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Abstract
Background

Cis-regulatory modules (CRM) of developmental genes are targets of evolutionary changes 

that underlie morphological diversity of animals (Carroll et al. 2000). Due to our lack of knowl-

edge of the “grammar” of transcription factor/CRM interactions, still little is known about the 

molecular mechanisms that underlie the changes that take place in the CRMs of genes, par-

ticularly after gene and genome duplications. 

To this end, we investigated the ar-C midline enhancer of sonic hedgehog (shh) orthologs 

and paralogs of distantly related vertebrate lineages from fish to human including the basal 

vertebrate Latimeria.

Results

We demonstrate that the shh paralog tiggy winkle hh genes of fishes have a modified ar-C en-

hancer which specifies a diverged function at the embryonic midline. We have identified sev-

eral conserved motifs indicative of putative transcription factor binding sites by a local align-

ment of ar-C enhancers of numerous vertebrate sequences. To trace the evolutionary changes 

among paralog enhancers phylogenomic reconstruction was carried out and lineage-specific 

motif changes were identified. The relevance of the motif composition to observed develop-

mental differences was studied through transgenic functional analyses. Altering and exchang-

ing motifs between paralog enhancers resulted in the reversal of enhancer specificity in the 

floor plate and notochord. 

Conclusions

By functional analysis of shh paralog enhancers a reconstruction model for enhancer diver-

gence during vertebrate evolution was developed. Our model suggests that the identified 

motifs of the ar-C enhancer function as binary switches responsible for specific activity be-

tween midline tissues and that these motifs are adjusted during functional diversification of 

paralogs. The unravelled motif changes can also account for the complex interpretation of 

activator and repressor input signals within a single enhancer.



Phylogenomische und funktionelle Analyse der Enhan-
cerevolution von sonic hedgehog Paralogen

Zusammenfassung

Hintergrund
Cis-regulatorische Module (CRM) entwicklungsspezifischer Gene sind Ziel evolutionärer Verän-

derungen, die der morphologischen Vielfalt von Tieren zugrunde liegen (Carroll et al. 2000).

Aufgrund des fehlenden Wissen über die „Grammatik“ der Interaktion von Transcriptionsfak-

toren mit CRMs ist immer noch wenig über die molekularen Mechanismen bekannt, denen 

diese Veränderungen in CRMs unterliegen, besonders im Hinblick auf  die Duplikation von 

Genen bzw. Genomen.

Wir haben daher den ar-C Mittellinie Enhancer von sonic hedgehog (shh) Orthologen und Paral-

ogen entfernter Abstammungslinien vom Fisch bis zum Mensch inklusive des ursprünglichen 

Vertebraten Latimeria auf diese Mechanismen hin untersucht.

Ergebnisse
Wir konnten zeigen, dass das shh paralog tiggy winkle hedgehog in Fischen einen modifi-

zierten ar-C Enhancer besitzt, der eine abweichende Funktion in der embryonalen Mittellinie 

aufweist. Weiterhin konnten wir durch lokale Sequenz-Alignments von ar-C Enhancern ver-

schiedener vertebrater Spezies mehrere konservierte Motive identifizieren, die auf Bindestel-

len für Transkriptionsfaktoren hinweisen. Um die evolutionären Veränderungen innerhalb 

paraloger Enhancer zu verfolgen, wurden phylogenomische Rekonstruktionen durchgeführt 

und abstammungsspezifische Veränderungen in den Motiven identifiziert. Die Relevanz der 

Motivzusammensetzung im Vergleich zur beobachteten Veränderung in der Entwicklung, 

wurde anhand funktioneller Analysen in transgenen Zebrafischen studiert. Die Veränderung 

und der Austausch von paralogen Enhancern führte zu einer Umkehrung der Spezifität des 

Enhancers in der Bodenplatte und des Notochords.

Schlussfolgerung
Durch die funktionelle Analyse von paralogen shh Enhancern konnte ein rekonstruierendes 

Modell zur Divergenz von Enhancern in der Evolution der Vertebraten entwickelt werden. Un-

ser Modell legt den Schluss nahe, dass die identifizierten Motive des ar-C Enhancers als binäre 

Schalter fungieren, verantwortlich für die spezifische Aktivität zwischen Mittellinie Geweben 

und dass diese Motive während der funktionellen Diversifizierung der Paraloge angepasst wur-

den. Die aufgedeckten Motivänderungen könnten auch auf die komplexe Interpretation von 

Aktivator und Repressor Eingangssignalen innerhalb eines einzigen Enhancers hinweisen.
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Abbreviations

To be consistent with the accepted nomenclature, regarding the font format of the 

gene and protein names, certain rules has been followed:

•	 The gene name, including gene enhancers and Latin names, are always in 

lower-case and italic.

•	 The names of the fish proteins are in sentence case and regular font.

•	 The names of proteins of other organisms are in upper-case and regular 

font

ar Activation region

BOC brother of CDO

BOI Brother of IHOG

CAM Calmodulin 

CDO CAM-related 1 down-regulated by oncogenes

CI Cubitus interruptus

CIA Cubitus interruptus activator form

CIR Cubitus interruptus repressor form 

CK1 Casein Kinase I 

COS-2 Costal-2

CRM Conserved regulatory module

Cyc Cyclops

DDC-model Duplication-degeneration-complementation model

dhh Desert hedgehog

DV Dorso-ventral

ehh Echidna hedgehog
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Abbreviations 

fp Floor plate

FU Fused

Gli Glioma-associated oncogene homologue

GSK-3 Glycogen Synthase Kinase-3

Hip Hedgehog interacting protein

HNF3β Hepatocyte nuclear factor 3 beta

hyp Hypothalamus

ihh Indian hedgehog

Ihog Interference hedgehog

LR Left-right

MAR matrix attachment region

nt Notochord 

ntn1 netrin1

PKA Protein kinase A

PTC, Ptch Patched

qhh Qiqihar hedgehog

SBE Sonic brain enhancer

SFPE Sonic floor plate enhancer

shh Sonic hedgehog 

Smo Smoothened

Su(fu) Suppressor of fused 

TF Transcription factor

TFB Transcription factor bindig site

twhh Tiggy winkle hedgehog

zli Zona limitans intrathalamica
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Introduction
Zebrafish as a model organism

Due to several advantageous properties, the zebrafish (Danio rerio) has become a 

well-established model organism for studies in development and genetics. The em-

bryos develop externally and are therefore amenable for experimental manipula-

tions and microscopic observations. These are facilitated by the transparency of the 

embryos. Zebrafish is highly fertile (one fish-pair can lay appr. 150-200 eggs at op-

timal conditions) and has a short generation cycle of approximately three months. 

The development of the embryo is fast: within 48 hours a free-swimming larvae 

has grown-up from the fertilised egg, facilitating genetic analysis. Furthermore, for-

ward genetic screens have provided several thousand mutations affecting genes in-

volved in many developmental processes (Driever et al. 1996; Haffter et al. 1996). In 

the last years high efficient systems have been established for transgenesis and en-

hancer traps, based on retroviral (Amsterdam and Becker 2005; Gaiano et al. 1996a) 

and transposon (Kawakami et al. 1998; Kawakami et al. 2004; Parinov et al. 2004) 

insertions. With the “TILLING” technique (Wienholds et al. 2003) based on the PCR 

screening of a large number of mutated alleles and the retrovirus based insertional 

mutagenesis (Amsterdam 2006; Amsterdam and Hopkins 2004; Gaiano et al. 1996b), 

the researchers can now commercially obtain mutants specifically in a given gene 

of interest. In addition, knock-down techniques using morpholino oligonucleotides 

are widely used, allowing the specific inactivation of the studied genes (Nasevicius 

and Ekker 2000) or gain/lost of function approaches by mRNA microinjection. The 

advantages mentioned above make zebrafish a unique vertebrate model system for 

fast, large scale, in vivo promoter and enhancer screens using fluorescent proteins as 

reporter genes. The genetic analyses in zebrafish have been furthermore facilitated 

by the completion of the zebrafish genome sequencing and by the improvements 

in the assembly quality and gene annotations, which makes it a suitable model for 

comparative genomic studies.
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Embryonic development of zebrafish

Development proceeds upon fertilisation, after which the extra-embryonic cho-

rion lifts from the zygote and yolk-free cytoplasm streams to the animal pole of the 

cell to form the blastodisc. The blastodisc sits on top of a yolk sac. The subsequent 

cleavages are meroblastic, e.g. they only take place at the animal pole of the embryo. 

These first cleavages are synchronous, producing about 512 cells within 2 3/4 hours, 

forming a blastula. At that stage begins the midblastula transition (MBT). This proc-

ess is characterised by activation of zygotic transcription, cell cycle lengthening, 

loss of cell synchrony, and appearance of cell motility (Kane and Kimmel 1993). 

Subsequently, gastrulation starts at about 4 hpf with the epiboly, a process of cell 

migration around the yolk sac. At about 6 hpf, involution takes place, a process by 

Figure 1�� Selected stages from zebrafish embryonic develop-
ment. A,�50�%�ep�boly�(5,25�hpf )��B,�Sh�eld�stage�(6�hpf ),�the�
arrow�po�nts�at� the�embryon�c� sh�eld,� the�dorsal�organ�ser��C,�
Bud� stage� (10� hpf ),� the� arrow� shows� the� polster,� and� the� ar-
rowhead�shows�the�ta�l�bud��D,�4-som�te�(11,3�hpf ),�the�opt�c�
pr�mord�um� �s�marked�by�arrow��E,�15-som�te� stage� (16�5�h)��
The�arrow�shows�Kupffer’s�ves�cle,�c�l�ated�organ�controll�ng�the�
asymmetry��F,�Pr�m-5�stage�(24�h)��The�arrow�po�nts�to�the�noto-
chord,�the�arrowhead�to�floor�plate��Mod�fied�form�K�mmel�et�
al��1995�
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which cells at the future dorsal side of the embryo, or shield, start to migrate un-

derneath the overlying cells. In addition, cells converge towards the midline and 

extend anteriorly. The gastrulation process will finally give rise to the 3 different 

germ layers of the embryo and is finished by reaching the tailbud stage at 10 hpf. 

During this gastrulation period, the main body axes are specified. After the tailbud 

stage, segmentation starts with the formation of the somites, mesodermal blocks 

of tissue, which will give, rise to several organs, such as muscle, spleen and blood. 

Furthermore, the process of neurulation subdivides the ectodermal neural plate 

into a regionalised neural tube. At the end of the segmentation period, at about 24 

hpf, most of the organ primordia are specified and the first functioning organ, the 

beating heart, becomes visible. The embryo now enters the pharyngula period and 

hatches at about 48 hpf. An overview of selected developmental stages of zebrafish 

is shown on Fig. 1.

Specification and function of the embryonic midline structures: notochord 
and floor plate

Notochord 

The notochord is an embryonic midline structure common to all members of 

the Chordata. The notochord is positioned centrally in the embryo with respect 

to both the dorsal-ventral (DV) and left-right (LR) axes (Fig. 2) (Cleaver and Krieg 

2001; Stemple 2004; Stemple 2005). In 

some vertebrate clades, such as the 

agnathans (lampreys), and in primi-

tive bony fish, such as sturgeons, the 

notochord persists throughout life. 

In higher vertebrates, however, the 

notochord becomes ossified in re-

gions of forming vertebrae and con-

tributes to the centre of the interver-

Figure 2.�High magnification of the trunk (on the 
level of the yolk extension, indicated by red arrow) 
of 24 h old zebrafish embryo.�The�notochord�and�
the�floor�plate�are�clearly�v�s�ble�as�po�nted�by� the�
black�arrow�and�arrowhead�respect�vely�
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tebral discs in a structure called the nucleus pulposis (Linsenmayer et al. 1986; Smits 

and Lefebvre 2003; Swiderski and Solursh 1992). The notochord formation starts in 

early gastrula stages. It arises from the dorsal organiser. Originally identified by 

Spemann and Mangold in amphibians, the dorsal organiser is a region of a verte-

brate gastrula that, when transplanted into prospective lateral or ventral regions 

of a host embryo, induces the formation of a second embryonic axis (Harland and 

Gerhart 1997; Spemann and Mangold 1924). In amphibians, this region is the dorsal 

lip of the blastopore. In other species, homologous structures have been found: the 

embryonic shield of teleost fish, Hensen’s node in the chick and the node of mouse 

embryos all possess essentially the same activities as Spemann and Mangold’s dor-

sal organiser (Beddington 1994; Oppenheimer 1936; Waddington 1930). The func-

tions and activities of the dorsal organiser are complex and have been discussed in 

(Harland and Gerhart 1997).

The notochord has at least two important functions. First, it plays an important 

structural role. As a tissue, it is most closely related to cartilage and is likely to rep-

resent a primitive form of cartilage and serves as the axial skeleton of the embryo 

until other elements, such as the vertebrae, form. Second, it produces secreted fac-

tors that signal to all surrounding tissues, providing position and fate information. 

In this role, the notochord is important for specifying ventral fates in the central 

nervous system, controlling aspects of LR asymmetry, patterning of the underly-

ing endoderm, including pancreas development, the arterial versus venous iden-

tity of the major axial blood vessels and specifying a variety of cell types in form-

ing somites (Christ et al. 2004; Danos and Yost 1995; Fouquet et al. 1997; Goldstein 

and Fishman 1998; Lohr et al. 1997; Munsterberg and Lassar 1995; Pourquie et al. 

1993; Yamada et al. 1993; Yamada et al. 1991). The best characterised is the role of 

the notochord in patterning of the neural tube. Among the signals secreted by the 

notochord are the Hedgehog (Hh) proteins. Sonic hedgehog (Shh), in particular, in-

duces a range of ventral spinal cord fates in a graded fashion while simultaneously 

suppressing the expression of dorsal genes (Placzek et al. 1993; Yamada et al. 1993; 
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Yamada et al. 1991). In addition to Shh, studies in different organisms provide a 

long list of growth factors and secreted signalling molecules expressed in the noto-

chord, including members of the Bone morphogenic protein (Bmp) family, Trans-

forming growth factor beta (TGF-β) family: TGF-, Fibroblast growth factor (Fgf) 

family, Nodal-related 2 (Ndr2), Follistatin, Noggin, Activin, Chordin, and Hedge-

hog interacting protein (Hip) (Cheng et al. 2000; Chuang and McMahon 1999; Dale 

et al. 1999; Dudley and Robertson 1997; Harland et al. 1992; Hemmati-Brivanlou et 

al. 1994; Isaacs et al. 1995; Joseph and Melton 1997; Kondaiah et al. 2000; Marti 2000; 

Rebagliati et al. 1998; Sasai et al. 1994; Shamim et al. 1999; Smith and Harland 1992). 

Although the precise roles of these potent signalling molecules secreted from the 

notochord are not completely understood, it seems that at least some will be impor-

tant for the development of the adjacent tissues.

Floor Plate

The floor plate (FP) is a transient embryonic glial structure, located at the most 

ventral midline of the neural tube (Fig. 2). It functions as an organiser, which con-

trols the development of the vertebrate central nervous system (Dodd et al. 1998; 

Placzek and Briscoe 2005; Strahle et al. 2004). The zebrafish FP is three-cell-wide and 

can be subdivided into the one-cell-wide medial floor plate (mFP) and the lateral 

floor plate (lFP) (Odenthal et al. 2000; Strahle et al. 1996), which differ in gene ex-

pression. The one-cell-wide mFP represents the neural tube organiser as it expresses 

the patterning signals sonic hedgehog (shh), its paralog, tiggy winkle hedgehog (twhh) 

(Ekker et al. 1995) and netrin1 (ntn1) (Korzh 2001), signalling protein directing the 

axonal trajectories of commissural interneurons and certain motor neurons at the 

ventral midline of the neural tube (Colamarino and Tessier-Lavigne 1995). Expres-

sion of the winged-helix transcription factor foxa2 (Korzh 2001) (also known as axial/

HNF3β) is detectable in both mFP and lFP, whereas the homeobox transcription fac-

tor nkx2.2 is expressed in lFP cells exclusively (Barth and Wilson 1995; Schafer et al. 

2005). The FP in mouse is broader than that of zebrafish but also can be subdivided 
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into a medial and a lateral domain. The medial domain expresses shh, whereas foxa2 

transcripts are present in medial and lateral regions (Marti et al. 1995). A slightly 

different picture is presented in chicken neural tube. In contrast to the neural tube of 

zebrafish and mouse, shh, ntr1 and foxa2 are co-expressed in the FP. At later stages, 

foxa2 becomes restricted to the mFP, whereas expression of shh extends into adja-

cent cells expressing nkx2.2 (Charrier et al. 2002). 

The origin and specification of the FP is not completely understood. Ectopic FP 

cells were induced in neural tissues when pieces of the  and prechordal plate were 

grafted adjacent to the dorsolateral region of the neural tube in chicken embryo, 

or combined with neural plate explants in vitro (Placzek et al. 2000). Application of 

recombinant SHH to neural tissue had a similar effect, indicating that the media-

tor of FP induction by the notochord is SHH (Marti et al. 1995; Roelink et al. 1995). 

Moreover, shh gene knockout in mouse abolished FP differentiation (Chiang et al. 

1996). These observations led to the proposal of a model for FP induction in which 

SHH secreted from the notochord and prechordal plate induces the FP in the over-

lying neuroectoderm (Dodd et al. 1998; Placzek et al. 2000). However, this induction 

model does not correlate with findings from genetic analyses in zebrafish FP. In this 

species, Shh plays a minor role in the initial specification of the FP (Briscoe et al. 

2001; Etheridge et al. 2001; Neumann et al. 1999; Varga et al. 2001) and most likely 

the Cyclops (Nodal) signalling in zebrafish plays similar role as Shh in mouse (Dodd 

et al. 1998; Feldman et al. 1998; Gritsman et al. 1999; Pogoda et al. 2000; Sirotkin et al. 

2000; Zhang et al. 1998). In addition, has been shown that recombinant Nodal pro-

tein can act synergistically with Shh to induce FP in chicken neural plate explants, 

suggesting a function of Nodals in the FP induction in amniotes as well. The induc-

tion model was also challenged by observations in chick and quail chimeric em-

bryos suggesting that notochord and FP are derived from the same precursor cells 

located in Hensen’s node, the chicken organiser, equivalent of the embryonic shield 

in zebrafish.(Catala et al. 1996; Le Douarin and Halpern 2000). Taken together, these 

studies suggest that induction of the FP in zebrafish embryos starts to differentiate 
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by early gastrulation already, before the notochord has formed entity. This process, 

which is independent of Shh, requires Nodal signaling. Shh plays a role in lateral 

expansion of the FP and appears to have a maintenance function once the FP has 

formed. This is inconsistent with the previously proposed floor induction model in 

amniotes and suggests a more complex mechanism in fishes.

Transcriptional regulation in eukaryotes

Only some of the genes in a eukaryotic cell are expressed at any given moment. 

The proportion and composition of transcribed genes changes during the life cycle, 

among cell types, and in response to fluctuating physiological and environmental 

conditions (Arbeitman et al. 2002; Iyer et al. 2001; White et al. 1999). This differential 

gene expression requires complex specific interactions of macromolecules. Eukary-

otes use diverse mechanisms to regulate gene expression, including chromatin con-

densation, DNA methylation, transcriptional initiation, alternative splicing of RNA, 

mRNA stability, translational controls, several forms of post-translational modifica-

tion, intracellular trafficking, and protein degradation (Alberts 2002; Lewin 2000). 

The most common point of control is the rate of transcriptional initiation (Latchman 

1997; Lemon and Tjian 2000; White 2001). Transcriptional regulators are classified 

in two major groups: cis-regulators and trans-regulators. The first are specific se-

quences in the DNA (usually in the proximity of the regulated gene), which are 

recognised and bound by proteins called transcription factors (TFs). The TFs are the 

trans-regulators and most of them belong to relatively small protein families. There 

are approximately 12 to 15 structurally distinct DNA-binding domains known from 

eukaryotic TF (Locker 2001). In zebrafish they are approximately 2000 TFs. Far less 

is known about the diversity and evolutionary history of transcription cofactors, 

proteins that bind to TFs but not to DNA. Transcription cofactors, by definition, lack 

a DNA-binding domain, but they typically contain domains that mediate a specific 

protein-protein association with a TFs and directly or indirectly interact with effec-

tor complexes. The binding of TFs to specific DNA sequences is achieved through 
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their DNA-binding domain, which is a short amino-acid motif, often highly con-

served evolutionary, that usually inserts into the major groove of double-stranded 

DNA (Choo and Klug 1997; Jones et al. 1999; Locker 2001). Sequence-specific pro-

tein-DNA contacts rarely extend across more than 5 bp, and for some motifs, such 

as Zn-fingers, they extend only 3 bp. The extent of this physical interaction is not 

sufficient to provide much sequence specificity, as a given 5-bp sequence can occur 

on every 1,024 bp. Three structural features can increase DNA binding specificity 

(Wray et al. 2003): multiple DNA binding domains can exist within a single TFs (most 

Pax family members contain both paired-box and homeodomain DNA binding do-

mains, whereas all Zn-finger TF contain multiple Zn-fingers); additional structural 

features can bind nearby nucleotides through minor groove contacts (many homeo-

domain and GATA factors); and binding to DNA may require homodimerisation 

or heterodimerisation (Myc/Mad/Max, Fos/Jun, and most nuclear receptor family 

members). All three structural features effectively increase the number of specific 

nucleotides required for efficient binding. However, most TFs, although with differ-

ent affinity, bind a range of motifs rather than a single one. The extent of this bind-

ing site matrix differs considerably among TFs. Binding specificity may be strongly 

influenced by cofactors (Berthelsen et al. 1998; Knoepfler and Kamps 1995).

The binding of the TFs to the cis-regulatory sequences (transcription factor bind-

ing sites, TFBS) results in a variety of molecular interactions. A TF bound to DNA 

can interact with components of the basal transcriptional machinery. It may alter 

chromatin structure or stabilise the bending or looping of DNA. In addition, it may 

physically inhibit binding of different TFs to a nearby site. All these interactions, 

which lead to inhibition or initiation of transcription, might be direct or mediated 

by transcriptional cofactors that do not bind to DNA.

The central cis-regulatory module (CRM), required for the transcriptional initia-

tion is the core (basal) promoter. This region is located approximately 50-100 bp up- 

or downstream of the transcriptional start site, serves as a “docking station” for the 

assembly of the transcriptional machinery and positions the start of transcription 
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relative to coding sequences (Butler and Kadonaga 2002). Although necessary for 

transcription, the core promoter is not a common point of regulation, and it cannot 

by itself generate functionally significant levels of mRNA (Kuras and Struhl 1999; 

Lee and Young 2000; Lemon and Tjian 2000). For precise temporal and spatial regu-

lation of transcription and the amount of transcripts, additional CRMs (collection of 

diverse TFBS) are required. Some of these modules are located upstream, immedi-

ately after the core promoter to form the so-called proximal promoter region. This 

region is a few hundred bp long and contains several TFBS. Other CRMs like en-

hancers (Wray et al. 2003) regulate a discrete aspect of the activity of basal promot-

ers in specific cell types and at particular time points. These elements are typically 

up to 300 bp long; contain a series of TFBS. Enhancers are traditionally defined by 

their ability to recapitulate an aspect of the endogenous gene activity when linked 

to a reporter gene in a position- and orientation independent manner (Arnone and 

Davidson 1997). They may reside far away from the proximal promoter region in 

both directions (usually several kilobases), but in some cases even to several mega-

bases (Mb) away from the locus they regulate (Lettice et al. 2003). Some CRMs may 

function as ‘silencers’ that negatively modulate transcription activity (Ogbourne 

and Antalis 1998). 

Boundary and insulator elements are another class of cis-regulatory elements. 

They are able to inhibit distant enhancer effects on core promoter regions or block 

the spread of the non-transcribed heterochromatin (Burgess-Beusse et al. 2002). In-

sulator function has also been attributed to some matrix attachment regions (MARs) 

(Laemmli et al. 1992). The complex expression patterns of the genes are regulated by 

a multiplicity of scattered CRMs, alternative core promoters and variety of interac-

tion networks between transcription factors and cofactors.
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Evolution of transcriptional regulation and morphological diversity

Species diverge from common ancestors through changes in their DNA. One of 

the questions in biology, then, is which are the genes that affect morphology and 

which changes in DNA are responsible for the evolution of morphological diver-

sity? One of the most surprising biological discoveries of the past years is that most 

animals, no matter how different in appearance they are, share several families of 

genes that regulate major aspects of the body pattern. The discovery of this com-

mon genetic “toolkit” for animal development, containing many families of tran-

scription factors and most signalling pathways, has provided the basis to study the 

genetic of animal diversity by enabling comparisons of how the number, regulation, 

or function of genes within the toolkit has changed in the course of animal evolution 

(Carroll et al. 2005; Davidson 2001). Comparisons of developmental gene regulation 

between morphologically divergent animals, analyses of intraspecific variation, and 

the response of organisms and genes to selection support the claim that regulatory 

DNA is the predominant source of the genetic diversity that underlies morpho-

logical variation and evolution (Belting et al. 1998; Carroll 2000; Carroll 2005; Gom-

pel et al. 2005; Shapiro et al. 2004; Stern 1998; Sucena et al. 2003; Sucena and Stern 

2000; Tautz 2000; Wang et al. 1999; Wittkopp 2006; Wittkopp et al. 2004; Wittkopp 

et al. 2002). There are many factors contributing to the importance of cis-regulatory 

DNA in evolution (Carroll 2000). First, individual cis-regulatory elements can act 

and evolve independently of others. A good example is the typical organisation of 

the cis-regulatory regions of developmental genes, composed of many independ-

ent elements. In contrast, the products of most of the genes involved in morphol-

ogy patterning, as well as many TFs have pleiotropic function, e.g., they influence 

multiple phenotypic traits or regulate the expression of many different genes. Thus, 

mutations affecting protein function may cause disturbance in much more devel-

opmental and physiological processes, therefore less tolerable in the evolution. Sec-

ond, there is a higher degree of freedom in cis-regulatory sequences (as opposed 

to coding sequences) which allows greater varieties of mutations. Regulatory ele-
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ments do not need to maintain any reading frame, they can function at widely vary-

ing distances and in either orientation to the transcription units they control. This 

evolvability of regulatory DNA sequence means that it is a rich source of genetic 

and, potentially, phenotypic variation. Finally, most elements are controlled by TFs 

whose DNA binding specificity’s are sufficiently relaxed such that the affinity and 

number of sites for each factor can evolve at a significant rate, even in functionally 

conserved elements.

Despite the predominant contribution of the regulatory DNA to the morphologi-

cal evolution, the role of coding sequences should also be considered. There are sev-

eral clear examples of functional sequence changes in proteins that affect form. For 

instance, several arthropod Hox proteins have changed in ways that are associated 

with shifts in form or developmental mechanisms (Damen and Tautz 1998; Stauber 

et al. 2002). In this case, selection against coding changes might have been relaxed 

because of functional redundancy among Hox paralogs. It also has been shown that 

morphological variation in dog breeds is associated with variation in the length of 

repeated amino acid sequences in the coding regions of a variety of developmen-

tally important transcription factors (Fondon and Garner 2004) However, this vari-

ations may have led to deleterious, pleiotropic effects, which is manageable under 

domestication, but would limit its contribution to evolution under natural selection. 

Thus, it remains still unclear how often and to what extend do coding sequences 

of regulatory molecules functionally evolve and contribute to the morphological 

diversity.

Identification and characterisation of cis-regulatory elements

The main question of the post-genomic era is how to decipher the sequence in-

formation of the already sequenced genomes, which number is rapidly increasing 

in the last few years. At the moment several vertebrate genomes are available, in-

cluding many mammalian and other tetrapod species, such as human, mouse, rat, 

chick, frog etc. as well as teleost genomes like green spotted pufferfish (Tetraodon 
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nigroviridis), fugu (Takifugu rubripes), zebrafish (Danio rerio), medaka (Oryzias latipes) 

and stickleback (Gasterosteus aculeatus). For the evolutionary relationship between 

vertebrates see Fig. 10. There are reasonably good tools to predict regions of the 

genome that correspond to protein coding genes, but it is less clear which parts of 

the genome are being transcribed. Also, very little is known about which regions are 

involved in the regulation of transcription or which regions fulfil structural func-

tions in the chromosome. Cis-regulatory elements do not have stringent directional, 

positional and compositional constraints, such as those seen in the case of coding 

exons, which makes their automated detection by bioinformatics tools consider-

ably more difficult than that of coding sequences or even mRNA splice sites. The 

simplest approach to predict cis-regulatory elements is to look for individual TFBS 

by using known motif models. This strategy is computationally straightforward to 

implement, but relies critically on the availability and quality of models of binding 

sites. The binding sites can be represented as consensus strings or as more informa-

tive position-specific score (weight) matrices, which include information about the 

frequencies of different nucleotides in different positions of the binding site (Stormo 

2000). Information about consensus sequences and weight matrices of TFBS can be 

found in databases, which are either commercially available like TRANSFAC (Win-

gender et al. 1996) or provide open access JASPAR (Sandelin et al. 2004). Using 

known motif models to scan for putative TFBS works reasonably well for short in-

dividual regulatory regions, in which more or less is known, what to look for. In the 

absence of this information, such searchers for TFBS result in to many false positives, 

which preclude their application in genome wide analysis. In the last years many 

motif discovery algorithms have been developed, which do not rely on pre-existing 

models and can in principle find novel, previously unknown motifs (e. g. they can 

be used for de novo identification of TFBS without knowledge about the TFs). The 

most well-known of these algorithms have been compared by Tompa and co-work-

ers. It has been shown that the predictive value of the motif search algorithms can be 

significantly increased by introducing sequence conservation (sequence similarity 
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between loci of different species) as additional criteria (Berman et al. 2004). Numer-

ous algorithms that evaluate the conservation of TFBS are available. For example, 

TraFaC (Jegga et al. 2002) identifies conserved sites by scanning regions of con-

served sequence similarity with a 200 bp window to detect co-occurrence of binding 

sites, whereas rVista (Loots and Ovcharenko 2004; Loots et al. 2002) and ConSite 

(Lenhard et al. 2003) score aligned binding sites in conserved regions. CONREAL 

(Berezikov et al. 2004) uses binding site predictions as anchors for sequence align-

ment, and performs better than other sequence alignment programs when aligning 

sequences from distant species. 

As mentioned above the TFBS are usually organised in CRMs. Several recently 

developed tools, such as MSCAN (Alkema et al. 2004; Johansson et al. 2003 and 

EMCMODULE {Gupta, 2005 #562) are supposed to perform discovery of CRMs by 

detecting clusters of co-occurring TFBS. A major advance in identifying CRMs can 

be the usage of cross-species sequence comparison, which is the basement of a com-

parative genomics method, called phylogenetic footprinting, first introduced by 

Tagle and co-workers (Tagle et al. 1988), who investigated primate γ- and ε-globin 

genes. The basic assumption of phylogenetic footprinting is that regulatory elements 

in non-coding regions are under a higher selective pressure during evolution than 

non-functional regions. In other words, sequence comparison between species with 

enough evolutionary distance, like mammals and fish, for example, can reveal con-

served sequence blocks with a potential function. The search for enhancers has been 

the main application of phylogenetic footprinting, because of the relatively well 

developed tools for their functional analysis, compared with other conserved non-

coding sequences. A major problem regarding the use of phylogenetic footprint-

ing for identification of CRMs is the insufficient knowledge available about such 

regulatory elements for their accurate prediction. The regulatory organisation of the 

genes shows huge variety and complexity and has only been deciphered systemati-

cally and mechanistically for a very small number of genes. As mentioned above 

cis-regulatory function may not be the only reason for the sequence conservation 
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of the non-coding DNA. Chromatin-structure defining elements like MARs etc. can 

be conserved as well. For instance, it has been reported that up to 11% of non-cod-

ing conserved sequences between mouse and human contain MARs (Glazko et al. 

2003) and more than half of all predicted MAR sites occur within conserved regions. 

In addition, a role in the regulation of alternative splicing has been suggested for 

intronic sequences that are highly conserved between mouse and human and that 

are close to alternatively spliced exons (Sorek and Ast 2003). Another proportion of 

conserved non-coding sequences may consist of non-coding RNAs, which is specu-

lated to be as numerous as protein-coding RNAs (Cawley et al. 2004). Conserved 

non-coding RNAs include antisense regulatory RNAs, microRNA sequences (Lim 

et al. 2003) that regulate gene expression. The cis-regulatory elements may coincide 

with such structures, which makes it even more difficult to predict them on base 

of sequence conservation analysis. Another caveat in the utilisation of the phylo-

genetic footprinting is the potential divergence in sequence and function of CRMs 

over large evolutionary distances (Dickmeis and Muller 2005; Dickmeis et al. 2004; 

Ludwig 2002; Ludwig et al. 2005; Ludwig et al. 1998). 

Genome duplications in vertebrate evolution

It is widely accepted that gene duplication is a major source for the evolution of 

novel gene function resulting ultimately in the increase in organismal complexity 

and speciation (Mazet and Shimeld 2002; Meyer 2003; O’Brien et al. 1999; Taylor et 

al. 2001a). Three full genome duplication events have occurred during vertebrate 

evolution. The first two have been before the origin of jawed fishes and the split 

between the actinopterygians (ray-finned fishes) and sarcopterygians (land verte-

brates), respectively 500 and 450 million years (mya) ago (Holland et al. 1994). The 

third happened early (~360 mya ago) in the evolution of actinopterygians (Fig. 10) 

The first evidence for the actinopterygian-specific full genome duplication has been 

provided by a studies describing that the ray-finned fishes have seven hox-gene 

clusters, in contrast to the land vertebrates, which have only four (Holland 1997; 
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Meyer and Malaga-Trillo 1999; Meyer and Schartl 1999; Postlethwait et al. 1998). 

The suggested genome duplication has recently been confirmed by the sequencing 

of the Fugu and Tetraodon genomes (Christoffels et al. 2004; Jaillon et al. 2004). This 

duplication event has led to a large number of duplicated copies of non-allelic genes 

found in different groups of teleosts (Amores et al. 1998; J. Wittbrodt 1998; Taylor 

et al. 2003; Taylor et al. 2001b) and is meant to be the main reason behind the high 

biodiversity of the teleost (half of the existing vertebrate species belong to the teleost 

fishes) (Volff 2005).

Retention of duplicated genes

All vertebrate animals, despite their generally diploid state, carry large numbers 

of duplicated genes, revealing that there is frequent evolutionary conservation of 

genes that arise through local, regional or global DNA duplication events. Classical 

models predict two potential fates for these duplicate gene pairs (Fisher 1935; Hal-

dane 1933). The most likely fate is that one of the pair will degenerate to a pseudo-

gene or be lost from the genome due to the vagaries of chromosomal remodelling, 

locus deletion or point mutation, in a process known as nonfunctionalisation. A less 

frequently expected model is that a population acquires a new, advantageous allele 

as the result of alterations in coding or regulatory sequences. Mutations that lead 

to such novel gene functions (a process called neofunctionalisation) are assumed 

to be extremely rare, so the classical model predicts that few duplicates should be 

retained in the genome over the long term and fails to explain the existence of the 

many duplicated genes found in vertebrate genomes.

It has been speculated that the mechanism by which duplicated genes are re-

tained, is the evolution of new spacial or temporal expression domains through 

changes in their regulatory control elements (Cooke et al. 1997; Gompel et al. 2005; 

Jeong et al. 2006a; Marcellini and Simpson 2006; Prud’homme et al. 2006). An elabo-

rate alternative model, called Duplication-degeneration-complementation (DDC) 

has been proposed by Force and co-workers to explain the retention of duplicated 
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paralogs during evolution (Force et al. 1999) (Fig. 3) Their model is based on the 

(often) multifunctional nature of genes, which is reflected by the multitude of regu-

latory elements specific to a particular expression domain. Mutations in subsets of 

regulatory elements in either one of the duplicated paralog may result in post-du-

plication spatial and temporal partitioning of expression patterns (subfunctionali-

sation) between them. As a result, both paralogs can fulfil only a subset of comple-

menting functions of the ancestral gene, and will thus be retained by selection and 

not be lost secondarily (reviewed in (Prince and Pickett 2002).

The diversity of possible mechanisms of subfunctionalisation at the level of regu-

latory elements, however, are still poorly understood due to the lack of thorough 
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comparative molecular evolutionary studies on cis-acting elements (Ludwig 2002) 

backed by experimental verification of their function. Despite numerous presumed 

examples of subfunctionalisation of gene expression patterns between paralogs, 

there have only been two very recent reports that include the necessary experimen-

tal verification of the hypothesis of subfunctionalisation due to changes in cis-reg-

ulatory modules (Tumpel et al. 2006; Tvrdik and Capecchi 2006). Several studies, 

however, implicated specific mutations in enhancers of parologous gene copies to 

be the likely source of subfunctionalisation in duplicated hox2b, hoxb3a and hob4a 

enhancers in fish (Hadrys et al. 2004; Hadrys et al. 2006; Scemama et al. 2002).

The hedgehog gene family

Although they are absent from nematode worms, hedgehog (hh) family genes are 

widely distributed throughout the animal kingdom. They have been first discovered 

in Drosophila melanogaster, (Nusslein-Volhard and Wieschaus 1980) in which muta-

tion of the single hedgehog (hh) gene that is present in this species gives rise to an 

embryo that is covered in cuticular processes called denticles, thus giving the name 

“hedgehog”. In vertebrates, genome duplication has given rise to multiple hh genes. 

Comparative studies on the evolution of the vertebrate hh gene family (Zardoya et 

al. 1996a; Zardoya et al. 1996b) showed that two rounds of duplication led to the 

evolution of three copies from a single ancestral hedgehog gene: sonic hedgehog (shh), 

indian hedgehog (ihh) and desert hedgehog (dhh). In addition the extra genome duplica-

tion in the ray-finned fish lineages resulted in the shh paralog tiggy-winkle hedgehog 

(twhh) genes (Zardoya et al. 1996a; Zardoya et al. 1996b) as well as duplication of ihh 

(Avaron et al. 2006) and probably also dhh genes (There isn’t any evidence for dhh 

duplicates in teleost so far.). For more details about the phylogenetic relationship of 

vertebrate hedgehog genes see Fig. 4.
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Mechanism of action and signal transduction pathway of the hedgehog 
proteins

Hedgehog proteins are secreted signalling molecules, which act as a morpho-

gens to regulate a variety of developmental processes. Morphogens are signalling 

molecules, produced by a localised source of cells and then establish a gradient 

of concentration over a field of cells. They act directly on the cells at a distance 

without any relay mechanisms. (Entchev and Gonzalez-Gaitan 2002). The morpho-

gen-concept provides an attractive explanation of how cells in the embryo acquire 

positional information and how a relatively low number of signalling molecules can 
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coordinate the multitude of cellular differences.

The core components of the hedgehog-signalling pathway are highly conserved 

through evolution and were mainly discovered by genetic analyses of Drosophila 

melanogaster. An overview of the Hedgehog pathway, which has been extensively 

reviewed (Hooper and Scott 2005; Ingham and McMahon 2001; Ingham and Plac-

zek 2006; Lum and Beachy 2004), is presented on Fig. 5. One key feature of the HH 

proteins is their lipid (cholesterol) modification, which has an important effect on 

the signalling activity by facilitating the movement of hedgehog molecules between 

cells (Gallet et al. 2006; Lewis et al. 2001; Li et al. 2006). The Hh molecules require the 

activity of a highly conserved transporter-like protein, named Dispatched, for their 

efficient secretion from cells (Burke et al. 1999; Ma et al. 2002; Nakano et al. 2004). 

The intercellular transport of the secreted HH protein is modulated by interaction 

with proteoglycans (Han et al. 2004).

Recent studies have revealed that HH proteins bind directly to two related and 

conserved transmembrane proteins, known as Interference hedgehog (IHOG) and 

Brother of IHOG (BOI) in D. melanogaster and CAM-related 1 down-regulated by 

oncogenes (CDO) and brother of CDO (BOC) in vertebrates (Tenzen et al. 2006; Yao 

et al. 2006; Zhang et al. 2006) This binding facilitates the interaction between hedge-

hog proteins and the transmembrane protein Patched (Ptc in flies and fish, PTCH 

in mammals), an interaction that leads to the activation of another transmembrane 

protein Smoothened (SMO), the universal transducer of hedgehog activity (Alcedo 

et al. 1996; Stone et al. 1996; van den Heuvel and Ingham 1996). SMO activation 

initiates a signalling cascade that results in transcription of hedgehog target genes. 

Whereas in D. melanogaster, this is mediated by a single member of the Glioma-as-

sociated oncogene homologue (GLI) family of transcription factors (Alexandre et al. 

1996). In vertebrates, three distinct GLI proteins are involved in the transcriptional 

response to HH proteins (Bai et al. 2004). Two of these, GLI2 and GLI3, are struc-

turally similar to the D. melanogaster Cubitus interruptus (CI) protein, possess-

ing both repressor and activator domains that flank a DNA-binding domain. In the 
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absence of HH signalling, GLI3 and GLI2, like CI, undergoes proteolytic cleavage 

to yield a truncated protein that functions as a repressor (CIR) of HH target gene 

transcription. (Wang et al. 2000). Activation of the pathway results in the suppres-

sion of cleavage flowed by nuclear import of full-length GLI2 and GLI3 proteins. 

These activate the expression of target genes. By contrast, the GLI1 protein lacks 

the repressor domain and seems to enhance the activating function of GLI2. Unlike 

the other two gli genes, gli1 is itself a target of SHH signalling as a part of a positive 

feedback loop (Bai et al. 2002).
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Expression pattern and biological role of the sonic hedgehog genes

In zebrafish as in higher vertebrates, expression of shh is highly restricted to re-

gions with organiser activity (Krauss et al. 1993; Scholpp et al. 2006; Strahle et al. 

1996). In the zebrafish embryo, shh is expressed initially in the embryonic shield, and 

subsequently in the notochord, prechordal plate and the floor plate (Fig. 6). In the 

brain, shh expression is detected in the ventral midbrain, the hypothalamus, the zona 

limitans intrathalamica (zli) and in a small patch of cells in the telencephalon (Krauss 

et al. 1993). In the two-day old embryo, strong expression of shh is also found in 

the endoderm and its derivatives (Strahle et al. 1996). The shh paralog, twhh, is also 

expressed in the midline and parts of the ventral brain of the zebrafish embryo (Fig. 

6). There are however, distinct differences, regard to timing and tissue restriction of 

expression between the two paralogous genes (Ekker et al. 1995), which may have 

important implication in their cooperative function. First expression of twhh is first 

detected at about 50 % epiboly and its expression during gastrulation in the dorsal 

mesoderm; this appears to precede the expression of shh, which is first detected at 

about 60 % epiboly. In addition, Etheridge et al, have shown that shh is expressed in 

notochord precursors and twhh is exclusively expressed in the overlying floor plate 

cells during gastrulation (Etheridge et al. 2001). Later (24-36 hpf), shh is expressed 

both in the notochord and floor plate, while twhh remains restricted to the floor plate 

(Fig. 6). Another notable difference at later these stages is differential rostro-caudal 

restriction within the diencephalon and midbrain such that the later domain of twhh 

expression appears to constitute a subset of the shh domain (Ekker et al. 1995). The 

protein activity of twhh is very similar to that of shh (Lauderdale et al. 1998). It is 

likely, that the concerted action of shh and twhh is regulated quantitatively by their 

partially overlapping and tightly controlled level of expression. 
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The biological role of Shh has been extensively studied. It controls a multitude of 

different differentiation processes during vertebrate embryogenesis. In the neural 

tube, it acts as a morphogen that drives the differentiation of specific neurons in a 

concentration-dependent manner and is important for neurogenesis (Ingham and 

McMahon 2001; Ingham and Placzek 2006; Ruiz i Altaba 1994). Other functions in-

clude patterning of the endoderm, the somites and the paired appendages and Shh 

was also implicated in hair and tooth development (Ingham and McMahon 2001; In-

gham and Placzek 2006; Jessell 2000) Moreover, misregulation of the Shh signalling 

pathway can cause a variety of tumours in humans including basal cell carcinoma 

and medulloblastoma (Bale and Yu 2001; Ingham 1998; Marino 2005; Ruiz i Altaba 

1994). So far, only shh function was studied in genetic mutants (Schauerte et al. 

1998). Nevertheless, morpholino knock down and gene expression analyses identi-

fied several functions of the twhh gene. Twhh was shown to cooperate with shh in the 

midline to specify branchiomotor neurons, but is also required in the zli and was 
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Figure 6.�Expression of shh and twhh genes at 24 hpf in zebrafish.�A-B�Express�on�of�shh�(A)�
and�twhh�(B)�mRNAs,�detected�by�in situ�hybr�d�sat�on��On�the�top�panel�a�whole�embryo�
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endogenous� shh�gene��Abbrev�at�ons:�fp,�floor�plate;�nt,�notochord;�hyp,�hypothalamus;�zli 
zona limitans intrathalamica�
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implicated in eye morphogenesis (Bingham et al. 2001; Chandrasekhar et al. 1998; 

Nasevicius and Ekker 2000; Scholpp et al. 2006; Yamamoto et al. 2004). 

Cis-regulatory modules of the vertebrate sonic hedgehog gene

The genomic locus of the zebrafish sonic hedgehog gene is well characterised and 

a substantial amount of data on the functionality of its cis-acting elements exist 

(Ertzer et al. 2007; Muller et al. 2000; Muller et al. 1999). Enhancers that drive ex-

pression in the ventral neural tube and notochord of the developing embryo reside 

in the two introns and upstream sequences (Fig 7). Activating regions A and B (ar-A, 

ar-B) reside in the first intron of the gene and drive expression in the notochord and 

FP respectively. The ar-A region is conserved trough most vertebrate shh genes, but 

so far no function has been applied to it in mouse. Corresponding conserved region 

to ar-B has not been found in tetrapods, but is well conserved between fish species. 

The activation region ar-D is located upstream (appr. 1 kb) from the transcriptional 

start site of the gene and corresponds to the mouse FP enhancer SFPE2 (Epstein et 

al. 1999; Ertzer et al. 2007; Jeong and Epstein 2003). The activity of this enhancer in 

zebrafish is restricted to the anterior FP, in contrast to the mouse, where it drives 

FP expression throughout its full length (Fig 7). A fourth region, ar-C, in the sec-

ond intron, directed expression in the notochord and weakly in the posterior FP. 

(Ertzer et al. 2007; Muller et al. 1999). This zebrafish enhancer also functions in the 

midline of mouse embryos (Muller et al. 1999) suggesting, that the cis-regulatory 

mechanisms involved in regulating shh expression are at least in part conserved 

between zebrafish and mouse. However, the mouse enhancer, SFPE2, which shows 

sequence similarity with ar-C of zebrafish, is FP-specific (Epstein et al. 1999; Jeong 

and Epstein 2003) (Fig. 7 and Fig. 8). This difference of enhancer activity emphasises 

the importance of addressing the mechanisms of divergence in enhancer function 

between distantly related vertebrates. Given the observations on the ar-C enhanc-

er in fish and mouse, we postulated, that this enhancer may have been a target 

of enhancer divergence between twhh and shh paralogs in zebrafish during evolu-
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tion. Recent studies by Ertzer et al. (Ertzer et al. 2007) have shown, that precipice 

tuning of spatio-temporal expression of shh in the zebrafish midline and ventral 

forebrain is controlled by synergistic cooperation between the different enhancers 

of the gene. For instance, the ar-B can synergistically act with ar-C to initiate FP 

expression in early stages (3-somites). Combination of ar-A and ar-C is required for 

enhancement of the notochord expression in early and later stages. This synergistic 

action of both enhancers is also needed to maintain the expression in hypothalamus 

at 24 hpf, however maintaining the expression at later stages (32 hpf) requires ad-

ditional activity of the ar-B. Additional studies have contributed to identification of 

long distance shh enhancers in mouse. For instance, Lettice and co-workers (Lettice 

et al. 2003) have described an enhancer important for shh expression in the zone of 

polarising activity (ZPA) of the developing limb bunds. Using BAC reporter assays,  

Jeong et al. (Jeong et al. 2006b) have uncovered six enhancers distributed over 400 

kb along the mouse shh locus, directing expression in different domains of the ven-

tral forebrain and spinal cord as well as in the notochord (Fig. 7).



25

Introduction

Figure 7.�Comparison of the shh enhancer regions between zebrafish and mouse. Each�en-
hancer��s�labelled�wh�t�d�fferent�colour�and�the�same�colour��s�used�to�mark�the�reg�on�where�
the�respect�ve�enhancer��s�act�ve�on�the�schemat�c�representat�on�of�the�zebrafish�(top)�and�
mouse�(bottom)�m�dl�ne�and�central�nervous�system��The�black�boxes�represent�the�exons��
Abbrev�at�ons:�SBE,� son�c�bra�n�enhancer;�SFPE,� son�c�floor�plate�enhancer;� f,�floor�plate;�
h�hypothalamus;�n,�notochord;� tg,� tegmentum,�zli, zona limitans intrathalamica;� te,� telen-
cephalon��Mod�fied�form�Ertzer�et�al��2007

The ar-C/SFPE2 cis-regulatory paradigm

As mentioned above, despite the high degree of sequence similarity (Fig. 12) there 

is a clear functional divergence between zebrafish ar-C and the corresponding mouse 

enhancer SFPE2. In zebrafish ar-C is manly active in the notochord and only weekly 

in the floor plate, however the corresponding mouse enhancer, SFPE2 is a floor plate 

enhancer and only shows notochord activity in a multimerised and truncated form 

(Jeong and Epstein 2003) (Fig.7, Fig.8). This divergence can be explained with the 

presence and complementing function of a shh duplicate paralog gene, twhh in ze-

brafish while in the mouse only one shh copy is present. The two paralogous genes 

in zebrafish have different expression patterns. As described above shh is expressed 
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in both, the floor plate and the notochord, 

while twhh is expressed only in the floor 

plate. These diverged expression patterns 

suggest enhancer divergence resulting in 

diverged tissue specificities after the gene 

duplication, and the predicted enhancer 

divergence may have led to possible sub-

functionalisation between the two para-

logs. (Fig. 8). If the subfunctionalisation 

model is valid, the functional divergence 

between ar-C and SFPE2 implies that the 

twhh paralog may also have a functional 

a-C enhancer which is predicted to carry 

floor plate specific activity. Additional 

support to this hypothesis is provided by 

the fact, that although weekly detectable, 

ar-C is the only one shh enhancer which 

shows some sequence similarity to the po-

sitionally conserved region in the second 

intron of the twhh gene.(Fig. 15).
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A vexing problem in understanding the evolution of cis-regulatory modules is 

that only relatively small number of enhancers and other CRMs have been character-

ised in sufficient detail to develop generally applicable rules about their conserved 

structures and evolutionarily permitted modifications. Therefore, it is paramount 

also to functionally investigate the molecular mechanisms that underlie the diver-

gence of CRMs. Duplicated genes can provide suitable model for such studies. The 

advantage of using duplicated gene is that they allow comparison of cis-regulatory 

elements, which have evolved parallel for the same amount of time in the same 

environment. Moreover, the paralogous elements can be compared to non- or pre-

duplicated (ancestral) orthologous gene elements, which had similar time to evolve 

but in different environment. Such comparisons may allow for the prediction of 

evolutionary events shaping CRMs. The validation of such predictions can then be 

carried out by molecular and functional cross-species analyses of conserved CRMs 

(enhancers) from paralogous and orthologous genes. The cross-species analysis can 

be extended by a mutational analysis of the TFBS in reconstruction of the ances-

tral archetype of the enhancer, which can provide insights into the mechanisms 

involved in enhancer divergence after gene duplication and overall mechanism of 

cis-regulatory element’s evolution.

To find out more about these mechanisms we have chosen the vertebrate sonic 

hedgehog genes as model system. There are several reasons for this choice: First, 

the regulatory elements of the shh genes have been well studied in both zebrafish 

and mouse; Second, due to the extra genome duplication in the actinopterygian lin-

eage two paralogous genes (shh and twhh) with partially non-overlapping expres-

sion pattern exist in zebrafish, thus supporting the hypothesis for subfunctionalisa-

tion of these gene after the gene duplication. To prove this hypothesis we focused 

our study on the ar-C enhancer located in the second intron of the gene, because of 

its functional divergence between mouse and zebrafish and the indication of pos-
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sible existence of putative paralogs to the ar-C enhancer in the twhh gene (see “The 

ar-C/SFPE2 cis-regulatory paradigm” and Fig. 8) Another question we aim to answer 

in this study is the mechanism for the subfunctionalisation of the ar-C enhancer. For 

instance, models can be drawn, that the subfunctionalisation occurred by changes 

of binding sites within the ar-C enhancer modifying its function or, alternatively, 

multiple enhancers are involved, e.g the subfunctionalisation happened on the level 

of modulating whole enhancers.

To answer the above listed questions our aims were:

• To isolate ar-C enhancers (intron 2 sequences) form shh and twhh genes from 

vertebrate species on important time points of evolution. (Fig. 10).

• To analyse the activity of the isolated enhancers by transgenic reporter as-

says in zebrafish embryos.

•  To identify potential binding sites by sequence comparison (phylogenetic 

footprinting), and the changes occurred in them, leading to subfunctionalisation.

• To analyse the identified putative binding sites by mutations and functional 

test in transient transgenic zebrafish embryos to be able to reconstruct the evolu-

tionary events responsible for the enhancer divergence after gene duplication.

• To generate a molecular model for enhancer divergence in duplicated ar-C 

enhancers.
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Chemicals, enzymes and kits

Acetic acid Merck, Darmstadt

Agarose Sigma, Taufkirchen

Ammonium acetate Merck, Darmstadt

Ampicillin Roche, Mannheim

Bacto-Agar Roth, Karlsruhe

Bacto-Trypton Roth, Karlsruhe

Bacto-Yeast extract Roth, Karlsruhe

Boric acid Roth, Karlsruhe

BSA Serva, Heidelberg

Calcium chloride Merck, Darmstadt

Calf intestine alkaline phosphatase Promega, Mannheim

Disodium hydrogen phosphate Roth, Karlsruhe

DNA-Ladder (1 kb) New England Biolabs, Frankfurt a.M.

DNA-Ladder (100 bp) New England Biolabs, Frankfurt a.M.

DNA-Ladder (Mix) Peqlab, Erlangen

DNeasy Blood & Tissue Kit Qiagen, Hilden
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dNTPs Promega, Mannheim

EDTA Roth. Karlsruhe

Ethanol Roth, Karlsruhe

Ethidium bromide Roth, Karlsruhe

Gentamicin Sigma, Taufkirchen

Isoamyl alcohol Roth, Karlsruhe

Isopropanol Merck, Darmstadt

Magnesium sulphate Merck, Darmstadt

Methanol Roth, Karlsruhe

Nuclease free water Ambion, Huntigdon, UK

Ocean Sea Salt Kölle-Zoo, Karlsruhe

Oligonucleotides Metabion, Planegg

Pancreatic ribonuclease A Sigma, Taufkirchen

PBS Invitrogen, Karlsruhe

Phenol Roth, Karlsruhe

Phenol red Roth, Karlsruhe

Potassium acetate Roth, Karlsruhe

Proteinase K Sigma, Taufkirchen
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PureYield Plasmid Midiprep System Promega, Mannheim

QIAGEN Plasmid Maxi Kit Qiagen, Hilden

QIAquick Gel Extraction Kit Qiagen, Hilden

QIAquick PCR Purification Kit Qiagen, Hilden

QuickLyse Miniprep Kit Qiagen, Hilden

Restriction endonucleases 
Promega, Mannheim, Invitrogen, Karl-

sruhe or New England Biolabs, Frankfurt 
a.M.

SDS Roth, Karlsruhe

Sodium acetate Roth, Karlsruhe

Sodium chloride Roth, Karlsruhe

Sodium dihydrogen phosphate Roth, Karlsruhe

Sodium hydrogen carbonate Roth, Karlsruhe

Sodium hydroxide Sigma, Taufkirchen

T4 DNA ligase Promega, Mannheim

T4 DNA polymerase Promega, Mannheim

GoTaq DNA polymerase Promega, Mannheim

TOPO TA Cloning Kit Invitrogen, Karlsruhe

Triple Master PCR System Eppendorf, Hamburg

Tris-Base Roth, Karlsruhe
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Tris-HCl Roth, Karlsruhe

Wizard Plus SV Minipreps DNA Puri-
fication System Promega, Mannheim

Wizard SV Gel and PCR Clean-Up Sys-
tem Promega, Mannheim

Equipment and materials

Bacteria incubators Heraeus, Hanau

Borosilicate glass capillaries Harvard Ltd., Kent, UK

Cool centrifuge J2-HS Beckman, Stuttgart

Digital camera DFC300 FX, Leica, Bensheim 

Electrophorese chambers Peqlab, Erlangen

Eppendorf microcentrifuge tubes Eppendorf, Hamburg

Falkon tubes Greiner, Nürtingen

FemtoJet microinjector Eppendorf, Hamburg

Flaming-Brown Needle puller Sutter Instruments, USA

Fluorescent stereomicroscope MZ FLI-

II
Leica, Bensheim

Gas microinjector Tritech research inc., L.A., USA

Incubator for fish embryos Heraeus, Hanau

Magnetic thermomixer Heidolph, Rosenfeld

Microcentrifuge 5417 R and C Eppendorf, Hamburg

Microcentrifuge Biofuge pico Heraeus, Hanau

Microfiltration columns Pall, Ann Arbor, USA
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NanoDrop ND-1000 Peqlab, Erlangen

PCR-Thermocycler, MJ Research Biozym, Oldendorf

Petri dishes Greiner, Nürtingen

Pipette tips Corning, Corning

Spectrophotometer Eppendorf, Hamburg

Stereomicroscope SMZ645 Nikon, Düsseldorf

Sterile filters Renner, Darmstadt

Thermomixer Eppendorf, Hamburg 

UV Transilluminator Saur, Reutlingen

Vac-Man Vacuum manifold Promega, Mannheim

Vortex Bender & Hohbein, Karlsruhe

Water bath Kötterman, Uetze-Hänigsen

Solutions and Buffers

If not specified otherwise, all solutions and buffers have been prepared in dis-

tilled water.

TAE Buffer 

40 mM Tris-Base, 1 mM EDTA, 5 mM Acetic acid; pH=7,8
TBE-Buffer

90 mM Tris-Base, 1 mM EDTA, 44 mM Boric acid; pH=8,0
TE-Buffer

10 mM Tris-HCl (pH = 7,4), 1mM EDTA; (pH = 8)
Pancreatic ribonuclease A (RNase A) stock solution 

20 mg/ml RNase A in 1 mM sodium acetate; pH=4,5
Proteinase K stock solution 
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10mg/ml in PBS
Lysis buffer for genomic DNA extraction

10 mM Tris-HCl, 0,1 M EDTA, 0,5% SDS; pH=8,0
LB-Agar

1,5% Bacto-Agar in LB-Medium
LB-Medium

1% Bacto-Trypton, 0,5% Yeast extract, 1% NaCl; pH=7,0
SOC–Medium 

2% Bactotrypton, 0,5% Yeast extract, 10 mM NaCl, 25 mM KCl
Hank´s solution

0,14 M NaCl, 5,4 mM KCl, 0,25 mM Na2HPO4, 0,44 mM KH2PO4, 1,3 mM CaCl2, 1 

mM MgSO4, 4,2 mM NaHCO3.
System water in the fish facility

120 mg/l „Ocean Sea Salt“, 45 mg/l NaHCO3 in desalted water
Phenol red solution (10x)

10% Phenolred, 0,2 M KCl; pH=7,5
Methylene blue solution (2000x)

0,1% methylene blue in distilled water

Isolation of plasmid DNA

Plasmid DNA was isolated using Quiagen or Promega kits for Mini, Midi and 

Maxi Plasmid preparations, following the manufacturer’s instructions. For all types 

of plasmid preparation, an appropriate volume of over night bacterial culture in LB-

medium was used. The kits from both manufacturers are based on the alkali-lysis 

method by which the plasmid DNA is separated from the genomic DNA and most 

of the proteins (they form white precipitate, which is removed by centrifugation or 

filtration). The remaining solution, containing the plasmid DNA, is subsequently 

purified on anion exchange or silica membrane column to ensure complete removal 

of the rest of the proteins, RNA and bacterial endotoxins. In the end, the DNA is 

resuspended or eluted in an appropriate volume of nuclease free water. The concen-

tration was determined on a NanoDrop spectrophotometer device.
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Isolation of genomic DNA

Genomic DNA was isolated according the standard protocol for “Isolation of 

High-molecular-weight DNA from Mammalian Cells Using Proteinase K and Phenol”, de-

scribed by (Sambrook and Russell 2001). In brief, the tissue samples (~500 mg) are 

frozen in liquid nitrogen and subsequently pulverised. The tissue powder is spread 

slowly (to avoid building of clumps) over the surface of a 10 ml lysis buffer in a 

small beaker (25 ml). Pancreatic ribonuclease A in concentration 20 µg/ml is added 

to the lysis buffer before the spreading of the tissue powder. The lysate is incubated 

for 30 min. at 37 °C to ensure the degradation of the RNA. After the addition of pro-

teinase K in concentration 100 µg/ml, the lysate is incubated further for 3 hours at 55 

°C. To remove the peptides and remaining proteins, the cell lysate is extracted two 

times with equal volume of phenol and once with phenol/chloroform. The DNA is 

recovered from the remaining solution by precipitation with 0,2 volumes of 10 M 

ammonium acetate and 2 volumes of ethanol. White, clearly visible precipitate form 

genomic DNA is formed, which can be taken out with U-shaped Pasteur-pipette. 

The DNA is washed in 70 % ethanol and after drying, it is dissolved in an appropri-

ate volume of TE buffer.

DNeasy Blood & Tissue Kit (Quiagen) was used for isolation of genomic DNA 

from small amount of tissue, according to the manufacturer’s instructions.

Polymerase Chain reaction (PCR)

The amplification of DNA fragments from genomic DNA or plasmids was per-

formed by PCR (Mullis and Faloona 1987; Rabinow 1996; Sambrook and Russell 

2001). Two enzyme systems were used depending on the purpose. Ordinary Taq 

polymerase (GoTaq, Promega) was used when proof-reading activity was not need-

ed (for example colony tests). Triple Master PCR System (Eppendorf) was utilised 

for the amplification of DNA fragments for cloning purposes. This is an enzyme 

mixture (Taq polymerase with proof-reading polymerases) which is optimised for 

amplification of long targets with relatively high speed and proof-reading activity. 
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The PCR was performed according to the user manuals provided with the enzymes, 

with adjustment of the annealing temperature and elongation time according to the 

used primers and the size of the amplified fragments. All PCRs were performed on 

MJ Research thermocycler.

A degenerate PCR approach was used to isolate shh and twhh intronic sequences 

form species for which sequence information about those gene loci was not avail-

able (tench and Latimeria). The degenerate PCR is identical in most respects to or-

dinary PCR, but with one major difference. Instead of specific PCR primers with a 

given sequence, mixed PCR primers are used. In other words, if the sequence of the 

fragment to be amplified is not exactly known, “wobbles”are inserted in the PCR 

primers where there is more than one possibility. For instance, if just a protein motif 

is available, it can be back-translated to the corresponding nucleotide motif. How-

ever, the genetic code is degenerate (in most cases given amino-acid is encoded by 

more than one codon), which results in more than one possibility for the identity of 

some nucleotides the motif. In our case, degenerative primers were designed on the 

base of well-conserved protein motifs in the second and third exons (flanking the 

second intron) of shh and twhh genes from different vertebrate species.

Site-directed mutagenesis by PCR

A PCR based approach (“Higuchi Method”, described in (Higuchi et al. 1988) was 

utilised to generated mutation and insertion in zebrafish shh and twhh ar-C enhanc-

ers. This method allows mutation, deletion and insertion of sequences at any posi-

tion in the DNA fragment. The method is based on two PCR rounds (see Fig. 9). In 

the first round, two primary PCRs produce two overlapping DNA fragments, both 

bearing the same mutation introduced via primer mismatch in the region of overlap. 

In the second round, the products of the first two reactions are mixed (after gel pu-

rification) and used as a template in a second PCR. The overlap in sequence allows 

the two fragments to anneal after their denaturation and renaturation and produce 

a structure with recessed 3’ OH ends that can be extended by a DNA polymerase to 
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produce a complete duplex fragment. These extended segments can then serve as 

a template for the secondary reamplification of the combined sequences using only 

the outermost two of the four primers used to produce the primary fragments.

5’ 5’

5’ 5’

3’

3’

3’

3’

3’

5’

5’3’

3’

Wild type DNA

target sequence

5’

5’3’ mutated sequence

mutated sequence

Mutated DNA

PCR 1A PCR 1B

PCR 2

mutated 
sequence

mutated 
sequence

Figure 9.�Schematic representation of the “Higuchi Method” method, used for site-directed 
mutagenesis by PCR.
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Agarose Gel Electrophoresis

The size and quality check, as well as the separation of DNA fragments were 

performed by agarose gel electrophoresis. The electrophoresis was carried out in 

TAE or TBE electrophoretic buffers with 3-5 V/cm intensity of the electric field. For 

visualisation of the DNA on UV-transilluminator, ethidium bromide in final con-

centration 0,5 µg/ml was added into the agarose gel. The percentage of the agarose 

in the gel varied, depending on the size of the analysed DNA fragments: 0,7-0,8% 

for genomic DNA and fragments bigger than 10 kb, 1% for fragments between 1 

and 10 kb and 1,5% for fragments smaller than 1 kb. Before loading, the stemples 

were supplemented with loading buffer, containing glycerol (to ensure the sinking 

of the sample to the bottom of the pocket) and two dyes (xylene cyanol, migrates ap-

proximately with 4000 kb DNA and bromphenol blue, migrates with 500 bp DNA) 

for controlling the migration of the samples. An appropriate DNA marker (DNA 

ladder) was loaded in parallel for determining the size and approximate quantity of 

the DNA samples. 

Restriction digest of DNA

The digestion of DNA with restriction endonucleases was performed accord-

ing to the instructions of the enzyme supplier. Approximately one unit of enzyme 

per 1µg DNA in appropriate buffered digestion reaction was used. If not otherwise 

specified by the manufacturer, the reaction was incubated for 1-4 hours on 37 °C, 

depending on the amount of DNA.

Extraction of DNA from agarose gel

For cloning purposes or microinjections, the DNA fragments were separated by 

agarose gel electrophoresis. The band containing the desired DNA fragment was 

cut out from the gel and the DNA was extracted with the SV Gel and PCR Clean-

Up System or with the QIAquick Gel Extraction kit according to the manufacturer’s 

instructions.
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Dephosphorylation, blunting and ligation of DNA fragments

When needed for the cloning purposes, the DNA fragments were dephospho-

rylated (removing the phosphate on the 5’ end of the DNA). Normally, this step 

is required to prevent the self-ligation of a vector digested only with one or two 

restriction endonucleases, producing compatible cohesive ends. Calf intestine alka-

line phosphatase was used for the dephosphorylation following the manufacturer’s 

instructions. Before a ligation of DNA fragments with incompatible cohesive ends, a 

blunting (filling of a 5’-overhang or removing of a 3’-overhang) of the cohesive ends 

was performed, using T4 DNA polymerase, according to the supplier’s instructions. 

The ligation of DNA fragments was performed with T4 DNA ligase as described in 

the user manual provided with the enzyme. Approximately 100 ng of vector DNA 

and 1-3 units of ligase were used in 20 µl ligation reaction. The amount of the insert 

was such, that the molar ratio of the free DNA ends between the vector and the inset 

be 1:3. In case of ligation of DNA fragments with cohesive ends, the reaction was 

incubated for 3 hours at room temperature and in case of fragments with blunt ends 

- for over night on 16°C. 

TOPO-cloning

TOPO TA cloning kit (Invitrogen) was used for fast direct cloning of PCR-ampli-

fied fragments with T overhangs (fragments amplified with Taq polymerase or Taq 

polymerase based enzyme blends). When the PCR amplification resulted in one 

specific band 2-4 µl form the PCR were used directly (without any purification) 

for the cloning reaction; in the other cases the desired DNA fragment was purified 

from the PCR by agarose gel electrophoresis. Subsequently the purified fragment 

was adenylated (addition of an adenine on the 3’ end of the DNA fragment) be-

fore using it in the TOPO-cloning reaction. This adenylation step was necessary to 

increase the amount of the adenylated fragments (critical for the efficiency of the 

cloning reaction), which significantly decreases during the purification steps. The 

adenylation was performed by adding PCR buffer (to 1x final concentration), 1-2 
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units Taq polymerase and dATP to 250 µM into the solution, containing the purified 

fragment. The reaction was incubated for 15 min. at 72 °C and 2-4 µl were used for 

TOPO-cloning reaction. After 5-10 min. incubation at room temperature, the clon-

ing reaction was transformed into TOP10 chemically competent cells (see below), 

provided with the kit.

Transformation of competent E. coli cells.

10-50 ng plasmid DNA or 10 µl of a ligation reaction (see Dephosphorylation, 

blunting and ligation of DNA fragments) were used for the transformation. The 

cells were incubated with the DNA for 10 min. on ice, heat shocked at 42°C for 45 

sec. and placed again on ice for 2 min. When ampicillin resistance was used as a se-

lection marker, the cells were immediately plated on LB-agar plates with ampicillin. 

In the case of other selection markers (kanamycin or chloramphenicol resistance), 

the cells were incubated for 1 hour in SOC medium without antibiotics and then 

plated on LB-agar plates with the respective antibiotic and incubated over a night 

on 37°C. The concentration of the used antibiotics was 100 µg/ml for ampicillin and 

50 µg/ml for kanamycin and chloramphenicol.

Fish husbandry and care

The adult zebrafish stocks are maintained in the fish facility of the ITG, in an 

aquarium system build by Aquarienbau Schwarz (Göttingen). Approximately 15 

pairs are kept in each tank (30 l) under the following water conditions: conductivity 

400-500 µS; hardness 5° dH; pH 7,0-7,5 and temperature between 26 and 28°C. The 

light/dark cycle in the facility is set to 14 hours light and 10 hours dark. The fish are 

fed two times per day and the ammonium, nitrate, nitrite and phosphate levels are 

checked once per week to ensure a good water quality. Wild type zebrafish from the 

AB strain were used for the experiments.

The crossing of fishes is performed in one litre crossing cages, filled with system 

water. One fish pair is put in every cage in the evening. To avoid parental cannibal-

ism the cage contains a sieve, which separates the eggs from the parents after the 
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laying. The laying starts the next morning with the switching on of the facility light, 

which is one of the main breeding stimuli for the fishes. The eggs are collected short-

ly after using a small net, transferred to a petri dish and used for experiments.

The zebrafish embryos were kept in petri dishes with Hank’s solution or sys-

tem water. Antibiotics (ampicillin and gentamicin in concentration 50 µg/ml each) 

were added to the Hank’s solution or methylene blue to the system water to prevent 

growing of bacteria and fungi. The embryos were incubated at 28-29°C until they 

reached the stage desired for the experiments or until day 4, if they were grown-

up further to adulthood, then transferred to the main fish facility in specially pre-

pared “baby-cages”. They stayed there for approximately one month and then were 

moved to the ordinary fish tanks.

Preparation of injection solution

A circular plasmid DNA in concentration 10-20ng/µl was used for transient trans-

genic assays. For the generation of stable transgenic lines, a linear fragment (50-100 

ng/µl) was used, containing the reporter gen region only (without any vector back-

bone). The injection solution was prepared by dilution of the DNA to the desired 

concentration in distilled water (final volume 10-20 µl) and addition of phenol red 

to final concentration of 1%. The phenol red serves as colour marker which makes 

the injected embryos distinguishable from the non-injected ones. The ready solu-

tion was filtered through a spin filter column (0,2 µm) and stored at -20 °C until 

needed.

DNA microinjections 

The microinjection experiments were performed with FemtoJet (Eppendorf) or 

Gas microinjectors under Nikon SMZ645 stereomicroscope. The needles for the mi-

croinjection were prepared from borosilicate glass capillaries (0,7 mm inner and 

1,0 mm outer diameter) on Flaming-Brown needle puller. Before the injections, the 

needles were filled with 1-3 µl injection solution (see Preparation of injection solu-

tion) using Eppendorf microloader pipette tips. The zebrafish eggs were collected 
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shortly after the fertilisation (zygote stage), transferred to a petri dish and the water 

was completely removed from the dish to facilitate the injection procedures. Each 

egg (zygote stage) was injected through the chorion into the cytoplasm with ap-

proximately 2-3 nl injection solution. System water supplemented with methylene 

blue was added into the dish after the injections and the embryos were kept at 28°C 

in incubator until the desired stage.

Expression analysis

The GFP expression was analysed on 24h old embryos using Leica MZ FLIII fluo-

rescent stereomicroscope. The level of expression was quantified by counting the 

number of GFP positive cells in notochord and floor plate, as well as the number of 

ectopic GFP positive cells in tissues where shh and twhh are normally not expressed. 

Pictures were taken for the representative set of embryos, using maximum magnifi-

cation and focusing on the trunk (the level of the yolk extension). The orientation of 

the embryos on the picture is anterior to the left and dorsal to the top.

Isolation of shh and twhh intron 2 sequences

The tench shh and twhh intron 2 fragments were isolated by using degenerative 

oligonucleotides, designed on the base of conserved protein blocks in the second and 

third exon of shh and twhh genes from several vertebrate species. The PCR products 

were directly cloned into pCRII-TOPO vector (Invitrogen) and the clone containing 

the right insert was identified by sequencing.

The Latimeria intron 2 was isolated by screening of genomic BAC library from 

Latimeria. menadoensis (Danke et al. 2004 and M. Lang et al., in preparation ), kindly 

provided by Chris Amemiya. The positive BAC clone, containing the shh locus was 

shot gun sequenced and relevant genomic regions were secondarily amplified by 

gene specific primers. The correct PCR product was identified by sequencing. The 

mouse and chick intron 2 were directly amplified from genomic DNA with specific 

oligonucleotides containing NotI/KpnI restriction sites.
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Plasmid construction

The 0.8shh:gfp plasmid was constructed by cutting out the SalI/HindIII fragment 

from 2.4shh:gfp plasmid (Ertzer et al. 2007) (described as 2.2shh:gfp in (Chang et al. 

1997; Muller et al. 1999); and subsequent, blunting and religating.

The 0.8shh:gfp:z-shh-I2, 0.8shh:gfp:z-shh-arC and 0.8shh:gfp z-twhh-I2 were created 

by subcloning the respective NotI/KpnI fragments from 2.4shh:gfp:C (Ertzer et al. 

2007), 2.4shh:gfp:ΔC and 2.4shh:gfp:twhh C (F. Müller, U. Strähle, and N. Fischer, un-

published) into 0.8shh:gfp plasmid.

The plasmids 0.8shh:gfp:t-shh-I2 and 0.8shh:gfp:twhh-I2 were made by reampli-

fying the respective intron 2 fragments from pCRII-TOPO:t-shh-I2, pCRII-TOPO:t-

twhh-I2 and subcloning them in 0.8shh:gfp using NotI/KpnI restriction sites.

The 0.8 shh:gfp:l-shh-I2 was constructed by reamplifying the intron 2 part from 

the correct PCR fragment isolated from the BAC clone and cloning it into 0.8shh:gfp 

(NotI/KpnI).

The 0.8 shh:gfp:m-shh-I2 and 0.8 shh:gfp:c-shh-I2 were created by direct cloning of 

the PCR-amplified intron 2 sequences from mouse and chick into 0.8shh:gfp (NotI/

KpnI.).

The 0.8 shh:gfp:z-twhh-non-cons. and 0.8shh:gfp:z-twhh-arC were made by cloning 

the PCR-amplified non-conserved 5’ part of z-twhh I2 (1032 bp) and the 380 bp 3’ 

part containing the conserved region (ar-C) into 0.8shh:gfp (NotI/KpnI).

All plasmids (0.8shh:gfp:z-shh-arCΔC1; 0.8shh:gfp:z-shh-arCΔC2; 0.8shh:gfp:z-

shh-arCΔC3; 0.8shh:gfp:z-shh-arCΔC4; 0.8shh:gfp:z-twhh-arCΔC1; 0.8shh:gfp:z-twhh-

arCΔC3), containing z-shh-ar-C or z-twhh ar-C carrying mutations in one of the con-

served motifs (C1 to C4) were created by replacing the respective wild type sequence 

of each conserved block with random sequence using a PCR-based approach (see 

Site-directed mutagenesis by PCR).

The same method was used to introduce the C2 and C4 from z-shh ar-C or ran-

dom sequence into z-twhh ar-C (0.8shh:gfp:z-twhh-arC+C2; 0.8shh:gfp:z-twhh-arC+C4; 

0.8shh:gfp:z-twhh-arC+C2rnd and 0.8shh:gfp:z-twhh-arC+C4rnd). The PCR products 
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were cloned into 0.8 shh:gfp (NotI/KpnI) and verified by sequencing.

For more detailed information about the sequences, which have been mutated 

and introduced in shh and twhh ar-Cs, see Table 1. 

The plasmid 2.7twhh:gfp was constructed by replacing the 2.4shh promoter frag-

ment (SalI/XhoI) from 2,4shh:gfp with the PCR-amplified 2.7 kb twhh promoter frag-

ment (upstream from the translation start site).

The plasmid 2.7twhh:gfp:z-twhh-I1 and 2.7twhh:gfp:z-twhh-I2 were made by sub-

cloning the twhh I1 and I2 from 2.4shh:gfp: twhh-I1 and 2.4 shh:gfp:twhh-I2 (F. Müller, 

U. Strähle and N.Fischer, unpublished) into 2.7twhh:gfp (NotI/KpnI).

Electronic version of all intronic sequences can be found on the included with  

this thesis CD.

For sequence information on the used oligonucleotides, see Table 2.

Sequence alignments and analysis

Pairwise sequence aliments were performed using one of the global alignment 

algorithms: AVID (Bray et al. 2003), in the case of the intronic sequences or Shuf-

fle-Lagan (Brudno et al. 2003) in case of the whole hh loci  and visualised by Vista 

(Frazer et al. 2004; Mayor et al. 2000) http://genome.lbl.gov/vista/index.shtml.

The multiple alignments of the intronic sequences were made by using combina-

tion of two algorithms: CHAOS/DIALIGN (Brudno et al. 2004), http://dialign.gobics.

de/chaos-dialign-submission and visualised by BioEdit (sequence alignment editor 

written by Tom Hall, Ibis Therapeutics, Carlsbad, CA92008: http://www.mbio.ncsu.

edu/BioEdit/bioedit.html.
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Construct name WT sequence Mutated/Introduced 
sequence 

0.8shh:gfp:z-shh-arC C1 TGCACCTGAGCAAATA GTACAAGTCTACCCGT 

0.8shh:gfp:z-shh-arC C2 GAAGTGTCCTTTTCCAAGAGT TCCTGTAAGCCCAAGCTCTAC 

0.8shh:gfp:z-shh-arC C3 AATGACAATGTCC CCGTCACCGTGAA 

0.8shh:gfp:z-shh-arC C4 CTTTATTGGTTTTTAATTAGA AGGGCGGTTGGGGGCAGGCGG 

0.8shh:gfp:z-twhh-arC C1 TGCACCTGTGTAAACA GTACAAGTCTACCCGT 

0.8shh:gfp:z-twhh-arC C3 TTTAAATGACAATGTCT GGCTCCGTCACCGTGAA 

0.8shh:gfp:z-twhh-arC+C2 CAGGGAAAAGCACAGTCTGT GAAGTGTCCTTTTCCAAGAGT 

0.8shh:gfp:z-twhh-arC+C4 GACTTTGTGTAAATTCAGCAG CTTTATTGGTTTTTAATTAGA 

0.8shh:gfp:z-twhh arC+C2rnd  CAGGGAAAAGCACAGTCTGT TCTCCAGGCTCAACCATGAGC 

0.8shh:gfp:z-twhh-arC+C4rnd GACTTTGTGTAAATTCAGCAG AGAAAGCTCGCGCGACCATGA 

Sequence Name Forward Primer Reverse Primer 
GCIGGITTYGACTGGGTCTA 
(degenerative, used for isolation) 

GAGTACCAGTGSAYICCIKC  
(degenerative, used for isolation) 

tench shh intron 2 

GTAAGACCATGGCAGGATG TCGAGATAATAGCAATGGGT 
(specific, used for subcloning) (specific, used for subcloning) 
GCIGGITTYGACTGGGTCTA 
(degenerative, used for isolation) 

GAGTACCAGTGSAYICCIKC 
(degenerative, used for isolation) 

tench twhh intron 2 

GCGATAAAAGTAAAAAGAGAC GTGAGAGCAATGTCACC 
(specific, used for subcloning) (specific, used for subcloning)

latimeria shh intron 2 TCAAAGCAGGTAAGCAGACG AAGCAACCCCCTGATTTTG 

mouse shh intron 2 GTGGAAGCAGGTTTCGACTG GAAAGACCAGGTGTTGAGTGC 

chick shh intron 2 CGGCTTCGACTGGGTCTAC GCTGCCACTGAGTTTTCTGC 

zebrafish twhh ar-C CCGAATAACAACAACTCGCAATC CTGAGAAGATATACAAACACAA 

GTGAGCAAAAGCTGATATGC GATTGCGAGTTGTTGTTATTCGG zebrafish twhh intron 2 
non-conserved part 

CATCTAAATCAACTGCAAGAACG 2.7 kb zebrafish twhh 
promoter 

GACGTTTGAATTATCTCTTCTGGTC 

Table 2.�Primer sequences used for the amplification of the specified fragments.�In�the�de-
generat�ve�ol�gonucleot�des�where�the�occurrence�of�all�four�nucleot�des�was�equally�poss�ble,�
an��nos�ne�(I)�was��ntroduced�to�reduce�degeneracy��On�all�spec�fic�pr�mers,�restr�ct�on�enzyme�
s�tes�were�added

Table 1.�Sequences, which have been used to replace the wild type sequence in shh and twhh 
ar-Cs to generate the specified reporter constructs.
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Isolation of shh and twhh intron 2 sequences.

We aim to prove our main hypothesises for the mechanisms of enhancer diver-

gence and subfunctionalisation between shh and twhh zebrafish in this study by per-

forming a systematic sequence and functional analysis of ar-C enhancers from ver-

tebrates species on important time points in evolution to understand how the ar-C 

enhancer has diverged on sequence and functional levels after the gene duplication. 

For these purposes we focused on isolation of ar-C enhancers (intron 2 sequences) 

form shh and twhh genes from vertebrate species representing divergence at impor-

tant time points of evolution: preduplicted shh genes from species which did not 

undergo a genome duplication and have only one shh gene, e.g all sarcopterigyans 

(land vertebrates and lobe-finned fishes) species; form specices which went trough 

genome duplication and as a result have two shh copies (shh and twhh), e.g most of 

the actinopterigyans (ray-finned fishes) (Fig. 10).

Selective divergence of twhh non-coding sequences from shh genes 

First, to check if cis-regulatory elements, corresponding to the already described 

elements of shh genes, can identified on bases of sequence conservation in the ze-

brafish twhh gene as well, we have performed a sequence comparison of multiple 

vertebrate shh loci (zebrafish, fugu, chick, mouse and human) and the zebrafish 

twhh locus, extracted from ENSEMBL database (http://www.ensembl.org). A global 

alignment using shuffle Lagan algorithm and visualisation by VISTA plot clearly 

identifies all 3 exons of shh orthologs and paralogs throughout vertebrate evolution 

(Fig. 11). The cis-regulatory modules identified previously are conserved among 

shh genes (orange peaks) and the degree of their conservation agrees with the evo-

lutionary distance between the species compared. In contrast, the zebrafish twhh 

gene shows no obvious conservation with the shh ar-A, B, C and D cis-regulatory 

modules. Besides Shuffle Lagan, Valis (Sanges et al. 2006) has also failed in detect-
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Figure 10. Evolutionary relationship of vertebrates.� The� phylogenet�c� tree� represents� the�
evolut�on�of�some�ma�n�vertebrate�groups��n�a�t�me�scale�(see�the�t�me�ruler�on�the�bottom)��
The�yellow�ecl�pse�marks�the�t�me�po�nt�of�the�extra�genome�dupl�cat�on��n�act�nopteryg�ans��
The�h�ghl�ghted��n�red�spec�es�are�those�wh�ch�ar-C/�ntron�2�sequences�have�been��solated�and�
funct�onally�analysed��n�th�s�study��The�sequences�from�non-h�ghl�ghted�have�been�used��n�
sequences�compar�sons,�but�have�not�been�funct�onally�analysed�(see�F�g��20)
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ing conserved putative cis-regulatory modules of twhh. Taken together, these results 

indicate that, although orthologous regulatory elements may exist between twhh 

and shh; however, they are much less conserved at the DNA sequence level than shh 

elements as detected by the applied alignment programmes.

Figure 11. Selective divergence of twhh non-coding sequences from that of shh genes.�V�sta�
plot�of�Shuffle-Lagan�al�gnment�of�shh�and�twhh�gene�loc��from�d�fferent�vertebrate�spec�es��
The�zebrafish�shh�locus��s�the�base�sequence�to�wh�ch�the�other�hedgehog’s�loc��are�compared��
The�peaks�w�th�more�than�70%��dent�ty��n�a�50�base-pa�rs�w�ndow�are�h�ghl�ghted��n�colour�
(colour-legend�on�top)��On�the�bottom�of�the�plot�a�scheme�of�the�zebrafish�shh�locus�marks�
the�pos�t�on�of�the�exons,�known�c�s-regulatory�elements�and�the�3’UTR��The�phylogenet�c�
tree�on�the�left�s�de�of�the�plot�represents�the�evolut�onary�relat�onsh�p�of�vertebrates��Abbre-
v�at�ons:�zfish,�zebrafish;�E,�exon;�CNS,�conserved�non-cod�ng�sequence;�UTR,�untranslated�
reg�on;�ar,�act�vat�on�reg�on
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The ar-C enhancer is a highly conserved midline enhancer of vertebrate shh 
genes

To to learn more about the evolutionary processes acting on CRMs of shh genes, 

we focused on a single enhancer element ar-C, which is conserved between fish and 

mouse (SFPE2) and that has been analysed in considerable detail in both species 

(Epstein et al. 1999; Jeong and Epstein 2003; Muller et al. 1999). To this end, first 

we addressed, whether the ar-C enhancer or its mouse ortholog SFPE2 is detect-

able across shh loci in various vertebrate species from different lineages that have 

diverged before and after the gene duplication event leading to the evolution of shh 

paralogs in zebrafish. Since the zebrafish shh ar-C enhancer is located in the sec-

ond intron of shh and shows high sequence similarity to human and mouse coun-

terparts, candidate ar-C containing intronic fragments of several vertebrate species 

were amplified by PCR with degenerate oligonucleotide primers. We cloned and 

sequenced the relevant genomic DNA fragments from several fish species that ex-

perienced the genome duplication such as the cyprinid tench (Tinca tinca), fugu, 

and, medaka (Hoegg et al. 2004). Besides actinopterygian fishes several species of 

sarcopterygians such as chick, mouse and the early sarcopterygian lineage Latimeria 

menadoensis were used in the analysis. All sarcopterygians diverged from the com-

mon ancestor with actinopterygians prior to the fish specific genome duplication in 

the ray-finned fish lineage. A sequence comparison of intron SFPE2 sequences from 

the available vertebrate model systems revealed a high degree of sequence similar-

ity in all species specifically in the region that spans the ar-C enhancer in zebrafish 

and the SFPE2 enhancers of mouse (Fig. 12). This analysis also indicated that the 

orthologous Latimeria genomic region also contains a highly conserved stretch of 

sequence in the ar-C region, consistent with the hypothesis that ar-C is an ancestral 

enhancer of shh genes.
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Heterologous ar-C enhancers function in the notochord of zebrafish 

To test whether the sequence similarity observed between ar-C enhancers of dif-

ferent lineages of vertebrates is also indicative of conserved tissue-specific enhancer 

function, we carried out transgenic analysis in microinjected zebrafish embryos of 

enhancers form different vertebrates. We utilised a minimal shh promoter construct, 

containing an 0.8 kb upstream sequence linked to gfp reporter, with an activity simi-

lar of a 563 bp promoter described in (Chang et al. 1997) . Transient mosaic expres-
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Figure 12. The ar-C enhancer is a highly conserved midline enhancer of vertebrate shh 
genes��V�sta�plot�compar�son�(AVID-global�sequence�al�gnment�algor�thm)�of� shh� �ntron�2�
form�zebrafish� (base� l�ne),�mouse,� ch�ck,�Latimeria� and� tench� (bottom� to� top�order)��The�
peaks�show�ng�more�than�70%��dent�ty��n�a�50�base-pa�rs�w�ndow�are�h�ghl�ghted��n�orange��
The�scheme�of�the�zebrafish�shh��ntron�2�on�the�bottom�marks�the�pos�t�on�of�the�zebrafish�
ar- C�(blue�rectangle)�and�the�second�and�th�rd�exons�(black�rectangles)��Abbrev�at�ons:�E,�
exon;�ar,�act�vat�on�reg�on



51

Results

sion of GFP was measured as read-out of reporter construct activity by counting 

fluorescence positive cells in the notochord and floor plate where the ar-C enhancer 

is active in the trunk of the 1-day-old embryo. As described previously, the zebrafish 

ar-C enhancer is primarily active in the notochord and only weakly in the floor plate 

(Fig. 13B). As expected for closely related species, intron 2 sequence of tench, gave 

strong enhancer activity in the notochord as well (Fig. 13C). Very similar was the ac-
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Figure 13.�Shh intron 2 fragments from cyprinids drive predominantly notochord expres-
sion.�M�cro�njected�embryos�are�shown�at�24�hpf�w�th�lateral�v�ew�onto�the�trunk�at�the�level�
of�the�m�dl�ne��A,�Zebrafish�embryo��njected�w�th�control�gfp�reporter�construct,�conta�n�ng�
a�m�n�mal�0�8�kb�zebrafish�shh�promoter��B-C,�Embryos��njected�w�th�gfp�repoter�construct�
conta�n�ng�shh��ntron�2�sequences�from�zebrafish�(B),�tench�(C)�The�stacked-column�graphs�
on�the�r�ght�s�de�represent�the�quant�ficat�on�of�the�trans�ent�gfp�express�on��Arrows�and�ar-
rowheads��nd�cate�GFP�act�v�ty��n�the�floor�plate�and�notochord�cells�respect�vely��The�l�nes�on�
the�left�s�de�of�each��mage�mark�the�level�of�the�notochord�and�the�floor�plate��The�columns�
show�the�percentage�of�the�embryos�w�th�more�than�15�GFP-pos�t�ve�cells�per�embryo�(dark-
green),�embryos�w�th� less� than�15�cells� (l�ght-green),�and�non-express�ng�embryos�(wh�te)��
Numbers�of� �njected� embryos� are� g�ven� �n�Table�3��Abbrev�at�ons:� z,� zebrafish;� t,� tench;� I�
�ntron;�nt,�notochord;�fp,�floor�plate;�ect,�ectop�c;�pr,�promoter�
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tivity of the intron 2 sequences form the sarcopterygian species Latimeria and chick 

(Fig. 14A,B). However, the mouse intron 2 (with the SFPE2 enhancer) was found to 

be inactive in zebrafish (Fig. 14C), suggesting that SFPE2 had functionally diverged 

during mammalian/mouse evolution either at the cis- or the trans-regulatory level. 

All together, these data indicate a high degree of functional conservation between 

ar-C sequences among vertebrates. 
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Figure 14.�Sarcopterygian ar-Cs are functional in zebrafish and show notochord activity. 
Embryos��njected�w�th�gfp�repoter�construct�conta�n�ng�shh��ntron�2�sequences�from�Latime-
ria�(A),�ch�ck�(B),�and�mouse�(C)��Abbrev�at�ons:�l,�Latimeria;�c,�ch�ck;�m,�mouse;�I��ntron;�
nt,�notochord;�fp,�floor�plate;�ect,�ectop�c;�pr,�promoter�
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Identification of a putative ar-C enhancer from twhh genes

As next to ask was whether the duplicated twhh gene possesses a functional ar-C 

enhancer homolog. The first question was if sequence alignment can reveal con-

servation of ar-C regions between shh paralogs. To this end isolation of the twhh 

intron 2 from zebrafish was carried out. Since a genome duplication event has taken 

place early in actinopterygian evolution it was predicted that the ostariophysian 

and cyprinid zebrafish as well as all acanthopterygian fish model species whose 

genomes are known (medaka, stickleback, green spotted pufferfish and fugu) may 

contain a twhh homolog. Analysis of the available genome sequences of these four 

species of teleost fish indicated that none of them carries a discernible twhh homolog 

suggesting that these lineages (that evolved some 290 myrs after cyprinids (Steinke 

et al. 2006) may have secondarily lost this shh paralog. To collect further evidence 

for the secondary loss of twhh in medaka, a synteny comparison of the respective 

chromosomes between zebrafish and medaka was performed. As shown on Fig. 15 
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Figure 15.�Synteny comparison of shh and twhh containing chromosomes suggests the loss 
of a duplicated shh paralog gene in medaka.�Ensembl�v�ew�of�zebrafish�chromosome�7,�con-
ta�n�ng�the�shh�locus�alongs�de�w�th�medaka�chromosome�20�(A)�and�zebrafish�chromosome�
2,�conta�n�ng�the�twhh�locus�alongs�de�w�th�medaka�chromosome�17�(B)�are�shown�
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good synteny is observed between the medaka genomic region surrounding shh on 

chromosome (chr) 20 and a region on chr 17, however, chr 17 lacks twhh. This result 

further supports the hypothesis that a twhh gene was originally present after dupli-

cation but has been lost secondarily during evolution.

To obtain further examples of duplicated shh genes we focused on evolutionary 

closely related to zebrafish fish species, e. g. species of the Cyprinidae family. We 

were able to detect and isolate twhh and its intron 2 from another cyprinid species, 

tench by PCR using degenerate oligonucleotides that were designed in conserved 

exon sequences. Importantly, the isolation of more than one twhh intron 2 sequences 

from cyprinids allowed for phylogenetic footprinting of twhh genes and search for a 

putative ar-C homolog. we compared the shh and twhh intron 2 sequences between 

zebrafish and tench (Fig. 16). The shh orthologs between zebrafish and tench show 

a high degree of sequence similarity which is strongest in the region in which ar-C 

resides. In contrast, comparison of intron 2 from twhh and shh paralogs of either 

species revealed no conspicuous conservation. The apparent lack of sequence simi-

larity, however, does not necessarily rule out the possibility that a highly diverged 

ar-C homolog enhancer may still reside in twhh intron 2. To test this possibility we 

compared twhh sequences from both species. This indicated striking sequence simi-

larity in the 3` region close to exon 3 where a positionally conserved ar-C would be 

predicted to be located. This suggests, that intron 2 of twhh genes of cyprinids may 

contain a functional enhancer, which has diverged significantly from the shh ar-C. 

Furthermore, the apparent sequence divergence suggests that the putative function 

of the twhh enhancer may also have diverged.
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The diverged ar-C enhancer of twhh is functionally active 

To test whether the conserved sequence in the intron 2 of twhh genes functions as 

enhancer element, we tested several twhh fragments representing approximately 10 

kb of the twhh locus including the 1.4 kb intron 2 in transgenic reporter assays. The 

twhh proximal promoter and 2.7 kb of upstream sequences can activate GFP expres-

sion in the notochord (Fig. 17A) but only very weakly in the floor plate similarly to 

previously published data (Du and Dienhart 2001). Since twhh is only expressed in 

the floor plate but never in the notochord, this GFP expression of the reporter is an 

ectopic activity and reflects the lack of a notochord repressing functional element 

probably located elsewhere in the unexplored sequences around the twhh locus. 

Figure 16.�Twhh genes carry an ar-C homolog enhancer with diverged sequence.�Top�panel:�
V�sta�plot�compar�son�(AVID)�between�zebrafish�shh��ntron�2�(base�l�ne)�zebrafish�twhh��ntron�
2�and�tench shh��ntron�2��Bottom�panel:�compar�son�between�zebrafish�(base�l�ne)�and�tench�
twhh� �ntron�2��The�peaks�show�ng�more�than�70%��dent�ty� �n�a�50�base-pa�rs�w�ndow�are�
h�ghl�ghted��n�orange��The�schemes�of�zebrafish�shh�(top)�and�twhh�(bottom)��ntron�2�mark�
the�pos�t�on�of�the�shh ar-C�(blue�box),�the�putat�ve�twhh ar-C�(red�box)�and�exons�2�and�3�
(black�boxes)��Dashed�l�nes�demarcate�equ�valent�sequence�reg�ons��
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The weak expression in the floor plate suggests that other cis-regulatory modules 

are required for floor plate activation. In shh a floor plate enhancer resides in intron 

1 (Muller et al. 1999) (Fig. 7, Fig. 11). To check if a similar enhancer exists in twhh, 

intron 1 of twhh was attached to the promoter construct. It was found that it did not 

enhance the promoter’s activity, indicating no obvious enhancer function in this 

transgenic context (Fig. 17B). Interestingly, the addition of twhh intron 2 does, how-

ever, result in enhancement of expression in the floor plate (Fig. 17C). This result 

indicates that intron 2 of twhh contains a floor plate enhancer.
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Figure 17.�Transgenic analysis of twhh genomic fragments for enhancer activity.�Embryos�
�njected�w�th�the�plasm�d�constructs�are�shown�at�24�hpf,�lateral�v�ew�onto�the�trunk�at�the�
level�of�m�dl�ne��Embryos��njected�w�th�gfp-reporter�constructs�conta�n�ng�zebrafish�2�7�kb�
twhh�promoter�(A),�2�7�kb�twhh�promoter�plus�zebrafish�twhh��ntron�1�(B)�and�twhh��ntron�
2�(C)�
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The 2.7 kb upstream and proximal promoter sequence of twhh may have influ-

enced the autonomous function of an enhancer in intron 2. To address the activator 

functions of the identified shh and twhh enhancers without influence of potential 

upstream regulatory elements, a series of injection experiments was carried out 

in which the enhancer activities were analysed with a minimal promoter contain-

ing only 0.8 kb of the shh promoter (Fig. 18A-D). Moreover, activity of intron 2 se-

quences from shh and twhh genes from both zebrafish and tench were systematically 

compared. Intron 2 fragments of both species consistently resulted in comparable 

notochord activity (Fig. 18B and Fig. 23B,C), while the twhh intron 2 fragment from 

both species showed the distinct enhancement of expression in the floor plate and 

reduction of GFP activity in the notochord (Fig. 18C,D).
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Figure 18.�Twhh intron 2 from zebrafish and tench contains a functional enhancer diverged 
in function from that of shh. Embryos��njected�w�th�promoter-control�construct�(A),�plas-
m�ds�conta�n�ng�zebrafish�shh��ntron�2�(B),�zebrafish�twhh��ntron�2�(C),�tench�twhh��ntron�2�
(D)��
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The presence of a highly conserved region within the intron 2 of zebrafish and 

tench twhh genes strongly suggests that the floor plate enhancer activity is the prop-

erty of this conserved sequence. To test this prediction a set of deletion analysis ex-

periments was carried out. Zebrafish twhh intron 2 was cleaved into a 1026 bp frag-

ment of non-conserved and a 380 bp conserved sequence. As shown in Fig. 19A,B, 

the floor plate specific enhancer effect is retained by the conserved fragment but 

not the non-conserved sequence, verifying the prediction of the location of the floor 

plate enhancer. Taken together, a diverged, floor plate active ar-C enhancer has been 

discovered in the twhh intron 2, which is consistent with the floor plate specific ex-

pression of twhh in zebrafish.
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Figure 19.�The twhh ar-C is located in the conserved part of the second intron.�Embryos�
�njected�w�th�construct�conta�n�ng�the�non-conserved�part�of�zebrafish�twhh��ntron�2�(A)�and�
the�conserved�part�(putat�ve�ar-C)�(B)��
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Prediction of functionally relevant motifs by phylogenetic reconstruction

Transcription factor binding sites may be more conserved than the surround-

ing sequences (Moses et al. 2004). we have hypothesised that sequence similarity 

between fish and human ar-C sequences may reveal conserved motifs, which may 

reflect conserved transcription factor binding sites (Jeong and Epstein 2003). We 

postulated that putative transcription factor binding sites and changes in them 

may be detectable by identification of motifs using local alignment of ar-C from 

large number of pre and post duplicated shh orthologs and paralogs. To this end, 

a CHAOS/DIALIGN (Brudno et al. 2004) multiple alignment was used to compare 

the functionally active ar-C enhancer sequences of zebrafish, as described in (Muller 

et al. 1999) and equivalent sequences from all major vertebrate classes. The align-

ments were arranged according to phylogeny (Fig. 20). 

A pattern of conserved motifs is detected in the form of homology blocks extend-

ing to 20-30 bps. These conserved motifs show distinct distribution characteristics, 

which reflect phylogenic as well as paralogy and orthology relationships between 

shh genes. For example two homology blocs called C1 and C3 were identified, which 

are present in all shh sequences including twhh paralogs in all species analysed. In 

contrast, two other homology blocks named C2 and C4 were detected only in shh 

genes but absent in twhh genes. To exclude possible rearmaments of C2 and C4 

blocks, sequence alignments using other algorithms were carried out, but no evi-

dence for reallocation of these blocks was found. Since C2 and C4 are also present 

in preduplicated enhancers of sarcopterygians the specific and consistent lack of C2 

and C4 in twhh enhancers is likely due to a secondary loss of these elements after the 

fish specific gene duplication. This homology blocks may represent putative bind-

ing sites. Thus, the two sets of binding sites (C1/C3 and C2/C4 respectively) may be 

targets for TFs that regulate the differential enhancer activities of shh (predominant-

ly notochord expression) and twhh (predominant floor plate expression). In conclu-

sion, we have identified a set of putative targets of mutations that may contribute to 

the divergence of ar-C enhancer functions after gene duplication.
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Functional analysis of conserved motifs reveals the evolutionary changes 
that likely contributed to enhancer divergence of shh paralogs.

To test the functional significance of the two sets of homology blocks we conduct-

ed a systematic mutation analysis of the C1-C4 conserved homology blocks both 

in shh and twhh genes. Furthermore, we carried out exchange of homology blocks 

between shh and twhh ar-C enhancers to test if the predicted evolutionary changes 

after gene duplication can be modelled in a transgenic zebrafish system.

As shown in Fig. 21B-E, mutations inserted into homology blocks (C1-4) result 

in dramatic changes in shh ar-C enhancer activity. Replacement of C1 with random 

sequence results in total loss of ar-C enhancer function indicating that this bind-

ing site is critical for shh ar-C activity (Fig. 21B). By contrast, loss of C3 results in 

no observable effect suggesting that this conserved block is either not required for 

enhancer function or only necessary for functions that are not detectable in our 

transgenic system (Fig. 21D). Importantly, removal of C2 and C4 (the blocks that are 

only present in shh genes) results in strong activation of GFP in the floor plate (Fig 

21C, E). In the case of C4 removal, a reduced reporter expression in the notochord 

has also been observed (Fig 21E). The obtained expression pattern strongly resem-

bles the activity of the wild type twhh ar-C enhancer (compare Fig. 21E to Fig. 22A). 

Thus, removal of shh specific motifs from the shh ar-C mimics twhh ar-C enhancers, 

both in sequence composition and enhancer function. Moreover, this result is con-

sistent with a model that the C2 and C4 elements are targets for repressors of floor 

plate expression in the shh ar-C enhancer.
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Next we asked whether twhh ar-C is active in the floor plate because it contains 

the putative midline activator site C1 and lacks the floor plate repressor elements 

C2 and C4 present in the shh ar-C enhancer. To this end, first we tested if the C1 and 

C3 of twhh are required for the function of the twhh enhancer. Similarly to the results 

obtained with shh, C1 was found to be critical for the general activity of twhh ar-C 

(Fig. 22B) while loss of C3 had no effect, thus mimicking the findings in shh (Fig. 

22C). We then introduced the shh specific C2 or C4 into the twhh enhancer in order 

to test the functional significance of the lack of C2 and C4 motifs in twhh. When a 

shh derived C2 was introduced into twhh ar-C, no effect was observed (Fig. 22D), 

but introduction of the C4 putative floor plate repressor motif from shh did result 

in a dramatic shift in twhh enhancer activity (Fig. 22E). The effect was a repression 

of floor plate expression while notochord activity was retained, thus resembling 

the wild type or C2 mutant shh ar-C enhancer (Fig. 21 A,C). In a control experiment, 

random DNA sequence was introduced at similar positions into the twhh ar-C en-

hancer. However, this manipulation had no effect on the activity of twhh ar-C (Fig. 

22F,G), indicating that the changes seen with the C4 insertion are due to the specific 

sequence of C4. These results together strongly suggest that the function of C4 is to 

repress floor plate activation by the shh ar-C enhancer. Together, these results are 

consistent with a model that the loss of the C4 motif in the evolution of the twhh ar-C 

has contributed to its floor plate specific activity.

All these transient transgenic analyses were a reliable substitute for the genera-

tion of stable transgenic lines as indicated by the identical results obtained with 

transient analysis and stable transgenic lines made for a subset of the constructs 

used in this study (Fig. 23)
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Discussion
It has long been suggested (Carroll 2000; King and Wilson 1975) that a major driv-

ing force of evolution of animal shape is the divergence of cis-regulatory elements 

of genes. Recent years provided evidence in support of this hypothesis (Gompel et 

al. 2005; Hughes et al. 2006; Jeong et al. 2006; Prud’homme et al. 2006; Wittkopp et 

al. 2004; Wittkopp et al. 2002). However, the mechanisms of cis-regulatory evolu-

tion are still poorly understood (Ludwig et al. 2000; Ludwig et al. 2005; Ludwig et 

al. 1998; Wittkopp 2006). In this thesis, we have systematically analysed the evolu-

tionary history of a single enhancer of orthologous and paralogous shh genes dur-

ing vertebrate phylogeny. By construction of multiple alignments, we were able to 

predict which motifs within the ar-C enhancer represent regulatory input. Through 

specific mutations and exchanges of motifs, we mimicked likely evolutionary events 

in transgenic analysis and identified the lineage specific modifications leading to 

discernible changes in tissue specific enhancer activity in embryo development.

Identification and functional verification of a diverged ar-C enhancer 

Using phylogenetic footprinting of intron 2 of twhh genes we have identified a 

conserved ar-C homolog enhancer in two species of cyprinids. Our results by trans-

genic analysis indicate that the ar-C sequences in intron 2 together with the pro-

moter activity of twhh (Du and Dienhart 2001) contribute to this gene’s activity in 

the floor plate. While shh enhancers retained significant sequence similarity with 

their orthologs the whole of the twhh gene and its ar-C enhancer is grossly changed 

from that of shh paralogs. This paralog specific change happened despite the fact 

that twhh had equal time and chance to diverge as shh after duplication from an 

ancestral sonic hedgehog gene. This result is in line with observations from several 

reports. For example Zerucha et al. (Zerucha et al. 2000), studying the cis-regulatory 

elements of the dlx genes in zebrafish, have observed that the non-coding sequences 

form orthologous dlx genes are much more conserved than those of the paralogous 

genes, result very similar to the case of shh and twhh. A similar conclusion has been 
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achieved by McEwen and co-workers (McEwen et al. 2006) in a global comparative 

study of cis-regulatory elements of duplicated genes from vertebrates. Our results, 

together with the above reports provide experimental support to the notion that dif-

ferential divergence of non-coding conserved elements of paralogs may be a general 

phenomenon in vertebrates. Such selective accumulation of mutations in one of the 

duplicated paralogs are more in line with the proposed classical model for evolu-

tion of duplicated genes, e. g. nonfunctionalisation, when deleterious mutations ac-

cumulated only in one of the copies resulting in its lost during evolution. In fact, this 

is most likely to have happened with the twhh in Acantopterygian lineage (medaka, 

fugu and tetraodon) (Fig. 10). Genomic analysis has failed so far to detect twhh gene 

in those species (Fig. 15) and although our results indicate subfunctionalisation be-

tween shh paralogs in zebrafish, we can not exclude that this is just an intermediate 

evolutionary state twhh in on way to be lost in zebrafish as well. However the high 

degree of sequence divergence between paralogs is unlikely to cause nonfunction-

alisation in general, this is inconsistent with the existence of high number func-

tional paralogs over million of years, and for many of them subfunctionalisation on 

spatial and temporal expression domains has been shown. Thus, the evolutinary 

mechanisms behind the observed selective diverges of paralogs, remain to be un-

derstood.

Identification of putative transcription factor binding sites by local align-
ment of multiple species and phylogenetic reconstruction of enhancer 
divergence.

The use of a local sequence alignment approach of representative species of ma-

jor vertebrate lineages allowed us to predict functionally relevant motifs within the 

ar-C enhancers. Our findings are most consistent with a model that these motifs 

are individual or multimeric transcription factor binding sites. Since mutation and 

transgenic analysis verified the functional relevance of these motifs in driving ex-

pression in the midline, thus the most parsimonious explanation for the conserva-

tion of these sequence elements is that they represent functional binding sites for 
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developmental regulator transcription factors.

The ar-C enhancer is composed of motifs with different regulatory capacity (Fig. 

24). Motifs exist that are crucial for the overall activity of the enhancer (C1) func-

tioning as midline activator which can activate expression in both floor plate and 

notochord. Other motifs (C2 and C4) refine the enhancer activity by repressing the 

floor plate expression. This indicates that the overall activity output of an enhancer 

in midline tissues is subject to both activator and repressor functions acting in con-

cert. These results agree with the previously proposed grammar of developmen-

tally regulated gene expression (Falb and Maniatis 1992; Gompel et al. 2005; Gray et 

al. 1994; Howard and Davidson 2004; Lemon and Tjian 2000; Levine and Davidson 

2005; Minokawa et al. 2005).
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C2 C4
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hedgehog
ar-C

tiggy winkle
hedgehog

ar-C

C3

C3

Primary
midline
activator

Floor plate
repressor Unknown

Floor plate
repressor

Primary
midline
activator

Floor plate
repressor

Unknown Floor plate
repressor

Notochord
Repressor ?

nt

nt

fp
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Figure 24��Model for motif structure and interaction in ar-C enhancers involved in the regulation 
of midline expression and functional divergence of ar-C in sonic and tiggy winkle hedgehogs in ze-
brafish.�Schemes�on�the�top�and�bottom�represent�the�structure�of�the�ar-C�enhancer�of�shh�(blue)�and�
twhh�(red)�w�th�the�pos�t�on�of�the�conserved�mot�fs��nd�cated��n�coloured�boxes�as��n�F�g��4�and�5��In�
the�m�ddle�schemat�c�cross-sect�ons�of�the�neural�tube�w�th�the�floor�plate�(fp)�and�the�notochord�(nt)�
are�shown�(ventral�to�the�left)��Dark�green��nd�cates�strong�enhancer�act�v�ty��Arrows��nd�cate�act�vator,�
blunt�arrows��nd�cate�repress�on�funct�on�by��nd�v�dual�mot�fs�
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An open question remains however, why the ar-C enhancer of shh should be re-

pressed in the floor plate while the shh gene is well known to be active in this tis-

sue? The level of the Hedgehog morphogen signal emanating from the floor plate 

is critical for correct patterning of the ventral neural tube (Roelink et al. 1995). Ani-

mals with only one gene encoding the Sonic hedgehog protein (sarcopterygians and 

fishes without twhh) achieve this by controlled activation of shh in the floor plate 

as a result of a combination of several synergistic enhancers (Epstein et al. 1999; 

Ertzer et al. 2007). In species with a second copy of shh paralog contributing to Shh 

production only one of the paralog floor plate enhancers may be subjected to selec-

tion pressure. For example, to counter the overproduction of Hedgehog levels the 

reduction of transcription can occur by blocking the activity of one of synergistically 

active enhancers (in this case ar-C). It is important to note however, that the shh ar-C 

enhancers are not exclusively expressed in the notochord and retained a weaker but 

still noticeable, capacity to activate expression in the floor plate. This function seem 

to be critical for the synergistic initiation of shh floor plate expression together with 

ar-B in early developmental stages (Ertzer et al. 2007). Thus, the output of Shh/Twhh 

levels appears to be a subject of quantitative regulation of paralog enhancer activi-

ties. Alternatively, it is feasible that there are time points when the two genes are not 

overlapping in expression and the complementing specificities of twhh and shh ar-C 

enhancers reflect the non-overlapping production of Hedgehog proteins in the two 

midline tissues (Etheridge et al. 2001).

Importantly, the order and combination of motifs of ar-C are conserved. This is a 

very different result from that proposed for the stripe 2 enhancers of drosophilids 

where the functional conservation of cis-regulatory modules was a result of stabil-

ising selection of reshuffled transcription factor binding site composition (Ludwig 

et al. 2000; Ludwig et al. 1998). The evolutionary pressure to keep the order and 

composition of binding sites within enhancers may be limited to transcription fac-

tor and developmental regulatory genes (Bejerano et al. 2004; Plessy et al. 2005). 

The high conservation level, however, may be a consequence of selective pressure 
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acting on a secondary function of enhancer sequences such as conserved non-cod-

ing RNAs which can be involved in transcriptional regulation, as shown for the dlx 

genes (Feng et al. 2006).

Previously, individual binding sites were identified through comparative ap-

proaches in vertebrates e.g. (Bejder and Hall 2002; Jeong and Epstein 2003; Shashikant 

et al. 1998). These examples, together with our systematic analysis of conserved 

motifs in the ar-C enhancers demonstrate that functionally relevant motifs detected 

by sequence alignment may aid in identifying yet unknown and uncharacterised 

functional transcription factor binding sites

The use of large numbers of species spanning long evolutionary distance allowed 

us to generate a phylogenetic reconstruction of enhancer divergence before and af-

ter gene duplication (Fig. 25). By generating artificial enhancers with mutations that 

mimic the predicted lineage specific changes in motif composition of twhh and shh 

enhancers we were able to reconstruct the likely evolutionary events leading to di-

vergence of the ar-C enhancer function. For example, insertion of the floor plate 

repressor C4 element into twhh resulted in enhancer activity reminiscent of shh ar-C 

in which the C4 site had been identified. These results argue that the very changes 

resulting in the divergence of the enhancer function have been identified.



72

Discussion

Subfunctionalisation by fission or binary switch in midline-specificity of 
enhancers during evolution

One of the main goals of our study was to better understand the diversity of sub-

functionalisation mechanisms that may act on paralog enhancers during evolution. 

One of the main questions we asked was which are the evolvable units, involved 

in the process of subfunctionalisation? Because of the random nature of DNA mu-

tation, this process can occur on the level of whole CRMs (enhancers) or on level 

of transcription factor binding sites within one enhancer (Fig 26). In this study we 

were able to show that the subfunctionalisation between shh and twhh in zebrafish 

happen predominantly on the level of putative binding sites within a single en-

hancer (ar-C). We propose that the presence or absence of the C4 site functions as 

a binary switch to modulate ar-C enhancer activity specific to one of two midline 

tissues after gene duplication. By selective removal of repressor and activator bind-
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act�v�ty�of�the�respect�ve�shh/twhh�genes�are�shown�
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ing sites the subfunctionalisation of the ar-C enhancer to floor plate or notochord 

can thus occur (Fig 24). However the persistent notochord activity of the twhh ar-C 

and other elements of analysed twhh genomic region (Fig. 17, 18, 23) leads us to 

propose the involvement of another element in the subfunctionalisation, outside of 

these regions, needed to repress the expression of twhh in the notochord. Thus, our 

results do not provide exclusive support to one or the other mechanism underling 

the subfunctionalisation of cis-regulatory modules in global. This is in-line with two 

recent reports that demonstrate experimental verification of subfunctionalisation 

of Hox gene enhancers (Tumpel et al. 2006; Tvrdik and Capecchi 2006). The first 

report by Tvrdik et al. describes a subfunctionalisation process on level of whole 

cis-regulatory modules (enhancers). On the other hand Trumpel and co-workers 

show that such subfunctionalisation can happen on the level of binding sites within 

one enhancer, which is very similar to our finding (Fig. 26). However, we were able 

Figure 26.�Schematic representations of the possible subfunctionalisation mechanisms of cis-regu-
latory modules in shh/twhh genes in zebrafish, according the DDC model.� The� left� panel� shows�
subfunct�onal�sat�on�on�the�level�of�enhancers��The�r�ght�subfunct�onal�sat�on�on�level�of�b�nd�ng�s�tes�
w�th�n�one�enhancer�(ar-C),�wh�ch�have�been�confirmed�by�our�results��The�green�blue�purpule�nad�
dark�p�nk�boxes��nd�cate��nd�v�dual�b�nd�ng�s�tes��The�black�boxes�cod�ng�sequence��Mod�fied�from�
Force�et�al��1999�



74

Discussion

to demonstrate that such changes can be predicted by comparative genomics (phy-

logenetic footprinting) without previous, experimentally confirmed knowledge of 

the exact transcription factor binding site composition of the enhancer in question. 

This is in contrast to their findings, based mainly on comparison of already known 

transcription factor binding sites. 

The subfunctionalisation model would argue for the existence of a pre-dupli-

cation (sarcopterygian) ar-C enhancer that is equally active in both the floor plate 

and notochord. However, in fish all shh ar-C enhancers from sarcopterygian line-

ages show notochord specific enhancer activity and even more strikingly, the mouse 

SFPE2 (the homolog of zebrafish ar-C) has been inactive in fish. These differences 

may be explained both by subfunctionalisation mechanisms as well as by trans-act-

ing factor changes, like changes of the expression domains or binding site specifi-

city of the transcription factors involved in the regulation of shh, between zebrafish 

and mouse. In support of trans-changes the mouse SFPE2 enhancer is mainly ac-

tive in the floor plate of the mouse (Epstein et al. 1999) and can activate notochord 

expression in a multimerised form (Jeong and Epstein 2003) (Fig. 7, 8). In addition, 

the mainly notochord specific zebrafish ar-C showed both floor pate and notochord 

activity in the mouse (Muller et al. 1999). However, the lack of enhancer activity of 

SFPE2 in zebrafish can be a result not only of trans-regulatory change but a mouse-

specific sequence divergence as well. As can be seen on Fig. 12 the mouse SFPE2 is 

the most diverged on sequence level form the zebrafish ar-C, in comparison to the 

other sarcopterygians (Latimeria, chicken and human). Thus the subfunctionalisa-

tion of duplicated ar-C shh enhancers is a composite result of selective loss of several 

motifs including negative regulatory elements in one enhancer (twhh) paralleled by 

modifications either on the cis or on the trans level to restrict the activity of the less 

diverged sister paralog enhancer (shh). The prediction from this model is that fish 

species without twhh gene (acantopterygii) may have floor plate active ar-C enhanc-

er. Interestingly, the floor plate repressor elements (C2/C4) of shh ar-C of acanthop-

terygians (e.g. medaka, fugu) are present but diverged from all other shh homologs 
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(Fig. 27), and may thus represent the evolutionary changes leading to retention of 

shh ar-C floor plate activity in these fish lineages, a hypothesis, which confirmation  

will be a subject of future studies.

C1 C2

C4C3

Figure 27�Specific divergence of homology block C2 and C4 (the blocks involved in the 
repression of the floor plate activity of the zebrafish shh) between acanthopterygians (fishes 
without twhh gene) and ostariophysians (fishes with twhh gene).The�sequence�d�fferences�
are�marked�by�coloured�boxes,�yellow�for�C2�and�red�for�C4�
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The combination of both negative and positive regulatory sites within a single 

enhancer indicates the integration of activating and repressing signals to modulate 

the resulting transcriptional activity. This could be achieved through multiple trans-

acting factors that interact with a series of binding sites within the ar-C enhancer. 

Which transcription factors bind to the C1-C4 blocks will remain a challenge for 

future research. Predictions can be made based on known transcription factor rec-

ognition sequences. For instance, C1 contains a foxa2 binding sequence which is 

consistent with the previously suggested role of this factor in regulating shh gene 

expression in the midline of mouse (Ang and Rossant 1994; Jeong and Epstein 2003) 

frog (Ruiz i Altaba 1994) and fish (Chang et al. 1997). Interestingly, C4 carries a se-

quence identical to the homeobox binding site that has been described to be present 

in the mouse SFPE2 enhancer (Jeong and Epstein 2003). This binding site is required 

for floor plate activity in the mouse. The identity of the mouse binding factor and 

whether the same transcription factor acts (by probably repressing floor plate ac-

tivity) in the ar-C enhancer in zebrafish, is yet unknown. The relevance of specific 

transcription factors from large protein families in binding to the ar-C binding sites 

remains a challenging question.

In conclusion, we were able to predict the motifs that are required for the tissue-

specific activity of the paralog enhancers by phylogenetic reconstruction and we 

identified the putative transcription factor binding sites that were the likely targets 

of evolutionary changes underlying the functional divergence of the two ar-C en-

hancers of the shh paralogs. By engineering and exchanging mutations in both of 

the two enhancers of shh and twhh followed by transgenic analysis of the mutated 

enhancers we were able to recapitulate the predicted evolutionary events and thus 

provide evidence for the likely mechanism of enhancer evolution after gene dupli-

cation.
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