 = tr



ρ0TKexp



−i

∫

K

dt′HT(t′)I



A(t)I



 , (3.14)

where TK is the Keldysh time ordering operator that orders a succession of time de-

pendent operators 〈TKA1(t1)IA2(t2)I ...An(tn)I〉 on the Keldysh contour accordingly.

Expanding the exponential of Eq. 3.14 with respect to the tunneling Hamiltonian HT

we arrive at

〈

TKΠm
i=1Ai(ti)I

〉

= (3.15)

tr



ρ0

∞
∑

m=0

(−i)m

t1>t2>...>tm
∫

K

dt1

∫

K

dt2...

∫

K

dtm TK{[HT (t1)IHT (t2)I ...HT (tm)I ]Π
m
i=1Ai(ti)}



 .

Note that the time operator TK also acts on the operators Ai(ti)I and puts them

at the correct place between the tunneling Hamiltonians. Operators HT and Ai are

diagrammatically represented by internal (HT ) or external (Ai) vertices as we will see

later on in chapter 3.4. Rewriting Eq. 3.14 yields

〈A(t)〉 =
∑

χ

pinit
χ 〈χ|ΠA(t)I |χ〉, (3.16)

where

Π = trLtrRtrB



ρL
0 ρ

R
0 ρ

B
0 TKexp



−i

∫

K

dt′HT(t′)I







 (3.17)

can be interpreted as the reduced dot system’s density propagator describing the time

evolution of the system via coupling to the reservoirs without external vertices. More

general the non-equilibrium time evolution of the dot density matrix from an initial

state χ1 at t0 forward to a state χ′
1 at time t and then backward from χ′

2 to χ2 is given

by the propagator

Π
χ1,χ′

1

χ2,χ′

2

= 〈χ2| [Π(|χ′
2〉〈χ

′
1|)(t)I ] |χ1〉 = (3.18)

trLtrRtrB



〈χ2|T̃ exp



−i

t0
∫

t

dt′HT(t′)I



 |χ′
2〉〈χ

′
1|T exp



−i

t
∫

t0

dt′HT(t′)I



 |χ1〉



 .
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Figure 3.1: An example for the time evolution of the reduced density matrix. The

upper and lower line represent the forward and backward time propagation along

the Keldysh contour, respectively. Tunneling lines correspond to the reservoirs

L,R connecting pairs of vertices. The resulting changes between the dot states are

indicated corresponding to a single level Anderson model.

This equation is visualized in Fig. 3.1. The upper and lower lines describe forward

and backward time evolution along the Keldysh contour where tunneling vertices (HT )

change the many-body dot states. Since the Hamiltonian H0 is bilinear in the lead elec-

tron operators Wick’s theorem holds for these degrees of freedom and the corresponding

operators (e.g. field operators from HT ) can be contracted in pairs. The contractions

are given by equilibrium distribution functions and are diagrammatically represented

by tunneling lines corresponding to reservoirs r = R,L. For electrons in the central

quantum dot system Wick’s theorem does not hold since the Coulomb interaction is

expressed by a quadric term of dot electron operators. Any product of those operators

has to be treated explicitly.

3.3 Master equation and stationary probabilities

For the following discussion we will assume the reduced density matrix to be diagonal,

i.e. χ1 = χ2 = χ and χ′
1 = χ′

2 = χ′, which leads to the notation Πχ′χ = Πχ′,χ
χ′,χ. This

provides a restriction to the general situation which is however of only minor importance

for the systems we will discuss later in chapters IV and V. There are approaches

by others that include off-diagonal density matrix elements when appropriate [88,

89]. For instance in a non-local two level system non-diagonal matrix elements are

negligible if the inter-dot coupling or hopping parameters are much larger than the

tunnel amplitudes to the reservoirs (tij >> tri with r = R,L).

The full propagation Πχ′χ(t′, t) can be decomposed in a sequence of irreducible blocks

(diagrams) Wχ′χ(t′, t) containing one ore more tunneling lines. They are associated

with transitions from a state χ at time t to χ′ at t′ and are therefore referred to as

transition rates. Parts without tunneling lines correspond to a free propagation and

are written as Π(0) = 1. This leads to the Dyson equation for the full propagator
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Π(t′, t) = 1 +

t′
∫

t

dt2

t2
∫

t

dt1 W(t2, t1)Π(t1, t) (3.19)

where bold face notation indicates matrix representation related to the many body

eigenstate basis {|χ〉}. Note that time ordering in Eq. 3.19 is the other way round

compared to the pictorial diagrammatic representation since in matrix representation

we read from right to left. In Fig. 3.2 a general transition rate as a perturbative expan-

sion in the reservoir coupling strength Γ is depicted. A block W with one tunneling line

describes a first order, sequential tunneling process, a block with two tunneling lines de-

scribes a second order, co-tunneling process. In general we can write W =
∑∞

k=1 W(k)

where k denotes the order of the perturbative expansion in Γ. We will specify later

in section 3.5.3 and appendix B how to calculate the rates W(1), W(2) up to second

order in Γ.

W s
s
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Figure 3.2: An example of an irreducible self-energy diagram with one, two, etc.

tunneling lines, connecting the dot with reservoirs r = L,R. The number of

tunneling lines gives the order of Γ of the perturbative expansion.

Rewriting the Dyson Equation Eq. 3.19 in its matrix components yields

Πχ′χ(t′, t) = 1 +
∑

χ′′

t
∫

t′

dt2

t2
∫

t′

dt1 Πχ′χ′′(t′, t1)Wχ′′χ(t1, t2). (3.20)

Multiplying this equation with the probability pχ′(t′) to be in the state χ′ at time t′,

summing over the states χ′ and differentiating with respect to t we obtain

d

dt
pχ(t) =

∑

χ′

t
∫

t0

dt′pχ′Wχ′χ(t′, t), (3.21)

where we have used the identity pχ(t) =
∑

χ′ pχ′(t′)Πχ′χ(t′, t) and set t′ = t0.
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As we apply a finite but static bias the propagator must become stationary in the

long-time limit, i.e. for time differences t′ − t larger than the relaxation time of the

system. We can thus write

lim
t0→−∞

Π(t′ − t0) = pst ⊗ eT , (3.22)

where eT = (1, .., 1), and pst is the vector of the stationary probabilities of the dot,

independent of t′. Also the transition rates Wχ′χ(t′, t) in Eq. 3.21 depend only on

the time difference t′ − t, i.e. Wχ′χ(t′ − t). To study the time evolution of the sta-

tionary probabilities pst we set Eq. 3.21 to zero and use the fact that an arbitrary

initial state pinit = limt0→−∞ p(t0) will develop always into the same stationary state

limt0→−∞ Π(0, t0)p(t0) = pst. Performing a Laplace transformation on the time de-

pendent transition rates in the form of W(z) = ~
∫ 0

−∞
dt eztW(0, t) with the definition

W = W(z)|z=0+ and using the sum rule eTW = 0 (see diagrammatic rules in appendix

A) we find the stationary master equation

Wpst = 0 (3.23)

However W has a zero eigenvalue and can thus not be inverted. Using the normalization

condition eTpst = 1 we obtain the stationary probabilities pst by solving

W̃p
st

= v, (3.24)

where W̃ is identical to W but with one row χ0 being replaced by (Γ, ..,Γ) and v

defined by vχ = Γδχχ0
.

For a well-defined perturbative expansion in powers k of the coupling strength Γ we

write W =
∑∞

k=1 W(k), W̃ =
∑∞

k=1 W̃(k), and pst =
∑∞

k=0 pst(k). The stationary

master equation (Eq. 3.23) has to be fulfilled in every order k of our perturbation

theory which leads to

pst(0) = (W̃(1))−1v, (3.25)

for the zeroth-order stationary probabilities and to

pst(k) = −
(

W̃(1)
)−1

k−1
∑

m=0

W̃(k−m+1)pst(m) , (3.26)

for the higher order k = 1, 2, . . . terms. The irreducible diagrams W(k) can be directly

calculated using the diagrammatic rules (see appendix A,B and chapter 3.5.).
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3.4 Diagrammatic expressions

3.4.1 Current

We are interested in the current flowing through the left and right barrier (r = L,R)

of our system. The current is an operator defined by the change of particle (electron)

number

Îr(t) = −e
d

dt
Nr(t), (3.27)

where Nr(t) denotes the time dependent number operator of the electrons in the lead

r. In the Heisenberg picture the Heisenberg equation governs the time evolution. Thus

we write d
dt
Nr(t)H = i[H,Nr](t)H = i[HT , Nr](t)H , which leads to

Îr(t) = −i(e/~)
∑

ikσ

(

tkr
iσ (a†kσrciσ)(t) − h.c.

)

. (3.28)

This current operator presents a possible choice for an external vertex A as described in

the previous chapters 3.2 and 3.3.. It is convenient to choose a symmetrized notation of

the current operator, namely Î = (ÎR − ÎL)/2 which is useful for a compact description

of the shot noise. Because of the continuity equation, Î = ÎR = −ÎL.

To calculate the expectation value of the current we follow the procedure described in

section 3.2. The current operator Eq. 3.28 has a very similar structure compared to the

tunneling operator HT in Eq. 3.4. For a diagrammatic representation of the current

we therefore introduce a diagram WI(t, t′) in which one internal tunneling vertex due

to ĤT,R or ĤT,L at any time between t′ and t is replaced by an external one (Î ~

e
).

This leads to overall pre-factors and signs which we specify in appendix B. The current

expectation value can hence be written as

I(t) = lim
t0→−∞





e

2~

t
∫

t0

dt′eT
~WI(t, t′)Π(t′, t0)p(t0)



 (3.29)

For t0 → −∞ the propagator in Eq. 3.29 leads to time-independent stationary states

such that the only remaining time dependent objects are the transition rates WI(t, t′),

which can be Laplace transformed. We thus obtain

I =
e

2~
eTWIpst (3.30)

where we have set t = 0 without loss of generality and used the normalization condition

eTpinit = 1. Expanding the current up to infinite order k = 1, 2, ... in the coupling

strength Γ we obtain

I(k) =
e

2~
eT

k−1
∑

m=0

WI(k−m)pst(m) (3.31)
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where the total current is given by I =
∑∞

k=1 I
(k). Note that the stationary probabilities

are calculated out of the irreducible diagrams Wk via the master equation Eq. 3.23

and thus depend on the transition rates.

3.4.2 Zero frequency shot noise

The shot noise is defined as the Fourier transform function of the current. In the zero

frequency limit we write

S =

∞
∫

−∞

dt〈δÎ(t)δÎ(0) + δÎ(0)δÎ(t)〉, (3.32)

with δÎ(t) = Î(t) − 〈Î〉. It involves expectation values of two current operators at

different times. They can either appear in one single irreducible diagram denoted by

WII or in two different diagrams of type WI . In analogy to WI the diagram WII(0, t′)

is defined by replacing two internal vertices by external ones. The two external vertices

can sit at any time between t′ and 0.

Using the result of [33] we write the total shot noise in energy representation as

S =
e2

~
eT
[

WII + WI(PWI + pst ⊗ eT∂WI)
]

pst. (3.33)

Here the object P is defined by the expression

P(t′′′, t0) =

t′′′
∫

t0

dt′′
1

~
[Π(t′′′, t′′) −Π(t′′′, t0)] (3.34)

and is recognized as a Laplace transform in the limit t0 → −∞ and t′′′ = 0. The object

∂WI is related to the derivative of the Laplace transform WI(z) = ~
∫ 0

−∞
dteztWI(0, t)

with ∂WI = (∂W
I(z)

∂z
|z=0+). P can be called the “decaying” propagator since the

stationary part of the propagator is subtracted. Except for the object P all other terms

can be calculated out of the transition rates W which are obtained diagrammatically

(see section 3.5). Using the Dyson-Equation (Eq. 3.19) for the propagator Π(0, t0) and

after some manipulation [33] the object P can be determined from the equation

pst ⊗ eT = 1 + WP + ∂Wpst ⊗ eT with eT P = 0. (3.35)

For completeness we want to mention that the above equations for the shot noise

(Eq. 3.33) and the object P (Eq. 3.35) require the transition rates to decay fast enough

such that limt→−∞(t2W(0, t)) = 0.



3.5. A COMPUTATIONAL APPROACH 39

3.5 A computational approach

The aim to describe non-equilibrium transport through a molecular nanostructure in

principle requires three main tasks:

• The diagonalization of the Hamiltonian HD Eq. 3.3 in order to obtain the eigen

energy spectrum of the central system,

• a choice of the perturbative order k up to which transport is considered (e.g. se-

quential or co-tunneling transport depending on the coupling situation) together

with an appropriate perturbation scheme that is valid in the considered transport

regime,

• the calculation of the transition rates (irreducible diagrams) W(k) up to the kth-

order

• solving Eq. 3.25, Eq. 3.26 first to obtain the stationary probabilities pst, inserting

results into Eq. 3.35 to obtain the propagator P and finally evaluate Eq. 3.30,

Eq. 3.33.

This chapter comprises the ingredients mentioned above. We will start by charac-

terizing the molecular or quantum dot system in isolation from the leads in order to

determine its energy spectrum. The current and shot noise are evaluated explicitly up

to second order in the coupling strength Γ together with an analysis of the relevant

perturbative scheme for the stationary probabilities and the ”decaying” propagator.

Finally as our main result we present a systematic approach to determine first and se-

cond order transition rates for an arbitrary complex electronic structure of the central

system.

3.5.1 Diagonalization of the Hamiltonian

The molecule or quantum dot in isolation constitutes a finite quantum system with

discrete energy levels. The molecular states are either occupied or unoccupied and

have a mean distance or level spacing of ∆ε. The HOMO is defined as the highest

occupied molecular orbital meaning that all lower lying molecular orbitals (MO) are

filled with electrons. The unoccupied levels start with the lowest unoccupied MO

(LUMO) which defines a characteristic gap to the HOMO. In the case of a quantum

dot or a chain of coupled quantum dots basically two energy scales are relevant. First

the “sequential energy gap” that is defined by the energy difference between the ground

state and the first excited state in the adjacent charge sector and second the “inelastic

co-tunneling” energy defined by the energy distance between the first excited state and
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the ground state in the same charge sector. In some cases the latter can be related to

the HOMO-LUMO gap described above. Now referring to our dot Hamiltonian Eq. 3.3
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Figure 3.3: Sketch of the energy spectrum of a single level Anderson model with

spin splitting ∆. For the upper, doubly occupied states the energy cost due to the

Coulomb repulsion U has to be paid.

in the second quantization we write a general many body state in its occupation number

representation as c†i,σc
†
j,σ′...|0〉, where |0〉 is the empty state. The total Hamilton matrix

including electron interaction terms U and hopping t between non-local orbitals can

be diagonalized in the subspace of a fixed total charge number using standard linear

algebra (lapack) routines. Note that in the case of degeneracies we additionally have

to diagonalize in the spin subspace to obtain eigenstates of total spin. In Fig. 3.3 we

depict the obtained energy spectrum after diagonalization of a single level Anderson

model with a finite spin splitting. For a double quantum dot with two single levels the

resulting eigenstates and eigenvalues can be found for instance in [90].

3.5.2 Perturbation schemes

As a starting point for our perturbative expansion in the tunnel coupling Γ we use

the general expressions Eq. 3.30 for the current and Eq. 3.33 for the zero frequency

shot noise. All irreducible diagrams W,WI,WII and ∂W, ∂WI are expanded in a

power series W =
∑∞

k=1 W(k) etc., where (k) indicates the order in Γ and corresponds

to the number of tunneling lines in the diagram. As a consequence all transition rate

diagrams start in first order in Γ since they contain at least one tunneling line. In the



3.5. A COMPUTATIONAL APPROACH 41

case of the stationary probabilities, pst from Eq. 3.23, the expansion series has to start

in zeroth order in Γ. Analogously the propagator, P from Eq. 3.35, starts in Γ(−1).

Thus we are left with the following set of equations that govern the non-equilibrium

transport properties of our system up to second order in Γ:

The expression for the current in first order reads

I(1) =
e

2~
eT WI(1)pst(0), (3.36)

and in second order

I(2) =
e

2~
eT (WI(2)pst(0) + WI(1)pst(1)). (3.37)

The shot noise is given by

S(1) =
e2

~
eT
(

WII(1) + WI(1)P(−1)WI(1)
)

pst(0) (3.38)

and

S(2) =
e2

~
eT (WII(2)pst(0) + WII(1)pst(1) (3.39)

+WI(2)P(−1)WI(1)pst(0)

+WI(1)P(−1)WI(2)pst(0)

+WI(1)P(0)WI(1)pst(0)

+WI(1)P(−1)WI(1)pst(1)

+WI(1)(pst(0) ⊗ eT )∂WI(1)pst(0)),

respectively. From the master equation Eq. 3.23 we obtain in lowest order in Γ

W(1)pst(0) = 0, (3.40)

from which we determine pst(0). Next to lowest order we have

W(2)pst(0) + W(1)pst(1) = 0, (3.41)

which is solved for pst(1). The normalization condition yields eT pst(0) = 1 and eT pst(1) =

0. Similarly we write for the ”decaying” propagator P

W(1)P(−1) = (pst(0) ⊗ eT ) − 1, (3.42)

W(2)P(−1) + W(1)P(0) = (pst(1) − ∂W(1)pst(0)) ⊗ eT , (3.43)

with eTP(−1) = 0 and eTP(0) = 0 which follows from the definition of P and the Dyson

equation Eq. 3.19.
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As has been mentioned before W cannot be inverted and thus we need to replace W(1)

by W̃(1) (which has been defined earlier in Eq. 3.24) into the above set of equations

(Eq. 3.40)-(Eq. 3.43). In the case of the stationary probabilities this leads to Eq. 3.25

in lowest order and to

pst(1) = (W̃(1))−1
[

W̃(2)pst(0)
]

(3.44)

in the next to lowest order in Γ. Here W̃(2) is identical to the second order rates W(2)

but with one row χ0 being replaced by (0,..,0). For the object P this implies

P(−1) = (W̃(1))−1
[

pst(0) ⊗ eT − 1
]

(3.45)

P(0) = (W̃(1))−1
[

1̃(pst(1) ⊗ eT − ∂W(1)pst(0) ⊗ eT ) − W̃(2)P(−1)
]

(3.46)

correspondingly.

In fact one has to be careful when solving the set of equations (Eq. 3.40 - Eq. 3.43). As

long as sequential transport processes are non-negligible the above scheme holds and

can be safely used without running into computational problems. We will refer to this

scheme in the following as the standard scheme. In the deep Coulomb blockade when

sequential transport is exponentially suppressed the standard scheme is not applicable

anymore and a different perturbation scheme has to be used. In [91, 92] a deep Coulomb

scheme is described that works particularly well in the deep Coulomb blockade but does

not hold when sequential processes become applicable. However, it is most desirable

to have a perturbative scheme which is able to describe transport from the Coulomb

blockade up to sequential transport through excited states in the large bias regime.

This is achieved by means of the crossover scheme which smoothly interpolates

between the standard scheme and deep Coulomb scheme. In this regime the first order

exponentially suppressed transition rates are of the same order of magnitude as the

co-tunneling rates. As a consequence a “order by order” expansion of current and shot

noise in powers of Γ is not useful anymore. Instead we sum up the first and second order

transition rates to give the matrices W (tot) = W (1) +W (2), W I(tot) = W I(1) +W I(2) and

W II(tot) = W II(1) + W II(2). Similarly we define the sum of the probabilities pst(tot) =

pst(0) + pst(1) and the object P (tot) = P (−1) + P (0). Inserting these combined first and

second order terms into equations (Eq. 3.23), (Eq. 3.35), (Eq. 3.30) and (Eq. 3.33) then

constitutes the crossover regime. Note that in the discussion of co-tunneling transport

in chapter 5 we will mainly use the crossover scheme since it is the only scheme (of the

three mentioned above) that allows to resolve both the inelastic co-tunneling energy

as well as the co-tunneling assisted sequential energy scale at the same time.

3.5.3 Transition rates

In the following a detailed description of our implementation scheme for the second

order diagrams is given. As stated in the previous chapter the computation of the
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transition rates W(2),WI(2) and WII(2) is the most complicated and tedious part when

calculating co-tunneling transport. All other quantities are obtained from them. The

computation of the first order transition rates is much easier and has been the subject

of many earlier works. They can be obtained by a golden rule approach as well as

within the diagrammatic technique. We use the diagrammatic formulation developed

in [26] and refer the reader to appendix B, in which the expressions for the first order

transition rates W(1), current rates WI(1) and shot noise rates WII(1) are given.

Second order rates

In total there are 128 diagrams including the direction of the tunneling lines and

the two reservoirs labels r = R,L. However, to calculate all second order diagrams

in a compact way we only consider all possible topologically different diagrams. By

“topologically different” we mean (disregarding the direction of the tunneling lines and

the reservoirs indices for the moment) all diagrams that can not be transformed into

each other by moving the vertices on their time branch. We obtain 32 topologically

different diagrams resulting from 2k = 4 (internal) vertices. Using the so called “mirror

rule” [37, 93], this number can be further reduced to 16 diagrams which are displayed

in Figs. 3.4 and 3.5.
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Figure 3.4: Eight different diagrams with three vertices on the upper time branch

and one vertex on the lower time branch. The rightmost vertex is always connected

to the reservoir r2 with a corresponding sign τ2 = +(−) and energy ω2. The

diagrams are calculated using the rules specified in appendix A.

Now collecting all diagrammatic contributions we can write the second order transition

rates matrix W (2) in its matrix components

W
(2)
χ̃χ = −i

∑

χ′,χ′′,χ′′′

∑

{ji,li,σi,ri}

[

δχ̃χ′Dχχ′

3X + δχ̃χDχχ
4X,2bI,2cII + δχ̃χ′′Dχχ′′

2aI + δχ̃χ′′′Dχχ′′′

2aII,2bII,2cI

]

,

(3.47)
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Figure 3.5: Two diagrams D4 with four vertices on the upper time branch and no

vertices on the lower time branch. Six diagrams with D2X with two vertices on

the upper and lower time branch. These diagrams can be obtained from the eight

diagrams in Fig. 3.4 with an additional relative sign.

where i = 1, 2 and {ji} = {+,−} corresponds to creation (annihilation) operators

respectively and {li}={(1,..,N)} to the orbital (local or non-local) levels with N being

the total number of orbitals, {σi} = {up, down} denotes the spin of an electron and

{ri} = {R,L} the reservoirs. The states labeled by χ, χ′,.. etc. are the eigenstates

of the central dot system. Note that the index I, II has nothing to do with external

(current) vertices but is just a label for different diagrams. The index X comprises all

diagrams of the corresponding type, for instance D4X = D4I + D4II . Hence the first

term of Eq. 3.47 consists of eight diagrams, the second of four, the third is only one

diagram and the forth term comprises three diagrams. The factor (−i) originates from

the fact that the diagrammatic rules which we use have been formulated for the self

energies Σ in [37] and relate to the transition rates via Σχ′χ = iWχχ′.

The class of diagrams D3X depicted in Fig. 3.4 is calculated by using the diagrammatic

rules in energy space as defined in appendix A. All diagrams D4X and D2X in Fig. 3.5

can be obtained from the D3X diagrams since moving the rightmost vertex to the upper

or lower time branch respectively yields again a diagram of type D3X but with an overall

minus sign. Each of the diagrams in Fig. 3.4 can be written in the form

DX = S · D̃I,II ·ME, (3.48)

where S is an overall sign that comprises all prefactors assigned according to the

diagrammatic rules and the function D̃I,II corresponds to a double integral of the type

2iIm

∞
∫

−∞

∞
∫

−∞

dω1dω2

γp1

r1,l1,σ1
(ω1)γ

p2

r2,l2,σ2
(ω2)

(τ1ω1 + ∆1 + iη)(τ1ω1 + τ2ω2 + ∆12 + iη)(τ2ω2 + ∆2 + iη)
, (3.49)
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where ∆1,∆12,∆2 denote energies that are composed of the eigenenergies εχ of the

dot system, γ is related to the Fermi function as defined in appendices A and B and

η denotes a convergence factor which is taken in the limit η = 0+ in the end. A

mathematical solution of Eq. 3.49 is given in appendix C. The term with the matrix

element (ME) accounts for a series of 4 vertices at which an electron is either created

(j = +) or annihilated (j = −).

Let us consider the diagram D3aI as a specific example. The matrix element has the

form

ME = 〈χ|c−j2
l2,σ2,r2

|χ′〉〈χ′|c−j1
l1,σ1,r1

|χ′′′〉〈χ′′′|cj2l2,σ2,r2
|χ′′〉〈χ′′|cj1l1,σ1,r1

|χ〉

and can be obtained within a numerical computation using an operator algebra. The

prefactor S from Eq. 3.48 is determined by the diagrammatic rules (rule 5, appendix

A) which yields in this case a minus sign for the vertex on the backward propagator

and another minus sign due to one crossing of tunneling lines. Thus we arrive at a total

prefactor of S = 1. Furthermore we have to evaluate the double integral in Eq. 3.49,

DI,II(∆1,∆12,∆2, τ1, τ2, p1, p2, r1, r2), which is dependent on the energies ∆i, the signs

τi = ±1, pi = ±1 arising due to the creation/annihilation operators (cj with j = ±1)

in the matrix element ME and the reservoir indices ri. The energies assigned according

to rule 2, appendix A are ∆1 = εχ − ε′′χ, ∆12 = εχ − ε′′′χ , ∆2 = εχ − ε′χ, respectively and

the signs read τi = pi = ji. These are all the ingredients we need in order to calculate

the diagram Dχ,χ′

3aI (χ′′, χ′′′) for specific inner states χ′′,χ′′′. It gives a contribution to the

transition rate W
(2)
χ′χ. Table 3.1 summarizes the expressions for the other diagrams of

Fig. 3.4 below.

As mentioned earlier in this section, the diagrams depicted in Fig. 3.5 can be obtained

from the D3X diagrams of Fig. 3.4. Hence we can write

Dχχ
4I (χ′′, χ′′′, χ′) = −Dχχ′

3aI (χ
′′, χ′′′) Dχχ′′′

2bI (χ′′, χ′, χ′′′) = −Dχχ′

3cI (χ′′, χ′′′)

Dχχ
4II(χ

′′′, χ′′, χ′) = −Dχχ′

3aII(χ
′′, χ′′′) Dχχ′′′

2bII (χ′′, χ′) = −Dχχ′

3cII(χ
′′, χ′′′)

Dχχ′′

2aI (χ′, χ′′′) = −Dχχ′

3bI (χ′′, χ′′′) Dχχ′′′

2cI (χ′′, χ′) = −Dχχ′

3dI (χ
′′, χ′′′)

Dχχ′′′

2aII (χ
′′, χ′) = −Dχχ′

3bII(χ
′′, χ′′′) Dχχ′′′

2cII (χ′′, χ′, χ′′′) = −Dχχ′

3dII(χ
′′, χ′′′).

The expressions are summed over all inner states χ′, χ′′, χ′′′, respectively. As a last

task, we need to economically implement the sums over the eigenstates and internal

parameters (j1, j2, l1, l2, σ1, σ2, r1, r2). Instead of defining them in straight forward loops

that run over all possibilities which would mean an extremely high computational effort

for large systems (such as molecules), we only consider physically possible combinations.

This implies for the eigenstates that their charge number is fixed within a single factor

of the matrix element. To illustrate this consider the matrix element 〈χ|c−j2
l2,σ2,r2

|χ′〉.
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If the total charge of the eigenstate |χ〉 is fixed to N then it follows that χ′ ∈ N + 1

or χ′ ∈ N , respectively. Otherwise the total matrix element is zero and thus the

corresponding diagram contribution. Following the above procedure we finally obtain

all second order rates W(2) from which we can determine the co-tunneling contributions

to the probabilities pst(1) and to the propagator P (0). For the current and noise we still

have to calculate the current and shot noise rates WI(2) and WII(2). As stated in

the additional diagrammatic rules for external vertices (see appendix A) we have to

multiply each diagram of Fig. 3.4 with a total prefactor F consisting of factors 1
2

and

signs. The rates WI(2), WII(2) together with the total prefactors F are defined in

appendix C.3 respectively. We still have to calcultate the derivative rates ∂W(1) and

∂WI(1). The first is needed to obtain the propagator P (Eq. 3.46) whereas the latter

shows up in the shot noise expression (Eq. 3.33) in second order. Both derivative rates

have a very similar mathematical structure as the second order transition rates. In

appendix C.2 we have given their explicit expressions.

We have formulated a computational approach that is able to construct all diagrams

up to a second order perturbation theory in the coupling Γ. The eigenstates denoted

by {|χ〉} apply to a general electronic spectrum that has to be calculated in advance.
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D3X S D̃I(∆1,∆12,∆2, τ1, τ2, p1, p2) Matrix-elements (ME)

D̃II(∆
′
2,∆12,∆2, τ1, τ2, p1, p2)

Dχ,χ′

3aI (χ′′, χ′′′) 1 D̃I((εχ − εχ′′), (εχ − εχ′′′), (εχ − εχ′), j1, j2, j1, j2, r1, r2) 〈χ|c−j2
l2,σ2,r2

|χ′〉〈χ′|c−j1
l1,σ1,r1

|χ′′′〉〈χ′′′|cj2l2,σ2,r2
|χ′′〉〈χ′′|cj1l1,σ1,r1

|χ〉

Dχ,χ′

3aII(χ
′′, χ′′′) -1 D̃II((εχ − εχ′), (εχ − εχ′′), (εχ − εχ′), j1, j2, j1, j2, r1, r2) 〈χ|c−j2

l2,σ2,r2
|χ′〉〈χ′|c−j1

l1,σ1,r1
|χ′′〉〈χ′′|cj1l1,σ1,r1

|χ′′′〉〈χ′′′|cj2l2,σ2,r2
|χ〉

Dχ,χ′

3bI (χ′′, χ′′′) -1 D̃I((εχ − εχ′), (εχ − εχ′′), (εχ′ − εχ′′), j1, j2, j1, j2, r1, r2) 〈χ|c−j1
l1,σ1,r1

|χ′〉〈χ′|c−j2
l2,σ2,r2

|χ′′〉〈χ′′|cj2l2,σ2,r2
|χ′′′〉〈χ′′′|cj1l1,σ1,r1

|χ〉

Dχ,χ′

3bII(χ
′′, χ′′′) 1 D̃II((εχ − εχ′′), (εχ − εχ′′′), (εχ′ − εχ′′′), j1, j2, j1, j2, r1, r2) 〈χ|c−j1

l1,σ1,r1
|χ′〉〈χ′|c−j2

l2,σ2,r2
|χ′′′〉〈χ′′′|cj1l1,σ1,r1

|χ′′〉〈χ′′|cj2l2,σ2,r2
|χ〉

Dχ,χ′

3cI (χ′′, χ′′′) -1 D̃I((εχ − εχ′′), (εχ′ − εχ′′), (εχ′ − εχ), j1, j2, j1,−j2, r1, r2) 〈χ|cj2l2,σ2,r2
|χ′〉〈χ′|c−j2

l2,σ2,r2
|χ′′′〉〈χ′′′|c−j1

l1,σ1,r1
|χ′′〉〈χ′′|cj1l1,σ1,r1

|χ〉

Dχ,χ′

3cII(χ
′′, χ′′′) 1 D̃II((εχ − εχ′′), (εχ′ − εχ′′), (εχ′ − εχ′′′), j1, j2,−j1, j2, r1, r2) 〈χ|cj1l1,σ1,r1

|χ′〉〈χ′|c−j2
l2,σ2,r2

|χ′′′〉〈χ′′′|c−j1
l1,σ1,r1

|χ′′〉〈χ′′|cj2l2,σ2,r2
|χ〉

Dχ,χ′

3dI (χ′′, χ′′′) 1 D̃I((εχ′ − εχ), (εχ′ − εχ′′), (εχ′ − εχ′′′), j1, j2,−j1, j2, r1, r2) 〈χ|cj1l1,σ1,r1
|χ′〉〈χ′|c−j2

l2,σ2,r2
|χ′′′〉〈χ′′′|c−j1

l1,σ1,r1
|χ′′〉〈χ′′|cj2l2,σ2,r2

|χ〉

Dχ,χ′

3dII(χ
′′, χ′′′) -1 D̃II((εχ′ − εχ), (εχ′ − εχ′′), (εχ′ − εχ), j1, j2, j1,−j2, r1, r2) 〈χ|cj2l2,σ2,r2

|χ′〉〈χ′|c−j2
l2,σ2,r2

|χ′′′〉〈χ′′′|c−j1
l1,σ1,r1

|χ′′〉〈χ′′|cj1l1,σ1,r1
|χ〉

Table 3.1: All eight diagramsD3X depicted in Fig. 3.4 are calculated according to Eq. 3.48. The function D̃I,II corresponds

to a double integral and is evaluated in appendix C. The factor S accounts for signs arising due to the diagrammatic rules

(see appendix A).
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Chapter 4

Sequential transport in single and

coupled quantum dots

The aim of this chapter is to discuss the main physical insights that can be obtained by

studying quantum dot or molecular systems in a weak coupling regime. In this regime

the temperature broadening of the Fermi levels in the reservoirs is much bigger than

the finite lifetime broadening of the quantum dot states. Tunneling to and from the

reservoirs takes place in sequential processes in which the electronic charge is transfered

one by one. While early studies of electron transport through mesoscopic systems

concentrated on the current [17, 19], more recent activities, both experimental [5, 46,

49, 51] and theoretical [22, 23, 26, 28, 34, 60, 94, 95, 96], include the analysis of shot

noise. The latter provides additional insight into the quantum transport properties [42]

and thus allows a more detailed characterization of the quantum transport device.

For ‘local’ systems, such as single or multilevel quantum dots the shot noise power

S is typically sub-Poissonian above the sequential tunneling threshold. This implies

that the Fano factor is less than unity. If the level couplings Γi are asymmetric, e.g.

in the presence of magnetically polarized electrodes or spatial asymmetries, the noise

can become super-Poissonian. In this case the Fano factor takes values larger than

unity [27, 60]. Very recently it was found that enhanced noise can also be found in

symmetric systems inside the Coulomb blockade region where the current is much

suppressed [34, 61, 94]. We will discuss this effect in some detail in chapter 4.2 for

the case of a double quantum dot. Larger systems such as serially coupled quantum

dots or molecules can display super-Poissonian noise even in fully symmetric situations

and above the sequential tunneling threshold [23]. This phenomenon is related to

correlation effects which we discuss in some detail in chapter 4.3. ’Non-local’ systems in

general exhibit a pronounced and sensitive dependence of their transport characteristics

on internal parameters and couplings due to their complex internal level structure.

However, before we will focus on these more sophisticated models we will start our

49
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discussion with a single two level quantum dot including photon relaxation as a basic

model system.

4.1 Single quantum dot

In the following a comprehensive summary of the transport characteristics of a single

two level quantum dot in the sequential tunneling regime is given. It is supposed to

serve as an introduction to the main physical processes and transport features which

have already been described from an experimental point of view in chapter 2.4. Our

results in the following reproduce the ones from Ref. [92].

4.1.1 Model and Hamiltonian

We have already introduced a general Hamiltonian (H = Hr + HD + HT ) in chapter

3.1. Since the structure of the tunneling Hamiltonian HT and the reservoir term Hr

is not altered throughout the discussion in this thesis we will only specify the dot

Hamiltonian in each model. Our model is described by the central dot Hamiltonian of
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Figure 4.1: Sketch of the coupling parameters and relaxation processes in a finite

bias situation.

the form

HD =
∑

iσ

εiσc
†
iσciσ + U

∑

i

ni↑ni↓ + EC

(

∑

iσ

niσ

)2

(4.1)

where i = 1, 2. We include a charging energy EC which accounts for the classical

energy cost to add an extra charge on a confined system with many electrons. Photon

relaxation processes are included in the sense that electrons on the dot can change the

level by emitting or absorbing a photon for i 6= j with the Hamiltonian

Hph = HB +HB−D =
∑

q

ωqd
†
qdq +

∑

qσij

gph(d
†
q + dq)c

†
iσcjσ, (4.2)
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where we consider the coupling amplitudes to be independent of i, j and q, i.e. gij
q = gph.

This leads to a total bosonic coupling constant αph(ω) = 2πg2
phρb(ω). For the density

of states of the photon bath we choose a power law behavior ρb(ω) ∝ ω3, corresponding

to photons with 3 spatial degrees of freedom. We take the electronic coupling strength

Γiσ
r to be independent of the spin and write Γr

i . Furthermore for symmetric tunneling

couplings we choose ΓL
1 = ΓR

1 = ΓL
2 = ΓR

2 = Γ. Since the coupling parameter Γ in the

sequential tunneling picture has to be small compared to all other energy parameters

including the temperature, we set kBT = 10Γ in this section. Furthermore we choose

the temperature of the photonic bath to be the same as the one of the electronic

reservoirs (Tb = T ). As a set of energy parameters we use ε1 = −0.5, ε2 = 0.5, U = 1.5

and EC = 1 (all in units of meV) which are typical energy scales in quantum dot

experiments.

4.1.2 Transport characteristics
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Figure 4.2: Current and shot noise versus voltage for symmetric and unsymmetric

couplings. Parameters are discussed in the text. Current and noise are normalized

by Imax = (e/2~)Γ and Smax = (e2/2~)Γ respectively.

Diagonalizing our dot Hamiltonian we obtain sixteen eigenstates of the isolated quan-

tum dot. The parameters given above correspond to a zero charged ground state and

a first excited state which is reached at a bias ε1 + Ec. The bias is dropped symmet-

rically across the dot-electrode junction. In the absence of photon relaxation and in

a completely symmetric coupling situation the current and shot noise rise in a step
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wise manner (see solid line in Fig. 4.2). Each step corresponds to a new transport

channel that is being opened at sufficient bias. The distance between two successive

steps is thus given by the energy separation of two eigenstates from neighboring charge

sectors (N and N +1 or N −1). Therefore the step positions are directly linked to the

excitation spectrum of the quantum dot or molecule. The steps are broadened by tem-

perature where the full width at half maximum (FWHM) is approximately ≈ 5.44kBT .

The steps are followed by plateaus corresponding to a fixed number of transport chan-

nels that contribute to the current. Fig. 4.2 shows the current and noise for various

asymmetry ratios of the coupling constants Γi.

In our case the coupling to right electrode of the second orbital level ΓR
2 is suppressed

0 2 4 6 8
V

bias [mV]

0

0.5

1

1.5
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0

2
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R
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2

R 
=0.01Γ

Figure 4.3: Fano factor (S/2eI) versus voltage for symmetric and unsymmetric

couplings. F becomes super Poissonian (F > 1) for strongly asymmetric coupling.

with respect to the others. For a strong asymmetry we observe a decrease of the cur-

rent and noise at the second plateau. This implies that the conductance ( ∂I
∂V

) becomes

negative. Negative differential conductance (NDC) indicates, that transport channels

are being blocked, in this case due to asymmetric coupling to the leads.

The Fano factor in the corresponding transport regime is depicted in Fig. 4.3. At low

bias the noise is mainly due to thermal noise and the Fano factor follows the well known

hyperbolic cotangent behavior (Ref. [42]). With increasing bias the Fano factor shows

a Poissonian plateau (F=1) in the Coulomb blockade. This regime is characterized

by few, uncorrelated tunneling events (described by Poisson statistics) since sequential

transport is exponentially suppressed. However at the sequential tunneling threshold,

when transitions from the ground state to the first excited state become possible, the

first current step appears and the Fano factor usually drops to values between 1 and

0.5 which is called sub-Poissonian. Subsequent plateaus in the Fano factor correspond
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to the occupation of exited states of the dot which in the case of symmetric coupling

all open new transport channels and thus increase the current. In contrast in an asym-

metric coupling situation the second current plateau which involves the occupation of

the bad coupled second level leads to a decrease in the current. The drop in the current

(NDC) is accompanied by a super-Poissonian Fano factor (see Fig. 4.3) indicating the

co-existence of fast tunneling events interrupted by comparable long blocking periods

due to the bad coupling of the second level to the right reservoir.

4.1.3 Relaxation processes
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Figure 4.4: Current versus voltage for an asymmetric coupling of ΓR
2 = 0.01Γ. The

second plateau is lifted the stronger the relaxation rate (the higher the bosonic

coupling constant α) until finally the NDC effect vanishes.

Next we want to consider the effect of photon relaxation. Relaxation processes provide

an additional contribution to our first order transition rates W (1) (see chapter 3 and

appendix B) and thus influence the probabilities of the dot eigenstates. In Fig. 4.4 we

show the current at fixed asymmetry ΓR
2 = 0.01Γ for various bosonic coupling strengths

αph to the bath. The NDC effect clearly vanishes in the case of strong relaxation. The

reason is obvious. An electron that has formerly been stuck on the upper badly coupled

level can now relax to the lower level and then tunnel out easily. The behavior of the

Fano factor is accordingly (see Fig. 4.5). The super-Poissonian values are reduced

such that for strong relaxation the Fano factor appears nearly flat at sub-Poissonian

values (F < 1). The probability to occupy the upper badly coupled level is gradually

reduced with higher coupling α to the bosonic bath. Hence the transport becomes

more homogeneous and thus the noise (Fano factor) is reduced.
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Figure 4.5: Fano factor versus voltage for an asymmetric coupling of ΓR
2 = 0.01Γ.

Super Poissonian noise (Fano factor) disappears and becomes sub-Poissonian for

large relaxation rates (higher coupling constant α).

4.2 Double quantum dot

As described in the previous chapter local systems such as single (multilevel) quantum

dots already provide a decent basis to study the transport physics of molecular nanos-

tructures. However, a major difference between a localized quantum dot structure and

a real molecule is that the electronic wavefunction of the molecule is usually spatially

delocalized. The delocalization of electrons can have strong effects on the transport

characteristics and thus should be included in our analysis. A perfect candidate to

study the effect of a spatially extended structure is a double quantum dot, in which

the inter-dot coupling is much stronger than the coupling to the reservoir leads. For

this reason they are often referred to as “artificial molecules” as introduced in chapter

2.

In the following chapter we will study sequential transport in a system of two strongly

coupled quantum dots. Specifically, we consider a double quantum dot (DQD) in series

in which the left dot is coupled weakly to left electrode and similarly the right dot to

the right electrode, while the two dots are coupled strongly via electron tunneling, and

they also interact electrostatically via the Coulomb interaction. We will address in

particular two distinct issues:

(i) Transport in the Coulomb blockade regime:

In this regime we study the shot noise of the symmetrically coupled DQD in the

Coulomb blockade regime, generalizing the work of Ref. [61]. Co-tunneling processes

are assumed to be weak, hence transport is due only to thermally activated processes.
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We find that in the Coulomb blockade regime the relation between two energy scales,

the sequential tunneling energy εseq and the difference of the first excitation energy

and the ground state (which is also the inelastic co-tunneling energy) εco determines

the noise characteristics. This part of our analysis is valid generally for weakly coupled

system in the Coulomb blockade regime, for any value of the gate voltage, as it depends

only on the internal electronic structure of the interacting dot system.

(ii) Transport above the sequential tunneling threshold:

For the weakly coupled DQD super-Poissonian noise can only appear if the left ↔

right symmetry is broken. In the case of the local two level quantum dot (see chapter

4.1) symmetry breaking occurred due to an asymmetric level coupling. For a non-

local system like the DQD symmetry breaking can be achieved in two qualitative

different ways: the symmetry of the electrode-dot couplings is broken, while the DQD

is unchanged or the symmetry of the DQD-Hamiltonian is broken by detuning the dot

level energies while the symmetry of the electrode-dot coupling is preserved. The two

scenarios differ in so far as in the first case the energy spectrum of the DQD remains

unchanged which means that the step positions of the current and noise characteristics

are not influenced by the coupling asymmetry. In the latter case detuning the dot

level energies changes the energy spectrum and eigenstates of the DQD. The DQD

eigenfunctions become spatially non-uniform which breaks the parity symmetry of the

effective coupling of the various eigenstates to the electrodes. Thus the current and

noise step characteristics differ for different degrees of detuning.

Such asymmetries are easily detected in an experiment. Various groups [35, 97, 98, 99]

use measurement setups on DQDs in which metallic finger gates allow for a controlled

manipulation of the relevant parameters, e.g the electrostatic potential of the individual

dots as well as the inter-dot and dot-electrode couplings.

4.2.1 Model and Hamiltonian

Here we consider two coupled quantum dots, each with a sufficiently large level spacing

such that we can restrict ourselves to one spin-degenerate level per dot. Including

electron hopping between the dots as well as intra-dot and inter-dot (nearest neighbor)

Coulomb interactions we arrive at the central dot Hamiltonian

ĤDQD =
∑

iσ

εiniσ − t
∑

σ

(c†1σc2σ + h.c.) + U
∑

i

ni↑ni↓ + Unn

∑

σσ′

n1σn2σ′ , (4.3)

with on-site energy εi and inter-dot hopping t. c†iσ, ciσ are Fermi operators for the

molecular levels, and niσ = c†iσciσ is the number operator. The strength of the intra-dot

and inter-dot Coulomb repulsion is given by U and Unn respectively. The parameters U

and Unn can be related to the charging energies of the dots and the various capacitances
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when comparing to experimental setups as described for instance in Ref. [19]. Other

electron interaction terms could be considered by much more elaborate models, as

done in Ref. [64] for computation of the I − V characteristics. For the effects on

the shot noise that we wish to study, the simpler model above suffices. Tunneling is

described by HR
T , H

L
T (see chapter 4.1) and is only possible between the reservoirs and

the corresponding adjacent dot. The respective coupling strength is characterized by

the intrinsic line width Γr = 2π|tr|
2ρe, where tr are the tunneling matrix elements. In

the N = 2 dot system there exist 4N = 16 eigenstates χ of the form χ =
∑

s cs|s〉, where

|s〉 denotes a basis state of the form |n1↑n1↓n2↑n2↓〉 and the cs are the corresponding

coefficients. The analytic form of the eigenstates and eigenvalues of our Hamiltonian

can be found in Ref. [60].

In the following we discuss current and shot noise for systems described by a Hamilto-

nian of the type of Eq. 4.3 in first order perturbation theory in the tunnel couplings Γr.

In the first part of the discussion special emphasis is put on examining the behavior

of the Fano factor (noise) in the Coulomb blockade region. The second part will be

devoted to the discussion of asymmetry effects induced to the double dot system by

asymmetric coupling to the leads or detuned level energies, respectively. In the case

of symmetric couplings we choose ΓL = ΓR = 2.5µeV defining a total line width of

Γ = ΓL + ΓR = 5µeV. We choose this explicit energy scale as we are varying a number

of different energy parameters in the following. Our perturbation expansion is valid

for temperatures much larger than the tunnel couplings. For the following discussion

we choose kBT = 10Γ which translates to T = 50µeV ∼ 0.6K. The dot system is

characterized by the level energies εi, the intra-dot ’Hubbard’ repulsion U , and the

nearest neighbor charge repulsion Unn. If not stated otherwise the level energies are

chosen to be resonant, ε1 = ε2 = ε.

A current is driven by an applied bias voltage Vb = µL − µR. We assume the voltages

to drop symmetrically and, since the dot-electrode coupling is weak compared to the

dot-dot coupling, entirely at the electrode-dot tunnel junctions. This implies that the

level energies of the dots are independent of the applied voltage. Effects such as level

detuning due to asymmetric or incomplete voltage drops and or applied gate voltages

could easily be included. We do not consider these effects here, as they add unnecessary

complexity to the results presented below. We include only a single level per dot (plus

interactions), assuming that the level spacing within each dot is larger than all other

energy scales.

To proceed we diagonalize the dot Hamiltonian HDQD including the interaction terms.

The resulting eigenstates can be organized according to the two quantum numbers:

total charge −qe (with q an integer, q ∈ 0, 1, 2, 3, 4) and total spin (singlets, doublets

and triplets for our DQD model) [60]. As the on-site energies εi are decreased to lower,

negative values (experimentally achieved by a gate voltage applied to both dots) the

ground state charge shifts from q = 0 to increasing values q = 1, q = 2, . . .. While
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previous work [28, 61] has focused mostly on the zero charge (q = 0) ground state we

study the more interesting case (see below) with a “half filled” ground state (q = 2),

where the low-bias transport sensitively depends on the spatial and spin structure of

the eigenstates.

For the sequential transport in quantum dot systems at low bias two energy scales are

relevant: (1) The ”sequential energy gap” εseq denotes the energy difference between

the ground state with charge −qe and the first excited states with the charge −(q+1)e

(“anion ground state”) or with charge −(q−1)e (“kation ground state”), depending on

which one is smaller. The sequential tunneling threshold, i.e. the bias above which the

current is no longer suppressed due to Coulomb blockade, is reached at V = 2εseq/e for

symmetric bias. (2) The energy gap between the ground state with charge −qe and the

first excited state with the same charge, denoted in the following by εco. The energy

εco is also known as the ‘vertical’ gap, and is often related to the HOMO-LUMO gap

in molecular systems. It would be the energy scale relevant for inelastic co-tunneling

processes. Note, however, that co-tunneling processes, which are second order in Γr,

are not included in our discussion. If one would start with a ground state of zero

charge (q = 0) the energy scale εco would not exist within our model, due to the

restriction to single level dots. As we consider the case of a half filled ground state we

avoid such an artefact. Note that recent experiments on double quantum dot systems

with applications for quantum computing [35, 39, 98] also work with ground states of

non-zero charge.

4.2.2 Symmetrically coupled quantum dots

We begin with a system of two dots in series and energy parameters such that the DQD

is half filled in the ground state (no bias applied). In the right panel of Fig. 4.6 part of

the energy excitation spectrum resulting from the diagonalization of the Hamiltonian

is displayed. The ground state G is a singlet state with total spin S = 0 and charge

−2e (q = 2). It is delocalized over the two dots (a combination of the four two electron

singlet basis vectors |s〉) with an eigenvalue EG dependent on all parameters of HDQD,

EG = 2ε + 1/2(U + Unn − ∆), where ∆ =
√

16t2 + (U − Unn)2 [60]. The first excited

state is the bonding state B with q = 1. It is a doublet with total spin 1/2, eigenvalue

ε − t, and is also delocalized over both dots. Therefore, the energy scale εseq is given

εseq = EB −EG. The second excited state is a triplet with total spin S = 1 with q = 2.

In the triplet state one electron each is ”fixed” to one dot. Therefore, its eigenvalue is

independent of the inter-dot hopping t and the on-site repulsion U . The energy scale

εco is thus given by εco = ET − EG. The rest of the spectrum is not shown, since for

the following discussion we will refer to a bias regime for which other states are not

yet important. The higher excited states are responsible for the step features above

Vb ∼ 5mV . Note that in the artificial limit U → ∞ the energy scale εco vanishes. In
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this case, the triplet and singlet states would be degenerate and some of the effects

described below would disappear.
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Figure 4.6: left panel: Current I and shot noise S vs. bias voltage for a double dot

system with kBT = 0.05, t = 2, U = 10, Unn = 5 and ε = −5.5 resulting in a doubly

occupied ground state (q = 2e), all units in meV. The noise S is sub-Poissonian

for all bias voltages. This is always the case if the first vertical excitation energy

is larger than twice the sequential tunneling threshold, εco > 2εseq, see the sketch

in the right panel. Current and noise curves are normalized to I0 = (e/~)2Γ and

S0 = (e2/~)2Γ, respectively. Right panel: sketch of the low energy spectrum. The

nature of the states G,T and B is discussed in the text.

Fig. 4.6 shows the typical behavior for a fully symmetric system with εco > 2εseq :

both current and noise rise monotonically in steps, while the Fano factor will fall

between values of 1 (Poissonian noise) and 1/2 (symmetric double barrier noise) for

the large bias region, i.e. at bias voltages larger than all excitation energies. In general,

the Fano factor will not fall with a monotonous dependence on the bias. This non-

monotonicity is due to the second term in the noise expression Eq. 3.38, associated with

the propagator P, which can give positive and negative contributions. In the Coulomb

blockade current and noise are both (equally) exponentially suppressed resulting in a

Fano factor of Poissonian value. At small bias, eVb ≪ kBT , the noise is dominated by

thermal noise, described by the well known hyperbolic cotangent behavior which leads

to a divergence of the Fano factor [38, 42].

If we now lower the on-site energy ε we energetically favor states with larger charge and

thus increase the energy εseq as compared to the situation as shown in the right panel of

Fig. 4.6, while preserving the energy εco. Thereby, we can realize a situation in which

εseq < εco < 2εseq, see Fig. 4.7. Above the sequential threshold the current and noise

curve look very similar to the situation in Fig. 4.6, with the expected small shifts in
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the step positions. However, in the Coulomb blockade region the Fano factor behaves

differently to before. After the region of thermal noise accompanied with divergent

Fano factor, a Poissonian value of F = 1 is reached. For higher bias and close to (but

still below) the sequential tunneling threshold a peak like feature (actually a short

plateau) appears in the Fano factor. This is caused by a relative enhancement of the

noise, visible in Fig. 4.7 and Fig. 4.9 by the apparent shift of the noise curve to lower

bias in the left panel. The increase of the Fano factor is due to the second term in the

noise expression of Eq. 3.38 which we denote by Sred, whereas the first part is called

Sirr. A comparison of the two noise contributions can be seen in Fig. 4.8 (note the

semi-logarithmic scale). The first part of the noise Sirr provides the finite thermal noise

around zero bias. It then grows with bias with the same exponential behavior as the

current and contributes a Poissonian term 2eI to the shot noise. In contrast, the (now

positive) second part Sred becomes only appreciable for a bias Vb > (εco − εseq)/e and

renders the shot noise super-Poissonian above this bias. This noise enhancement is

due to the possible thermal occupation and subsequent sequential depletion of excited

states that lead to small cascades of tunneling events interrupted by long (Coulomb)

blockages. The alternation of these processes with different time scales results in a noisy

current. Consequently, the Fano factor is larger than unity, indicating super-Poissonian

noise. This effect was discussed in some detail by Belzig and co-workers [61, 94],

for systems restricted to a singly occupied ground state. At a bias higher than the

sequential threshold the noise recovers sub-Poissonian behavior.
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Figure 4.7: Left panel: Current I and shot noise S vs. voltage for a double dot

system with kBT = 0.05, t = 2, U = 12, Unn = 4meV and ε = −5.3. Super-

Poissonian noise (Fano factor F > 1) develops in the Coulomb blockade regime.

Right panel: low energy spectrum, where now εseq < εco < 2εseq.

For the same parameters as above but with further lowered on-site energy ε = −6.3
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Figure 4.8: Enlarged low bias region of Fig. 4.7. 2eI, Sred and Sirr are plotted

semi-logarithmically. The first part of the noise Sirr grows with bias as the cur-

rent, providing a Poissonian noise contribution. The second part of the noise Sred

becomes appreciable for V > 2(εco − εseq)/e and causes the total noise enhance-

ment.

we obtain a situation where εco < εseq. The current, noise and Fano factor for such

a situation are depicted in Fig. 4.9. For a bias larger than the sequential tunneling

threshold the curves show again generic behavior as displayed in Fig. 4.6 and Fig. 4.7.

However, in the Coulomb blockade regime and after divergent thermal noise behavior

we directly obtain a super-Poissonian Fano factor F ≈ 2.8 in form of a plateau and do

not recover a Poissonian value in the entire Coulomb blockade regime at all. In this

case, Sred gives a large contribution that behaves with the same exponential behavior

as the current rather than dropping faster than the current at low bias (as depicted

in Fig. 4.7). Thus the noise is enhanced in the entire Coulomb blockade regime. The

term Sirr again provides the thermal noise at very low bias and a contribution of 2eI

below the bias Vb > (εseq − εco)/e. Above this bias, there is a redistribution between

Sirr (losing) and Sred (winning), however, the sum of the two terms grows exactly like

the current, leading to a constant (super-Poissonian) Fano factor.

Summarizing the above discussion we can distinguish three possible situations in the

Coulomb blockade region:

i) For εco > 2εseq the sequential processes start at a bias before the excited states come

into play, and the noise is Poissonian, i.e. F = 1 once the thermal noise becomes

negligible. This is the case for Fig. 4.6, as sequential transport via the ground state G

and the “bonding state” B takes place before the triplet state T can be reached from

the bonding state B.

ii) For εseq < εco < 2εseq there is super-Poissonian noise F > 1 in the bias range

2(εco − εseq)/e < Vb < 2εseq/e, see Fig. 4.7. This is due to the transport scenario
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Figure 4.9: Left panel: Current I and shot noise S versus voltage for a double

dot system with kBT = 0.05, t = 2, U = 12, Unn = 4 and ε = −6.3. Super-

Poissonian noise develops in the entire Coulomb blockade region. Right panel: the

corresponding low energy spectrum, where εco < εseq.

discussed above, as for a bias in this range a thermally excited system can for a time

do sequential transport through the excited states, before recovering to the ground

state.

iii) For εco < εseq we have F > 1 for the entire Coulomb blockade region. For a bias

2(εseq − εco)/e < Vb < 2εseq/e the situation is the same as in scenario ii). Below this

bias range the physical picture due to Ref. [61] needs to be modified, as sequential

transport is ”blocked” (thermally activated) even out of the first excited state for

Vb < 2(εseq − εco)/e. Nevertheless, the Fano factor actually remains constant as the

bias drops below 2(εseq − εco)/e, see Fig. 4.9.

However, as was pointed out in Ref. [22], the super-Poissonian noise behavior due to

sequential tunneling processes in the Coulomb blockade regime is very easily modified

by co-tunneling processes as discussed later in chapter 5.

The experimental distinction of scenarios ii) and iii) can therefore be difficult: although

the Fano factor looks different in pure sequential transport, if co-tunneling processes

play a role, scenarios ii and iii) will display qualitatively similar Fano factor behavior.

4.2.3 Influence of asymmetries

We now turn to the discussion of transport above the sequential tunneling thresh-

old, i.e. in the bias region where electrons can tunnel sequentially through the DQD

because they have sufficient energy to overcome the Coulomb blockade. For the sym-
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metric situations as discussed above, the current and the noise increase monotonically

in steps, where the step positions are determined by the many-body excitations of

the DQD. For our DQD system, the noise in a symmetric transport situation remains

sub-Poissonian (Fano factor F < 1) at all bias above the sequential tunneling threshold.

Asymmetric coupling

In a situation where the couplings are asymmetric, e.g. when the coupling to the

left electrode is suppressed relative to the coupling to the right electrode, ΓL/ΓR < 1

the noise can become super-Poissonian. Let us consider a case in which the energy

parameters are chosen to be the same as in the situation displayed in Fig. 4.6. The

ground state is again a two electron state with εco > 2εseq. Hence for the following

discussion one should refer to the qualitative energy spectrum shown in the right panel

of Fig. 4.6. In Fig. 4.10 the upper graph depicts the Fano factor and the lower graph

the absolute value of the current for various asymmetry ratios ΓL/ΓR (the current is

negative for negative bias). In the symmetric case, represented by the solid line, the

Fano factor as well as absolute current and the noise (that is not depicted here) show

a fully symmetric behavior under the reverse of the bias voltage. The first plateau is

reached when the transition from the doubly occupied ground state G (q = 2e) to the

lowest single occupied state, the bonding state B, (q = 1e) becomes allowed at the

sequential tunneling threshold (Vb = 2εseq/e)). At these plateaus the current, noise

and Fano factor are functions of the coupling constants Γr only. At negative bias on

the first plateau, the Fano factor is given by

F =
4Γ2

L + Γ2
R

(2ΓL + ΓR)2 . (4.4)

This gives a value of 5
9

at the first plateau for symmetric coupling. For positive bias

voltage one needs to exchange ΓL with ΓR, respectively. This result can be related to

the discussion in Refs. [26, 27].

For the curves with ΓL/ΓR 6= 1 there is a clear asymmetry in current and Fano factor.

The first plateau value of the Fano factor is increased for positive bias and (for smaller

asymmetry) decreased for negative bias according to the above expression for the Fano

factor. Further suppression of the left coupling leads to a region of negative differen-

tial conductance (NDC) and eventually a super-Poissonian Fano factor on the second

plateau at negative bias (see dash-dotted curve for ΓL/ΓR = 0.1). The reason for the

current suppression and asymmetric behavior is the interplay of the asymmetric cou-

plings and the internal electronic structure. The occupation of the states participating

in transport at the plateaus is highly sensitive to the asymmetric couplings.

Let us consider the first plateaus (positive and negative bias) of the current in the case

ΓL/ΓR = 0.1. For negative bias, in contrast to the symmetric case where the ground

state G and the bonding state B are equally occupied, we have now a higher probability



4.2. DOUBLE QUANTUM DOT 63

0.6

0.8

1

Fa
no

 F

Γ
L
=Γ

R

Γ
L
/Γ

R
= 0.5

Γ
L
/Γ

R
= 0.1

-7.5 -5 -2.5 0 2.5 5 7.5
Bias voltage [mV]

0

0.2

0.4

I/
I 0

Figure 4.10: Current I (absolute value) and Fano factor S vs. voltage for asym-

metric coupling in a double dot system with kBT = 0.05, t = 2, U = 10 and

Unn = 5, ε = −5.5. For strong asymmetry negative differential conductance and

super-Poissonian noise appear only for negative bias voltages. Note that due to the

asymmetry the total line width Γ = ΓL + ΓR and the current are reduced relative

to the symmetric case.

to be in the state G than in the state B. This is due to the fact that it is “easy” to

populate the DQD from the right but “difficult” to depopulate the DQD in direction of

the left electrode because of the suppressed coupling. As a consequence the system is

occupied by two electrons most of the time. The reverse holds for positive bias, where

the dot is most often occupied by one electron and consequently the probability to be

in the state B on the first plateau is higher than to be in the ground state G.

To obtain the current I we need to consider the relevant current rates W I in addition

to the probabilities of the various states. On the first plateaus, the relevant current

rates W I
G→Bσ

from ground state to bonding state(s) (with given spin σ) at negative bias

are equal in magnitude to the reverse rates W I
Bσ→G at positive bias (independent of the

spin σ of Bσ). Solving the master equation, as a result of the coupling asymmetry the

probability pG to be in state G on the first plateau at negative bias is however larger

(almost twice) than the occupation pBσ
for states Bσ on the first plateau at positive

bias. The combination of the same relevant current rate but different occupations leads

to a higher (absolute) value of the current on the first plateau at negative bias than on

the corresponding plateau at positive bias. To be concrete, if we consider the currents

on the left interface of the DQD we have at negative bias a current with absolute
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value |2W I
G→B pG| which is almost twice as large (for ΓL/ΓR = 0.1) than the current

W I
B→G 2 pBσ

going through the left interface at positive bias. Here, the factors of two

originate from the spin summation over the bonding state doublet.

On the first plateau the Fano factor is monotonically increasing for positive bias with

decreasing ΓL/ΓR until it would reach the Poissonian value F → 1 for very large

asymmetry, resembling the noise of an effective single barrier. For negative bias on the

first plateau, the Fano factor (given by Eq. 4.4) is not monotonic: it first decreases

until it reaches F = 1/2 for ΓL/ΓR = 0.5, then it increases until it also would reach

the Poissonian value for large asymmetry. This non-monotonic behavior reflects the

interplay of asymmetry and different spin multiplicity of the relevant states G and B.

At the second plateau the transition from the bonding state B to the first excited

triplet state T (q = 2) becomes possible and thus provides a second current channel.

The stationary probabilities are redistributed in the following way: For negative bias,

the states G and each of the three triplet states Tm, m ∈ {−1, 0, 1} have approximately

equal occupation (within 10 percent). As a consequence of the threefold spin multiplic-

ity of the triplet the probability of the ground state decreases to less than one third of

its value on the first plateau. The bonding state B also loses some of its (already small)

probability to the competing triplet states. The tunneling processes from the triplet

state(s) T to the bonding state(s) B contribute an additional current via the current

rates W I
T→B (per triplet state and spin of B). However, even when summing over all

the triplet contributions the resulting current is too small to compensate the loss from

the processes involving the ground state. Therefore a region of negative differential

conductance (NDC) appears as soon as the triplet states play a role in transport for

negative bias (at the considered coupling asymmetry). The NDC is accompanied by a

(relatively) enhanced noise because the competing processes involving the ground state

and the triplets have sufficiently unequal rates W I
G→B and W I

T→B to form ’slow’ and

’fast’ transport channels. This competition leads to the super-Poissonian Fano factor

as depicted in Fig. 4.10.

For positive bias on the second plateau the situation is quite different. Here, the DQD

remains mostly in the bonding state B, i.e. there is no major loss of occupation for the

bonding state (about 10 percent). Again the current leaving the dot consists of two

additive contributions. In addition to the ground state contribution already present

on the first plateau, the transitions between bonding to the triplet states add a large

contribution and thus the current increases stepwise to a second, higher plateau.

The above illustrates that although for one bias direction (here positive) the current

and shot noise show generic behavior (and the Fano factor is always sub-Poissonian),

the situation can be quite different for the reverse bias. As such asymmetries are easily

verified in an experiment, we can learn much about the underlying asymmetries of the

couplings and the spin multiplicities of the states participating in transport. Note that
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Figure 4.11: Current I (absolute value) and Fano factor S vs. voltage for various

values of level detuning ε12 but with symmetric couplings to the leads and other

energy parameters equal to the situation depicted in Fig. 4.6. Stronger detuning

ε12 leads to NDC and eventually super-Poissonian noise. In contrast to Fig. 4.10,

the bias (energy) positions of current and noise features are changed due to the

modified dot Hamiltonian.

the NDC and super-Poissonian noise would completely disappear if we would take the

on-site Coulomb repulsion U → ∞. Due to a finite U the singlet ground state can

benefit from ’local singlets’, i.e. states with two electrons of opposite spin on the same

dot, whereas there is no equivalent for triplet states. Therefore, the singlet ground

state has a lower energy and different transitions rates as compared to the triplet

states, both of which are necessary conditions for the NDC and super-Poissonian noise

in the considered single-level model.

Detuned level energies

The discussion above serves as a basis to qualitatively understand transport in the more

complicated situation when the symmetry of the DQD Hamiltonian itself is broken,

rather than merely its coupling to the electrodes. In the following, we detune the level

energies ε1 − ε2 = ε12 and also vary the inter-dot hopping t while the other parameters

of the dot system remain the same and the couplings remain symmetric, ΓL = ΓR.

For an experiment, this implies a gate electrode for each dot that can be controlled

separately. Similar to above in Fig. 4.10, if roughly |ε1 − ε2| = |ε12| > |t|, NDC and

super-Poissonian noise can be realized at some bias.
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In Fig. 4.11 we show current and Fano factor for different level detuning ε12. The black

solid line corresponds to symmetric couplings and resonant levels ε1 = ε2. It is the

same as depicted in Fig. 4.10. If we start detuning the levels, i.e. ε12 6= 0 we change our

excitation energies and the states become more localized on the dot with lower energy

(here the right dot). Consequently, we find the current and Fano factor plateaus at

different (energy) positions as before, with different length of the plateaus. Note that

the current on the first plateau only weakly changed for all ε12 considered here. This

is due to the fact that despite of the changed Hamiltonian, the tunneling rates from

ground state to bonding state as well as the occupations of these states are almost

the same. The occupations on the first plateau are also only weakly dependent on the

sign of the bias, quite different to the situation with asymmetric couplings considered

above. Only with an even stronger level detuning would the current be significantly

changed on the first plateau. However, the considered detuning of levels still leads to

NDC and eventually to a super-Poissonian Fano factor, e.g. for ε12 = 4 at negative

bias. The effect of triplet states on the second plateau is qualitatively the same as in

the scenario with asymmetric coupling discussed above. For positive bias the current

remains monotonic and the Fano factor remains sub-Poissonian. In agreement with

previous results [28] the maximum current at very large bias (not shown) decreases

with increased detuning although the total coupling Γ remains unchanged.

Instead of further increasing the level detuning one can also achieve ”localization” of

states by decreasing the inter-dot hopping t. Let us consider again the symmetrically

coupled system (ΓL = ΓR) at a fixed detuning of ε12 = 2 for various values of the

inter-dot hopping t (see Fig. 4.12). The solid line corresponds again to the case, in

which ε12 = 2 and t = 2, as was also depicted in Fig. 4.11(dashed line). As expected,

the plateaus of the current are again asymmetric since we have detuned level energies.

If we now decrease t, the bonding state and the ground state will be separated by only

a very small energy (as Unn = 5 and (ε1 + ε2)/2 = 5.5) and thus the Coulomb blockade

almost disappears. For positive bias both current and Fano factor (noise) behave

generically. The first plateau for negative bias is again due to tunneling processes

involving the states B and G. At the second plateau the triplet T starts participating

in the transport and is strongly occupied, resulting in NDC and super-Poissonian noise

as discussed above. At even more negative bias there exists a second region of NDC

(for the cases t = 1 and t = 0.5). This is where the anti-bonding state (not depicted in

the spectrum in the right panel of Fig. 4.6) is also contributing to the transport. The

maximum current at large bias (not shown) depends on the inter-dot hopping t if the

dot levels are out of resonance [28].

From Fig. 4.11 and Fig. 4.12 one can conclude that a higher degree of localization of the

states participating in transport, achieved either by a strong detuning of level energies

or a decrease in the inter-dot hopping, favors transport features such as NDC and

makes the current more and more noisy, leading eventually to super-Poissonian noise.
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Figure 4.12: Current I (absolute value) and Fano factor S vs. voltage for various

“hopping” parameters t and a level detuning of ε12 = 0.2, symmetric coupling to

the leads and otherwise same parameters as in the situation depicted in Fig. 4.6.

Reduced hopping causes a smaller total current although super-Poissonian noise

and NDC develop similarly as in Fig. 4.11.

Reducing the hopping (at fixed detuning) therefore has a similar effect on transport as

a larger detuning at fixed hopping. However, as the DQD spectrum differs non-linearly

between different parameter sets with identical ratio ε12/t the resulting transport curves

can not be scaled, but depend explicitly on the value of each parameter.

For reference we show in Fig. 4.13 the current and Fano factor for a fully symmetric

system, i.e. equal couplings to left and right and resonant level energies but for different

values of the inter-dot hopping t. As expected all curves behave symmetric under the

reverse of bias. Similar to Fig. 4.12, for smaller hopping t the sequential tunneling

threshold, determined by the energy distance of the states G and B, becomes very

small for the chosen parameters and thus the Coulomb blockade almost disappears.

Since there is no asymmetry in the system, not in the couplings nor in the energy

levels, we do not expect and do not find regions of NDC and/or super-Poissonian

noise. This is specific to this DQD system, in which there are only interfacial dots

and thus there is always a finite probability for the electrons to depopulate the dot

structure. In contrast, in chains of three and more quantum dots, super-Poissonian

noise is possible even for a fully symmetric system. We will discuss this effect in the

following chapter for a triple quantum dot with strong non-local Coulomb interactions.
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Figure 4.13: Current I (absolute value) and Fano factor S vs. voltage for different

values of “hopping” t without level detuning (ε12 = 0) for symmetric couplings

and same parameters as in the situation depicted in Fig. 4.6. Note that current

and Fano factor are both symmetric under the reverse of bias voltage, since there

is no source of asymmetry.

Note that although the current (Fano factor) does very much depend on the value of

the hopping t for the low bias regime depicted in Fig. 4.13, the maximum current at

very large bias (not shown) is actually independent of the hopping t. This is due to

our neglect of off-diagonal matrix elements of the reduced density matrix. The effect

of off-diagonal elements on transport are negligible for the weak coupling situation we

consider, but become increasingly important, if the coupling Γ becomes comparable

to the intrinsic energy scales of the dot system, such as the hopping energy t. Such

off-diagonal elements have been included in recent works [88, 89].

4.3 Triple quantum dot

The main difference between a double quantum dot and longer chains of coupled quan-

tum dots, such as a triple quantum dot is the existence of a middle dot that is only

indirectly coupled to the reservoirs via the interfacial dots. The more complex elec-

tronic spectrum gives rise to interesting physical effects whose signatures can be found

in the transport characteristics as we will see later in this chapter. All three dots are
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fully coherent among each other and weakly coupled to metallic electrodes via the dots

at the interface, thus modeling a molecular wire. In the following we will discuss the

current-voltage characteristics as well as the current noise which are evaluated up to

first-order perturbation theory in the couplings to the electrodes.

4.3.1 Model and Hamiltonian

We consider a series of quantum dots, each with one spin-degenerate level. Including

hopping between the dots as well as intra-dot and inter-dot (nearest neighbor) Coulomb

interactions we arrive at the Hamiltonian

Ĥdots =
∑

iσ

εiniσ − t
∑

i6=j,σ

(c†iσcjσ + h.c.) + U
∑

i

ni↑ni↓ + Unn

∑

i6=j,σ,σ′

niσnjσ′ , (4.5)
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Figure 4.14: The considered chains of dots and the relevant energies scales.

The equilibrium chemical potential of the leads (Fermi energy) sets the zero of the

energy scale. The ”artificial molecule” term Ĥdots describes the series of dots with

Fermi operators c†iσ, ciσ, on-site energies εi and nearest neighbor hopping t. U and Unn

are the strength of the intra-dot and nearest neighbor inter-dot Coulomb repulsion.

In the following we discuss current and shot noise for a model of type Eq. 4.5 with

N = 3 dots and a half filled ground state (i.e. one electron per dot). We use equal

couplings, ΓL
1 = ΓR

3 = 2.5µeV, so Γ = ΓL
1 +ΓR

3 = 5µeV. Our perturbation expansion is

valid for temperatures much larger than the tunnel couplings. We choose kBT = 5 Γ =

0.025 meV which corresponds to T ≈ 0.25K. The dot system is characterized by the

level energy ε, the intra-dot ’Hubbard’ repulsion U and the nearest neighbor charge

repulsion Unn, which we present in units of meV. Transport is achieved by applying a

bias voltage Vb, which is dropped symmetrically and entirely at the electrode-dot tunnel

junctions, meaning that the energies of the dot states are independent of the applied

voltage. We do not consider here the effects of asymmetric or incomplete voltage drops

that are straightforward to anticipate.

We point out that the three dot system is the simplest system that is not pure interface

and therefore is the minimal model for a truly non-local “artificial molecule”. After
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diagonalizing the central Hamiltonian we obtain the eigenstates that split into singlets,

doublets, triplets, etc.. The obtained electronic wavefunctions are much more complex

than in the discussed case of the double quantum dot. As a consequence states which

are mainly “localized” at the interfacial dots are competing in transport with states

that have their main weight at the middle dot (even though the Hamiltonian remains

fully left ↔ right symmetric). This competition can have dramatic effects in the noise

characteristics that have no equivalent for smaller systems.

4.3.2 Influence of strong non-local Coulomb interactions
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Figure 4.15: Left panel: current I, shot noise S vs. bias voltage for a three-dot chain

with kBT = 0.025, ε = −10, t = 2, U = 12 and Unn = 0.2 (all energies in units of

meV). Right panel: Fano factor is sub-Poissonian (F < 1) for all bias larger than

the sequential tunneling threshold. All current and noise curves are normalized to

I0 = (e/2~)Γ ∼ 60 pA and S0 = (e2/2~)Γ ∼ 10−29A2/Hz, respectively.

We first consider a situation where the non-local interaction Unn is small (Unn = t/10)

and obtain the typical behavior for a fully symmetric system, see left panel of Fig. 4.15.

The current rises (mostly) monotonically in steps, the noise also shows steps, but must

not increase monotonically. Thermally broadened peaks around the steps are also

possible. The Fano factor F = S/2eI will fall between values of 1 (Poissonian noise)

and 1/2 for biases larger than all excitation energies (symmetric double barrier noise),

though in general it will not fall with a monotonous dependence on bias. At small bias,

eVb ≪ kBT , the noise is dominated by thermal noise, leading to a divergence [38] of

the Fano factor.

If now the non-local Coulomb repulsion Unn is increased so that Unn > t the situation
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Figure 4.16: Current I and shot noise S vs. voltage for three dots kBT = 0.025,

t = 2, ε = −10, U = 12, Unn = 5. The noise is strongly enhanced in absolute

magnitude above Vb ∼ 4 mV, while the current only slightly increases, leading to

a Fano factor F > 1. This is due to a competition of “fast” and “slow” transport

channels. Above Vb ∼ 10 mV “normal” behavior resumes, as the “slow” channel

of transport is “cut short” (see text). The noise scales like (Unn/t)
2 in this regime,

while the current saturates as t is lowered.

is quite different. In Fig. 4.16 we show current, noise and Fano factor for the same

parameters as for Fig. 4.15 except for a different ε = −10. The current shows generic

behavior, i.e. stepwise increase and only a tiny NDC around Vb = 8.5mV. The noise,

however, is tremendously enhanced, with the Fano factor F > 1 indicating its super-

Poissonian nature. While F > 1 in itself is not uncommon in the sequential tunneling

regime as we have seen in the previous chapter for the case of the double dot and also

in other works [26, 60, 100], often F > 1 is achieved by a suppression of transport

in which the current is more suppressed than the noise. Here, the current is not

suppressed, but the noise itself is enhanced in absolute magnitude over a large bias

range, before recovering “normal” behavior beyond a bias of Vb = 10 mV.

For such a noise behavior strong electron interactions (U,Unn ≫ T ) are needed to have

the various states compete in transport. The outcome of this competition is determined

by the wave functions of the competing states that effectively generate state dependent

tunneling transition rates. Finally, the total spin of the states in question can differ by

more than the electron spin 1/2 , so some energetically and spatially possible transition

rates vanish due to spin selection rules. In the present case, the dominance of the non-

local interaction Unn over the hopping t, leads to a strong modification in the spatial

distribution of the relevant many-body wave functions as compared to the Unn ≪ t



72 CHAPTER 4. SEQUENTIAL TRANSPORT IN SINGLE AND

COUPLED QUANTUM DOTS

case.

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
�� ��

��
��
��

��
��
��
��

�
�
�
�
�

�
�
�
�
�

��
��
��
��

��
��
��
�������� ������ ������ ������ ������ ��������

��
��
��

��
��
��
��

������ ������ ������

QT1

T1 Q

Unn < t

Unn > t

Figure 4.17: Electronic tunnel processes change between the triplet state T1 with

charge q = 2 and the excited quadruplet state Q with charge q = 3 for the case of

weak (Unn < t) and strong non-local Coulomb (Unn > t) interactions. The triplet

wavefunction has two electrons on two different dots. In the case of strong non-

local Coulomb interactions the dominant contribution of the triplet wavefunction

consists of two electrons on the outer interfacial dots. Due to this change in the

nature of the wavefunction tunneling processes leading into the quadruplet state

are suppressed (as indicated in the figure).
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Figure 4.18: Electronic transitions between the singlet S1 and the doublet ground

state G. Transitions involving local singlets (upper state in the figure) as well as

some of the non-local singlet transitions (lower one in this figure) are unaffected

by the ratio Unn/t.

Let us consider the nine states with total spin 1 in the q = 2 charge sector that split

into three triplets (only T1,T2 shown in the insert of Fig. 4.16). If Unn << t, the

lowest triplet (T1) will have equal electron occupation on any of the three dots, thereby

maximizing the kinetic energy. On the other hand, if Unn > t it prefers to have one

electron each on the leftmost and the rightmost dot, thus minimizing both intra-dot

and inter-dot Coulomb repulsion. This change in the nature of the lowest triplet wave

function is crucial for the ”noisy” transport and is qualitatively depicted in Fig. 4.17.

An equally fundamental role plays the total spin 3/2 quadruplet, the second excited

state in the q = 3 charge sector that has one electron on each dot. Due to spin selection

rules these quadruplet states can only have tunneling transitions to the triplet states

of the q = 2 (or q = 4) charge sectors. The transitions involving the triplet state T1 are

depicted for the case of weak and strong non-local Coulomb interactions in Fig. 4.17.
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The transition from the triplet state T1 to the quadruplet Q requires an extra electron

on the middle dot. However, since tunneling can only occur at the interface dots, this

is suppressed by a factor ∼ (t/Unn)2, thus forming a ”slow” channel of transport. In

contrast, transitions from the q=3 doublet states G,D1 to the q = 2 singlet S1 can

occur via ”intermediate” local singlets on the dots that exist for finite U , independent

of the ratio t/Unn. These transitions are depicted in the upper part of Fig. 4.18. They

remain “faster” than the ones involving the triplet and quadruplet states as shown

in Fig. 4.17. Hence the current effectively alternates between fast and slow tunneling

sequences which leads to enhanced noise in the corresponding bias regime [94, 101].

If we take the on-site repulsion U to infinity, local singlets are eliminated. Then, the

S1 singlet transitions are also suppressed by (t/Unn)2 and the noise will turn (sub)-

Poissonian.

In Fig. 4.16, on the first plateau for 3.3 mV < Vb < 4 mV with sub-Poissonian noise,

transport is mainly achieved by tunneling events in which the dot system alternates

between the ground state G with charge q = 3, and the lowest singlet S1 with charge

q = 2. The states S1 and the lowest triplet T1 (q = 2) are only split by the small

”exchange energy” of size J ∼ t2/U ∼ 0.33 meV and the first excited doubletD1 (q = 2)

falls energetically in between S1 and T1, see the inset in the right panel of Fig. 4.16.

Therefore, as soon as the sequential tunneling threshold Vseq = 2(ES1
−EG)/e ∼ 3.3mV

is overcome, the states T1 and D1 also participate in transport, but their occupation

turns out to be small (less than 1 percent). Since Vseq > 2(EQ − ET1
)/e even the

quadruplet Q is occupied, though with the same low probability as the triplet T1.

However, above Vb = 2(ET1
−EG)/e = 4mV the transport becomes noisy, with a Fano

factor of F > 1. However, the current itself still increases by about 2 percent (not

visible in the figure). When direct transitions between the ground state G and lowest

triplet T1 become possible, the occupation in T1, D1 and Q increases at the cost of

G and S1, until each state has equal probability. Due to their larger spin multiplicity

this means that the triplet and the quadruplet states compose about 7/12 of the total

probability.

For even larger bias, states in the q = 4 charge sector come into play, which lead to

several smaller features, until at about Vb = 8mV the quadruplet becomes even more

occupied via the lowest triplet in the q = 4 charge sector and the noise and the Fano

factor reach their maximum. The maximum value of noise (and Fano factor) behaves

as (Unn/t)
2, meaning that huge Fano factors can be achieved. The current value at

the corresponding plateau saturates as the hopping t is decreased. This is due to the

homogeneity of our Hamiltonian. ”Detuned” dot levels ε will lead to a decrease in

current with decreasing t [28]. The size of t, however, is constraint by t ≫ Γr, as

otherwise the division of the total system into a coherent dot system with perturbative

coupling to electrodes makes no sense.

At Vb = 10 mV transitions between the quadruplet and the second triplet (T2) with
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q = 2 become possible. In contrast to the lowest triplet T1, the states of T2 (as well

as the quadruplet states) do not benefit from the hopping t, therefore the structure of

their wave functions is independent of both the interactions U, Unn and the hopping t,

only the actual energy varies (ET2
= 2ε+Unn, EQ = 3ε+2Unn). T2 is spread uniformly

over the three dots, so its transition rate with the quadruplet is not suppressed with

t/Unn. Therefore, the slow channel between the T1 triplet and the quadruplet is ”cut

short”, the transport becomes more homogeneous and the Fano factor drops below

unity.

As the above effect relies on spin quantum numbers it should be robust to standard

relaxation processes involving phonon and photon emission. A strong magnetic field

will modify the details, but not the generic behavior of the transport. Also co-tunneling

does not modify the effect. We have calculated the described systems in a full second

order description and found the same strongly enhanced noise behavior. Deviations

are seen at the step positions for current and noise due to the additional broadening in

second order, which is proportional to the coupling constant Γ and the temperature T .

We will elaborate more on these features in the following chapter 5 where co-tunneling

processes will be discussed.

While we considered parameters such that the q = 3 and q = 2 charge sectors partici-

pate in transport at the first plateaus we could achieve the same effect by applying a

gate voltage such that the charge sectors with q = 3 and q = 4 are involved. Although

the details of how each state exactly contributes to the transport at a given bias are

changed, the main mechanism (the slow triplet-quadruplet channel) to the enhanced

noise stays the same. In the case of weak Coulomb interactions, i.e. Unn ≪ t, a sim-

ilar spatial distribution of the lowest triplet wave function can be achieved by raising

the level position ε2 of the middle dot more than the inter-dot hopping t above the

onsite energy ε of the interfacial dots. However, such a level detuning will strongly

reduce both current and shot noise, similar to the ”local” models of Refs. [26, 60]. In

the Coulomb blockade region and close to the sequential tunneling threshold we often

find super-Poissonian noise. This enhancement is due to the thermal occupation and

following sequential depletion of excited states that lead to small cascades of tunneling

events interrupted by long (Coulomb) blockages, resulting in a noisy current. The ef-

fect has been discussed in the previous section where we have analyzed the transport

characteristics of a double quantum dot in the Coulomb blockade.

4.4 Summary

Let us summarize the main findings as discussed in this chapter in the following.

We have discussed sequential transport in non-local, coupled quantum dots with a

strong inter-dot coupling and weak coupling to the leads. We account for the non-
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local electronic wavefunction of the electrons and discuss two systems, firstly a double

quantum dot and secondly a triple quantum dot. In the case of the double quantum

dot we discussed transport within the Coulomb blockade as well as for the high bias

regime where excited states are involved in transport. We found that the behavior of

the shot noise in the Coulomb blockade is directly related to the underlying low energy

spectrum of the DQD system. The spectrum is characterized by two intrinsic energy

scales, the sequential tunneling energy εseq and the first vertical excitation energy

out of the ground state, εco. For a symmetric system in the Coulomb blockade we

distinguished between three scenarios: i) For a first vertical excitation energy that is

smaller than twice the sequential tunneling energy εco > 2εseq the Fano factor (noise)

is always sub-Poissonian, i.e. F < 1, as sequential processes start before excited states

come into play, ii) if εseq < εco < 2εseq thermally activated sequential transport leads

to super-Poissonian Fano factors in the bias range 2(εco − εseq)/e < V < 2εseq/e, iii)

for the case εco < εseq the Fano factor remains super-Poissonian in the entire Coulomb

blockade regime. Our findings are valid for arbitrary ground state charges and also

apply to larger systems with more than two coupled dots, as they depend only on the

above mentioned generic energy scales of the interacting dot system.

For a bias above the sequential tunneling threshold we discussed different types of

asymmetries in the system realized by either asymmetric couplings to the electrodes or

by detuning the quantum dot levels out of resonance with each other. For asymmetric

dot-electrode couplings we obtained asymmetric current-voltage characteristics as has

been observed in experiments before. For very strong asymmetry negative differential

conductance and super-Poissonian noise with Fano factors F > 1 can develop. These

features develop at the same energy positions, i.e. at the same bias voltage for any

asymmetry ratio ΓL/ΓR since the DQD spectrum remains unchanged. In contrast

detuning the dot levels out of resonance also leads to NDC and super-Poissonian noise

for sufficiently strong asymmetry, but now at voltages that depend on the strength of

the asymmetry as the DQD spectrum is changed. These features only appear for one

bias direction, V < 0 or V > 0, depending on which coupling Γr (with r = R,L) is

suppressed or which quantum dot has a lower level energy. Furthermore, we found that

at a fixed detuning ε12 the current is reduced with decreasing inter-dot hopping t. The

latter results in a stronger localization of states on individual dots similar to the case of

strongly detuned quantum dots. Therefore a weaker inter-dot hopping and a stronger

detuning at fixed inter-dot hopping may cause similar transport characteristics.

In the case of longer chains of quantum dots we discussed a triple quantum dot with

symmetric couplings. If the non-local Coulomb interactions dominate over the inter-

dot hopping the shot noise is greatly enhanced in absolute magnitude over a wide range

of parameters above the sequential tunneling threshold. As there is no simultaneous

enhancement of the tunneling current, the shot noise becomes super-Poissonian. In

contrast to earlier work this is achieved even in a fully symmetric system. The origin
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of this novel behavior lies in a competition of ”slow” and ”fast” transport channels that

are formed due to the differing non-local wave functions and total spin of the states

participating in transport. An enhancement factor of ∼ 100 can be easily achieved.

This should be of special importance to experimentalists since usually a major challenge

is the detection of the real shot noise over the background 1/f-noise (as explained

in chapter 2) caused by fluctuations in the physical environment and measurement

equipment. Therefore the strong enhancement may allow direct experimental detection

of shot noise in a chain of lateral quantum dots.



Chapter 5

Co-tunneling transport

We have seen in the previous chapter that transport in a weak coupling regime is well

described in a sequential tunneling picture. However, if we want to move to stronger

coupling situations, where the coupling is of the order of temperature (i.e. Γ ≈ kBT )

we have to account for higher order processes such as co-tunneling involving the si-

multaneous tunneling of two electrons at a time. Electron co-tunneling has been the

subject of a considerable large number of experimental [29, 69, 102] and theoretical

works [58, 91, 103]. It is known to be the dominant transport process within the

Coulomb blockade but also effects transport above the sequential transport threshold

in particular at the resonances where an additional current channel opens. In general

higher order processes modify the electronic transport in comparison to the sequential

transport picture in two ways: First an additional broadening of the current and noise

steps which is comprised by the sum of the temperature kBT (as present in first order

calculations) and by the coupling strength Γ is introduced [33]. Second it provides

a current and noise contribution in the Coulomb blockade that is not exponentially

suppressed. Both quantities, current and shot noise, depend very sensitively on the

low energy spectrum of the quantum dot or molecular system in that regime and thus

allow for a spectroscopic study, particular in the Coulomb blockade.

In the following chapter we will discuss co-tunneling effects in transport. We introduce

the two types of co-tunneling processes, elastic and inelastic co-tunneling in section

5.1. Next in section 5.2 we will discuss the Anderson model with an emphasis on

transport in the Coulomb blockade. We show how details of the energy spectrum can

be extracted from the current and noise behavior. Finally, we focus in section 5.3 on

transport through a two level quantum dot which can not be exactly mapped on the

spin split single level Anderson model. We account for an additional gate electrode and

study the conductance as well as the Fano factor vs. the applied bias and gate voltage.

Specifically, we discuss the characteristic width and height of the observed co-tunneling

77
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features. Furthermore, we concentrate on the interesting regime of co-tunneling assisted

sequential tunneling and finally close with short summary and outlook on co-tunneling

transport in larger mesoscopic systems.

5.1 Elastic and inelastic co-tunneling processes

In the Coulomb blockade where sequential transport is exponentially suppressed co-

tunneling processes are possible via the occupation of virtual intermediate states. De-

pending on whether or not the process requires some energy (in form of the applied

bias) one speaks of elastic or inelastic co-tunneling. Fig. 5.1 shows an elastic co-

tunneling process. An electron tunnels from the left lead into a virtual dot state (the

term “virtual” indicates that for a short timescale energy conservation is violated) and

then into the right lead. Elastic co-tunneling processes are present at arbitrary bias

(also at equilibrium) since no energy is required. In contrast, if a finite bias is applied
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Figure 5.1: Sketch of an elastic co-tunneling process through a two level quantum

dot without any bias applied. The intermediate, virtual state in the depicted

process is the doubly occupied state.
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Figure 5.2: Sketch of an inelastic co-tunneling process through a two level quantum

dot. The bias applied is not sufficient for a sequential tunneling process but allows

for inelastic co-tunneling. When the dot is left in an excited state after such a

process, an inelastic co-tunneling process might be followed by a sequential process

(see also co-tunneling assisted sequential tunneling in chapter 5.3.4.)

an electron can tunnel into a virtual dot state and subsequently another electron that
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initially occupied a lower dot energy level tunnels out of the dot. The energy required

for such a process must hence be equal to the energy splitting of the two dot levels

involved in the inelastic process. Fig. 5.2 depicts the described inelastic co-tunneling

process in which the dot is left in an excited state. Depending on the applied bias

and dot’s low energy spectrum an inelastic co-tunneling process can be followed by a

sequential tunneling process. This scenario is referred to as the co-tunneling assisted

sequential tunneling regime which we will discuss in some detail in chapter 5.3.2.

5.2 Single level Anderson model

5.2.1 Hamiltonian

For the single-level Anderson impurity model our dot Hamiltonian reads

HD =
∑

σ

εσc
†
σcσ + Un↑n↓ (5.1)

where we have used the compact notation (ciσ = cσ, εiσ = εσ, niσniσ′ = n↑n↓) for a

single level i = 1. The above Hamiltonian describes a single spin-dependent energy

level with a Zeeman splitting ∆ due to an external magnetic field yielding level energies

of ε↓ = ε − ∆
2

and ε↑ = ε + ∆
2
. Interaction effects are included by the second term,

where U is the Coulomb interaction on the island with n↑, n↓ being the number operator

for electrons with corresponding spin. Bosonic effects are excluded for the moment.

For the coupling parameters we drop the spin dependence and write Γiσ
r = Γr with

r = R,L.

5.2.2 Coulomb blockade spectroscopy

In the following we will discuss four different transport regimes that are defined ac-

cording to the dot’s individual low energy spectrum. A summary of these four regimes

Regime Condition

I εco > 2 εseq

II 2 εseq > εco > εseq

III εseq > εco > 2εseq

3

IV 2εseq

3
> εco

Table 5.1: Four different transport regimes defined by their individual relations of

the sequential tunneling energy threshold εseq to the inelastic co-tunneling excita-

tion energy εco for the case of a symmetrically applied bias voltage.
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can be found in table 5.1. In the following discussion the bias is always dropped sym-

metrically, i.e. µL = −µR = eVb/2. We start with a system in regime I corresponding

to parameters ε = 1, U = 8,∆ = 6 and kBT = 2Γ = 0.02 (all units in meV). The

choice of our parameters results in a singly occupied ground state (with spin down),

an inelastic co-tunneling excitation energy of εco = ∆ = 6 and a sequential tunneling

energy of εseq = 2. Regime I corresponds to a spectrum in which εco > 2εseq and has
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Figure 5.3: Current, shot noise and Fano factor (parameters see text) in regime I

where εco > 2εseq. Normalization factors are Imax = eΓ/2~ and Smax = e2Γ(2~).

The solid lines correspond to first order results whereas the dashed lines show the

second order calculation. The Fano factor is Poissonian in the Coulomb block-

ade and drops to sub-Poissonian values for biases above the sequential tunneling

threshold.

been encountered previously when first order (sequential) transport was discussed in

a double quantum dot (see chapter 4.2.). Fig. 5.3 depicts the current, shot noise and

Fano factor vs. bias for regime I in a first and second order transport picture. The

current and noise rise in a step wise manner defined by the single particle excitation

energies of the dot. In first order the steps are only broadened by temperature whereas

in second order the temperature as well as the coupling Γ define the step width. Since

the sequential tunneling threshold is reached before inelastic co-tunneling processes set

in, no characteristic energy scale is introduced in the Coulomb blockade region. After

a divergent behavior for very low biases (corresponding to the thermal noise limit) the

Fano factor becomes Poissonian for biases below the sequential tunneling threshold

indicating that the current is mainly due to one single type of process, namely elastic

co-tunneling. For large bias sub-Poissonian Fano factors are resumed. Next we dis-

cuss regime II which is characterized by the parameters ε = −1, U = 8,∆ = 4 and

kBT = 2Γ = 0.02 (all units in meV). Again this choice results in a singly occupied

ground state, an inelastic co-tunneling excitation energy of εco = ∆ = 4 and a sequen-

tial tunneling energy of εseq = 3. Hence regime II has a low energy spectrum with
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Figure 5.4: Current, shot noise and Fano factor (parameters see text) in regime II

where 2εseq > εco > εseq . The solid lines correspond to first order results whereas

the dashed lines show the second order calculation. In first order the Fano factor

becomes super Poissonian (F > 1) in the Coulomb blockade at an energy scale

Vb = 2 | εseq − εco | whereas in second order this happens at an energy scale

Vb = εco. For biases above the sequential tunneling threshold the Fano factor

drops to sub-Poissonian values in both cases.

2εseq > εco > εseq.

For very low bias (eVB << kBT ) and deep in the Coulomb blockade the Fano fac-

tor shows first divergent behavior due to thermal noise until it reaches a Poissonian

value of F = 1 when elastic co-tunneling processes dominate (see Fig. 5.4). However,

even in the first order calculation the Fano factor becomes super-Poissonian at a bias

Vb = 2 | εseq − εco |. The mechanism behind is the same as discussed earlier in chapter

4.2. in the case of the double quantum dot. Rare thermal processes lead to a finite

probability to occupy the excited state with one electron and upside spin although

the bias does not suffice to do the same via a sequential tunneling process. Once the

state with one single electron with spin up is occupied the dot can be depopulated by

a subsequent fast sequential process leading into the empty state. The co-existence

of these two processes on different time scales, a thermal occupation and a sequential

depletion of an excited dot level leads to the enhanced super Poissonian noise feature

in first order.

In second order the rare thermal processes become negligible since elastic and at higher

bias also inelastic co-tunneling events dominate the transport picture. After the ther-

mal regime the Fano factor is Poissonian due to elastic co-tunneling and becomes

super-Poissonian when in addition inelastic co-tunneling processes become possible at

a bias Vb = εco which can be clearly seen in Fig. 5.4. A further decrease in the on-site

energy levels such that ε = −2.5, U = 8,∆ = 6 (all units in meV) leads us to regime III.
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Figure 5.5: Current, shot noise and Fano factor (parameters see text) in regime

III where εseq > εco >
2εseq

3
. In first order the Fano factor remains super- Pois-

sonian (F > 1) in the entire Coulomb blockade regime. However in second order

elastic co-tunneling processes lead to a Poissonian Fano factor for biases below

the inelastic co-tunneling excitation energy εco at which the Fano factor becomes

super-Poissonian.

Still our ground state is singly occupied. We obtain an inelastic co-tunneling excitation

energy of εco = ∆ = 4 and a sequential tunneling energy of εseq = 4.5. This results in

a low energy spectrum with 2εseq > εco >
2εseq

3
. Fig. 5.4 shows that in second order the

behavior in the Coulomb blockade is the same as in regime II. However, in first order

the Fano factor now remains super-Poissonian in the entire Coulomb blockade. This

behavior has been observed in [34, 61]. Note that in both regimes II and III an inelastic

co-tunneling process can immediately be followed by a sequential depletion of the dot

at the same bias Vb = εco. The combination of this second order (co-tunneling) and first

order (sequential) process is referred to as co-tunneling assisted sequential tunneling. It

follows that here the two processes can not be energetically separated and thus only one

characteristic energy scale, namely εco is introduced in the Coulomb blockade. We now

change to the last regime IV which is qualitatively different in comparison to the three

regimes I-III discussed until here. Using the parameter set ε = −6, U = 12,∆ = 2 (all

units in meV) regime IV fulfills the relation εco <
2εseq

3
. This ensures that inelastic co-

tunneling is clearly separated from co-tunneling assisted sequential tunneling. Hence

two energy scales marking the onset of the two different transport processes should be

observable. As mentioned earlier in the discussion of different perturbation schemes

(see chapter 3.5.2) the standard perturbation scheme is not appropriate in all transport

situations. Particularly it may break down deep in the Coulomb blockade. For regime

IV the standard scheme indeed produces negative and thus unphysical probabilities.

Therefore we use the crossover scheme which is valid from very low biases (nearly zero)
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Figure 5.6: Current, shot noise and Fano factor (parameters see text) in regime

IV where εco <
2εseq

3
. In first order the behavior of the Fano factor is the same

as in regime III. In second order a first energy scale is introduced when inelastic

co-tunneling processes set in at εco = 1 and cause a super-Poissonian Fano factor.

In addition the noise enhancement becomes even stronger with even higher Fano

factors when co-tunneling assisted sequential tunneling processes become possible

at a bias Vb = 2|εco − εseq|.

up to the large bias regime where all excitation energies have entered into the applied

bias window. In a first order calculation regime IV displays the expected behavior of

a constant super-Poissonian plateau in the Fano factor (see Fig. 5.6). Second order

transport gives a totally different picture. The Fano factor becomes super-Poissonian

for the first time when the inelastic co-tunneling energy is reached. When co-tunneling

assisted sequential tunneling processes become applicable at the corresponding bias

the noise (Fano factor) is increased further to even higher values. The noise’s (Fano

factor’s) maximum is reached at a bias Vb = 2|εco − εseq|. Note that the two energy

scales can not be seen by looking at the current or conductance (not shown here) alone.

While in the inelastic co-tunneling regime a small increase in form of a shoulder can

be observed in the conductance the co-tunneling assisted sequential tunneling regime

is not visible for the parameters specified for Fig. 5.6.

The discussion above suggests that only by studying the current in combination with

the shot noise one is able to extract useful information about the nanostructure’s low

energy spectrum. The most interesting regimes for that purpose are regimes II, III and

IV which we will study in the next section in the case of a two level quantum dot.
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5.3 Two level quantum dot

In this chapter we focus again on our model of a two level quantum dot (Fig. 4.1).

Studying the system in second order shows a much richer physical behavior. Note

that the two level quantum dot which includes the spin of the electrons can not be

exactly mapped onto the single level spin split Anderson model discussed in the previous

chapter 5.2 since the states with two electrons now split into singlet (S=0) and triplet

states (S=1).

5.3.1 Hamiltonian

The central Hamiltonian reads

HD =
∑

iσ

εiσc
†
iσciσ + U

∑

i

ni↑ni↓ + Unn

∑

i6=j,σ,σ′

niσ′njσ (5.2)

with i = 1, 2 denoting the quantum dot levels. For an explanation of the various

terms we refer the reader to chapter 4.1.1. Here we have written the dot Hamiltonian

in a slightly different way. The term containing the charging energy EC is replaced

by an explicit inter-orbital Coulomb interaction Unn. Furthermore we account for

a gate voltage that affects the electrostatic potential of the dot levels in the form

εχ → εχ + VG ·Nχ where εχ denotes the energy and Nχ the total number of electrons

in the state |χ〉.

5.3.2 Conductance and noise in the Coulomb blockade

In an intermediate coupling situation where the coupling is of the order of temper-

ature (Γ ≈ kBT ) features of higher order transport become important. Throughout

the following discussion we choose kBT = 2Γ which is still in the “weak” coupling

limit in the sense that a perturbative expansion in the coupling constant Γ is appropri-

ate. On the other hand the coupling strength is strong enough such that second order

processes significantly influence the transport characteristics. We begin with param-

eters U = 20, Unn = 4, ε1 = −4, ε2 = −2, kBT = 2Γ = 0.04 (all units in meV) which

corresponds to regime II as described in chapter 5.2. Thereby we obtain an energy

spectrum with a singly occupied ground state. In Fig. 5.7 we depict the differential

conductance (∂I/∂V ) vs. the applied bias and the gate voltage. The color-scale trans-

lates low conductance values with dark blue and high conductance values with red.

The Coulomb diamond as well as two excitation lines outside the diamond structure
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Figure 5.7: Color-scale plot of the differential conductance (in units 10·πe2Γ/h) vs.

gate voltage (Vgate) and bias voltage (Vbias). The Coulomb diamond edges mark

the onset of sequential tunneling. Lines outside the Coulomb diamond correspond

to transport via excited states whereas the horizontal step inside the diamond is

due to inelastic co-tunneling.

are clearly visible. Inside the Coulomb diamond sequential transport is exponentially

suppressed due to Coulomb blockade. Since elastic co-tunneling processes which are

possible for arbitrary bias and gate voltage they do not introduce an energy scale inside

the Coulomb diamond. When the bias is equal to the inelastic co-tunneling excitation

energy inelastic co-tunneling processes become possible. The corresponding energy

scale εco can be observed in the figure by the horizontal, gate voltage independent step

at Vbias = 2 meV. Below that step only elastic co-tunneling events provide a signif-

icant contribution to the current. For biases above the threshold εco both types of

co-tunneling, elastic and inelastic exist. Note that also at the edge and outside the

Coulomb diamond second order processes play an important role. For instance Fig. 5.7

would contain much more narrow excitation (red) lines if only first order transport was

considered.

Next we want to discuss the noise properties of our system. Fig. 5.8 shows the Fano

factor in the same voltage region as the conductance plot Fig. 5.7. At the Coulomb

diamond edge and for biases above the sequential tunneling threshold the Fano factor

drops to sub-Poissonian values (0.5 < F < 1) as it would also be the case in a first order

sequential transport description. Inside the Coulomb blockade we find two features.

The first which is trivial is the horizontal gate voltage independent line at zero bias.

Here the Fano factor is divergent corresponding to the thermal noise limit. For Vbias >>

kBT the Fano factor becomes Poissonian again since there is only one transport process,
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Figure 5.8: Color-scale plot of the Fano factor vs. gate voltage (Vgate) and bias

voltage (Vbias). Around zero bias voltage the Fano factor diverges according to

the thermal noise behavior. It is then reduced to a Poissonian value of F =

1 indicating that elastic processes dominate for low bias. At the inelastic co-

tunneling excitation energy it becomes super-Poissonian. The Fano factor is finally

reduced to sub-Poissonian values when the Coulomb diamond edge is reached and

sequential transport sets in.

namely elastic co-tunneling present. Increasing the bias further allows for inelastic co-

tunneling at Vbias ≥ 2 meV. Now two types of co-tunneling processes with different

tunneling rates coexist which leads to a noisier current with super-Poissonian Fano

factors. Note that a vertical cut corresponding to a fixed gate voltage in Fig. 5.8 would

yield a very similar transport picture as Fig. 5.4 in chapter 5.2 when we discussed

parameter regime II of the Anderson model.

5.3.3 Scaling of the co-tunneling contributions

We are interested in the influence of the coupling strength and temperature of the

observed co-tunneling features. Therefore we study the differential conductance of

our system. The right panel of Fig. 5.9 displays a co-tunneling “shoulder” of the

differential conductance at the inelastic co-tunneling excitation energy. An analysis

of the shoulder height for different coupling strengths shows a linear dependence on

the coupling Γ. Since we have normalized the current and hence also the diffential

conductance by a factor Γ this means that the co-tunneling shoulder height scales with

∼ Γ2. The second derivative of the current as depicted in the left panel of the figure

further proves this fact. The red solid curve multiplied by a factor Γblack

Γred
= 2 lies on
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top of the black solid curve resulting in the black, red dotted curve. We note that the

height of the co-tunneling shoulder is further influenced by the value of the inelastic

co-tunneling excitation energy εco itself. However, no general valid scaling behavior can

be formulated for its dependence since the inelastic co-tunneling excitation energy can

only be varied by changing internal parameters of our dot Hamiltonian (U,Unn, t, εi)

and thereby the total spectrum.
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Figure 5.9: Right panel: Differential conductance ∂I/∂V vs. bias voltage (Vbias)

for the same parameter set as used in Fig. 5.7 and with a fixed gate voltage of

Vgate = 0 meV. The coupling strength Γ and the temperature kBT are varied.

Left panel: Second derivative of the current ∂2I/∂V 2 vs. bias voltage for different

coupling strengths and temperatures.

Next we want to consider the width of the shoulder. A comparison of the blue dashed

curve with the red dashed curve in the right panel of Fig. 5.9, where both curves

correspond to the same total coupling strength, shows a larger broadening for higher

temperatures. Considering the second derivative of the current, the width of the blue

curve with the lower temperature of kBT = 2Γ is only half of the width of the red

curve corresponding to a temperature twice as much as the the one of the red curve.

The reduction of the width of the inelastic co-tunneling shoulder to the thermal limit

has also been observed in experiments [29].

5.3.4 Co-tunneling assisted sequential tunneling

If we change our parameter set to U = 25, Unn = 5, ε1 = −4, ε2 = −3.5, kBT = 2Γ =

0.04 (all units in meV) the dot spectrum is such that εco <
2εseq

3
. In this regime two

energy scales are visible in the Coulomb blockade. One is the inelastic co-tunneling

excitation energy which separates the regime of elastic from inelastic co-tunneling. The

other corresponds to an energy scale associated with processes in which an inelastic

co-tunneling event is followed by a sequential tunneling process of the excited dot

electron. The latter is in principle a sequential energy scale and thus we expect it to
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be gate voltage dependent. Fig. 5.10 shows a conductance plot in the described regime

showing part of the Coulomb diamond. As above, inelastic co-tunneling displays itself

Figure 5.10: Color-scale plot of the

differential conductance ∂I/∂V in the

regime where εco <
2εseq

3
. The horizon-

tal step inside the Coulomb diamond

corresponds to inelastic co-tunneling

whereas the green inner triangle struc-

ture marks the co-tunneling assisted

sequential tunneling regime.

0.5 1
V

bias
[mV]

0

0.2

0.4

0.6

dI
2 /d

V
2

0 1 2 3
V

bias
[mV]

0

0.05

0.1

0.15

0.2

dI
/d

V
 [

πe
2 Γ/

h]

Figure 5.11: First and second deriva-

tive of the current vs. bias voltage at

two different gate voltages Vg = 0 meV

and Vg = 0.5 meV. The position of the

second shoulder corresponding to co-

tunneling assisted sequential tunneling

is gate voltage dependent.

in form of a horizontal line at a bias Vbias = 0.5meV where transitions from the singly

occupied ground state (which is the two-fold doublet state) to the first excited state

(also a two-fold degenerate doublet state) in the same charge sector N = 1 become

possible. The threshold for co-tunneling assisted sequential tunneling corresponds to

the edge of the green triangle inside the Coulomb diamond. Theses processes occur

via co-tunneling from the ground state to the first excited state with charge N = 1

followed by sequential tunneling processes from the excited state to the energetically

lowest state in the neighboring charge sector which is N = 2 for negative gate voltage

and N = 1 for positive gate voltage. In our system the lowest state with charge N = 2

is four-fold degenerate, consisting of three triplet states and one singlet state. The slope

of the inner triangle is parallel to the Coulomb diamond edge since the gate voltage

dependence of the co-tunneling assisted sequential tunneling energy scale is the same

as for the sequential tunneling threshold εseq = εseq(Vg).

For two fixed gate voltages the conductance traces are displayed in Fig. 5.11. The

black (red) dashed curve is a vertical cut of Fig. 5.10 at zero (non-zero) gate voltage

Vg = 0 meV (Vg = 0.5 meV) respectively. A first co-tunneling shoulder is always found

at the inelastic co-tunneling excitation energy εco whereas a second shoulder appearing
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approximately at Vb = 2|εco − εseq| is gate voltage dependent. The second shoulder is

shifted to higher bias voltages for positive gate voltages due to εseq(Vg) as explained

above.

Another effect of the gate voltage sweep is the variation of the differential conductance

at the inelastic co-tunneling excitation energy εco. By applying a positive gate voltage

the energies of the ground state and the first excited state are both equally lifted such

that their splitting which is the inelastic co-tunneling excitation energy stays constant.

However, the elastic co-tunneling processes enhance the conductance even at zero bias.

This can be seen also in Fig. 5.11 where the black curve corresponds to a slightly higher

differential conductance as the red curve at bias smaller than the inelastic co-tunneling

excitation energy. Also the probability to occupy the lowest excited states via inelastic

co-tunneling increases and thus leads to a higher differential conductance at εco.

The transport mechanism of co-tunneling assisted sequential tunneling has been demon-

strated by experiment [6]. Here a lateral multilevel quantum dot was measured and

triangles in the differential conductance inside the Coulomb blockade were frequently

found. The authors applied a similar theoretical model based on a diagrammatic ap-

proach including second order diagrams and found qualitative agreement between the

measured and calculated triangle inside the Coulomb blockade. However, only for one

particular gate voltage the authors did theoretically show the existence of the two

energy scales in the differential conductance. Furthermore the experimental curves

showed triangle lines that joined lines outside the Coulomb diamond associated with

transport through excited states. This feature was not shown theoretically in that work

but can be clearly seen in Fig. 5.10.

As we know from the discussion of the Anderson model in section 5.1 some second

order transport features might not be visible when one studies the conductance alone.

We therefore study the noise and Fano factor behavior of our system in the considered

regime. Fig. 5.12 shows the Fano factor of our two level quantum dot for the same

bias and gate voltage window as displayed in Fig. 5.10. The inelastic co-tunneling

excitation energy scale at Vg = 0.5 meV as well as the triangle inside the Coulomb

diamond are clearly seen. For transport outside the Coulomb blockade the Fano factor

is reduced to sub-Poissonian values. Fig. 5.13 shows the Fano factor for two different

gate voltages, Vgate = 0 meV and Vgate = 0.5 meV. After the thermal noise limit the

Fano factor is reduced due to elastic co-tunneling processes to a Poissonian value of

F = 1. At the inelastic co-tunneling excitation energy the Fano factor first becomes

super-Poissonian. It then shows a plateau whose length depends on the threshold

energy of the co-tunneling assisted sequential tunneling regime at which the Fano

factor increases a second time to even higher super-Poissonian values. The maximum

noise (Fano factor) is reached at the bias Vb = 2|εco − εseq|.
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Figure 5.12: Color-scale plot of the

Fano factor vs. bias and gate voltage

for the same regime as Fig. 5.10. It be-

comes super-Poissonian at the inelas-

tic co-tunneling excitation energy scale

and increases to even higher super-

Poissonian values when co-tunneling

assisted sequential tunneling processes

set in (visible in form of the black inner

triangle).
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Figure 5.13: Fano factor vs. bias

voltage for two different gate volt-

ages corresponding to vertical cuts at

Vg = 0 meV and Vg = 0.5 meV in

Fig. 5.12. The Fano factor becomes

super-Poissonian at εco and increases

to even higher values at the onset of

co-tunneling assisted sequential tun-

neling.

5.4 Summary and Outlook

We have seen in the present chapter that co-tunneling significantly influences the elec-

tronic transport through quantum dot systems. In the Coulomb blockade regime elas-

tic as well as inelastic co-tunneling processes contribute to the current. Elastic co-

tunneling takes place at arbitrary bias and is thus contributing to the current even

below the inelastic co-tunneling energy. Studying the single level Anderson model we

identified four regimes with characteristic features of the Fano factor. The features

reflected intrinsic energy scales of the dot’s low energy spectrum such as the inelastic

co-tunneling excitation energy.

The inelastic co-tunneling excitation energy scale shows up as a gate voltage indepen-

dent step inside the Coulomb diamond of a color scale plot of the differential conduc-

tance vs. the bias and gate voltage. Studying the differential conductance vs. the

applied bias we found that the width of the inelastic co-tunneling shoulder scales with

the temperature (kBT ) whereas the height is proportional to the coupling parameter

squared (Γ2). Still below the sequential tunneling threshold but for bias above inelastic

co-tunneling excitation energy we find the regime of co-tunneling assisted sequential
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tunneling. This regime is only accessible if the low energy spectrum of the dot system

fulfills the condition εco <
2εseq

3
which is valid in the case of a symmetric bias applica-

tion. At biases above the sequential tunneling threshold the steps in the current and

shot noise are broadened by the temperature and the coupling parameter (∼ kBT +Γ).

Our theoretical model described in chapter 3 allows us in principle to account for an

arbitrary complex electronic structure of the studied system. We have calculated more

complex systems such as the double quantum dot and the triple quantum dot from

chapter 4 also within a second order description. In the Coulomb blockade they do not

show qualitative new behavior compared to the two level local quantum dot discussed

in this chapter. However, due to their more complex and also dense spectrum they

have several low lying excitation energies that produce features similar to the inelastic

co-tunneling excitation energy scale inside the Coulomb blockade. For instance the

triple quantum dot shows a large and broad super-Poissonian Fano factor after the

thermal divergent behavior at low bias. The Fano factor is reduced to sub-Poissonian

values as soon as the sequential tunneling threshold is reached. For larger bias the

current, noise and Fano factor have in principle the same shape as in the first order

calculations (as displayed in chapter 4, Fig. 4.16) except for the additional broadening

at the step positions which is due to the stronger coupling parameter Γ. This supports

the fact, that the discussed phenomena in (sequential) first order transport are robust

and thus not restricted to a weak coupling situation but would also be possible in an

intermediate coupling situation in experiment.

There are several useful extension to our computational implementation. Collaborating

groups from Aachen are currently including phonons vibrations into the co-tunneling

implementation. This would offer the possibility to study the interplay of co-tunneling

and vibrational transitions. Another extension to our model consists of the implemen-

tation of two additional leads for the system of a double quantum dot. Within this

approach interesting cross-correlations can be studied. This is work in progress in our

group.
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Chapter 6

Conclusions

In this thesis we have presented a theoretical description of electronic transport through

single and coupled quantum dot systems. Their transport properties are of fundamental

interest since they display interesting quantum mechanical effects that might become

important in the course of the miniaturization of electric components. Furthermore

the transport properties of coupled quantum dot systems resemble strongly those of

single molecules which have promising technological applications.

In nanoscale systems electronic transport is mainly governed by the interplay of elec-

tron interaction effects as well as their quantum mechanical nature. We have given

an overview of characteristic transport properties which can be probed in transport

measurements. Coulomb blockade behavior as well as features in the current, conduc-

tance and the shot noise have been discussed. In order to achieve a better comparison

between experimental and theoretical findings our aim was to incorporate the most

relevant parameters in quantum dot systems such as the electron spin, the Coulomb

interaction as well as the delocalization of the electronic wavefunction into our theo-

retical description.

One of the main results of this thesis is the formulation of a general numerical approach

that is applicable to real systems with a complex electronic structure as present in

quantum dot systems and molecules. Our implementation is based on a diagrammatic

real time transport theory that allows for a perturbative expansion of the current and

shot noise in orders of the coupling constant Γ. We are thus able to account for a

weak coupling situation of the dot system to the leads (first order in Γ) as well as

an intermediate coupling regime (second order in Γ) where the coupling constant can

take values up to the order of temperature. All transport properties of interest can

be calculated from the transition rates between different quantum dot eigenstates.

We explicitly showed how to calculate these rates up to a second order perturbative

expansion for, in principle, arbitrary complex systems.
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Firstly, we have studied sequential transport within a first order picture in coupled

quantum dots with a strong inter-dot coupling and weak coupling to the leads. Moti-

vated by recent experimental setups of lateral quantum dots we have investigated the

transport properties of a double quantum dot system in the presence of various types

of asymmetries realized by either asymmetric couplings to the leads or by detuning the

quantum dot levels out of resonance with each other. We found that in a situation

of a symmetric central dot system with two resonant dot levels, asymmetric coupling

parameters lead to asymmetric current-voltage curves (I-V’s) for positive and nega-

tive bias, respectively. This behavior has been encountered in experiments before. For

strong asymmetry ratios of the left and right coupling to the leads we have observed the

occurrence of negative differential conductance (NDC) which grows stronger for higher

asymmetry ratios. Additionally the strong NDC is accompanied by super-Poissonian

noise (with Fano factors F > 1) which we explain to be due to the competition of well

and badly coupled, delocalized quantum dot states. The observed features always de-

velop at the same bias positions since the spectrum of the double quantum dot remains

unaffected by asymmetric contacts.

For detuned dot levels and varying inter-dot hopping we found similar transport prop-

erties resulting in features like NDC and super-Poissonian noise. In contrast to the

situation of asymmetric contacts, the asymmetry is now an intrinsic property of the

system and therefore features are observed at varying bias. In our discussion we could

clearly distinguish between the different origins of similar characteristic transport fea-

tures that might occur in an experiment all at the same time. We pointed out that the

discussed effects would not be present in a simplified transport picture that neglects

the non-locality of the electronic wavefunctions as well as a finite on-site Coulomb

interaction.

Secondly, as a truly molecular system we have studied a chain of three coupled quantum

dots. This is the simplest system in which one dot, namely the middle dot, is not

directly coupled via a tunnel junction to the leads but only indirectly couples via the

interfacial dots. For a totally symmetric triple quantum dot we have analyzed the

current, shot noise and Fano factor for various strength of nearest neighbor Coulomb

interactions. We found that the nature of the non-local electronic wavefunctions is

strongly effected by the ratio of the non-local Coulomb interactions and the inter-dot

hopping strength. On this basis we have predicted a strong enhancement of the shot

noise over large bias regions above the sequential tunneling threshold with Fano factors

that can easily reach a factor of 100. This strong enhancement is found for the case of

strong Coulomb interactions that dominate over the inter-dot hopping. Calculations

including second order processes have shown that the effect is robust to co-tunneling.

The strong enhancement of the shot noise is of high relevance to experimentalists since

it should allow an easier detection of the shot noise over the disturbing background

1/f-noise.
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Thirdly, in an intermediate coupling situation of quantum dot systems to the leads

co-tunneling processes become important. We have studied the effects of co-tunneling

transport in the Coulomb blockade for a single level Anderson model with finite spin

splitting within a second order picture. We have identified various transport regimes,

according to the intrinsic energy scales of the low excitation spectrum of the quantum

dot system, in which characteristic behavior of the Fano factor is observed. We found

that in a pure first order description super-Poissonian Fano factors occurred as a con-

sequence of the thermal population of excited states. In a combined first and second

order picture thermal occupation did not lead to super-Poissonian Fano factors since

elastic co-tunneling processes reduce the Fano factor to its uncorrelated, Poissonian

value. However, at finite bias inelastic co-tunneling events cause a super-Poissonian

Fano factor at the inelastic co-tunneling energy. Our findings are not restricted to the

studied Anderson model but are also valid for arbitrary complex systems such as the

afore-discussed coupled quantum dots. Furthermore our results are in agreement with

other theoretical as well as experimental work.

Finally, we have investigated a two level quantum dot in the Coulomb blockade regime.

As in typical experimental setups we have included the effect of an additional gate

electrode in our discussion. We have studied the differential conductance of the system

and observed typical transport features such as the Coulomb blockade diamonds as well

as highly conducting lines outside the diamond corresponding to transport through

excited states. Inelastic co-tunneling was seen in form of a gate voltage independent

line in the conductance. We discovered that for a fixed gate voltage the width of

the differential conductance peak at the inelastic co-tunneling energy scales with the

temperature, while the height of the peak is proportional to the strength of the coupling

constant squared. In addition we have investigated the corresponding behavior of the

Fano factor in the regime that further indicates the onset of inelastic co-tunneling.

An interesting transport situation arises when an inelastic co-tunneling process can be

followed by a sequential tunneling event. We have explored this regime of co-tunneling

assisted sequential tunneling in detail and found an additional peak in the differential

conductance still inside the Coulomb blockade. A further investigation of the gate

voltage dependence of the relevant energy scale showed that these processes are gate

voltage dependent similar to the sequential tunneling energy. While this transport

regime has been encountered also experimentally we have additionally analyzed the

Fano factor reflecting the energy scale of co-tunneling assisted sequential tunneling

with a greater sensitivity than the conductance. Our recent studies propose that in

the presence of relaxation processes due to photons the effect is washed out in the

conductance but can still be observed in the Fano factor.

One of the most interesting challenges for the future is to use our computational model

for the calculation of larger systems such as a six site benzene ring. Our approach

clearly applies in this system but the computational cost at the moment is still too
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high. Clever schemes that reduce the number of molecular states which are relevant

for transport need to be developed.



Appendix A

Appendix: Diagrammatic Rules

The transition rates W,WI,WII are obtained by applying the diagrammatic rules

that have been formulated in Ref. [30] in time and energy space. They are related to

the original formulation in terms of self energies Σ via Σχχ′ = iWχ′χ. In the following

we present the rules only in energy space representation since this is the representation

we use also for the current and noise. Note that we also include bosonic degrees of

freedom.

A.1 Energy space

Diagrams corresponding to the transition rates W are calculated according to the

following rules:

1) For a given order k draw all topologically different diagrams with 2k vertices con-

nected by k electron tunneling lines. Assign the energies Eχ to the propagators and

the energy ωl (l = 1, ..., k) to each tunneling line.

2) For each of the (2k−1) segments enclosed by two adjacent vertices there is a resolvent

1/(∆Em + i0+) with m = 1, ..., 2k − 1, where ∆Em is the difference of the left-going

minus the right-going energies.

3) Each vertex containing dot operators B (e.g. B = c†iσ in Eq. 3.47) contributes a

matrix element 〈χ′|B|χ〉, where χ (χ′) is the dot state entering (leaving) the vertex

with respect to the Keldysh contour.

4) Each tunneling line of reservoir r gives rise to a factor γ±riσ(ωl) = Γiσ
r /2π f

±(ωl−µr),

where the plus-sign has to be taken if the line is going backward with respect to the

closed time path, and the minus-sign if it is going forward. Here f(x) = f+(x) =

1 − f−(x) = 1/(exp (x/kBT ) + 1) corresponds to the Fermi function. Similarly the
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contribution of a boson line is given by b(x) = sign(x)αph(x)nb(x), with the Bose

function nb(x) = 1/(exp (x/kBT ) − 1).

5) There is an overall pre-factor (−i)(−1)c, where c is the total number of vertices on

the backward propagator plus the number of crossings of tunneling lines (no bosonic

lines).

6) Integrate over the energies ωi of the tunneling and sum over all reservoir, spin and

orbital degrees of freedom.

For diagrams containing external vertices such as the current vertex we have to formu-

late additional rules. The only difference is that for the current and shot noise rates

WI (WII) one (two) internal vertices are replaced by external ones representing Î~/e.

Hence we have to multiply an overall pre-factor, which arises due to the symmetric

definition of the current operator and the changed number of internal vertices on the

backward propagator. The additional rules therfore read:

7) Assign a factor +1/2 for each external vertex on the upper (lower) branch of the

Keldysh contour which describes tunneling of an electron into the right (left) or out of

the left (right) lead, and −1/2 in the other four cases.

8) Sum up all the factors for each possibility to replace one (two) internal vertices by

external ones.

An example for a diagram describing the coupling to the electronic reservoirs is shown

in Fig. A.1. A bosonic contribution is shown in Fig.A.2. In second order we encounter

diagrams containing two tunneling lines as depicted in chapter 3.5.3..

HT

HTχ’

r

χ

Figure A.1: An example of a first order diagram with two internal vertices HT and

one electron tunneling line.

The coupling to a bosonic bath is illustrated by a diagram containing a wiggly line

(Fig A.2).
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χ

HB−D

χ ’
HB−D

q

Figure A.2: An example of a first order diagram describing the coupling to a

bosonic bath.
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Appendix B

Appendix: Sequential tunneling

rates

The first order transition rates W(1), W(1)I and W(1)II have been calculated in [33]

using the diagrammatic rules (as stated in appendix A). Following this approach we

summarize their findings below.

B.1 Transition rates W

The total transition rates W
(1)
χ,χ′ (in the absence of relaxation) are the sum of transition

rates associated with electron tunneling through either the left or the right barrier,

W
(1)
χ,χ′ = W

(1)R
χ,χ′ +W

(1)L
χ,χ′ . For the inclusion of bosonic degrees of freedom, e.g. to describe

relaxation processes, we have to consider additional rates W
(1)ph
χ,χ′ . Assuming weak

coupling to the bosonic bath (in addition to weak tunneling), we only keep contributions

to either first order in αph or to first order in Γ. The total transition rates are, thus,

given by W
(1)
χ,χ′ = W

(1)L
χ,χ′ +W

(1)R
χ,χ′ +W

(1)ph
χ,χ′ , where W

(1)ph
χ,χ′ describe pure relaxation while

W
(1)L
χ,χ′ and W

(1)R
χ,χ′ models pure tunneling. The additivity of pure tunneling or boson

rates is given only in lowest order, where only single lines are present in diagrams.

Together with Γiσ
r = 2π|triσ|

2ρe we find

W
(1)r
χ′,χ = 2πρe

∑

σ



f+
r (Eχ′,χ)

∣

∣

∣

∣

∣

∑

i

triσ〈χ
′|c†iσ|χ〉

∣

∣

∣

∣

∣

2

+ f−
r (−Eχ′,χ)

∣

∣

∣

∣

∣

∑

i

triσ〈χ
′|ciσ|χ〉

∣

∣

∣

∣

∣

2




(B.1)

for χ′ 6= χ, together with W
(1)r
χ,χ = −

∑

χ′ 6=χW
(1)r
χ′,χ (sum rule). Eχ′,χ = Eχ′ − Eχ

is the energy difference between the many-body states χ and χ′. Here, f(x) =
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1/(exp (x/kBT ) + 1) is the Fermi function, f+(x) = f(x) and f−(x) = 1 − f(x),

and f±
r (x) = f±(x− µr). The bosonic rates are

W
(1)ph
χ′,χ =

∑

σ

b(Eχ′,χ)

∣

∣

∣

∣

∣

∑

i6=j

〈χ′|c†iσcj̄σ|χ〉

∣

∣

∣

∣

∣

2

(B.2)

for χ′ 6= χ, and W
(1)ph
χ,χ = −

∑

χ′ 6=χW
(1)ph
χ′,χ , where b(x) = sign(x) αph(x) nb(x), with the

Bose function nb(x) = 1/(exp (x/kBT )−1). This allows to build the matrix blocks W(1)

to calculate the objects p(0)st and P(−1). The presence of relaxation therefore leads to

a modification of the probabilities and propagators P(−1), whereas the matrices W(1)I

and W(1)II are not affected (due to only one tunneling line). The results obtained here

could be calculated within a golden rule approximation as well.

B.2 Current rates WI

The matrix elements of W(1)I are given by

W
(1)I
χ′,χ = (W

(1)R
χ′,χ −W

(1)L
χ′,χ )(Θ(Nχ′ −Nχ) − Θ(Nχ −Nχ′)) (B.3)

with the Heaviside Θ-function, where Nχ is the total number of electrons on the dot

within the state χ. This permits the computation of the first order current I(1). An

example of a corresponding diagram including one tunneling line is shown in Fig. B.1.

HTχ’

I
r

χ

Figure B.1: An example of a first order diagram contributing to the current.

B.3 Shot noise rates WII

Correspondingly we find for the matrix elements of W(1)II

W
(1)II
χ′,χ =

1

4
(W

(1)R
χ′,χ +W

(1)L
χ′,χ )(1 − 2 δχ′χ) (B.4)
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with the Kronecker δ. This is the last missing object to compute the shot noise in first

order S(1). In first order there is only one possibility to place the two current vertices,

as shown in Fig. B.2.

χ’ χ

I
r

I

Figure B.2: An example of a first order diagram contributing to the shot noise.
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Appendix C

Appendix: Co-tunneling rates

In order to determine the co-tunneling contributions to current and noise we have

to calculate in addition to the first order terms the second order matrices ∂W(1),

∂W(1)I , W(2), W(2)I and W(2)II . Once they are known one can easily compute

p(1)st,P(0), I(2), S(2) and thus I = I(1) + I(2) and S = S(1) + S(2). To obtain the second

order transition rates W (2) we have to solve two double integrals as mentioned earlier

in chapter 3.5.3 (see also Eq. 3.49). By using prefactors as stated in the diagrammatic

rules for diagrams with external current vertices we can then determine W(2)I and

W(2)II . The objects ∂W(1), ∂W(1)I are calculated in appendix C.2.

C.1 Calculation of the double integral D̃A,B
I,II

In the following we sketch the mathematical solution of the double integrals D̃A,B
I,II . For

the diagrams of type I (see Fig.3.4) we have to solve

D̃I =

∞
∫

−∞

∞
∫

−∞

dω1dω22iIm
γp1

r1,l1,σ1
(τ1ω1)γ

p2

r2,l2,σ2
(τ2ω2)

(ω1 + ∆1 + iη)(ω1 + ω2 + ∆12 + iη)(ω2 + ∆2 + iη)
(C.1)

and for diagrams of type II

D̃II =

∞
∫

−∞

∞
∫

−∞

dω1dω22iIm
γp1

r1,l1,σ1
(τ1ω1)γ

p2

r2,l2,σ2
(τ2ω2)

(ω2 + ∆′
2 + iη)(ω1 + ω2 + ∆12 + iη)(ω2 + ∆2 + iη)

(C.2)

Here the function γ±riliσi
(ω) is related to the Fermi function f(x) as defined in appendix

A where the indices correspond to ri = R,L, li = 1, .., N (with N being the total number

of orbitals) and σi =↑, ↓ respectively. The energies ∆1,∆12,∆2,∆
′
2 are composed of the

energies Eχ in general and η denotes a convergence factor which is taken in the limit
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η = 0+. The factors τ1, τ2, p1, p2 = ±1 account for signs that arise when following the

diagrammatic rules (appendix A). When solving Eqs. C.1 and C.2 one integration can

always be performed making use of the delta function. The delta function appears when

the resolvent is manipulated using a partial fraction decomposition amongst others and

the relations

Im
1

x+ iη
= −πδ(x)

Im
1

(x+ iη)2
= πδ′(x),

where x, y ∈ R correspond to energies in our case. Having performed the first integra-

tion leads to expressions of the form

F±
riσ(ε) =

∞
∫

−∞

dω
γ±riσ(ω)

(ε− ω + iη)
. (C.3)

The solution of Eq. C.3 can be found in Ref. [33] and is related to the digamma function

Ψ(z). We can now write explicitly for the type I diagrams

D̃I =

{

D̃A
I if ∆1 + ∆2 = ∆12

D̃B
I if ∆1 + ∆2 6= ∆12

(C.4)

with

D̃A
I =

i

2π
Γl1,σ1

r1
Γl2,σ2

r2
∂ρ [F (∆1, ρ) + C1(∆1, ρ) + C2(∆2, ρ)] |ρ=0 (C.5)

D̃B
I =

i

2π
Γl1,σ1

r1
Γl2,σ2

r2

1

∆1 + ∆2 − ∆12
{F (∆12 − ∆2, ρ) − F (∆1, ρ) (C.6)

+C1(∆12 − ∆2, ρ) − C1(∆1, ρ) + C2(∆12 − ∆1, ρ) − C2(∆2, ρ)}|ρ=0,

where ρ is an energy variable that is set to zero in the end. In the above equations C.5

and C.6 the following helper functions have been used:

F (α, ρ) = (−δτ1,p2,τ2,p2
τ1p1 + τ2p2)H(−τ1µr1

, α− ρ) (C.7)

+











τ1τ2p1p2

β
∂
∂ρ
H(−τ1µr1

, α− ρ) if
∑

i(τiµri
) + ∆12 = 0

τ2p2b(−p1µr1
− τ1p1∆12 − τ1τ2p1µr2)·

[H(−τ1µr1
, α− ρ) −H(τ2µr2

+ ∆12, α− ρ)] else

C1(α, ρ) = τ1p1f(−τ2p2∆2 − p2µr2
) ·H(−τ1µr1

, α− ρ) (C.8)

C2(α, ρ) = τ2p2f(−τ1p1∆1 − p1µr1
) ·H(−τ2µr2

, α− ρ) (C.9)
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where b(x), f(x) denote the Bose- and Fermi-functions respectively and H is related to

the digamma function ψ via

H(x, y) =

[

ln

(

βEC

2π

)

− Reψ

(

1

2
+
iβ

2π
(x− y)

)]

. (C.10)

In the above set of equations the arguments are all real numbers α, ρ, x, y ∈ R,

β = 1/(kBT ) denotes the inverse temperature and EC corresponds to a “cutoff” en-

ergy that should be chosen much larger than all other energy scales. However, one can

see imediately from the mathematical structure of Eqs. (C.5 and C.7) that the dia-

grammatic contributions are actually independent of that cutoff parameter, since only

differences or derivatives of the digamma function appear. For the type II diagrams

(see Fig. 3.5) we obtain similarly

D̃II =

{

D̃A
I if ∆2 = ∆′

2

D̃B
II if ∆2 6= ∆′

2

(C.11)

with

D̃A
II =

i

2π
Γl1,σ1

r1
Γl2,σ2

r2
∂ρ [−F (∆12 − ∆2, ρ) −G1(∆12 − ∆2, ρ)] |ρ=0 (C.12)

D̃B
II =

i

2π
Γl1,σ1

r1
Γl2,σ2

r2

1

(∆′
2 − ∆2)

{F (∆12 − ∆2, ρ) − F (∆12 − ∆′
2, ρ) (C.13)

+C1(∆12 − ∆2, ρ) − C ′
1(∆12 − ∆′

2, ρ)}|ρ=0,

where we have defined two new helper functions G1 and C ′
1

G1(α, ρ) = τ1p1f(−τ2p2∆2 − p2µr2
− p2τ2ρ) ·H(−τ1µr1

, α− ρ) (C.14)

C ′
1(α, ρ) = τ1p1f(−τ2p2∆

′
2 − p2µr2

) ·H(−τ1µr1
, α− ρ). (C.15)

Note that the latter does not correspond to a derivative but is very similar to the helper

function C1 but with an energy argument ∆′
2 instead of ∆2 in the fermi function.

C.2 Calculation of ∂W (1) and ∂W I(1)

The derivatives of first order rates ∂W, ∂WI have a very similar structure as the

second order transition rates. They correspond to non-Markovian memory effects [33]

and only appear when transport up to second order in Γ is taken into account. We
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specifiy in the following how these rates can be obtained. The derivative of the first

order transition rate in reservoir r is given by the expression

∂W
r(1)
χ′χ =

∑

l,σ

Γr
l,σ

π

{

−∂ρH(ε+ ρ, µr)|ε=εχ′−εχ
|〈χ′|c†l,σ,r1

|χ〉|2+ (C.16)

∂ρH(ε+ ρ, µr)|ε=εχ−εχ′
|〈χ′|cl,σ,r|χ

′〉|2
}

(C.17)

where

−∂εH(ε, µr) = −∂ρH(ε+ ρ, µr)|ρ=0 = ψ′
r(ε) (C.18)

and the function H is defined as above (Eq. C.10). The total derivative rates are thus

obtained by summing over the reservoir degrees of freedom

∂W
(1)
χ′χ =

∑

r

∂W
r(1)
χ′χ for states χ′ 6= χ (C.19)

with the diagonal rates

∂W r(1)
χχ = −

∑

χ′χ

∂W
r(1)
χ′χ . (C.20)

Similarly to the first order current rates W
I(1)
χ′χ the derivative of the current rates is

defined by the expression

∂W
(1)I
χ′χ =

(

∂W
R(1)
χ′χ − ∂W

L(1)
χ′χ

)

(Θ(Nχ′ −Nχ) − Θ(Nχ −Nχ′)) (C.21)

C.3 Calculation of the second order current rates

W I(2) and shot noise rates W II(2)

In first order the current and shot noise rates W I(1),W II(1) could be constructed out

of the total first order transition rates and additional global signs and prefactors (see

appendix B) that arise due to the definition of the diagrammatic rules in energy space.

For the second order current and shot noise transition rates no global prefactors can be

formulated. Instead each second order diagram DX as defined in Fig. 3.4 is multiplied

by a prefactor F I and F II respectively. The total second order current and shot noise

rates are then obtained using Eq. 3.47 formulated for the transition rates W (2) with
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diagrams DI,II
X = DXF

I,II . The prefactors consist of two contributions. First the

creation (annihilation) of an electron at a vertex gives rise to a sign ji = +(−). This

rule corresponds a tunneling line that is either going in or out of a vertex. Second an

external vertex causes a factor +1/2 (−1/2) if the reservoirs ri = R(L) is involved in

the current flow from the left to the right. We define

ri =

{

1 if ri = R

2 if ri = L
(C.22)

and Ri = 1
2
(−1)ri . The following tables summarize all prefactors:

Prefactor D3aI D3aII D3bI D3bII D3cI D3cII D3dI D3dII

F I −2j2R2 −2j2R2 −2j1R1 −2j1R1 2j2R2 2j1R1 2j1R1 2j2R2

F II 0 0 0 0 0 0 0 0

Table C.1: Prefactors F I and F II for the diagrams of Fig. 3.4 according to the

diagrammatic rules defined in appendix A. ji denotes a sign due to a tunneling

line going in or out of a vertex and Ri corresponds to an external (current) vertex

connected to the right or left reservoir.

Prefactor D4I D4II D2aI D2aII

F I 0 0 −2(j1R1 + j2R2) −2(j1R1 + j2R2)

F II −0.5 −0.5 4j1j2R1R2 + 0.5 4j1j2R1R2 + 0.5

Prefactor D2bI D2bII D2cI D2cII

F I 0 2j1R1 − 2j2R2 2j1R1 − 2j2R2 0

F II −0.5 −4j1j2R1R2 + 0.5 −4j1j2R1R2 + 0.5 −0.5

Table C.2: Prefactors F I and F II for the diagrams of Fig. 3.5 according to the

diagrammatic rules defined in appendix A. ji denotes a sign due to a tunneling

line going in or out of a vertex and Ri corresponds to an external (current) vertex

connected to the right or left reservoir.
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