Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Wissenschaftliche Berichte FZKA 7354

Numerische Behandlung von Kaskadengleichungen zur schnellen Simulation höchstenergetischer Luftschauer

T. Bergmann
Institut für Kernphysik

Forschungszentrum Karlsruhe

in der Helmholtz-Gemeinschaft
Wissenschaftliche Berichte

FZKA 7354

Numerische Behandlung von Kaskadengleichungen zur schnellen Simulation höchstenergetischer Luftschauer

Till Bergmann

Institut für Kernphysik

Von der Fakultät für Physik der Universität Karlsruhe (TH) genehmigte Dissertation

Für diesen Bericht behalten wir uns alle Rechte vor

Forschungszentrum Karlsruhe GmbH Postfach 3640, 76021 Karlsruhe

Mitglied der Hermann von Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF)

> ISSN 0947-8620 urn:nbn:de:0005-073542

Numerische Behandlung von Kaskadengleichungen zur schnellen Simulation höchstenergetischer Luftschauer

Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN von der Fakultät für Physik der Universität (TH) Karlsruhe

genehmigte

DISSERTATION

von

Dipl. Math. Till Bergmann aus Ravensburg

Tag der mündlichen Prüfung: 29. Juni 2007

Referent: Prof. Dr. Johannes Blümer

Korreferent: Prof. Dr. Michael Feindt

Zusammenfassung

Von Teilchen der kosmischen Strahlung ausgelöste Luftschauer können mit Kaskadengleichungen beschrieben werden. Dies sind Systeme gekoppelter partieller Differentialgleichungen. In der vorliegenden Arbeit wird ein numerisches Lösungsverfahren für die elektromagnetische Kaskadengleichung entwickelt. Ziel ist die Beschleunigung der Berechnung der elektromagnetischen Schauerkomponente in Hybrid-Luftschauersimulationen. Die Ergebnisse werden mit parallel dazu entwickelten Monte-Carlo-Simulationen und der historischen Approximation A und B verifiziert. Das Monte-Carlo- und das numerische Verfahren werden dann in einem Hybrid-Verfahren miteinander kombiniert. Die numerischen Lösungen werden abschließend mit CORSIKA-Simulationsrechnungen und Auger-Daten verglichen, und es wird eine Rechenzeitanalyse der verschiedenen Methoden durchgeführt.

Abstract

Numeric solution of cascade equations for fast high-energy air shower simulation

These are systems of coupled partial differential equations. In the current work we present a scheme for the numeric solution of the electromagnetic cascade equations. Our purpose is to speed up the treatment of the electromagnetic component in hybrid air shower simulations. The numerical results are verified by comparisons with independent Monte Carlo simulations and the historical approximations A and B. Then the numerical method and the Monte Carlo simulation are combined into a hybrid simulation scheme. Finally we compare the numerical results to CORSIKA simulations, analyze two Auger events and investigate the calculation times and accuracy of the numerical method.

Inhaltsverzeichnis

Ei	\mathbf{nleit}	$\mathbf{u}\mathbf{n}\mathbf{g}$		1
1	Kos	mische	e Strahlung	4
	1.1		ätsel der höchsten Energien	4
	1.2		en-Luftschauer	6
	1.3		ierre-Auger-Observatorium	8
	1.4		lierung von Teilchenkaskaden	9
	1.5		9	11
	1.6			12
2	Die	Kaska	dengleichung	13
	2.1	Die all	lgemeine Kaskadengleichung	13
		2.1.1	Teilchenzahl, Teilchenfluss, Teilchenenergie	14
		2.1.2	Wechselwirkungs-Verlustterm	16
		2.1.3	Wechselwirkungs-Quellterm	16
		2.1.4	Zerfalls-Verlustterm	16
		2.1.5	Zerfalls-Quellterm	17
		2.1.6	Energieverluste durch Ionisation	17
		2.1.7	Allgemeine partielle Differentialgleichung	19
		2.1.8	Anfangswerte	19
	2.2	Unters	suchungen am Modellproblem	19
		2.2.1	Kaskadengleichung für ein Modellproblem	19
		2.2.2	Gesamtenergie $E_{tot}(X)$ und Energieerhaltung	21
		2.2.3	Teilchenzahl $N_{tot}(X)$	22
	2.3	Die ele	ektromagnetische Kaskadengleichung	22
3	Ana	alytisch	ne Approximationen	26
	3.1	Die ele	ektromagnetischen Kaskadengleichungen und die Approximation A	27
	3.2	Singul	aritätsfreie Form der Kaskadengleichung	28
	3.3	Eleme	ntare Lösung	28
	3.4	Berech	nnung der Integrale	32
		3.4.1	Integral $A(s)$	32
		3.4.2	Integral $B(s)$	33

		3.4.3	Integral $C(s)$
		3.4.4	Integral σ_0
	3.5		- und Laplace-Transformation der Kaskadengleichung
		3.5.1	Definition der Mellin- und Laplace-Transformation
		3.5.2	Transformation der Kaskadengleichung
		3.5.3	Lösung der transformierten Kaskadengleichungen mit speziellen
		01010	Randwerten
		3.5.4	Inverse Laplace-Transformation
	3.6		ximative Rücktransformation mit der Sattelpunkt-Methode 39
	3.7		ntielle Spektren
	3.8		ale Spektren
	3.9		eralter s
			erung der Sattelpunkt-Approximation um höhere Ordnungen 49
	0.10		Differentielle Spektren
			Integrale Spektren
	3 11		ximation B
			n-Gleichung
	0.12	Greisei	n-dietenung
4	Mor	ite-Ca	rlo-Simulation 56
	4.1	Grund	lagen der Monte-Carlo-Simulation
		4.1.1	Monte-Carlo-Methode für das Modellsystem
		4.1.2	Algorithmus
		4.1.3	Fehlerabschätzung für die Monte-Carlo-Methode 59
		4.1.4	Monte-Carlo-Simulation mit Ionisation
		4.1.5	Registrierung der Spur der Teilchen 60
	4.2	Monte	-Carlo-Lösung für die elektromagnetische Kaskadengleichung 62
		4.2.1	Behandlung der Singularität
		4.2.2	Auswürfeln einer Zufallsvariablen nach der Methode von John von
			Neumann
		4.2.3	Zufallsvariable W für den Bremsstrahlungs-Prozess 70
		4.2.4	Zufallsvariable E für den Paarbildungs-Prozess
	4.3	Monte	-Carlo-Simulation mit der Methode nach Hillas
5	Nur	nerisch	ne Lösung 75
	5.1		tisierung des Zustandsraums
	5.2	Metho	de der Intervallintegration beim Modellsystem
		5.2.1	Energieerhaltung der Diskretisierung
		5.2.2	Relative Energieverletzung 80
	5.3	_	eschwelle E_{min}
	5.4	Logari	thmische Transformation
		5.4.1	Logarithmische Intervalleinteilung 83
		5.4.2	Transformierte Teilchenzahl $N_{tot}(t)$ und Gesamtenergie $E_{tot}(t)$. 84
	5.5	Anfang	gswerte
	5.6	Der Tr	ranezansatz 85

		5.6.1	Anfangswerte beim Trapezansatz	86
		5.6.2	Entartete Trapeze	87
	5.7	Klassi	fizierung des Differentialgleichungstyps der Kaskadengleichung	88
	5.8	Allgen	neiner Charakteristikenansatz für eine Kaskadengleichung	88
	5.9	Chara	kteristikenverfahren für die elektromagnetische Kaskadengleichung	94
		5.9.1	Charakteristiken-Verfahren mit Euler-Iteration	104
		5.9.2	Charakteristikenverfahren mit Trapezansatz und Runge-Kutta-	
			Iteration	107
		5.9.3	Sehnenapproximation	110
6	ЦП	midro	rfahren	112
U	6.1		ination aus Monte-Carlo-Simulation und numerischem Verfahren .	112
	6.2		elrechnung eines Hybridschauers	112
	0.2	Deisbi	enechning emes mybridschauers	110
7			he Ergebnisse und Diskussion der verschiedenen Lösungsme	
	tho			118
	7.1		ammparameter	118
	7.2		lrechnungen	119
		7.2.1	Ionisationsparameter α_{ion}	120
		7.2.2	Trapezdarstellung	121
		7.2.3	Histogrammdarstellung	123
	7.3	_	elrechnungen des numerischen Verfahrens für die elektromagneti-	100
			Kaskadengleichung	126
		7.3.1	Rechenzeiten und relativer Fehler	126
		7.3.2	Vorteil des Trapezansatzes	132
	- 4	7.3.3	Grenzen des numerischen Verfahrens	134
	7.4	_	ich mit Monte-Carlo-Simulationen	135
		7.4.1	Fluktuationen der Monte-Carlo-Simulation	135
		7.4.2	Statistischer Fehler und Rechenzeit der Monte-Carlo-Simulation	137
		7.4.3	Longitudinale Schauerentwicklung und Energiespektren der nu-	190
	7 5	1 71-	merischen Methode im Vergleich zur Monte-Carlo-Simulation	138
	7.5	_	ich mit der analytischen Approximation A und B Vergleich mit Approximation A	144
		7.5.1		144 148
		7.5.2 $7.5.3$	Vergleich mit Approximation A mit höherer Fehlerordnung Vergleich mit Approximation B	140
	7.6		iche mit CORSIKA	148 152
	7.7	_		152
			enzahl $N_{tot,max}$ und Tiefe X_{max} des Schauermaximums	154
	7.8	7.8.1	Rechenaufwand	156
		7.8.2	Fluktuationen in der Schauerentwicklung	150
		7.8.3	Plausibilitätstest des Hybridverfahrens	157
		7.8.4	Untersuchung der X_{max} -Verteilung des Hybridverfahrens	162
	7.0		ich mit Auser Deten	16/

\mathbf{Z} u	ısam	menfassung und Ausblick	166
A	A.1	Alytische Approximation Die ψ -Funktion	169 169 171 171 171 172 173 173
В	Mor B.1 B.2 B.3	rte-Carlo-Simulation Grundlagen der Monte-Carlo-Simulation B.1.1 Statistische Grundlagen B.1.2 Auslosen einer stetigen Zufallsgröße mit Hilfe einer gleichverteilten Zufallsgröße B.1.3 Beispiel einer stetigen Zufallsgröße B.1.4 Beispiel einer exponentialverteilten Zufallsgröße Die Delta-Distribution δ Bestimmung der Wahrscheinlichkeitsdichte einer Zufallsvariablen	174 174 174 175 177 177 177
C	Nur C.1 C.2 C.3 C.4 C.5	merik Euler-Verfahren	179 179 179 180 181 183
D	D.1	änzungen Achsenbeschriftung von Energiespektren-Grafiken	192 192 195 195
Li	terat	turverzeichnis	196
Da	anksa	agung	201

Einleitung

Wohl einer der wichtigsten Wesenszüge des Menschen ist die Neugier. Sie hat ihn maßgeblich zu dem geformt, was er heute ist. Sie hat den Menschen schon immer zu größten Anstrengungen veranlasst, hat ihn hohe Berge ersteigen und weite Meere übersegeln lassen, hat ihn große Teleskope bauen lassen, um das Entfernteste und Größte zu sehen, und Mikroskope für das Nahe und Kleinste — nur um der Erlangung neuer Erkenntnis willen. Eine besondere Faszination übt die Astroteilchenphysik aus, wohl weil sie gleichzeitig Teleskop und Mikroskop sein will, weil sie gleichzeitig in die Weiten des Kosmos und auf die kleinsten Bausteine des Universums blicken will.

Die Erforschung der kosmischen Strahlung steht besonders im Mittelpunkt des Interesses, seit 1991 das erste Teilchen der kosmischen Strahlung nachgewiesen wurde, das hundertmillionenmal mehr Energie besaß als in den stärksten von Menschenhand gebauten Teilchenbeschleunigern erzeugt werden könnte. Solche Teilchen durften nach damaligem astrophysikalischen Wissensstand gar nicht existieren!

Bis heute lässt sich die Frage nach dem Ursprung dieser energiereichsten Teilchen des Universums nicht endgültig beantworten. Und so hat sich eine große internationale Gruppe von Forschern zusammengeschlossen, um das Pierre-Auger-Observatorium, das bisher größte "Teleskop für kosmische Teilchen", zu bauen. Die Teilchen werden dabei indirekt beobachtet. Diejenigen, die auf ihrem Weg durchs Weltall in die Erdatmosphäre eindringen, treffen mit großer Geschwindigkeit auf Atomkerne der Atmosphäre, zerbrechen diese und lösen dadurch eine Lawine von weiteren Sekundärteilchen aus — einen sogenannten Luftschauer, der fast mit Lichtgeschwindigkeit auf die Erdoberfläche rast. Diese Luftschauer sind für das menschliche Auge unsichtbar, lassen sich aber mit den Detektoren des Pierre-Auger-Observatoriums vermessen.

Die Interpretation der Messdaten stützt sich dabei auf die Modellierung von Luftschauern mit Monte-Carlo-Simulationen, um Rückschlüsse auf das auslösende Primärteilchen ziehen zu können. Die physikalischen Wechselwirkungsprozesse eines Luftschauers werden dabei möglichst genau auf einem Computer simuliert. Aber je höher die Primärenergie ist, desto mehr Teilchen entstehen im Luftschauer und desto aufwendiger werden diese Simulationsrechnungen. Bei den für das Pierre-Auger-Observatorium relevanten Energien ist man nun an die Grenzen der Leistungsfähigkeit heutiger PCs gestoßen. In letzter Zeit haben sich jedoch sogenannte Hybridverfahren als idealer Ausweg erwiesen. Sie kombinieren Monte-Carlo-Simulationen mit numerischen Lösungsverfahren für Kaskadengleichungen. Kaskadengleichungen sind Differentialgleichungen, die die Prozesse in Luftschauern beschreiben. Die Hybrididee besteht darin, mit der Monte-Carlo-Simulation zu starten und später geeignet auf die numerische Methode umzuschalten.

Monte-Carlo-Simulationen sind mittlerweile eine etablierte Methode. Die Kombination mit numerischen Methoden steckt jedoch noch in den Anfängen. Bei der Modellierung von Luftschauern würde eine Behandlung mit einem Hybridansatz bei denjenigen Teilchen den größten Gewinn bringen, die zahlenmäßig am häufigsten vertreten sind. Dies sind Elektronen, Positronen und Photonen, die man unter dem Begriff elektromagnetische Komponente zusammenfasst. Neben dem allgemeinen Problem des riesigen zu

behandelnden Energiebereichs treten ausgerechnet bei dieser Komponente ganz besondere Schwierigkeiten auf. Elektronen und Positronen verlieren verhältnismäßig viel Energie durch Ionisation der Luftatome, was die gewöhnliche Differentialgleichung zu einer partiellen Differentialgleichung macht. Weitere Schwierigkeiten bereitet die Singularität in der Produktionswahrscheinlichkeit von Photonen beim Bremsstrahlungsprozess. Dies äußert sich darin, dass die Produktionswahrscheinlichkeit zu kleinen Photonenenergien hin stark ansteigt und schließlich unendlich groß wird. Dies bedeutet, dass mathematisch gesehen unendlich viele Photonen entstehen — dieses Verhalten wird auch "Infrarotkatastrophe" genannt —, was numerisch überhaupt nicht formuliert werden kann. Physikalisch gesehen steht dies nicht im Widerspruch zum physikalischen Grundprinzip der Energieerhaltung, da die Summe der Energien dieser Photonen endlich bleibt.

Zum Einsatz numerischer Lösungsverfahren für die elektromagnetische Komponente gibt es schon erste Ansätze, jedoch sind diese nicht zufriedenstellend. Ein gutes numerisches Verfahren würde hier einen echten Gewinn für die Modellierung von Luftschauern bedeuten und damit die Basis zukünftiger Erkenntnisse über den Ursprung der kosmischen Teilchen stärken.

An diesem Punkt setzt die vorliegende Arbeit an: Ziel ist die Entwicklung eines numerischen Lösungsverfahrens für die elektromagnetische Kaskadengleichung. Anforderungen an das Verfahren sind die Berücksichtigung eines viele Größenordnungen umfassenden Energiebereichs, Behandlung der Ionisationsenergieverluste, Behandlung der Singularität (Infrarotkatastrophe) und Tolerierung von Unstetigkeiten in den Energiespektren (die etwa im Energiebereich des Primärteilchens auftreten). Die Korrektheit der Lösung des Verfahrens soll verifiziert werden und der Rechenaufwand in Abhängigkeit von der gewünschten Genauigkeit soll dokumentiert und quantifiziert werden. Die Einsatzfähigkeit des Verfahrens in Hybridsimulationen soll gezeigt werden. Das Verfahren soll dazu möglichst schnell bei hinreichender Genauigkeit sein und es muss die Zwischenergebnisse einer Monte-Carlo-Simulation als Eingabe verarbeiten können.

Kapitelübersicht In Kapitel 1 werden der astrophysikalische Hintergrund und die Zielsetzung der vorliegenden Arbeit erläutert. In Kapitel 2 wird die Beschreibung von Teilchenschauern durch Kaskadengleichungen vorgestellt. In Kapitel 3 wird ein historischer Ansatz zur Gewinnung einer analytischen Approximation für die elektromagnetische Kaskadengleichung, die sogenannte Approximation A und B, behandelt. Eine Implementierung dieser Approximation dient später als unabhängige Referenz für die numerische Lösung. Außerdem wird der historische Ansatz durch Berücksichtigung von Termen höherer Ordnung erweitert. Zur Gewinnung einer weiteren unabhängigen Referenzlösung wird in Kapitel 4 eine Monte-Carlo-Simulation entwickelt. Besondere Anstrengung erfordert dabei die Behandlung der Singularität in der Photonenproduktionswahrscheinlichkeitsdichte (Infrarotkatastrophe). Außerdem wird das Monte-Carlo-Simulationsprogramm später als Modul für das Hybridverfahren benötigt. In Kapitel 5 wird schließlich das Kernthema dieser Arbeit, die Entwicklung eines numerischen Lösungsverfahrens, bearbeitet. Die Behandlung der Singularität kann von der Monte-Carlo-Methode aus Kapitel 4 übernommen werden. Die numerische Lösung gelingt im

Wesentlichen mit Hilfe der Methode der Intervallintegration in Verbindung mit dem Trapezansatz. Durch einen Charakeristikenansatz gewinnt man aus dem System partieller Differentialgleichungen ein System gewöhnlicher Differentialgleichungen, das mit einem angepassten Runge-Kutta-Verfahren numerisch gelöst wird. Die Monte-Carlo-Simulation und die numerische Lösungsmethode werden in Kapitel 6 zu einem Hybridverfahren kombiniert. Abschließend werden in Kapitel 7 numerische Ergebnisse vorgestellt. Zunächst wird die Korrektheit der numerischen Lösungsmethode durch Vergleich mit analytischer Approximation und Monte-Carlo-Lösung verifiziert. In Testrechnungen werden Rechenzeitbedarf und Genauigkeit der Methoden untersucht. Abschließend wird auch die physikalische Anwendbarkeit der Methode demonstriert: im Vergleich mit CORSIKA-Simulationen, durch Untersuchungen der X_{max} -Verteilung des Hybridverfahrens und durch einen Vergleich mit einzelnen Auger-Datensätzen.

Kapitel 1

Kosmische Strahlung

1.1 Das Rätsel der höchsten Energien

Ein ständiger Teilchenregen aus dem Weltraum trifft aus allen Richtungen in jeder Sekunde auf die Erdatmosphäre: die sogenannte kosmische Strahlung. Ein Großteil der Strahlung besteht aus Protonen, ionisierten Wasserstoffatomen, aber auch aus allen anderen Sorten schwerer Ionen sowie elektromagnetischer Strahlung, also Photonen, Elektronen und Positronen. Die Teilchenenergien umfassen einen riesigen Energiebereich — über mindestens 11 Größenordnungen verteilt — und die höchstenergetischen (um 10^{20} eV) stellen eines der größten Rätsel der modernen Physik dar: man weiß nicht, wo sie herkommen und warum sie so schnell (d.h. energiereich) sind. Zum Vergleich: Eine Energie von 10^{20} eV genügt, um einen Fußball um etwa 1 m anzuheben — und diese Energie ist konzentriert auf ein einziges Teilchen!

Um solche Energien zu erreichen, sind gewaltige Beschleunigungssysteme erforderlich, denn je höher die Beschleunigungsenergie sein soll, desto größer muss das System sein und umso stärker muss sein Magnetfeld sein. (In Frage kommende Objekte sind im sogenannten Hillas-Diagramm, Abbildung 1.1, klassifiziert [1].) Zum Vergleich: Die derzeitig stärksten von Menschenhand gebauten Teilchenbeschleuniger¹ erreichen ungefähr 10^{12} eV. Energien bis zu 10^{16} eV lassen sich noch durch Supernovaexplosionen erklären. Für einen Beschleunigungsmechanismus auf 10^{20} eV kommen laut Hillas-Diagramm spezielle Radiogalaxien mit aktiven galaktischen Kernen in Frage, die durch Einsaugen von Materie durch ein supermassives Schwarzes Loch entstehen und dabei Teilchen auf extrem hohe Energien beschleunigen [8].

Diese Überlegung löst das Rätsel jedoch nicht, denn der Weg von den bekannten Radiogalaxien bis zu uns ist so weit, dass die Teilchen durch Wechselwirkung mit dem kosmischen Mikrowellenhintergrund, einem Relikt des Urknalls, stark abgebremst werden — also einen großen Teil ihrer ursprünglichen Energie verlieren. Beispielsweise werden Protonen aufgrund des sogenannten Greisen-Zatsepin-Kuzmin-Effektes (GZK-Effekt, [3, 4]) auf einer Strecke von 100 Mpc oder mehr auf eine Energie von unter $5 \cdot 10^{19}$ eV abgebremst (Abbildung 1.2). Für andere Teilchensorten existieren ganz ähn-

 $^{^{1}}$ TEVATRON/Fermilab: $0.98 \cdot 10^{12}$ eV; geplant ab 2007: LHC/CERN: $7 \cdot 10^{12}$ eV [2]

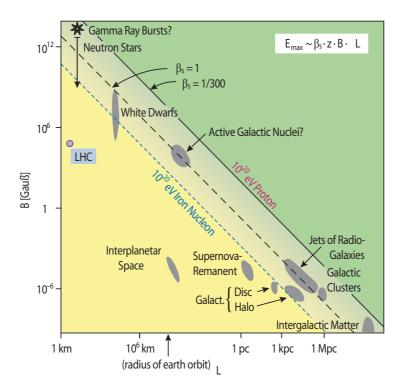


Abbildung 1.1: Das Hillas-Diagramm nach [1]: Die Größe L der Objekte ist gegen ihre magnetische Feldstärke B aufgetragen; 1 pc (Parsec) entspricht 3,26 Lichtjahren oder $3,1\cdot 10^{13}$ km; eine astronomische Einheit (1 AE) entspricht dem Radius der Erdumlaufbahn um die Sonne. Es ist $\beta_s=v_s/c$ (v_s ist die Geschwindigkeit der beschleunigenden Stoßwelle). Ein Objekt, das Protonen auf 10^{20} eV beschleunigen kann, müsste auf oder über der diagonalen Linie liegen.

liche Effekte. Teilchen, die über dieser Schwelle von ca. $5 \cdot 10^{19}$ eV liegen, wurden aber schon mehrfach beobachtet. Sie müssen also von Quellen stammen, die — nach kosmischen Maßstäben — in unserer unmittelbaren Nachbarschaft, also im Umkreis von weniger als 100 Mpc, liegen. Dieser Bereich ist aber gut erforscht und es existieren dort nur sehr wenige potentielle Quellen (etwa die Radiogalaxie M87 in etwa 16 Mpc Entfernung [5]), die aber aufgrund der bisherigen Beobachtungen nicht favorisiert werden. Schwer vorstellbar, dass man weitere so gigantische Energieschleudern in unserer Nähe bisher übersehen hätte.

Falls die Teilchen jedoch nicht aus unserer galaktischen Nachbarschaft stammen, gibt es keine plausible Erklärung, wie sie unterwegs wieder auf so hohe Energien beschleunigt werden könnten. Mit unserem heutigen Wissen bleibt es ein ungelöstes Rätsel [6].

Kein Wunder, dass die Astroteilchenphysik und besonders die Erforschung der kosmischen Strahlung eines der spannendsten und aktuellsten Teilgebiete der Physik ist, verspricht sie doch neue Entdeckungen. Spekuliert wird über vollkommen neuartige Be-

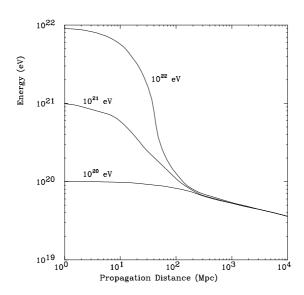


Abbildung 1.2: Der GZK-Effekt: Protonen mit verschiedenen Anfangsenergien werden nach etwa 100 Mpc auf etwa $5\cdot 10^{19}$ eV abgebremst.

schleunigungsmechanismen, direkte Erzeugung der hochenergetischen Teilchen in exotischen Zerfällen von Reliktteilchen des Urknalls oder sogenannte "neue" — bisher unbekannte — Physik wie der Verletzung der Lorentz-Invarianz [7].

1.2 Teilchen-Luftschauer

Um die Plausibilität der verschiedenen Theorien zu erhärten oder zu verwerfen, ist ein tieferes Verständnis und damit eine genaue Beobachtung und Vermessung der kosmischen Strahlung unabdingbar. Direkte Messungen werden mit satelliten- oder ballongestützten Experimenten durchgeführt. Dies ist jedoch nur im unteren Energiebereich möglich, denn das Energiespektrum der kosmischen Strahlung ist stark abfallend. Damit ist gemeint: niederenergetische Teilchen sind relativ häufig in der Strahlung vertreten, zu höheren Energien hin findet man immer weniger Teilchen (Abbildung 1.3). So gibt es im niederen Energiebereich um $10^{11}~{\rm eV}$ ein Teilchen pro Quadratmeter und Sekunde. Im Energiebereich um 10^{15} eV ist es ein Teilchen pro Quadratmeter und Jahr und bei Energien um 10¹⁹ eV erwartet man nur noch ein Teilchen pro Quadratkilometer und Jahr. Ab 10¹⁴ eV sind direkte Satelliten- oder Ballon-Experimente aufgrund der erforderlichen Detektorflächen nicht mehr machbar. Hier sind bodengestützte Messeinrichtungen erforderlich. Stößt ein Teilchen oder Atomkern der kosmischen Strahlung in einer typischen Höhe von 30–40 km mit einem Atomkern der Luft zusammen, so gibt es eine Kernexplosion, in der beide in ihre Bestandteile zerbrechen und zum Teil auch neue Teilchen entstehen. Diese Reaktionsprodukte fliegen immer noch mit großer Geschwindigkeit weiter und stoßen wieder auf Atomkerne der Luft, wo sie weitere Reaktionen auslösen. So entsteht eine Teilchenkaskade, auch Luftschauer genannt, in der eine scheibenförmige Reaktionsfront mit Lichtgeschwindigkeit durch die Atmosphäre auf die Erdoberfläche rast. Durch ein einzelnes Primärteilchen der kosmischen Strah-

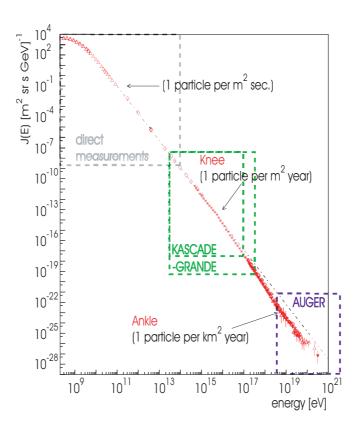


Abbildung 1.3: Energiespektrum der kosmischen Primärstrahlung

lung angestoßen können so mehrere Millionen oder Milliarden Teilchen am Erdboden ankommen.

Diese Luftschauer sind ganz natürliche Vorgänge und ereignen sich laufend an jedem Ort der Erde, ohne dass wir davon etwas spüren. Das Höhenstrahlungsexperiment KASCADE [5, 9] registriert ungefähr 4 Schauer pro Sekunde (Mittelwert aus den ersten 6 Betriebsjahren; die Detektorfeld-Grundfläche beträgt 200 m \times 200 m, die Detektionsschwelle liegt bei 10^{14} eV). Mit geeigneten Detektoren lassen sich diese Luftschauer jedoch nachweisen, wobei die Erdatmosphäre gewissermassen ein Teil der Messeinrichtung ist. Durch eine genaue Vermessung der Luftschauer versucht man Rückschlüsse zu ziehen auf die Anzahl und Art der Primärteilchen und ihren Einfallswinkel, um somit möglichst viel Information über die primäre kosmische Strahlung zu gewinnen.

Es gibt im Wesentlichen zwei Arten von Messeinrichtungen. Zum einen gibt es sogenannte Oberflächendetektoren, die die geladenen Teilchen in der scheibenförmigen Schauerfront registrieren, wenn sie den Erdboden erreichen. Sie bestehen normalerweise aus flächig in einem regelmäßigen Raster aufgestellten einzelnen Teilchendetektoren, die bei gleichzeitigen Signalen benachbarter Stationen Daten erfassen, mit denen im Idealfall der Durchmesser, die Neigung und andere Parameter der Schauerfront rekonstruiert werden können. Zu diesen gehören etwa das KASCADE-(Grande-)Experiment im Forschungszentrum Karlsruhe und das japanische AGASA-Experiment [10].

Zum anderen gibt es sogenannte Fluoreszenzdetektoren. Das sind Teleskopstatio-

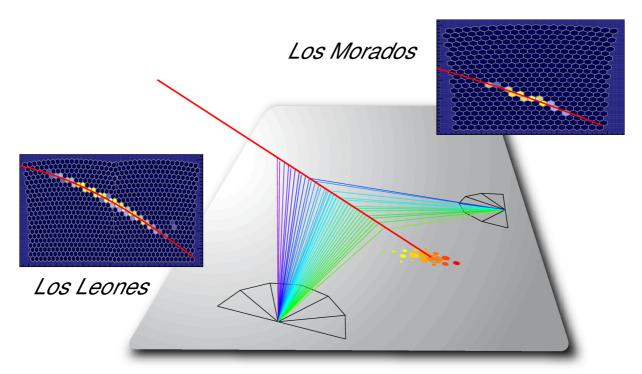


Abbildung 1.4: Das Detektionsprinzip des Pierre-Auger-Observatoriums [17]: Dargestellt ist die Detektion eines einzelnen Schauers. Die Schauerachse verlief entlang der langen diagonalen Linie. Der Schauer wurde von zwei Teleskopen in Los Leones und einem in Los Morados gesehen und zusätzlich von mehreren Oberflächendetektoren registriert. Die Halbkreise markieren die Positionen der etwa 50 km voneinander entfernten Teleskopgebäude Los Leones und Los Morados, jedes Dreieck entspricht einem der sechs darin enthaltenen Teleskope. Jedes Sechseck auf den rechteckigen Flächen entspricht einem einzelnen Pixel der Teleskopkameras. Der Luftschauer wird als Pixelspur gesehen. Die Bilder der nebeneinander stehenden Teleskope in Los Leones sind zusammengeklebt. Jeder der Kreise um den Auftreffpunkt des Schauers markiert einen Oberflächendetektor ("Tank"). Je größer der Kreis, umso stärker war die Signalstärke, die der zugehörige Detektor registriert hat.

nen, die in dunklen Nächten einen Bereich der Erdatmosphäre beobachten und auf das schwache ultraviolette Fluoreszenzlicht empfindlich sind, zu dessen Emission die Luftmoleküle bei den Teilchenprozessen des Luftschauers angeregt werden und das gewöhnlich entlang der Schauerachse konzentriert ist. Pixelkameras nehmen diese Leuchtspuren hoch zeitaufgelöst auf. Kombiniert man mehrere Teleskope (Stereomodus) miteinander, so können über die Richtung, Geschwindigkeit, Entfernung und Intensität der Pixelspuren viele Informationen über den Luftschauer gewonnen werden, was wiederum Rückschlüsse auf die Primärteilchen erlaubt. Eines dieser Experimente ist das HiRes-Experiment [11, 12].

1.3 Das Pierre-Auger-Observatorium

Anfang des Jahrtausends wurde mit dem Bau des Pierre-Auger-Observatoriums [5, 13, 14, 15, 16] in Malargue in der Provinz Mendoza/Argentinien begonnen, an dem das Forschungszentrum und die Universität Karlsruhe maßgeblich beteiligt sind. Das Observatorium liefert seit 2004 Daten und soll bis Anfang 2008 voll bestückt sein. Anschließend soll mit dem Bau eines Gegenstückes auf der nördlichen Hemisphäre (Auger

Nord) begonnen werden, um den gesamten Himmel beobachten zu können. Das Pierre-Auger-Observatorium ist als Hybriddetektor konzipiert. Es vereint eine Oberflächendetektorkomponente (SD-Komponente) auf einer Fläche von ca. 3000 km², bestehend aus 1600 Detektoren im Abstand von je 1,5 km mit 4 Fluoreszenzdetektorstationen (FD-Komponente) am Rand des Oberflächenarrays mit jeweils 6 Einzelteleskopen, die den gesamten Luftraum über dem Array beobachten. In Abbildung 1.4 ist schematisch dargestellt, wie das Observatorium einen Schauer registriert.

Die SD-Komponente ist nach Größe und Detektorabstand für Beobachtungen ab $10^{18.5}$ eV konstruiert, die FD-Komponente ist für Energien ab $10^{17.5}$ eV empfindlich. Das Observatorium soll insbesondere im Bereich ab 10^{20} eV eine zuverlässige Statistik im Energiebereich jenseits der GZK-Schwelle liefern, über der es zwar evidente Ereignisse von früheren Experimenten gab, die sich jedoch untereinander — insbesondere zwischen verschiedenen Detektorarten — widersprachen. Neben der Auflösung dieses Widerspruchs erhofft man sich auch die Entdeckung von Punktquellen, da bei hohen Teilchenenergien die Ablenkung vom direkten Weg von der Quelle zu uns durch das galaktische Magnetfeld eine immer geringere Rolle spielt. Bereits bis heute hat das Pierre-Auger-Observatorium mehr Daten gesammelt als jedes frühere Experiment. Die Daten befinden sich gerade in der Auswertung.

1.4 Modellierung von Teilchenkaskaden

Zur Interpretation der Messdaten ist ein gutes theoretisches Verständnis der Wechselwirkungsprozesse in Luftschauern nötig. Hierfür benötigt man zunächst sogenannte Wechselwirkungsmodelle, die die einzelnen Teilchenprozesse innerhalb eines Luftschauers beschreiben. Auf deren Basis kann man die Gesamtentwicklung eines Luftschauers modellieren.

Zur Modellierung von Luftschauern gibt es im Wesentlichen zwei Ansätze: Sehr verbreitet sind Monte-Carlo-Simulationen (MC), die explizit jede einzelne Wechselwirkung und jedes einzelne Teilchen im Computer abbilden und bis zum Ende weiterverfolgen. Ein sehr prominentes Beispiel für ein solches Simulationsprogramm ist das am Forschungszentrum Karlsruhe entwickelte Programmpaket CORSIKA [18]. In Abbildung 1.5 ist ein Schauer gezeichnet, der mit CORSIKA berechnet wurde. Man beachte, dass das Bild in der Höhe stark gestaucht wurde. In Wirklichkeit ist die Schauerentwicklung viel länger und schmaler. Verschiedene Teilchenarten sind verschiedenfarbig gezeichnet. Rechts ist schematisch die Entwicklung der Teilchenzahl N_{tot} aufgetragen. In der linken Grafik mit den Teilchenspuren lässt sich das Maximum nicht erkennen, da die meisten Spuren im Zentrum liegen und sich gegenseitig verdecken.

Je höher die Energie des Primärteilchens ist, umso mehr Teilchen entstehen im Verlauf eines Luftschauers und dementsprechend rechenintensiv sind solche Simulationen. Tatsächlich sind sie bei Primärenergien, wie sie etwa für das Pierre-Auger-Observatorium erforderlich sind, gar nicht mehr machbar, da die Simulation eines einzigen Schauers selbst auf den schnellsten Rechnern mehrere Jahre dauern würde. Die Simulation eines einzelnen Luftschauers mit einer Primärenergie von 10^{17} eV dauert

etwa einen Tag — und man benötigt viele tausend verschiedene Simulationsläufe, um physikalische Fluktuationen zu berücksichtigen.

Ein vollständig anderer Ansatz beruht darauf, dass man die Prozesse in Luftschauern mit Systemen von Integro-Differentialgleichungen, den sogenannten Kaskadengleichungen, beschreiben kann. Die Gleichungen sind allerdings nur in stark vereinfachten hypothetischen Szenarien explizit analytisch lösbar. In der Praxis ist man auf analytische Approximationen oder numerische Lösungen angewiesen. Sehr bekannt sind die Greisen-

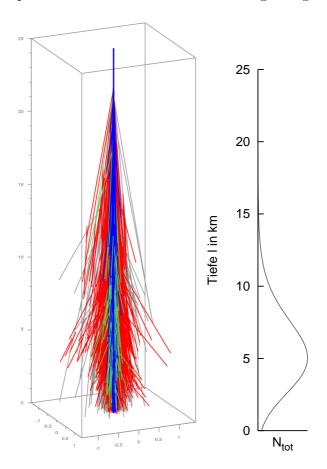


Abbildung 1.5: CORSIKA-Schauer [21]; Längeneinheit: 1 km (der Schauer ist stark verkürzt dargestellt). Protonschauer mit $E_{prim}=10^{16}$ eV. Teilchenspuren: μ (hellgrau); e $^{-/+}$, γ (rot/dunkelgrau), Hadronen (blau/schwarz), Neutronen (grün/hellgrau). Rechts ist schematisch die Tiefenentwicklung der Teilchenzahl N_{tot} dargestellt.

Gleichung [19] und die Nishimura-Kamata-Greisen-Formel (NKG-Formel, [20]), die auf diesem Ansatz basieren. Die Lösungen von Kaskadengleichungen beschreiben den mittleren Verlauf eines Luftschauers, sie können keine physikalischen Fluktuationen reproduzieren.

In den letzten Jahren hat sich eine Kombination beider Ansätze als vielversprechend erwiesen. Diese Verfahren werden Hybridverfahren genannt. Sie versuchen, die Stärken jeder Methode auszunutzen. Monte-Carlo-Simulationen reproduzieren bei gleichen Anfangsbedingungen der Primärenergie und Einfallsrichtung sehr gut die Fluktuationen, denen in der Realität ein einzelner Schauer unterliegt. Allein durch die Tiefe der ersten Wechselwirkung des Primärteilchens in der Atmosphäre, die bei jedem Luftschauer anders ausfällt, unterscheiden sich individuelle Luftschauer sehr stark voneinander. Dies setzt sich bei späteren Wechselwirkungen fort. Erst wenn sehr viele Sekundärteilchen erzeugt wurden, spielt das Verhalten eines einzelnen Teilchens keine Rolle mehr, sondern nur noch das durchschnittliche Verhalten vieler Teilchen.

Hier kommt die Stärke der Methoden zum Tragen, die auf der Lösung von Kaskadengleichungen basieren. Sie berechnen von vorneherein nur das durchschnittliche Verhalten der Teilchen in einem Luftschauer. Dafür sind sie sehr schnell, da sie das Verhalten einer

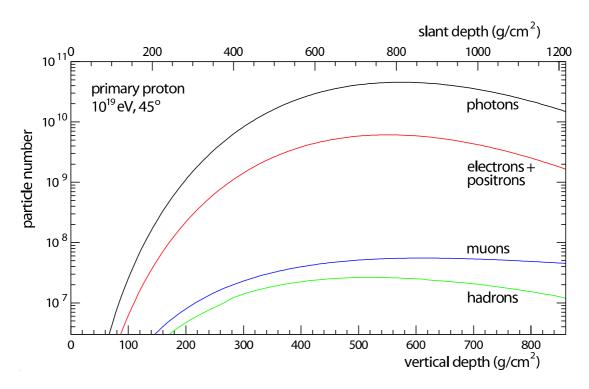


Abbildung 1.6: Teilchenzahlen der verschiedenen Schauerkomponenten

großen Anzahl von Teilchen gleichzeitig simulieren. Die entscheidende Idee ist, zu Beginn des Schauers mit Monte-Carlo-Methoden zu simulieren und nach einem geeigneten Zeitpunkt auf Kaskadengleichungsmethoden umzuschalten. Eine aktuelle Entwicklung stellt hier das Programm CONEX [22, 23] dar, das von einer internationalen Arbeitsgruppe unter maßgeblicher Beteiligung des Forschungszentrums und der Universität Karlsruhe erstellt und ständig weiterentwickelt wird. In diesem Kontext ist auch die vorliegende Arbeit angesiedelt.

1.5 Die elektromagnetische Schauerkomponente

Heute existiert ein sehr gutes Verständnis der Vorgänge in Luftschauern. Unter anderem weiß man, dass die meisten Teilchen (Photonen, Elektronen, Positronen) zur elektromagnetischen Komponente gehören. (Daneben unterscheidet man die myonische und die hadronische Komponente.) Deshalb entfällt bei Simulationen der größte Anteil der Rechenzeit auf die elektromagnetische Komponente (je nach verwendeten Wechselwirkungsmodellen 80–99 %). Die durchschnittlichen Teilchenzahlen für einen Protonschauer mit Primärenergie $E_{prim}=10^{19}$ eV sind in Abbildung 1.6 aufgeschlüsselt.

Die elektromagnetische Komponente ist in guter Näherung von der myonischen und der hadronischen Komponente entkoppelt. Damit ist gemeint, dass ihre Bestandteile — Elektronen, Positronen und Photonen — hauptsächlich Wechselwirkungsprozessen unterliegen, in denen wieder nur Elektronen, Positronen und Photonen (d.h. keine Myonen und Hadronen) erzeugt werden. Die drei dominierenden Wechselwirkungsprozesse bei hohen Energien sind: Paarbildung, Bremsstrahlung und Energieverluste durch Ionisati-

on der Atmosphäre. Eine verbesserte Behandlung der elektromagnetischen Komponente bezüglich dieser Wechselwirkungen ist deshalb ein vielversprechender Ansatzpunkt zur Beschleunigung der gesamten Simulationsrechnung eines Luftschauers.

1.6 Zielsetzung

Damit ist auch schon die Zielsetzung der vorliegenden Arbeit abgesteckt. Es soll ein schnelles numerisches Lösungsverfahren für die eindimensionalen elektromagnetischen Kaskadengleichungen entwickelt werden, das in einem Hybridverfahren zur Luftschauersimulation für höchstenergetische Primärteilchen eingesetzt werden soll.

Dadurch ergeben sich sofort folgende konkreten Anforderungen an das Verfahren: Es muss in der Lage sein, als Startwert eine beliebige Teilchenverteilung zu verarbeiten, die von einer Monte-Carlo-Simulation vorgegeben wird. Teilchen müssen auch in größeren Tiefen t "aufgesammelt" werden können. Die drei wesentlichen Wechselwirkungsprozesse Paarbildung, Bremsstrahlung und Ionisationsverluste sollen berücksichtigt werden. Die Methode soll ein möglichst grobes Diskretisierungsgitter erlauben und auch ein möglichst einfaches (und dafür schnelles) numerisches Lösungsverfahren benutzen, um eine höchstmögliche Rechengeschwindigkeit zu erreichen, da es pro Simulationslauf viele tausend Male aufgerufen werden wird. Das Hybridverfahren soll bis zu Primärteilchenenergien von über 10^{20} eV, dem Auger-Energiebereich, eingesetzt werden, und Teilchenenergien bis zu einer unteren Schwelle von etwa 1 MeV behandeln — also einen Bereich von 14 Größenordnungen in der Energie umspannen. Die Umschaltung auf das numerische Verfahren sollte ab Teilchenenergien von etwa 10^{18} eV möglich sein, in diesem Energiebereich muss es zuverlässig und schnell funktionieren.

Zur Interpretation von Fluoreszenzdetektordaten des Pierre-Auger-Observatoriums ist insbesondere die Gesamtteilchenzahl $N_{tot}(t)$ in Abhängigkeit von der Tiefe t entlang der Schauerachse von Bedeutung. Diese Observable gilt deshalb als Gradmesser für die Güte der numerischen Lösung.

Kapitel 2

Die Kaskadengleichung

Wir stellen zunächst die allgemeinste Form der Kaskadengleichung vor. Als Nächstes behandeln wir anhand eines einfachen Beispiels einige Eigenschaften von Kaskadengleichungen, die später eine wichtige Rolle spielen. Schließlich konzentrieren wir uns auf die elektromagnetische Kaskadengleichung im Rahmen der Astroteilchenphysik.

2.1 Die allgemeine Kaskadengleichung

Zunächst spezifizieren wir die Größen, die bei den Kaskadengleichungen eine Rolle spielen. Wir interessieren uns für die Schauerentwicklung bezüglich der Teilchenenergie und der Tiefe. Die Teilchenenergie E wird in der Einheit "eV" (Elektron-Volt) gemessen: $E = [\mathrm{eV}]$. Die Tiefe X wird in der Säulendichte (e. slant depth) gemessen und hat die Einheit $X = \left[\frac{g}{\mathrm{cm}^2}\right]$. Die Wechselwirkungslänge innerhalb eines Mediums hängt nur von der Menge der durchquerten Materie ab. Je dichter ein Material ist, umso kürzer ist — bei gleicher Wahrscheinlichkeit — die Wechselwirkungslänge (gemessen in der Länge $l = [\mathrm{m}]$). Gemessen in Säulendichte ist die Wechselwirkungslänge aber gleich. Das hat den Vorteil, dass die Kaskadengleichungen zunächst unabhängig von der Materialdichte aufgestellt werden können¹.

Bei homogenen Materialien mit der Dichte ϱ kann über die Formel $X=\varrho\cdot l$ zwischen Weglänge und Säulendichte umgerechnet werden.

Da die Dichte ϱ der Erdatmosphäre nicht konstant ist, sondern entsprechend der barometrischen Formel $\varrho(l) = \varrho_{air} \cdot e^{-l/H}$ (ϱ_{air} Dichte auf Meereshöhe, Skalenhöhe $H=8\,000$ m) mit der Höhe l abnimmtnimmt, muss dies bei Luftschauern berücksichtigt werden. Die Dichte ϱ ist dann eine Funktion von l, der Höhe in m über Meereshöhe, und die Säulendichte X(l) berechnet sich durch: $X(l) = \int_{\infty}^{l} \varrho(l') dl'$. Daraus ergibt sich die barometrische Formel $X_{baro}(l) \approx 1033 \frac{\rm g}{\rm cm^2} \cdot e^{-l/H}$.

Die Dichte der Atmosphäre $\varrho(l)$ ändert sich ständig, je nach Wetterlage, Tagesund Jahreszeit. Dies wurde bei der US-Standard-Atmosphäre X_{US} berücksichtigt, einem aus langjährigen Beobachtungen des US Militärs gewonnenen Mittelwerts für ein

¹Den Sternheimer-Effekt [24] wollen wir hier nicht berücksichtigen.

Raketentestgelände in New Mexico. Einige Werte sind in Tabelle 2.1 der barometrischen Formel gegenübergestellt.

Da die Luftdruckverhältnisse bei der Rekonstruktion von Luftschauern eine große Rolle spielen, sind bei Luftschauerexperimenten Wetterbeobachtungen sehr wichtig [25].

Tabelle 2.1: Einige ausgewählte Tiefen berechnet nach der US-Standard-Atmosphäre X_{US} und nach der barometrischen Formel X_{baro} .

Ort	Höhe über NN	$X_{US}[g/cm^2]$	$X_{baro}[g/cm^2]$
Rand der	50-60 km	<1	<2
Atmosphäre			
	16 km	100	140
	$7360 \mathrm{\ m}$	400	412
	$3200 \mathrm{\ m}$	700	693
Auger	1400 m	875	867
	$300 \mathrm{m}$	1000	995
KASCADE	110 m	1023	1018
NN	0 m	1036	1033

Ein senkrechter Luftschauer durchläuft also etwa 50–60 km, was etwa $X=1000\frac{\rm g}{\rm cm^2}$ entspricht. Luft hat unter Standardbedingungen (0 °C, 1013 mbar) die Dichte $\varrho_{air}=1,293\frac{\rm kg}{\rm m^3}$; unter diesen Bedingungen entspricht die Säulendichte $X=1000\frac{\rm g}{\rm cm^2}$ etwa $l=X/\varrho_{air}\approx 7700$ m. Im Vergleich dazu würde derselbe Schauer in Blei mit $\varrho_{Pb}=11,35\frac{\rm g}{\rm cm^3}$ nur $l=X/\varrho_{Pb}\approx 88$ cm weit propagieren.

Lässt man in einem Gedankenexperiment einen Schauer gerade nach $X=1000\frac{\rm g}{\rm cm^2}$ aussterben, so würde er als senkrechter Schauer fast die ganze Erdatmosphäre durchmessen; würde er (bei Standardbedingung) parallel zum Erdboden verlaufen, käme er etwa 7,7 km weit; würde er sich in Blei entwickeln, käme er gerade mal knapp 90 cm weit.

2.1.1 Teilchenzahl, Teilchenfluss, Teilchenenergie

 $N_T(E,X)$ ist definiert als die Anzahl der Teilchen der Art T bei Tiefe X, deren Energie kleiner oder gleich E ist: $N_T(E,X) := \{\#T \text{ in } X \text{ mit Teilchenenergie } \leq E\}$. Darüber ist der Teilchenfluss $\Phi_T(E,X)$ definiert als (vgl. Abbildung 2.1):

$$\Phi_T(E, X) := \frac{dN_T(E, X)}{dE} \tag{2.1}$$

 $\Phi_T(E,X)$ gibt dann gerade die Anzahl der Teilchen an, deren Energie in einem Bereich um E bzw. im Intervall (E,E+dE) liegt. 2 dE ist im Limes infinitesimal klein. Umgekehrt

²Oft sagt man, $\Phi_T(E, X)$ ist die Anzahl der Teilchen, die die Energie E haben, gemessen in der Tiefe X. Diese übliche Sprechweise ist nicht ganz korrekt, da es bei einem singulären Wert E im statistischen

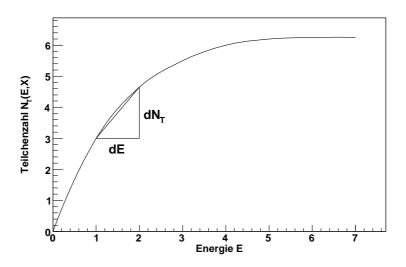


Abbildung 2.1: Teilchenanzahl $N_T(E,X)$

lässt sich bei gegebenem Fluss Φ_T wieder N_T ermitteln mit:

$$N_T(E,X) = \int_0^E \Phi_T(E',X)dE' \qquad (2.2)$$

Denn da N_T bezüglich E monoton steigend ist (vgl. Abbildung,2.1), ist somit $\Phi_T(E,X) \geq 0$. Somit ist

$$\int_{0}^{E} \Phi_{T}(E', X) dE' = N_{T}(E', X) \Big|_{0}^{E} = N_{T}(E, X) - \underbrace{N_{T}(0, X)}_{=0}$$
 (2.3)

Bemerkung: Wir wollen hier noch anmerken, dass wir alle Größen als kontinuierlich betrachten. Sie sollen das mittlere Verhalten eines Teilchenschauers beschreiben und werden als Ergebnis eines Grenzprozesses angesehen.

Gesamtteilchenzahl und Gesamtenergie

In einem Intervall [E, E+dE] beträgt die Teilchenanzahl $\Phi_T(E, X) \cdot dE$ und die Energie $E \cdot \Phi_T(E, X) \cdot dE$. Dann ist die Gesamtanzahl aller Teilchen T in der Tiefe X

$$N_{tot,T}(X) = \int_0^\infty \Phi_T(E, X) \ dE$$
 (2.4)

und die Gesamtenergie aller Teilchen T in der Tiefe X

$$E_{tot,T}(X) = \int_0^\infty E \,\Phi_T(E, X) \,dE \tag{2.5}$$

Sinne keine Teilchen gibt. Ein Teilchen wird nie wirklich exakt die Energie E haben bzw. man wird sie nie genau nachmessen können. Deshalb meint man bei dieser Sprechweise immer einen Energie-Bereich um oder bei E.

Die Kaskadengleichung ist eine Integro-Differentialgleichung und beschreibt die Änderung des Teilchenflusses Φ bezüglich der Tiefe X. Man spricht oft von der Kaskadengleichung, auch wenn man ein gekoppeltes System mehrerer solcher Differentialgleichungen — jede für eine Teilchenart — meint.

Als Nächstes stellen wir die einzelnen Terme vor, die am Ende die Kaskadengleichung ergeben.

2.1.2 Wechselwirkungs-Verlustterm

Dieser Term beschreibt die Abnahme des Flusses durch Teilchenwechselwirkungen mit dem durchlaufenen Medium. $\lambda_T(E)$ ist die mittlere Wechselwirkungslänge, $\sigma_T(E)$ der Wirkungsquerschnitt, < m > die mittlere Masse eines Atoms oder Moleküls des durchlaufenen Mediums:

$$\left(\frac{d\Phi_T(E,X)}{dX}\right)_I = -\frac{\Phi_T(E,X)}{\lambda_T(E)} \text{ mit } \lambda_T(E) = \frac{\langle m \rangle}{\sigma_T(E)}$$
(2.6)

Ohne die E-Abhängigkeit entspräche dies der Differentialgleichung $\frac{d\Phi}{dX} = -\frac{\Phi}{\lambda}$ mit der Lösung $\Phi = \Phi_0 \cdot e^{-\frac{X}{\lambda}}$. Hier erkennt man die Exponentialverteilung für die Wahrscheinlichkeitsdichten der Wechselwirkungslängen, auf die wir in 4.1.1 näher eingehen werden.

Die Umrechnung geschieht gemäß: $\frac{d\Phi}{dl} = \frac{d\Phi}{dX} \frac{dX}{dl} = -\frac{\Phi}{\lambda}$, woraus mit $\frac{dl}{dX} = \frac{1}{\varrho(X)}$ folgt: $\frac{d\Phi}{dX} = -\frac{\Phi}{\lambda\varrho(X)}$

2.1.3 Wechselwirkungs-Quellterm

Dieser Produktionsterm gehört zum eben beschriebenen Verlustterm, denn bei der Wechselwirkung von Teilchen T' höherer Energie E' > E, bei denen Teilchen der Art T erzeugt werden, wächst der Fluss $\Phi_T(E,X)$ an. $W_{T'\to T}(E',E)$ ist die Energie-Produktionswahrscheinlichkeit für Teilchen T mit Energie E aus Teilchen E' mit Energie E'. Wir müssen über alle Teilchensorten E' summieren, die bei Wechselwirkungen Teilchen der Sorte E' erzeugen können:

$$\left(\frac{d\Phi_T(E,X)}{dX}\right)_{Q,I} = \sum_{T'} \int_E^\infty \frac{\Phi_{T'}(E',X)}{\lambda_{T'}(E')} W_{T'\to T}(E',E) dE' \tag{2.7}$$

Etwas anschaulicher: $\frac{\Phi_{T'}(E',X)}{\lambda_{T'}(E')}$ ist die Anzahl der Teilchen T', die wechselwirken, $W_{T'\to T}(E',E)$ gibt den Prozentsatz der Wechselwirkungen an, bei denen Teilchen T mit Energie E erzeugt werden; das Integral und die Summe summieren alle Kombinationen von E' und T' auf.

2.1.4 Zerfalls-Verlustterm

Die Kaskadengleichung für instabile Teilchen enthält einen Zerfallsterm als Verlustterm. Er ist dem Wechselwirkungs-Verlustterm ähnlich, nur dass die Zerfallsdauer $\lambda_{T,D}(E,X)$

von der verstrichenen Zeit abhängt. Diese ergibt sich aus der zurückgelegten Weglänge (via Säulendichte X und $\varrho(X)$) und der Geschwindigkeit des Teilchens (näherungsweise Lichtgeschwindigkeit $\beta c, \beta \approx 1$):

$$\left(\frac{d\Phi_T(E,X)}{dX}\right)_D = -\frac{\Phi_T(E,X)}{\lambda_{T,D}(E,X)} \text{ mit } \lambda_{T,D}(E,X) = \gamma \,\tau_T \,\varrho(X)\beta \,c\,, \beta \approx 1 \tag{2.8}$$

Dies ist abgeleitet aus: $\frac{d\Phi}{dt} = \frac{d\Phi}{dX} \frac{dX}{dl} \frac{dl}{dt} = -\frac{\Phi}{\tau'}$; τ_T ist im Ruhesystem des Teilchens, im System der Atmosphäre ist $\tau' = \gamma \tau_T$, wie vorhin ist $\frac{dl}{dX} = \frac{1}{\varrho(X)}$ und $\frac{dl}{dt} = \beta c$ ist die Geschwindigkeit des Teilchens, woraus obige Formel folgt.

2.1.5 Zerfalls-Quellterm

Dies ist der zum Zerfalls-Verlustterm gehörende Produktionsterm. $D_{T'\to T}(E',E)$ ist die Produktionswahrscheinlichkeit für Teilchen T mit Energie E aus Teilchen E' mit Energie E' durch Zerfall:

$$\left(\frac{d\Phi_T(E,X)}{dX}\right)_{Q,D} = \sum_{T'} \int_E^\infty \frac{\Phi_{T'}(E',X)}{\lambda_{T',D}(E',X)} D_{T'\to T}(E',E) dE' \tag{2.9}$$

2.1.6 Energieverluste durch Ionisation

Geladene Teilchen unterliegen beim Durchqueren von Materie einem kontinuierlichen Energieverlust durch Ionisation des umgebenden Mediums. In unserem Fall genügt es als gute Näherung, diesen Energieverlust als konstant bezüglich der durchquerten Tiefe anzunehmen. Der Vorfaktor des Energieverlustterms hat die Einheit $\frac{dE}{dX} = -\alpha_T = \left[\frac{eV}{g/cm^2}\right]$ und gibt die Menge der verlorenen Energie pro Tiefendifferenz (in Säulendichte) an. Der Energieverlustterm hat damit die Form:

$$\left(\frac{\partial \Phi_T(E, X)}{\partial X}\right)_{Low} = -\alpha_T \frac{\partial \Phi_T(E, X)}{\partial E} \tag{2.10}$$

Energieabhängiger Energieverlustterm Hier wollen wir nun den Ionisationsterm unter dem Aspekt einer Energieabhängigkeit genauer untersuchen. Obwohl wir die eigentlichen Ionisationsverluste in der vorliegenden Arbeit als konstant annehmen werden, benötigen wir dies später bei der Behandlung der Singularität (in Abschnitt 4.2.1) und der logarithmischen Transformation (in Abschnitt 5.4). Der Energieverlust sei nun also:

$$\frac{dE}{dX} = -b(E) \tag{2.11}$$

(Wir lehnen uns hier an [26] an.) Betrachtet man nur den Ionisations-Energieverlustterm, so lässt sich folgende Beziehung ableiten:

$$\left(\frac{\partial \Phi(E, X)}{\partial t}\right)_{ion} = \frac{\partial}{\partial E} \left(b(E)\Phi(E, X)\right) \tag{2.12}$$

Beweis: $(\triangle X, \triangle E, \ldots)$ sind im Folgenden infinitesimale Größen, vgl. Abbildung 2.2) $\Phi(E,X)\cdot\triangle E$ ist die Anzahl der Teilchen im Intervall $(E,E+\triangle E)$ in der Tiefe X. In der Tiefe $X+\triangle X$ liegen in diesem Intervall die Teilchen, die in der Tiefe X im Intervall $(E',E'+\triangle E')$ lagen. Die Verschiebung dieses Intervalls ergibt sich aus dem Ionisationsverlustterm (2.11) mit $\triangle E=E-E'=-b(E)\cdot\triangle X$:

$$E' = E + b(E) \cdot \triangle X \tag{2.13}$$

$$E' + \triangle E' = (E + \triangle E) + b(E + \triangle E) \cdot \triangle X \tag{2.14}$$

Mit der Taylorentwicklung

$$b(E + \triangle E) = b(E) + \triangle E \frac{db(E)}{dE} + O(\triangle E^2)$$
 (2.15)

folgt:
$$\triangle E' = \triangle E + \triangle E \triangle X \frac{db(E)}{dE}$$
 (2.16)

Wir betrachten nun:

$$\Delta_{E} \left[\Phi(E, X) \triangle E \right] = \Phi(E', X) \triangle E' - \Phi(E, X) \triangle E
= \Phi(E + b(E) \triangle X, X) \left[\triangle E + \triangle E \triangle X \frac{db(E)}{dE} \right] - \Phi(E, X) \triangle E
= b(E) \triangle E \triangle X \frac{\partial \Phi(E, X)}{\partial E} + \Phi(E, X) \triangle E \triangle X \frac{db(E)}{dE}
= \triangle E \triangle X \frac{\partial}{\partial E} \left(b(E) \Phi(E, X) \right)$$
(2.17)

wobei im vorletzten Schritt die Taylorentwicklung $\Phi(E+b(E)\triangle X,X)=\Phi(E,X)+b(E)\triangle X\frac{\partial\Phi(E,X)}{\partial E}$ eingesetzt wurde. Im Limes $\triangle X\to 0$ ist wegen (2.16) $\triangle E'\to \triangle E$, man kann $\triangle E$ kürzen, und da $\Phi(E,X+\triangle X)=\Phi(E',X)$ (siehe Skizze) ist, folgt:

$$\triangle_{E}[\Phi(E,X)\triangle E]/\triangle E\triangle X \stackrel{\triangle X\to 0}{=} \frac{\Phi(E,X+\triangle X)-\Phi(E,X)}{\triangle X} = (2.18)$$

$$\frac{\partial \Phi(E,X)}{\partial X} = \frac{\partial}{\partial E}(b(E)\Phi(E,X))$$

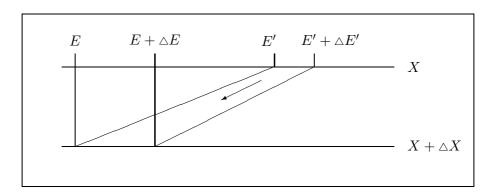


Abbildung 2.2: Skizze zum energieabhängigen Energieverlustterm

2.1.7 Allgemeine partielle Differentialgleichung

Fasst man alle diese Terme zusammen, so erhält man die allgemeine Kaskadengleichung, die genaugenommen ein System partieller Differentialgleichungen ist. Für jede Teilchenart T gibt es eine solche Differentialgleichung, die über die Quellterme mit den Gleichungen für die anderen Teilchensorten T' gekoppelt ist:

$$\frac{\partial \Phi_T(E,X)}{\partial X} = -\frac{\Phi_T(E,X)}{\lambda_T(E)} + \sum_{T'} \int_E^\infty \frac{\Phi_{T'}(E',X)}{\lambda_{T'}(E')} W_{T'\to T}(E',E) dE' \qquad (2.19)$$

$$-\frac{\Phi_T(E,X)}{\lambda_{T,D}(E,X)} + \sum_{T'} \int_E^\infty \frac{\Phi_{T'}(E',X)}{\lambda_{T'}(E',X)} D_{T'\to T}(E',E) dE' - \alpha_T \frac{\partial \Phi_T(E,X)}{\partial E}$$

2.1.8 Anfangswerte

Die Kaskadengleichung beschreiben alle Wechselwirkungsprozesse, die *innerhalb* von Luftschauern stattfinden. Das konkrete Szenario, das man modellieren will, wird über die Vorgabe entsprechender Anfangswerte für die Differentialgleichungen gesteuert.

• Einzelner Teilchen-Schauer:

$$\Phi_T(E,0) = \delta(E - E_{prim}), \quad \Phi_{T' \neq T}(E,0) = 0$$
(2.20)

beschreibt einen von einem einzelnen Primärteilchen T mit Primärenergie E_{prim} ausgelösten Teilchen-Schauer, denn dann ist mit den Formeln (2.4) und (2.5) gerade $N_{tot,T}(0) = 1$ und $E_{tot,T}(0) = E_{prim}$.

- Primärspektrum: z.B. $\Phi_T(E,0) = \Phi_{0,T} \cdot E^{-2.7}$ Hiermit gibt man eine kontinuierliche Anfangsverteilung vor, eventuell über einen längeren Zeitraum gemittelt; in diesem konkreten Fall lehnen wir uns an das tatsächlich beobachtete, gemäß einem Potenzgesetz abfallende, Primärspektrum an. Solche Anfangswerte spielen bei der analytischen Approximation im Abschnitt 3.3 über elementare Lösungen eine Rolle.
- Es wird eine vollständige Verteilung $\Phi_{T,MC}(E,X)$ vorgegeben (also auch für Tiefen X>0), Anfangswerte werden in späteren Tiefen "nachgefüttert"; dies ist ein typischer Anwendungsbereich bei Hybridrechnungen (Kapitel 6), wo eine Monte-Carlo-Simulation die komplette Verteilung $\Phi_{T,MC}(E,X)$ als Eingabe liefert. Man nennt $\Phi_{T,MC}(E,X)$ auch Quellfunktion oder Quellenfunktion (e. source function).

2.2 Untersuchungen am Modellproblem

2.2.1 Kaskadengleichung für ein Modellproblem

Wir wollen die allgemeine Kaskadengleichung sogleich wieder reduzieren auf das denkbar einfachste System und daran ein paar grundlegende Eigenschaften der Kaskadengleichung demonstrieren. Dazu betrachten wir ein Modellproblem, das nur eine einzige (fiktive) Teilchenart T beschreibt und fügen eine einzige Wechselwirkungsart hinzu. Bei dieser Wechselwirkung sollen aus einem Teilchen T mit Energie E_0 zwei neue Teilchen der Art T mit Energien E_1 und E_2 entstehen. Bei einem physikalisch sinnvollen Modell darf keine Energie verloren gehen, es muss also gelten: $E_1 + E_2 = E_0$.

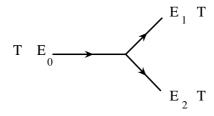


Abbildung 2.3: Wechselwirkungsprozess des Modellsystems

 σ sei der Wirkungsquerschnitt, den wir hier als konstant annehmen wollen und $P(E_0, E_1)$ sei die Wahrscheinlichkeit, dass ein Teilchen T mit der Energie E_0 bei einer Wechselwirkung ein Teilchen mit der Energie E_1 erzeugt. Zwangsläufig hat dann das zweite entstandene Teilchen die Energie $E_2 = E_0 - E_1$ und die Wahrscheinlichkeiten für E_1 und $E_2 = E_0 - E_1$ müssen gleich sein: $P(E_0, E_1) = P(E_0, E_2) = P(E_0, E_0 - E_1)$. Außerdem ist $P(E_0, E_1) = 0$, falls $E_1 \ge E_0$, da das entstandene Teilchen nie eine größere Energie haben kann als das einfallende Teilchen.

Insgesamt muss die Wahrscheinlichkeitsdichte $P(E_0, E_1)$ bezüglich E_1 normiert sein, weil auch sonst die Energiebilanz nicht stimmen würde und es muss gelten:

$$\int_0^\infty P(E', E)dE = \int_0^{E'} P(E', E)dE = 1$$
 (2.21)

Die Kaskadengleichung für das Modellproblem hat dann die Form:

$$\frac{d\Phi(E,X)}{dX} = -\sigma\Phi(E,X) + \int_{E}^{\infty} \sigma\Phi(E_{0},X)P(E_{0},E)dE_{0}
+ \int_{E}^{\infty} \sigma\Phi(E_{0},X)P(E_{0},E_{0}-E)dE_{0}
= -\sigma\Phi(E,X) + 2\int_{E}^{\infty} \sigma\Phi(E',X)P(E',E)dE'$$
(2.22)

Die denkbar einfachste Wahl ist ein konstantes P bei gegebenem E': $P(E', E) \stackrel{!}{=} const. = P_{E'}$. Das bedeutet, dass bei einer Wechselwirkung die Energien der Sekundärteilchen gleichverteilt sind. Aus der Normierungsbedingung folgt: $1 = \int_0^{E'} P(E', E) dE = P_{E'} \int_0^{E'} dE = P_{E'} E'$ und damit $P(E', E) = \frac{1}{E'}$. Wählen wir $\sigma = 1$, so erhalten wir die einfachste Form einer Kaskadengleichung:

$$\frac{d\Phi(E,X)}{dX} = -\Phi(E,X) + 2\int_{E}^{\infty} \frac{\Phi(E',X)}{E'} dE'$$

(In Abschnitt 4.1.4 werden wir das Modellproblem um Ionisationsenergieverluste erweitern.)

2.2.2 Gesamtenergie $E_{tot}(X)$ und Energieerhaltung

Aus physikalischen Gründen darf bei einer Wechselwirkung keine Energie erzeugt oder vernichtet werden. Die Gesamtenergie des Systems $E_{tot}(X)$ muss in jeder Tiefe X gleich bleiben. Die Gesamtenergie des Systems ist

$$E_{tot}(X) = \int_0^\infty E \ \Phi(E, X) \ dE$$

und wir verlangen, dass $E_{tot}(X) = const.$ bzw. $\frac{dE_{tot}(X)}{dX} = 0$ für jedes X gilt, wenn Ionisationsenergieverluste nicht berücksichtigt werden ($\alpha_{ion} = 0$).

Lemma: Die Kaskadengleichung (2.22) erfüllt die Bedingung der Energieerhaltung. Beweis: Wir benötigen: $\int_0^{E'} P(E', E)EdE = \frac{1}{2}E'$ (dies ist der Erwartungswert von P für festes E'); dies folgt aus

$$\int_{0}^{E'} P(E', E) E dE = \int_{0}^{E'} P(E', E' - E) E dE \stackrel{Subst.}{=} E' - \int_{0}^{E'} P(E', E) E dE.$$

Damit folgt:

$$\begin{array}{lll} \frac{dE_{tot}(X)}{dX} & = & \int_0^\infty \frac{d\Phi(E,X)}{dX} E dE \\ \stackrel{(2.22)}{=} & \int_0^\infty \left(-\sigma\Phi(E,X) + 2 \int_E^\infty \sigma\Phi(E',X) P(E',E) dE' \right) E dE \\ & = & -\sigma \int_0^\infty \Phi(E,X) E dE + 2\sigma \int_0^\infty \int_E^\infty \Phi(E',X) \underbrace{P(E',E)}_{=0, \text{ falls } E' \leq E} dE' E dE' E$$

Die Gesamtenergie $E_{tot}(X)$ ist also eine Erhaltungsgröße. Neben der Tatsache, dass sie für die Interpretation experimenteller Daten eine wichtige Rolle spielt, wird ihre Bedeutung dadurch noch unterstrichen und dieser Tatsache soll in einem numerischen Verfahren Rechnung getragen werden.

2.2.3 Teilchenzahl $N_{tot}(X)$

Für das einfache Modellproblem lässt sich die Gesamtteilchenzahl $N_{tot}(X)$ analytisch bestimmen. Die Gesamtteilchenzahl war definiert als:

$$N_{tot}(X) = \int_{0}^{\infty} \Phi(E', X) dE'$$

Wir leiten die Gesamtteilchenzahl nach X ab und setzen die Kaskadengleichung (2.22) ein:

$$\frac{dN_{tot}(X)}{dX} = \int_0^\infty \underbrace{\frac{d\Phi(E,X)}{dX}}_{(2.22) \text{ einsetzen}} dE$$

$$= \int_0^\infty \left(-\sigma\Phi(E,X) + 2 \int_E^\infty \sigma\Phi(E',X) P(E',E) dE' \right) dE$$

$$= \sigma \int_0^\infty \left(-\Phi(E,X) + 2 \int_0^\infty \Phi(E',X) P(E',E) dE' \right) dE$$

$$= \sigma \left(-N_{tot}(X) + 2 \int_0^\infty \Phi(E',X) \underbrace{\int_0^\infty P(E',E) dE}_{-1} dE' \right) = \sigma N_{tot}(X)$$

Dies ist eine Differentialgleichung für $N_{tot}(X)$ und deren Lösung ist

$$N_{tot}(X) = N_0 e^{\sigma X},$$

wobei N_0 von den Anfangswerten abhängt. Hiermit ist demonstriert, dass die Teilchenzahl für wachsendes X beliebig groß wird. Dies ist gerade ein Charakteristikum von Kaskadengleichungen: bei jeder Wechselwirkung entstehen neue Teilchen, deren Energien aber immer kleiner werden. Entscheidend ist, dass die Teilchenzahl zwar beliebig groß werden kann, ihre Gesamtenergie aber immer endlich bleibt.

Bei der elektromagnetischen Kaskadengleichung werden wir sogar feststellen, dass bereits $\sigma=\infty$ ist, die Teilchenzahl also schon bei beliebig kleinen Tiefen X unendlich groß wird.

2.3 Die elektromagnetische Kaskadengleichung

Die elektromagnetische Kaskadengleichung besteht aus einem System von zwei gekoppelten Differentialgleichungen, eine für den Photonenfluss $\Phi_g(E,X)$ und eine für den Positronen- plus Elektronenfluss $\Phi_e(E,X)$. Wir werden hier die bequemere Schreibweise $\Phi_g(E,X) := \Phi_\gamma(E,X)$ und $\Phi_e(E,X) := \Phi_{e^+}(E,X) + \Phi_{e^-}(E,X)$ benutzen. Im Kontext der elektromagnetischen Kaskadengleichung ist die Substitution $t = X/X_0$ üblich. $X_0 \approx 36,6-37,7\frac{g}{cm^2}$ ist die Strahlungslänge des Elektrons in Luft. Auf diese Weise kann

man einheitenlos rechnen und ist außerdem von dem nur empirisch bestimmbaren Wert von X_0 unabhängig. Dann wird die Definition (2.1) zu:

$$\Phi_T(E,t) := \frac{dN_T(E,t)}{dE} \tag{2.23}$$

Außerdem meinen wir ab jetzt, wenn wir vom Elektronenfluss sprechen, die Summe des Positronen- und Elektronenflusses. Hiermit greifen wir schon auf die Annahme hoher Teilchenenergien vor, bei denen Elektronen und Positronen praktisch gleich behandelt werden können — hierauf gehen wir im nächsten Kapitel genauer ein.

Der Energieverlust von Elektronen (also Elektronen und Positronen) durch Ionisation in der Atmosphäre beträgt etwa $\alpha_{ion,X}=\frac{dE}{dX}\approx 1,9-2,24\frac{\text{MeV}}{\text{g/cm}^2}$. In Einheiten der Strahlungslänge ist dies $\alpha_{ion}=\alpha_{ion,X}\cdot X_0\approx 69,54-84,448\text{MeV}$ (pro 1 Strahlungslänge X_0). Über weite Energiebereiche kann der Energieverlust in guter Näherung als konstant angenommen werden.

Die elektromagnetische Kaskadengleichung, wie sie etwa in [34] eingeführt wird, ist:

$$\frac{\partial \Phi_e(E,t)}{\partial t} = -\sigma_e \Phi_e(E,t) + \int_E^\infty \Phi_e(E',t) \frac{\varphi_0(1-E/E')}{E'} dE'
+2 \int_E^\infty \Phi_g(W',t) \frac{\psi_0(E/W')}{W'} dW' + \alpha_{ion} \frac{\partial \Phi_e(E,t)}{\partial E}$$

$$\frac{d\Phi_g(W,t)}{dt} = -\sigma_g \Phi_g(W,t) + \int_W^\infty \Phi_e(E',t) \frac{\varphi_0(W/E')}{E'} dE'$$
(2.24)

Die Funktionen φ_0 und ψ_0 ergeben sich aus der Feldtheorie und haben die Werte

$$\varphi_0(v) = v + \frac{1-v}{v}(\frac{4}{3} + 2b)$$
(2.26)

$$\psi_0(u) = \frac{2}{3} - \frac{1}{2}b + (\frac{4}{3} + 2b)(u - \frac{1}{2})^2$$
mit $b \approx 0.0122$ bis 0.0135

und

$$\sigma_e = \sigma_{brems} = \frac{1}{\lambda_{brems}} = \int_0^1 \varphi_0(v) dv \quad \text{und} \quad \sigma_g = \sigma_{pair} = \frac{1}{\lambda_{pair}} = \int_0^1 \psi_0(u) du = \frac{7}{9} - \frac{b}{3}$$

Die Singularität von φ_0 Wir sehen hier, dass das erste Integral in (2.24) und σ_e aufgrund der Singularität von $\varphi_0(v)$ für $v \to 0$ unendlich sind. Wir wollen diese Schreibweise der Kaskadengleichung deshalb symbolisch auffassen und als Ergebnis eines geeigneten Limesprozesses ansehen. In der Tat stellt diese Singularität nach wie vor eine Herausforderung an jede Methode zur Gewinnung einer Lösung der Kaskadengleichung dar und wird uns in den kommenden Kapiteln mehrfach beschäftigen.

Die Singularität in Gleichung (2.25) ist übrigens kein Problem: ab (spätestens) $E' > E_{prim}$ ist $\Phi_e(E',t) = 0$, die Singularität in $\varphi_0(W/E')$ wird aber erst später, genauer für $E' \to \infty$, erreicht, das Produkt ist 0.

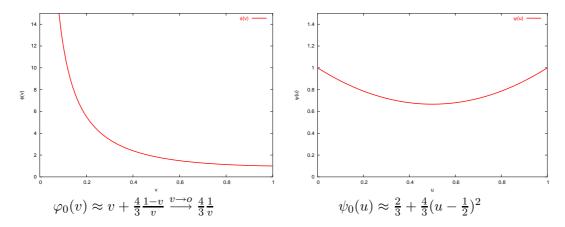


Abbildung 2.4: φ_0 , ψ_0 : Energie-Wahrscheinlichkeitsdichten für *Bremsstrahlung* und *Paarbildung*.

Wir wollen hier die Bedeutung der einzelnen Terme nochmals bildlich anhand der folgenden vereinfachten Feynman-Diagramme veranschaulichen:

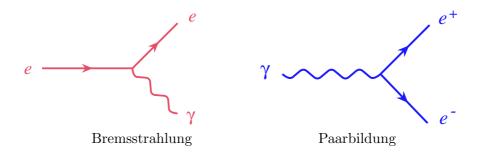


Abbildung 2.5: Vereinfachte Feynman-Diagramme für Bremsstrahlung und Paarbildung

Die Terme auf der rechten Seite der folgenden Gleichungen ergeben sich aus den betrachteten Wechselwirkungsprozessen. Bildlich gesprochen kann man sagen, was auf der linken Seite der Diagramme steht, verschwindet nach einer Wechselwirkung und ergibt dementsprechend einen Verlustterm. Was auf der rechten Seite steht, wird erzeugt und ergibt einen Quellterm. (Der Ionisationsterm gehört nicht in dieses Schema.) Da wir nicht zwischen Elektronen und Positronen unterscheiden, kommt der Quellterm für Paarbildung zweimal vor.

$$\frac{\partial \Phi_e(E,t)}{\partial t} = \underbrace{-\sigma_{brems} \Phi_e(E,t)}_{\text{Verlustterm}} + \underbrace{\int_E^\infty \Phi_e(E',t) \sigma_{brems} P_{e \to e}(E',E) dE'}_{\text{Quellterm Bremsstrahlung}}$$

$$+2\underbrace{\int_{E}^{\infty} \Phi_{g}(E',t) \sigma_{pair} P_{\gamma \to e}(E',E) dE'}_{\text{Quellterme Paarbildung}} + \underbrace{\alpha \frac{\partial \Phi_{e}(E,t)}{\partial E}}_{\text{Ionisationsterm}}$$
(2.28)

$$\frac{\partial \Phi_{g}(E,t)}{\partial t} = \underbrace{\frac{\partial E}{\text{Quellterme Paarbildung}}}_{\text{Quellterme Paarbildung}} \underbrace{\frac{\partial E}{\text{Ionisationsterm}}}_{\text{Quellterme Paarbildung}} = \underbrace{\frac{\partial \Phi_{g}(E,t)}{\partial t} + \underbrace{\int_{E}^{\infty} \Phi_{e}(E',t) \sigma_{brems} P_{e \to g}(E',E) dE'}_{\text{Quellterme Paarbildung}}}_{\text{Quellterm Bremsstrahlung}}$$
(2.29)

Kapitel 3

Analytische Approximationen

Wir beschreiben hier den Ansatz von Rossi und Greisen [33] zur approximativen Lösung der elektromagnetischen Kaskadengleichung. Dieser wird in der Literatur aus historischen Gründen Approximation A und Approximation B genannt. Zunächst werden die elektromagnetischen Kaskadengleichungen unter gewissen physikalischen Annahmen aufgestellt. Diese werden dann der Mellin- und Laplace-Transformation unterworfen. Für die transformierten Differentialgleichungen finden sich leicht geschlossene Lösungen. Die Rücktransformation der Lösungen ist dann aber nicht mehr analytisch möglich, sie wird mit der Sattelpunktmethode approximiert.

Für zwei Anfangsbedingungen, zum einen für photoneninduzierte, zum anderen für elektronen- bzw. positroneninduzierte Luftschauer werden die Lösungen für den Photonenfluss und für den Elektronenfluss in der Atmosphäre explizit hergeleitet. Wir werden später diese Approximation benutzen, um das in dieser Arbeit neu entwickelte numerische Verfahren zu verifizieren.

Die Approximation B wurde schon im Jahr 1941 von Rossi und Greisen [33, 34] entwickelt. Weite Verbreitung fand eine weitere Vereinfachung von Greisen [19] um 1956, die aufgrund der simplen Formel und trotzdem für manche Zwecke ausreichenden Genauigkeit auch heute noch unter dem Namen Greisen-Gleichung rege benutzt wird. Im Zuge des wissenschaftlichen Fortschritts der Physik steigen auch die Anforderungen an die Qualität der Modelle und so gibt es auch immer wieder neue Ideen und Arbeiten auf diesem vermeintlich alten Gebiet wie jüngst die Arbeit [35] aus dem Jahre 2006, in der versucht wird, die Näherungsschritte von Greisen nachzuvollziehen und in der eine Verbesserung von Greisens Gleichung vorgeschlagen wird.

Andererseits entstehen immer wieder neue Anwendungsfelder, bei denen die alten Approximationen ausgezeichnete Dienste leisten, wie etwa in [36] über die Modellierung von γ -Strahlen-Emissionen in speziellen Doppelsternsystemen, bei der die Voraussetzung hoher Teilchenenergien zutrifft und deshalb Approximation B benutzt werden kann.

3.1 Die elektromagnetischen Kaskadengleichungen und die Approximation A

Bei der Approximation A wird die Annahme hoher Teilchenenergien gemacht, so dass Energieverluste durch Ionisation und niederenergetische Wechselwirkungsprozesse vernachlässigt werden. Es wird nur Bremsstrahlung und Paarbildung betrachtet. Außerdem wird angenommen, dass die Wechselwirkungswahrscheinlichkeitsdichten und damit im Wesentlichen die Funktionen ϕ und ψ nur vom Verhältnis der Energie des wechselwirkenden Teilchens zu der des erzeugten Teilchens abhängen:

$$\phi(W, E') = \phi(W/E') \text{ und } \psi(E, W') = \psi(E/W')$$
 (3.1)

(Die Funktionen bei Rossi/Greisen [33] und Gaisser [32] sind dieselben; wir benutzen in diesem Kapitel aber die Schreibweise von [32], insbesondere ϕ statt φ_0 und ψ statt ψ_0 .)

$$\frac{d\gamma(W,t)}{dt} = -\frac{\gamma(W,t)}{\lambda_{pair}} + \int_{W}^{\infty} \pi(E',t) \frac{\phi(W/E')}{E'} dE' \qquad (3.2)$$

$$\frac{d\pi(E,t)}{dt} = -\frac{\pi(E,t)}{\lambda_{brems}} + \int_{E}^{\infty} \pi(E',t) \frac{\phi(1-E/E')}{E'} dE' \qquad (3.3)$$

Hier wurde die übliche Substitution $dt = dX/X_0$ verwendet (X_0) ist die Strahlungslänge des Elektrons). ϕ und ψ sind Energie-Wahrscheinlichkeitsdichten für Bremsstrahlung und Paarbildung. Der erste Term auf der rechten Seite in (3.2) beschreibt den Verlustterm durch Paarbildung, das Integral den Quellterm für Bremsstrahlung. Der erste Term auf der rechten Seite in (3.3) beschreibt den Verlustterm durch Bremsstrahlung, das erste Integral den Quellterm für Bremsstrahlung, das zweite Integral den Quellterm für Paarbildung.

Im ersten Integral in (3.3) substituieren wir v = 1 - E/E', im zweiten Integral substituieren wir u = E/W' und erhalten:

$$\frac{d\pi(E,t)}{dt} = -\frac{\pi(E,t)}{\lambda_{brems}} + \int_0^1 \pi(\frac{E}{1-v},t) \frac{\phi(v)}{1-v} dv + 2\int_0^1 \gamma(\frac{E}{u},t) \frac{\psi(u)}{u} du \tag{3.4}$$

Im Integral in (3.2) substituieren wir v = W/E' und erhalten:

$$\frac{d\gamma(W,t)}{dt} = -\frac{\gamma(W,t)}{\lambda_{pair}} + \int_0^1 \pi(W/v,t) \frac{\phi(v)}{v} dv$$
 (3.5)

Die Wahrscheinlichkeiten ϕ und ψ ergeben sich aus der Feldtheorie und haben die Werte

$$\phi(v) = v + \frac{1-v}{v} (\frac{4}{3} + 2b)$$

$$= \frac{1}{v} (1 + (1-v)^2 - (1-v)(\frac{2}{3} - 2b))$$

$$\approx 1/v \quad \text{(für kleine } v)$$

$$\psi(u) = \frac{2}{3} - \frac{1}{2}b + (\frac{4}{3} + 2b)(u - \frac{1}{2})^2$$

$$= u^2 + (1-u)^2 + (\frac{2}{3} - 2b)u(1-u)$$

$$\approx \frac{7}{9} - \frac{1}{3}b \approx \frac{7}{9}$$

$$\text{mit } b = \frac{1}{18 \log(183Z^{-1/3})} \approx 0.0122$$

$$\text{(hier: } Z \approx 7.2 \text{ für ein "mittleres" Luftmolekül}^1\text{)}$$

und es gilt

$$\frac{1}{\lambda_{brems}} = \int_0^1 \phi(v) dv$$
Numerisch
pair
$$\int_0^1 \psi(u) du \approx \frac{7}{9}$$
Iten wir folgende For sichen Kaskadengleichung:

Somit erhalten wir folgende For

Singularitätsfrei Behandlun skadengleichung 3.2

$$\frac{d\pi(E,t)}{dt} = -\int_{0}^{1} \left[\pi(E,t) \frac{\mathbf{g} \, \mathbf{von}}{1 - v^{\pi(1-v^{-t})}} \phi(v) dv + 2 \int_{0}^{1} \gamma(\frac{E}{u},t) \frac{\psi(u)}{u} du \, (3.8) \right] \frac{d\gamma(W,t)}{dt} = -\sigma_{0}\gamma(W,t) + \int_{0}^{1} \pi(W/v,t) \frac{\phi(v)}{v} dv \tag{3.9}$$

Durch diese Umformungen sind die in Abschnitt 2.3 erwähnten Singularitäten beseitigt: In Gleichung (3.8) stehen die singulären Terme im Integranden innerhalb der eckigen Klammer [...]. Mit einer Limesbetrachtung $\lim_{\epsilon \to +0} \int_{\epsilon}^{1} \dots$ lässt sich zeigen, dass das Integral einen endlichen Wert hat. Für $v \to 0$ heben sich die Terme in der eckigen Klammer nämlich gerade weg. Im Folgenden macht die Singularität jedoch keine Schwierigkeiten, da über sie einfach hinwegintegriert werden kann.

3.3 Elementare Lösung

In diesem Abschnitt bestimmen wir spezielle Lösungen des Differentialgleichungs-Systems (DGL), die sogenannten elementaren Lösungen. Dies sind Lösungen der Form

$$\pi(E,t) = F_{\pi}(E)f(t) \qquad \gamma(W,t) = F_{\gamma}(W)f(t) \tag{3.10}$$

In [33] wird ein Mittelwert für b von Luft $(Z \approx 7.3)$ bis Blei (Z = 82) genommen, was Werte von 0.012 bis 0.015 ergibt, dort wird deshalb b = 0.0135 benutzt.

bei der also die Variablen E bzw. W (Energie) und t (Tiefe) separiert sind.

Wir folgen im Wesentlichem dem Vorgehen in [33] und setzen (3.10) in die Kaskadengleichungen (3.8) und (3.9) ein:

$$F_{\pi}(E)\frac{df(t)}{dt} = f(t)\left\{-\int_{0}^{1} \left[F_{\pi}(E) - \frac{1}{1-v}F_{\pi}(\frac{E}{1-v})\right]\phi(v)dv + 2\int_{0}^{1} F_{\gamma}(\frac{E}{u})\frac{\psi(u)}{u}du\right\}$$
(3.11)

$$F_{\gamma}(W)\frac{df(t)}{dt} = f(t)\left\{-\sigma_0 F_{\gamma}(W) + \int_0^1 F_{\pi}(W/v)\frac{\phi(v)}{v}dv\right\}$$
(3.12)

Die Ausdrücke in geschweiften Klammern hängen nicht von t ab, sondern nur von E bzw. W, in beiden Fällen hat man also Ausdrücke der Form $df(t)/dt = \lambda f(t)$. Diese Differentialgleichung hat die allgemeine Lösung $f(t) = \text{const} \cdot e^{\lambda t}$. Dies eingesetzt in obige Gleichungen und das Kürzen von f(t) gibt:

$$\lambda F_{\pi}(E) = \left\{ -\int_{0}^{1} \left[F_{\pi}(E) - \frac{1}{1-v} F_{\pi}(\frac{E}{1-v}) \right] \phi(v) dv + 2 \int_{0}^{1} F_{\gamma}(\frac{E}{u}) \frac{\psi(u)}{u} du \right\}$$

$$\lambda F_{\gamma}(W) = \left\{ -\sigma_{0} F_{\gamma}(W) + \int_{0}^{1} F_{\pi}(W/v) \frac{\phi(v)}{v} dv \right\}$$

Man versucht, ein Potenzgesetz in der Energie als Lösungsansatz für die Gleichungen zu nehmen:

$$F_{\pi}(E) = aE^{-(s+1)} \quad \text{und} \quad F_{\gamma}(W) = bW^{-(s+1)} \quad \text{mit} \quad s > 0.$$
 (3.13)

Diese Wahl ist auch physikalisch motiviert, da man im integralen Flussspektrum aller Teilchenarten in weiten Energiebereichen für das Spektrum ein Potenzgesetz beobachtet. Die so konstruierten Lösungen beschreiben ein mit der Tiefe exponentiell abfallendes Energiespektrum, das jedoch bei fester Tiefe dieselbe Energieverteilung hat. Einsetzen von (3.13) ergibt das LGS

$$\lambda a = bB(s) - aA(s) \quad \text{und} \quad \lambda b = -b\sigma_0 + aC(s)$$
 (3.14)

oder mit der Bezeichnung

$$M := \begin{pmatrix} \lambda + A(s) & -B(s) \\ -C(s) & \lambda + \sigma_0 \end{pmatrix}$$
 (3.15)

ist $M\binom{a}{b}=\binom{0}{0}$ mit den Abkürzungen

$$A(s) := \int_0^1 [1 - (1 - v)^s] \phi(v) dv, \quad C(s) := \int_0^1 v^s \phi(v) dv B(s) := 2 \int_0^1 u^s \psi(u) du, \qquad \sigma_0 := \int_0^1 \psi(u) du$$
 (3.16)

Damit das LGS (3.14) für beliebige a und b lösbar ist, muss gelten det M=0 oder

$$(\lambda + A(s))(\lambda + \sigma_0) - B(s)C(s) = 0 \tag{3.17}$$

Mit Ausmultiplizieren und quadratischer Ergänzung bekommt man so zwei Lösungen für λ

$$\lambda_{1,2} = -\frac{A(s) + \sigma_0}{2} \pm \frac{1}{2} \sqrt{(A(s) - \sigma_0)^2 + 4B(s)C(s)}$$
(3.18)

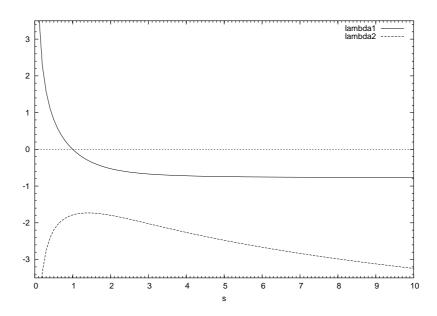


Abbildung 3.1: Die Funktionen $\lambda_1(s)$ und $\lambda_2(s)$

Aus (3.14) kann man noch folgende nützliche Beziehung ableiten:

$$\frac{a_i}{b_i} = \frac{B(s)}{A(s) + \lambda_i(s)} = \frac{\sigma_0 + \lambda_i(s)}{C(s)} \qquad \text{für} \quad i = 1, 2$$
(3.19)

Aus (3.18) liest man direkt ab: $\lambda_1(s) + \lambda_2(s) = -(A(s) + \sigma_0)$,

also
$$A(s) + \lambda_1(s) = -(\sigma_0 + \lambda_2(s))$$
 und $A(s) + \lambda_2(s) = -(\sigma_0 + \lambda_1(s))$ (3.20)

Weiterhin werden später (bei der Anwendung des Residuensatzes) noch folgende Beziehungen verwendet: Nach Konstruktion sind λ_1 und λ_2 Nullstellen von det M, d.h. es ist:

$$\det M = (\lambda - \lambda_1)(\lambda - \lambda_2) \tag{3.21}$$

Die beiden elementaren Lösungen, die wir gefunden haben, ergeben sich aus (3.19) und sind (mit beliebigen Konstanten a_1 und a_2):

$$\pi(E,t) = a_1 E^{-(s+1)} e^{\lambda_1(s)t} , \quad \gamma(W,t) = \frac{a_1 C(s)}{\sigma_0 + \lambda_1(s)} W^{-(s+1)} e^{\lambda_1(s)t}$$

$$\pi(E,t) = a_2 E^{-(s+1)} e^{\lambda_2(s)t} , \quad \gamma(W,t) = \frac{a_2 C(s)}{\sigma_0 + \lambda_2(s)} W^{-(s+1)} e^{\lambda_2(s)t}$$
(3.22)

Die elementaren Lösungen sind zunächst nur von geringem praktischem Nutzen, da wir eigentlich an Luftschauern interessiert sind, die von einem einzelnen Elektron oder einem einzelnen Photon ausgelöst werden, die also folgenden Randbedingungen genügen:

1. Elektron-induzierter Schauer mit Primärenergie E_0 :

$$\pi(E,0) = \delta(E - E_0) \qquad \gamma(W,0) = 0$$
 (3.23)

2. Photon-induzierter Schauer mit Primärenergie W_0 :

$$\pi(E,0) = 0$$
 $\gamma(W,0) = \delta(W - W_0)$ (3.24)

Mit der elementaren Lösung sind diese Randbedingungen jedoch nicht zu erfüllen. Im ersten Fall wäre $0 = \gamma(W,0) = F_{\gamma}(W)f(0) = F_{\gamma}(W) \cdot const.$ also $F_{\gamma}(W) \equiv 0$ und damit auch $\gamma(W,t) \equiv 0$, was jedoch physikalisch keinen Sinn macht, da für t>0 auch $\gamma(W,t)>0$ ist. Ganz allgemein kann man mit stetigen oder differenzierbaren Ansatzfunktionen keine Randwerte beschreiben, die die Form einer δ -Funktion haben.

Der eigentliche Nutzen der elementaren Lösung liegt darin, dass der Separationsansatz einen Hinweis auf die Benutzung der Mellin-Transformation liefert. Diese benutzt als Transformationskern Potenzen der Energie, ähnlich wie es im Separationsansatz gemacht wird. Tatsächlich führt die Mellin-Transformation auf dieselben DGLs wie im elementaren Fall — wobei die Flüsse durch ihre Mellin-Transformierten ersetzt sind. Deshalb kann dann die elementare Lösung wieder benutzt werden, muss dann aber rücktransformiert werden. Dies wird im Kapitel 3.5 durchgerechnet.

Bei Approximation B schließlich führt die Beobachtung, dass die allgemeine Lösung der Kaskadengleichung eine Linearkombination der elementaren Lösungen ist, überhaupt erst zu einem Ergebnis — dort werden, nach einer Betrachtung, die dieses Vorgehen rechtfertigt, einfach dieselben Koeffizientenfunktionen genommen.

Zum Abschluss sei noch bemerkt, dass in [32] gleich der Separationsansatz

$$\pi(E,t) = f_{\pi}(t)E^{-(s+1)}$$
 $\gamma(W,t) = f_{\gamma}(t)W^{-(s+1)}$

verwendet wird, der im Prinzip genauso physikalisch begründet ist, wie der Ansatz in [33]. Einsetzen in (3.8) und (3.9) ergibt das Differentialgleichungssystem

$$f'_{\pi}(t) = -A(s)f_{\pi}(t) + B(s)f_{\gamma}(t)$$
 (3.25)

$$f_{\gamma}'(t) = C(s)f_{\pi}(t) - \sigma_0 f_{\gamma}(t) \tag{3.26}$$

Dies kann direkt gelöst werden, indem man die zwei DGLs zu einer linearen DGL 2. Ordnung umformt, der beide Funktionen f_{π} und f_{γ} genügen. Dieser Ansatz führt auf dieselbe elementare Lösung, vereinfacht den Rechenweg jedoch etwas; außerdem ist die Ähnlichkeit der DGL nach der Mellin-Transformation mit obenstehenden DGLs besser erkennbar.

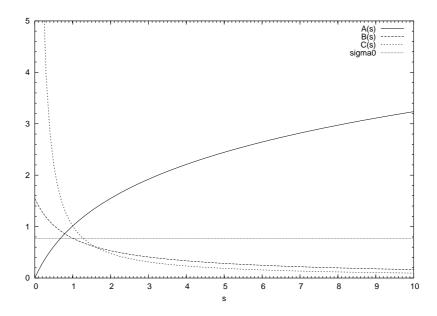


Abbildung 3.2: Die Funktionen A(s), B(s), C(s) und σ_0

3.4 Berechnung der Integrale

Im Kapitel 3.3, Gleichung (3.16), wurden die Integrale $A(s), B(s), C(s), \sigma_0$ eingeführt. In diesem Kapitel werden sie soweit wie möglich elementar berechnet.

3.4.1 Integral A(s)

Einsetzen von (3.6), der Definition von ψ , in (3.16) ergibt:

$$A(s) := \int_0^1 [1 - (1 - v)^s] \phi(v) dv$$

$$= \int_0^1 [1 - (1 - v)^s] [v + \frac{1 - v}{v} (\frac{4}{3} + 2b)] dv$$

$$= \frac{1}{2} - \frac{1}{(s+1)(s+2)} + (\frac{4}{3} + 2b)(\psi(s+1) + \gamma) - (\frac{4}{3} + 2b)\frac{s}{s+1}$$
(3.27)

Hier berechnen sich die einzelnen Summanden aus den Teilintegralen

$$\int_{0}^{1} [1 - (1 - v)^{s}] v dv = \int_{0}^{1} [(1 - w) - w^{s} (1 - w)] dw$$

$$= \int_{0}^{1} (1 - w - w^{s} + w^{s+1}) dw$$

$$= \frac{1}{2} - \frac{1}{(s+1)(s+2)}$$

$$\int_{0}^{1} \frac{1 - (1 - v)^{s}}{v} dv = \int_{0}^{\infty} \frac{e^{-t} - e^{-t(s+1)}}{1 - e^{-t}} dt \text{ (nach Subst.} 1 - v = e^{-t})$$
(3.28)

$$= \psi(s+1) + \gamma$$

$$\left(\min \int_{0}^{\infty} \frac{e^{-t} - e^{-ts}}{1 - e^{-t}} dt = \psi(s) + \gamma = \frac{ds}{s} \log \Gamma(s) + \gamma \text{ nach [40]} \right)$$

$$\int_{0}^{1} [1 - (1 - v)^{s}] dv = \frac{s}{s+1}$$
(3.29)

Da die Integraldarstellung der ψ -Funktion nichttrivial ist, wird in Anhang A.1 eine Beweisskizze gegeben.

3.4.2 Integral B(s)

Einsetzen von (3.7), der Definition von ψ , in (3.16) ergibt ein Integral, das sich elementar integrieren lässt:

$$B(s) := 2 \int_{0}^{1} u^{s} \psi(u) du$$

$$= 2 \int_{0}^{1} u^{s} \left(\frac{2}{3} - \frac{1}{2}b + (\frac{4}{3} + 2b)(u - \frac{1}{2})^{2}\right) du$$

$$= 2 \left(\frac{2}{3} - \frac{1}{2}b\right) \int_{0}^{1} u^{s} du + 2(\frac{4}{3} + 2b) \int_{0}^{1} u^{s} (u - \frac{1}{2})^{2} du$$

$$= 2 \left(\frac{2}{3} - \frac{1}{2}b\right) \int_{0}^{1} u^{s} du + 2(\frac{4}{3} + 2b) \int_{0}^{1} \left(u^{s+2} - u^{s+1} + \frac{1}{4}u^{s}\right) du$$

$$= 2 \left(\frac{1}{s+1} + (\frac{4}{3} + 2b)(\frac{1}{s+3} - \frac{1}{s+2})\right)$$

$$= 2 \left(\frac{1}{s+1} - (\frac{4}{3} + 2b)\frac{1}{(s+2)(s+3)}\right)$$

$$= 2 \left(\frac{1}{s+1} - \frac{\frac{4}{3} + 2b}{(s+2)(s+3)}\right)$$
(3.31)

3.4.3 Integral C(s)

Einsetzen von (3.6), der Definition von ϕ , in (3.16) ergibt ein Integral, das sich elementar integrieren lässt:

$$C(s) := \int_0^1 v^s \phi(v) dv$$

$$= \int_0^1 v^s \left(v + \frac{1 - v}{v} \left(\frac{4}{3} + 2b\right)\right) dv$$

$$= \int_0^1 v^{s+1} dv + \left(\frac{4}{3} + 2b\right) \int_0^1 \left(v^{s-1} - v^s\right) dv$$

$$= \frac{1}{s+2} + \left(\frac{4}{3} + 2b\right) \left(\frac{1}{s} - \frac{1}{s+1}\right)$$

$$= \frac{1}{s+2} + (\frac{4}{3} + 2b)(\frac{1}{s(s+1)}) \tag{3.32}$$

3.4.4 Integral σ_0

Einsetzen von (3.7), der Definition von ψ , in (3.16) ergibt ein Integral, das sich leicht elementar integrieren lässt:

$$\sigma_{0} := \int_{0}^{1} \psi(u)du$$

$$= \int_{0}^{1} \left(\frac{2}{3} - \frac{1}{2}b + (\frac{4}{3} + 2b)(u - \frac{1}{2})^{2}\right) du$$

$$= \int_{0}^{1} \left(\frac{2}{3} - \frac{1}{2}b\right) du + (\frac{4}{3} + 2b) \int_{0}^{1} \left(u - \frac{1}{2}\right)^{2} du$$

$$= \frac{2}{3} - \frac{1}{2}b + (\frac{4}{3} + 2b)\frac{1}{12}$$

$$= \frac{7}{9} - \frac{1}{3}b$$
(3.33)

3.5 Mellin- und Laplace-Transformation der Kaskadengleichung

3.5.1 Definition der Mellin- und Laplace-Transformation

Die Mellin-Transformation einer Funktion f(E) ist definiert als:

$$M\{f(E)\}(s) \equiv M_f(s) := \int_0^\infty E^s f(E) dE$$
 (3.34)

Unter recht allgemeinen Voraussetzungen an f(E) ist die Mellin-Transformierte $M_f(s)$ einer Funktion f(E) eindeutig und $M_f(s)$ lässt sich rücktransformieren. Die Inverse der Mellin-Transformation ist

$$f(E) = \frac{1}{2\pi i} \int_C E^{-(s+1)} M_f(s) ds$$
 (3.35)

wobei der Integrationspfad C parallel zur imaginären Achse von $-\infty$ bis $+\infty$ verläuft und innerhalb des Konvergenzbereiches von $M_f(s)$ liegen muss.

Später benötigen wir noch die Laplace-Transformation und eine kombinierte Transformation, die Laplace-Transformation einer Mellin-Transformierten. Die Laplace-Transformation einer Funktion f(t) ist definiert als:

$$L\{f(t)\}(\lambda) \equiv L_f(\lambda) := \int_0^\infty e^{-\lambda t} f(t) dt \qquad (\lambda > 0)$$
 (3.36)

Die Inverse der Laplace-Transformation ist ähnlich wie die Mellin-Transformation unter recht allgemeinen Bedingungen eindeutig:

$$f(t) = \frac{1}{2\pi i} \int_C e^{\lambda t} L_f(\lambda) d\lambda \tag{3.37}$$

C muss auch hier innerhalb des Konvergenzbereiches und parallel zur imaginären Achse verlaufen. Die folgende Beziehung lässt sich mit partieller Integration von $M_{f'}$ und anschließender Limesbildung leicht nachrechnen:

$$L_{f'}(\lambda) = \lambda L_f(\lambda) - f(0) \tag{3.38}$$

Für die kombinierte Transformation schreiben wir

$$K\{f(E,t)\}(s,\lambda) \equiv K_f(s,\lambda) := L\{M_f(s,t)\}(\lambda) \tag{3.39}$$

3.5.2 Transformation der Kaskadengleichung

Nun mellintransformieren wir die Kaskadengleichungen (3.8) und (3.9). Die Mellin-Transformation hat die wichtige Eigenschaft, dass nach der Transformation die Transformierte und die Integrale der Quellterme faktorisieren, so dass die Mellin-Transformierten vor die Integrale gezogen werden können. Deshalb erhält man nach der Transformation genau dasselbe Differentialgleichungssystem wie in (3.25), (3.26).

Für die linke Seite von (3.8) erhalten wir

$$M_{\frac{d\pi}{dt}}(s,t) = \int_0^\infty E^s \frac{d\pi(E,t)}{dt} dE = \frac{d}{dt} \int_0^\infty E^s \pi(E,t) dE = \frac{dM_{\pi}(s,t)}{dt}$$
(3.40)

Die Mellin-Transformierte des ersten Integrals auf der rechten Seite ist

$$M\left\{ \int_{0}^{1} \left[\pi(E,t) - \frac{1}{1-v} \pi(\frac{E}{1-v},t) \right] \phi(v) dv \right\} (s) =$$

$$= \int_{0}^{\infty} E^{s} \left(\int_{0}^{1} \left[\pi(E,t) - \frac{1}{1-v} \pi(\frac{E}{1-v},t) \right] \phi(v) dv \right) dE$$

$$= \int_{0}^{\infty} E^{s} \pi(E,t) \left(\int_{0}^{1} \phi(v) dv \right) dE - \underbrace{\int_{0}^{\infty} \int_{0}^{1} E^{s} \frac{1}{1-v} \pi(\frac{E}{1-v},t) \phi(v) dv dE}_{\text{(substituiere } E \text{ durch } E/1-v)}$$

$$= \int_{0}^{\infty} E^{s} \pi(E,t) dE \int_{0}^{1} \phi(v) dv - \int_{0}^{\infty} E^{s} \pi(E,t) \left(\int_{0}^{1} (1-v)^{s} \phi(v) dv \right) dE$$

$$= \int_{0}^{\infty} E^{s} \pi(E,t) dE \int_{0}^{1} \left[1 - (1-v)^{s} \right] \phi(v) dv$$

$$(\text{mit } (3.16)) = M_{\pi}(s,t) \cdot A(s)$$

$$(3.41)$$

Die Mellin-Transformierte des zweiten Integrals auf der rechten Seite ist

$$M\left\{2\int_0^1 \gamma(\frac{E}{u}, t) \frac{\psi(u)}{u} du\right\}(s) = \int_0^\infty E^s \left(2\int_0^1 \gamma(\frac{E}{u}, t) \frac{\psi(u)}{u} du\right) dE$$
$$= 2\int_0^1 \int_0^\infty E^s \gamma(\frac{E}{u}, t) \frac{\psi(u)}{u} dE du$$

(Subst.
$$W = E/u$$
) = $2\int_0^1 \int_0^\infty W^s u^s \gamma(W, t) \psi(u) dW du$
= $2\int_0^1 u^s \psi(u) \left(\int_0^\infty W^s \gamma(W, t) dW\right) du$
= $\left(2\int_0^1 u^s \psi(u) du\right) \left(\int_0^\infty W^s \gamma(W, t) dW\right)$
(mit (3.16)) = $B(s) \cdot M_{\gamma}(s, t)$ (3.42)

Die Transformation der Terme in (3.9) verläuft ähnlich:

$$M_{\frac{d\gamma}{dt}}(s,t) = \frac{dM_{\gamma}(s,t)}{dt}$$
 und $M_{(-\sigma_0\gamma)}(s,t) = -\sigma_0 M_{\gamma}(s,t)$ und

$$M\left\{\int_{0}^{1} \pi(W/v, t) \frac{\phi(v)}{v} dv\right\}(s) = \int_{0}^{\infty} \int_{0}^{1} W^{s} \pi(W/v, t) \frac{\phi(v)}{v} dv dW$$

$$(\text{Subst. } E = W/v) = \int_{0}^{\infty} E^{s} \pi(E, t) dE \int_{0}^{1} v^{s} \phi(v) dv$$

$$(\text{mit } (3.16)) = M_{\pi}(s, t) \cdot C(s)$$

Die Mellin-Transformierten der Gleichungen (3.8) und (3.9) sind also:

$$\frac{dM_{\pi}(s,t)}{dt} = -A(s)M_{\pi}(s,t) + B(s)M_{\gamma}(s,t)$$
 (3.43)

$$\frac{dM_{\gamma}(s,t)}{dt} = C(s)M_{\pi}(s,t) - \sigma_0 M_{\gamma}(s,t)$$
(3.44)

Dieses Gleichungssystem hat dieselbe Form wie (3.25), (3.26) und kann entweder direkt gelöst werden oder einfacher mit Hilfe der Laplace-Transformation. Diese hat den Vorteil, dass die Randwerte durch die Beziehung (3.38) gleich in die Transformation eingehen und als rechte Seite des resultierenden Gleichungssystems auftauchen, also nicht erst später eingesetzt werden müssen.

Wir laplacetransformieren also die Gleichungen (3.43) und (3.44). Für die linken Seiten verwenden wir die in (3.38) eingeführte Beziehung. Mit der Bezeichnung (3.39) erhalten wir so

$$K_{M'_{\pi}} = \lambda K_{\pi}(s,\lambda) - M_{\pi}(s,0) = -A(s)K_{\pi}(s,\lambda) + B(s)K_{\gamma}(s,\lambda)$$
 (3.45)

$$K_{M_{\alpha}'} = \lambda K_{\gamma}(s,\lambda) - M_{\gamma}(s,0) = C(s)K_{\pi}(s,\lambda) - \sigma_0 K_{\gamma}(s,\lambda)$$
 (3.46)

oder kürzer mit der in (3.15) definierten Matrix $M := \begin{pmatrix} \lambda + A(s) & -B(s) \\ -C(s) & \lambda + \sigma_0 \end{pmatrix}$ ist

$$M\begin{pmatrix} K_{\pi} \\ K_{\gamma} \end{pmatrix} = \begin{pmatrix} M_{\pi}(s,0) \\ M_{\gamma}(s,0) \end{pmatrix}$$
 (3.47)

3.5.3 Lösung der transformierten Kaskadengleichungen mit speziellen Randwerten

Mit den Randbedingungen für Elektron- bzw. Photon-induzierten Schauern (3.23) und (3.24) folgt

1. Elektron-induzierter Schauer mit Primärenergie E_0 :

$$M_{\pi}(s,0) = E_0^s \qquad M_{\gamma}(s,0) = 0$$
 (3.48)

2. Photon-induzierter Schauer mit Primärenergie W_0 :

$$M_{\pi}(s,0) = 0$$
 $M_{\gamma}(s,0) = W_0^s$ (3.49)

denn im ersten Fall folgt aus der Bedingung (3.23) $\pi(E,0) = \delta(E-E_0)$, dass

$$M_{\pi}(s,0) = \int_{0}^{\infty} E^{s} \pi(E,0) dE = \int_{0}^{\infty} E^{s} \underbrace{\delta(E - E_{0})}_{=0 \text{ für } E \neq E_{0}} dE = E_{0}^{s} \underbrace{\int_{0}^{\infty} \delta(E - E_{0}) dE}_{=1} = E_{0}^{s}$$

und aus der Bedingung (3.24) $\gamma(W,0) = 0$ folgt, dass

$$M_{\gamma}(s,0) = \int_0^\infty W^s \underbrace{\gamma(W,0)}_{=0} dW = 0$$

Im zweiten Fall (Photonenschauer) verläuft die Rechnung analog. Wir haben für die zwei Randbedingungen also die Gleichungssysteme

1. Elektron-induzierter Schauer mit Primärenergie E_0 :

$$M\begin{pmatrix} K_{\pi} \\ K_{\gamma} \end{pmatrix} = \begin{pmatrix} E_0^s \\ 0 \end{pmatrix} \tag{3.50}$$

2. Photon-induzierter Schauer mit Primärenergie W_0 :

$$M\begin{pmatrix} K_{\pi} \\ K_{\gamma} \end{pmatrix} = \begin{pmatrix} 0 \\ W_0^s \end{pmatrix} \tag{3.51}$$

Mit dem **Satz** aus der linearen Algebra:

Für
$$M := \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 und $\det M \neq 0 \implies M^{-1} = \frac{1}{\det M} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$. (3.52)

erhalten wir Lösungen für die Laplace-Mellin-Transformierten von π und γ durch einfaches Einsetzen und Verwendung von (3.21):

1. Elektron-induzierter Schauer mit Primärenergie E_0 :

$$K_{\pi}(s,\lambda) = \frac{(\sigma_0 + \lambda)E_0^s}{(A(s) + \lambda)(\sigma_0 + \lambda) - B(s)C(s)} = \frac{(\sigma_0 + \lambda)E_0^s}{(\lambda - \lambda_1(s))(\lambda - \lambda_2(s))}$$
(3.53)

$$K_{\gamma}(s,\lambda) = \frac{C(s)E_0^s}{(A(s) + \lambda)(\sigma_0 + \lambda) - B(s)C(s)} = \frac{C(s)E_0^s}{(\lambda - \lambda_1(s))(\lambda - \lambda_2(s))}$$
(3.54)

2. Photon-induzierter Schauer mit Primärenergie W_0 :

$$K_{\pi}(s,\lambda) = \frac{B(s)W_0^s}{(A(s)+\lambda)(\sigma_0+\lambda) - B(s)C(s)} = \frac{B(s)W_0^s}{(\lambda-\lambda_1(s))(\lambda-\lambda_2(s))}$$
(3.55)

$$K_{\gamma}(s,\lambda) = \frac{(A(s) + \lambda)W_0^s}{(A(s) + \lambda)(\sigma_0 + \lambda) - B(s)C(s)} = \frac{(A(s) + \lambda)W_0^s}{(\lambda - \lambda_1(s))(\lambda - \lambda_2(s))}$$
(3.56)

3.5.4 Inverse Laplace-Transformation

Durch Anwendung der inversen Laplace-Transformation auf K_{γ} und K_{π} erhält man analytische Lösungen für die Mellin-Transformierten der gesuchten Lösungsfunktionen π und γ durch:

$$M_{\pi}(s,t) = \frac{1}{2\pi i} \int_{C} e^{\lambda t} K_{\pi}(s,\lambda) d\lambda \tag{3.57}$$

$$M_{\gamma}(s,t) = \frac{1}{2\pi i} \int_{C} e^{\lambda t} K_{\gamma}(s,\lambda) d\lambda$$
 (3.58)

Mit den Formeln von eben erhalten wir

1. Elektron-induzierter Schauer mit Primärenergie E_0 :

$$M_{\pi}(s,t) = \frac{1}{2\pi i} \int_{C} e^{\lambda t} \frac{(\sigma_0 + \lambda) E_0^s}{(\lambda - \lambda_1(s))(\lambda - \lambda_2(s))} d\lambda$$
 (3.59)

$$M_{\gamma}(s,t) = \frac{1}{2\pi i} \int_{C} e^{\lambda t} \frac{C(s)E_0^s}{(\lambda - \lambda_1(s))(\lambda - \lambda_2(s))} d\lambda$$
 (3.60)

2. Photon-induzierter Schauer mit Primärenergie W_0 :

$$M_{\pi}(s,t) = \frac{1}{2\pi i} \int_{C} e^{\lambda t} \frac{B(s)W_0^s}{(\lambda - \lambda_1(s))(\lambda - \lambda_2(s))} d\lambda$$
 (3.61)

$$M_{\gamma}(s,t) = \frac{1}{2\pi i} \int_{C} e^{\lambda t} \frac{(A(s) + \lambda)W_0^s}{(\lambda - \lambda_1(s))(\lambda - \lambda_2(s))} d\lambda$$
 (3.62)

In dieser Darstellung sieht man, dass alle Integranden zwei einfache Pole bei λ_1 und λ_2 haben. (Es ist immer $\lambda_1(s) \neq \lambda_2(s)$, da die Diskriminante in (3.18) immer echt positiv ist.) Deshalb können wir hier eine einfache Form des Residuensatzes anwenden, der besagt:

Residuensatz: Ist eine Funktion f(z) innerhalb und auf dem Rand eines Gebietes C holomorph außer in den einfachen Polen $p_1, \ldots, p_N, N < \infty$, mit dazugehörenden Residuen r_1, \ldots, r_N , dann gilt:

$$\int_C f(z)dz = 2\pi i \sum_{k=1}^N r_k \tag{3.63}$$

Das Residuum r_k bei einem einfachen Pol p_k berechnet sich nach

$$r_k = \lim_{z \to p_k} (z - p_k) f(z) \tag{3.64}$$

Damit bekommen wir:

1. Elektron-induzierter Schauer mit Primärenergie E_0 :

$$M_{\pi}(s,t) = \frac{E_0^s}{\lambda_1(s) - \lambda_2(s)} \left((\sigma_0 + \lambda_1(s)) e^{\lambda_1(s)t} - (\sigma_0 + \lambda_2(s)) e^{\lambda_2(s)t} \right) (3.65)$$

$$M_{\gamma}(s,t) = \frac{C(s) E_0^s}{\lambda_1(s) - \lambda_2(s)} \left(e^{\lambda_1(s)t} - e^{\lambda_2(s)t} \right)$$
(3.66)

2. Photon-induzierter Schauer mit Primärenergie W_0 :

$$M_{\pi}(s,t) = \frac{B(s)W_{0}^{s}}{\lambda_{1}(s) - \lambda_{2}(s)} \left(e^{\lambda_{1}(s)t} - e^{\lambda_{2}(s)t}\right)$$

$$\stackrel{(3.19)}{=} -\frac{W_{0}^{s}}{C(s)} \frac{(\sigma_{0} + \lambda_{1}(s))(\sigma_{0} + \lambda_{2}(s))}{\lambda_{2}(s) - \lambda_{2}(s)} \left(e^{\lambda_{1}(s)t} - e^{\lambda_{2}(s)t}\right)$$

$$M_{\gamma}(s,t) = \frac{W_{0}^{s}}{\lambda_{1}(s) - \lambda_{2}(s)} \left((A(s) + \lambda_{1}(s))e^{\lambda_{1}(s)t} - (A(s) + \lambda_{2}(s))e^{\lambda_{2}(s)t}\right)$$

$$\stackrel{(3.20)}{=} -\frac{W_{0}^{s}}{\lambda_{1}(s) - \lambda_{2}(s)} \left((\sigma_{0} + \lambda_{2}(s))e^{\lambda_{1}(s)t} - (\sigma_{0} + \lambda_{1}(s))e^{\lambda_{2}(s)t}\right)$$

$$\stackrel{(3.68)}{=}$$

Die jeweils zweite Form wird in [33] benutzt. Für die Umformung werden die in Kapitel 3.3 hergeleiteten Beziehungen (3.19) und (3.20) benutzt.

3.6 Approximative Rücktransformation mit der Sattelpunkt-Methode

Für die Mellin-Transformierten haben wir nun in (3.65)-(3.68) geschlossene Ausdrücke gefunden. Mit der inversen Mellin-Transformation gewinnen wir daraus die Lösungen für die gesuchten Funktionen π und γ :

$$\pi(E,t) = \frac{1}{2\pi i} \int_C E^{-(s+1)} M_{\pi}(s,t) ds$$
 (3.69)

$$\gamma(W,t) = \frac{1}{2\pi i} \int_C W^{-(s+1)} M_{\gamma}(s,t) ds$$
 (3.70)

Die Rücktransformation lässt sich leider nicht analytisch durchführen. Als Approximationsverfahren verwenden wir die Sattelpunktmethode²(vgl. [39, 42]). Sie ist geeignet in Fällen, bei denen der Integrand als Produkt der Form $F(s)e^{f(s)}$ geschrieben werden kann, wobei f(s) entlang des Integrationspfades ein ausgeprägtes Maximum besitzt und die Funktion F(s) sich im Vergleich zum Exponentialterm nur langsam ändert. Um den Bereich des Maximums liegt dann der "Hauptanteil" des Integrals. F wird in diesem Bereich als konstant angenommen, f wird durch seine Taylorentwicklung 2. Ordnung ersetzt und das Integral wird mit diesen Näherungen berechnet.

Als erstes werden die Integrale in die entsprechende Form gebracht, also ein Produkt aus Exponentialterm und eine sich nur langsam ändernde Funktion, wobei wir wieder die zwei verschiedenen Anfangsbedingungen unterscheiden:

1. Elektron-induzierter Schauer mit Primärenergie E_0 : Einsetzen von (3.65) in (3.69) ergibt $\pi(E,t) =$

$$= \frac{1}{2\pi i} \int_{C} E^{-(s+1)} \frac{E_{0}^{s}}{\lambda_{1}(s) - \lambda_{2}(s)} \left((\sigma_{0} + \lambda_{1}(s))e^{\lambda_{1}(s)t} - (\sigma_{0} + \lambda_{2}(s))e^{\lambda_{2}(s)t} \right) ds$$
(mit $y := \log(E_{0}/E)$, also $(E_{0}/E)^{s} = e^{sy}$ ist dies)
$$= \frac{1}{2\pi i E} \int_{C} \frac{e^{sy}}{\lambda_{1}(s) - \lambda_{2}(s)} \left((\sigma_{0} + \lambda_{1}(s))e^{\lambda_{1}(s)t} - (\sigma_{0} + \lambda_{2}(s))e^{\lambda_{2}(s)t} \right) ds$$
(und mit $H_{1}(s) := \frac{\sigma_{0} + \lambda_{1}(s)}{\lambda_{1}(s) - \lambda_{2}(s)}$ und $H_{2}(s) := -\frac{\sigma_{0} + \lambda_{2}(s)}{\lambda_{1}(s) - \lambda_{2}(s)}$ ist dies)
$$= \frac{1}{2\pi i E} \int_{C} \left(H_{1}(s)e^{\lambda_{1}(s)t + sy} + H_{2}(s)e^{\lambda_{2}(s)t + sy} \right) ds$$

$$= \frac{1}{2\pi i E} \int_{C} H_{1}(s)e^{\lambda_{1}(s)t + sy} ds + \frac{1}{2\pi i E} \int_{C} H_{2}(s)e^{\lambda_{2}(s)t + sy} ds$$
(3.71)

Einsetzen von (3.66) in (3.70) ergibt analog $\gamma(W,t) =$

$$= \frac{1}{2\pi i} \int_C W^{-(s+1)} \frac{C(s)E_0^s}{\lambda_1(s) - \lambda_2(s)} \left(e^{\lambda_1(s)t} - e^{\lambda_2(s)t} \right) ds$$

$$(\text{mit } y := \log(E_0/W), \text{ also } (E_0/W)^s = e^{sy} \text{ ist dies})$$

$$= \frac{1}{W2\pi i} \int_C \frac{C(s)}{\lambda_1(s) - \lambda_2(s)} \left(e^{\lambda_1(s)t + sy} - e^{\lambda_2(s)t + sy} \right) ds$$

$$(\text{Multiplikation mit } 1 = \sqrt{s} \cdot e^{-\frac{1}{2}\log s} \text{ ergibt})$$

$$= \frac{1}{2\pi i W} \int_C \frac{C(s)\sqrt{s}}{\lambda_1(s) - \lambda_2(s)} \left(e^{\lambda_1(s)t + sy - \frac{1}{2}\log s} - e^{\lambda_2(s)t + sy - \frac{1}{2}\log s} \right) ds$$

²In der englischsprachigen Literatur wird dieses Verfahren auch *method of steepest descents* genannt, womit man im Deutschen jedoch üblicherweise ein bestimmtes Minimierungsverfahren (zur Lösung von *spd-LGSen*) meint.

$$(\text{und mit } H_3(s) := \frac{C(s)\sqrt{s}}{\lambda_1(s) - \lambda_2(s)})$$

$$= \frac{1}{2\pi i W} \int_C H_3(s) \left(e^{\lambda_1(s)t + sy - \frac{1}{2}\log s} - e^{\lambda_2(s)t + sy - \frac{1}{2}\log s} \right) ds$$

$$= \frac{1}{2\pi i W} \int_C H_3(s) \left(e^{\lambda_1(s)t + sy - \frac{1}{2}\log s} \right) ds - \frac{1}{2\pi i W} \int_C H_3(s) \left(e^{\lambda_2(s)t + sy - \frac{1}{2}\log s} \right) ds$$

$$(3.72)$$

2. Photon-induzierter Schauer mit Primärenergie W_0 : Einsetzen von (3.67) in (3.69) und $y := \log(W_0/E)$ ergibt analog $\pi(E, t) =$

$$= \frac{1}{2\pi i} \int_{C} E^{-(s+1)} \frac{B(s)W_{0}^{s}}{\lambda_{1}(s) - \lambda_{2}(s)} \left(e^{\lambda_{1}(s)t} - e^{\lambda_{2}(s)t} \right) ds$$

$$= \frac{1}{2\pi i E} \int_{C} \frac{B(s)}{\lambda_{1}(s) - \lambda_{2}(s)} \left(e^{\lambda_{1}(s)t + sy} - e^{\lambda_{2}(s)t + sy} \right) ds$$
(Multiplikation mit $1 = \frac{1}{\sqrt{s}} \cdot e^{+\frac{1}{2}\log s}$ ergibt)
$$= \frac{1}{2\pi i E} \int_{C} \frac{B(s)}{\sqrt{s}(\lambda_{1}(s) - \lambda_{2}(s))} \left(e^{\lambda_{1}(s)t + sy + \frac{1}{2}\log s} - e^{\lambda_{2}(s)t + sy + \frac{1}{2}\log s} \right) ds$$
(und mit $H_{4}(s) := \frac{B(s)}{\sqrt{s}(\lambda_{1}(s) - \lambda_{2}(s))}$)
$$= \frac{1}{2\pi i E} \int_{C} H_{4}(s) \left(e^{\lambda_{1}(s)t + sy + \frac{1}{2}\log s} \right) ds - \frac{1}{2\pi i E} \int_{C} H_{4}(s) \left(e^{\lambda_{2}(s)t + sy + \frac{1}{2}\log s} \right) ds$$

Einsetzen von (3.68) in (3.70) und $y := \log(W_0/W)$ ergibt analog $\gamma(W,t) =$

$$= \frac{1}{2\pi i} \int_{C} W^{-(s+1)} \frac{W_{0}^{s}}{\lambda_{1}(s) - \lambda_{2}(s)} \left((A(s) + \lambda_{1}(s))e^{\lambda_{1}(s)t} - (A(s) + \lambda_{2}(s))e^{\lambda_{2}(s)t} \right) ds$$

$$= \frac{1}{2\pi i W} \int_{C} \frac{1}{\lambda_{1}(s) - \lambda_{2}(s)} \left((A(s) + \lambda_{1}(s))e^{\lambda_{1}(s)t + sy} - (A(s) + \lambda_{2}(s))e^{\lambda_{2}(s)t + sy} \right) ds$$
(mit (3.20))
$$= \frac{1}{2\pi i W} \int_{C} \frac{1}{\lambda_{1}(s) - \lambda_{2}(s)} \left(-(\sigma_{0} + \lambda_{2}(s))e^{\lambda_{1}(s)t + sy} + (\sigma_{0} + \lambda_{1}(s))e^{\lambda_{2}(s)t + sy} \right) ds$$

$$= \frac{1}{2\pi i W} \int_{C} \left(H_{2}(s)e^{\lambda_{1}(s)t + sy} + H_{1}(s)e^{\lambda_{2}(s)t + sy} \right) ds$$

$$= \frac{1}{2\pi i W} \int_{C} \left(H_{2}(s)e^{\lambda_{1}(s)t + sy} \right) ds + \frac{1}{2\pi i W} \int_{C} \left(H_{1}(s)e^{\lambda_{2}(s)t + sy} \right) ds$$
(3.74)

Das Verhalten der Funktionen $H_1(s)$ bis $H_4(s)$ ist in Abbildung 3.3 zu sehen. Die Terme \sqrt{s} bei $H_3(s)$ und $\frac{1}{\sqrt{s}}$ bei $H_4(s)$ wurden so gewählt, dass sie ein asymptotisches Verhalten wie $\frac{1}{\sqrt{s}}$ und \sqrt{s} der übrigen Terme für $s \to 0$ ausgleichen, damit $H_3(s)$ und $H_4(s)$ glatt genug für die Anwendung der Sattelpunktapproximation sind. Das Verhalten ohne diese Korrekturen ist Abbildung 3.4 gezeichnet.

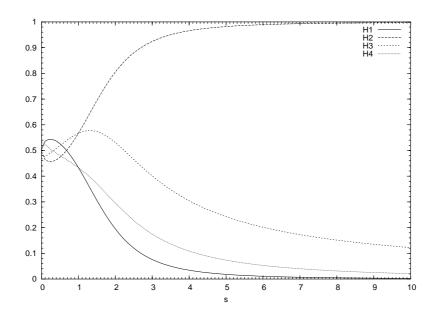


Abbildung 3.3: Die Funktionen $H_1(s)$ bis $H_4(s)$

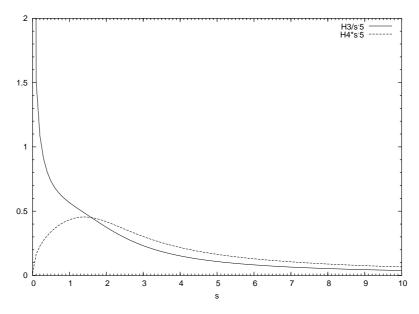


Abbildung 3.4: Die Funktionen $H_3(s)$ und $H_4(s)$ ohne $\sqrt{\bar{s}}$ -Korrektur

In allen Fällen haben wir Integrale der Form

$$I(t) = \frac{1}{2\pi i} \int_C H(s) \left(e^{\lambda(s)t + sy + n \log s} \right) ds \text{ mit } n = -\frac{1}{2}, 0, \frac{1}{2}$$
 (3.75)

zu berechnen, wobei die Funktion H(s) sich wenig mit s ändert und eine der Funktionen $H_i(s), i = 1, \dots 4$ ist. Der Hauptanteil des Integrals liegt in dem Bereich, in dem der

Exponent $\lambda(s)t + sy + n \log s$ entlang des Integrationspfades ein Maximum annimmt³.In unserem Fall hat der Exponent $\lambda(s)t + sy + n \log s$ entlang der reellen Achse *ein* ausgeprägtes Minimum an der Stelle \bar{s} , wobei \bar{s} definiert ist durch

$$(\lambda(\bar{s})t + \bar{s}y + n\log\bar{s})' = \lambda'(\bar{s})t + y + \frac{n}{\bar{s}} \stackrel{!}{=} 0$$
(3.76)

Nach dem Satz von Stokes gilt für eine holomorphe Funktion f(x+iy): $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$ oder $\frac{\partial^2 f}{\partial x^2} = -\frac{\partial^2 f}{\partial y^2}$; also hat der Exponent senkrecht zur reellen Achse (in der Richtung parallel zur imaginären Achse) in der Stelle \bar{s} ein ebenso ausgeprägtes Maximum. Durch diese Stelle legen wir den Integrationspfad und nehmen an, dass H(s) im Bereich um das Maximum konstant ist.

$$I(s) \approx H(\bar{s}) \frac{1}{2\pi i} \int_{\bar{s}-i\infty}^{\bar{s}+i\infty} e^{\lambda(s)t + sy + n\log s} ds$$
 (3.77)

Im nächsten Schritt approximieren wir den Exponenten duch sein Taylorpolynom 2. Ordnung, entwickelt um die Stelle \bar{s} .

$$T_{2}(\lambda(s)t + sy + n\log s; \bar{s}) =$$

$$= (\lambda(\bar{s})t + \bar{s}y + n\log\bar{s}) + \underbrace{(\lambda'(\bar{s})t + y + \frac{n}{\bar{s}})(s - \bar{s}) + (\lambda''(\bar{s})t - \frac{n}{\bar{s}^{2}})(s - \bar{s})^{2}/2}_{=0}$$

$$= \lambda(\bar{s})t + \bar{s}y + n\log\bar{s} + \frac{1}{2}(\lambda''(\bar{s})t - \frac{n}{\bar{s}^{2}})(s - \bar{s})^{2}$$
(3.78)

Der Term $(s - \bar{s})$ ist rein imaginär, wir substituieren $(s - \bar{s}) = ix$ mit den Grenzen $-\infty$ bis $+\infty$ für x und ziehen die Terme, die nicht mehr von der Integrationsvariablen abhängen, vor das Integral:

$$I(s) \approx H(\bar{s})e^{\lambda(\bar{s})t + \bar{s}y + n\log\bar{s}} \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-\frac{1}{2}(\lambda''(\bar{s})t - \frac{n}{\bar{s}^2})x^2} dx$$

$$(\text{nach Substitution } y = \sqrt{\lambda''(\bar{s})t - \frac{n}{\bar{s}^2}} x)$$

$$= H(\bar{s})e^{\lambda(\bar{s})t + \bar{s}y + n\log\bar{s}} \frac{1}{\sqrt{\lambda''(\bar{s})t - \frac{n}{\bar{s}^2}}} \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-\frac{1}{2}y^2} dy$$

$$= H(\bar{s})e^{\lambda(\bar{s})t + \bar{s}y + n\log\bar{s}} \frac{1}{\sqrt{\lambda''(\bar{s})t - \frac{n}{\bar{s}^2}}} \frac{1}{2\pi} \sqrt{2\pi}$$

$$= H(\bar{s}) \frac{e^{\lambda(\bar{s})t + \bar{s}y + n\log\bar{s}}}{\sqrt{\lambda''(\bar{s})t - \frac{n}{\bar{s}^2}}} \frac{1}{\sqrt{2\pi}}$$

$$(3.79)$$

Aus (3.76) gewinnt man folgenden Ausdruck für t, der \bar{s} definiert:

$$t = -\frac{1}{\lambda'(\bar{s})}(\frac{n}{\bar{s}} + y) \tag{3.80}$$

³Falls es mehrere Maxima gibt, ist es die Summe der Bereiche um die Maxima.

In [33] wird mit Hilfe dieses Ausdrucks für gegebene \bar{s} (im Bereich von 0.0 bis 10.0) das zugehörige t berechnet und die zusammengehörenden Werte werden in die Formeln für π und γ eingesetzt.

Wir gehen umgekehrt vor und berechnen zu vorgegebenem t das zugehörige \bar{s} , das (3.80) genügt. Dies erfordert die Lösung eines Nullstellenproblems. Bei der numerischen Berechnung gehen wir von der ursprünglichen Forderung (3.76) aus und definieren

$$Z(\bar{s}) := \lambda'(\bar{s})t + y + \frac{n}{\bar{s}} \stackrel{!}{=} 0 \tag{3.81}$$

 \bar{s} ist die Nullstelle von $Z(\bar{s})$, also $Z(\bar{s}) \stackrel{!}{=} 0$. (Dies definiert \bar{s} .)

In der Definition (3.18) von λ_1 und λ_2 sieht man, dass λ_2 immer negativ ist und einen größeren Absolutwert als λ_1 hat. Deshalb vernachlässigen wir die Terme $e^{\lambda_2(s)t}$ unter der Annahme, dass t größer als 1 ist. (Diese Abschätzung ist auch deshalb notwendig, da die λ_2 -Terme im Gegensatz zu den λ_1 -Termen kein ausgeprägtes Maximum in imaginärer Richtung aufweisen und die Sattelpunktapproximation deshalb nicht anwendbar ist.) Die Näherungen für π und γ erhalten wir nun durch Einsetzen der bisherigen Zwischenergebnisse:

1. Elektron-induzierter Schauer mit Primärenergie E_0 :

$$\pi_{E_0}(E,t) \stackrel{(n=0)}{=} \frac{1}{E} H_1(\bar{s}) \frac{e^{\lambda_1(\bar{s})t + \bar{s}y}}{\sqrt{\lambda_1''(\bar{s})t}} \frac{1}{\sqrt{2\pi}}$$

$$= H_1(\bar{s}) \frac{e^{\lambda_1(\bar{s})t}}{E\sqrt{\lambda_1''(\bar{s})t}} \frac{1}{\sqrt{2\pi}} \left(\frac{E_0}{E}\right)^{\bar{s}}$$

$$t_{\pi,E_0} = -\frac{1}{\lambda_1'(\bar{s})} y = -\frac{1}{\lambda_1'(\bar{s})} \log \frac{E_0}{E}$$

$$Z_{\pi,E_0}(\bar{s}) = \lambda_1'(\bar{s})t + \log \frac{E_0}{E}$$

$$\gamma_{E_0}(W,t) \stackrel{(n=-\frac{1}{2})}{=} \frac{1}{W} H_3(\bar{s}) \frac{e^{\lambda_1(\bar{s})t + \bar{s}y - \frac{1}{2}\log\bar{s}}}{\sqrt{\lambda_1''(\bar{s})t + \frac{1}{2\bar{s}^2}}} \frac{1}{\sqrt{2\pi}}$$

$$= H_3(\bar{s}) \frac{e^{\lambda_1(\bar{s})t}}{W\sqrt{\bar{s}}\sqrt{\lambda_1''(\bar{s})t + \frac{1}{2\bar{s}^2}}} \frac{1}{\sqrt{2\pi}} \left(\frac{E_0}{W}\right)^{\bar{s}}$$

$$t_{\gamma,E_0} = -\frac{1}{\lambda_1'(\bar{s})} (-\frac{1}{2\bar{s}} + y) = \frac{1}{\lambda_1'(\bar{s})} \left(\frac{1}{2\bar{s}} - \log \frac{E_0}{W}\right)$$

$$Z_{\gamma,E_0}(\bar{s}) = \lambda_1'(\bar{s})t + \log \frac{E_0}{W} - \frac{1}{2\bar{s}}$$

2. Photon-induzierter Schauer mit Primärenergie W_0 :

$$\pi_{W_0}(E,t) \stackrel{(n=+\frac{1}{2})}{=} \frac{1}{E} H_4(\bar{s}) \frac{e^{\lambda_1(\bar{s})t + \bar{s}y + \frac{1}{2}\log \bar{s}}}{\sqrt{\lambda_1''(\bar{s})t - \frac{1}{2\bar{s}^2}}} \frac{1}{\sqrt{2\pi}}$$

$$= H_{4}(\bar{s}) \frac{\sqrt{\bar{s}} e^{\lambda_{1}(\bar{s})t}}{E\sqrt{\lambda_{1}''(\bar{s})t - \frac{1}{2\bar{s}^{2}}}} \frac{1}{\sqrt{2\pi}} \left(\frac{W_{0}}{E}\right)^{\bar{s}}$$

$$t_{\pi,W_{0}} = -\frac{1}{\lambda_{1}'(\bar{s})} (\frac{1}{2\bar{s}} + y) = -\frac{1}{\lambda_{1}'(\bar{s})} \left(\frac{1}{2\bar{s}} + \log \frac{W_{0}}{E}\right)$$

$$Z_{\pi,W_{0}}(\bar{s}) = \lambda_{1}'(\bar{s})t + \log \frac{W_{0}}{E} + \frac{1}{2\bar{s}}$$

$$\gamma_{W_{0}}(W,t) \stackrel{(n=0)}{=} \frac{1}{W} H_{2}(\bar{s}) \frac{e^{\lambda_{1}(\bar{s})t + \bar{s}y}}{\sqrt{\lambda_{1}''(\bar{s})t}} \frac{1}{\sqrt{2\pi}}$$

$$= H_{2}(\bar{s}) \frac{e^{\lambda_{1}(\bar{s})t}}{W\sqrt{\lambda_{1}''(\bar{s})t}} \frac{1}{\sqrt{2\pi}} \left(\frac{W_{0}}{W}\right)^{\bar{s}}$$

$$t_{\gamma,W_{0}} = -\frac{1}{\lambda_{1}'(\bar{s})} y = -\frac{1}{\lambda_{1}'(\bar{s})} \log \frac{W_{0}}{W}$$

$$Z_{\gamma,W_{0}}(\bar{s}) = \lambda_{1}'(\bar{s})t + \log \frac{W_{0}}{W}$$

$$und H_{1}(\bar{s}) := \frac{\sigma_{0} + \lambda_{1}(\bar{s})}{\lambda_{1}(\bar{s}) - \lambda_{2}(\bar{s})}$$

$$und H_{2}(\bar{s}) := -\frac{\sigma_{0} + \lambda_{2}(\bar{s})}{\lambda_{1}(\bar{s}) - \lambda_{2}(\bar{s})}$$

$$H_{3}(\bar{s}) := \frac{C(\bar{s})\sqrt{\bar{s}}}{\lambda_{1}(\bar{s}) - \lambda_{2}(\bar{s})}$$

$$(3.84)$$

$$H_{4}(\bar{s}) := \frac{B(\bar{s})}{\sqrt{\bar{s}}(\lambda_{1}(\bar{s}) - \lambda_{2}(\bar{s}))}$$

(3.85)

3.7 Differentielle Spektren

Wir skizzieren hier nochmals kurz die einzelnen Lösungsschritte und fassen die Ergebnisse zusammen: Wir suchen nach den Lösungen π und γ der elektromagnetischen Kaskadengleichung. Dazu wurden die Differentialgleichungen mellin- und laplacetransformiert. Für die Transformierten ließen sich leicht algebraische Lösungen finden. Auf diese konnte die inverse Laplace-Transformation angewendet werden und daraus konnten analytische Ausdrücke für die Mellin-Transformierten von π und γ abgeleitet werden. Die inverse Mellin-Transformation konnte nicht analytisch durchgeführt werden. Sie wurde durch die Sattelpunkt-Methode approximiert. Eine weitere Betrachtung führte uns dazu, die λ_2 -Terme wegzulassen. Somit konnte eine Approximation an die Lösungen π und γ in Form eines geschlossenen analytischen Ausdruckes gewonnen werden. Hier werden noch einmal die Näherungsformeln zusammengefasst: (\bar{s} ergibt sich für jedes t aus $Z(\bar{s})\stackrel{!}{=} 0$ und die H_i sind wie in (3.82)–(3.85) definiert.)

1. Elektron-induzierter Schauer mit Primärenergie E_0 :

$$\pi_{E_0}(E,t) = H_1(\bar{s}) \frac{e^{\lambda_1(\bar{s})t}}{E\sqrt{\lambda_1''(\bar{s})t}} \frac{1}{\sqrt{2\pi}} \left(\frac{E_0}{E}\right)^{\bar{s}}$$
 (3.86)

$$t_{\pi,E_0}(\bar{s}) = -\frac{1}{\lambda_1'(\bar{s})}y = -\frac{1}{\lambda_1'(\bar{s})}\log\frac{E_0}{E}$$
 (3.87)

$$Z_{\pi,E_0}(\bar{s}) = \lambda_1'(\bar{s})t + \log \frac{E_0}{E}$$
(3.88)

$$\gamma_{E_0}(W, t) = H_3(\bar{s}) \frac{e^{\lambda_1(\bar{s})t}}{W\sqrt{\bar{s}}\sqrt{\lambda_1''(\bar{s})t + \frac{1}{2\bar{s}^2}}} \frac{1}{\sqrt{2\pi}} \left(\frac{E_0}{W}\right)^{\bar{s}}$$
(3.89)

$$t_{\gamma, E_0}(\bar{s}) = -\frac{1}{\lambda'_1(\bar{s})}(-\frac{1}{2\bar{s}} + y) = \frac{1}{\lambda'_1(\bar{s})}(\frac{1}{2\bar{s}} - \log\frac{E_0}{W})$$
 (3.90)

$$Z_{\gamma, E_0}(\bar{s}) = \lambda_1'(\bar{s})t + \log\frac{E_0}{W} - \frac{1}{2\bar{s}}$$
 (3.91)

2. Photon-induzierter Schauer mit Primärenergie W_0 :

$$\pi_{W_0}(E,t) = H_4(\bar{s}) \frac{\sqrt{\bar{s}} e^{\lambda_1(\bar{s})t}}{E\sqrt{\lambda_1''(\bar{s})t - \frac{1}{2\bar{s}^2}}} \frac{1}{\sqrt{2\pi}} \left(\frac{W_0}{E}\right)^{\bar{s}}$$
(3.92)

$$t_{\pi,W_0}(\bar{s}) = -\frac{1}{\lambda_1'(\bar{s})}(\frac{1}{2\bar{s}} + y) = -\frac{1}{\lambda_1'(\bar{s})}(\frac{1}{2\bar{s}} + \log\frac{W_0}{E})$$
 (3.93)

$$Z_{\pi,W_0}(\bar{s}) = \lambda_1'(\bar{s})t + \log\frac{W_0}{E} + \frac{1}{2\bar{s}}$$
 (3.94)

$$\gamma_{W_0}(W,t) = H_2(\bar{s}) \frac{e^{\lambda_1(\bar{s})t}}{W\sqrt{\lambda_1''(\bar{s})t}} \frac{1}{\sqrt{2\pi}} \left(\frac{W_0}{W}\right)^{\bar{s}}$$

$$(3.95)$$

$$t_{\gamma,W_0}(\bar{s}) = -\frac{1}{\lambda'_1(\bar{s})}y = -\frac{1}{\lambda'_1(\bar{s})}\log\frac{W_0}{W}$$
 (3.96)

$$Z_{\gamma,W_0}(\bar{s}) = \lambda_1'(\bar{s})t + \log\frac{W_0}{W} \tag{3.97}$$

3.8 Integrale Spektren

Die Teilchenzahl $N_{tot}(t)$ wird in [33] integrales Spektrum genannt. Auch dieses lässt sich analytisch approximieren. Wir werden hier zusätzlich das integrale Spektrum für Photonen herleiten.

$$N_{tot,e}(t) = \Pi(E_{min}, t) = \int_{E_{min}}^{\infty} \pi(E', t) dE'$$
 (3.98)

$$N_{tot,g}(t) = \Gamma(E_{min}, t) = \int_{E_{min}}^{\infty} \gamma(E', t) dE'$$
(3.99)

Wir benutzen folgende Eigenschaft der Mellin-Transformierten (vgl. A.2):

$$M_F(s-1) = \frac{1}{s} M_f(s), \quad \text{wenn} \quad F(y) = \int_y^\infty f(y') \ dy'$$
 (3.101)

Die integralen Spektren können also aus den differentiellen Spektren durch die inverse Mellin-Transformation berechnet werden:

$$F(E,t) = \frac{1}{2\pi i} \int_C E^{-s} M_F(s-1,t) \ ds = \frac{1}{2\pi i} \int_C E^{-s} \frac{1}{s} M_f(s,t) \ ds \quad (3.102)$$

So erhalten wir für die integralen Spektren ähnliche Ausdrücke wie für die differentiellen Spektren in (3.69), (3.70), jedoch mit der Energie in der Potenz -s statt -(s+1) und einem zusätzlichen Vorfaktor $\frac{1}{s}$:

$$\Pi(E,t) = \frac{1}{2\pi i} \int_C E^{-s} \frac{1}{s} M_{\pi}(s,t) ds$$
 (3.103)

$$\Gamma(W,t) = \frac{1}{2\pi i} \int_C W^{-s} \frac{1}{s} M_{\gamma}(s,t) ds \qquad (3.104)$$

Wir können die Sattelpunktapproximation fast wie früher für die differentiellen Spektren durchführen mit den Änderungen: $\frac{1}{E}$ bzw. $\frac{1}{W}$ entfallen als Faktoren vor dem Integral und wegen $\frac{1}{s} = e^{-\log s}$ gibt es einen zusätzlichen Summanden $-\log s$ im Exponentialterm. Im Rahmen der Sattelpunktapproximation resultiert dies in einem um eins erniedrigten Parameter n (siehe Gleichung 3.75).

1. Elektron-induzierter Schauer mit Primärenergie E_0 :

$$\Pi_{E_0}(E,t) \stackrel{(n=-1)}{=} H_1(\bar{s}) \frac{1}{\bar{s}} \frac{e^{\lambda_1(\bar{s})t}}{\sqrt{\lambda_1''(\bar{s})t + \frac{1}{\bar{s}^2}}} \frac{1}{\sqrt{2\pi}} \left(\frac{E_0}{E}\right)^{\bar{s}}$$
(3.105)

$$t_{\Pi, E_0}(\bar{s}) = -\frac{1}{\lambda_1'(\bar{s})} \left(\log \frac{E_0}{E} - \frac{1}{\bar{s}} \right)$$
 (3.106)

$$Z_{\Pi,E_0}(\bar{s}) = \lambda_1'(\bar{s})t + \log\frac{E_0}{E} - \frac{1}{\bar{s}}$$

$$(3.107)$$

$$Z_{\Pi,E_{0}}(\bar{s}) = \lambda'_{1}(\bar{s})t + \log\frac{E_{0}}{E} - \frac{1}{\bar{s}}$$

$$\Gamma_{E_{0}}(W,t) \stackrel{(n=-\frac{3}{2})}{=} H_{3}(\bar{s})\frac{1}{\bar{s}}\frac{e^{\lambda_{1}(\bar{s})t}}{\sqrt{\bar{s}}\sqrt{\lambda''_{1}(\bar{s})t + \frac{3}{2\bar{s}^{2}}}}\frac{1}{\sqrt{2\pi}}\left(\frac{E_{0}}{W}\right)^{\bar{s}}$$
(3.107)
$$(3.108)$$

$$t_{\Gamma, E_0}(\bar{s}) = \frac{1}{\lambda'_1(\bar{s})} \left(\frac{3}{2\bar{s}} - \log \frac{E_0}{W} \right)$$
 (3.109)

$$Z_{\Gamma, E_0}(\bar{s}) = \lambda_1'(\bar{s})t + \log \frac{E_0}{W} - \frac{3}{2\bar{s}}$$
 (3.110)

2. Photon-induzierter Schauer mit Primärenergie W_0 :

$$\Pi_{W_0}(E,t) \stackrel{(n=-\frac{1}{2})}{=} H_4(\bar{s}) \frac{1}{\bar{s}} \frac{\sqrt{\bar{s}} e^{\lambda_1(\bar{s})t}}{\sqrt{\lambda_1''(\bar{s})t + \frac{1}{2\bar{s}^2}}} \frac{1}{\sqrt{2\pi}} \left(\frac{W_0}{E}\right)^{\bar{s}}$$
(3.111)

$$t_{\Pi,W_0}(\bar{s}) = -\frac{1}{\lambda_1'(\bar{s})} \left(-\frac{1}{2\bar{s}} + \log \frac{W_0}{E} \right)$$
 (3.112)

$$Z_{\Pi,W_0}(\bar{s}) = \lambda_1'(\bar{s})t + \log\frac{W_0}{E} - \frac{1}{2\bar{s}}$$
 (3.113)

$$\Gamma_{W_0}(W,t) \stackrel{(n=-1)}{=} H_2(\bar{s}) \frac{1}{\bar{s}} \frac{e^{\lambda_1(\bar{s})t}}{\sqrt{\lambda_1''(\bar{s})t + \frac{1}{\bar{s}^2}}} \frac{1}{\sqrt{2\pi}} \left(\frac{W_0}{W}\right)^{\bar{s}}$$
 (3.114)

$$t_{\Gamma,W_0}(\bar{s}) = -\frac{1}{\lambda'_1(\bar{s})} \left(-\frac{1}{\bar{s}} + \log \frac{W_0}{W} \right)$$

$$Z_{\Gamma,W_0}(\bar{s}) = \lambda'_1(\bar{s})t + \log \frac{W_0}{W} - \frac{1}{\bar{s}}$$
(3.115)

$$Z_{\Gamma,W_0}(\bar{s}) = \lambda_1'(\bar{s})t + \log\frac{W_0}{W} - \frac{1}{\bar{s}}$$
 (3.116)

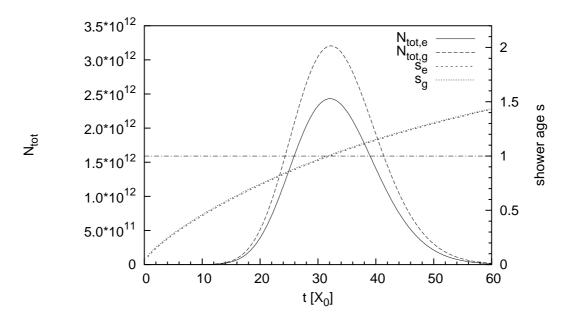


Abbildung 3.5: Integrale Spektren $N_{tot,e}=\Pi_{W_0}$, $N_{tot,g}=\Gamma_{W_0}$ eines γ -Schauers (mit $E_{min}=1$ MeV, $E_{prim}=10^{14}$ MeV, linke Achse) und Schaueralter s_e , s_g (rechte Achse)

3.9 Schaueralter s

Der Ausdruck Schaueralter s (e. shower age) ist in der Literatur über kosmische Strahlung und Luftschauer weit verbreitet. Er ist nichts anderes als der Parameter \bar{s} . Er wird im folgenden Sinn benuzt: Im Punkt des Maximums des differentiellen oder integralen Spektrums ist das Schaueralter s=1, davor ist s<1, danach s>1. Im Rahmen der verschiedenen Stadien der Schauerentwicklung zu verschiedenen Tiefen spricht man auch von einem jungen Schauer für s < 1, von einem alten Schauer für s > 1.

Seine historischen Wurzeln gründen auf dem t-abhängigen Parameter \bar{s} von Approximation A (und B). Der Definition (3.18) von λ_1 entnimmt man leicht, dass $\lambda_1(\bar{s}=1)=$ $0, \lambda_1(\bar{s} < 1) > 0 \text{ und } \lambda_1(\bar{s} > 1) < 0.$ Der Vorfaktor $\lambda_1(\bar{s})$ im Exponentialterm $e^{\lambda_1(\bar{s})t}$ bestimmt im wesentlichen den Verlauf des Schauers in Abhängigkeit von der Tiefe t. Der Exponentialterm wächst also monoton für s < 1, nimmt für s = 1 ein Maximum an und fällt wieder für s > 1. Für s > 2 ist ein Schauer ausgestorben in dem Sinne, dass die Teilchenzahl auf weniger als ein Teilchen abfällt (Abbildung 3.6).

Der Parameter gibt somit auch über den groben Verlauf der differentiellen und integralen Spektren Auskunft, denn alle differentiellen Spektren hatten die Form $\Phi(E,t) \propto e^{\lambda_1(\bar{s})t} \frac{1}{E} \left(\frac{E_{prim}}{E}\right)^{\bar{s}}$, alle integralen Spektren $N_{tot}(E,t) \propto e^{\lambda_1(\bar{s})t} \left(\frac{E_{prim}}{E}\right)^{\bar{s}}$.

Wie immer bei Approximation A (und B) gilt dies nur für hohe Energien. In Abbildung 3.5 ist der interne Parameter \bar{s} als Schaueralter s mit in die Grafik eingezeichnet (rechte y-Achsen-Skala). Das Maximum liegt jeweils (etwa) dort, wo s=1 wird, auch bei verschiedenen Primärteilchenenergien und sowohl bei Elektron-Schauern als auch bei Photonen-Schauern, d.h. s_e und s_g stimmen (fast) überein. Für niedrige Energien liegt das Maximum nicht genau bei s=1 und s_e und s_g verlaufen leicht unterschiedlich.

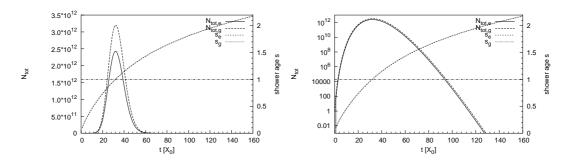


Abbildung 3.6: Schaueralter: Nach $3 \cdot X_{max}$ ist ein Schauer praktisch abgeklungen (links); die Tiefe, bei der ein Schauer tatsächlich ausgestorben ist $(N_{tot} < 1, \ s \approx 2)$, ist deutlich größer (rechts, in logarithmischer Skala)

3.10 Erweiterung der Sattelpunkt-Approximation um höhere Ordnungen

Im Folgenden schlagen wir eine Verbesserung der Approximation A vor. Ein naheliegender Ansatz ist, die Sattelpunktapproximation zu verbessern, indem Terme höherer Ordnung bei der Taylorentwicklung des Exponenten berücksichtigt werden. Wir gehen wieder von den Integralen (3.75) aus:

$$I(t) = \frac{1}{2\pi i} \int_C H(s) \left(e^{\lambda(s)t + sy + n\log s} \right) ds \text{ mit } n = -\frac{1}{2}, 0, \frac{1}{2}$$
 (3.117)

und definieren $P(s) = \lambda(s)t + sy + n \log s$ und Z(s) := P'(s). Wie früher definieren wir \bar{s} als Extremwert von P bzw. Nullstelle von $Z: P'(\bar{s}) = Z(\bar{s}) \stackrel{!}{=} 0$. Die Taylorentwicklung von P(s) um \bar{s} ist: $T_4(P(s); \bar{s}) =$

$$= P(\bar{s}) + (s - \bar{s}) \underbrace{P'(\bar{s})}_{=0} + \frac{1}{2!} (s - \bar{s})^2 P''(\bar{s}) + \frac{1}{3!} (s - \bar{s})^3 P'''(\bar{s}) + \frac{1}{4!} (s - \bar{s})^4 P''''(\bar{s})$$
(3.118)

Hier gehen wir also um zwei Ordnungen höher als früher. Wir substituieren $(s - \bar{s}) = ix$ und integrieren entlang einer Parallelen zur imaginären Achse durch \bar{s} :

$$I(t) \approx H(\bar{s}) \frac{1}{2\pi} e^{P(\bar{s})} \int_{-\infty}^{+\infty} e^{-\frac{x^2}{2}P''(\bar{s}) - i\frac{x^3}{3!}P'''(\bar{s}) + \frac{x^4}{4!}P''''(\bar{s})} dx$$

$$= H(\bar{s}) \frac{1}{2\pi} e^{P(\bar{s})} \int_{-\infty}^{+\infty} \exp\left(-\frac{x^2}{2}P''(\bar{s})\right) \exp\left(-i\frac{x^3}{3!}P'''(\bar{s}) + \frac{x^4}{4!}P''''(\bar{s})\right) dx$$

$$= \exp z \approx 1 + z + z^2/2$$

$$\approx H(\bar{s}) \frac{1}{2\pi} e^{P(\bar{s})} \int_{-\infty}^{+\infty} \exp\left(-\frac{x^2}{2}P''(\bar{s})\right) \left[1 + \left(-i\frac{x^3}{3!}P'''(\bar{s}) + \frac{x^4}{4!}P''''(\bar{s})\right) + \frac{1}{2}\left(-i\frac{x^3}{3!}P'''(\bar{s}) + \frac{x^4}{4!}P''''(\bar{s})\right)^2\right] dx \qquad (3.119)$$

Der Ausdruck in der eckigen Klammer ist:

$$[\ldots] = 1 - i\frac{x^3}{3!}P''' + \frac{x^4}{4!}P'''' - \frac{x^6}{72}P'''^2 - i\frac{x^7}{3!4!}P'''P'''' + \frac{x^8}{1152}P''''^2$$
 (3.120)

Setzen wir dies ein, so erhalten wir Integrale der Art $I_n = \int_{-\infty}^{+\infty} x^n e^{-\frac{x^2}{\sigma^2}} dx$. Für ungerades n ist $I_n = 0$, die Formeln für gerade n finden sich im Anhang A.2.3. Die Terme mit ungeraden Potenzen von x fallen weg und wir haben weiter:

$$\begin{split} I(t) &\approx H(\bar{s})\frac{1}{2\pi}e^{P(\bar{s})}\int_{-\infty}^{+\infty}e^{-\frac{x^2}{2}P''(\bar{s})}\bigg[1+\frac{x^4}{4!}P''''(\bar{s})-\frac{x^6}{72}P'''^2(\bar{s})+\frac{x^8}{1152}P''''^2(\bar{s})\bigg]ds\\ &= H(\bar{s})\frac{1}{2\pi}e^{P(\bar{s})}\bigg\{\int_{-\infty}^{+\infty}e^{-\frac{x^2}{2}P''(\bar{s})}dx\\ &+\frac{1}{24}P''''(\bar{s})\int_{-\infty}^{+\infty}x^4e^{-\frac{x^2}{2}P''(\bar{s})}dx\\ &+\frac{1}{72}P'''^2(\bar{s})\int_{-\infty}^{+\infty}x^6e^{-\frac{x^2}{2}P''(\bar{s})}dx\\ &+\frac{1}{1152}P''''^2(\bar{s})\int_{-\infty}^{+\infty}x^8e^{-\frac{x^2}{2}P''(\bar{s})}dx\bigg\}\\ &= H(\bar{s})\frac{1}{\sqrt{2\pi}}e^{P(\bar{s})}\bigg\{\frac{1}{\sqrt{P''(\bar{s})}}+P''''(\bar{s})\frac{1}{8}\frac{1}{\sqrt{P''(\bar{s})}}^{5}\\ &-P'''^2(\bar{s})\frac{5}{24}\frac{1}{\sqrt{P''(\bar{s})}}^{7}+P''''^2(\bar{s})\frac{35}{384}\frac{1}{\sqrt{P''(\bar{s})}}^{9}\bigg\}\\ &= H(\bar{s})\frac{1}{\sqrt{2\pi}}e^{P(\bar{s})}P_{SPho}^n(\bar{s}) \end{split} \tag{3.121}$$

mit $P_{SPho}^n(\bar{s}) :=$

$$= \left\{ \frac{1}{\sqrt{P''(\bar{s})}} + P''''(\bar{s}) \frac{1}{8} \frac{1}{\sqrt{P''(\bar{s})}^5} - P'''^2(\bar{s}) \frac{5}{24} \frac{1}{\sqrt{P''(\bar{s})}^7} + P''''^2(\bar{s}) \frac{35}{384} \frac{1}{\sqrt{P''(\bar{s})}^9} \right\}$$

Der obere Index n betont die Abhängigkeit von n ($P(\bar{s})$ und dessen Ableitungen hängen von n ab). Die Ableitungen $P^{(k)}(\bar{s})$ sind in Anhang A.2.4 ausgerechnet.

3.10.1 Differentielle Spektren

Die differentiellen Spektren aus Abschnitt 3.7 sind dann (die Formeln für t und Z bleiben unverändert):

1. Elektron-induzierter Schauer mit Primärenergie E_0 :

$$\pi_{E_0}(E,t) = H_1(\bar{s}) \frac{e^{\lambda_1(\bar{s})t}}{E} P_{SPho}^{n=0}(\bar{s}) \frac{1}{\sqrt{2\pi}} \left(\frac{E_0}{E}\right)^{\bar{s}}$$
(3.122)

$$\gamma_{E_0}(W,t) = H_3(\bar{s}) \frac{e^{\lambda_1(\bar{s})t}}{W\sqrt{\bar{s}}} P_{SPho}^{n=-\frac{1}{2}}(\bar{s}) \frac{1}{\sqrt{2\pi}} \left(\frac{E_0}{W}\right)^{\bar{s}}$$
(3.123)

2. Photon-induzierter Schauer mit Primärenergie W_0 :

$$\pi_{W_0}(E,t) = H_4(\bar{s}) \frac{\sqrt{\bar{s}} e^{\lambda_1(\bar{s})t}}{E} P_{SPho}^{n=\frac{1}{2}}(\bar{s}) \frac{1}{\sqrt{2\pi}} \left(\frac{W_0}{E}\right)^{\bar{s}}$$
(3.124)

$$\gamma_{W_0}(W,t) = H_2(\bar{s}) \frac{e^{\lambda_1(\bar{s})t}}{W} P_{SPho}^{n=0}(\bar{s}) \frac{1}{\sqrt{2\pi}} \left(\frac{W_0}{W}\right)^{\bar{s}}$$
(3.125)

3.10.2 Integrale Spektren

Analog können die integralen Spektren aus Abschnitt 3.8 mit höherer Ordnung approximiert werden (die Formeln für t und Z bleiben unverändert):

1. Elektron-induzierter Schauer mit Primärenergie E_0 :

$$\Pi_{E_0}(E,t) = H_1(\bar{s}) \frac{e^{\lambda_1(\bar{s})t}}{\bar{s}} P_{SPho}^{n=-1}(\bar{s}) \frac{1}{\sqrt{2\pi}} \left(\frac{E_0}{E}\right)^{\bar{s}}$$
(3.126)

$$\Gamma_{E_0}(W,t) = H_3(\bar{s}) \frac{e^{\lambda_1(\bar{s})t}}{\bar{s}\sqrt{\bar{s}}} P_{SPho}^{n=-\frac{3}{2}}(\bar{s}) \frac{1}{\sqrt{2\pi}} \left(\frac{E_0}{W}\right)^{\bar{s}}$$
(3.127)

2. Photon-induzierter Schauer mit Primärenergie W_0 :

$$\Pi_{W_0}(E,t) = H_4(\bar{s}) \frac{\sqrt{\bar{s}} e^{\lambda_1(\bar{s})t}}{\bar{s}} P_{SPho}^{n=-\frac{1}{2}}(\bar{s}) \frac{1}{\sqrt{2\pi}} \left(\frac{W_0}{E}\right)^{\bar{s}}$$
(3.128)

$$\Gamma_{W_0}(W,t) = H_2(\bar{s}) \frac{e^{\lambda_1(\bar{s})t}}{\bar{s}} P_{SPho}^{n=-1}(\bar{s}) \frac{1}{\sqrt{2\pi}} \left(\frac{W_0}{W}\right)^s$$
 (3.129)

3.11 Approximation B

Nun erweitern wir die Approximation A um die Berücksichtigung von Ionisationsenergieverlusten, betrachten also die drei Wechselwirkungsprozesse Bremsstrahlung, Paarbildung und Energieverluste von Elektronen durch Ionisation der Atmosphäre. Dies wird historisch Approximation B genannt. Durch den zusätzlichen Term in der Elektronengleichung ändert sich der Charakter der Kaskadengleichung grundlegend, und die Approximation ist nicht mehr so geradlinig, wie es bei der Approximation A möglich war, sondern führt erst durch mehrere Ad-hoc-Annahmen zum Ziel. Dies macht es schwierig, Ansätze für Verbesserungen zu finden. Wir wollen hier deshalb nur die grundlegenden Ideen skizzieren, ohne auf Details einzugehen — für diese verweisen wir auf [33]. Die Resultate von [33] werden wir beim Vergleich der Verfahren in Kapitel 7 zur Implementierungen der Approximation B benutzen.

Kaskadengleichung mit Ionisationsterm Betrachten wir die elektromagnetische Kaskadengleichung (3.8), (3.9). In der Gleichung für Elektronen kommt der Term⁴ $\epsilon \frac{\partial \pi(E,t)}{dE}$ dazu. Insgesamt erhalten wir nun aus (3.8) und (3.9) folgende Form der elektromagnetischen Kaskadengleichung:

$$\frac{\partial \pi(E,t)}{\partial t} = -\int_0^1 \left[\pi(E,t) - \frac{1}{1-v} \pi(\frac{E}{1-v},t) \right] \phi(v) dv$$

$$+2\int_0^1 \gamma(\frac{E}{u},t) \frac{\psi(u)}{u} du + \epsilon \frac{\partial \pi(E,t)}{\partial E}$$
(3.130)

$$\frac{\partial \gamma(W,t)}{\partial t} = -\sigma_0 \gamma(W,t) + \int_0^1 \pi(W/v,t) \frac{\phi(v)}{v} dv \tag{3.131}$$

Elementare Lösung Wir suchen zunächst wieder eine elementare Lösung (vgl. Abschnitt 3.3) und machen den Ansatz:

$$\pi(E,t) = F_{\pi}(E)e^{\lambda t} \qquad \gamma(W,t) = F_{\gamma}(W)e^{\lambda t}$$
(3.132)

Einsetzen liefert:

$$\lambda F_{\pi}(E) = -\int_{0}^{1} \left[F_{\pi}(E) - \frac{1}{1-v} F_{\pi}(\frac{E}{1-v}) \right] \phi(v) dv + 2 \int_{0}^{1} F_{\gamma}(\frac{E}{u}) \frac{\psi(u)}{u} du$$

$$+ \epsilon \frac{\partial F_{\pi}(E)}{\partial E}$$

$$(3.133)$$

$$(\sigma_{0} + \lambda) F_{\gamma}(W) = \int_{0}^{1} F_{\pi}(W/v) \frac{\phi(v)}{v} dv$$

Für große Energien $E \gg \epsilon$ bzw. $W \gg \epsilon$ sollten diese Gleichungen in die alten Gleichungen ohne den Ionisationsterm übergehen, da dann der Ionisationsterm keine Rolle

⁴Wir schreiben hier wie in [33] ϵ statt α_{ion} , was dort kritische Energie $E_c = \epsilon$ genannt wird.

spielt. Dies motiviert die Einführung zweier Korrekturterme $p(s, E/\epsilon)$ und $g(s, W/\epsilon)$ im folgenden Ansatz (s > 0)

$$F_{\pi}(E) = aE^{-(s+1)}p(s, E/\epsilon) \quad \text{und} \quad F_{\gamma}(W) = bW^{-(s+1)}g(s, W/\epsilon),$$
 (3.134)

deren Werte für große Energien gegen 1 streben. λ_1 und λ_2 ergeben sich wie früher. Eingesetzt in (3.130) und (3.131) erhält man zwei gekoppelte Integralgleichungen für $p(s, E/\epsilon)$ und $g(s, W/\epsilon)$.

Für diese werden zwei verschiedene Lösungsansätze gemacht, einer über eine Mellin-Transformation, ein anderer über einen quadratischen Polynomansatz in ϵ/E , der für Energien oberhalb der kritischen Energie ϵ , also W bzw. $E>2\cdot\epsilon$, möglich ist. In beiden Fällen findet man nach einigen Approximationen konkrete Funktionen für $p(s,E/\epsilon)$ und $g(s,W/\epsilon)$ und damit elementare Lösungen der Form

$$F_{\pi}(E) = aE^{-(s+1)}p(s, E/\epsilon) \quad \text{und} \quad F_{\gamma}(W) = bW^{-(s+1)}g(s, W/\epsilon)$$
 (3.135)

Lösung für einzelne Primärteilchen Beim Lösungsansatz ohne Ionisationsterm in Abschnitt 3.5.4 hatten wir gesehen, dass sich die Lösungen für die Mellin-Transformierten $M_{\pi}(s,t)$ und $M_{\gamma}(s,t)$ als Linearkombinationen der Elementarlösungen schreiben lassen.

In [33] werden die Koeffizienten (genauer: Koeffizientenfunktionen) von damals genommen und statt der alten einfach die neuen Elementarlösungen (3.135) eingesetzt. Aus Gleichung (3.71) und (3.72) aus Abschnitt 3.6 erhält man dann für Primärelektronen die Flüsse:

$$\pi(E,t) = \frac{1}{2\pi i} \int_{C} E^{-(s+1)} \frac{E_{0}^{s}}{\lambda_{1}(s) - \lambda_{2}(s)} \left((\sigma_{0} + \lambda_{1}(s)) p_{1}(s, E/\epsilon) e^{\lambda_{1}(s)t} - (\sigma_{0} + \lambda_{2}(s)) p_{2}(s, E/\epsilon) e^{\lambda_{2}(s)t} \right) ds \quad (3.136)$$

$$\gamma(W,t) = \frac{1}{2\pi i} \int_{C} W^{-(s+1)} \frac{C(s) E_{0}^{s}}{\lambda_{1}(s) - \lambda_{2}(s)} \left(g_{1}(s, E/\epsilon) e^{\lambda_{1}(s)t} - g_{2}(s, E/\epsilon) e^{\lambda_{2}(s)t} \right) ds \quad (3.137)$$

Für hohe Energien gehen die neuen Gleichungen in die alten über, sind also näherungsweise richtig.

Für niedrige Energien trifft das nicht zu. Setzt man oben t=0, so erhält man $\pi(E,0)=\delta(E-E_0)$ und $\gamma(W,0)=0$ näherungsweise nur für hohe Energien; für niedrige Energien im Bereich um ϵ können sich die Funktionen p_1,p_2,g_1,g_2 deutlich von 1 unterscheiden, sind also nicht mehr Null.

Benutzt man trotzdem (3.136) und (3.137) als Lösung der Kaskadengleichung, so beschreibt diese das Anfangs-Szenario eines Primärelektrons, das von einer virtuellen Verteilung niederenergetischer Elektronen und Photonen begleitet wird.

Nun wird in [33] argumentiert, dass die Kaskade, die hierdurch beschrieben wird, sich nicht stark von einer reinen Primärelektronenkaskade unterscheidet und deshalb der Ansatz trotzdem als gute Näherung benutzt werden kann. (Analoge Überlegungen gelten für schauerauslösende Primärphotonen.)

Approximation der Mellin-Inversen Wie früher werden die Mellin-Rücktransformationsintegrale mit der Sattelpunktmethode approximiert. Hierbei werden nun zusätzlich die Ableitungen der Korrekturfunktionen p_1, p_2, g_1, g_2 bei der Bestimmung von \bar{s} in (3.76) vernachlässigt. Die Korrekturfunktionen stecken dann nur noch in dem während der Sattelpunktapproximation benutzten Parameter $y = \log(\frac{E_0}{kor(s,E/\epsilon)E})$, wo kor eine der Korrekturfunktionen p_1, p_2, g_1, g_2 ist. Dies liefert mit den Lösungen aus dem quadratischen Polynomansatz Lösungen, die bis auf die Korrekturterme für die Energie mit den Lösungen aus den Abschnitten 3.7 und 3.8 übereinstimmen.

Für elektroneninduzierte Schauer mit Primärenergie E_0 und Energien ab dem doppelten der kritischen Energie, $E>2\epsilon$ und $W>2\epsilon$, erhält man nun:

$$\pi_{E_0}(E,t) = H_1(\bar{s}) \frac{e^{\lambda_1(\bar{s})t}}{\sqrt{\lambda_1''(\bar{s})t}} \frac{1}{\sqrt{2\pi}} \frac{E_0^{\bar{s}}}{(\mu_1(s,\epsilon/E)E)^{\bar{s}+1}}$$
(3.138)

$$t_{\pi, E_0}(\bar{s}) = -\frac{1}{\lambda_1'(\bar{s})}y = -\frac{1}{\lambda_1'(\bar{s})}\log\frac{E_0}{E}$$
 (3.139)

$$Z_{\pi,E_0}(\bar{s}) = \lambda_1'(\bar{s})t + \log\frac{E_0}{E}$$
 (3.140)

$$\gamma_{E_0}(W,t) = H_3(\bar{s}) \frac{e^{\lambda_1(\bar{s})t}}{W\sqrt{\bar{s}}\sqrt{\lambda_1''(\bar{s})t + \frac{1}{2\bar{s}^2}}} \frac{1}{\sqrt{2\pi}} \left(\frac{E_0}{\nu_1(s,\epsilon/W)W}\right)^{\bar{s}}$$
(3.141)

$$t_{\gamma, E_0}(\bar{s}) = -\frac{1}{\lambda_1'(\bar{s})}(-\frac{1}{2\bar{s}} + y) = \frac{1}{\lambda_1'(\bar{s})}(\frac{1}{2\bar{s}} - \log\frac{E_0}{W})$$
 (3.142)

$$Z_{\gamma,E_0}(\bar{s}) = \lambda_1'(\bar{s})t + \log\frac{E_0}{W} - \frac{1}{2\bar{s}}$$
 (3.143)

$$\Pi_{E_0}(E,t) = H_1(\bar{s}) \frac{1}{\bar{s}} \frac{e^{\lambda_1(\bar{s})t}}{\sqrt{\lambda_1''(\bar{s})t + \frac{1}{\bar{s}^2}}} \frac{1}{\sqrt{2\pi}} \left(\frac{E_0}{\rho_1(s,\epsilon/E)E}\right)^{\bar{s}}$$
(3.144)

$$t_{\Pi, E_0}(\bar{s}) = -\frac{1}{\lambda_1'(\bar{s})} \left(\log \frac{E_0}{E} - \frac{1}{\bar{s}} \right)$$
 (3.145)

$$Z_{\Pi,E_0}(\bar{s}) = \lambda_1'(\bar{s})t + \log\frac{E_0}{E} - \frac{1}{\bar{s}}$$
 (3.146)

Die Funktionen μ_1, ν_1, ρ_1 sind konkrete Näherungen für die Korrekturfunktionen p_1, g_1 . Für kleine Energien $E < 2\epsilon$ und $W < 2\epsilon$ können nur die Korrekturterme aus dem Mellin-Ansatz benutzt werden. Diese lassen sich aber nicht geschlossen darstellen, deshalb kann nur unter weiteren vereinfachenden Annahmen ein konkreter Ausdruck für das integrale Elektronenspektrum für E = 0 gewonnen werden:

$$\Pi_{E_0}(0,t) = K_1(s,-s)H_1(\bar{s})\frac{1}{\bar{s}}\frac{e^{\lambda_1(\bar{s})t}}{\sqrt{\lambda_1''(\bar{s})t + \frac{1}{\bar{s}^2}}}\frac{1}{\sqrt{2\pi}}\left(\frac{E_0}{\epsilon}\right)^s$$
(3.147)

$$t_{\Pi,E_0}(\bar{s}) = -\frac{1}{\lambda_1'(\bar{s})} \left(\log \frac{E_0}{\epsilon} - \frac{1}{\bar{s}} \right) \tag{3.148}$$

$$Z_{\Pi,E_0}(\bar{s}) = \lambda_1'(\bar{s})t + \log\frac{E_0}{\epsilon} - \frac{1}{\bar{s}}$$

$$(3.149)$$

$$\Pi_{W_0}(0,t) = H_4(\bar{s}) \frac{1}{\bar{s}} \frac{\sqrt{\bar{s}} e^{\lambda_1(\bar{s})t}}{\sqrt{\lambda_1''(\bar{s})t + \frac{1}{2\bar{s}^2}}} \frac{1}{\sqrt{2\pi}} \left(\frac{W_0}{\epsilon}\right)^{\bar{s}}$$
(3.150)

$$t_{\Pi,W_0}(\bar{s}) = -\frac{1}{\lambda_1'(\bar{s})} \left(-\frac{1}{2\bar{s}} + \log \frac{W_0}{\epsilon} \right)$$

$$(3.151)$$

$$Z_{\Pi,W_0}(\bar{s}) = \lambda_1'(\bar{s})t + \log\frac{W_0}{\epsilon} - \frac{1}{2\bar{s}}$$
 (3.152)

(3.153)

Die Funktion $K_1(s, -s)$ ist ein Bestandteil der Korrekturfunktion. Die Photonenspektren für W = 0 sind ∞ , weshalb dafür keine Formeln für niedrige Energien existieren.

Die Definitionen der Korrektur-Funktionen sind in Anhang A.2.5 aufgeführt.

3.12 Greisen-Gleichung

1956 wurde von Greisen in [19] ohne Herleitung folgende Approximation der Approximation B (für "Bereiche großer Teilchenzahlen") für das integrale Elektronenspektrum eines γ -Schauers angegeben:

$$N(W_0, 0, t) \approx \frac{0.31}{\sqrt{\beta_0}} e^{t(1 - \frac{3}{2}\log s)}$$
 (3.154)

mit
$$s \approx \frac{3t}{t + 2\beta_0}$$
 und $\beta_0 = \log \frac{W_0}{\varepsilon}$ (3.155)

Für $W_0 \gg E \gg \varepsilon$ wird folgende Formel angegeben:

$$N(W_0, E, t) \approx \frac{0.135}{\sqrt{\beta_0}} e^{t(1 - \frac{3}{2}\log s)}$$
 (3.156)

mit
$$s \approx \frac{3t}{t + 2\beta_0}$$
 und $\beta_0 = \log \frac{W_0}{E}$ (3.157)

In unserer Schreibweise ist $N(W_0, E, t) = \Pi_{W_0}(E, t)$ oder $N(W_0, E, t) = N_{tot, e}(t)$ mit $E_{min} = E$ und $\varepsilon = \alpha_{ion} = E_c$ die kritische Energie.

Bei Parametrisierungen von experimentellen Daten, die Greisens Gleichung benutzen, ist also einer der Parameter das (approximierte) Schaueralter s (siehe Abschnitt 3.9).

Kapitel 4

Monte-Carlo-Simulation

Wir entwerfen hier eine Monte-Carlo-Simulation für die elektromagnetische Kaskadengleichung. Trotz der langen Rechenzeiten kann sie die betrachteten Wechselwirkungsprozesse am genauesten wiedergeben. Deshalb werden wir ihre Lösung auch als Referenz
für das numerische Verfahren benutzen. Zudem lassen sich einige algorithmische Probleme gut in diesem Rahmen studieren und können später direkt auf das numerische
Verfahren übertragen werden. Und nicht zuletzt werden wir die Monte-Carlo-Methode
als Startalgorithmus für das Hybridverfahren benutzen.

Zunächst wird der Zusammenhang zwischen Kaskadengleichungen und Monte-Carlo-Simulation hergestellt, d.h. es wird analysiert, wie die Art und Weise der Modellierung von Wechselwirkungsprozessen und Ionisationsenergieverlusten der beiden Methoden zusammenhängen. Wir orientieren uns hierbei im Wesentlichen an der praktisch orientierten Abhandlung von Sobol [45].

Eine besondere Betrachtung erfordert die Behandlung der singulären Photonen-Produktionswahrscheinlichkeit beim Bremsstrahlungsprozess. Abschließend werden noch zwei Methoden zur Beschleunigung von Monte-Carlo-Simulationen vorgestellt: die Methode nach J. von Neumann [46] und die Hillas-Methode [47].

4.1 Grundlagen der Monte-Carlo-Simulation

Im Anhang B werden einige statistische Begriffe zusammengefasst: in Abschnitt B.1.1 findet man statistische Grundlagen und in Abschnitt B.1.2 wird der Begriff der Zufallsvariable eingeführt. Für eine Weiterführung empfiehlt sich [45, 48].

4.1.1 Monte-Carlo-Methode für das Modellsystem

Wie kommt man nun von der Physik zur Simulation? Wir betrachten Teilchen einer festen Energie, die sich durch ein Medium bewegen (bei uns ist dies die Atmosphäre) und während ihres Fluges mit einer gewissen Wahrscheinlichkeit eine Wechselwirkung mit dem Medium eingehen können. Sei $\Phi(E,t) = \Phi(t)$ die Anzahl dieser Teilchen (vgl. (2.23)). Da wir nur Teilchen derselben Energie E betrachten wollen, lassen wir die

Energievariable zur klareren Schreibweise in der folgenden Betrachtung weg. Aus Experimenten und theoretischen Überlegungen weiß man, dass die Weglänge eines Teilchens bis zur nächsten Wechselwirkung exponentialverteilt ist. Die Wahrscheinlichkeitsdichte hat also die Form $p(x) = \sigma e^{-\sigma x}$. Das bedeutet: ein Teilchen, das sich in der Tiefe t befindet, wird sich noch um die zufällige Strecke τ in t-Richtung bis zu seiner nächsten Wechselwirkung fortbewegen. Dort verliert das Teilchen Energie und darf deshalb nicht mehr zu $\Phi(t+\tau)$ (oder noch größere t-Werte) dazugezählt werden. (Bildlich betrachtet wechselt das Teilchen bei der Tiefe $t'=t+\tau$ von der "Zählvariablen" $\Phi(E,t)$ zur "Zählvariablen" $\Phi(E',t)$; dabei ist E' < E und E' ist die Energie, die das Teilchen nach der Wechselwirkung hat.)

Die Wahrscheinlichkeit, dass τ kleiner als ein beliebiger vorgegebener Wert $\triangle t$ ist, ist dann $P(0 < \tau < \triangle t) = \int_0^{\triangle t} \sigma e^{-\sigma x} dx = -\left[e^{-\sigma x}\right]_0^{\triangle t} = 1 - e^{-\sigma \triangle t}$. Die komplementäre Wahrscheinlichkeit, dass ein Teilchen während der Strecke $\triangle t$

Die komplementäre Wahrscheinlichkeit, dass ein Teilchen während der Strecke $\triangle t$ nicht wechselwirkt, ist dann $P(\tau > \triangle t) = 1 - P(0 < \tau < \triangle t) = e^{-\sigma \triangle t}$. Die Anzahl $\Phi(t + \triangle t)$ der Teilchen, die bis zur Tiefe $t + \triangle t$ nicht wechselwirken, also noch gezählt werden, ist gerade $\Phi(t + \triangle t) = \Phi(t) \cdot e^{-\sigma \triangle t}$.

Die Differenz, um die die "Zählvariable" Φ abgenommen hat, ist dann $\Phi(t + \Delta t) - \Phi(t) = \Phi(t) \cdot e^{-\sigma \Delta t} - \Phi(t)$. Durch umformen, teilen durch Δt und einsetzen von $1 = e^{-\sigma \cdot 0}$ erhält man: $\frac{\Phi(t + \Delta t) - \Phi(t)}{\Delta t} = \Phi(t) \frac{e^{-\sigma \Delta t} - 1}{\Delta t} = \Phi(t) \frac{e^{-\sigma(0 + \Delta t)} - e^{-\sigma \cdot 0}}{\Delta t}$ Im Limes $\Delta t \to 0$ ist dies $\frac{d\Phi(t)}{dt} = \Phi(t) \frac{e^{-\sigma \Delta t} - 1}{\Delta t} = \Phi(t) \frac{d(e^{-\sigma t})}{dt}\Big|_{t=0} = \Phi(t) \left(-\sigma e^{-\sigma t}\right)_{t=0} = -\sigma \Phi(t)$. Diese Differentialgleichung $\frac{d\Phi(t)}{dt} = -\sigma \Phi(t)$ entspricht aber gerade dem Wechselwirkungsterm der Kaskadengleichung (vgl. 2.1.2 und 2.1.3), aus dem sich Verlust- und Quellterme ergeben.

Somit haben wir den Zusammenhang hergestellt zwischen dem singulären Ereignis einer Teilchenwechselwirkung und den korrespondierenden Termen der Kaskadengleichung. Dies berechtigt überhaupt erst dazu, bei der Simulation vieler einzelner Teilchenprozesse im Mittel dasselbe Ergebnis erwarten zu können wie bei der Lösung der Kaskadengleichung.

Umgekehrt können wir damit auf Grundlage einer korrekt formulierten Kaskadengleichung ein äquivalentes Monte-Carlo-Programm formulieren. Wir demonstieren dies am Beispiel des Modellsystems (2.22):

$$\frac{d\Phi(E,t)}{dt} = -\sigma\Phi(E,t) + 2\int_{E}^{\infty} \sigma\frac{\Phi(E',t)}{E'}dE'$$
(4.1)

Ohne genaues Wissen über den zugrundeliegenden Wechselwirkungsprozess können wir in dieser Gleichung σ als Wirkungsquerschnitt identifizieren. Weiterhin erkennt man einen Verlustterm, woran man das einfallende Teilchen der modellierten Wechselwirkung identifizieren kann, und zwei Quellterme, woran man die Anzahl und Art der erzeugten Teilchen erkennt. Der Integrand ohne den Faktor $\sigma\Phi(E',t)$ ist die Energiewahrscheinlichkeitsdichte für den Wechselwirkungsprozess, also ist $P(E',E)=\frac{1}{E'}$.

4.1.2 Algorithmus

Die Monte-Carlo-Simulation eines einzelnen Schauers geschieht nach folgendem Schema: Wir speichern in einer geeigneten Datenstruktur die Tiefe t und die Energie E eines Teilchens. Außerdem benötigen wir einen Stack, in dem wir eine beliebige Anzahl von Teilchen speichern können. Zu Beginn der Simulation erzeugen wir auf dem Stack ein einziges Teilchen, das die Tiefe t=0 und die Primärenergie $E=E_{prim}$ hat. Außerdem geben wir uns eine maximale Tiefe t_{max} vor und eine untere Energieschwelle E_0 , ab der wir ein Teilchen nicht weiter verfolgen wollen.

Ab jetzt wird immer folgender Arbeitsschritt wiederholt: Man nimmt ein Teilchen vom Stack und würfelt aus, um welche Tiefe t_{int} es weiterfliegt, bis es die nächste Wechselwirkung mit der umgebenden Materie eingeht. t_{int} ist exponentialverteilt, es lässt sich mit $t_{int} = -\frac{1}{\sigma} \log u_1$, $u_1 \in U(0,1)$, auswürfeln.

In der neuen Tiefe $t+t_{int}$ entstehen nun zwei neue Teilchen, die sich die Energie des ursprünglichen Teilchens aufteilen. Im Beispiel ist sie gleichverteilt. Wir würfeln eine weitere gleichverteilte Zufallsgröße u_2 . Ein Teilchen bekommt dann die Energie $E \cdot u_2$, das andere Teilchen die Energie $E \cdot (1-u_2)$. Die beiden neuen Teilchen werden dann mit den entsprechenden Tiefen und Energien im Stack gespeichert, außer wenn ihre Tiefe größer als t_{max} ist oder falls ihre Energie kleiner als E_0 ist: Dann wird das betreffende Teilchen gelöscht.

Wiederholt man diesen Schritt immer weiter, so gibt es irgendwann keine Teilchen mehr auf dem Stack, da bei jeder simulierten Wechselwirkung Teilchen mit kleinerer Energie und größerer Tiefe entstehen, so dass irgendwann die Grenzen t_{max} oder E_0 überschritten werden. Dann ist die Simulation dieses Einzelschauers zu Ende.

Während der Simulation wird Buch geführt über die Bewegung der Teilchen in tund E-Richtung, woraus man den Fluss $\Phi(E,t)$ und damit die Teilchenzahl $N_{tot}(t)$ und
die Gesamtenergie $E_{tot}(t)$ für diesen Einzelschauer erhält. Man führt eine große Anzahl
von Einzelschauersimulationen durch und bildet am Ende einen Mittelwert der Größen $\Phi(E,t)$, $N_{tot}(t)$ und $E_{tot}(t)$. Diese stimmen im Rahmen der statistischen Fluktuationen mit der Lösung der Kaskadengleichung überein. Technische Details dazu werden in
Abschnitt 4.1.5 behandelt.

Im folgenden Pseudocode ist das Gerüst des Monte-Carlo-Algorithmus in einer Form dargestellt, wie er in einer konkreten Programmiersprache, etwa C/C++, umgesetzt werden würde. Wir bezeichnen die Tiefe eines Teilchens p mit p.t und die Energie mit p.E.

Pseudocode Monte-Carlo-Algorithmus:

```
program MonteCarlo(E_{prim}, E_0, t_{max}):

p = new primary particle with energy E = E_{prim} at depth t = 0;

push p on stack;

while(stack not empty) {

pop particle p from stack;

generate uniform distributed random number u_1;

propagate particle by t_{int} = -\frac{1}{\sigma} \log u_1;
```

```
remember track of particle p;

generate uniform distributed random number u_2;

p1 = \textbf{new} particle with energy p.E \cdot u_2 and depth p.t + t_{int};

if (p1.E > E_0 \text{ and } p1.t < t_{max}) \textbf{push } p1 on stack;

p2 = \textbf{new} particle with energy p.E \cdot (1-u_2) and depth p.t + t_{int};

if (p2.E > E_0 \text{ and } p2.t < t_{max}) \textbf{push } p2 on stack;

}

compute \Phi by particle tracks;

print output \Phi;

end.
```

4.1.3 Fehlerabschätzung für die Monte-Carlo-Methode

Bei N Versuchen, eine Größe x mit der Monte-Carlo-Methode zu bestimmen, seien die N Werte $\xi_1, \xi_2, \dots \xi_N$ ermittelt worden. Der Mittelwert wird als Schätzung für x genommen: $x \approx E(\xi) = \frac{1}{N} \sum_{i=1}^N \xi_i$. Die Abweichung dieses Wertes liegt in der Größenordnung $|E(\xi) - x| \approx \frac{\sigma_{\xi}}{\sqrt{N}}$. Dann liegen der absolute bzw. relative erwartete Fehler in der Größenordnung:

$$x_{MC,err.abs.} := \frac{\sigma_{\xi}}{\sqrt{N}}$$
 $x_{MC,err.rel.} := \frac{\sigma_{\xi}}{E(\xi)\sqrt{N}}$ (4.2)

Die Herleitung erfolgt über das Gesetz der großen Zahlen oder den zentralen Grenzwertsatz. Bei letzterem gibt es mehrere mögliche Ansätze, die auch verschiedene Ergebnisse liefern, welche aber alle dieselbe Größenordnung haben. (Für Details siehe [45].)

4.1.4 Monte-Carlo-Simulation mit Ionisation

Als Nächstes berücksichtigen wir Ionisationsenergieverluste in der Monte-Carlo-Simulation. Die Kaskadengleichung des Modellsystems mit Ionisationsterm ist:

$$\frac{\partial \Phi(E,t)}{\partial t} = -\sigma \Phi(E,t) + 2 \int_{E}^{\infty} \sigma \frac{\Phi(E',t)}{E'} dE' + \alpha \frac{\partial \Phi(E,t)}{\partial E}
= -\sigma \Phi(E,t) + 2 \int_{E}^{\infty} \sigma \frac{\Phi(E',t)}{E'} dE' + \frac{\partial}{\partial E} (\alpha \Phi(E,t))$$
(4.3)

Aus Abschnitt 2.1.6, Gleichung (2.11), wissen wir, dass dann $\frac{dE}{dt} = -\alpha$ ist. Der in Absatz (4.1.2) entwickelte Algorithmus muss so erweitert werden: α ist der Energieverlust pro zurückgelegter Tiefe. Nach Auswürfeln der Wechselwirkungslänge t_{int} wissen wir, dass das betrachtete Teilchen auf dieser Strecke gerade die Energie $\alpha \cdot t_{int}$ verlieren wird. Die Teilchenenergie wird also zunächst um diesen Energiebetrag vermindert, bevor mit der Simulation der Wechselwirkung fortgefahren wird: $p.E \leftarrow p.E - \alpha \cdot t_{int}$

Pseudocode Monte-Carlo-Algorithmus mit Ionisation: $program\ Monte Carlo(E_{prim}, E_0, t_{max}, \alpha)$:

```
p = new primary particle with energy E = E_{prim} at depth t = 0;
push p on stack;
while(stack not empty) {
         pop particle p from stack;
          generate uniform distributed random number U_1;
         propagate particle by t_{int} = -\frac{1}{\sigma} \log U_1;
         p.E \leftarrow p.E - \alpha \cdot t_{int};
                                                                              (4.4)
          remember track of particle p;
          generate uniform distributed random number U_2;
          p1 = new \ particle \ with \ energy \ p.E \cdot U_2 \ and \ depth \ p.t + t_{int};
          if (p1.E > E_0 \text{ and } p1.t < t_{max}) push p1 on stack;
          p2 = new \ particle \ with \ energy \ p.E \cdot (1-U_2) \ and \ depth \ p.t + t_{int};
          if (p2.E > E_0 \text{ and } p2.t < t_{max}) push p2 on stack;
}
compute \Phi by particle tracks;
print output \Phi;
end.
```

Falls α von E abhängt, muss man die DGL (2.11) benutzen, um eine Lösung für E(t) zu finden; hier ist das trivial: $E(t + t_{int}) = E - \alpha \cdot t_{int}$

4.1.5 Registrierung der Spur der Teilchen

Während der Simulation wird aufgezeichnet, welche Tiefenebenen die Teilchen überqueren. Der Tiefenbereich $[t_0,t_{max}]$ ist in N_t Intervalle mit den Zwischenstellen $t_{min}=t_0,t_1,t_2,\ldots,t_{N_t}=t_{max}$ eingeteilt. Der Energiebereich ist in N_E Intervalle mit den Zwischenstellen $E_{min}=E_0,E_1,E_2,\ldots,E_{N_E}=E_{max}$ eingeteilt. Die Teilchenbewegungen werden in den zwei Arrays $N(t_i,E_j)$ für die Teilchenzahlen und $E(t_i,E_j)$ für die Teilchenergien aufgezeichnet, deren Größe N_t+1 × N_E ist. Werden mehrere Teilchenarten bei der Simulation berücksichtigt, so werden für jede Teilchenart je zwei solcher Arrays angelegt.

Die aktuelle Position des Teilchens wird nur dann gespeichert, wenn ein Teilchen eine Tiefenebene t_i überquert. Das exakte Kriterium ist: wenn für die Tiefe t des Teilchens vor der Wechselwirkung gilt $t \le t_i$ und im nächsten Wechselwirkungspunkt $t+t_{int}$ die Tiefe größer ist, $t+t_{int} > t_i$, dann gilt die Ebene t_i als durchquert. Zunächst wird die Energie E_{curr} berechnet, die das Teilchen in dieser Tiefe hat. Dabei sind eventuelle Energieverluste durch Ionisation zu berücksichtigen. Dann wird das Energieintervall $I_{E_j} = [E_j, E_{j+1})$ bestimmt, in dem die Energie E_{curr} liegt. Das Ereignis wird aufgezeichnet, indem die Arrayeinträge mit den Indizes (i,j) modifiziert werden. $N(t_i, E_j)$ wird um 1 erhöht, $E(t_i, E_j)$ wird um E_{curr} erhöht:

$$N(t_i, E_j) \leftarrow N(t_i, E_j) + 1$$
 (4.5)

$$E(t_i, E_j) \leftarrow E(t_i, E_j) + E_{curr}$$
 (4.6)

Die Aufzeichnung findet jedoch nur statt, wenn die Energie des Teilchens noch über der Energieschwelle liegt, also $E_{curr} \geq E_{min}$ ist. Andernfalls wird das Teilchen aus dem Simulationsprozess entfernt.

Am Ende der Schauersimulation kann man daraus entnehmen, dass $N(t_i, E_j)$ viele Teilchen, deren Energie im Energiebereich $[E_j, E_{j+1})$ lag, die Tiefenebene t_i überschritten haben und dass deren mittlere Energie $E(t_i, E_j)/N(t_i, E_j)$ betrug. (Wenn viele Teilchen in diesem Energiebereich liegen und die Energieintervalle klein sind, gilt näherungsweise $(E_j + E_{j+1})/2 \approx E(t_i, E_j)/N(t_i, E_j)$.) Nehmen wir den Fluss Φ bei festem t als konstant in einem Energieintervall an, dann ist nach der Definition (2.1) $\Phi(E, t_i) \approx N(t_i, E_j)/(E_{j+1} - E_j)$ für $E \in [E_j, E_{j+1})$. Dies ist in diesem Fall das Ergebnis dieser Monte-Carlo-Simulation für den Fluss Φ . (In Kapitel 5, Abschnitt 5.6, führen wir einen stückweise linearen Ansatz ein, mit dem eine genauere Berechnung von Φ mit Erhaltung der mittleren Energie $E(t_i, E_j)/N(t_i, E_j)$ möglich ist, die insbesondere beim Hybridverfahren angewandt wird.)

Letztendlich führen wir eine große Anzahl von vielen einzelnen Schauersimulationen N_{shower} durch. Sei k der Index der k-ten Einzelschauersimulation. Für jede einzelne Simulation erhalten wir individuelle Werte in den zwei Arrays $N_k(t_i, E_j)$ und $E_k(t_i, E_j)$. Wir bilden für alle Kombinationen (i, j) die Mittelwerte N_m und E_m jedes der Arrayeinträge:

$$N_m(t_i, E_j) = \sum_{k=1}^{N_{shower}} N_k(t_i, E_j) \text{ und } E_m(t_i, E_j) = \sum_{k=1}^{N_{shower}} E_k(t_i, E_j)$$
 (4.7)

Die Monte-Carlo-Lösung Φ_{MC} der Kaskadengleichung ergibt sich daraus durch:

$$\Phi_{MC}(E, t_i) := N_m(t_i, E_i) / (E_{i+1} - E_i) \text{ für } E \in [E_i, E_{i+1})$$
(4.8)

Wir zeigen an einigen Beispielen die Registrierung der Teilchenbewegungen. In Abbildung 4.1 sind einige Fälle dargestellt. Die Teilchen starten in der mit einem Punkt \bullet bezeichneten Position, die ausgewürfelte Wechselwirkungslänge t_{int} ist durch den Pfeil dargestellt, in der mit einem Kreis \circ bezeichneten Tiefe würde dann die nächste Wechselwirkung stattfinden.

Das Teilchen p_1 stellt das Primärteilchen dar, das genau auf t_0 liegt, d.h für dessen Tiefe $p_1.t$ gilt: $p_1.t = t_0$. Da immer $t_{int} > 0$ ist, gilt nach der ersten Wechselwirkung immer: $p_1.t + t_{int} > t_0$. Das Primärteilchen ist damit das einzige Teilchen, das in der Tiefenebene t_0 registriert wird.

Für das Teilchen p_2 wurde eine kurze Wechselwirkungslänge t_{int} ausgewürfelt, so dass es vor der Wechselwirkung keine Tiefenebene überquert. Dementsprechend wird es auch nicht registriert. Selbstverständlich werden die in der Wechselwirkung erzeugten Teilchen aber weiter in der Simulation gehalten.

Das Teilchen p_3 würde gemäß seiner Wechselwirkungslänge t_{int} die Ebenen t_2 und t_3 überqueren. Angenommen, das Teilchen wäre ein Elektron und würde gerade in der mit einem Kreuz × bezeichneten Tiefe t_l durch Ionisation so viel Energie verloren haben, dass es in t_l die Energie E_{min} hat. In größeren Tiefen wäre dann $E_{curr} < E_{min}$. Das Teilchen wird dann aus der Simulation entfernt und nur in der Ebene t_2 registriert.

Das Teilchen p_4 überquert die letzte Ebene t_4 . Falls das Teilchen nicht vorher schon unter die Energieschwelle E_{min} gefallen ist, wird es in der letzten Ebene registriert und dann aus der Simulation entfernt.

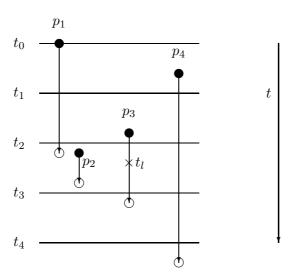


Abbildung 4.1: Registrierung der Teilchen in den Tiefenebenen

4.2 Monte-Carlo-Lösung für die elektromagnetische Kaskadengleichung

4.2.1 Behandlung der Singularität

Wir wiederholen hier die elektromagnetischen Kaskadengleichungen (2.24) und (2.25) aus Abschnitt 2.3 mit Ionisationsterm:

$$\frac{\partial \Phi_e(E,t)}{\partial t} = -\sigma_e \Phi_e(E,t) + \int_E^{\infty} \Phi_e(E',t) \frac{\varphi_0(1-E/E')}{E'} dE' + 2 \int_E^{\infty} \Phi_g(W',t) \frac{\psi_0(E/W')}{W'} dW' + \alpha_{ion} \frac{\partial \Phi_e(E,t)}{\partial E}$$
(4.9)

$$\frac{d\Phi_g(W,t)}{dt} = -\sigma_g \Phi_g(W,t) + \int_W^\infty \Phi_e(E',t) \frac{\varphi_0(W/E')}{E'} dE'$$
(4.10)

mit den Wechselwirkungstermen wie in (2.26), (2.27):

$$\varphi_0(v) = v + \frac{1-v}{v}(\frac{4}{3} + 2b) = v + \frac{1-v}{v}M_{\psi}$$
(4.11)

$$\psi_0(u) = \frac{2}{3} - \frac{1}{2}b + (\frac{4}{3} + 2b)(u - \frac{1}{2})^2 = A_{\psi} + M_{\psi}(u - \frac{1}{2})^2$$
 (4.12)

mit:
$$b \approx 0.0122$$
 $A_{\psi} := \frac{2}{3} - \frac{1}{2}b$ $M_{\psi} := \frac{4}{3} + 2b$ (4.13)

und es ist

$$\sigma_e = \int_0^1 \varphi_0(v) dv$$
 und $\sigma_g = \int_0^1 \psi_0(u) du$

(Wir bevorzugen in diesem Kapitel die Bezeichnungsweise φ_0 und ψ_0 von Rossi [33], um Verwechslungen vorzubeugen.) Wir identifizieren zunächst die Energiewahrscheinlichkeitsdichten (die Bezeichnungsweise der ersten Spalte wird in [32] benutzt):

Bremsstrahlung
$$e:$$
 $\frac{dn_{e\to e}}{dEdt} = \varphi_0(1 - \frac{E}{E'})\frac{1}{E'} = \sigma_e P_{e\to e}(E', E)$
Paarbildung: $\frac{dn_{\gamma\to e}}{dEdt} = \psi_0(\frac{E}{W'})\frac{1}{W'} = \sigma_g P_{g\to e}(W', E)$

Bremsstrahlung
$$\gamma$$
: $\frac{dn_{e \to \gamma}}{dW dt} = \varphi_0(\frac{W}{E'})\frac{1}{E'} = \sigma_e P_{e \to g}(E', W)$

mit der umgeschriebenen Kaskadengleichung

$$\frac{\partial \Phi_{e}(E,t)}{\partial t} = -\sigma_{e}\Phi_{e}(E,t) + \int_{E}^{\infty} \sigma_{e}\Phi_{e}(E',t)P_{e\to e}(E',E)dE'
+2\int_{E}^{\infty} \sigma_{g}\Phi_{g}(W',t)P_{g\to e}(W',E)dW' + \alpha_{ion}\frac{\partial \Phi_{e}(E,t)}{\partial E}$$

$$\frac{d\Phi_{g}(W,t)}{dt} = -\sigma_{g}\Phi_{g}(W,t) + \int_{W}^{\infty} \sigma_{e}\Phi_{e}(E',t)P_{e\to g}(E',W)dE'$$
(4.14)

Aus Energieerhaltungsgründen (vgl. 2.2.1,2.2.2) müssen die Normierungsbedingungen (2.21) für die Produktionswahrscheinlichkeiten gelten:

$$\int_0^{E'} P_X(E', E) dE \stackrel{!}{=} 1$$

oder explizit

$$\int_{0}^{E'} P_{g \to e}(E', E) dE = 1$$

$$\int_{0}^{E'} P_{e \to g}(E', E) dE = 1$$

$$\int_{0}^{E'} P_{e \to e}(E', E) dE = 1$$

Wegen $\psi_0(\frac{E}{W'})\frac{1}{W'} = \sigma_g P_{g\to e}(W', E) \Rightarrow 1 = \int_0^{E'} P_{g\to e}(W', E) dE = \int_0^{E'} \frac{1}{\sigma_g} \psi_0(\frac{E}{W'}) \frac{1}{W'} dE$ folgt mit der Substitution $u = \frac{E}{W'}$ und $\int \psi_0(u) du = \int [A_{\psi} + M_{\psi}(u - \frac{1}{2})^2] du = [A_{\psi}u + M_{\psi}\frac{1}{3}(u - \frac{1}{2})^3]$:

$$\sigma_g = \int_0^{W'} \psi_0(\frac{E}{W'}) \frac{1}{W'} dE = \int_0^1 \psi_0(u) du = \frac{7}{9} - \frac{b}{3}$$
 (4.16)

Analog gilt: Wegen $\varphi_0(1-\frac{E}{E'})\frac{1}{E'}=\sigma_e P_{e\rightarrow e}(E',E) \Rightarrow 1=\int_0^{E'} P_{e\rightarrow e}(E',E)dE=0$ $\int_0^{E'} \frac{1}{\sigma_e} \varphi_0 (1 - \frac{E}{E'}) \frac{1}{E'} dE \text{ folgt}$

$$\sigma_e = \int_0^{E'} \varphi_0(1 - \frac{E}{E'}) \frac{1}{E'} dE = \int_0^1 \varphi_0(v) dv \tag{4.17}$$

wobei im letzten Schritt noch eine Substitution $v=1-\frac{E}{E'}$ durchgeführt wurde. Wie schon in Abschnitt 2.3 erwähnt, sind das erste Integral in (4.14) und das Integral (4.17) $(\int_E^\infty \Phi_e(E',t) \frac{\varphi_0(1-E/E')}{E'} dE'$ und $\sigma_e=\ldots$) singulär, da $\varphi_0(v)$ für $v\to 0$ singulär ist. Insbesondere kann deshalb $P_{e\to g}(E',E) = \varphi_0(\frac{E}{E'}) \frac{1}{\sigma_e E'}$ nicht zum Auswürfeln der Energie der durch Bremsstrahlung erzeugten Photonen verwendet werden.

Betrachten wir genauer, welche Prozesse zu der Singularität führen. Die Singularität im Bremsstrahlungs-Verlustterm kann man so deuten: es finden im Limes unendlich viele Wechselwirkungen statt, bei denen unendlich viele Photonen entstehen, deren Energie aber im Limes gegen Null geht. (Man nennt dies oft Infrarotkatastrophe.) Das bedeutet, die wechselwirkenden Elektronen verlieren einen winzigen, im Limes gegen Null gehenden, Energieanteil. Betrachten wir ein Energieintervall $I = (E, E + \triangle E)$ der Breite $\triangle E$, so fallen am linken Rand von I unendlich viele Elektronen aus dem Intervall heraus dies beschreibt gerade der Verlustterm.

Beim Bremsstrahlungs-Quellterm geschieht genau das Umgekehrte: Unendlich viele Elektronen, die nahe am rechten Rand von I liegen, verlieren einen beliebig kleinen Energieanteil, indem sie niederenergetische Photonen abstrahlen, und fallen in das Intervall I. Im Limes $\triangle E \rightarrow 0$ gleichen sich die gegen unendlich strebenden Teilchenzahlen, die das Intervall I verlassen, mit denen, die das Intervall I "betreten", aus. In der Summe hat ein Elektron, das eine klar definierte Tiefendifferenz vorwärts propagiert, einen klar definierten und vor allem endlichen Energieverlust (der sich aus der Summe der unendlich vielen erzeugten Photonen ergibt).

Deshalb versuchen wir, die problematischen Integrationsbereiche der singulären Integrale abzuschneiden und in einem Integral zusammenzufassen, das nicht mehr singulär ist. Ähnlich sind wir in Gleichung 3.8 in Abschnitt 3.1, Seite 27, vorgegangen.

Die Größe des abgeschnittenen Integrationsbereiches steuern wir über einen Parameter δ . Er legt damit gleichzeitig fest, wie Bremsstrahlungsprozesse in der Gleichung behandelt werden: Wechselwirkungen von Elektronen mit Energie E, bei denen Photonen im Energiebereich $[\delta E, E]$ erzeugt werden, werden mit dem Verlustterm-Quellterm-Schema beschrieben (durch einen angepassten Wirkungsquerschnitt $\sigma_{e,\delta}$ und eine angepasste Dichte $P_{e \to e, \delta}$).

Dadurch wird die Erzeugung von Photonen mit Energien im Bereich $[0, \delta \cdot E]$ im Quellterm für den Photonenfluss nicht mehr berücksichtigt. Dies ist korrekt, solange δ so klein ist, dass δE immer kleiner als E_{min} ist, diese Photonen also sowieso unter die untere Energieschwelle fallen würden.

Der Verlustterm für Elektronen, die Photonen mit Energien kleiner als δE abstrahlen, darf aber nicht einfach weggelassen werden, da diese Elektronen nach der Wechselwirkung i.A. noch über E_{min} liegen. Er liegt in dem abgetrennten (singulären) Integrationsbereich. Nach einer Taylorentwicklung von Φ_e heben sich die Singularitäten weg. Der führende verbliebene Term hat schon die Form eines Ionisationsterms. Die höheren Terme vernachlässigen wir unter der Annahme, dass das abgetrennte Integrationsintervall klein ist. Dieser Term beschreibt jetzt den Energieverlust der Elektronen durch Bremsstrahlung (bis zur Schwelle δE).

Durch diese Umformung ist die Singularität in der elektromagnetischen Kaskadengleichung beseitigt und macht sie einer numerischen Behandlung — hier zunächst der Monte-Carlo-Simulation, später auch dem numerischen Lösungsverfahren — zugänglich.

Abtrennung der singulären Integralteile Im ersten Integral in Gleichung (4.9) führen wir eine Substitution $v = 1 - \frac{E}{E'}$ durch, um die Abspaltung der Singularität vorzubereiten:

$$\int_{E}^{\infty} \Phi_{e}(E',t) \frac{\varphi_{0}(1 - E/E')}{E'} dE' = \int_{0}^{1} \Phi_{e}(\frac{E}{1 - v},t) \frac{\varphi_{0}(v)}{1 - v} dv$$

Wir fassen die Singularitäten in einem Integral $\int_0^{\delta} \dots$ für ein kleines δ zusammen; damit wird Gleichung (4.9) zu:

$$\frac{\partial \Phi_{e}(E,t)}{\partial t} = -\int_{0}^{1} \varphi_{0}(v) dv \Phi_{e}(E,t) + \int_{0}^{1} \Phi_{e}(\frac{E}{1-v},t) \frac{\varphi_{0}(v)}{1-v} dv
+ 2 \int_{E}^{\infty} \Phi_{g}(W',t) \frac{\psi_{0}(E/W')}{W'} dW' + \alpha_{ion} \frac{\partial \Phi_{e}(E,t)}{\partial E}
= \int_{0}^{\delta} \left(-\varphi_{0}(v) \Phi_{e}(E,t) + \Phi_{e}(\frac{E}{1-v},t) \frac{\varphi_{0}(v)}{1-v} \right) dv
- \int_{\delta}^{1} \varphi_{0}(v) dv \Phi_{e}(E,t) + \int_{\delta}^{1} \Phi_{e}(\frac{E}{1-v},t) \frac{\varphi_{0}(v)}{1-v} dv
+ 2 \int_{E}^{\infty} \Phi_{g}(W',t) \frac{\psi_{0}(E/W')}{W'} dW' + \alpha_{ion} \frac{\partial \Phi_{e}(E,t)}{\partial E}
= \frac{\partial}{\partial E} \left[\alpha_{sing}(\delta) E \Phi_{e}(E,t) \right]
- \int_{\delta}^{1} \varphi_{0}(v) dv \Phi_{e}(E,t) + \int_{\delta}^{1} \Phi_{e}(\frac{E}{1-v},t) \frac{\varphi_{0}(v)}{1-v} dv
+ 2 \int_{E}^{\infty} \Phi_{g}(W',t) \frac{\psi_{0}(E/W')}{W'} dW' + \alpha_{ion} \frac{\partial \Phi_{e}(E,t)}{\partial E}$$

$$(4.18)$$

Im ersten Integral $\int_0^\delta \dots$ wurde die Taylorentwicklung

$$\Phi(\frac{E}{1-v}) = \Phi(E) + E \cdot v \cdot \frac{\partial \Phi(E)}{\partial E} + O(v^2)$$
(4.19)

eingesetzt. Dann ist

$$\int_0^{\delta} \left(-\varphi_0(v) \Phi_e(E, t) + \Phi_e(\frac{E}{1 - v}, t) \frac{\varphi_0(v)}{1 - v} \right) dv$$

$$= \int_{0}^{\delta} \left(-\varphi_{0}(v) \Phi_{e}(E, t) + \frac{\varphi_{0}(v)}{1 - v} [\Phi_{e}(E, t) + Ev \frac{\partial}{\partial E} \Phi_{e}(E, t) + O(v^{2})] \right) dv$$

$$= \int_{0}^{\delta} \Phi_{e}(E, t) \left(-\varphi_{0}(v) + \frac{\varphi_{0}(v)}{1 - v} \right) + \frac{\varphi_{0}(v)}{1 - v} Ev \frac{\partial}{\partial E} \Phi_{e}(E, t) dv + O(v^{2})$$

$$= \Phi_{e}(E, t) \left(\int_{0}^{\delta} \frac{v\varphi_{0}(v)}{1 - v} dv \right) + E \frac{\partial}{\partial E} \Phi_{e}(E, t) \left(\int_{0}^{\delta} \frac{v\varphi_{0}(v)}{1 - v} dv \right) + O(v^{2})$$

$$= \frac{\partial}{\partial E} \left[E \Phi_{e}(E, t) \left(\int_{0}^{\delta} \frac{v\varphi_{0}(v)}{1 - v} dv \right) \right] + O(v^{2})$$

$$= \frac{\partial}{\partial E} \left[\alpha_{sing, \delta} E \Phi_{e}(E, t) \right] + O(v^{2})$$

$$(4.20)$$

mit $\alpha_{sing,\delta} := \left(\int_0^\delta \frac{v\varphi_0(v)}{1-v} dv\right)$ Insgesamt haben wir nun folgendes DGL-System, das keine Singularität mehr enthält:

$$\frac{\partial \Phi_{e}(E,t)}{\partial t} = -\sigma_{e,\delta} \Phi_{e}(E,t) + \int_{\frac{E}{1-\delta}}^{\infty} \Phi_{e}(E',t) \frac{\varphi_{0}(1-E/E')}{E'} dE'
+ 2 \int_{E}^{\infty} \Phi_{g}(W',t) \frac{\psi_{0}(E/W')}{W'} dW' + \frac{\partial}{\partial E} \left[(\alpha_{ion} + \alpha_{sing,\delta} E) \Phi_{e}(E,t) \right]
\frac{\partial \Phi_{g}(W,t)}{\partial t} = -\sigma_{g} \Phi_{g}(W,t) + \int_{W}^{\infty} \Phi_{e}(E',t) \frac{\varphi_{0}(W/E')}{E'} dE'$$
(4.21)

$$\frac{\partial \Phi_g(W,t)}{\partial t} = -\sigma_g \Phi_g(W,t) + \int_W \Phi_e(E',t) \frac{\varphi_0(W/E')}{E'} dE'$$
(4.22)

nach Rücktransformation des rechten Integral in (4.18) und unter Beachtung von $\sigma_g = \frac{7}{9} - \frac{b}{3}$, $M_\psi = \frac{4}{3} + 2b$ und

$$\alpha_{sing,\delta} := \left(\int_0^{\delta} \frac{v\varphi_0(v)}{1 - v} dv \right) = \int_0^{\delta} \frac{v^2 + (1 - v)M_{\psi}}{1 - v} dv$$

$$= \int_0^{\delta} \left(M_{\psi} - 1 - v + \frac{1}{1 - v} \right) dv = \left((M_{\psi} - 1)v - \frac{v^2}{2} - \log(1 - v) \right) \Big|_0^{\delta}$$

$$= (M_{\psi} - 1)\delta - \frac{\delta^2}{2} - \log(1 - \delta) = (\frac{1}{3} + 2b)\delta - \frac{\delta^2}{2} + \underbrace{\log \frac{1}{1 - \delta}}_{\sim \delta} \approx \frac{4}{3}\delta (4.23)$$

und (vgl. Definitionen in (4.13))

$$\sigma_{e,\delta} := \int_{\delta}^{1} \varphi_{0}(v) dv = \int_{\delta}^{1} v + \frac{1 - v}{v} M_{\psi} dv = \int_{\delta}^{1} v + \frac{1}{v} M_{\psi} - M_{\psi} dv \qquad (4.24)$$

$$= \left(\frac{v^{2}}{2} + M_{\psi} \log v - M_{\psi} v \right) \Big|_{\delta}^{1}$$

$$= -M_{\psi} \log \delta - \frac{5}{6} - 2b + M_{\psi} \delta - \frac{\delta^{2}}{2}$$

$$\approx \frac{4}{3} \log \frac{1}{\delta} - \frac{5}{6} \approx \frac{4}{3} \log \frac{0.57}{\delta}$$
(4.25)

oder mit den Bezeichnungen

$$P_{e \to e, \delta}(E', E) := \begin{cases} \varphi_0(1 - \frac{E}{E'}) \frac{1}{\sigma_{e, \delta} E'}; E' > E/(1 - \delta) \\ 0 ; \text{ sonst} \end{cases}$$
(4.26)

$$P_{e \to g, \delta}(E', E) := \begin{cases} \varphi_0(\frac{E}{E'}) \frac{1}{\sigma_{e, \delta} E'}; \, \delta E' < E \\ 0; \quad \text{sonst} \end{cases}$$
 (4.27)

also $P_{e \to e, \delta}(E', E) = P_{e \to g, \delta}(E', E' - E)$.

Wir schreiben (4.21), (4.22) in einer Form, die den Bremsstrahlungsprozess einer Monte-Carlo-Simulation zugänglich macht. Dazu muss in jedem Bremsstrahlungsterm zunächst derselbe Wirkungsquerschnitt $\sigma_{e,\delta}$ stehen. In den Quelltermen müssen die komplementären Produktionswahrscheinlichkeitsdichten stehen, also $P_{e\to e,\delta}(E',E)$ und $P_{e\to q,\delta}(E',E)$:

$$\frac{\partial \Phi_e(E,t)}{\partial t} = -\sigma_{e,\delta} \Phi_e(E,t) + \int_{\frac{E}{1-\delta}}^{\infty} \sigma_{e,\delta} \Phi_e(E',t) P_{e \to e,\delta}(E',E) dE' \qquad (4.28)$$

$$+2 \int_{E}^{\infty} \sigma_g \Phi_g(W',t) P_{g \to e}(W',E) dW' + \frac{\partial}{\partial E} \left[(\alpha_{ion} + \alpha_{sing,\delta} E) \Phi_e(E,t) \right]$$

$$\frac{d\Phi_g(E,t)}{dt} = -\sigma_g \Phi_g(E,t) + \int_E^\infty \sigma_{e,\delta} \Phi_e(E',t) P_{e\to g,\delta}(E',E) dE'$$
(4.29)

Obere Schranke für δ **bzw.** λ Gleichung (4.28) ist bis auf die andere Schreibweise identisch mit (4.21). In Gleichung (4.29) haben wir jedoch den Integranden aus (4.22) verändert: für $\delta E' > E$ bzw. $E' > E/\delta$ wird dieser 0.

Wir müssen also das Integral in (4.29) aufteilen in $\int_{E}^{E/\delta} \dots dE' + \int_{E/\delta}^{\infty} \dots dE'$. Der erste Teil kann in dieser Form mit der Monte-Carlo-Methode simuliert werden. Der zweite Teil muss gesondert behandelt werden. Die einfachste Möglichkeit ist, über eine Zusatzbedingung an δ sicherzustellen, dass dieses Integral 0 wird: Die DGL (4.29) betrachten wir erst ab Energien über der Energieschwelle, also für $E \geq E_{min}$. Ein Elektron kann maximal die Primärenergie E_{nrim} haben, also ist $\Phi_e(E', t) = 0$, wenn $E' > E_{min}$.

kann maximal die Primärenergie E_{prim} haben, also ist $\Phi_e(E',t)=0$, wenn $E'>E_{prim}$. Wir stellen an δ die Bedingung $\frac{E_{min}}{\delta}>E_{prim}\Leftrightarrow\delta<\frac{E_{min}}{E_{prim}}$. Dann ist gewährleistet, dass im Integral $\int_{E/\delta}^{\infty}\dots dE'$ immer $E'>\frac{E_{min}}{\delta}>E_{prim}$, damit im Integral $\Phi_e(E',t)=0$ und damit das Integral $\int_{E/\delta}^{\infty}\dots dE'=0$ ist. Mit dieser zusätzlichen Bedingung an δ ist also die Schreibweise in (4.29) korrekt:

$$\delta < \frac{E_{min}}{E_{prim}} \tag{4.30}$$

In Kapitel 5, Abschnitt 5.4, werden wir die logarithmische Transformation einführen. Als Parameter für das Abschneideintervall zur Entfernung der Singularität erweist sich die Größe λ als zweckmäßig. In Verbindung mit der Größe $\Delta\varepsilon$, die dort die minimale Intervallbreite der logarithmischen Energieskala bezeichnet, ist δ definiert als $\delta = 1$ –

 $e^{-\lambda \triangle \varepsilon}$. Auch in der Monte-Carlo-Implementierung wird der Parameter λ als Startoption vorgegeben, da dies einen direkten Vergleich von Monte-Carlo- und numerischer Lösung hinsichtlich der Sensitivität auf den Parameter λ erlaubt. Deshalb geben wir hier schon die analoge Bedingung für λ an. λ muss folgender Bedingung genügen:

$$\lambda \le \frac{1}{\triangle \varepsilon} \log \frac{1}{1 - \frac{E_{min}}{E_{primary}}} \tag{4.31}$$

Wird λ beim Programmstart zu groß vorgegeben, gibt das Programm eine Warnmeldung aus. Gibt man als Startparameter für λ den Wert 0 vor, wird programmintern der maximal erlaubte Wert für λ berechnet und für die Simulation verwendet.

Ionisationsterm nach Abspaltung der Singularität Wir haben nun keinen konstanten Energieverlustterm mehr in (4.28), sondern eine von E abhängige Funktion. Mit den Bezeichnungen von Abschnitt 2.1.6 ist nun $b(E) = \alpha_{ion} + \alpha_{sing,\delta}E$ und damit $\frac{\partial E(t)}{\partial t} = -b(E) = -\alpha_{ion} - \alpha_{sing,\delta}E$. Die allgemeine Lösung dieser DGL ist: $E(t) = Ce^{-\alpha_{sing,\delta}t} - \frac{\alpha_{ion}}{\alpha_{sing,\delta}}$. C ergibt sich aus den Anfangsbedingungen. So hat ein Elektron in der Tiefe t_{i-1} mit Energie $E(t_{i-1})$ nach einem Tiefenschritt um $\Delta t = t_i - t_{i-1}$ nach t_i die Energie:

$$E(t_i) = \left(E(t_{i-1}) + \frac{\alpha_{ion}}{\alpha_{sing,\delta}}\right) e^{-\alpha_{sing,\delta}(t_i - t_{i-1})} - \frac{\alpha_{ion}}{\alpha_{sing,\delta}}$$
(4.32)

Im Algorithmus auf Seite 60 muss dann in (4.4) stehen:

$$p.E \leftarrow \left(p.E + \frac{\alpha_{ion}}{\alpha_{sing,\delta}}\right) e^{-\alpha_{sing,\delta}t_{int}} - \frac{\alpha_{ion}}{\alpha_{sing,\delta}}$$
(4.33)

4.2.2 Auswürfeln einer Zufallsvariablen nach der Methode von John von Neumann

Für das Auswürfeln der Bremsstrahlungs-Energien E anhand der Wahrscheinlichkeitsdichten $P_{e\to e,\delta}(E',E)$ und $P_{e\to g,\delta}(E',E)$ aus (4.28), (4.29) ist die Methode aus Abschnitt B.1.2 nicht mehr anwendbar, da keine invertierbaren Stammfunktionen der Wahrscheinlichkeitsdichten existieren. Hier kann die Methode von John von Neumann [46] verwendet werden. Sie verlangt nur, dass die Wahrscheinlichkeitsdichte nach oben beschränkt ist. Wir beschreiben zunächst die Methode und zeigen danach ihre Korrektheit.

Methode von J. von Neumann: Sei eine Zufallsvariablen ξ mit Wahrscheinlichkeitsdichte p(x) mit $\xi \in [a,b]$ gegeben. Sei p_{max} ein fest gewählter Wert, für den gelte: $p_{max} \ge \max_{x \in [a,b]} p(x)$. (In der Praxis sollte p_{max} so klein wie möglich gewählt werden, idealerweise $p_{max} = \max_{x \in [a,b]} p(x)$.) Das Auswürfeln eines einzelnen Wertes ξ erfolgt so:

1. Ziehe eine gleichverteilte Zufallsgröße $u \in U(0,1)$ und setze $u_1 = a + u \cdot (b-a)$.

- 2. Ziehe eine weitere gleichverteilte Zufallsgröße $u_2 \in U(0,1)$. Wenn $u_2 > \frac{p(u_1)}{p_{max}}$ (Zurückweisungskriterium), dann verwerfe u_1 und gehe wieder zu Schritt 1.
- 3. Akzeptiere $\xi := u_1$.

Anhand der Skizze in Abbildung 4.2 kann man das auch so formulieren: Wähle einen zufälligen gleichverteilten Punkt (u_1, u_2) innerhalb des Kastens $K = [a, b] \times [0, p_{max}]$. Liegt er unter der Kurve $p(\xi)$, so ziehe $\xi = u_1$, andernfalls versuche es mit einen neuen Punkt (u_1, u_2) .

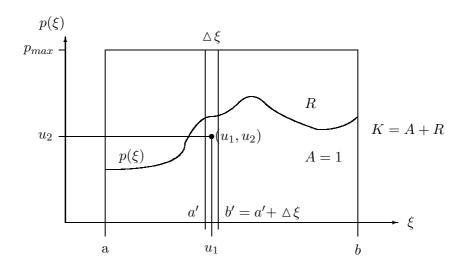


Abbildung 4.2: Methode von J. von Neumann: Ziehen der Zufallsvariable ξ

Behauptung: Die so gezogene Zufallsvariable ξ liegt in [a,b] und hat die Dichte p(x). Beweis: die Wahrscheinlichkeit, dass $u_1 \in (a',b')$ gezogen wird, ist $P(a' < u_1 < b') = \frac{b'-a'}{b-a} = \frac{\Delta \xi}{b-a}$, da u_1 gleichverteilt ist. Die Wahrscheinlichkeit, dass dieses gezogene $\xi = u_1$ akzeptiert wird, ist $P(accept\ u_1) = P(u_2 < \frac{p(u_1)}{p_{max}}) = \frac{p(u_1)}{p_{max}}$. Die Wahrscheinlichkeit $P(a' < \xi < b')$, dass der Algorithmus $\xi \in (a',b')$ zieht, ist dann $P(a' < \xi < b') = P(a' < u_1 < b') \cdot P(accept\ u_1)$.

Die Fläche A unter der Kurve $p(\xi)$ in Abbildung 4.2 ist gerade A=1, da $\int_a^b p(\xi)d\xi=1$ vorausgesetzt wurde. Die Fläche K des gesamten Kastens bis p_{max} ist $K=p_{max}\cdot(b-a)$. Die Punkte (u_1,u_2) sind im Kasten gleichverteilt. Die Wahrscheinlichkeit, dass ein gezogener Punkt (u_1,u_2) in A liegt, ist also gerade A/K, d.h. $P((u_1,u_2)\in A)=P(A)=\frac{1}{p_{max}\cdot(b-a)}$. Uns interessiert nur die Wahrscheinlichkeit, dass ξ gezogen wird unter der Voraussetzung, dass (u_1,u_2) akzeptiert wird. (Die Punkte in A sind unsere "Grundmenge".) Dann ist

$$P(a' < \xi < a' + \Delta \xi | A) = \frac{P(a' < \xi < b')}{P(A)} = \frac{\Delta \xi}{b - a} \frac{p(\xi)}{p_{max}} \frac{1}{\frac{1}{p_{max} \cdot (b - a)}} = p(\xi) \ \Delta \xi$$

oder für beliebige Intervalle:

$$P(a' < \xi < b') = \int_{a'}^{b'} p(\xi) d\xi$$

Die so erzeugte Zufallsvariable ξ hat also tatsächlich die geforderte Wahrscheinlichkeitsdichte $p(\xi)$.

Bemerkung 1: Nun ist klar, warum p_{max} möglichst klein sein soll: Die Fläche R ist größer, so dass mehr Punkte (u_1, u_2) in ihr zu liegen kommen. Diese Punkte werden zurückgewiesen, was mehr Rechenaufwand bedeutet.

Bemerkung 2: Die Methode von J. von Neumann kann man auch dann benutzen, wenn man die Normierungskonstante der Wahrscheinlichkeitsdichte nicht kennt, sondern nur eine Funktion $f(\xi)$ vorgegeben hat, die die Form der Wahrscheinlichkeitsdichte hat. Man kann dann diese unnormierte Funktion statt $p(\xi)$ benutzen, wenn man statt p_{max} einen Wert $f_{max} \geq \max_{\xi \in [a,b]} f(\xi)$ im Zurückweisungskriterium nimmt: $u_2 > \frac{f(u_1)}{f_{max}}$. Das Zurückweisungskriterium ist trotzdem richtig, denn wenn C die Normierungskonstante mit $p(\xi) = C \cdot f(\xi)$ ist, dann ist $u_2 > \frac{f(u_1)}{f_{max}} = \frac{C \cdot f(u_1)}{C \cdot f_{max}} = \frac{p(u_1)}{p_{max}}$, was gerade das ursprüngliche Zurückweisungskriterium war.

Das kann man insbesondere ausnutzen, wenn die Normierungskonstante sehr kompliziert zu berechnen ist oder parameterabhängig bei jedem Ziehen einer Zufallsvariablen neu berechnet werden müsste. Man kann sich dann die Rechenzeit sparen, die man zur Berechnung der Normierungskonstanten bräuchte.

4.2.3 Zufallsvariable W für den Bremsstrahlungs-Prozess

Die Wahrscheinlichkeitsdichte $P_{e\to g,\delta}(E',W)$, $W\in(\delta E',E')$, für ein wechselwirkendes Elektron mit der Energie E', ein Photon mit der Energie W zu erzeugen, ist gemäß Gleichung (4.29) auf Seite 67:

$$P_{e \to g, \delta}(E', W) = \frac{1}{\sigma_{e, \delta}} \varphi_0(\frac{W}{E'}) \frac{1}{E'} \text{ mit } \int_{\delta E'}^{E'} \frac{1}{\sigma_{e, \delta}} \varphi_0(\frac{W}{E'}) \frac{1}{E'} dW = 1$$

Programmiertechnisch ist es angenehmer, wenn die Zufallsvariable nicht in Abhängigkeit von E' erzeugt werden muss. Dies gelingt mit der Transformation $v=g(W)=\frac{W}{E'}$. Dann ist

$$1 = \int_{\delta E'}^{E'} \frac{1}{\sigma_{e,\delta}} \varphi_0(\frac{W}{E'}) \frac{1}{E'} dW = \int_{\delta}^1 \frac{1}{\sigma_{e,\delta}} \varphi_0(v) dv$$

Wir erzeugen mit der von-Neumann-Methode Zufallsvariablen v gemäß der Verteilung $\varphi_{0,\delta}(v) := \frac{1}{\sigma_{e,\delta}} \varphi_0(v), \ v \in [\delta,1],$ und erhalten durch Transformation W = vE' die Zufallsvariable W mit der gewünschten Verteilung $P_{e \to q,\delta}(E',W)$.

Bei kleinem δ wird bei der von-Neumann-Methode ein gezogener Wert für v extrem oft zurückgewiesen. Das liegt am asymptotischen Verhalten von φ_0 für kleine δ :

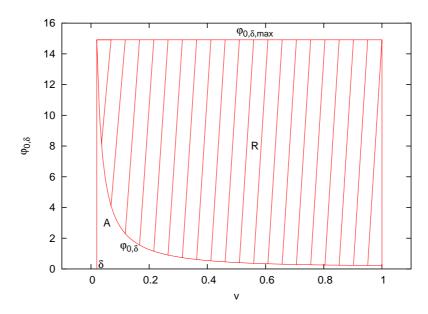


Abbildung 4.3: Wahrscheinlichkeitsdichte $\frac{1}{\sigma_{e,\delta}} \varphi_0(v)$

 $\varphi_0(v) \sim \frac{1}{v}$. Am linken Rand der Verteilung bei δ hat φ_0 ein ausgeprägtes Maximum, das den Zurückweisungsfaktor $\frac{1}{\varphi_{0,\delta,max}}$ bestimmt. In Abbildung 4.3 ergibt sich daraus der obere Rand des Kastens K. Fällt ein Punkt in den schraffierten Bereich, wird er zurückgewiesen. Nur wenn er unter den nichtschraffierten Bereich fällt, wird der Wert akzeptiert.

Wir versuchen, durch eine Variablentransformation eine günstigere Wahrscheinlichkeitsdichte zu erhalten. Eine günstige Transformation $\xi=h(v)$ sollte das $\frac{1}{v}$ -Verhalten entfernen, es sollte gelten: $(\frac{dh(v)}{dv})^{-1}=v$ (die Jacobideterminante der Transformation soll das $\frac{1}{v}$ "wegkürzen"). Das leistet $\xi=h(v)=\log v$. Die Verteilung für ξ erhalten wir

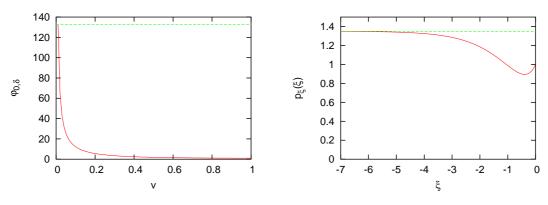


Abbildung 4.4: Transformation $\frac{1}{\sigma_{e,\delta}} \varphi_0(v) \overset{v=e^\xi}{\longleftrightarrow} p_\xi(\xi)$

aus folgender Transformation:

$$1 = \int_{\delta E'}^{E'} \frac{1}{\sigma_{e,\delta}} \varphi_0(\frac{W}{E'}) \frac{1}{E'} dW = \int_{\log \delta}^{\log 1 = 0} \frac{1}{\sigma_{e,\delta}} e^{\xi} \varphi_0(e^{\xi}) d\xi$$

Wir ziehen nun mit der J. von-Neumann-Methode die Zufallsvariable $\xi \in (\log \delta, 0)$ mit der Verteilung

$$p_{\xi}(\xi) = \frac{1}{\sigma_{e,\delta}} e^{\xi} \varphi_0(e^{\xi}) = \frac{1}{\sigma_{e,\delta}} (M_{\psi} - M_{\psi} e^{\xi} + e^{2\xi})$$

und gewinnen daraus die Zufallsvariable v mit der Transformation $v = e^{\xi}$.

Der Gewinn lässt sich am besten graphisch verdeutlichen: In Abbildung 4.4 entspricht die Fläche zwischen dem Graphen und der durchgezogenen Linie, die jeweils bei p_{max} liegt, der Anzahl der Zurückweisungen, die Fläche unter dem Graphen der Anzahl der akzeptierten Ziehungen (hier wurde $\delta \approx 0.001$ benutzt und die Graphen wurden nicht normiert, da es hier nur auf die relativen Verhältnisse der Flächen ankommt).

4.2.4 Zufallsvariable E für den Paarbildungs-Prozess

Die Wahrscheinlichkeitsdichte $P_{g\to e}(E',E)$, $E\in(0,E')$, für ein wechselwirkendes Photon mit der Energie E' ein Elektron mit der Energie E zu erzeugen, ist gemäß Gleichung (4.21) auf Seite 66:

$$P_{g\to e}(E', E) = \frac{1}{\sigma_g} \psi_0(\frac{E}{E'}) \frac{1}{E'} \text{ mit } \int_0^{E'} \frac{1}{\sigma_g} \psi_0(\frac{E}{E'}) \frac{1}{E'} dE = 1$$

Die Implementierung mit der J. von-Neumann-Methode bereitet keine Schwierigkeiten. Gemäß Abbildung 2.4 auf Seite 24 hat ψ_0 kein ausgeprägtes Maximum, so dass es nicht zu unverhältnismäßig vielen Zurückweisungen kommt.

4.3 Monte-Carlo-Simulation mit der Methode nach Hillas

Monte-Carlo-Simulation mit der Methode nach Hillas [47] (auch Simulation mit Dünnen genannt, e. thinning) soll die Rechendauer verkürzen. Die Idee beruht darauf, nicht alle Teilchen in der Simulation bis zum Ende zu verfolgen, sondern manche wegzuwerfen und durch die übrigen Teilchen zu repräsentieren, indem diese ein größeres Gewicht erhalten.

Man erhält dadurch größere systematische Fluktuationen in der Observablen, die dann wiederum durch eine höhere Anzahl simulierter Schauer kompensiert werden müssen, um einen statistischen Fehler in derselben Größenordnung wie ohne Dünnen zu erhalten. Aber insbesondere bei hohen Primärenergien ist das Dünnen die einzige Möglichkeit, überhaupt einen Schauer in akzeptabler Zeit durchrechnen zu können.

Ein einzelnes Teilchen T_i soll unter bestimmten Bedingungen mehrere Teilchen repräsentieren. Dazu erhält es neben seiner Energie E_i ein Gewicht w_i , das seine Vielfachheit darstellt: $T_i = (E_i, w_i)$. Das Teilchen repräsentiert dann w_i Teilchen mit der Energie $w_i \cdot E_i$.

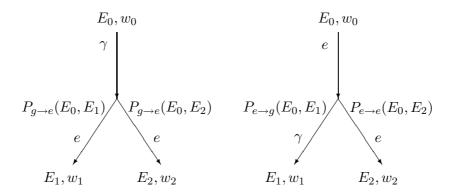


Abbildung 4.5: Hillas-Methode: Teilchen bekommen ein Gewicht w zugeordnet; Paarbildung (links) und Bremsstrahlung (rechts); $E_2 = E_0 - E_1$

Wir beschreiben nun die Methode des Dünnens nach Hillas: das einfallende Teilchen habe die Energie E_0 und das Gewicht w_0 . Die Energien E_1, E_2 der neu entstehenden Teilchen werden gemäß der modellierten Wechselwirkung ausgewürfelt. Nun setzen wir $p_i:=\frac{E_i}{E_0}$. Da $E_2=E_0-E_1$ ist, ist $p_1+p_2=1$. Dann setzen wir: $w_i=w_0\cdot\frac{E_0}{E_i}=\frac{w_0}{p_i}$ Als Nächstes wird eine Zufallsvariable $u\in U(0,1)$ gezogen. Falls $u< p_1$, dann wird

 T_1 behalten und T_2 verworfen, andernfalls umgekehrt.

Wir prüfen nach, dass die Erwartungswerte der Teilchenzahl und Teilchenenergie bei der Aufspaltung mit und ohne Dünnen dieselbe ist:

Dazu müssen wir zeigen, dass die Erwartungswerte $E[N_1], E[E_1], E[N_2], E[E_2]$ mit und ohne Dünnen übereinstimmen. Im ersten Fall ohne Dünnen wird das Gewicht von T_0 unverändert an T_1 und T_2 weitergereicht.

Erwartungswerte ohne Dünnen:

$$\begin{split} \mathsf{E}[N_1] &= w_0 \cdot 1 \\ \mathsf{E}[E_1] &= w_0 \cdot E_1 \\ \mathsf{E}[N_2] &= w_0 \cdot 1 \\ \mathsf{E}[E_2] &= w_0 \cdot E_2 \end{split}$$

Erwartungswerte mit Dünnen:

$$\begin{split} \mathsf{E}[N_{1,thin}] &= \int_0^1 \mathbf{1}_{\{u \leq p_1 = \frac{E_1}{E_0}\}} w_1 du = \int_0^1 \Theta(\frac{E_1}{E_0} - u) w_0 \frac{E_0}{E_1} du \\ &= w_0 \frac{E_0}{E_1} \int_0^{\frac{E_1}{E_0}} du = w_0 \cdot 1 \\ \mathsf{E}[E_{1,thin}] &= \int_0^1 \mathbf{1}_{\{u \leq p_1 = \frac{E_1}{E_0}\}} w_1 E_1 du = w_0 \cdot E_1 \\ \mathsf{E}[N_{2,thin}] &= \int_0^1 \mathbf{1}_{\{u > p_1 = \frac{E_1}{E_0}\}} w_1 du \end{split}$$

$$= w_0 \frac{E_0}{E_2} \int_{\frac{E_1}{E_0}}^1 du = w_0 \frac{E_0}{E_0 - E_1} (1 - \frac{E_1}{E_0}) = w_0 \cdot 1$$

$$\mathsf{E}[E_{2,thin}] = \int_0^1 1_{\{u \le p_1 = \frac{E_1}{E_0}\}} w_1 E_2 du = w_0 \cdot E_2$$

Die Werte stimmen wie gefordert überein.

Kapitel 5

Numerische Lösung

In diesem Kapitel wird das neu entwickelte numerische Lösungsverfahren für die elektromagnetische Kaskadengleichung beschrieben. Zunächst werden einige Methoden erklärt, mit denen die Kaskadengleichung vorbehandelt wird, um die Anwendung eines numerischen Verfahrens zu erleichtern oder überhaupt erst zu ermöglichen. Als erstes wird die Methode der Intervallintegration eingeführt, um die Energieerhaltung des diskretisierten Systems zu verbessern. Dies wird anhand des Modellproblems analysiert. Die Analyse legt die Einführung einer unteren Energieschwelle nahe.

Der Trapezansatz wird eingeführt, um intervallweise zwei Freiheitsgrade zu erhalten und somit der Teilchenzahl und der Gesamtenergie Rechnung zu tragen. Der große Energieskalenbereich legt schließlich eine logarithmische Transformation nahe. Die Singularität in der Produktionswahrscheinlichkeit für Photonen durch den Bremsstrahlungsprozess (Infrarotkatastrophe) muss behandelt werden.

Mit einem Charakteristikenansatz gewinnt man schließlich ein System von gewöhnlichen Differentialgleichungen für die Koeffizientenfunktionen. Aufgrund des nichttrivialen Charakteristiken-Verlaufs der Elektronen-DGLs aufgrund des Ionisationsterms kann das System zwar mit einem Runge-Kutta-ähnlichen Verfahren gelöst werden, erfordert jedoch in jedem Iterationsschritt geeignete Umrechnungen der Energieskalen.

5.1 Diskretisierung des Zustandsraums

Wir diskretisieren zunächst den zugrunde liegenden Zustands- oder Phasenraum $\Omega_E = [E_0, E_{max}] \times [0, t_{max}]$ und zerlegen den Energiebereich in N_E einzelne Intervalle $[E_j, E_{j+1})$ mit $E_0 < E_1 < \ldots < E_{N_E-1} = E_{max}$ und den Tiefenbereich in eine Folge von N_t Tiefen $(t_i)_i$ mit $0 = t_0 < t_1 < \ldots < t_{N_t-1} = t_{max}$.

5.2 Methode der Intervallintegration beim Modellsystem

Gleich zu Anfang stellt sich die Frage, wie die Differentialgleichung vorteilhaft diskretisiert werden kann. Bei der Kaskadengleichung sind dies der Differentialquotient auf der linken Seite und ein oder mehrere Integrale auf der rechten Seite. Unter dem Aspekt

der Energieerhaltung stellt man fest, dass die Methode der Intervallintegration anderen denkbaren Methoden überlegen ist. Wir stellen in diesem Abschnitt am Beispiel des Modellproblems drei mögliche Ansätze gegenüber. Als Lösungsverfahren verwenden wir das Euler-Verfahren (siehe Anhang C.1). Das Modellsystem ist einfach genug, um explizite Fehlerordungen für die Energieerhaltung zu berechnen. Es stellt sich heraus, dass der Fehlerterm der Intervallintegration um eine Ordnung besser ist.

Wir wiederholen zunächst das Modellsystem (2.22):

$$\frac{d\Phi(E,X)}{dX} = -\sigma\Phi(E,X) + 2\int_{E}^{\infty} \sigma\Phi(E',X)P(E',E)dE'$$
 (5.1)

In einer klassischen Diskretisierung würde Φ punktweise für jeden Gitterpunkt (E_j, t_i) definiert werden. Auf diesem Gitter kann nun das Euler-Verfahren für das Modellproblem (2.22) definiert werden und liefert dann die Rekursionsformel:

$$\Phi(E_j, t_{i+1}) = \Phi(E_j, t_i) + \Delta t \left(-\sigma \Phi(E_j, t_i) + 2\sigma \int_{E_j}^{\infty} \Phi(E', t_i) P(E', E) dE' \right)$$

$$= \Phi(E_j, t_i) \left(1 - \sigma \Delta t \right) + \Delta t 2\sigma \int_{E_j}^{\infty} \Phi(E', t_i) P(E', E) dE'$$

Die rechte Seite enthält ein Integral, das auch noch diskretisiert werden muss. Dafür müssen wir eine Annahme machen, wie das nur punktweise definierte $\Phi(E', t_i)$ im Integranden interpretiert werden soll. Als Wahrscheinlichkeitsdichte verwenden wir im Folgenden $P(E', E) = \frac{1}{E'}$ und die Energieintervalle sollen äquidistant sein: $E_{k+1} - E_k = const. =: \triangle E$.

Integration mit der Rechteckformel Die einfachste Möglichkeit ist Integration mit der Rechteckformel. Der Integrationsbereich wird dabei in Teilintervalle unterteilt. In jedem Teilintervall wird das Integral approximiert durch das Produkt des Integranden an einer Stelle des Teilintervalls und der Breite des Intervalls:

$$\int_{a}^{b} g(x)dx \approx (b-a) \cdot g(\xi) \quad , \quad \xi \in [a,b]$$
 (5.2)

Wir wählen willkürlich $\xi=0.5(a+b)$. Die Rekursionsformel für das Euler-Verfahren lautet dann

$$\Phi(E_j, t_{i+1}) = \Phi(E_j, t_i) (1 - \sigma \triangle t) + \triangle t 2\sigma \sum_{k=j}^{N_E} \Phi(E_k, t_i) \frac{E_{k+1} - E_k}{\frac{1}{2} (E_{k+1} + E_k)}$$
 (5.3)

Analytische Integration Unter der Annahme, dass $\Phi(E, t_i) \equiv \Phi(E_j, t_i)$ stückweise konstant auf dem Intervall $[E_j, E_{j+1})$ ist, kann man das Integral auf der rechten Seite

auch analytisch berechnen. Für das Modellproblem ergibt sich dann die Rekursionsvorschrift

$$\Phi(E_j, t_{i+1}) = \Phi(E_j, t_i) + \Delta t \cdot \left(-\sigma \Phi(E_j, t_i) + 2\sigma \sum_{k=j}^{N_E} \Phi(E_k, t_i) \left[\log \frac{E_{k+1}}{E_k} \right] \right)$$
(5.4)

Man stellt fest, dass in dieser Rekursionsvorschrift eine Singularität entsteht, wenn k=0 ist, da dann $E_k=E_0=0$ im Nenner steht. Das Integral zum problematischen Summanden war $\int_0^{E_1} \Phi(E_0,t) \frac{1}{E'} dE'$. Da $E_0=0$ ist, können wir hier, um die Lage zu retten, $\Phi(E_0,t)=\Phi(0,t)\equiv 0$ setzen, wodurch aber das niedrigste Energieintervall für das numerische Verfahren verloren geht. In der Implementierung wurde dies so gemacht.

Methode der Intervallintegration Die beiden vorhergehenden Ansätze gehen von einer punktweisen Definition von Φ aus. Nun wollen wir für Φ von Anfang an eine Ansatzfunktion einsetzen. Als einfachsten Ansatz setzen wir $\Phi(E',t_i)$ intervallweise konstant ein, also ähnlich wie oben $\Phi(E',t_i) = \Phi(E_j,t_i)$ für $E' \in [E_j,E_{j+1})$. Dies setzen wir in die Kaskadengleichung (2.22) ein und integrieren jeweils über ein ganzes Energieintervall:

$$\int_{E_j}^{E_{j+1}} \left(\frac{d\Phi(E,t)}{dt} \right) dE = \int_{E_j}^{E_{j+1}} \left(-\sigma\Phi(E,t) + 2 \int_E^{\infty} \sigma\Phi(E',t) P(E',E) dE' \right) dE \quad (5.5)$$

Daraus wird:

$$\frac{d\Phi_{j}(t)}{dt}\triangle E = -\sigma\Phi_{j}(t)\triangle E + 2\sigma\Phi_{j}(t)\left\{E_{j}\log\frac{E_{j}}{E_{j+1}} + \triangle E\right\}$$
$$+2\sigma\left\{\sum_{k=j+1}^{N_{E}}\Phi_{k}(t)\log\frac{E_{k+1}}{E_{k}}\triangle E\right\}$$

Das Euler-Verfahren für diesen Ansatz hat dann die Rekursionsformel

$$\Phi_{j}(t_{i+1}) =$$

$$= \Phi_{j}(t_{i})(1 - \sigma \Delta t) + 2\sigma \Delta t \Phi_{j}(t_{i}) \left(1 - \frac{E_{j}}{\Delta E} \log \frac{E_{j+1}}{E_{j}}\right) + 2\sigma \Delta t \sum_{k=j+1}^{N_{E}} \Phi_{k}(t_{i}) \log \frac{E_{k+1}}{E_{k}}$$

$$= \Phi_{j}(t_{i}) \left(1 + \sigma \Delta t - 2\sigma \Delta t \frac{E_{j}}{\Delta E} \log \frac{E_{j+1}}{E_{j}}\right) + 2\sigma \Delta t \sum_{k=j+1}^{N_{E}} \Phi_{k}(t_{i}) \log \frac{E_{k+1}}{E_{k}} \tag{5.6}$$

5.2.1 Energieerhaltung der Diskretisierung

Die Diskretisierung beschreibt nur annähernd die physikalischen Vorgänge. In 2.2.2 wurde gezeigt, dass die Kaskadengleichung die Energie exakt erhält. Wir stellen uns nun

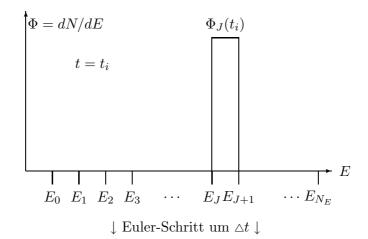
die Frage, wie gut die diskretisierte Kaskadengleichung die Energie erhält und wie groß die Verletzung der Energieerhaltung ist. Die Gesamtenergie ist:

$$E_{tot}(t_i) = \int_0^\infty E \,\Phi(E, t_i) \,dE = \sum_{j=0}^{N_E} \int_{E_j}^{E_{j+1}} E \,\Phi(E, t_i) \,dE$$
$$= \sum_{j=0}^{N_E} \Phi(E_j, t_i) \int_{E_j}^{E_{j+1}} E \,dE = \sum_{j=0}^{N_E} \Phi(E_j, t_i) \frac{1}{2} (E_{j+1}^2 - E_j^2)$$
(5.7)

Wir betrachten die Systemenergie in dem Fall, dass $\Phi(E_j, t_i)$ nur in einem einzigen Energieintervall $[E_j, E_{j+1})$ für j = J von 0 verschieden ist (siehe Abbildung 5.1). Die Gesamtenergie berechnet sich dann nach

$$E_{tot}(t_i) = \Phi(E_J, t_i) \frac{1}{2} (E_{J+1}^2 - E_J^2)$$

Im Folgenden berechnen wir für jeden der verwendeten Ansätze die genauen Ausdrücke für die Energiebilanz. Der Einfachheit halber wählen wir $\sigma = 1$.



 $\Phi = dN/dE$ $t = t_{i+1}$ \cdots $\Phi_J(t_{i+1})$ \cdots E

Abbildung 5.1: Teilchen und Energie werden im Euler-Schritt nach links verteilt

 E_0 E_1 E_2 E_3

Integration mit der Rechteckformel Beim Euler-Verfahren mit Rechteckintegration haben wir nach einem Rekursionsschritt gemäß (5.3) die Fälle:

$$\Phi(E_{j}, t_{i+1}) = \begin{cases}
2\triangle t\Phi(E_{J}, t_{i}) \frac{E_{J+1} - E_{J}}{0.5(E_{J+1} + E_{J})} & ; j < J \\
(1 - \triangle t)\Phi(E_{J}, t_{i}) + 2\triangle t\Phi(E_{J}, t_{i}) \frac{E_{J+1} - E_{J}}{0.5(E_{J+1} + E_{J})} & ; j = J \\
0 & ; j > J
\end{cases} (5.8)$$

Dann ist $E_{tot}(t_{i+1}) =$

$$= (1 - \Delta t)\Phi(E_J, t_i)\frac{1}{2}(E_{J+1}^2 - E_J^2) + \sum_{j=0}^J 2\Delta t\Phi(E_J, t_i)\frac{E_{J+1} - E_J}{0.5(E_{J+1} + E_J)}\frac{1}{2}(E_{j+1}^2 - E_j^2)$$

$$= E_{tot}(t_i) + \Delta t \Delta E \Phi(E_J, t_i) \left(-\frac{1}{2} (E_{J+1} + E_J) + 2 \frac{E_{J+1}^2}{E_{J+1} + E_J} \right)$$
 (5.9)

Analytische Integration Nach einem Rechenschritt gemäß (5.4) für die analytische Integration haben wir drei Fälle:

$$\Phi(E_j, t_{i+1}) = \begin{cases}
2\triangle t \Phi(E_J, t_i) \log \frac{E_{J+1}}{E_J} & ; \quad j < J \\
(1 - \triangle t) \Phi(E_J, t_i) + 2\triangle t \Phi(E_J, t_i) \log \frac{E_{J+1}}{E_J} & ; \quad j = J \\
0 & ; \quad j > J
\end{cases} (5.10)$$

Dann ist ähnlich wie oben $E_{tot}(t_{i+1}) =$

$$= (1 - \Delta t)\Phi(E_J, t_i)\frac{1}{2}(E_{J+1}^2 - E_J^2) + \sum_{j=0}^J 2\Delta t\Phi(E_J, t_i)\log\frac{E_{J+1}}{E_J}\frac{1}{2}(E_{j+1}^2 - E_j^2)$$

$$= E_{tot}(t_i) + \Delta t\Phi(E_J, t_i)\left(-\frac{1}{2}(E_{J+1}^2 - E_J^2) + \log\frac{E_{J+1}}{E_J}\sum_{j=0}^J (E_{j+1}^2 - E_j^2)\right)$$
(5.11)

Intervallintegration Hier ergeben sich aus (5.6) die Fälle:

$$\Phi(E_{j}, t_{i+1}) = \begin{cases}
\Phi(E_{J}, t_{i})(1 + \triangle t) & ; \quad j = J = 0 \\
2\triangle t\Phi(E_{J}, t_{i})\log\frac{E_{J+1}}{E_{J}} & ; \quad j < J \\
\Phi(E_{J}, t_{i})(1 + \triangle t - 2\triangle t\frac{E_{J}}{\triangle E}\log\frac{E_{J+1}}{E_{J}}) & ; \quad j = J \\
0 & ; \quad j > J
\end{cases}$$
(5.12)

Dann ist ähnlich wie oben $E_{tot}(t_{i+1}) =$

$$= E_{tot}(t_i) + \Delta t \Phi(E_J, t_i) \left(\left(1 - \frac{2E_J}{\Delta E} \log \frac{E_{J+1}}{E_J} \right) \frac{1}{2} (E_{J+1}^2 - E_J^2) + \log \frac{E_{J+1}}{E_J} \sum_{j=0}^{J-1} (E_{j+1}^2 - E_j^2) \right)$$

$$= E_{tot}(t_i) + \Delta t \Delta E^2 \Phi(E_J, t_i) \left(\left(1 - \frac{2E_J}{\Delta E} \log \frac{E_{J+1}}{E_J} \right) (J + \frac{1}{2}) + \log \frac{E_{J+1}}{E_J} J^2 \right)$$
(5.13)

In der letzten Zeile sind die log-Terme 0, wenn $E_J = 0$ ist (im ersten Term steckt der Limes $E \log E = 0$, der zweite resultiert aus der Summe, die für J = 0 aber gar nicht auftritt).

5.2.2 Relative Energieverletzung

Wir haben nun gesehen, dass bei allen Diskretisierungen die Energie nicht erhalten bleibt, da $E_{tot}(t_{i+1}) \neq E_{tot}(t_i)$. Dies wollen wir unter vereinfachenden Annahmen quantifizieren. Wir wollen das relative Verhalten des Fehlers untersuchen und in Beziehung zur Anzahl der Energieintervalle bringen.

Wir betrachten wieder den Fall, dass Φ_j nur im Intervall j=J von Null verschieden ist: $\Phi_j(E_j,t)=0$ für $j\neq J$ und $\Phi_j(E_j,t)=0$. Außerdem wollen wir die Energieintervalleinteilung als äquidistant ansehen, d.h. es sei: $E_j=j\cdot \triangle E$ oder $E_{j+1}-E_j=\triangle E$. Wir berechnen unter diesen Annahmen die relative Energieverletzung $E_{tot,err,rel}(\triangle t,J)$ aller drei Methoden, die hierdurch definiert ist:

$$E_{tot}(t_{i+1}) = E_{tot}(t_i) \cdot (1 + E_{tot,err,rel}(\Delta t, J))$$
(5.14)

Unter Verwendung der Taylorreihen $\log (1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$ und $\frac{1}{1+x} = 1 - x + x^2 - x^3 + x^4 - \dots$ berechnen wir die Ordnungen von $\frac{1}{J}$.

Methode mit Rechteckintegration

$$E_{tot,err,rel}(\Delta t, J) = \Delta t \left(-1 + \frac{(J+1)^2}{(J+\frac{1}{2})^2} \right) = \Delta t \left(\frac{1}{J} - \frac{1}{4J^2} + \frac{16}{J^4} + O\left(\frac{1}{J^5}\right) \right)$$
(5.15)

Methode mit analytischer Integration

 $E_{tot,err,rel}(\triangle t,J) =$

$$= \Delta t \left(-1 + \log \left(1 + \frac{1}{J} \right) \frac{(J+1)^2}{J + \frac{1}{2}} \right) = \Delta t \left(\frac{1}{J} - \frac{1}{6J^2} + \frac{1}{30J^4} + O\left(\frac{1}{J^5}\right) \right)$$
 (5.16)

Methode mit Intervallintegration

 $E_{tot.err.rel}(\triangle t, J) =$

$$= \triangle t \left(1 + J \log \left(1 + \frac{1}{J} \right) \left[-2 + \frac{J}{J + \frac{1}{2}} \right] \right) = \triangle t \left(\frac{1}{6J^2} - \frac{1}{6J^3} + \frac{2}{15J^4} + O\left(\frac{1}{J^5}\right) \right)$$
(5.17)

Interpretation: J ist die Nummer des Energieintervalls zur Energie $E_J = J \cdot \triangle E$. Je höher diese Nummer ist, umso kleiner ist der relative Fehler. Das ist auch anschaulich klar: Da ein Intervall mit hoher Nummer seine Energie an mehr Intervalle niedrigerer

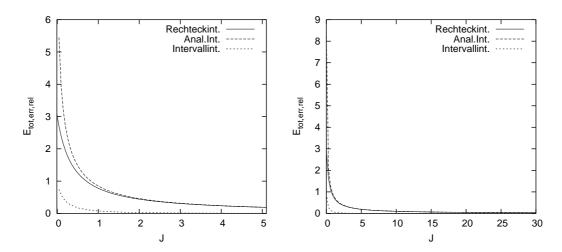


Abbildung 5.2: Relativer Fehler $E_{tot,err,rel}(\triangle t = 1, J)$

Energie weitergeben kann¹, können dadurch die tatsächlichen physikalischen Prozesse besser abgebildet werden.

Entscheidend ist hier, dass im Fehler für die Intervallintegrationsmethode der $\frac{1}{J}$ Term verschwindet. Diese Methode ist also um eine Ordnung besser (siehe auch Abbildung 5.2). Deshalb werden wir ab jetzt die Methode der Intervallintegration benutzen.

5.3 Energieschwelle E_{min}

Wie wir an den Rekursionsvorschriften sahen, werden Teilchen von Energieintervallen hoher Energie immer zu niederen Energien hin verschoben. Dies entspricht ja auch dem Kaskadenprozess, bei dem Teilchen in den Wechselwirkungen Energie verlieren oder ihre Energie auf die neu entstandenen Teilchen verteilen. Zwangsläufig werden sich alle Teilchen irgendwann im niedrigsten Energieintervall ansammeln. Hieraus lässt sich kein sinnvolles Wissen mehr über den Kaskadenprozess gewinnen. Wie im vorigen Abschnitt ausgeführt, ist das niedrigste Energieintervall auch gar nicht mehr in der Lage, die physikalischen Prozesse abzubilden.

Wir führen aus praktischen Erwägungen eine untere Energieschwelle bzw. Minimalenergie E_{min} ein und verlangen, dass $E_0 = E_{min}$ ist.

Die Integrationsbereiche der Integrale für die Gesamtteilchenzahl (2.4) und Gesamtenergie (2.5) von Seite 15 beginnen dann jeweils bei E_{min} :

$$N_{tot}(t) = \int_{E_{min}}^{\infty} \Phi(E, t) dE$$

$$E_{tot}(t) = \int_{E_{min}}^{\infty} E \Phi(E, t) d$$

$$(5.18)$$

$$E_{tot}(t) = \int_{E_{min}}^{\infty} E \Phi(E, t) d \qquad (5.19)$$

¹Energie kann nur von höheren nach niedrigeren Energieintervallen transportiert werden.

Dies ist übrigens ein ganz zwangloses Vorgehen. Auch bei realen Experimenten ist eine natürliche Energieschwelle vorgegeben, nämlich die minimale Energiedetektionsschwelle der Detektoren, an der wir uns orientieren werden.

5.4 Logarithmische Transformation

Wir führen nun die logarithmische Transformation $\varepsilon = \log E$ für die Energie E ein. Dies ist in der Physik der kosmischen Strahlung üblich, da man es mit riesigen Energiebereichen zu tun hat, die viele Größenordnungen umspannen. Im Bereich der höchsten Energien geht es um den Energiebereich zwischen der Primärenergie um 10^{20} eV bis hinunter zu Detektorschwellen im Bereich von einigen 10^6 eV. Details sind aber in allen Bereichen interessant. Da die Wechselwirkungsprozesse vom Verhältnis der Energie des einfallenden Teilchens zur Energie der erzeugten Teilchen abhängen (siehe Gleichungen 3.1) bietet es sich an, in der Energieskala eine logarithmische Einteilung vorzunehmen. Bei dieser entsprechen gleiche Abstände in ε gleichen relativen Verhältnissen der betrachteten Energie. (Eine grafische Darstellung der Transformation findet sich in Anhang D.1.)

Einen mehr numerischen Hinweis geben die approximativen Lösungen aus Kapitel 3. Von dort wissen wir schon, dass der Fluss die Form $\Phi(E,t) \propto e^{\lambda(s)t} \cdot \frac{1}{E} \left(\frac{E_{prim}}{E}\right)^s$ hat. Das $\frac{1}{E}$ -Verhalten für kleine Energien wird, wie wir gleich genauer ausrechnen werden, durch die Transformation glatter.

Sei also $\varepsilon = \log E$. Dann ist $\frac{dE}{d\varepsilon} = E = \exp \varepsilon$. Analog zur Definition (2.23) für $\Phi(E,t)$ definieren wir:

$$\Phi^{l}(\varepsilon, t) := \frac{dN(\varepsilon, t)}{d\varepsilon} \tag{5.20}$$

Wir kennzeichnen den logarithmisch transformierten Fluss mit einem oberen Index l. Die Umrechnung zwischen transformiertem und untransformiertem Fluss erfolgt mittels:

$$\Phi(E,t) = \Phi^{l}(\varepsilon,t)\frac{1}{E} = \Phi^{l}(\varepsilon,t)e^{-\varepsilon} \quad \text{und} \quad \Phi^{l}(\varepsilon,t) = \Phi(E,t) \cdot E$$
 (5.21)

Dies folgt mit (5.20) aus:

$$\Phi(E,t) = \frac{dN(E,t)}{dE} = \frac{dN(\varepsilon,t)}{d\varepsilon} \frac{d\varepsilon}{dE} = \Phi^{l}(\varepsilon,t) \frac{1}{E}$$
 (5.22)

Die transformierte Kaskadengleichung des Modellsystems (2.22) hätte nach dieser Transformation beispielsweise dann die Form

$$\frac{d\Phi^{l}(\varepsilon,t)}{dt} = -\sigma\Phi^{l}(\varepsilon,t) + 2\exp\varepsilon \int_{\varepsilon}^{\infty} \sigma\Phi^{l}(\varepsilon',t)P(e^{\varepsilon'},e^{\varepsilon})d\varepsilon'$$
 (5.23)

da $dE=E\cdot d\varepsilon=e^\varepsilon\cdot d\varepsilon,\, \Phi=\Phi^l\frac{1}{E}=\Phi^le^{-\varepsilon}$ und

$$\frac{\partial \Phi}{\partial t} = \frac{\partial (\Phi^l e^{-\varepsilon})}{\partial t} = e^{-\varepsilon} \frac{\partial \Phi^l}{\partial t}$$
 (5.24)

Um das Argument der glatteren Lösung der approximativen Lösung zu Beginn dieses Abschnittes wieder aufzugreifen: Der transformierte Fluss hat dann die Form $\Phi^l(\varepsilon,t) \propto e^{\lambda(s)t} \cdot \left(\frac{E_{prim}}{E}\right)^s = e^{\lambda(s)t}e^{s(\varepsilon_{prim}-\varepsilon)}.$ Das $\frac{1}{E}$ -Verhalten ist durch die Transformation verschwunden.

Als Vorgriff auf die elektromagnetische Kaskadengleichung rechnen wir hier noch die Transformation für ein Modellsystem mit konstanten Ionisationsverlusten durch, da wir die Rechnung später direkt übernehmen können. Die DGL der Modellgleichung mit (auf die linke Seite gebrachtem) Ionisationsterm

$$\frac{\partial \Phi(E,t)}{\partial t} - \alpha \frac{\partial \Phi(E,t)}{\partial E} = -\sigma \Phi(E,t) + 2 \int_{E}^{\infty} \sigma \Phi(E',t) P(E',E) dE' \qquad (5.25)$$

würde wegen

$$\frac{\partial \Phi}{\partial E} = \frac{\partial (\Phi^l e^{-\varepsilon})}{\partial \varepsilon} \cdot \frac{\partial \varepsilon}{\partial E} = (e^{-\varepsilon} \frac{\partial \Phi^l}{\partial \varepsilon} + \Phi^l \frac{\partial e^{-\varepsilon}}{\partial \varepsilon}) \frac{1}{E} = (e^{-\varepsilon} \frac{\partial \Phi^l}{\partial \varepsilon} - e^{-\varepsilon} \Phi^l) e^{-\varepsilon}$$
 (5.26)

zu

$$\frac{\partial \Phi}{\partial t} - \alpha \frac{\partial \Phi}{\partial E} = e^{-\varepsilon} \left(\frac{\partial \Phi^l}{\partial t} - \alpha e^{-\varepsilon} \frac{\partial \Phi^l}{\partial \varepsilon} + \alpha e^{-\varepsilon} \Phi^l \right) = \text{ rechte Seite der DGL}$$
 (5.27)

werden. Isolieren der partiellen Ableitungen auf der linken Seite gibt

$$\frac{\partial \Phi^l}{\partial t} - \alpha e^{-\varepsilon} \frac{\partial \Phi^l}{\partial \varepsilon} = -\alpha e^{-\varepsilon} \Phi^l + e^{\varepsilon} \text{ (rechte Seite der DGL)}$$
 (5.28)

und insgesamt:

$$\frac{\partial \Phi^l(\varepsilon, t)}{\partial t} - \alpha e^{-\varepsilon} \frac{\partial \Phi^l(\varepsilon, t)}{\partial \varepsilon} = (-\sigma - \alpha e^{-\varepsilon}) \Phi^l(\varepsilon, t) + 2e^{\varepsilon} \int_{\varepsilon}^{\infty} \sigma \Phi^l(\varepsilon', t) P(\varepsilon', \varepsilon) d\varepsilon' \quad (5.29)$$

5.4.1 Logarithmische Intervalleinteilung

Die Zerlegung des Zustandsraums lässt sich nun präzisieren: Seien der Tiefenbereich $[t_0, t_{max}]$ und der Energiebereich $[E_{min}, E_{max}]$ vorgegeben² sowie die Anzahl N_t der Tiefenschritte und N_E der Energieintervalle. Wir definieren:

$$\Delta \varepsilon := \frac{\log E_{max} - \log E_{min}}{N_E}; \ \varepsilon_{min} := \log E_{min}; \ \varepsilon_j := \varepsilon_{min} + j \cdot \Delta \varepsilon \ (j = 0, \dots, N_E) \ (5.30)$$

$$\Delta t := \frac{t_{max} - t_0}{N_t}; \ t_i := t_0 + i \cdot \Delta t \ (i = 0, \dots, N_t)$$
 (5.31)

Energiewerte aus logarithmischen Energien ergeben sich immer aus $E_j = e^{\varepsilon_j}$ und in umgekehrter Richtung $\varepsilon_j = \log E_j$.

Der zugrunde liegende Zustands- oder Phasenraum ist dann $\Omega = [\varepsilon_{min}, \varepsilon_{max}] \times [0, t_{max}].$

²Bei uns ist immer $t_0 = 0$ und — aus praktischen Gründen — $E_{max} = 2 \cdot E_{prim}$.

5.4.2 Transformierte Teilchenzahl $N_{tot}(t)$ und Gesamtenergie $E_{tot}(t)$

Die Formeln für die Gesamtteilchenzahl (2.4) und Gesamtenergie (2.5) von Seite 15 und aus Absatz 5.3 werden zu:

$$N_{tot}(t) = \int_{E_{min}}^{\infty} \Phi(E, t) dE = \int_{\varepsilon_{min}}^{\infty} \Phi^{l}(\varepsilon, t) d\varepsilon$$
 (5.32)

$$E_{tot}(t) = \int_{E_{min}}^{\infty} E \ \Phi(E, t) \ dE = \int_{\varepsilon_{min}}^{\infty} e^{\varepsilon} \Phi^{l}(\varepsilon, t) \ d\varepsilon$$
 (5.33)

da $dE = E \cdot d\varepsilon = e^{\varepsilon} \cdot d\varepsilon$ und $\Phi = \Phi^l \frac{1}{E} = \Phi^l e^{-\varepsilon}$. E_{min} ist die untere Energieschwelle und $\varepsilon_{min} = \log E_{min}$ die untere Energieschwelle der logarithmisch transformierten Intervalleinteilung.

Für die Teilchenanzahl, die im Energieintervall $[\varepsilon_j, \varepsilon_{j+1}]$ liegt, schreiben wir $N_{tot,j}(t)$, für deren Gesamtenergie $E_{tot,j}(t)$, und deren Definition lautet:

$$N_{tot,j}(t) = \int_{E_j}^{E_{j+1}} \Phi(E,t) dE = \int_{\varepsilon_j}^{\varepsilon_{j+1}} \Phi^l(\varepsilon,t) d\varepsilon$$
 (5.34)

$$E_{tot,j}(t) = \int_{E_j}^{E_{j+1}} E \Phi(E,t) dE = \int_{\varepsilon_j}^{\varepsilon_{j+1}} e^{\varepsilon} \Phi^l(\varepsilon,t) d\varepsilon$$
 (5.35)

5.5 Anfangswerte

Wir wollen die Anfangswerte $\Phi^l(\varepsilon,0) = \Phi^l_0(\varepsilon)$ so vorgeben, dass die Kaskadengleichungen einen Teilchenschauer beschreiben, der von einem Teilchen mit der Primärenergie E_{prim} ausgelöst wurde.

Hierfür müsste man wie in 2.1.8, Gleichung (2.20), oder wie bei der analytischen Approximation in (3.23) oder (3.24) einen Delta-Impuls vorgeben. Dies ist bei einem numerischen Ansatz natürlich nicht möglich.

Wir können aber versuchen, die numerische Repräsentation des Primärteilchens so gut wie möglich zu machen und stellen deshalb folgende Anforderungen an das diskrete Anfangswert-Energiespektrum:

- Der Primärimpuls soll möglichst lokal numerisch dargestellt werden. Damit ist gemeint, dass der diskrete Fluss nur in dem Energie-Intervall von Null verschieden sein soll, in dem die Primärenergie liegt.
- Die Gesamtteilchenzahl $N_{tot}(t)$ soll bei t=0 gerade 1, nämlich das eine Primärteilchen, sein:

$$N_{tot}(0) \stackrel{!}{=} 1$$
 (5.36)

• Die Gesamtenergie $E_{tot}(t)$ soll bei t=0 gerade E_{prim} , nämlich die Energie des Primärteilchens, sein:

$$E_{tot}(0) \stackrel{!}{=} E_{prim} \tag{5.37}$$

Sei J der Index des Intervalls, das die Primärenergie enthält: $E_{prim} \in [E_J, E_{J+1})$. Sei $\Phi_J^l(\varepsilon, 0)$ der diskrete Ansatz für den Fluss in diesem Intervall. Die zwei Bedingungen sind dann äquivalent zu:

$$N_{tot}(0) = \int_{\varepsilon_J}^{\varepsilon_{J+1}} \Phi^l(\varepsilon, 0) \ d\varepsilon \stackrel{!}{=} 1$$
 (5.38)

und

$$E_{tot}(0) = \int_{\varepsilon_I}^{\varepsilon_{J+1}} e^{\varepsilon} \Phi^l(\varepsilon, 0) \ d\varepsilon \stackrel{!}{=} E_{prim}$$
 (5.39)

5.6 Der Trapezansatz

Wir führen nun den Trapezansatz ein. Wir hatten uns im Vorfeld schon auf die Methode der Intervallintegration festgelegt. Für diese Methode benötigen wir intervallweise einen konkreten Ansatz für den Teilchenfluss (in der Energie-Variable). Im Beispiel hatten wir einen intervallweise konstanten Ansatz (Rechteckansatz) gewählt, aber die Wahl eines anderen Ansatzes steht uns frei.

Forderung aus dem vorigen Abschnitt bezüglich der Anfangswerte schränkt die Wahl des Ansatzes insofern ein, dass der Ansatz mindestens zwei Freiheitsgrade haben muss, um gleichzeitig die Forderung an die Teilchenzahl und die Gesamtenergie — jeweils pro Intervall betrachtet — erfüllen zu können.

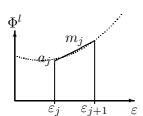


Abbildung 5.3: Trapezansatz $\Phi_i^l(\varepsilon) = a_i + m_i(\varepsilon - \varepsilon_i)$

Da wir das numerische Verfahren so einfach wie möglich halten wollen, haben wir auch keine Veranlassung, mehr als zwei Freiheitsgrade zu benutzen. Ein naheliegender Gedanke wäre, über einen zusätzlichen Freiheitsgrad die Stetigkeit von Φ^l an den Intervallgrenzen zu erzwingen. Unstetigkeit ist in unserem Ansatz jedoch gerade gewollt. Zum einen könnten wir sonst nicht den Anfangs-Primärimpuls innerhalb eines einzigen Energieintervalls darstellen, würden also gegen die erste Forderung verstoßen. Zum an-

deren werden in einem Hybridverfahren zu späteren Tiefen $t > t_0$ Anfangswerte von einer Monte-Carlo-Rechnung nachgeliefert. Dies lässt sich als Überlagerung von Schauern, die erst zu den späteren Tiefen angestoßen werden, interpretieren, und diese Überlagerung wird nicht stetig sein. Auch hier sind erlaubte Unstetigkeiten erwünscht.

Als einfachsten zweiparametrigen Ansatz wählen wir einen stückweise linearen Ansatz, den Trapezansatz:

$$\Phi^{l}(\varepsilon, t) := \Phi^{l}_{j}(\varepsilon, t) = a_{j}(t) + m_{j}(t)(\varepsilon - \varepsilon_{j}) \text{ wenn } \varepsilon \in [\varepsilon_{j}, \varepsilon_{j+1})$$
(5.40)

 $a_j(t)$ ist der konstante Anteil bzw. die Höhe der linken Trapezseite und $m_j(t)$ ist die Steigung des Trapezes.

Die konkreten Formeln (5.34) und (5.35) für Teilchenzahl und Energie innerhalb eines Intervalls sind für den Trapezansatz:

$$N_{tot,j}(t) = a_j(t) \left(\varepsilon_{j+1} - \varepsilon_j\right) + m_j(t) \frac{1}{2} \left(\varepsilon_{j+1} - \varepsilon_j\right)^2$$
(5.41)

$$E_{tot,j}(t) = a_j(t) \left(e^{\varepsilon_{j+1}} - e^{\varepsilon_j} \right) + m_j(t) \left(e^{\varepsilon_{j+1}} (\varepsilon_{j+1} - \varepsilon_j - 1) + e^{\varepsilon_j} \right)$$
 (5.42)

5.6.1 Anfangswerte beim Trapezansatz

Die zwei Bedingungen (5.38), (5.39) sind dann äquivalent zu:

$$N_{tot}(0) = \int_{\varepsilon_J}^{\varepsilon_{J+1}} \Phi_J^l(\varepsilon, 0) \ d\varepsilon = \int_{\varepsilon_J}^{\varepsilon_{J+1}} [a_J(0) + m_J(0)(\varepsilon - \varepsilon_J)] \ d\varepsilon = 1$$
 (5.43)

und

$$E_{tot}(0) = \int_{\varepsilon_J}^{\varepsilon_{J+1}} e^{\varepsilon} \Phi_J^l(\varepsilon, 0) \ d\varepsilon = \int_{\varepsilon_J}^{\varepsilon_{J+1}} e^{\varepsilon} [a_J(0) + m_J(0)(\varepsilon - \varepsilon_J)] \ d\varepsilon = E_{prim} \quad (5.44)$$

Rechnet man die Integrale aus, so lässt sich dies als lineares Gleichungssystem für $a_J(0)$ und $m_J(0)$ schreiben:

oder in Matrixform

$$M\begin{pmatrix} a_J(0) \\ m_J(0) \end{pmatrix} = \begin{pmatrix} 1 \\ E_{prim} \end{pmatrix}$$
 (5.46)

$$\operatorname{mit} M := \begin{pmatrix} (\varepsilon_{J+1} - \varepsilon_J) & \frac{1}{2} (\varepsilon_{J+1} - \varepsilon_J)^2 \\ (e^{\varepsilon_{J+1}} - e^{\varepsilon_J}) & (e^{\varepsilon_{J+1}} (\varepsilon_{J+1} - \varepsilon_J - 1) + e^{\varepsilon_J}) \end{pmatrix}$$
 (5.47)

Mit Satz (3.52) lässt sich M^{-1} berechnen. Damit bekommt man die Anfangswerte für $a_J(0)$ und $m_J(0)$

$$\begin{pmatrix} a_J(0) \\ m_J(0) \end{pmatrix} := M^{-1} \begin{pmatrix} 1 \\ E_{prim} \end{pmatrix}$$
 (5.48)

und damit ist der Anfangswert für $\Phi^l_I(\varepsilon,t)$:

$$\Phi_I^l(\varepsilon,0) := a_I(0) + m_I(0)(\varepsilon - \varepsilon_I) \tag{5.49}$$

und insgesamt

$$\Phi^{l}(\varepsilon,0) := \Phi^{l}_{0}(\varepsilon) := \begin{cases} a_{J}(0) + m_{J}(0)(\varepsilon - \varepsilon_{J}) & \text{falls } \varepsilon \in [\varepsilon_{J}, \varepsilon_{J+1}) \\ 0 & \text{sonst} \end{cases}$$
 (5.50)

der dann nach Konstruktion die zwei Bedingungen (5.38) und (5.39) erfüllt.

Ergänzung: Wir können die Rechenvorschrift (5.48) einfach erweitern, um für ein beliebiges Intervall $[\varepsilon_j, \varepsilon_{j+1})$ ein Trapez zu berechnen, das eine vorgegebene Teilchenzahl N und eine vorgegebene Energie E enthält. Die Trapezkoeffizienten a_j und m_j sind dann:

$$\begin{pmatrix} a_j \\ m_j \end{pmatrix} := M_j^{-1} \begin{pmatrix} N \\ E \end{pmatrix} \tag{5.51}$$

Die Matrix M^{-1} muss dann natürlich für das zugehörige Intervall $[\varepsilon_j, \varepsilon_{j+1})$ berechnet werden, was durch den unteren Index j angedeutet ist. Berechnet man für dieses Trapez die Teilchenzahl und Energie mit den Gleichungen 5.34 und 5.35, erhält man gerade wieder N und E.

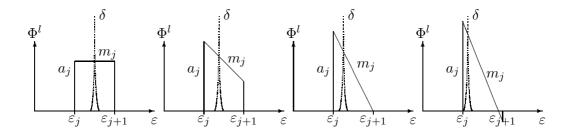


Abbildung 5.4: Trapezformen: gleichmäßig gefülltes (links) und entartetes Trapez (rechts)

5.6.2 Entartete Trapeze

Der Trapezansatz hat gegenüber dem Rechteckansatz den Vorteil, dass er das Potential hat, ein Energiespektrum in glatten Bereichen auch stetig zu reproduzieren. Andererseits kann er auch extreme Unstetigkeiten so lokal wie möglich, also auf ein Energieintervall beschränkt, darstellen. Wir gehen sogar noch einen Schritt weiter und

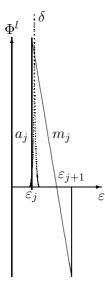


Abbildung 5.5: Extrem entartetes Trapez

lassen auch Trapeze zu, die teilweise negativ innerhalb ihres Gültigkeitsbereiches sind. Dieser Fall tritt gerade bei der Darstellung des Primärteilchens (siehe Abschnitte 5.5 und 5.6.1) oft auf. Physikalisch macht ein negativer Fluss keinen Sinn. Wir retten uns aus dieser Situation, indem wir einen teilweise negativen Fluss zulassen, aber verlangen, dass pro Energieintervall das Teilchenzahl- und das Energie-Integral nichtnegativ sind.

Wann kann überhaupt ein negativer Fluss auftreten? Wir verdeutlichen uns dazu die physikalische Interpretation eines Trapezes. Ein Blick auf die Definitionen (5.34), (5.35) zeigt: Die Fläche unter dem Trapez entspricht der Teilchenzahl, der Schwerpunkt des Trapezes entspricht der mittleren Energie der Teilchen bzw. bei nur einem Teilchen gerade dessen Energie.

Betrachten wir Trapeze gleicher Fläche, die nur ein Teilchen repräsentieren: Liegt die Teilchenenergie genau in der Mitte des Intervalls, so ist das Trapez ein Rechteck.

Liegt die Teilchenenergie mehr zum linken Rand hin verschoben, so fällt das Trapez nach rechts hin ab. Liegt die Teilchenenergie sehr nahe am linken Rand, so wird das Trapez immer steiler, bis der rechte Bereich irgendwann sogar negativ wird. Dies ist in den Bildern in

Abbildung 5.4 skizziert; in 5.5 ist ein extrem entartetes Trapez gezeichnet. Die Lage des Delta-Impulses des Primärteilchens ist gestrichelt angedeutet.

Analoges gilt natürlich, wenn das Teilchen zum rechten Rand hin verschoben ist. Und genauso kann dies bei Intervallen geschehen, in denen mehr als ein Teilchen liegt, wenn die Teilchen innerhalb des Intervalls stark ungleichmäßig verteilt sind. Da die DGL linear ist, stellt ein teilweise negatives Trapez unter mathematischen und numerischen Aspekten kein Problem dar. Im Gegenteil sehen wir dies sogar als einen Vorteil des Trapezansatzes an, mit wenigen Intervallen auskommen zu können, da der Ansatz in gewissem Rahmen die Energieverteilung auch *innerhalb* des Intervalls detaillierter darstellen kann.

Eine mögliche, aber aufwendige Alternative wäre, die Anzahl der Intervalle zu erhöhen. In anderen numerischen Ansätzen werden negative Flüsse automatisch behoben, indem sie auf Null gesetzt werden oder indem benachbarte Teilchen den *problematischen*, sprich negativen, Energieanteil erhalten. In beiden Fällen erzeugt man künstliche Fehler in der Teilchenzahl oder in der Gesamtenergie, was wir nach Möglichkeit vermeiden wollen.

5.7 Klassifizierung des Differentialgleichungstyps der Kaskadengleichung

Nach Munz [52] wird ein System partieller Differentialgleichungen 1. Ordnung der Form

$$u_t + Au_x = f (5.52)$$

mit vektorwertigen Funktionen $u = \left(u_1(x,t), u_2(x,t), \dots, u_n(x,t)\right), u_t = \frac{\partial u}{\partial t}, u_x = \frac{\partial u}{\partial x},$ $f = \left(f_1(x,t,u), f_2(x,t,u), \dots, f_n(x,t,u)\right)$ und einer $n \times n$ -Matrix A Evolutionsgleichung genannt. Hängt A = A(x,t) von x und t ab, heißt sie linear mit variablen Koeffizienten. Hat A nur reelle Eigenwerte, ist sie hyperbolisch.

Wir greifen etwas vor und schreiben die elektromagnetische Kaskadengleichung in einer aus (5.81) und (5.82) von Seite 95 abgeleiteten Form:

$$\frac{\partial \Phi_e^l(\varepsilon, t)}{\partial t} - a_{11}(\varepsilon) \frac{\partial \Phi_e^l(\varepsilon, t)}{\partial \varepsilon} = r_e(\varepsilon, t, \Phi_e^l, \Phi_g^l)$$
 (5.53)

$$\frac{\partial \Phi_g^l(\varepsilon, t)}{\partial t} = r_g(\varepsilon, t, \Phi_e^l, \Phi_g^l) \tag{5.54}$$

Es folgt: Die elektromagnetische Kaskadengleichung ist eine lineare hyperbolische Evolutionsgleichung mit variablen Koeffizienten.

Nach [53] ist der Oberbegriff hyperbolische Erhaltungsgleichung (e. conservation law), wobei in der Literatur manchmal nur dann von Erhaltungsgleichung gesprochen wird, wenn die rechte Seite Null ist. In diesem Sinne könnte man die Kaskadengleichung als hyperbolische Erhaltungsgleichung mit Quellterm auf der rechten Seite bezeichnen.

5.8 Allgemeiner Charakteristikenansatz für eine Kaskadengleichung

Das Charakteristikenverfahren ist ein numerisches Lösungsverfahren, das sich für hyperbolische partielle Differentialgleichungen nach Art der Evolutionsgleichung eignet und damit auch für die Kaskadengleichung benutzt werden kann. Im Anhang C.3, Seite 180, wird die grundlegende Verfahrensweise der Charakteristikenmethode kurz erläutert. Für weitergehende Informationen verweisen wir auf [52, 53, 54].

Wir wollen noch erwähnen, dass das Charakteristikenverfahren in unserem Fall den Vorteil hat, dass die partielle Ableitung nach ε nicht wie bei Differenzenverfahren durch

Differenzenquotienten numerisch abgebildet werden muss. Dies würde weitere Komplikationen mit sich bringen, da wir ja Unstetigkeiten in ε -Richtung zulassen wollen, für die keine Ableitung existiert.

In den letzten Abschnitten wurden einige Ansätze behandelt und begründet, die wir zur numerischen Lösung der Kaskadengleichung benutzen werden. In diesem Abschnitt wollen wir das Prinzip unseres neu entwickelten Lösungsalgorithmus in seiner Gesamtheit an einer allgemeinen Kaskadengleichung vorstellen, bevor wir im nächsten Abschnitt auf die Details bezüglich der elektromagnetischen Kaskadengleichung eingehen.

Behandlung der Singularität und logarithmische Transformation In einem vorbereitenden Schritt wird die Singularität der Produktions-Wahrscheinlichkeitsdichte $P(\varepsilon',\varepsilon)$ wie bei der Beschreibung der Monte-Carlo-Methode in Kapitel 4, Abschnitt 4.2.1, Seite 62, behandelt. Dies resultiert in einem zusätzlichen Ionisationsterm und einem eingeschränkten Definitionsbereich für $P(\varepsilon', \varepsilon)$.

Die Kaskadengleichung behält dadurch aber ihre grundsätzliche Gestalt und hat nach der logarithmischen Transformation dieselbe Form wie in Gleichung (5.29):

$$\frac{\partial \Phi^l(\varepsilon, t)}{\partial t} - \tilde{\alpha} \frac{\partial \Phi^l(\varepsilon, t)}{\partial \varepsilon} = -\tilde{\sigma} \Phi^l(\varepsilon, t) + 2e^{\varepsilon} \int_{\varepsilon}^{\infty} \sigma \Phi^l(\varepsilon', t) P(\varepsilon', \varepsilon) d\varepsilon'$$
 (5.55)

Längere Vorfaktoren haben wir zu $\tilde{\alpha}$, $\tilde{\sigma}$ und σ zusammengefasst. Die Veränderungen durch die Behandlung der Singularität stecken in $\tilde{\alpha}$, $\tilde{\sigma}$, σ und $P(\varepsilon', \varepsilon)$. Das Charakteristikenverfahren aus Anhang C.3 ist also nach wie vor anwendbar.

 $\textbf{Charakteristikenansatz} \quad \mathrm{Sei} \ r(\varepsilon(t),t,\Phi^l) := -\tilde{\sigma}\Phi^l(\varepsilon,t) + 2e^\varepsilon \int_\varepsilon^\infty \sigma\Phi^l(\varepsilon',t) P(\varepsilon',\varepsilon) d\varepsilon'$ die rechte Seite von (5.55). Nun machen wir den Charakteristikenansatz. Die totale Ableitung von $\Phi^l(\varepsilon,t)$ ist:

$$\frac{d\Phi^{l}(\varepsilon,t)}{dt} = \frac{\partial\Phi^{l}(\varepsilon,t)}{\partial t} + \frac{\partial\varepsilon}{\partial t} \frac{\partial\Phi^{l}(\varepsilon,t)}{\partial\varepsilon}$$
(5.56)

Wir machen einen Koeffizientenvergleich mit der Kaskadengleichung

$$\frac{\partial \Phi^l(\varepsilon, t)}{\partial t} - \tilde{\alpha} \frac{\partial \Phi^l(\varepsilon, t)}{\partial \varepsilon} = r(\varepsilon(t), t, \Phi^l), \tag{5.57}$$

um die Differentialgleichung $\frac{\partial \varepsilon}{\partial t} = \dots$ für den Charakteristikenverlauf (in ε -Richtung) zu ermitteln. Wir erhalten $\frac{\partial \varepsilon}{\partial t} = -\tilde{\alpha}$. Der Charakteristikenansatz liefert uns damit und zusammen mit (5.56) und (5.57) zwei gewöhnliche DGLs:

$$\frac{d\Phi^{l}(\varepsilon,t)}{dt} = r(\varepsilon(t),t,\Phi^{l})$$

$$\frac{\partial \varepsilon}{\partial t} = -\tilde{\alpha}$$
(5.58)

$$\frac{\partial \varepsilon}{\partial t} = -\tilde{\alpha} \tag{5.59}$$

Im Rahmen der vorliegenden Arbeit sind alle Lösungen von (5.59) analytisch berechenbar, da die (genaugenommen von ε abhängige) rechte Seite $\tilde{\alpha} = \tilde{\alpha}(\varepsilon)$ hinreichend einfach ist. Im Folgenden geht es deshalb um die numerische Lösung von (5.58).

Trapezansatz Wir machen für jedes der N_E Energieintervalle den Trapezansatz (5.40) von Seite 85:

$$\Phi^{l}(\varepsilon, t) := \Phi^{l}_{i}(\varepsilon, t) = a_{i}(t) + m_{i}(t)(\varepsilon - \varepsilon_{i}) \text{ für } \varepsilon \in [\varepsilon_{i}, \varepsilon_{i+1})$$

$$(5.60)$$

und haben damit N_E verschiedene DGLs

$$\frac{d\Phi_j^l(\varepsilon,t)}{dt} = r(\varepsilon(t),t) \text{ für } j = 0,\dots, N_E - 1$$
 (5.61)

Dies ist nun eine DGL für die zwei unbekannten Koeffizientenfunktionen $a_j(t)$ und $m_j(t)$. Da wir nur eine Differentialgleichung haben, benötigen wir eine weitere Bestimmungsgleichung, um beide Koeffizientenfunktionen bestimmen zu können. Wir gewinnen diese, indem wir für die Intervallintegration zwei verschiedene Integraloperatoren benutzen.

Intervallintegration Als Integraloperatoren benutzen wir $\mathcal{J}_n := \int_{\varepsilon_j}^{\varepsilon_{j+1}} e^{n\varepsilon} d\varepsilon$ für n=0 und n=1, also $\mathcal{J}_0 := \int_{\varepsilon_j}^{\varepsilon_{j+1}} d\varepsilon$ und $\mathcal{J}_1 := \int_{\varepsilon_j}^{\varepsilon_{j+1}} e^{\varepsilon} d\varepsilon$. Unterwirft man die linke Seite $\frac{d\Phi^l(\varepsilon,t)}{dt}$ den Integraloperatoren, so erhält man nach Vertauschung von Integration und Differentiation und Benutzung der Definitionen (5.34), (5.35) für $N_{tot,j}(t)$ und $E_{tot,j}(t)$:

$$\mathcal{J}_{0}\left(\frac{d\Phi_{j}^{l}(\varepsilon,t)}{dt}\right) = \frac{d}{dt}\left(\mathcal{J}_{0}\Phi_{j}^{l}(\varepsilon,t)\right) = \frac{d}{dt}\int_{\varepsilon_{j}}^{\varepsilon_{j+1}}\Phi_{j}^{l}(\varepsilon,t)d\varepsilon = \frac{d}{dt}N_{tot,j}(t)$$

$$\mathcal{J}_{1}\left(\frac{d\Phi_{j}^{l}(\varepsilon,t)}{dt}\right) = \frac{d}{dt}\left(\mathcal{J}_{1}\Phi_{j}^{l}(\varepsilon,t)\right) = \frac{d}{dt}\int_{\varepsilon_{j}}^{\varepsilon_{j+1}}e^{\varepsilon}\Phi_{j}^{l}(\varepsilon,t)d\varepsilon = \frac{d}{dt}E_{tot,j}(t)$$
(5.62)

So erhalten wir nach analoger Integration der rechten Seiten zwei Differentialgleichungen

$$\frac{d}{dt}N_{tot,j}(t) = \int_{\varepsilon_{-}}^{\varepsilon_{j+1}} r(\varepsilon(t), t) d\varepsilon$$
 (5.63)

$$\frac{d}{dt}E_{tot,j}(t) = \int_{\varepsilon_j}^{\varepsilon_{j+1}} e^{\varepsilon} r(\varepsilon(t), t) d\varepsilon$$
 (5.64)

Wir haben nun also 2 DGLs und zwar insbesondere DGLs in den Größen $N_{tot,j}(t)$ und $E_{tot,j}(t)$, den wichtigsten uns interessierenden Schauerobservablen. Dies war der eigentliche Grund, dass wir gerade die Operatoren \mathcal{J}_0 und \mathcal{J}_1 so gewählt haben.

Setzt man nun auf beiden Seiten der DGLs den Trapezansatz für Φ^l ein, so erhält man explizit berechenbare Integrale und Doppelintegrale als Vorfaktoren für die Koeffizientenfunktionen $a_j(t)$ und $m_j(t)$ (auf der rechten Seite) und deren Ableitungen (auf der linken Seite). Wir fassen die Vorfaktoren unter den Namen $a_{m,j}^{\mathcal{I}_n}, b_{m,j}^{\mathcal{I}_n}$ zusammen und erhalten folgendes lineare Differentialgleichungssystem:

Differentialgleichungssystem für die Koeffizientenfunktionen

$$a_{1,j}^{\mathcal{J}_0} \frac{da_j(t)}{dt} + a_{2,j}^{\mathcal{J}_0} \frac{dm_j(t)}{dt} = \sum_{k=j}^{N_E - 1} \left[b_{1,k}^{\mathcal{J}_0} a_k(t) + b_{2,k}^{\mathcal{J}_0} m_k(t) \right]$$
 (5.65)

$$a_{1,j}^{\mathcal{J}_1} \frac{da_j(t)}{dt} + a_{2,j}^{\mathcal{J}_1} \frac{dm_j(t)}{dt} = \sum_{k=j}^{N_E-1} \left[b_{1,k}^{\mathcal{J}_1} a_k(t) + b_{2,k}^{\mathcal{J}_1} m_k(t) \right]$$
 (5.66)

Mit simpler linearer Algebra (z.B. mit Satz (3.52) und vektorieller Formulierung) lässt sich dies nach Gleichungen nur für $\frac{da_j(t)}{dt}$ und $\frac{dm_j(t)}{dt}$ auflösen:

$$\frac{da_j(t)}{dt} = \sum_{k=j}^{N_E-1} \left[c_{1,k} a_k(t) + c_{2,k} m_k(t) \right]$$
 (5.67)

$$\frac{dm_j(t)}{dt} = \sum_{k=i}^{N_E-1} \left[d_{1,k} a_k(t) + d_{2,k} m_k(t) \right]$$
 (5.68)

wobei sich die neuen Koeffizienten $c_{m,k}$ und $d_{m,k}$ durch Zusammenfassen der Terme mit gleichen Faktoren $a_k(t)$ bzw. $m_k(t)$ ergeben.

Runge-Kutta-Verfahren Dieses System von $2 \cdot N_E$ gewöhnlichen Differentialgleichungen lösen wir nun mit einem numerischen Verfahren. Erste Versuche wurden mit dem Euler-Verfahren gemacht, aber letztendlich stellte sich das klassische explizite Runge-Kutta-Verfahren 4. Ordnung als geeignetes Verfahren heraus, um den Anforderungen an Genauigkeit und Geschwindigkeit gerecht zu werden. Das verwendete Runge-Kutta-Verfahren wird im Anhang C.2, Seite 179, kurz vorgestellt.

Korrektur der Energieskalen entlang der Charakteristiken In einem einzelnen Iterationsschritt um $\Delta t = t_{i+1} - t_i$ gewinnen wir aus den numerischen Werten von $a_j(t_i)$ und $m_j(t_i)$ zur Tiefe t_i , die gerade $\Phi_j^l(\varepsilon, t_i)$ repräsentieren, zwei neue Werte $\tilde{a}_j(t_{i+1})$ und $\tilde{m}_j(t_{i+1})$. Diese repräsentieren ein neues Trapez

$$\tilde{\Phi}_{j}^{l}(\tilde{\varepsilon}, t_{i+1}) := \tilde{a}_{j}(t_{i+1}) + \tilde{m}_{j}(t_{i+1})(\tilde{\varepsilon} - \varepsilon_{j}) \text{ für } \tilde{\varepsilon} \in [\varepsilon_{j}, \varepsilon_{j+1})$$
(5.69)

Der Charakteristikenansatz lieferte uns die Gleichung (5.59), $\frac{\partial \varepsilon}{\partial t} = -\tilde{\alpha}$, deren Lösung eine von t abhängige Funktion $\varepsilon(t)$ ist. Damit können wir eine Funktion χ definieren durch:

$$\chi(\varepsilon(t_i), \Delta t) := \varepsilon(t_{i+1}), \text{ wenn } \Delta t = t_{i+1} - t_i$$
(5.70)

Der Verlauf der Charakteristik $\left(\varepsilon(t);\ t;\ \Phi_j^l(\varepsilon(t),t)\right)$ muss gemäß Gleichung (5.59) berücksichtigt werden. Befinden wir uns zur Tiefe t_i im Punkt $\left(\varepsilon(t_i);\ t_i;\ \Phi_j^l(\varepsilon(t_i),t_i)\right)$ der Charakteristik, so befinden wir uns nach einem numerischen Schritt um $\triangle t$ im Punkt $\left(\varepsilon(t_{i+1});\ t_{i+1};\ \Phi_{neu,j}^l(\varepsilon(t_{i+1}),t_{i+1})\right) = \left(\chi(\varepsilon(t_i),\triangle t);\ t_{i+1};\ \Phi_{neu,j}^l(\chi(\varepsilon(t_i),\triangle t),t_{i+1})\right)$.

Die numerische Lösung $\tilde{\Phi}^l_j(\tilde{\varepsilon},t_{i+1})$ muss also an die neue Energieskala angepasst werden und es ist

$$\Phi_{neu,j}^{l}(\varepsilon, t_{i+1}) = \tilde{\Phi}_{j}^{l}(\underbrace{\chi(\varepsilon, -\triangle t)}_{\tilde{\varepsilon}}, t_{i+1})$$
(5.71)

mit
$$\varepsilon \in \left[\varepsilon_j(t_{i+1}), \ \varepsilon_{j+1}(t_{i+1})\right] = \left[\chi(\varepsilon_j(t_i), \triangle t), \ \chi(\varepsilon_{j+1}(t_i), \triangle t)\right]$$
 (5.72)

Aufgrund der Nichtlinearität von χ ist $\Phi_{neu,j}^l(\varepsilon,t_{i+1})$ kein Trapez mehr (siehe Abbildung Seite 110, Abschnitt 5.9.3). Da wir im nächsten Iterationsschritt wieder einen Runge-Kutta-Schritt nach derselben Methode machen wollen, wollen wir den numerischen Wert $\Phi_j^l(\varepsilon,t_{i+1})$ jedoch wieder in Trapezform vorliegen haben. Deshalb approximieren wir $\Phi_{neu,j}^l$ durch ein Trapez. Eine Möglichkeit ist die Sehnenapproximation: wir setzen $\Phi_j^l(\varepsilon,t_{i+1}) := \Phi_{neu,j}^l(\varepsilon,t_{i+1})$ für die beiden Intervallgrenzen $\varepsilon = \varepsilon_j(t_{i+1})$ und $\varepsilon = \varepsilon_{j+1}(t_{i+1})$ und interpolieren $\Phi_j^l(\varepsilon,t_{i+1})$ linear zwischen diesen beiden Werten. Für die Trapezkoeffizienten ergibt sich daraus (mit den Abkürzungen $\tilde{a}_j = \tilde{a}_j(t_{i+1})$ und $\tilde{m}_j = \tilde{m}_j(t_{i+1})$):

$$a_1 := \tilde{a}_j \; ; \quad a_2 := \tilde{a}_j + \tilde{m}_j(\varepsilon_{j+1}(t_i) - \varepsilon_j(t_i)) \tag{5.73}$$

$$a_j(t_{i+1}) := a_1 (5.74)$$

$$m_j(t_{i+1}) := \frac{a_2 - a_1}{\varepsilon_{j+1}(t_{i+1}) - \varepsilon_j(t_{i+1})}$$
(5.75)

$$\Rightarrow \Phi_j^l(\varepsilon, t_{i+1}) := a_j(t_{i+1}) + m_j(t_{i+1}) \cdot (\varepsilon - \varepsilon_j(t_{i+1}))$$
 (5.76)

Im Abschnitt 5.9.3, Seite 110, werden wir eine weitere Approximationsmöglichkeit diskutieren.

Auseinanderlaufen der Charakteristiken Die Ionisationsenergieverluste nehmen wir als konstant an, d.h. vor der logarithmischen Transformation erhalten wir als charakteristische DGL für die Energie: $\frac{\partial E(t)}{\partial t} = -\alpha_{ion}$. Die Charakteristik, die in der Tiefe t=0 bei der Energie $E_{0,j}$ startet, löst diese DGL und ist:

$$E_j(t) = E_{0,j} - \alpha_{ion}t \tag{5.77}$$

Durch die logarithmische Transformation wird daraus

$$\varepsilon_j(t) = \log\left(e^{\varepsilon_{0,j}} - \alpha_{ion}t\right)$$
 (5.78)

In Abbildung 5.6 haben wir den Verlauf einiger Charakteristiken (genaugenommen ihre Projektion auf die $\varepsilon - t$ -Ebene) grafisch dargestellt. Am oberen Rand bei t=0 starten die Charakteristiken an äquidistanten Energieintervallgrenzen $\varepsilon_{0,j}$. Zu größeren Tiefen t hin werden die Intervalle auseinandergezogen, verbreitert, und verschieben sich nach links. Dieses Verhalten ist klar: Durch Ionisation verlieren Teilchen in einem Intervall j Energie, was dem Verschieben in niedrigere Energiebereiche entspricht. Hier sieht man sehr gut, dass der Energieverlust durch Ionisation für hochenergetische Teilchen, die im rechten Energiebereich liegen, kaum eine Rolle spielt: Die Charakteristiken sind hier noch kaum gekrümmt und sind fast Geraden. Niederenergetische Teilchen folgen stark gekrümmten Charakteristiken und fallen früh unter die Energieschwelle ε_{min} , ab der wir sie in der Rechnung nicht mehr weiterverfolgen.

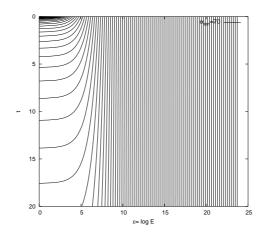


Abbildung 5.6: Charakteristiken für $\alpha=70$; der Bereich ε von 0 bis 23 entspricht E von 1 bis 10^{10} (MeV); die Charakteristiken sind bei t=0 äquidistant.

Dieses Verhalten der Charakteristiken rettet uns zum einen vor der Komplikation, dass bei hyperbolischen DGLs Stoßwellen auftreten können, dem ein numerisches Verfahren Rechnung tragen muss. Wenn sich die Charakteristiken — wie in unserem Fall — niemals schneiden, können auch keine Stoßwellen auftreten.

Dagegen bereitet die spezielle Form der Charakteristiken ein anderes Problem: Je weiter ein numerisches Verfahren in die Tiefe t gerechnet hat, umso mehr Charakteristiken und damit auch umso mehr Energieintervalle fallen unter die Energieschwelle ε_{min} . Die Approximation von $\Phi^l(\varepsilon,t)$ in ε -Richtung durch Trapeze wird dadurch immer gröber und schlechter, da immer weniger Trapeze zur Verfügung stehen, und wir können nicht erwarten, dass das numerische Verfahren — bezogen auf die ursprüngliche Energiebereichseinteilung bei t=0 — seine Ordnung beibehalten wird.

Wir verlangen deshalb, dass die Anzahl der Energieintervalle in jedem numerischen Iterationsschritt konstant bleibt!

Zurück-/Umskalierung Wir gewährleisten dies, indem wir nach einem Iterationsschritt $t_i \to t_{i+1}$, nach dem wir ja den numerischen Fluss $\Phi_j^l(\varepsilon, t_{i+1})$ von (5.76) in der Energieskala $\varepsilon(t_{i+1})$ erhalten, diesen wieder in die ursprüngliche Energieskala $\varepsilon_j = \varepsilon_j(t_0)$ umrechnen.

Dazu unterteilen wir die Trapeze (Abbildung 5.7 obere Grafik, gestrichelte Trennlinien) in Bereiche, deren Grenzen auf den Intervallgrenzen der Energieskala ES_0 liegen. (Wir greifen hier etwas vor; Energieskalen werden formal in Abschnitt 5.9.1 auf Seite 105 eingeführt.) Dann berechnen wir die Summen der Energie $E_{tot,j,sum}$ und Teilchenzahl $N_{tot,j,sum}$ aller Bereiche, die in ein Intervall von $[\varepsilon_j, \varepsilon_{j+1}) \in ES_0$ fallen.

Das Trapez des umskalierten Flusses Φ^l_j wird dann gerade so gewählt, dass Energie und Teilchenzahl des einzelnen Trapezes genau der Summe von Energie und Teilchenzahl der Teilbereiche entsprechen. Die Trapez-Koeffizienten können dafür wie in Abschnitt 5.6.1 berechnet werden.

Im Beispiel von Abbildung 5.7 würden Energie und Teilchenzahl der Bereiche a und b addiert und im Bereich A durch ein Trapez ersetzt werden mit den Eigenschaften $N_{tot,A} = N_{tot,a} + N_{tot,b}$ und $E_{tot,A} = E_{tot,a} + E_{tot,b}$. Gleiches gilt für die übrigen Bereiche.

 $N_{tot,A} = N_{tot,a} + N_{tot,b}$ und $E_{tot,A} = E_{tot,a} + E_{tot,b}$. Gleiches gilt für die übrigen Bereiche. Dadurch verändern wir zwar die Form von Φ_j^l , die Teilchenzahl und Energie bleiben aber innerhalb des Intervalls erhalten.

Bei der Beschreibung des numerischen Verfahrens führen wir im Absatz über Energieskalen auf Seite 105 formal den Umskalierungsoperator *Rebin* ein. In dieser Schreibweise können wir die Umrechnung auf die neue Energieskala so schreiben:

$$\Phi_{j,ES_0}^l = Rebin_{ES_0}(\Phi_{j,ES_{t_{i+1}}}^l)$$
 (5.79)

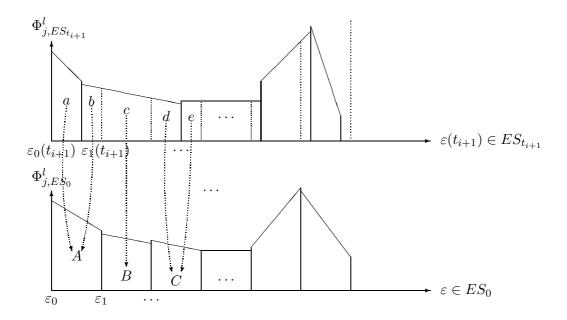


Abbildung 5.7: Oben: $\Phi^l_{j,ES_{t_{i+1}}}$ entlang Charakteristiken verschoben; Unten: Zurückskalierung auf äquidistante alte Energieskala $ES_0=\{\varepsilon_0,\varepsilon_1,\ldots,\varepsilon_{N_E}\}$

5.9 Charakteristikenverfahren für die elektromagnetische Kaskadengleichung

Nun haben wir alle Mittel zusammengetragen, um die numerische Lösung der elektromagnetischen Kaskadengleichung anzugehen. In diesem Abschnitt beschreiben wir detailliert das Charakteristikenverfahren mit Runge-Kutta-Iteration und werden alle Rechnungen explizit ausführen, die im vorigen Abschnitt 5.8 skizziert wurden. Die Runge-Kutta-Iteration erfordert dabei einigen technischen Aufwand und muss modifiziert werden, da wir gezwungen sind, die Energieskalen während des laufenden Runge-Kutta-Schrittes ineinander umzurechnen. Dies liegt daran, dass die Charakteristiken

für Elektronen und Photonen verschieden verlaufen, so dass die diskreten Flüsse, also die Trapeze, schon nach den einzelnen Runge-Kutta-Zwischenschritten nicht mehr "zusammenpassen".

Wir betrachten nun also wieder den Elektronenfluss $\Phi_e(E,t)$ und den Photonenfluss $\Phi_g(E,t)$ bzw. die logarithmisch transformierten Gegenstücke $\Phi_e^l(\varepsilon,t)$ und $\Phi_g^l(\varepsilon,t)$. Wir wiederholen die elektromagnetischen Kaskadengleichungen (4.21), (4.22) mit umgerechneter Singularität aus Kapitel 4, Abschnitt 4.2.1:

$$\frac{\partial \Phi_{e}(E,t)}{\partial t} = -\sigma_{e,\delta} \Phi_{e}(E,t) + \int_{\frac{E}{1-\delta}}^{\infty} \Phi_{e}(E',t) \frac{\varphi_{0}(1-E/E')}{E'} dE'
+ 2 \int_{E}^{\infty} \Phi_{g}(W',t) \frac{\psi_{0}(E/W')}{W'} dW' + \frac{\partial}{\partial E} \left[(\alpha_{ion} + \alpha_{sing,\delta} E) \Phi_{e}(E,t) \right]
\frac{\partial \Phi_{g}(W,t)}{\partial t} = -\sigma_{g} \Phi_{g}(W,t) + \int_{W}^{\infty} \Phi_{e}(E',t) \frac{\varphi_{0}(W/E')}{E'} dE'$$
(5.80)

Nach logarithmischer Transformation $\varepsilon = \log E$ und $\omega = \log W$ wird dies zu:

$$\frac{\partial \Phi_e^l(\varepsilon,t)}{\partial t} - \alpha(\varepsilon)e^{-\varepsilon} \frac{\partial \Phi_e^l(\varepsilon,t)}{\partial \varepsilon} = \left[-\alpha(\varepsilon)e^{-\varepsilon} + \frac{\partial \alpha(\varepsilon)}{\partial \varepsilon}e^{-\varepsilon} - \sigma_{e,\delta} \right] \Phi_e^l(\varepsilon,t)
+ e^{\varepsilon} \int_{\varepsilon + \log \frac{1}{1-\delta}}^{\infty} \Phi_e^l(\varepsilon',t) \frac{\varphi_0(1 - e^{\varepsilon - \varepsilon'})}{e^{\varepsilon'}} d\varepsilon'
+ 2e^{\varepsilon} \int_{\varepsilon}^{\infty} \Phi_g^l(\omega',t) \frac{\psi_0(e^{\varepsilon - \omega'})}{e^{\omega'}} d\omega'
=: r_e(\varepsilon(t),t,\Phi_e^l,\Phi_g^l)$$

$$\frac{\partial \Phi_g^l(\omega,t)}{\partial t} = -\sigma_g \Phi_g^l(\omega,t) + e^{\omega} \int_{\omega}^{\infty} \Phi_e^l(\varepsilon',t) \frac{\varphi_0(e^{\omega - \varepsilon'})}{e^{\varepsilon'}} d\varepsilon'
=: r_g(\varepsilon(t),t,\Phi_e^l,\Phi_g^l)$$
(5.82)

mit
$$\alpha(\varepsilon) = \alpha_{ion} + \alpha_{sing,\delta} e^{\varepsilon}$$
. (Dann ist $\left[-\alpha(\varepsilon)e^{-\varepsilon} + \frac{\partial \alpha(\varepsilon)}{\partial \varepsilon}e^{-\varepsilon} - \sigma_{e,\delta} \right] = -\alpha_{ion}e^{-\varepsilon} - \sigma_{e,\delta}$.)

Bemerkung: Die Behandlung der Singularität übernehmen wir damit vom Monte-Carlo-Ansatz. Da ein numerisches Verfahren beide DGLs getrennt behandelt³, müssen wir im Integranden von Gleichung (5.82) nicht wie in Gleichung (4.29) denselben Wirkungsquerschnitt $\sigma_{e,\delta}$ einführen. Damit entfällt auch die Einschränkung des Wertebereichs von δ wie in Abschnitt 4.2.1, Seite 67. Die einzige Forderung an δ ist nun, dass im Integral (4.20) der vernachlässigte Fehlerterm aus der Taylorentwicklung (4.19) nicht zu groß wird. Im Fall der elektromagnetischen Kaskadengleichung genügten Werte um $\delta = 0.1 \dots 0.001$ (im Gegensatz zur Monte-Carlo-Simulation mit Werten um $\delta \approx 10^{-14}$ gemäß der Forderung (4.30)).

³Das Monte-Carlo-Verfahren behandelt mit dem Wurf einer Zufallsvariablen *gleichzeitig* alle Terme, die zu einem Wechselwirkungsprozess gehören, auch wenn diese Terme über mehrere DGLs verteilt sind.

Daraus gewinnen wir unter Beachtung von $\frac{\partial \Phi_g^l(\omega,t)}{\partial t} = \frac{d\Phi_g^l(\omega,t)}{dt}$ den folgenden Charakteristikenansatz:

(DGL1)
$$\frac{d\Phi_e^l(\varepsilon, t)}{dt} = r_e(\varepsilon(t), \Phi_e^l, \Phi_g^l)$$
 (5.83)

(DGL2)
$$\frac{d\Phi_g^l(\omega, t)}{dt} = r_g(\varepsilon(t), \Phi_e^l, \Phi_g^l)$$
 (5.84)

(Charakteristik)
$$\frac{\partial \varepsilon}{\partial t} = -\alpha(\varepsilon)e^{-\varepsilon}$$
 (5.85)

mit $\lambda \triangle \varepsilon = \log \frac{1}{1-\delta}$ bzw. $\delta = 1 - e^{-\lambda \triangle \varepsilon}$, $b \approx 0.0122$, $M_{\psi} = 4/3 + 2b$, $A_{\psi} = 2/3 - b/2$ und (siehe Seite 66)

$$\sigma_g = \frac{7}{9} - \frac{b}{3} \tag{5.86}$$

$$\sigma_{e,\delta} = M_{\psi} \log \frac{1}{\delta} - \frac{5}{6} - 2b + M_{\psi} \delta - \frac{\delta^2}{2}$$
 (5.87)

$$\alpha_{sing,\delta} = (M_{\psi} - 1)\delta - \frac{\delta^2}{2} - \log(1 - \delta) = (\frac{1}{3} + 2b)\delta - \frac{\delta^2}{2} + \log\frac{1}{1 - \delta}$$
 (5.88)

und den Charakteristiken (aus der DGL $\frac{d\varepsilon(t)}{dt} = -\alpha(\varepsilon)e^{-\varepsilon(t)} = -\alpha_{sing,\delta} - \alpha_{ion}e^{-\varepsilon(t)}$)

$$\varepsilon(t) = \log\left(\frac{e^{-\alpha_{sing,\delta}t + \alpha_{sing,\delta}C} - \alpha_{ion}}{\alpha_{sing,\delta}}\right)$$

mit einer von den Anfangswerten abhängenden Integrationskonstanten C. Aus Werten zur Tiefe t_{i-1} erhält man die Werte in beliebigen Tiefen t_i (wobei auch $t_i < t_{i-1}$ zugelassen ist, d.h. man kann auch in der Tiefe rückwärts entlang der Charakteristiken gehen) mit folgender Form der Charakteristiken:

$$\varepsilon(t_i) = \log \left(\left[e^{\varepsilon(t_{i-1})} + \frac{\alpha_{ion}}{\alpha_{sing,\delta}} \right] e^{-\alpha_{sing,\delta}(t_i - t_{i-1})} - \frac{\alpha_{ion}}{\alpha_{sing,\delta}} \right)$$
 (5.89)

$$E(t_i) = \left[E(t_{i-1}) + \frac{\alpha_{ion}}{\alpha_{sing,\delta}} \right] e^{-\alpha_{sing,\delta}(t_i - t_{i-1})} - \frac{\alpha_{ion}}{\alpha_{sing,\delta}}$$
(5.90)

Hiermit definieren wir für $\triangle t = t_i - t_{i-1}$:

$$\chi(\varepsilon(t_{i-1}), \Delta t) := \log \left(\left[e^{\varepsilon(t_{i-1})} + \frac{\alpha_{ion}}{\alpha_{sing}, \delta} \right] e^{-\alpha_{sing}, \delta(t_i - t_{i-1})} - \frac{\alpha_{ion}}{\alpha_{sing}, \delta} \right)$$
(5.91)

dann ist $\varepsilon(t_i) = \chi(\varepsilon(t_{i-1}), \triangle t)$ und $\varepsilon(t_{i-1}) = \chi(\varepsilon(t_i), -\triangle t)$, da $\chi^{-1}(., \triangle t) = \chi(., -\triangle t)$ ist, wie man leicht nachrechnet.

In diese Gleichungen (5.83) und (5.84) wollen wir den Trapezansatz für Φ_e^l und Φ_g^l einsetzen, also:

$$\begin{array}{lcl} \Phi_{e}^{l}(\varepsilon,t) & = & \Phi_{e,j}^{l}(\varepsilon,t) & = & a_{e,j}(t) + (\varepsilon - \varepsilon_{j}) m_{e,j}(t) \\ \Phi_{q}^{l}(\varepsilon,t) & = & \Phi_{q,j}^{l}(\varepsilon,t) & = & a_{g,j}(t) + (\varepsilon - \varepsilon_{j}) m_{g,j}(t) \end{array} \right\} \text{ wenn } \varepsilon \in [\varepsilon_{j},\varepsilon_{j+1}].$$

Für jeden der Flüsse Φ_e^l und Φ_g^l haben wir nun zwei Komponentenfunktionen, insgesamt haben wir also 4 unbekannte Funktionen a_e , m_e , a_g und m_g , die wir bestimmen wollen. Da wir nur zwei Differentialgleichungen haben, benötigen wir zwei weitere Bestimmungsgleichungen für die unbekannten Funktionen. Wir gewinnen diese, indem wir für die Intervallintegration zwei verschiedene Integraloperatoren benutzen.

Intervallintegration Als Integraloperatoren benutzen wir $\mathcal{J}_n := \int_{\varepsilon_j}^{\varepsilon_{j+1}} e^{n\varepsilon} d\varepsilon$ für n =0 und n=1, also $\mathcal{J}_0:=\int_{\varepsilon_i}^{\varepsilon_{j+1}}d\varepsilon$ und $\mathcal{J}_1:=\int_{\varepsilon_i}^{\varepsilon_{j+1}}e^\varepsilon d\varepsilon$. Unterzieht man die linken Seiten $\frac{d\Phi_p^l(\varepsilon,t)}{dt},\,p\in\{e,g\}$ den Integraloperatoren, so erhält man:

$$\mathcal{J}_{0}\left(\frac{d\Phi_{p}^{l}(\varepsilon,t)}{dt}\right) = \frac{d}{dt}\left(\mathcal{J}_{0}\Phi_{p}^{l}(\varepsilon,t)\right) = \frac{d}{dt}\int_{\varepsilon_{j}}^{\varepsilon_{j+1}}\Phi_{p}^{l}(\varepsilon,t)d\varepsilon = \frac{d}{dt}N_{p,tot,j}(t)
\mathcal{J}_{1}\left(\frac{d\Phi_{p}^{l}(\varepsilon,t)}{dt}\right) = \frac{d}{dt}\left(\mathcal{J}_{1}\Phi_{p}^{l}(\varepsilon,t)\right) = \frac{d}{dt}\int_{\varepsilon_{j}}^{\varepsilon_{j+1}}e^{\varepsilon}\Phi_{p}^{l}(\varepsilon,t)d\varepsilon = \frac{d}{dt}E_{p,tot,j}(t)$$
(5.92)

Wir haben nun also 4 DGLs und zwar insbesondere DGLs in den Größen $N_{tot,i,p}(t)$ und $E_{tot,i,p}(t)$, den wichtigsten uns interessierenden Schauerobservablen.

Aufstellen der Systemmatrizen Hier nochmals die 4 DGLs für die 4 Unbekannten:
$$\frac{d}{dt}N_{tot,j,e}(t) = \frac{d}{dt}\int_{\varepsilon_{j}^{i}}^{\varepsilon_{j+1}} \Phi_{e}^{l}(\varepsilon,t)d\varepsilon = \mathcal{J}_{0}\left(r_{e}(\varepsilon(t),\Phi_{e}^{l},\Phi_{g}^{l})\right)$$

$$\frac{d}{dt}E_{tot,j,e}(t) = \frac{d}{dt}\int_{\varepsilon_{j}^{i}}^{\varepsilon_{j+1}} e^{\varepsilon}\Phi_{e}^{l}(\varepsilon,t)d\varepsilon = \mathcal{J}_{1}\left(r_{e}(\varepsilon(t),\Phi_{e}^{l},\Phi_{g}^{l})\right)$$

$$\frac{d}{dt}N_{tot,j,g}(t) = \frac{d}{dt}\int_{\varepsilon_{j}}^{\varepsilon_{j+1}} \Phi_{g}^{l}(\varepsilon,t)d\varepsilon = \mathcal{J}_{0}\left(r_{g}(\varepsilon(t),\Phi_{e}^{l},\Phi_{g}^{l})\right)$$

$$\frac{d}{dt}E_{tot,j,g}(t) = \frac{d}{dt}\int_{\varepsilon_{j}}^{\varepsilon_{j+1}} e^{\varepsilon}\Phi_{g}^{l}(\varepsilon,t)d\varepsilon = \mathcal{J}_{1}\left(r_{g}(\varepsilon(t),\Phi_{e}^{l},\Phi_{g}^{l})\right)$$
(5.93)

Die Unbekannten stecken in Φ und zu jedem Energie
intervall $[\varepsilon_j, \varepsilon_{j+1}]$ gibt es diesen Satz von vier DGLs. Explizit ausgeschrieben, d.h. mit eingesetztem Trapezansatz, ist dies (zunächst für die Elektronen-DGLs) mit der Definition $\varepsilon_m := \max(eps_j, eps_{j+1-\lambda \triangle \varepsilon})$:

$$\left(\int_{\varepsilon_{j}}^{\varepsilon_{j+1}} d\varepsilon\right) \frac{da_{e,j}(t)}{dt} + \left(\int_{\varepsilon_{j}}^{\varepsilon_{j+1}} (\varepsilon - \varepsilon_{j}) d\varepsilon\right) \frac{dm_{e,j}(t)}{dt} =$$

$$a_{e,j}(t) \int_{\varepsilon_{j}}^{\varepsilon_{j+1}} (-\alpha_{ion}e^{-\varepsilon} - \sigma_{e,\delta}) d\varepsilon + m_{e,j}(t) \int_{\varepsilon_{j}}^{\varepsilon_{j+1}} (-\alpha_{ion}e^{-\varepsilon} - \sigma_{e,\delta}) (\varepsilon - \varepsilon_{j}) d\varepsilon$$

$$+ a_{e,j}(t) \int_{\varepsilon_{j}}^{\varepsilon_{m}} \int_{\varepsilon + \lambda \triangle \varepsilon}^{\varepsilon_{j+1}} e^{\varepsilon - \varepsilon'} \varphi_{0} (1 - e^{\varepsilon - \varepsilon'}) d\varepsilon' d\varepsilon$$

$$+ m_{e,j}(t) \int_{\varepsilon_{j}}^{\varepsilon_{m}} \int_{\varepsilon + \lambda \triangle \varepsilon}^{\varepsilon_{j+1}} (\varepsilon' - \varepsilon_{j}) e^{\varepsilon - \varepsilon'} \varphi_{0} (1 - e^{\varepsilon - \varepsilon'}) d\varepsilon' d\varepsilon$$

$$+ \sum_{k=j+1}^{\infty} \left[a_{e,k}(t) \int_{\varepsilon_{j}}^{\varepsilon_{m}} \int_{\varepsilon_{k}}^{\varepsilon_{k+1}} e^{\varepsilon - \varepsilon'} \varphi_{0} (1 - e^{\varepsilon - \varepsilon'}) d\varepsilon' d\varepsilon$$

$$+ m_{e,k}(t) \int_{\varepsilon_{j}}^{\varepsilon_{m}} \int_{\varepsilon_{k}}^{\varepsilon_{k+1}} (\varepsilon' - \varepsilon_{k}) e^{\varepsilon - \varepsilon'} \varphi_{0} (1 - e^{\varepsilon - \varepsilon'}) d\varepsilon' d\varepsilon$$

$$+ a_{e,j+1}(t) \int_{\varepsilon_{m}}^{\varepsilon_{j+1}} \int_{\varepsilon + \lambda \triangle \varepsilon}^{\varepsilon_{j+2}} e^{\varepsilon - \varepsilon'} \varphi_{0} (1 - e^{\varepsilon - \varepsilon'}) d\varepsilon' d\varepsilon$$

$$+ m_{e,j+1}(t) \int_{\varepsilon_{m}}^{\varepsilon_{j+1}} \int_{\varepsilon + \lambda \triangle \varepsilon}^{\varepsilon_{j+1}} \int_{\varepsilon + \lambda \triangle \varepsilon}^{\varepsilon_{j+2}} (\varepsilon' - \varepsilon_{j+1}) e^{\varepsilon - \varepsilon'} \varphi_{0} (1 - e^{\varepsilon - \varepsilon'}) d\varepsilon' d\varepsilon$$

$$\begin{split} &+\sum_{k=j+2}^{\infty} \left[a_{e,k}(t) \int_{\varepsilon_{m}}^{\varepsilon_{j+1}} \int_{\varepsilon_{k}}^{\varepsilon_{k+1}} e^{\varepsilon-\varepsilon'} \varphi_{0}(1-e^{\varepsilon-\varepsilon'}) d\varepsilon' d\varepsilon \right. \\ &+ m_{e,k}(t) \int_{\varepsilon_{m}}^{\varepsilon_{j+1}} \int_{\varepsilon_{k}}^{\varepsilon_{k+1}} (\varepsilon'-\varepsilon_{k}) e^{\varepsilon-\varepsilon'} \varphi_{0}(1-e^{\varepsilon-\varepsilon'}) d\varepsilon' d\varepsilon \right] \\ &+ m_{g,j}(t) 2 \int_{\varepsilon_{j}}^{\varepsilon_{j+1}} \int_{\varepsilon}^{\varepsilon_{j+1}} e^{\varepsilon-\varepsilon'} \psi_{0}(e^{\varepsilon-\varepsilon'}) d\varepsilon' d\varepsilon \\ &+ m_{g,j}(t) 2 \int_{\varepsilon_{j}}^{\varepsilon_{j+1}} \int_{\varepsilon}^{\varepsilon_{j+1}} \int_{\varepsilon}^{\varepsilon_{j+1}} (\varepsilon'-\varepsilon_{j}) e^{\varepsilon-\varepsilon'} \psi_{0}(e^{\varepsilon-\varepsilon'}) d\varepsilon' d\varepsilon \\ &+ \sum_{k=j+1}^{\infty} \left[a_{g,k}(t) 2 \int_{\varepsilon_{j}}^{\varepsilon_{j+1}} \int_{\varepsilon_{k}}^{\varepsilon_{k+1}} e^{\varepsilon-\varepsilon'} \psi_{0}(e^{\varepsilon-\varepsilon'}) d\varepsilon' d\varepsilon \right. \\ &+ \left. \sum_{k=j+1}^{\infty} \left[a_{g,k}(t) 2 \int_{\varepsilon_{j}}^{\varepsilon_{j+1}} \int_{\varepsilon_{k}}^{\varepsilon_{k+1}} e^{\varepsilon-\varepsilon'} \psi_{0}(e^{\varepsilon-\varepsilon'}) d\varepsilon' d\varepsilon \right. \\ &+ m_{g,k}(t) 2 \int_{\varepsilon_{j}}^{\varepsilon_{j+1}} \int_{\varepsilon_{k}}^{\varepsilon_{k+1}} (\varepsilon'-\varepsilon_{k}) e^{\varepsilon-\varepsilon'} \psi_{0}(e^{\varepsilon-\varepsilon'}) d\varepsilon' d\varepsilon \right] \\ &\left. \int_{\varepsilon_{j}}^{\varepsilon_{j+1}} e^{\varepsilon} d\varepsilon \right) \frac{da_{e,j}(t)}{dt} + \left(\int_{\varepsilon_{j}}^{\varepsilon_{j+1}} (\varepsilon-\varepsilon_{j}) e^{\varepsilon} d\varepsilon \right) \frac{dm_{e,j}(t)}{dt} \\ &+ a_{e,j}(t) \int_{\varepsilon_{j}}^{\varepsilon_{m}} \int_{\varepsilon+\lambda \wedge \varepsilon}^{\varepsilon_{j+1}} (\varepsilon-\varepsilon_{j}) e^{\varepsilon} d\varepsilon \right. \\ &\left. + a_{e,j}(t) \int_{\varepsilon_{j}}^{\varepsilon_{m}} \int_{\varepsilon+\lambda \wedge \varepsilon}^{\varepsilon_{j+1}} e^{2\varepsilon-\varepsilon'} \varphi_{0}(1-e^{\varepsilon-\varepsilon'}) d\varepsilon' d\varepsilon \right. \\ &\left. + \sum_{k=j+1}^{\infty} \left[a_{e,k}(t) \int_{\varepsilon_{j}}^{\varepsilon_{m}} \int_{\varepsilon_{k}}^{\varepsilon_{k+1}} e^{2\varepsilon-\varepsilon'} \varphi_{0}(1-e^{\varepsilon-\varepsilon'}) d\varepsilon' d\varepsilon \right. \\ &\left. + m_{e,k}(t) \int_{\varepsilon_{m}}^{\varepsilon_{j+1}} \int_{\varepsilon_{k}}^{\varepsilon_{k+1}} e^{2\varepsilon-\varepsilon'} \varphi_{0}(1-e^{\varepsilon-\varepsilon'}) d\varepsilon' d\varepsilon \right. \\ &\left. + m_{e,j+1}(t) \int_{\varepsilon_{m}}^{\varepsilon_{j+1}} \int_{\varepsilon_{k}}^{\varepsilon_{j+1}} (\varepsilon'-\varepsilon_{k}) e^{2\varepsilon-\varepsilon'} \varphi_{0}(1-e^{\varepsilon-\varepsilon'}) d\varepsilon' d\varepsilon \right. \\ &\left. + \sum_{k=j+2}^{\infty} \left[a_{e,k}(t) \int_{\varepsilon_{m}}^{\varepsilon_{j+1}} \int_{\varepsilon_{k}}^{\varepsilon_{j+1}} e^{2\varepsilon-\varepsilon'} \varphi_{0}(1-e^{\varepsilon-\varepsilon'}) d\varepsilon' d\varepsilon \right. \\ &\left. + \sum_{k=j+2}^{\infty} \left[a_{e,k}(t) \int_{\varepsilon_{m}}^{\varepsilon_{j+1}} \int_{\varepsilon_{k}}^{\varepsilon_{j+1}} e^{2\varepsilon-\varepsilon'} \varphi_{0}(1-e^{\varepsilon-\varepsilon'}) d\varepsilon' d\varepsilon \right. \\ &\left. + \sum_{k=j+2}^{\infty} \left[a_{e,k}(t) \int_{\varepsilon_{m}}^{\varepsilon_{j+1}} \int_{\varepsilon_{k}}^{\varepsilon_{j+1}} e^{2\varepsilon-\varepsilon'} \varphi_{0}(1-e^{\varepsilon-\varepsilon'}) d\varepsilon' d\varepsilon \right. \\ &\left. + \sum_{k=j+2}^{\infty} \left[a_{e,k}(t) \int_{\varepsilon_{m}}^{\varepsilon_{j+1}} \int_{\varepsilon_{k}}^{\varepsilon_{j+1}} e^{2\varepsilon-\varepsilon'} \varphi_{0}(1-e^{\varepsilon-\varepsilon'}) d\varepsilon' d\varepsilon \right. \\ &\left. + \sum_{k=j+2}^{\infty} \left[a_{e,k}(t) \int_{\varepsilon_{m}}^{\varepsilon_{j+1}} \int_{\varepsilon_{k}}^{\varepsilon_{j+1}} e^{2\varepsilon-\varepsilon'} \varphi_{0}(1-e^{\varepsilon-\varepsilon'}) d\varepsilon' d\varepsilon \right. \\ &\left. + \sum_{k=j+2}^{\infty} \left[a_{e,k}(t) \int_{\varepsilon_{m}}^{\varepsilon_{j+1}} \int_{\varepsilon_{k}}^{\varepsilon_{j+1}} e^{2\varepsilon-\varepsilon'} \varphi_{0}(1-e^{\varepsilon-\varepsilon'}) d\varepsilon' d\varepsilon' \right. \right]$$

$$+ m_{g,j}(t) 2 \int_{\varepsilon_{jj}}^{\varepsilon_{j+1}} \int_{\varepsilon}^{\varepsilon_{j+1}} (\varepsilon' - \varepsilon_j) e^{2\varepsilon - \varepsilon'} \psi_0(e^{\varepsilon - \varepsilon'}) d\varepsilon' d\varepsilon$$

$$+ \sum_{k=j+1}^{\infty} \left[a_{g,k}(t) 2 \int_{\varepsilon_j}^{\varepsilon_{j+1}} \int_{\varepsilon_k}^{\varepsilon_{k+1}} e^{2\varepsilon - \varepsilon'} \psi_0(e^{\varepsilon - \varepsilon'}) d\varepsilon' d\varepsilon \right.$$

$$+ m_{g,k}(t) 2 \int_{\varepsilon_j}^{\varepsilon_{j+1}} \int_{\varepsilon_k}^{\varepsilon_{k+1}} (\varepsilon' - \varepsilon_k) e^{2\varepsilon - \varepsilon'} \psi_0(e^{\varepsilon - \varepsilon'}) d\varepsilon' d\varepsilon \right]$$

Die Photonen-DGLs, als erstes transformiert mit \mathcal{J}_0 , danach mit \mathcal{J}_1 :

$$\left(\int_{\varepsilon_{j}}^{\varepsilon_{j+1}} d\varepsilon\right) \frac{da_{g,j}(t)}{dt} + \left(\int_{\varepsilon_{j}}^{\varepsilon_{j+1}} (\varepsilon - \varepsilon_{j}) d\varepsilon\right) \frac{dm_{g,j}(t)}{dt} =$$

$$a_{g,j}(t) \int_{\varepsilon_{j}}^{\varepsilon_{j+1}} (-\sigma_{g}) d\varepsilon + m_{g,j}(t) \int_{\varepsilon_{j}}^{\varepsilon_{j+1}} (-\sigma_{g}) (\varepsilon - \varepsilon_{j}) d\varepsilon$$

$$+ a_{e,j}(t) \int_{\varepsilon_{j}}^{\varepsilon_{j+1}} \int_{\varepsilon}^{\varepsilon_{j+1}} e^{\varepsilon - \varepsilon'} \varphi_{0}(e^{\varepsilon - \varepsilon'}) d\varepsilon' d\varepsilon$$

$$+ m_{e,j}(t) \int_{\varepsilon_{j}}^{\varepsilon_{j+1}} \int_{\varepsilon}^{\varepsilon_{j+1}} (\varepsilon' - \varepsilon_{j}) e^{\varepsilon - \varepsilon'} \varphi_{0}(e^{\varepsilon - \varepsilon'}) d\varepsilon' d\varepsilon$$

$$+ \sum_{k=j+1}^{\infty} \left[a_{e,k}(t) \int_{\varepsilon_{j}}^{\varepsilon_{j+1}} \int_{\varepsilon_{k}}^{\varepsilon_{k+1}} e^{\varepsilon - \varepsilon'} \varphi_{0}(e^{\varepsilon - \varepsilon'}) d\varepsilon' d\varepsilon$$

$$+ m_{e,k}(t) \int_{\varepsilon_{j}}^{\varepsilon_{j+1}} \int_{\varepsilon_{k}}^{\varepsilon_{k+1}} (\varepsilon' - \varepsilon_{k}) e^{\varepsilon - \varepsilon'} \varphi_{0}(e^{\varepsilon - \varepsilon'}) d\varepsilon' d\varepsilon$$

$$\left(\int_{\varepsilon_{j}}^{\varepsilon_{j+1}} e^{\varepsilon} d\varepsilon\right) \frac{da_{g,j}(t)}{dt} + \left(\int_{\varepsilon_{j}}^{\varepsilon_{j+1}} (\varepsilon - \varepsilon_{j}) e^{\varepsilon} d\varepsilon\right) \frac{dm_{g,j}(t)}{dt} =$$

$$a_{g,j}(t) \int_{\varepsilon_{j}}^{\varepsilon_{j+1}} (-\sigma_{g}) e^{\varepsilon} d\varepsilon + m_{g,j}(t) \int_{\varepsilon_{j}}^{\varepsilon_{j+1}} (-\sigma_{g}) e^{\varepsilon} (\varepsilon - \varepsilon_{j}) d\varepsilon$$

$$+ a_{e,j}(t) \int_{\varepsilon_{j}}^{\varepsilon_{j+1}} \int_{\varepsilon}^{\varepsilon_{j+1}} e^{2\varepsilon - \varepsilon'} \varphi_{0}(e^{\varepsilon - \varepsilon'}) d\varepsilon' d\varepsilon$$

$$+ m_{e,j}(t) \int_{\varepsilon_{j}}^{\varepsilon_{j+1}} \int_{\varepsilon}^{\varepsilon_{j+1}} (\varepsilon' - \varepsilon_{j}) e^{2\varepsilon - \varepsilon'} \varphi_{0}(e^{\varepsilon - \varepsilon'}) d\varepsilon' d\varepsilon$$

$$+ \sum_{k=j+1}^{\infty} \left[a_{e,k}(t) \int_{\varepsilon_{j}}^{\varepsilon_{j+1}} \int_{\varepsilon_{k}}^{\varepsilon_{k+1}} e^{2\varepsilon - \varepsilon'} \varphi_{0}(e^{\varepsilon - \varepsilon'}) d\varepsilon' d\varepsilon \right]$$

$$+ m_{e,k}(t) \int_{\varepsilon_{j}}^{\varepsilon_{j+1}} \int_{\varepsilon_{k}}^{\varepsilon_{k+1}} (\varepsilon' - \varepsilon_{k}) e^{2\varepsilon - \varepsilon'} \varphi_{0}(e^{\varepsilon - \varepsilon'}) d\varepsilon' d\varepsilon$$

Wir führen nun Abkürzungen ein und schreiben dafür:

$$a_{1,j}^{\mathcal{J}_0} \frac{da_{e,j}(t)}{dt} + a_{2,j}^{\mathcal{J}_0} \frac{dm_{e,j}(t)}{dt} =$$
(5.98)

$$\begin{split} &a_{e,j}(t)b_{1,j}^{\mathcal{J}_0} + m_{e,j}(t)b_{2,j}^{\mathcal{J}_0} \\ &+ a_{e,j}(t)I_{c1}^{\mathcal{J}_0}(\varepsilon_j,\varepsilon_m,\lambda\triangle\varepsilon,\varepsilon_{j+1}) + m_{e,j}(t)I_{c3}^{\mathcal{J}_0}(\varepsilon_j,\varepsilon_m,\lambda\triangle\varepsilon,\varepsilon_{j+1}) \\ &+ \sum_{k=j+1}^{\infty} \left[a_{e,k}(t)I_{c2}^{\mathcal{J}_0}(\varepsilon_j,\varepsilon_m,\varepsilon_k,\varepsilon_{k+1}) + m_{e,k}(t)I_{c4}^{\mathcal{J}_0}(\varepsilon_j,\varepsilon_m,\varepsilon_k,\varepsilon_{k+1}) \right] \\ &+ a_{e,j+1}(t)I_{c1}^{\mathcal{J}_0}(\varepsilon_m,\varepsilon_{j+1},\lambda\triangle\varepsilon,\varepsilon_{j+2}) + m_{e,j+1}(t)I_{c3}^{\mathcal{J}_0}(\varepsilon_m,\varepsilon_{j+1},\lambda\triangle\varepsilon,\varepsilon_{j+2}) \\ &+ \sum_{k=j+2}^{\infty} \left[a_{e,k}(t)I_{c2}^{\mathcal{J}_0}(\varepsilon_m,\varepsilon_{j+1},\varepsilon_k,\varepsilon_{k+1}) + m_{e,k}(t)I_{c4}^{\mathcal{J}_0}(\varepsilon_m,\varepsilon_{j+1},\varepsilon_k,\varepsilon_{k+1}) \right] \\ &+ a_{g,j}(t)2I_{d1}^{\mathcal{J}_0}(\varepsilon_j,\varepsilon_{j+1}) + m_{g,j}(t)2I_{d3}^{\mathcal{J}_0}(\varepsilon_j,\varepsilon_{j+1}) \\ &+ \sum_{k=j+1}^{\infty} \left[a_{g,k}(t)2I_{d2}^{\mathcal{J}_0}(\varepsilon_j,\varepsilon_{j+1},\varepsilon_k,\varepsilon_{k+1}) + m_{g,k}(t)2I_{d4}^{\mathcal{J}_0}(\varepsilon_j,\varepsilon_{j+1},\varepsilon_k,\varepsilon_{k+1}) \right] \end{split}$$

$$a_{1,j}^{\mathcal{J}_{1}} \frac{da_{e,j}(t)}{dt} + a_{2,j}^{\mathcal{J}_{1}} \frac{dm_{e,j}(t)}{dt} =$$

$$a_{e,j}(t)b_{1,j}^{\mathcal{J}_{1}} + m_{e,j}(t)b_{2,j}^{\mathcal{J}_{1}}$$

$$+a_{e,j}(t)I_{c1}^{\mathcal{J}_{1}}(\varepsilon_{j}, \varepsilon_{m}, \varepsilon + \lambda \triangle \varepsilon, \varepsilon_{j+1}) + m_{e,j}(t)I_{c3}^{\mathcal{J}_{1}}(\varepsilon_{j}, \varepsilon_{m}, \varepsilon + \lambda \triangle \varepsilon, \varepsilon_{j+1})$$

$$+ \sum_{k=j+1}^{\infty} \left[a_{e,k}(t)I_{c2}^{\mathcal{J}_{1}}(\varepsilon_{j}, \varepsilon_{m}, \varepsilon_{k}, \varepsilon_{k+1}) + m_{e,k}(t)I_{c4}^{\mathcal{J}_{1}}(\varepsilon_{j}, \varepsilon_{m}, \varepsilon_{k}, \varepsilon_{k+1}) \right]$$

$$+a_{e,j+1}(t)I_{c1}^{\mathcal{J}_{1}}(\varepsilon_{m}, \varepsilon_{j+1}, \lambda \triangle \varepsilon, \varepsilon_{j+2}) + m_{e,j+1}(t)I_{c3}^{\mathcal{J}_{1}}(\varepsilon_{m}, \varepsilon_{j+1}, \lambda \triangle \varepsilon, \varepsilon_{j+2})$$

$$+ \sum_{k=j+2}^{\infty} \left[a_{e,k}(t)I_{c2}^{\mathcal{J}_{1}}(\varepsilon_{m}, \varepsilon_{j+1}, \varepsilon_{k}, \varepsilon_{k+1}) + m_{e,k}(t)I_{c4}^{\mathcal{J}_{1}}(\varepsilon_{m}, \varepsilon_{j+1}, \varepsilon_{k}, \varepsilon_{k+1}) \right]$$

$$+a_{g,j}(t)2I_{d1}^{\mathcal{J}_{1}}(\varepsilon_{j}, \varepsilon_{j+1}) + m_{g,j}(t)2I_{d3}^{\mathcal{J}_{1}}(\varepsilon_{j}, \varepsilon_{j+1})$$

$$+ \sum_{k=j+1}^{\infty} \left[a_{g,k}(t)2I_{d2}^{\mathcal{J}_{1}}(\varepsilon_{j}, \varepsilon_{j+1}, \varepsilon_{k}, \varepsilon_{k+1}) + m_{g,k}(t)2I_{d4}^{\mathcal{J}_{1}}(\varepsilon_{j}, \varepsilon_{j+1}, \varepsilon_{k}, \varepsilon_{k+1}) \right]$$

Nun die γ -DGLs:

$$e_{1,j}^{\mathcal{J}_0} \frac{da_{g,j}(t)}{dt} + e_{2,j}^{\mathcal{J}_0} \frac{dm_{g,j}(t)}{dt} =$$

$$a_{g,j}(t) f_{1,j}^{\mathcal{J}_0} + m_{g,j}(t) f_{2,j}^{\mathcal{J}_0}$$

$$+ a_{e,j}(t) I_{g1}^{\mathcal{J}_0}(\varepsilon_j, \varepsilon_{j+1}) + m_{e,j}(t) I_{g3}^{\mathcal{J}_0}(\varepsilon_j, \varepsilon_{j+1})$$

$$+ \sum_{k=j+1}^{\infty} \left[a_{e,k}(t) I_{g2}^{\mathcal{J}_0}(\varepsilon_j, \varepsilon_{j+1}, \varepsilon_k, \varepsilon_{k+1}) + m_{e,k}(t) I_{g4}^{\mathcal{J}_0}(\varepsilon_j, \varepsilon_{j+1}, \varepsilon_k, \varepsilon_{k+1}) \right]$$

$$(5.100)$$

$$e_{1,j}^{\mathcal{J}_1} \frac{da_{g,j}(t)}{dt} + e_{2,j}^{\mathcal{J}_1} \frac{dm_{g,j}(t)}{dt} =$$
(5.101)

$$\begin{aligned} &a_{g,j}(t)f_{1,j}^{\mathcal{J}_{1}} + m_{g,j}(t)f_{2,j}^{\mathcal{J}_{1}} \\ &+ a_{e,j}(t)I_{g1}^{\mathcal{J}_{1}}(\varepsilon_{j},\varepsilon_{j+1}) + m_{e,j}(t)I_{g3}^{\mathcal{J}_{1}}(\varepsilon_{j},\varepsilon_{j+1}) \\ &+ \sum_{k=j+1}^{\infty} \left[a_{e,k}(t)I_{g2}^{\mathcal{J}_{1}}(\varepsilon_{j},\varepsilon_{j+1},\varepsilon_{k},\varepsilon_{k+1}) + m_{e,k}(t)I_{g4}^{\mathcal{J}_{1}}(\varepsilon_{j},\varepsilon_{j+1},\varepsilon_{k},\varepsilon_{k+1}) \right] \end{aligned}$$

mit den Integralen (m = 1, 2; n = 0, 1)

$$a_{m,j}^{\mathcal{J}_n} = \int_{\varepsilon_j}^{\varepsilon_{j+1}} (\varepsilon - \varepsilon_j)^{(m-1)} e^{n\varepsilon} d\varepsilon$$
 (5.102)

$$b_{m,j}^{\mathcal{J}_n} = \int_{\varepsilon_j}^{\varepsilon_{j+1}} (\varepsilon - \varepsilon_j)^{(m-1)} e^{n\varepsilon} (-\alpha_{ion} e^{-\varepsilon} - \sigma_{e,\delta}) d\varepsilon \qquad (5.103)$$

$$I_{c1}^{\mathcal{J}_n}(\varepsilon_1, \varepsilon_2, \lambda \triangle \varepsilon, \varepsilon_3) = \int_{\varepsilon_1}^{\varepsilon_2} \int_{\varepsilon + \lambda \triangle \varepsilon}^{\varepsilon_3} e^{(1+n)\varepsilon - \varepsilon'} \varphi_0(1 - e^{\varepsilon - \varepsilon'}) d\varepsilon' d\varepsilon$$
 (5.104)

$$I_{c2}^{\mathcal{J}_n}(\varepsilon_j, \varepsilon_{j+1}, \varepsilon_k, \varepsilon_{k+1}) = \int_{\varepsilon_j}^{\varepsilon_{j+1}} \int_{\varepsilon_k}^{\varepsilon_{k+1}} e^{(1+n)\varepsilon - \varepsilon'} \varphi_0(1 - e^{\varepsilon - \varepsilon'}) d\varepsilon' d\varepsilon$$
 (5.105)

$$I_{c3}^{\mathcal{J}_n}(\varepsilon_1, \varepsilon_2, \lambda \triangle \varepsilon, \varepsilon_{j+1}) = \int_{\varepsilon_1}^{\varepsilon_2} \int_{\varepsilon+\lambda \triangle \varepsilon}^{\varepsilon_{j+1}} (\varepsilon' - \varepsilon_{j+1}) e^{(1+n)\varepsilon - \varepsilon'} \varphi_0(1 - e^{\varepsilon - \varepsilon'}) d\varepsilon' d\varepsilon d\varepsilon. 106)$$

$$I_{d1}^{\mathcal{J}_n}(\varepsilon_j, \varepsilon_{j+1}) = \int_{\varepsilon_j}^{\varepsilon_{j+1}} \int_{\varepsilon}^{\varepsilon_{j+1}} e^{(1+n)\varepsilon - \varepsilon'} \psi_0(e^{\varepsilon - \varepsilon'}) d\varepsilon' d\varepsilon$$
 (5.108)

$$I_{d2}^{\mathcal{J}_n}(\varepsilon_j, \varepsilon_{j+1}, \varepsilon_k, \varepsilon_{k+1}) = \int_{\varepsilon_j}^{\varepsilon_{j+1}} \int_{\varepsilon_k}^{\varepsilon_{k+1}} e^{(1+n)\varepsilon - \varepsilon'} \psi_0(e^{\varepsilon - \varepsilon'}) d\varepsilon' d\varepsilon$$
 (5.109)

$$I_{d3}^{\mathcal{J}_n}(\varepsilon_j, \varepsilon_{j+1}) = \int_{\varepsilon_i}^{\varepsilon_{j+1}} \int_{\varepsilon}^{\varepsilon_{j+1}} (\varepsilon' - \varepsilon_j) e^{(1+n)\varepsilon - \varepsilon'} \psi_0(e^{\varepsilon - \varepsilon'}) d\varepsilon' d\varepsilon \quad (5.110)$$

$$I_{d4}^{\mathcal{J}_n}(\varepsilon_j, \varepsilon_{j+1}, \varepsilon_k, \varepsilon_{k+1}) = \int_{\varepsilon_j}^{\varepsilon_{j+1}} \int_{\varepsilon_k}^{\varepsilon_{k+1}} (\varepsilon' - \varepsilon_k) e^{(1+n)\varepsilon - \varepsilon'} \psi_0(e^{\varepsilon - \varepsilon'}) d\varepsilon' d\varepsilon \quad (5.111)$$

$$e_{m,j}^{\mathcal{I}_n} = \int_{\varepsilon_j}^{\varepsilon_{j+1}} (\varepsilon - \varepsilon_j)^{m-1} e^{n\varepsilon} d\varepsilon$$
 (5.112)

$$f_{m,j}^{\mathcal{J}_n} = (-\sigma_g) \int_{\varepsilon_j}^{\varepsilon_{j+1}} (\varepsilon - \varepsilon_j)^{m-1} e^{n\varepsilon} d\varepsilon$$
 (5.113)

$$I_{g1}^{\mathcal{J}_n}(\varepsilon_j, \varepsilon_{j+1}) = \int_{\varepsilon_j}^{\varepsilon_{j+1}} \int_{\varepsilon}^{\varepsilon_{j+1}} e^{(1+n)\varepsilon - \varepsilon'} \varphi_0(e^{\varepsilon - \varepsilon'}) d\varepsilon' d\varepsilon$$
 (5.114)

$$I_{g2}^{\mathcal{J}_n}(\varepsilon_j, \varepsilon_{j+1}, \varepsilon_k, \varepsilon_{k+1}) = \int_{\varepsilon_j}^{\varepsilon_{j+1}} \int_{\varepsilon_k}^{\varepsilon_{k+1}} e^{(1+n)\varepsilon - \varepsilon'} \varphi_0(e^{\varepsilon - \varepsilon'}) d\varepsilon' d\varepsilon$$
 (5.115)

$$I_{g3}^{\mathcal{J}_n}(\varepsilon_j, \varepsilon_{j+1}) = \int_{\varepsilon_j}^{\varepsilon_{j+1}} \int_{\varepsilon}^{\varepsilon_{j+1}} (\varepsilon' - \varepsilon_j) e^{(1+n)\varepsilon - \varepsilon'} \varphi_0(e^{\varepsilon - \varepsilon'}) d\varepsilon' d\varepsilon \quad (5.116)$$

$$I_{g4}^{\mathcal{J}_n}(\varepsilon_j, \varepsilon_{j+1}, \varepsilon_k, \varepsilon_{k+1}) = \int_{\varepsilon_j}^{\varepsilon_{j+1}} \int_{\varepsilon_k}^{\varepsilon_{k+1}} (\varepsilon' - \varepsilon_k) e^{(1+n)\varepsilon - \varepsilon'} \varphi_0(e^{\varepsilon - \varepsilon'}) d\varepsilon' d\varepsilon \quad (5.117)$$

Die Integrale sind zum Teil nur sehr mühsam von Hand zu lösen, die meisten wurden mit *Mathematica* [43] integriert und die Lösungen zur Kontrolle numerisch verifiziert. Die expliziten Integrale sind im Anhang in Abschnitt C.5, Seite 183, aufgelistet

Auf den linken Seiten von (5.98) bis (5.101) stehen die Ableitungen der a_p und m_p (immer $p \in \{e, g\}$), auf der rechten Seite Linearkombinationen der a_p und m_p . Um die Schreibweise weiter zu vereinfachen, fassen wir die Koeffizienten in Matrizen zusammen. Dadurch sind (5.98) bis (5.101) kompakter:

$$(a_{1}^{\mathcal{J}_{0}})\frac{da_{e}(t)}{dt} + (a_{2}^{\mathcal{J}_{0}})\frac{dm_{e}(t)}{dt} = A_{e,e}^{\mathcal{J}_{0}}a_{e}(t) + M_{e,e}^{\mathcal{J}_{0}}m_{e}(t) + A_{e,g}^{\mathcal{J}_{0}}a_{g}(t) + M_{e,g}^{\mathcal{J}_{0}}m_{g}(t) = RS1$$

$$(a_{1}^{\mathcal{J}_{1}})\frac{da_{e}(t)}{dt} + (a_{2}^{\mathcal{J}_{1}})\frac{dm_{e}(t)}{dt} = A_{e,e}^{\mathcal{J}_{1}}a_{e}(t) + M_{e,e}^{\mathcal{J}_{1}}m_{e}(t) + A_{e,g}^{\mathcal{J}_{1}}a_{g}(t) + M_{e,g}^{\mathcal{J}_{1}}m_{g}(t) = RS2$$

$$(e_{1}^{\mathcal{J}_{0}})\frac{da_{g}(t)}{dt} + (e_{2}^{\mathcal{J}_{0}})\frac{dm_{g}(t)}{dt} = A_{g,e}^{\mathcal{J}_{0}}a_{e}(t) + M_{g,e}^{\mathcal{J}_{0}}m_{e}(t) + A_{g,g}^{\mathcal{J}_{0}}a_{g}(t) + M_{g,g}^{\mathcal{J}_{0}}m_{g}(t) = RS3$$

$$(e_{1}^{\mathcal{J}_{1}})\frac{da_{e}(t)}{dt} + (e_{2}^{\mathcal{J}_{1}})\frac{dm_{e}(t)}{dt} = A_{g,e}^{\mathcal{J}_{1}}a_{e}(t) + M_{g,e}^{\mathcal{J}_{1}}m_{e}(t) + A_{g,g}^{\mathcal{J}_{1}}a_{g}(t) + M_{g,g}^{\mathcal{J}_{1}}m_{g}(t) = RS4$$

Die Matrizen $(a_m^{\mathcal{J}_n})$ und $(e_m^{\mathcal{J}_n})$ sind Diagonalmatrizen: $(a_m^{\mathcal{J}_n}) = diag(a_{m,j}^{\mathcal{J}_n})$ und $(e_m^{\mathcal{J}_n}) = diag(e_{m,j}^{\mathcal{J}_n})$. Die rechten Seiten bezeichnen wir mit RS1 bis RS4.

Wir multiplizieren die erste Gleichung mit $(a_2^{\mathcal{J}_1})$, die zweite Gleichung mit $(a_2^{\mathcal{J}_0})$ und ziehen dann die zweite von der ersten ab, um auf der linken Seite $\frac{da_e(t)}{dt}$ (bis auf einen Vorfaktor) zu isolieren. Den Vorfaktor bringen wir auf die rechte Seite. Analog verfahren wir, um $\frac{dm_e(t)}{dt}$ auf der linken Seite zu isolieren. Und auf dieselbe Weise erhalten wir aus der 3. und 4. Gleichung zwei Gleichungen mit isoliertem $\frac{da_g(t)}{dt}$ und $\frac{dm_g(t)}{dt}$ auf der linken Seite:

$$\frac{da_e(t)}{dt} = \underbrace{\left[(a_2^{\mathcal{J}_1})(a_1^{\mathcal{J}_0}) - (a_2^{\mathcal{J}_0})(a_1^{\mathcal{J}_1}) \right]^{-1}}_{D_{a,e}} \left[(a_2^{\mathcal{J}_1})RS1 - (a_2^{\mathcal{J}_0})RS2 \right]$$
(5.118)

$$\frac{dm_e(t)}{dt} = \underbrace{\left[(a_1^{\mathcal{J}_1})(a_2^{\mathcal{J}_0}) - (a_1^{\mathcal{J}_0})(a_2^{\mathcal{J}_1}) \right]^{-1}}_{D_{m,e}} \left[(a_1^{\mathcal{J}_1})RS1 - (a_1^{\mathcal{J}_0})RS2 \right]$$
(5.119)

$$\frac{da_g(t)}{dt} = \underbrace{\left[(e_2^{\mathcal{J}_1})(e_1^{\mathcal{J}_0}) - (e_2^{\mathcal{J}_0})(e_1^{\mathcal{J}_1}) \right]^{-1}}_{D_{a,g}} \left[(e_2^{\mathcal{J}_1})RS3 - (e_2^{\mathcal{J}_0})RS4 \right]$$
(5.120)

$$\frac{dm_g(t)}{dt} = \underbrace{\left[(e_1^{\mathcal{J}_1})(e_2^{\mathcal{J}_0}) - (e_1^{\mathcal{J}_0})(e_2^{\mathcal{J}_1}) \right]^{-1}}_{D_{m,g}} \left[(e_1^{\mathcal{J}_1})RS3 - (e_1^{\mathcal{J}_0})RS4 \right]$$
(5.121)

In einem weiteren Schritt fassen wir die Koeffizienten für die $a_{p,j}$ und $m_{p,j}$ in Matrizen zusammen:

$$\mathcal{A}_{a_e,a_e} = D_{a,e} \left[(a_2^{\mathcal{J}_1}) A_{e,e}^{\mathcal{J}_0} - (a_2^{\mathcal{J}_0}) A_{e,e}^{\mathcal{J}_1} \right]$$

$$\mathcal{M}_{a_{e},m_{e}} = D_{a,e} \left[(a_{2}^{\mathcal{J}_{1}}) M_{e,e}^{\mathcal{J}_{0}} - (a_{2}^{\mathcal{J}_{0}}) M_{e,e}^{\mathcal{J}_{1}} \right]$$

$$\mathcal{A}_{a_{e},a_{g}} = D_{a,e} \left[(a_{2}^{\mathcal{J}_{1}}) A_{e,g}^{\mathcal{J}_{0}} - (a_{2}^{\mathcal{J}_{0}}) A_{e,g}^{\mathcal{J}_{1}} \right]$$

$$\mathcal{M}_{a_{e},m_{g}} = D_{a,e} \left[(a_{2}^{\mathcal{J}_{1}}) M_{e,g}^{\mathcal{J}_{0}} - (a_{2}^{\mathcal{J}_{0}}) M_{e,g}^{\mathcal{J}_{1}} \right]$$

$$\mathcal{M}_{m_{e},m_{e}} = D_{m,e} \left[(a_{1}^{\mathcal{J}_{1}}) A_{e,e}^{\mathcal{J}_{0}} - (a_{1}^{\mathcal{J}_{0}}) A_{e,e}^{\mathcal{J}_{1}} \right]$$

$$\mathcal{M}_{m_{e},m_{e}} = D_{m,e} \left[(a_{1}^{\mathcal{J}_{1}}) M_{e,g}^{\mathcal{J}_{0}} - (a_{1}^{\mathcal{J}_{0}}) M_{e,g}^{\mathcal{J}_{1}} \right]$$

$$\mathcal{M}_{m_{e},m_{g}} = D_{m,e} \left[(a_{1}^{\mathcal{J}_{1}}) M_{e,g}^{\mathcal{J}_{0}} - (a_{1}^{\mathcal{J}_{0}}) M_{e,g}^{\mathcal{J}_{1}} \right]$$

$$\mathcal{M}_{m_{e},m_{g}} = D_{m,e} \left[(a_{1}^{\mathcal{J}_{1}}) M_{e,g}^{\mathcal{J}_{0}} - (a_{1}^{\mathcal{J}_{0}}) M_{e,g}^{\mathcal{J}_{1}} \right]$$

$$\mathcal{M}_{a_{g},a_{e}} = D_{a,g} \left[(e_{2}^{\mathcal{J}_{1}}) M_{g,e}^{\mathcal{J}_{0}} - (e_{2}^{\mathcal{J}_{0}}) M_{g,e}^{\mathcal{J}_{1}} \right]$$

$$\mathcal{M}_{a_{g},m_{g}} = D_{a,g} \left[(e_{2}^{\mathcal{J}_{1}}) M_{g,g}^{\mathcal{J}_{0}} - (e_{2}^{\mathcal{J}_{0}}) M_{g,g}^{\mathcal{J}_{1}} \right]$$

$$\mathcal{M}_{m_{g},m_{g}} = D_{m,g} \left[(e_{1}^{\mathcal{J}_{1}}) M_{g,e}^{\mathcal{J}_{0}} - (e_{1}^{\mathcal{J}_{0}}) M_{g,e}^{\mathcal{J}_{1}} \right]$$

$$\mathcal{M}_{m_{g},m_{e}} = D_{m,g} \left[(e_{1}^{\mathcal{J}_{1}}) M_{g,e}^{\mathcal{J}_{0}} - (e_{1}^{\mathcal{J}_{0}}) M_{g,e}^{\mathcal{J}_{1}} \right]$$

$$\mathcal{M}_{m_{g},m_{g}} = D_{m,g} \left[(e_{1}^{\mathcal{J}_{1}}) M_{g,e}^{\mathcal{J}_{0}} - (e_{1}^{\mathcal{J}_{0}}) M_{g,g}^{\mathcal{J}_{1}} \right]$$

$$\mathcal{M}_{m_{g},m_{g}} = D_{m,g} \left[(e_{1}^{\mathcal{J}_{1}}) M_{g,e}^{\mathcal{J}_{0}} - (e_{1}^{\mathcal{J}_{0}}) M_{g,g}^{\mathcal{J}_{1}} \right]$$

$$\mathcal{M}_{m_{g},m_{g}} = D_{m,g} \left[(e_{1}^{\mathcal{J}_{1}}) M_{g,g}^{\mathcal{J}_{0}} - (e_{1}^{\mathcal{J}_{0}}) M_{g,g}^{\mathcal{J}_{1}} \right]$$

$$\mathcal{M}_{m_{g},m_{g}} = D_{m,g} \left[(e_{1}^{\mathcal{J}_{1}}) M_{g,g}^{\mathcal{J}_{0}} - (e_{1}^{\mathcal{J}_{0}}) M_{g,g}^{\mathcal{J}_{1}} \right]$$

$$\mathcal{M}_{m_{g},m_{g}} = D_{m,g} \left[(e_{1}^{\mathcal{J}_{1}}) M_{g,g}^{\mathcal{J}_{0}} - (e_{1}^{\mathcal{J}_{0}}) M_{g,g}^{\mathcal{J}_{1}} \right]$$

Nun haben wir vier DGLs für die vier unbekannten Funktionen a_p und m_p in folgender kompakten Form:

$$\frac{da_{e}(t)}{dt} = \mathcal{A}_{a_{e},a_{e}}a_{e}(t) + \mathcal{M}_{a_{e},m_{e}}m_{e}(t) + \mathcal{A}_{a_{e},a_{g}}a_{g}(t) + \mathcal{M}_{a_{e},m_{g}}m_{g}(t)
\frac{dm_{e}(t)}{dt} = \mathcal{A}_{m_{e},a_{e}}a_{e}(t) + \mathcal{M}_{m_{e},m_{e}}m_{e}(t) + \mathcal{A}_{m_{e},a_{g}}a_{g}(t) + \mathcal{M}_{m_{e},m_{g}}m_{g}(t)
\frac{da_{g}(t)}{dt} = \mathcal{A}_{a_{g},a_{e}}a_{e}(t) + \mathcal{M}_{a_{g},m_{e}}m_{e}(t) + \mathcal{A}_{a_{g},a_{g}}a_{g}(t) + \mathcal{M}_{a_{g},m_{g}}m_{g}(t)
\frac{dm_{g}(t)}{dt} = \mathcal{A}_{m_{g},a_{e}}a_{e}(t) + \mathcal{M}_{m_{g},m_{e}}m_{e}(t) + \mathcal{A}_{m_{g},a_{g}}a_{g}(t) + \mathcal{M}_{m_{g},m_{g}}m_{g}(t)$$
(5.122)

Auf Grundlage dieser Gleichungen wollen wir ein numerisches Lösungsverfahren entwickeln

Wir wollen hier die Tatsache unterstreichen, dass die Funktionen a_p und m_p zu den Matrizen \mathcal{A}, \mathcal{M} passen müssen. Damit ist gemeint, dass die diskrete Energieintervall-

Einteilung, die zur Berechnung der Integrale genommen wurde, dieselbe sein muss, in der die Funktionen a_p , m_p vorliegen.

Für den Elektronenfluss müssen wir den Verlauf der Charakteristiken beachten, denn dadurch verschiebt sich die Energieintervall-Einteilung, wenn man gemäß einem numerischen Verfahren den Fluss nach einem Tiefenschritt Δt berechnet. Die Energieintervall-Einteilung verschiebt sich gemäss der charakteristischen Gleichung $\varepsilon(t)$ und aus der Einteilung $(\varepsilon_0, \varepsilon_1, \dots, \varepsilon_j, \dots, \varepsilon_{N_E})$ wird

 $(\chi(\varepsilon_0, \triangle t), \chi(\varepsilon_1, \triangle t), \dots, \chi(\varepsilon_j, \triangle t), \dots, \chi(\varepsilon_{N_E}, \triangle t)) = (\varepsilon_{0,\triangle t}, \varepsilon_{1,\triangle t}, \dots, \varepsilon_{j,\triangle t}, \dots, \varepsilon_{N_E,\triangle t}).$ Für Photonen ändert sich die Intervalleinteilung nicht, die Charakteristiken haben die Form $\chi_{\gamma}(\varepsilon, \triangle t) = \varepsilon$ bzw. $\varepsilon_{\gamma}(t) = \varepsilon_{\gamma}(0)$.

5.9.1 Charakteristiken-Verfahren mit Euler-Iteration

Nachher (im Abschnitt 5.9.2) werden wir zur numerischen Lösung das Runge-Kutta-Verfahren benutzen. Aufgrund der einfachen Struktur des Euler-Verfahrens werden wir jedoch zunächst anhand dieses Verfahrens das Problem der auseinanderlaufenden Energieskalen bei der Kaskadengleichung mit zwei verschiedenen Teilchenarten analysieren.

Überlegungen am Beispiel des Euler-Verfahrens Ein klassischer Eulerschritt zur DGL y' = r(y(t)) sieht so aus: $y_i = y_{i-1} + \triangle t \ r(y_{i-1})$. Die rechte Seite $k_1 = r(y_{i-1})$ zum Schritt (i-1) ist die Steigung von y_{i-1} in der Tiefe t_{i-1} , $y_{i-1} + \triangle t \ r(y_{i-1})$ ist eine lineare Schätzung auf Basis der Steigung, wo y_i , also y zur größeren Tiefe t_i , liegen wird. In unserem Fall hängt y von $\varepsilon(t)$ ab, liegt also nach dem $\triangle t$ -Schritt in der verschobenen Energieeinteilung $\varepsilon(t_i)$.

Der Elektronenfluss fällt durch die Verschiebung unter die Energieschwelle ε_{min} , könnte aber sogar in den negativen Bereich $\varepsilon < 0$ fallen. Diese Möglichkeit lässt sich numerisch nur unter großem Aufwand abfangen. Einfacher ist es, den Fluss schon vor dem Iterationsschritt am unteren Energiebereich zu kappen, so dass nach einem Eulerschritt durch die Verschiebung gerade wieder ε_{min} erreicht werden wird: $\varepsilon_{min} = \chi(\varepsilon_{cut}, \triangle t)$.

Da der Verlauf der Charakteristiken bekannt ist, lässt sich ε_{cut} leicht vor dem Eulerschritt berechnen: $\varepsilon_{cut} = \chi^{-1}(\varepsilon_{min}, \triangle t) = \chi(\varepsilon_{min}, -\triangle t)$

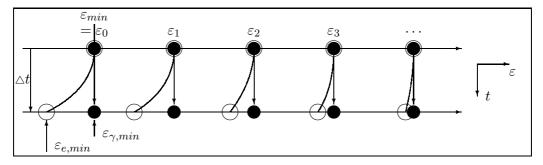


Abbildung 5.8: e- und γ -Charakteristiken laufen auseinander

Das Kappen beim γ -Fluss hätte aber zur Folge, dass nach dem Eulerschritt der Fluss

unterhalb von ε_{cut} unbekannt wäre, da sich für die Photonen die Energieeinteilung nicht ändert.

Die einzige Möglichkeit ist, für Elektronen und Photonen verschiedene Energie-Intervall-Einteilungen zur Berechnung der System-Matrizen \mathcal{A}, \mathcal{M} zu benutzen. Wir kappen zur Berechnung des e-Schrittes den Energiebereich des alten Flusses \mathcal{F} so, dass nach einem Iterationsschritt, also einem Δt -Schritt entlang der Charakteristiken, der linke Rand gerade wieder auf ε_{min} zu liegen kommt. Für den γ -Schritt können wir den Energiebereich belassen, da sich der γ -Fluss nicht entlang der Charakteristiken verschiebt.

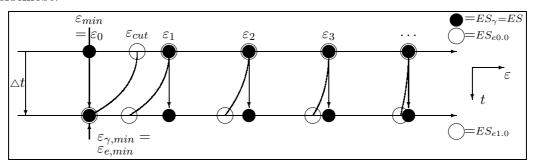


Abbildung 5.9: γ - und gekappte e-Charakteristiken überdecken nach einem $\triangle t$ -Schritt wieder den gesamten Energiebereich

Im Eulerschritt des Charakteristikenverfahrens müssen wir also die Energie-Intervall-Einteilung geeignet verschieben und dementsprechend für Elektronen und Photonen verschiedene Einteilungen zur Berechnung der Systemmatrizen \mathcal{A}, \mathcal{M} verwenden.

Im Folgenden beschreiben wir die algorithmische Vorgehensweise im Detail und führen einen einfacheren Formalismus ein, um die Anwendung des Runge-Kutta-Verfahrens vorzubereiten, bei dem die Handhabung der Energieeinteilungen sonst schnell unübersichtlich werden kann.

Energieskalen Wir führen zunächst den Begriff der Energieskala ein: Eine Energieskala ES ist eine Zerlegung des Energiebereichs $(\varepsilon_{min}, \varepsilon_{max})$ in $N_E + 1$ diskrete Punkte oder N_E Energieintervalle $(\varepsilon_{ES,0}; \varepsilon_{ES,1}; \dots; \varepsilon_{ES,j}; \dots; \varepsilon_{ES,N_E})$ mit $\varepsilon_{ES,j} < \varepsilon_{ES,k}$, falls j < k. Alle Energieskalen sollen dieselbe Anzahl von Intervallen haben. Die Intervalle müssen aber nicht äquidistant sein.

Eine gekappte Energieskala kann im linken Bereich undefinierte Intervalle haben. Nach dem ersten definierten Intervall müssen aber alle anderen Intervalle rechts davon definiert sein. Seien j_{cut} Punkte undefiniert. Die minimale Energie, die durch die Energieskala dargestellt werden kann, ist dann $\varepsilon_{ES,j_{cut}}$ und es gilt $\varepsilon_{ES,j} = undef$. für $j < j_{cut}$.

Zur Berechnung der Koeffizienten der Systemmatrizen \mathcal{A}, \mathcal{M} war die Benutzung einer festgelegten Energieskala notwendig. Wir fassen die jeweils zu einer Teilchensorte

gehörenden Matrizen zu einer Blockmatrix zusammen

$$\mathcal{R}_{e,ES} := \begin{pmatrix} \mathcal{A}_{a_e,a_e} & \mathcal{M}_{a_e,m_e} & \mathcal{A}_{a_e,a_g} & \mathcal{M}_{a_e,m_g} \\ \mathcal{A}_{m_e,a_e} & \mathcal{M}_{m_e,m_e} & \mathcal{A}_{m_e,a_g} & \mathcal{M}_{m_e,m_g} \end{pmatrix}$$
(5.123)

$$\mathcal{R}_{e,ES} := \begin{pmatrix}
\mathcal{A}_{a_e,a_e} & \mathcal{M}_{a_e,m_e} & \mathcal{A}_{a_e,a_g} & \mathcal{M}_{a_e,m_g} \\
\mathcal{A}_{m_e,a_e} & \mathcal{M}_{m_e,m_e} & \mathcal{A}_{m_e,a_g} & \mathcal{M}_{m_e,m_g}
\end{pmatrix}$$

$$\mathcal{R}_{g,ES} := \begin{pmatrix}
\mathcal{A}_{a_g,a_e} & \mathcal{M}_{a_g,m_e} & \mathcal{A}_{a_g,a_g} & \mathcal{M}_{a_g,m_g} \\
\mathcal{A}_{m_g,a_e} & \mathcal{M}_{m_g,m_e} & \mathcal{A}_{m_g,a_g} & \mathcal{M}_{m_g,m_g}
\end{pmatrix}$$
(5.123)

Für alle Matrizen eines 8er-Blocks wird jeweils dieselbe Energieskala ES benutzt. Als diskreten Teilchenfluss führen wir die Bezeichnung $F_{p,ES} := (a_p(t); m_p(t))$ (mit $p \in$ $\{e,g\}$) ein; auch hier liegen $a_p(t)$ und $m_p(t)$ in derselben Energieskala ES vor. Den diskreten Gesamtfluss kürzen wir mit $\mathcal{F}_{ES} := (F_{e,ES}; F_{g,ES})$ ab. Damit können wir die Gleichungen (5.122) auch so schreiben:

$$\frac{d}{dt}F_{e,ES} = \mathcal{R}_{e,ES} \cdot \mathcal{F}_{ES} \tag{5.125}$$

$$\frac{d}{dt}F_{g,ES} = \mathcal{R}_{g,ES} \cdot \mathcal{F}_{ES} \tag{5.126}$$

Bei einem Iterationsschritt des Charakteristikenverfahrens geht man um einen $\triangle t$ -Schritt in der Tiefe t weiter. Die Änderung des Flusses schätzen wir linear mit dem Euler-Verfahren ab. Beim Elektronenfluss müssen wir dabei auch die Energieskala gemäß der charakteristischen Gleichung verschieben. Sei $ES_{e0.0}$ die Energieskala, in der F_e $F_{e,ES_{e0.0}}$ vorliegt und sei $ES_{e1.0}$ die Energieskala, die aus $ES_{e0.0}$ nach Verschiebung entlang der Charakteristiken um $\triangle t$ hervorgeht. Nach einem Iterationsschritt um $\triangle t$ liegt der Fluss also in der $ES_{e1.0}$ -Skala. Wir schreiben dafür symbolisch:

$$F_{e,ES_{e1,0},t_i} = F_{e,ES_{e0,0},t_{i-1}} \oplus_{\chi} \triangle t \mathcal{R}_{e,ES} \mathcal{F}_{ES_{e0,0}}$$

$$(5.127)$$

Wir benutzen hier den Operator \oplus_{χ} , um zu verdeutlichen, dass das Ergebnis der gewöhnlichen (Vektor-)Addition $F_{e,ES_{e0.0},t_{i-1}} + \Delta t \mathcal{R}_{e,ES} \mathcal{F}_{ES_{e0.0}}$ entlang der Charakteristiken verschoben ist bzw. in der numerischen Ausführung auf diese Energieskala umgerechnet werden muss. Hierführ benutzen wir die Sehnenapproximation, damit $F_{e,ES_{e1.0},t_i}$ wieder in Trapez-Darstellung vorliegt.

Mit dem Formalismus der Energieskalen definieren wir noch die Funktion $Rebin_{ES}(.)$:

$$F_{ES_{to}} = Rebin_{ES_{to}}(F_{ES_{from}}) \tag{5.128}$$

$$\mathcal{F}_{ES_{to}} = Rebin_{ES_{to}}(\mathcal{F}_{ES_{from}}) \tag{5.129}$$

Die erste Version rechnet den diskreten Fluss $F_{ES_{from}}$ (der in der Intervalleinteilung der Energieskala ES_{from} vorliegt) in die Energieskala ES_{to} um und weist dem diskreten Fluss $F_{ES_{to}}$ das Resultat zu. Die Umrechnung erfolgt gemäß der im Absatz $Zur\ddot{u}ck$ -/Umskalierung auf Seite 93 beschriebenen Methode. Was dort $ES_{t_{i+1}}$ war, ist hier ES_{from} und ES_0 ist ES_{to} , im Übrigen ist die Methode direkt übertragbar.

Die zweite Version macht die Umrechnung für beide Komponenten des Gesamtflusses $\mathcal{F}_{ES_{from}} = (F_{e,ES_{from}}; F_{g,ES_{from}})$, sie ist definiert als:

$$Rebin_{ES_{to}}(\mathcal{F}_{ES_{from}}) := \left(Rebin_{ES_{to}}(F_{e,ES_{from}}); Rebin_{ES_{to}}(F_{g,ES_{from}})\right) (5.130)$$

Algorithmus Charakteristiken-Verfahren mit Euler-Iteration Nun können wir das Charakteristikenverfahren algorithmisch beschreiben: Sei ES die Basis-Energieskala und $ES_{e0.0}$ die gekappte Energieskala ES, die nach einer Verschiebung entlang der Charakteristiken um $\triangle t$ wieder ganz ES abdeckt, d.h. $\chi(\varepsilon_{ES_{e0.0},cut},\triangle t) = \varepsilon_{min} = \varepsilon_0$. Sei $ES_{e1.0}$ die um $\triangle t$ entlang der Charakteristiken verschobene Energieskala $ES_{e0.0}$. (Diese Energieskalen sind alle in Abbildung 5.9 dargestellt.)

Symbolischer Algorithmus

Iterationsschritt Charakteristiken-Verfahren mit Euler:

function Char-Iteration-Step(Input: $\mathcal{F}_{t_{i-1}}$ in ES; $\triangle t$):

$$\begin{array}{lll} \frac{/*e-\operatorname{Schritt}*/}{\mathcal{F}_{e,ES_{e0.0}}} &=& Rebin_{ES_{e0.0}}(\mathcal{F}_{t_{i-1}}) \\ k_{1,e} &=& \mathcal{R}_{e,ES_{e0.0}} \cdot \mathcal{F}_{e,ES_{e0.0}} \\ F_{e,ES_{e1.0}} &=& F_{e,ES_{e0.0}} \oplus_{\chi} \triangle t \ k_{1,e} \\ F_{e,ES} &=& Rebin_{ES}(F_{e,ES_{e1.0}}) \\ \frac{/*\gamma - \operatorname{Schritt}*/}{k_{1,g}} &=& \mathcal{R}_{g,ES} \cdot \mathcal{F}_{t_{i-1}} \\ F_{g} &=& \mathcal{F}_{g,t_{i-1}} + \triangle t \ k_{1,g} \\ \frac{/*\operatorname{Schluss} - \operatorname{Schritt}*/}{\mathcal{F}_{t_{i}}} &=& (F_{e,ES} \ ; \ F_{g}) \\ return \ \mathcal{F}_{t_{i}}; \\ end. \end{array}$$

5.9.2 Charakteristikenverfahren mit Trapezansatz und Runge-Kutta-Iteration

Beim Runge-Kutta-Verfahren werden Zwischenschritte in der Schritttiefe $0.5\cdot \triangle t$ berechnet, die als temporäre Zwischenschritte zur Schätzung des Gradienten dienen und dafür wieder in die rechte Seite der DGLs eingesetzt werden.

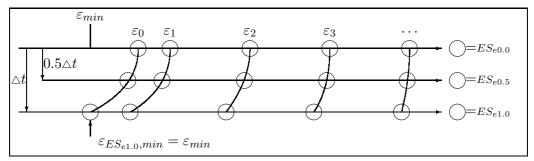


Abbildung 5.10: e-Energieskalen für die Runge-Kutta-Iteration

Die Elektronen-Energieskala $ES_{e0.5}$ ist im Zwischenschritt aber noch gekappt. Bei der rekursiven Einsetzung des Flusses für einen Photonen-Iterationsschritt benötigen wir an dieser Stelle aber einen Elektronenfluss in einer vollen Energieskala, die also bei ε_{min} startet.

Deshalb starten wir eine Hilfsberechnung für den Elektronenfluss ausgehend von einem Elektronenfluss, der auf die Energieskala $ES_{aux0.0}$ gekappt ist. $ES_{aux0.0}$ kommt nach einem $\frac{\Delta t}{2}$ -Schritt entlang der Charakteristiken auf $ES_{aux0.5}$ zu liegen, die gerade so konstruiert war, dass sie wieder bei ε_{min} startet, also nicht gekappt ist. Den Fluss in dieser Energieskala können wir dann leicht auf ES umskalieren und mit dem Photonenfluss gemeinsam in einem Iterationsschritt benutzen.

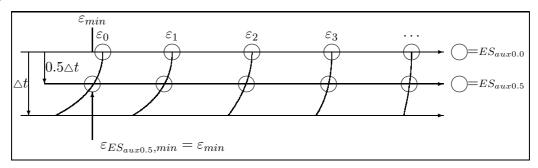


Abbildung 5.11: e-Hilfsenergieskalen für die Runge-Kutta-Iteration

Algorithmus Charakteristiken-Verfahren mit Runge-Kutta-Iteration Wir schreiben zunächst das Runge-Kutta-Schema für einen Iterationsschritt symbolisch auf, um die verwendeten Bezeichnungen einzuführen:

Symbolischer Algorithmus

Iterationsschritt Charakteristiken-Verfahren mit Runge-Kutta: function Char-Runge-Kutta-Step(Input: $\mathcal{F}_{t_{i-1}}$ in ES; $\triangle t$):

$$\mathcal{F}_{1} = \mathcal{F}_{t_{i-1}} \frac{/* k_{1} - \operatorname{Schritt} * /}{k_{1}} = \mathcal{R} \cdot \mathcal{F}_{1} \frac{/* k_{2} - \operatorname{Schritt} * /}{k_{2}} = \mathcal{R} \cdot (\mathcal{F}_{1} + \frac{1}{2} \triangle t \ k_{1}) \frac{/* k_{3} - \operatorname{Schritt} * /}{k_{3}} = \mathcal{R} \cdot (\mathcal{F}_{1} + \frac{1}{2} \triangle t \ k_{2}) \frac{/* k_{4} - \operatorname{Schritt} * /}{k_{4}} = \mathcal{R} \cdot (\mathcal{F}_{1} + \triangle t \ k_{3}) \frac{/* \operatorname{Schluss} - \operatorname{Schritt} * /}{k_{4}} \frac{/* \operatorname{Schluss} - \operatorname{Schritt} * /}{k} = \frac{1}{6} [k_{1} + 2k_{2} + 2k_{3} + k_{4}] \mathcal{F}_{t_{i}} = \mathcal{F}_{1} + \triangle t \ k}$$

$$\operatorname{return} \mathcal{F}_{t_{i}};$$
end.

```
Algorithmus
Iterationsschritt Charakteristiken-Verfahren mit Runge-Kutta:
function ChRungeKuttaStep(Input: \mathcal{F}_{t_{i-1}} in ES; \triangle t):
                                     \mathcal{F}_{t_{i-1}}
/*k_1 - Schritt */
/*k_1-\gamma- Schritt * /
                                                                                             /*k_1 - e - Schritt*/
                              = \mathcal{R}_q \cdot \mathcal{F}_1
                                                                                             \mathcal{F}_{1e}
                                                                                                                   = Rebin_{ES_{e0.0}}(\mathcal{F}_1)
                                                                                             k_{1q}
                                                                                                                   = \mathcal{R}_{e,ES_{e0.0}} \cdot \mathcal{F}_{1e}
/*k_1 - Hilfs - Schritt*/
\mathcal{F}_{1aux}
                              = Rebin_{ES_{aux0.0}}(\mathcal{F}_1)
                              = \mathcal{R}_{e,ES_{aux0.0}} \cdot \mathcal{F}_{1aux}
k_{1aux}
F_{2aux,ES_{aux0.5}} = \mathcal{F}_{1aux} +_{\chi} \frac{1}{2} \triangle t \cdot k_{1aux}
/*k_2 - Schritt * /
                                                                                             /*k_2 - e - \text{Schritt} */
/*k_2 - \gamma - Schritt*/
                              = Rebin_{ES}(F_{2aux,ES_{aux0.5}})
                                                                                             F_{2e,e,ES_{e0.5}} = \mathcal{F}_{1e.e} +_{\chi} \frac{1}{2} \triangle t \cdot k_{1e}
F_{2g,g}
                              = \mathcal{F}_{1q,q} + \frac{1}{2} \triangle t \cdot k_{1q}
                                                                                                            = Rebin_{ES_{e0.5}}(F_{2q,q})
\mathcal{F}_{2g}
                              = (F_{2g,e} ; F_{2g,g})
                                                                                             \mathcal{F}_{2e}
                                                                                                                   = (F_{2e,e,ES_{e0.5}}; F_{2e,g})
k_{2g}
                              = \mathcal{R}_q \cdot \mathcal{F}_{2q}
                                                                                             k_{2e}
                                                                                                                  = \mathcal{R}_{e,ES_{e0.5}} \cdot \mathcal{F}_{2e}
/*k_2 - Hilfs - Schritt*/
F_{2aux,e,ES_{aux0.0}} = Rebin_{ES_{aux0.0}}(F_{2aux,ES_{aux0.5}})
F_{2aux,g,ES_{aux0.0}} = Rebin_{ES_{aux0.0}}(F_{2g.g})
\mathcal{F}_{2aux} = (F_{2aux,e,ES_{aux0.0}}; F_{2aux,g,ES_{aux0.0}})
                              = \mathcal{R}_{e,ES_{aux0.0}} \cdot \mathcal{F}_{2aux}
k_{2aux}
F_{3aux,\underline{ES}_{aux0.5}}
                              = \mathcal{F}_{1aux} +_{\chi} \frac{1}{2} \triangle t \cdot k_{2aux}
/*k_3 - Schritt * /
                                                                                             /*k_3 - e - Schritt*/
/*k_3 - \gamma - Schritt * /
                              = Rebin_{ES}(F_{3aux,ES_{aux0.5}})
                                                                                                                          \mathcal{F}_{1e.e} +_{\chi} \frac{1}{2} \triangle t \cdot k_{2e}
F_{3g,e}
                                                                                             F_{3e,e,ES_{e0.5}}
                                   \mathcal{F}_{1q,q} + \frac{1}{2} \triangle t \cdot k_{2q}
                                                                                                                          Rebin_{ES_{e0.5}}(F_{3q,q})
F_{3q,q}
                                                                                             F_{3e,q}
                                                                                             \mathcal{F}_{3e}
\mathcal{F}_{3g}
                              = (F_{3g,e} ; F_{2g,g})
                                                                                                                    = (F_{3e,e,ES_{e0.5}}; F_{3e,g})
                              = \mathcal{R}_g \cdot \mathcal{F}_{3g}
                                                                                             k_{3e}
                                                                                                                          \mathcal{R}_{e,ES_{e0.5}} \cdot \mathcal{F}_{3e}
/*k_4 - Schritt *
                                     \mathcal{F}_{1e.e} +_{\chi} \triangle t \cdot k_{3e}
                                                                                             F_{4g}
                                                                                                                          \mathcal{F}_{1g,g} + \triangle t \cdot k_{3g}
F_{4e,ES_{e1.0}}
                                                                                                                    = Rebin_{ES}(F_{4e,ES_{e1.0}}); F_{4g})
\mathcal{F}_{4e}
                                  (F_{4e,ES_{e1.0}}; Rebin_{ES_{e1.0}}(F_{4g})
                                                                                             \mathcal{F}_{4g}
                              = \mathcal{R}_{e,ES_{e1.0}} \cdot \mathcal{F}_{4e}
                                                                                                                    = \mathcal{R}_q \cdot \mathcal{F}_{4q}
/ * Schluss - Schritt * /
                                                                                                                          \mathcal{F}_{1e.e} +_{\chi} \frac{1}{2} \triangle t \cdot k_e
                                     \frac{1}{6}[k_{1e}+2k_{2e}+2k_{3e}+k_{4e}]
                                                                                             F_{e,ES_{e1.0}}
k_g
                                      \frac{1}{6}[k_{1q}+2k_{2q}+2k_{3q}+k_{4q}]
                                                                                             F_q
                                                                                                                    = \mathcal{F}_{1q,q} + \triangle t \cdot k_q
\mathcal{F}_{t_{\underline{i}}}
                                     (Rebin_{ES}(F_{e,ES_{e1.0}});F_q)
return \mathcal{F}_{t_i};
end.
```

Tabelle 5.1: Runge-Kutta-Iteration

Tabelle 5.9.2 zeigt eine detaillierte Beschreibung des Runge-Kutta-Schrittes mit Umskalierungen der Energieskalen und Benutzung der Hilfsberechnungen für den Elektronenfluss. Anweisungsblöcke, die in derselben Zeile stehen, können in beliebiger Reihenfolge ausgeführt werden. Allein die Reihenfolge von oben nach unten muss eingehalten werden. Die teuren Operationen sind die Auswertungen der rechten Seite der DGL, $k = \mathcal{R} \cdot \mathcal{F}$. Ohne Auseinanderlaufen der Charakteristiken würde das Runge-Kutta-Verfahren 8 solche Operationen erfordern (4 für jede Teilchensorte). Wir benötigen als Hilfsgrößen k_{1aux} und k_{2aux} , benötigen also 2 zusätzliche Auswertungen.

5.9.3 Sehnenapproximation

Nach einem Iterationsschritt erhalten wir als numerische Lösung eine intervallweise vorliegende Funktion, die kein Trapez mehr ist. Da unser numerisches Verfahren auf Trapezen basiert, muss aus dieser Funktion wieder ein Trapez konstruiert werden. In Abschnitt 5.8 auf Seite 91 hatten wir die Sehnenapproximation eingeführt. Hierdurch verfälschen wir die Teilchenzahl und die Gesamtenergie. In diesem Abschnitt beschreiben wir eine Methode, die dies vermeidet: die Sehnenapproximation mit N_{tot} -Etot-Erhaltung. In (5.89) hatten wir den Verlauf der Charakteristiken hergeleitet:

$$\varepsilon(t_i) = \log \left(\left[e^{\varepsilon(t_{i-1})} + \frac{\alpha_{ion}}{\alpha_{sing,\delta}} \right] e^{-\alpha_{sing,\delta}(t_i - t_{i-1})} - \frac{\alpha_{ion}}{\alpha_{sing,\delta}} \right)$$

In günstigerer Schreibweise (mit $\triangle t = t_i - t_{i-1}$):

$$\varepsilon(t_i) = \chi(\varepsilon(t_{i-1}); \Delta t) = \log\left(\left[e^{\varepsilon(t_{i-1})} + \frac{\alpha_{ion}}{\alpha_{sing,\delta}}\right]e^{-\alpha_{sing,\delta}\Delta t} - \frac{\alpha_{ion}}{\alpha_{sing,\delta}}\right)$$
(5.131)

Damit ist $\varepsilon(t_{i-1}) = \chi(\varepsilon(t_i); -\triangle t)$ oder $\chi^{-1}(\varepsilon(t_i); \triangle t) = \chi(\varepsilon(t_i); -\triangle t) = \varepsilon(t_{i-1}).$

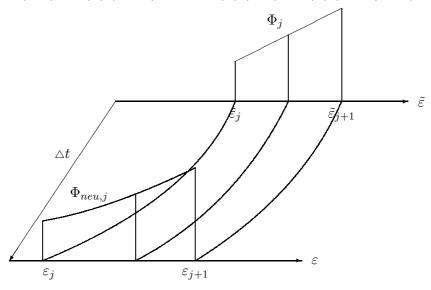


Abbildung 5.12: Verzerrung eines Trapezes bei der Verschiebung entlang der Charakteristiken; Φ_j ist linear, $\Phi_{neu,j}$ ist keine lineare Funktion mehr

Wir betrachten jeweils ein einzelnes Intervall zur Tiefe t. Vor der Verschiebung haben wir ein Trapez im Intervall $(\varepsilon_j, \varepsilon_{j+1})$ vorliegen, also $\Phi_j = a_j + m_j(\varepsilon - \varepsilon_j)$ für $\varepsilon \in (\varepsilon_j, \varepsilon_{j+1})$. Nach der Verschiebung liegt der Fluss $\Phi_{neu,j} = \Phi_j(t + \Delta t)$ nicht mehr als Trapez vor. Wir wissen aber, dass $\Phi_{neu,j}$ und Φ_j durch Verschiebung entlang der Charakteristiken ineinander übergehen, d.h. auf denselben Charakteristiken auch gleiche Werte haben: $\Phi_{neu,j}(\varepsilon) = \Phi_j(\chi(\varepsilon; -\Delta t)) = \Phi_j(\tilde{\varepsilon})$ mit $\tilde{\varepsilon} = \chi(\varepsilon; -\Delta t)$ (und $\varepsilon = \chi(\tilde{\varepsilon}; \Delta t)$).

Wir wollen nun die Teilchenzahl und Energie pro verschobenem Intervall berechnen:

$$N_{tot,neu,j} = \int_{\varepsilon_j}^{\varepsilon_{j+1}} \Phi_{neu,j}(\varepsilon) d\varepsilon = \int_{\varepsilon_j}^{\varepsilon_{j+1}} a_j + m_j(\tilde{\varepsilon} - \varepsilon_j) d\varepsilon$$
$$E_{tot,neu,j} = \int_{\varepsilon_j}^{\varepsilon_{j+1}} \Phi_{neu,j}(\varepsilon) e^{\varepsilon} d\varepsilon = \int_{\varepsilon_j}^{\varepsilon_{j+1}} [a_j + m_j(\tilde{\varepsilon} - \varepsilon_j)] e^{\varepsilon} d\varepsilon$$

Eine Integraltransformation auf $\tilde{\varepsilon}$ ist günstig, da dann $\tilde{\varepsilon}_j = \chi(\varepsilon_j; -\triangle t)$, $\tilde{\varepsilon}_{j+1} = \chi(\varepsilon_{j+1}; -\triangle t)$ und $\frac{d\varepsilon}{d\tilde{\varepsilon}} = \frac{d}{d\tilde{\varepsilon}}\chi(\tilde{\varepsilon}; \triangle t) = \frac{e^{\tilde{\varepsilon} - \alpha_{sing}, \delta \triangle t}}{e^{\chi(\tilde{\varepsilon}; \triangle t)}} = \frac{e^{\tilde{\varepsilon} - \alpha_{sing}, \delta \triangle t}}{e^{\varepsilon}}$ ist. Es ergibt sich:

$$N_{tot,neu,j} = \left| (a_j + (\tilde{\varepsilon} - \tilde{\varepsilon}_j)m_j) \log \left(1 + \frac{\alpha_{sing,\delta}}{\alpha_{ion}} \cdot \frac{e^{\tilde{\varepsilon}}}{1 - e^{\alpha_{sing} \Delta t}} \right) \right| + m_j \operatorname{PolyLog} \left(2, \frac{\alpha_{sing,\delta}}{\alpha_{ion}} \cdot \frac{e^{\tilde{\varepsilon}}}{e^{\alpha_{sing} \Delta t} - 1} \right) \right|_{\tilde{\varepsilon}^j}^{\tilde{\varepsilon} = \tilde{\varepsilon}_{j+1}}$$

$$E_{tot,neu,j} = \left| e^{\tilde{\varepsilon} - \alpha_{sing,\delta} \Delta t} \left(a_j + (\tilde{\varepsilon} - \tilde{\varepsilon}_j - 1) m_j \right) \right|_{\tilde{\varepsilon}^j}^{\tilde{\varepsilon} = \tilde{\varepsilon}_{j+1}}$$

$$(5.132)$$

Damit berechnen⁴ wir ein Trapez $\Phi_{approx,j} = a_j(t_i) + m_j(t_i)(\varepsilon - \varepsilon_j)$ so, dass

$$N_{tot,approx,j} = \int_{\varepsilon_j}^{\varepsilon_{j+1}} \Phi_{approx,j}(\varepsilon) d\varepsilon = N_{tot,neu,j}$$

und

$$E_{tot,approx,j} = \int_{\varepsilon_j}^{\varepsilon_{j+1}} \Phi_{approx,j}(\varepsilon) e^{\varepsilon} d\varepsilon = E_{tot,neu,j}$$

Dieses Trapez $\Phi_{approx,j}$ ist dann die numerische Lösung des aktuellen Iterationsschrittes unter Verwendung der Sehnenapproximation mit N_{tot} - E_{tot} -Erhaltung.

Numerische Tests ergaben, dass im Vergleich zur einfachen Sehnenapproximation der Rechenaufwand um etwa ein Drittel erhöht wurde, dass aber erst ab der fünften signifikanten Stelle Unterschiede in den numerischen Lösungen auftraten. Im Vergleich mit Monte-Carlo-Rechnungen war dieser Unterschied zu klein, als dass man eine Verbesserung in der Genauigkeit erkennen konnte. Deshalb wurde im weiteren aus praktischen Gründen auf die Sehnenapproximation mit Energie- und Teilchenzahlerhaltung verzichtet.

⁴Wir haben hier die Polylogarithmus-Funktion eingeführt. Die Definition und einige Eigenschaften sind in Anhang C.4 zusammengefasst; wir benötigen insbesondere Gleichung (C.16).

Kapitel 6

Hybridverfahren

Hybridverfahren sind Verfahren, die verschiedene Lösungsansätze miteinander kombinieren. In der vorliegenden Arbeit kombinieren wir eine Monte-Carlo-Simulation mit dem numerischen Lösungsverfahren. Die Idee dazu beruht auf der Beobachtung, dass bei hochenergetischen Luftschauern Unterschiede der longitudinalen Schauerentwicklung im Wesentlichen von den ersten hochenergetischen Wechselwirkungen abhängen. Solange die Teilchen viel Energie besitzen, spielen Details der individuellen Wechselwirkungsprozesse eine wichtige Rolle für die spätere Schauerentwicklung. In Schauerstadien, in denen schon viele — mehrere tausend — Teilchen erzeugt wurden, spielt ein einzelnes Teilchen keine Rolle mehr, sondern nur noch das durchschnittliche Verhalten vieler Teilchen.

Erste Ideen zu den Grundlagen, die einen Hybridansatz rechtfertigen, gab es schon 1967 [55]. Verschiedene konkrete Implementierungen werden unter anderem in [56, 57, 58, 59] behandelt. Der Einsatz wird im Rahmen der aktuellen Forschungen im Bereich der ultrahochenergetischen kosmischen Strahlen immer attraktiver oder sogar unabdingbar, da Modellrechnungen ohne Hybridansatz an die technische Leistungsgrenze moderner Computer stoßen.

6.1 Kombination aus Monte-Carlo-Simulation und numerischem Verfahren

Monte-Carlo-Simulation und numerisches Lösungsverfahren ergänzen sich perfekt: Ein Monte-Carlo-Verfahren bildet explizit jede einzelne Wechselwirkung ab — genau das, was wir zu Beginn der Schauerentwicklung benötigen, wenn die Teilchen noch viel Energie besitzen. Eine numerische Methode berechnet dagegen das durchschnittliche Verhalten der Teilchen und der Rechenaufwand ist unabhängig von der Zahl der zu bearbeitenden Teilchen. Sie berechnet in einem Schritt gleichzeitig das Verhalten einer beliebig großen Anzahl von Teilchen.

Wir benutzen dazu die Implementierungen der Monte-Carlo-Methode aus Kapitel 4 und des numerischen Lösungsverfahrens aus Kapitel 5. Die Berechnung eines Schauers startet zunächst mit der Monte-Carlo-Simulation. Zur technischen Umsetzung benötigen

wir noch ein Kriterium, ab wann ein Teilchen aus der Monte-Carlo-Simulation entfernt und mit dem numerischen Lösungsverfahren weiterbehandelt werden soll. Die Teilchenenergie ist das geeignete Kriterium. Wir geben einen Faktor f_{hybrid} vor und berechnen damit die Hybrid-Schwellenenergie $E_{hybrid}:=f_{hybrid}\cdot E_{prim}$. Ist die Teilchenenergie $E < E_{hybrid}$, so wird das Teilchen aus der Monte-Carlo-Simulation entfernt und in die $Quellenfunktion\ Q=(N_Q,E_Q)$ (e. $source\ function$) eingetragen. Die Quellenfunktion Q besteht aus zwei Arrays N_Q und E_Q derselben Art und Größe, wie in Abschnitt 4.1.5 beschrieben.

In Abschnitt 4.1.5 wurde auch detailliert beschrieben, wie die Teilchen während der Monte-Carlo-Simulation registriert werden. Da wir die Teilchen nur in festgelegten Tiefenebenen t_i registrieren, können sie auch nur in diesen Ebenen an das numerische Verfahren übergeben werden. Die Teilchen werden aber nicht exakt auf einer Ebene t_i die Hybridenergieschwelle E_{hybrid} erreichen, sondern irgendwo zwischen den Ebenen. Die technisch einfachste Lösung ist, die Teilchen in der Monte-Carlo-Simulation zu belassen, auch wenn sie schon vorher unter die Hybridenergieschwelle E_{hybrid} gefallen sind. Sie werden dann wechselwirken und weitere Teilchen erzeugen, deren Energie auch unter E_{hybrid} liegt. Auch diese Teilchen und weitere Sekundärteilchen werden in der Monte-Carlo-Simulation belassen, bis sie eine Tiefenebene t_i durchqueren. Erst dann werden sie aus der Monte-Carlo-Simulation entfernt (ohne in dieser Tiefenebene t_i registriert zu werden) und in die Quellenfunktion eingetragen. Der Test, ob ein Teilchen unter der Hybridenergieschwelle liegt, kann deshalb sehr bequem an der Stelle eingefügt werden, an der sowieso getestet wird, ob ein Teilchen gerade eine Tiefenebene kreuzt.

Die Eintragung in die Quellenfunktion geschieht in derselben Weise, wie die Eintragung in die Arrays in Abschnitt 4.1.5.

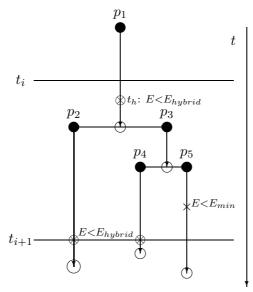


Abbildung 6.1: Hybridverfahren: Übertragung von Teilchen aus der Monte-Carlo-Simulation in das numerische Lösungsverfahren

In Abbildung 6.1 ist ein Beispiel dazu dargestellt. Die Energie des Teilchens p_1 fällt erst nach der Tiefenebene t_i , bei t_h , unter die Hybridenergieschwelle E_{hybrid} . Deshalb wird es weiter in der Monte-Carlo-Simulation belassen. Nach einer Wechselwirkung entstehen die Teilchen p_2 und p_3 . p_2 quert vor der nächsten Wechselwirkung Ebene t_{i+1} (mit dem Symbol \otimes bezeichnet) und wird deshalb in die Quellenfunktion übertragen (unter Berücksichtigung eventueller Energieverluste durch Ionisation). Das Teilchen p_3 geht noch vor der Ebene t_{i+1} eine Wechselwirkung ein, bei der zwei neue Teilchen p_4 und p_5 entstehen. Auch p_4 quert vor der nächsten Wechselwirkung Ebene t_{i+1} (Symbol \otimes) und wird in die Quellenfunktion übertragen. Teilchen p_5 verliert durch Ionisation Energie und fällt in der mit dem Symbol \times markierten Tiefe unter E_{min} , worauf es vollständig aus der Rechnung entfernt wird.

Die Teilchenpfade aus den Wechselwirkungen werden wie früher in zwei Tabellen $T_{MC} = (N_{MC}, E_{MC})$ registriert (mit der Bezeichnung aus Abschnitt 4.1.5 ist $N_{MC} = N(t_i, E_j)$ und $E_{MC} = E(t_i, E_j)$), in Tabelle N_{MC} die Teilchenzahl, in Tabelle E_{MC} die Energie. Sind alle Teilchen unter die Schwelle gefallen, startet das numerische Verfahren, das in jedem Iterationsschritt aus dem Fluss $\Phi^l(t_i, E)$ zur Tiefe t_i den Fluss $\Phi^l(t_{i+1}, E)$ zur Tiefe t_{i+1} berechnet. Früher hatten wir als Startwert das Primärteilchen in $\Phi^l(0, E)$ eingetragen. Nun starten wir mit $\Phi^l(0, E) = 0$. Zusätzlich addieren wir vor jedem Iterationsschritt zu $\Phi^l(t_i, E)$ die Einträge der Quellenfunktion $Q(t_i, E)$ zur Tiefe t_i . Wir schreiben symbolisch:

$$\Phi_{num}^l(t_i, E) \leftarrow \Phi^l(t_i, E) + Q(t_i, E) \tag{6.1}$$

Dieses so berechnete $\Phi^l_{num}(t_i,E)$ ist dann gleichzeitig das numerische Endergebnis für den t_i -Schritt und Startwert für den t_{i+1} -Iterationsschritt. Wenn das numerische Verfahren beendet ist, wird zum numerischen Ergebnis $\Phi^l_{num}(t,E)$ noch der Anteil aus der Monte-Carlo-Rechnung T_{MC} hinzugezählt, was schließlich das Endergebnis des Hybridverfahrens ist, symbolisch:

$$\Phi_{hybrid}^{l}(t, E) \leftarrow \Phi_{num}^{l}(t, E) + T_{MC}$$
(6.2)

Wir definieren noch, wie die Addition des Flusses Φ^l mit den Ergebnis-Tabellen T_{MC} des Monte-Carlo-Vorlaufs und der Quellenfunktion Q gemacht wird: Φ^l liegt in Trapezansatzform vor, T_{MC} und Q bestehen aus zwei Tabellen mit je einem Eintrag pro Energieintervall $I_{E,j} = [E_j, E_{j+1})$ und Tiefenebene t_i für die enthaltene Energie $E_{i,j} = E(t_i, E_j)$ und für die enthaltene Teilchenzahl $N_{i,j} = N(t_i, E_j)$.

In allen Tiefenebenen erfolgt die Addition in jedem einzelnen Energieintervall: Für ein Trapez $\Phi_j^l(t_i, E)$ (das in der Tiefe t_i auf dem Intervall $I_{E,j}$ definiert ist) berechnen wir die Energie $E_{trapez,i,j}$ und die Teilchenzahl $N_{trapez,i,j}$ (mit den Formeln 5.34 und 5.35). Nun berechnen wir ein neues Trapez $\Phi_{j,neu}^l(t_i, E)$ so, dass dessen Energie gerade $E_{trapez,i,j} + E_{i,j}$ und Teilchenzahl $N_{trapez,i,j} + N_{i,j}$ ist. Mit Gleichung 5.51 können die Koeffizienten a_j und m_j des neuen Trapezes berechnet werden, indem man die rechte Seite anpasst:

$$\begin{pmatrix} a_j \\ m_j \end{pmatrix} := M^{-1} \begin{pmatrix} N_{trapez,i,j} + N_{i,j} \\ E_{trapez,i,j} + E_{i,j} \end{pmatrix}$$

$$(6.3)$$

6.2 Beispielrechnung eines Hybridschauers

Stellen wir uns in einem Gedankenexperiment einen Photonenschauer vor, bei dem nur die Position der ersten Wechselwirkungslänge variiert. Angenommen, der dadurch ausgelöste Schauer würde sich von da an jedesmal exakt gleich entwickeln, dann würde sich diese Variation direkt auf die Variation der Position X_{max} des Schauermaximums $N_{tot,max}$ auswirken. Dieses würde dann dieselbe Verteilung wie die Wechselwirkungswahrscheinlichkeitsverteilung des Photons haben, da die erste Wechselwirkung kausale Auswirkungen auf alle späteren Wechselwirkungsprozesse hat. Wir können dieses Verhalten simulieren, indem wir einen sehr großen Hybridparameter wählen.

Bei Wechselwirkungsketten hingegen, zu denen parallel viele andere Wechselwirkungsketten verlaufen, ist der Einflussbereich nur auf den direkt nachfolgenden Subschauer begrenzt.

Im folgenden Beispiel haben wir mehrere Schauer mit dem Hybridverfahren berechnet, wobei nur der Hybridparameter verändert wurde. Die Primärenergie betrug in beiden Fällen $E_{prim}=1.37\cdot 10^{13}$ MeV, in Abbildung 6.2 wurde der Hybridparameter $f_{hybrid}=0.99$ benutzt, in Abbildung 6.3 $f_{hybrid}=0.01$. Zum Vergleich wurde das Ergebnis der numerischen Methode, das mittlere Schauerverhalten, eingezeichnet.

In Abbildung 6.2 mit $f_{hybrid} = 0.99$ sieht man große Schwankungen in der Position des Schauermaximums X_{max} . Die Teilchenzahl im Schauermaximum $N_{tot,max}$ liegt aber immer im selben Bereich.

Im Gegensatz dazu beobachtet man in Abbildung 6.3 mit dem Hybridparameter $f_{hybrid} = 0.01$ starke Schwankungen sowohl in X_{max} als auch in $N_{tot,max}$. Durch die kleinere Hybridenergieschwelle E_{hybrid} werden mehr Teilchen mit der Monte-Carlo-Simulation behandelt, wodurch viel mehr Möglichkeiten einer individuellen Schauerentwicklung entstehen. In Abschnitt 7.8 werden wir die Auswirkung verschiedener Hybridparameter genauer analysieren.

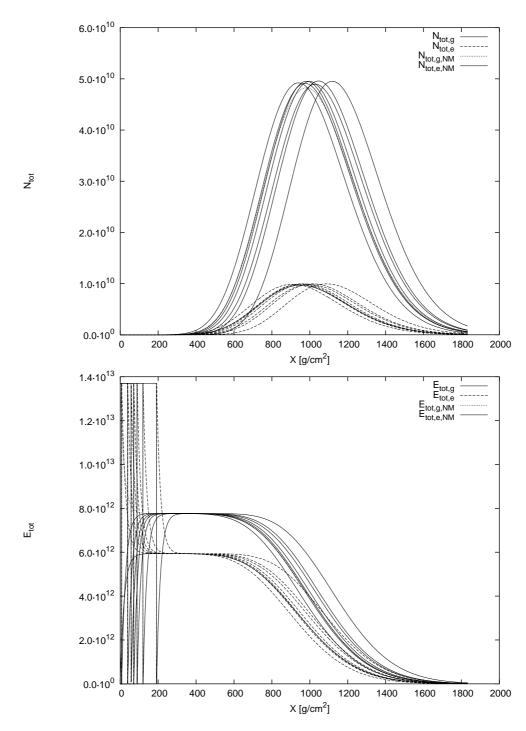


Abbildung 6.2: 7 Hybrid-Schauer mit $f_{hybrid}=0.99$: $N_{tot,e}$, $N_{tot,g}$ oben; $E_{tot,e}$, $E_{tot,g}$ unten (in MeV); zum Vergleich wurde das Ergebnis der numerischen Methode (NM) eingezeichnet

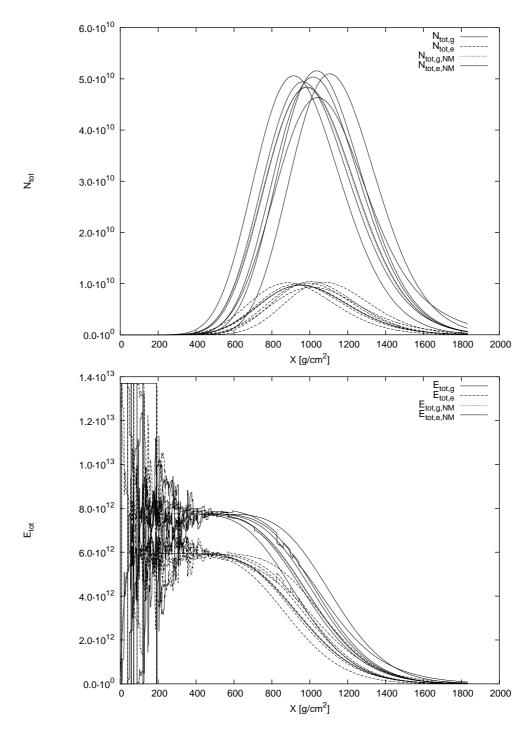


Abbildung 6.3: 7 Hybrid-Schauer mit $f_{hybrid}=0.01$: $N_{tot,e}$, $N_{tot,g}$ oben; $E_{tot,e}$, $E_{tot,g}$ unten (in MeV); zum Vergleich wurde das Ergebnis der numerischen Methode (NM) eingezeichnet

Kapitel 7

Numerische Ergebnisse und Diskussion der verschiedenen Lösungsmethoden

Wir stellen zunächst einige allgemeine Eigenschaften der Lösungen von Kaskadengleichungen anhand von Beispielrechnungen des Modellsystems vor. Dann gehen wir zur elektromagnetischen Kaskadengleichung über. Als erstes führen wir eine Studie bezüglich der erforderlichen Gitterweiten in Abhängigkeit von der Primärenergie durch. Als nächstes verifizieren wir die Korrektheit der gefundenen Lösungen der elektromagnetischen Kaskadengleichung im Vergleich mit anderen unabhängigen Lösungsmethoden: für niedrige Energien im Vergleich mit Monte-Carlo-Simulationen, für hohe Energien im Vergleich mit Approximation A/B. Diese Zweiteilung hat den Grund, dass ein Vergleich mit Monte-Carlo-Simulationen bei hohen Energien aufgrund der langen Rechenzeiten nicht mehr möglich oder zumindest sehr langwierig ist. Umgekehrt sind die analytischen Approximationen für niedrige Energien schlecht. Im Anschluss daran stellen wir die numerischen Lösungen CORSIKA-Simulationen gegenüber. Abschließend stellen wir numerische Resultate des Hybridverfahrens, unter anderem einen Vergleich mit Auger-Daten, vor.

7.1 Programmparameter

Wir besprechen zunächst ein paar technische Details der Implementierung der numerischen Methode. Dem Programm müssen mehrere Startwerte übergeben werden, zum einen, um die Art des zu berechnenden Schauers zu spezifizieren, zum anderen, um die Art und Weise der numerischen Rechnung zu steuern. Die Programmparameter des numerischen Verfahrens sind:

 E_{prim} : Energie des Primärteilchens (meistens in Einheiten MeV, bei manchen Testrechnungen einheitenlos); um die Art des Primärteilchens anzugeben, wird manchmal abkürzend ein weiterer Index angehängt: $E_{prim,g}$ bedeutet, das Primärteilchen war ein Photon, $E_{prim,e}$ bedeutet, das Primärteilchen war ein

Elektron.

 E_{min} : Untere betrachtete Energieschwelle.

 E_{max} : Obere Grenze des betrachteten Energiebereichs (wird automatisch auf

 $E_{max} = 2 \cdot E_{prim}$ gesetzt).

 N_E : Anzahl der Energie-Intervalle.

 t_0 : Starttiefe; bei uns ist immer $t_0 = 0$.

Tiefe, bis zu der der Schauerverlauf berechnet werden soll (meistens in Ein t_{max} :

heiten der Strahlungslänge X_0 , bei manchen Testrechnungen einheitenlos).

 N_t : Anzahl der Tiefen-Schritte.

Größe des Energieverlustes der Elektronen durch Ionisation der Atmosphäre; α_{ion} :

wenn in Energieeinheiten MeV und Tiefeneinheiten X_0 gerechnet wird, ist $\alpha_{ion} \approx 80$, da $\alpha_{ion} \approx 2 \frac{\text{MeV}}{\text{g/cm}^2} \approx 80 \frac{\text{MeV}}{\text{X}_0}$. dies ist der "Abschneideparameter", der die Größe des Intervalls angibt, mit λ : dem die Singularität aus den Integralen "geschnitten" wird (siehe Abschnitt 4.2.1); die Größe des Intervalls, das abgeschnitten wird, ist $\lambda \cdot \triangle \varepsilon$, wobei $\triangle \varepsilon$

definiert ist als:

 $\triangle \varepsilon := \frac{\log E_{max} - \log E_{min}}{N_F}.$ (7.1)

Dieser Parameter steuert auch die Größe des Fehlerterms in der Taylorentwicklung (4.19), deshalb darf λ nicht zu groß sein; bei den Testrechnungen stellte sich $\lambda = 0.01$ als gute Wahl heraus, eine Verkleinerung dieses Wertes ändert praktisch nichts mehr an der numerischen Lösung.

PID: die Teilchenart des Primärteilchens: Photon: PID=1; Elektron: PID=2

Für das Hybridverfahren gibt es zwei weitere Programmparameter:

 N_{sh} : Anzahl der zu berechnenden Schauer.

SEED: Initialisierungswert des Zufallszahlengenerators.

Die Rechnungen wurden auf verschiedenen PCs durchgeführt. Bei Rechnungen auf dem LINUX-Cluster war ohne großen Aufwand nicht detailliert ermittelbar, welche CPU zur Verfügung stand. Typische CPUs waren: AMD Athlon(tm) MP 2000+ (1.6 GHz), AMD Athlon(tm) XP 2400+ (2 GHz), Intel(R) Pentium(R) 4 CPU 2.80GHz mit RAM zwischen 512 MB und 1.5 GB.

Bei Rechenzeitvergleichen sind im Folgenden aber immer alle Rechnungen, die innerhalb eines Vergleichs gemacht wurden — und dann in einer gemeinsamen Tabelle stehen — immer lokal auf demselben PC durchgeführt worden.

7.2Modellrechnungen

In diesem Abschnitt werden die Ergebnisse von Modellrechnungen, d.h. Rechnungen ohne direkten physikalischen Hintergrund, präsentiert. Sie sollen in erster Linie die Programmparameter und verschiedene graphische Darstellungsweisen demonstrieren.

7.2.1 Ionisationsparameter α_{ion}

Wir zeigen in den Abbildungen 7.1 und 7.2 eine Studie der numerischen Ergebnisse des Modellsystems (Abschnitt 4.1.4, Gleichung 4.3, eine Teilchenart) mit $E_{prim}=100$, $E_{min}=1$ und verschiedenen Werten für α_{ion} (in der Grafik nur mit α bezeichnet).

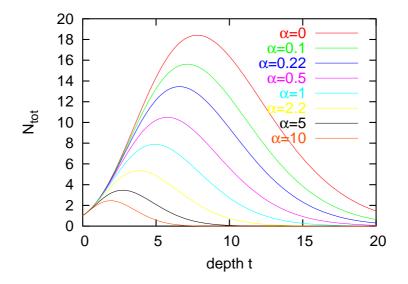


Abbildung 7.1: $N_{tot}(t)$; Modellsystem mit verschiedenen Werten für α

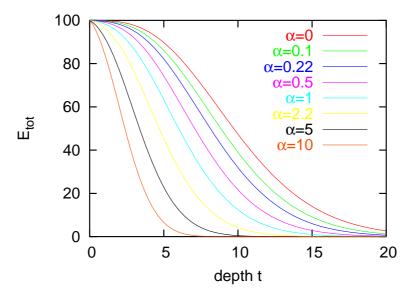


Abbildung 7.2: $E_{tot}(t)$; Modellsystem mit verschiedenen Werten für α

Hier wird nur eine einzige (hypotetische) Teilchenart betrachtet, dennoch zeigt das Modellsystem alle charakteristischen Eigenheiten einer Schauerentwicklung. In Abbildung 7.1 ist die Entwicklung der Teilchenzahl $N_{tot}(t)$ mit zunehmender Tiefe t gezeichnet. Diese Darstellung wird oft longitudinale Schauerentwicklung oder Schauerprofil genannt. Die Schauerprofile beginnen alle mit einem Primärteilchen. Durch Wechselwirkungen entsteht eine Teilchenvervielfachung, die Teilchenzahl steigt also zunächst ähnlich einer Exponentialfunktion an. Durch die Wechselwirkung haben die Teilchen immer weniger Energie. Sobald diese unter die untere Schwellenenergie E_{min} gefallen ist, werden die Teilchen nicht mehr berücksichtigt. Dadurch wird der Anstieg gedämpft und kehrt sich nach einem Maximum — dem sogenannten Schauermaximum $N_{tot,max}$ — in einen Teilchenabfall um. Die Tiefe des Schauermaximums wird mit X_{max} bezeichnet.

In Abbildung 7.1 wurden verschiedene Werte für den Ionisationsenergieverlust α_{ion} gewählt. Dies macht zwar physikalisch keinen unmittelbaren Sinn, ist aber aus numerischer Sicht interessant, um die Auswirkung dieses Parameters auf die Lösung der Differentialgleichung zu untersuchen. Je größer α_{ion} ist, desto mehr wird das Schauermaximum gedämpft und zu kleineren Tiefen hin verschoben.

In Abbildung 7.2 ist zu denselben Schauern die Systemenergie $E_{tot}(t)$ dargestellt. Sie beginnt bei der Energie des Primärteilchens und fällt dann ab. Der Abfall kommt hier wieder dadurch zustande, dass die Teilchen durch Wechselwirkung und je nach Größe von α_{ion} durch Ionisation des umgebenden Mediums Energie verlieren und irgendwann unter die untere Energieschwelle fallen, also nicht mehr berücksichtigt werden. Auch hier gilt: Je größer α_{ion} , desto schneller verliert das System Energie.

7.2.2 Trapezdarstellung

In Abbildung 7.3 und 7.4 sind die Energiespektren $\Phi^l = \frac{dN}{d\varepsilon} = \frac{dN}{d\log E}$ eines Photon-Schauers mit $E_{prim,g} = 100$ und $\alpha_{ion} = 0$ dargestellt. In Abbildung 7.3 ist die Elektronenkomponente dargestellt. Bei der Photonenkomponente in Abbildung 7.4 sieht man den langsam abklingenden Primärimpuls des schauerauslösenden Photons. (Die Primärenergie $E_{prim,g} = 100$ entspricht in logarithmischer Einteilung $\varepsilon_{prim,g} = \log 100 \approx 461$

Die Energiespektren entsprechen Schnitten in ε -Richtung zu festen Tiefen t. Das numerische Verfahren liefert nur zu diskreten Tiefen t ein Energiespektrum in Trapezdarstellung. Diese wurden in den Grafiken in t-Richtung linear interpoliert und als zusammenhängende Fläche gezeichnet, um die Darstellung übersichtlicher zu gestalten.

Zu einem Energiespektrum einer festen Tiefe t kann man für jedes Energieintervall mit der Formel (5.41) die Teilchenzahl berechnen, deren Summe ergibt gerade den Teilchenzahl-Graphen für N_{tot} wie etwa in Abbildung 7.1. Analog lässt sich mit der Formel (5.42) die Energie berechnen und damit ein Systemenergie-Graph für E_{tot} wie etwa in Abbildung 7.2 gewinnen.

Bei beiden Komponenten sieht man, wie die Teilchen in größeren Tiefen zu niederen Energieintervallen hin verschoben werden.

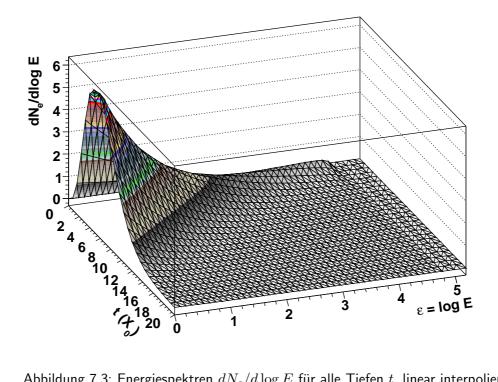


Abbildung 7.3: Energiespektren $dN_e/d\log E$ für alle Tiefen t, linear interpoliert

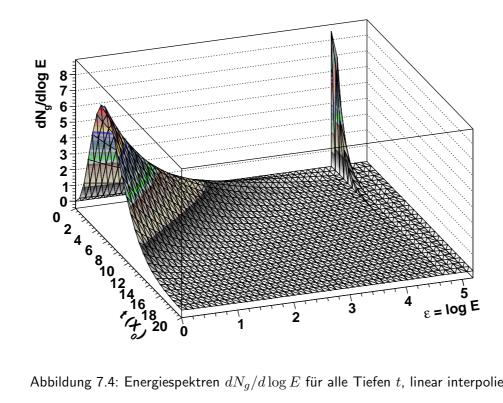
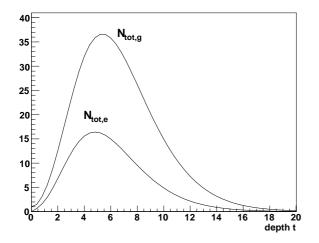


Abbildung 7.4: Energiespektren $dN_g/d\log E$ für alle Tiefen t, linear interpoliert



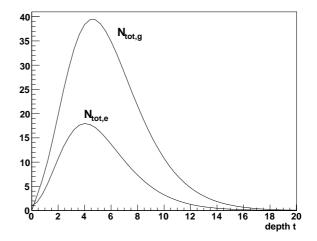


Abbildung 7.5: Primärenergie $E_{prim}=1000$; links: Photonschauer (dazu gehören die Abbildungen 7.6 und 7.7); rechts: Elektronschauer (dazu gehören die Abbildungen 7.8 und 7.9); die Graphen zeigen die Teilchenzahlen für Elektronen $N_{tot,e}$ und Photonen $N_{tot,q}$

7.2.3 Histogrammdarstellung

Für diesen Abschnitt wurde je ein Photon- und ein Elektronschauer mit $E_{prim} = 1000$, $E_{min} = 1$ und $\alpha_{ion} = 5$ gerechnet. Zunächst zum Photonenschauer: In Abbildung 7.5, linke Seite, sind die Teilchenzahlen für die Elektronenkomponente $N_{tot,e}$ und für die Photonenkomponente $N_{tot,g}$ berechnet. In Abbildung 7.6 und 7.7 sind die Teilchenzahlen zu diesem Schauer in Histogrammform dargestellt. Diese wurden aus den Trapezdarstellungen (ähnlich wie in Abbildung 7.3 und 7.4) berechnet, indem für jedes Energieintervall mit der Formel (5.41) die Teilchenzahl berechnet wurde.

Die Höhe einer Säule auf dem Intervall $[t_i, t_{i+1}] \times [\varepsilon_j, \varepsilon_{j+1}]$ entspricht der Anzahl der Teilchen in der Tiefe t_i , die im Energieintervall $[\varepsilon_j, \varepsilon_{j+1}]$ liegen. Wenn J das Intervall des Primärteilchens ist, so hat die Säule auf dem Intervall $[t_0, t_1] \times [\varepsilon_J, \varepsilon_{J+1}]$ für diese Teilchenart die Höhe "1", da dadurch gerade das eine Primärteilchen dargestellt wird. Im ersten Fall (Photonschauer) ist dies für die Photonenkomponente (Abbildung 7.7) der Fall, beim Elektronschauer für die Elektronenkomponente (Abbildung 7.8).

Interessant ist hier, dass der Primärimpuls beim Elektronschauer deutlich schneller abklingt (Abbildung 7.8) als beim Photonschauer (Abbildung 7.7). Dies liegt zum einen an der kürzeren Wechselwirkungslänge eines Elektrons. Andererseits verliert das Elektron durch Ionisation Energie, so dass der Primärimpuls zu niederen Energieintervallen hin verschoben wird. In der Terminologie des numerischen Verfahrens ausgedrückt folgt er dem Verlauf der Charakteristiken. Man kann dies in Abbildung 7.8 noch andeutungsweise erkennen: im zweiten Tiefenschritt wurde der einzelne Primärimpuls nach links verschoben und liegt zwischen zwei Energieintervallen. Entsprechend wird er dort von zwei Säulen (mit der ungefähren Höhe 0.2) dargestellt. Im nächsten Tiefenschritt ist der Primärimpuls schon fast im Energiespektrum aufgegangen.

Addiert man in den Histogrammen in den Abbildungen 7.6-7.9 für eine feste Tiefe t_i die Höhe der Säulen auf, so erhält man gerade den Wert $N_{tot}(t_i)$ im zugeordneten Graphen in Abbildung 7.5.

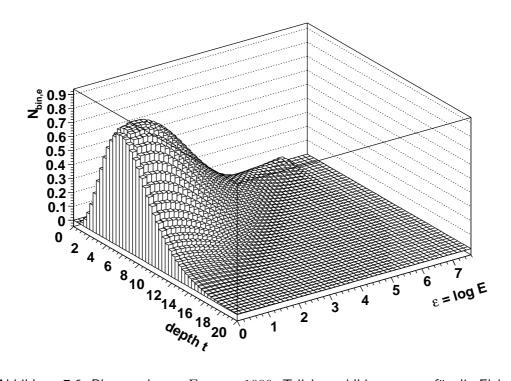


Abbildung 7.6: Photonschauer $E_{prim}=1000$; Teilchenzahlhistogramm für die Elektronenkomponente

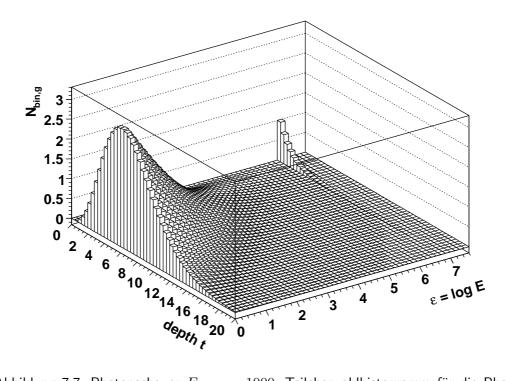


Abbildung 7.7: Photonschauer $E_{prim}=1000$; Teilchenzahlhistogramm für die Photonenkomponente

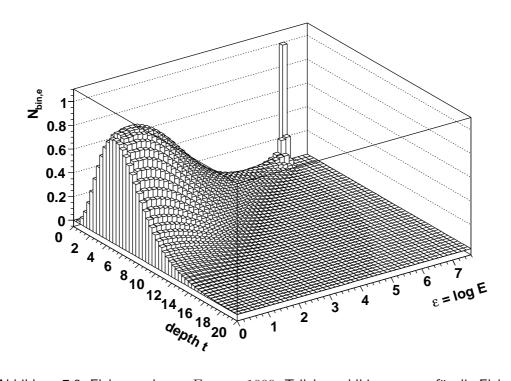


Abbildung 7.8: Elektronschauer $E_{prim}=1000$; Teilchenzahlhistogramm für die Elektronenkomponente

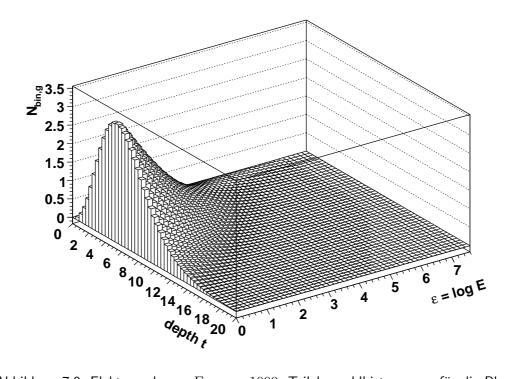


Abbildung 7.9: Elektronschauer $E_{prim}=1000$; Teilchenzahlhistogramm für die Photonenkomponente

7.3 Beispielrechnungen des numerischen Verfahrens für die elektromagnetische Kaskadengleichung

7.3.1 Rechenzeiten und relativer Fehler

Für die praktische Anwendung der numerischen Methode sind die erforderlichen Gitterweiten N_E und N_t bei vorgegebener Primärenergie von Interesse, die nötig sind, um eine gewünschte Genauigkeit der Lösung zu erreichen. Dies hat direkte Konsequenzen für die erforderliche Rechenzeit des numerischen Verfahrens: sie wächst quadratisch mit N_E (da N_E die Dimension der Systemmatrizen ist, siehe Abschnitte 5.8 und 5.9) und linear mit N_t (Anzahl der numerischen Iterationsschritte). Die Genauigkeit lässt sich nicht mit der exakten Lösung der Kaskadengleichung vergleichen, da diese nicht bekannt ist. Deshalb wurde bei der Gewinnung einer Vergleichslösung empirisch vorgegangen¹: Mit mehreren Testrechnungen wurden die Gitterweiten ermittelt, bei denen die numerischen Lösungen sich praktisch nicht mehr änderten, d.h. die Teilchenzahlen sich erst ab der fünften oder sechsten signifikanten Stelle unterschieden. So wurde für die folgenden Vergleiche die Gitterweite in der Energie mit $N_E = 500$ und in der Tiefe mit $N_t = 10000$ gewählt. Die Rechenzeit bei dieser Gitterweite beträgt etwa 45 Minuten.

Diese Referenzschauer wurden mit Rechnungen mit den Gitterweiten $N_E = 50$, 100, 150, 200 und $N_t = 200$, 400, 800, 1200, 1600 verglichen. Es wurden Schauer mit den Primärenergien $E_{prim} = 10^8$, 10^{11} , 10^{14} MeV gerechnet.

Als Maß für die Genauigkeit benutzen wir den relativen Fehler der Teilchenzahl $|N_{tot,rel.err.}|$ und der Gesamtenergie $|E_{tot,rel.err.}|$. In den folgenden Tabellen ist jeweils das Maximum dieses Fehlers eingetragen. Bei geringen Teilchenzahlen und Energien, etwa zu Beginn oder zum Ende des Schauers, werden die relativen Fehler sehr groß, denn es wird ja immer durch die Referenzgröße geteilt: $N_{tot,rel.err.} = \frac{N_{tot,ref}-N_{tot}}{N_{tot,ref}}$ und $E_{tot,rel.err.} = \frac{E_{tot,ref}-E_{tot}}{E_{tot,ref}}$. Für die Anwendung sind aber nur die Bereiche um das Schauermaximum t_{max} (bzw. X_{max}) herum relevant. Deshalb wurde der Bereich, in dem der maximale Fehler bestimmt wurde, auf ein Intervall $[t_1,t_2]$ eingeschränkt, für das gilt: $t_1 < t_{max} < t_2$, $N_{tot}(t) > \frac{N_{tot,max}}{2}$ für $t_1 < t < t_2$ und sonst $N_{tot}(t) \le \frac{N_{tot,max}}{2}$. Dies ist der Bereich, in dem die Teilchenzahl über der Hälfte der maximalen Teilchenzahl liegt.

Für die Primärenergie $E_{prim}=10^8$ MeV ergibt sich für Elektronen der Bereich $t\in[9.10,20.08]$, für Photonen $t\in[9.75,21.06]$. Für die Primärenergie $E_{prim}=10^{11}$ MeV ergibt sich für Elektronen der Bereich $t\in[14.82,28.32]$, für Photonen $t\in[15.50,29.27]$. Für die Primärenergie $E_{prim}=10^{14}$ MeV ergibt sich für Elektronen der Bereich $t\in[20.73,36.35]$, für Photonen $t\in[21.43,37.28]$.

Die Ergebnisse sind in den Tabellen 7.1, 7.2 und 7.3 zusammengestellt. Es wurde je ein Photonschauer gerechnet, in Tabelle 7.1 wurde die Primärenergie $E_{prim}=10^8~{\rm MeV}$ gewählt, in Tabelle 7.2 die Primärenergie $E_{prim}=10^{11}~{\rm MeV}$ und in Tabelle 7.3 die Primärenergie $E_{prim}=10^{14}~{\rm MeV}$. Die untere Energieschwelle betrug überall $E_{min}=1~{\rm MeV}$, Ionisationsverluste $\alpha_{ion}=80~{\rm MeV}/X_0$.

 $^{^1{\}rm In}$ den Abschnitten 7.4 und 7.5 wird mit unabhängigen Lösungen — der Monte-Carlo-Methode und der analytischen Approximation — verglichen.

Es wurden systematisch mehrere Gitterweiten untersucht. Die Anzahl der Intervalle in der Energievariablen (genauer der logarithmisch transformierten Energie ε) ist in der Spalte N_E eingetragen, die Anzahl der Tiefenschritte in der Spalte N_t .

Für jede Rechnung wurden die maximalen relativen Fehler der Teilchenzahlen $|N_{tot,rel.err.}|$ und der Teilchenenergien $|E_{tot,rel.err.}|$ innerhalb der oben beschriebenen Intervalle für t berechnet. Dabei wurde unterschieden zwischen Elektronen und Photonen. In der dritten Spalte ("Komp.") bezeichnet ein "e", dass in dieser Zeile diese Werte der Elektronen (plus Positronen) stehen, in der Zeile mit " γ " die Werte für Photonen.

In den letzten drei Spalten (unter "CPU time") sind die benötigten Rechenzeiten in Sekunden eingetragen. In der Spalte "total" steht die gesamte benötigte Zeit, die sich im Wesentlichen aus der Summe der beiden nachfolgenden Spalten ergibt. In der Spalte "table" steht die Rechenzeit, die benötigt wird, um die Systemmatrizen zu berechnen. Dieser Aufwand steigt quadratisch mit N_E , da N_E im Wesentlichen die Dimension dieser Matrizen bestimmt. In der Spalte "run" steht die Rechenzeit, die für die Iterationsschritte des numerischen DGL-Lösungsverfahrens (hier also des Runge-Kutta-Verfahrens) benötigt wird. Der Aufwand wächst linear mit N_t , der Anzahl dieser Schritte.

Auffallend ist, dass die relativen Fehler für die Elektronenkomponente — insbesondere bei groben Gitterweiten — deutlich größer ausfallen, als für die Photonenkomponente. Dies liegt daran, dass die DGL für Elektronen durch den Ionisationsterm und den Term zur Behandlung der Singularität eine echte partielle DGL wird und damit schwieriger zu lösen ist. Die DGL für Photonen dagegen ist eine gewöhnliche DGL.

Eine essentielle Vorgabe an das numerische Verfahren ist eine ausreichende Genauigkeit vor allem in den Teilchenzahlen $N_{tot,rel.err.}$ für Elektronen und Photonen. Ein relativer Fehler, der für beide Komponenten unter 1 % liegt, ist ein sehr guter Wert. Um eine schnelle Orientierung in den Tabellen zu ermöglichen, wurden die Gitterweiten, bei denen der relative Fehler der Teilchenzahlen $N_{tot,rel.err.}$ für Elektronen und Photonen unter 1 % liegt, mit einem Stern (*) markiert.

In den Abbildungen 7.10, 7.11 und 7.12 ist jeweils das Schauerprofil der Referenzschauer zu den Tabellen 7.1, 7.2 und 7.3 dargestellt.

Tabelle 7.1: Fehlertabelle und Rechenzeiten zur Primärenergie $E_{prim,g}=10^8~{
m MeV}$

7.7	A 7		max.	max.	CPU time (sec.)		sec.)
N_E	N_t	Komp.	$ N_{tot,rel.err.} $	$ E_{tot,rel.err.} $	total	table	run
50	200	е	0.540211	0.017273	1.15	0.48	0.67
		γ	0.005695	0.003039			
50	400	e	0.108557	0.005941	1.92	0.51	1.41
		γ	0.001771	0.002913			
50	800	e	0.030381	0.004098	3.41	0.52	2.88
		γ	0.002991	0.003090			
50	1200	e	0.014179	0.003746	4.96	0.54	4.41
		γ	0.003593	0.003134			
* 50	1600	e	0.009849	0.003649	6.53	0.57	5.96
		γ	0.003774	0.003138			
100	200	e	0.389914	0.008637	4.44	1.87	2.57
		γ	0.008840	0.000843			
100	400	e	0.092985	0.001728	7.26	1.98	5.28
		γ	0.004892	0.000423			
100	800	e	0.018565	0.000332	12.94	2.11	10.82
		γ	0.001290	0.000146			
* 100	1200	e	0.007613	0.000131	18.75	2.29	16.46
		γ	0.000240	0.000076			
* 100	1600	e	0.004398	0.000066	24.38	2.23	22.15
		γ	0.000273	0.000050			
150	200	е	0.409058	0.007811	9.49	4.17	5.30
		γ	0.010563	0.001043			
150	400	е	0.086893	0.001423	15.39	4.47	10.92
		γ	0.006026	0.000537			
150	800	е	0.015258	0.000184	27.23	4.77	22.46
150	1000	γ	0.001975	0.000230	20.00	4.00	24.02
* 150	1200	е	0.006070	0.000022	39.02	4.98	34.03
. 150	1600	γ	0.000812	0.000151	FO 00	4.00	45.00
* 150	1600	e	0.003154	0.000030	50.92	4.99	45.93
900	200	γ	0.000348	0.000121	16 56	7 5 9	0.02
200	200	e	0.344357	0.006533	16.56	7.53	9.03
200	400	γ	0.013088	0.001044	26.70	2.06	18.63
200	400	e	0.083604	0.001437	26.70	8.06	10.03
200	800	γ	0.006429 0.014049	0.000442 0.000277	46.74	8.52	38.21
200	300	e	0.014049 0.002201	0.000277 0.000123	40.74	0.04	30.41
* 200	1200	$\frac{\gamma}{\mathrm{e}}$	0.002201 0.005033	0.000123 0.000129	66.92	8.86	58.04
↑ 200	1200		0.000033	0.000129 0.000040	00.32	0.00	00.04
* 200	1600	$\frac{\gamma}{\mathrm{e}}$	0.000970	0.000040 0.000087	87.00	8.92	78.08
↑ 200	1000		0.002027	0.000037	01.00	0.92	10.00
		γ	0.000419	0.000001			

Tabelle 7.2: Fehlertabelle und Rechenzeiten zur Primärenergie $E_{prim,g}=10^{11}~{\rm MeV}$

N/	N.T.		max.	max.	CPU time (sec.)		
N_E	N_t	Komp.	$ N_{tot,rel.err.} $	$ E_{tot,rel.err.} $	total	table	run
50	200	е	0.752841	0.020060	1.22	0.50	0.71
		γ	0.020195	0.002890			
50	400	e	0.203337	0.006269	1.98	0.52	1.45
		γ	0.005140	0.002020			
50	800	e	0.051321	0.003190	3.47	0.54	2.92
		γ	0.004258	0.001990			
50	1200	e	0.022837	0.002654	5.05	0.57	4.48
		γ	0.005125	0.002025			
50	1600	e	0.015566	0.002476	6.59	0.56	6.03
		γ	0.004857	0.002013			
100	200	е	0.642011	0.012473	4.61	1.96	2.64
		γ	0.006395	0.000382			
100	400	e	0.187530	0.003536	7.44	2.06	5.36
		γ	0.003597	0.000102			
100	800	e	0.035775	0.000905	13.17	2.16	11.01
		γ	0.000933	0.000141			
100	1200	e	0.014059	0.000531	18.76	2.23	16.52
		γ	0.000166	0.000211			
* 100	1600	e	0.008327	0.000434	24.62	2.24	22.37
		γ	0.000682	0.000240			
150	200	e	0.615981	0.011938	9.89	4.43	5.45
		γ	0.009736	0.000292			
150	400	e	0.145378	0.003607	15.79	4.65	11.14
		γ	0.006026	0.000698			
150	800	e	0.030737	0.001711	27.53	4.84	22.68
		γ	0.002163	0.001005			
150	1200	e	0.011962	0.001434	39.18	4.98	34.19
		γ	0.001178	0.001094			
* 150	1600	e	0.006921	0.001359	51.24	5.02	46.21
		γ	0.000788	0.001129			
200	200	e	0.602279	0.010003	17.21	7.95	9.25
		γ	0.011111	0.000918			
200	400	e	0.137433	0.002061	27.28	8.33	18.94
		γ	0.007705	0.000492			
200	800	e	0.026347	0.000412	47.40	8.72	38.67
	4000	γ	0.002812	0.000156	a= : -		
200	1200	e	0.010004	0.000175	67.13	8.92	58.19
		γ	0.001258	0.000062			
* 200	1600	е	0.005012	0.000105	87.68	9.02	78.66
		γ	0.000602	0.000024			

Tabelle 7.3: Fehlertabelle und Rechenzeiten zur Primärenergie $E_{prim,g}=10^{14}~{\rm MeV}$

A7 A7			max.	max.	CPU time (sec.)		
N_E	N_t	Komp.	$ N_{tot,rel.err.} $	$ E_{tot,rel.err.} $	total	table	run
50	200	е	1.166579	0.041629	1.21	0.52	0.68
		γ	0.055567	0.016626			
50	400	e	0.286622	0.020995	2.02	0.54	1.48
		γ	0.023700	0.014197			
50	800	e	0.083293	0.016190	3.49	0.55	2.94
		γ	0.016641	0.013806			
50	1200	e	0.044064	0.015205	5.04	0.57	4.46
		γ	0.013518	0.013632			
50	1600	e	0.030859	0.014957	6.57	0.55	6.02
		γ	0.014082	0.013674			
100	200	е	0.902857	0.018990	4.73	2.04	2.68
		γ	0.005472	0.001771			
100	400	e	0.236097	0.006274	7.59	2.13	5.45
		γ	0.004730	0.001777			
100	800	e	0.059100	0.003216	13.24	2.20	11.03
		γ	0.001487	0.002023			
100	1200	e	0.024913	0.002657	18.88	2.26	16.61
		γ	0.001779	0.002088			
100	1600	e	0.015012	0.002486	24.61	2.26	22.34
		γ	0.002348	0.002120			
150	200	e	0.870875	0.015097	10.13	4.58	5.54
		γ	0.007501	0.000092			
150	400	e	0.219546	0.003969	16.05	4.76	11.27
		γ	0.006485	0.000199			
150	800	e	0.049505	0.001415	27.84	4.93	22.90
		γ	0.002118	0.000501			
150	1200	e	0.019789	0.000987	39.36	5.02	34.33
		γ	0.000889	0.000589			
150	1600	e	0.010622	0.000862	51.41	5.06	46.34
		γ	0.000372	0.000629			
200	200	e	0.851374	0.013531	17.61	8.19	9.41
		γ	0.009294	0.000536			
200	400	e	0.209290	0.003167	27.70	8.53	19.16
		γ	0.008314	0.000277			
200	800	e	0.044042	0.000857	47.82	8.84	38.96
	4000	γ	0.003197	0.000058	a=		.
200	1200	e	0.016718	0.000499	67.75	9.06	58.67
		γ	0.001364	0.000161			
* 200	1600	е	0.008584	0.000391	88.20	9.08	79.11
		γ	0.000571	0.000204			

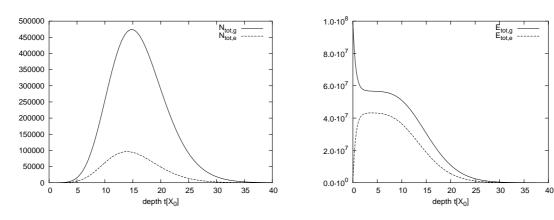


Abbildung 7.10: $E_{prim,g}=10^8~{
m MeV}$ (Photonschauer); links: Teilchenzahl N_{tot} ; rechts: Gesamtenergie E_{tot} (MeV) der Teilchen oberhalb der Energieschwelle

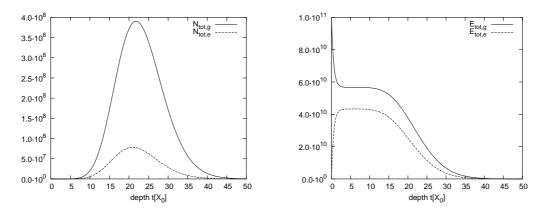


Abbildung 7.11: $E_{prim,g}=10^{11}$ MeV; links: Teilchenzahl N_{tot} ; rechts: Gesamtenergie E_{tot}

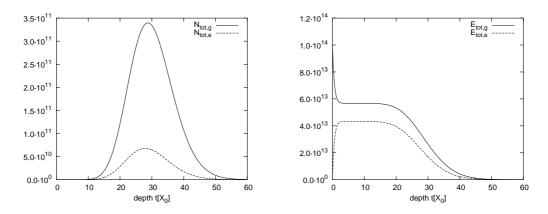


Abbildung 7.12: $E_{prim,g}=10^{14}$ MeV; links: Teilchenzahl N_{tot} ; rechts: Gesamtenergie E_{tot}

7.3.2 Vorteil des Trapezansatzes

In der folgenden Beispielrechnung werden wir eine Stärke des Trapezansatzes demonstrieren. Es wurde ein Photonschauer mit der Primärenergie $E_{prim,g} = 100$ und den Gitterweiten $N_E = 10$ und $N_t = 50$ gerechnet. Als Referenzlösung wurde derselbe Schauer mit den Gitterweiten $N_E = 100$ und $N_t = 1000$ gerechnet, diesen wollen wir hier als die richtige Lösung annehmen (eine feinere Gittereinteilung erbrachte praktisch keine Änderung der numerischen Lösung mehr) und haben die relativen Fehler der Teilchenzahl N_{tot} und der Gesamtenergie E_{tot} in Abbildung 7.13 berechnet. Trotz der extrem groben Gitterweiten (insbesondere in der ε -Richtung) liegt der relative Fehler überall deutlich unter 1%.

Es wurde $\alpha_{ion} = 0$ gesetzt, so dass nur noch ein Ionisationsterm zum Tragen kommt, der von der Umrechnung der Singularität herrührt. In Verbindung mit dem kleinen

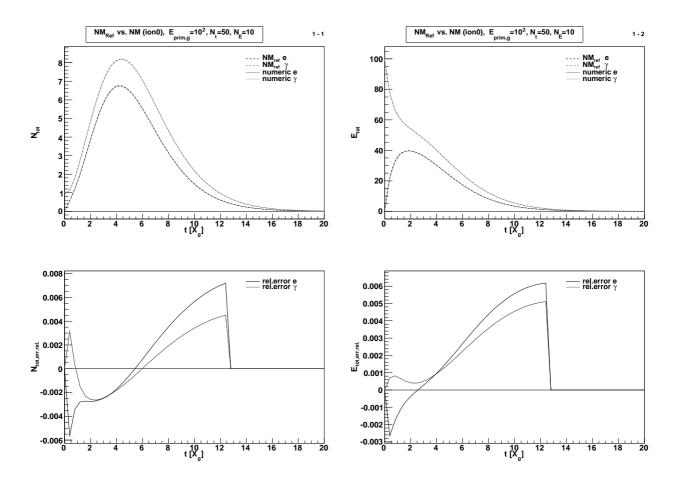


Abbildung 7.13: Schauerentwicklung N_{tot} (linke Seite) und E_{tot} (rechte Seite) eines Photonschauers mit $E_{prim,g}=100$ mit extrem grober Gitterweite $N_E=10$, $N_t=50$ (Referenzschauer NM_{ref} mit $N_E=100$, $N_t=1000$). Bei beiden ist der relative Fehler kleiner als 0,8 % (untere Grafiken).

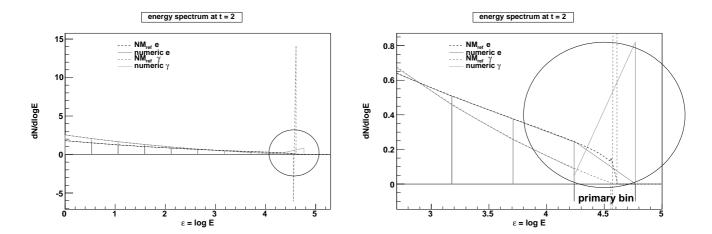


Abbildung 7.14: Das Energiespektrum (in Trapezform) zu Abbildung 7.13 bei t=2; der Bereich um das Intervall des Primärteilchens (im Kreis links) ist rechts vergrößert dargestellt.

Energiebereich verhält sich die DGL unter solchen Bedingungen generell gutmütig. Unter diesen Bedingungen lässt sich jedoch sehr gut eine besondere Stärke des Trapezansatzes demonstrieren. In der Abbildung 7.14 ist das Energiespektrum für die Tiefe t=2 dargestellt. (Für die Rechnung mit den groben Gitterweiten wurden bis dahin fünf numerische Iterationsschritte durchgeführt.) In der rechten Grafik ist der Bereich um das Energieintervall des Primärteilchens vergrößert dargestellt. Es hat bis dahin schon einen großen Teil seiner Energie verloren, dominiert aber noch als deutlicher Impuls das Energiespektrum. Hier sieht man, wie in diesem Intervall das Trapez so berechnet ist, dass Teilchenzahl und Energie des Primärteilchens korrekt dargestellt werden. Beim Referenzschauer sieht man deutlich den Primärimpuls bei etwa $\varepsilon \approx 4.6$ lokalisiert, links daran anschließend ist der Fluss eigentlich eine kontinuierliche Funktion. Das "große" Trapez (der groben Gitterweite, von etwa $\varepsilon \approx 4.23$ bis 4.78, "primary bin") muss möglichst gut gleichzeitig diesen Primärimpuls und dieses Stück kontinuierlichen Flusses darstellen. Dies macht es auf Kosten der Stetigkeit, kann dafür aber die durchschnittliche Teilchenzahl und Energie innerhalb dieses Intervalls korrekt repräsentieren.

In dem links daran anschließenden Intervall (von etwa $\varepsilon \approx 3.71$ bis 4.23) liegt das Trapez der groben Gitterweite (durchgezogene Linien) aber wieder fast perfekt auf der Referenzlösung (gestrichelte Linien). Und in allen weiteren Intervallen, in denen der Fluss stetig ist, auch. Die Lösung auf dem groben Gitter ist also fast stetig (die Trapeze schließen nicht perfekt aneinander an, aber die Abweichungen sind so klein, dass sie in der Grafik nicht erkennbar sind).

Dieses Verhalten ist nur dadurch möglich, dass wir dem Trapezansatz auch Unstetigkeiten "erlauben". Der Erfolg dieser Strategie zeigt sich darin, dass in den Intervallen, in denen die Lösung stetig ist, das numerische Verfahren dies auch bei groben Gitterweiten, d.h. großen Trapezen, reproduziert.

7.3.3 Grenzen des numerischen Verfahrens

Wenn die Anzahl der Tiefenschritte zu klein ist, so beginnen die Lösungen in den niedrigsten Energieintervallen, stark von der Referenzlösung abzuweichen. Die Erhöhung der Anzahl der Energieintervalle N_E bringt in diesem Fall keine Verbesserung. Dieses Verhalten rührt vom starken Einfluss der Ionisationsenergieverluste besonders in den niedrigen Energieintervallen her. Die Charakteristiken sind dort am stärksten gekrümmt. Das numerische Verfahren muss den Charakteristiken folgen. Dies wird umso schwieriger, je stärker die Charakteristiken gekrümmt sind.

Dieses Verhalten hat Ähnlichkeiten zu einem Eulerverfahren mit zu großen Schrittweiten bei einer DGL der Art $y' = e^{-x}$, d.h. einer abfallenden Exponentialfunktion. Wird die Schrittweite zu groß gewählt, kommt es zu einem "Überschießen" der numerischen Lösung in den negativen Bereich.

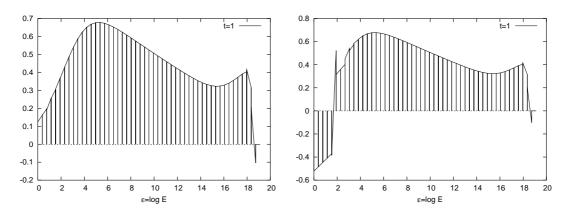


Abbildung 7.15: $E_{prim}=10^8$ MeV; Energiespektren Φ_e^l (Trapezansatz) bei t=1, mit $N_E=50$; links: $N_t=1600$; rechts: $N_t=200$

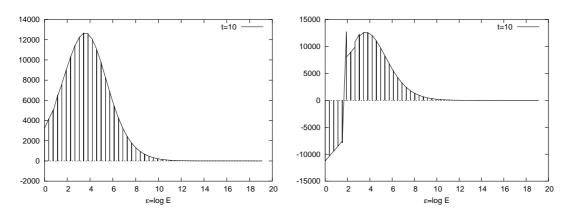


Abbildung 7.16: $E_{prim}=10^8$ MeV; Energiespektren Φ_e^l (Trapezansatz) bei t=10, mit $N_E=50$; links: $N_t=1600$; rechts: $N_t=200$

In den Abbildungen 7.15 und 7.16 sind Energiespektren eines extremen Beispiels gezeigt. Es handelt sich um zwei Photonschauer, die auch in Tabelle 7.1 ($E_{prim} = 10^8$ MeV) stehen. Auf der linken Seite sind Energiespektren des Schauers mit $N_t = 1600$ abgebildet. Die relativen Fehler sind bei dieser Gitterweite kleiner als 1 %. Auf der rechten Seite sind Energiespektren des Schauers mit $N_t = 200$ abgebildet. Diese Gitterweite ist offensichtlich zu groß. Der relative Fehler für die Elektronenanzahl $N_{tot,e}$ wird bei dieser Gitterweite laut Tabelle 7.1 größer als 50 %.

7.4 Vergleich mit Monte-Carlo-Simulationen

Der Vergleich mit Monte-Carlo-Simulationen ist am aussagekräftigsten, da die Monte-Carlo-Methode eine beliebig genaue Lösung der DGL liefert, vorausgesetzt, es kann eine hinreichend große Anzahl von Einzelschauern simuliert werden. Die Genauigkeit in Abhängigkeit von der Anzahl der Einzelschauer kann über den statistischen Fehler (4.2), Seite 59, ermittelt werden.

7.4.1 Fluktuationen der Monte-Carlo-Simulation

Wir demonstrieren zunächst in Abbildung 7.17 die starken Fluktuationen an einzelnen Photon-Schauern für $E_{prim}=100000$ MeV, $E_{min}=1$ MeV und die zwei Werte $\alpha_{ion}=0$ MeV und $\alpha_{ion}=80$ MeV. Hier wird auch der Effekt des Ionisationsparameters α_{ion} sichtbar: Bei $\alpha_{ion}=80$ MeV werden die Schauerentwicklungen "gedämpft", es entstehen weniger Teilchen und das Schauermaximum liegt in einer kleineren Tiefe. Außerdem ist die maximale Teilchenzahl der Elektronen deutlich kleiner im Vergleich zur maximalen Teilchenzahl der Photonen ($\frac{1}{4}$ bis $\frac{1}{5}$ im Gegensatz zu einem Wert von etwa $\frac{5}{6}$ ohne Ionisationsverluste), da die Elektronen durch Ionisationsverluste kontinuierlich Energie verlieren und deshalb früher unter die Energieschwelle E_{min} fallen. Der Wert $\alpha_{ion}=80$ MeV entspricht dem realistischen Wert für Ionisationsverluste der Elektronen, wenn man die Einheit der Energie in MeV misst, denn der Energieverlust beträgt dann $\alpha_{ion}=80$ MeV pro Strahlungslänge X_0 .

Auch der Wert $\alpha_{ion} = 0$ hat einen gewissen Realitätsbezug: Nimmt man die Einheit GeV für die Energie an, so beträgt der Energieverlust der Elektronen $\alpha_{ion} = 0.08$ GeV pro Strahlungslänge X_0 . Der Energieverlust ist also bei $E_{min} = 1$ GeV praktisch vernachlässigbar, so dass $\alpha_{ion} = 0$ eine gute Näherung ist.

Weiter erkennt man in Abbildung 7.17 beim Vergleich des linken mit dem rechten Schauer, dass bei größeren Teilchenzahlen die Fluktuationen geringer werden, d.h. die Teilchenzahlgraphen "glatter" werden. (Beim linken Schauer mit $\alpha_{ion}=0$ entstehen etwa 7-mal mehr Photonen im Schauermaximum und etwa 25-mal mehr Elektronen im Vergleich zum rechten Schauer mit $\alpha_{ion}=80~{\rm MeV.}$)

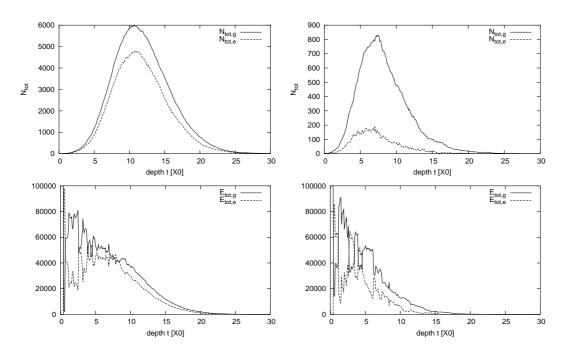


Abbildung 7.17: links: $\alpha_{ion} = 0$; rechts: $\alpha_{ion} = 80$; oben: N_{tot} ; unten: E_{tot} [MeV]

In den vier Grafiken in Abbildung 7.18 sind je 10 verschiedene Schauer zusammen gezeichnet, um die großen Unterschiede in den individuellen Schauerentwicklungen zu demonstrieren.

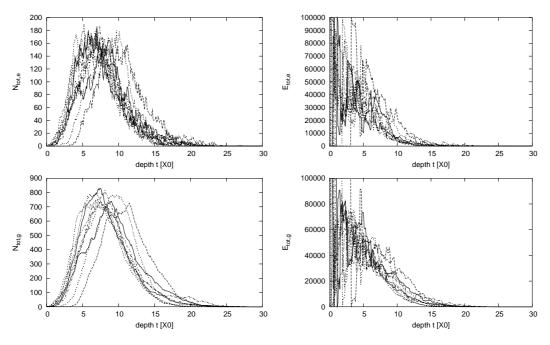


Abbildung 7.18: $\alpha_{ion}=80$; links: N_{tot} ; rechts: E_{tot} ; oben: Elektronen; unten: Photonen

7.4.2 Statistischer Fehler und Rechenzeit der Monte-Carlo-Simulation

Nun untersuchen wir, welche Anzahl an simulierten Schauern wir benötigen, um einen statistischen Fehler zu erhalten, der einen vernünftigen Vergleich mit der numerischen Methode erlaubt. Es zeigt sich, dass dies aufgrund der langen Rechenzeiten nur bei niedrigen Primärenergien E_{prim} möglich ist.

In Abbildung 7.19 sind für Photon-Schauer mit $E_{prim}=100000$ und $\alpha_{ion}=80$ die mittleren Teilchenzahlen für 10 bzw. 1000 Schauer (links) und 10000 Schauer (rechts) im Vergleich zur numerischen Lösung gezeichnet. Um die Grafik übersichtlich zu halten, wurden nur $N_t=40$ Tiefenebenen berechnet. Bei 10000 Schauern sind die Fehlerbalken graphisch gerade noch sichtbar. Bei 100000 Schauern sind die Fehlerbalken graphisch nicht mehr sichtbar.

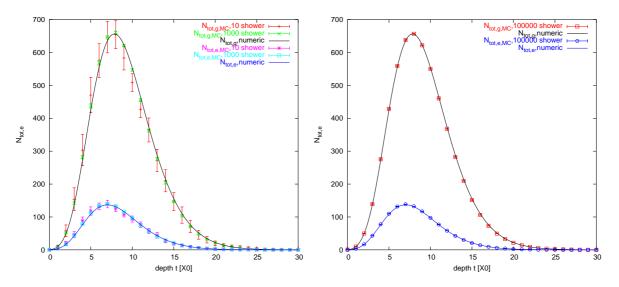


Abbildung 7.19: Photon-Schauer $E_{prim}=100000$, $\alpha_{ion}=80$, $N_t=40$; links: 10/1000 Schauer; rechts: 10000 Schauer

In der Tabelle 7.4 sind die absoluten und relativen Fehler für $N_{tot,g,MC}$ eingetragen (die Werte unterscheiden sich von den Werten der vorigen Grafik, da hier der realistische Wert $N_t = 300$ benutzt wurde). Insbesondere muss die Anzahl der Schauersimulationen um den Faktor 100 erhöht werden, um eine Verbesserung des statistischen Fehlers um den Faktor 10, also eine Nachkommastelle mehr, zu erreichen, was man der Formel des statistischen Fehlers (4.2) entnehmen kann.

Da wir die numerische Lösung mit einer Genauigkeit von unter einem Prozent haben wollen, müssen wir für einen Vergleich mit der Monte-Carlo-Methode mindestens 100000 Schauer simulieren. Wir hatten festgestellt (Abbildung 7.32), dass die maximale Teilchenzahl proportional mit der Primärenergie wächst: $E_{prim} \propto 9/10N_{tot,max}$.

Bei Monte-Carlo-Simulationen wächst die Rechenzeit direkt proportional mit der Teilchenzahl. Wenn wir die Primärenergie um mehrere Größenordnungen erhöhen wollen, so ist kein Vergleich mit Monte-Carlo-Simulationen mehr möglich.

# Schauer	$N_{tot,g}$	$N_{tot,g,err.abs.}$	$N_{tot,g,err.rel.}$	Rechenzeit (sec.)
10	692	38.03	0.0550	1.28
100	652	16.01	0.0246	14.52
1000	655	4.66	0.0071	155.08
10000	654	1.47	0.0022	1597.40
100000	655	0.46	0.0007	16927.19
1000000	655	0.15	0.0002	ca.62 h

Tabelle 7.4: Der statistische Fehler der Photonen-Teilchenzahl $N_{tot,g}$ bei der Berechnung mit Monte-Carlo-Simulation wird bei Erhöhung der Anzahl simulierter Schauer kleiner, die Rechnungen dauern länger.

7.4.3 Longitudinale Schauerentwicklung und Energiespektren der numerischen Methode im Vergleich zur Monte-Carlo-Simulation

Wir vergleichen nun für verschiedene Schauerparameter detailliert die longitudinale Schauerentwicklung und einige Energiespektren der numerischen Lösung mit der Monte-Carlo-Lösung.

Im Folgenden wurden zwei verschiedene Schauer gerechnet, je ein Photon- und ein Elektron-Schauer (Bezeichnung $E_{prim,g}$ bzw. $E_{prim,e}$) mit den Werten $E_{prim} = 100000$ MeV, $E_{min} = 1$ MeV, $\alpha_{ion} = 80$ MeV.

Für die numerische Lösung wurden verschiedene Intervalleinteilungen N_E , N_t genommen, die konkreten Werte sind den Tabellen 7.5 und 7.6 zu entnehmen. In den Grafiken in Abbildung 7.20 und 7.21 sind die numerischen Ergebnisse für die Gitterweite $N_E = 100$ und $N_t = 1200$ gezeichnet.

In der Monte-Carlo-Simulation wurden je 1 000 000 Schauer mit der Intervalleinteilung $N_E = 200$ und $N_t = 200$ gerechnet.

Die Grafiken sind folgendermaßen sortiert: Je zwei übereinanderstehende Grafiken gehören paarweise zusammen (in der unteren Grafik ist immer der relative Fehler zwischen den in der oberen Grafik gezeichneten Größen gezeichnet, die numerische Lösung hat das Kürzel NM, die Monte-Carlo-Lösung MC), ein Paar ist jeweils mit einer doppelten Nummer der Art "a - b" numeriert. Dabei bedeutet "a" die Art des Schauers: a=1 ist der Photonschauer, a=2 der Elektronschauer.

"b" bezeichnet die Art der Grafik: Die Grafiken mit $\underline{b=1}$ zeigen N_{tot} in der oberen Grafik und den relativen Fehler zwischen den beiden Lösungen in der unteren Grafik; die Grafiken mit $\underline{b=2}$ zeigen dasselbe für E_{tot} . Die relativen Fehler für N_{tot} und E_{tot} sind jeweils nur bis etwa $3 \cdot X_{max}$ gezeichnet, weil der Schauer bis dahin zum großen Teil schon abgeklungen ist und die relativen Fehler deshalb riesig werden, obwohl die absoluten Fluktuationen winzig sind. Der relative Fehler würde in diesem Bereich keine sinnvolle Aussage über die Genauigkeit des numerischen Verfahrens liefern, sondern nur die Fluktuationen der Monte-Carlo-Methode widerspiegeln, die bei großen Tiefen aufgrund der geringen Teilchenzahlen immer größer werden.

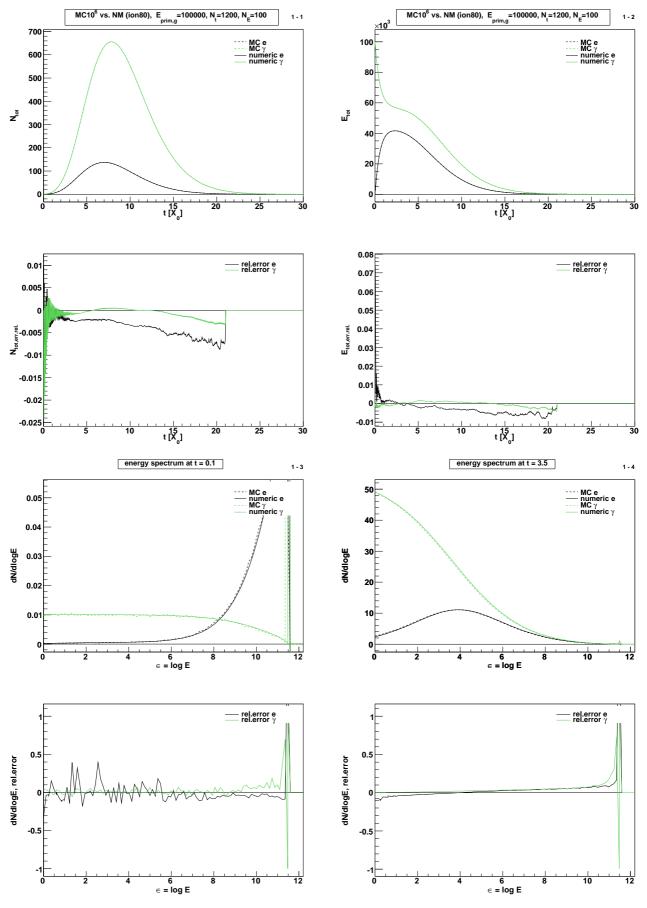
In den weiteren Grafiken sind die Energiespektren bei einzelnen Tiefen gezeichnet:

für $\underline{b=3}$ ist das Ergebnis in der ersten Tiefenebene des Monte-Carlo-Verfahrens gezeichnet.

Die Grafiken mit <u>b=5</u> zeigen das Energiespektrum an der ungefähren Position des Schauermaximums X_{max} , die Grafiken mit <u>b=4</u> und <u>b=6</u> sind relativ dazu positioniert und sind Energiespektren bei etwa $\frac{1}{2}X_{max}$ und $2 \cdot X_{max}$.

Die Grafik "1-1" beispielsweise zeigt gemäß diesem Schema die Teilchenzahlen N_{tot} beim Photonschauer; die Grafik "2-5" zeigt die Energiespektren im Schauermaximum bei einem Elektronschauer.

In den Energiespektren sieht man sehr deutlich, dass die numerische Lösung in den niedrigen Energieintervallen die größten Abweichungen von der Monte-Carlo-Methode hat. In diesem Bereich ist der Energieverlust durch Ionisation am größten, der Ionisationsterm in der DGL kommt stärker zum tragen und die Gleichungen sind in diesem Bereich am schwierigsten zu lösen.



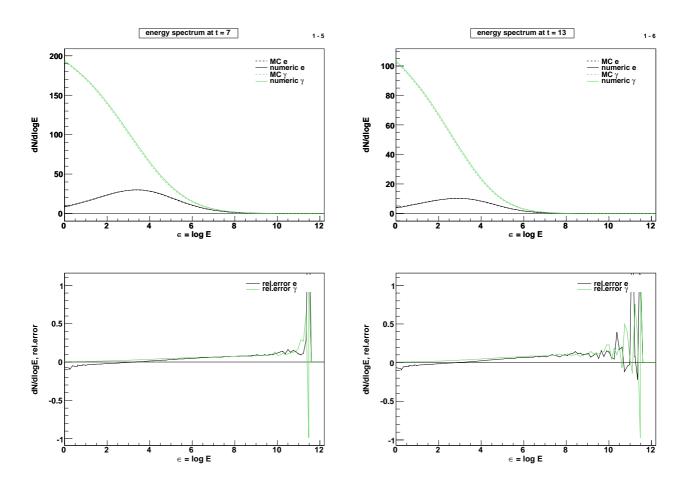
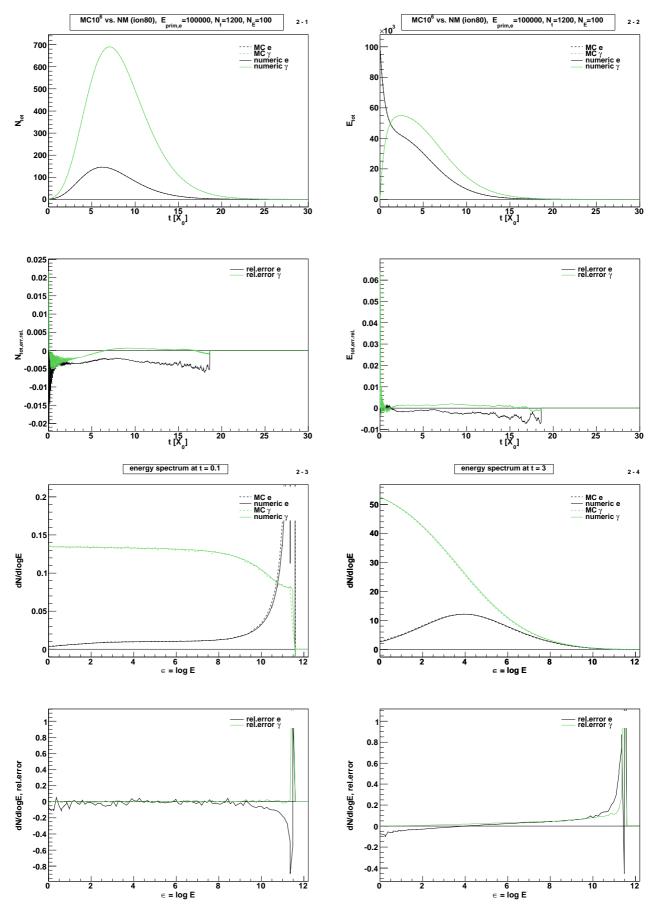


Abbildung 7.20: Grafiken 1-1 bis 1-6: Photon-Schauer ($E_{prim}=10^5$ MeV, $E_{min}=1$ MeV, $\alpha_{ion}=80$ MeV) zu den Gitterweiten $N_E=100$, $N_t=1200$

Tabelle 7.5: Fehlertabelle und Rechenzeiten zu Abbildung 7.20 (Photonschauer) mit weiteren Gitterweiten N_E , N_t

N_E	N_t	TZ.	max.	max.	CPU	J time (sec.)
IVE	T t	Komp.	$ N_{tot,rel.err.} $	$ E_{tot,rel.err.} $	total	table	run
100	300	e	0.104064	0.012534	5.68	1.86	3.81
		γ	0.005866	0.002962			
100	600	e	0.019237	0.050126	9.76	1.95	7.81
		γ	0.001832	0.003894			
100	1200	e	0.004976	0.073587	18.41	2.21	16.19
		γ	0.001169	0.004176			
200	300	e	0.082311	0.011136	20.40	7.19	13.20
		γ	0.007142	0.002713			
200	600	e	0.014761	0.050126	35.43	7.92	27.50
		γ	0.002300	0.003752			
200	1200	e	0.003516	0.073587	65.55	8.52	57.02
		γ	0.000810	0.004073			



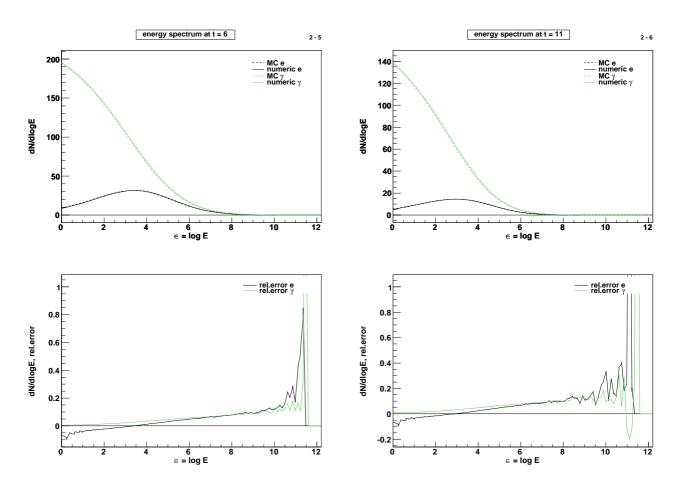


Abbildung 7.21: Grafiken 2-1 bis 2-6: Elektron-Schauer ($E_{prim}=10^5$ MeV, $E_{min}=1$ MeV, $\alpha_{ion}=80$ MeV) zu den Gitterweiten $N_E=100$, $N_t=1200$

Tabelle 7.6: Fehlertabelle und Rechenzeiten zu Abbildung 7.21 (Elektronschauer) mit weiteren Gitterweiten N_E , N_t

N_E	N_t	TZ.	max.	max.	CPU	J time (sec.)
IVE:	T t	Komp.	$ N_{tot,rel.err.} $	$ E_{tot,rel.err.} $	total	table	run
100	300	e	0.102549	0.012243	5.48	1.74	3.74
		γ	0.006759	0.003567			
100	600	e	0.017766	0.007925	9.75	1.94	7.80
		γ	0.002333	0.040926			
100	1200	e	0.003615	0.007266	18.22	2.11	16.11
		γ	0.001923	0.064172			
200	300	e	0.080734	0.010485	20.45	7.21	13.24
		γ	0.008279	0.003560			
200	600	e	0.013206	0.007336	35.41	7.89	27.52
		γ	0.003026	0.040928			
200	1200	e	0.002921	0.006894	65.79	8.61	57.18
		γ	0.001770	0.064173			

7.5 Vergleich mit der analytischen Approximation A und B

7.5.1 Vergleich mit Approximation A

Wir stellen nun die analytische Approximation der numerischen Lösung gegenüber. Dafür wurden Testrechnungen mit $E_{prim}=10^2,10^5,10^8,10^{11},10^{14},10^{20}$ (MeV) mit $E_{min}=1$ (MeV) durchgeführt. Die analytische Approximation liefert einen zu hohen Photonenfluss und einen zu niedrigen Elektronenfluss (gegenüber der numerischen Lösung). Für niedrige Primärenergien sind die Abweichungen größer und nähern sich dann der numerischen Lösung mit wachsender Primärenergie an. Dieses Verhalten ist genau wie erwartet, da es eben nur eine Approximation ist und konzeptionell bei niedrigen Tiefen t schlechter ist, in denen sich bei niedrigen Primärenergien die Schauerentwicklung abspielt. Die überraschend gute Übereinstimmung des Photonenflusses bei Elektronschauern ist eher dem Zufall zuzuschreiben (und geht zu Lasten des Elektronenflusses.)

In den ersten beiden Grafiken (Abbildung 7.22 mit $E_{prim} = 100 \text{ MeV}$) ist zusätzlich die Monte-Carlo-Lösung eingezeichnet, die perfekt mit der numerischen Lösung übereinstimmt. Bei höheren Primärenergien war — wegen der langen Rechenzeiten — kein Vergleich mit der Monte-Carlo-Rechnung möglich.

Auf den dann folgenden zwei Seiten sind die Grafiken mit der Gegenüberstellung von analytischer Approximation A und numerischer Lösung abgedruckt (Abbildung 7.23 und 7.24). Die zu größeren Energien hin besser werdende Übereinstimmung bestätigt die Korrektheit der numerischen Lösung. Andererseit zeigt sie, dass auch die analytisch approximative Lösung eine gute Näherung ist, die sich ohne größeren Aufwand nicht ohne Weiteres verbessern lässt, wie wir im nächsten Abschnitt 7.5.2 sehen werden.

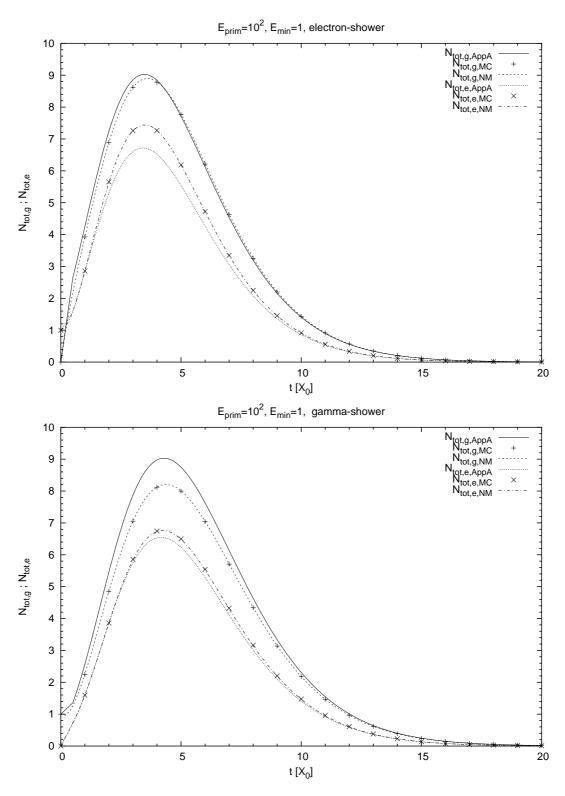


Abbildung 7.22: Vergleich analytische Approximation A ($\alpha_{ion}=0$), Monte-Carlo-Lösung (MC) und numerische Lösung (NM) 145

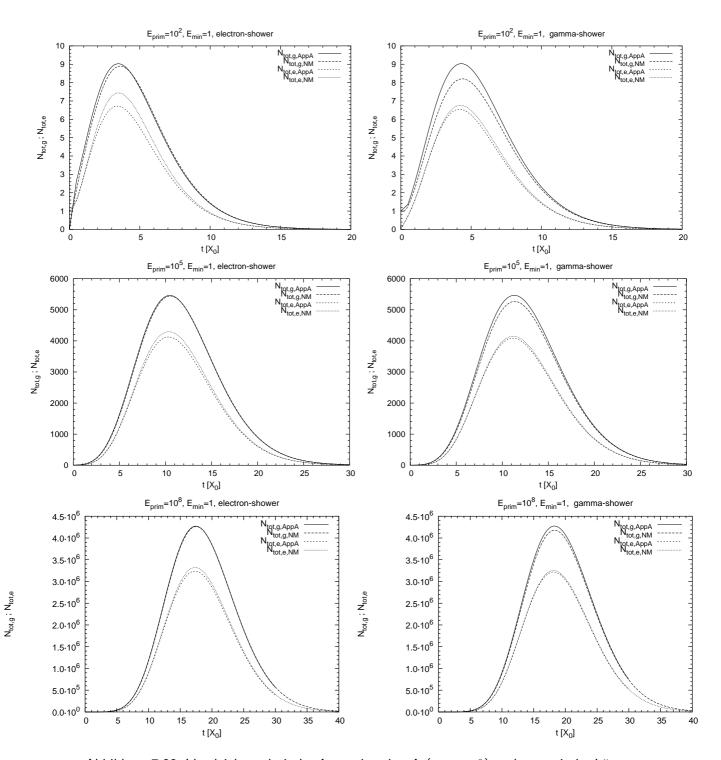


Abbildung 7.23: Vergleich analytische Approximation A ($lpha_{ion}=0$) und numerische Lösung

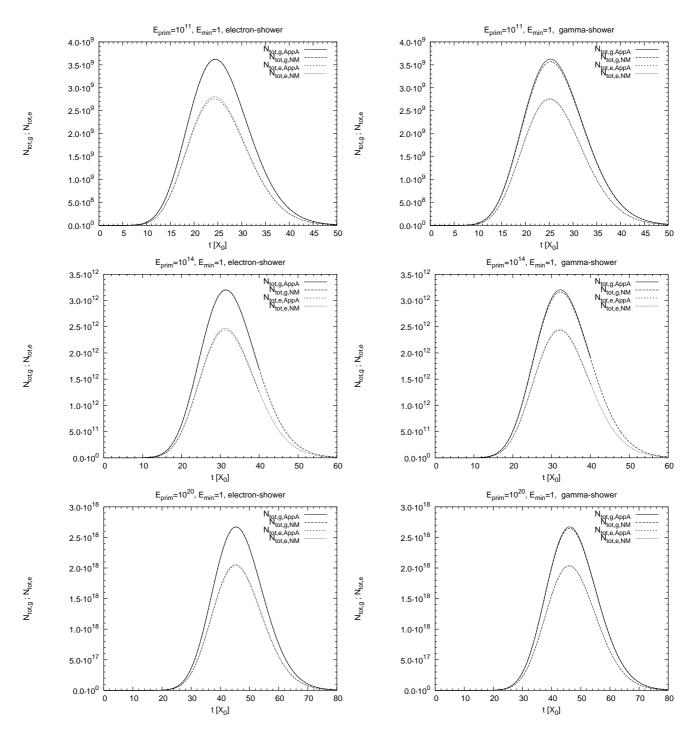


Abbildung 7.24: Vergleich analytische Approximation A ($\alpha_{ion} = 0$) und numerische Lösung

7.5.2 Vergleich mit Approximation A mit höherer Fehlerordnung

In Abschnitt 3.10 hatten wir eine Verbesserung der analytischen Approximation A durch eine Erweiterung der Sattelpunkt-Approximation um höhere Ordnungen vorgeschlagen. Bei einer Testrechnung mit $E_{prim}=10^5~{\rm MeV}$ zeigt sich, dass die Lösung mit höheren Ordnungen im Schauermaximum etwa um 1 % über der gewöhnlichen analytischen Approximation A liegt. Die Ergebnisse dieser Rechnung sind in Abbildung 7.25 und 7.26 gezeichnet.

Für andere Primärenergien verhält sich die Erweiterung genau wie die gewöhnliche Approximation: Für niedrigere Energien sind die Abweichungen von der numerischen Lösung (und der Monte-Carlo-Lösung) größer, zu höheren Energien hin gleichen sie sich diesen an. Man kann deshalb nicht sagen, dass die Erweiterung besser oder schlechter als die gewöhnliche Approximation A wäre.

Den einzigen Schluss, den wir ziehen können, ist, dass sich die analytische Approximation nur unter größerem Aufwand verbessern lässt. Es gab auch andere Verbesserungsversuche, etwa in [37], jedoch werden dort letztendlich auch wieder numerische Verfahren benutzt, um die inversen Mellin-Integrale zu berechnen. Anscheinend müssen bei einer Verbesserung auch die λ_2 -Terme berücksichtigt werden, bei denen die Sattelpunktmethode wegen des fehlenden Maximums nicht anwendbar ist.

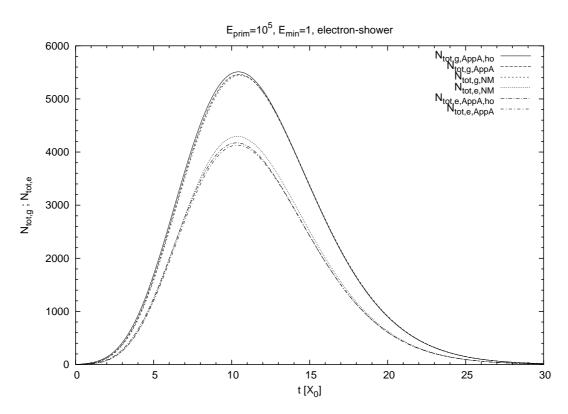


Abbildung 7.25: Vergleich analytische Approximation A mit höherer Ordnung und numerische Lösung; Elektronenschauer mit $E_{prim}=10^5~{\rm MeV}$

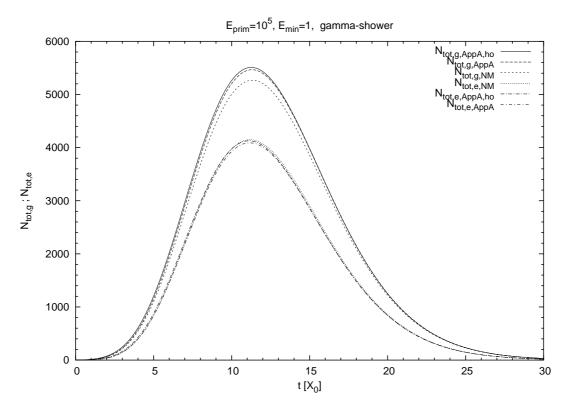


Abbildung 7.26: Vergleich analytische Approximation A mit höherer Ordnung und numerische Lösung; Photonenschauer mit $E_{prim}=10^5~{\rm MeV}$

7.5.3 Vergleich mit Approximation B

Die analytische Approximation B ist möglich für $E_{min}=0$ oder $E_{min}>2\cdot\alpha_{ion}$ (bei Rossi und Greisen: $\epsilon=\alpha_{ion}$). Der erste Fall ist in der folgenden Grafik 7.27 gezeichnet. Die Graphen mit der Bezeichnung NM sind Ergebnisse der numerischen Lösungsmethode. Wenn man den Graphen $N_{tot,max,e}$ bis zum linken Rand extrapoliert (bis $E_{min}=0$), trifft er näherungsweise auf den einzelnen Punkt $N_{tot,max,e,Approx.B}$, der mit der analytischen Approximation B berechnet wurde. (Der einzelne Datenpunkt $N_{tot,max,e,Approx.B}$ liegt bei $E_{min}=0$ und wurde in der Grafik etwas nach rechts verschoben, um ihn in der logarithmischen Skala einzeichnen zu können. Für Photonenschauer existieren in [33] nur Näherungsformeln für die Photonenanzahl mit $E_{min}=0$, vgl. Kapitel 3). Die Abweichung bewegt sich im für Approximation B üblichen Rahmen von etwa 1 %, was schon eine gute Näherung ist. Außerdem ist in der Grafik angedeutet, wie die Photonenanzahl mit kleiner werdender Energieschwelle E_{min} stark anwächst, wohingegen die Elektronenanzahl gegen einen Grenzwert strebt. In den Tabellen 7.7 und 7.8 sind die gezeichneten Punkte und weitere Werte aufgelistet.

In Abbildung 7.28 sind dieselben Ergebnisse eines Elektronschauers gezeichnet, die zugehörigen Werte stehen in den Tabellen 7.9 und 7.10.

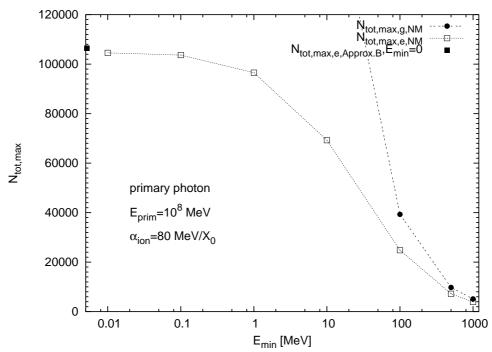


Abbildung 7.27: Photonschauer; verschiedene E_{min} -Werte; der einzelne Datenpunkt $N_{tot,max,e,Approx.B}$ liegt bei $E_{min}=0$

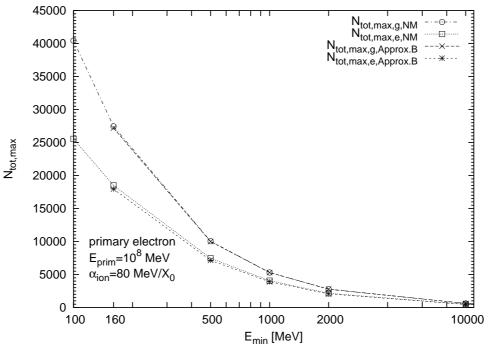


Abbildung 7.28: Elektronschauer; verschiedene E_{min} -Werte

Um die Grafiken 7.27 und 7.28 übersichtlich zu halten, wurden nicht alle in den Tabellen enthaltenen Werte eingetragen. Die Wertetabellen zu den Grafiken:

Tabelle 7.7: Numerisches Verfahren: γ -Schauer, $E_{prim}=10^8~{\rm MeV}$

E_{min}	$N_{tot,max,e}$	$X_{max,e}$	$N_{tot,max,g}$	$X_{max,g}$
0.01	104581	14.062	1253752	15.132
0.10	103659	14.055	850285	15.03
1.00	96557	13.9875	474251	14.8125
10.00	69284	13.725	183199	14.325
100.00	24795	12.825	39300	13.2
500.00	7220	11.7	9741	11.85
1000.00	3921	11.1	5134	11.4

Tabelle 7.8: Analytische Approximation B: γ -Schauer, $E_{prim}=10^8~{\rm MeV}$

E_{min}	$N_{tot,max,e}$	$X_{max,e}$	$N_{tot,max,g}$	$X_{max,g}$
0.0	106520	14.2	_	_

Tabelle 7.9: Numerisches Verfahren: Elektron-Schauer, $E_{prim}=10^8~{
m MeV}$

E_{min}	$N_{tot,max,e}$	$X_{max,e}$	$N_{tot,max,g}$	$X_{max,g}$
100	25560	12	40434	12.45
160	18504	11.7	27455	12
500	7463	10.95	10051	11.1
1000	4060	10.35	5307	10.5
2000	2161	9.6	2775	9.75
10000	484	8.1	610	8.25
100000	57	5.7	71	5.85

Tabelle 7.10: Analytische Approximation B: Elektron-Schauer, $E_{prim}=10^8~{
m MeV}$

E_{min}	$N_{tot,max,e}$	$X_{max,e}$	$N_{tot,max,g}$	$X_{max,g}$
0	106677	13.4		
160	17958	11.8	27186	12.1
500	7150	10.9	9993	11.1
1000	3888	10.3	5297	10.4
2000	2067	9.6	2778	9.8
10000	484	8.0	613	8.1
100000	54	5.7	72	5.8

7.6 Vergleiche mit CORSIKA

Wir vergleichen nun die Lösung der numerischen Methode an einem Beispiel mit CORSIKA-Simulationen. Da CORSIKA alle relevanten physikalischen Vorgänge innerhalb eines Schauers berücksichtigt, das numerische Verfahren aber die vereinfachenden Annahmen von Approximation A und B benutzt, erwarten wir keine besonders gute Übereinstimmung (siehe auch [31]). In dem vorliegenden Beispiel wurden für die CORSIKA-Rechnungen je 100 γ -Schauer mit $E_{prim}=10^8$ MeV gerechnet; E_{min} variert von 1.0 MeV, 10.0 MeV, 100.0 MeV, ... bis 100000 MeV. Die Ergebnisse sind in Abbildung 7.29 gezeichnet. Wir beobachten zum Teil erhebliche Abweichungen, die sich zum einem auf die geringe Anzahl von simulierten Schauern zurückführen lassen, zum anderen auf die Vereinfachungen des numerischen Verfahrens. Dennoch stellen wir eine gute Übereinstimmung fest, die die Güte des numerischen Verfahrens bestätigt.

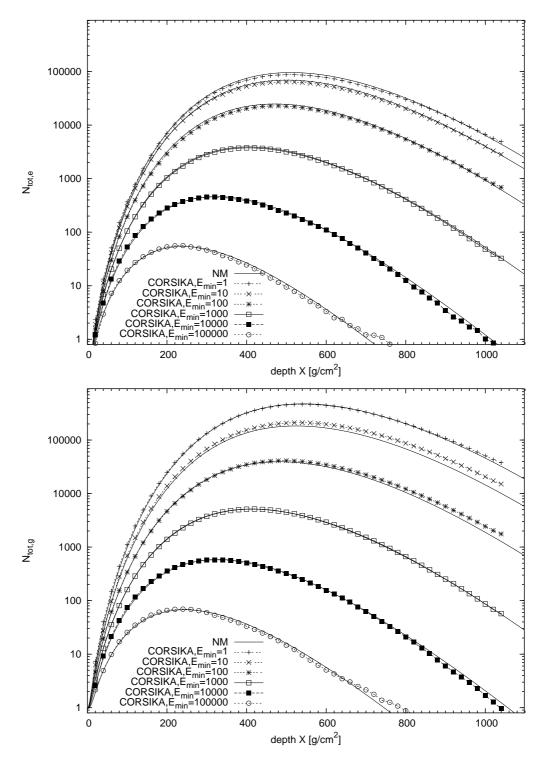


Abbildung 7.29: Numerische Lösung (NM) im Vergleich mit CORSIKA-Simulationen; Photonschauer mit $E_{prim}=10^8$ MeV, E_{min} variiert von 1 MeV bis 100000 MeV; oben: Teilchenzahl der Elektronen; unten: Teilchenzahl der Photonen

7.7 Teilchenzahl $N_{tot,max}$ und Tiefe X_{max} des Schauermaximums

In Abbildung 7.30 sind drei Schauer gezeichnet, um die Auswirkung auf die Schauerentwicklung zu zeigen, wenn man verschiedene Primärenergien annimmt. Es wurden drei Schauer mit der numerischen Methode mit den Primärenergien $E_{prim} = 8.4 \cdot 10^{17} \text{ eV}$, $8.8 \cdot 10^{17} \text{ eV}$ und $9.2 \cdot 10^{17} \text{ eV}$ berechnet. Die Unterschiede in den Primärenergien liegen im Rahmen der statistischen Unsicherheiten der Rekonstruktion.

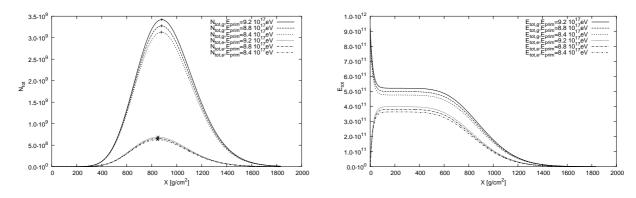


Abbildung 7.30: Abhängigkeit von X_{max} und $N_{tot,max}$ von E_{prim}

Im Folgenden wird eine genauere Analyse der Auswirkungen verschiedener Werte der Primärenergie auf X_{max} und $N_{tot,max}$ durchgeführt. Der Logarithmus des Maximums der Teilchenzahl $N_{tot,max}$ steht in einem linearen Zusammenhang mit dem Logarithmus der Primärenergie E_{prim} . Die Position X_{max} des Schauermaximums in der Tiefe t bzw. X steht in einem linearen Zusammenhang mit dem Logarithmus der Primärenergie E_{prim} . Dies ist für eine Serie von Photonen-Schauern mit verschiedenen Primärenergien in Tabelle 7.11 und den Grafiken in 7.31 und 7.32 festgehalten.

Tabelle 7.11: $X_{max,g}$ bzw. $X_{max,e}$: Position des Schauermaximums der Photonen bzw. Elektronen; $N_{tot,max,g}$ bzw. $N_{tot,max,e}$: Schauermaximum der Photonen bzw. Elektronen.

E_{prim} [eV]	$X_{max,g}[\frac{g}{cm^2}]$	$X_{max,e}[\frac{g}{cm^2}]$	$N_{tot,max,g}$	$N_{tot,max,e}$
10^{11}	287.41	257.35	655	137
10^{12}	372.46	342.40	5743	1186
10^{13}	458.25	427.45	51725	10591
10^{14}	543.66	513.24	474559	96478
10^{15}	628.35	598.29	4405283	892839
10^{16}	713.40	683.34	41315405	8345301
10^{17}	798.27	768.02	390506028	78629029
10^{18}	884.23	854.17	3706022132	745259334
10^{19}	969.29	939.22	3.537772575e + 10	7100624269
10^{20}	1054.70	1023.91	3.395844075e+11	6.793845438e+10

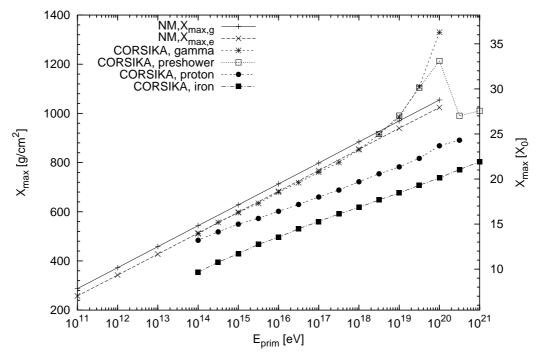


Abbildung 7.31: X_{max} -Werte verschiedener Primärteilchen und Simulationsmodelle: NM = numerische Methode: Photonschauer (Photonen: $X_{max,q}$, Elektronen: $X_{max,e}$); CORSIKA [60]: X_{max} der Summe der geladenen Teilchen; benutzte Wechselwirkungsmodelle: für die Photonschauer (gamma, preshower) QGSJET01 [61], für den Proton- und Eisenschauer EPOS 1.5 [62]

Für die Datenanalyse sind insbesondere $X_{max,e}$ und $N_{tot,max,e}$ relevant. Wir erhalten näherungsweise:

$$X_{tot,max,e} \approx -18,533 + 2,323 \cdot \log_{10} E_{prim}$$
 (7.2)

$$X_{tot,max,e} \approx -18,533 + 2,323 \cdot \log_{10} E_{prim}$$
 (7.2)
 $\log_{10} N_{tot,max,e} \approx -8,533 + 0,966 \cdot \log_{10} E_{prim}$ (7.3)

Diese Näherungen sind physikalisch nur bis zu einer Primärenergie von $E_{prim}=10^{18}$ bis 10^{19} eV relevant, da bei höheren Energien der LPM-Effekt (Landau-Pomeranchuk-Migdal-Effekt) [38], Dichteeffekte [24] und Wechselwirkungen mit dem Erdmagnetfeld [27, 28] zum Tragen kommen, die bei der numerischen Methode nicht berücksichtigt werden. Die beiden Effekte sind jedoch bei den CORSIKA-Daten in Abbildung 7.31 berücksichtigt.

Im Energiebereich darunter, also unter $E_{prim} = 10^{18}$ bis 10^{19} eV, wo diese Effekte noch nicht zum Tragen kommen, stimmen die X_{max} -Werte der numerischen Methode sehr gut mit den CORSIKA-Daten überein.



Abbildung 7.32: Photonschauer: $N_{tot,max}$ für verschiedene Primärenergien (Photonen: $N_{tot,max,g}$, Elektronen: $N_{tot,max,e}$)

7.8 Ergebnisse des Hybridverfahrens

Wir stellen hier einige numerische Ergebnisse der Implementierung des in Kapitel 6 entwickelten Hybridverfahrens vor.

7.8.1 Rechenaufwand

Wir untersuchen zunächst den Einfluss des Hybridparameters f_{hybrid} auf die Rechenzeit. Mit den Werten $f_{hybrid} = 0.1$, 0.01, 0.001, 0.0001 wurde je ein Schauer berechnet (Schauerparameter: γ -Schauer mit $E_{min} = 1$ MeV, $E_{prim} = 10^8$ MeV, $\alpha_{ion} = 80$ MeV). Die während der Rechnung bearbeiteten Teilchenzahlen sind in der folgenden Tabelle 7.12 aufgeschlüsselt:

Tabelle 7.12: Anzahl der Teilchen, die mit der Monte-Carlo-Rechnung behandelt werden, für verschiedene Hybridparameter f_{hybrid}

f_{hybrid}	N_{mc}	Q_{Ne}	Q_{Ng}	$N_{tot,max,e}$	$N_{tot,max,g}$	$X_{max,e}$	$X_{max,g}$
0.1	227	10	97	103413	507426	13.95	14.79
0.01	2310	109	919	99971	491764	14.10	14.91
0.001	19027	1077	6617	111255	543189	14.04	14.85
0.0001	175492	9806	52676	103260	506589	13.59	14.43

Spaltenbezeichnungen zur Tabelle 7.12:

 f_{hybrid} : der Hybridparameter;

 N_{mc} : Anzahl der Teilchen, die im Monte-Carlo-Lauf erzeugt wurden;

 Q_{Ne} : Anzahl der Elektronen in der Quellfunktion; Q_{Nq} : Anzahl der Photonen in der Quellfunktion;

 $N_{tot,max,e}$: maximale Anzahl der Elektronen im gesamten Schauer; $N_{tot,max,g}$: maximale Anzahl der Photonen im gesamten Schauer;

 $X_{max,e}$: Position von $N_{tot,max,e}$; $X_{max,g}$: Position von $N_{tot,max,g}$.

Die Anzahl der mit der Monte-Carlo-Rechnung behandelten Teilchen wächst umgekehrt proportional mit dem Hybrid-Parameter. Die übrigen Größen unterliegen den normalen statistischen Schwankungen.

In der folgenden Tabelle 7.13 sind die Rechenzeiten (in Sekunden) aufgeschlüsselt:

Tabelle 7.13: Rechenzeiten für verschiedene Hybridparameter f_{hybrid}

f_{hybrid}	t_{all}	t_{MC}	t_{tables}	$t_{numeric}$
0.1	16.00	0.01	2.15	13.79
0.01	15.87	0.02	2.14	13.65
0.001	16.32	0.12	2.13	14.02
0.0001	17.14	1.16	2.14	13.80

Spaltenbezeichnungen zur Tabelle 7.13:

 t_{all} : Gesamtrechenzeit;

 t_{MC} : Rechenzeit des Monte-Carlo-Vorlaufs;

 t_{tables} : benötigte Zeit zur Erstellung der Systemmatrizen für das numerische Verfah-

ren;

 $t_{numeric}$: Rechenzeit für die Iterationsschritte des numerischen Verfahrens.

Die Rechenzeit der Monte-Carlo-Rechnung wächst umgekehrt proportional mit dem Hybrid-Parameter, denn je kleiner f_{hybrid} ist, umso später werden Teilchen aus der Monte-Carlo-Simulation in das numerische Verfahren übertragen, d.h. umso mehr Teilchen werden mit der Monte-Carlo-Methode behandelt. Die Zeiten für den Anteil der numerischen Methode dahingegen bleiben gleich.

7.8.2 Fluktuationen in der Schauerentwicklung

Durch Vorgabe unterschiedlicher Startwerte für den Zufallszahlengenerator erhält man bei verschiedenen Hybridrechnungen Fluktuationen in der longitudinalen Schauerentwicklung.

In den Abbildungen 7.33 und 7.34 sind die Teilchenzahlen und die Gesamtenergie elf verschiedener Schauer gezeichnet, deren longitudinalen Entwicklungen sich sehr stark voneinander unterscheiden.

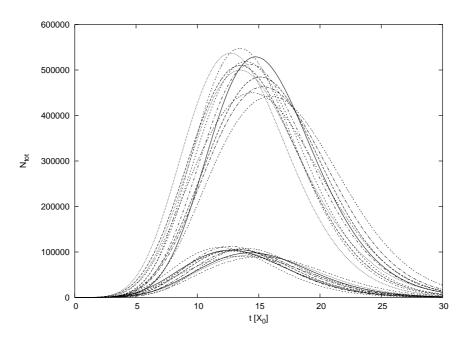


Abbildung 7.33: 11 Elektronenschauer mit Hybridrechnung ($E_{prim}=10^8$ MeV, $E_{min}=1$ MeV, $\alpha_{ion}=80$ MeV, $f_{hybrid}=0.01$): Teilchenzahl N_{tot}



Abbildung 7.34: 11 Elektronenschauer mit Hybridrechnung ($E_{prim}=10^8~{\rm MeV},~E_{min}=1~{\rm MeV},~\alpha_{ion}=80~{\rm MeV},~f_{hybrid}=0.01$): Teilchenenergie E_{tot} [MeV]

7.8.3 Plausibilitätstest des Hybridverfahrens

Führt man eine große Anzahl von Hybridsimulationen durch und bildet die Mittelwerte von N_{tot} und E_{tot} , so erhält man einen gemittelten Schauer, der mit dem Ergebnis der reinen numerischen Methode und dem mittleren Schauer einer großen Anzahl reiner Monte-Carlo-Simulationen übereinstimmt.

Diese Tatsache ermöglicht es, das Hybridverfahren einem einfachen Test zu unterziehen. Wir führen dazu viele einzelne Hybridrechnungen durch. Deren Durchschnitt muss wieder die durchschnittliche Schauerentwicklung — und damit das Ergebnis des numerischen Lösungsverfahrens — reproduzieren.

Dies wurde hier aus Rechenzeitgründen nur an kleinen Datensätzen von maximal 100 Schauern gezeigt. Die Ergebnisse belegen in diesem Rahmen sehr gut die Korrektheit des Hybridverfahrens.

In Abbildung 7.35 und 7.36 wurde dies mit einem Datensatz von 10 Hybridschauern durchgeführt. Die Teilchenzahlentwicklung weicht noch deutlich vom mittleren Schauerverhalten ab und die Energieverteilung zwischen Elektronen und Photonen zeigt noch deutliche Fluktuationen. Als nächstes wurde ein Datensatz von 100 Hybridschauern berechnet. Der Unterschied zum mittleren Schauerverhalten fällt deutlich geringer aus. Die Ergebnisse sind in den Abbildungen 7.37 und 7.38 dargestellt.

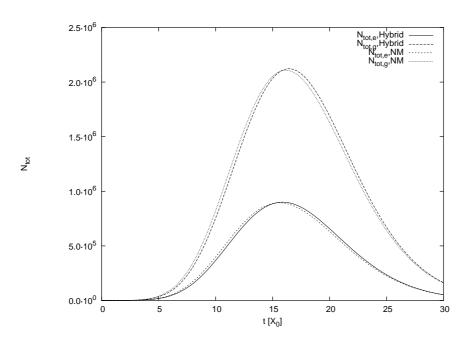


Abbildung 7.35: Teilchenzahl N_{tot} : Mittel aus 10 Elektronenschauern mit Hybridrechnung im Vergleich zur numerischen Lösung (NM)

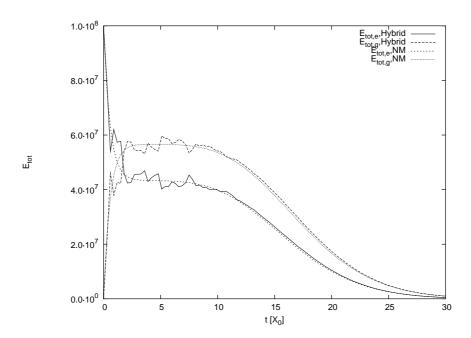


Abbildung 7.36: Teilchenenergie E_{tot} [MeV]: Mittel aus 10 Elektronenschauern mit Hybridrechnung im Vergleich zur numerischen Lösung (NM)

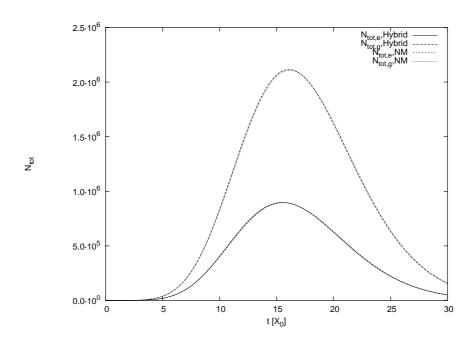


Abbildung 7.37: Teilchenzahl N_{tot} : Mittel aus 100 Elektronenschauern mit Hybridrechnung im Vergleich zur numerischen Lösung (NM)

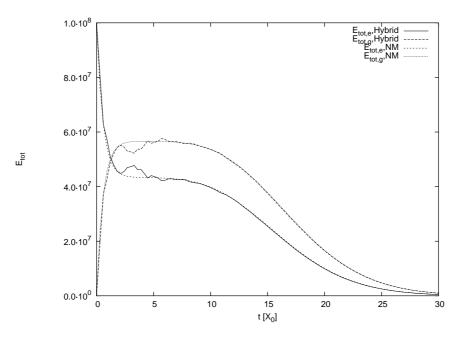


Abbildung 7.38: Teilchenenergie E_{tot} [MeV]: Mittel aus 100 Elektronenschauern mit Hybridrechnung im Vergleich zur numerischen Lösung (NM)

7.8.4 Untersuchung der X_{max} -Verteilung des Hybridverfahrens

Nach [55] haben die Wechselwirkungen zu Beginn des Schauers den größten Einfluss auf die weitere Schauerentwicklung und auf charakteristische Merkmale eines Schauers wie die Teilchenanzahl im Schauermaximum $N_{tot,max}$ und dessen Position in der Tiefe X_{max} .

Über den Hybridparameter f_{hybrid} können wir steuern, wie groß der Anteil sein soll, der mit der Monte-Carlo-Methode berechnet werden soll. Wählen wir $f_{hybrid}=0.99$, so wird praktisch nur die erste Wechselwirkung mit der Monte-Carlo-Methode berechnet. Im Falle eines Photonschauers entstehen nach der ersten Wechselwirkung zwei Elektronen, die sich die Energie des Primärphotons teilen. Diese werden dann an die numerische Methode weitergegeben. Die weitere Schauerentwicklung besteht dann aus der Überlagerung von zwei Elektronensubschauern. Die Fluktuationen entstehen in diesem Fall nur durch zwei Faktoren: durch die Variation in der Wechselwirkungslänge des Primärphotons und die Variation in der Energieaufteilung unter die beiden Primärelektronen.

Je kleiner der Hybridparameter gewählt wird, umso mehr Wechselwirkungen werden mit der Monte-Carlo-Methode berechnet und umso größer sind dementsprechend die Variationsmöglichkeiten in der Schauerentwicklung.

Die Variationsmöglichkeiten schlagen sich direkt in den Fluktuationen der Schauerobservablen wie dem Schauermaximum X_{max} , der Teilchenzahl im Schauermaximum $N_{tot,max}$ und den Teilchenzahlen in jeder beliebigen einmal festgelegten Tiefe $N_{tot}(X)$ nieder. Für diese Observablen wurden die Verteilungen für verschiedene Werte von f_{hybrid} bestimmt. Es wurden je $N_{shower} = 10000$ Schauer berechnet. Die Verteilung des Wertes $N_{tot}(X)$ wurde für die Tiefe X = 28 X_0 ermittelt².

In Abbildung 7.39 sehen wir die X_{max} -Verteilung. Wie erwartet beobachten wir für große Hybridparameter f_{hybrid} eine geringe Fluktuation. Für $f_{hybrid} = 0.99$ ist die X_{max} -Verteilung sehr stark in einem engen Bereich lokalisiert. Diese lokale Häufung ist bei der $N_{tot,max}$ -Verteilung in Abbildung 7.40 noch viel stärker ausgeprägt. (Weshalb hier auch zu einer logarithmischen Skala übergegangen wurde.) Gleiches gilt für die $N_{tot}(X=28)$ -Verteilung, die in Abbildung 7.40 rechts dargestellt ist.

In allen drei Fällen erkennt man jedoch (im Rahmen der statistischen Schwankungen), dass sich die Verteilungen bei einer Verringerung von $f_{hybrid} = 0.01$ auf $f_{hybrid} = 0.001$ nicht mehr sehr verändern. Wir können daraus schließen, dass ein Hybridparameter von $f_{hybrid} = 0.01$ schon sehr gut die Fluktuationen in der longitudinalen Schauerentwicklung reproduziert.

 $^{^2}$ Wir verwenden hier für die Tiefe X ausnahmsweise die Einheit Strahlungslänge X_0 , statt g/cm^2 . Wir vermeiden die naheliegende Bezeichnung t_{max} für das Schauermaximum in Einheiten X_0 , da wir in dieser Arbeit damit die maximale Tiefe bezeichnen, bis zu der wir die Schauerentwicklung verfolgen. Da sich in der Literatur die Bezeichnung X_{max} für das Schauermaximum fest eingebürgert hat, wollen wir dies hier übernehmen und die kleine Inkonsistenz bezüglich der Einheiten inkaufnehmen.

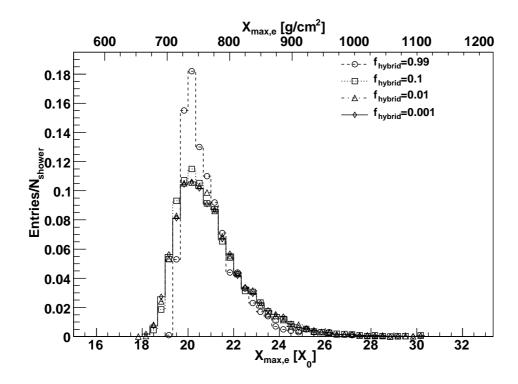


Abbildung 7.39: $X_{max,e}$ -Verteilung (10000 Hybrid-Photon-Schauer $E_{prim,g}=10^{17}$ eV mit $f_{hybrid}=0.99,\ 0.1,\ 0.01$ und $\ 0.001$)

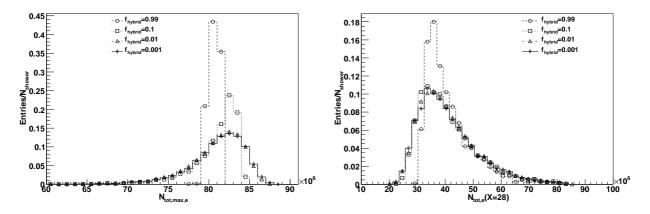


Abbildung 7.40: 10000 Hybrid-Schauer $E_{prim,g}=10^{17}$ eV mit $f_{hybrid}=0.99,\ 0.1,\ 0.01,\ 0.001$; links: $N_{tot,max,e}$ -Verteilung; rechts: $N_{tot,e}$ -Verteilung bei $X=28X_0$

7.9 Vergleich mit Auger-Daten

In diesem Abschnitt wollen wir eine simple Analyse von zwei Auger-Datensätzen mit Hilfe der numerischen Methode durchführen. Im ersten Beispiel wurde ein Datensatz mit einem sehr tiefen X_{max} gewählt. Solche Schauer sind mögliche Kandidaten für Photonschauer (siehe Abbildung 7.31). Die X_{max} -Werte für Hadronschauer sind deutlich kleiner. Die Standardanalyse ergab für diesen Schauer im Maximum einen Wert von $\left(\frac{dE}{dX}\right)_{max} \approx 1.71$ PeV für den Energiedeposit. Mit einem $\alpha_{\rm eff} \approx 2.58$ MeV/ $\frac{\rm g}{\rm cm^2}$ (nach [29]) wurde der ungefähre Wert $N_{tot,max,e} = \left(\frac{dE}{dX}\right)_{max}/\alpha_{\rm eff} \approx 6.63\cdot10^8$ errechnet. Mit der Gleichung (7.3) lässt sich dann die Primärenergie zu $E_{prim} \approx 9.23\cdot10^{17}$ eV abschätzen. Dann wurden zu verschiedenen Primärenergien in einem Bereich um $E_{prim} = 9\cdot10^{17}$ eV herum mehrere Schauer mit der numerischen Methode und dem Hybridverfahren gerechnet. Die beste Übereinstimmung wurde bei $E_{prim} = 8.8\cdot10^{17}$ eV gefunden. Für diese Primärenergie wurde dann ein Datensatz von 11 Schauern berechnet. Das Ergebnis ist in Abbildung 7.41 zu sehen.

Die Auger-Datenpunkte scheinen gut auf die 11 Hybrid-Schauer zu passen. Dieses Ereignis wäre also ein möglicher Kandidat für einen Photonschauer. Bei genauerer Betrachtung stellt man jedoch fest, dass keines der 11 Hybrid-Schauerprofile wirklich gut zu den Daten passt. Das Schauermaximum ist zu stark ausgeprägt und der anschließende Abfall ist zu groß. Eine weitere Reduzierung der angenommenen Primärenergie, um die Schauerprofile nach links verschieben, würde das Schauermaximum zu klein werden lassen. Die Parameter sind also auf einen gewissen Bereich festgelegt. Dies zeigt, wie schwierig die Analyse der konkreten experimentellen Daten ist. Die möglichen statistischen Fluktuationen sind zwar groß und lassen einen weiten Interpretationsrahmen zu, aber sehr wahrscheinlich hat es sich bei diesem Ereignis doch nicht um ein Photon gehandelt. Nach [23], Abbildung 7, sind statistische Fluktuationen in X_{max} bei Protonschauern sehr breit im Bereich von $\langle X_{max} \rangle - 100 \frac{g}{\text{cm}^2}$ bis $\langle X_{max} \rangle + 150 \frac{g}{\text{cm}^2}$ verteilt und haben dort noch immer mehr als $\frac{1}{10}$ der Wahrscheinlichkeit des Mittelwertes $\langle X_{max} \rangle$. Es könnte sich also auch um einen sehr späten Protonschauer gehandelt haben.

Im Vergleich dazu ist in Abbildung 7.42 ein Datensatz abgebildet, der analog zur obigen Abschätzung eine ähnliche Abschätzung $E_{prim} \approx 9 \cdot 10^{17}$ eV liefert. Das Schauermaximum liegt jedoch in einer deutlich geringeren Tiefe (bei etwa $X_{max} \approx 610 \, \frac{\rm g}{\rm cm^2}$), so dass dieses Ereignis ein ganz typischer Kandidat für einen Hadronschauer ist. Gemäß Abbildung 7.31 liegt ein mittlerer Schauer mit diesem X_{max} zwischen den Graphen für Protonen- und Eisen-Schauer mit einer Tendenz zu schwereren Kernen hin. Aber auch hier könnte es sich nach [23] aufgrund der großen statistischen Fluktuationen in X_{max} um einen frühen Protonschauer gehandelt haben.

Eine zuverlässige Aussage über die Häufigkeit verschiedener Teilchenarten in der kosmischen Primärstrahlung lässt sich deshalb nur über eine größere statistische Erhebung gewinnen.

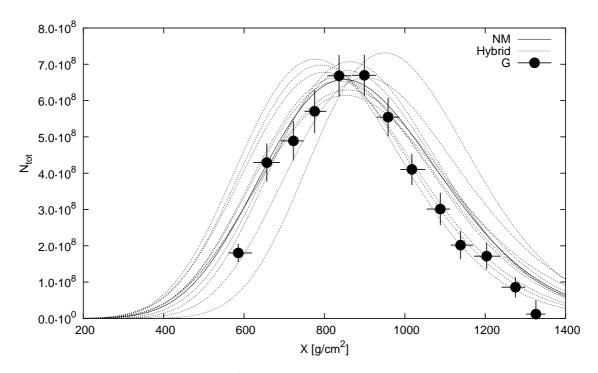


Abbildung 7.41: $E_{prim}=8.8\cdot 10^{17}$ eV; NM — numerisches Verfahren; 11 Hybrid-Schauer mit $f_{hybrid}=0.01$; Pierre-Auger-Daten: G — photonähnlicher Schauer (preliminary)

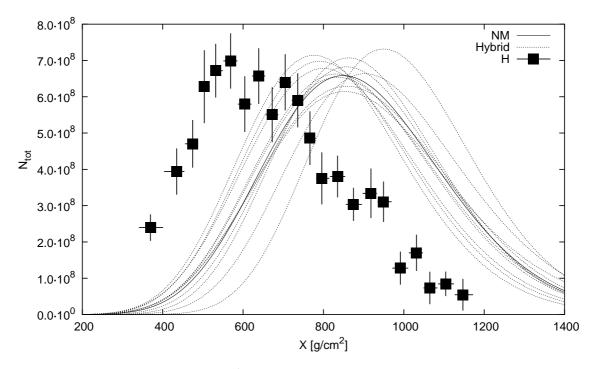


Abbildung 7.42: $E_{prim}=8.8\cdot 10^{17}$ eV; NM — numerisches Verfahren; 11 Hybrid-Schauer mit $f_{hybrid}=0.01$; Pierre-Auger-Daten: H — hadronähnlicher Schauer (preliminary)

Zusammenfassung

Gegenstand der vorliegenden Arbeit war die Entwicklung eines numerischen Verfahrens zur Lösung der elektromagnetischen Kaskadengleichung. Dieses soll als Programmmodul in einer Hybridsimulation hochenergetischer Luftschauer eingesetzt werden. Solche Simulationen spielen eine entscheidende Rolle bei der Interpretation der Messdaten von Höhenstrahlungsexperimenten wie etwa des Pierre-Auger-Observatoriums. Sie erlauben erst Rückschlüsse auf Art und Zusammensetzung der höchstenergetischen kosmischen Strahlung. Dieses Wissen soll helfen, die noch offene Frage nach dem Ursprung dieser energiereichsten Teilchen des Kosmos zu klären.

Die elektromagnetische Kaskadengleichung ist eine lineare hyperbolische Evolutionsgleichung mit variablen Koeffizienten. Sie beschreibt die Wechselwirkungsprozesse Bremsstrahlung, Paarbildung und Energieverluste durch Ionisation des Mediums in Teilchenkaskaden. Sie ist vektorwertig: die eine Komponente beschreibt den Elektronen- plus Positronenfluss, die andere Komponente den Photonenfluss.

Zu Beginn der Arbeit wurden grundlegende Studien des Verhaltens der Lösung an der historischen analytischen Approximation A und B unternommen. Die dabei benutzte Methode der Sattelpunktapproximation wurde dabei um die Berücksichtigung von Termen höherer Ordnung in der Taylorentwicklung erweitert.

Um die Kaskadengleichung numerisch zu lösen, wurden folgende Methoden erarbeitet: Zunächst wurde die Kaskadengleichung in der Energievariablen E logarithmisch transformiert. Dadurch wird dem mehrere Größenordnungen umfassenden Energiebereich Rechnung getragen. Hierbei wurde auch eine untere Energieschwelle E_{min} eingeführt. Teilchen, deren Energien unter diese Schwelle fallen, werden nicht weiter berücksichtigt. Die singulären Integrationsbereiche wurden abgetrennt und unter einem Integral zusammengefasst. Nach der Taylorentwicklung eines der Terme heben sich die singulären Terme gerade weg. Der verbleibende Term wurde in einen Ionisationsterm umformuliert.

Die partielle Differentialgleichung wurde mit einem Charakteristikenverfahren gelöst. Mit dem Charakteristikenansatz gewinnt man aus einer partiellen zwei gewöhnliche Differentialgleichungen. Die erste Differentialgleichung ergibt sich im Wesentlichen aus den Ionisationstermen und wurde analytisch gelöst. Die zweite Differentialgleichung entspricht im Wesentlichen der transformierten Kaskadengleichung ohne Ionisationsterm. Zu deren numerischer Lösung waren weitere Schritte erforderlich.

Zunächst wurde ein stückweise linearer Ansatz, der Trapezansatz, in die Gleichung eingesetzt. Dieser hat zwei Freiheitsgrade, die notwendig sind, um gleichzeitig die Teil-

chenzahl N_{tot} und die Gesamtenergie E_{tot} innerhalb eines Energieintervalls darstellen zu können. Dies erlaubt auch eine korrekte Darstellung des Primärteilchens als Startwert für das numerische Verfahren.

Dann wurde die Kaskadengleichung mit der Methode der Intervallintegration behandelt. Dazu wurden zwei verschiedene Integraloperatoren benutzt, um aus je einer Differentialgleichung zwei verschiedene Differentialgleichungen zu gewinnen. Diese werden benötigt, um genügend Bestimmungsgleichungen für die beiden Freiheitsgrade des Trapezansatzes zu erhalten. Die Integraloperatoren wurden so gewählt, dass die Integrationen gerade Differentialgleichungen für die beiden Größen $N_{tot}(t)$ und $E_{tot}(t)$ ergaben. Dadurch wird der besonderen Rolle dieser Größen Rechnung getragen: Die Teilchenzahl N_{tot} ist die eigentlich interessierende Schauerobservable. Die Systemenergie E_{tot} erlaubt die Berücksichtigung des Grundprinzips der Energieerhaltung.

Die so gewonnenen gewöhnlichen Differentialgleichungen für die Koeffizientenfunktionen des Trapezansatzes wurden mit dem klassischen Runge-Kutta-Verfahren 4. Ordnung gelöst. Dieses wurde um die laufende Neuskalierung der Energieintervalleinteilung erweitert, um dem Auseinanderlaufen der Charakteristiken der Elektronen- und Photonenfunktionen Rechnung zu tragen.

Das Verfahren wurde während der Entwicklung und abschließend ausführlich getestet. Dazu wurde die numerische Lösung mit unabhängigen Lösungsansätzen verglichen. Dies waren zum einen die historische analytische Approximation A und B, zum anderen eine eigens entwickelte Monte-Carlo-Simulation. In beiden Fällen stimmen die Lösungen des numerischen Verfahrens im Rahmen der erreichbaren Genauigkeit mit den Vergleichslösungen überein.

Die Genauigkeit der numerischen Methode lässt sich durch die Wahl der Gitterweiten N_E (in der Energie E bzw. ε) und N_t (in der Tiefe t) steuern. Für den praktischen Einsatz des Verfahrens zählt der relative Fehler in den Teilchenzahlen N_{tot} als Richtschnur. In ausführlichen Testrechnungen wurde ermittelt, welche Genauigkeit mit welchen Gitterweiten erreicht werden kann. Für einen Photonenschauer mit Primärenergie $E_{prim}=10^{17}$ eV, unterer Energieschwelle $E_{min}=10^6$ eV, $N_E=100$ und $N_t=1600$ liegt dieser Fehler unter 1 %. Das Verfahren benötigt dafür etwa 25 Sekunden Rechenzeit. Für einen Fehler unter 3 % genügen die Gitterweiten $N_E=50$ und $N_t=1200$. Das Verfahren benötigt dafür nur etwa 5 Sekunden Rechenzeit.

Weiterhin wurde das numerische Verfahren Vergleichen mit CORSIKA-Simulationen unterzogen. CORSIKA berücksichtigt alle relevanten Wechselwirkungsprozesse, weshalb hier keine exakte Übereinstimmung der Ergebnisse zu erwarten ist. Dennoch stimmen die Ergebnisse einer Testserie von Photonschauern mit $E_{prim}=10^8$ MeV und verschiedenen Werten für E_{min} gut überein. Weiterhin wurde mit dem numerischen Verfahren die Tiefe des Schauermaximums X_{max} in Abhängigkeit der Primärteilchenenergie für Photonschauer ermittelt. CORSIKA berücksichtigt ab 10^{18} eV weitere physikalische Effekte (LPM, Dichteeffekt, Geomagnetfeld). Im Primärenergiebereich bis 10^{18} eV wurde jedoch eine sehr gute Übereinstimmung mit den Ergebnissen der CORSIKA-Simulationen festgestellt.

Anschließend wurde das numerische Verfahren mit dem für die vorliegende Arbeit entwickelten Monte-Carlo-Verfahren zu einem Hybridverfahren kombiniert. Damit konnte die Einsatzfähigkeit des neu entwickelten numerischen Lösungsverfahrens in einer Hybridsimulation demonstriert werden. Das Hybridverfahren wurde erfolgreich ersten Tests unterworfen. Außerdem wurden damit schon Untersuchungen der Auswirkungen des Hybridparameters auf die X_{max} - und die $N_{tot,max}$ -Verteilung durchgeführt. Damit konnten qualitativ Aussagen aus der Literatur bestätigt werden, dass statistische Schwankungen der Schauerentwicklung im Wesentlichen aus den ersten energiereichen Wechselwirkungen herrühren. Ein Hybridparameter von $f_{hybrid} = 0.1$ bis 0.01 ist dafür hinreichend gut, eine Verkleinerung des Parameters bewirkt praktisch keine Änderung der Verteilungen mehr.

Abschließend wurden zwei Ereignisse, die mit den Pierre-Auger-Fluoreszenzdetektoren gemessen wurden, daraufhin untersucht, ob das Primärteilchen ein Photon gewesen sein könnte. Das Hybridverfahren ermöglichte die Erzeugung eines Vergleichsdatensatzes simulierter Schauer. Die statistischen Schwankungen schließen nicht aus, dass eines der Ereignisse ein Photonschauer gewesen sein könnte.

Insgesamt erweist sich das neu entwickelte numerische Verfahren zur Lösung der elektromagnetischen Kaskadengleichung als genau und schnell und hat seine praktische Einsatzfähigkeit in Hybridsimulationen schon an ersten Beispielen demonstriert.

Ausblick

Während der Entwicklung des numerischen Verfahrens wurden für die physikalischen Energie-Verteilungsdichten der Wechselwirkungsterme, φ_0 und ψ_0 , die in [32, 33] angegebenen Funktionen benutzt und α_{ion} wurde als konstant vorausgesetzt. Für die Funktionen φ_0 und ψ_0 existieren genauere (und kompliziertere) Formeln, deren Einsatz bei einer Integration in CONEX wünschenswert wäre. Dies erfordert dann voraussichtlich eine Umstellung auf die numerische Berechnung der Integrale (5.102) bis (5.117) (siehe auch Anhang C.5), da diese dann nicht mehr mit vertretbarem Aufwand analytisch lösbar sind. Außerdem ist es wünschenswert, die leichte Energieabhängigkeit von α_{ion} zu berücksichtigen.

Weitere Ziele sind die Erweiterung auf drei Dimensionen, um auch die Lateralverteilung der Schauerfront berechnen zu können, und die Benutzung des Verfahrens für die hadronische Schauerkomponente.

Anhang A

Analytische Approximation

A.1 Die ψ -Funktion

Wir führen hier eine Beweisskizze der Integraldarstellung der ψ -Funktion an, wobei auf strenge Beweise und Konvergenzbetrachtungen verzichtet wird. Für den interessierten Leser verweisen wir auf [41, 42].

Wir werden in diesem Abschnitt die in der mathematischen Literatur üblichen Bezeichnungen ψ für die logarithmische Ableitung der Γ -Funktion und γ für die Eulersche Konstante¹ benutzen. Eine Verwechslungsgefahr mit den in der Literatur über kosmische Strahlung üblichen Funktionen ψ und γ besteht kaum, da aus dem Kontext heraus klar sein sollte, was jeweils gemeint ist.

Für den Beweis gehen wir von der Produktdarstellung der Γ -Funktion aus:

$$\Gamma(s) = \lim_{n \to \infty} \frac{n!}{s(s+1)\dots(s+n)} n^s \tag{A.1}$$

Die ψ -Funktion ist definiert als:

$$\psi(s) := \frac{d}{ds} \log \Gamma(s) = \frac{\Gamma'(s)}{\Gamma(s)}$$
(A.2)

Wir benötigen noch die Definition der Eulerschen Konstante γ :

$$\gamma := \lim_{n \to \infty} \left(\sum_{k=1}^{n-1} \frac{1}{k} - \log n \right) \approx 0,5772157\dots$$
(A.3)

Umformen von (A.1) gibt

$$\Gamma(s) = \lim_{n \to \infty} \frac{n!}{s(s+1)\dots(s+n)} n^s$$
$$= s^{-1} e^{-s\gamma} \lim_{n \to \infty} \prod_{k=1}^n \left(\frac{k}{s+k}\right) n^s e^{s\gamma}$$

¹Besonders in der englischsprachigen Literatur oft Euler-Mascheronische Konstante genannt.

$$= s^{-1}e^{-s\gamma} \lim_{n \to \infty} \prod_{k=1}^{n} \left(\frac{k}{s+k}\right) n^{s}e^{s\left(\sum_{k=1}^{n} \frac{1}{k} - \log(n+1)\right)}$$

$$= s^{-1}e^{-s\gamma} \lim_{n \to \infty} \prod_{k=1}^{n} \left(\frac{k}{s+k}e^{\frac{s}{k}}\right) n^{s} \underbrace{e^{-s\log(n+1)}}_{=(n+1)^{-s}}$$

$$= s^{-1}e^{-s\gamma} \lim_{n \to \infty} \prod_{k=1}^{n} \left(\frac{1}{1+\frac{s}{k}}e^{\frac{s}{k}}\right)$$
(A.4)

Mit Einsetzen von (A.4) in die Definition von $\psi(s)$ (A.2) folgt also:

$$\psi(s) = \frac{d}{ds} \log \Gamma(s)$$

$$= \frac{d}{ds} \left(-s\gamma - \log s - \lim_{n \to \infty} \sum_{k=1}^{n} \left(\log(1 + \frac{s}{k}) - \frac{s}{k} \right) \right)$$

$$= -\gamma - \frac{1}{s} - \lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{1}{k+s} - \frac{1}{k} \right)$$
(A.5)

Für $s + k > 0, k \in \mathbb{N}$ rechnet man leicht nach

$$\frac{1}{s+k} = \int_0^\infty e^{-t(s+k)} dt \tag{A.6}$$

Dies setzen wir in (A.5) ein:

$$\psi(s) = -\gamma - \int_{0}^{\infty} e^{-ts} dt - \lim_{n \to \infty} \sum_{k=1}^{n} \int_{0}^{\infty} \left(e^{-t(s+k)} - e^{-tk} \right) dt
= -\gamma - \int_{0}^{\infty} e^{-ts} dt - \lim_{n \to \infty} \int_{0}^{\infty} \left(e^{-ts} \sum_{k=1}^{n} e^{-tk} - \sum_{k=1}^{n} e^{-tk} \right) dt
= -\gamma - \int_{0}^{\infty} e^{-ts} dt - \int_{0}^{\infty} \left((e^{-ts} - 1) \lim_{n \to \infty} \sum_{k=1}^{n} e^{-tk} \right) dt
= -\gamma - \int_{0}^{\infty} e^{-ts} dt - \int_{0}^{\infty} \left((e^{-ts} - 1) \left(-1 + \frac{1}{1 - e^{-t}} \right) \right) dt
= -\gamma + \int_{0}^{\infty} \frac{e^{-t} - e^{-ts}}{1 - e^{-t}} dt$$
(A.7)

Das Integral in (A.7) ist genau das Integral, das wir in 3.4.1 zur Berechnung von A(s) benutzt haben. Außerdem können wir damit γ berechnen: $\gamma = -\psi(1)$. Die Verallgemeinerung der ψ -Funktion ist die Polygamma-Funktion:

Polygamma
$$(s,k) := \psi^{(k)}(s) = \frac{d^k}{dx^k}\psi(s) = \frac{d^{k+1}}{dx^{k+1}}\log\Gamma(s)$$
 (A.8)

A.2 Die Mellin- und die Laplace-Transformation

A.2.1 Die Mellin-Transformation

Das Mellin-Integral oder die Mellin-Transformation einer Funktion f(E) ist definiert als:

 $M\{f(E)\}(s) \equiv M_f(s) := \int_0^\infty E^s f(E) dE \tag{A.9}$

s ist ein komplexer Parameter. Unter sehr allgemeinen Voraussetzungen an die Funktion f(E) ist die Mellin-Transformierte $M_f(s)$ eindeutig und $M_f(s)$ lässt sich rücktransformieren. Die Inverse der Mellin-Transformation ist

$$f(E) = \frac{1}{2\pi i} \int_C E^{-(s+1)} M_f(s) ds \tag{A.10}$$

wobei der Integrationspfad C parallel zur imaginären Achse von $-\infty$ bis $+\infty$ verläuft und innerhalb des Konvergenzbereiches von $M_f(s)$ liegen muss.

Die Mellin-Transformation hat folgende Eigenschaft:

$$M_F(s) = \frac{1}{s+1} M_f(s+1), \quad \text{wenn} \quad F(y) = \int_y^\infty f(y') \ dy'$$
 (A.11)

Weitere Details findet man in [33].

A.2.2 Die Laplace-Transformation

Die Laplace-Transformation einer Funktion f(t) ist definiert als:

$$L\{f(t)\}(\lambda) \equiv L_f(\lambda) := \int_0^\infty e^{-\lambda t} f(t) dt \qquad (\lambda > 0)$$
 (A.12)

Die Inverse der Laplace-Transformation ist ähnlich wie die Mellin-Transformation im Allgemeinen eindeutig:

$$f(t) = \frac{1}{2\pi i} \int_C e^{\lambda t} L_f(\lambda) d\lambda \tag{A.13}$$

C muss auch hier innerhalb des Konvergenzbereiches und parallel zur imaginären Achse verlaufen. Die folgende Beziehung lässt sich mit partieller Integration von $M_{f'}$ und anschließender Limesbildung leicht nachrechnen:

$$L_{f'}(\lambda) = \lambda L_f(\lambda) - f(0) \tag{A.14}$$

Für die kombinierte Transformation schreiben wir

$$K\{f(E,t)\}(s,\lambda) \equiv K_f(s,\lambda) := L\{M_f(s,t)\}(\lambda) \tag{A.15}$$

A.2.3 Gaußsche Integrale

Wir betrachten Integrale der Art

$$I_n = \int_{-\infty}^{+\infty} x^n e^{-\frac{x^2}{\sigma^2}} dx \tag{A.16}$$

Für ungerades n ist $I_n = 0$, denn der Integrand ist insgesamt ungerade, da die x-Potenz eine ungerade und der Exponentialterm eine gerade Funktion ist, und der Integrationsbereich ist symmetrisch um x = 0.

Im Folgenden sei n gerade. Dann gilt:

$$I_n = \int_{-\infty}^{+\infty} x^n e^{-\frac{x^2}{\sigma^2}} dx = \frac{1 \cdot 3 \cdot 5 \cdot 7 \cdot \dots \cdot (n-1)}{2^{(n/2)}} \sqrt{\pi} \sigma^{(n+1)}$$
 (A.17)

Beweis: Mit Induktion: Der Induktionsanfang ist mit dem bekannten Integral $I_0 = \int_{-\infty}^{+\infty} e^{-\frac{x^2}{\sigma^2}} dx = \sqrt{\pi} \sigma$ klar. Der Induktionsschritt ergibt sich aus der Behauptung durch Ableitung nach σ auf

Der Induktionsschritt ergibt sich aus der Behauptung durch Ableitung nach σ auf beiden Seiten: Sei die Aussage für n richtig, d.h. es gelte: $I_n = \int_{-\infty}^{+\infty} x^n e^{-\frac{x^2}{\sigma^2}} dx = \frac{1\cdot 3\cdot 5\cdot 7\cdot ...\cdot (n-1)}{2(n/2)} \sqrt{\pi} \sigma^{(n+1)}$. Wir müssen zeigen, dass die Aussage auch für n+2 gilt.

Ableiten der linken Seite nach σ ergibt: $\frac{d}{d\sigma} \int_{-\infty}^{+\infty} x^n e^{-\frac{x^2}{\sigma^2}} dx = \int_{-\infty}^{+\infty} x^n \frac{d}{d\sigma} e^{-\frac{x^2}{\sigma^2}} dx = \int_{-\infty}^{+\infty} x^n e^{-\frac{x^2}{\sigma^2}} (-x^2) \frac{-2}{\sigma^3} dx = \int_{-\infty}^{+\infty} x^{n+2} e^{-\frac{x^2}{\sigma^2}} \frac{2}{\sigma^3} dx$. Ableiten der rechten Seite nach σ ergibt: $\frac{1\cdot 3\cdot 5\cdot 7\cdot \dots (n-1)}{2^{(n/2)}} \sqrt{\pi} \frac{d}{d\sigma} \sigma^{(n+1)} = \frac{1\cdot 3\cdot 5\cdot 7\cdot \dots (n-1)}{2^{(n/2)}} \sqrt{\pi} (n+1) \sigma^{(n)}$. Also haben wir $\int_{-\infty}^{+\infty} x^{n+2} e^{-\frac{x^2}{\sigma^2}} \frac{2}{\sigma^3} dx = \frac{1\cdot 3\cdot 5\cdot 7\cdot \dots (n-1)}{2^{(n/2)}} \sqrt{\pi} (n+1) \sigma^{(n)}$ oder nach umsortieren der Terme:

$$\int_{-\infty}^{+\infty} x^{n+2} e^{-\frac{x^2}{\sigma^2}} dx = \frac{1 \cdot 3 \cdot 5 \cdot 7 \cdot \dots \cdot (n-1)(n+2-1)}{2^{((n+2)/2)}} \sqrt{\pi} \sigma^{(n+2+1)} = I_{n+2}$$

Dies ist gerade die gesuchte Aussage.

Insbesondere gilt:

$$I_0 = \int_{-\infty}^{+\infty} e^{-\frac{x^2}{\sigma^2}} dx = \sqrt{\pi}\sigma \tag{A.18}$$

$$I_2 = \int_{-\infty}^{+\infty} x^2 e^{-\frac{x^2}{\sigma^2}} dx = \frac{1}{2} \sqrt{\pi} \sigma^3$$
 (A.19)

$$I_4 = \int_{-\infty}^{+\infty} x^4 e^{-\frac{x^2}{\sigma^2}} dx = \frac{3}{4} \sqrt{\pi} \sigma^5$$
 (A.20)

$$I_6 = \int_{-\infty}^{+\infty} x^6 e^{-\frac{x^2}{\sigma^2}} dx = \frac{15}{8} \sqrt{\pi} \sigma^7$$
 (A.21)

$$I_8 = \int_{-\infty}^{+\infty} x^8 e^{-\frac{x^2}{\sigma^2}} dx = \frac{105}{16} \sqrt{\pi} \sigma^9$$
 (A.22)

A.2.4 Die Funktionen $P^{(k)}(s)$

$$P(s) = \lambda(s)t + sy + n \log s$$

$$P'(s) = \lambda'(s)t + y + \frac{n}{s}$$

$$P''(s) = \lambda'''(s)t - \frac{n}{s^2}$$

$$P''''(s) = \lambda''''(s)t + 2\frac{n}{s^3}$$

$$P''''(s) = \lambda''''(s)t - 6\frac{n}{s^4}$$

A.2.5 Funktionen für Approximation B

Funktionen aus dem Polynomansatz für die Korrekturfunktionen der Approximation B (Abschnitt 3.11):

$$F_{\pi}(E) = a[\mu(s, \epsilon/E) \cdot E]^{-(s+1)} \tag{A.23}$$

$$\mu(s, \epsilon/E) = 1 + m_1(s)\epsilon/E + m_2(s)(\epsilon/E)^2 \tag{A.24}$$

$$m_1 = 1/F(s,1)$$
 (A.25)

$$m_2 = m_1^2 \frac{s+2}{2} - m_1 \frac{s+2}{F(s,2)} \tag{A.26}$$

$$F(s,n) = \lambda(s) + A(s+n) - \frac{B(s+n)C(s+n)}{\sigma_0 + \lambda(s)}$$
(A.27)

$$F_{\gamma}(E) = a \frac{C(s)}{\sigma_0 + \lambda(s)} \frac{1}{E} [\nu(s, \epsilon/E) \cdot E]^{-s}$$
(A.28)

$$\nu(s, \epsilon/E) = 1 + n_1(s)\epsilon/E + n_2(s)(\epsilon/E)^2$$
(A.29)

$$n_1 = \frac{s+1}{s} \frac{C(s+1)}{C(s)} m_1 \tag{A.30}$$

$$n_2 = \frac{s+1}{2}n_1^2 + \frac{C(s+2)}{C(s)} \left(\frac{s+1}{s}m_2 - \frac{(s+1)(s+2)}{2s}m_1^2\right)$$
 (A.31)

$$F_{\Pi}(E) = \frac{a}{s} [\rho(s, \epsilon/E) \cdot E]^{-s} \tag{A.32}$$

$$\rho(s, \epsilon/E) = 1 + r_1(s)\epsilon/E + r_2(s)(\epsilon/E)^2$$
(A.33)

$$r_1 = m_1 \tag{A.34}$$

$$r_2 = \frac{s+1}{s+2}m_2 \tag{A.35}$$

 $\mathbf{K_1}$ Die Funktion K_1 liegt nur als Tabelle vor:

s	0	1	2	3	4	5	6
$K_1(s,-s)$	1.00	2.29	3.45	5.98	10.61	18.15	29.19

Anhang B

Monte-Carlo-Simulation

Hier sind einige Ergänzungen und Vertiefungen zur Monte-Carlo-Simulation (Kapitel 4) zusammengefasst.

B.1 Grundlagen der Monte-Carlo-Simulation

B.1.1 Statistische Grundlagen

Zunächst werden einige spezielle Begriffe eingeführt. (Allgemeine Begriffe wie Wahrscheinlichkeit, etc. wollen wir als bekannt voraussetzen.) Eine Zufallsgröße oder Zufallsvariable ist eine Größe, die verschiedene Werte annehmen kann, von der wir aber nicht konkret wissen, welche Werte sie annehmen wird. Wir wissen jedoch, welche Werte sie überhaupt annehmen kann und wir kennen auch die Wahrscheinlichkeit, mit der sie Werte aus bestimmten Bereichen annehmen kann.

Etwas strenger ausgedrückt wird eine stetige Zufallsvariable ξ festgelegt durch einen Bereich (a,b) und eine Wahrscheinlichkeitsdichte¹ bzw. Verteilungssdichte p(x), so dass gilt: wenn $(a',b') \subset (a,b)$ ein Teilintervall ist, so ist die Wahrscheinlichkeit $P(a' < \xi < b')$, dass ξ einen Wert aus (a',b') annimmt, gerade

$$P(a' < \xi < b') = \int_{a'}^{b'} p(x)dx$$
 (B.1)

Dabei muss p(x) zwei Bedingungen erfüllen:

$$p(x) \ge 0 \text{ und } \int_a^b p(x)dx = 1 \tag{B.2}$$

Die Größe $F(x) = \int_{-\infty}^{x} p(x')dx'$ wird kumulierte Verteilungsfunktion² von p(x) oder Wahrscheinlichkeitsverteilung von ξ genannt.

¹Englisch: probability density function (pdf)

²Englisch: cumulative distribution function (cdf)

Definition: Der *Erwartungswert von* ξ ist definiert als

$$\mathsf{E}(\xi) = \mathsf{E}\xi = \langle \xi \rangle = \mu_{\xi} := \int_{a}^{b} x p(x) dx \tag{B.3}$$

Definition: Die *Varianz von* ξ ist definiert als

$$V(\xi) := \mathsf{E}((\xi - \mu_{\xi})^2) = \mathsf{E}((\xi - E(\xi))^2) \tag{B.4}$$

und ist ein Maß dafür, wie stark die Größe ξ um ihren Erwartungswert $\mathsf{E}\xi$ streut. Man kann mit einigen leicht zu beweisenden Rechenregeln zur Varianz zeigen, dass $V(\xi) = \mathsf{E}((\xi - \mathsf{E}(\xi))^2) = \mathsf{E}(\xi^2) - (\mathsf{E}(\xi))^2$, was zur konkreten Berechnung sehr hilfreich ist, da die Summen $\mathsf{E}(\xi^2)$ und $\mathsf{E}(\xi)$ zunächst getrennt berechnet werden können, ohne dass man vorher wissen muss, wieviele Summanden vorliegen.

Definition: Die Standardabweichung von ξ ist definiert als

$$\sigma_{\xi} := \sqrt{V(\xi)} \tag{B.5}$$

und ist ein Maß dafür, wie stark die Größe ξ um ihren Erwartungswert $\mathsf{E}\xi$ streut, hat im Gegensatz zur Varianz aber dieselbe Einheit wie die Größe ξ .

Bemerkung: Man kann mit einer beliebigen stetigen Funktion f(x) aus der Zufallsvariablen ξ eine neue Zufallsvariable $\eta := f(\xi)$ gewinnen. Man kann zeigen, dass dann $\mathsf{E}(\eta) = \mathsf{E}(f(\xi)) = \int_a^b f(x) p(x) dx$ ist.

Beispiel 1: Eine im Intervall [0,1] definierte Zufallsgröße u nennt man in (0,1) gleichverteilt, wenn p(u) = 1 ist. (Wir schreiben kurz: $u \in U(0,1)$.) Denn wenn $(a',b') \subset (0,1)$ ist, so ist $P(a' < u < b') = \int_{a'}^{b'} p(u) du = b' - a'$, also gleich der Länge des Teilintervalls. Teilt man nun (0,1) in mehrere gleichgroße Teilintervalle, so ist die Wahrscheinlichkeit, dass u in einem bestimmten Teilintervall liegt, für alle Teilintervalle gleich.

Beispiel 2: Eine im Intervall $(-\infty, \infty)$ definierte Zufallsgröße x nennt man normal-verteilt oder $gau\beta verteilt$, wenn $p(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ ist. Man kann dann ausrechnen, dass $\mathsf{E}(x) = \mu$ und $V(x) = \sigma^2$ ist.

B.1.2 Auslosen einer stetigen Zufallsgröße mit Hilfe einer gleichverteilten Zufallsgröße

Mit allen Programmiersprachen lassen sich auf PCs Folgen von gleichverteilten Zufallsvariablen erzeugen. Genaugenommen sind dies nur Pseudo-Zufallsvariablen. Das soll bedeuten, dass diese Folgen echten Zufallsvariablen sehr ähnlich sind. Auf technische Details soll hier aber nicht eingegangen werden.

In diesem Abschnitt wird vielmehr eine Möglichkeit vorgestellt, wie man aus einer gleichverteilten Zufallsvariablen eine beliebige anders verteilte Zufallsvariable konstruieren kann, sofern deren Wahrscheinlichkeitsdichte "einfach genug" ist.

Ziel ist es, eine Zufallsgröße ξ zu konstruieren, deren Werte in einem Intervall (a, b) liegen und deren Wahrscheinlichkeitsdichte p(x) ist (d.h. a, b und p(x) sind frei wählbar, sofern sie die Bedingungen an eine Zufallsgröße erfüllen).

Wir orientieren uns im Folgenden an [45]. Deshalb wollen wir wie dort die gleichverteilte Zufallsgröße mit γ bezeichnen. Ausgangspunkt ist die Formel:

$$\int_{a}^{\xi} p(x)dx = \gamma \tag{B.6}$$

Sie definiert ξ und wir werden nun zeigen, dass ξ die geforderten Eigenschaften hat. Wir definieren $y(x) := \int_a^x p(u)du$. Für y gilt: y(a) = 0, y(b) = 1 und y'(x) = p(x) > 0 (die zweite und dritte Gleichung gilt, da p eine Wahrscheinlichkeitsdichte auf (a, b) ist). Daraus folgt: y(x) wächst (streng) monoton von 0 bis 1 für x von a nach b. Daraus folgt:

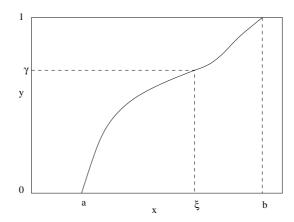


Abbildung B.1: Umrechnung einer gleichverteilten Zufallsgröße γ in eine beliebig verteilte Zufallsgröße ξ

Gleichung (B.6) hat für vorgegebenes $\gamma \in (0,1)$ genau eine Lösung für ξ (und zwar ist dann dieses $\xi \in (a,b)$).

Wählt man nun ein beliebiges Teilintervall $(a',b') \subset (a,b)$, so gilt für die Punkte $x \in (a',b')$ trivialerweise a' < x < b' und dementsprechend gilt für die zugehörigen y = y(x) gerade $0 \le y(a') < y < y(b') \le 1$. Die Wahrscheinlichkeit, dass ξ in (a',b') liegt, ist also gleich der Wahrscheinlichkeit, dass γ in (y(a'),y(b')) liegt, also: $P(a' < \xi < b') = P(y(a') < \gamma < y(b'))$

Hier wollen wir nun benutzen, dass γ eine gleichverteilte Zufallsvariable sein soll. Dann ist nämlich $P(y(a') < \gamma < y(b')) = y(b') - y(a')$. Die rechte Seite können wir aber auch anders schreiben: $y(b') - y(a') = \int_{a'}^{b'} p(x) dx$. Insgesamt erhalten wir:

$$P(a' < \xi < b') = \int_{a'}^{b'} p(x)dx$$
 (B.7)

Dies bedeutet aber gerade, dass die Zufallsvariable ξ die Wahrscheinlichkeitsdichte p(x) besitzt. Genau solch eine Größe wollten wir konstruieren.

Jetzt fehlt uns noch eine konkrete Rechenvorschrift, wie man ξ (auf einem Computer) berechnen kann. Hier hilft wieder Gleichung (B.6). Man kann versuchen, sie nach ξ aufzulösen, was in einigen Fällen funktioniert, wenn p einfach genug ist. "Einfach genug"

bedeutet, man muss p integrieren können, d.h. eine Stammfunktion P mit P'(x) = p(x) muss existieren. Dann ist $\gamma = P(\xi) - P(a)$. Dies lässt sich nach ξ auflösen, wenn P umkehrbar ist, also P^{-1} existiert. Dies ergibt dann also die Rechenvorschrift, mit der wir die gewünschte Zufallsvariable ξ erzeugen können, indem wir für γ die computergenerierte gleichverteilte Zufallsvariable einsetzen:

$$\xi = P^{-1}(P(a) + \gamma) \tag{B.8}$$

B.1.3 Beispiel einer stetigen Zufallsgröße

Beispiel 1: Als erstes Beispiel wollen wir nach dieser Methode aus $\gamma \in U(0,1)$ die Zufallsgröße η erzeugen, deren Werte zwischen a und b gleichverteilt sein sollen, d.h. deren Wahrscheinlichkeitsdichte $p(x) = \frac{1}{b-a}$ sein soll. Dass dies eine Zufallsvariable charakterisiert, lässt sich leicht nachrechnen. Es ist $P(x) = \frac{x}{b-a}$ und $P^{-1}(y) = y(b-a)$ und damit ergibt sich nach der Vorschrift (B.8)

$$\eta = a + \gamma \cdot (b - a),\tag{B.9}$$

wie man leicht nachrechnet. In diesem einfachen Beispiel leuchtet das Resultat fast schon intuitiv ein.

B.1.4 Beispiel einer exponentialverteilten Zufallsgröße

Beispiel 2: Die folgende Zufallsgröße benötigen wir für die Kaskadengleichungen. Wir wollen eine Zufallsgröße T erzeugen, deren Werte zwischen 0 und ∞ liegen sollen und deren Wahrscheinlichkeitsdichte $p(x) = ae^{-ax}$ sein soll. Diese Wahrscheinlichkeitsdichte gehört zur Exponentialverteilung.

Wir wollen noch nachprüfen, ob dies eine zulässige Wahrscheinlichkeitsdichte ist. Man sieht, dass p(x)>0, also bleibt zu zeigen, dass $\int_0^\infty p(x)dx=1$ ist. Die Stammfunktion von p ist $P(x)=-e^{-ax}$ und damit ist $\int_0^\infty p(x)dx=\int_0^\infty ae^{-ax}dx=\left[-e^{-ax}\right]_0^\infty=-0-(-e^0)=1$.

Es ist also $P(x) = -e^{-ax}$ und weiter ergibt sich $P^{-1}(y) = -\frac{1}{a}\log(-y)$. Aus einer gleichverteilten Zufallsgröße u ergibt sich dann aus (B.8) folgende Rechenvorschrift, um die exponentialverteilte Zufallsgröße T zu berechnen: $T = -\frac{1}{a}\log(1-u)$ Die Zufallsgröße (1-u) ist wieder eine gleichverteilte Zufallsgröße in (0,1), man kann dies also noch vereinfachen und durch u ersetzen, womit sich ergibt:

$$T = -\frac{1}{a}\log u \tag{B.10}$$

B.2 Die Delta-Distribution δ

Wir geben hier die Definition und einige Rechenegeln für die δ -Distribution (oft auch: δ -Funktion oder δ -Verteilung) an. Definition (ϕ ist eine Testfunktion):

$$\delta: \ \phi \longrightarrow \phi(0) \ \forall \phi$$
 (B.11)

Definition anschaulich:

$$\delta(x-a) = \begin{cases} 0; x \neq a \\ \infty; x = a \end{cases}$$
 (B.12)

$$\delta(t) = \frac{d}{dt}\Theta(t) \tag{B.13}$$

$$\int \delta(x)\phi(x) = \phi(0) \tag{B.14}$$

Hintereinanderausführung:

$$\int_{-\infty}^{\infty} \phi(x)\delta(g(x))dx = \sum_{i=0}^{n-1} \frac{\phi(x_i)}{|g'(x_i)|}$$
(B.15)

wobei x_i die einfachen Nullstellen von g(x) sind.

Aus 3.5 und A.2 wissen wir, dass $M\{\delta(E-E_0)\}(s)=E_0^s$, woraus mit der inversen Mellin-Transformation folgt:

$$\delta(E - E_0) = \frac{1}{2\pi i} \int_C \frac{E_0^s}{E^{s+1}} ds = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{E_0^s}{E^{s+1}} ds$$
 (B.16)

B.3 Bestimmung der Wahrscheinlichkeitsdichte einer Zufallsvariablen

Sei $\xi = f(u)$ die Vorschrift, aus einer Zufallsvariablen $u \in [a, b]$ mit Wahrscheinlichkeitsdichte $p_u(u)$ die Zufallsvariable ξ zu bilden. Die Wahrscheinlichkeitsdichte $p_{\xi}(\xi)$ von ξ ist dann

$$p_{\xi}(\xi) = \int_{a}^{b} \delta(\xi - f(u)) p_{u}(u) \ du \tag{B.17}$$

Dies lässt sich mit (B.15) und $g(u) = \xi - f(u)$ berechnen. Diese Formel lässt sich anschaulich so interpretieren: die δ -Funktion filtert alle u-Werte $\xi = f(u)$ heraus, die mit $p_u(u)$ gewichtet werden, die Summe ist dann gerade $p_{\xi}(\xi)$. Wir verzichten auf einen strengen Beweis.

Die Formel ist nützlich, um Transformationen zur Berechnung von Zufallsvariablen in Monte-Carlo-Simulationen zu kontrollieren. Wir geben noch ein Beispiel:

Sei $u \in U(0,1)$ (u gleichverteilt in (0,1)); dann ist $p_u(u) = 1$. Sei $\xi = u^2$ die Transformation, um die Zufallsvariable ξ zu berechnen. Dann ist $g(u) = \xi - u^2$, die einzige positive Nullstelle ist $u_0 = \sqrt{\xi}$ und es ist g'(u) = -2u. Es folgt:

$$p_{\xi}(\xi) = \int_{0}^{1} \delta(\xi - u^{2}) p_{u}(u) \ du = \frac{p_{u}(u_{0})}{|g'(u_{0})|} = \frac{1}{2\sqrt{\xi}}$$
 (B.18)

Anhang C

Numerik

C.1 Euler-Verfahren

Das (explizite) Euler-Verfahren oder auch Polygonzugverfahren ist wohl das einfachste numerische Verfahren zur Lösung einer gewöhnlichen Differentialgleichung und gehört zur Klasse der Einschrittverfahren [49, 50, 51].

Für eine Differentialgleichung y'(x) = f(x, y) mit Anfangswert $y(x_0) = y_0$ gewinnt man aus der Näherung $y'(x_i) \approx \frac{y(x_{i+1}) - y(x_i)}{x_{i+1} - x_i}$ die Rekursionsformel $y(x_{i+1}) = y(x_i) + h_i \cdot f(x_i, y(x_i))$, wobei $h_i := x_{i+1} - x_i$ ist.

Oft wählt man $h_i = h = const.$ Die Iteration wird mit dem Anfangswert $y(x_0)$ gestartet.

C.2 Runge-Kutta-Verfahren

Das klassische explizite Runge-Kutta-Verfahren 4. Ordnung hat folgende Form: Zu einer DGL¹ $\phi' = f(\phi)$ mit AW $\phi(0) = \phi_0$ lautet die Rekursionsvorschrift:

$$\phi(t + \Delta t) := \phi(t) + \Delta t \mathcal{S}(\phi(t); \Delta t) \tag{C.1}$$

mit (Abkürzung $\phi = \phi(t)$)

$$k_{1} := f(\phi)$$

$$k_{2} := f(\phi + \frac{1}{2}\triangle t k_{1})$$

$$k_{3} := f(\phi + \frac{1}{2}\triangle t k_{2})$$

$$k_{4} := f(\phi + \triangle t k_{3})$$
und damit $S(\phi; \triangle t) := \frac{1}{6}k_{1} + \frac{1}{3}k_{2} + \frac{1}{3}k_{3} + \frac{1}{6}k_{4}$
(C.2)

Die Rekursion wird mit $\phi = \phi_0$ gestartet. Für weitere Details siehe [49] und [50].

¹Die allgemeinere Form ist $\phi'(t) = f(\phi, t)$; wir beschränken uns hier schon auf den Fall, dass die rechte Seite f nicht explizit von t abhängt, wie es bei der Kaskadengleichung der Fall ist. Man nennt eine solche DGL autonomes Anfangswertproblem.

C.3 Charakteristikenverfahren für partielle DGLs

Hier wird die Idee der Charakteristikenverfahren in dem Umfang, wie wir sie zur Behandlung der Kaskadengleichung mit Ionisationsverlusten benötigen, kurz umrissen. Für Details verweisen wir auf [52, 53, 54]. Ein Beispiel für eine partielle DGL, die mit einem Charakteristikenansatz numerisch gelöst werden kann, ist die quasilineare partielle DGL 1. Ordnung für die Unbekannte u:

$$u_t + a(x, t, u)u_x = b(x, t, u) \text{ mit } u(x, t = t_0) = u_0(x) \text{ wobei } u = u(x, t)$$
 (C.3)

x und t werden als Funktionen einer neuen Variablen s angesehen, d.h. x = x(s) und t = t(s) und u = u(x(s), t(s)) = u(s). Dann ist

$$\frac{du}{ds} = \frac{\partial u}{\partial t}\frac{\partial t}{\partial s} + \frac{\partial u}{\partial x}\frac{\partial x}{\partial s} = u_t\frac{\partial t}{\partial s} + u_x\frac{\partial x}{\partial s} = b(x, t, u) \tag{C.4}$$

Aus dem Vergleich mit (C.3) folgt:

$$\frac{du}{ds} = b(x, t, u) \; ; \; \frac{\partial t}{\partial s} = 1 \; ; \; \frac{\partial x}{\partial s} = a(x, t, u)$$
 (C.5)

Daraus schliesst man t = s. Damit lassen sich zwei Approximationen herleiten:

$$\frac{du}{ds} = \frac{du}{dt} = b(x, t, u) \Rightarrow du = b dt \Rightarrow \Delta u \approx b \Delta t$$
 (C.6)

und

$$\frac{dx}{ds} = \frac{dx}{dt} = a(x, t, u) \Rightarrow dx = a dt \Rightarrow \Delta x \approx a \Delta t \tag{C.7}$$

Die Kurve C: c(s) = (x(s), t(s), u(s)) wird Charakteristik genannt, wenn in jedem Punkt s die pDGL (C.3) gilt. Mit den oben hergeleiteten Approximationen kann man nun versuchen, dem Verlauf einer Charakteristik ausgehend von einem Anfangswert $(x, t = 0, u_0(x))$ zu folgen. Idee: Berechne die Richtung bzw. Steigung der Charakteristik im Punkt $P_0 = (x_0, t_0, u_0)$, gehe ein Stück Δt in die t-Richtung und setze

$$u(x_0 + \Delta x, t_0 + \Delta t) \leftarrow u_0 + \Delta u, \tag{C.8}$$

wobei $\triangle x$ und $\triangle u$ gemäß der obigen Approximation berechnet werden: $\triangle u \leftarrow b \triangle t$ und $\triangle x \leftarrow a \triangle t$.

Ist übrigens $a\equiv 0$, d.h. liegt nur eine gewöhnliche DGL vor, so entspricht das Verfahren dem Euler-Verfahren.

Ein Beispiel:

$$u_t + u_x = (x+t)\cos(tx) \text{ mit } u(x,t=0) = u_0(x) = 0$$
 (C.9)

Die exakte Lösung lautet: u(x,t) = sin(tx)

Als Anfangswertbereich wurde der Bereich $x \in [0, 4]$ in Abständen $\Delta x = 0.1$ gewählt und jede der 40 Charakteristiken wurde in $\Delta t = 0.1$ -Schritten bis t = 4 verfolgt. Das

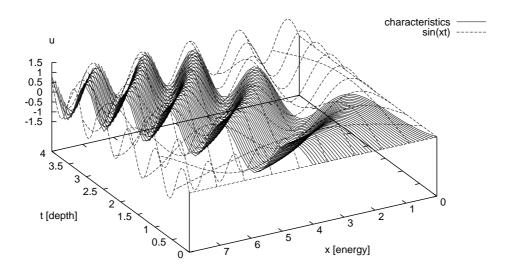


Abbildung C.1: Charakteristiken-Verfahren: numerische und exakte Lösung

Ergebnis ist in Abbildung C.1 dargestellt. Da in diesem Beispiel $a \equiv \text{const.} \equiv 1$ ist, ist auch $\Delta x = a \cdot \Delta t = \Delta t$. In der Abbildung C.2 haben deshalb die Projektionen der Charakteristiken auf die x-t-Ebene die Steigung 1.

In [54] sind zwei einfache Beispiele zu finden, die sehr schön die technischen Schwierigkeiten demonstrieren, die zum einen entstehen, wenn man zwei oder mehr Komponenten mit verschiedenen Verläufen der Charakteristiken hat, zum anderen die Probleme, die durch auseinandertreibende Gitter entstehen. Wir können uns hier ein Zitat aus demselben Band nicht verkneifen, mit dem die Schwierigkeiten zusammengefasst werden: "... wenn die Komponentenanzahl weiter zunimmt oder die Koeffizienten nicht mehr konstant sind, wachsen die Probleme in den Himmel." Trotzdem ist dies eine "hervorragende Methode".

C.4 Die Polylogarithmus-Funktion

Die Polylogarithmus-Funktion $Li_n(x)$ ist definiert als:

$$Li_n(x) = \sum_{k=1}^{\infty} \frac{x^k}{k^n}$$
 (C.10)

Die Bezeichnung in Mathematica [43] ist PolyLog[n, x]. Die Nielsensche verallgemeinerte Polylogarithmus-Funktion oder auch Hyperlogarithmus $S_{n,m}(x)$ ist definiert als:

$$S_{n,m}(x) = \frac{(-1)^{n+m-1}}{(n-1)!m!} \int_0^1 t^{-1} \log^{n-1} t \log^m (1-xt) dt$$
 (C.11)

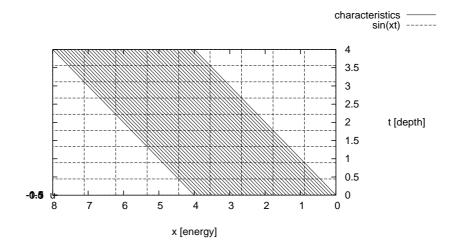


Abbildung C.2: Charakteristiken-Verfahren: Projektion auf die x-t-Ebene

Die Bezeichnung in Mathematica ist PolyLog[n, m, x] (mit drei Argumenten!), die Bezeichnung in der FORTRAN-CERNLIB [44] ist CGPLG.

Der Dilogarithmus $Li_2(x)$ genügt der Gleichung:

$$Li_2(x) = PolyLog[2, x] = \int_x^0 t^{-1} \log(1 - t) dt$$
 (C.12)

Allgemein gilt:

$$Li_n(x) = PolyLog[n, x] = S_{n-1,1}(x) = PolyLog[n-1, 1, x]$$
 (C.13)

Mit der Substitution $x \to xt$ lässt sich dies für n=2 leicht nachrechnen:

$$S_{1,1}(x) = (-1) \int_0^1 t^{-1} \log(1 - xt) dt = \int_x^0 t^{-1} \log(1 - t) dt$$
 (C.14)

Wir benötigen insbesondere $PolyLog[2,x] = PolyLog[1,1,x] = S_{1,1}(x)$ für die Integration von Ausdrücken der Art $\int \log(e^{\varepsilon} + x)d\varepsilon$, denn es ist

$$\int \log(e^{\varepsilon} + x) d\varepsilon = \int \log\left(\left(\frac{e^{\varepsilon}}{x} + 1\right)x\right) d\varepsilon$$
$$= \int \log\left(\frac{e^{\varepsilon}}{x} + 1\right) d\varepsilon + \int \log x d\varepsilon$$
$$= \int \log\left(\frac{e^{\varepsilon}}{x} + 1\right) d\varepsilon + \log x \int d\varepsilon$$

Mit der Substitution $s(\varepsilon) = -e^{\varepsilon}/x$, woraus folgt $\frac{ds}{d\varepsilon} = -e^{\varepsilon}/x = s$, ergibt sich

$$\int_{\varepsilon_{1}}^{\varepsilon_{2}} \log(\frac{e^{\varepsilon}}{x} + 1) d\varepsilon = \int_{s(\varepsilon_{1})}^{s(\varepsilon_{2})} s^{-1} \log(1 - s) ds$$

$$= -\int_{s(\varepsilon_{2})}^{0} s^{-1} \log(1 - s) ds + \int_{s(\varepsilon_{1})}^{0} s^{-1} \log(1 - s) ds$$

$$= -Li_{2}(s(\varepsilon_{2})) + Li_{2}(s(\varepsilon_{1}))$$

$$= -Li_{2}(-e^{\varepsilon_{2}}/x) + Li_{2}(-e^{\varepsilon_{1}}/x)$$
(C.15)

und damit

$$\int_{\varepsilon_{1}}^{\varepsilon_{2}} \log(e^{\varepsilon} + x) d\varepsilon = \left(\varepsilon \log x - Li_{2}(\frac{-e^{\varepsilon}}{x}) \right) \Big|_{eps = \varepsilon_{1}}^{\varepsilon = \varepsilon_{2}}$$

$$= (\varepsilon_{2} - \varepsilon_{1}) \log x - Li_{2}(\frac{-e^{\varepsilon_{2}}}{x}) + Li_{2}(\frac{-e^{\varepsilon_{1}}}{x}) \qquad (C.16)$$

Für $x \le 1$ ist $Li_2(x) = PolyLog[2, x]$ reell, für x > 1 wird es echt imaginär. Aus (C.15) folgt insbesondere auch:

$$\frac{dLi_2(s)}{ds} = -\frac{\log(1-s)}{s} \tag{C.17}$$

In der Implementierung des numerischen Lösungsverfahrens für die Kaskadengleichung wurde eine Implementierung der CERNLIB benutzt, die mit f2c von FORTRAN nach C/C++ portiert wurde.

C.5 Integrale für die Systemmatrizen des Charakteristikenverfahrens

Die expliziten Integrale (5.102) bis (5.117) aus Abschnitt 5.9, Seite 101 (jeweils mit $m=1,2,\,n=0,1,\,k=1,\ldots,4$):

$$a_{1,j}^{\mathcal{J}_0} = \int_{\varepsilon_j}^{\varepsilon_{j+1}} d\varepsilon = (\varepsilon_{j+1} - \varepsilon_j)$$
 (C.18)

$$a_{2,j}^{\mathcal{J}_0} = \int_{\varepsilon_j}^{\varepsilon_{j+1}} (\varepsilon - \varepsilon_j) d\varepsilon = \frac{1}{2} (\varepsilon_{j+1} - \varepsilon_j)^2$$
 (C.19)

$$a_{1,j}^{\mathcal{J}_1} = \int_{\varepsilon_j}^{\varepsilon_{j+1}} e^{\varepsilon} d\varepsilon = (e^{\varepsilon_{j+1}} - e^{\varepsilon_j})$$
 (C.20)

$$a_{2,j}^{\mathcal{J}_1} = \int_{\varepsilon_j}^{\varepsilon_{j+1}} (\varepsilon - \varepsilon_j) e^{\varepsilon} d\varepsilon = (\varepsilon_{j+1} - \varepsilon_j) e^{\varepsilon_{j+1}} - e^{\varepsilon_{j+1}} + e^{\varepsilon_j}$$
 (C.21)

$$b_{1,j}^{\mathcal{J}_0} = \int_{\varepsilon_j}^{\varepsilon_{j+1}} (-\alpha_{ion} e^{-\varepsilon} - \sigma_{e,\delta}) d\varepsilon = [\alpha_{ion} e^{-\varepsilon} - \sigma_{e,\delta} \varepsilon] |_{\varepsilon_j}^{\varepsilon = \varepsilon_{j+1}}$$
 (C.22)

$$b_{2,j}^{\mathcal{J}_0} = \int_{\varepsilon_j}^{\varepsilon_{j+1}} (\varepsilon - \varepsilon_j) (-\alpha_{ion} e^{-\varepsilon} - \sigma_{e,\delta}) d\varepsilon = [\alpha_{ion} e^{-\varepsilon - \varepsilon_j} (1 + \varepsilon) - \frac{1}{2} \sigma_{e,\delta}^2 \varepsilon]|_0^{\varepsilon = \varepsilon_{j+1} - \varepsilon_j}$$

$$(C.23)$$

$$b_{1,j}^{\mathcal{J}_{1}} = \int_{\varepsilon_{j}}^{\varepsilon_{j+1}} e^{\varepsilon} (-\alpha_{ion}e^{-\varepsilon} - \sigma_{e,\delta}) d\varepsilon = -\alpha_{ion}(\varepsilon_{j+1} - \varepsilon_{j}) - \sigma_{e,\delta}(e^{\varepsilon_{j+1}} - e^{\varepsilon_{j}}) \quad (C.24)$$

$$b_{2,j}^{\mathcal{J}_{1}} = \int_{\varepsilon_{j}}^{\varepsilon_{j+1}} (\varepsilon - \varepsilon_{j}) e^{\varepsilon} (-\alpha_{ion}e^{-\varepsilon} - \sigma_{e,\delta}) d\varepsilon = -\alpha_{ion} \frac{1}{2} (\varepsilon_{j+1} - \varepsilon_{j})^{2} - \sigma_{e,\delta} a_{2,j}^{\mathcal{J}_{1}} \quad (C.25)$$

$$e_{m,j}^{\mathcal{I}_n} = a_{m,j}^{\mathcal{I}_n}$$

$$f_{m,j}^{\mathcal{I}_n} = -\sigma_g a_{m,j}^{\mathcal{I}_n}$$
(C.26)
(C.27)

$$f_{m,j}^{\mathcal{I}_n} = -\sigma_g a_{m,j}^{\mathcal{I}_n} \tag{C.27}$$

Die Doppelintegrale $I_{ck}^{\mathcal{J}_n},\,I_{dk}^{\mathcal{J}_n}$ und $I_{gk}^{\mathcal{J}_n}$ folgen auf den nächsten Seiten.

Bemerkung: Bei einer Implementierung ist darauf zu achten, dass $\int_a^b \frac{1}{x} dx = \log|x| \mid_a^b$ ist. Für negative Argumente a, b ist dann $\log|x| \mid_a^b = \log(-b) - \log(-a)$ zu beachten. Ähnliches gilt für die PolyLog-Funktion (siehe Abschnitt C.4).

$$\begin{split} I_{c1}^{\tilde{G}}(\varepsilon_{1},\varepsilon_{2},\lambda_{\Delta}\varepsilon,\varepsilon_{3}) &= \int_{\varepsilon_{1}}^{\varepsilon_{2}} \int_{\varepsilon^{+}\lambda_{\Delta}\varepsilon}^{\varepsilon^{2}} e^{-\varepsilon^{2}} \varphi_{0}(1-e^{-\varepsilon^{2}}) d\varepsilon' d\varepsilon = \\ \left[\frac{1}{4e^{2(s_{1}+\lambda_{\Delta}\varepsilon)}} \left\{ e^{2(\varepsilon+\lambda_{\Delta}\varepsilon)} + 4e^{\varepsilon+\varepsilon_{3}+2\lambda_{\Delta}\varepsilon} \left(-1+M_{\psi}\right) + 2e^{2\varepsilon_{3}} \left(-\varepsilon - 2e^{\lambda_{\Delta}\varepsilon}\varepsilon \left(-1+M_{\psi}\right) - 2e^{2\lambda_{\Delta}\varepsilon} M_{\psi} \right) \right. \\ \cdot \left(\varepsilon \left(\log(1-e^{-\varepsilon^{3}}) - \log(-1+e^{-\varepsilon^{3}}) + \log(-1+e^{-\lambda_{\Delta}\varepsilon}) \right) + PolyLog(2,e^{-\varepsilon_{3}}) \right) \right] \Big|_{\varepsilon_{1}}^{\varepsilon_{2}} \\ \cdot \left(\varepsilon \left(\log(1-e^{\varepsilon^{-\varepsilon}}) - \log(-1+e^{-\varepsilon^{3}}) + \log(-1+e^{-\lambda_{\Delta}\varepsilon}) \right) + PolyLog(2,e^{-\varepsilon_{3}}) \right) \Big|_{\varepsilon_{1}}^{\varepsilon_{2}} \\ - \left[\frac{1}{6} \left\{ e^{3\varepsilon-2\varepsilon_{3}} + 3e^{2\varepsilon-\varepsilon_{3}} \left(-1+M_{\psi}\right) - 3e^{-2\lambda_{\Delta}\varepsilon} \left(1+2e^{\lambda_{\Delta}\varepsilon} \left(-1+M_{\psi}+e^{\lambda_{\Delta}\varepsilon} M_{\psi}\right) \right) \right. \\ - \left. 6e^{2\delta} M_{\psi} \log(e^{\varepsilon} - e^{2\delta}) + 6e^{\varepsilon} M_{\psi} \left(\log(-1+e^{-\varepsilon}) \right) \log(-1+e^{-\lambda_{\Delta}\varepsilon}) \right) \right\} \Big|_{\varepsilon_{1}}^{\varepsilon_{2}} \\ - \left. 6e^{2\delta} M_{\psi} \log(e^{\varepsilon} - e^{2\delta}) + 6e^{\varepsilon} M_{\psi} \left(\log(-1+e^{-\varepsilon}) \right) \left[e^{-\varepsilon} \right] \right] \Big|_{\varepsilon_{2}}^{\varepsilon_{2}} \\ - \left. \left[\frac{1}{4}e^{2(\varepsilon-\varepsilon)} + e^{\varepsilon-\varepsilon'} \left(M_{\psi} - 1 \right) - M_{\psi} PolyLog(2,e^{-\varepsilon'}) \right] \Big|_{\varepsilon_{2}}^{\varepsilon_{2}} + 1 \Big|_{\varepsilon_{1}}^{\varepsilon_{2}} + 1 \Big|_{\varepsilon_{1}}^{\varepsilon_{2}} + 1 \Big|_{\varepsilon_{2}}^{\varepsilon_{2}} + 1 \Big|$$

$$I_{c3}^{J_0}(\varepsilon_{1}, \varepsilon_{2}, \lambda_{\Delta}\varepsilon, \varepsilon_{j+1}) = \int_{\varepsilon_{1}}^{\varepsilon_{2}} \int_{\varepsilon_{1,\Delta}}^{\varepsilon_{j+1}} (\varepsilon' - \varepsilon_{j+1}) e^{\varepsilon - \varepsilon'} \varphi_{0}(1 - e^{\varepsilon - \varepsilon'}) d\varepsilon' d\varepsilon =$$

$$\left[\frac{1}{8 e^{2(\varepsilon_{j+1} + \lambda_{\Delta}\varepsilon)}} \left\{ e^{2(\varepsilon + \lambda_{\Delta}\varepsilon)} + 8 e^{\varepsilon + \varepsilon_{j+1} + 2 \lambda_{\Delta}\varepsilon} (-1 + M_{\psi}) + 2 e^{2\varepsilon_{j+1}} + 2 \lambda_{\Delta}\varepsilon \right\} - 2 e^{2\lambda_{\Delta}\varepsilon} \left((1 + \varepsilon - 2\varepsilon_{j+1} + 2\lambda_{\Delta}\varepsilon) \right) - 2 e^{\lambda_{\Delta}\varepsilon} \left((2 + \varepsilon - 2\varepsilon_{j+1} + 2\lambda_{\Delta}\varepsilon) \right) - 2 e^{2\lambda_{\Delta}\varepsilon} M_{\psi} \left(\varepsilon (\varepsilon - 2\varepsilon_{j+1} + 2\lambda_{\Delta}\varepsilon) \log(1 - \cosh(\lambda_{\Delta}\varepsilon) + \sinh(\lambda_{\Delta}\varepsilon)) \right) - 2 \varepsilon PolyLog(2, e^{-\lambda_{\Delta}\varepsilon}) + 2 PolyLog(3, e^{\varepsilon - \varepsilon_{j+1}}) \right) \right\} \right]_{\varepsilon_{1}}^{\varepsilon = \varepsilon_{2}}$$

$$-2 \varepsilon PolyLog(2, e^{-\lambda_{\Delta}\varepsilon}) + 2 PolyLog(3, e^{\varepsilon - \varepsilon_{j+1}}) \right) \right\} \left[\int_{\varepsilon_{1}}^{\varepsilon_{2}} \left(\varepsilon_{1}, \varepsilon_{2}, \lambda_{\Delta}\varepsilon, \varepsilon_{j+1} \right) \right] - 2 \varepsilon PolyLog(2, e^{-\lambda_{\Delta}\varepsilon}) + 2 PolyLog(3, e^{\varepsilon - \varepsilon_{j+1}}) \right) \right\} \left[\int_{\varepsilon_{1}}^{\varepsilon_{2}} \left(\varepsilon_{1}, \varepsilon_{2}, \lambda_{\Delta}\varepsilon, \varepsilon_{j+1} \right) \right] - 2 \varepsilon PolyLog(2, e^{-\varepsilon_{j+1}}) + 2 \lambda_{\Delta}\varepsilon \right) - 12 e^{\varepsilon + 2\varepsilon_{j+1}} + \lambda_{\Delta}\varepsilon \right) \left(-1 + M_{\psi} \right) + 12 e^{3\varepsilon_{j+1}} + 2 \lambda_{\Delta}\varepsilon \right) - 12 e^{\varepsilon + 2\varepsilon_{j+1}} + \lambda_{\Delta}\varepsilon \right] \log(1 - \cosh(\lambda_{\Delta}\varepsilon) + \sinh(\lambda_{\Delta}\varepsilon)) + PolyLog(2, e^{-\varepsilon_{j+1}}) + (-1 + \varepsilon - \varepsilon_{j+1} + \lambda_{\Delta}\varepsilon) \log(1 - \cosh(\lambda_{\Delta}\varepsilon) + \sinh(\lambda_{\Delta}\varepsilon)) + PolyLog(2, e^{-\varepsilon_{j+1}}) - PolyLog(2, e^{-\varepsilon_{j+1}}) - PolyLog(2, e^{-\varepsilon_{j+1}}) - PolyLog(2, e^{-\varepsilon_{j+1}}) - PolyLog(2, e^{-\lambda_{\Delta}\varepsilon}) \right] \right]$$

$$\int_{c_4}^{J_0} (\varepsilon_j, \varepsilon_{j+1}, \varepsilon_k, \varepsilon_{k+1}) = \int_{\varepsilon_j}^{\varepsilon_{j+1}} \int_{\varepsilon_k}^{\varepsilon_{k+1}} (\varepsilon' - \varepsilon_k) e^{\varepsilon - \varepsilon'} \varphi_0 (1 - e^{\varepsilon - \varepsilon'}) d\varepsilon' d\varepsilon =$$

$$\left[\left[\frac{1}{8 e^{2\varepsilon}} \left\{ e^{2\varepsilon} (1 + 2\varepsilon' - 2 eps_k) + 8 e^{\varepsilon + \varepsilon'} (1 + \varepsilon' - eps_k) (-1 + M_{\psi}) \right\} \right]_{\varepsilon_k}^{\varepsilon' = \varepsilon_{k+1}} \right] \left[e^{-\varepsilon_{j+1}} \right]$$

$$-8 e^{2\varepsilon'} M_{\psi} \left((\varepsilon' - eps_k) Poly Log(2, e^{\varepsilon - \varepsilon'}) + Poly Log(3, e^{\varepsilon - \varepsilon'}) \right) \right\} \left[\left[\frac{1}{\varepsilon_k} \right] \right]_{\varepsilon_k}^{\varepsilon' = \varepsilon_{k+1}}$$

$$-18 e^{2\varepsilon'} M_{\psi} \left((\varepsilon' - eps_k) Poly Log(2, e^{\varepsilon - \varepsilon'}) + Poly Log(3, e^{\varepsilon - \varepsilon'}) \right) \right] \left[\left[\frac{1}{\varepsilon_k} \right] \right]_{\varepsilon_j}^{\varepsilon' = \varepsilon_{k+1}}$$

$$\left[\left[\frac{1}{12 e^{2\varepsilon'}} \left\{ e^{3\varepsilon} (1 + 2\varepsilon' - 2 eps_k) + 6 e^{2\varepsilon + \varepsilon'} (1 + \varepsilon' - eps_k) (-1 + M_{\psi}) \right\} \right] \right]_{\varepsilon_k}^{\varepsilon' = \varepsilon_{k+1}} \right]$$

$$-12 e^{3\varepsilon'} \left(-1 + \varepsilon' - eps_k \right) M_{\psi} \log(-1 + e^{\varepsilon - \varepsilon'}) - Poly Log(2, e^{\varepsilon - \varepsilon'}) \right) \right\} \right] \left| \left[e^{\varepsilon_{k+1}} \right] \right|_{\varepsilon_j}^{\varepsilon' = \varepsilon_{k+1}}$$

$$+12 e^{\varepsilon + 2\varepsilon'} M_{\psi} \left((-1 + \varepsilon' - eps_k) \left(-1 + \log(1 - e^{-\varepsilon'}) \right) - Poly Log(2, e^{\varepsilon - \varepsilon'}) \right) \right] \right|_{\varepsilon_j}^{\varepsilon' = \varepsilon_{k+1}}$$

$$I_{dl}^{\mathcal{D}}(\varepsilon_{j}, \varepsilon_{j+1}) = \int_{\varepsilon_{j}}^{\varepsilon_{j+1}} \int_{\varepsilon}^{\varepsilon_{j+1}} \int_{\varepsilon}^{\varepsilon_{j+1}} \int_{\varepsilon}^{\varepsilon_{j+1}} \int_{\varepsilon}^{\varepsilon_{j+1}} \int_{\varepsilon}^{\varepsilon_{j+1}} \int_{\varepsilon}^{\varepsilon_{j+1}} \int_{\varepsilon}^{\varepsilon_{j+1}} \int_{\varepsilon}^{\varepsilon_{j+1}} \int_{\varepsilon}^{\varepsilon_{j+1}} M_{\psi} + 9 e^{2 \varepsilon - 2 \varepsilon_{j+1}} M_{\psi} - 9 e^{\varepsilon - \varepsilon_{j+1}} (4 A_{\psi} + M_{\psi}) + 3 \varepsilon (12 A_{\psi} + M_{\psi}) \bigg] \bigg|_{\varepsilon_{j}}^{\varepsilon - \varepsilon_{j+1}} \int_{\varepsilon_{j}}^{\varepsilon_{j+1}} \int_{\varepsilon}^{\varepsilon_{j+1}} \int_{\varepsilon}$$

$$\begin{split} I_{\mathcal{B}}^{\mathcal{B}}(\varepsilon_{j},\varepsilon_{j+1}) &= \int_{\varepsilon_{j}}^{\varepsilon_{j+1}} \int_{\varepsilon_{j}}^{\varepsilon_{j+2}} (\varepsilon' - \varepsilon_{j}) e^{\varepsilon - \varepsilon'} \psi_{0}(e^{\varepsilon - \varepsilon'}) d\varepsilon' d\varepsilon = \\ \frac{1}{216} \left[2 T e^{2\varepsilon - 2\varepsilon_{j+1}} (1 - 2\varepsilon_{j} + 2\varepsilon_{j+1}) M_{\psi} - 8 e^{3\varepsilon - 3\varepsilon_{j+1}} (1 - 3\varepsilon_{j} + 3\varepsilon_{j+1}) M_{\psi} \\ -54 e^{\varepsilon - \varepsilon_{j+1}} (1 - \varepsilon_{j} + \varepsilon_{j+1}) (4A_{\psi} + M_{\psi}) + 3\varepsilon (36 A_{\psi} (2 + \varepsilon - 2\varepsilon_{j}) + (8 + 3\varepsilon - 6\varepsilon_{j}) M_{\psi}) \right] \Big|_{\varepsilon_{j}}^{\varepsilon = \varepsilon_{j+1}} \\ \frac{1}{72} \left[e^{\varepsilon} \left(2M_{\psi} + 6 e^{2\varepsilon - 2\varepsilon_{j+1}} (1 - 2\varepsilon_{j} + 2\varepsilon_{j+1}) M_{\psi} - 2 e^{3\varepsilon - 3\varepsilon_{j+1}} (1 - 3\varepsilon_{j} + 3\varepsilon_{j+1}) M_{\psi} \\ -9 e^{\varepsilon - \varepsilon_{j+1}} (1 - \varepsilon_{j} + \varepsilon_{j+1}) (4A_{\psi} + M_{\psi}) + 6 (\varepsilon - \varepsilon_{j}) (12 A_{\psi} + M_{\psi}) \right] \Big|_{\varepsilon_{j}}^{\varepsilon = \varepsilon_{j+1}} \\ -9 e^{\varepsilon - \varepsilon_{j+1}} (1 - \varepsilon_{j} + \varepsilon_{j+1}) (4A_{\psi} + M_{\psi}) + 6 (\varepsilon - \varepsilon_{j}) (12 A_{\psi} + M_{\psi}) \right] \Big|_{\varepsilon_{j}}^{\varepsilon = \varepsilon_{j+1}} \\ -5 e^{\varepsilon - \varepsilon_{j+1}} (1 - \varepsilon_{j} + \varepsilon_{j+1}) (4A_{\psi} + M_{\psi}) \Big|_{\varepsilon_{k}}^{\varepsilon = \varepsilon_{j+1}} (1 - 2\varepsilon_{k} + 2\varepsilon') M_{\psi} \\ -5 e^{\varepsilon - \varepsilon_{j+1}} (1 - \varepsilon_{k} + \varepsilon') (4A_{\psi} + M_{\psi}) \Big|_{\varepsilon_{k}}^{\varepsilon = \varepsilon_{j+1}} \Big|_{\varepsilon_{j+1}}^{\varepsilon = \varepsilon_{j+1}} \\ -5 e^{\varepsilon^{2\varepsilon'}} (1 - \varepsilon_{k} + \varepsilon') (4A_{\psi} + M_{\psi}) \Big|_{\varepsilon_{k}}^{\varepsilon = \varepsilon_{j+1}} \Big|_{\varepsilon_{j+1}}^{\varepsilon = \varepsilon_{j+1}} \\ -5 e^{\varepsilon^{2\varepsilon'}} (1 - \varepsilon_{k} + \varepsilon') (4A_{\psi} + M_{\psi}) \Big|_{\varepsilon_{k}}^{\varepsilon = \varepsilon'} \Big|_{\varepsilon_{j}}^{\varepsilon = \varepsilon_{j+1}} \Big|_{\varepsilon_{j}}^{\varepsilon = \varepsilon_{j}}^{\varepsilon = \varepsilon_{j}} \Big|_{\varepsilon_{j}}^{\varepsilon = \varepsilon_{j}}^{\varepsilon = \varepsilon_{j}} \Big|_{\varepsilon_{j}}^{\varepsilon = \varepsilon_{j}}^{\varepsilon = \varepsilon_{j}} \Big|_{\varepsilon_{j}}^{\varepsilon = \varepsilon_{j}}^{\varepsilon = \varepsilon_{j}}^{\varepsilon = \varepsilon_{j}}^{\varepsilon = \varepsilon_{j}}^{\varepsilon = \varepsilon_{j}}^{\varepsilon = \varepsilon_{j}}^{\varepsilon_{j}}^{\varepsilon = \varepsilon_{j}}^{\varepsilon = \varepsilon_{j}}^{\varepsilon = \varepsilon_{j}}^{\varepsilon = \varepsilon_{j}}^{\varepsilon = \varepsilon_{j}$$

$$\begin{split} I_{g1}^{\mathcal{D}}(\varepsilon_{j},\varepsilon_{j+1}) &= \int_{\varepsilon_{j}}^{\varepsilon_{j+1}} \int_{\varepsilon}^{\varepsilon_{j+1}} e^{-\varepsilon'} \varphi_{0}(e^{\varepsilon-\varepsilon'}) d\varepsilon' d\varepsilon = \\ &\left[\frac{-e^{2\,\varepsilon-2\,\varepsilon_{j+1}}}{4} + e^{\varepsilon-\varepsilon_{j+1}} M_{\psi} + \frac{\varepsilon\left(1-\left(2+\varepsilon-2\,\varepsilon_{j+1}\right)\,M_{\psi}\right)}{2} \right] \Big|_{\varepsilon_{j}}^{\varepsilon=\varepsilon_{j+1}} \\ I_{g1}^{\mathcal{J}}(\varepsilon_{j},\varepsilon_{j+1}) &= \int_{\varepsilon_{j}}^{\varepsilon_{j+1}} \int_{\varepsilon}^{\varepsilon_{j+1}} d\varepsilon' e^{-\varepsilon'} \varphi_{0}(e^{\varepsilon-\varepsilon'}) d\varepsilon' d\varepsilon = \\ &\frac{1}{6} \Big[e^{\varepsilon} \left(3-e^{2\,\varepsilon-2\,\varepsilon_{j+1}}+3\,e^{\varepsilon-\varepsilon_{j+1}}\,M_{\psi}-6\,\varepsilon\,M_{\psi}+6\,\varepsilon_{j+1}M_{\psi} \right) \Big] \Big|_{\varepsilon_{j}}^{\varepsilon=\varepsilon_{j+1}} \\ I_{g2}^{\mathcal{J}}(\varepsilon_{j},\varepsilon_{j+1},\varepsilon_{k},\varepsilon_{k+1}) &= \int_{\varepsilon_{j}}^{\varepsilon_{j+1}} \int_{\varepsilon_{k}}^{\varepsilon_{k+1}} e^{-\varepsilon'} \varphi_{0}(e^{\varepsilon-\varepsilon'}) d\varepsilon' d\varepsilon = \\ &\left[\left[\frac{-e^{2\,\varepsilon-2\,\varepsilon'}}{4} + e^{\varepsilon-\varepsilon'}\,M_{\psi}+\varepsilon\,\varepsilon'\,M_{\psi} \right] \Big|_{\varepsilon_{k}}^{\varepsilon'=\varepsilon_{k+1}} \Big|_{\varepsilon_{j}}^{\varepsilon=\varepsilon_{j+1}} \\ &\left[\left[\frac{-e^{2\,\varepsilon-2\,\varepsilon'}}{4} + e^{\varepsilon-\varepsilon'}\,M_{\psi}+\varepsilon\,\varepsilon'\,M_{\psi} \right] \Big|_{\varepsilon_{k}}^{\varepsilon'=\varepsilon_{k+1}} \Big|_{\varepsilon_{j}}^{\varepsilon=\varepsilon_{j+1}} \\ &\frac{1}{6} \Big[\left[e^{\varepsilon} \left(-e^{2\,\varepsilon-2\,\varepsilon'} + 3\,e^{\varepsilon-\varepsilon'}\,M_{\psi}+6\,\varepsilon'\,M_{\psi} \right) \right] \Big|_{\varepsilon_{k}}^{\varepsilon'=\varepsilon_{k+1}} \Big|_{\varepsilon_{j}}^{\varepsilon=\varepsilon_{j+1}} \end{aligned}$$

$$I_{g_3}^{\mathcal{A}}(\varepsilon_j, \varepsilon_{j+1}) = \int_{\varepsilon_j}^{\varepsilon_{j+1}} \left\{ e^{2\varepsilon} \left(-3 + 6\varepsilon_j - 6\varepsilon_{j+1} \right) + 24e^{\varepsilon + \varepsilon_{j+1}} \left(1 - \varepsilon_j + \varepsilon_{j+1} \right) M_{\psi} \right.$$

$$-2e^{2\varepsilon_{j+1}} \left\{ e^{2\varepsilon} \left(-3 + 6\varepsilon_j - 6\varepsilon_{j+1} \right) + 24e^{\varepsilon + \varepsilon_{j+1}} \left(1 - \varepsilon_j + \varepsilon_{j+1} \right) M_{\psi} \right.$$

$$-2e^{2\varepsilon_{j+1}} \left\{ e^{2\varepsilon} \left(-3 + 6\varepsilon_j - 6\varepsilon_{j+1} \right) + 24e^{\varepsilon + \varepsilon_{j+1}} \left(1 - \varepsilon_j + 6\varepsilon_j + 6\varepsilon_j \varepsilon_{j+1} - 3\varepsilon_{j+1} \right) M_{\psi} \right\} \right] \Big|_{\varepsilon_j}^{\varepsilon = \varepsilon_{j+1}}$$

$$-2e^{2\varepsilon_{j+1}} \left(e^{2\varepsilon} \left(-3 + 6\varepsilon_j - 6\varepsilon_j + 6\varepsilon_j \right) + 2(6 + \varepsilon \left(3 + \varepsilon - 3\varepsilon_j \right) - 6\varepsilon_j + 6\varepsilon_j \varepsilon_{j+1} - 3\varepsilon_{j+1} \right) M_{\psi} \right) \Big|_{\varepsilon_j}^{\varepsilon = \varepsilon_{j+1}}$$

$$-3e^{2\varepsilon_{j+1}} \left(1 - 2\varepsilon + 2\varepsilon_j + 2(2 + (\varepsilon - \varepsilon_j) + 6\varepsilon^{\varepsilon + \varepsilon_j} \right) \left(1 - \varepsilon_j + \varepsilon_{j+1} \right) M_{\psi} \right) \Big|_{\varepsilon_j}^{\varepsilon = \varepsilon_{j+1}}$$

$$-3e^{2\varepsilon_{j+1}} \left(1 - 2\varepsilon + 2\varepsilon_j + 2(2 + (\varepsilon - \varepsilon_{j+1}) \left(\varepsilon - 2\varepsilon_j + \varepsilon_{j+1} \right) M_{\psi} \right) \Big|_{\varepsilon_j}^{\varepsilon = \varepsilon_{j+1}}$$

$$-3e^{2\varepsilon_{j+1}} \left(1 - 2\varepsilon + 2\varepsilon_j + 2(2 + (\varepsilon - \varepsilon_{j+1}) \left(\varepsilon - 2\varepsilon_j + \varepsilon_{j+1} \right) M_{\psi} \right) \Big|_{\varepsilon_j}^{\varepsilon = \varepsilon_{j+1}} \Big|_{\varepsilon_j}^{\varepsilon = \varepsilon_j}^{\varepsilon = \varepsilon_j} \Big|_{\varepsilon_j}^{\varepsilon = \varepsilon_j} \Big|_{\varepsilon_j}^{\varepsilon = \varepsilon_j} \Big|_{\varepsilon_j}^{\varepsilon = \varepsilon_j}^{\varepsilon = \varepsilon_j} \Big|_{\varepsilon_j}^{\varepsilon = \varepsilon_j} \Big|_{\varepsilon_j}^{\varepsilon = \varepsilon_j}^{\varepsilon = \varepsilon_j} \Big|_{\varepsilon_j}^{\varepsilon = \varepsilon_j}^{\varepsilon = \varepsilon_j} \Big|_{\varepsilon_j}^{\varepsilon = \varepsilon_j}^{\varepsilon = \varepsilon_j} \Big|_{\varepsilon_j}$$

Anhang D

Ergänzungen

D.1 Achsenbeschriftung von Energiespektren-Grafiken

Energiespektren-Plots zeigen bei einer festen atmosphärischen Tiefe t den Teilchenfluss $\Phi(E,t) = dN/dE$ aufgetragen über E. Da die Gesamtteilchenzahl N_{tot} so definiert ist: $N_{tot}(t) = \int_0^\infty \Phi(E,t) \ dE$, entspricht die Fläche unter dem Graphen innerhalb eines Energieintervalls gerade der Anzahl der Teilchen innerhalb dieses Intervalls.

Die Energiespektren fallen sehr stark ab, deshalb ist es von Vorteil, den Energiebereich logarithmisch aufzutragen. Dies ist in der Bildserie D.1 gezeigt: links ist die normale Darstellung, rechts die doppelt logarithmierte Darstellung abgebildet.

Hier ist also die x-Achsen-Beschriftung einfach logarithmisch erfolgt. Leider verliert dadurch die Interpretation der Fläche unter dem Graphen ihre Bedeutung als Teilchenzahl

Die Umrechnung $N_{tot}(t) = \int_0^\infty \Phi(E,t) \ dE = \int_0^\infty \frac{dN}{dE} \ dE = \int_0^\infty \frac{dN}{d\log E} \ d\log E = \int_0^\infty \frac{dN}{d\varepsilon} \ d\varepsilon$ legt nun nahe, $\Phi^l = \frac{dN}{d\varepsilon}$ über $\varepsilon = \log E$ aufzutragen. Damit hat die Fläche urber dem Graphen wieder die Bedeutung der Teilchenzahl. Nun ist $\Phi^l = \frac{dN}{d\log E} = \frac{dN}{dE} \frac{dE}{d\log E} = \Phi \cdot E$. So kann man zwischen dem Fluss Φ und dem logarithmisch transformierten Fluss Φ^l umrechnen. Energiespektren-Grafiken sehen dann wie in der Bildserie D.2 aus: links ist die normale Darstellung, rechts die Darstellung nach logarithmischer Transformation der Energie abgebildet.

In dem gewählten Beispiel werden Einzelheiten der Graphen sichtbar, die bei den anderen Darstellungsarten versteckt bleiben, wie der Abfall der Spektren zu niederen Energien hin.

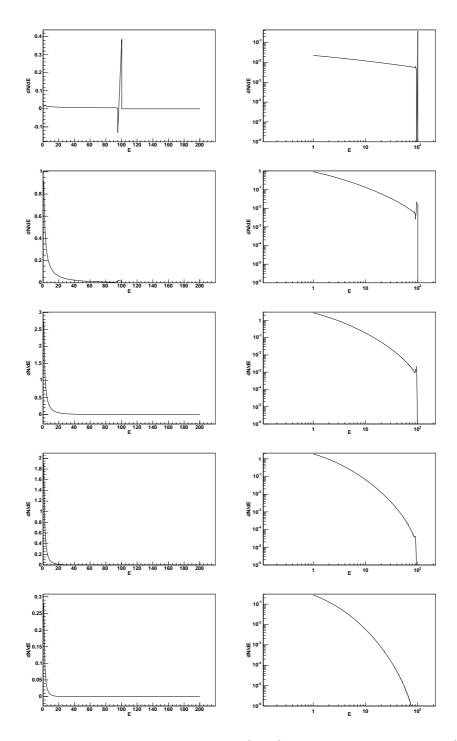


Abbildung D.1: Achsenbeschriftung: normal (links) und doppelt logarithmisch (rechts)

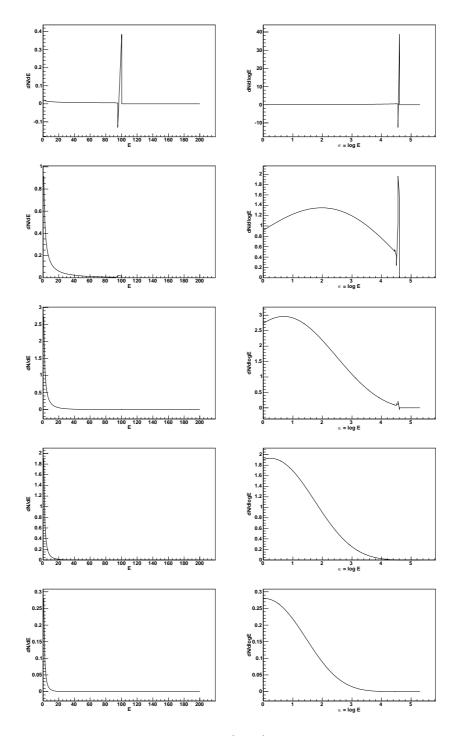


Abbildung D.2: Achsenbeschriftung: normal (links) und logarithmisch transformierte Energie (rechts)

D.2 o- und O-Notation

Definition o(g) Für eine Funktion f schreibt man f(x) = o(g(x)) (für $x \to \xi$), wenn gilt $\lim_{x\to\xi} \frac{|f(x)|}{g(x)} = 0$.

Definition O(g) Für eine Funktion f schreibt man f(x) = O(g(x)) (für $x \to \xi$), wenn ein $c \in \mathbb{R}^+$ existiert, so dass $\lim_{x \to \xi} \frac{|f(x)|}{g(x)} \le c$.

Oft betrachtet man die Grenzfälle $\xi=0$ oder $\xi=\infty$. Meistens lässt man die Abhängigkeitsvariable weg und schreibt f=o(g) oder f=O(g). In dieser Schreibweise gilt natürlich keine Gleichheitsrelation (aus $f=O(x^2)$ und $f=O(x^3)$ folgt nicht $O(x^2)=O(x^3)$), besser ist, es mengenmäßig zu betrachten: f=O(g) meint $f\in O(g)$, wobei $O(g)=\{h|\exists c\geq 0: \lim_{x\to\xi}\frac{|h(x)|}{g(x)}\leq c\}$

wobei $O(g) = \{h | \exists c \geq 0 : \lim_{x \to \xi} \frac{|h(x)|}{g(x)} \leq c\}$ Einige Beispiele $(\xi = \infty): f = x^2 \Rightarrow f = O(x^2); f = x^2 \Rightarrow f = O(x^3); f = x^2 \Rightarrow f = o(x^3);$ allgemein gilt $f = o(g) \Rightarrow f = O(g); f = x^2 + 2x + 1 \Rightarrow f = O(x^2);$ allgemein gilt für Polynome P vom Grad $n: P_n(x) = O(x^n)$.

D.3 Bezeichnungen und Abkürzungen

Die wichtigsten in dieser Arbeit verwendeten Bezeichnungen und Abkürzungen:

E: Energie

 ε : logarithmisch transformierte Energie $\varepsilon = \log E$

 E_{prim} : Energie des Primärteilchens

Index e bzw. g: Bezeichnung der Größen für die Elektronen- bzw. Photonenkomponente (z.B. $E_{prim,e}$: Energie des Primärelektrons; $E_{prim,g}$: Energie des Primärphotons)

t, X: Tiefe bzw. Säulendichte

Φ: Teilchenfluss

 Φ_T : Teilchenfluss der Teilchenart T

 Φ^l : logarithmisch transformierter Teilchenfluss

 $N_{tot}(t)$: Gesamtteilchenzahl in der Tiefe t

 $E_{tot}(t)$: Gesamtenergie in der Tiefe t

 X_{max} : Schauermaximum

 $N_{tot,max}$: Teilchenzahl im Schauermaximum

 X_0 : Strahlungslänge des Elektrons in Luft, $X_0 \approx 36.66 \frac{\text{g}}{\text{cm}^2}$

(p)DGL: (partielle) Differentialgleichung

LGS: lineares Gleichungssystem PAO: Pierre-Auger-Observatorium

NM: numerische Methode

MC: Monte-Carlo

Literaturverzeichnis

- [1] H. Blümer, K.-H. Kampert; Die Suche nach den Quellen der kosmischen Strahlung, Phys. Blätter 56 (3), (2000) 39
- [2] W.-M. Yao et al., Review of Particle Physics, Journal of Physics G 33, 1 (2006)
- [3] K. Greisen, End to the Cosmic-Ray Spectrum?, Phys. Rev. Lett. 16, 748, 1966
- [4] G.T. Zatsepin, V.A. Kuzmin, JETP Letters 4, 78 (1966).
- [5] Forschungszentrum Karlsruhe Nachrichten, Teilchen- und Astrophysik, Jahrgang 33 2/2001
- [6] National Research Council of the National Academies, Connecting Quarks with the Cosmos Eleven Science Questions for the new Century, The National Academies Press, Washington, DC (www.nap.edu)
- [7] M. Kachelrieß, Status of particle physics solutions to the UHECR puzzle, C. R. Physique 5 (2004) 441-452
- [8] J. P. Rachen, P. Biermann, Extragalactic ultra high energy cosmic rays, I. Contribution from hot spots in FR-II galaxies, Astron. Astrophys. 272 (1993) 161-175; astro-ph/9301010
- [9] T. Antoni et al., KASCADE Collaboration, The cosmic-ray experiment KASCADE, Nucl. Instr. and Meth. in Phys. Res. A 513 (2003) 490-510
- [10] M. Takeda et al., AGASA Collaboration, Extension of the Cosmic-Ray Energy Spectrum beyond the Predicted Greisen-Zatsepin-Kuzmin Cutoff, Phys. Rev. Letters 81 (1998) 1163
- [11] D.R. Bergman *et al.*, HiRes Collaboration, Proceedings of 29th International Cosmic Ray Conference, Pune, India, Vol. 7 (2005) 307, Tata Inst. of Fundamental Research, Mumbai
- [12] R.U. Abbasi et al., HiRes Collaboration, A Study of the Composition of Ultra High Energy Cosmic Rays Using the High Resolution Fly's Eye, Astrophys. J. 622 (2005) 910

- [13] The Pierre Auger Collaboration, Pierre Auger Project Design Report, http://www.auger.org/reports/design_report.html (1997)
- [14] Pierre Auger Project, Technical Design Report, http://tdpc01.fnal.gov/auger/org/tdr/index.html (2004)
- [15] J. Abraham et al., Pierre Auger Collaboration, Properties and Performance of the Prototype Instrument for the Pierre Auger Observatory, Nucl. Instr. and Meth., A523 (2004) 50
- [16] J. Abraham et al., Pierre Auger Collaboration, An upper limit to the photon fraction in cosmic rays above 10**19-eV from the Pierre Auger observatory, Astropart. Phys. 27 (2007) 155; astro-ph/0606619
- [17] Komitee für Astroteilchenphysik (KAT), Kosmische Spurensuche Astroteilchenphysik in Deutschland – Ein Forschungsgebiet im Aufbruch, www.astroteilchenphysik.de
- [18] D. Heck, J. Knapp, J.N. Capdevielle, G. Schatz, T. Thouw, FZKA 6019, CORSIKA: A Monte Carlo Code to Simulate Extensive Air Showers, Forschungszentrum Karlsruhe, 1998; http://www-ik.fzk.de/~corsika/
- [19] K. Greisen, *Progress in Cosmic Ray Physics*, (Ed.: J.G.Wilson), Vol.3, Ch.1, Amsterdam, 1956.
- [20] K. Kamata, J. Nishimura, The Lateral and Angular Structure Functions of Electron Showers, Supplement of the Progress of Theoretical Physics, Suppl. 6 (1958) 93
- [21] J. Oehlschläger, Forschungszentrum Karlsruhe, persönliche Mitteilung, 2007
- [22] N.N. Kalmykov, M.K. Alekseeva, T. Bergmann, V. Chernatkin, R. Engel, D. Heck, J. Moyon, S. Ostapchenko, T. Pierog, T. Thouw, K. Werner, *One-dimensional Hybrid Simulation of EAS Using Cascade Equations*, proceedings of the 28th International Cosmic Ray Conference, Tsukuba, Japan, Jul 31 Aug 7, 2003, Universal Academy Press, Tokyo
- [23] T. Bergmann, R. Engel, D. Heck, N.N. Kalmykov, S. Ostapchenko, T. Pierog, T. Thouw, K. Werner, One-dimensional Hybrid Approach to Extensive Air Shower Simulation, Astropart. Phys. 26 (2007) 420-432; astro-ph/0606564
- [24] R.M. Sternheimer, M.J. Berger, S.M. Seltzer, At. Data Nucl. Data Tabl. 30 (1984) 261
- [25] B. Keilhauer, J. Blümer, R. Engel, H. O. Klages, Impact of varying atmospheric profiles on extensive air shower observation: fluorescence light emission and energy reconstruction, Astropart. Phys. 25 (2006) 259; astro-ph/0511153, (2005)
- [26] M.S. Longair, High energy astrophysics, Vol. 2, 2nd ed., Cambridge Univ. Press., 1994

- [27] P. Homola et al., Simulation of Ultra-High Energy Photon Propagation in the Geomagnetic Field, Comput. Phys. Commun. 173 (2005) 71; astro-ph/0311442
- [28] P. Homola et al., Simulation of ultra-high energy photon showers with PRESHOWER, Nucl. Phys. Proc. Suppl. 151 (2006) 119
- [29] F. Nerling, J. Blümer, R. Engel, M. Risse, Universality of electron distributions in high-energy air showers — Description of Cherenkov light production, Astroparticle Physics 24 (2006) 421-437; astro-ph/0506729
- [30] H. Margenau, Die Mathematik für Physik und Chemie, Frankfurt/M. u.a.: Deutsch 1965.
- [31] T. Stanev, High Energy Cosmic Rays, 2nd ed., Springer Praxis, 2004
- [32] T.K. Gaisser, Cosmic Rays and Particle Physics, Cambridge University Press, 1990
- [33] B. Rossi, K. Greisen, Reviews of Modern Physics 31 (1941) 240
- [34] B. Rossi, High-Energy Particles, Prentice-Hall, 1952
- [35] R.W. Schiel and J.P. Ralston, *The Greisen Equation Explained and Improved*, hep-ph/0607248 v1, (22 July 2006)
- [36] M. Orellana, G.E. Romero, L.J. Pellizza and S. Vidrih, Very high energy γray emission from X-ray transients during major outbursts, astro-ph/0701695 v1, (24 Jan 2007)
- [37] K. Srinivasan, Stochastic Theory and Cascade Processes, Vol.15 (Modern Analytic and Computational Methods in Science and Mathematics; Ed.: Richard Bellman); American Elsevier Pub. Corp., New York, 1969
- [38] A.B. Migdal, Bremsstrahlung and Pair Production in Condensed Media at High Energies, Phys. Rev. 103 (1956) 1811
- [39] G. Arfken, H. Weber , Mathematical Methods for Physicists, 4th ed., Academic Press, 1995
- [40] M. Abramowitz, I. Stegun, *Handbook of Mathematical Functions*, 9th ed., Dover Publications Inc., 1970
- [41] R. Remmert, Funktionentheorie 2, 2. Aufl., Springer, 1994
- [42] F. Rühs, Funktionentheorie, VEB Deutscher Verlag der Wissenschaften, Berlin, 1962
- [43] Mathematica-Handbuch, online: www.wolfram.com
- [44] CERNLIB CERN Program Library Short writeups, Geneva 1996; online: wwwasdoc.web.cern.ch/wwwasdoc/cernlib.html

- [45] I.M. Sobol, *Die Monte-Carlo-Methode*, Deutscher Verlag der Wissenschaften und Verlag Harri Deutsch, Berlin, 1991
- [46] J. von Neumann, Monte Carlo Method, National Bureau of Standards/Applied Math. Series 12; US Gov. Printing Office, Washington; (1951) 36-38
- [47] A.M. Hillas, Shower Simulations: Lessons from MOCCA, Nuclear Physics B (Proceedings Supplements), 52B (1997) 29-42
- [48] V. Blobel, E. Lohrmann, Statistische und numerische Methoden der Datenanalyse, Teubner, Stuttgart/Leipzig, 1998
- [49] P. Deuflhard, F. Bornemann, Numerische Mathematik 2 Gewöhnliche Differentialgleichungen, de Gruyter, 2. Aufl., 2002
- [50] J. Stoer, R. Bulirsch, Numerische Mathematik 2, Springer, 4. Aufl., 2000
- [51] W. Walter, Gewöhnliche Differentialgleichungen, Springer, 7. Aufl., 2000
- [52] C.-D. Munz, Theorie und Numerik nichtlinearer hyperbolischer Differentialgleichungen, I. Die skalare Erhaltungsgleichung, KfK-Bericht 4805, Kernforschungszentrum Karlsruhe, Karlsruhe, 1990
- [53] D. Kröner, Numerical Schemes for Conservation Laws, Wiley, Chichester und Teubner, Stuttgart, 1997
- [54] J. van Kan, A. Segal, Numerik partieller Differentialgleichungen für Ingenieure, Teubner Stuttgart, 1995.
- [55] L.G. Dedenko, in: Proceedings of 9th Int. Cosmic Ray Conf., vol. 1, London, UK, (1965) 662
- [56] G. Bossard, H.J. Drescher, N.N. Kalmykov, S. Ostapchenko, A.I. Pavlov, T. Pierog, E.A. Vishnevskaya, K. Werner, Cosmic ray air shower characteristics in the framework of the parton-based Gribov-Regge model NEXUS, Phys. Rev. D 63 (2001) 054030; hep-ph/0009119
- [57] T.K. Gaisser, P. Lipari, T. Stanev, in: Proceedings of 25th Int. Cosmic Ray Conf., vol. 6, Durban, South Africa, (1997) 281
- [58] J. Alvarez-Muniz, R. Engel, T.K. Gaisser, J.A. Ortiz, T. Stanev, Hybrid simulations of extensive air showers, Phys. Rev. D 66 (2002) 033011; astro-ph/0205302
- [59] H.J. Drescher, G.R. Farrar, Air shower simulations in a hybrid approach using cascade equations, Phys. Rev. D67 (2003) 116001; astro-ph/0212018
- [60] D. Heck, Forschungszentrum Karlsruhe, persönliche Mitteilung, 2007.
- [61] N.N. Kalmykov, S.S. Ostapchenko, A.I. Pavlov, Nucl. Phys. Proc. 52B (Suppl.) (1997) 17

[62] T. Pierog, K. Werner, New facts about muon production in Extended Air Shower simulations, astro-ph/0611311v1 (2006)

Danksagung

Ich danke Prof. Dr. J. Blümer, der vor etwa fünf Jahren, als ich anfragte, ob es denn als Mathematiker möglich wäre, an einem physikalischen Institut zu promovieren, spontan positiv reagierte und den interdisziplinären Aspekt befürwortete. Er hat es damit überhaupt erst ermöglicht, dass diese Arbeit entstehen konnte.

Nicht ganz unschuldig daran waren außerdem Dr. D. Heck und Dr. T. Thouw, von denen ich bei meinem ersten Besuch am IK zum ersten Mal in meinem Leben von kosmischer Strahlung und Teilchen-Luftschauern hörte — und dies war so spannend erzählt, dass wohl damals der Wunsch in mir reifte, an deren Erforschung mitwirken zu wollen. Mit den beiden hatte ich schon einen Teil der "Simulationsgruppe" kennengelernt, in die meine Arbeit eingebettet ist und ohne deren Rahmen meine Arbeit nie entstanden wäre. Zu der Gruppe zählen außerdem Dr. R. Engel, Dr. T. Pierog, Dr. S. Ostapchenkow, Prof. Dr. N. Kalmykov und Prof. Dr. K. Werner, denen mein Dank gebührt.

Aber ganz besonders bin ich Dr. R. Engel zu Dank verpflichtet, der geduldig alle meine Fragen beantwortete, die grobe Richtung der Arbeit lenkte, immer Ideen hatte, wenn ich selbst nicht weiterwusste und sich manchmal wohl auch unversehens auf einer Gratwanderung zwischen Physik und Mathematik wiederfand. In diesem Zuge möchte ich auch Prof. Dr. A. Rieder danken, in dem ich vor Beginn der Promotion einen Fürsprecher fand und der sich bereit erklärte, mathematische "Schützenhilfe" zu leisten.

Danken möchte ich auch allen Kolleginnen und Kollegen vom IK und speziell der Auger-Gruppe für das angenehme und freundschaftliche Arbeitsumfeld; ganz besonders danke ich meinen Zimmergenossen Tanguy Pierog und Christine Meurer für das angenehme Arbeitsklima.

Nicht zuletzt danke ich meiner Frau Michaela Merkel für ihre Geduld und ihr Verständnis für meinen Wunsch, mich für einige Jahre auf etwas ganz Neues einzulassen. In diesem Zuge danke ich auch all denen, die auf mittelbare Weise ein Verdienst am Entstehen dieser Arbeit haben: meinen Kletterkumpels, die für einen sportlichen Ausgleich sorgten, den Schichtkollegen in Malargue/Argentinien für die Impulse und den Mate-Tee, meiner Familie für den Rückhalt, den Korrekturlesern für ihr Interesse und die Unterstützung auf der Zielgeraden.

Mir fällt zum Schluss ein Satz von Prof. Dr. T. Mergner ein, in dessen Posturographielabor in Freiburg ich als Student erstmals Forschungsluft schnupperte: "Nur anspruchsvolle Aufgaben und die Bemühung um neue Erkenntnis verschaffen einem Befriedigung in der Arbeit." Er wusste vermutlich zu der Zeit, als ich noch überlegte, ob ich den Schritt in die Promotion und die Forschung wagen sollte oder nicht, schon vor mir, wie ich mich entscheiden würde. Ich habe viel Neues gelernt, bin an der Aufgabe gewachsen und bin im Rückblick froh, diesen Weg gewählt zu haben.

Nach erfolgreichem Abschluss der Promotion bedanke ich mich bei Prof. Dr. J. Blümer und Prof. Dr. M. Feindt für die Übernahme des Referats und die Prüfung in Astroteilchenphysik sowie den Prüfern Prof. Dr. A. Rieder und PD Dr. N. Neuß (Integration gewöhnlicher Differentialgleichungen) und den Prüfern Prof. Dr. U. Nierste und Dr. habil. W. Lang (Quantenmechanik).

Widmung

Ich widme diese Arbeit meiner Ehefrau und Lebensgefährtin

 $\mathcal{F}\ddot{u}r\ \mathcal{E}la$