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Inhibition of c-Jun/ATF2 phosphorylation, Transrepression of c-Jun/c-Fos: 
Two modes of regulation of the transcription factor AP-1 activity 

by Glucocorticoid Receptor 

ABSTRACT 
 
 Changes in the environment lead to the activation of multi-component 
signaling networks. The intracellular Mitogen-Activated Protein Kinase (MAPK) 
signaling cascades transfer the signal from the cell membrane to the nucleus, 
leading to the regulation of gene expression. Expression of genes in response to 
the signaling is mediated through the activation of transcription factors, such as 
Activator Protein 1 (AP-1).  

 AP-1 is a family of transcription factors made of different dimers from Jun, 
Fos and ATF families of proteins. Different AP-1 dimers, such as c-Jun/c-Fos and 
c-Jun/ATF2 regulate different subset of target genes whose products regulate 
different aspects of cell function like proliferation, inflammation or cell death.  
c-Jun/c-Fos and c-Jun/ATF2 are activated by different mechanisms. For example 
the activation of the Erk MAPK cascade leads to an increase in the expression of 
Fos, and consequently to an activation of c-Jun/c-Fos. The activation of JNK 
cascade induces the phosphorylation of c-Jun and ATF2 leading to an increased 
activity of c-Jun/ATF2.  
 The function of c-Jun/c-Fos and c-Jun/ATF2, in order to prevent the 
overexpression of the target genes which might lead to pathological changes, 
must be negatively regulated. One mechanism of negative regulation is the 
transrepression of AP-1 by the Glucocorticoid receptor (GR). Previous results 
show that in transrepression GR is recruited to the promoter bound c-Jun/c-Fos 
through an interaction with nTrip6, a nuclear isoform of the LIM domain protein 
Trip6. This interaction is essential for transrepression. 
 Results presented in this work show that the transcriptional activity of  
c-Jun/ATF2 is not regulated by GR in this manner. Indeed, c-Jun/ATF2 does not 
interact with nTrip6, and is not transrepressed by GR. However, GR represses c-
Jun/ATF2 function by inhibiting the JNK-mediated phosphorylation of c-Jun. 
 An increased activity of AP-1, through expression of its target genes can 
lead to pathological conditions, like a sustained inflammation. Two mechanisms 
of AP-1 repression by GR can act in concert to block the overexpression of AP-1 
target genes, consequently preventing an excessive inflammatory response. 
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Die Inhibition der Phosphorylierung von c-Jun/ATF2 sowie die 
 Transrepression von c-Jun/c-Fos: zwei unterschiedliche Formen der 

Regulation der Aktivität des Transkriptionsfaktors AP-1 durch den 
Glukokortikoidrezeptor 

 
ZUSAMMENFASSUNG 

 
 Veränderungen in der Umwelt aktivieren Mehrkomponenten-Signal-
netzwerke. Signalkaskaden, die über intrazelluläre Mitogen-Aktivierte Protein-
kinasen (MAPK) laufen, übertragen das Signal von der Zellmembran zum 
Nukleus und führen dort zur Genregulation. Die Genexpression als Antwort 
auf diese Signale wird über die Aktivierung von Transkriptionsfaktoren – wie 
z.B. dem Aktivierungsprotein 1 (AP-1) – vermittelt. 
 AP-1 bildet eine Familie von Transkriptionsfaktoren, die aus Dimeren 
von Jun-, Fos- und ATF-Familienproteinen besteht. Unterschiedliche AP-1 
Dimere wie c-Jun/c-Fos und c-Jun/ATF2 regulieren unterschiedliche Unter-
gruppen von Zielgenen. Deren Genprodukte regulieren wiederum unter-
schiedliche Aspekte der Zellfunktion wie Proliferation, Entzündung und 
Zelltod. 
C-Jun/c-Fos und c-Jun/ATF2 werden über unterschiedliche Mechanismen 
aktiviert. Die Aktivierung der Erk-MAPK-Kaskade führt zum Beispiel zu einer 
Steigerung der Expression von Fos und damit zu einer Aktivierung von c-
Jun/c-Fos. Die Aktivierung der JNK-Kaskade induziert die Phosphorylierung 
von c-Jun und ATF2; dieses führt zu einer erhöhten Aktivität von c-Jun/ATF2. 
 Um die zu starke, zu pathologischen Änderungen führende Expression 
der Zielgene zu vermeiden, muss die Funktion von c-Jun/c-Fos und c-
Jun/ATF2 negativ reguliert werden. Ein Mechanismus der negativen 
Regulation ist die Transrepression von AP-1 durch den Glukokortikoidrezeptor 
(GR). Vorherige Resultate zeigten, dass bei der Transrepression GR durch 
die Interaktion mit nTrip6 an Promoter-gebundenes c-Jun/c-Fos rekrutiert wird 
– bei nTrip6 handelt es sich um eine nukleäre Isoform des LIM-
Domänenproteins Trip6. Diese Interaktion ist für die Transrepression 
essentiell. 
 Die Ergebnisse dieser Arbeit zeigen, dass die Transkriptionsaktivität 
von c-Jun/ATF2 nicht in dieser Weise reguliert ist. In der Tat interagiert c-
Jun/ATF2 nicht mit nTrip6 und wird nicht durch GR transreprimiert. Hingegen 
unterdrückt GR die c-Jun/ATF2 Funktion durch Inhibition der JNK vermittelten 
Phosphorylierung von c-Jun. 
 Eine übermäßige Aktivität von AP-1 kann über die Expression der 
Zielgene zu pathologischen Zuständen wie anhaltender Entzündung führen. 
Die zwei Mechanismen der Unterdrückung von AP-1 durch GR können bei 
der Blockade der übermäßigen, AP-1-vermittelten Expression von Zielgenen 
zusammenwirken und dadurch eine unverhältnismäßige Entzündungsreaktion 
vermeiden. 
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Introduction      

 1. INTRODUCTION 
Changes in the physical and the chemical properties of the environment lead 

to the activation of multi-component signaling networks. Intracellular signaling 

cascades transfer the signal from the cell membrane to the nucleus, leading 

to the regulation of gene expression. Expression of genes in response to the 

signaling is mediated through the activation of transcription factors. 

 Activator Protein 1 (AP-1) was one of the first transcription factors to be 

identified. AP-1 modulates the expression of genes whose products regulate 

many aspects of cell function including migration, proliferation, differentiation, 

inflammation and cell death. 

 Changes in extracellular conditions also induce mechanisms that limit 

the response. Such brake mechanisms are essential to maintain homeostasis. 

One of the main pathways maintaining homeostasis is the neuroendocrine 

hypothalamic-pituary-adrenal axis. Stress, like inflammation, leads to the 

induction and release of glucocorticoid (GC), cortisol. Released GC act 

through binding to the glucocorticoid receptor (GR) to inhibit the expression of 

pro-inflammatory genes. One mechanism by which GR inhibits pro-

inflammatory gene expression is the repression of the activity of AP-1, 

therefore preventing an excessive inflammatory response. 

 

 

 

  1.1 AP-1 transcription factors family 

 
 AP-1 was one of the first mammalian transcription factors identified, but 

its mechanisms of regulation are still being unraveled. The transcription factor 

AP-1 can be composed of either homodimers or heterodimers between 

members of the Jun (c-Jun, JunB, JunD), Fos (c-Fos, FosB, Fra-1, Fra-2) and 

ATF/CREB (ATF2, ATF3) sub-families (Angel and Karin, 1991). They belong 

to the class of basic zipper (bZip) family of sequence-specific dimeric DNA-

binding proteins. They share the same structural domains for DNA binding 

and dimerization: a basic region (b) and a leucine zipper (Zip), respectively. 

The formation of each dimer depends on their relative dimerization affinities, 

   1



Introduction      

and on the abundance of each of the Jun, Fos and ATF proteins available in 

the cell at a given time. 

 Fos members of the family cannot form stable homodimers but 

heterodimerize with Jun members. c-Jun/c-Fos heterodimers are more stable 

than c-Jun/c-Jun homodimers. ATF family members can dimerize with c-Jun 

as well as with ATF/CREB family  members (Benbrook and Jones, 1994; 

Chatton et al., 1994; Hai and Curran, 1991).  

 The ability of the AP-1 transcription factor to control many different 

biological processes stems primarily from its structural and regulatory 

complexity. Different AP-1 dimers regulate different sets of target genes, 

which in turn play roles in a variety of biological processes. For example, 

studies on combinatorial variants of AP-1 complexes, using Jun mutants that 

preferentially heterodimerize with either c-Fos or ATF2 revealed opposing 

roles of c-Jun/c-Fos and  

c-Jun/ATF2 dimers in transformation (van Dam et al., 1998). Jun-dependent 

cell transformation can be resolved into at least two distinct and independent 

processes: anchorage independence triggered by c-Jun/c-Fos and growth 

factor independence triggered by c-Jun/ATF2. These differences in the roles 

of Jun/Fos and Jun/ATF make these dimers particularly interesting to study. 

 

      1.1.2 Sequence-specificity of Jun/Fos and Jun/ATF transcription 
factors 

      The DNA binding domain determines the spectrum of genes that are 

controlled by AP-1. The dimeric structure and different dimerization partners 

can significantly modulate the specificity of DNA targeting. c-Jun/c-Fos 

heterodimers preferentially bind to the heptamer consensus 5’-TGA (C/G) 

TCA-3’, known as the phorbol ester 12-O-tetradecanoate-13-acetate (TPA) 

response element (TRE), based on their ability to mediate transcriptional 

induction in response to TPA (Angel et al., 1987). c-Jun/ATF2 dimers, on the 

other hand, bind the octameric cyclic-AMP response element (CRE) 5’-

TGACGTCA-3’. These binding sites have been identified in the regulatory 

regions of a wide range of genes, including transcription factors such 
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as c-Jun and ATF3, matrix-degrading enzymes like collagenase I and 

urokinase plasminogen activator (uPA), cytokines like IFN-γ or adhesion 

molecules such as E-selectin  (Angel et al., 1988; Brostjan et al., 1997; 

Cippitelli et al., 1995; De Cesare et al., 1995; Liang et al., 1996). 

  

 1.1.3 Regulation of Jun/ Fos and Jun / ATF activity 

 Activity of AP-1 can be regulated by de novo synthesis of c-fos gene 

induced by activation of the Extracellular-Signal-Regulated Kinase (ERK) 

signaling pathway. 

 ERK1/2 subgroup of MAPKs is mediating the response of cells to 

growth factors and hormones. The MAP3K and MAP2K that activate ERK 

MAP kinase include c-Raf-1 and MEK-1, respectively. Once activated, 

ERK1/2 translocate to the nucleus and phosphorylate, and thereby potentiate, 

the transcriptional activity of the ternary complex factor (TCFs) that bind to c-

fos promoter (Hill et al., 1994). The resulting increased synthesis of c-Fos, 

leads to the formation of stable dimers with pre-existing Jun proteins, and 

activation of c-Jun/c-Fos target genes.  

 In in vitro cell culture studies potent ERK activation is achieved upon 

treatment with 12-O-Tetradecanoylphorbol-13-acetate (TPA). TPA is known to 

induce signaling events mimicking those triggered by activated growth-factor 

receptors. Members of the Protein Kinase C (PKC) family serve as key 

meditors of phorbol-ester actions (Nishizuka, 1986). The activation of PKC 

results in activation of the Raf / MEK1/2 / ERK1/2 cascade (Schonwasser et 

al., 1998) but the exact mechanism of the cross-talk between PKC and ERK 

signaling pathways is still controversial. 
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Figure 1.1 Induction of c-fos expression through activation of the ERK signaling pathway. 
Growth factors stimulates activation of Ras. Subsequently, the serine/threonine protein kinase 
Raf-1 binds to Ras and becomes activated, leading to phosphorylation and activation of the dual-
specificity ERK-kinase, MEK. MEK activates the MAPKs ERK1 and ERK2, which once activated 
translocate to nucleus. In the nucleus, the ERKs phosphorylated the transcription factor TCF, 
which is bound to the serum response element (SRE) of the c-fos promoter. Phosphorylation of 
TCF at a cluster of sites located next to its carboxyl terminus stimulates its transactivation function 
which leads to rapid activation of c-fos transcription.  
TPA activates PKC which through a crosstalk with ERK stimulates the phosphorylation of TCF 
which regulates the expression of c-fos.  Adapted from (Edmunds and Mahadevan, 2004). 

 The activity of c-Jun/ATF2 is upregulated by phosphorylation.  

The phosphorylation of c-Jun and ATF2 proteins is mediated by Jun-N-

terminal kinase (JNK), a member of Mitogen Activated Protein Kinases 

(MAPK) which is regulated at multiple levels to ensure the specificity, timing, 

and strength of action (Davis, 2000; Karin, 1995). 
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Jun-N-terminal kinase (JNK) is activated by environmental stress, such as UV 

radiation, heat shock and by proinflammatory cytokines, including interleukin 1 

(IL-1) and tumor necrosis factor alpha (TNFα) (Chang and Karin, 2001).  

The complexity in the mechanism of JNK activation comes from the 

involvement of many MAP3 kinases that contribute to stress-activated 

signaling.  

 UV–induced DNA damage in the nuclear compartment is an essential 

component that acts in concert with membrane-anchored proteins to mediate  

c-Jun phosphorylation by JNK. Upon UV activation of MAPK cascade, JNK 

can be activated directly by MAP kinase kinases such as MKK4/SEK1 and 

MKK7. Once activated, JNK translocates to the nucleus (Cavigelli et al., 

1995), where it  phosphorylates c-Jun and ATF2. c-Jun is phosphorylated by 

JNK at serines 63 and 73 (Hibi et al., 1993), whereas ATF2 at threonine 69 

and 71 (Livingstone et al., 1995). Phosphorylation is increasing the 

transcriptional activity of promoter bound cJun/ATF2 dimers, and induces the 

expression of their target genes (van Dam et al., 1995). 

 Another stimulus strongly activating JNK is treatment with the bacterial 

compound anisomycin. Anisomycin inhibits translation by binding to the 60S 

ribosomal subunits, and by blocking peptide bond formation, thereby 

preventing elongation and causing polysome stabilization (Grollman, 1967). 

Anisomycin at concentrations below those required for inhibiting translation 

(sub-inhibitory concentrations) has been shown as an extremely potent 

activator of kinase cascades in mammalian cells, especially the stress-

activated mitogen-activated protein kinase subtypes, JNK  (Mahadevan and 

Edwards, 1991). Anisomycin was proposed to activate MKK7 and MKK4 

which stimulate JNK activation (Hazzalin et al., 1998). JNK in turn 

phosphorylates and activates c-Jun and ATF2which regulate expression of 

their target genes. 
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Figure 1.2. Regulation of c-Jun and ATF2 through activation of JNK signaling  
  pathway. 
Cytokines or stress stimulate the activation of MEKK1 which activates MKK4/7.  Both 
protein kinases can activate JNK by dual phosphorylation. Activated JNK can 
phosphorylate AP-1 proteins, like c-Jun and ATF-2. Phosphorylation of AP-1 stimulates its 
transactivation function which leads to the activation of the transcription of target genes, 
here on example of c-jun..  
UV–induced DNA damage in the nuclear compartment and signaling from the membrane-
anchored proteins mediate activation of JNK and subsequent phosphorylation of AP-1. 
Adapted from (Edmunds and Mahadevan, 2004). 

 

 AP-1 complexes are active in many biological processes like tissue 

remodeling, tumorgenesis, inflammation or apoptosis. Phosphorylation-

induced transcriptional activity of AP-1 dimers leads to the expression of 

many genes encoding for transcription factors, adhesion molecules, 

cytokines. One of the important negative feedback mechanisms, which 

protects the organism from overexpression of these genes is the activation of 

another transcription factor, the glucocorticoid receptor (GR). 
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1.2 Glucocorticoid Receptor (GR) 
 
 The glucocorticoid hormone regulates many biological processes 

through the intracellular glucocorticoid receptor (GR). GR, a member of the 

superfamily of ligand-regulated nuclear receptors (Hollenberg et al., 1985), is 

a hormone-dependent transcription factor that mediates a variety of biological 

responses including gluconeogenesis, antiinflammation and antiproliferation 

(Barnes, 2006; De Bosscher et al., 2003; Necela and Cidlowski, 2004; 

Newton, 2000). 
 The glucocorticoid receptor participates in numerous physiological 

processes required for many facets of cell homeostasis. These physiological 

actions of glucocorticoids occur in diverse cell types regulating numerous 

genes. The glucocorticoid receptor regulates the expression of these genes by 

three basic modes of action: (1) binding to glucocorticoid response elements 

(GREs) in target genes to activate gene transcription, (2) inhibition of target 

gene transcription through direct DNA binding at negative GRE (nGREs), and 

(3) gene regulation by physical interaction with other transcription factors 

(Necela and Cidlowski, 2004). These properties are reflected in the protein 

structure of GR: a central DNA binding domain (Luisi et al., 1991), a C-

terminal ligand- and transcriptional activation domain (Giguere et al., 1986; 

Hollenberg and Evans, 1988). 

 In the absence of hormone, GR resides in the cytoplasm as a 

multiprotein complex composed of chaperone proteins hsp90 and hsp70, 

immunophilin p59, and phosphoprotein p23 (Pratt and Toft, 1997). This 

complex retains GR in the cytoplasm and maintains GR in a favorable 

conformational state required for high-affinity ligand binding.  

 Released corticosteroids diffuse readily across cell membranes and 

bind to GR in the cytoplasm. Binding of hormone to the GR induces the 

release of hsp90, resulting in a conformational change that unmasks the 

nuclear localization signal. The receptor then translocates to the nucleus, 

where it can act through several modes of action, as discussed below. 
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1.2.1 Regulation of Gene Activation by DNA-dependent Mechanisms 
  

 Activation of Gene Expression 

 In the nucleus, the activated hormone-bound GR dimerizes and binds 

in the major groove of the DNA through its central zinc finger DNA-binding 

domain. The DNA-binding domain recognizes distinct palindromic DNA 

sequences termed glucocorticoid response elements (GREs), usually located 

in the promoter of GR-regulated genes like IκB (Auphan et al., 1995; 

Scheinman et al., 1995), MKP-1 (Kassel et al., 2001; Lasa et al., 2002) or 

osteocalcin (Morrison and Eisman, 1993) (Figure ). Binding of the GR to the 

response element in the promoter, results in an allosterically induced 

conformational change within the receptor (Starr et al., 1996). The allosteric 

interaction promotes the recruitment of several coactivator complexes critical 

for the remodeling of chromatin structure. The GR interacts with cAMP 

response element–binding protein (CREB)–binding protein/p300 and p/CAF, 

both of which contain intrinsic histone acetylase activity (Deroo and Archer, 

2001; Smirnov, 2002). These coactivators acetylate lysine residues in core 

histones to induce nucleosomal rearrangement and DNA unwinding. Other 

coactivator complexes such as steroid receptor coactivator-1, p/CIF, 

SWI/SNF, and GRIP1/TIF2/NcoA-1 contribute to the chromatin-remodeling 

process (Deroo and Archer, 2001; Jenkins, 2001 ; Smirnov, 2002). 

Nucleosomal rearrangement leads to promoter accessibility and to the 

recruitment of the basal transcriptional machinery, including TATA box-binding 

protein (TBP), TBP-associated factors, and RNA polymerase II. The concerted 

assembly of these factors results in the stimulation of gene transcription. 

 

 Inhibition of target gene transcription 
 Direct transcriptional repression by GCs can be achieved by the 

interaction of GR with a site on the DNA, designated nGRE for negative GRE, 

of which the actual sequence is poorly defined (Dostert and Heinzel, 2004). 

This mechanism of action was proposed to account for repression of the 

proopiomelanocortin gene  (Drouin et al., 1993), prolactin  (Sakai et al., 1988). 
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and proliferin genes (Hoeppner et al., 1995), as well as the vitamin D-induced 

osteocalcin gene (Meyer et al., 1997). In addition, for some of these genes the 

mechanism was also found to involve GR-dependent displacement of another 

factor (for example TATA-binding protein, TBP) (Meyer et al., 1997).  

  

 1.2.2 Regulation of Gene Activation by DNA-independent  
 Mechanisms 

 

 Transrepression 
 Because no nGRE could be detected in the majority of inflammatory 

genes whose transcription is repressed by GR, transcriptional interference 

was discovered to mostly result from protein-protein interactions between the 

GR and other transcription factors such as AP-1: c-Jun/c-Fos (Jonat et al., 

1990; Schule et al., 1990a; Yang-Yen et al., 1990), CREB/ATF (Akerblom et 

al., 1988; Cippitelli et al., 1995), NF-κB (Brostjan et al., 1997; McKay and 

Cidlowski, 1999; Reichardt et al., 2001), Oct-1 (Kutoh et al., 1992) or GATA-1 

(Chang et al., 1993). This mechanism is referred to as trans-repression, as 

opposed to trans-activation. In contrast to GR activation of transcription, trans-

repression by GR is exerted by monomers (Heck et al., 1994).  

 DNA- binding independent transrepression of transcription factors by 

the GR is required for survival (Reichardt et al., 1998). GRdim/dim mice, with 

mutations in the DNA-binding domain known to impair dimerization and DNA 

binding of GR,  are viable in contrast to GR−/− mice (Cole et al., 1995). This 

reveals the in vivo relevance of DNA-binding-independent activities of the GR.  

 GR - transcription factors transrepression mechanism can be 

reciprocal. This AP-1 / GR interaction also results in the repression of GR-

mediated gene activation (Reik et al., 1994). A similar mutual antagonism also 

occurs between glucocorticoid receptor and NF-κB (McKay and Cidlowski, 

2000). 
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Transrepression is mediated through the recruitment of GR to the 

DNA-bound transcription factors (Kassel et al., 2004; Konig et al., 1992; 

Nissen and Yamamoto, 2000; Rogatsky et al., 2001). For example, repression 

of collagenase I, an AP-1 target gene, occurs with promoter-bound AP-1 

(Kassel et al., 2004). It does not affect AP-1 binding to DNA (Konig et al., 

1992) and  is also not mediated by competition for nuclear coactivators (De 

Bosscher et al., 2001).  

 Recent findings showed that a LIM-domain protein, nTrip6 is necessary 

for GR-mediated repression of AP-1 and NF-κB (Kassel et al., 2004). Trip6 

(thyroid receptor-interacting protein 6) has been first isolated as a protein of 

unknown function interacting with thyroid receptor (TR) and retinoid X 

receptor (RXR) (Lee et al., 1995). Trip6, also known as ZRP-1 (zyxin-related 

protein 1), is a member of the zyxin family (Wang et al., 1999; Yi and 

Beckerle, 1998). Trip6 and other zyxin family members like LPP (lipoma 

preferred partner), and Ajuba, possess a proline-rich region and nuclear 

export signals at their N terminus, and three LIM domains at their carboxyl 

terminus. The LIM domains (named by the initials of three homeodomain 

proteins, Lin-11, Isl-1, and Mec-3) contain two cysteine-rich zinc finger motifs, 

which are critical for protein-protein interaction (Dawid et al., 1998). Trip6 is 

localized in the cytosol due to the presence of a nuclear export signal (NES) 

at the N-terminus (Wang and Gilmore, 2001) and has been implicated in the 

regulation of actin dynamics and signal transduction involved in cell adhesion 

and migration (Murthy et al., 1999; Xu et al., 2004; Yi et al., 2002). 

 A nuclear isoform of Trip6, nTrip6, was identified. nTrip6 lacks NES 

and is involved in transcriptional regulation. It is a coactivator for AP-1 and 

NF-κB transcription factors (Kassel et al., 2004). nTrip6 interacts with c-Fos 

and p65 subunit of NF-κB (RelA) on their target promoters. At the same time 

nTrip6 is also able to interact with GR, and this interaction is essential for GR 

to repress AP-1 and NF-κB. Through this interaction nTrpi6 mediates the 

recruitment of GR to the promoter-bound AP-1 and NF-κB, as a prerequisite 

for transrepression. 
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Figure 1.3 Basic mechanisms of glucocorticoid receptor (GR) action. 
Left: The GR resides in the cytoplasm complexed with several chaperones including hsp90 and 
immunophilin p59. Upon binding to glucocorticoids, the activated receptor dissociates from the 
attached accessory proteins and translocates into the nucleus. Right: The GR then regulates the 
expression of genes by several basic modes of action. From top to bottom: The GR binds as a 
dimer to glucocorticoid response elements (GREs) in target genes to activate gene transcription; 
the GR binds to negative GREs (nGREs) and inhibits target gene transcription; the GR 
physically interacts with AP-1 complex through nTrip6 and inhibits AP-1-mediated gene 
expression. Adapted from (Necela and Cidlowski, 2004). 

 

 Inhibition of Mitogen-Activated Protein Kinase Signaling 

 An alternative mechanism by which GCs might exert their antagonistic 

action on AP-1 is through GR-mediated interference with the signaling 

pathways that activate AP-1. GR can induce the expression of MAPK 

phosphatase 1 (MKP-1) (Kassel et al., 2001; Lasa et al., 2002) which in turn 

inactivate MAP kinases (Camps et al., 2000; Franklin and Kraft, 1997; Kassel 

et al., 2001) as well as block kinase activities (Caelles et al., 1997; Gonzalez 

et al., 2000; Swantek et al., 1997). This GC actions lead to the inhibition of 

phosphorylation, and concomitant activation, of transcriptional activators, such 

as c-Jun, ATF-2 or Elk-1, which are involved in the induction of AP-1 activity 

by different mechanisms. 
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MAPK subgroups such as JNK regulate the activity of the AP-1 

complex required for proinflammatory gene expression. Hormone activated 

GR inhibits the activation of the JNK signaling pathway and prevents the 

phosphorylation of c-Jun on Ser-63/73. Inhibition of JNK by GR is DNA 

binding-independent and transcription-independent (Caelles et al., 1997). It 

also does not block the nuclear translocation of JNK induced by TNFα 

(Gonzalez et al., 2000). Instead, GR reduces the amount of JNK associated 

with MKK7 by promoting binding of GR to JNK (Bruna et al., 2003). This 

inactive GR-JNK complex was proposed to trans-represses promoter-bound 

AP-1 transcription factor (Bruna et al., 2003).  

By interfering with JNK cascade GR might block AP-1 activation and 

expression of target genes and exert additional anti-inflammatory effects. But 

so far no data showing the contribution of this mechanism on inhibition of AP-

1 transcriptional activity was shown. 

 

  

 

   

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 1.4 Scheme of Glucocorticoid Receptor- mediated inhibition Jun N-terminal Kinase. 
Cytokine or stress activated JNK phosphorylation of c-Jun can be inhibited by GR mediated 
induction of MKP-1 or direct inhibition of JNK activity. Adapted from (Necela and Cidlowski, 
2004) 
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Aim 

 

 The aims of this study were based on previous findings of the 

laboratory. Kassel et al. (2004) could show that of nTrip6 interacts with c-Fos 

and that this interaction is essential for the transcriptional activation by c-

Jun/c-Fos. 

 Preliminary results in the lab suggest that nTrip6 could not interact with 

c-Jun. This raises the question of the specificity of nTrip6 interaction with 

different AP-1 dimers. Moreover, nTrip6 is essential for GR to transrepress c-

Jun/c-Fos. 

 My hypothesis was therefore that AP-1 dimers not interacting with 

nTrip6 might not be transrepressed by GR.  

 Differences in repression of AP-1 which depend on the composition of 

the dimer will affect different subsets of target genes regulated by these 

dimers. My study on GR-medited repression of AP-1 is focusing on the 

regulation of c-Jun/c-Fos and c-Jun/ATF2 dimers. c-Jun/c-Fos dimer is a 

“prototypical” AP-1 dimer studies by many groups. Thus, aviability of data on 

function and regulation of c-Jun/c-Fos allowed comparative studies on ill 

understood regulation of c-Jun/ATF2 dimer. 
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2. MATERIALS AND METHODS 
2.1 MATERIALS  
2.1.1 Chemicals 
 All the chemicals were of the highest quality and were purchased from: 

Agarose    Peqlab, Erlangen, Germany 

Anisomycin    Merck Bioscience, Nottinhgham, England 

Bacto-agar    Otto-Nordwald KG, Hamburg, Germany 

BSA,      PAA Laboratories GmbH, Pasching, Austria 

DMSO     Fluka, Buchs, Germany 

Phosphate-buffered saline (PBS) Gibco-BRL, Karlsruhe, Germany 

Skimmed milk powder  Saliter, Obergünzburg, Germany 

Trypsin    Difco, Detroit, USA 

All other chemicals, unless otherwise stated, were purchased from Carl Rotch 

GmbH GmbH&Co, Karlsruhe, Germany; Merck, Darmstadt, Germany or 

Sigma, Deisenhofen, Germany. 

 

Radiochemicals: 

[α32P]- dCTP tips Amersham Pharmacia Biotech, Freiburg, 

Germany 

 

2.1.2 Kits 
Easy Pure DNA purification Kit Biozym Diagnostik GmbH, Oldendorf, 

Germany 

Qiagen Plasmid Maxi Kit Qiagen, Hilden, Germany 

Zero® Blunt® TOPO PCR kit Invitrogen, Karlsruhe, Germany 

RediprimeTM II labeling system Amersham Pharmacia Biotech, Freiburg, 

Germany 

Trizol Reagent   Gibco-BRL 

QuickHyb hybridization solution Stratagene 

Passive Lysis Buffer 5x  Promega, Mannheim, 

Germany 
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2.1.3 Bacteria medium 
    LB 10g/L tryptone 

     5 g/L yeast extract 

     5 g/L NaCl 

    SOC  2% tryptone 

     0.5% yeast extract 

     10mM NaCl 

     2.5mM KCl 

     10mM MgSO4 

     10mM MgCl2 

     20mM glucose 

2.1.4 Buffers and Reagents 
        TAE: 40mM Tris, pH7.0 

     20mM sodium acetate 

     1mM EDTA 

TBS 10x: 242g Tris base 

    80g NaCl 

    Total volume 1L, pH 7.6 

       RIPA buffer: 30mM Tris-HCl pH7.4   

    150mM NaCl 

   1mM EDTA 

   0.5% TRITON X-100 

   0.05% Deoxycholate 

   10mM NaF 

  Blocking buffer: 150ml TBS 

    150 μl Tween-20  

    7.5g nonfat dry milk 

  SDS sample buffer 1x: 62.5mM Tris-HCl ph6.8 

2% w/v SDS 

     50mM DTT 

     10% v/v glycerol
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     0.01% w/v bromophenol blue 

    Stripping buffers for: 

    Northern blot: 0.1x SSC 

   0.1% SDS 

       Western blot: 62.5mM Tris-HCl pH6.8 

     2% v/v SDS 

     0.385g DTT 

     total volume 50ml 

     Glycylglycine buffer: 25mM Glycylglycine 

     15mM MgSO4 

     4mM EGTA 

     pH 7.8 

     DNA loading buffer: 0.5M EDTA 

     50% glycerol 

     0.01% bromophenol blue 

   MOPS: 20mM MOPS, pH 7.0 

5mM Na-acetate pH 4.8 

1mM EDTA 

      RNA sample buffer: 17.5% formaldehyde 

50% formamide 

1x MOPS buffer 

0.01% bromophenol blue 

        SSC buffer: 1.5M NaCl, 

     150mMNa-citrate, pH 7.0 

          Bradford solution: 100mg Coomassie Brillian Blue G-250 

     50ml ethanol 

     100ml 85% phosphoric acid 

     Total volume 1L
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2.1.5 Oligonucleotides 
 
YC cJun_for_Sal1   5’-acg cgt cga cca ctg caa aga tgg aaa cg acct tct-3’ 

YC cJun_rev _Bgl2 5’-gaa gat cta caa acg ttt gca act gct gcg taa g-3’ 

 
YC ATF2_for_Sal1  5’-acg cgt cga cca gtg atg aca aac cct ttc ta-3’ 

YC ATF2_rev_Bgl2  5’-gaa gat cta cac ttc ctg agg gct gtg cct ggg agg-3’ 

 
YC cFos_for_Sal1  5’-acg cgt cg acct tct cgg gtt tca acg ccg ac-3’ 

YC cFos_rev_Kpn1 5’-ggg gta ccc agg gcc agc agc gtg ggt gag ctc-3’ 

 
mATF3-624_for_Kpn1 5’-ggg gta ccg ac acct tcc cca cac cac ag-3’ 

mATF3+35_rev_Xho1 5’-ccc tcg agc tgt gca gtg cgc gcc tgg c-3’ 

 

2.1.6 DNA probes for Northern blot analysis 
Name    fragment   Origin 
ATF3 probe   Xba1-BamH1, 0.6kb pBSSK 
Coll probe   Hind3-Sal1, 2 kb  pXP 
GAPDH probe  Pst1, 1.3 kb    pGAPDH-13 vector 

 
2.1.7 Plasmids 
Name Description 
pCGcJun~cFos Expression of cJun~cFos fusion under the control on 

CMV promoter. 

Described in Bakiri et al., 2002 
pCGcJun~ATF2 Expression of cJun~ATF2 fusion under the control on 

CMV promoter. 

Described in Bakiri et al., 2002 
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pCGcJun~cJun Expression of cJun~cJun fusion under the control on 

CMV promoter. 

Described in Bakiri et al., 2002 
pcDNA HA GR HA tagged Glucocorticoid Receptor cDNA under the 

control of CMV promoter. 

pYC Expression of HA-tagged C-terminal part (YC) of yellow 

fluorescent protein encoding amino acids 155 to 238 

under the control of CMV promoter. 

Described in Hu et al., 2002 

pYN Expression of FLAG-tagged N-terminal part (YN) of 

yellow fluorescent protein encoding amino acids 1-154 

under the control of CMV promoter. 

Described in Hu et al., 2002 

pYN- nTrip6 Expression of FLAG-tagged C-terminal part (YC) of 

yellow fluorescent protein in fusion with Trip6 cDNA 

encoding amino acids from 190 to 476 under the control 

of CMV promoter. 
pYC-cJun~cFos Expression of HA-tagged C-terminal part (YC) of yellow 

fluorescent protein in fusion with cJun~cFos under the 

control of CMV promoter. 
pYC-cJun~ATF2 Expression of HA-tagged C-terminal part (YC) of yellow 

fluorescent protein in fusion with cJun~ATF2 under the 

control of CMV promoter. 
pDsRed2-N1 Discoma sp. red fluorescent protein under the control of 

CMV promoter. 

pUbi-GAL4DBDcJun Expression of GAL4DBD in fusion with c-Jun sequence 

encoding amino acids from 1 to256 under the control of 

human ubiquitin C promoter. 

Described in Weiss et al., 2003 
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pRSV-GAL4DBDcFos Expression of GAL4DBD in fusion with c-Fos under the 

control of RSV promoter. 

pRSV-GAL4DBDATF2 Expression of GAL4DBD in fusion with ATF2 under the 

control of RSV promoter. 

uPA -Luc Luciferase gene under the control of Urokinase 

Plasminogen Activator (uPA) enhancer element -1993 to 

-1870 (relative to the transcription start site). 

Described in Cirillo et al., 1995. 

-624+35 ATF3-Luc Luciferase gene under the control of ATF3 promoter 

nucleotides -624 to +35 (relative to the transcription start 

site). 
Ubi-Renilla Renilla reniformis cDNA under the control of ubiquitin 

promoter. 

Described in Kassel et al., 2004. 

ΔMEKK1 Expression of ΔMEKK1 under control of CMV promoter 

Described in Weiss et al., 2003 

 
2.1.7.1 Construction of -624+35ATF3-Luc  
 To generate these minimized ATF3 promoter reporter constructs ATF3-

Luc reporter was used as a template for PCR reactions. mATF3-

624_for_Kpn1 and mATF3+35_rev_Xho1 primer pair was used to generate of 

-624+35ATF3-Luc. PCR reaction was performed as described in section 

2.2.7. After PCR amplification product was subjected to agarose gel 

electrophoresis. PCR product was purified from the gel as described in 

section 2.2.9. Purified PCR products were subcloned into pCR-Blunt II-TOPO 

vector and amplified in E. coli DH5ά. Colonies were inoculated for mini-prep 

isolation. Maxi-preparation of positive clones was performed. Insert was 

released from pCR-Blunt II-TOPO using Kpn1 and Xho1 restriction enzymes. 

Insert was ligated into Kpn1 and Xho1 digested vector caring Luciferase gene. 

DNA from positive clones was analyzed by endonuclease digest and 

sequencing. 
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2.1.7.2 Construction of fusion proteins for the Bimolecular Fluorescence 
Complementation (BiFC) assay. 
 To create fusions with C-terminal part (YC) of yellow fluorescent 

protein (YFP) with AP-1 pseudodimers: cJun~cFos and cJun~ATF2, pCG 

vectors carrying these inserts were used as templates for amplification of 

cJun~cFos and cJun~ATF2 fragments. 

pCGcJun~cFos was used to amplify cJun~cFos insert using YC 

cJun_for_Sal1 and YC cFos_rev_Kpn1 primer pair. 

pCGcJun~ATF2 was used to amplify cJun~ATF2 inset using YC 

cJun_for_Sal1 and YC ATF2_rev_Bgl2 primer pair. 

PCR reaction was performed as described in section 2.2.7. After PCR 

amplification products were subjected to agarose gel electrophoresis. PCR 

products were purified from the gel as described in section 2.2.9. Purified 

PCR products were subcloned into pCR-Blunt II-TOPO vector and amplified in 

E. coli DH5ά. Colonies were inoculated for mini-prep isolation. Maxi-

preparation of positive clones was performed. Insert was released from pCR-

Blunt II-TOPO using appropriate restriction endonucleases and inserts were 

ligated into Sal1 and Bgl2 or Sal 1 and Kpn1 sites of pYC vector carring 

sequence encoding the C-terminal fragment (YC) of YFP: amino acids 155-

238. DNA from positive clones was analyzed by endonuclease digest and 

sequencing.  

 

2.1.8 Antibodies 
 Primary antibodies: 
Name    Source   Supplier 
ATF2  

> ATF2 (N-96)  rabbit   Santa Cruz, Santa Cruz, USA; 

Dilution 10:1000     sc-6233 

ERK 

> ERK1 (K-23)  rabbit   Santa Cruz, Santa Cruz, USA; 

Dilution 1:1000     sc-94
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Fos 
> c-Fos    rabbit   Upstate, New York, USA; 

Dilution 1:1000     #06-341 

c-Jun  
> phospho-c-Jun II  rabbit   Cell Signaling;  

Dilution 10:1000     #9261 (Ser63) 

> c-Jun    mouse  BD Biosciences,   

       Heidelberg, Germany;  

Dilution 1:1000     #558036 

JNK 

> phosphor-SAPK/JNK rabbit    Cell Signaling, #9251 

Dilution 10:1000      (Thr183/Tyr185) 

> JNK1 (C-17)  rabbit   Santa Cruz, Santa Cruz, USA; 

Dilution 1:1000     sc-474 

Tubulin 
> Tubulin (TU-02)  mouse  Santa Cruz, Santa Cruz, USA; 

Dilution 1:3000     sc-8035 

 

Anti-Flag M2  mouse  Stratagene, La Jolla, USA 

Dilution 1:200 

Anti-HA   rat   Roche, Indianapolis, USA 

Dilution 1:100 

 
 
 Secondary antibodies:  
Name      Supplier 
HRP-conjugated Anti-mouse:  DacoCytomation GmbH, Hamburg. 

      Germany
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HRP-conjugated Anti-rabbit:  DacoCytomation GmbH, Hamburg. 

      Germany 

HRP-conjugated Anti-rat   DacoCytomation GmbH, Hamburg. 

      Germany 

 

Alexa fluor 488 Anti mouse   Invitrogen 

Alexa fluor 546 Anti rat   Invitrogen 

 

2.1.9 Enzymes 
 All restriction endonucleases and other modifying enzymes were 

purchased from Promega (Mannheim, Germany) or New England Biolabs 

(Beverly, USA) unless otherwise stated. 

 

2.1.10 Bacteria 
E.coli DH5α: supE44ΔlacU169(φ80lacZΔM15)hsdR17recA1 endA1 gyrA96 

thi-1 relA1 

 
2.1.11 Cell lines and media 
 All media and other reagents for cell culture were purchased from 

Invitrogen GmbH (Karlsruhe, Germany). FCS was purchased from PAA 

laboratories GmbH (Linz, Austria). Trypsin was purchased from Difco 

Laboratories. 

 

Name   Origin    Source  Medium 
MEF   immortalized   Dr. P. Angel  DMEM, 

   mouse embryonic  Heidelberg  10%FCS 

   fibroblasts   Germany 

c-jun-/-MEF  immortalized MEF   Dr. P. Angel  DMEM,

   isolated from c-jun  Heidelberg  10%FCS

   knock-out mice   Germany 
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Hela   human cervical  M. Litfin  DMEM,

   carcinoma cells     10%DBS 

                 2mM L-glutamine 

Cos-7   monkey   M. Litfin  DMEM, 

   kidney cells      10%FCS 

HEK 293  human embryonic   C. Weiss   DMEM,

   kidney cells      10%FCS 

> Stably transfected with GAL4 responsive luciferase gene 

 
2.1.12 Other materials 
ECL Hyperfilm Amersham, Freiburg, Germany 

MP Hyperfilm Amersham, Freiburg, Germany 

Filter paper 3MM   Bender&Hobein, Karlsruhe, Germany 

HybondN+ membrane  Amersham, Freiburg, Germany 

Immobilon-P (PVDF membrane) Millipore; Bedford, USA 

Nick columns    Amersham Pharmacia, Uppsala, Sweden 

Chambered coverglass  Nunc, Rochester, USA 

Mounting medium, Immu-mount Shandon, Pittsburgh, USA 
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2.2 METHODS 

 The majority of protocols and recipes for commonly used buffers in this 

study were taken from the laboratory manual of Sambrook et al. (1989) unless 

otherwise stated. 

 
2.2.1 Preparation of chemically competent E. coli 
 A single colony of E. coli DH5ά was incubated in 5ml LB medium 

overnight at 370C with shaking (200 rpm). Than 4 ml was used to inoculate 

400 ml of fresh LB medium and allowed to grow to an OD590 of 0.4. After 

chilling of ice for 10 min the cells were centrifuged at 3600g for 10 min at 40C. 

The pellet was re-suspended in 20 ml of ice cold 0.1M CaCl2 and allowed to 

stand on ice for 10 min. Then bacteria was centrifuged once more and again 

re-suspended in CaCl2. This procedure was repeated once more. Finally the 

pellet was re-suspended in 2 ml of ice-cold CaCl2 with 10% glycerol. After 5 

min incubation on ice, the bacteria were aliquoted and frozen down at -800C. 

 
2.2.2 Transformation of E. coli 
 Chemical transformation was used for propagation of plasmids and 

DNA ligation products. 1μg of plasmids of 2-7μl of a ligation mix was added to 

100μl ice-thawed chemically competent E.coli. After mixing and incubation on 

ice for 15 min bacteria were heat-shocked at 420C for 30 sec and incubated 

on ice for another 2 min. The transformed bacteria were mixed with 1ml of 

SOC medium and incubated at 370C with shaking for 1h. Finally the bacteria 

were plated onto the LB agar plates supplemented with appropriate antibiotics 

and allowed to grow for 16-24h at 370C. 

 

2.2.3 Plasmid DNA preparation  
 Plasmid DNA was prepared on a large or small scale using 

QiagenPlasmidMaxi Kit according to manufacturer’s instructions.
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2.2.4 Restriction endonuclease digestion of DNA 
 DNA was digested in the buffer recommended by the supplier and 2-3 

units of a restriction enzyme were used per μg of DNA. Reaction mix was 

incubated at 370C for 4h. The quality of digest was controlled by agarose gel 

electrophoresis. 

 

2.2.5 DNA ligation 
 Ligation reaction was performed using T4DNA ligase according to 

manufacturer’s instructions. 

 
2.2.6 Subcloning into pCR-Blunt II-TOPO vector 
 PCR products were cloned using Zero® Blunt® TOPO PCR kit 

according to manufacturer’s instructions. 

 

2.2.7 Polymerase chain reaction (PCR) 
 All PCR reactions were performed in a total volume of 50μl containing: 

100ng of DNA template 

 250μM dNTP’s mix 

 250ng of primers 

 3U of polymerase 

 1x polymerase buffer 

The reactions were carried out in a PCR thermocycler (Perkin Elmer, Norwalk, 

USA) using following parameters: 

 950C  5 min 1 cycle 

 950C 30 sec 

 550C-750C 1-4 min  25-35 cycles 

 720C 2-5 min 

 720C 5 min 1 cycle 

Analysis of the PCR products was performed by a gel electrophoresis.
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2.2.8 Agarose gel electrophoresis 
 1% to 1.5% agarose was boiled in TAE buffer. Ethidium bromide was 

added to a final concentration of 0.3μg/ml and the solution was poured into a 

horizontal electrophoresis chamber, which was fitted with a comb. The comb 

was removed from the solidified gel and the DNA mixed with loading buffer 

wad loaded into the wells left by the comb. Elecrophoresis was carried out at 

50-130V at room temperature. DNA was visualized by translumination with 

320nm UV light and photographed with an Eagle Eye photo camera system 

(Stratagene). 

 
2.2.9 Purification of DNA from agarose gel 
 DNA fragment was isolated and purified from agarose gel using Easy 

Pure Purification Kit according to manufacturer’s instructions. 

 

2.2.10 Preparation of total RNA 
 Total RNA was prepared from HeLa cells. 106 cells were seeded in 

10cm cell culture dishes and starved for 42h in 0.5% DCS DMEM. Medium 

was collected and cells were washed 2x in PBS and UVC-irradiated (10J/m2) 

or treated with Anisomycin (50 ng/ml), TPA (80ng/ml), Dexamethasone (10-

6M). Collected medium was poured onto plates and cells were incubated for 

additional 4h. Cells were harvested in 1ml of Trizol solution. Isolation of RNA 

was performed according to manufacturer’s instructions. 

 
2.2.11 Radioactive labeling of DNA probes for Northern Hybridization 
 Radioactive labeling of DNA probes was performed with a Ready-

Prime kit and purified with Nick columns according to manufacturer’s 

instructions. 

 
2.2.12 Northern Blot analysis 
 1% agarose was boiled in 130ml of water. The solution was cooled 

down to 37C and 15ml of 10x MOPS buffer was added, together with 

formaldehyde to final concentration of 6% was added and 3ul of ethidium 

bromide. The agarose solution was poured into a horizontal electrophoresis  
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chamber, fitted with a comb and allowed to solidify. 10μg of total RNA was 

mixed with an equal volume of RNA sample buffer, denatured at 650C and 

loaded onto the gel. Electrophoresis was preformed in 1x MOPS buffer at 60V 

until bromophenol blue front had moved for 6cm. 

The RNA was blotted overnight onto Hybond N+membrane in 10x SSC buffer 

and cross-linked by UV-irradiation. The membrane was pre-hybridized for 20 

minutes at 680C in QuickHyb buffer. Hybridization was performed for 1h at 

680C in the presence of radio labeled probe. Membrane was washed 2x 15 

minutes at room temperature in 2xSSC buffer in presence of 0.1% SDS, and 

1x 30 minutes at 650C in 0.1 SCC buffer in presence of 0.1% SDS. Signal was 

detected using MP Hyperfilm and a phosphoimager (FLA-3000, Fuji). 

Quantification of the density of the bands was performed using Aida 2.11 

software (Raytest, Straubenhardt, Germany). 

 
2.2.13 Stripping Northern blots 
 To allow re-use of the Northern blots, radioactively labeled DNA probe 

was stripped by incubation the membranes in a stripping buffer at 950C for 30 

minutes. The membranes were than used for re-probing from the pre-

hybridization step. 

 
2.2.14 Whole cell extracts for Western blot analysis 
 Cells were either lysed directly in the SDS-PAGE sample buffer before 

sonication to break down the chromosomal DNA, or lysed in RIPA buffer and 

the resulting cell extracts was mixed with equal volume of 2x SDS-PAGE 

sample buffer. For both preparations samples were boiled for 5 min before 

loading on the SDS-PAGE gel. 

 

2.2.15 Determination of protein concentration 
 Protein concentration was determined according to Bradford.
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2 μl of sample was added to 1ml of Bradford and measured in ELISA plate 

reader at 600nm. For the calibration curve 2, 4, 8 μl of 1mg/ml BSA was 

added to Bradford reagent and measured in parallel.  

 
2.2.16 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 
 Protein samples were elctrophoretically separated on the basis of the 

size using the method from Laemmli (1970). The resolving gels containing 

between 8-12% acryl amide depending on experiment and 5% stacking gel 

were cast according to Sambrook et al. (1989).Samples were run into 

stacking gel at 60-80V and than run at 100-120V in the separating gel with a 

mini gel system (Hoefer, San Francisco, USA). 

 

2.2.17 Western blot analysis 
 Proteins in SDS-PAGE gels were transferred onto methanol soaked 

Immobilon-P membranes in a semi-dry blotter (H.Hötzel, Wörth/Hörlkofen, 

Germany) at current of 1mA/cm2 for 1h. After the transfer membranes were 

incubated in blocking buffer at room temperature for 1h to reduce unspecific 

binding. Primary antibodies were diluted in TBST-BSA buffer at concentration 

recommended by the supplier (generally 1:500-1:3000). Membranes were 

incubated in the primary antibody-containing buffer for 1-2h at room 

temperature or overnight at 40C. The membranes were then washed three 

times with TBST buffer for 5 minutes each. An appropriate secondary HRP-

conjugated antibody was added to a blocking buffer and membranes were 

incubated for additional 1h at room temperature. Membranes were washed 

again with TBST buffer for three times. Detection of specific proteins signals 

was achieved using enhanced chemiluminescence ECL Western blotting 

detection reagents and ECL Hyperfilm following manufacturer’s instructions.  

 
2.2.18 Stripping Western blot membrane 
 Stripping of the membranes was performed to utilize Western blots 

more than a single use. The membranes were incubated in a stripping 
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solution at 500C for 30 minutes with gentle agitation. The membranes were 

then washed twice with TBST buffer for 5 minutes each time, and blocked in 

blocking buffer once again. 

 

2.2.19 Cell culture  
 All cell lines were maintained at 37°C in Steri-Cult 200 incubator 

(Forma Scientific, Marietta, USA) in 5% CO2 and 95% humidity. Adherent 

cells were grown till they reached 80-90% confluency. For trypsinization, the 

medium was aspirated and cells were washed once with PBS. Cells were 

incubated with trypsin until they detached from cell culture dish than was 

diluted with fresh culture medium and the cell suspension was transferred into 

a centrifugation tube. Cells were collected by centrifugation for 2minutes at 

1200 rpm and re-plated. 

 
2.2.20 Freezing and thawing of cells 
 For freezing, logarithmically growing cells were trypsinized as 

described previously and collected by centrifugation. Cells were resuspended 

in freezing medium (DMEM, 10%FSC, 10%DMSO) and transferred into 

cryotubes. After incubation on ice for 30 minutes, cells were stored at -80°C. 

For re-propagation cells were thawed quickly at 37°C and transferred to fresh 

medium. The next day medium was replaced with fresh cell culture medium. 

 
2.2.21 Transfection of cells 
 Cells were transfected with Lipofectamine 2000 (Invitrogen, Karlsruhe, 

Germany) or FuGene6 (Roche Diagnostics) according to manufacturer 

instructions. 

 
2.2.22 Treatment of cell lines 
 UV irradiation: the medium was collected; cells were washed with PBS 

-Ca/-Mg buffer and irradiated with 40J/m2 UV-C light; collected medium was 

poured back on cells.
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Dexamethasone (DEX): after starvation of cells DEX (10-6M) was added to the 

medium. Stock of DEX (10-2M) is stores at -20°C in EtOH. 

 Phorbol ester (TPA): after starvation TPA was added to medium to final 

concentration 50ng/ml. Stock of TPA (200µg/ml) is stored at -20°C. 

 Anisomycin: after starvation anisomycin was added to the medium to 

the final concentration of 50 ng/ml. Stock of anisomycin (100 mg/ml) is stored 

as DMSO solution at -20°C. 

 

2.2.23 Luciferase assay 
 Cells were transfected with Lipofectamine 2000 or Fugene6 reagent in 

ratio 3μl of transfection reagent to 1μg of DNA. 100ng of plasmid DNA and 

100 ng of reporter DNA were used for transfection. After transfection cells 

were incubated for 20h before starvation in 0.5%FCS containing DMEM 

medium. The cells were starved for 20h and then cells were not induced or 

induced with TPA (50ng/ml), Dexamethasone (10-6M) or UVC (10-40J/m2). 

Cells were incubated for additional 6-24h after treatment, than washed with 

1ml ice cold PBS –Ca/-Mg and lysed on ice in 100μl of 1x lysis buffer 

(Promega). 20μl of cell lysate was used to measure Firefly luciferase activity. 

Firefly luciferase activities were normalized to Renilla luciferase activity (Ubi-

Renilla). Measurements were performed on Luminescence Counter (Perkin 

Elmer). 

 

2.2.24 Bimolecular Fluorescence Complementation (BiFC) Analysis 
 BiFC analysis has been developed for visualization of protein 

interactions in living cells. This approach is based on the complementation 

between two fragments of a fluorescent protein when they are brought 

together by interaction between proteins fused to the fragments (Figure 2.1.). 

It enables visualization of the subcellular locations of protein interactions in 

the normal cellular environment. 

The advantage of the BiFC approach over other complementation methods is 

that the reconstituted fluorescent protein has strong intrinsic fluorescence. 

This allows direct visualization of the protein complex. 
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 Figure 2.1. Schematic principle of the Bimolecular Fluorescence Complementation 
(BiFC) assay. Two non-fluorescent fragments (YN and YC) of the yellow fluorescent 
protein (YFP) are fused to putative interaction partners (A and B). The association of t
interaction partners allows formation of the bimolecular fluorescent complex. 

 he 
 

 

The complex can therefore be visualized without exogenous fluorogenic or 

chromogenic agents, resulting in minimal perturbation of cells. Using BiFC 

approach, living cells can be observed over a long periods and the possibility 

of experimental manipulations altering results is minimized. 

One limitation of the BiFC method is the time required for fluorophore 

maturation. This prevents real-time detection of rapid changes in interactions. 

In addition, bimolecular fluorescent complex formation is irreversible in vitro. 

Despite these limitations, the BiFC assay was used to study interactions 

among a variety of structurally diverse proteins in many different cell types 

(Atmakuri et al., 2003; Fang and Kerppola, 2004; Hu et al., 2002). Thus, the 

BiFC assay is generally applicable for the visualization of a variety of protein 

complexes in living cells. 

 Design of fusion proteins. 

Fragments of yellow fluorescent protein (YFP) truncated at residue 155 give: 

N-terminal residues 1-154 (YN fragment) and C-terminal residues 155-238 

(YC fragment). Proteins of interest are fused to the N- and C- terminal 

fragments of the YFP (Figure 3.2.).  

In order to determine whether any fluorescence that is observed reflects a 

specific protein interaction and not spontaneous re-association of two halves  
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of YFP, it is necessary to include negative controls in the experiment. This is 

essential since the fluorescent protein fragments are able to form fluorescent 

complexes with low efficiency, even in the absence of a specific interaction. 

This non-specific complementation is generally reduced when the fragments 

are fused to proteins that do not interact with each other. 

 Live imaging of interacting proteins 

 For live imaging of protein complementation cos7 cells were 

transfected in chambered slides using FuGene6 transfection reagent with 

appropriate DNA in ratio 3μl Fugene6 to 1μg DNA. FuGene6 reagent was 

used to introduce DNA into cells because it has low background fluorescence 

and requires minimal manipulation of cells. 40-80ng of plasmid DNA were 

user for transfection. Cells were co-transfected with pDsRed expressing 

vector. This construct is expressing red fluorescent protein derived from 

Discoma sp. and was used to visualize cells that were successfully 

transfected. 20h post-transfection cells were incubated at 300C for additional 

2h to allow fluorophore maturation. Then cells were washed two times with 

500μl PBS -Ca/-Mg. For visualization of nuclei, cells were counterstained with 

Draq5 (dilution 1:1000) in 200μl PBS -Ca/-Mg buffer for 10min. The cells were 

washed and 300μl of fresh PBS-Ca/-Mg was added to cells and 

complementation of fusion proteins was observed under inverted confocal 

laser scanning microscope (Zeiss). 

 Immunocytochemistry 
 To check the expression and the localization of proteins using 

antibodies staining procedure, cos7 cells were cultured on coverslips in 6 well 

cell culture dish. The cells were transfected using FuGene6 reagent with 

appropriate DNA in ratio 3μl Fugene to 1μg DNA. 20h post-transfection glass 

coverslips were transferred in 24well cell culture dish and washed 2 times in 

PBS -Ca/-Mg at room temperature. 10% formalin solution in PBS -Ca/-Mg 

was poured onto cells. Cells were fixed at room temperature for 10 min. The 

cells were washed 3 times in 500 μl PBS –Ca/-Mg and permeabilized in 0.1% 

TritoX-100 solution in PBS -Ca/-Mg for 5 min at room temperature. The cells 

were washed 3 times in PBS -Ca/-Mg. Than 1%BSA in PBS -Ca/-Mg blocking 

solution was added onto cells. 
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The cells were incubated in blocking solution for 30 min at room temperature 

with slow shaking. Then slides were incubated for 1h with 1%BSA in PBS –

Ca/-Mg solution containing primary antibody in 1:100 dilution for anti-HA 

antibody and 1-.200 dilution for anti-FLAG antibody. The cells were washed 3 

times in PBS -Ca/-Mg. Then 1%BSA in PBS -Ca/-Mg solution containing 

secondary antibody and Draq5 for counterstaining of nuclei in dilution 1:1000 

was added onto cells. 1:1000 dilutions of Alexa fluor 546 anti-rat and of Alexa 

fluor 488 anti-mouse secondary antibodies were used. The cells were 

incubated with secondary antibody solution for 30 min. The cells were washed 

3 times in PBS -Ca/-Mg; slides were mounted on object glass in mounting 

medium Immu-mount and dried in horizontal position over night at room 

temperature in darkness. Localization and expression of proteins was 

observed under inverted confocal laser scanning microscope (Zeiss). 

 Confocal laser scanning microscopy.  

 Slides were observed under inverted confocal laser microscope 

(LSM510; Carl Zeiss). An argon-krypton laser produced excitation bands at 

495 nm for Alexa 488, 556nm for Alexa546, 556 nm for DsRed and 543nm for 

Draq5. Images of cells were acquired with Zeiss microscope equipped with a 

60× oil immersion phase-contrast objective, with emission filters 510 to 550 

nm for Alexa488 and 585 to 610 nm for Alexa546 and DsRed. Digital images 

were transferred to a computer equipped with Photoshop (Adobe Systems). 
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3. RESULTS  

The abundance and composition of AP-1 transcription factor vary 

during the cell cycle and is cell type dependent. To restrict the analysis to the 

repression of transcriptional function of a specific AP-1 dimer by GR I used 

AP-1 pseudodimers as a tool. These AP-1 molecules were developed in M. 

Yaniv group and were used to study promoter specificity and biological activity 

of different dimers (Bakiri et al. 2002). AP-1 pseudodimers were constructed 

by fusing coding regions of AP-1 family members in frame via a synthetic 

oligonucleotide which encodes a glycine-rich polypeptide linker of 18 amino 

acids (Fig. 3.1.). The glycine residues maximize the flexibility, and the 

interspersed serine residues increase the hydrophilicity. 

 

 

 

 

 

 

 

 

Figure 3.1. AP-1 pseudodimer design, example of c-Jun~cFos. 
The sequence encoding c-Jun and c-Fos are connected in frame via a flexible linker. 
b: basic DNA binding domain; ZIP: leucine zipper. A FLAG epitope tag was inserted at the 
C-terminus of constructs. Adapted from Bakiri et al. 2002. 

 
 3.1. Interaction between AP-1 pseudodimers and Trip6 
 Interaction of c-Fos with nTrip6 is necessary for the repression of c-

Jun/c-Fos by GR (Kassel et al., 2004). I wanted to study another AP-1 dimer,  

c-Jun/ATF2 also interacts with nTrip6. This interaction would be a prerequisite 

for GR-mediated repression of this AP-1 dimer. 

 I therefore evaluated the interaction between nTrip6 and AP-1 dimers 

in vivo using the Bimolecular Fluorescence Complementation (BiFC) method. 

BiFC assay is based on the reconstitution of yellow fluorescent protein (YFP) 

by fusion of its halves to interacting partner proteins (Fig. 3.2.) (Hu et al., 

2002).
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Figure 3.2. Schematic structure of YC-cJun~cFos, YC-cJun~ATF2 and YN-nTrip6.  
The sequences encoding cJun~cFos and cJun~ATF2 were fused in frame with the C-
terminal half of yellow fluorescent protein (YC). A HA epitope tag was inserted at the N-
terminus of cJun. The sequence encoding nTrip6 was fused in frame with the N-terminal half 
of yellow fluorescent protein (YN). A FLAG epitope tag was inserted at the C-terminus of 
nTrip6.  

 

 

Cos7 cells were chosen for these experiments. The presence of a big 

nucleus and transfection efficiency in these cells facilitate BiFC assay. Cells 

were additionally co-transfected with dsRed expressing vector that serves as 

a transfection control. Only cells expressing a dsRed protein were acquired 

for images. Confocal microscopy of living cells was performed 22h post-

transfection.  

 Expression and localization of the fusion proteins was analyzed by 

immunocytochemistry. Cos7 cell were transfected with vectors expressing 

fusion proteins: YN-nTrip6, cJun~cFos-YC and cJun~ATF2-YC in 6 well plate 

on glass slide. 20h post-transfection cells were harvested, fixed and 

immunobloted. 

 Probing with an anti-FLAG antibody showed expression and a nuclear 

localization of nTrip6, as expected (Fig. 3.3, top panel). Expression of 

cJun~cFos-YC and cJun~ATF2-YC was detected after probing with anti-HA 

antibody. Proteins showed a nuclear localization (Fig. 3.3, middle and bottom 

panel). This confirmed that the fusion protein maintained their natural nuclear 

distribution.

  35 



Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

  

Figure 3.3. Expression of YC- and YN-fusion proteins. 
Cos7 cells were transfected with cJun~cFos-YC, cJun~ATF2-YC and YN-nTrip6 expression 
vectors. 24h post-transfection cells were harvested. Expression of fusion proteins was 
analyzed by immunobloting with anti-FLAG antibody to visualize YN-nTrip6 fusion and anti-HA 
antibody to visualize cJun~cFos-YC and cJun~ATF2-YC fusions. Fluorescent images were 
acquired by confocal microscopy using filters selective for Alexa Fluor 488 (green) or 567 
(red). DNA was stained with Draq5 (right panel). 

It is possible that two parts of a fluorescent protein will spontaneously 

reassociate giving unspecific fluorescence. To check the specificity of the 

complementation, a control experiment was performed. Cos7 cells were 

transfected with control vectors expressing only YC or YN together with 

vectors expressing YN-nTrip6, cJun~cFos-YC or cJun~ATF2-YC. Cells 

expressing YC and YN-nTrip6 did not show fluorescence. This suggests that  
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two parts of YFP did not reassemble spontaneously. The same was observed 

in cells expressing YN together with cJun~cFos-YC or cJun~ATF2-YC 

(Fig.3.4 A, middle and bottom panel). dsRes expression shows that cells were 

successfully transfected. This result shows that in these experimental 

conditions no spontaneous re-association of the two parts of YFP fluorescent 

protein takes place. 

 In cells transfected with YN-nTrip6 together with cJun~cFos-YC 

complementation fluorescence was observed (Fig. 3.4.). Fluorescence was, 

as predicted, localized in the nucleus, where the interaction between nTrip6 

and AP-1 is expected to occur. This confirms that nTrip6 interacts with c-Fos, 

as previously observed (Kassel et al., 2004). Cells co-transfected with YN-

nTrip6 and cJun~ATF2-YC did not show fluorescence (Fig. 3.4.). dsRed 

expression shows that cells were transfected but still no interaction between 

nTrip6 and cJun~ATF2 was detected.  

 This result is in agreement with in vitro interaction data. In pull down 

experiments nTrip6 and c-Fos interaction was detected (Heilbock, 

unpublished data; Kassel et al., 2004) whereas no interaction in between 

nTrip6 and Jun of ATF family members was detected using this method 

(Heilbock, unpublished results). 
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 Figure 3.4. Figure legend on the following page 
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Figure 3.4. Visualization of interaction between nTrip6 and cJun~cFos and cJun~ATF2 
using BiFC assay in living cells. 

A. cos7 cells were co-transcected with dsRed expressing vector together with YN-
nTrip6 and cJun~cFos-YC or cJun~ATF2-YC. 20h post transfection cells were incubated at 
300C for 2h to allow fluorophore maturation. Fluorescence images were acquired by using 
filters selective for YFP (left) or dsRed (middle). DNA was stained with Draq5 (left). 
B. Cos7 cells were co-transcected with dsRed expressing vector and vector controls 
together with YN-nTrip6 or cJun~cFos-YC and cJun~ATF2-YC. 20h post transfection cells 
were incubated at 300C for 2h to allow fluorophore maturation. Fluorescence images were 
aquired by using filters selective for YFP (left) or dsRed (right). 

3.2. Specificity of GR mediated repression for different AP-1   
  dimers. 
 nTrip6 is required for GR-dependent repression of AP-1 (Kassel et al., 

2004). c-Jun~ATF2 pseudodimer did not show interaction with nTrip6 in the 

BiFC assay. This suggests that the c-Jun/ATF2 dimer might not be regulated 

by ligand-bound GR. 

 To evaluate the regulation of a specific AP-1 dimer by GR I used 

reporter gene assays in cultured cells. Transcription factor binding to the 

promoter region of the reporter gene results in the expression of the firefly 

luciferase. The amount of luciferase activity detected from the cell lysates 

correlates directly with the promoter activity of a reporter gene. 

 An ATF3 reporter construct was used to study the effect of GR on the 

transcriptional activity of AP-1 pseudodimers. ATF3 promoter is a known AP-1 

target and contains binding sites for both c-Jun/c-Fos (AP-1/TRE) and  

c-Jun/ATF-2 (ATF/CRE) (Liang et al., 1996) (Fig. 3.5.).  

 

 

 

 

 

 

Figure 3.5. Schematic representation of the ATF-3 promoter region. 
The Myc/Max, NF-κB, AP-1/TRE and ATF/CRE binding sites, located between position -1850 
and -30 (relative to the transcription start site) are shown. Adapted from Liang et al., 1996. 

ATF/CRE is an octameric sequence that appears to be specifically bound by 

the c-Jun/ATF-2 heterodimer, while AP-1/TRE is a heptameric motif, similar to 

the collagenase TRE, which binds c-Jun/c-Fos. 
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HeLa cells were transfected with cJun~cFos and cJun~ATF2 encoding 

vectors and ATF3-luc reporter construct. Ectopic expression of the cJun~cFos 

pseudodimer increased the activity of the luciferase reporter gene around 25 

fold (Fig. 3.7, A). This strong response of the reporter was repressed by GR 

after dexamethasone treatment. Activation of the reporter by ectopically 

expressed cJun~ATF2 pseudodimer was slightly stronger as compared to 

cJun~cFos. Dexamethasone had no effect on the transactivation of the 

reporter gene by cJun~ATF2 pseudodimer (Fig. 3.7, A). 

 Next step was to evaluate if this result is not specific to ATF3 promoter. 

In this experiment another reporter gene, the urokinase plasminogen activator 

(uPA) enhancer driving the expression of luciferase gene (uPA-Luc) was 

used. This enhancer fragment consists of 200bp element from the uPA 

promoter. It contains binding sites for both c-Jun/c-Fos (AP-1/TRE) and c-

Jun/ATF-2 (ATF/CRE) (De Cesare et al., 1995) (Fig. 3.6.).  

 

 

 

 

 

 

Figure 3.6. Schematic representation of the -2.0 kb human uPA enhancer. 
The AP-1/TRE and ATF/CRE binding elements are shown (relative to the transcription 
start site). Adapted from Cirillo et al. 1999. 

 As observed for the ATF3-luc reporter, the activity of the uPA-luc 

reporter gene was induced by the cJun~cFos pseudodimer (Fig. 3.7, B) and 

repressed by dexamethasone. In cells expressing cJun~ATF2 pseudodimer 

the reporter gene activity was not modulated by GR after DEX treatment 

(Figure 3.7, B). This result suggested that the lack of dexamethasone effect 

on cJun~ATF2 regulated reporter activity is not promoter dependent.  

 Lysates were collected after the reporter assay and the expression 

levels of the cJun~cFos and cJun~ATF2 pseudodimers were analyzed by 

SDS-PAGE. Probing with specific antibodies showed that the expression of 

the transfected cJun~cFos and cJun~ATF2 pseudodimers is at the same level 

and not affected by dexamethasone treatment (Figure 3.7, C). Moreover, 
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probing with an anti-c-Fos antibody showed that the levels of endogenous c-

Fos are not detectable. This shows that the starvation time before 

dexamethasone treatment is sufficient to reduce the expression of the 

endogenous c-Fos protein. Thus, the measured reporter gene activity after 

ectopic expression of the cJun~cFos pseudodimer was due to transactivation 

by the pseudodimer, and not to the endogenous c-Fos-containing dimer. 

Probing with anti-ATF2 antibody showed that c-Jun~ATF2 pseudodimer 

expression is not affected by dexamethasone (Figure 3.7, C). Expression of 

cJun~ATF2 pseudodimer induced the expression of endogenous ATF2. It is 

not surprising since ATF2 is a known AP-1 target gene (Liang et al., 1996). 

High level of ATF2 protein, upon heterodimerization with endogenous c-Jun, 

could have contributed to the activation of the reporter gene in the assay. 

However, this activity was not repressed after dexamethasone treatment, 

suggesting that neither the cJun~ATF2 pseudodimer nor the endogenous c-

Jun/ATF2 dimer can be repressed by GR.  

 This result suggests that GR does not regulate the transcriptional 

activity of c-Jun/ATF2 dimer. This lack of repression by GR might due to the 

lack of interaction between nTrip6 and cJun or ATF2.
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Figure 3.7. Figure legend on the following page 
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Figure 3.7. Effect of dexamethasone on c-Jun~cFos and cJun~ATF2 induced 
ATF3- and uPA-promoter activity.   
HeLa cells were co-transfected with -624+35ATF3-Luciferase (A) or uPA-Luciferase 
reporter (B) (100ng) together with GR (100ng), and with empty vector (c) or 
pseudodimer cJun~cFos or cJun~ATF2 expressing vectors (100ng). Cells were serum 
starved and untreated (c) or treated with dexamethasone (DEX, 10-6M), harvested 16h 
later and assayed for reporter gene activities. Results are shown as fold induction 
relative to the activity in untreated cells transfected with the reporter construct alone 
(mean±SD of one representative experiment performed in triplicate). 
(C) Expression levels of cJun~cFos and cJun~ATF2 pseudodimers. 

 

 

 

 

 Lysates after luciferase assay were analyzed by SDS-PAGE using an anti-ATF2 and an 
anti-c-Fos antibody. Membranes were stripped and re-probed with an anti-tubulin 
antibody, as loading control.  

 

 3.3. GR-mediated regulation of endogenous AP-1 target genes 
 Experiments presented so far suggest that c-Jun/ATF2 transcriptional 

activity is not repressed by GR. However it cannot be excluded that the lack of 

repression by GR might be an artifact. The structure of the c-Jun/ATF2 

pseudodimer might not mimic the exact conformation of the natural promoter 

bound cJun/ATF2 dimer, and might not be repressible by ligand-bound GR.  

I thus wanted to study the effect of GR on the transcriptional activity of the 

endogenous c-Jun/ATF2 dimer in comparison with the regulation of the well 

studied c-Jun/cFos dimer. The activity of endogenous c-Jun/ATF2 or c-Jun/c-

Fos was stimulated through activation of different MAP kinase pathways. 
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 JNK pathway was stimulated by UV-C to induce activity of c-Jun/ATF2 

dimer by phosphorylation. To exclude effects of UV-C-induced DNA lesions, 

anisomycin treatment was also used to activate cJun/ATF2. At concentrations 

that do not inhibit protein synthesis, anisomycin activates the JNK/SAPK 

signal transduction pathway which leads to phosphorylation and 

transcriptional activity of cJun/ATF2 (Cano et al., 1994).  

 Activity of the ERK pathway was stimulated with the phorbol ester TPA. 

Activation of this pathway leads to de novo synthesis of c-Fos proteins which 

dimerize with existing c-Jun proteins and regulate the expression of target 

genes driven by AP-1 response elements.  

 As a read out for GR-mediated regulation of activated endogenous AP-

1 factors, I analyzed the expression of ATF3, a known c-Jun/c-Fos and c-

Jun/ATF2 target gene at the level of mRNA by Northern Blot. As a control I 

analyzed the expression levels of collagenase I, a known c-Jun/c-Fos target 

gene (Angel et al., 1987). 

 TPA treatment induced collagenase I and ATF3 mRNA levels, as 

expected. This is most probably due to transactivation by c-Jun/c-Fos dimer. 

Dexamethasone treatment repressed this induction (Fig. 3.8.).  

UV-C treatment strongly induced the expression of ATF3 gene but had no 

effect on collagenase I induction. This shows that UV-C did not stimulate the 

activity of c-Jun/c-Fos. The induction of ATF3 expression is most probably 

mediated by c-Jun/ATF2 dimer. Treatment with dexamethasone surprisingly 

repressed the expression of ATF3.  
To exclude that this effect is not at the level of c-Jun/ATF2 dimer but 

anywhere in the DNA damage response pathway activated by UV-C, another 

JNK inducer, anisomycin was used. Result of induction with anisomycin was 

as observed with UV-C. Collagenase I expression was not induced, whereas 

ATF3 expression was strongly induced and repressed upon dexamethasone 

treatment.  

This shows that upon dexamethasone treatment, decrease of UV- or 

anisomycin-induced expression of ATF3 is not due to a repression of c-Jun/c-

Fos dimer. 
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Figure 3.8. Effect of dexamethasone on phorbol ester, ultraviolet light and anisomycin 
induced ATF3 and collagenase 1 mRNA expression. 
HeLa cells were serum starved, not treated (-) or pre-treated with dexamethasone (DEX, 
10-6M) for 45 min and stimulated with phorbol ester (TPA, 50ng/ml), ultraviolet light (UV-C, 
40J/m2) or anisomycin (50ng/ml). 4h after treatment total RNA was extracted and 
subjected to Northern blotting using [32P]-labeled cDNA probes for ATF3, collagenase 1 
and GAPDH that was used as a loading control. The results are representative of three 
independent experiments. 

 Due to the complex character of the ATF3 promoter, the observed 

repression might also be an effect of the regulation of other transcription 

factors contributing to the expression of ATF3 gene upon UV or anisomycin 

treatment. To evaluate this possibility I studied the effect of GR on the 

transcriptional activity of endogenous AP-1 dimers in reporter gene assays 

using a promoter containing only AP-1 response elements.  

 I used the previously described minimal ATF3-luc reporter gene. This 

minimal promoter construct contains binding sites for both cJun/cFos and 

cJun/ATF2, which allows studying the regulation of these dimers in the very 

same promoter context.  

TPA treatment induced the activation of the reporter gene, presumably by c-

Jun/cFos dimer. Dexamethasone treatment repressed this induction, as 

expected (Fig. 3.9.). UV-C irradiation also induced the expression of the 

reporter gene. In this minimal promoter context this induction is most probably 

mediated by activated c-Jun/ATF2 dimer. This induction was also repressed 

by dexamethasone (Fig. 3.9.), confirming the results of the regulation of the 

endogenous ATF3 gene. 
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 Figure 3.9. Effect of dexamethasone on phorbol ester and ultraviolet light induced  
ATF3-promoter activity. HeLa cells were serum starved, not treated (c) or pre-treated 
dexamethasone (DEX, 10-6M) for 45 min and stimulated with phorbol ester (TPA, 
50ng/ml), ultraviolet light (UV-C, 40J/m2) or anisomycin (50ng/ml). 4h after treatment cells 
were harvested and assayed for reporter gene activities. Results are shown as fold 
induction relative to the activity in untreated cells transfected with reporter construct alone 
(mean±SD of one representative experiment performed in triplicate). 

 

 

 

 

 

 

These results are in contradiction with previous experiments. On the one 

hand, the transcriptional activity of ectopically expressed cJun~ATF2 

pseudodimer was not modulated by GR. On the other hand, the induced 

activity of endogenous c-Jun/ATF2 dimer is repressed by GR.  

 In the experimental conditions used, this discrepancy could come from 

differences in the phophorylation status of AP-1 dimers. c-Jun~ATF2 

pseudodimers, on the one hand are in a stable complex, localized in the 

nucleus and transcriptionaly active. On the other hand the activity of 

endogenous preexisting AP-1 proteins is increased by phosphorylation. Thus 

the repression of c-Jun/ATF2 activity by ligand-bound GR might be due to the 

inhibition of this phosphorylation step. 
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3.4. GR-mediated repression of c-Jun/ATF2 transcriptional activity 
 
 3.4.1 Inhibition of c-Jun phosphorylation 
Indeed, previous reports showed that GR is interfering with MAPK signaling 

pathways (Caelles et al., 1997; Gonzalez et al., 1999). In particular, GR has 

been proposed to inhibit JNK by direct binding to the kinase through JNK 

docking site (Bruna et al., 2003). Inhibition of JNK activity would lead to the 

down regulation of the transcriptional activity of c-Jun containing AP-1 dimers. 

However, the contribution of such a mechanism on the repression of AP-1 

activity by GR is still a matter of debate. 

 In the case of c-Jun/c-Fos dimer, the repression is mediated by the 

recruitment of GR to the promoter through an interaction with nTrip6 (Kassel 

et al., 2004). c-Jun/ATF2 dimer does not interact with nTrip6 and thus GR is 

probably not recruited to the promoter. In this case, the observed repression 

of endogenous c-Jun/ATF2 activity might be related to the inhibition of JNK 

activity by GR.  

A prerequisite here was therefore to examine if GR inhibits JNK and c-Jun 

phosphorylation it the conditions of the assay.  

 In unstimulated cells the levels of phosphorylated JNK and c-Jun are 

low (Fig. 3.10.). Upon UV-C irradiation the phosphorylation levels of JNK and 

c-Jun are increased within 30 min. 
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Figure 3.10. Effect of dexamethasone on ultraviolet light induced phosphorylation of 
JNK and c-Jun. 
Fibroblasts cells were not treated (-) or pre-treated with dexamethasone (DEX, 10-6M) for 
45 min and irradiated with UV-C (40J/m2). Cells were harvested at indicated time points 
post irradiation and lysates were subjected to SDS-PAGE. JNK and c-Jun phosphorylation 
was assessed by immunoblots using anti-phospho-JNK and anti-phospho-c-Jun 
antibodies. The membranes were stripped and re-probed with phosphorylation state 
independent anti-JNK1 and anti-c-Jun antibodies. ERK1 antibody was used as a loading 
control. The result is representative of three independent experiments. 

 

At 30 min time point dexamethasone treatment decreased the 

phosphorylation of of c-Jun. At 1h time point phosphorylation of JNK was 

completely inhibited upon dexamethasone treatment. Total levels of JNK were 

not affected by dexamethasone as shown after probing with an anti-JNK1 

antibody.  

At 1h time point the phosphorylation of c-Jun was strongly increased. 

Moreover, at this time point total levels of c-Jun protein are also elevated, as 

compared to non-irradiated cells. Dexamethasone treatment decreased the 

phosphorylation and total protein levels of c-Jun as compared to untreated 

control. This result shows that inhibition of JNK phosphorylation by 

dexamethasone is subsequently leading to a decrease in c-Jun 

phosphorylation (Fig. 3.10.). 
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 3.4.2 Repression of c-Jun/ATF2 transcriptional activity by GR 
 These results confirm that GR inhibits JNK activity. Thus, the inhibitory 

action of GR on JNK signaling might contribute to the GR-mediated 

repression of JNK-stimulated c-Jun/ATF2 activity. To address this question, I 

studied the effect of GR on the transcriptional activity of the AP-1 

pseudodimers upon UV-induced activation of the JNK pathway, using the 

uPA-luc reporter gene. To avoid any influence of endogenous c-Jun proteins 

activated after UV-C treatment, which could contribute to the induction of the 

reporter gene, c-jun-/- fibroblasts were used in this experiment. Indeed, as 

expected UV-C irradiation alone did not induce luciferase activity significantly 

(Fig. 3.11.). This also suggests that, despite elevated levels of other Jun 

members in this cell system, especially JunD (data not shown) they do not 

contribute to the UV-C induced activation of the uPA-luc reporter gene.  

The transcriptional activity of transiently transfected cJun/cFos pseudodimer 

was repressed by dexamethasone (Fig. 3.11.), as previously seen. The 

cJun/cFos pseudodimer activity was further increased by 2 fold upon UV-C 

irradiation (Fig. 3.11.). This increase is probably due to the phosphorylation of 

the c-Jun moiety of the pseudodimer. This result confirms that cJun/cFos 

pseudodimers respond to phosphorylation like the endogenous dimer. 

Dexamethasone repression of cJun/cFos transcriptional activity was also 

observed after UV-C irradiation, and extend of the repression before and after 

UV-C irradiation was similar (Fig. 3.11.). 

The transcriptional activity of cJun/ATF2 pseudodimer in non irradiated cells 

was not modulated by dexamethasone (Fig. 3.11.), as previously seen. 

Responsiveness of urokinase reporter to cJun/ATF2 pseudodimer was 

increased by 6 fold after UV-C irradiation (Fig. 3.11.). Since endogenous Jun 

proteins do not contribute to the activity of the reporter gene, this increase is 

only due to the phosphorylation of c-Jun and ATF2 in the pseudodimer. 
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Figure 3.11. Effect of DEX on ultraviolet light induced activity of cJun~cFos and 
cJun~ATF2 on uPA-promoter. 
cjun-/ - MEF cells were co-transfected with uPA-Luciferase reporter (100ng) together with 
GR (300ng), and with empty vector (c) or pseudodimer cJun~cFos or cJun~ATF2 
expressing vectors (700ng). Cells were serum starved, not treated (-) or pretreated with 
dexamethasone (DEX, 10-6M) and either not exposed or exposed to ultraviolet light (UV-
C, 40J/m2). 16h later cells were harvested and assayed for reporter gene activities. 
Results are shown as fold induction relative to the activity in untreated cells transfected 
with reporter construct alone (mean±SD of one representative experiment performed in 
triplicate). 

 

This confirms that, like in the case of the cJun/cFos pseudodimers, the 

structure of the fusion does not affect its phosphorylation by JNK, and that the 

cJun~ATF2 pseudodimer responds to the activation in the same manner as 

the endogenous proteins. This phosphorylation induced increase in 

cJun/ATF2 pseudodimer transcriptional activity was partially repressed by GR 

upon dexamethasone treatment. 

 To further corroborate this result, I analyzed the effect of GR on the 

transcriptional function of c-Jun independent of dimerization with other AP-1 

family members. c-Jun lacking the basic region/ leucine zipper (bZIP) domain, 

and thus unable to dimerize, was fused to the heterologous DNA-binding 

domain of the yeast transcription factor GAL4 (GALDBD) (Fig.3.12.). The 

activity of a reporter gene driven by GAL4-UAS-response element would  
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reflect only the activity of c-Jun fused to GALDBD, without any interference of 

other AP-1 transcription factors. In these experiments HEK 293 cells with a 

GAL4-responsive luciferase gene stably integrated into the genome were 

used.  

JNK was activated by co-transfection with a constitutively active form of the 

JNK kinase kinase MEKK1 (ΔMEKK1).  

As a control I used full length c-Fos and ATF2 fused to GALDBD (Fig.3.12.), to 

ensure that the GALDBD fusions of AP-1 family members do behave like their 

endogenous counterparts in these experimental conditions.  

 

  

 

 

 

 

 

 

Figure 3.12. Schematic structure of GAL-Jun, GAL-ATF2 and GAL-cFos. 
The DNA binding and dimerization domain (bZIP, black box) of c-Fos and ATF2 and the 
JNK phosphorylation sites of c-Jun (serines 63, 73 and threonines 91, 93) and ATF2 
(threonine 69 and 71) are shown. Numbers indicate amino acid positions.  

 

The basal activity of the reporter gene in control cells was neither affected by 

dexamethasone nor by transfection of ΔMEKK1 (Fig. 3.13). Transfection of 

cells with GALDBDc-Fos led to a strong induction of the activity of the reporter 

gene. Cells expressing GALDBDc-Fos together with the ΔMEKK1 showed a 

further increase in reporter activity (Fig. 3.13). This is probably due to the 

activation by phosphorylation of the endogenous c-Jun that dimerizes with 

GALDBDc-Fos. This confirms that GAL DBD fusions respond to stimulation like 

natural AP-1 dimers. Dexamethasone treatment, with or without activation of 

JNK signaling by ΔMEKK1, repressed the transcriptional activity of GALDBDc-

Fos to the same extend (Fig. 3.13), as previously seen with the cJun~cFos 

pseudodimers. This result confirms that GR mediated repression of c-Jun/c-

Fos activity is independent of SAPK/JNK activity, and independent of the 

promoter context. 
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 Figure 3.13. Effect of dexamethasone on Gal-cFos induced UAS-GAL-promoter activity. 
HEK 293 cells stably transfected with a GAL4-responsive luciferase gene were transfected 
with GR (200 ng) and empty vector or GALDBDcFos construct (200 ng) with or without 
ΔMEKK1 (25ng) expression vector. Cells were untreated or treated with DEX (10-6M) for 
18h and harvested and assayed for reporter gene activities. Results are shown as fold 
induction relative to the activity in untreated cells transfected with reporter construct alone 
(mean±SD of one representative experiment performed in duplicate). 

 

 

 

 

The activity of the reporter was not changed in cells transfected with 

GALDBDATF2 (Fig. 3.14.). ATF2 is a poor transactivator itself in the absence of 

extracellular stimulation (Li and Green, 1996). Phophorylation upon JNK 

activation is inducing ATF2 transactivation function. This would explain the 

strong induction of the reporter gene activity in cells co-transfected with 

GALDBDATF2 and ΔMEKK1 (Fig. 3.14.). Additionally full length ATF2 in fusion 

with GALDBD, upon JNK activation can dimerize with endogenous c-Jun and 

regulate the expression of the reporter gene. In these conditions 

dexamethasone treatment repressed the transcriptional activity of 

GALDBDATF2 (Fig. 3.14.). This result confirms that GR mediated repression of 

c-Jun/ATF2 activity is dependent of SAPK/JNK activity, and independent of 

the promoter context.
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Figure 3.14. Effect of dexamethasone on Gal-cFos induced UAS-GAL-promoter activity. 
HEK 293 cells stably transfected with a GAL4-responsive luciferase gene were transfected with 
GR (200 ng) and empty vector or GALDBDcFos construct (200 ng) with or without ΔMEKK1 
(25ng) expression vector. Cells were untreated or treated with DEX (10-6M) for 18h and 
harvested and assayed for reporter gene activities. Results are shown as fold induction relative 
to the activity in untreated cells transfected with reporter construct alone (mean±SD of one 
representative experiment performed in duplicate). 

c-Jun transactivation function in fusion with GALDBD was not modulated after 

dexamethasone treatment without JNK activation (Fig. 3.15.). However, when 

JNK activity was stimulated by co-transfection of a constitutively active form of 

the JNK kinase kinase MEKK1 (ΔMEKK1), the reporter activity was strongly 

increased (Fig. 3.15.). Since GALDBDcJun is lacking the bZIP domain and 

cannot dimerize with other AP-1 members, this strong increase can only be 

due to the phosphorylation of the c-Jun moiety of the fusion. And in these 

conditions, phosphorylation induced activity of GALDBDcJun is repressed by 

GR (Fig. 3.15.). 

This result shows that unlike c-Jun/c-Fos dimer, which is directly trans-

repressed by GR, c-Jun/ATF2 dimer activity is repressed by GR only when it 

is phosphorylated by JNK. 

 

  53 



Results 

 
 

 

  

 

 

 

 

 

 

 

 

 

 
Figure 3 15. Effect of dexamethasone on Gal-c-Jun induced UAS-GAL-promoter activity.  
HEK 293 cells stably transfected with a GAL4-responsive luciferase gene were transfected 
with GR (200 ng) together with either empty vector or GALDBD-c-Jun construct (200 ng) with 
or without ΔMEKK1 (25ng) expression vector. Cells were untreated or treated with DEX (10-

6M) for 18h and harvested and assayed for reporter gene activities. Results are shown as 
fold induction relative to the activity in untreated cells transfected with reporter construct 
alone (mean±SD of one representative experiment performed in duplicate). 

 

 

 
  

 Taken together my results show that c-Jun/ATF2 activity is not 

transrepress by GR like the activity of c-Jun/c-Fos dimer. ΔMEKK1-induced 

activation of c-Jun/ATF2 upon phosphorylation by JNK is repressed by 

dexamethasone. This repression is presumably a result of the inhibition of 

JNK activity by GR. 
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4. DISCUSSION  

This work shows that two different dimers belonging to the AP-1 family 

of transcription factors, c-Jun/c-Fos and c-Jun/ATF2 are repressed by 

Glucocorticoid Receptor by a different mechanism. This is based on the 

difference in the abilities of these different dimers to interact with nTrip6.  

c-Jun/c-Fos does interact with nTrip6, which is essential for transrepression 

by GR. c-Jun/ATF2 does not interact with nTrip6 and is not transrepressed by 

GR. c-Jun/ATF2 is however also repressed by GR, through an inhibition of 

JNK-mediated phosphorylation of c-Jun. 

 Down regulation of c-Jun/c-Fos transcriptional activity by ligand-bound 

Glucocorticoid Receptor is an example of the “classical” transrepression mode 

of regulation. Repression of c-Jun/c-Fos transcriptional activity by GR does 

not involve DNA binding by GR, but the DNA binding domain of GR is 

necessary for efficient repression of c-Jun/c-Fos (Jonat et al., 1990).  The 

trans-repression mechanism also does not involve competition for 

coactivators between  c-Jun/c-Fos and GR (De Bosscher et al., 2001). 

Repression of c-Jun/c-Fos activity by GR is not changing promoter occupancy 

by this dimer (Kassel et al., 2004; Konig et al., 1992; Nissen and Yamamoto, 

2000; Rogatsky et al., 2001), but involves protein-protein interaction between 

c-Jun/c-Fos and GR. This interaction is mediated through nTrip6, which 

interacts with c-Fos on the target promoter (Kassel et al., 2004). At the same 

time nTrip6 is also able to interact with GR. Through this interaction nTrip6 

mediates the recruitment of GR to the promoter-bound AP-1 as a prerequisite 

for transrepression. 

 In the experimental conditions used the transcriptional activity of c-

Jun/ATF2 was not modulated by GR. Moreover, interaction studies using 

BiFC assay confirmed that nTrip6 interacts with c-Jun/c-Fos in vivo, but no 

interaction between nTrip6 and c-Jun/ATF2 was detected. This confirms in 

vitro pull down experiments which did not show any interaction between 

nTrip6 and ATF2 or c-Jun (Heilbock, unpublished data). c-Jun/ATF2, and the 

activity of the dimer is not repressed. This needs to be further investigated. 

According to the model proposed by Kassel et al., c-Jun/ATF2 is not 

transrepressed by GR presumably due to the lack of interaction with nTrip6.  
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Without interaction with nTrip6, GR may not be recruited to the promoter 

bound The lack of c-Jun/ATF2 repression by GR was already reported. E-

selectin expression regulated by NF-κB was strongly repressed in the 

presence of dexamethasone, whereas activity of c-Jun/ATF2 dimer on the 

same promoter was not affected by GR (Brostjan et al., 1997).  

Similarly, the activity of a GAL4UAS-driven reporter gene by GALDBDc-Fos was 

repressed by GR, whereas the activity of the same reporter by GALDBDc-Jun 

was not repressed by GR. 

 These results are in agreement with unpublished data from Marc 

Castelazzi (Lyon, France) where c-Jun mutants were used in a reporter assay 

in Vhicken Embryonic Fibroblasts. The transcriptional activity of a c-Jun 

mutant preferentially dimerizing with c-Fos was repressed by GR after 

dexamethasone treatment, whereas the transcriptional activation of a CRE-

driven reporter gene by a c-Jun mutant dimerizing with ATF2, was not 

modified by GR. These experiments were performed in conditions were JNK 

signaling was not activated. This shows that the transrepression of c-Jun/c-

Fos and the lack of transrepression of c-Jun/ATF2 by GR is independent of 

promoter used. 

 GR and AP-1 can reciprocally repress one another's transcriptional 

activation. Overexpression of c-Jun prevents the glucocorticoid-induced 

activation of genes carrying a functional glucocorticoid response element 

(GRE) (Jonat et al., 1990; Reik et al., 1994; Schule et al., 1990a; Yang-Yen et 

al., 1990) . Importantly, the region including the leucine zipper of c-Jun is 

required for repression of GR-mediated gene activation. This suggests that 

dimerization of c-Jun with another AP-1 family member might be necessary 

for the transrepression of GR activity. Indeed, in unpublished work of the lab, 

c-Fos-mediated repression of GR activity was observed. This transrepression 

of GR also requires interaction with nTrip6. Due to the lack of interaction 

between nTrip6 and c-Jun/ATF2, one may speculate that this dimer would not 

transrepress GR activity. This seems to be confirmed by experiments 

performed in Chick Embryo Fibroblasts (CEF). The transcriptional activity of 

GR target promoter induced with dexamethasone was repressed by an 
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ectopically expressed c-Jun mutant, which preferentially dimerizes with c-Fos, 

but not by a c-Jun mutant preferentially dimerizing with ATF2 (Caserlazzi et 

al., unpublished results).  

However, upon stimulation of JNK activity, the phosphorylation-increased 

transcriptional activity of c-Jun/ATF2 was repressed by GR. This suggests the 

presence of a mechanism that would regulate the activity of c-Jun/ATF2 by 

GR in a different manner. In agreement with previous observations, my results 

show that GR inhibits JNK activity. Inhibition of TNFα- or UV-stimulated 

activation of JNK cascade after dexamethasone treatment was already 

published (Caelles et al., 1997; De Bosscher et al., 2001), and the 

involvement of JNK signaling inhibition by GR in the repression of AP-1 

transcriptional activity was proposed (Caelles et al., 1997; De Bosscher et al., 

2001; Gonzalez et al., 2000). However the relevance of this mechanism was 

not clear. My results show that through inhibition of JNK-mediated c-Jun 

phosphorylation, GR is repressing the transcriptional activity of c-Jun/ATF2 

dimers.  

 A question that remains open is what is the exact molecular 

mechanism of GR-mediated inhibition of c-Jun phosphorylation? This effect of 

GR can be mediated on several levels.  

 Inhibition of JNK activity by direct binding of GR to phosphorylated JNK 

was proposed by Bruna and co-workers (2003). Binding of GR would lead to 

nuclear translocation of JNK. In the nucleus inactive JNK could bind to the 

promoter bound c-Jun/ATF2 dimers through c-Jun δ-domain, which serves as 

a docking site for JNK (Kallunki et al., 1996). Through this interaction JNK 

would exhibit a dominant negative effect on the promoter bound complex. 

This way GR could inhibit JNK activity not only in the cytoplasm, but also 

block the phosphorylation and activation of the promoter bound c-Jun/ATF2 

complexes. The decrease in c-Jun protein level observed after 

dexamethasone treatment could also contribute to the repression of c-

Jun/ATF2 activity. This decrease of c-Jun protein could be due to proteosomal 

degradation. The activation of JNK leads to phosphorylation of c-Jun and 

protection from  degradation (Fuchs et al., 2000). 
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 Dephosphorylation of c-Jun leads to its targeting for ubiquitination and 

subsequent degradation. Protection of the activated substrate from 

degradation is maintained as long as the protein remains phosphorylated. A 

similar mode of regulation was also reported for Bcl2 (Dimmeler et al., 1999), 

which is protected from ubiquitination and degradation by extracellular signal-

regulated kinase 2-mediated phosphorylation in human endothelial cells.  

GR-mediated inhibition of phosphorylation of c-Jun and ATF2 could result in 

de-protection and ubiquitin-dependent degradation. Additionaly, the inhibition 

of c-Jun/ATF2 activity by GR may also result in a decreased expression of c-

jun, a known c-Jun/ATF2 target gene. 

 It cannot be excluded that upon phosphorylation of c-Jun and ATF2, 

they might interact with nTrip6. In such a hypothesis, nTrip6 would be 

recruited to the promoter bound phosphorylated c-Jun/ATF2 complex. This 

recruitment of nTrip6 could lead to the binding of glucocorticoid receptor that 

would transrepress c-Jun/ATF2. This needs further investigation. 

 Apart from GR, other nuclear hormone receptors also repress the 

activity of AP-1. Both mechanisms of AP-1 regulation might also be executed 

by these receptors. Indeed, retinoic acid receptor (RAR) (Schule et al., 1990b; 

Yang-Yen et al., 1991) and thyroid receptor (TR) (Pfahl, 1993; Zhang et al., 

1991) which transrepress AP-1 activity, also interact with nTrip6 (Lee et al., 

1995). The involvement of nTrip6 in the repression of c-Jun/c-Fos activity by 

these nuclear receptors needs to be addressed. Nevertheless, it is plausible 

to speculate that due to the lack of interaction of c-Jun/ATF2 with nTrip6, the 

activity of this dimer would not be transrepressed by these receptors. 

However, RAR and TR also inhibit JNK-mediated phosphorylation of c-Jun 

(Caelles et al., 1997; Gonzalez et al., 1999; Lee et al., 1999). This suggests 

that RAR and TR receptors may also repress the transcriptional activity of 

cJun/ATF2 by inhibiting the activity of JNK. 
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Figure 4.1.  Model of GR-mediated repression of c-Jun/c-Fos and c-Jun/ATF2 activity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 In summary, this work shows that c-Jun/c-Fos and c-Jun/ATF2 dimers, 

belonging to the AP-1 family of transcription factors, are repressed by 

Glucocorticoid Receptor via a different mechanism.  

 The repression of c-Jun/c-Fos activity by ligand-bound GR involves 

protein-protein interaction mediated by nTrip6. nTrip6 interacts with c-Fos on 

the target promoter. At the same time nTrip6 is also able to interact with GR. 

Through this interaction nTrip6 mediates the recruitment of GR to the 

promoter-bound AP-1 as a prerequisite for transrepression. 

 c-Jun/ATF2 dimer activity is repressed by GR through the inhibition of 

JNK signaling. Blocking of JNK activity by GR leads to the inhibition of c-Jun 

phosphorylation and subsequent repression of c-Jun/ATF2. The detailed 

mechanism of JNK inhibition by GR and the involvement of nTrip6 in the 

repression of Jun/ATF2 upon activation of JNK signaling needs to be further 

investigated. Both mechanisms of GR repression of AP-1 might have 

important implications in the suppression of inflammatory response mediated 

by AP-1 dimers. 
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