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SUMMARY 
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SUMMARY 

 

Plants interact with their environment with a great variety of volatile organic compounds (VOCs), 

isoprenoids (≡ terpenes), i.e. isoprene, mono-, homo-, di- and sesquiterpenes, being the most 

prominent group. Isoprene, a hemiterpene, is the simplest isoprenoid compound whose main 

source, woody plant species, comprises 75% of the 500 Tg C isoprene emitted to the atmosphere 

per year. Due to the significant influence of isoprene in atmospheric chemistry, growing research 

interests have focused to investigate this C5 compound. However, physiological function(s) of 

isoprene emission in planta is not elucidated to date. Actual studies indicate that isoprene can 

enhance thermotolerance or quench oxidative stress, but the underlying mechanisms are widely 

unknown. The work presented here significantly contributes to the understanding of physiological 

function of isoprene and regulation of isoprene biosynthesis by exploiting transgenic Arabidopsis 

thaliana and Populus x canescens as model systems.  

 

The first part of the work aimed to elucidate whether isoprene biosynthesis in plants is triggered by 

endogenous regulatory mechanisms like the circadian clock. Isoprene emission varies diurnally in 

several species, also in the natural isoprene emitter Grey poplar (P. x canescens). Moreover it was 

recently proved that the poplar isoprene synthase gene (PcISPS) displays diurnal variation in its 

expression. Working on shoot cultures of Grey poplar, placed under different light regime in climate 

chambers, it was possible to show that under continuous light PcISPS expression, measured by 

quantitative reverse transcriptase PCR, oscillated with amplitude of approximately 24 hours 

testifying for endogenous clock regulation. Furthermore, circadian rhythms were not only limited to 

the level of gene expression. Isoprene emission rates also displayed circadian changes. In 

contrast, on the protein level circadian changes could not be detected. It, however, appeared that 

PcISPS activity and protein content became reduced under constant darkness, while under 

constant light activity and protein content were higher than under day/night regime. Measurement 

of additional selected isoprenoid genes revealed that phytoene synthase (PcPSY; carotenoids 

pathway) also displays circadian fluctuations of gene expression whereas 1-deoxy-D-xylulose 5-

phosphate reductoisomerase (PcDXR), the first committed enzyme of the methylerythritol 

phosphate (MEP)-pathway only shows a light regulation of its expression. 

 

In the second part of the work Arabidopsis thaliana (ecotype Columbia-0), a natural non-emitter of 

isoprene, has been constitutively transformed with PcISPS from Grey poplar. Over-expression of 

poplar ISPS in Arabidopsis resulted in isoprene emitting rosettes that showed enhanced growth 

rates compared to wild type under moderate thermal stress. The fact that highest growth rates, 

higher DMADP levels and ISPS enzyme activities were detected in young developing plants 

indicates that enhanced growth of the transgenic plants under thermal stress is due to the 
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introduced PcISPS gene. However, the emission rates did not reach the level of natural isoprene 

emitters, like poplars, suggesting possible different regulation of the isoprene biosynthesis and/or 

lack of substrate for that. To study the physiology of these plants a dynamic gas exchange system 

was developed allowing miming the natural rapid fluctuations of leaf temperature and light intensity 

(‘sun- or lightflecks’) in order to study isoprene emission. The results showed that wild type 

Arabidopsis is already well enough thermotolerant against transient and moderate light and/or heat 

stress. In contrast, when the same conditions, combining light and heat flecks, were applied to wild 

type and transgenic Grey poplar lines in which gene-expression of PcISPS was knock-down by 

RNA interference technology, assimilation was impaired in the non-isoprene emitting lines 

compared to wild type. Thus, for poplar the ability to emit isoprene can be detrimental.  

 

Transgenic Arabidopsis lines were further applied in ecophysiological studies to investigate the role 

of isoprene in plant-insect interactions. Feeding of herbivores on plants makes plants release 

volatile compounds that attract herbivore enemies. In all the performed studies the parasitic wasp 

Diadegma semiclausum searching for its host Plutella xylostella (Diamondback moth) preferred the 

volatiles emitted by wild type Arabidopsis to those from transgenic, isoprene emitting Arabidopsis 

plants. Furthermore low external isoprene concentration in the volatile blend of either Arabidopsis 

or herbivore-infested Brassica oleracea, the natural host of the Diamondback moth, repelled the 

parasitic wasps. The behaviors of the two examined herbivores (Pl. xylostella and Pieris rapae 

(Small White Cabbage butterfly)) were not affected by isoprene emission, and GC-MS detection 

showed despite of isoprene no other differences in the VOC blends of wild type and transgenic 

plants. These findings suggest that isoprene emission of plants plays a complex ecophysiological 

role, influencing biotic interactions between plants and insects.  

 

 

 

 

 

 

 



ZUSAMMENFASSUNG 

III 

Molekularbiologische und (öko)physiologische Untersuchungen zur 
Isoprenemission bei Arabidopis und Graupappel 

 

ZUSAMMENFASSUNG 

 

Pflanzen stehen mit ihrer Umgebung in ständiger Wechselwirkung durch die Abgabe 

verschiedener flüchtiger organischer Verbindungen. Die größte Stoffklasse dieser Verbindungen 

stellen die Terpene dar; zu ihnen gehören u. a. Isopren, Mono-, Sesqui-, Homo- und Diterpene. 

Isopren, ein Hemiterpen, ist das am einfachsten gebaute Terpen und wird vor allem von holzigen 

Pflanzen emittiert. Aufgrund seines bedeutenden Einflusses auf die Chemie der Atmosphäre steht 

Isopren verstärkt im Fokus der Forschung. Trotz dieser Bedeutung ist die physiologische Funktion 

der Isoprenemission in Pflanzen größtenteils ungeklärt. Aktuelle Studien weisen darauf hin, dass 

die Produktion von Isopren die Resistenz der Pflanzen sowohl gegenüber thermalem als auch 

oxidativem Stress erhöhen kann. Die vorliegende Arbeit liefert einen wichtigen Beitrag zum 

Verständnis der physiologischen Funktion von Isopren und der Regulierung der 

Isoprenbiosynthese. Als Modellpflanzen für die Untersuchungen wurden transgene Arabidopsis 

thaliana und Populus x canescens herangezogen, in denen die Isoprenbiosynthese verändert war. 

 

Im ersten Teil der vorliegenden Arbeit sollte untersucht werden, inwieweit die Isoprenbiosynthese 

von Pflanzen durch endogene Regulationsmechanismen wie die „Innere Uhr“ gesteuert wird. 

Gewöhnlich weist die Isoprenemission einen ausgeprägten, vom Licht abhängigen, Tageslauf auf. 

Diese Diurnalität ließ sich auch auf der molekularen Ebene für die Genexpression der 

Isoprensynthase (PcISPS) nachweisen. Durch kontrollierte Klimakammerversuche mit 

verschiedenen Lichtregimes konnte an Sprosskulturen der Pappel nachgewiesen werden, dass 

dieser charakteristische Tagesverlauf nicht nur durch Licht, sondern auch endogen durch 

circadiane Faktoren gesteuert wird. Quantitative Messungen der Transkriptmengen unter 

Dauerlicht zeigten, dass die Genexpression der PcISPS mit einer Amplitude von ca. 24 Stunden 

oszilliert. Diese endogene Rhythmik konnte auch für die Isoprenemission selbst nachgewiesen 

werden. Der Proteingehalt und die Enzymaktivität der ISPS wurden hingegen durch die „Innere 

Uhr“ nicht beeinflusst. Allerdings wurden bei anhaltender Helligkeit ein höherer Proteingehalt und 

eine stärkere Enzymaktivität festgestellt als bei dauerhafter Dunkelheit. Die Messung weiterer 

Gene des Isoprenoidstoffwechsels zeigte, dass auch die Phytoensynthase (PcPSY;  Gen aus dem 

Carotinoid-Stoffwechsel) circadian reguliert wird, während die 1-Deoxy-D-xylulose 5-

reduktoisomerase (PcDXR),  das Eingangsenzym des Methylerythritol-Stoffwechsels, lediglich 

einer Lichtregulation unterliegt. 
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Im zweiten Teil der Arbeit wurde Arabidopsis thaliana, (Ökotyp Columbia-0), eine natürlicherweise 

nicht Isopren emittierende Pflanze, mit dem Gen der Isoprensynthase (ISPS) aus der Pappel 

transformiert. Die Expression der PcISPS in Arabidopsis führte zu einer Emission von Isopren, die 

jedoch verglichen zu der Emission aus Pappeln sehr viel geringer war. Wachstumsanalysen 

zeigten, dass die transformierten Isopren emittierenden Pflanzen unter moderatem 

Temperaturstress ein besseres Wachstum als der nicht  emittierende Wildtyp aufwiesen. Die 

Beobachtung, dass die stärksten Wachstumsunterschiede, die höchsten Konzentrationen an 

Dimethylallyldiphosphat (DMADP), dem Substrat der ISPS, und die höchsten Enzymaktivitäten in 

jungen, sich entwickelnden Blättern auftraten, deutet auf einen funktionellen Zusammenhang 

zwischen dem Einbringen des PcISPS-Gens und der physiologischen Reaktion hin. Für die 

physiologischen Studien an diesen Pflanzen musste ein neues dynamisches Gasaustauschsystem 

entwickelt werden, das Photosynthese- und Emissionsmessungen an Arabidopsis-Rosetten und 

Pappelblättern bei schnellem Wechsel von Lichtintensitäten und Blatttemperaturen ermöglicht. Es 

zeigte sich, dass Arabidopsis-Blätter generell eine hohe Thermotoleranz aufweisen. Dagegen 

wiesen transgene, nicht Isopren emittierende Pappellinien, bei denen die Genexpression der ISPS 

über RNA-Interferenz (RNAi) unterdrückt wurde, unter identischen Bedingungen eine starke 

Beeinträchtigung der Photosyntheseleistung und des photosynthetischen Elektronentransports bei 

kurzfristigem Licht- und Temperaturstress im Vergleich zu entsprechenden Wildtypen auf. Die 

Ergebnisse liefern einen klaren Beweis dafür, dass die Fähigkeit Isopren zu emittieren eine 

wichtige Rolle bei der Stabilisierung von photosynthetischen Prozessen in der Pappel einnimmt. 

 

Transgene Linien von Arabidopsis wurden des Weiteren für ökophysiologische Studien 

herangezogen, um die Rolle von Isopren bei Pflanzen-Insekten-Interaktionen zu untersuchen. 

Fressen herbivore Insekten an Pflanzen, löst dies eine Abwehrreaktion aus, die zur Abgabe von 

flüchtigen organischen Verbindungen führen kann, die als Lockstoffe für Feinde der Herbivoren 

fungieren. In den durchgeführten Studien konnte bewiesen werden, dass die parasitische 

Schlupfwespe Diadegma semiclausum auf der Suche nach ihrem Wirt Plutella xylostella 

(Kohlmotte) jeweils den Wildtyp gegenüber den Isopren emittierenden Pflanzen beworzugte. 

Wurden der Schlupfwespe zwei befallene Kohlpflanzen (Brassica oleracea), der natürliche Wirt der 

Kohlmotte, oder Wildtyp Arabidopsis-Pflanzen angeboten, eine jedoch mit Isopren begast, 

bevorzugte die Schlupfwespe auch hier die Isopren-freien Varianten. Das Verhalten der beiden 

untersuchten Herbivoren (Pl. xylostella und Pieris rapae (Kleiner Kohlweissling)) wurde dagegen 

nicht durch Isopren beeinflusst. Bei diesen Untersuchungen gab es keine Unterschiede bei der 

Emission von anderen Terpenen zwischen den transgenen und nicht transgenen Arabidopsis-

Pflanzen. Diese Erkenntnisse weisen darauf hin, dass die Isopren Emission eine komplexe Rolle 

bei biotischen Interaktionen zwischen Pflanzen und Insekten spielt. 
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I INTRODUCTION 
 

It is not largely known that in addition to photosynthesis plants influence atmospheric chemistry in 

a multifaceted manner. After oxygen plant produced hydrocarbons are the most abundant reactive 

chemicals synthesized and emitted by plants. They are highly reactive in atmosphere with lifetimes 

ranging from minutes to hours and play an important role in the chemistry of the troposphere 

contributing to ozone production, methane oxidation and carbon monoxide budget (Guenther et al., 

1995; Lerdau, 2007) Together these compounds are referred as biogenic volatile organic 

compounds (BVOC) including all other organic atmospheric trace gases except carbon dioxide or 

monoxide: isoprenoids (≡ terpenes), alkanes, alkenes, carbonyls, alcohols, esters, ethers and 

acids (Kesselmeier and Staudt, 1999). From all biogenic VOCs two dominate the global flux: 

methane and isoprene (2-methyl 1,3-butadiene) each comprising around one third of the overall 

BVOC flux. Methane is a relatively stable compound remaining unchanged in the troposphere up to 

years (Guenther et al., 2006) whereas isoprene has much shorter lifetime. It reacts from minutes to 

hours, e.g. with NOx and OH-radicals (Guenther et al., 2006). This high reactivity in addition to 

vague knowledge about the regulation of isoprene emission leads to difficulties estimating global 

annual isoprene fluxes and its impacts. 

 

Isoprene is contributing to atmospheric reactions in diverse manners. One of the most important 

reactions for life on earth is isoprene’s ability to contribute to tropospheric O3 formation. Isoprene 

oxidized through hydroxyl radicals can interfere in NOx cycling and thus is involved in O3 

production (under high NO concentration) or decomposition (under low NO concentration) in the 

troposphere (Williams et al., 1997; Lerdau, 2007). Oxidized isoprene is able to convert NO back to 

a NO2 molecule that is photolyzed into NO and O3 molecules under high light intensities and 

presence of oxygen (Lerdau, 2007). Thus, isoprene can up-regulate O3 concentration in 

anthropogenic polluted areas. Given that plants can emit isoprene, e.g., to protect against 

oxidative condition (Loreto and Velikova, 2001, will be discussed in detail in chapters below) and 

that anthropogenic pollution of, e.g., NOx is continuously increasing, a self-feeding loop can be 

created (Lerdau, 2007). 

Isoprene reacting with hydroxyl radicals also has other significant influences on atmospheric 

processes. Reaction of isoprene with OH-radicals reduces the atmospheric concentration of these 

radicals. As consequence the lifetime of other greenhouse gases (GHGs), e.g. methane, which 

also reacts with OH-radicals, can turn longer (Thompson, 1992). In addition, isoprene and other 

volatile isoprenoids [mono- (C10), sesqui- (C15) and homo- terpenes (C11, C16)] act themselves 

as GHGs by contributing to the formation of secondary organic aerosols (SOAs) and haze 

development that scatter and absorb solar radiation above forest canopies (Claeys et al., 2004; 
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Joutsensaari et al., 2005). Mono- and sesquiterpenes, which are generally lower volatilized than 

isoprene, are more important for SOA formation (Bonn and Moortgat, 2002). However, as isoprene 

alone contributes almost half of all non-methane BVOCs, as a single compound it has a 

considerable influence on SOA formation (Claeys et al., 2004).  

 

According to model predictions by Guenther et al. (1995), the amount of global biogenic non-

methane VOC emissions is estimated to be about 1150 Tg (C) Y-1 of which isoprene contributes ~ 

44% and monoterpenes ~ 23%. Main isoprene sources are woods and shrubs, e.g. alone isoprene 

emitted from woody species composes over one third from total non-methane BVOCs. However, 

especially atmospheric concentrations of volatile isoprenoids are highly variable depending on 

environmental (biotic and abiotic) and plant developmental factors that are still largely under 

debate, resulting in imprecise modelling data. According to Guenther and co-authors (1995) a 

reliable atmospheric emission model must contain (1) accurate estimates of source type and 

density of the chemical species, (2) information to which extend these chemical species are 

produced, (3) which are the drivers of the chemical species and (4) how these drivers are 

regulated (Guenther et al., 1995). For all these points actual information is insufficient. Before 

reliable estimates are possible, more knowledge must be gathered about e.g. how genetic 

variations and predisposition, light, temperature, humidity, CO2 concentration, stomatal 

conductance, leaf development, diurnal and seasonal variation and biotic and abiotic stresses 

influence plant emission levels (Guenther et al., 1995). At the moment enormous efforts are given 

in many laboratories to better understand the regulation of VOCs and especially that of isoprene.  

 

The more the regulations of VOC biosynthesis and emission are studied, the more complex they 

seem to get. Plant isoprenoids are synthesized through condensations of the five-carbon 

precursors: isopentenyl diphosphate (IDP) and its allylic isomer dimethylallyl diphosphate 

(DMADP), which can be synthesized from two pathways localized in two separate cell 

compartments. The cytosolic mevalonate (MVA) or 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) 

pathway has been known since many years (Agranoff et al., 1960) and is responsible for the 

synthesis of ubiquinone (Disch et al., 1998), cytokinins, sesquiterpenes (C15), triterpenes (C30), 

sterols and brassinosteroids (Suzuki et al., 2004). The MVA pathway is found in animals, fungi and 

phototrophic organisms (Chappell et al., 1995). 

DMADP in chloroplasts is synthesized through the 2-C-methylerythritol-4-phosphate (MEP)-

pathway that has been discovered in 1993 by Rohmer et al. almost 40 years after isoprene 

emission was first described (Sanadze, 1957). This pathway is also found in Eubacteria, green 

algae and Plasmodium sp. (Eoh et al., 2007; Cassera et al., 2004; Grauvogel and Petersen, 2007; 

Okada and Hase, 2005; Massé et al., 2004). It leads to the synthesis of IDP and its isomer DMADP 
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which are the building units of isoprene (C5), monoterpenes (C10), diterpenes (C20), carotenoids 

(C40), phytol, tocopherols, phylloquinones, and some sesquiterpenes (C15) (Lichtenthaler, 1999). 

The precursors of the MEP-pathway are glyceraldehyde-3-phosphate (GA-3-P) and pyruvate. 1-

deoxy-D-xylulose-5-phosphate synthase (DXS) is the first acting enzyme in this pathway and is 

suggested by several studies to have a regulatory role as its expression positively correlates with 

the concentration of several isoprenoid end products (Lois et al., 2000; Estévez et al., 2001; 

Muñoz-Bertomeu et al., 2006). Estévez et al. (2001) showed that over-expression of DXS in 

Arabidopsis thaliana leads to up-regulation of carotenoid and ABA levels. Similar results were 

obtained by Lois et al. (2000) in tomato (Lycopersicon esculentum) and by Muñoz-Bertomeu et al. 

(2006) in lavender (Lavandula latifolia). DXS forms 1-deoxy-D-xylulose-5-phosphate (DOXP) from 

which the first truly MEP-pathway specific enzyme 1-deoxy-D-xylulose-5-reductoisomerase (DXR) 

catalyzes MEP (Fig. 1). DOXP is not only the first intermediate of the MEP-pathway since it is also 

involved in the thiamine/shiki mate pathway (Julliard and Douce, 1991; Belanger et al., 1995). 

Therefore, it was assumed that DXR rather than DXS plays a regulatory role in the MEP-pathway 

(Mayrhofer et al., 2005). Supporting this suggestion, transformation of peppermint (Mentha x 

piperita) with DXR increased the essential oil yield in the plants. Moreover, Carretero-Paulet et al. 

(2002; 2006) showed recently that over-expression of DXR in Arabidopsis thaliana increased the 

concentration of isoprenoid end products. However, as the DXR gene expression does not 

correlate with the rhythm of isoprene emission (Mayrhofer et al., 2005) its regulatory role remains 

contradictory. The complete sequence of genes involved in the following five steps of MEP-

pathway until the synthesis of isoprenoid direct precursors isopentenyl diphosphate (IDP) and 

dimethylallyl diphosphate (DMADP) has already been identified (Eisenreich et al., 2001), however, 

to elucidate their regulation(s) more investigations are needed.  
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Fig. 1. Diagram of the MEP-pathway that takes place in the chloroplasts (modified after Guevara-Garcia et 

al., 2005). The enzymes catalyzing the reactions are shown in bold as follows: 1-deoxy-D-xylulose-5-

phosphate synthase (DXS); 1-deoxy-D-xylulose-5-reductoisomerase (DXR); 1-hydroxy-2-methyl-butenyl 4-

diphosphate reductase (HDR); isopentenyl diphosphate isomerase (IDI); isoprene synthase (ISPS). 

 

The last step in the MEP-pathway is catalyzed by the enzyme 1-hydroxy-2-methylbutenyl 4-

diphosphate reductase (HDR) which converts 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate to 

DMADP, the immediate precursor of isoprene and its isomeric form IDP, the precursor of higher 

isoprenoids. IDP can also be isomerized by isopentenyl diphosphate isomerase (IDI) to DMADP 

from which isoprene synthase (ISPS) synthesizes isoprene. In order to synthesize higher 

isoprenoids the two diphosphorylated C5-units, DMADP and IDP condense in a head-to-tail 

reaction to produce geranyl diphosphate (GDP; C10). The reaction can be repeated to further 

produce farnesyl diphosphate (FDP, C15) or geranylgeranyl diphosphate (GGDP; C20) (Ramos-

Valdivia, 1997).  

 

It is not only the regulation of the MEP-pathway that remains to be solved but also the interaction 

between plastidic MEP- and cytosolic MVA-pathway (Lichtenthaler, 1999; Laule et al., 2003; 

Rodríguez-Concepción et al., 2004). Some studies suggest a cross talk between the two 

pathways: MVA derived precursors can be used for biosynthesis of isoprenoids in plastids and 

other way round, in at least some species and plant tissues (Lichtenthaler, 1999). Laule et al. 

(2003) showed that blocking the MVA-pathway with lovastatin can cause change in plastidic 

carotenoid and chlorophyll levels (not only in end product levels, but also in transcript levels of the 

prominent enzymes), whereas cytosolic sterol levels remained constant after recovering from an 

D-Glyceraldehyde-3-phosphate  +  Pyruvate 
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1-Deoxy-D-xylulose 5-phosphate (DOXP) 
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initial drop. On the other hand blocking the MEP-pathway with fosmidomycin (FSM), which inhibits 

the production of MEP from DOXP (Kuzyama et al., 1998) resulted in decreased concentrations of 

all the isoprenoid metabolites, also in cytosolic sterols. Thus, the results from Laule et al. (2003) 

suggest rather unidirectional transport from plastids to the cytosol. However, Rodríguez-

Concepción et al. (2004) isolated Arabidopsis mutants that could survive in the presence of a 

blocked MEP-pathway. This was most likely due to enhanced uptake of MVA-derived isoprenoid 

precursors by plastids.  

 

Even if the fundamental mechanism how isoprene emission is regulated through the MEP-pathway 

remains unclear, several studies are committed to investigate the initial drivers changing the 

isoprene emission pattern in the plants. Since 50 years now the question has been: “Why plants 

emit isoprene?”. The decoding of this question so far has led to three main hypotheses about the 

physiological role of isoprene for the plant itself: 

 

Isoprene is a costly molecule needing 20 ATP and 14 NADPH for its biosynthesis (Sharkey and 

Yeh, 2001). Under certain conditions plants can emit up to 15% of photosynthetically fixed carbon 

back to the atmosphere as isoprene (Sharkey et al., 1996) and even under “normal conditions” a 

few percent of photosynthetically fixed carbon is directed to synthesize isoprene (Guenther et al., 

1995). It is somewhat contradictory that even if isoprene means a significant loss of carbon, the 

strongest isoprene emitters are fast growing tree species, e.g. from the genera Populus, Salix, 

Eucalyptus and Pueraria. Also many, even not all, of Quercus species emit isoprene. Thus, it 

seems to be evident that isoprene should have a significant advantage for a plant. Such an 

advantage might be an ability to protect against thermal stress. Indeed, isoprene and DMADP 

levels are controlled at least by 2 different factors: by the recent CO2 fixation rate (Schnitzler et al., 

2004) and by the temperature dependence of the ISPS activity (Eisenreich et al., 2001; 

Brüggemann and Schnitzler, 2002a). Monson et al. (1992) showed that isoprene emission 

fluctuates in temperature dependent manner with its maximal emission above 40°C, and later on it 

was finally proved by Sharkey and Singsaas (1995) and by Sharkey et al. (2001) that isoprene can 

protect against thermal stress. Sharkey and co-workers used FSM combined with isoprene 

fumigation in their studies. Photosynthesis of FSM-fed Kudzu (Pueraria montana) leaves that were 

fumigated with exogenous isoprene was less affected by high temperature episodes than similar 

leaves that were not fumigated (Sharkey et al., 2001). A similar thermoprotective effect by isoprene 

has been shown later to be a more general phenomenon in several species (Velikova and Loreto, 

2005; Velikova et al., 2005; Wiberley et al., 2005). The most recent study was done by Behnke et 

al. (2007) who used transgenic non-isoprene emitting poplars where ISPS gene expression was 

knock-down by RNA interference (RNAi) technology. In this study assimilation of the non-isoprene 

emitting poplars dropped remarkably when the plant had to face fast changing transient 
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temperature cycles. The result supports the suggestion that isoprene would rather protect against 

transient thermal stress than against a permanent high temperature (Sharkey et al., 2001). This 

would explain why isoprene emission capacity is not more common within tropical species and has 

not at all been found e.g. within desert plants.  

 

The mechanism how isoprene protects against thermal stress is not clear. As well it is not clear 

how thermal stress inhibits photosynthesis. A reason for the latter can be increasing fluidity of 

thylakoid membranes under thermal stress. Increased leakiness reduces electron transport 

capacity resulting in inhibited photosynthesis (Pastenes and Horton, 1996). Here isoprene might 

play a role by stabilizing the hydrophobic interactions of the membrane lipid bilayer structures 

(Sharkey and Singsaas, 1995; Singsaas et al., 1997; Sharkey et al., 2001).  

Not only high temperature but also oxidative stress increases fluidity of membrane structures in 

plant tissues. Active oxygen species O2
-●, H2O2 and OH-●, secondary ozone reaction products, are 

toxic for plant tissues causing peroxidation and denaturation of membrane lipid bilayer (Pell et al., 

1997; Noctor and Foyer, 1998). Moreover, isoprene (as well as other alkenes) is able to react with 

singlet oxygen (O2), ozone and other OH radicals (Sauer et al., 1999) and this could be another 

mechanism of protection against photo-oxidative stress (Loreto and Velikova, 2001; Affek and 

Yakir, 2002; Velikova et al., 2005). Several studies have shown that the ability to emit isoprene can 

indeed protect a green plant tissue against oxidative stress. Loreto et al. (2001) showed that 

isoprene can function as antioxidant in tobacco (Nicotiana tabacum) and birch (Betula pendula) 

leaves that were fumigated either with ozone or ozone combined with isoprene. In the same year 

Loreto and Velikova (2001) showed that FSM-fed reed (Phragmites australis) plants treated with 

100 ppbv ozone for 8h had, e.g., lower assimilation rates and higher lipid peroxidation levels than 

the respective control plants.  

 

In addition to protection against thermal or oxidative stress, isoprene was suggested to serve as 

overflow mechanism for excess of carbon intermediates or photosynthetic energy (Logan et al., 

2000; Rosenstiel et al., 2004). Rosenstiel et al. (2004) suggested a so called "safety valve" 

hypothesis to explain why plants emit isoprene. Isoprene as a metabolic ‘safety valve’ could 

prevent the unnecessary sequestration of phosphates. The hypothesis is based on the observation 

that chloroplastic DMADP level can be regulated extrachloroplastically by foliar assimilation of NO3
- 

that competes for the PEP in cytosol. Competition has a direct effect on PEP- and further DMADP-

levels in chloroplast and could thus alter the isoprene emission rate. 

 

Isoprene emission is dependent on the availability of substrate which is mainly derived from 

recently fixed CO2. Thus it is evident that it also depends on photosynthetic photon flux densities 

(PPFD) and on intraday fluctuations. Mayrhofer et al. (2005) proved that diurnal rhythms influence 
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the PcISPS activity and PcISPS gene expression rate which have their maximum before midday in 

Grey poplar. Furthermore, several studies exist about the seasonal variations of isoprene emission 

(Monson et al., 1994; Kempf et al., 1996; Funk et al., 2005; Mayrhofer et al., 2005) showing an 

increase in basal isoprene emission capacity in spring and rapid decrease of it in autumn. 

Furthermore, the basal isoprene emission was shown to depend on other leaf physiological and 

environmental factors, i.e., on leaf developmental stage (Kuzma and Fall, 1993; Mayrhofer et al, 

2005), previous growth conditions (Wiberley et al., 2005), nutrition (Rosenstiel et al., 2004), 

atmospheric CO2 level (Rosenstiel et al., 2003; Scholefield et al., 2004; Calfapietra et al., 2007), 

atmospheric O3 level (Calfapietra et al., 2007) and leaf position within the canopy (Sharkey et al., 

1996). The latter factors, however, have rather minor influence on basal isoprene emission 

capacity whereas temperature and light can increase or decrease isoprene emission rapidly by 

several order of magnitudes (Behnke et al., 2007).  

 

Despite of the fact that isoprene is a widely studied compound, so far nothing is known about its 

possible interactive role between plants and their environment. Plant released VOC are namely 

used as a kind of language to enable communication between plants and their environment. 

Activation of the plant signaling network by pathogen or insect attack induces a plant and herbivore 

species specific blend of VOC that can support plants self-defence by repelling herbivores and 

pathogens or by luring herbivore enemies to the plants (Pichersky and Gershenzon, 2002; 

Degenhardt et al., 2003). The latter, indirect defence provides plants a top-down control of 

herbivore populations (Baldwin and Preston, 1999) that was for the first time observed within 

spider mite-infested Lima beans calling carnivorous mites for help (Dicke and Sabelis, 1988) and 

was later shown to be a more general phenomenon between several plant and predator or 

parasitoid species (Degenhardt et al., 2003).  

 

The commonly used model plant Arabidopsis thaliana is known not to emit isoprene. However, 

Arabidopsis, thought to have a relatively simple metabolism, has been shown by in silico analysis 

to have over 30 putative genes belonging to the multigene family of terpene synthases (TPS) 

(Aubourg et al., 2002; Chen et al., 2003). Most of these genes are almost exclusively expressed in 

flowers (Chen et al., 2003; Tholl et al., 2005; Aharoni et al., 2006), but low terpene emissions from 

leaves and siliques (Van Poecke et al., 2001; Chen et al., 2003) and even monoterpenes (namely 

1,8-cineole) from roots (Steeghs et al., 2004; Chen et al., 2004) have been detected. The rate of 

terpene emission from Arabidopsis is comparatively low relative to insect-pollinated species (Chen 

et al., 2003), however, when induced the emitted compounds are far enough to attract herbivore 

enemies (Van Poecke et al., 2001; Van Poecke and Dicke, 2002). This relatively low constitutive 

isoprenoid emission from leaves (Van Poecke et al., 2001; Chen et al., 2003) makes Arabidopsis a 

suitable tool to study the role of individual compounds by means of transformation. For example 
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over-expression of linalool/nerolidol synthase (Fa/NES1) in chloroplasts (Aharoni et al., 2003) or in 

mitochondria (Kappers et al., 2005) of Arabidopsis plants, improved plant fitness by repelling 

aphids or attracting carnivorous predatory mites, respectively. Similarly, introducing maize TPS10 

gene, responsible of several sesquiterpenes synthesis, into Arabidopsis, showed that activation of 

a single gene can be enough for a parasitoid, Cotesia marginiventris, to learn to locate its host 

(Schnee et al., 2006). Even if some of the attempts to elucidate the function of individual 

compounds in a VOC blend were less successful due to e.g. lack of substrate (Beekwilder et al., 

2004) or remodification of the product (Lücker et al., 2001), these studies provided important 

information about possible problems and pave the way for more successful applications.   
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II AIM OF THE THESIS 

 

The present thesis contributes to the efforts to study the regulation and function of isoprene 

emission. It aims to find answers to some of the open questions why plants release such an 

amount of carbon to the atmosphere. Aims of the present thesis were: 

• To investigate the regulation of isoprene emission from a native isoprene emitter in order to 

find out whether the diurnal rhythm of isoprene emission is mainly light or rather circadian 

regulated. The aim was to use sterile Grey poplar cultures cultivated under controlled 

conditions in climate chambers in which un-predicted environmental factors would not 

disturb the study. Thus the obtained rhythm could be ascribed to a circadian clock control.  

• To introduce the isoprene emission capacity in normally non-isoprene producing plants by 

genetic transformation. The previous isolation of the isoprene synthase gene (PcISPS) from 

Grey poplar (Populus x canescens) (Miller et al., 2001) provided the opportunity to use the 

isoprene synthase gene from poplar. Thus in the present work isoprene emitting 

Arabidopsis thaliana plants expressing constitutively the isoprene synthase (PcISPS) gene 

should be created.  

• To create Arabidopsis mutants over-expressing the PcDXR gene from Grey poplar cDNA. 

The previous isolation of PcDXR from Grey poplar (Mayrhofer, 2006) made it possible to 

use this gene. Aim of this approach was to later co-transform Arabidopsis with both genes, 

PcDXR and PcISPS, thereby enhancing the metabolic flow through the MEP-pathway to 

provide more substrate for isoprene biosynthesis.  

• To prove the proposed ‘thermotolerance hypothesis’ of isoprene by using positively 

selected and biochemically characterized transgenic lines of isoprene emitting Arabidopsis 

and isoprene non-emitting Grey poplar. 

• The final aim of the thesis was to use the transgenic isoprene emitting Arabidopsis as tools 

to investigate the completely unknown role of isoprene in plant-insect interactions.  
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III MATERIALS AND METHODS 
1 PLANT AND INSECT MATERIAL, CULTIVATION AND HARVESTING 

 1-1 Arabidopsis 

Arabidopsis thaliana subsp. Columbia 0 (Col0) (Brassicaceae) were mostly cultivated in climate 

chambers with 22 ± 2°C (day:night) and a L16:D8h photoperiod (Photosynthetic Photon Flux 

Density (PPFD) 80 µmol photons m-2 s-1 during the light period) like described in Loivamäki et al. 

(2007b (VII: 2)). In the experiments investigating plant-insect interaction, the plants were cultivated 

in a climate chamber of the Laboratory of Entomology (Wageningen University) with 21°C ± 1°C 

and a L8:D16h photoperiod (PPFD 80-110 µmol photons m-2 s-1 during the light period) as 

described in Loivamäki et al. (2008 (VII: 3)). Plants were either selected on antibiotic containing 

agar or directly sown to the soil (Loivamäki et al., 2007b/2008 (VII: 2,3)).  

Before plating on MS (Murashige and Skoog, 1962) agar (C2) the seeds were sterilized to inhibit 

the growth of unwanted microorganisms. Sterilization was performed by submerging the seeds for 

5 minutes in a chloral mixture containing 30 % (v/v) Danklorix11and 0,2% (v/v) Triton X1004. After 

sterilization the seeds were washed 5 to 6 times with sterile ddH2O and plated immediately on MS-

agar (C2) containing the proper antibiotics. The plates were stored at +4°C for 3 to 5 days after 

which they were transferred to climate chamber conditions. One-week old plants that had 

developed 2 to 4 leaves were then transferred to soil (Loivamäki et al., 2007b (VII: 2)). Several 

small plants were placed in one 7x7 pot1 to ensure the survival of one. In the age of 2 to 3 weeks 

the extra plants were removed. The plants were used in the vegetative stage. When a plant started 

to make the first stem, it was cut in order to either create bigger rosettes or more flowers and 

seeds. 

 

 
Fig 2. A transgenic Arabidopsis rosette in the age of 5 weeks. 

 

1-2 Grey poplar 

  1-2-1 Propagation of shoot cultures and design of circadian experiments 

Six to seven wild type Populus x canescens (Aiton) Sm. (Salicaceae) shoots were grown in 1L 

glass containers on half-concentrated MS medium (C1). Plants grew under standard conditions at 

27:24°C (day:night), using a L16:D8h photoperiod and 65 µmol m-2 s-1 PPFD during the light 
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period. Initially several (up to 25) small plant parts were transferred into medium (C1) and let to 

grow a new shoot. After approximately 4 weeks the obtained shoots were transferred onto new 

medium, one jar containing approximately 7 poplar shoots (Fig. 3). The plants were used in 

experiments in the age of 7 to 8 weeks. 

 

 
Fig 3. Grey poplar shoots in sterile cultures.  
 

For circadian studies three different photoperiods were necessary: L16:D8h; L24h; D24h. For this 

experimental design darkness was achieved by wrapping the jars in aluminium foil after which 

temperature in a jar stayed at 25 °C. Nine containers (3 containers per day over 3 days) were 

necessary per condition (long day, continuous darkness, continuous light). For all the experiments, 

plants were placed in test conditions at 22:00 the day before first sampling. For all experiments 

samplings were done at 5:00 (one hour before the end of the standard night), 7:00, 14:00, 22:00 

(just before start of the standard night) and 24:00. For the darkness condition, containers were 

opened and samples were taken under red light. All samples, consisting of all leaves of one shoot, 

were immediately frozen in liquid nitrogen and stored at -80 °C until further use. 

   

1-2-2 Cultivation of Grey poplar plants under greenhouse conditions for light- and 

temperature-fleck simulation experiment  

Wild type and transgenic Populus x canescens lines were cultivated for the second summer in a 

greenhouse compartment in Garmisch-Partenkirchen, Germany. One and a half year before the 

experiment the plants had been transferred from sterile cultures into the soil as described by 

Behnke et al. (2007). Plant shoots were cut for the winter and at the time of the experiment (July, 

2006) the resprouted new shoots reached again a size of approximately 1 ± 0.5 m. In addition to 

wild type, two transgenic non-isoprene emitting Grey poplar lines were investigated. According to 

emission rates given in Behnke et al. (2007) and by personal communication with Katja Behnke, 

the isoprene-free lines RA1 and RA22 were chosen for the present studies.  

To create standard and controllable conditions for the light- and temperature-fleck simulation 

experiment, poplars were transferred into a climate chamber (28 ± 2°C, 300 µmol m-2 s-1 PPFD and 

photoperiod of L16:D8h) (Fig. 4) 5 days before the start of the experiment. The gas exchange 
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measurements were started with each leaf sample 2 hours after onset of light. To perform the light 

fleck simulation experiments with 3 samples per day the plants faced the L16:D8h photoperiod in 

different rhythms: light for 16h was turned on either at 4:00, 6:00 or 8:00 on the morning. The leaf 

no. 9 from the top was used as a sample leaf. The control leaf was chosen in its direct proximity.  

 
Fig. 4. Wild type and transgenic isoprene non-emitting poplars in a climate room 

 
 1-3 Insects and Brassica sprouts  

Brassica oleracea was used for herbivore rearing and moreover in Y-tube olfactometer 

experiments. The plants were cultivated in commercially available soil in a greenhouse 

compartment with a temperature of 23 ± 2°C and relative humidity of 60 ± 10 %. Bioassays were 

performed with plants having 6 to 8 leaves per plant. 

 

Pieris rapae (Lepidoptera, Pieridae) and Plutella xylostella (Lepidoptera, Plutellidae) were 

continuously reared on Brassica oleracea var. gemmifera cultivar Cyrus (Brassicaceae) plants in 

separate climate rooms at 21 ± 1°C, 60 ± 10% relative humidity (RH), and a L16:D8h photoperiod. 

Caterpillar-infested plants were obtained by placing 20 first instar larvae (either P. rapae or Pl. 

xylostella) distributed over several leaves of each plant. The larvae were allowed to feed for 24h on 

the plants before the plants were used for the experiments.  

 

The parasitic wasp Cotesia rubecula (Hymoneptera, Braconidae) was reared on P. rapae larvae 

feeding on B. oleracea as described in Loivamäki et al. (2008, (VII: 3)), and the parasitic wasp 

Diadegma semiclausum (Hymoneptera, Ichneumonidae) (Fig. 5) was reared on Pl. xylostella 

larvae feeding on B. oleracea. Detailed descriptions of rearing procedures can be found in 

Loivamäki et al., 2008 (VIII: 3). 
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Fig. 5. A female of the parasitic wasp Diadegma semiclausum next to a larva of Plutella xylostella. 
Photo: Tibor Bukovinszky / www.bugsinthepicture.com. 
 

For bioassays the parasitic wasps were collected and transferred to separate cages in which they 

were provided with honey and water. Male and female wasps were kept together until the 

experiment started. Both wasp species were originally collected from a Brussels sprouts field in the 

vicinity of Wageningen, the Netherlands. Adult wasps that were used in the experiments did not 

have oviposition experience before and are therefore referred to as naïve wasps. 

 
2 MOLECULAR BIOLOGICAL METHODS 

 2-1 Description of basic methods  
  2-1-1 Plasmid isolation  

2-1-1-1 Plasmid isolation according to Birnboim and Doly 

The plasmid isolation was performed according to the method described by Birnboim and Doly 

(1979) when screening transformed bacterial cells (III: 2-3-1). For isolation 2 ml of overnight 

bacterial culture (C3) was centrifuged (20,000 x g) in plastic tubes16 for 2 minutes (Sigma, 3K15, 

Sigma Laborzentrifugen GmbH, Osterode, Germany) and the bacterial pellet was used in further 

steps. The bacteria were first resuspended in BD1 (E2) and the suspension was incubated at room 

temperature (RT) for 5 minutes, centrifuged and the supernatant was discarded. The cells were 

opened by resuspending in BD2 buffer (200 µl) (E3). The samples were mixed by inverting the 

tubes and incubated on ice for 5 minutes. For precipitation of the salts buffer BD3 (E4) was added 

to the samples and the twice inverted tubes were incubated for 5 minutes at RT. The tubes were 

centrifuged for 10 minutes (20,000 x g) and the liquid phase was transferred to a new tube. At the 

next step a one time phenol4:chloroform4 (1:1 (v/v)) (latter with isoamylalcohol4 24:1 (v/v)) 

extraction was performed (1:1 (v/v)) (III: 2-1-5-2). The aquatic phase was transferred into 100% 

ethanol4 (1 ml) and DNA precipitated for 30 minutes on ice. After centrifugation (16 min at 4°C) the 

supernatant was removed and the pelleted DNA was washed with 70% ethanol. The DNA was 

dried (Speedvac, Eppendorf, Hamburg, Germany), and the pellet was resuspended in ddH2O. The 

obtained plasmid was diluted in TE-buffer (G5). 

 

 
 



MATERIALS AND METHODS 

14 

2-1-1-2 Plasmid isolation by Qiagen Spin Minikit 

Alternatively to the above described plasmid isolation plasmids were also isolated and purified with 

the Qiagen Spin Minikit5 according to manufacturer’s protocol from 2 ml of overnight bacteria 

culture (C3). The method was used mostly, only not when transformed bacterial cells were to be 

screened due to the large quantity of samples.  

 

2-1-2 Plant DNA and mRNA isolation and cDNA synthesis 

2-1-2-1 DNA isolation by 2x CTAB 

For genomic DNA (gDNA) isolation 100 mg or 1 g leaf material was homogenized under liquid 

nitrogen with mortar and pestle. 200 µl (or in the case of gDNA 5 ml) pre-warmed (65°C) 2x CTAB-

buffer (with 2% (v/v) 2-mercaptoethanol8) (E1) was added onto the frozen leaf material and mixed 

with a vortex (Heidolph, Reax 2000, Schwabach, Germany). Samples were incubated at 65°C in a 

water bath (6A, U3, Julabo, Seelbach, Germany) for 20 min. The extraction was enhanced by 

mixing with a vortex a few times during the incubation. DNA isolation was continued by 

phenol:chloroform:isoamylalcohol-extraction like described in III: 2-1-5-2 and by precipitation like 

described in III: 2-1-5-3. Finally the RNA was digested from the DNA samples by adding RNase 

(20 µg ml-1) and incubated at 37°C for 30 minutes or in the case of gDNA over night. In order to 

avoid breakage of DNA bonds the gDNA was treated very gently during the extraction process. 

 

2-1-2-2 mRNA isolation and cDNA synthesis 

Total RNA from leaves, roots and inflorescences (similarly from poplar and Arabidopsis leaves) 

was isolated with the Qiagen RNeasy Minikit™5 following the Qiagen standard protocol. Amount 

and purity of isolated RNA was determined spectrophotometrically as described in III: 2-1-4.  

For first strand cDNA synthesis 3 µg of total RNA were reverse transcribed immediately after the 

RNA extraction. The cDNA synthesis was performed with 11 µl RNA in DEPC-H2O (with 3 µg RNA) 

and 1 µl oligo (dT) primers3 in 0.2 ml plastic tubes16. The synthesis was started by linearising the 

RNA at 70°C for 10 min (in a Trio 48 Thermocycler, Biometra, Göttingen, Germany) after which 

primers were let to anneal onto the RNA by cooling the reaction mixture on ice for 3 min. 

Simultaneously a master mix containing 4 µl 5xBuffer3, 1 µl dNTPs3, 2 µl DTT3, 0.5 µl RNase 

inhibitor3 and 1 µl Superscript II reverse transcriptase™ 3 per sample was prepared. This master 

mix was then added to each RNA sample. Reverse transcription was performed at 42°C for 50 

min. The transcriptase was inactivated within 15 min at 70°C. Obtained cDNA was stored at -20°C 

prior to analysis. 

 

2-1-3 Gel electrophoresis 

Gel electrophoresis was performed to separate DNA, RNA or protein on an agarose gel. This was 

done by applying an electric current (120V). The negative charged nucleic acids move through the 
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agarose matrix towards the cathode according to their size (bigger size of nucleic acids or higher 

agarose concentration make the movement slower). A standard agarose gel was prepared by 

adding 3 µl of ethidiumbromide (G3) in 1x TAE buffer (G1) with 1% (w/v) agarose3. The sample 

was prepared by adding 20% (v/v) bromphenolblue loading buffer (G2) to the total volume 

(maximum 20 µl) of a sample. The size of the fragment was determined by 1kb standard ladder3 

that was loaded into one well of each prepared gel. 

 

2-1-4 DNA and RNA concentration and purity determination 

Amount and purity of isolated DNA and RNA were determined spectrophotometrically. Optical 

density (OD) of 1 at the wavelength 260 nm means that the sample involves 33, 40 or 50 μg ml-1 of 

single-stranded DNA, RNA or double-stranded DNA, respectively. When the OD was determined 

by a Perkin Elmer UV/VIS Spectrophotometer (Perkin Elmer, Waltham, MSC, USA) the nucleic 

acids were diluted normally 1:50. When the OD was determined by a NanoDrop® ND-1000 

(Peqlab Biotechnologie GmBH, Erlangen, Germany) 2 μl of the pure nucleic acid solution was 

used. An absorbance ratio 260/280 nm of around 1.8 to 2 testified for pure RNA. If the value was 

under 1.6 the sample was considered to be contaminated by proteins or phenols. 

 

2-1-5 Restriction, purification, precipitation, ligation 

   2-1-5-1 Restriction 

Restriction enzymes cleave double-stranded DNA by producing either complementary or blunt 

ends. Vectors contain a so called “multiple cloning site” (MCS) in which known different restriction 

enzymes can cleave. The MCS site makes it easy to clone a sequence of interest into a vector and 

in addition makes it possible to cleave it out again. A restriction was prepared as follows: 

   2 μl 10x Buffer (specific for each enzyme)3 

   2 μl DNA from plasmid mini preparation 

   15.8 μl ddH2O 

   0.2 μl restriction enzyme3 

 

The restriction mixture was carefully mixed and centrifuged shortly after which the restriction was 

performed in an incubation oven (Heraeus ST5042, Heraeus, Hanau, Germany) at 37°C for 

approximately 2 h.  

  

2-1-5-2 Phenol/chloroform/isoamylalcohol extraction 

Phenol:chloroform:isoamylalcohol extraction was performed in order to separate DNA from protein. 

Proteins partition into the organic phase whereas DNA remains water soluble in the aquatic phase. 

Equal volumes of phenol:chloroform (latter with isoamylalcohol 24:1 (v/v)) (1:1) and the DNA 
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sample were mixed. The mixture was incubated at RT for 10 min and centrifuged for 10 min at 

22,000 x g to separate phases. The liquid phase was carefully transferred to a new centrifuge tube 

without touching the organic phase. The extraction was repeated similarly once and followed by 

precipitation with ethanol (III: 2-1-5-3). 

 

2-1-5-3 Precipitation 

Ethanol precipitation is a method used to concentrate DNA. DNA is insoluble in the relatively 

nonpolar ethanol and therefore precipitates. The precipitation was performed with 5% (v/v) Na-

acetate and 2.5 volume ethanol for at least 20 min or overnight on ice or at 4°C. The DNA was 

collected by centrifugation for 20 min at 22,000 x g at 4°C after which the supernatant was 

removed. The DNA pellet was washed with 70% ethanol and centrifuged again. DNA was dried 

either in a rotating exsiccator (Speedvac, Eppendorf, Hamburg, Germany) (approx. 5 min) or under 

a hood (overnight).  

 

2-1-5-4 Ligation 

DNA ligase is an enzyme that links together cutted DNA strands. Ligation of a gene (e.g. PcISPS) 

and a binary vector (e.g. pBinAR), that were both cleaved with the same restriction enzymes, (e.g. 

KpnI and BamHI) was prepared as follows: 

3 μl gene and vector mixture 

   1 μl ligase buffer3 

   1 μl ligase3 

 

The ligation was performed at 4°C overnight. On the next morning 2 μl of the ligation-solution were 

carefully mixed with competent Top 10 cells3 on ice and the clone transformed into Escherichia coli 

as described in III: 2-3-1. 

 

2-1-6 Polymerase Chain Reaction (PCR)  

A PCR is performed in order to amplify a DNA fragment and generate many copies of it. This is 

done by help of the heat stable Taq-polymerase enzyme that, elongating specific primers, amplifies 

the DNA fragment of interest. A standard reaction was prepared in 0.2 ml plastic tubes as follows:  
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2 μl 10xBuffer3 

   0.8 μl 50 mM MgCl3 

   0.8 μl dNTPs3 

   1 μl 50 mM Forward primer4 

   1 μl 50 mM Reverse primer4 

   1 μl Taq3 

   12.4 μl ddH20 

   2 μl sample e.g. plasmid, diluted 1:10 

 

The PCR reactions were run with a Thermal cycler (Trio 48 Thermoblock or Personal Cycler, 

Biometra, Göttingen, Germany). The reaction started with 3 minutes initializing (denaturizing) step 

at 94°C. After the hot start 30 cycles of denaturizing and re-annealing were performed:  

45s at 94°C      denaturizing  

30s at adequate T      annealing  

120s at 72°C     elongation  

 

The annealing temperature was chosen according to the melting temperature of the specific 

oligonucleotide primers. The list of primers that were used in the different applications of the thesis 

is summarized in Table 1. The elongation temperature was at 72°C optimal for Taq-polymerase 

activity. The PCR ended with 10 min at 72°C. The obtained products were stored at -20°C until 

use.  
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Table 1. Sequences of the primers used in polymerase chain reaction (PCR) and/or in quantitative Reverse 

Transcript (RT)-PCR.    

gene Name of primer Sequence in 5`-3` order 

PcISPS Isoprensyn.For.spez.  

Isoprensyn.Rev.spez 

IS.sequ.1 (for) 

IS.sequ.2 (rev) 

IS.sequ.3 (for) 

TTT GCC TAC TTT GCC GTG GTT CAA AAC 

TCC TCA GAA ATG CCT TTT GTA CGC ATG 

GAC TCT GCT TGA ACT GAT AGA TAA TGT CC 

TAG AGA GCT AGG AAG CAG AGC TTC 

GAT CTT CGC GAG ACA TCA AGG TG 

PcDXR DXR-4f  

Dxr-2r 

Dxr 3f 

GGA ATA GTA GGT TGC GCA GGC 

GCA TAT GTC TTT TCC AGC TTC TAT TGC 

GCT CTT CTT GCA GAC CAG GTG 

PcPSY 5104-Psy-RT155F rev 

5105-Psy-RT241R 

CTG CTC TAT CAA ACA CTG TCT CCA A 

TTT TCA AGT CCA TTC TCA TTC CTT C 

PcTUB tub_150_for 

tub_150_rev 

GAT TTG TCC CTC GCG CTG T 

TCG GTA TAA TGA CCC TTG GCC 

AtAct Act for 17 

Act rev 134 

CGA TGC CTG AGA  ACA TAG TGG TT 

GCT GCT  GGA ATC CAC  GAG AC 

NPTII nptll-for 

nptll-rev 

ATT CGG CTA TGA CTG GGC AC 

ACA AGA CCG GCT TCC ATC C 

 

2-1-7 Sequencing of the fragments obtained from PCR 

To verify the amplification of the correct genes from poplar, the amplified cDNA fragments were 

isolated from a 0.8% agarose gel (III: 2-1-3). The fragment purification from gel was performed with 

NucleoSpin® Extract 2 in 1-kit15 as described in the manufacturer’s protocol. The concentration 

and purity of the DNA was determined with NanoDrop® ND-1000 and the samples were externally 

sequenced by MWG-Biotech AG, Ebersberg, Germany.  

 

2-2 Construction of binary vector cassettes containing the gene of interest 
2-2-1 PcISPS into pBinAR through ligation reaction 

To clone Populus x canescens isoprene synthase (PcISPS) (EMBL AJ294819) a partial sequence 

from position 39 to 1868 from the original sequence was ligated into the bacterial expression vector 

pQE50 (Qiagen, Hilden, Germany) by introducing a BamHI restriction site at the 5’-end and a KpnI 

restriction site at the 3’-end (Bachl, 2005). This subclone, harboring the complete coding sequence 

of PcISPS, was shown to produce isoprene when heterologously expressed in E. coli (described in 

the PhD thesis of Bachl, 2005) and was therefore used for the further cloning steps.  

In the next step the BamHI–KpnI - fragment from pQE50 was ligated into the MCS of the binary 

vector pBinAR (Höfgen and Willmitzer, 1990). The gene was cut out from the vector with a BamHI-
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KpnI restriction and after electrophoretic separation purified from the 0.8% (w/v) Agarose gel (III: 2-
1-3) with NucleoSpin® Extract 2 in 1-kit15 as described in the manufacturer’s protocol. 

Simultaneously the pBinAR vector was digested by the same enzymes and purified with 

phenol:chloroform:isoamylalcohol (IAA) extraction (III: 2-1-5-2, until the first phenol:chloroform:IAA 

extraction). The PcISPS gene and the linearized vector were pooled together and a 

phenol:chloroform:IAA extraction was repeated. The obtained DNA was precipitated as described 

in III: 2-1-5-3. The received pellet was diluted in 3 μl ddH20 in which 1 μl 10x ligase buffer3 and 1 μl 

ligase3 was added (III: 2-1-5-4). The ligation reaction was incubated overnight (16h) and the 

obtained clone harboring the PcISPS gene was then transformed into E. coli (III: 2-3-1). The full 

length PcISPS in pBinAR was now under the control of the constitutive 35S-promotor and an OCS-

terminator (see construct in Fig. 1A, in Loivamäki et al., 2007b (VII: 2)) that where provided by the 

binary vector (Höfgen and Willmitzer, 1990).  

 

2-2-2 PcDXR into pH2GW7 through GatewayTM recombination 

To clone the Populus x canescens 1-deoxy-D-xylulose-5-reductoisomerase gene (PcDXR, EMBL 

AJ574852) into the Gateway destination vector pH2GW7 (University of Gent, Belgium), the 

GatewayTM-system was used. The GatewayTM technology is based on bacteriophage ג mediated 

site specific recombination reactions. A DNA-fragment of interest is cloned between specific Att-

recombination sites after which the DNA-fragment can be transferred into other vectors that 

contain compatible att-recombination sites. Such compatible sites are attBxattP and attLxattR 

between which the recombination reaction is catalyzed by BP-clonaseTM or LR-clonaseTM.  

The PcDXR-gene used in the present work was previously sequenced and cloned between attR 

sites in the GatewayTM destination vector pDEST17TM by Mayrhofer (2006). For its use in the 

present work the gene was cloned back between the attP-sites of the donor vector pDONR221TM 

that serves as a general donor vector. The reaction was mediated by the GatewayTM BP-clonaseTM 

enzyme mix as described in the GatewayTM manual. The obtained entry clone was transformed 

into E. coli strain DH5α3 (III: 2-3-1) and positive clones were selected on LB-agar (C4) with 

kanamycin14 (25 μg ml-1), an antibiotic to which pDONR221TM has resistance. 

In the next step the PcDXR-gene was transferred into the destination vector pH2GW7 containing 

the attR-sites. This binary vector for plant transformation contains 35S promoter, NOS terminator 

and genes for hygromycin (for plant selection), spectinomycin and streptomycin (for bacterial 

selection) resistances. This vector was selected to insert PcDXR into transgenic Arabidopsis 

already containing the PcISPS gene and kanamycin as selection marker. The recombination of the 

PcDXR fragment from pDONR221 into the destination vector was mediated by GatewayTM LR-

clonaseTM enzyme mix. The reaction was performed as described in the GatewayTM manual. The 

obtained expression vector was further transformed into E. coli as described in the next chapter 



MATERIALS AND METHODS 

20 

(III: 2-3-1). The positive clones were selected with streptomycin10 (20 μg ml-1) containing LB-agar 

(C4).  

  

 2-3 Transformation and selection  

  2-3-1 Transformation and selection of E. coli cells 

Products obtained from ligation as described above were transformed into Escherichia coli (Top103 

(in the case of PcISPS) and DH5α®3 (in the case of PcDXR), both chemically competent cells) by 

using the TOPO-TA Cloning® Kit3. The TOPO cloning reaction was performed according to 

manufacturers’ protocol using 2 μl of the PCR product, 1 μl of salt solution3, 2 μl of ddH2O and 1 μl 

of TOPO® vector3 per reaction. The reaction tubes were gently mixed and incubated at RT for 30 

minutes after which they were placed on ice.  

The transformation was further performed by thawing the E. coli competent cells on ice. TOPO® 

cloning reaction3 (2 μl) was added into the vial containing the competent cells, mixed and the 

reaction was further incubated on ice for 30 minutes. For transformation the cells were heat-

shocked without shaking in a water bath at 42°C for 30 seconds. 250 μl of SOC-medium3 was 

added onto cells directly after the heat shock. The tubes were incubated at 37°C for 1h after which 

10 to 50 μl of the cells were transferred on LB-plates (C4) containing the appropriate antibiotica 

(kanamycin14 (125 µg ml-1) in the case of PcISPS transformation and streptomycin10 (20 μg ml-1) in 

the case of PcDXR transformation).  

Clones were cultivated (37°C) overnight. 24 individual colonies were then further cultivated in 5 ml 

LB medium (C4) containing the antibiotics of interest. The plasmid was purified according to 

Birnboim and Doly (III: 2-1-1-1) and the transformation verified by digesting (III: 2-1-5-1) the 

PcISPS fragment (approximately 1800 bp) from the plasmid with BamHI3 and KpnI3 or PcDXR with 

ApaI3 and SpeI3. The fragments were visualized by gel electrophoresis (III: 2-1-3). Additionally, the 

presence of PcISPS in DNA level (plasmid isolation see III: 2-1-1-2) was verified by PCR (III: 2-1-
6) that was performed with the primers “IS.sequ.1” and “IS.sequ.2” (Table 1). The presence of the 

expected fragment was proved by gel electrophoresis (III: 2-1-3). 

 

2-3 Transformation and selection of A. tumefaciens cells 

The purified plasmid was further transformed into Agrobacterium tumefaciens strain C58C1 

pMP90. The transformation started by cultivating A. tumefaciens cells overnight at 28°C in LB-

medium (C3) containing gentamicin2 (25 µg ml-1) and rifampicin2 (100 µg ml-1). On the next 

morning two large A. tumefaciens-cultures (à 150 ml) were started from the overnight culture and 

let to grow until an OD550nm of 0.5 to 0.6 was reached. The cells were centrifuged for 20 min at 

2,000 x g at 4°C and the supernatant was discarded. The cells were washed on ice twice by 

resuspending them into 150 ml cold ddH2O, centrifuged and the supernatant again discarded. The 
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same was repeated with 50 ml ddH2O. The obtained cells were resuspended in 1 ml ddH2O, 

washed two-times more with 1 ml ddH2O and resuspended until a viscous solution was obtained.  

The A. tumefaciens cells were mixed with DNA in a cold cuvette. The cells were transformed 

electrochemically using a Gene Pulser II (Bio-Rad, Hercules, CA, USA) with the settings 25 µF, 

400Ω, 1.8kV. After a pulse (9.6 to 9.8 time constant) the cells were transferred into SOC-medium3 

and incubated at 28°C for 2h. Clones were transferred and selected on LB-Agar (C4) containing 

gentamicin2 (25 µg ml-1), rifampicin2 (100 µg ml-1) and kanamycin14 (25 µg ml-1) (PcISPS) or 

streptomycin10 (20 µg ml-1) (PcDXR). 

 

  2-3-3 Transformation of Arabidopsis thaliana 

For transformation healthy A. thaliana plants were cultivated until they were flowering. The 

inflorescences were about to open at the time the transformation was performed. Arabidopsis 

plants were transformed using floral-dip technology (for detail see Clough and Bent, 1998). A small 

(approx. 5 ml) overnight culture of Agrobacterium carrying the gene of interest was grown (in LB 

with the proper antibiotics). On the next morning a bigger (150 ml) culture from the overnight 

culture was started and grown for approximately 6 hours until an OD550nm of 0.9 ± 2 was reached. 

While the Agrobacterium were growing, the infiltration medium in which the bacteria were to be 

resuspended was prepared (100-200 ml per transformation of 5% sucrose8, 0.05 – 0.1 % Silwet L-

77 13). 

The Agrobacterium cells were harvested by centrifugation and resuspended in infiltration medium 

until an OD550nm = 0.9 ± 2 was reached again. The inflorescense of A. thaliana was dipped for 2 to 

3 seconds into Agrobacterium-infiltration-solution. After that the A. thaliana inflorescence was 

placed on a plate with watered paper towels in order to have higher relative humidity that helps 

Agrobacterium to carry the gene of interest into the plants. Plants were kept in darkness overnight 

after what they were let to make seeds in the climate chamber conditions (III: 1-1). When the 

seeds had dried (approximately 4 to 5 weeks after the transformation) they were harvested in order 

to generate F1 generation.  

 

  2-3-4 Selection of transformed plants 

Positive transformants of the F1 generation were selected on MS-plates (III: 1-1) containing the 

selective antibiotica (50 μg ml-1 kanamycin14 for PcISPS-transformed plants and 40 μg ml-1 

hygromycin4 for PcDXR-transformed plants). The transgenic plants showed a normal green 

phenotype, whereas non-transgenic plants were white or pale green (Fig. 6).  
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Fig. 6. Selection of transformed Arabidopsis plants on selective agar. The transgenic plants showed a 

normal green phenotype, whereas non-transgenic plants were white or pale green. 

 

To select PcISPS transformed Arabidopsis lines with the desired chemotype, 56 plants showing a 

dark green phenotype on selective agar were transferred to soil (III: 1-1). From these plants 

isoprene emission was measured as described in III: 4-1. Eleven lines with significant isoprene 

emission rates were chosen in order to generate the homozygotic F2 generation. According to the 

functional emission screening of F2 generation plants the lines 3, 5 (low isoprene emitters), 8, 9 

and 10 (high isoprene emitters) were chosen for further experiments. The presence of PcISPS and 

NPTII (kanamycin synthase gene) mRNA (extraction and conversion to cDNA see III: 2-1-2-2) in 

these lines was verified additionally by PCR (III: 2-1-6). The ISPS PCR reaction was performed 

with the primers “IS.sequ.1” (for) and “IS.sequ.2” (rev) and the NPTII reaction with the primers 

“nptII-for” and “nptII-rev”(see Table 1). The presence of the expected fragment in size of 846 bp for 

ISPS and 402 bp for NPTII was proved by gel electrophoresis. 

To verify that the PcDXR gene was introduced into the Arabidopsis genome, mRNA was extracted 

(III: 2-1-2-2) from the plants that showed dark green phenotype on selective agar. The RNA was 

converted to cDNA (III: 2-1-2-2) and a PCR with the primers “Dxr3f” and “Dxr2r” (see Table 1) was 

performed (III: 2-1-6). The expected fragment in size of 309 bp was visualized by gel 

electrophoresis (III: 2-1-3).  

  

 2-4 Quantification of gene transcript levels by Quantitative Reverse Transcription-PCR (RT-

PCR) 

Quantitative Reverse Transcription (RT)-PCR is a sensitive technique for mRNA detection and 

quantification. For performing RT-PCR, SYBRTMGreen7 that provides a staining method to quantify 

RT-PCR products was used. This dye binds to double-stranded DNA giving a green emission 

when the molecule became excited by blue light. Thus, when double-stranded DNA accumulates 

during amplification the fluorescence signal increases.  

To quantify the mRNA copy numbers of the genes PcISPS, PcDXR, phytoene synthase (PcPSY) 

and β-tubulin (PcTUB, EMBL AY 353093) from poplar cDNA, the total mRNA was extracted and 

quantified spectrophotometrically (NanoDrop® ND-1000, described in III: 2-1-4). In the next step 

total RNA was reverse transcribed into cDNA (III: 2-1-2-2). For amplification of the PcISPS-gene 



MATERIALS AND METHODS 

23 

the primer set “Isoprensyn.For.spez.” and “Isoprensyn.Rev.spez” was used resulting in a PCR 

segment length of 197 bp. For the PcDXR gene the primer set “Dxr4f” and “Dxr2r” resulting in a 

fragment length of 66 bp, and for PcPSY the primer set “5104-Psy-RT155F” and “5105-Psy-

RT241R” resulting in a fragment length of 379bp, were used. In addition the transcription levels of 

the PcTUB gene were quantified with the primer set “tub-150-for” and “tub150-rev” resulting in a 

fragment length of 151bp. Primers were designed via the software PrimerExpressTM (Version 2.0.0, 

ABI-PrismTM). Sequences are shown in Table 1. The assays were prepared without delay on 96 

wells7 reaction plates with: 

12.5 µl 2 x SYBR™Green PCR Master Mix7  

7.5 µl of each diluted primer (1 pM μl-1 in ddH20)4 

5 µl of total cDNA (diluted 5 times in ddH20)  

 

From each sample or standard 3 parallels were analyzed. A non template control, in which no 

cDNA was loaded, and a non amplification control, in which no primers were loaded, were 

prepared as negative controls on each plate. The transcript levels were calculated by using a 

standard curve obtained with DNA with a known concentration. For preparing this standard curve, 

plasmids, in which the gene of interest was incorporated, were purified from existing bacterial cell 

cultures (III: 2-1-1-2). The following plasmids and inserts were used: PcTUB (507 bp) in pCR 2.1 

(3921 bp); PcISPS (1659 bp) in pQE50 (3963 bp); PcDXR (2067 bp) in pBSK (2965 bp) and 

PcPSY (589 bp) in TOPO pCR II (3973 bp). The concentration of each plasmid purification was 

determined spectrophotometrically (NanoDrop® ND-1000, described in III: 2-1-4) and the copy 

number ml-1 was calculated as follows: 

 

Npl = (M*Cpl)/(Nna/Wna) 

 

Npl  = copies of the plasmid ml-1 

M   = molar mass (6.023*1023 molecules mol-1) 

Cpl  = plasmid concentration (μg ml-1) 

Nna  = number of bases in the plasmid (including insert) 

Wna = mean molecular weight of the bases (308.95 g mol-1) 

 

By using the obtained copy number a dilution curve of the plasmid was prepared. The curve 

started with the concentration 2x107 copies μl-1 and was stepwise diluted with ddH20 (through 2 x 

105; 2 x 103; 2 x 102 copies μl-1) until the lowest concentration of 200 copies μl-1. The dilution curve 

with 3 parallels of each step was loaded on each plate. The measurements were performed with a 

real-time thermocycler (Sequence Detection System 5700, Applied Biosystems, Weiterstadt, 

Germany) as described in Loivamäki et al., 2007a (VII: 1). The gene transcription rate was 
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determined by comparing the sample signal to that of the corresponding gene dilution series under 

the GeneAmpR 5700 Sequence Detection System software (Applied Biosystems). 

 

 2-5 Southern Blotting 

With the Southern blotting technique a particular sequence of DNA, e.g. a gene, within a full 

genome can be detected. In a Southern blot DNA is transferred from an agarose gel onto a 

membrane. The gene of interest blotted onto the membrane can be visualized with two different 

techniques. More traditionally it is done with a radioactively labelled probe but in the present study 

a color staining was used. However, first a probe that would bind to the DNA of interest (PcISPS-

gene) must be created. The probe for performing the Southern blot analysis was obtained by 

labelling PCR amplicons of PcISPS with digoxigenin (DIG) (DIG DNA labelling and detection Kit6). 

DIG is bound by a specific antibody (Anti-DIG-AP conjugate, DIG DNA labelling and detection Kit6). 

To the antibody an alkaline phosphatase (AP) is coupled that converts the soluble colorants 5-

bromo-4-chloro-3-indolyl phosphate (BCIP) and nitroblue tetrazolium chloride (NBT) into an 

insoluble dye.  

The labelled PcISPS gene fragment was obtained with primer pair “Isoprensyn.Rev.spez” and 

“Is.sequ.3” (Table 1) resulting in a fragment length of 698 bp. The PcISPS-probe labelling was 

performed like normal PCR (III: 2-1-6) with following modifications: instead of 0.8 µl dNTPs, 0.4 μl 

dNTPs and 1 μl digoxigenin marked dNTPs mix (DIG DNA labelling and detection Kit6) were 

placed into the reaction mixture. The labelling of the probe was verified by gel electrophoresis by 

comparing the fragment size (slightly bigger) to that of non-labelled fragment. 

 

2-5-1 Blotting of the DNA 

Genomic DNA was extracted from Arabidopsis leaves (III: 2-1-2-1) and cut overnight with RNase3 

and restriction enzymes KpnI3, BamHI3 and/or ApaI3 that do not cut within the isoprene synthase 

sequence. The cut DNA was precipitated in ethanol for 10h on ice (III: 2-1-5-3) (final concentration 

25 - 30 μg, max. 20 μl-1) and loaded on an agarose (0.7%) gel (III: 2-1-3). The gel was run with 20 

V for 16h. Next, the gel was denaturized with denaturizing buffer (S1) for 30 min and washed 

afterwards with 10% Buffer 1 (S5). The DNA was transferred on a nylon membrane (Hybond17) 

overnight by 20x SSC (G6) that was soaked through the gel onto the nylon membrane and further 

on filter papers (for details see Sambrook et al., 1989). After the DNA transfer, the nylon 

membrane was washed for 2 min with 6x SSC (G6) after which the DNA was cross-linked to the 

membrane at 80°C for 1h in a APT.LineBFED 53 Hybridization oven (Binder GmbH, Tuttlingen, 

Germany).   
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2-5-2 Pre-hybridization and hybridization 

Pre-hybridization of the membrane was carried out by incubating the membrane at 56°C for 1h 

with hybridization buffer (S4) (20 ml per 100 cm2 membrane area). For hybridization 5 μl of DIG-

labelled probe (from III: 2-5) in 200 μl TE (G5) was denaturized for 10 min in 96°C after which it 

was immediately cooled down on ice. The probe was diluted into hybridization buffer (S4) and 

incubated at 65°C overnight in 2.5 ml hybridization buffer per 100 cm2 membrane area. The 

unspecifically bound probe was removed by washing the membrane with washing buffer 2 (S2) 

and twice with washing buffer 3 (S3).  

 

2-5-3 Immunological detection 

The membrane was washed shortly in 100 ml buffer 1 (S5) and further incubated in buffer 2 (S6) 

(100 ml per 100 cm2) at RT for 30 min. In the next step the Anti-DIG-AP6 (0.3 µl ml-1) was added in 

buffer 2 and the membrane was incubated for 30 min gently shaking. For removing of 

unspecifically bound antibodies the membrane was washed twice with buffer 1 (S5) for 15 min in a 

new plate at RT. Membrane was further incubated for 2 min in buffer 3 (S7) (20 ml per 100 cm2 

membrane area). For visualizing the PcISPS gene on the membrane, the membrane was 

transferred into a plastic bag with 10 ml staining-solution (S8) 100 cm-2 membrane area and 

incubated in the darkness until the gene band became visible. 

 
3 BIOCHEMICAL ANALYSES 

3-1 Protein extraction  

For protein extraction from Arabidopsis leaves, 300 - 600 mg of fresh leaf material were suspended 

in 4 ml plant extraction buffer (PEB, P1) (Mayrhofer et al., 2005) and finely homogenized at 4°C 

using an Ultra-turrax (T25, Janke & Kunkel, IKA® Labortechnik, Staufen, Germany) and a 2 ml 

potter. For protein extraction from poplar leaves 200 mg frozen and finely homogenized (mortar 

and pestle) leaf material was suspended in 4 mL PEB. The extraction continued then similarly for 

both species: the suspensions were stirred for 15 min and centrifuged at 4°C and 15,000 x g for 10 

min. During this step PD-10 (GE Healthcare, Uppsala, Sweden) columns were equilibrated by 

washing 5 times with 3.5 ml ISB. After centrifugation 2.5 ml of clear supernatant were put on a 

column and proteins were eluted with 3.5 ml ISB (P2).  

 

3-2 Protein concentration determination 

Protein concentrations were determined using the Bradford assay (Bradford, 1976). The samples 

were mixed with Coomassie color solution (P3) and incubated for 15 minutes in 1.5 ml 

microcuvettes16. The binding of Coomassie Blue to proteins takes approximately 15 minutes. For 

calibration BSA (Albumin Bovine Fraction V, pH 7, Standard grade9) was used in known 

concentration (= 0.25, 0.5, 0.75, 1 mg ml-1) as standard. For each measurement 3 parallel samples 
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were prepared. The absorption (A) was detected at its maximum of 595 nm spectrophotometrically. 

The protein concentration was calculated by using the correlation between BSA and absorption 

rate at A 595 nm (Fig. 7).  
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Fig 7. Bradford assay: example of a correlation between a BSA dilution series and A 595 nm, n = 3, mean ± 

SE is shown. R2 = 0.999; y = 0.0227 + 0.3283X.  

 

3-3 Enzyme activity measurement 

Isoprene synthase activity was assayed as previously described by Lehning et al. (1999). 88 µl of 

the protein extract was mixed with 2 μl MgCl and 10 μl 100 mM DMADP (synthesized according to 

the protocol by Keller and Thompson, 1993) in gas tight 2 ml reaction vials (Supelco, Bellefonte, 

PA, USA). The samples were incubated in a water bath for 60 min at 30°C. For subsequent 

background correction of the chemical degradation of DMADP vials containing 88 μl of buffer PEB, 

2 μl MgCl and 10 µl 100 mM DMADP were prepared in parallel. After incubation the aquatic 

solutions in the vials were removed with a gas tight syringe and the vials were washed with 150 μl 

ddH2O. 

  

3-3-1 Calibration and calculation 

The amount of synthesized isoprene in the head space of the vials was determined by PTR-MS as 

described in the chapter III: 4-1-2. The mean ion signal (m69) obtained from buffer controls was 

subtracted from that of the enzymatic samples. The apparent activity of ISPS was calculated as 

follows (more specific calculation is shown in attachment 1): 
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ISAct = Cisv /(P * ttest*Vtest) 

 

  ISAct  = ISPS activity [nmol s-1 kg protein-1] 

Cisv   =  background corrected amout of isoprene in the head space of samples 

[nmol] 

  P      = protein concentration in the protein extract [kg] 

  ttest    = duration of the test [s] 

  Vtest  = test volume of enzyme assay [ml] 

  

 3-4 Western blotting 

Native PAGE (10% acrylamide) was performed on pre-cast gels (Novex; Invitrogen). From each 

sample 20 µg protein was mixed with 5 x native sample buffer (W5) up to maximum 20 μl and 

loaded onto the gels. Native PAGE was run under constant current of 9 mA for approximately 3.5 

to 4h. Protein transfer was achieved using a Millipore (Eschborn, Germany) semidry electroblot 

system. A sandwich of 3 x Whatman (3MM Chr, Whatman, Maldstone, England) papers, the 

nitrocellulose membrane (Hybond-ECL17), the gel and again 3 x Whatman paper was prepared. 

Before preparing the sandwich the Whatman paper and the membrane (for 10 min) as well as the 

gel (for 1 min) were equilibrated in Towbin buffer (WE1). The blotting was performed following the 

manufacturer's instructions for 30 minutes and with a current of 3 mA cm-2. 

 

The membranes were transferred into a Stuart falcon tube (Binder GmbH, Tuttlingen, Germany) 

and incubated in blocking buffer (W2) for 1h at 24°C. All incubations were carried out in a 

APT.LineBFED 53 Hybridization oven (Binder GmbH, Tuttlingen, Germany). Membranes were 

washed twice with PBS-Tween (W3) after which the primary polyclonal antibody (Anti-ISPS; for 

details and specificity of the antibody see Schnitzler et al., 2005) was applied 1:1000 in 10 ml PBS-

Tween. The membranes were incubated overnight at 24°C in the hybridization oven. On the next 

morning the membranes were washed twice with PBS-Tween (W3) after which an alkaline 

phosphatase-conjugated secondary anti-rabbit antibody2 was applied 1:15000 in 10 ml PBS-

Tween (W3) on the membrane. The membrane was incubated with the antibody solution for 1h at 

24°C, followed by 4 washing steps with PBS-Tween (W3). The PcISPS protein was detected by 

addition of 5-bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium i.e. BCIP/NBT-solution 

(W4). For determination of molecular weight of the PcISPS protein, a pre-stained native protein 

standard9 ladder was used.  

  

3-5 Quantification of ISPS protein by ELISA     

Quantification of ISPS protein was performed as described in Schnitzler et al. (2005) with a 

polyclonal antibody (anti-PcISPS-IgG) generated in rabbit against purified N-terminal 6 x His-
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tagged PcISPS. For use as second antibody in the ELISA anti-PcISPS-IgG was conjugated with 

horseradish peroxidase (HRP) (BioGenes, Berlin, Germany). For calibration purified 6 x His-tagged 

ISPS protein was used. For each sample and standard three parallels were measured. 

 

 3-6 Measurement of metabolic intermediates 

  3-6-1 DMADP 

DMADP levels of Arabidopsis leaves were determined as described by Brüggemann and 

Schnitzler (2002b) with some modifications. The fresh weight of single leaves (approximately 50 

mg) was determined immediately after harvest. Thereafter the leaves were finely homogenized 

under liquid N2 and the leaf material was freeze dried (Freezedrier Alpha I-5, Christ, Osterode, 

Germany) in 2 ml reaction vials (Supelco, Bellefonte, PA, USA). For hydrolysis of DMADP to 

isoprene 100 μl of 88% H3PO4
4 was added on the leaf material, the glass vials were closed gas 

tight, mixed carefully with a vortex and incubated in a water bath for 90 min at 60°C. Within a 

measurement series also a standard series of known DMADP concentrations (1.25; 2.5; 3.75; 5.0 

nmol DMADP vial-1) were hydrolyzed. After incubation the samples were cooled down in an ice 

bath for 1 minute. The reaction mixture was neutralized and thus the hydrolysis stopped with 50 μL 

4M NaOH. Isoprene in the head space was determined by PTR-MS as described in III: 4-1-2.  

 

The DMADP level from Arabidopsis leaves fed with 1-deoxy-D-xylulose (DOX) was also 

determined in the similar way as described above. DOX is known to enter the chloroplast and 

further being converted into DOXP (Wolfertz et al., 2003). For feeding detached Arabidopsis leaves 

with DOX, DOX (final concentrations 3 and 30 nM) was added to 150 µl mineral water in which the 

leaves were standing in the reaction vials. In a first step the leaves were incubated for isoprene 

emission measurements as described in III: 4-1-2. After determination of isoprene emission the 

vials were opened and again incubated for additional 120 min on the light bench. After that 2nd step 

the leaves were removed and frozen rapidly in liquid N2 for DMADP measurements.  

 

3-6-1-1 Calibration and calculations 

The PTR-MS measurements were calibrated and the isoprene concentrations (nmol vial-1) 

calculated as described in III: 4-1-2. Initial DMADP concentration in the leaf material was 

calculated by correlating the released isoprene concentration from DMADP hydrolysis to that of the 

calibration series (Fig. 8).  
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Fig. 8. Correlation between different DMADP concentrations and released isoprene from hydrolyzed 

DMADP, n = 3 ± SE, R2=0.9927; y=-0.0024+0.0356x. 

 

To correct the obtained DMADP concentrations for quenching effects of the hydrolysis in leaf 

material, a correction factor (“z” in the calculation below) was calculated according to a correlation 

between a normal calibration curve and another calibration curve in which leaf material was added 

in addition to the known DMADP quantities. The final DMADP concentration was calculated as 

follows:  

   

Cdmadp = x *z/FW*1000 

  

Cdmadp = DMADP concentration [pmol FW-1]  

x  = DMADP vial-1 calculated from a correlation as in Fig. 8 [nmol] 

z  = correction value (approximately 0.87) 

FW  = leaf fresh weight [mg] 

 

 

 

3-6-2 Quantification of carotenoids and chlorophylls 

The determination of photosynthetic pigments (carotenoids, xanthophylls and chlorophylls) was 

either performed (for data in Loivamäki et al., 2007b (VII: 2)) using the spectrophotometrically 

assay described by Lichtenthaler and Wellburn (1983) or (for the screening of transgenic PcDXR 

over-expressed Arabidopsis) analyzed according to the method of Kirchgessner et al. (2003) using 

a Beckman HPLC System Gold (Beckman, München, Germany). Detection was at 440 nm with a 

UV/Visible diode-array detector (Beckman Model 168). System calibration was performed using 

purified chlorophylls (Chla and Chlb), violaxanthin, and β-carotene isolated by flash 
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chromatography. Pigments were identified by their retention times, spectral properties and 

increased concentrations observed under dark/light transitions.   

 
3-7 Determination of antioxidants in poplar and Arabidopsis leaves 

3-7-1 Ascorbate analysis 

For the extraction of ascorbate, DHA and reduced ascorbate from poplar and Arabidopsis leaves, 

the protocol described by Haberer et al. (2007) was applied. Frozen plant material was powdered 

with mortar and pestle under liquid N2. Twenty mg of plant material was transferred to a centrifuge 

tube containing 0.5 ml metaphosphoric acid (5 %). The samples were well mixed and centrifuged 

at 12 000 x g and 4°C for 30 min. The supernatant (100 μl) was collected and neutralized with 20 

μl 1.5 M triethanolamine and well mixed with 100 μl 150 mM sodium phosphate buffer (pH 7.4). 

The samples were transferred to reaction vials.  

Reduced ascorbate was measured directly, but the total ascorbate content had to be determined 

indirectly by first reducing the oxidized ascorbate for 30 min by dithiothreitol (DTT, 50 μl, 10 mM). 

The samples were then treated as follows: into 100 μl leaf extraction was successively added 200 

µl 10% trichloroacetic acid, 200 µl 44% orthophosphoric acid, 200 µl 44% 2.2’dipyridyl and 100 µl 

3% FeCl3. The samples were incubated at 37°C for 60 min. The ferric ion is reduced in acidic 

solution by reduced ascorbate to the ferrous ion, which is coupled with 2.2’dipyridyl. The formed 

complex can be detected at OD 525 nm (Haberer et al., 2007). The DHA content was determined 

by subtracting the determined reduced ascorbate content from that of the total ascorbate.  

 

3-7-2 Glutathione analysis 

Glutathione (GSH) was analyzed using the slightly modified method described by Schupp and 

Rennenberg (1988). Frozen plant material was powdered with mortar and pestle under liquid N2. 

Thirty mg of leaf material was transferred to a tube containing 50 mg PVPP in 0.75 ml 0.1 N HCl, 

stirred and centrifuged (12,000 x g, 4°C, 30 min). The resulting supernatant (120 μl) was adjusted 

to pH 9.3 by adding 180 μl 0.2 M CHES (2-(cyclohexylamino)-ethanesulfonicacid2). Total 

glutathione content was determined after reduction of GSH with 30 μl 15 mM DTT2 and incubating 

at RT for 1h. Oxidized glutathione (GSSG) was determined by blocking GSH with N-

ethylmaleimide and reducing (with DTT like for total glutathione) and analyzing the remaining 

GSSG.  

Derivatization was performed by adding 20 μl monobromobimane18 (MBB in acetonitrile, Haberer 

et al., 2007) and incubating the samples for 15 minutes at RT in darkness. After centrifugation (12 

000 x g, 4°C, 10 min) samples were analyzed by HPLC. The samples were injected to a 

hydrophobic column (ODS-ultrasphere, 5 μm particle size, 250 * 4.6 mm, Beckman, München, 

Germany) and the fluorescence of MBB-thiol derivatives at 480 nm was measured by an excitation 

at 380 nm. To estimate the loss of the thiols during the process, an internal standard was used.  
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3-7-3 Determination of malondialdehyde (MDA) content 

Lipid peroxidation in the plant leaves was quantified by measuring the malondialdehyde (MDA) 

content, the end product of lipid peroxidation, with the thiobarbituric acid (TBA) assay (Du and 

Bramlage, 1992). The assay started by homogenization of 50 mg leaf material in 1500 μl TCA (O1) 

and 50 μl BHT (O2) solution. The homogenate was incubated in a water bath (95°C; 6A, U3, 

Julabo, Seelbach, Germany) for 30 minutes. The reaction was stopped by placing the reaction 

tubes at 4°C after which the tubes were centrifuged at 4°C, 5000 x g for 5 min. Part of the obtained 

supernatant (0.5 ml) was mixed with 0.5 ml TBA (O3) and other part (0.5 ml) with 0.5 ml TCA 

representing the zero-control. Both mixtures were incubated at 95°C for 30 minutes after which the 

reaction was stopped at 4°C. The absorbance of the supernatant was measured at 532, 600 and 

440 nm (Perkin Elmer, Waltham, MSC, USA). The control values (supernatant with TCA) were 

subtracted from the values measured for the real samples (supernatant with TBA). The final MDA 

content was then calculated as follows: 

 

MDA = {[(A532 –A600)] – [(A440-A600) x 0.057]} / 157 000 x 106 

 

  MDA = malondialdehyde [nmol ml-1] 

  A  = absorbance [nm] 
 

4 GAS EXCHANGE MEASUREMENTS 

4-1 Head space analysis from individual Arabidopsis leaves by PTR-MS  

4-1-1 Experimental set up 

For headspace analysis, weighted leaves, flowers or roots (washed under tap-water) from 

Arabidopsis were placed in 2 ml vials filled with 100 µl sparkling mineral water and allowed to 

stabilize for 30 min on a light bench (PPFD approx. 300 µmol m-2 s-1 and temperature 35°C). After 

stabilization, another 150 μl of mineral water was added into the vials after which the vials were 

sealed gas-tight and further incubated for 180 min. Before analysis of headspace with PTR-MS, 

vials were kept in darkness to interrupt the light dependent isoprene formation.  

 

Isoprene emission levels from leaves fed with 1-deoxy-D-xylulose (DOX) were determined 

similarly, with the exception of the mineral water amount which was decreased from the normal 

procedure down to 50 µl (the stabilization) and 100 µl (the incubation).  
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Fig. 9. Image of the incubation of Arabidopsis leaves in 2 ml reaction vials filled with 250 µl mineral water on 

a light bench. 

 

  4-1-2 PTR-MS set-up 

The functional screening of transgenic Arabidopsis on isoprene emission was performed with a 

newly developed head space analysis system using on-line proton transfer reaction mass 

spectrometry (PTR-MS, Ionicon, Innsbruck, Austria), a combination of a proton transfer reaction 

drift tube and a quadrupole mass spectrometer. PTR-MS technology is based on proton transfer 

reaction occurring between H3O+-ions and any molecules whose proton affinity exceeds that of 

water. H3O+ ions are produced by a hollow cathode discharge using water vapour as a source. The 

produced ionized molecules are detected by ion detector i.e. the quadrupole mass 

spectrophotometer, which allows a fast detection of most VOCs (Hansel et al., 1995). The 

detection sensitivity is high being in the range of 10-100 pptv (Tholl et al., 2006). For transfer of 

gas samples from the 2 ml vials into the PTR-MS, the head space of the vials was first transferred 

with a syringe into a 10 ml injection loop by flushing the vials with 10 ml of N2, and the samples 

were subsequently injected directly into the on-line MS with a flow rate of 250 ml min-1 (Fig. 10). 

 
Fig. 10. The head space collected into the vials was transferred into a 10 ml injection loop by flushing the 

vials with 10 ml of N2. The samples were subsequently injected into the MS. 

 

4-1-3 Calibration of PTR-MS and calculations 

The calibration of the PTR-MS was performed in the beginning of each measurement series. It was 

done with 2 ml gas-tight vials filled with calibration gas (10.9 ppmv or 5.8 ppmv isoprene in N2, (Air 

Liquide, Griessheim, Germany or SIAD S.p.A, Bergamo, Italy, respectively)). The isoprene 
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concentration in at least 5 vials was measured for one calibration. The isoprene concentration in 

the vials was calculated as follows: 

 

   Cisv = (iSs-iSb)*Cicv/iSsd/LA*1000 

 

Cicv = Cis/Vmol*V 

Cisv = concentration of isoprene in sample vials [nmol] 

iSs = ion signal (m69) from sample 

iSb = ion signal (m69) from background 

iSsd  = ion signal (m69) from calibration gas  

LA = leaf area or leaf weight [m-2 or g-1] 

Cicv = concentration of isoprene in a calibration vial [mmol] 

Cis = concentration of isoprene in the gas bottle [ppmv] 

Vmol = mol volume in ideal gas under standard conditions 

V = volume of the vial (l) 

 

 4-2 On-line measurement of isoprene emission from poplar shoot cultures by PTR-MS  

4-2-1 Experimental set-up  

The measurements of isoprene emission from shoot culture containers was performed with the 

PTR-MS as described in Loivamäki et al., 2007a (VIII: 1). The measurements were performed on 

two gas-tight culture containers in parallel, each containing 6-7 cell cultured shoots aged 6 - 8 

weeks partially with a developed root system. Clean air adjusted to a dew point of 28°C was 

flushed at 500 ml min-1 into the containers and from the outlet air 100 ml min-1 was pumped into the 

PTR-MS to analyze the volatiles. The measurements were performed on each container 

alternatively (automatically switched each 3 min with 60 s stabilization time). Temperature was 

measured continuously with thermocouples inside the containers. 

Isoprene emission was measured over a day/night cycle as described in Loivamäki et al., 2007a 

(VII: 1). At 22:00 of the following day one container was placed in continuous light and the other in 

continuous darkness (covered with aluminium foil) and emissions were measured during three 

virtual day/night cycles. 

 

4-2-2 Calibration and calculations 

PTR-MS was calibrated as described in Loivamäki et al., 2007a (VII: 1). A flow of 20 ml min-1 from 

the gas standard (including 1.05 ppmv of isoprene, Apel-Riemer, Denver, CT, USA) was diluted 

into the gas stream of 500 ml min-1 for approximately 20-30 minutes. Calibration was performed at 

the beginning and at the end of the experiments. Because the sensitivity of the PTR-MS went 

slightly down during the measuring period, the standard curve for isoprene through the experiment 
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was normalized to the also declining signal of the primary ion (mass 21, deuterium isotope of 

H3O+). At the end of the experiments isoprene emission from agar and roots (green material 

removed) was measured. Before further calculations 15 min averages (data were smoothed, not 

shortened) were calculated for the background ion signal of m69. So obtained smoothed 

background was subtracted from the data. Afterwards 15 min averages were calculated for all of 

the data in order to smooth the short-term scattering of the samples. The emission data were then 

aggregated by calculating 15 min means. By using the so obtained data and the calibration curve, 

the isoprene concentration was calculated as described in III: 4-1-2 with the difference that instead 

of V (volume of the vial) the flow rate of the gas standard (520 ml min-1) was used.   

 

 4-3 On-line gas-exchange measurement from Arabidopsis rosettes and from poplar leaves 

4-3-1 Cuvette construction 

New cuvettes suitable for Arabidopsis rosettes (see Loivamäki et al., 2007b (VII: 2)) and poplar 

leaves (Fig. 11) were developed to allow dynamic on-line monitoring of photosynthetic gas 

exchange and emission of VOC, such as isoprene. The system consists of four cuvettes (cuvette 

volume 530 ml for Arabidopsis and 490 ml for poplar) constructed of teflonized aluminium bodies 

covered with plastic glass lids. Leaf temperature can be regulated with Peltier-elements and 

dynamically adjusted very quickly; +5°C in ~ 130 seconds and -5°C in ~ 100 seconds to a chosen 

leaf temperature measured by a thermocouple within the rosette. Light is provided by five LED-

lamps (DP3-W3-854, Osram, Germany) allowing light intensity to be increased up to a PPFD of 

1300 μmol photons m-2 s-1. Lamps and Peltier-elements were cooled with cooling elements and 

ventilators (type 8414 NGH, Epm-Papst, St. Georgen, Germany). 

 

 
Fig. 11. Picture of a poplar cuvette. The leaf is placed in the cuvette so that the leaf petiole comes out from 

the cuvette through a small hole which is gas tightened with plastic sealing tape (Terostat II, Henkel, 

Düsseldorf, Germany). The cuvette functions like described in Loivamäki et al., 2007b (VII: 2) for the 

Arabidopsis cuvette. 
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  4-3-2 Experimental set up 

Synthetic air was mixed with 380 ppm CO2 (Fig. 12, see 1) and pushed through approx. 200 ml 

ddH2O to obtain higher air humidity. The extra humidity of the air was then removed by a dew point 

generator (Type KR-KW 12/2, Walz, Effeltrich, Germany) (Fig. 12, see 2) so that the end H2O 

concentration n the air was ~ 10.5 mmol mol-1.The air was pushed with a flow of two liters min-1 (2 l 

mass flow controllers (FC), Bronkhorst, Offenbach, Germany) to all the cuvettes in which air was 

circulated with small ventilators and pulled out to three-way valves (type NO-C-NC, Teocom, 

Newport, California) (Fig. 12, see 3). The three-way valves allowed the air stream to leave either 

as waste or for gas analysis, in our case for Fast Isoprene Sensor (FIS, Hills Scientific, Boulder, 

Colorado, USA) or LI-7000 CO2/H2O analyzer (LI-COR, Lincoln, Nebraska, USA) (Fig. 12, see 5 

and 6).   

The function of the FIS is based on chemiluminescence, a chemical production of light. When 

isoprene reacts with ozone the reaction product is in an excited electronic state and emits lights. In 

the FIS the sample air is pulled into a reaction sample where it reacts with ozone producing violet 

light that has an emission maximum at 430 nm. This light is detected by a photon detector that 

produces an output in photon counts.  

The LI-7000 is a high performance, dual cell, differential CO2/H2O gas analyzer. It uses a dichroic 

beam splitter and two separate detectors to measure infrared absorption by CO2 and H2O. For 

analysis, a known concentration of gas is led into the reference cell (reference air, Fig. 12), and an 

unknown gas is led into the sample cell.  The instrument software provides continuous output of 

the absolute concentration in the sample cell. 

For gas exchange measurement the air stream from the cuvettes was divided between FIS 

drawing 650 ml min-1 and LI-7000 drawing 600 ml min-1.  
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Fig. 12. Scheme of the experimental set up to measure gas-exchange from Arabidopsis rosettes. The 

scheme was similar when gas-exchange from poplar leaves was measured except that a cuvette bottom 

suitable for a poplar leaf was used. The numbers 1-6 in the scheme are explained in a detail in the text, FC: 

flow controller. 

 

  4-3-3 Experimental design 

Changes in leaf temperature and switching between the valves (and cuvettes) were automated 

with a computer terminal.  

For the temperature dependency studies 4 cuvettes were run in parallel. In each cuvette leaf 

temperature was increased in 5°C steps every 30 min from 30°C up to 45°C leaf temperature and 

returned similarly back to 30°C. The measurement (225 s from a cuvette at a time) was repeated 

two times from each of the four cuvettes at each temperature. Leaf temperature was adjusted with 

sliding starts before beginning measurements from the respective cuvette.  

For the temperature and light stress studies only one cuvette was used. When the temperature 

cycles were to be applied the measurements started with 20 minutes of stabilization at 30°C and 

PPFD of 1000 μmol m-2 s-1. After the stabilization six heat (temperature switched every 10 min from 

30°C to 40°C and back, light stable at 1000 μmol m-2 s-1) cycles were performed. After the cycles 

the initial conditions were returned and the recovery of the plants was measured for 20 min.  

When the light cycles were to be applied the measurements started with 20 minutes of stabilization 

at 30°C and PPFD of 100 μmol m-2 s-1. After the stabilization six light cycles (light switched every 

10 min from 100 to 1300 μmol m-2 s-1 and back, temperature stable at 30°C) were performed. The 

recovery of the plants was measured at initial conditions for 20 min.  
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The combined temperature and light cycles studies were performed like described above, but 

applying the light and temperature cycles simultaneously. After 20 minutes of stabilization time at 

30°C and 100 μmol m-2 s-1, six simultaneous heat and light cycles (light switched every 10 min from 

100 to 1300 μmol m-2 s-1 and back and temperature simultaneously from 30 to 45°C and back) 

were performed. After the cycles, plants were allowed to recover at the initial conditions for 20 min.  

 

  4-3-4 Calibration and calculations 

   4-3-4-1 Isoprene emission rate 

The Fast Isoprene Sensor was calibrated always at the end of a measurement series with a 

calibration gas of 5.8 ppmv isoprene in N2 (SIAD S.p.A, Bergamo, Italy) directly added into the gas 

stream (1 l min-1) of one cuvette. The flow (2.5 to 20 ml) of the calibration gas in the cuvette gas 

stream was controlled by a 20 ml flow controller that is provided by FIS. Isoprene concentration in 

the standard was calculated as follows:  

 

C = (Fs/Ff*Ci)*1000 

 

C   = isoprene concentration [ppb] 

Fs  = flow from the standard bottle [ml min-1] 

Ff   = flow into FIS [ml min-1] 

Ci   = isoprene concentration of the standard [ppm] 
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Fig 13. Example of a FIS-calibration. The single values are mean of photons during approximately 5 min 

calibration time in each ppb value, y = 201.86+49.3x; R2 = 0.998.  

 

Using the obtained calibration curve (Fig. 13), the isoprene emission rate was calculated as 

follows: 

   E = (x/LA)/Vmol*Fc 
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E   = isoprene emission [nmol m-2 s-1] 

x    = (S – bl)/a [photons s-1] 

a    = photons [s-1] /isoprene [ppb] 

S   = photons measured from sample [photons s-1] 

bl   = photons measured from empty cuvette [photons s-1] 

  LA  = leaf area [m-2] 

Vmol = mol volume in ideal gas under standard conditions  

Fc   = flow in cuvette [ml min-1] 

 

   4-3-4-2 Assimilation, transpiration and stomatal conductance  

 

The LI-7000 was calibrated daily with a CO2 gas standard (373 ppmv, Air Liquide, Griessheim, 

Germany) or with synthetic air (0 ppmv CO2). Assimilation (As), transpiration (Tr) and stomatal 

conductance (gH2O) were calculated based on Von Caemmerer and Farquhar (1981) and Ball 

(1987) as follows: 

 

   As =  (Cout-Cin)/ Vmol *Fc/LA 

 

   Tr = [(Wout-Win)*(-1)]/ Vmol *Fc/LA   

 

   gH2O = Ass*(1-Wm)/(Wl-Win) 

 

  As   = assimilation [μmol CO2 m-2 s-1] 

  Cout = CO2 in the outlet of a cuvette 

Cin  = CO2 in the intlet of a cuvette 

LA, Vmol, Fc; see III: 4-3-4-1 

Tr   = transpiration [mmol H2O m-2 s-1] 

Wout  = H2O in the outlet of a cuvette 

Win  = H2O in the inlet of a cuvette 

  gH2O  = stomatal conductance [mmol m-2 s-1] 

  Wm  = mean H2O; Wm = (Wl+Win)/2 [ppm] 
  Wl  = H2O in the leaf [ppm] * 
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* Wl  = [dk/825*10^6]*0.000001 [ppm] 

dk  = 10^nk 

nk  = [-7.9298*(373.16/T-1)]+[5.02808*LOG10(373.16/T)]+ [1.3816*10^(-

7)]+[-1+10^(11.344*(1-T/373.16))]+[8.1328*10^(-3)*(-

1+10^(3.49149*(373.16/T-1)))] 

T  = cuvette temperature [K] 

 
 4-4 Head space analysis of Arabidopsis VOC emission rates by GC-MS 

 4-4-1 Experimental set up 

For dynamic headspace collection 4 Arabidopsis plants of the same line and treatment were 

placed in 2.5 l glass jars as described in Loivamäki et al., 2008 (VII: 3). The plants used for this 

analysis were either infested with 20 first instar P. rapae caterpillars or left untreated as controls. 

The collection of plant volatiles on 200 mg Tenax TA (Grace-Alltech, Deerfield, USA) and 200 mg 

Carbopack X (Grace-Alltech) traps was performed as described in Loivamäki et al., 2008 (VII: 3).  

 

 4-4-2 GC-MS set up 

Headspace samples were analyzed with a Thermo TraceGC Ultra (Thermo Fisher Scientific, 

Waltham, USA) as described in Loivamäki et al., 2008 (VII: 3). Calibration of the trapped volatiles 

was performed using the permeation source containing pure chemicals in individual vials in 

combination with a dynamic dilution system at the Research Center Jülich (ICG III), Germany as 

described in Schuh et al. (1997). Concentrations of the compounds (isoprene, limonene, β-

caryophyllene, α-pinene, methyl salicylate (MeSA)) released from the calibration source were 

determined from the mass loss rates of the individual compounds and the dilution fluxes. A 

calibration curve is shown in Figure 14. The VOC mixing ratios were in the lower ppb to ppt range.  
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Fig. 14. GC-MS-calibration: correlation between the measured compounds (isoprene (●), limonene (∆), β-

caryophyllene (□), α-pinene (○), MeSA (■)) released from the calibration source and the detected peak area. 

Isoprene: y = -3.884e7+4.639e10,  R2 = 0.992; limonene: y = -5,18e7+3.3e10, R2 = 0.999; β-caryophyllene: y = 

-6.61e6+3.98e10, R2 = 0.978; α-pinene: y = 2.727e7+1.077e9, R2 = 0.98; MeSA: y = -2.585e7+7.532e8, R2 = 

0.99. 

 
5 ANALYSIS OF CHLOROPHYLL FLUORESCENCE 

In situ chlorophyll fluorescence measurements were carried out in light-adapted leaves using the 

mini portable pulse amplitude modulation fluorometer (MINI-PAM, Walz, Effeltrich, Germany) to 

determine quantum yield (ФPSII) of photosystem II electron transport rate (ETR). At each time point 

a light curve with 8 light pulses (from 20 up to 367 µmol photons m-2 s-1, duration of each pulse 10 

msec) was measured and the fluorescence of the last pulse was used to calculate ФPSII and ETR 

according to the following formula:  

 

(1)   ФPSII = (Fm – F0)/ Fm 

 

 Fm   = maximal fluorescence in light 

 F0     = fluorescence before the start of the light curve 

 

Since ФPSII is the yield of photochemistry, ETR and therefore the overall photosynthetic capacity 

could be estimated from the obtained ФPSII determination with a simple equation: 
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(2)   ETR= ФPSII *PPFDa*0.5 

  

PPFDa = absorbed light [µmol photons m-2 s-1] 

 
6 PLANT GROWTH RATE DETERMINATIONS 

For measuring relative growth rate (RGR) of Arabidopsis two different methods were used, either 

plant weight (experiments done in climate chambers of the Research Centre Karlsruhe) or leaf 

area (experiments done in climate chambers of the Research Centre Jülich) were measured. In 

both cases Arabidopsis seeds of F3/F4, homozygously expressing PcIPS, were allowed to 

germinate as described in III: 1-1, but without the selection step in soil.  

In the experiments in which plant mass was measured to determine the RGR, fresh weights of 12 

individual plants per line were measured every second day during 12 days like described in 

Loivamäki et al., 2007b (VII: 2). 

For leaf area measurements a novel technique, the so called GROWSCREEN setup (Walter et al., 

2007) was used to measure projected total leaf areas and to determine their daily growth rates. 

The method is described in Loivamäki et al., 2007b (VII: 2).  

 

7 PLANT-INSECT INTERACTION STUDIES 

 7-1 Behavioral studies with Y-tube olfactometer 

The behavioral response of female parasitic wasps to plant volatiles was investigated with a Y-tube 

olfactometer like described in Loivamäki et al., 2008 (VII: 3). In the olfactometer (Fig. 15) 

(diameter: 3.5 cm, length of stem section: 22 cm) the side arms (length each: 32 cm) were both 

connected to 5 l Duran® glass jars (Duran, Mainz, Germany) containing the odor sources. 

Pressurized air was filtered over activated charcoal, entered the jars (4 l min-1) at the top and left 

them at the bottom towards the olfactometer. The studies were performed as described in 

Loivamäki et al., 2008 (VII: 3). 

 

In the experiments in which isoprene was added to the flow of the Y-tube olfactometer, a flow of 5 

ml min-1 or 20 ml min-1 (resulting in 12.5 ppbv or 50 ppbv isoprene) was led into the airflow (4 l min-

1) of one of the olfactometer side arms. The isoprene flow from a gas standard of 10 ppmv 

isoprene in N2 (Air Liquide, Griessheim, Germany) was controlled with mass flow controller (model 

5830TR, Brooks Instr., Veenendaal, the Netherlands). In addition, another experiment was 

performed in which a flow of 5 ml min-1 was led into one olfactometer arm as described above, 

from a gas bottle containing 10 ppbv isoprene (SIAD S.p.A, Bergamo, Italy). This latter isoprene 

flow resulted in isoprene concentration of 0.0125 ppbv in one Y-tube arm. In all cases isoprene 

was introduced into the arms approximately 5 cm downstream from the glass jar, in which the 
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plants were located. This was done to prevent possible unknown effects of isoprene on other plant 

emitted compounds.   

 

 
Fig. 15. Y-tube olfactometer set up. Photo: Hans Smid/ www.bugsinthepicture.com. 
 

 7-2 Behavioral studies of herbivore performance 

The oviposing, developing and feeding performance of herbivores P. rapae and Pl. xylostella was 

investigated. To study herbivore performance on wild type and transgenic Arabidopsis plants in the 

ecotype Col-0 background, plants were individually placed in Magenta GA-7 vessels (SIGMA-

Aldrich) with an insect-proof mesh lid. Plants were watered before the experiment and carefully 

removed from the pots. The weight of individual first instar larvae of P. rapae and Pl. xylostella was 

measured on a microbalance (Sartorius, Göttingen, Germany) and the caterpillars were then 

individually transferred to either a wild type or a transgenic Arabidopsis plant. Larvae were allowed 

to feed for 4 - 5 days (Pl. xylostella) or 7 days (P. rapae), and were weighed again. The period was 

shorter for Pl. xylostella because some larvae started to pupate after 4 days. The weight gain of 61 

P. rapae and 55 Pl. xylostella larvae was recorded. Experiments were carried out in a climate-

controlled chamber at 21 ± 1°C, a L16:D8h photoperiod, a PPFD of 80 - 110 μmol photons m-2 s-1, 

and a RH of 55 ± 5%. 

To investigate the feeding preference of caterpillars, a cafeteria experiment (Jermy et al., 1968; 

Fig. 16) was done. In the cafeteria experiment 100 first instar caterpillars of P. rapae and Pl. 

xylostella were individually given a free choice to feed on transgenic or wild type Arabidopsis 

leaves. The petiole of each leaf was placed in a 0.5 ml Eppendorf vial16 filled with tap water. Two 

transgenic and two wild type leaves were placed on filter paper in a Petri dish (90 mm diameter) 

approximately 2 cm away from each other in a rectangular distribution. An individual caterpillar was 

then placed in the middle. The filter paper was moisturized throughout the experiment with tap 
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water. The choice of the caterpillars was recorded immediately after the start of the experiment, 

and also 0.5 h, 1h and 2h later. The feeding choice of 20 caterpillars was investigated 

simultaneously and the experiment was replicated on five different days with both species. 

 
Fig. 16. Picture of a cafeteria-experiment set up. The caterpillar was placed in the middle and let to freely 

choose its food. 

 

In two-choice experiments female P. rapae butterflies were given the opportunity to lay eggs on 

either transgenic or wild type Arabidopsis plants in a greenhouse compartment (25 - 27°C, RH 40 ± 

5 %, and a L16:D8h photoperiod). At 48 h prior to the experiment freshly emerged male and 

female P. rapae butterflies were given the possibility to mate for 24 h, after which a single 

untreated Brussels sprouts leaf was placed in the cage as an oviposition substrate. After 6 h the 

leaf was removed. One male and one female were then transferred into individual experimental 

cages (67 x 50 x 75 cm), 16 ± 2 h before the start of the experiment. The butterflies were provided 

with a 10% sucrose solution during the whole experiment. In addition to natural daylight the cages 

were illuminated by sodium vapor lamps (SON-T, 500W, Philips, Eindhoven, the Netherlands) from 

10:00 - 16:00. One wild type and one transgenic plant were placed into the cage, approximately 15 

cm from each other. The orientation of the plants was changed in every second cage so as to 

compensate for unforeseen directional bias in the experiment. The number of eggs deposited 

during 4 h (10:00 – 14:00) on either of the offered plant lines (wild type or transgenic) was counted. 

The oviposition behavior of 10 to 12 butterflies was investigated simultaneously. The experiment 

was replicated 8 times on different days with new plants and new butterflies. 

 

 7-3 Electrophysiology of insect antennae 

Electroantennogramme (EAG) recordings were performed as described in Loivamäki et al., 2008 

(VII: 3). At the beginning of each measurement a dilution series was prepared. The compounds 

were let to evaporate from the filter paper inside of the Pasteur pipettes (like in Loivamäki et al., 

2008 (VII: 3)) during the insect preparation. When the head of the insect was placed between the 

electrodes the achieved signal was let to stabilize for approximately 5 minutes. After stabilization of 

the EAG signal each dilution series was performed in the following order:  

 



MATERIALS AND METHODS 

44 

1. hexadecane 

2. (Z)-3-hexen-yl acetate 

3. 0.1% isoprene 

4. 1% isoprene 

5. hexadecane 

6. 1% isoprene 

7. 10% isoprene 

8. hexadecane 

9. (Z)-3-hexen-yl acetate 

 

Between application of each compound a break of 0.5 min was introduced. In total the 

performance of one series took approximately 5 minutes. The mV response of an insect 

preparation did not significantly decrease during a series. The response was calculated as follows: 

 

   R% = (RmV – RmVhexad)/(RmVhexy – RmVhexad) 

 

  R%   = response compared to the response to positive control [%] 

  RmV          = response [mV] 

  RmVhexad = response to hexadecane i.e. background. The mean of 2 nearest  

  responses (in relation to the RmV) was used for calculations [mV] 

  RmVhexy  = response to the positive control [mV]  

 

8 STATISTICS 

The statistical tests were performed with SPSS for Windows NT (release 8.0) except the binominal 

tests with Microsoft Excel and the independent and paired samples t-tests with Sigmaplot 2000 for 

Windows (Version 6.10). The correlation analyses were performed with Sigmaplot 2000 for 

Windows. Each statistical test applied is mentioned in the legend or/and in the text of individual 

results.   
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9 MEDIUM, BUFFERS, CHEMICALS AND OTHER LABORATORY CONSUMABLES 

 9-1 Origin of the chemicals and other laboratory consumables 

The origin of the chemicals is indicated in the publications for each chemical by the name and 

location of the company. In the summary of the thesis the origin of the chemicals is indicated with 

numbers in subscript as follows: 

 

1. Bayerische Gärtnerei-Genossenschaft, Munich, Germany  

2. Sigma-Aldrich, Taufkirchen, Germany 

3. Invitrogen (Gibco), Carlsbad, CA, USA 

4. Carl Roth GmbH, Karlsruhe, Germany 

5. Qiagen, Hilden, Germany 

6. Boehringer Mannheim, Mannheim, Germany 

7. PE Applied Biosystems, Weiterstadt, Germany 

8. Merck, Eurolab, Darmstadt, Germany 

9. Serva, Heidelberg, Germany 

10. Fluka Chemie AG, Taufkirchen, Germany 

11. Colgate-Palmolive GmbH, Hamburg, Germany 

12. Roche Pharma AG, Grenzach-Wyhlen, Germany 

13. Lehle Seeds, Round Rock, Texas, USA 

14. Duchefa, Haarlem, Netherlands 

15. Macherey-Nagel, Düren, Germany 

16. Sarstedt, Nümbrecht, Germany 

17. Amersham Biosciences, Buckinghamshire, United Kingdom 

18.  Calbiochem, La Jolla, CA, USA 
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9-2 Mediums and Buffers 

C1 Poplar culture medium   Yeast extract4 5 g 

Macroelements (C1A) 10 ml NaCl8 5 g 

Microelements (C1B) 2 ml ddH2O 1 l 

MS-vitamins (M7150)2 200 µl C4: LB-medium (agar)   

Fe-EDTA (C1C) 1 ml Like LB medium   

Sucrose8 2 g Agar-Agar4 15 g 

Bactoagar16 1.6 g E1: 2x CTAB   

ddH2O 200 ml Tris-HCl pH 88 100 mM 

L-glutamin (20g l-1)8 1.6 ml CTAB 2 % 

C1A: Macroelements   NaCl8 1.4 M 

KNO3
8 19 g PVP 4010 1 % 

NH4NO3
8 16.5 g EDTA10 20 mM 

CaCl2·2H2O8 4.4 g E2: BD1   

MgSo4·7H2O8 3.7 g Glucose8 50 mM 

KH2PO4
8 1.7 g EDTA10 10 mM 

ddH2O 1 l Tris-HCl4 pH 8 25  mM 

C1B: Microelements   

H3BO4
8 620 mg 

Steril filter 

and add lysozyme6 

 

4 

 

mg ml-1 

MnSo4·H2O8 1.69 g    

ZnSo4·H2O8 1.06 g E3: BD2   

Kl8 83 mg NaOH8 0.2 M 

Na2MoO4·2H2O8 35 mg SDS4 1 % 

CuSo4·5H2O8 2.5 mg E4: BD3   

CoCl2·6H2O8 2.5 mg Sodiumacetat2 3 M 

ddH2O 100 ml with acetic acid4 pH 5-5.2   

C1C: Fe-EDTA   G1: TAE (50x)   

Na2EDTA8 3.73 g Tris-HCl4 2 M 

FeSO4·7H2O8 2.78 g EDTA10 50 mM 

ddH2O 500 ml pH 8 with acetic acid10   

C2: Arabidopsis medium   G2: Bromphenolblue   

MS with Gamborg’s vitamins2 2.2 g Bromphenolblue-Na-salt4 14 mg 

Sucrose8 5 g TES-buffer (G7) 10 ml 

Phytagar 2 5 g Glycerin4 (v:v) 10 ml 

ddH2O 500 ml    

C3: LB-medium      

Pepton from Casein4 10 g 
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G3: Ethidiumbromide solution   S6: Buffer 2   

Ethidiumbromide2 200 mg 
Blocking reagent6 
(from 10% blocking stock solution) 1 % 

ddH2O     up to 20 ml Buffer 1   

G4: 1 kb standard   65 °C ca. 1h   

1 kb standard 100 μl S7: Buffer 3   

Bromophenolblue (G2) 200 μl Tris-HCl4 pH 7.5 100 mM 

ddH2O 700 μl NaCl8 100 mM 

G5: TE (10x)   MgCl24 50 mM 

Tris-HCl4 pH 8 10 mM with HCl pH 9.5, not autoclv.   

EDTA10 pH 8 1 mM S8: Staining-solution   

G6: SSC (20x)   Buffer 3 10  ml 

NaCl8 3 M NBT/BCIP6 200 μl 

Tri-NaCitrat8 0.3 M P1: PEB   

G7: TES   Tris-HCl4 pH 7 100 mM 

Tris-HCl4 pH 8 10 mM MgCl24 20 mM 

EDTA8 pH 8 1 mM Glycerin4 (v:v) 5 % 

NaCl8 100 mM Triton X-1004 (v:v) 2 % 

S1: Denaturizing buffer   DTT4 (add just before use) 20 mM 

NaOH8 0.5 M P2: ISB   

NaCl8 1.5 M Tris-HCl4 pH 8.5 50 mM 

S2: Wash buffer 1   MgCl24 20 mM 

2x SSC (G6)   Glycerin (v:v) 5 % 

SDS4 (w:v) 0.1 % DTT4 (add just before use) 20 mM 

S3: Wash buffer 2   P3: Bradford-solution   

0.2x SSC (G6)   

SDS4 (w:v) 0.1 % 

Coomassie Brilliant Blue  

G-2509 (w:v) 0.01 % 

S4: Hybridizing buffer   Solve in Ethanol4 (v:v) 5 % 

5x SSC (G6)   o-Phosphoricacid4 85 % 10 % 

Blocking reagent (w:v)6 

(from 10% blocking stock solution) 1 % W1: Towbin   

SDS4 (w:v) 0.12 % Tris-HCl 4, pH 8.3 25 mM 

65°C ca. 1h, mix   Glycin 0.192 M 

S5: Buffer 1   MeOH4 20  % 

Tris-HCl4 pH 7,5 1 M    

NaCl8 1.5 M    
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W2: Blocking Buffer   

Blocking reagent6 5 % 

W5: 5x Sample buffer 
native   

1x PBS (W3)   

Tween8 0.1 % 

SDS (w:v) 

Glycerol4 

25 

50 

% 

% 

W3: 5x PBS    2-ME 0.25 % 

NaPi, pH 7.2 50 nM Tris-HCl pH 6.84 1.25 M 

NaCl8 140  mM O1: TCA (10%)   

trichloroacetic acid 10 % 

ddH2O 90 % 
Prepared from W31 and W32 so that 

W32 is added to W31 until pH 7.2 is 

reached.   O2: BHT    

W31: Buffer 1   butylated hydroxytoluene 0.15 % 

Na2HPO4
8 250 mM MeOH4   

NaCl8 700 mM O3: TBA    

W32: Buffer 2   thiobarbituric acid 0.5 % 

NaH2PO4
8 250 mM 10% TCA (O1)   

NaCl8 700 mM heat for dissolving   

W4: BCIP/NBT      

BCIP 10 mg    

NBT 5 mg    

1M Tris-HCl pH 84 20 ml    

MgCl24 1 mM    
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IV  RESULTS AND DISCUSSION 

1 CIRCADIAN REGULATION OF ISOPRENE BIOSYNTHESIS IN GREY POPLAR 

  1-1 Endogenously regulated transcript rate of PcISPS and related genes 

Transcript levels of the four genes PcISPS, PcDXR, PcPSY and PcTUB were determined at 

different time points over three virtual 24h day/night cycles in leaves of sterile shoot culture poplar 

plants. The plants were exposed to long day (LD), darkness (DD) or light (LL) conditions in the 

climate chamber. It was obvious that under day/night regime expression of all genes showed low 

levels during the night time and higher levels during the day. However, each examined gene 

presented a distinct diurnal pattern (Loivamäki et al., 2007a (VII: 1)). The results show that PcISPS 

transcript levels appeared to peak in the morning whereas PcDXR expression peaked later in the 

afternoon. The expression levels of PcPSY peaked in the morning, but in addition exhibited a 

second, less intense, peak in the evening. The expression of the ‘housekeeping gene’ or 

normalization gene PcTUB, whose expression was not supposed to fluctuate, was shown to peak 

in the evening under LD conditions but with smaller amplitude than the other genes. 

 

Putting plants under continuous darkness the first observable striking feature was the dramatic 

decrease of transcript levels for PcDXR, PcISPS and PcPSY. Hardly any transcription was 

observed for these three isoprenoid genes under darkness and thus no rhythm could be 

determined for any of them. The result is similar with the result shown by Mayrhofer et al. (2005) 

who proved that PcDXR and PcISPS transcription rates are low under darkness. The results 

suggest that for all of the studied genes, primarily light is the triggering factor of the transcription 

rate. 

 

Under continuous light two main rhythmic patterns of expression were observed for the examined 

genes. Transcript levels of PcDXR did not vary significantly, but rhythmic fluctuations with an 

amplitude of approx. 24 hours for both PcISPS and PcPSY testified for circadian regulation on the 

transcript level for these two genes. The circadian rhythm of PcISPS and PcPSY genes was 

verified by normalizing (minimum value brought to 0, maximum to 1) the individual experiments 

and calculating a mean of the six parallels. These normalized data were tested against sinusoidal 

fluctuations and the correlation analysis proved for a 24h period defining thus circadian rhythms 

(Loivamäki et al., 2007a (VII: 1)). Therefore, even if light triggers and is essential for the expression 

of PcISPS and PcPSY it is not the only regulating factor of gene transcription. A similar circadian 

and also light dependent regulation of gene expression was shown earlier for a germin like protein 

SaGLP in mustard (Synapsis alba) by Heinzen et al. (1994). 

 

Transcript levels of β-tubulin (PcTUB) were also measured under continuous darkness and light. 

The transcript levels of this ‘control’ gene fluctuated less regularly than the expression of the other 
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examined genes. However, higher transcript levels were observed to appear in the evening. The 

result proves that this gene does not have ‘housekeeping’ properties under these conditions and 

should not be used as such, at least when studying different light regimes or expression variations 

within a day. In addition to diurnal variation shown here, a recent analysis in different 

developmental stages showed that the gene may not be the most appropriate choice of internal 

control (Brunner et al., 2004). Indeed it is important part of a RT-PCR to carefully select the proper 

reference gene(s) for each experimental design to be able to precisely quantify the transcription 

rates of the genes of interest. Especially when different gene expression rates are compared 

between different developmental stages or tissue or cell types care should be taken when 

choosing an internal control (Brunner et al., 2004).  

 

Phytoene synthase (PSY) is the first dedicated and regulating enzyme of the carotenoids pathway 

(Von Linting et al., 1997). Carotenoids functions are really diverse ranging from primary 

metabolites involved in photosynthesis to secondary ones as antioxidants or as vitamin and 

hormone precursors (Britton, 1995; Armstrong and Hearst, 1996). Consistent with the role of PSY 

in synthesizing carotenoids for photosynthesis, this gene is highly expressed under light and 

repressed in the dark. The circadian pattern observed under light conditions testifies for a role of 

the circadian clock in the regulation of PcPSY and may reflect the essential role of carotenoids for 

photosynthesis.  

Interestingly when diurnal fluctuations were investigated PcPSY transcription levels showed in 

addition to the morning peak a less intensive increase in mRNA copy numbers in the evening. The 

highest peak of transcript levels within the circadian fluctuations hit the less intense evening peak. 

It can be assumed that the morning peak of gene expression is rather light regulated whereas the 

evening peak would be endogenously regulated. The main peak of PcPSY expression observed 

early in the morning under LD-conditions could be related to the need of enzyme proteins of the 

photosynthesis-related carotenoids biosynthesis in the morning when sun comes up. However, 

only a further analysis of the downstream genes /proteins involved in this pathway could confirm 

this hypothesis. 

 

Being the first committed step of the MEP-pathway DXR is proposed to be one of the rate limiting 

steps of isoprenoid biosynthesis (Mahmoud and Croteau, 2001; Carretero-Paulet et al., 2002). 

Indeed in peppermint (Mentha x piperita) over-expression of DXR leads to a higher accumulation 

of essential oil, and co-suppression of this gene limits growth and leads to abnormal pigmentation 

(Mahmoud and Croteau, 2001), indicating a limiting and non-replaceable role of DXR in the MEP-

pathway for this species. However, as PcDXR levels appear in the present thesis to be neither 

synchronized with PcISPS nor with PcPSY fluctuations and as it does not show circadian 

regulation, PcDXR may not be the key in the daily regulations of the MEP-pathway and 
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subsequent plastidic isoprenoids biosynthesis. This assumption is supported by Rodríguez-

Concepción et al. (2001) who showed that fluctuations of carotenoid biosynthesis in tomato do not 

require similar fluctuations of DXR gene. It is likely that in Grey poplar no direct regulation of 

isoprene biosynthesis by PcDXR occurs. However, DXR transcript levels are shown to be highest 

in leaves of young plants and during inflorescence development (Carretero-Paulet et al., 2002; 

Guevara-García et al., 2005). Thus a possible significant role of DXR on the MEP-pathway could 

take place in special stages of plant development. 

 

  1-2 PcISPS protein content and enzyme activity level 

From the investigation of PcISPS protein concentration and enzyme activity in poplar leaf extracts 

it became evident that ISPS protein concentration as well as its activity were lower under 

continuous darkness than continuous light. The protein concentration reached a maximum of ~6 ng 

mg protein-1 and the activity ~0.45 μkat kg protein-1 in darkness whereas the same values in the 

light were 12 ng mg protein-1 and 0.8 μkat kg protein-1, respectively (Loivamäki et al., 2007a (VII: 
1)). However, such differences were not observed between dark and light values from leaves 

under LD conditions. Thus nor circadian neither diurnal fluctuations in protein level or enzyme 

activity could be demonstrated. The discrepancies between the fluctuations in mRNA and protein 

level can be due to post-transcriptional regulation of the PcISPS protein as earlier suggested by 

Mayrhofer et al. (2005) who observed similar discrepancies in seasonal variation of isoprene 

synthase activity, protein level and isoprene emission. The tendency in the present experiments, 

however, was that the protein level and enzyme activity were higher under light than under 

darkness. Thus it might be possible that with a much higher number of replicates the fluctuation at 

least under LD conditions becomes ascertainable.  

 

  1-3 Isoprene emission fluctuates in circadian manner in poplar 

Under LD conditions isoprene emission rate from poplar shoot cultures followed a clear diurnal 

pattern, verifying the result of Mayrhofer et al. (2005). As it was expected from light-off experiments 

(e.g. Kreuzwieser et al., 2002; Magel et al., 2006) isoprene emission decreased very fast from the 

original to a very low level when the shoots were placed in continuous darkness. Since isoprene 

emission is closely linked to the light-dependent supply of photosynthetic intermediates (e.g. Loreto 

and Sharkey, 1993; Magel et al., 2006) it is supposed that under darkness in the photosynthetic 

active parts of the poplar shoots there is no substrate available for isoprene emission and thus the 

emission rates should be near zero. Remarkably, isoprene emission of the shoot cultures was 

measurable at a low rate (also after subtracting the background value from medium and jar, which 

was approx. 10% of the over-all emission) under darkness. It might be hypothesized that the 

carbon supply sustaining this isoprene emission stems from the growth medium that contains 

sucrose. 
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Although no rhythms in tune could be observed in ISPS protein or enzyme activity levels under 

continuous light, the isoprene emission rates fluctuated with a 24 hours period. Isoprene emission 

was as its strongest approx. 25% higher than the emission as its lowest rate on the 3rd and 4th days 

of the measurements (Loivamäki et al., 2007b (VII: 1)). Relative values (minimum value brought to 

0, maximum to 1) of fluctuation were tested against sinusoidal curve, but because of the decline in 

isoprene emission during the first two days, it was only possible to fit a curve on the data of the last 

two days. The fluctuation of isoprene emission during these days was highly significant clearly 

testifying for switched circadian rhythm of the isoprene emission whose highest rate occurred 

always in the subjective afternoon. Similarly, switched (12h delayed when compared to diurnal 

rhythm) circadian rhythm was shown for isoprene emission in Oil Palm (Elaeis guineensis) under 

continuous light by Wilkinson et al. (2006). The authors were able to measure isoprene fluctuating 

in circadian manner in broad range of temperatures and light intensities suggesting for a clock 

element that is pre-adapted to work also in higher temperatures, a feature which was not 

previously observed for any other plant species (Wilkinson et al., 2006). Also Dudareva et al. 

(2003) show circadian emission for monoterpenes myrcene and (E)-β-ocimene from inflorescences 

of snapdragon flower (Antirrhinum majus). The group was able to show the clock controlled 

fluctuations for the compounds also in the darkness which was not possible for isoprene (Wilkinson 

et al., 2006; Loivamäki et al., 2007a (VII: 1)) that is not stored in the leaf organs like monoterpenes 

can be (Kesselmeier and Staudt, 1999).  

 

Dudareva et al. (2003) showed that the emissions of myrcene and (E)-β-ocimene are partly 

regulated by monoterpene synthase expression rate. However, the authors do not exclude the 

possibility of regulation also by other means, e.g. by the rate of substrate supply or by translational 

or post-translational modifications. In the present study it is somewhat disturbing that PcISPS 

expression and isoprene emission rates fluctuated in circadian manner, whereas PcISPS protein 

level and enzyme activity level did not show clearly similar rhythms. Thus neither the circadian nor 

even the diurnal rhythms observed in isoprene emission level seem to be due to the transcription 

rate of PcISPS gene. It must be assumed that the isoprene emission rate should be regulated in 

another way. Indeed, it is not known to which extend the two forms of isoprene synthase, 

membrane bound and soluble (Wildermuth and Fall, 1998; Schnitzler et al., 2005), are actually 

active under in vivo conditions in the leaves. It is possible that one of these forms is post-

translationally regulated in a circadian manner. Besides, the observed circadian rhythm of isoprene 

emission might primarily occur because of in a similar rhythm fluctuating substrate supply. As it is 

well documented that several genes involved in photosynthesis are clock-regulated (Harmer et al., 

2000) such a regulation of the MEP-pathway might occur rather for providing substrate for primary 

metabolism (e.g. for synthesis of photosynthetically active pigments like carotenoids) than for 
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isoprene biosynthesis. Therefore, assuming that formation of photosynthesis and thus the DMADP-

pool undergo to a certain extent a circadian change, it might be hypothesized that the circadian 

change of isoprene emission is due to a slightly enhanced metabolic flux within the MEP-pathway. 

However, the substrate supply from the MEP-pathway can also occur in circadian manner due to 

other reasons e.g. due to cytosolic and chloroplastic processes competing from 

phosphoenolpyruvate (PEP), as was suggested by Wilkinson et al. (2006). Phosphoenolpyruvate is 

indeed needed in cytosolic processes e.g. for nitrate assimilation that undergoes at the level of 

nitrate reductase in the evening/early morning peaking circadian rhythms (Yang and Midmore, 

2005). Such a competition from PEP would support the suggested hypothesis about isoprene 

emission as a metabolic safety valve (Rosenstiel et al., 2004). 

 

2 TRANSGENIC ARABIDOPSIS OVEREXPRESSING PcISPS 

  2-1 Successful transformation of PcISPS into Arabidopsis 

In the F1 generation after transformation 1.83% of the Arabidopsis plants were green on selection 

medium therefore carrying the resistance against kanamycin. From these green plants 56 were 

selected and screened for the presence of isoprene emission (Fig. 17), and from those plants 11 

lines (the bars in black in Figure 17) were selected for further use.  
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Fig. 17. Leaf isoprene emission from isoprene emitting Arabidopsis thaliana plants in the first generation 

(F1). Mean + SE is shown, n = 3 ± 1. The bars in black represent positive lines that were selected for further 

screening in the second (F2) generation.   

 

When the seeds of F2 (obtained following self-pollination of F1-transformed plants) were plated on 

MS with kanamycin, the lines appeared to be in mean 80.9% antibiotica resistant proving for a 

single gene insertion in the plant genome. Expression of PcISPS, NPTII (codes for an 

aminoglycoside (neomycin) phosphotransferase conferring resistance to antibiotics such as 

kanamycin or neomycin) and for comparison actin 2 (AtACT2) genes from total RNA of F1 
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generation were measured and testified for the successful transformation of Arabidopsis with the 

poplar ISPS gene (Loivamäki et al., 2007b (VII: 2)).  

Following several isoprene emission measurements from single leaves of the transgenic lines in F2 

generation (age of rosette from 3 to 5 weeks), five of the lines were selected for further 

experiments: three of so-called strong isoprene emitting lines i.e. lines 10, 92 (later called as line 9) 

and 8 emitted 3-10 fold more isoprene than the two other so-called low-emitting lines i.e. lines 3 

and 5 (Fig. 18). Isoprene emission rates were in general higher in F2 generation than in F1 

generation (Fig. 17 and 18). 
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Fig. 18. Leaf isoprene emission rates from the selected isoprene emitting Arabidopsis thaliana lines in the F2 

generation. Mean + SE is shown, n = 5. Bars in black represent the lines that were selected for further 

experiments.  

 

In addition to emission measurements, protein and ISPS activity level measurements further 

proved that in the lines 8 and 9 isoprene biosynthesis was highest. ISPS protein concentration and 

enzyme activity correlated with isoprene emission levels, being strongest in lines 8 and 9 and lower 

in the other lines (Loivamäki et al., 2007b (VII: 2)). Being introduced into the Arabidopsis genome 

under the regulation of a constitutive promoter, PcISPS was expressed in all organs of 

Arabidopsis. Line 9 had approximately two fold higher transcript levels in all plant organs than 

other lines, within which the expression levels were comparable to each other (Loivamäki et al., 

2007b (VII: 2)).  

 

Leaves, roots and flowers (with ~ 1 cm stem) of transgenic Arabidopsis emit isoprene (Loivamäki 

et al., 2007b (VII: 2)). Isoprene emission from leaves and flowers was 4 - 6 nmol g FW-1 h-1 from 

strong isoprene emitting lines 8 and 9, and 1.5 nmol g FW-1 h-1 from line 10. Emission from line 3 

was 0.2 nmol g FW-1 h-1, being approximately four fold higher than from line 5 or from wild type 

(Loivamäki et al., 2007b (VII: 2)). The emission rates are relatively low compared to real isoprene 

emitting species (Sharkey et al., 2005; Behnke et al., 2007) but in similar range with other 
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transgenic isoprene emitting Arabidopsis plants carrying either the ISPS gene from white poplar 

(Populus alba, generated by Sasaki et al., 2007) or the ISPS gene from kudzu (generated by 

Sharkey et al. (2005)). The plants from Sasaki et al. (2007) were shown to emit approximately 0.2 - 

1 nmol g DW-1 h-1 ( = approximately 0.4 - 2 nmol g FW-1 h-1, if plants’ dry weight is considered to be 

50% of the fresh weight (JP Schnitzler, personal communication)) and the plants from Sharkey et 

al. (2005) approximately 1.32 nmol isoprene m-2 s-1 ( = approximately 12 nmol g FW-1 h-1, 

calculated by using the correlation between Arabidopsis leaf fresh weight and leaf area in 

Loivamäki et al., 2008 (VII: 3)). 

Even if the wild type plants showed a very low emission rate, neither PcISPS expression nor 

PcISPS activity or protein signal in wild type could be detected. Similar low emission rate was 

shown by Sasaki et al. (2007) from their wild type Arabidopsis plants. The isoprene emission from 

wild type plants might be explainable e.g. by chemical degradation of DMADP, since this molecule 

is unstable already under neutral pH conditions (Brüggemann and Schnitzler, 2002b). 

 

2-2 Intermediates of MEP-pathway and substrate dependency of isoprene emission 

in PcISPS expressing Arabidopsis 

To find an explanation for the low level of isoprene emission from transgenic Arabidopsis the 

DMADP availability within the MEP-pathway for isoprene biosynthesis was examined. Even if 

some substrate is used for isoprene production, total DMADP contents in transgenic plants were 

similar in range to wild type, namely around 10 pmol mg FW-1 (Loivamäki et al., 2007b (VII: 2)). In 

addition measurement of total carotenoid and chlorophyll levels showed no difference between 

transgenic lines and wild type indicating that photosynthetic pigment concentrations were not 

affected by the introduction of the PcISPS gene (Fig. 19). 



RESULTS AND DISCUSSION 

56 

 

 
WT 8 9 ca

ro
te

no
id

s 
an

d 
ch

lo
ro

ph
yl

ls
 [m

g 
g 

FW
-1

]

0.0

0.2

1.2

1.4

 
Fig. 19. Total carotenoid (black bars) and chlorophyll (grey bars) content in leaves of 5 week-old wild type 

(WT, Col-0) and transgenic isoprene emitting Arabidopsis lines 8 and 9. Mean + SE is shown, n = 4 ± 1, no 

significant differences were found between the lines (Kruskall-Wallis-test). 

 

Consistent with higher presence of DXS and DXR in developing parts, in light-grown seedlings and 

in the inflorescence (Carretero-Paulet et al., 2002), the results in the present thesis revealed the 

highest DMADP contents and isoprene emission rates in young, developing Arabidopsis leaves 

(Loivamäki et al., 2007b (VII: 2)). A similar feature was found by Lücker et al. (2001) in transgenic 

petunia plants that constitutively expressed a linalool synthase gene. Enzyme activity could not be 

detected from old petunia leaves despite the relatively easy detection of activity in young leaves. 

The present results collectively support the idea of developmental regulation of the MEP-pathway 

in Arabidopsis and suggest that it is very difficult to predict isoprene emission from a whole 

Arabidopsis rosette at a certain developmental stage.  

 

Isoprene emission from transgenic Arabidopsis lines could be enhanced by feeding with 1-deoxy-

D-xylulose (DOX). DOX externally provided to cut leaves via the transpiration stream can be taken 

up by the chloroplast and bypasses DXS activity and its regulative role on the MEP-pathway, 

providing substrate for the MEP-pathway (Wolfertz et al., 2003). Feeding of leaves with 30 nM 

DOX enhanced total DMADP contents by a factor of two combined with two-fold higher isoprene 

emission rates (P < 0.01, independent samples t-test) compared to water-supplied control leaves, 

whereas feeding with a lower concentration of DOX (3 nM) did not produce any significant changes 

(Loivamäki et al., 2007a (VII: 2)). This result indicates that isoprene emission in Arabidopsis indeed 

depends on the substrate availability from the MEP-pathway. Moreover, in the light of this result, 

the overall different isoprene emission rates within different lines might not be due to different 

transcription rates but rather due to different substrate supply for isoprene biosynthesis. With 
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respect to the present data it is likely that the relatively low isoprene emission rate from transgenic 

Arabidopsis could be enhanced by co-over-expressing a gene upstream on the MEP-pathway, e.g. 

DXS or DXR. Whether such a co-transformation would have negative consequences for the overall 

fitness of the plants remains to be elucidated. 

 

2-3 Relative growth rates of the PcISPS expressing Arabidopsis 

The introduction of PcISPS into Arabidopsis could have led to a re-direction of isoprenoid 

precursors, and thus isoprene emission competing with formation of other isoprenoids synthesized 

downstream of the MEP-pathway. So far, many experiments aiming to cause over-expression of 

isoprenoids or related genes showed altered phenotypes of transgenic plants being restricted in 

growth due to depletion of precursors (Fray et al., 1995; Aharoni et al., 2003, 2006). For example, 

introduction of (S)-linalool and linalool derivatives synthase encoding gene into Arabidopsis 

(Aharoni et al., 2003) or into potato (Aharoni et al., 2006) led to altered phenotypes when higher 

linalool levels were detected.  

Thus, to understand the influence of isoprene emission for overall plant fitness, experiments to 

measure shoot relative growth rate (RGR) under normal (23°C) and altered temperature (29°) 

conditions were set up. The altered temperature conditions were chosen because isoprene is 

thought to protect against high temperature stress (Singsaas et al., 1997; Sharkey et al., 2001; 

Behnke et al., 2007; for review see Sharkey et al., 2008). Two different methods were used to 

quantify growth rates, using either leaf area- or biomass measurements. It was surprising to 

observe that isoprene emission did not have a negative impact on the plant fitness, on the 

contrary, under thermal stress, isoprene emitting plants even grew faster than wild type (Loivamäki 

et al., 2007b (VII: 2)). 

 

Based on leaf area measurements, with the GROWSCREEN imaging system (Walter et al., 2007) 

the leaf growth of isoprene emitting Arabidopsis plants (lines 8, 10 and 3) was significantly faster 

(ANOVA and Tukey’s post hoc analysis, P < 0.05, P < 0.001 and P < 0.01, respectively) compared 

to wild type or to the very low isoprene emitting line 5. The differences in RGR (relative growth 

rate) were higher at the beginning of the experiment than at the end when rosettes became fully 

developed. In addition the differences in the growth rates were higher under higher temperature 

(29°C) than in lower temperature (23°C) (Loivamäki et al., 2007b (VII: 2)).  

 

When biomass was used to calculate RGR, differences between isoprene emitting lines and wild 

type were of the same order of magnitude as those based on non-invasively measured leaf area 

data. However, variability was higher due to destructive harvests of different populations for data 

acquisition at different time points. Thus, based on the fresh weight data, only line 3 showed a 



RESULTS AND DISCUSSION 

58 

significantly faster growth (ANOVA and Tukey’s post hoc analysis, P < 0.001) compared to wild 

type or line 5 at higher temperature.  

 

Interestingly, the transgenic Arabidopsis plants grew fastest at the beginning of rosette 

development when also DMADP levels as well as PcISPS activity and isoprene emission rates 

were observed to be at their highest. Supporting the present observations, Carretero-Paulet et al. 

(2002) showed that the highest metabolic flux through the MEP-pathway occurred in an early stage 

of plant development. Finding the highest isoprene emission, DMADP and enzyme activity levels 

together with highest growth rates in young plants during their vegetative growth phase indicate 

that enhanced growth of transgenic plants under moderate thermal stress is indeed likely due to 

introduced PcISPS. In addition comparable results, proving that the transgenic isoprene emitting 

Arabidopsis rosettes can grow larger than the wild type plants, was recently shown by Sasaki et al. 

(2007). The authors proved that transgenic plants had larger leaves and gained more weight than 

the wild type Arabidopsis plants in the same age. In addition they revealed a tendency that in 

isoprene emitting Arabidopsis plants the cell size was larger than in the respective wild type. 

Sasaki et al. (2007) suggested that the larger leaf size in isoprene emitting Arabidopsis might be 

due to higher substrate supply to biosynthesis of other products of the MEP-pathway, i.e. 

hormones like ABA or gibberellins. 

 

2-4 Other volatile organic compounds emitted by Arabidopsis 

Introducing the isoprene synthase gene from Grey poplar into Arabidopsis could lead to altered 

volatile profile due to substrate limitation in these plants. However, VOC analysis verifies that the 

emission from untreated or herbivore infested wild type and transgenic plants do not differ from 

each other. Isoprene was the predominant volatile compound emitted by uninfested transgenic 

plants, composing up to 91.3% of all detected volatiles. When the emission from the plants was 

induced by herbivore infestation (Pieris rapae (Small Cabbage White butterfly) or Plutella xylostella 

(Diamondback moth; Fig. 20)), isoprene emission tend to be lower than from uninfested plants 

(Loivamäki et al., 2008 (VII: 3)). Thus, a small metabolic shift of carbon from isoprene to other 

herbivore induced volatiles in transgenic lines might be visible. The result further verifies (1) that 

isoprene emission is substrate dependent and (2) that the emission does not have overwhelming 

effect on the plant; isoprene biosynthesis is enhanced only when its substrate is available. 
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Fig. 20. Volatile organic compounds emitted from Plutella xylostella infested wild type and transgenic 

isoprene emitting plants. Black bars: wild type, grey bars: transgenic plants. MT: monoterpenes (α- and β-

pinene, (E)-β-ocimene, limonene, 2 unidentified MT); SQT: sesquiterpene (α-farnesene); TMTT: (3E,7E)-

4,8,12-trimethyl-1,3,7,11-tridecatetradiene; MeSA: methylsalicylate; oxyVOCs: other oxygenated volatile 

organic compounds (21 compounds). Two independent samples per treatment were analyzed and means + 

SE are presented. 

 

Infestation of Arabidopsis rosettes with Small Cabbage White larvae (P. rapae) induced a 

significant release of the monoterpene linalool, homoterpene (3E,7E)-4,8,12-trimethyl-1,3,7,11-

tridecatetradiene (TMTT), and the sesquiterpene α-farnesene (main effect tested by Kruskall-

Wallis-test and significant differences by Mann-Whitney U-test, P < 0.05). Also the emission of 

some individual oxygenated volatile compounds like methylsalicylate (MeSA), hexanal, 

dimethyltrisulfide and two other, yet unidentified compounds were induced. 

Pl. xylostella and P. rapae induced volatile blends were similar except for linalool whose emission 

was found to be P. rapae-specific and was neither observed for uninfested nor for P. xylostella-

infested rosettes. Surprisingly, an emission of linalool emission from Arabidopsis was not observed 

in the previous studies (Van Poecke et al., 2001; Chen et al., 2003) with the same ecotype Col-0. 

However, the discrepancies between different studies can be explained by different developmental 

stages of the experimental plants or by variations within the same ecotype between different 

laboratories.   

 
3 TRANSGENIC ARABIDOPSIS OVEREXPRESSING PcDXR 

 3-1 Introduction of PcDXR into Arabidopsis  

In the F1 generation after transformation 0.6% of the plants, grown on selective MS agar 

containing hygromycin as selective antibiotic, showed a green phenotype indicating the presence 

of hygromycin resistance. From these plants 14 were chosen in order to generate the second 

generation. In the F2 generation at least 80% of the plants were green under selective conditions. 
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The seedlings showing the normal dark green phenotype and carrying at least one copy of the 

DNA of interest were transferred to soil and used for further measurements.  

Analysis of PcDXR gene from total RNA of F2 generation plants confirmed the successful 

introduction of this gene into Arabidopsis. Naturally Arabidopsis contains its own DXR. However, 

the primers did not bind to wild type Arabidopsis cDNA, due to the mismatches between the 

designed primers (forward 5 bp and reverse 6 bp differences) and the Arabidopsis cDNA 

sequence. In Figure 18 an example is shown of PcDXR gene accumulation in transgenic 

Arabidopsis. From 13 lines (A1, A2, B1, C2, D1, D2, F1, F2, G1, G2, K1, K2, K3; the same letter 

indicates a common parent in F0 generation) PcDXR expression could be successfully detected in 

mRNA level. Thus those lines were selected for further analysis.  

 
Fig. 21. Accumulation of PcDXR cDNA fragments in some of the transgenic lines. In wild type no cDNA-

fragment was detected.  

 

 3-2 Functional screening of transgenic Arabidopsis over-expressing PcDXR  

Functional screening of transgenic lines expressing PcDXR was performed similar to the work of 

Estévez et al. (2001) and Carretero-Paulet et al. (2006) using the accumulation of carotenoids as 

functional selection marker assuming that over-expression of PcDXR results in an enhanced 

metabolic flux through the MEP-pathway. 

In addition, total leaf DMADP concentrations were determined in transgenic and wild type plants. 

As shown in Figure 22, analysis of DMADP levels revealed no differences (main effect tested with 

Kruskall-Wallis-test) between the different transgenic lines and wild type plants. 

 WT(2x)   F1  KB  K1  K3  G2  309 bp 
fragment 
PcDXR 
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Fig. 22. Total leaf DMADP concentration in transgenic PcDXR over-expressing Arabidopsis and in wild type 

(WT) in 4 weeks old plants. Mean + SE is shown, n = 5 ± 1. 

 

The fact that DMADP level in the transgenic lines was not altered compared to wild type does not 

necessarily mean that the flow through the MEP-pathway would not be enhanced. DMADP is an 

intermediate that can be fast converted further to higher isoprenoids and end-products of MEP-

pathway. Estévez et al. (2001) proved that over-expression of a DXS gene in Arabidopsis can lead 

to an accumulation of carotenoids, chlorophylls and abscisic acid (ABA) which are, among others, 

products of the MEP-pathway. Thus the carotenoid and chlorophyll levels were determined in the 

F3 generation of PcDXR transformed plants (Fig. 23).  
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Fig. 23. Relative concentrations of carotenoids (A) and chlorophylls (B) in 4 weeks old transgenic, isoprene 

emitting lines (black bars) and wild type (white bars) Arabidopsis plants. The raw values were related to the 

mean of corresponding values of wild type. WT: Wild type n = 12; transgenics n = 4 ± 2. No significant 

differences were found between the lines.    

 

Although in some transgenic lines a tendency for a relative accumulation of total chlorophyll was 

observed, no significant differences were found, as for carotenoids (main effect tested with 

Kruskall-Wallis-test). This observation is in consistence with previous results showing that DXR 
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levels do not correlate with the accumulation of carotenoids in chloroplasts of ripening tomato 

(Lycopersicon esculentum) plants (Rodríguez-Concepción et al., 2001). However, Carretero-Paulet 

et al. (2006) were able to transform Arabidopsis DXR cDNA to Arabidopsis thaliana itself and 

observed that the gene expression level can indeed limit the biosynthesis of isoprenoids from 

MEP-pathway. In this specific case over-expression of DXR led to a moderate accumulation of 

carotenoid and chlorophyll levels (approximately 25% more than in wild type). However, in the 

same work transformation of Arabidopsis with DXS showed much higher increase of plastidial 

isoprenoids (approximately 70% more than in wild type) (Carretero-Paulet et al., 2006). Taken 

together the previous results from other groups working on MEP-pathway related genes DXS 

(Estévez et al., 2001; Enfissi et al., 2005), HDR (Botella-Pavía et al., 2004) and DXR (Mahmoud 

and Croteau, 2001; Carretero-Paulet et al., 2002) it is likely that several enzymes share the 

regulation task on the MEP-pathway. Whether over-co-expression of several MEP-pathway 

regulating genes would lead to higher accumulation of end products from MEP-pathway remains to 

be solved. In the present particular case future analysis of the transgenic lines should involve 13C-

labelling, e.g. by CO2 fumigation, to quantify possible alteration of metabolic fluxes within the MEP-

pathway. In addition to chlorophylls and carotenoids, possible accumulation of other end products 

(e.g. that of ABA or tocopherol (Estévez et al., 2001)) could be studied. Furthermore the tendency 

of accumulating chlorophylls might become significant when simply more parallel experiments 

were performed. In addition the gene expression of PcDXR should be studied under stress 

conditions. Under stressful conditions, when more end-products from MEP-pathway are needed, 

the PcDXR over-expressing Arabidopsis plants might show advantage to wild type. For example 

high light stress would increase the need of photoprotective pigments (Havaux and Niyogi, 1999) 

and herbivore or pathogen infestation would increase the need of defence for example by terpenes 

(Dudareva et al., 2006). To evaluate whether the PcDXR was, or was not, really successfully 

introduced into Arabidopsis, more detailed investigations with the PcDXR-expressing lines should 

be done in the future. 

In the present thesis no further studies with the PcDXR over-expressing lines were performed 

since transformation with PcISPS resulted in isoprene emitting lines useful for functional studies of 

isoprene emission. However, the PcDXR transformed lines can be used in future studies to 

enhance isoprene emission of the existing PcISPS expressing Arabidopsis lines by crossing of 

these lines or by a new transformation of the isoprene emitting lines with the available PcDXR 

binary vector system.  
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4 PHYSIOLOGICAL STUDIES PERFORMED WITH TRANSGENIC AND WILD TYPE 

ARABIDOPSIS AND POPLAR PLANTS 

  4-1 Testing the thermotolerance hypothesis 

   4-1-1 High temperature stress application on Arabidopsis 

To analyze dynamically photosynthetic gas exchange and VOC emissions from whole Arabidopsis 

rosettes or individual poplar leaves, the newly developed cuvette system was used. The 

dependency of isoprene emission and photosynthetic parameters on temperature was tested in 

transgenic (lines 8 and 9) and wild type Arabidopsis with a temperature program increasing leaf 

temperature in 5°C steps from 30°C until 45°C and back lasting for 30 min at each temperature 

plateau (for details see Loivamäki et al. (2007b) (VII: 2)). Isoprene emission from the transgenic 

lines and from wild type correlated positively with temperature (P < 0.01, Pearson’s correlation) 

whereas net assimilation decreased with increasing leaf temperature, as it was expected from 

previous studies (Monson et al., 1992; Singsaas et al., 1997; Velikova and Loreto, 2005). Even if 

stomatal conductance (gH2O) decreased with increasing leaf temperature, leaf transpiration 

increased (P < 0.05, Pearson’s correlation). Line 9 showed significant difference in isoprene 

emission rate, net assimilation, transpiration and gH2O compared to wild type and line 8 (P < 0.05, 

Tukey’s post hoc analysis) (Loivamäki et al., 2007b (VII: 2)). This suggests that the ability to emit 

isoprene has changed the physiology of this highest isoprene emitting line, which appear more 

temperature resistant. The observation is supported by several previous studies showing 

thermotolerance effect for isoprene (Singsaas et al., 1997; Sharkey et al., 2001; Velikova and 

Loreto, 2005; Velikova et al., 2005), the first one done by Sharkey and Singsaas (1995) who 

showed that isoprene fumigation increases the thermotolerance of isoprene emitting species. 

Besides isoprene certain higher isoprenoids, in addition to their several other roles e.g. in biotic 

defence, also can protect against heat stress. Loreto et al. (1998) showed for the first time that 

fumigation with monoterpenes can enhance the photosynthetic performance under high 

temperature. Later this observation was confirmed for Quercus species by Delfine et al. (2000) and 

Copolovici et al. (2005), who studied thermotolerance by fumigating with exogenous monoterpenes 

either isoprenoid non-emitting species (Delfine et al., 2000) or monoterpene emitting species 

treated with FSM (Copolovici et al., 2005). However, these studies investigating isoprenoids 

function under high temperature concentrate on fumigation with exogenous isoprenoids. The 

present study for the first time investigated transgenic isoprene emitting species and analyzed 

whether they also can show better performance of photosynthesis than respective wild type under 

high temperature treatment. The result shows that the highest isoprene emitting Arabidopsis line 9 

might have advantage from the isoprene emission capacity compared to the wild type. 

However, in the present experiments the temperature applied was too high or lasted too long, 

because the recovery of the plants from the relatively high thermal stress was often not complete 

(= visible damage of plants). Indeed, isoprene is suggested to play rather a role particularly in 
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recovery from suddenly occurring temperature stress (Singsaas and Sharkey, 1998; Sharkey et al., 

2001; Sharkey et al., 2008) than surviving to continuous high temperature. Also for monoterpenes 

it has been shown that the protective role is more evident when plants were given more than one 

high term temperature treatment (Delfine et al., 2000). Thus, to examine the physiological function 

of isoprene in a more reasonable and realistic manner so called transient temperature treatment 

was applied in the following experiments. 

  

   4-1-2 Transient temperature stress application on Arabidopsis 

Temperature experiments to test possible functions of isoprene have previously been performed in 

a number of different ways. To test the hypothesis about isoprene protecting from damage caused 

by rapid and transient high temperature events (Sharkey and Singsaas, 1995; Singsaas and 

Sharkey, 1998) a comparable experimental design as previously used by Sharkey et al. (2001) 

was chosen. These authors assessed thermotolerance as recovery of photosynthesis from short-

term treatments at 46°C. In the present case with transgenic and wild type Arabidopsis plants 

isoprene emission, net assimilation and transpiration were analyzed (Loivamäki et al., 2007b (VII: 
2)) during similar short-term treatments.  

The gas exchange from the plants was measured before, during and after a transient temperature 

stress created with rapidly cycling leaf temperature (from 30°C to 40°C and back) under constant 

PPFD of 1000 µmol photons m-2 s-1. Before start of the 6 heat cycles, significantly higher isoprene 

emissions were detected in lines 8 and 9 compared to wild type. Transpiration and gH2O were 

higher, but net assimilation showed no differences in line 8 compared to wild type. In line 9, 

however, transpiration and gH2O were globally lower than in other lines before the start of heat 

cycles and through the whole experiment (Loivamäki et al., 2007b (VII: 2)).  

Each increase in leaf temperature up to 40°C caused a rapid transient reduction in net assimilation 

and gH2O, accompanied by an increase in transpiration in all the lines. Within 30 min both wild 

type and the isoprene emitting line 8 recovered completely from heat stress cycles without 

significant reductions in net assimilation or transpiration. Wild type plants even tend to have higher 

net assimilation rates after the heat stress than before whereas in line 8 stomatal conductance and 

transpiration slightly increased compared to the initial values. However, the initially lower 

assimilation and isoprene emission level of the transgenic line 9 decreased after the transient 

thermal stress treatment indicating that from transient thermal stress the highest isoprene emitting 

line survived worse than wild type or the lower isoprene emitting line 8 (Loivamäki et al., 2007b 

(VII: 2)). 

 

While isoprene emission from plants naturally emitting isoprene appears to play a significant role in 

plant survival, at least under stress conditions (Loreto et al., 2001; Sharkey et al., 2001; Affek and 

Yakir, 2002; Velikova and Loreto 2005; Velikova et al., 2005; Wiberley et al., 2005; Behnke et al., 
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2007), the present results with Arabidopsis indicate that isoprene protection against damage from 

transient thermal stress may not be widely applicable to isoprene non-emitters transformed to emit 

isoprene. Photosynthetic gas exchange studies showed no negative effect from transient but still 

moderate temperature stress in wild type compared to transgenic isoprene emitting Arabidopsis 

plants. Temperature stress created with rapid heat cycles did not have a negative effect on the 

recovery of net assimilation rate of wild type plants, indicating that Arabidopsis does not need 

isoprene to protect itself against transient thermal stress. In fact, net assimilation of the highest 

isoprene emitting line 9 seems to be more affected by the transient temperature stress than that of 

wild type. A similar observation was shown for the non-isoprene emitting leaves of bean plants 

(Phaseolus vulgaris) that showed irreversible thermal damage during dark fluorescence 

experiments in higher temperature than isoprene emitting oak (Quercus alba) and kudzu leaves 

(Singsaas et al., 1997). However, Sasaki et al. (2007) showed recently that isoprene emitting 

Arabidopsis, carrying the Populus alba ISPS-gene, can survive a high temperature treatment better 

than the corresponding wild type plants. The authors applied 60°C temperature for 2.5 h (PPFD 2 

μmol photons m-2 s-1) and recorded the recovery of the plants 7 days after the stress. The 

photographs shown by Sasaki et al. (2007) prove for better recovery of the transgenic isoprene 

emitting Arabidopsis plants. The results suggest that isoprene does protect against high 

temperature stress also in Arabidopsis when the temperature applied is high and lasts long 

enough. Possibly the fact that contradicting results were observed in the present study was due to 

the art of temperature treatment application that was lower and shorter than in the applications 

done by Sasaki and co-authors.  

Moreover, contradictory to the present data is also the observation of Delfine et al. (2000) showing 

that isoprenoid non-emitting species can have advantage from exogenous monoterpenes. The 

group showed that thermotolerance of non-isoprene emitting oak-species (Quercus suber) was 

enhanced and that their photosynthetic capacity was higher when the plants were fumigated with 

exogenous monoterpenes. Delfine et al. (2000) suggested that isoprenoid emitting species might 

enhance also the well-being of neighbouring plants under high temperature conditions.  

It seems likely that the protecting effect of isoprenoids against stresses depends on each plant 

species’ initial stress tolerance capacity. In Arabidopsis, in addition to heat shock proteins 

(Howarth and Ougham, 1993), at least calcium, ABA, ethylene and salicylic acid play 

independently roles in the protection against thermal stress (Larkindale and Knight, 2002; 

Larkindale et al., 2005). Furthermore, Larkindale and Knight (2002) showed that differences also 

exist in thermotolerance of different ecotypes of Arabidopsis: Columbia, for example, was more 

thermotolerant in their studies than e.g. Landsberg ecotype. 
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4-1-3 Transient light stress application on Arabidopsis and poplar  

Plants in the nature, however, likely rarely face transient temperature stress without concomitantly 

enhanced light intensities (Leakey et al., 2005). Thus an aim in the thesis was to combine both 

transient temperature and light stresses to create even more naturally occurring stress conditions. 

Before combining both stresses, transient light stress alone was studied. Indeed in temperate 

climate regions from which many isoprene emitting species are native (e.g. Salicaceae and 

Populus) (Ellenberg,1963), transient light stress in tree canopies might rather likely occur than a 

transient temperature stress reaching up to 45°C. Even in tropical rain forest transient leaf 

temperature reaches maximum 38°C with the maximum PPFD 1600 µmol photons m-2 s-1 during a 

day (Leakey et al., 2005).  

 

The gas exchange from Arabidopsis plants and in addition wild type and transgenic, isoprene non-

emitting, poplar (for details see Behnke et al., 2007) leaves was measured. Wild type and 

transgenic poplar plants were included in the present study in order to compare the physiological 

responses of this natural isoprene emitting species to those obtained with Arabidopsis plants under 

similar stress conditions. The experiments were performed comparable to the transient heat 

cycles, but instead of temperature light intensities varied from PPFD 100 to 1300 µmol photons m-2 

s-1 while leaf temperature was held constant at 30°C. Each of the six high light periods lasted 10 

minutes after what low light was applied for another 10 minutes. Initial values and recovery were 

measured at 30°C and PPFD 100 µmol photons m-2 s-1 for 20 minutes. 

 

Under constant conditions (30°C and 100 µmol photons m-2 s-1) just before start of the light cycles, 

isoprene emission rates from Arabidopsis lines 8 and 9 were higher than that from wild type. 

However, at the end of the experiment all lines showed comparable low levels of isoprene 

emission. During the light stress treatment isoprene emission rates decreased constantly without 

following the up and down of light intensity (Fig. 24A). Net assimilation rates were enhanced 

rapidly and simultaneously with increasing light intensity (Fig. 24B) whereas stomatal conductance 

stayed rather constant (Fig. 24C) over time. In summary net assimilation and stomatal 

conductance of transgenic and wild type Arabidopsis did not differ from each other. Especially in 

the case of net assimilation astonishing similar values with low deviation were measured from all 

the plants used in the experiments.   

 

Contrary to Arabidopsis, isoprene emission rates from wild type poplar fluctuated simultaneously 

with transient light cycles (Fig. 24D). During each light peak isoprene emission rates were 

increased by a factor of two compared to dim light conditions. In addition to the transient increases 

of emission during the high light phases isoprene emission rates became stimulated from cycle to 
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cycle. Isoprene emission from both transgenic ISPS knock-down poplar lines was very low as 

previously described by Behnke et al. (2007). 

In all the lines of both species net assimilation rate was rapidly up-regulated by a factor of 3 during 

the high light phases and again down-regulated under dim light (Fig. 24E). Stomatal conductance 

did not follow these rapid changes of net assimilation in either of the species (Fig. 24F). Similar to 

Arabidopsis, presence or absence of isoprene emission in poplar leaves had no effect on net 

assimilation or stomatal conductance. 
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Fig. 24. Isoprene emission, net assimilation and stomatal conductance (gH2O) of Arabidopsis wild type (●), 

line 8 (∆) and line 9 (■) (A), (B) and (C), respectively and Grey poplar wild type (●), line RA22 (∆) and line 

RA1 (■) (D), (E) and (F), respectively, before, during and after the light stress treatment. After 20 min 

stabilization at 30°C and 100 µmol m-2 s-1, six light cycles (light increased from 100 to 1300 µmol m-2 s-1 and 
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back) were performed. Recovery of the plants at 30°C and 100 µmol m-2 s-1 was measured during 20 min 

following the last cycle. The given values are 60 s means of 3-4 individual plants + SE.  

 

In summary the results suggest that transient light cycles do not cause a physiological stress 

neither for isoprene emitting or non-emitting Arabidopsis nor for isoprene emitting or non-emitting 

poplar plants when assimilation is used as an indicator. The observed increase of isoprene 

emission from light cycle to light cycle in wild type poplar is probably due to higher carbon fixation 

rate under high light and lower rate under dim light (Muraoka et al., 2003; Leakey et al., 2005), 

which consequently may lead to an increase of pool sizes of photosynthetic intermediates feeding 

the MEP-pathway. Probably the higher carbon fixation rate during each light cycle was the reason 

for the fact that isoprene emission from poplar was not only rapidly up-regulated inside of one light 

cycle, but also globally enhanced from the beginning of the cycles until the end of the cycles.  

Even if the isoprene emission cycled according to the cycling light in the natural isoprene emitter, 

the emission from Arabidopsis did not show similar pattern. According to the data it seems that 

fluctuations in Arabidopsis isoprene emission do not exist indicating that the flux of photosynthetic 

intermediates in the MEP-pathway in Arabidopsis and Grey poplar is different.  

The results support previous studies (Evans, 1956; Chazdon and Pearcy, 1991; Leakey et al., 

2005) showing that plants are used to face changing light intensities. Up to a certain level (up to 

800 µmol photons m-2 s-1 in a cool-temperature broadleaf forest) flecking light intensity do not 

necessarily create a stress due to the excess PPFD; indeed leaves of broad leaf trees can even 

orientate their leaves so that they are able to maximize the experience of sunflecks (Muraoka et 

al., 2003). Muraoka et al. (2003) show in their study that high light flecks indeed improve 

photosynthesis in cool-temperature broadleaf forest. The observations in the present study suggest 

that also Grey poplar and Arabidopsis plants are able to improve their photosynthesis when their 

leaves are exposed to short-term high light intensities. However, short-term high light periods may 

have other negative impact on plants and therefore, as an example, the relationship between 

oxidative stress, isoprene emission and flecking light should be studied in the future. It might be 

that to gain higher photosynthetic performance, plants have to trade-off with oxidative stress that is 

induced by high light intensity (Niyogi, 1999). In such a trade isoprene might play an important role 

by protecting photosynthetic apparatus against oxidative damage (Loreto and Velikova, 2001; 

Affek and Yakir, 2002). In wild type poplar plants isoprene emission is indeed increased 

concomitantly with the light flecks and assimilation, indicating that the compound may play a 

protective role by functioning as antioxidant under flecking light intensity and possible oxidative 

conditions.  
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4-1-4 Combined transient temperature and light stress application on 

Arabidopsis and poplar 

In the next experiments the physiology of wild type and transgenic Arabidopsis and wild type and 

transgenic poplar plants was investigated under both transient temperature and light cycles, 

combining the temperature and light cycles as described above. The experiments started with 

constant leaf temperature of 30°C and a light intensity of 100 µmol photons m-2 s-1 for 20 minutes. 

After this so called stabilization period, six heat/light cycles (temperature increased in 10 min from 

30°C to 45°C and back; light simultaneously from 100 to 1300 µmol photons m-2 s-1 and back) were 

performed. Recovery of the plants was measured during 20 min at 30°C and 100 µmol photons m-2 

s-1 following the last cycle.  

 

Under combined transient temperature and light stress situation isoprene emission rates of 

Arabidopsis plants did not remarkably differ from that observed under constant light and variable 

leaf temperature (see Loivamäki et al., 2007b (VII: 2)). Each increase in leaf temperature and light 

intensity caused a transient increase in isoprene emission rate (Fig. 25A).  

Simultaneously, combined light and temperature increase caused a rapid up-regulation of net 

assimilation rate (Fig. 25B) combined with decrease in stomatal conductance (Fig. 25C).  

When the recovery of the Arabidopsis plants was compared to the initial values it became obvious 

that net assimilation tend to be lower than in the beginning in wild type (75% less) and in line 8 

(38% less), whereas net assimilation of transgenic line 9 was not altered. On the other hand 

stomatal conductance of wild type, line 8 and line 9 tend to increase 28%, 20% or 74%, 

respectively, until the end of the experiment compared to the initial values. Thus the Arabidopsis 

line 9 showing highest isoprene emission rates had more open stomata and higher assimilation 

rates under the stress conditions than wild type and line 8. These results, however, were not 

significant. Comparable values were obtained with other Arabidopsis plants grown under another 

temperature regime i.e. at 30°C (instead of 20°C) during the light phase. The assimilation and 

stomatal conductance of the plants grown at 30°C were comparable to that observed from plants 

grown at 20°C, with the exception that assimilation rate tend not to decrease, but rather increase 

over the experiment (Fig. 25E). Indeed by the end of the experiment the assimilation rate and 

stomatal conductance increased for all lines, clearly indicating that the plants were not stressed 

during the light and temperature cycles. Previous observations have shown that the plants growth 

conditions e.g. experiences of high temperature periods positively affect the isoprene emission 

capacity (Sharkey and Loreto, 1993). Furthermore Wiberley et al. (2005) proved recently that 

Kudzu plants that have previous experience at higher temperature (30°C) start to emit isoprene 

earlier and can also develop more rapidly than the plants that had grown at 20°C. Thus, it is likely 

that also the Arabidopsis plants that had grown at 30°C were better adapted to high temperature 

than plants grown at 20°C.   
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Like expected from previous experiments (IV: 4-1-2 and 4-1-3) isoprene emission from Grey poplar 

leaves responded rapidly and simultaneously to each combined transient temperature and light 

cycle. Each increase in leaf temperature and light intensity caused a rapid increase in isoprene 

emission rate (Fig. 25G). Contrary to previous temperature fleck experiments (Behnke et al., 2007) 

but similar to light fleck experiments (IV: 4-1-3, for poplar), each increase in temperature and 

isoprene emission was here accompanied by rapid up-regulation of net assimilation rate (Fig. 

25H). The stomatal conductance was simultaneously decreased (Fig. 25I). The impaired recovery 

of transgenic poplar leaves from transient heat/light cycles compared to that of wild type was 

obvious. Net assimilation in both isoprene non-emitting lines decreased rapidly already after the 

first cycle and was significantly lower by the end of the experiment compared to initial values (P < 

0.05, Wilcoxon’s signed ranks test). In general net assimilation of transgenic lines at the beginning 

and at the end of the recovery phase stage were lower in both transgenic lines than in wild type 

leaves (P = 0.011 for RA1 and P = 0.016 for RA22, Mann Whitney U). Similarly stomatal 

conductance was lower in non-isoprene emitting poplars compared to wild type at the end of the 

experiment (P = 0.0083 for RA1 and P = 0.018 for RA22, Mann Whitney U). Moreover, in line RA1 

stomatal conductance was lower at the end of the experiment than at the beginning (P = 0.043, 

Wilcoxon’s signed ranks test).  
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Fig. 25. Isoprene emission (A, D, G), net assimilation (B, E, H) and stomatal conductance (gH2O) (C, F, I) of 

Arabidopsis rosettes and Grey poplar leaves (leaf no. 9 below the apex). The gas exchange is shown for 

Arabidopsis wild type, line 8 and line 9 plants grown at 20°C (A, B and C) or 30°C (D), (E), (F), before, during 

and after the temperature and light stress treatment. Similarly the values are shown for Grey poplar (G, H, I) 

wild type, line RA22 and line RA1. After 20 min stabilization at 30°C and 100 µmol m-2 s-1, six heat/light 

cycles (temperature increased in 10 min from 30°C to 45°C and back; light simultaneously from 100 to 1300 

µmol m-2 s-1 and back) were performed. Recovery of the leaves was measured during 20 min at 30°C and 

100 µmol m-2 s-1 following stress. The given values are 60 s means of 3-4 individual plants + SE. Wild type 

Arabidopsis (●), line 8 (∆) and line 9( ■ ); wild type poplar (●), line RA22 (∆) and line RA1 (■). 

 

Isoprene emission rates from transgenic Arabidopsis rosettes in the experiment were somewhat 

lower than that observed under constant light and cycling temperature (see Loivamäki et al., 2007a 

(VII: 1)), probably due to an unsaturated carbon fixation rate under the low initial light intensity of 
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100 µmol photons m-2 s-1. The up-regulation of net assimilation during each light and temperature 

pulse was globally similar as observed under cycling light for both of the species (Fig. 24B). The 

result emphasizes the importance of light for carbon fixation. The fluctuations in stomatal 

conductance were likely due to cycling temperature as they were not present under constant 

temperature and transient light cycles (IV: 4-1-3). In addition, it seems that the observed global 

decrease of net assimilation in experiments performed with rosettes grown at 20°C was rather due 

to initial temperature conditions (30°C) in the cuvettes than due to the temperature cycles as plants 

grown at 30°C overcame the additional thermal stress without complications.    

 

Contrary to transgenic Arabidopsis plants for the natural isoprene emitter poplar the capacity to 

emit isoprene is essential to sustain photosynthesis under transient temperature and light stress. 

Net assimilation of both non-isoprene emitting poplar lines became significantly impaired by 

transient light and temperature cycles. The effect was even stronger (net assimilation in transgenic 

lines down to approximately 20% of that of wild type) than observed by Behnke et al. (2007) under 

temperature fleck stress only (net assimilation in transgenic lines down to approximately 55% of 

that of wild type). The observed stronger down-regulation of photosynthesis and stomata closure 

by the non-isoprene emitting poplar plants might be mainly due to higher intensity in the cycling 

temperature (from 30°C up to 45°C whereas Behnke et al. (2007) applied only from 30°C up to 

38°C) than to simultaneous light cycles, as it was shown in 4-1-3 that light flecks alone do not 

impair assimilation. Another difference to the results of Behnke et al. (2007) is the fact that in their 

experiments the net assimilation decreased by each increasing temperature whereas in the 

experiments here it temporarily increased, even if the global tendency was a decrease. The 

different results are likely due to different light regimes; plants under dim light increase their 

photosynthesis when light flecks are experienced (Figs. 24B, H and 25B, E, H) as their carbon 

fixation rate may be limited under low light (Leakey et al., 2005). 

Similarly to wild type poplar, transgenic isoprene emitting Arabidopsis line 9 tend also to have 

somewhat higher net assimilation rates and more open stomata than wild type plants or the lower 

isoprene emitting line 8 under transient temperature/light stress. The tendency was observed in 

plants grown both at 20°C and 30°C. However, net assimilation of wild type or line 8 was not 

impaired significantly and when the plants were previously grown at 30°C, net assimilation even 

increased under stress.  

 

In summary it seems evident that Arabidopsis is an extremely thermotolerant species and does not 

need isoprene emission for maintaining photosynthesis during short-term episodes of temperature 

and light stress, at least not to recover from the kind of temperature or/and light stresses that were 

applied here. Contrary to the results obtained here, Sasaki et al. (2007) showed that their isoprene 

emitting Arabidopsis plants could survive better than wild type plants under long-term thermal 



RESULTS AND DISCUSSION 

73 

stress (2.5 h) at 60°C and PPFD of 2 µmol s-1 m-2, whereas no impairment in overall survival of the 

plants was observed up to 50°C. However, such a high, long lasting temperature stress would 

rarely be observed in nature, at least under practical darkness. In addition, the dim light hints that 

the plants isoprene emission capacity is remarkably low during the experiment. In future more 

detailed experiments are necessary to find a biochemical explanation for the finding of Sasaki et al. 

(2007). 

Arabidopsis might be a useful model plant in several occasions but for studying the physiology of 

isoprene emission it seems not to be the best one. Opposite to Arabidopsis, the present data with 

Grey poplar again prove the importance of isoprene emission for the protection of photosynthesis. 

However, it becomes clear that isoprene emission in poplar positively influences membrane 

localized processes of photosynthetic electron transport and energy dissipation keeping net 

assimilation stable under transient and moderate thermal and light stress. Future experiments with 

these lines should try to answer the question how isoprene influences biophysical procedures in 

the thylakoid membrane and more globally if the experimental triggered temperature and light 

effects are of relevance under natural conditions representing really a positive adaptive trait for 

isoprene producing leaves. 

 
4-1-5 Recovery of Arabidopsis and poplar from combined temperature and light 

stress 

4-1-5-1 Electron transport rate (ETR) in poplar leaves 

Electron transport rate and thus the overall photochemical efficiency, was followed in transgenic 

and wild type poplar leaves. The fluorescence analysis was performed directly before the transient 

temperature and light flecks (IV: 4-1-2), immediately after taking out the leaves from the cuvette 

and during a recovery period of 10h. In all lines application of transient temperature and light stress 

negatively impaired ETR compared to the initial values before stress (Fig. 26). The general 

impairment was significant directly and 0.5h after the stress compared to initial values (P < 0.05; 

paired t-test). In leaves of the transgenic lines (the results of the both lines pooled together) ETR 

was reduced directly and 0.5 after the stress application, compared to the initial value (P < 0.05 for 

each time point, Wilcoxon`s signed ranks test). For wild type ETR tend to be reduced directly after 

the stress, but already after half an hour it reached back its initial level. In addition, the ETR of line 

RA22 is significantly lower (P = 0.031, ANOVA and Dunnet-T3), and for line RA1 almost 

significantly lower (P = 0.061) than that of wild type directly after the stress (Fig. 26).  
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Fig. 26. Electron transport rate (ETR) in Grey poplar leaves (leaf no. 9 below the apex) that faced transient 

temperature and heat cycles between the hours -2 to 0. The ETR was measured directly before (-2) and 

after (0) the stress phase and further followed until 10h after the stress. Mean ± SE is shown. Wild type: (●), 

n = 5; RA1: (∆), n = 3; RA22: (■), n = 3. The differences between wild type and line RA22 line were 

significant directly after the stress, *P < 0.05 (ANOVA and Dunnet-T3). 

 

The recovery from stress was slower in transgenic isoprene non-emitting lines than in wild type. 

Knowing that net assimilation of the transgenic lines was shown to be significantly impaired in gas 

exchange studies whereas net assimilation of the wild type did not show impairment (Fig. 25H; IV: 
4-1-2) the slower recovery of the transgenic lines from the stress is not surprising. Indeed Behnke 

et al. (2007) showed in their studies with transgenic isoprene non-emitting poplar plants that the 

ETR in these plants decreases rapidly already after the first temperature cycle (that reached 38°C) 

and continues decreasing by each further temperature cycle. The present results show that the 

detected impairment in ETR was not permanent. The transgenic lines recovered indeed relatively 

fast and the ETR was fully capable latest 1.5 h after the stress phase. In the isoprene emitting wild 

type poplar the recovery of ETR from the high transient temperature treatment was, however, 

faster than that of the transgenic lines. The observation supports the previous studies suggesting 

isoprene protecting the photosynthetic machinery against damage by high temperature episodes 

(Velikova and Loreto, 2005; Behnke et al., 2007).  

 

4-1-5-2 Antioxidant content in Arabidopsis and poplar leaves 

To assess the effect of combined temperature and light cycles (IV: 4-1-2) on the antioxidant status 

of poplar and Arabidopsis leaves 10h after application of transient temperature and light stress 

concentrations of reduced ascorbate (ASC), dehydroascorbate (DHA), reduced glutathione (GSH) 

and oxidized glutathione (GSSG) were compared.  
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No differences in ascorbate content between stressed sample and unstressed control poplar 

leaves were observed (Fig. 27A) indicating that transgenic and wild type lines had either recovered 

from the stress or were not initially stressed. 

Interestingly, however, total and reduced ascorbate contents were enhanced by approx. 35 % in 

both non-isoprene emitting poplar lines compared to wild type (Fig. 27A, P < 0.05, ANOVA and 

Dunnet-T3). In Arabidopsis leaves, neither in plants grown at 20°C nor in plants grown at 30°C, 

such differences between wild type and transgenic lines were observed (Fig. 27B). Furthermore 

the redox ratio (DHA/reduced ascorbate) did not show any differences in any of the treatments 

neither in poplar nor in Arabidopsis leaves (data not shown).  
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Fig. 27. Ascorbate content in transgenic and wild type Arabidopsis and Grey poplar leaves 10h after the 

transient thermal stress application. Total ascorbate (black bars), reduced ascorbate (light grey bars) and 

DHA (dark grey bars) in leaves of: (A) wild type (WT) and 2 (RA1; RA22) non isoprene emitting poplars and 

(B) wild type (WT) and transgenic (lines 8 and 9) Arabidopsis. For Grey poplar; S in the end of the sample 

name = samples faced transient light and thermal stress 10h before sampling, C in the end of the sample 

name = control leaves. The experiments with Arabidopsis were performed with plants grown at 20°C and 

with plants grown at 30°C. Mean + SE is shown, n = 5-6. Different letters above columns indicates 

statistically significant differences (within each color) (P < 0.05; ANOVA and Dunnet-T3); n.s.: no significant 

differences. 

 

Similar to the ascorbate analysis no treatment effect was observed for glutathione concentrations 

and ratios of reduced and oxidized forms in Grey poplar leaves (Fig. 28A). In addition, neither a 

line effect nor a treatment or growth temperature effect was observed for Arabidopsis leaves (Fig. 

28B).  
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28. Thiols content in transgenic and wild type Arabidopsis and Grey poplar leaves 10h after the transient 

thermal stress application. Reduced (GSH; black bars) and oxidized (GSSG; grey bars) glutathione were 

determined in leaves of: (A) wild type (WT) and transgenic poplar (RA1; RA22) and (B) wild type (WT) and 

transgenic (8; 9) Arabidopsis. For Grey poplar; S in the sample name: samples faced transient light and 

thermal stress 10h before sampling, C in the sample name: control leaves. The experiments with 

Arabidopsis were performed with plants grown at 20°C or 30°C. Mean + SE is shown, n = 5 - 6, no 

statistically significant differences were found (ANOVA and Dunnet-T3). 
 

Ascorbate and glutathione are not consumed in the antioxidative cycle, but their proportion varies 

according to the need of antioxidative defence and has been observed to increase under stress 

conditions (Noctor and Foyer, 1998; Hofer et al., 2007). In the present experiments no differences 

between treated and control poplar leaves were observed. It might be possible that alterations in 

antioxidant content or redox ratios due to the temperature and light flecks were already diminished 

and thus not anymore detectable at the time of the measurements. Interestingly, however, the total 

content of ascorbate was higher in both non-isoprene emitting lines compared to wild type. It might 

be that in transgenic lines the antioxidant content was higher to compensate the antioxidative 

capacity of isoprene. However, if the plants were fully capable to compensate isoprene 

biosynthesis capacity no alteration in MDA should have been found (see IV: 4-1-5-3).  

In Arabidopsis no differences in ascorbate concentrations between transgenic lines and wild type 

or between plants grown at 20°C or 30°C were found. It is possible that an alteration in ascorbate 

content was also already diminished after 10h recovery from the stress. On the other hand these 

data and the gas exchange analysis indicate that Arabidopsis leaves do not need extra protection 

in form of isoprene to recover from the combined temperature and light cycles.  

 
4-1-5-3 Malonylaldehyde (MDA) content in Arabidopsis and poplar leaves 

Malonylaldehyde (MDA) is a general indicator of lipid peroxidation state and membrane damage. 

The present analysis of this parameter showed that MDA in unstressed poplar leaves was not 
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different from that of leaves that had faced the combined light and temperature stress 10h before 

sampling (Fig. 29A). Striking, however, is the observation that in leaves of transgenic isoprene 

non-emitting poplar lines the MDA content was significantly higher than in wild type (P < 0.05; 

ANOVA and Tukey`s HSD) (Fig. 29A). Contrary to this line effect in poplar, in Arabidopsis leaves 

(Fig. 29B) no differences in MDA contents were found between wild type and transgenic lines or 

between plants grown at 20°C or 30°C. However, compared to poplar MDA concentrations in 

Arabidopsis were significant lower. 
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Fig. 29. Lipid peroxidation rate in Grey poplar wild type (WT) and transgenic Grey poplar lines (RA1 and 

RA22) (A) and in Arabidopsis wild type (WT) and transgenic lines (8 and 9) (B). For Grey poplar (A): S in the 

end of the sample name: samples faced transient light and thermal stress 10h before sampling; C in the end 

of the sample name: control leaves. For Arabidopsis (B) the experiment was performed with plants grown at 

20°C or 30°C. Mean + SE is shown, n = 5-6. Different letters above columns within a graph indicate 

significant differences (P < 0.05; ANOVA and Tukey’s HSD), n.s.: no significant differences. 

 

Experiments by Velikova and Loreto (2005) demonstrated a protective effect of isoprene emission 

on membrane damage (measured as MDA) when heat stressed leaves of reed plants (Phragmites 

australis) were fumigated by isoprene compared to leaves that were not treated with isoprene. The 

present results indicate that 10h after the temperature/light flecks the lipid peroxidation state is not 

affected due to the applied stress in isoprene emitting or non-emitting leaves of poplar and 

Arabidopsis. However, the transgenic non-isoprene emitting poplar leaves had higher lipid 

peroxidation state initially than wild type leaves. The result suggests that the knock-down of 

isoprene synthase gene expression can change the oxidative status and cause higher lipid 

peroxidation and membrane damage in Grey poplar leaves. This observation together with higher 

total ascorbate content in transgenic lines (IV: 4-1-5-2) supports the previously suggested role for 

isoprene as an antioxidant (Loreto et al., 2001; Loreto and Velikova, 2001; Affek and Yakir, 2002) 

protecting the membranes from membrane lipid denaturation (Siwko et al., 2006). It seems that the 
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enhanced total ascorbate content in transgenic lines (IV: 4-1-5-2) was not fully able to compensate 

the antioxidative capacity of isoprene. Further studies should be conducted to determine why 

knock-down of the isoprene synthase gene results in initially higher antioxidant content and higher 

membrane damage in poplar leaves. 

For Arabidopsis similar increase in membrane damage was not observed in wild type compared to 

transgenic isoprene emitting lines. Taken together the biochemical and gas exchange data (IV: 4-
1-4) of Arabidopsis confirm that this species do not need isoprene to protect itself against short-

term transient temperature or light stress. However, longer treatment of very high temperature (up 

to 60°C) was shown by Sasaki et al. (2007) to be stressful for the wild type Arabidopsis plants 

whereas the isoprene emitting transgenic Arabidopsis survived better. In future determining the 

MDA and antioxidant contents directly after the stress phase would give more information about 

the direct effect of the temperature stress and the possible role of isoprene for recovering of 

Arabidopsis. 

 

5 ISOPRENE INTERFERES TRITROPHIC INTERACTIONS 
5-1 Choice of parasitic wasps in Y-tube olfactometer  

The isoprene emitting Arabidopsis plants were used as tools to investigate plant-insect interactions 

in two well-studied systems (Van Poecke and Dicke 2004; Barker et al., 2007). Firstly, the behavior 

of the Small Cabbage White butterfly Pieris rapae and its endoparasitic wasp Cotesia rubecula that 

is attracted by the volatile blend of P. rapae-infested Arabidopsis plants (Van Poecke et al., 2001; 

Van Poecke and Dicke, 2002) was investigated. As a second model system the behavior of the 

larval parasitoid wasp Diadegma semiclausum and its natural host Plutella xylostella 

(Diamondback Moth) was studied. P. xylostella is not commonly observed to feed on Arabidopsis, 

but the herb was recently shown to be a suitable host for the herbivore (Barker et al., 2007).  

Throughout the experiments D. semiclausum preferred wild type Arabidopsis plants compared to 

the isoprene emitting transgenic ones. When a choice between untreated transgenic isoprene 

emitting and respective wild type plants were offered in Y-tube olfactometer assays, the wasps 

preferred the volatile blend of wild type Arabidopsis (binominal test, P=0.019, n=84). The 

bioassays with infested Arabidopsis plants further proved the observation: 62% of 84 responding 

parasitoids preferred the P. rapae induced VOC blend of wild type to the respective blend of 

transgenic isoprene emitting plants (P = 0.019). In consistence to that 60% of 82 responding 

parasitoids preferred the VOC blend of P. xylostella infested wild type to that of respectively 

infested transgenic plants (P = 0.048) (Loivamäki et al., 2008 (VII: 3)).  

Cotesia rubecula, in contrast, was rather ignorant in the presence of isoprene. Although C. 

rubecula preferred volatiles of uninfested, isoprene emitting transgenic plants to uninfested wild 

type plants (P = 0.023, n = 74), the parasitoids showed no preference to any of the odor sources 

when the corresponding plants were either P. rapae or P. xylostella infested (Loivamäki et al., 2008 
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(VII: 3)). The controversial behaviors of the two parasitic wasp species are in consistence with 

previous results obtained by Mumm and co-workers (personal communication, Wageningen 

University, the Netherlands) showing that C. rubecula and D. semiclausum respond differently to 

plant volatile blends which differ in their isoprenoid profiles.  

 

The effects of isoprene on the behavior of the parasitoid wasps was further examined by adding 

12.5 ppbv isoprene (from an isoprene-standard with 10 ppmv isoprene in N2) into the odor flow of 

the uninfested wild type Arabidopsis rosettes. The obtained volatile blend and comparable blend 

without external isoprene was used to observe the behavior of the parasitoids in the Y-tube 

olfactometer. This independent, external control gave similar results as isoprene emitting plants: 

again D. semiclausum wasps preferred the wild type plants without isoprene over those whose 

odor blend was supplemented with isoprene (P = 0.036) whereas C. rubecula showed no 

preference between the two odor sources (Loivamäki et al., 2008 (VII: 3)).  

 

Knowing that uninfested wild type Arabidopsis do not emit large quantities of VOCs (Fig. 17; 

Loivamäki et al., 2008 (VII: 3); Chen et al., 2003) it was of interest to investigate the natural plant - 

herbivore - parasitoid - combination Brassica oleracea - P. xylostella - D. semiclausum. Similar to 

wild type Arabidopsis, B. oleracea do not emit any isoprene. The volatile blend from infested B. 

oleracea i.e. Brussels sprouts is quite more prominent than that of Arabidopsis (Chen et al., 2003; 

Vuorinen et al., 2004). In the experiment the effect of isoprene was tested by adding either 12.5 or 

50 ppbv isoprene to the natural odor to one of the two P. xylostella–infested cabbage plants of the 

Y-tube olfactometer simulating a ‘low’ and ‘high’ isoprene concentration in the environment. When 

the plant volatile mixture was enriched with 50 ppbv isoprene, D. semiclausum preferred the odor 

source without isoprene (binominal test, P = 0.029), however, 12.5 ppbv enrichment did not 

influence the choice of parasitic wasps (Fig. 30).   
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Fig. 30. Response of naïve Diadegma semiclausum females to volatiles released by wild type P. xylostella-

infested Brassica oleracea (B.o.) in a Y-tube olfactometer. The isoprene concentrations indicate the 

concentration added to one of the Y-tube hands. Bars represent the overall percentages of wasps choosing 

either of the odor sources, numbers in bars are the total numbers of wasps choosing that odor source. 

Choices between odor sources were analyzed with binominal test (*;P < 0.05). 

 

An explanation for this dose-dependent insect response might be that the low isoprene 

concentration becomes masked in the VOC blend of P. xylostella infested white cabbage whose 

mono- and sesquiterpenes blend is approximately 100 fold higher (0.15 - 0.25 μg h-1 100 cm-2) 

(Vuorinen et al., 2004) than that of Arabidopsis rosettes (maximum 0.0015 µg h-1 plant-1 (Chen et 

al., 2003), one average rosette is approximately 50 - 100 cm2). Therefore, 12.5 ppbv isoprene 

might not affect the response of the wasps to the volatile blend of P. xylostella-infested Brussel 

sprouts, whereas it does so when mixed with the odor from infested Arabidopsis plants. Given that 

isoprene emission by poplar leaves can result in concentrations up to 100 ppbv close to the 

emitting leaves (Behnke et al., 2007), the isoprene doses used here are realistic. Once emitted, 

plant volatiles become rapidly diluted. However, atmospheric isoprene concentrations up to 12 

ppbv are possible within mixed forest canopies with a high proportion of isoprene emitters (Fuentes 

et al., 2007).  

 

The parasitoid-repellent effect of isoprene in tritrophic interactions is surprising, since higher 

terpenes such as monoterpenes, homoterpenes and sesquiterpenes are rather observed to 

function as attractants than repellents to herbivore-enemies (Kappers et al., 2005; Schnee et al., 

2006; Mumm et al., 2008). To answer the question why isoprene repels D. semiclausum is not 

simple. In fact the function of isoprene in the environment may not only include the host plant, host 

and parasitoid, but also a neighboring isoprene emitting species. The research on tritrophic 

interactions so far has mainly focused on isolated systems without including the effects of 

background volatiles (but see Kessler et al., 2004; Gols et al., 2005; Mumm and Hilker, 2005). The 

present results warn that orientation of plants bodyguards might differ in the fields and forests sites 
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(in which herbivores host plants are surrounded by isoprene emitters) from that observed in 

laboratories. At least it seems unprofitable for a cruciferous plant to place its roots under a poplar 

tree as the present results indicate that herbaceous plants which do not emit isoprene are 

compromised in indirect defence when they are in an isoprene rich environment.  

 

5-2 Electrophysiology shows that insect antennae recognize isoprene 

Isoprene evoked electroantennographic (EAG) responses in the antennae of D. semiclausum 

parasitoid females in a dose-dependent manner reaching a significant threshold when 1% (v/v) 

isoprene was applied in hexadecane (Wilcoxon’s signed ranks test, P < 0.05). Higher 

concentrations of isoprene (10%) evoked higher response in the insect antennae than lower 

concentration (0.1%) (P < 0.05) (Loivamäki et al., 2008 (VII: 3)). The experiment clearly shows that 

the olfactory receptor neurons in the olfactory lobe of the wasp’s insect antennae recognize 

isoprene and respond to it. The result is the mechanistic evidence that the clear behavioral 

responses of the wasp in the y-tube olfactometers assays to isoprene have a basis in the 

chemosensory apparatus of the antennae. Given that isoprene concentrations in atmosphere are 

higher than those of mono- or sesquiterpenes (Guenther et al., 1995), the ability to recognize 

isoprene can have bigger consequences on plant-insect interactions than so far understood.  

 

5-3 Herbivore performance on isoprene emitting Arabidopsis 

Although the behavior of the larval parasitoid wasp D. semiclausum was affected by isoprene 

emission of Arabidopsis, the performances of its herbivore host P. xylostella and that of P. rapae 

were not affected. After five days (P. xylostella) or one week (P. rapae) of infestation and feeding 

on either wild type or transgenic Arabidopsis plants the larvae of both species had gained equal 

weights. Moreover, when the larvae were given a free choice in a cafeteria test to feed either on 

wild type or on transgenic Arabidopsis leaves they did not prefer either plant type in the beginning, 

0.5h or 2h after the beginning of the experiment. Nevertheless, P. xylostella preferred to feed on 

transgenic-plants at one time point: 1h after the beginning of the experiment (P < 0.05, Loivamäki 

et al., 2008 (VII: 3). Moreover, the overall tendency in the experiments investigating P. xylostella 

behavior showed that the herbivore may prefer to eat on isoprene emitting transgenic Arabidopsis 

than on wild type plants.    

However, ovipositing P. rapae females did not discriminate between wild type and isoprene 

emitting transgenic plants: when 81 butterfly females were allowed individually a choice between 

transgenic and wild type Arabidopsis, they laid on average 22.7 ± 1.8 eggs on WT and 22.9 ± 1.6 

eggs on transgenic plants in 4 h, respectively (Loivamäki et al., 2008 (VII: 3)).  

 

In conclusion, the present results suggest that high isoprene concentration in the air indeed gives 

an advantage to herbivores over their parasitoids. In isoprene rich environment parasitic wasps 
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searching for hosts might be misled (IV: 5-2), whereby herbivores’ feeding seems not to be 

disturbed. Therefore plant-herbivore-parasitoid interactions are dependent on so far overlooked 

environmental aspects, such as shown here for isoprene. There is a need to investigate the role of 

isoprene in tritrophic interactions of a real isoprene emitter, e.g. poplar or willow in the future. For 

studying the plant-insect interactions within poplars, the existing isoprene knock-down lines, here 

used for studying temperature and light effects, represent an interesting tool. 
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V CONCLUDING SUMMARY AND OUTLOOK 

 

Several new findings in the field of isoprene emission research were achieved within the frames of 

this thesis: 

Firstly, it could be shown that gene expression of isoprenoid genes and isoprene emission is 

regulated in a circadian manner, emphasizing the importance of isoprene emission capacity for its 

emitting species. The investigations proved that the previously detected diurnal rhythms of 

PcISPS-gene (Mayrhofer et al., 2005) are not only due to day/night changes, but also linked to the 

internal circadian clock. Moreover, the isoprene emission rate under continuous irradiation 

displayed circadian changes. However, no fluctuations were observed on PcISPS protein and 

enzyme activity levels even if both appeared to become reduced under constant darkness, while 

under constant light the protein level and activity was high. The result suggests that post-

transcriptional regulation for isoprene exists. It is surprising that the first level of regulation of 

isoprene emission, namely the expression rate of the isoprene synthase gene, and the emission 

itself present circadian rhythms, when neither the PcISPS protein level nor its activity display 

significant diurnal or circadian variations. Therefore, the observed fluctuations of emission do not 

seem to be due to fluctuating PcISPS transcription rate.  

Measurement of other isoprenoid genes revealed that carotenoids related PcPSY transcription rate 

displays circadian fluctuations whereas PcDXR, the possible first committed step of the MEP-

pathway, does only show a light regulation. Gene expression of PcDXR and PcISPS are not 

synchronized which raises the question about the pool of DMADP, substrate of isoprene. 

Interestingly, DMADP pools were previously shown to fluctuate diurnally in different species (Fisher 

et al., 2001; Brüggemann and Schnitzler 2002b), including poplar (Magel et al., 2006; Nogués et 

al., 2006). Assuming that photosynthetic activity undergoes to a certain extent also a circadian 

change it may be hypothesized that the circadian change of isoprene emission is due to a slightly 

enhanced metabolic flux within the MEP-pathway. Indeed it is well documented that numerous 

genes and proteins involved in photosynthesis are clock regulated, as is fixed carbon allocation 

itself (Harmer et al., 2000). As recently fixed carbon is the major pool used to produce isoprene in 

poplar (Schnitzler et al., 2004), isoprene emission variations under continuous light may result from 

circadian fluxes of fixed carbon into the MEP-pathway. In future experiments 13CO2 feeding could 

help to prove whether the carbon supply rate results in similarly fluctuating rate of isoprene 

emission in poplar. However, the substrate supply could also be regulated by competition of PEP 

between cytosolic and chloroplastic processes, as was suggested by Wilkinson et al. (2006). Thus, 

in which manner the PEP supply in chloroplasts occurs should be investigated in more detail. 

Moreover, in the future it should be studied how widespread the circadian fluctuating isoprene 

emission is in the plant kingdom in order to take this phenomenon into account when producing 

global scale isoprene emission inventories.  
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Secondly, the studies performed within this thesis proved that isoprene emission capacity can be 

successfully transformed in a natural non-emitter. However, the emission rates did not reach the 

level of natural isoprene emitters suggesting possible different regulation of the isoprene 

biosynthesis and/or lack of substrate. Even if the isoprene emission was low, over-expression of 

poplar ISPS in Arabidopsis resulted in isoprene emitting Arabidopsis plants that show enhanced 

growth rates compared to wild type under thermal stress. The fact that highest growth rates, higher 

DMADP levels and isoprene synthase enzyme activities were detected in young developing plants 

indicates that enhanced growth of the transgenic plants under thermal stress is due to the 

introduced PcISPS gene.  

Dynamic measurements of photosynthetic gas-exchange of Arabidopsis applying long-term or 

transient cycles of heat and light stress to wild type and transgenic plants indicate that Arabidopsis 

does not need isoprene to protect net assimilation from thermal or light stress. Indeed, Arabidopsis 

is already well enough thermotolerant and does not need isoprene under natural or close to natural 

conditions. To find a biochemical explanation for the findings of Sasaki et al. (2007), who showed 

isoprene protecting against very high thermal stress, more detailed experiments are necessary. In 

addition, to find a reason for the observed higher growth rate of the transgenic plants compared to 

wild type under high temperature conditions further biochemical experiments are needed. It will for 

example be interesting to study whether the higher growth rates were due to an indirect effect of 

introduced ISPS gene, i.e. higher substrate supply from MEP-pathway for plant hormones like ABA 

and gibberellin (Barta and Loreto, 2006) as was suggested by Sasaki et al. (2007). 

Temperature and light cycles applied to leaves of transgenic non-isoprene emitting Grey poplar 

showed that in a natural isoprene emitter the ability to emit isoprene is crucial to maintain 

photosynthesis under stress. The results suggest that reduction of net assimilation was primarily 

due to cycling temperature as cycling light alone did not affect the gas-exchange of the studied 

lines. However, the results should not be directly transferred to other species or be considered as a 

general phenomenon: even if isoprene can be essential under temperature and light stress for its 

natural emitter, for other species under other environmental conditions isoprene may present 

different advantage, e.g. higher growth rate in the case of Arabidopsis. In addition more natural 

studies of the protective role of isoprene under and after sunflecks should be conducted. It would 

be interesting e.g. to bring the poplar plants outside and investigate whether the wild type poplar 

photosynthetic machinery is more flexible than that of an ISPS knock-down poplar when sunshine 

and shadow change fast.  

Isoprene emission from transgenic Arabidopsis is very low probably due to substrate limitation as 

indicated by DOX-feeding. If the metabolic flux through the MEP-pathway was enhanced by over-

coming some of the limiting steps on the MEP-pathway the isoprene emission level from 

transgenic Arabidopsis would probably be higher. Over-expressing DXS (Estévez et al., 2001), 
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DXR (Carretero-Paulet et al., 2006) or HDR (Botella-Pavía et al., 2004) genes could lead to higher 

substrate supply for isoprene biosynthesis. In the frame of this thesis PcDXR was transformed into 

Arabidopsis in order to later cross PcDXR and PcISPS transformed Arabidopsis plants and thus 

obtain “a super isoprene emitter”. However, even when the transformation was successful the 

phenotypes of the selected lines did not show significant increases on the level of carotenoid end-

products.  

 

Thirdly, the investigations with the isoprene emitting Arabidopsis plants add a new 

ecophysiological component to the previously proposed biological roles of isoprene. It could be 

demonstrated that isoprene is perceived by a parasitic wasp’s (D. semiclausum) chemoreceptors 

and interferes with its attraction to volatiles from herbivore-infested plants. The repellent effect on 

parasitic wasps was verified by adding external isoprene to the volatile blend of wild type plants. In 

contrast, the performance of two herbivores (P. rapae and Pl. xylostella) was not affected by 

isoprene emission. The results indicate that isoprene emitting plants, like many tree species, might 

have to “trade-off” with higher herbivore infestation for gaining a protection against e.g. thermal or 

oxidative stress (Sharkey and Singsaas, 1995; Loreto and Velikova, 2001; Behnke et al., 2007). 

Moreover herbaceous plants that do not emit isoprene may be compromised in indirect defence 

when they are in an environment with isoprene emitters. The results indicate that orientation of 

‘plant bodyguards’ may indeed differ in open field and forest sites from what observed in 

laboratory. How common is isoprene recognition in the nature and what are its real roles for the 

plant itself but also for insect species needs urgently to be elucidated. Future work should focus on 

the role of isoprene in tritrophic interactions of a real isoprene emitter, using e.g. the existing 

isoprene emission knock-down Grey poplar lines. It might be that the very common defoliation of 

isoprene emitting trees, e.g. poplar trees by gypsy moths (Lymantria dispar) (Russell et al., 2004), 

could be related to the repellent nature of isoprene for parasitoids/predators benefiting to the 

herbivores.  
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VIII ATTACHMENT 

 

Attachment 1: Calculation of isoprene synthase activity from GC data 

 

*Calculation of isoprene synthase activity from GC data 
 
*******************************!!!!enter variables!!!!!***************************************** 
 
************1. calculation!!!!! (calculate one time and then exchange values in the spreatsheet)*** 
 
*********Freshweight [g] and projected lea area [cm2] and Protein in [mg/ml) of the leaf material 
used******* 
 
***la_blatt: projected leaf area***** 
 
COMPUTE la_blatt = 43.72. 
EXECUTE. 
 
***fg_blatt: fresh weight******* 
 
COMPUTE fg_blatt = 1. 
EXECUTE. 
 
***fresh weight extracted in PEB**** 
 
COMPUTE fg = 0.35. 
EXECUTE. 
 
COMPUTE protein1 = 0.553. 
EXECUTE . 
COMPUTE protein2 = 0.554 . 
EXECUTE . 
COMPUTE protein3 = 0.555. 
EXECUTE . 
 
*********correction factor for total leaf area**** 
 
 
COMPUTE la_fakt = 2.00 . 
EXECUTE. 
 
*********!!!!GC-calibration [in µV*sec/ppm] ADD allways the actual calibration***************** 
 
COMPUTE m = 220 . 
EXECUTE. 
 
************************!!!!background values of isoprene formation from DMADP ADD allways the 
actual values (in µV*sec]*********************************** 
 
COMPUTE blind = 22.6. 
EXECUTE. 
COMPUTE blindsd = 2.19. 
EXECUTE. 
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********************************************************************************************************* 
 
************2. calculation step!!!!!(only calculate once)**************************************************** 
 
 
 
COMPUTE tla_fg = la_blatt*la_fakt*0.0001 / fg_blatt . 
EXECUTE. 
 
COMPUTE la = tla_fg * fg . 
EXECUTE. 
 
***********Protein in kilogram***************************************************************************** 
 
 
COMPUTE protein4 = protein1 / 1000 . 
EXECUTE . 
COMPUTE protein5 = protein2 / 1000 . 
EXECUTE . 
COMPUTE protein6 = protein3 / 1000 . 
EXECUTE . 
 
COMPUTE protein = MEAN(protein4,protein5,protein6). 
EXECUTE. 
COMPUTE protsd = SD(protein4,protein5,protein6). 
EXECUTE. 
***********************!!!!!Extraktion volume (PEB) at the beginning [in 
mL]******************************* 
 
COMPUTE peb1 = 4.0 . 
EXECUTE. 
 
*****!!!!volume of protein extract applied to the PD10-column (after centrifugation) [in mL]???*** 
 
COMPUTE peb2 =  2.5 . 
EXECUTE. 
 
****************!!!!elutuion volume of the PD10-column [in mL]???**************************** 
 
COMPUTE isb1 = 3.5 . 
EXECUTE. 
 
****************!!!!volume of protein extract in the assay [in mL]???********************** 
 
COMPUTE isb2 =  0.088 . 
EXECUTE. 
 
****************!!!!which assay time [in Sekunden]?????******************************************** 
 
COMPUTE test =  7200 . 
EXECUTE. 
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************************************CALCULATION************************************************** 
 
********calculation of GC raw data from the enzymatic reaction (subtraction of 
background)******************** 
 
COMPUTE fe_dif = (fe_mwis - blind). 
EXECUTE. 
COMPUTE fe_difsd = fe_dif * sqrt((fe_sdis/fe_mwis)**2 + (blindsd/blind)**2). 
EXECUTE. 
 
*****calculation of isoprene concentration in the head space in the GC-Vial in ppm*** 
 
COMPUTE ppmvial = fe_dif / m .       
EXECUTE . 
COMPUTE ppmsd = fe_difsd / m . 
EXECUTE . 
 
******calculation of isoprene amount in the vial***************************************************** 
 
COMPUTE nmolvial = ppmvial * 1.944 / 22.414 . 
EXECUTE . 
COMPUTE nmolsd = ppmsd * 1.944 / 22.414 . 
EXECUTE . 
 
******calculation of isoprene synthase activity per total leaf area****************************** 
 
COMPUTE nmolm2s = nmolvial / (test * la) * (isb1 / isb2) * (peb1 / peb2) .    
EXECUTE . 
COMPUTE nmolm2sd = nmolsd / (test * la) * (isb1 / isb2) * (peb1 / peb2) .      
EXECUTE . 
 
******calculation of specific enzyme activity in µmol/s/kg total protein ****************** 
 
COMPUTE spezakt = nmolvial / (test * protein * isb2) . 
EXECUTE. 
COMPUTE spezaksd = spezakt * sqrt((nmolsd/nmolvial)**2 + (protsd/protein)**2) . 
EXECUTE. 
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