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Kurzfassung

Modellierung der Streuung geladener gleich- und verschiedenartiger
Teilchen zur Strömungssimulation in gepulsten Plasmatriebwerken

Für ein besseres physikalisches Verständnis von elektrischen Antriebssystemen für die Raum-

fahrt, wie beispielsweise gepulste Plasma-Thruster, ist die numerische Modellierung und

Simulation von hochverdünnten Plasmaströmungen unumgänglich. Die mathematische For-

mulierung solcher Phänomene basiert auf der kinetischen Beschreibung, wie sie durch die

vollständige, zeitabhängige Boltzmanngleichung gegeben ist. Eine attraktive Strategie um

das komplexe, nichtlineare Boltzmann-Problem numerisch anzugehen, besteht in der Kom-

bination von bekannten Particle-in-Cell (PIC) und Monte Carlo Methoden, die durch einen

PIC-basierten Fokker-Planck Löser erweitert werden müssen. Die Konstruktion und Entwick-

lung des PIC-basierten Fokker-Planck Lösers ist der Gegenstand der vorliegenden Arbeit. Das

gesamte numerische Modell trägt der Physik der Wechselwirkung von geladenen Teilchen mit

elektromagnetischen Feldern, der inelastischen Streuung von Elektronen mit Neutralteilchen

als auch der Kollision zwischen gleichartigen (intraspezies) und verschiedenartigen (inter-

spezies) geladenen Teilchen Rechnung.

Zur Beschreibung der elastischen intra- und interspezies Coulomb Wechselwirkung geladener

Teilchen ist es zweckmäßig vom Boltzmannschen Stoßintegral aus zu starten, wobei für

den differentiellen Wirkungsquerschnitt die klassische Rutherfordformel benutzt wird. Eine

Taylorentwicklung der gestreuten Verteilungsfunktionen nach der Geschwindigkeit bis zur

zweiten Ordnung und die Annahme eines Grenzwertes des maximalen Stoßparameters er-

lauben es schließlich, das Boltzmannintegral zu integrieren, wodurch man zur Fokker-Planck

Gleichung gelangt. Die zentralen physikalischen Größen, die in der Fokker-Planck Gleichung

auftauchen sind der Vektor der Reibungskraft und der Diffusionstensor. Die Schlüsselelemente

zur Berechnung dieser tensoriellen Koeffizienten sind die sogenannten Rosenbluthpotenziale.

Diese sind ihrerseits komplizierte Integrale, die sich über den gesamten Geschwindigkeits-

bereich erstrecken und deren Integranden aus dem Produkt der Verteilungsfunktion der

Streuer-Teilchen und der Relativgeschwindigkeit der gestreuten und streuenden Partikel

bestehen. Üblicherweise werden zur Berechnung dieser Potenziale oft sehr restriktive An-

nahmen gemacht: So wird gewöhnlich vorausgesetzt, dass die Geschwindigkeitsverteilung der

Feldteilchen, wie die Streuer auch genannt werden, isotrop ist. Die Beobachtung, dass die

Rosenbluthpotenziale Faltungsintegrale sind, legt das Vorgehen nahe, Techniken anzuwen-

den, die auf der Fouriertransformation basieren, um diese Potenziale und deren Ableitung zu

bestimmen. Solch eine Vorgehensweise bringt den Vorteil mit sich, dass keinerlei Annahmen

hinsichtlich der Gestalt der Verteilungsfunktion getroffen werden müssen. Es sei weiterhin

erwähnt, dass diese Art der Bestimmung der Rosenbluthpotentiale den Grundstock für die

selbstkonsistente Modellierung der Stoßrelaxation legt.

Um die dreidimensionale Fokker-Planck Gleichung, welche die Entwicklung der gestreuten



Verteilungsfunktion beschreibt, in den numerischen Rahmen der Teilchenmethoden einzu-

binden, wird die Äquivalenz dieser Gleichung zu den stochastischen Differentialgleichungen

benutzt. Die stochastische Variable C(t), die solch einer Gleichung genügt, wird später mit

der Geschwindigkeit der geladenen Teilchen identifiziert. Auch im Kontext der stochastischen

Differentialgleichungen spielen die oben erwähnte Reibungskraft und eine Matrix, die von dem

Diffusionstensor abgeleitet ist, eine zentrale Rolle. Mit Hilfe der Itô-Taylor Entwicklung und

dem auf Itô zurückgehenden Rechenverfahren gelingt es, die stochastische Differentialgle-

ichung zu diskretisieren und geeignete numerische Schemata abzuleiten. In der vorliegen-

den Arbeit wurden sogenannte explizite, schwache Schemata bis zur Verfahrensordnung zwei

herangezogen, um die Geschwindigkeit der geladenen Simulationsteilchen zu bestimmen.

Diese schwachen Itô-Taylor Verfahren stellen im Zusammenhang mit der verwendeten Fouri-

ertransformationsmethode und den Teilchen-Gitter Kopplungstechniken ein bemerkenswertes

Simulationswerkzeug dar, mit dessen Hilfe sich der Stoßrelaxationsprozess ohne spezielle An-

nahmen oder Modellen untersuchen läßt. Als Folge dieser selbstkonsistenten Berechnung-

methode lassen sich beispielsweise unterschiedliche Zeitskalen des Relaxationsprozesses real-

istischer ermitteln als mit dem sogenannten Testteilchen-Ansatz.

Die vorgestellte Modellierung der Streuung gleichartiger geladener Teilchen läßt sich direkt

auf die interspezies Wechselwirkung zwischen Elektronen und Ionen übertragen. Darüber

hinaus erlaubt die Struktur der entwickelten, auf der PIC-Technik basierenden Methoden die

numerische Simulation der gekoppelten Prozesse von intra- und interspezies Wechselwirkung.



Abstract

A better physical understanding of electrical space propulsion systems like Pulsed Plasma

Thrusters requires the numerical modelling and simulation of highly rarefied plasma flows.

Mathematically, such phenomena demand a kinetic description which is established by the

complete, time-dependent Boltzmann equation. An attractive numerical approach to tackle

this complex non-linear problem consists of a combination of the well-known Particle-in-Cell

(PIC) and Monte Carlo methods extended by a PIC-based Fokker-Planck solver, on which

we focus our attention in the following. This numerical model accommodates the physics of

interaction of charged particles with electromagnetic fields, inelastic electron-neutral scatter-

ing as well as intra- and inter-species charged particle Coulomb collisions.

To describe elastic intra- and inter-species charged particle Coulomb collisions it is convenient

to start from the Boltzmann collision integral with the classical Rutherford differential cross

section. A Taylor series expansion up to second order in velocity of the post-collision distri-

bution functions and the adoption of a cut-off value for the impact parameter permits the

final integration of the Boltzmann integral to obtain the Fokker-Planck equation. The central

quantities appearing in the Fokker-Planck equation are the friction force vector and the dif-

fusion tensor. The keys to compute the friction and diffusion coefficients are the Rosenbluth

potentials which are in turn complicate integrals of the field particle distribution function

and the relative velocity between test and field particles. Usually, strong assumptions like

isotropic velocity distribution of the scatterer, are made to evaluate the Rosenbluth poten-

tials. Observing that the Rosenbluth potentials are convolution intergrals addresses the use

of fast Fourier transform techniques to calculate these quantities and their derivatives rapidly

with the advantage of being free of any additional assumption. Furthermore, such a deter-

mination the Rosenbluth potentials is the basis to model collisional relaxation in a complete

self-consistent manner.

In order to fit the three-dimensional Fokker-Planck equation of the scattered distribution

function into a particle-based method framework, the equivalence with the stochastic differ-

ential equation (SDE) is exploit. The stochastic variable C(t) which obeys the SDE is later

identified with the charged particle velocity. Also in this context the friction force vector

and a matrix derived from the diffusion tensor play the central role. By means of Itô-Taylor

expansion and Itô calculus the stochastic differential equation is discretised and numerical

schemes are derived. In this work, explicit weak schemes up to approximation order two have

been applied to update the particles velocity.

These weak Itô-Taylor schemes together with the Fourier transform method and particle-

mesh interface techniques form a remarkable simulation tool to study collisional relaxation

processes from first principles. For instance by means of this tool, a more realistic evaluation

of the time scales can be provided since the classical test-particle approach is not necessary

anymore thanks to self-consistency.

The introduced intra-species charged particle modelling can be easily adapted for inter-species



electron-ion particle collisions. Finally, the structure of the developed PIC-based method to

solve the Fokker-Planck equation also allows to combine intra- and inter-species collisions to

perform coupled simulations.
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4.4. Itô Formula 31

4.5. Equivalence between the FP and SDE Approach 32
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1. Scientific Context and Motivations

The purpose of this work is the development of a suitable numerical tool which takes into

account Coulomb collisions in the simulation of plasma devices, and in particular of plasma

accelerators for space-propulsion applications.

After a period of oblivion, these propulsion systems are the object of a renewed scientific

interest, thanks also to the progresses in computer technology which allowed the numerical

simulations to enhance their very promising features. In fact, plasma thrusters can outper-

form conventional chemical (liquid and solid propellant) propulsion systems because of their

higher specific impulse values Isp, i.e., the change in momentum per unit of propellant [1]. In

the history of these devices, the 1990s have been classified as the “era of application“ because

their benefits have been realised on numerous commercial satellites. The risk of employing

plasma thrusters on spacecraft has diminished in recent years due to an increase in the num-

ber of successfull missions. Plasma propulsion can provide mass and cost savings, increasing

orbital lifetimes, and increased mission capability and flexibility.

Since more than two decades, the IRS (Institute of Space Systems, University of Stuttgart),

has started a “small satellite“ program, in whose frame a lunar satellite is under development.

Mission BW-1 will be accomplished by a Pulsed Plasma Thruster PPT, named SIMPLEX

(Stuttgart Instationary MagnetoPlasmadynamic Thruster for Lunar Exploration). In this

frame, a PPT is a natural choice for its properties of compactness, reliability and ease of

construction. Moreover the pulsed energy release allows for low average power without loss

of performances, a tight constrain on board of small satellites [2].

SIMPLEX is essentially a condensator (see Fig. 1.1) which charges the electrode to a po-

Figure 1.1. Schematic representation of a PPT. Technical specifications

[3]: Voltage: 1500,1800,2000V; Capacitance: 40μF; Electrodes width:

20,40,60mm; Distance between the electrodes: 21,36,42mm

tential difference that ablates a layer of the block of Teflon (PTFE), also by the help of a

common sparkle. The originated plasma consists typically of electrons and heavy particles
1



(neutrals, positives and negatives) in quasi neutrality condition. The charged particles will

accelerate because of the electric fields and will self-induce a magnetic field. The Lorentz

force that is born by the interaction of the electric and magnetic fields will push the par-

ticles outside of the truster. The change in momentum gained by the particles will results

in an equal and opposite reaction on the spaceship. Despite its simplicity, several physical

mechanisms taking place during its operation need deeper investigation and even some of its

working principles are not totally understood. Numerical simulation becomes mandatory in

flanking experimental work for the optimisation of the thruster. Apart some confined regions

close to the propellant surface, non- equilibrium conditions and discontinuities are expected

essentially everywhere. The solution of the complete Boltzmann equation by means of par-

ticle methods is the task that IRS together with IAG (Institute for Aerodynamics and Gas

Dynamics, University of Stuttgart), HLRS (High Performance Computing Center Stuttgart)

and IHM (Institute for Pulsed Power and Microwave Technology, Research Center Karlsruhe)

want to accomplish. Elastic and inelastic collisions can modify the quasi-neutral environment

and heavy charged particles can distribute around the spacecraft causing sputtering and con-

tamination. Therefore the original Particle-In-Cell (PIC) scheme developed by IHM [4, 5] is

being extended by adding models for intra- and inter-species charged particle collisions and

intermolecular reactions (see Figure 1.2) giving light to a new hybrid PIC/DSMC (Direct

Simulation Monte Carlo) code named PicLas [6, 7]. The block diagram in Figure 1.2 illus-

Localization,
Boundary Cond.

(ΔV)
DSMC

( Vx, )

Δ t

Δ t

(ΔV)
MV

(ΔV)
FP

ΔV

DSMCMaxwell−Vlasov Fokker−Planck

Particle Push

t+Total
)(

Figure 1.2. Schematic view of the coupling concept

trates schematically the working principles of the new code. First of all it is worthwhile to

remark how the general program structure allows for a flexible combination of the different

modules which can be run in parallel mode, each to contribute to the final Δ�V .

The Maxwell-Vlasov solver models the interactions between charged particles and electro-

magnetic fields. Momentum and energy exchanges, without consideration of Lorentz force, as

well as chemical reactions are treated in DSMC block, by means of a DSMC method based

on the previous “LasVegas“ code [8]. Finally, the effects of electrons and ions collisions on

their velocity field are evaluated in the completely new Fokker-Planck solver, which adopts
2



PIC techniques in velocity space. The integration of these three modules is expected to allow

for an accurate prediction of the behaviour of electric space propulsion systems operating

far from continuum hypotheses. Additionally, the necessity of a three dimensional and time

accurate description and complex geometries requires optimisation and parallelisation of the

code in order to efficiently use high performance computers. The interplay of the different

building blocks will be investigated and analysed in detail. Due to the multi-scale nature of

the problem, the requirements for time step size, mesh size w.r.t. mean free path length, the

maximum or minimum number of particles per cell might be competing, and systemic rules

for stable, accurate settings are under development.

The objective of this work is to describe Coulomb interaction between charged particles

like electron-electron collisions which play an important role in many application areas of

plasma physics and accelerator physics. Due to the long-range nature of this force, there is

a fundamental difference in treating these collisions compared to short-range reactions in the

Boltzmann approach of dilute gases and plasmas, where different kind of hard sphere models

are important tools of description [9]. The purpose of the present work is to introduce the

Fokker-Planck approach for charged particle interaction in PIC simulation, where the impact

parameter is usually large and, consequently, the deflection per collision is small. The diffusion

approximation of the Boltzmann collision integral is customary to describe electron-electron

interactions in a plasma, which mainly determine the shape of the electron energy distribution

function (EEDF). In the case where the energy input into the plasma goes primarily into the

thermal part of the EEDF, the high-energy tail is mainly populated by energy up-scattering

caused by these collisions. It is clear from energetic considerations, that the high-energy tail

also controls reactions like atomic excitation and ionisation – the energy sinks for electrons

– and to some extent the plasma chemistry. Furthermore, the electron-electron collisions

always drive the EEDF towards a Maxwellian distribution. Due to the important role of the

EEDF for the plasma properties it is essential to model electron-electron collisions as realistic

as possible.

3



2. Classical Particle-In-Cell Method. A short review

2.1. Introduction. The Particle-In-C ell approach (PIC) is particularly adept at modelling

low pressure systems in which the matter density is � � 1018 m3; in this sense, it complents

fluid methods which deal well with coherent behaviour of bulk population, but are not so

useful to determine non-linear behaviour of small sub-groups, like the heating of a small

fraction of the electron density in the sheet.

It is seems appropriate here to sketch out the main features of this approach and describe

some theoretical aspects on which the core of this work is based. Generally speaking the PIC

method refers to a technique used to solve a certain class of partial differential equation in

which individual particles (or “representants“) in a Lagrangian frame are tracked in continuum

phase space, whereas moments of the distribution function are evaluated on Eulerian mesh

points. The following procedure exploits what said above:

(1) Integration of equation of motion of particles

(2) Interpolation of the source terms to the field mesh

(3) Computation of the fields on mesh points

(4) Interpolation of the fields from the mesh to the particles locations

With this in mind, it is clear that one of the major problem suffered by PIC applications is the

statistical noise, due to the relatively small number of particles they can deal with (typically

≤ 106). Finally, it is worthwhile to remark another pecularity of this technique: the so-

called macro- (or super-)particles. Actually, an exact description of a physical phenomenon

describable through the approach on hand would involve a calculation of the interactions

between all the physical particles and eventually the external fields, a prohibitive task for any

computer. Modern computers are still not enough powerful to simulate all of the physical

particles in even a low density plasma, for example. In fact, the particles Pi represented on

the computational domain are actually phase fluids elements, or samples of different species

of particle, each “containing“

Ni,α =
∫
Pi

∫
fα(x,w, t) d3xd3w (1)

constituents for the specie α ; here, falpha denotes the distribution function, while x and w

are the phase-space coordinates.

It is straightforward to apply the previous general considerations to non-equilibrium plasmas,

for example, in which the particle distribution are not solely a function of the local fields.

They have been used to reproduce in extremely accurate manner, experimental measure-

ments of non-Maxwellian electrons and ions distribution. Moreover, PIC codes are widely

used for modelling a variety of plasma types and conditions including radio-frequency sys-

tems. Charged plasma species are modelled as individual macro-particles which move in the

computational domain in response to self-consistently calculated electromagnetic-fields and

possibly applied external fields. Two important facts must be remarked:
4



(1) A macro particle Pi moves in the same way as single plasma particle, because the

ratio Qi/Mi = qα/mα is independent of the number of constituents Ni,α

(2) Point particle representation is still possible as long as quantum mechanical effects

are negligible.

These and other extended concepts were applied in the 1990s (see, e.g. [10, 11]) for the

simulation of pulsed power ion diodes and were developed and improved in the PicLas project

since three years to fit in the frame of the project for the simulation of a space thruster. Finally,

note that standard PIC codes are not able to catch charged particles collisions because of the

averaging and subsequent assignment procedure on the volumes vertices; i.e., the Coulomb

fields of the particles inside a cell cancel one another out. For this reasons they are not

recommended in situations were collisions dominate, as in rarefied gas flows.

Ironically, it is possible to treat Coulomb collisions making use of the PIC philosophy as it will

be shown in the next chapters. In order to get a better understanding of the following topics,

it is therefore necessary to give here a short review of the PIC approach, for instance done also

in [12] where the PIC technique was applied to the simulation of a non-neutral, collisionless

plasma. Therefor which the Maxwell-Vlasov equations are sufficient for an accurate physical-

mathematical description. Munz, C.-D. and Roller, S. and Schneider, R.

2.2. The Maxwell-Vlasov Equation. Computational simulations of devices whose be-

haviour is substantially influenced by charged particle flow are important in applied science

and technology. A detailed understanding of the phenomena caused by such a non-neutral

plasma requires the solution of the Maxwell-Vlasov equation given by

∂fα

∂t
+ cα · ∇xfα +

Kα

mα
· ∇cfα = 0 , (2)

and describes the evolution of the distribution function fα = fα(x, c, t) in phase space for

specie “α“. According to the law of dynamics for charged particles with charge q, the force

Kα in equation (2) is given by the Lorentz force

Kα = qα [E(x, t) + c × B(x, t)] , (3)

on charge qα with mass mα and depends on the velocity c, the electric field E and the

magnetic induction B. Note that in the case of highly rarefied plasma flow the collision term

of the Boltzmann equation can be neglected and (2) is also known as collisionless Boltzmann

equation. In the terminology of hyperbolic partial differential equations, the general solution

of (2) is given by its characteristics

dpα(t)
dt

= Kα(cα,xα, t) and
dxα(t)

dt
= cα(t) (4)

and are called Lorentz equations in the following. Here, the relativistic momentum is given

by pα = mαγcα with the Lorentz factor γ2 = 1 + (pα)2/(mαc)2, where c0 denotes the speed

of light. The difficulties in solving the Lorentz equations arise from the fact that E and B are

not given explicitly. In fact, they have to be calculated at each time step in a self-consistent
5



manner [13, 14] from the full set of Maxwell equations. This system consists of the two

hyperbolic evolution equations

∂E
∂t

− c2∇× B = − j
ε0

(5)

∂B
∂t

+ ∇× E = 0 (6)

(Ampère’s and Faraday’s law) and the elliptic parts

∇ ·E =
ρ

ε0
, ∇ · B = 0 (7)

(Gauss’ law and the statement about the absence of magnetic monopoles), where the electric

permittivity ε0 and magnetic permeability μ0 are related to the speed of light in vacuum

c0 according to ε0μ0c
2

0 = 1. For given charge and current densities ρ and j, the Maxwell

equations describe the temporal and spatial evolution of the electric field and the magnetic

induction. With an integration over the entire momentum space, the self-consistent parts of

the charge ρ and current density j are obtained from (see e.g. [4])

ρ =
∑
α

qα

∫
fα(x,p, t)d3p and j =

∑
α

qα

∫
cα(p)fα(x,p, t)d3p. (8)

Up to this point, the description is exact in the sense that no numerical approximations

are made. For the numerical realization of the Maxwell-Vlasov system, (also called Maxwell-

Lorentz system) the Particle-In-Cell method is applied [14, 13]. In this context fα is expressed

by a weak approximation [4], yielding the following expressions for charge and current density

ρ∗ =
∑

i

qα

Nα∑
k=1

δ
[
x − x (k)

α (t)
]

(9)

j∗ =
∑

i

qα

Nα∑
k=1

c (k)
α δ

[
x− x (k)

α (t)
]
, (10)

where the superscript (k) denotes the kth particle of specie α, Nα is the total number of

particles within this group and δ represents the usual Dirac function. For each grid node,

all particles in the surrounding cells are considered. In order to determine the contribution

of all charged particles, shape-functions are used to calculate ρ and j at the grid nodes.

With these charge and current densities the new electromagnetic fields are computed at the

nodes and afterwards interpolated to the local particle postions [12]. This procedure, which

is schematically depicted in Figure 2.1, has to be repeated at each time step.

A direct consequence of the charge conservation equation ∂ρ
∂t +∇· j = 0 and of the divergence

of the curl for any differentiable vector field being zero is that the divergence constraints (7)

are satisfied at all times, if the initial values satisfy these relations. In this case, it would

be sufficient to solve the hyperbolic evolution equations (5) and (6) only. Unfortunately,

numerical errors may occur in the simulation: The divergence of a curl may be zero up to

some error terms only and interpolation errors in the particle treatment may arise. This leads

to small errors being introduced at each time step. If only the hyperbolic evolution equations

are numerically solved, then these errors may increase and strongly falsify the solution. For
6



a self-consistent movement of charged particles, the Gauss law and the statement about the

absence of magnetic monopoles (7) have to be coupled with Ampère’s and Faraday’s law. In

the Generalised Langrange Multiplier approach [15, 16, 17], two additional variables Φ(x, t)

and Ψ(x, t) are introduced into the Maxwell equations to couple the evolution equations for

the electromagnetic fields (5) and (6) with their elliptical constraints (7). The coupling terms

may be chosen in a way that allows a purely hyperbolic system to be formed. If the errors

are zero it coincides with the original Maxwell equations. The purely hyperbolic Maxwell

equations system reads as

∂E
∂t

− c2∇× B + χc2∇Φ = − j
ε0

, (11)

∇ ·E +
1
χ

∂Φ
∂t

=
ρ

ε0
, (12)

∂B
∂t

+ ∇× E + γ∇Ψ = 0, (13)

∇ · B +
1

γc2

∂Ψ
∂t

= 0, (14)

where the dimensionless positive parameters χ and γ represent the transport coefficients for

the local errors Φ and Ψ. Obviously, these new variables Φ(x, t) and Ψ(x, t) define two addi-

tional degrees of freedom and couple the divergence conditions (7) to the evolution equations

(5), (6). This correction technique ensures that the divergence errors arising from the div curl

as well as from the charge conservation violation within an electromagnetic PIC computation

cannot increase and falsify the numerical simulation results. Keep in mind that explicit nu-

merical methods for the Maxwell equations in time domain can be properly combined with

a hyperbolic divergence correction in a straightforward manner, yielding a very efficient and

highly flexible Maxwell solver module for PIC applications on unstructured grids and for

parallel computing [18].

2.3. Numerical Scheme. As previously mentioned, an attractive numerical method to solve

the non-linear Maxwell-Lorentz problem is the PIC method based on ingenious particle-mesh

techniques (see Fig. 2.1). The basic ideas can be summarised as follows: the plasma inside a

device is represented by a sample of charged particles. In each time step the electromagnetic

fields obtained by the numerical solution of the Maxwell equations (eqns. (5) and (6)) are

interpolated to the actual locations of these charged particles. According to the Lorentz force

(3) the charges are re-distributed and the new phase space coordinates are determined by

solving numerically the usual laws of dynamics. To close the chain of self-consistent interplay

the particles have to be located with respected to the computational grid in order to deter-

mine the contribution of each charged particle to the changed charge and current density

being the sources for the Maxwell equations in the subsequent time-step.

Traditional techniques for solving the Maxwell equation rely on the finite-difference methods

which maybe traced back to Yee [19] and were applied to PIC computations by [10, 11, 20].

In the context of PIC code design at IHM and IAG, high resolution explicit finite-volume

schemes are developed and applied as Maxwell solvers [4, 21, 15]. Other numerical methods
7



for the Maxwell equations like finite-elements techniques were introduced e.g. in [22]. Very

recently, arbitrary high order accurate ADER [23] and discontinuous Galerkin methods [18, 24]

methods are proposed and developed for the numerical solution of Maxwell equations in PIC

simulations.

The discretisation of the relativistic equation (4) as well as its non-relativistic counterpart

has been extensively investigated in literature [13, 25, 14]. The most “popular“ approach

for the numerical solution of the momentum equation is the leapfrog scheme introduced by

Boris [25]. Recently, new techniques for charged particle movement are discussed which allow

high-order discretisation of the relativistic equation [26, 27] and seem to be an important

contribution for high-order self-consistent PIC simulations.

Clearly, the Maxwell solver is a grid-based module for structured or unstructured mesh ar-

rangements while particle movement is performed in the mesh-free domain. In the following,

we briefly discuss the two interfaces between grid-based and mesh-free computations which

are the charge and current density assignment and the interpolation of the actual position,

where we assume an unstructured computational mesh.

Maxwell Solver

Lorentz Solver

(j,ρ)
node

(E,B)
node

(x,v)
prt

F
prt

Interpolation

Assignment

(E,B)
node

(E,B)
prt

(x,v)
prt

(j, ρ)
node

Grid−Based

Mesh−free

Figure 2.1. The different building blocks for a

typical PIC Simulation code

Essentially some form of interpolation among the grid points “surrounding“ the particles

is required to link the “mesh-free“ and the “grid-based“ zone of the loop [12]. As always

there is a trade-off between computational efficiency and accuracy. The simplest and fastest

weighting procedure is called zeroth order or nearest-grid point (NGP) weighting. In this

system particles are simply assigned to the nearest grid point and the resolution to which

a particle can be tracked as far as the grid is concerned is limited to the distance between

grid points. From grid’s point of view when a particle moves in through one wall the density

jumps up sharply and as the particle leaves through another wall the density drops sharply.
8



The particle then appear to have a rectangular shape with width �x. Because the density

changes so abruptely at grid points, zeroth order weighting might results in noisy electric and

magnetic fields.

A first order procedure which fits particularly good for unstructured grid is the “node-domain

assignment“. Suppose that the contribution of a macro particle k at the phase space posi-

tion (xk(t), ck(t)) to the current and the charge density is to be calculated at the node i and

Sk
i = Si(xk(t)) is the related shape function. The node connects a certain number of elements

forming the local node domain Ωi (see Fig. 2.2). This task is accomplished calculating the

shape function Si = Si(x(t)) [12]. The contribution of the kth charged macro particle at the

Figure 2.2. The local node domain assignment

node i is obtained from

ρk(t) =
Qk

Vi
S

(k)
i (15)

j(t) =
Qkck

Vi
Sk

i (16)

where Vi is the volume associated with the node i. From the perspective of the grid each

particle is now a cloud with peak density at the position of the particle. Higher order weighting

([14]) make use of quadratic and cubic spline to further round-off the roughness in particle

shape and reduce density and field noise, at the cost of more computation.

The above numerical framework has been used in PicLas to model charged particle movement
9



in electromagnetic fields [28, 27]; these concepts are at the basis of the development of the

PIC module for modelling Coulomb collisions in low pressure plasma. The only difference lies

in the nature of the equation to be integrated.

10



3. Coulomb Collisions and Fokker-Planck Model

3.1. Introduction. Being essentially an ensemble of positive, negative and neutral particles

which co-exist together, plasmas can appear in a large variety of conditions and states. By

some estimates 99 % of the observable universe is in the plasma state, with the exception of

the Earth since it is not a favourable environment for its too low temperature and its too high

matter density. Nonetheless, plasma can exist at low (laboratory) temperatures, provided a

mechanism for ionisation and a sufficiently low pressure to avoid recombination.

Depending on the situation on hand, different approaches and consequently approximations

can be used to simulate plasma behaviour. If only time scales much larger than the relaxation

times are of interest, an equilibrium, namely Maxwellian distribution function for the elec-

trons can be assumed and the moments of the distribution function can be integrated to get

conservation laws. This so-called fluid theory is successfully applied also under conditions of

high pressure and high density where the motion of single particles is not a concern. On the

contrary, in the cases of non-equilibrium, low pressure and/or low densities a kinetic -particle

motion - approach is adequate. The latter description is based and encompasses appropriate

averages of the motion of all the individual charged particles in plasma.

The role of collisions deserves a separate discussion, because they can completely change

the physical-mathematical model, according to their relative importance. They are totally

negligible if the Coulomb potential is much smaller than the thermal kinetic energy, because

Coulomb cross section decreases with increasing temperature. Fusion plasmas, in fact, are

considered collisionless. This implies that the collisional effects are less important than the

collective effects, i.e. the cumulative under λD-scale events are negligible in comparison with

over λD-scale, with λD the Debye length. In formulas

2πνc

ωpc
∝ nlnΛ√

n
∝ 1

ND
lnND (17)

and

nλD ∝ T 3/2

n1/2
(18)

where νc is the collision frequency, T = Ti = Te is the temperature of an isothermal plasma,

ωpc is the typical plasma frequency, n is the plasma density, lnΛ is the Coulomb logarithm

and finally ND is the number of particles in a Debye sphere. Some interesting considerations

follow: a collisionless system (νc decreases with the density) has a very large number of

particles in a Debye sphere and a collisional one has few but still enough not be classified as

rarified and binary collisions would totally dominate the dynamics [29].

3.2. Governing Equation. From the description of the PPT the necessity of solving the

fundamental plasma kinetic equation emerges [30, 31]

∂fα

∂t
+ c · ∇xfα +

K
mα

· ∇cfα = C(f) , (19)

11



to describe the evolution of the distribution function fα = fα(x, c, t) of a generic plasma

specie “α” in phase space. Here, K = K(x, c, t) represents the electromagnetic force acting

on the particles of the ensemble “α” with charge qα and mass mα. The term on the right-

hand side (rhs) of equation (19) is the so-called operator which reflects the rate of change

with respect to time of fα due to collisions. As first approximation it is possible to consider

only elastic, two-body collisions including charged and neutral particles which results into the

Boltzmann operator

C(f) = CB(f) = (20)

(
δfα

δt

)
col

=
∑

β

nβ(x, t)
∫

d3w dΩ g Qαβ

[
Φαβ(c′,w′) − Φαβ(c,w)

]
,

where Φαβ(c,w) = fα(c) fβ(w) is the product of the particle distribution functions of the par-

ticle species involved in the process. Here, the index β runs over all “scattering” populations

(field particles), nβ is the local number density of the field particle specie “β”, g = |g| = |c−w|
is the absolute value of the relative velocity, Qαβ = Qαβ(g, χ, ϕ) is the differential scattering

cross section (see App. B) (in the center-of-mass system) between the particles of the species

“α” and “β” and the element of solid angle dΩ is given by dΩ = sin χ dχ dϕ (χ: scattering

angle, ϕ: azimuthal angle). Moreover, the prime refers to the value of a quantity after a

collision and unprimed denotes the values before the collision. In this case equation (19) is

called Boltzmann equation.

A rigorous mathematical description of that can be obtained by the so-called BBGKY

theory [32]. It essentially casts the Liouville equation into a chain of equations where the

first equation connects the evolution of one particle density propability with the two particle

density probability function, and similarly the i-th equation connects the i-th particle and

the (i+1)-st particle density probability function. Approximations of the BBGKY chain,

like truncation usually at the level of the first or first two equation lead to the Vlasov or to

the Boltzmann equation. Moreover, under the assumption that the probability density is a

function of only the relative distance, the hydrodynamic equations are obtained.

In many practical situations, ambient conditions like the supposedly SIMPLEX operation

conditions [33] require an accurate description of both elastic and inelastic particle interac-

tions, that is in a certain sense to include some chemistry. From now on, attention will be

devoted exclusively to those phenomena involving only elastic charged particle interactions.

3.3. From the Boltzmann to the Fokker-Planck Collision Operator. So far, the de-

fined area of interest is the analysis of the effects of collisions on a charged particle velocity

distribution in a quasi-neutral plasma. Since the plasma properties are such that a classical

depiction is sufficient, the starting point for the mathematical formulation of the problem is

equation (19) that, once again, consider only binary interactions. Some simplifying hypothe-

ses follow. Scattering angles are supposed to be small, a reasonable conjecture in the case of

ND >> 1 ; the Coulomb potential for the scattered particle is cut off at distances larger than
12



the Debye length, i.e.

Φ(r) =
Ze2

4πε0r
, r < λD ,

Φ(r) = 0 , r > λD ; (21)

no collision takes place for b > λD, b being the impact parameter or the distance of closest

approach; during a collision the surrounding particles are viewed as rearranging themselves so

that the two particles interact in accordance with (21). Under these statements it is possible

to develop fα(c) and fβ(w) in (19) in Taylor’s series performing integration over the angles

(see App. A) and finally get [30, 34]

CB ≈ Cαβ = (22)

(δf

δt

)
α

=
∑

β

Γ(αβ)
P nβ

{
− ∂

∂cp

[∂H(β)

∂cp
fα

]
+

1
2

∂2

∂cp∂cq

[∂2G(β)

∂cp∂cq
fα

]}
.

.

This collision term, also known as Fokker- Planck collision operator and equation (22) is

usually referred as Fokker-Planck FP equation. It represents the lowest order approximation of

the Boltzmann collision integral and importantly involves the cumulative effects of multiple

small angle, elastic (energy preserving), charged particle collisions within a Debye sphere.

Note that the FP model retains the significant properties of the Boltzmann integral [35],

namely, the mass, momentum and energy conservation as well as the H-theorem, which

states the fact that an arbitrary initial particle distribution is always driven to a Maxwellian.

H and G are known as Rosenbluth potentials and are defined as

H(β)(x, c, t) ≡ mα

mαβ

∞∫
−∞

fβ(x,w, t)
|g| d3w , (23)

G(β)(x, c, t) ≡
∞∫

−∞
|g| fβ(x,w, t) d3w , (24)

where 1/mαβ = 1/mα + 1/mβ is the reduced mass of the species “α” and “β”. Their name

comes from the property that these two quantities and the distribution function fulfil:

∇2
c H(β)(x, c, t) ∝ fβ(x, c, t) (25)

and

∇2
c G(β)(x, c, t) ∝ H(β)(x, c, t) , (26)

which means that they satisfy a Poisson equation with sources fβ and H(β), respectively.

Probably the most meaningfull aspect is actually the relation that links their derivatives to

the dynamical friction F
(α)
p = F

(α)
p (x, c, t) (unit: [m/s2]) and diffusion coefficient (evaluated

13



first by Chandraseaker in [36]) D
(α)
pq = D

(α)
pq (x, c, t) (unit: [m2/s3])

F (α)
p =

∑
β

Γ(αβ)
P nβ(x, t)

∂H(β)

∂cp
(27)

and

D(α)
pq =

∑
β

Γ(αβ)
P nβ(x, t)

∂2G(β)

∂cp∂cq
, (28)

respectively, where the index “β” runs over all “scattering” populations (also called field

particles). Here, nβ(x, t) represents the local density of the scatterer,

Γ(αβ)
P =

q2
αq2

β

4πε20m
2
α

ln(Λ) (29)

is the plasma parameter [31] in SI-units ([m6/s4]). Note, that the factor ναβ = nβ Γ(αβ)
P / v3

th

may be considered as an energy-weighted average of the speed-dependent momentum transfer

collision frequency (cf. [34]) between the particles of the species “α” and “β”, where the

thermal velocity is defined by v2
th = kB Tβ / mβ. Note that equation (22) is the evolution

equation for a two species system only due to collisions, that is in absence of spatial gradients

of f – like in a reservoir – and in those situation where the smoothed electromagnetic force

is negligible with respect to collisions as for example in cold plasmas.

Analytical solutions of the FP equation are available only for very special cases of the friction

force and diffusion tensor. For instance, the short-time solution of the FP equation is obtained

if one assumes that the friction and diffusion coefficients weakly depend on the velocity (see

App. C). A further analytical solution is known for the Lenard-Bernstein model (also called

Ornstein-Uhlenbeck process) which is established by F = A(x, t) · c (A is a matrix) and

D = D(x, t) (see, e.g. [37, 38, 39, 29] and App. D). In general, the FP model represents

a complicated nonlinear problem which has to be solved numerically in an appropriate –

namely, self-consistent – manner.

To introduce the numerical method adopted for solving the FP problem it is instructive to

explore the results obtained by reducing the original problem because it contains the essential

characteristics of the main problem despite its relative simplicity. The intra-species collision

case – test particles and scatterers are identical – is the starting point for the following

discussion.

3.4. The Isotropic Field Particle Distribution Hypothesis. The approximations and

assumption illustrated in this section both provide a first insight into the collisional phe-

nomena and base a benchmark problem for the validation of the numerical model. It is well

known that the assumption of an isotropic but non-Maxwellian velocity distribution of the

field particles implies an enormous reduction of the three dimensional problem [34, 40, 41].

It is important to point out that the problem remains three-dimensional but the angular

dependency of the distribution function is dropped. We consider intra-species scattering of

charged particles (for instance, electrons) and suppress the species indices “α” and “β”. The

assumption of isotropic velocity distribution function f (= fβ) of the scatterer means that f

depends only on the absolute value w = |w| of the field particle velocity: f = f(w). In order
14



to compute the integrals (24) and (27), we introduce spherical coordinates in velocity space

and replace |c − w| by

|c − w| =
√

c2 + w2 − 2cw cosΘ .

The integration over the azimuthal angle Φ and the polar angle Θ yields the results (cf.,

[30, 34, 40])

H(x, c, t) = 8π

{
1
c

c∫
0

w2 f dw +

∞∫
c

w f dw

}
(30)

and

G(x, c, t) = 4π

{
1
3c

c∫
0

w4 f dw + c

c∫
0

w2 f dw

+

∞∫
c

w3 f dw +
c2

3

∞∫
c

w f dw

}
, (31)

where f = f(x, w, t). To calculate the derivatives of the isotropic potentials in velocity space

with respect to the velocity cp, we use the fact that ∂c
∂cp

= cp

c and get the equations

∂H(x, c, t)
∂cp

=
∂H(c)

∂c
ĉp (32)

and
∂2G(x, c, t)

∂cp∂cq
=

∂2G(c)
∂c2

ĉpĉq +
1
c

∂G(c)
∂c

[
δpq − ĉpĉq

]
, (33)

where δpq denotes the Kronecker symbol and ĉp is the pth component of the unit vector

ĉ = c/c. Then the friction and diffusion coefficients are given by

F (c) = n ΓP
∂H(c)

∂c
= −nΓP

8π

c2

c∫
0

w2 f dw , (34)

D‖(c) = n ΓP
∂2G(c)

∂c2
= nΓP

8π

3

{
1
c3

c∫
0

w4 f dw +

∞∫
c

w f dw

}
, (35)

D⊥(c) =
n ΓP

c

∂G(c)
∂c

= nΓP
4π

3

{
1
c3

c∫
0

(3c2 − w2)w2 f dw

+ 2

∞∫
c

w f dw

}
. (36)

Clearly, if we identify ĉ with the unit vector ex, then the matrix established by (33) have

only non-vanishing diagonal elements. It is obvious, that the coefficients (34)-(36) are

decreasing functions of c with high-velocity behaviour proportional 1/c2, 1/c3 and 1/c,

respectively. Consequently, friction and diffusion based effects like approach to equilibrium

are much weaker at high energies of the particles. Furthermore note, that field particles

with speed w greater than the speed c of the test particles do not contribute to the

friction coefficient (34). This effect is a pecularity of Coulomb scattering off an isotropic
15
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Figure 3.1. Dynamical friction (upper plot) and diffusion (lower plot) co-

efficients D⊥ (full) and D‖ (dashed-dotted line) as a function of velocity

c.

distribution of scatterers. To get a quantitative picture, the friction and diffusion coefficients

(34)-(36) are seen in Figure 3.1 as a function of the velocity c. For this, a Gaussian

distribution function of the form f(w) = 2√
2π v3

th

exp
(
− w2

2v2
th

)
with v2

th = kB T/me is assumed

for the field electron distribution, which possesses a constant number density ne = 1018

m−3 and a temperature T �
e = 10 eV. It is apparent from these plots, that the accurate

velocity-dependence is very important for modelling these coefficients, especially in the

low-velocity region. Furthermore, in Figure 3.2 we depict the dependence of the coefficients

|F (c)|, D⊥(c)/c and
√

D‖(c) (see below) from the velocity c. Note, that these coefficients

possess units of an “acceleration” and that D⊥(c)/c is the dominant contribution at very
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sqrt(Dp)

in [m/s2]

Figure 3.2. |F (c)| (full line), D⊥(c)/c (dashed line) and
√

D‖ (dash-dotted

line) as a function of the velocity c. In all cases the unit is [m/s2].

small velocities, which is responsible that the particles diffuse up towards the thermal veloc-

ity vth where they feel strong friction that tends to centre the velocity around the mean value.

3.5. FP Equation in Spherical Coordinates. More than a nice mathematical training,

formulating the FP equation in spherical coordinate can be convenient in circumstances where

the geometry requires it or where the only variables that counts is the modulus of the velocity,

as it will be considered in chap. 6

As starting point the FP equation in covariant form is considered [42]

∂tf = −
[
f Fμ

]
, μ

+
1
2

[
f Dνμ

]
, ν , μ

, (37)

which is valid for any set of curvilinear coordinates x1, x2 and x3 in the non-relativistic case.

Here, the commas indicate covariant derivatives with respect to xμ, repeated Greek indices

imply summation (Einstein’s summation convention) and f = f(x1, x2, x3) is the particle

distribution function. The covariant derivatives can be written as [43, 42]

√
g
[
f Fμ

]
, μ

=
∂

∂xμ

[√
g f Fμ

]
(38)

and
√

g
[
f Dνμ

]
, ν , μ

=
∂2

∂xμ∂xν

[√
g f Dνμ

]
+

∂

∂xμ

[√
g f Γμ

αβ Dαβ
]

, (39)

respectively, where g = |gμν | is the determinant of the metric tensor gμν and Γμ
αβ denotes the

Christoffel symbol of second kind defined by (see, e.g. [44])

Γγ
αβ =

1
2

gγδ
(∂gαδ

∂xβ
+

∂gβδ

∂xα
− ∂gαβ

∂xδ

)
, (40)
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which, in general, is not a tensor. Inserting (38) and (39) into equation (37), we get after

some rearrangements

∂tf̃ = − ∂

∂xμ

[
f̃
(
Fμ − 1

2
Γμ

αβ Dαβ
)]

+
1
2

∂2

∂xμ∂xν

[
f̃ Dνμ

]
, (41)

where f̃ =
√

g f . Obviously, in the latter equation the drift term (first term on the rhs) is

modified by the geometry term 1
2Γμ

αβ Dαβ , which vanishes in the case of Cartesian coordinates.

In the following we consider spherical polar coordinates in velocity space, where x1 = c, x2 = θ

and x3 = ϕ. The metric tensor gμν (g = c4 sin2 θ), the physical components of the vector Fμ

as well as the tensor Dμν and the Christoffel symbols Γμ
αβ may be adopted from the literature

[44], resulting in a quite lengthy expression for the rhs of (41). The first simplification of

this expression is obtained by choosing the velocity difference vector g to be parallel to the

unit basis vector ec. This leads to the fact that the vector F possesses only the component

Fc and the tensor D is diagonal. Furthermore, assuming azimuthal symmetry, we obtain the

equation

∂tf̃ = − ∂

∂c

{
f̃
[
Fc +

1
2c

(
Dθθ + Dϕϕ

)]}
+

1
2

∂2

∂c2

[
f̃ Dcc

]

− 1
2c2

∂

∂θ

[
f̃ cot θ Dϕϕ

]
+

1
2c2

∂2

∂θ2

[
f̃ Dθθ

]
, (42)

where f̃ as well as the coefficients Fc, Dcc, Dθθ and Dϕϕ depend on c and θ. A further

reduction of the latter equation is obtained if we assume that the friction and diffusion

coefficients depend only on the modulus c of the velocity c, then Fc = F , Dcc = D‖ and

Dθθ = Dϕϕ = D⊥ are given by the relations (34)-(36). The resulting form of the FP equation

then reads as (see also [41])

∂th = − ∂

∂c

[
h
(
F +

D⊥
c

)]
+

1
2

∂2

∂c2

[
h D‖

]
+

D⊥
2c2

∂

∂a

[
(1 − a2)

∂h

∂a

]
, (43)

where h = c2 f(c, θ) and a is given by a = cos θ. Finally, in the case of an isotropic distribution

function, where h is independent of the polar angle θ we get the result

∂th = − ∂

∂c

[
h
(
F +

D⊥
c

)]
+

1
2

∂2

∂c2

[
h D‖

]
, (44)

which will be considered below in the context of code assessment.

In practice, if the field particles are isotropic distributed the problem reduces from three

to one variable a fact that makes it more easily tractable and several ways of evaluate the

integrals can be adopted. This can be even avoided if the two colliding particles have some

properties, as explained in the next section.

3.6. Inter-Species Collision: The Electron-Ion Case. Because the ions (index X) are

so massive relative to the electrons (index e), the velocity of the electrons is much larger than

the one of the ions (|c| 	 |w|) and, furthermore, the smallness of their mass ratio ( me

mX

 1)

is taken into account. Of course, it is possible to formulate the previous statements in several

ways, according to the situation on hand. The most intuitive (and maybe crudest) procedure

is to approximate mX → ∞ and and wX → 0 which means that the electrons are scattered off
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by infinitely massive ions, where the energy coupling is null. In this situation the Rosenbluth

potentials (23) and (24) can be simply expressed by

H(X)(x, c, t) =
1
c

(45)

G(X)(x, c, t) = c , (46)

where it is assumed that fX(x,w, t) is normalised in velocity space. It is straightforward to

obtain the components of the friction force and the diffusion tensor for the electrons, which,

respectively, read as

F (e)
p (x, c, t) = Γ(eX)

P nX(x, t)
ĉp

c2
(47)

and

D(e)
pq (x, c, t) = Γ(eX)

P nX(x, t)
1
c

[
δpq − ĉpĉq

]
, (48)

where ĉp is the abbreviation for cp/c and the ion charge qX = Z e. The parameter Λ for this

process is proportional to

Λ ∼ λD =

√
ε0 kB Te TX

e2 (ne TX + nX Z2 Te)
, (49)

and kB is the Boltzmann constant. This collision operator allows no momentum to be

transferred from the electrons to the ions and there is no energy exchange.

A more detailed formulation of the problem starts off with considerations about the relative

motion of the two species: if the ions mass is much bigger than the electrons’ it is reasonable

to think that the former did not change their velocity significantly. Indeed ions have a

velocity wX �= 0 but still |wX | 
 |c| which allows an expansion in Taylor serie of |g| and

|g−1| in (23) and (24) respectively; a truncation at the second term gives the following

expressions for the friction and diffusion coefficient:

∂H(X)

∂cp
≈

cp

c3
+
(V

(X)
p

c3
− 3 c · V(X) cp

c5

)
+

9
4

cp

c5
v2

h (50)

∂2G(X)

∂cp∂cq
≈

1
c3

[c2δpq − cpcq]

+
1
c3

[cpV
(X)
q + cqV

(X)
p + c ·V(X)δpq] − 3 c ·V(X) cpcq

c5

− 3
4

v2

c3
· [δpq − 3

cpcq

c2
] (51)

where V(X) =
∫
R3

d3w w fh(w)) and v2 = 2v2
th = 2kB

TX

mX
. It is immediate to recognise

in the first terms on the rhs the approximation used at the beginning of this section and

corresponding to the zero order of the Taylor expansion. The further, higher order terms

take into account ions velocity through the moments of their distribution function, that is the

force experienced by the electron in a collision with an ion depends on its own velocity and
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on the moments of the ion distribution function. Because of the remarkable difference in the

velocity it is sufficient in fact to consider only the averaged contributions of the background

species and not that of a single particle, and the Taylor expansion allows to separate the two

effects. Note that, in the situation where the test particles and scatterers are identical the

friction and diffusion are a result of a complex interplay among the particles of the complete

ensemble which, in addition, depends on the velocity c.

This and the previous example introduced the primary importance of the evaluation of the

force coefficients and supplied some simplified expressions, provided that some hypothesis are

respected. Once H(X) and G(X), and consequently their derivatives are known they can be

inserted in equation (22) and this can in turn be solved, usually numerically. Therefore it is

extremely important to have an efficient and effective method available for the computation

of these two quantities in the general case.

3.7. Computation of the Rosenbluth Potentials. The cornerstones of the general FP

problem are the Rosenbluth potentials, so it is important to calculate them rapidly and

accurately. For this reasons some properties that allow to recast the Rosenbluth potentials into

an appropriate form which will reveal fruitful for numerical computations. A closer inspection

of relations (23) and (24) displays that the Rosenbluth potentials are convolutions of the field

particle distribution function and the absolute value of the relative speed. This suggest to

apply Fourier transformation techniques to compute the integrals, where no assumptions

concerning the distribution function have to be imposed. In the following, we consider intra-

species scattering which means, that the test and field particles belong to the same type (for

instance, electron-electron collision) and drop for convenience the species indices “α” and

“β”. Performing a change of variables according to g = c−w with d3w = −d3g and applying

some standard manipulations [45], we obtain the results

Ĥ(k) = 8 π
f̂(k)
k2

(52)

and

Ĝ(k) = −8 π
f̂(k)
k4

, (53)

for the transformed quantities with k = |k|, where the identity ∇2
cg = 2/g (see App. E)

has been used to obtain the second relation. Clearly, the expressions (23) and (24) reveal

once again the convolution character of the Rosenbluth potentials: In k-space this leads to

the product of the Fourier transform f̂(k) = (2π)−3/2
∞∫

−∞
d3c e−ik·c f(c) and 1/k2, which is

the analytically obtained Fourier transformation of the “Coulomb potential” 1/g (see App.

F). Since only the derivatives of the Rosenbluth potentials enter in the determination of

the friction and diffusion coefficients, we apply the differentiation property of the Fourier

transformation and get directly

∂H
∂cp

= 8 π i F−1

{
kp

k2
f̂(k)

}
(54)
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and
∂2G

∂cp∂cq
= 8 π F−1

{
kp kq

k4
f̂(k)

}
(55)

for the derivatives of the potentials, where F−1 denotes the inverse Fourier transformation

of the arguments in the braces. Moreover, this proceeding considerable reduces “computa-

tional noise” often associated with differentiation on the velocity grid. In essence, the main

advantage of the Fourier approach is that we obtain a first principle, fully self-consistent

determination of the deterministic friction (27) and stochastic diffusion (28) since no specific

model assumptions on the field particle distribution are necessary to compute the Rosenbluth

potentials.

An analysis of the resolution obtained with Fourier transformation technique is hard to per-

form due to the three dimensional nature of each component of the friction vector and the

diffusion matrix. Choosing a Gaussian initial distribution function, the exact expression for

the friction and diffusion forces can be derived and a visual comparison between the numerical

value and the analytical expression can be achieved if each component is plotted separately

and one of the variables is set as independent. As for instance, in Fig. 3.3, Fig. 3.4 and

Fig. 3.5 the level lines of the z-component of the friction force are plotted in the cx − cy

plane, for cz = 0 and for 32, 64 and 128 grid points respectively. The 128 points calculation

gives obviously the most accurate results but the 64 points is an optimal compromise between

quality and CPU time. Moreover, from a three dimensional representation is also possible to

extract some slices in given planes and the one dimensional curves can be used for an even

easier and more direct comparisons. An example is shown in Figs. from 3.7 to 3.9 for ∂2G/∂c2
x

where ”portions“ were cut out in the planes cx = 0. As expected the 128 points resolution

represents the exact profile at the best. Finally, the L2 norm of the error, evaluated as

ε2 =
‖ unum − uexact ‖L2

‖ uexact ‖L2

(56)

has been chosen as better measurement of the goodness of the numerical solution on the

whole computational domain and has been reported for each case-study in the caption of all

pictures; u indicates the general quantity whose error is to be evaluated.

One of the major obstacle to the solution of the Fokker-Planck equation has been now

overcome and it is now the time to find the most appropriate method of solving it, which

will be the topic of the next chapter.
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Figure 3.3. 32 grid points evaluation of the Fz component. A relevant

mismatch from the exact solution (continuous line) is present close to the

origin. ε2 = 0.45%

Figure 3.4. 64 Points grid points evaluation of the Fz component. The

numerical solution is now acceptable. ε2 = 0.23 %
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Figure 3.5. 128 Points grid points evaluation of the Fz component. Only

very small differences from the exact solution. ε2 = 0.12 %

Figure 3.6. 3D visualisation of Dcxcx(cx, cy, 0)
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Figure 3.7. Exact (bold) and numerical (light) curves extracted from 32

points resolution. The discrepancy is not tolerable for numerical calculations

since ε2 = 0.44%

Figure 3.8. The 64 points curve is in good agreement and the distance
from the exact solution is considered negligible, as indicated also by ε2 =

0.24 %
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Figure 3.9. The 128 Fourier transforma-

tion guarantees an extremely good resolu-

tion, even though somewhat expensive from

the computational point of view (ε2 = 0.15

%)
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4. Stochastic Processes and the Fokker-Planck Equation

4.1. Introduction. The friction and diffusion forces acting on each scattered particle must

be evaluated before solving the Fokker-Planck equation for the time-dependant distribution

function. In the last chapter, situations have been explored in which the computation of these

two quantities was made easier by means of simplifying hypotheses and finally one general

technique was introduced, namely Fourier transform. In most of the cases, fα(x, c, t) must

be evaluated per numerical way.

Particle methods solve for the phase-space position of the particles and then eventually re-

construct the distribution function; they can be deterministic or stochastic according to the

way of approximating the diffusion process. The time differentiation can be tackled via a

Crank-Nicholson method or via an Alternating-direction-implicit method [46, 38].

For the reasons exposed in Sec. 1, a particle method fits very well to the purposes of this

work; in particular the stochastic modelling of the diffusion component is suitable to be in-

corporated in the PIC strategy, giving rise to a fully kinetic, self-consistent approach for the

solution of the Fokker-Planck equation.

4.2. Stochastic Processes. The information about the kind of plasma in the space thruster,

the experience acquainted in PIC technique as well as the PIC-based tool present at IHM and

the will of creating a coherent numerical framework for the simulation of this and similar de-

vices, led the choices so far, to approach the diffusion process in a stochastic manner. A short

introduction to stochastical processes is therefore needed to show how Coulomb collisions can

be easily modelled at expense of some cumbersome algebra. A deep analysis of stochastic

calculus is clearly beyond the scope of this work, but it is important to be able to handle this

instrument since it opens new roads to the insight of many phenomena.

Generally, a stochastic process is a series of events whose evolution depends on an unpre-

dictably changeable quantity. This means that uncertainty is an intrinsic part of the develop-

ment of the physical or also for example social or economical systems. In this sense stochastic

is present in everyday life, physical phenomena influenced by stochastical processes like chem-

ical reactions or non-Newton fluid flows are, in fact, quite frequent in nature (see, for instance

[38, 39]). Nevertheless, the first scientific investigation of a stochastic phenomenon is quite

recent and is attributed to the botanist Robert Brown who observed irregular motion of pollen

grains suspended in water. Since he could prove that there was no organic explanation in that

irregular movement, the solution of the riddle came only in 1905 independently from Einstein

and Smoluchowski [47, 48]). Some time afterwards, Langevin developed a different method

and according to him “infinitely more simple“. In order to study the problem of Brownian

motion, Langevin considered the equation

v̇(t) = −γ v(t) + K(t) , (57)

for a particle moving in a suspension with a friction coefficient γ, where K(t) is a highly irreg-

ular force acting on the particle with mass m. From this equation he deduced Einstein’s result

for the variance of the displacement of the particle Var
{
x(t)
}

= 2 kB T
m γ t , where he argued
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that the average (expectation value) of < x(t)K(t) > vanishes because of the irregularity of

K(t) (see, [38] and the references given therein). This may be regarded that K(t) represents

a time-dependent “random force”, which is a model for the highly fluctuating influence of a

very rapid sub-system whose action cancels out in the limit when a large number of particle

trajectories are considered. Actually a grounding mathematical formulation had to wait 40

years yet when Itô formulated a new concept of calculus, but Langevin equation still remains

the first example of stochastic differential equation (SDE), in the sense that it contains a

random term whose solution is a random function. The ”old“ idea that if all initial data can

be collected then the future can be predicted must be abandoned and face the fact that most

of human everyday’s experience (chaos and not quantum mechanics) are unpredictable, in the

sense that a very small change in the initial condition can change completely the solution of

the problem. It is the task of this new branch of science to evaluate ensemble quantities which

can give informations about the degree of uncertainty. To find out how what the Langevin

equation has to do with the problem of charged particles collision it is necessary to sketch

some basic probability concepts and which will bring to the fundamental equation for the

development of the numeric scheme.

4.2.1. Markov Process. From now on, the logic path is the one followed in ([38]) where the

reader is referred for a major details. Only the guidelines will be given while the formal

mathematical steps can be found, for instance, in Ref. [39] and [46].

The probability that the same event occurs at different times, or equivalently if two events

occur at the same time is called joint probability and the probability that an event occur

provided that another occurred is called conditional probability. Given a vector s and X a

vector of random variables the characteristic, or moment generating function is defined by

ϕ(s) = 〈exp(i s ·X)〉 =
∫

dx p(x)exp(i s · x) (58)

whose properties will be used and cleared from time to time in the course of this chap-

ter. If a time dependent random variable X(t) exists it is possible to measure values

x1,x2,x3... at times t1, t2, t3... it is assumed that a set of joint probability density exists

p(x1, t1;x2, t2;x3, t3...). A weakly correlated stochastical process is called a Markov process

if the conditional probability density is given by the condition

Pn(xn, tn|xn−1, tn−1; . . . ; x1, t1) = P2(xn, tn|xn−1, tn−1)

for t1 < t2 < · · · < tn. This means, that the transition probability to (xn, tn) depends not on

the complete history (xn−1, tn−1; . . . ; x1, t1) but only on the last state (xn−1, tn−1). Then,

P2(xn, tn|xn−1 tn−1) dxn is the probability that, for instance, a particle travels the distance

xn − xn−1 during the time tn − tn−1. A well-know example of a Markov process is the decay

of unstable nuclei. A central property of a Markov process is that it is completely defined

if the probability density P1(x1, t1) and the common probability P2(x2, t2|x1, t1) – which is

also called conditional or transition probability – is given, that is, the prediction of the future

value of X(t) given the knowledge of the past. From the definition of joint and conditional
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probability, and making use of the Markov assumption it follows

p(x1, t1|x3, t3) =
∫

dx2 p(x1, t1|x2, t2)p(x2, t2|x3, t3) (59)

the Chapman-Kolmogrov equation which is a nonlinear functional equation relating all con-

ditional probability to each other. Under the hypothesis of:

lim
Δt→0

p(x, t + Δt|z, t)/Δt = W (x|z, t) (60)

lim
Δt→0

1
Δt

∫
|x−z|<ε

dx(xi − zi)p(x, t + Δt|z, t) = Ai(z, t) + O(ε) (61)

lim
Δt→0

1
Δt

∫
|x−z|<ε

dx(xi − zi) (xj − zj)p(x, t + Δt|z, t)

= Bij(z, t) + O(ε) (62)

(the first uniformly in x, z and t for |x − z| � ε, the last two being uniform z, ε and t) this

equation can be put in differential, more usefull form

∂tp(z, t|y, t′) = −
∑

i

∂

∂zi

[
Ai(z, t)p(z, t|y, t′)

]

+
∑
i,j

1
2

∂2

∂zi∂zj

[
Bij(z, t)p(z, t|y, t′)

]

+
∫

dx
[
W (z|x, t)p(x, t|y, t′)

− W (x|z, t)p(z, t|y, t′)
]
. (63)

Under certain conditions, specifying A and B as positive semi-definite, and W as non-

negative, a non negative solution of both this and the Chapman-Kolmogrov equation exists.

The initial conditions are

p(z, t|y, t) = δ(y − z); (64)

the boundary conditions are generally more difficult to itemise.

4.2.2. The Fokker-Planck equation. The first important result is attained: if W is set to

zero equation (63) coincides with the Fokker-Planck equation:

∂tp(z, t|y, t′) = −
∑

i

∂

∂zi

[
Ai(z, t)p(z, t|y, t′)

]
(65)

+
∑
i,j

1
2

∂2

∂zi∂zj

[
Bij(z, t)p(z, t|y, t′)

]
,
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which define the temporal evolution for the transition probability p(z, t|y, t′) for a Markov

process. The condition W = 0 means that there are no jumps in the solution. It is

important to note that if a random variable has a continuous range of possible values, it is

a totally different question whether it varies continuously with t, that is if the sample path

of X(t) is continuous. A Markov process can be mathematically continuous but this is not

always a good approximation of the reality, for instance systems with a short memory on

time scale if the observation is performed. The case of hard sphere-collision model in gas

offers a good example: the velocity changes are very likely discontinuous but the change of

position are reasonably continuous. The stochastic process corresponds in physics to a dif-

fusion process. If only small Δt are considered, eq. (65) can be approximated by (see App. C):

∂tp(z, t|y, t′) = −
∑

i

Ai
∂p(z, t|y, t′)

∂zi
+
∑
i,j

1
2
Bij

∂2p(z, t|y, t′)
∂zi∂zj

, (66)

and even solved for p getting:

p(z, t + Δt|y, t) = (2π)−N/2
{
det
[
B(y, t)

]}1/2

[Δt]1/2 × (67)

exp
{
−1

2
[z − y − A(y, t)Δt]T ][B(y, t)]−1[z − y − A(y, t)Δt]

Δt

}
,

that is a Gaussian distribution with variance matrix B and mean y + A(y, t)Δt. It is not

difficult now to imagine a system moving with a systematic drift at a rate A on which is

superposed a Gaussian disturbance with covariance matrix BΔt that is:

y(t + Δt) = y(t) + A(y(t), t) Δt + η(t) Δt1/2, (68)

where 〈η(t)〉 = 0 and 〈η(t)η(t)T 〉 = B(y, t). Summarising, if a joint probability function

describes a Markov process, it may satisfies the differential Chapman-Kolmogrov equation,

which turns to be the Fokker-Planck equation under opportune hypothesis. During small

time intervals the solution for the probability density function can be found and arguments

can be derived even for the time evolution of the system itself. What is for the moment only

a speculation will be the key to build a new numerical method to work out the Coulomb

collision problem. To do this, another mathematical instrument is needed, namely the Itô

calculus whereby the formal equivalence between eq. (65) and (68) will be demonstrated.

4.3. General Ideas and Basic Relations. The previous reasoning led to the intuitive

conclusion that instead of solving eq. (66) for the variable p, it is possible to solve eq.

(68), which looks more attractive because it acts directly on a particle property, namely the
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velocity. What now an hint is will be proofed right after. The straightforward extension of

the Langevin equation in one dimension reads as:

dC(t) = F (C, t) dt + B(C, t) dW (t) , (69)

where the coefficients are in general functions of the stochastical variable C = C(t) and time t

and dW (t) is the Wiener increment. Note, that in the case where B is a constant the random

forcing is called additive noise, otherwise, if B (linearly) depends on the generic stochastic

quantity V (t) the forcing is called multiplicative noise. The SDE (69) has to be interpreted

mathematically as a stochastic integral equation of the form

C(t) = C(t0) +

t∫
t0

F
(
C(s), s

)
dt +

t∫
t0

B
(
C(s), s

)
dW (s) . (70)

Here, the second term on the rhs is an ordinary integral (of Riemann or Lebesgue type), while

the third term is a stochastical integral, which has to be interpreted consistently. The Wiener

increment dW (t) appearing in equation (69) and (70) may be defined as an integral over the

rapidly fluctuating random term η(t) (see, for instance [38, 39])

dW (t) =

t+dt∫
t

η(s) ds , (71)

with the requirements that for t �= t′, η(t) and η(t′) are statistically independent, the mean

value < η(t) >= 0 and and the variance < η(t) η(t′) >= δ(t − t′). For our purposes, we

introduce the Wiener increment by considering the sequence
{
ηi

}
i∈N

of independently and

identically distributed random numbers with the expectation values E{ηi} = 0 and E{η2
i } = 1

WN (tn) =
1√
N

n∑
i=1

ηi ; tn =
n

N
, 0 ≤ n ≤ N (72)

with Δti = ti+1 − ti = 1/N . Then, the Wiener increment reads as

ΔWi = Wi+1 − Wi =
1√
N

ηi+1 =
√

Δti ηi+1 , (73)

and possess the properties E{ΔWi

}
=< ΔWi >= 0 and E{ΔWi ΔWj

}
=< ΔWi ΔWj >=

Δti δij , where the latter relation indicates that the variance is linear in Δti. Now, setting

in the integral equation (70) C(t0) = F = 0 and replacing B by the random function G =

G
(
W (t), t

)
, we obtain the formal definition of the Itô integral:

I[G] =

t∫
t0

G
(
W (s), s

)
dW (s) , (74)

which now depends also on W (t). For the discretisation t0 < t1 < t2 < · · · < tn+1 = t, this

integral is usually approximated by the sum

I[G(n)] =
n∑

i=1

G
(n)
i ΔWi , (75)
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where G
(n)
i = G(n)

(
W (τi), τi

)
with τi = ti and the Wiener increment ΔWi = Wi+1 − Wi is

given by (73). On should expect that the “random variable” I[G(n)] has zero mean since it

is a sum of random numbers ΔWi with zero mean. However, to guarantee this, appropriate

measurability conditions of the random function G
(n)
i must imposed to ensure that G

(n)
i and

the Wiener increment ΔWi are “independent”,

E
{
G

(n)
i ΔWi

}
= E
{
G

(n)
i

}
E
{

ΔWi

}
= 0 (76)

which means, the nonanticipativeness of the integrand. The appropriate conditions, the mean-

square convergence of the integrals I[G(n)] to I[G] and the corresponding proofs are discussed

in great detail by Kloeden & Platen [49]. Here, we only cite some important results, for

instance, the Itô isometry

E
{
I[G]
}

= 0 , (77)

E
{

I2[G]
}

=

t∫
t0

E
{

G2
(
W (s), s

)}
ds , (78)

E
{
I[G] I[H ]

}
=

t∫
t0

E
{

G
(
W (s), s

)
H
(
W (s), s

)}
ds , (79)

which may be immediately obtained by starting the computations from the approximate form

of the Itô integral (75). A crucial point is the fact that the partial sums (75) depend on the

particular choice of the intermediate point τi within an interval [ti, ti+1] where the integrand

G
(
W (τi), τi

)
is evaluated. As mentioned above, for the choice τi = ti the expression

(75) define the Itô stochastic integral of the function G. This Itô interpretation and the

corresponding calculus is used in this thesis. Another often useful choice of an intermediate

point, namely, τi = (ti + ti+1)/2 leads to the Stratonovich interpretation, which satisfies the

usual transformation rules of classical calculus. Note, that different interpretations lead to

different solutions of the SDE which, however, can be related to each other [38, 49].

4.4. Itô Formula. By means of the appropriate definitions, the SDE can be integrated and

solved. Before reaching the goal, it is still important to know how it is possible to approximate

a random function around a point, in words the stochastic equivalent of the Taylor expansion.

This will be also the basis for the development of the numerical solution. The reader is referred

again to the books of Gardiner and Kloeden & Platen [38, 49] for further details. For this

purpose, we consider the stochastical quantity C(t) which obeys the SDE (69), and assume

that the function Φ depends on this variable: Φ = Φ(C, t). Then, the growth of Φ during the

time step dt is given by the expansion

dΦ(C, t) = Φ(C + dC, t + dt) − Φ(C, t)

= Φ̇(C, t) dt + Φ′(C, t) dC +
1
2
Φ′′(C, t) dC2 , (80)
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where the dot and prime indicate the differentiation with respect to t and C, respectively.

Since the Wiener increment (73) is proportional to
√

Δt, we also have to consider the second

order term and get for the growth

dΦ(C, t) =
[
Φ̇ + Φ′ F (C, t) +

1
2
Φ′′ B2(C, t)

]
dt

+ Φ′ B(C, t) dW (t) , (81)

where we have applied that
[
dW (t)

]2
= dt, which is one of the key properties of the Itô

calculus. The later relation is called Itô formula or stochastic chain rule and states that

changing variables is not obtained by ordinary calculus (exception: Φ is linear in C), because

of the appearance of the third term in the square braces of expression (81).

In order to obtain the multi-dimensional version of the Itô formula one has to start from the

multi-dimensional generalisation of (69) which is given by

dC(t) = F(C, t) dt + B(C, t) dW(t) , (82)

where C, F ∈ R d are d-dimensional vectors, the matrix B ∈ R d×m is related to the diffusion

tensor according to D = B B
T ∈ R

d×d, and W ∈ R
m represents the m-dimensional Wiener

process. Then, one can show that the growth of the function Φ = Φ(C, t) has the form

dΦ(C, t) = L(0)Φ dt +
m∑

q=1

L(q)Φ dW q(t) (83)

where

L(0) =
∂

∂t
+

d∑
p=1

Fp
∂

∂Cp
+

1
2

d∑
p,q=1

Dpq
∂2

∂Cp ∂Cq
dt (84)

and

L(q) =
d∑

p=1

Bpq
∂

∂Cp
, (85)

are introduced for convenience and Dpq and Bpq denote the elements of D and B, respectively.

This equation establishes the multi-dimensional form of the Itô formula for multi-dimensional

stochastic differentials with multi-dimensional Wiener processes.

4.5. Equivalence between the FP and SDE Approach. Finally it is now possible to

introduce the most attractive and important property, namely, the link between the FP equa-

tion and the SDE; see [38, 49] for further informations and stringent proofs. We consider the

stochastic variable C(t) with the transition probability P2(C, t|C0, t0), and assume that the

arbitrary function ψ(C) is twice continuously differentiable and vanishes at the boundary of

the domain Ω. Applying the expectation value operator E to the Itô formula (83) for ψ, we

obtain the expression

d

dt
E
{
ψ(C, t)

}
=

∑
p

E
{

Fp(C, t)
∂ψ

∂Cp

}

+
1
2

∑
p,q

E
{

Dpq(C, t)
∂2ψ

∂Cp ∂Cq

}
, (86)
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where we already use the fact that the expectation of the last term of the Itô expansion

vanishes

E
{

Bpq
∂ψ

∂Cp
dWq(t)

}
= 0

because of the nonanticipativeness requirement (76) and the result that E{dWq(t)
}

= 0.

Using for the expectation the expression E{(...)} =
∫
Ω

d3C P2(C, t|C0, t0) (...), keeping in mind

the imposed properties on ψ and performing integration by parts we get the result∫
Ω

d3C ψ(C, t)

{
∂ P2

∂t
+
∑

p

∂

∂Cp

[
Fp P2

]
− 1

2

∑
p,q

∂2

∂Cp∂Cq

[
Dpq P2

]}
= 0 . (87)

Clearly, because ψ is an arbitrary function, the expression in the curly braces must be zero,

yielding the FP equation

∂ P2

∂t
= −

∑
p

∂

∂Cp

[
Fp P2

]
+

1
2

∑
p,q

∂2

∂Cp∂Cq

[
Dpq P2

]
(88)

for the transition probability P2 of the variable C. Obviously, we recognise the complete

equivalence between the SDE (82) and the diffusion process – described by the FP equation

(88) – which is defined by the drift coefficients Fp(C, t) and diffusion coefficients Dpq(C, t) (cf.

equations (27)-(28)). This equivalence will be exploit in the following: instead to solve the FP

equation (22) for the distribution function fα of the particle specie “α”, we solve numerically

the corresponding SDE (82) for the particles of this ensemble. Due to this close connection,

the inter- and intra-species charged particle collisions will be treated by the solution of a

Langevin-type SDE and, consequently, fits in a natural way into the PIC method, which is

one basic concept of the hybrid PIC/DSMC code development [6]. In the following section

we discuss a further consequence of the Itô formula, which is especially important for the

construction of discrete approximations of the Langevin-type equation (88)

4.6. Itô-Taylor Expansion. In contrast to the Taylor expansion for the function f : R → R

of a deterministic variable X , we expect a more complicated series expansion for a stochastic

variable C due to the modified chain rule in Itô calculus (see, relations (81) and (83)). The

stochastic counterpart of the deterministic Taylor formula for the expansion of a smooth

function is, especially, important for the derivation of numerical methods for SDEs. There

are several possibilities to introduce a stochastic Taylor series expansion (see, for instance

[39, 49]), which is called “Itô-Taylor Expansion” (ITE) in the following. In the context of

the present work the ITE is obtained by iterated application of the Itô formula (81) in one

dimension or (83) in the multi-dimensional case; more details about this proceeding is found

in the books [49, 50]. In order to outline the basic ideas of the ITE (which can be considered as

a generalisation of the deterministic Taylor expansion), we begin from the stochastic integral

equation:

C(t) = C(t0) +

t∫
t0

F
(
C(s), s

)
ds +

m∑
q=1

t∫
t0

dW q(s)bq(C(s), s) . (89)
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obtained by integration of (82) over [t0, t]. Here, the column vector b = B eq is introduced

where eq ∈ Rm are the usual Cartesian unit vectors in m-dimensional space. Applying the

integrated form of the Itô formula (83)

ϕ{τ} = ϕ{t0} +

τ∫
t0

ds
[
L(0) ϕ

]
{s} +

m∑
r=1

τ∫
t0

dW r(s)
[
L(r) ϕ

]
{s} , (90)

to the functions ϕ = Fp and ϕ = Bpq – the pth row of F and bq, respectively – we get after

some rearrangements the expression

C(t) = C(t0) + F{t0}
t∫

t0

ds2 +
m∑

q=1

bqs0

t∫
t0

dW q(s2) + R (91)

with remainder

R =

t∫
t0

ds

s∫
t0

ds1

[
L(0)F

]
{s1} +

m∑
r=1

t∫
t0

ds

s∫
t0

dW r
s1

[
L(r)F

]
{s1}

+
m∑

q=1

t∫
t0

dW q
s

s∫
t0

ds1

[
L(0)bq

]
{s1}

+
m∑

q,r=1

t∫
t0

dW q
s

s∫
t0

dW r
s1

[
L(r)bq

]
{s1} (92)

where {t} abbreviates {t} =
(
C(t), t

)
. To simplify the representation, it is convenient to

define the multiple Itô integral of the function f according to [49]

I(j1,j2,...,jl)[f ]t0,t =

t∫
t0

sl∫
t0

. . .

s2∫
t0

f(s1)dW j1 (s1)...dW jl−1 (sl−1)dW jl (sl)

=

t∫
t0

dW jl(sl)

sl∫
t0

dW jl−1(sl−1)

...

s2∫
t0

dW j1(s1)f(s1) (93)

with the multi-index α = (j1, j2, . . . , jl), where jk ∈ {0, 1, .., m} for k ∈ {1, 2, ..., l} and

m = 1, 2, ... and the convention that dW 0(s) = ds. 1. With the additional abbreviation

I(j1,j2,...(jl) = I(j1,j2,...,jl)[f ]t0,t for the Itô integral with constant integrand, the simplest ITE

(91) and (92) reads as:

C(t) = C(t0) + F{t0}I(0) +
m∑

q=1

bq{t0}I(q) + R (94)

1Note, that for f=1 and j = j1 = j2 = · · · = jl the Itô integral (93) can be expressed accord-

ing to I(j,j,...,j); t0,t = 1
l!

“
t−t0

2

”l/2
Hl

„
I(j,j,...,j); t0,t√

2(t−t0)

«
, where Hl(z) = (−1)lez2 dl

dzl e−z2
are the Hermite

polynomials.
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with

R = I(0,0)

[
L(0)F

]
t0,t

+ I(0,r)

[
L(r)F

]
t0,t

+
m∑

q=1

I(0,q)

[
L(0)bq

]
t0,t

+
m∑

q,r=1

I(r,q)

[
L(r)bq

]
t0,t

. (95)

It is obvious from this expression that multiple stochastic integrals are central objects for the

representation of an approximate solution of the SDE (82). Clearly, the obtained expansion

procedure can be continued by repeated applications of formula (90) (see next chapter). For

instance, we obtain for ϕ = L(r)Bpq immediately

I(r,q)

[
L(r)bq

]
t0,t

=
[
L(r)bq

]
t0
I(r,q) + I(0,r,q)

[
L(0)L(r)bq

]
t0,t

+
m∑

s=1

I(s,r,q)

[
L(s)L(r)bq

]
t0,t

. (96)

For sake of completeness, we notice that the so-called Itô (vector) coefficient functions k(0) =

F{t0},k(q) = bq{t0},k(r,q) =
[
L(r)bq

]
{t0} etc. at {t0} can be evaluated recursively. That

means, for multi-index length l(α) ≥ 1, l(α) ∈ {1, 2}, we obtain

kα =
[
L(m)k−α

]
{t0}, n ∈ {0, q}, (97)

where −α = (j1, j2, j3, ..., jl) = (j2, j3, ..., jl). In essence, we retain from this section that a

(sufficient) smooth function of an Itô process can be expanded in an Itô-Taylor series which

is a sum of finite multiple Itô integrals with constant integrands and a remainder which is

established by a finite number of Itô integrals with non-constant integrands (cf., expression

(94) ). Moreover, appropriate hierarchical sets (see App. G ) are the basis of the ITE with

which a characterisation is possible. In the next chapter the ITE is used to construct suitable

discrete schemes for the solution of the SDE (82).
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5. Numerical Framework

5.1. Introduction. In chapter 4 the formal equivalence between the SDE and the FP equa-

tion has been shown, which means that in principle it is possible ”to choose“ which of the

two equations to solve. An adoption coherent with the philosophy depicted by Figure 1.2

privileges the former for fitting very well in a Particle-In-Cell scheme, as it will be shown

later. It describes essentially the movement of each single (macro)-particle due to friction

and diffusion forces corresponding to the distribution function given by (65). The technique

to evaluate friction and diffusion forces has been depicted in Chap. 3 while the Wiener process

was explicitated in the previous chapter where also a sketch of a possible numerical method

was given. It is now time to put the ingredients in the right order to obtain the whole nu-

merical recipe. The nature of the SDE changes the classical phase-space PIC approach and

addresses the study field to conceive a scheme working fully in velocity space. For this reason

it is seems appropriate here to sketch out the main features of this approach and describe

some theoretical aspects which will be the core of this work.

5.2. A new PIC-based approach for the FP Equation. The key quantities to solve the

Langevin-type differential equation are the velocity dependent friction (27) and diffusion (28)

coefficients at each time step t = tn. For this purpose a PIC-type, self-consistent numerical

scheme is constructed in the velocity space. Schematically a typical PIC-cycle is depicted in

Figure 5.1. The peculiarity of this PIC scheme is the fact that it is built in the velocity space,

and then classically divided in two areas, one mesh-free and one grid-based. In the following

the different building blocks of the PIC scheme are discussed in detail. For sake of clearness,

Mesh−free

Grid−Based

Rosenbluth Solver

Reconstruction

Langevin Solver

p
n f(Vj )

f(Vj
)

Interpolation

(F, D)
j

(F, D)
j

(F, D)
p

V

VpΔp
(F, D) n

Figure 5.1. Schematical description of the

Fokker-Planck solver based on the PIC

method in the velocity space.

we consider here a single grid cell of the spatial computational domain, containing a sufficient

large number of particles (of a certain specie “α”). Furthermore, if it is skilful and pedagogical
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sensible we will introduce the three-dimensional formulation of the numerical schemes, else

we switch to lower-dimensional descriptions which could be straightforward generalised.

Associated with each local grid zone is a Cartesian mesh in velocity space with an equidistant

spacing Δu, Δv and Δw in x−, y−, and z−direction, respectively, which is built up according

to

ui,j,k = u0 + (i − 1)Δu , 1 ≤ i ≤ I + 1

vi,j,k = v0 + (j − 1)Δv , 1 ≤ j ≤ J + 1

wi,j,k = w0 + (k − 1)Δw , 1 ≤ k ≤ K + 1 . (98)

Here, u, v, and w are the components of the velocity grid vector vi,j,k =
(
u, v, w

)T

i,j,k
and(

u0, v0, w0

)T

are the coordinates of the starting point of the velocity grid.

Reconstruction Block (Localisation and Assignment). From the actual location of the plasma

particles in mesh-free velocity space, the distribution function f(c) is constructed on the

Cartesian velocity mesh in two steps. At first the particles have to be located with respect

z

x

y

(i,j+1,k)

(i,j,k+1) (i,j+1,k+1)

(i+1,j+1,k)

(i+1,j,k+1)

A

AA

A i,ji,j+1

i+1,j+1 i+1,j

α

α

α1

2

3

Figure 5.2. Assignment of the particle’s velocity to the nodes

(grid-based model) and interpolation of the results obtained in

the nodes onto the particle’s position in velocity space (mesh-

free model) with the aid of the volume-weighting approach.

to the velocity grid. To identify the address of the cell Zi,j,k where the particle’s velocity is
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found, we apply the localisation strategy

ip = INT
( [V1]pn − u0

Δu

)
+ 1

jp = INT
( [V2]pn − u0

Δu

)
+ 1

kp = INT
( [V3]pn − u0

Δu

)
+ 1 , (99)

where Vp
n =

(
[V1]pn, [V2]pn, [V3]pn

)T

is the velocity vector of the pth particle at time tn and

INT(.) denotes the integer part of a real number. Note, that the strength – namely, the

high efficiency – of this approach is a consequence of the equidistant grid spacing. Secondly,

after the particle is localised in the grid cell Zip,jp,kp of the velocity mesh, we have to bridge

the gap between the mesh-free and grid-based computations. For this purpose, we introduce

the relative weighting coordinates α(p) =
(
α

(p)
1 , α

(p)
2 , α

(p)
3 ,
)

of the pth particle at t = tn

according to

α
(p)
1 =

1
Δu

(
[V1]pn − uip,jp,kp

)
α

(p)
2 =

1
Δv

(
[V2]pn − vip,jp,kp

)
α

(p)
3 =

1
Δw

(
[V3]pn − wip,jp,kp

)
. (100)

It is obvious, that the weights g
(p)
i,j,k of the considered particle have to be calculated with

respect to the surrounding eight nodes of the grid (see Figure 5.2). The first step to do this,

is to compute the four areas of the section parallel to the (x, y)-plane, where the particle is

located. According to the area-weighting method [51, 14] we get

Ai,j =
(
1 − α

(p)
1

)(
1 − α

(p)
2

)
Ai+1,j = α

(p)
1

(
1 − α

(p)
2

)
Ai,j+1 =

(
1 − α

(p)
1

)
α

(p)
2

Ai+1,j+1 = α
(p)
1 α

(p)
2 . (101)

These areas form the bases of eight cuboids

g
(p)
i,j,k

g
(p)
i,j,k+1

= Ai,j

⎧⎨
⎩1 − α

(p)
3

α
(p)
3

g
(p)
i+1,j,k

g
(p)
i+1,j,k+1

= Ai+1,j

⎧⎨
⎩1 − α

(p)
3

α
(p)
3

g
(p)
i,j+1,k

g
(p)
i,j+1,k+1

= Ai,j+1

⎧⎨
⎩1 − α

(p)
3

α
(p)
3

g
(p)
i+1,j+1,k

g
(p)
i+1,j+1,k+1

= Ai+1,j+1

⎧⎨
⎩1 − α

(p)
3

α
(p)
3

. (102)
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which represent the relative coordinates α(p) depending weights of the pth particle located in

the grid cell Zip,jp,kp . As one would expect, the weights fulfil the relation

1∑
μ,νλ=0

g
(p)
i+μ,j+ν,k+λ = 1 , (103)

and, obviously can be interpreted as fraction of the volume of the actual grid cell. Further-

more, the applied method may be considered as an extension of the well-known area-weighting

method to three dimensions and, hence will be called volume-weighting technique.

Rosenbluth Solver. The reconstructed field particle (scatterer) distribution function on the

velocity grid is used for the computation of the Rosenbluth potentials and their derivatives,

from which the friction and diffusion coefficients for the test particles are determined. In

order to be free of any model assumption – like isotropic distribution of the field particles –,

we apply Discrete Fourier Transformation (DFT) techniques [52, 53, 54]. As it is discussed in

detail by Brigham [52], the DFT represents a special case of the (continuous) Fourier integral

transformation, to which three “modifications” are necessary. The DFT in one dimension

may be defined according to

fτ =
1
N

N−1∑
σ=0

f̂σ e2πi τσ
N ; τ = 0, 1, . . . , N − 1 (104)

and

f̂σ =
N−1∑
τ=0

fτ e−2πi τσ
N ; σ = 0, 1, . . . , N − 1 , (105)

where the signal fτ in c-space and the spectrum f̂σ in k-space form a discrete transform pair

indicated by fτ ⇔ f̂σ
2. The application of the DFT implicitly requires a periodicity of the

discrete signal and spectrum

fτ = fτ+mN and f̂σ = f̂σ+mN ; m = 0,±1,±2, . . . , (106)

which means, that the N sampling values of both representing one period of a periodic

(discrete) function. Instead to apply directly the discrete convolution to the integrals (23)

and (24), we use the DFT to get an approximation of the Fourier transform f̂scat(ks) =
∞∫

−∞
dcs e−2πicsks fscat(cs) of the field particle distribution fscat(cs), where the quality of this

approximation depends strongly on the shape of the signal under consideration (cf., [52]).

According to the relations (52) - (53), multiplications are performed in k-space to obtain the

Fourier transforms of the Rosenbluth potentials and their derivatives. Afterwards, the DFT

is applied once again for the approximation of the inverse Fourier transforms from which the

friction (27) and diffusion (28) coefficients are computed in velocity space.

Numerical and Algorithmical Aspects of the FFT. A fast Fourier transform (FFT) is

an efficient algorithm to compute the DFT and its inverse. FFTs are of great importance

2Note, the comparison with the continuous Fourier transformations requires a scaling with Ks and Cs,

respectively, which are the constant sampling intervals in k- and c-space.
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to a wide variety of applications, from digital signal processing to solving partial differential

equations to algorithms for quickly multiplying large integers [55]. The DFT is defined by the

formula (105) and can be rewritten as

Fn =
N−1∑
k=0

W n k fk ; n = 0, 1, . . . , N − 1 ⇐⇒ F = W f (107)

where the complex number W is given by

W = e−2πi/N (108)

and f̂n is replaced by Fn for convenience. In other words, the vector f is multiplied by a

matrix W, whose (n, k)-th element is the constant W to the power n ·k, yielding the vector F

with components Fn. This matrix multiplication evidently requires N2 complex multiplica-

tions, plus a smaller number of operations to generate the required powers of W . Evaluating

these sums directly would take O(N2) arithmetical operations [52]. The FFT computes the

Figure 5.3. Reordering phase in the case

of 8 samples.

same result in only O
(
N log(N)

)
operations. In general, such algorithms depend upon the

factorisation of N , but (contrary to popular misconception) there are O
(
N log(N)

)
FFTs for

all N , even prime n. The difference between N log(N) and N2 is immense: With N = 106

, for example, it is the difference between, roughly, 30 seconds of CPU time and two weeks

on a microsecond cycle time computer [54]. Since the inverse DFT is the same as the DFT,

but with the opposite sign in the exponent and a 1/N factor, any FFT algorithm can easily

be adapted for it as well. By far the most common FFT is the Cooley-Turkey algorithm.

This method (and the general idea of an FFT) was popularised by a publication of J. W.

Cooley and J. W. Turkey in 1965 [56], but it was later discovered that those two authors had

independently re-invented an algorithm known to Carl Friedrich Gauss around 1805 [57] (and

subsequently rediscovered by as many as a dozen individuals in limited forms [58]). This is

a divide and conquer algorithm that recursively breaks down a DFT of any composite size
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N = N1 N2 into many smaller DFTs of sizes N1 and N2, along with O(N) multiplications by

complex roots of unity traditionally called twiddle factors. Also, because the Cooley-Turkey

algorithm breaks the DFT into smaller DFTs, it can be combined arbitrarily with any other

algorithm for the DFT. Finally, although the basic idea is recursive, most traditional imple-

mentations rearrange the algorithm to avoid explicit recursion.

One rediscovery of the FFT, that of Danielson and Lanczos in 1942 [59], provides one of

the clearest derivations of this algorithm. The Danielson and Lanczos lemma shows that a

Figure 5.4. Combination phase in the case

of 8 samples.

discrete Fourier transform of length N can be rewritten as the sum of two discrete Fourier

transforms, each of length N/2. One of the two is formed from the even-numbered points of

the original N , the other from the odd-numbered points. The proof is simply this:

Fn =
N−1∑
j=0

e−2πi j n
N fj

=
N/2−1∑

j=0

e−2πi n
N (2j) f2j +

N/2−1∑
j=0

e−2πi n
N (2j+1) f2j+1

=
N/2−1∑

j=0

e−2πi j n
N/2 f2j + Wn

N/2−1∑
j=0

e−2πi j n
N/2 f2j+1

= F e
n + Wn F o

n . (109)

In the last line, W is the complex constant, F e
n denotes the nth component of the Fourier

transform of length N/2 formed from the even components of the original fj ’s, while F o
n is the

corresponding transform of length N/2 formed from the odd components. It is worthwhile to

note that the evaluation of the DFT by just one splitting of the input sequence requires N2/2

multiplications and N2/2 additions which is a factor-of-two-savings, that is encouraging for

further splitting. Although there are ways of treating other cases, by far the easiest case is the
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one in which the original N is an integer power of 2. With this restriction on N , it is evident

that we can continue applying the Danielson-Lanczos lemma until we have subdivided the data

all the way down to transforms of length one. The Fourier transform of length one is just the

identity operation that copies its one input number into its one output slot
(
F{Aδ(t)

}
= A,

with A = constant
)
!

This algorithm which belongs to the class of the decimation-in-time since it involves the

splitting of the input (or time) sequence consists of two phases: a reordering stage in which

the input array is successively subdivided into even and odd sequences and a combine phase,

in which sequences of length 1 are combined into sequences of length 2 then sequences of

length 2 into sequences of length 4 and so on until the final transform sequence is formed

from two sequences of length N/2. Table 5.3 explains how to perform the former phase in

a smart way, by means of the so-called bit-reversing order [54, 52]. Suppose that the input

array consists, for simplicity of 8 samples, numbered from 0 to 7 (line 2). Moving the evens

on the left side of table and the odds on the right means in other words to separate those

positions which have rest 0 from those which have rest 1 when divided by 2, as indicated in

the third line, yielding two sequences by four elements each. Inside these two new sequences

(line 4) it is still possible to distinguish even and odd positions, which are rearranged as

showed in line 6. This step corresponds to a further division by 2 whose rest is indicated as

the second digit in line 5. Keeping on splitting the input sequence in an even/odd fashion

until N sequences of length 1 remain, and assigning successively a 0 to the even and a 1 to the

odd sequences, is evidently nothing else than the standard technique to convert from decimal

to binary notation. Observing the first and the penultimate line of the table, it is evident

that the original array is now rearranged in a fashion which could be directly obtained by

simply reversing the binary sequences of its original entries, i.e. position number 410, (100)2
, goes finally to position 1, because 110 = (001)2.

The combine phase starts now with N trivial one-point transforms. Then the sequences of

length 1 are combined in pairs (f0 with f4, f2 with f6 . . . ) according to formula (109) to form

DFTs of length 2 (see table 5.4). Again, DFTs sequences of length 2 are combined in pairs

(X0 and X1 with Y0 and Y1 . . . ) to form two DFTs of length 4 (N/2) and finally these two

are combined to form the desired Fk (see table 5.4).

Each combination takes of order N operations, and there are evidently log2(N) combinations,

so the whole algorithm is of order N log2(N) (assuming, as is the case, that the process of

sorting into bit-reversed order is no greater in order than N log2(N)). This, then, is the

structure of an FFT algorithm: It has two sections. The first section sorts the data into

bit-reversed order, but this takes no additional storage, since it involves only swapping pairs

of elements (If k1 is the bit reverse k2, then k2 is the bit reverse of k1). The second section has

an outer loop that is executed log2 N times and calculates, in turn, transforms of length 2, 4,

8, .., N. For each stage of this process, two nested inner loops range over the subtransforms

already computed and the elements of each transform, implementing the Danielson-Lanczos

lemma. The operation is made more efficient by restricting external calls for trigonometric
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sines and cosines to the outer loop, where they are made only log2(N) times. Computation

of the sines and cosines of multiple angles is through simple recurrence relations in the inner

loops.

Problems and Remedies. The most important class of signals appearing in practical

applications are those with an arbitrary unlimited shape in c-space which are not band

limited in k-space. To obtain a discrete signal one has to multiply the arbitrary distribution

function fscat(c) with the sampling (or repetition) function repCs
δ
(
c
)

=
∞∑

n=−∞
δ
(
c − n Cs

)
(
with the transform pair:

repCs
δ
(
c
)⇔ 1

Cs
rep1/Cs

δ
(
k
) )

to get

fs(c) = fscat(c) repCs
δ
(
c
)

=
∞∑

n=−∞
fscat(nCs) δ

(
c − n Cs

)
, (110)

where Cs is the sample interval. In general, the spectrum f̂scat(k) of the signal fscat(c) is

not band limited and aliasing is natural consequence of the sampling process. To reduce the

influence of aliasing it is recommended to sample the signal with high “frequency” 1/Cs which

means, with a sufficient small Cs.

Clearly, the discrete signal (110) is not suitable for numerical purposes because an infinite

number of sampling points are used. Therefore, the sampling signal fs(c) have to be limited

in velocity space by the application, for instance, of the rectangle function of unit height

rectC0(c) =

⎧⎨
⎩1 , Cs

2 ≤ c ≤ C0 − Cs

2

0 , else
, (111)

where C0 is the duration of the limitation and

rectC0(c) ⇔ e−πik(C0−Cs) sin(πkC0)
πk . Then, the velocity limitation yields

fw(c) = fs(c) rectC0(c) =
N−1∑
n=0

fscat(nCs) δ
(
c − n Cs

)
, (112)

where it is assumed that N equidistant δ-functions occur within the period of observation, that

is C0 = N Cs. The difficult point concerns the choice of the duration of the observation. It is

well-known that for the ideal case of a band limited periodic signal the observation duration

C0 should be the period of the signal or a multiple of this period. Otherwise – greater than a

period –, additional “frequency” components are generated in the Fourier transform f̂scat(k),

which leads to ripples in the spectrum and sharp discontinuities of the signal in velocity space.

These discontinuities are also expected in the case of an arbitrary signal, where the period is

determined by the number N of sampling points. A convenient remedy to cure these “errors”

(side lobes amplitudes) is to replace the rectangle velocity limitation by a more appropriate

window functions. The net effect, for instance, of the Hanning-function is a strong attenuation

of the rectangle function induced discontinuities [54, 52].

Interpolation Block. After the grid-based computations are executed, the essential information
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(derivation of the Rosenbluth potentials) has to be brought onto the particle location in

velocity space. This link between the grid-based and mesh-free numerical model is established

by the interpolation step, which is nothing else than the inverse operation of the assignment

procedure. The friction and diffusion coefficients Rp(tn) =
{
Fρ, Dρσ; ρ, σ = 1, 2, 3

}
at the

velocity Vn
p of the pth particle at time tn are computed from the coefficients Rn

i,j,k stored at

the surrounding nodes vi,j,k of the actual velocity grid. For this task, we apply the volume-

weighting interpolation formula [14]

Rp(tn) =
1∑

μ,ν,λ=0

g
(p)
i+μ,j+ν,k+λ Rn

i+μ,j+ν,k+λ , (113)

where the weights g
(p)
i,j,k are already determined in the assignment step. The fact that the

particle-based weights (113) have to be computed only once at the interface mesh-free/grid-

based and used for assignment as well as for interpolation is a very attractive feature, which

enhance the efficiency of the numerical scheme. Finally note, that the way of computing the

particle weights (102) reveals that interpolation and assignment are multidimensional linear

approximations.

Langevin Solver. Simulations of phenomena caused by a non-neutral plasma requires the

solution of the time-dependent Maxwell-Vlasov equations in two or even three dimensions in

space [4]. The numerical method of choice to solve this non-linear problem is the PIC method.

There, the Lorentz force at the charged particle position is responsible for the redistribution

of the different particle ensembles. The new phase-space coordinates are obtained by the

numerical solution of the deterministic Lorentz equations, where the special tailored leapfrog

scheme of Boris is applied [25].

In the context of the present PIC approach, the Langevin “forces”, which consists of the

deterministic friction and the stochastic diffusion moves the particles in velocity space. Under

the action of these velocity-dependent Langevin forces, each particle evolve in velocity space

according to the Langevin-type equation (82). However, this equation represents a SDE whose

mathematical character contrasts sharply with the deterministic Lorentz equation. Especially,

this fundamental difference find expression in the numerical approximation of the stochastic

law of dynamics (82).

The numerical solution of SDEs requires to determine random numbers and the schemes

are classified in strong and weak convergence approximations. Unfortunately, a clear and

stringent distinction between both approximations for a SDE is seldom found in literalture

[41, 60, 39]. If one is interested in the individual trajectories of the dynamical system described

by the SDE, (explicit) strong Itô-Taylor schemes (see App. H) are appropriate because they

ensure a pathwise approximation. Roughly speaking, this kind of approximation need the

resolution of the ”inner structure“ of the random variables, which is difficult to achieve and

a very CPU time consuming. Weak and explicit weak Itô-Taylor schemes are reasonable for

application where one is only interested in the computation of moments or functionals of

moments. Such approximations are not as demanding as pathwise approximations because
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they require only that probability distribution of two random variables are (sufficiently) close

to each other, but not the actual realisation of these random variable. In the following we

present an explicit weak, order two Itô-Taylor scheme.

5.3. Weak Itô -Taylor Approximations for the Langevin-Type Equation. In this

section, a discrete approximation Vn = V(tn) of an Itô process C =
{
C(t) | t0 ≤ t ≤ T

}
satisfying the Langevin-type equation (82) on t0 ≤ t ≤ T with initial data C0 = C(t0) is

searched. Especially, for a given discretisation t0 < t1 < t2 · · · < tN = T of the interval [t0, T ]

– in the following with constant Δt –, an iterative scheme of the form Vn+1 = G
(
Vn, tn

)
, for

n = 0, 1, 2, . . . N −1, with initial value V0 = C(t0) is desired, where G represents a function

of the previous approximation step.

Weak Order 1.0 Euler Scheme.

The simplest time discrete approximation of the Itô process C is the Euler approximation,

which shows weak convergence order β = 1.0 under suitable conditions on the friction and

diffusion coefficients (for this and the following, especially, the convergence proofs of the

schemes we refer to Kloeden & Platen [49]). The starting point to obtain this scheme is the

weak ITE (cf. eq. 94) for the hierarchical set Γ1.0 (see App. G). In the multi-dimensional case

(that is d = 3 spacial dimensions and m = 3 independent Wiener processes in the following)

this truncated expansion reads as

C
(
t0 + Δt

)
= C

(
t0
)

+ F
{
t0
} I(0) +

m∑
q=1

bq

{
t0
} I(q) , (114)

where the notation of Chap. 4 is used. A central task in the context of weak schemes is to find

appropriate approximations of multiple Itô integrals and, especially, to compute expectation

values of products of such integrals in order to get correlations and corresponding moment

conditions for these random objects. From definition (93) it is clear that the former Itô

integral appearing on the right-hand side (rhs) of (114) is a constant: I(0) = Δt. For the

latter, multiplicity one integral I(q) it is immediately obvious – from the zero expectation

property of Itô integrals – that E
{
I(q)

}
= 0. To get more information about the correlations

of this object with others, we have to compute, for instance, E
{
I(p) I(q)

}
. It is straightforward

to show that

E
{
I(p) I(q)

}
= Δt δp q , (115)

where δp q denotes the Kronecker delta symbol. This short discussion suggests to replace the

Itô integral I(q) by a Gaussian random variable ΔW q
n with the moment properties E

{
ΔW q

n

}
=

0 and E
{(

ΔW q
n

)2} = Δt. Then, the multi-dimensional weak Euler scheme (also known as

Euler-Maruyama scheme) may be written in the form

Vn+1 = Vn + ΔtF
{
tn
}

+
√

Δt
m∑

q=1

bq

{
tn
}

ηq
n , (116)
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where we introduced that ΔW q
n =

√
Δt ηq

n. Here, ηq
n is a Gaussian random number with mean

E
{

ηq
n

}
= 0 and variance Var

(
ηq

n

)
= E
{(

ηq
n

)2}−(E{ηq
n

})2

= 1; this fact is often compactly

expressed by the notation ηq
n ∼ N (0, 1

)
. As mentioned, a characteristic feature of weak

approximation is the freedom to replace multiple Itô integrals by simple random numbers

which coincide with the lower order moments. Since only an accurate representation of the

probability law of an Itô process is important, we can proceed and interchange the Gaussian

increments ΔW q
n ∼ N (0, Δt

)
by simpler, for instance, two-point distributed random variables

ΔŴ q
n with Prob

(
ΔŴ q

n = ±√
Δt
)

= 1/2. In general, the moments of the independent random

numbers ΔŴ q
n must fulfil the condition

∣∣∣∣E{ΔŴ q
n

}∣∣∣∣+
∣∣∣∣E{(ΔŴ q

n)3
}∣∣∣∣+

∣∣∣∣E{(ΔŴ q
n)2
}
− Δt

∣∣∣∣ ≤ K (Δt)2

for some constant K. Finally, keep in mind that according to the definition of bq (see section

4.6) no derivatives of the friction and diffusion coefficients with respect to the variable C

appear in the weak Euler scheme (116) – a reason why this scheme is “the workhorse“ in

stochastic computation. And furthermore, note that a first order strong scheme yet requires

additional approximations of double stochastic Itô integrals (see App. H).

Weak Order 2.0 Itô-Taylor Scheme.

As one would expected, a higher order accurate weak scheme requires much more numerical

effort to include more information about the probability measure of the underlying Itô process.

Indeed, the desired order of the weak convergence also determines which truncation of the

ITE (94) must be used. To obtain second order of weak convergence, all double stochastic

integrals of the ITE are now necessary. In other words, the expansion has to be performed

for the hierarchical set Γ2.0 (see App. G ) and reads as

C(t0 + Δt) = C(t0) + F
{
t0
} I(0) +

m∑
p=1

bp

{
t0
} I(p)

+
m∑

p,q=1

[
bp · ∇c bq

]{
t0
} I(p,q) +

m∑
p=1

[
bp · ∇c F

]{
t0
} I(p,0)

+
m∑

p=1

[
L(0) bp

]{
t0
} I(0,p) +

[
L(0) F

]{
t0
} I(0,0) , (117)

with the notation introduced in Chap. 4, where, additionally, the operator L(p) (85) is

identified by L(p) = bp · ∇c. Similar as above for I(0), we obtain from the definition of

the Itô integral (96) that I(0,0) is also a constant given by I(0,0) = 1
2

(
Δt
)2. Furthermore,

we notice that the expectation of all other Itô integrals vanish due to (75). In spirit of

weak approximation, we now successively replace the remaining Itô integrals by simpler noise

increments, for instance, first by independently distributed Gaussian random variables. First

of all, we consider the double integral I(p,0) and ascertain that the second moment – which
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is equivalent to the variance – is given by

E
{
I(p,0) I(q,0)

}
=

1
3
(Δt)3 δp q , (118)

while the correlation with the integral I(p) reads as

E
{
I(p) I(q,0)

}
=

1
2
(Δt)2 δp q . (119)

These results suggest to substitute I(p,0) by a normally distributed random number ΔZp
n

with mean E
{

ΔZp
n

}
= 0, variance E

{
(ΔZp

n)2
}

= 1/3(Δt)3 and covariance E
{

ΔW p
n ΔZp

n

}
=

1/2(Δt)2, where ΔW p
n is the random number “image“ of I(p) (cf., relation (115)). For sake of

completeness, we have to mention that such a pair of correlated normally distributed random

variables is obtained from the relations

ΔW p
n =

(
Δt
)1/2

G1 and ΔZp
n =

1
2
(
Δt
)3/2
(
G1 + 3−1/2 G2

)
, (120)

where G1 ∼ N (0, 1) and G2 ∼ N (0, 1) are two independent standard Gaussian increments.

Since I(0,p) possesses the same probability measure that I(p,0) does (see, expressions (118)

and (119)), we conclude with the help of relation

I(0,p) = Δt I(p) − I(0,p) (121)

that the multiple Itô integral I(0,p) may be replaced by the random number
[
Δt ΔW p

n−ΔZp
n

]
.

In order to reduce the remaining Itô integrals I(p,q) to appropriate random variables, we

consider first the case p = q and refer to the footnote 1. From there we recognise that I(p,p)

is essentially a Hermite polynomial in I(p):

I(p,p) =
Δt

4
H2

( I(p)√
2 Δt

)
=

1
2

(
I 2

(p) − Δt

)
, (122)

and, consequentely, I(p,p) can be represented by the random number
1
2

[
(ΔW p

n )2 − Δt
]
. To investigate the case p �= q, we can start from the ansatz

I(p,q) =
1
2

(
I(p) I(q) + Rp,q

)
, (123)

where Rp,q is still unknown. Clearly, with the result (122), Rp,q can be identified for p = q

with Rp,q = −Δt. Setting p and q equal to p = μ + 1 and q = μ for μ = 1, 2, . . . , it

is pretty evident that the mean and variance of Rμ+1,μ are given by E
{

Rμ+1,μ

}
= 0 and

E
{

R2
μ+1,μ

}
= (Δt)2, respectively, where the relation E

{
I(p,q) I(r,s)

}
= 1/2(Δt)2 δpr δqs is

applied. By means of the observation Wμ+1 I(μ) = I(μ+1,μ) + I(μ,μ+1) and the replacement

I(p) ↔ W p, we further find that Rμ,μ+1 = −Rμ+1,μ. This brings to the conclusion that Rp,q

in (123) can be replaced, for instance, by a Gaussian random variable of the form

R p,q
n = Δt G p,q

n and R q,p
n = −R p,q

n (124)

with Gp,q
n ∼ N (0, 1) for p > q, which has the desired property, namely, Rp,q

n ∼ N
(
0, (Δt)2

)
.

Proceeding further on in the spirit of weak approximation we finally replace ΔZp
n by the

simpler random number ΔZp
n = 1

2Δt ΔW p
n which obeys obviously the expectation values

E
{

(ΔZp
n)2
}

∼ (Δt)3 and E
{
ΔW p

n ΔZp
n

}
∼ (Δt)2. Note, that also ΔW p

n and Rp,q
n could be
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substituted by simpler three- and two-point distributed random numbers, respectively, with

corresponding probability properties. Replacing then in the ITE (117) the multiple Itô inte-

grals by the simpler random numbers which are introduced in the preceding considerations,

we obtain after some rearrangements

Vn+1 = Vn + Δt

(
F
{
tn
}

+
Δt

2

[
L(0) F

]{
tn
}

+
1
2

m∑
p=1

W p
n

[
bp · ∇c F

]{
tn
})

+
m∑

p=1

ΔW p
n

(
bp

{
tn
}

+
Δt

2

[
L(0) bp

]{
tn
})

+
1
2

m∑
p=1

([
bp · ∇c bp

]{
tn
} [

(ΔW p
n )2 − Δt

]

+
m∑

q=1
q 
=p

[
bq · ∇c bp

]{
tn
} [

ΔW p
n ΔW q

n + Rp,q
n

])
, (125)

which represents the desired (non derivative free) order β = 2.0 weak Itô-Taylor scheme in its

preliminary form. Concerning the consistency of this weak scheme we refer to Appendix I.

It is obvious from (125) that the order two weak Itô-Taylor scheme requires the evaluation

of derivatives up to second order of the friction and derived diffusion coefficients. However,

in self-consistent computations these coefficients are not analytically known in the course

of the simulation and, hence, it is desireable to avoid the use of such derivatives. Schemes

which fulfil this requirement are known as explicit schemes and are not just an extensions of

deterministic Runge-Kutta methods.

To obtain a completely derivative free order two weak Itô-Taylor scheme from (125) several

approximations have to be performed which are described in the following.

• First approximation: Starting from

ΔF = F
(
V�

n+1

)− F
(
Vn

)
,

where the auxiliary vector V�
n+1 is estimated from

V�
n+1 = Vn + F(Vn)Δt +

m∑
p=1

bp(Vn)ΔW p
n (126)

and ΔF is determined by means of the Itô formula (83), get

1
2

[
F
(
V�

n+1

)
+ F
(
Vn

)] ≈ F +
Δt

2

[
L(0) F

]
+

1
2

m∑
p=1

W p
n

[
bp · ∇c F

]
(127)

Note, that the “predictor step“ (126) represents nothing else than the first order weak

Euler scheme already introduced by (116).

• Second approximation: Introducing the support vector

T±
p = Vn + F(Vn)Δt ± bp(Vn)

√
Δt (128)
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and performing a deterministic Taylor expansion for Ψ
(
T±

p

)
up to first order in Δt,

we obtain

bp · ∇cΨ ≈ 1
2
√

Δt

[
Ψ
(
T+

p

)
− Ψ

(
T−

p

)]
(129)

and

Ψ
(
T+

p

)
+ Ψ

(
T−

p

)
≈ 2 Ψ

(
Vn

)
+ 2 Δt

(
L(0) Ψ

− 1
2

∑
q

q 
=p

∑
i,k

Biq Bkq
∂2Ψ

∂ci∂ck

)
, (130)

where Biq are the coefficients of matrix B. From the latter relation (130) we conclude

that

∑
p

ΔW p
n

(
bp +

Δt

2
L(0) bp

)
≈ 1

4

∑
p

ΔW p
n

(
bp

(
T+

p

)

+ bp

(
T−

p

)
2bp

(
Vn

)

+Δt
∑

q
q 
=p

∑
i,k

Biq Bkq
∂2

∂ci∂ck
bp

(
Vn

))
. (131)

• Third approximation. A further deterministic Taylor expansion for Ψ
(
U±

q

)
up to Δt

with the auxiliary vector

U±
q = Vn ± bp(Vn)

√
Δt , q �= p (132)

yields

bq · ∇cΨ ≈ 1
2
√

Δt

[
Ψ
(
U+

q

)
− Ψ

(
U−

q

)]
(133)

and

Ψ
(
U+

q

)
+ Ψ

(
U−

q

)
− 2 Ψ

(
Vn

)
≈ Δt

∑
i,k

Biq Bkq
∂2Ψ

∂ci∂ck
. (134)

Inserting the latter result into (131), we immediately get

∑
p

ΔW p
n

(
bp +

Δt

2
L(0) bp

)
≈ 1

4

∑
p

ΔW p
n

(
bp

(
T+

p

)

+ bp

(
T−

p

)
2bp

(
Vn

)

+
∑

q
q 
=p

bp

(
U+

q

)
+ bp

(
U−

q

)
− 2bp

(
Vn

))
. (135)
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Substituting the expressions (127), (135), (129) and (133) into (125), we obtain an explicit

order β = 2.0 weak Itô-Taylor scheme [49] which reads as

Vn+1 = Vn +
Δt

2

[
F
(
V�

n+1

)
+ F
(
Vn

)]

+
1
4

m∑
p=1

{[
bp(T+

p ) + bp(T−
p ) + 2bp(Vn)

]
ΔW p

n

+
m∑

q=1
q 
=p

[
bp(U+

q ) + bp(U−
q ) − 2bp(Vn)

]
ΔW p

n

}

+
1

4
√

Δt

m∑
p=1

{[
bp(T+

p ) − bp(T−
p )
][

(ΔW p
n )2 − Δt

]

+
m∑

q=1
q 
=p

[
bp(U+

q ) − bp(U−
q )
][

ΔW p
n ΔW q

n + Rp,q
n

]}
(136)

where we skip the explicit time dependence of the vector functions F and bp, the subscripts

“n“ and “n+1“ abbreviate, respectively, the time levels tn and tn+1 = tn +Δt. Furthermore,

the occurring auxiliary vectors are defined by the relations (126), (128) and (132).
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6. Results

6.1. Introduction. The goal of this section is the assessment of the Fokker-Planck module

which is used to describe the effects of Coulomb collisions in plasmas. The program has been

developed according to the building block structure depicted in Fig. 2.1. Each of these puzzle

pieces has been tested separately and together to prove the approximation characteristics of

the whole numerical code; in this respect the benefits of the renormalisation technique for

energy and momentum conservation are shown. The problem of obtaining a good resolution of

the distribution function, even in presence of a low number of particles, has been successfully

overcome by means of a noise reduction method. The renormalisation technique normally

used for avoiding finite sample instabilities problems in equilibrium status has been applied

for the conservation of global energy and momentum in transient conditions. Afterwards, this

tool was used to get a better insight of the collision phenomenon initially for the inter-species

and intra-species cases separately and then coupled. Finally, results for self-consistent study

of the time scaling are also presented.

6.2. Building Blocks Validation. In this section the three dimensional extension of the

results obtained in [61] is presented; in fact the isotropic hypothesis is here abandoned in

favour of a most general, cartesian treatment. The validation of the 3D-Rosenbluth solver is

skipped since the evaluation of the Friction and Diffusion forces for a known case has been

already discussed in Sec. 3.7. Here again the L2 Norm of the error has been assumed as the

figure of merit for the comparison between numerical and exact solution since level curves,

slices and so on, can only give a partial visualisation of the numerical evaluation.

6.2.1. Experiment 1: Mesh-free/Grid-based

Handling. Since interpolation is the inverse operation of the assignment procedure, in this

experiment we restrict ourselves to inspect only the latter.

As pointed out in the previous chapters, an accurate reconstruction of the distribution func-

tion is fundamental for the evaluation of the forces acting on the particles. A trade-off between

the discretisation interval (basically the ratio of the interval width and the number of grid

points NG), the number of particles Np must be found in order to get a smooth, accurate

distribution function in a reasonable computation time. For this, we generate N = 3 · 104

Gaussian distributed (pseudo) random numbers with mean μ = 0 and variance σ2 = 1 which

represent the velocity in x, y and z directions of the Np particles in the mesh-free veloc-

ity space. After the localisation with respect to the velocity grid, each particle contributes

according to its weights (99) to the particle distribution function whose slices at different

heights are projected on the plane cz = 0 and depicted in Fig. 6.1 and Fig. 6.2 for a coarse

(NG = 32) and in Fig. 6.3 and Fig. 6.4 two finer (NG = 64 and NG = 128 respectively)

velocity grids. As expected, the 32 points resolution is quite poor, a fact that is especially

evident if contour lines are extracted from the intersection between the distribution function

evaluated at cz = 0 and a surface perpendicular to the plane (cx, cz). As highlighted both by

the two-dimensional plot and by the L2 norm of the error, a much better agreement between
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the numerical resolution and the analytical expression is obtained increasing the number of

grid points, as shown in 6.3. It is worthwhile to note how this is not always the remedy, since

an excessive number of grid points can result in a noisy distribution function, as shown in

Fig. 6.4.

Figure 6.1. Level lines of the distribution function reconstructed on a 32

grid points with 3 · 104 particles (continuous line) and comparison with the

the numerical resolution (dashed line), L2{err} ∼ 0.52 %.

Figure 6.2. Profiles extracted from the intersection of fnum(cx, cy, 0) and

fexact(cx, cy, 0), light and bold line respectively, with a surface ⊥ (cx, cy).

Very poor resolution and mismatch are pretty evident
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Figure 6.3. The 64 NG reconstruction shows is good agreement with fexact,

shows a high resolution and very low L2{err} ∼ 0.12 %

Figure 6.4. 128 grid points fnum(cx, cy, 0) displays a very noisy shape as a

result of a too small ΔC3, L2{err} ∼ 2.01 %

6.2.2. Experiment 2: Mesh-free Approximations

(Langevin Solver). The particles law of motion in mesh-free velocity space is established by

the SDE (116) and (136), where the friction and diffusion coefficients are unknown functions

of velocity and time. The intention of the present experiment is to study the approximation

behaviour and quality of the applied explicit Itô-Taylor scheme (114), which is one building

block of the Fokker-Planck module. To do this, we start from the very simple – but analytical
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solvable – situation, where the friction vector and diffusion matrix are given by

F(C, t) = −αC and B(C, t) =

⎛
⎜⎜⎝

β11 0 β13

0 β22 0

β31 0 β33

⎞
⎟⎟⎠ (137)

respectively, with constants α and βij . The corresponding linear SDE (which is the Langevin

equation) reads as

dC(t) = −αC(t) dt +
3∑

q=1

bqdW q
t (138)

which possesses the analytical solution [49] for the mean m(t) and for the second moment

P(t)

C(t) = C(t0) e−α(t−t0)

P(t) = P(t0) e−2αt +
1

2 α

(
1 − e−2αt

)
M (139)

where the matrix M is given by

M =

⎛
⎜⎜⎝

β2
1 + β2

13 0 β13(β11 + β3)

0 β2
22 0

β13(β11 + β3) 0 β2
33 + β2

13

⎞
⎟⎟⎠ (140)

and represents the diffusion matrix. It is easy to prove that if the off-diagonal terms are

set to zero, this experiment reduces to that of three independent, one dimensional Ornstein-

Uhlenbeck processes already discussed in [61]. The purpose is here the validatation of the

three dimensional version of the Langevin solver and so, for sake of simplicity and without

losing of generality, only the x− and z−directions have been coupled.

A system of 104 particles has been initialised with three δ−functions centred in different

positions and its time evolution has been monitored through the mean and the variance of

the distribution functions in the three directions. These are the measurable particle quantities

that can be compared with the analytical counterpart. The discretise equation of motion (138)

is used to advance the particles in velocity space with Δt = 10−2 where the constants are fixed

equal to a = 0.5 and β11 = 1. , β22 = 2. , β33 = 3. , and β13 = β31 = 1.5. The observables of

the numerical experiment in mesh-free space are the mean and variance which are determined

according to

m̃(i)
c (t) =

1
N

N∑
p=1

C(i)
p (t) (141)

and [
s̃(i)

c (t)
]2

=
1

N − 1

N∑
p=1

[
C(i)

p (t) − m̃(i)
c (t)

]2
, (142)

respectively, where C
(i)
p (t) denotes the actual velocity of the particles in the i−th direction.

These quantities as well as their analytical counterparts (139) are recorded each 10 temporal

cycles. The results for the mean value and the variance for the distribution functions in

the three velocity directions are depicted in Figures 6.5 and 6.7, respectively, where the Euler
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approximation (line with filled squares) and the exact solution (full line) is plotted. Obviously,

the overall agreement of the numerical result with the analytical solution is very satifactory.

The deviations between the Euler approach and the exact result seen for the mean value

in Figure 6.5 can be “cured” by using, for instance, a second order weak scheme (see Fig.

6.6 ). We emphasise that this equilibrium state is reached approximately at t = 10 (see

also Figure 6.7); afterward, the change of the shape is hardly visible in this representation.

The improvement gained in the first moment is not so evident in the variance plot owing

to the noise generated by the further random numbers needed for this scheme. To gain a

further insight in the relaxation dynamics we plot in Fig. 6.8 the temporal evolution of

the distribution function f(cx) on the velocity grid. As expected, the broadening of the

distribution function is very rapid at early time. Another comparison between the numerical

results of the Euler scheme (open circles) and the exact solution (full line) is seen in Fig.

6.9, where the particle distribution function on the velocity grid is plotted at time t = 20.

Moreover, it is interesting to note that in this special case also the quantity < cxcz > can be

exactly evaluated and therefore compared to the numerical results. Figure 6.10 shows a very

good agreement of the first and second order values with the analytical expression.

Figure 6.5. Temporal evolution of the mean value of the Ornstein-

Uhlenbeck process. Full line: exact solution, symbols: Euler approximation

6.2.3. Experiment 3: Convergence Analysis. The results obtained in the previous experiment

suggest a deeper investigation about the approximation characteristics of the two numerical

schemes (116) and (136). For this purpose, a one dimensional stochastic process involving

two different Wiener processes

dC(t) = αC(t)dt + β1C(t)dW 1(t) + β2C(t)dW 2(t) (143)

is considered, where α = −0.5, β1 = 0.02 and β2 = 0.03. This very simple stochastic

equation in the random variable C(t) is solved on the time interval t ∈ [0, 1] with initial value
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Figure 6.6. Second order evaluation of the mean value of the Ornstein-

Uhlenbeck process. Full line: exact solution, symbols: numerical approxima-

tion

Figure 6.7. Comparison between the time-dependent variance obtained

with a weak Euler (open symbols) and a 2nd order weak scheme (filled sym-

bols) and the analytical result (full line)

C(t0) = 3.0 and where W 1 and W 2 are the two independent Wiener process.

Due to the zero expectation property of the Itô integrals, an ordinary differential equation

for the mean m of (143) is obtained:

m(t) = m(t0)eα(t−t0). (144)
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Figure 6.8. Temporal snapshots of the collisional relaxation of f(cx) in the

three dimensional Ornstein-Uhlenbeck process

Figure 6.9. Comparison between the numerical (symbols) and analytical

(full line) particle distribution functions recorded on the velocity grid at

t = 20

Following [49], the experiment is organised in M = 40 batches of N = 100 trajectories each.

Then, the mean error of the j−th batch is computed from

μ̂j =
1
N

n∑
k=1

Cj,k(T ) − m(T ) (145)

where Cj,k(T ) represents the solution obtained with the weak schemes (116) and (136) at

t = T and m(T ) is determined from eq. (144). Obviously μ̂j can take both positive and
57



Figure 6.10. Temporal evolution of the cross moment < cxcy > evaluated

with a first order (circles) and a second (squares) weak scheme

negative values. The average over all batches

μ̂ =
1
M

M∑
j=1

μ̂j (146)

is evaluated for different discretisation Δt = 2−n of the considered time interval and plotted

as a function of the discretisation exponent (see Fig. 6.11). From the slope of the curves

Figure 6.11. Error trend as function of the half-time exponent n for the

first (square) and second (circles) order weak schemes

an experimental order of convergence of ∼ 0.999 and ∼ 2.541 for the first and second order
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respectively, and therefore in good agreement with the designed orders of convergence.

This as well as the other results presented in this section convince us from the quality

and reliability of the Langevin solver which is now used for self-consistent collision simulations.

6.3. Intra-species Collisions Validation. In order to perform an even more general inves-

tigation of intra-species collision, all the quantities have been treated as dimensionless. The

reference sizes are the mass and charge of the electron and a density of 1018 m−3. The ther-

mal velocity is derived from a Maxwellian distribution function of electrons at a temperature

of 10 eV. From these parameters one obtains that one time unit is equivalent to 1.78 · 10−7

seconds.

The particles velocities are updated according to the scheme of equation (116) and the friction

and diffusion forces are evaluated by means of eq. (54) and (55).

6.3.1. Stationary Solution. This numerical experiment is designed for the assessment of the

applied numerical methods coded in the FP module. Moreover, diagnostic tools are introduced

to get a better characterisation of the relaxation dynamics as well as to perform cross checks

on known physical quantities.

This experiment starts considering the three dimensional normal distribution function F (�c) =∏3
i=1 fi(ci) (with fi(ci) = 1√

2πσi
exp{− ci−μi

2σ2
i
} which is a solution of the FP equation [30].

The numerical experiment is initialised as follows: In the mesh-free velocity space, the initial

velocities c
(i)
p (t = 0) of the N = 3 · 105 particles are independent identically distributed

Gaussian random numbers (with mean zero and variance σ2 = 1.). This procedure ensures

that the initial velocity distribution of the particles (see Fig. 6.12) – which is the probability

density function of the random numbers c
(i)
p (t = 0) – is a Maxwellian [39] of the form

h(c, 0) = g0(c) =
2√
2π

c2

σ3
exp

(
− c2

2σ2

)
, (147)

(see Fig. 6.13). Subsequently, the PIC cycle seen in Figure 5.1 is 3 ·103 times passed through,

which is equivalent to a nondimensional simulation time of approximately 30 times unit.

Throughout this computation the velocity grid which is needed for the Rosenbluth solver

consists of 26 = 64 grid points in each direction. Since the system is in an equilibrium

configuration, the shape of the distribution functions as well as their moments are not expected

to change during the overall simulation time. For this purpose, mean and variance values

are recorded each 100 cycles and plotted respectively in Fig. 6.14 and 6.15. Despite some

spurious oscillations around the equilibrium position, the mean behaviour can be considered

satisfactory. The same cannot be said for the variance which increases almost linearly in

time. This phenomenon, known in literature as artificial warming, is presumably due to the

grid interfaces operations namely, interpolation and assignment procedures. The hypothesis

that such a deviation from the stationary solution is attributable to the grid is confirmed by

the fact that the numerical solution is improved by increasing the number of grid points, as

clearly shown in Fig. 6.15. Raising NG can be costy besides dangerous since it can generate
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a very noisy distribution function which in turn results in wrong friction and diffusion forces.

The renormalisation technique originally introduced by Lemons et al. [60] to cure instability

problems arising in finite samples simulations is here revisited to provide global energy and

momentum conservation. This simple and cheap operation (from a computational point of

view)

�vα → �Vα = �μ +
(
�vα − �μ

′

)√ (σ2)
(σ2) ′

; α = 1, . . . , Np (148)

eliminates any instabilising fluctuations in the moments of fe by linear transforming the

particles velocities without changing the shape of the distributions so that their means and

variances recover the desired values while the system evolves stochastically. Prime symbol

indicate the values before collision while �μ and (σ2) are the mean and variance afterwards. In

fact, the mean values of the particle velocity in the x−, y−, and z− direction and the global

energy are conservation quantities which cannot change during time in a reservoir simulation.

Starting from these considerations, at each time step, the energy of the whole system is given

by the sum of the variances in the three directions and is not allowed to change,i.e.:

E(t) = E(t = 0) = σ2
x(t) + σ2

y(t) + σ2
z(t) = const. . (149)

The numerical error is evaluated as:

err = E0 − σ2
x(t) + σ2

y(t) + σ2
z(t) (150)

where E0 = E(t = 0), and in the spirit of the equipartition principle is equally subdivided in

the three directions. Now the prime (σ2)′ in eq. (148) means actual value while (σ2) indicates

a ”desired“ value, that is:

σ2(tn) = (σ2)′(tn) − err/3 . (151)

The mean value represents a sort of group or stream velocity and in case of absence of external

forces it also is not allowed to change. Despite the physical constrain, numerical error causes

it to oscillate around its initial value, but the same logic can be applied if �μ is interpreted as:

�μ(tn) = (�μ(tn))′(tn) − �μ0 (152)

where �μ0 = �μ(t = 0). The benefits are immediately evident from a first glance to Figs. 6.16

and 6.17. No unreal heating takes place now and the global energy is conserved – besides

very small oscillations. This correction assures also that mean energy (temperature) and

momentum are conserved during the simulation.

6.3.2. Arbitrary Anisotropic Initial Distribution.. A further numerical experiment of this ses-

sion is tailored to study the collisional relaxation of an arbitrary anisotropic initial velocity

distribution to its equilibrium from first principles. The shape of the initial velocity distribu-

tions (see Fig. 6.18) in the i−th direction of the velocity (in a cartesian frame of reference)
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Figure 6.12. Initial velocity distribution function for cx, cy, cz

Figure 6.13. Initial distribution function for the modulus of the particles

velocity and corresponding analytical curve

is given by

h(c(i), 0) =

⎧⎨
⎩α(i) c(i)

ṽ(i) 3 , for c(i) ≤ ṽ(i)

0, for c(i) > ṽ(i)
, (153)

where ṽ(i) and α(i) are normalisation constants set differently for each directions. To establish

such a velocity distribution, the initial velocities c
(i)
p (t0) of the Np = 3·105 particles are chosen
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Figure 6.14. Mean time evolution

Figure 6.15. Variances evolution time for the three components of the ve-

locities evaluated on a 64 points grid (continuous lines) and on a 128 (dashed

lines) one

according to c
(i)
p (t0) = ṽ U

1/3
p where the Up ∈ [0, 1] are uniform random numbers between

0 and 1. The first measurement of interest is the temporal evolution of the He(t)-function

[35, 37] applied in the form

Hα(x, t) = − < ln(fα) >α (154)
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Figure 6.16. Mean time behaviour when correction is applied

Figure 6.17. Variances evolution time recorded on a 64 grid points when

renormalisation is active

which can be ascribed to Boltzmann (1872). This quantity can be used to show that the

entropy of a closed system can only increase in the course of time till it approaches a limit for

very large times (H-theorem) [62, 37, 9]. It is well-known that the FP operator acting on fe is

dissipative in the sense of satisfying Boltzmann’s H-theorem [63]. In other words a system of

charged particles in non-equilibrium condition evolves in the course of time to its equilibrium

conditions and relaxes to a Maxwellian shaped distribution with positive entropy production.

In this respect, this quantity provides an appropriate measure of the extent to which the
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Figure 6.18. ”Exotic“ initialisation with three different parabola shaped

distribution functions

conditions of a system deviates from that corresponding to equilibrium. It can further be

shown [35] that when the equilibrium is reached, collisions are not responsible anymore for

the rate of change of H(x, t). As shown in Figure 6.19, in this experiment the H-function

stays approximately constant – besides small numerical oscillations – and slightly around the

stationary value, remarking the fact that the whole code can hold a steady-state solution quite

well and confirming a very good synergy of the blocks previously considered. From Figure 6.19

Figure 6.19. Temporal evolution of the He-function for the initial velocity

distribution defined by relation (153)
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we conclude that the equilibrium velocity distribution should be achieved after approximately

1000 temporal cycles when we expect to find Gaussian shaped distribution functions in all

the directions as confirmed by Fig. 6.20. As customary in this work, numerical results which

Figure 6.20. Final configuration of the particle velocity distribution functions

are measured from particle quantities, namely mean and variance, are shown in Fig. 6.21 and

6.22 where the correction (148) is now applied. The mean values of all velocity components

remain constant since there is no external force to cause a stream motion of the particles; on

the other side the diffusion process provides, by means of the friction and diffusion forces,

mechanisms that allow energy internal exchanges such that the system reaches the thermal

equilibrium in agreement with the equipartition principle.

6.3.3. High Energy Tail Thermalisation. One characteristic aspect of the numerical simula-

tion of the thermalisation process operated is the underestimation of the high energy tail of

the velocity distribution function as evidenced in [61] and references therein. To demonstrate

that this phenomenon persists also in a non-isotropic simulation, the three particle velocities

have been initialised with uniform distribution functions centred in zero (see Fig. 6.23). As

expected, at the end of the simulation the speed c is Maxwellian distributed, but the plot of

f(c)/c2, where c =
√

c2
x + c2

y + c2
z, in logarithmic scale reveals that the tail of this distribu-

tion is not so close to the “thermalized“ shape while the core agrees already very well exact

solution.

6.4. Characteristic Time Scales. One interesting and practicle problem is to know the

time in which collisions can produce large alteration in the original velocity distribution;

for example how rapidly an initial anisotropic distribution function relaxes to a Maxwellian

because of collisions. The time required for the whole process to take place is known as

“relaxation time“ and it is clearly a not defined one [64]. One way to obtain estimations of
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Figure 6.21. Constant behaviour of the mean values of the three distribu-

tion functions in absence of external forces

Figure 6.22. Temporal change of the three variances for the “three parabo-

las” experiment. Final fulfilment of the equipartition principle

such parameter is to consider the scattering of one particle and try to get information about

the time scaling of a distribution of particles with the same initial velocity conditions. This

classical method known as test-particle approach was developed by Chandrasekhar [36] and

Spitzer [64], and a variation can be found, for instance, in Montgomery & Tidman [30].

One relaxation time investigated by the test-particle method is the so-called slowing down
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Figure 6.23. Initial configuration with three uniform distribution functions

having variances three

time. This time scale gives rate at which collisions decrease the mean velocity of the test par-

ticles. These particles are initially “injected“ into the plasma as a monochromatic “beam“

which has only a constant cz velocity component and are “traced“ up to the time where they

are stopped. Note that it can be shown [30] that the slowing down time is only related to

the friction force coefficients of the FP equation. Another relaxation time of interest in the

test-particle approach is the so-called deflection time, which may be considered as the typical

time scale for an initially anisotropic distribution becomes isotropic [31]. Per construction this

time scale is associated with the transverse velocity components of the test particles which are

zero initially and is a measure of gradual deflection of the test particles by 90 degrees caused

by the cumulative effects of collisions. Simple considerations reveal that the rate of increase

of the transversal velocities is only due to the diffusion term of the FP equation [30]. For

the parameters used below one obtains for the slowing down and deflection time the values

τslo ≈ 62.25 and τdef ≈ 130.3, respectively.

In the context of the present work we intend to study the self-consistent dynamical evolution

of the velocity distribution, where both friction and diffusion force are similarly important.

Clearly, to switch off one of the dynamical aspects seems to be ideal but would contradict our

self-consistent approach. In order to filter out characteristic times required by a whatever

distribution function to reach an equilibrium state because of collisions we propose the fol-

lowing proceeding. The particles in the numerical experiments are subdivided in two groups:

The first one consists of the background (abbreviated by BG) particles (constant number

NBG = 3 · 105) which are Maxwellian distributed (that is Gaussian distributed in each ve-

locity component; μBG = 0., σ2
BG = 1.) initially, and the second group is the beam particles

(labelled as b). In all numerical experiments discussed below, the latter group represent an
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Figure 6.24. Initial (dashed-dotted line) and final (open symbols) speed

distribution and compare with the exact (full line) solution for the time t=20

Figure 6.25. Temporal snapshots of f(c)/c2 in logarithmic scale. Due to

the scarce population of the high energy tail, it takes more time to be close

to the exact solution

ideal monochromatic beam that hits initially the background particles with velocity only in

the z-direction
(
c
(b)
z (t = 0) = 5

)
. To get an intuition of the complex non-linear dynamics
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resulting from the self-consistent computations, we will compare the simulations with a refer-

ence experiment, where the Maxwellian distributed BG-particles are not affected by the beam

particles. In this sense the distribution function changes only because of the beam particles,

which are advanced according to (82), where the non-linear velocity-dependent friction force

and diffusion coefficients are obtained exactly by the background characteristics. In fact,

this experiment can be considered as an interface between the pure test-particle approach,

where the coefficients are held constant for all the particles all the time (namely, at the initial

values), and a real simulation. Also in the style of the test-particle approach, we use the

mean value < cz > and the “transversal“ variance σ2
y of the beam particles as measurable

quantities which are recorded as function of time and seen in Figures 6.26 and 6.27 as full

lines. Moreover, in these Figures the results of two self-consistent simulations (3 · 103 cycles

with Δt = 5 · 10−2) are depicted, where the beam to background particle ratios (pr) are fixed

to pr=1/50 (lines with filled circles) and pr=1/10 (lines with open squares). We remark that

in both self-consistent simulations the global velocity distribution functions established by the

beam and background particles are highly non-Gaussian up to t ≤∼ 35 (see Fig. 6.28). In the

following we mainly restrict the discussion to the reference experiment and the self-consistent

pr= 1/50 simulation.

In order to get better insight of relaxation dynamics we introduce also the beam particle

averaged z-component of the friction force

〈Fz(t)〉 =
1

Nb

Nb∑
i=1

Fz(�ci, t) (155)

and the “velocity-normalised“ yy-component of the diffusion tensor given by

〈
D22

|�c| (t)
〉

=
1

Nb

Nb∑
i=1

D22(�ci, t)
|�ci(t)| , (156)

where Nb is the number of beam particles. The temporal evolution of the friction 〈Fz(t)〉 and

diffusion
〈

D22

|�c| (t)
〉

coefficients obtained from the reference (full line) and the pr= 1/50 (line

with filled circles) simulation are depicted in Figure 6.30 and 6.31. By fitting these and the

previous curves we tried to extract the time constants τ that characterise the phenomenon

and summarised them in the Tables 1 till 4.

At first sight we recognise that mean values as well the variances of the three experiments

(see Figs. 6.27 and 6.26) show approximately the same basic features which appear to be a

hint that the underlying relaxation dynamics is essentially similar. However, the relaxation

dynamics of the self-consistent experiments are much faster than the reference simulation.

This observation seemed to be a direct consequence of the non-Maxwellian global velocity

distribution. Note, that the “heating“ of the beam particles (Fig. 6.27)– which may be con-

sidered as a measure of the rapidly increasing asymmetry of the beam particles distribution

function (see Fig 6.29) – is less pronounced in the self-consistent experiments which seemed

to be a consequence of the non-Maxwellian global velocity distribution. The “decay“ of these

maxima seen in Figure 6.27 can be associated with further characteristic time scales. It is not
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< cz(t) > τ
1/50
c τref

c

t ∈ [0, 15] slow scale dynamics slow scale dynamics

t ∈ [15, 30] fast scale dynamics fast scale dynamics

t ∈ [28, 50] ≈ 12 –

t ∈ [30, 90] – ≈ 16
Table 1. Time constants τc for < cz >

< Fz(t) > τ
1/50
F τref

F

t ∈ [0, ∼ 25] transient dynamics –

t ∈ [0, ∼ 40] – transient dynamics

t ∈ [28, 70] ≈ 12 –

t ∈ [40, 80] – ≈ 16
Table 2. Time constants τF for < Fz >

surprising that the time constants for the mean value and the variance in perpendicular direc-

tion are different. Actually, from the study of the Ornstein-Uhlenbeck process – the simplest

linear diffusion process – it is known that the time constant for the variance is larger than the

one for the first moment [61]. Furthermore, we observe that the global velocity distribution

of the self-consistent pr= 1/50 simulation is now close to the background Maxwellian of the

reference experiment for times t ≥∼ 35. Consequently, it seems to be possible that the (fast)

initial non-Maxwellian driven relaxation dynamics turn into the Maxwellian dominated equi-

librium dynamics. It is obvious from Figure 6.30, that the non-Maxwellian global velocity

distribution leaves its mark especially during the first ∼ 30 time units. We recognise there

that the shape of the friction coefficient of the pr= 1/50 experiment is different from that

one of the reference simulation and, furthermore, that the self-consistent relaxation dynamics

is much faster than in the non self-consistent case. It is interesting that these characteristic

initial scales are not seen in the temporal evolution of the diffusion coefficients plotted in

Figure 6.31. On closer inspection of the curves plotted in Figures 6.30 and 6.31, we recognise

points of inflection located roughly in the intervals ∼ 20 ≤ t ≤∼ 30 and ∼ 30 ≤ t ≤∼ 40 for

the pr= 1/50 and non self-consistent simulation, respectively. On the contrary we have found

a very good agreement between friction and mean value time constants. At first, it is aston-

ishing that the friction time constant of the self-consistent experiment is also visible in the

transversal diffusion coefficient. Under the working hypothesis that the relaxation dynamics

turns into a Maxwellian dynamics for t ≥∼ 35, we expect a behaviour similar to the reference

experiment: The onset of the friction and diffusion should start approximately at the same

time and the rise of these coefficients should occur at the same characteristic time constant

for the pr= 1/50 simulation, that is τ
1/50
F ≈ τ

1/50
D .

6.5. Inter-Species Collisions. Due to the fact that the velocity of the electrons c = |�c| is

much larger than that of the ions (labelled from now on as “X“) wX = | �wX | and, furthermore,
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Figure 6.26. Velocity mean value of the beam particles < c
(b)
z (t) > as

a function of time for the self-consistent simulations with particle ratios

pr=1/50 (line with filled circles) and pr=1/10 (line with open squares) and

the non self-consistent reference experiment (full line)

Figure 6.27. Temporal evolution of the transversal variance σ2
y(t). Full

line: reference simulation; line with filled circles: pr=1/50 and line with open

squares: pr=1/10 experiment
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Figure 6.28. f
PR=1/50
global (continuous line) and f

PR=1/10
global (dash-dotted

line)recorded at t = 30

Figure 6.29. Beam particles distribution functions for PR = 1/50 recorded

at time t = 15, 25, 40, 50

to the smallness of their mass ratio ( me/mX 
 1) the mathematics of this collisional event

can be drastically simplified. Clearly, this means, that the electrons are scattered off by

(nearly) infinitely massive ions with velocity wX ≈ 0, where the energy coupling is quite

weak (see Sec. 4.6). In the following, the situation v2
X/c2 
 1 and V X

p = 0 (see also [40]) is
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Figure 6.30. Temporal evolution of the z-component of the averaged fric-

tion force obtained from the reference (full line) and pr=1/50 (line with filled

circles) experiment

Figure 6.31. The normalised averaged diffusion coefficient as a function of

time computed with the reference (full line) and the self-consistent pr=1/50

(line with filled circles) simulation
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σ2
y(t) τ

1/50
σ τref

σ

t ∈ [0, 20] steep rise up to the

max

–

t ∈ [0, 30] – steep rise up to the

max

t ∈ [22, 40] ≈ 58 –

t ∈ [35, 70] – ≈ 58

Table 3. Time constants τσ for σ2
y(t)

〈
D22

|�c| (t)
〉

τ
1/50
D τref

D

t ∈ [0, ∼ 25] transient dynamics –

t ∈ [0, 40] – transient dynamics

t ∈ [22, 80] ≈ 10 –

t ∈ [40, 120] – ≈ 19

Table 4. Time constants τD for
〈

D22

|�c| (t)
〉

examined; a first analysis reveals that in this case D
(X) represents the transversal diffusion

since ĉT DX) = 0. Second, due to the special properties of the matrix

H = I − ĉ ĉT (157)

namely, HT = H and HT H = H the derived tensor B(e X) can be written as

B
(X) = α c H (158)

with the abbreviation α2 = Γ(e X)
P nX c−3. Assuming that the energy of the electrons is

conserved exactly, i.e. c = | c | = constant, the SDE (82) takes the form

dĈ(t) = −α2 Ĉ(t) dt + α H d �W (t) , (159)

where Ĉ is identified with ĉ. Some preliminary observations are mandatory: This equation

is a SDE for the sines and cosines of the polar and azimuthal angles. Since the matrix H is

not linear in ĉ an exact solution of equation (159) is not expected. However, using the zero

expectation property of the Itô integral and the Itô formula it is possible to find ordinary

differential equations for both the mean and second moment. The solution of these equation

are directly given by

Mi(t) = e−α2 (t−t0) Mi(t0) (160)

and

Pij(t) = 1/3 δij +
[
Pij(t0) − 1/3 δij

]
e−3 α2 (t−t0) , (161)

where δij denotes the Kronecker symbol, Mi(t) and Pij(t), i, j = 1, 2, 3, are the elements of

the expectation values E
{
Ĉ
}

and E
{
Ĉ ĈT

}
, respectively, and t0 is the initial time. Note,
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that the higher the electron velocity the slower the final moments are reached. The evaluation

of the forces according to (47) and (48) is not self-consistent, i.e. the ions will not be affected

by the impinging of the electrons resulting only in a change of direction for the electron

velocity. This means in turn that the cumulative effects of impacts cannot thermalize the

electrons because they cannot change their velocity but only their direction. It has been

already remarked that for scattering of electrons off infinitely massive ions electron energy

must be conserved exactly in each collision. Actually multiplying eq. (159) by Ĉn T on the

left-hand side one obtains that

Ĉn T
[
Ĉn+1 − Ĉn

]
= −α2 Δt (162)

i.e., because of the friction
∣∣ cn+1

∣∣ �= | cn |. This is a direct consequence of the approximations

(45) and (3.30) which exclude any diffusion in the direction parallel to the velocity vector.

Inspired by [40], a remedy is proposed here to overcome this inaccuracy. Since the second

term on the rhs of eq. (159) is responsible for the randomisation of the directions, the friction

force is dropped and Ĉn+1 is evaluated as:

Ĉn+1 = Ĉn + α H �η . (163)

where the components of �η are Gaussian random numbers. With the eigenvector (or cosine

directors) matrix of H given by

P =

⎛
⎜⎜⎝

Ĉ1 −β Ĉ2 −β Ĉ1 Ĉ3

Ĉ2 β Ĉ1 −β Ĉ2 Ĉ3

Ĉ3 0 β−1

⎞
⎟⎟⎠ ,

where β = 1/
√

Ĉ 2
1 + Ĉ 2

2 equation (163) can be rewritten according to

Ĉn+1 = Ĉn + α b̂n . (164)

with b̂n = P

(
ν2e1 + ν3e3

)
where ν2 and ν3 are obtained from and �ν = PT �η. In fact, ab̂n

represents the transversal component to the direction Ĉ since Ĉn T b̂n = 0. This observation

is illustrated in Fig 6.32, where Ĉn is forced to be reduced by a factor 1 + δ. Finally, solving

the equation

Ĉn+1 = (1 + δ) Ĉn + αb̂n .

for δ with the requirements that the kinetic energy is exactly conserved one gets

δ = −α2

2
(ν2

2 + ν2
3) (165)

neglecting terms in δ2.

The equations (160) and (161) represent a natural benchmark for the inter-species collision

case: a beam of electrons entering the ions reservoir with �C(t0) ≡ (3, 0, 0) is considered and

the event dynamics is monitored through the distribution functions and its moments. Picture

6.33 plots the mean value of the speed with respect to time for the said initial conditions. As

one can see, the result is dramatic if no correction is applied. Moreover a closer inspection

in the variances plot (see fig. 6.34 ) reveals the onset of finite samples instability observed in
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[60]. By enforcing the particle velocities to fulfil energy conservation in each single collision

eliminates the instability problem. The residual – only numerical – error can be totally re-

moved by means of the renormalisation technique (cf. eq. 148) as demonstrated in fig. 6.35

(note the ordinate scale).

Some interesting considerations on the physical process can be extracted from the time de-

velopment of the means and the variances in the three velocity directions: As reported in

Fig. 6.36 and Fig. 6.37, the electrons “loose“ completely their initial drift velocity and this

initial kinetic energy is transformed in thermal (internal) energy which is re-distributed in

each direction again according to the equipartition principle. This phenomenon is due to the

approximation of infinite ion mass and is not observed in the case of intra-species collisions.

The variances in figure 6.37 show that the x− component of the velocity has a slower dynam-

ics with respect to y and z due to the initial non-zero group velocity which represents a sort

of inertia, a fact noticeable in eq. (161). Probably the most interesting features are drawn

from the shape of the distribution functions recorded at time t = 200 (see Fig. 6.38), that

is when a steady-state is reached: unlike the (e-e) case in which the velocities were Gaussian

distributed around their initial mean value, here they are equally distributed around the zero

mean value.

b

( 1+ δ ) C

Ĉ

^

^

α n

n+1

n=n+1Ĉ ||

Figure 6.32. Ĉn and Ĉn+1 as appear in a rotated system of reference with

an axe parallel to Ĉn. The transversal component is randomised by the

diffusion force, while the parallel one is forced to fulfil energy conservation

6.6. Coupled Calculations. The very good results obtained in the previous simulations for

both physical processes (intra- and inter-species collisions) separately, suggests to run the two

routines together for a more realistic simulation of plasma collisions. As in the last section,

the ions are thought to be immobile with respect to the faster and lighter electrons. The

velocity of the latter are initialised with three Gaussian with different variances, respectively,

σ2
x(t0) = 1.0, σ2

y(t0) = 2.25 and σ2
z(t0) = 4.0; as shown in Fig. 6.39 the electron impact the

ion reservoir with an additional stream velocity cx(t0) = 3.0 in the x− direction. For a better

understanding of the coupled simulation, we first perform a numerical experiment with the
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Figure 6.33. Mean speed with respect to time when local energy conser-

vation is ignored. The unusual behaviour indicates the onset of instability

phenomena

Figure 6.34. Variances instable behaviour due to finite sample calculations

described initial data, where the inter-species collisions were switched off. The result of this

computation is depicted in Fig. 6.40. Obviously, the variances arrive after ∼ 80 time units

the equilibrium value 1/3
[
σ2

x(t0) + σ2
y(t0) + σ2

z(t0)
] ≈ 2.4 while the mean value of cx stays
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Figure 6.35. The local conservation energy (dashed-dotted line) guarantees

a stable behaviour of the speed while the local energy conservation together

with the (full line) renormalisation eliminates any residual numerical error

Figure 6.36. Mean value decay (symbols) for the x− direction of the ve-

locity in the (e-X) case and comparison with the exact solution (full line)

constant the initial velocity cx(t0) = 3.0 since no mechanism is available to convert the initial

kinetic energy into the thermal internal energy; i.e to turn “coherent flow“ into “disordered

motion“. The result of the coupled intra-inter-species simulation is seen in Fig. 6.41. In

contrast to the previous experiment, the inter-species collision part provides a device which

re-distributes the initial velocity uniformly in each direction resulting in the “decay“ of the
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Figure 6.37. Variances time values (symbols) and comparison with the

exact curves (full lines)

Figure 6.38. Final, equiprobable configuration of the distribution functions

mean velocity while the variances (thermal energy) are to reach a common value (see also

Figs. 6.36 and 6.37). Consequently, in the coupled numerical experiment the initial kinetic

energy is transformed in thermal energy (due to inter-species interaction) and it is clear from

Fig. 6.41 that in this case the distribution in each direction will posses a value which is one

third of the sum of that achieved for the intra-species case for the same initial condition (see

Fig. 6.40) plus one third of the square of the initial flow velocity. Moreover, it is obvious from

Fig. 6.41 that the coupled calculation is slower than the two independent processes seen in
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the Figs. 6.37 and 6.40. This observation may be traced back to the fact that the parameter

α2 in eq. (159) is no longer a constant (as it is assumed there) during the simulation. In

fact, a comparison of the dashed curve in Fig. 6.41 with Fig. 6.36 admits the conclusion that

α2 is smaller in the coupled simulation. The final distribution functions in each direction are

plotted in Fig. 6.42: Although transient non-Gaussian shapes may occur due to inter-species

collisions, the final result of collisional relaxation is of course a Maxwellian, i.e. a Gaussian

distribution function in each direction in velocity space.

6.7. Noise Reduction Technique. As mentioned above, statistical noise is one of the major

problems that afflicts particle codes. In reservoir simulations, like those performed in this

work, the problem can be tackled by increasing the number of particles, but this would

necessarily increase the computational time. Ideally, one would like to have as many particles

as possible during the reconstruction phase, but then relatively few during the so-called push

phase. On the other side, in all the other situations where the spatial coordinate is of concern,

the problem is to have a sufficient number of particles in each cell to be able to resolve a smooth

distribution function. By means of the Gauss-Hermite polynomial expansion it is possible to

fulfil both these requirements. For sake of simplicity the Euler scheme is considered so that

each particle then moves according to

C(ν)
n+1 = C(ν)

n + ΔtF(ν)
n +

√
Δt B

(ν)
n �η (ν)

n α = 1, . . . , NP (166)

which in turn can be regarded as a Gaussian distributed random number drawn from a

probability density with mean vector C(ν)
M,n = C(ν)

n + ΔtF(ν)
n and variance matrix V =

Δt B
(ν)
n B

(ν) T
n = Δt D

(ν)
n , i.e. the normalised density distribution is given by P (C, t) =√

|D−1|(
2πΔt

)3/2 exp{− 1
2Δtw

T D−1w} with w = C− C(ν)
M,n. Applying the transformation

C = C(ν)
M,n +

√
2 ΔtB

(ν)
n x , (167)

we introduce the sample average for an arbitrary function ψ(C) according to

〈ψ(C)〉 = π3/2

∫
R3

d3xψ(x) e−xT x ≈ π3/2
N∑

i,j,k=1

Ωi,j,k ψ(�ξi,j,k) (168)

which can be approximated by a Gauss-Hermite quadrature formula ([65]). Here, �ξi,j,k =(
ξ
(i)
1 , ξ

(j)
2 , ξ

(k)
3

)T

and Ωi,j,k = ω
(i)
1 ω

(j)
2 ω

(k)
3 , where ξ

(n)
m is the nth zero of the Hermite poly-

nomial HN of order N and the weights ω
(n)
m are obtained from ω

(n)
m = 2N−1N !

√
π

N2
h
HN−1

“
ξ
(n)
m

”i2 . From

the latter relation for ψ = 1 it is immediately clear that the weights π3/2Ωi,j,k possess the

property
N∑

i,j,k=1

Ωi,j,k = 1. Furthermore, identifying the components of the vector (167) with

ψ we obtain, we obtain the mean velocity

〈C〉 = π3/2
N∑

i,j,k=1

Ωi,j,k
�Ki,j,k = C(ν)

M,n , (169)
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Figure 6.39. Anisotropic initialisation of the electron velocities for the cou-

pled collision case. A Gaussian distribution function with different variance

is prescribed in each direction. The x− component has an additional stream

velocity

Figure 6.40. Mean and variance time evolution of the three velocity distri-

bution functions during a (e,e) collision process. In this case, the mean value

remain constant during the simulation and the variances fulfil the equiparti-

tion principle
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Figure 6.41. Mean and variance time evolution of the three velocity distri-

bution functions during a (e,e)-(e,X) collision process. The thermal energy

increases at expenses of the initial kinetic energy in the x− direction

Figure 6.42. Distribution functions recorded at the end of the simulation.

The shape recalls a Gaussian profile

where the velocities �Ki,j,k are given by

�Ki,j,k = C(ν)
M,n +

√
2 ΔtB

(ν)
n

�ξi,j,k . (170)

Obviously, the Ki,j,k can be regarded as the velocities of the Nc = N3 “children“ of the

“parent“ velocity C(α)
n+1. These children, each with weight Ωi,j,k, possess the same mean

vector (169) and variance matrix as the Gaussian random vector C(ν)
n+1.
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As benchmark, is here considered a reservoir of 3 · 105 electrons initialised according to

f(ci, t0) =
1√

2πσi
exp{− (ci − μi)2

2σ2
} (171)

where μ1 = 0, μ2 = 0 and μ3 = 3 and σ1 = 1, σ2 = 1 and σ3 = 1.5, and the Coulomb

collisions are let to operate the relaxation process. The CPU time obtained on a “Intel

Centrino DUO“ processor for this calculation (∼ 11460sec.) also is used as reference. The

same experiment has been repeated for three different numbers of “children“ (Nc = 33, 53

and 103 respectively) while the number of “parents“ (Np) has been adjusted to preserve Ntot

for comparison reasons. As expected, the best agreement with this test-case is obtained when

Np = 11112 and Nc = 33. The snapshots taken at t = 25 for the y− and z− component reveal

almost no deviation from those resolved from the 3 · 105 distributions (see Fig. 6.43), while

the variances curves in time are quite smooth (see Fig. 6.44). Even if from the computational

time point of view this is very convenient (∼ 2123sec.), the purpose is also to investigate

very frequent cases in which the number of particles is particularly low and for this reason

we restrict the analysis to Nc = 103 and Nc = 53 only. The two cases are also very similar

in CPU time the former requiring ∼ 1844sec. and the latter ∼ 1930sec.. As Figure 6.45

shows, the distribution function obtained with this technique looks broader than the test-

case one, but definitively smoother than the one reconstructed with only 300 computational

particles. Moreover, the time development of the variances is noisy (see 6.46 ) reflecting

the poor statistics, linked with only 300 particles. It is important to remark here that per

construction, the “children“ bring no direct improvement in the moments of the distribution

functions but only in its shape. When Nc = 53 and consequently Np = 2400 the distribution

function has both properties expected from this numerical tool, i.e. it is smooth and very close

to the reference one (see Fig. 6.47). Finally, the comparison of the variances time trend for

these cases reported in Figures 6.48 and 6.49 persuades that a number of ∼ 2000 “parents“

with 53 children each is the best trade-off between CPU time, resolution and moments of

the distribution functions. However, the situation is catchier when the random velocity

of particle ν is computed with the weak scheme (136), because this variable is, in general,

not a simple Gaussian one. To get the mean of this velocity we have to estimate additional

the quantity
[
L(0) �F

]
(cf. expression (117)), what can be managed with the two support

vectors explained previously by the relations (128) and (132). Moreover, one can show that

the variance of the velocity determined with (136) in lowest order in Δt is the same as for the

Euler velocity (166). Alternatively, it is possible to compute the total variance of the random

vector (136) with the aid of the auxiliary vector (128) and model then (136) similar to the

particle random velocity (166).
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Figure 6.43. Comparison between the distribution functions in y− and

z−directions obtained with 3 ·105 field particles (lines) and with Np = 11112

and Nc = 33 (symbols)

Figure 6.44. Variances time development for the case study Np = 11112

and Nc = 33
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Figure 6.45. f(cx) for 300 and 3 · 105 field particles (dashed and bold line

respectively) and in the case Np = 300, each with 103 children (line with

symbols) recorded after 600 cycles

Figure 6.46. Variances time development for the case study Np = 300 and

Nc = 103
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Figure 6.47. f(cx) for 300 and 3 · 105 field particles (dashed and bold line

respectively) and in the case Np = 2400 and Nc = 53 (line with symbols)

recorded after 600 cycles

Figure 6.48. σ2(cx) time trend for the two test cases Nc = 33 (line with

filled symbols) and Nc = 53 (line with filled symbols)
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Figure 6.49. σ2(cz) time trend for the two test cases Nc = 3 and Nc = 5
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7. Conclusions

In the course of this work, a three dimensional fully self consistent Particle In Cell PIC

code for Coulomb collisions simulation has been developed and tested in each single part with

analytical solutions. The particles velocities have been evaluated at each time step from the

numerical solution of the stochastic differential equation for which a first and second order

weak scheme has also been implemented. The corresponding three dimensional velocity dis-

tribution function has been reconstructed on a velocity grid by means of a linear interpolation

procedure and it has been used to update the friction and diffusion force via a Fast Fourier

Transform technique. For the intra-species case, (scattering of charges of the same species)

a detailed study of the relaxation process has been presented together with a deep insight in

related physical features like the characteristic time scales and the high energy tail delay with

respect to the core of the distribution. Pure numerical aspects have also been of concern: a

renormalisation technique has been adapted to cure the artificial warming phenomenon and

to guarantee the global conservation of momentum and energy.

The concept developed for intra-species electron scattering has been adapted to electron-ion

inter-species collision. Due to the natural approximations the key quantities, that is the fric-

tion and diffusion coefficient, are now available in analytical form so that the velocity grid

computations in the PIC cycle can be skipped. Some interesting aspects of the stochastic dif-

ferential equation related to the lowest order approximation have been found: In this case an

analytical solution of both the first and the second moment can be derived. These results serve

as natural benchmark to test the local energy conservation approach for inter-species collision

simulation. Furthermore, a coupled electron-electron and electron-ion collision simulation has

been presented. In contrast to pure intra-species computations, due to inter-species collio-

sions, the coupled simulation possesses a mechanism to convert coherent flow of the electrons

into disordered motion. Consequently, the numerical experiment shows that a non-isotropic

initial configuration in velocity spaces relaxes to a Maxwellian, i.e. a Gaussian distribution

function with zero mean and the variance in each direction in velocity space. Moreover, one

of the major problems that affects the solution of particle codes is the statistical noise linked

with a relative low number of particles. A numerical method has been engineered to tackle

this problem by generating “ficticious“ particles from the original grid particles in order to

resolve a smoother distribution function during the reconstruction phase. Of course, these

“children“ as they have been called, posses specific properties namely the same mean value

and the same variance of the distribution function where their “parents“ come from. Very

satisfactory results demonstrated the good quality of the proposed numerical tool.

The near futures goals to establish the final hybrid PIC-Monte-Carlo code PicLas are twofold.

First, it is planned to couple the Fokker-Planck solver with the Direct-Simulation-Monte-Carlo

module in order to study the interplay of the electron distribution function with inelastic re-

actions like excitation and ionisation of neutral atoms and molecules. Second, the coupling

of the Fokker-Planck module with the Maxwell-Vlasov solver developed at IAG should bring
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deeper insight in the complex interaction of collective plasma phenomena with charged par-

ticle Coulomb collisions.
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Appendix A. Boltzmann Collision Integral and Fokker-Planck Approximation

The Boltzmann collision interal (cf. [30, 31]) is given by

(
δfα

δt

)
col

=
∑

β

nβ(x, t)
∫

d3w dΩ g Qαβ

[
Φαβ(c′,w′) − Φαβ(c,w)

]
, (A-1)

where Φαβ(c,w) = fα(c) fβ(w) is the product of the test and field particle distribution

functions. Here, the index β runs over all “scattering” populations (field particles), nβ is the

local number density of the field particle specie “β”, g = |g| = |c − w| is the absolute value

of the relative velocity, Qα,β = Qα,β(g, χ, ϕ) is the differential scattering cross section (in

the CM system) between the particles of the species “α” and “β” and the element of solid

angle dΩ is given by dΩ = sinχ dχ dϕ (χ: scattering angle, ϕ: azimuthal angle). Moreover,

the prime refers to the value of a quantity after a collision and unprimed denotes the values

before the collision. In order to obtain from the collision integral (A-1) the Fokker-Planck

approximation, the following laws and approximations are applied. First, to describe charged

particles interaction we use the Rutherford differential scattering cross section (see Appendix

B). During the elastic collision g is rotated to g′ = c′ − w′ with |g′| = |g| and, furthermore,

c′ = c+Δc and w′ = w+Δw is assumed for small angle (large impact parameter) scattering,

where Δc and Δw are, respectively, given by Δc = mαβ/mα Δg and Δw = −mαβ/mβ Δg.

Then, a Taylor series expansion of Φαβ(c′,w′) is performed up to second order. Taking

into account conservation of momentum and performing some rearrangements, we can write

Δg = g′ − g according to

Δg = g �ω(χ, ϕ) , (A-2)

where the angle-dependent part is given by

�ω(χ, ϕ) =

⎛
⎜⎜⎝
−2 sin2(χ/2)

sin χ cosϕ

sin χ sin ϕ

⎞
⎟⎟⎠ . (A-3)

Besides, the vector quantity (A-2) the tensor quantity

Δg ΔgT = g2 �ω �ωT (A-4)

appears in the resulting expression of the approximated Boltzmann collision integral. For

small angle cut-off χmin (see Appendix B), the integration over the azimuthal and scattering

angles yields

< Δg > =

2π∫
0

dϕ

π∫
χmin

dχ sin ξ Qαβ(χ, ϕ)Δg

=
4πC2

m2
αβg2

ln
[
sin
(χ

2

)]
ex , ex =

g
g

(A-5)
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for the vector and

< Δg ΔgT > =

2π∫
0

dϕ

π∫
χmin

dχ sinχ Qαβ(χ, ϕ)Δg ΔgT

= − 4πC2

m2
αβg2

ln
[
sin
(χ

2

)] 1
g

(
I − ex eT

x

)
(A-6)

for the tensor quantity, where expressions like 8π
[
1 + cosχmin

]
and

8π cos2
(
χmin/2

)
are neglected, because they are very small compared to ln

[
sin
(

χ
2

)]
for small

χ = χmin. After performing some straightforward but lengthy algebra, we finally obtaion the

FP equation (19) given in Section 2, which represents the lowest order approximation to the

Boltzmann integral (A-1) and takes into account small-angle scattering of point charges on

the Coulomb potential.
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Appendix B. Differential Rutherford Scattering Cross Section

The classical Rutherford differential scattering cross section of two charged particles of

types “α” and “β” is given by (see, for instance [34])

Qαβ(g, χ, ϕ) =
1
4

(
C

mαβ

)2 1

g4 sin4
(

χ
2

) (B-1)

where mαβ denotes the reduced mass and the constant C is given by C = − qα qβ

4π ε0
. This result

is obtained for a Coulomb potential (V = C/r) for which it is well-known that the total cross

section for isotropic scattering

σT (g) = 2π

π∫
Qαβ(g, χ) sin χdχ (B-2)

diverges at the lower boundary (ξ = 0) as a consequence of this potential. Under the assump-

tion that the Coulomb fields of all particles are screened by the collective behavior of these

charges, the effective range of the Coulomb force may be estimated by the Debye length λD:

1
λ2

D

=
∑
α

nα q2
α

ε0 k Tα
. (B-3)

Clearly, this length represents a natural estimation of the maximal impact parameter bmax =

λD, to which the minimal cut-off scattering angle χmin is related according to

sin
(χ

2

)
=

b0

b

[
1 +
(b0

b

)2
]−1/2

=
1√

1 +
(

b
b0

)2
(B-4)

for b = λD, where b0 = |C|
mαβ g2 is the impact parameter for χ = π/2 scattering. In the case,

where b0/λD 
 1, the minimal scattering angle is simply given by

sin
(χmin

2

)
≈ b0

λD
=

1
Λ

, (B-5)

where Λ is defined by Λ = λD/b0 and can be interpreted as the measure of the number

of particles in a sphere of radius λD and is sometimes called “plasma parameter” in the

literature. For practical estimations and calculations it is sensible to approximate the mean

kinetic energy roughly by the thermal energy – 1
2mαβ g2 ≈ 3

2 kB Tα – and replace b0 by

b0 =
|qα qβ |

12πε0 kB Tα
. (B-6)

Clearly, expression (B-5) relates the small scattering angle cut-off to maximal impact pa-

rameter bmax = λD, which reflects the collective screening in a plasma. Obviously, it is not

amazing that the cut-off scattering angle χmin is responsible for the main contribution to the

totat Coulomb cross section according to (B-2):

σT (g) = π λ2
D . (B-7)

Especially, if the parameter Λ is very large, large-angle collisions among plasma particles can

be neglected and the collisional dynamics is dominated by small-angle collisions, which is

well-modeled by the Fokker-Planck approach.
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Appendix C. Short-time Solution of the FP equation

To obtain the short-time solution S(c, t) of the FP equation (22) in Section 3 for given

initial data

S0(c, t) = δ
(
c − c0

)
, (C-1)

it is sufficient to study the solution of the equation

∂S

∂t
= −Fp

∂ S

dcp
+

1
2
Dpq

∂2 S

∂cp∂cq
. (C-2)

This is correct, because for small τ the solution of the FP equation will be sharply peaked

and, hence, the derivatives of the friction Fp = Fp(c, t) and the diffusion Dpq = Dpq(c, t)

coefficients can be neglected compared to those of S. Consequently, we will assume that Fp

and Dpq are approximately constant within the time interval [t, t + τ ]. To find the solution

of problem (C-2), we apply Fourier transformation techniques and exploit some properties of

this transformation to obain the result

Ŝ(k, τ) =
e−ik·c0

(2π)3/2
exp
{
−
(
iF · k +

1
2
kT

D k
)

τ

}
, (C-3)

where τ denotes the small time increment. To get the inverse Fourier transformation of the

latter equation we define the following auxiliary vector and matrix

V = c − c0 − τ F (C-4)

D̃ =
[
τ I
]
D , (C-5)

where I denotes the identity. Since the diffusion matrix D (and consequently D̃) is a symmetric

matrix, it is convenient to apply the substitution

z = k − i D̃
−1V (C-6)

to find the relation

kT
D̃k − 2iV · k = zT

D̃z + VT
D̃

−1V . (C-7)

To solve the remaining integral
∞∫

−∞
d3z exp

{
− 1

2z
T D̃z

}
, we once again apply the fact that D̃

is symmetric, which guarantees that there exists an orthogonal matrix O with the property

S̃ = O
T D̃ O = diag[s̃2

1, s̃2
2, s̃2

3]. Finally, a straightforward computation leads to the result

S(c, τ) =

√
|D̃−1|

(2π)3/2
exp
{
−1

2
VT

D̃
−1V

}

=

√|D−1|
(2π τ)3/2

exp
{
− 1

2 τ

(
δc − τ F

)T
D

−1
(
δc − τ F

)}
(C-8)

which represents the back transformation of expression (C-3) and the solution of (C-2), where

δc = c − c0. Clearly, this result represents a (two parameter) Gaussian distribution for δc

with mean value τ F and variance τ D. Note, that the matrix of the standard deviation B can

be expressed according to
√

τ B =
√

τ O S
1/2

O
T ,
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where O is a orthogonal matrix and S = OT D O = diag[s2
1, s2

2, s2
3]. Under the assumption

that D = diag[D1, D2, D3] holds, we can immediately recast equation (C-8) into the form

S(c, τ) =
3∏

α=1

1√
2π τ σα

exp
{
− (cα − μα)2

2σ2
α

}
, (C-9)

where the abbreviations

μα = v0,α + τ Fα and σ2
α = τ Dα (C-10)

are used, which are, respectively, the mean value and the variance of the αth Gaussian normal

distribution.
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Appendix D. Three Dimensional Solution of the Lenard-Bernstein Model

In the following we briefly sketch the analytical solution of the Lenard-Bernstein model

(see, [29] for the one-dimensional and [37, 46] for the three-dimensional case), which is also

known in the literature as the Ornstein-Uhlenbeck process. The model is established by the

assumption that the friction force and the (symmetric) diffusion tensor are given by

F(x, c, t) = −A c and D(x, c, t) = D(x, t) , (D-1)

where the matrix A ∈ R3×3, in general, may be depend on x and t. Then, the FP equation

for the transition probability P (c, t) = P (c, t|(c0, t0) can be written as

∂tP (c, t) − Apq cq
∂P (c, t)

∂cp
= Tr(A)P (c, t) +

1
2
Dpq

∂2P (c, t)
∂cp∂cq

, (D-2)

where Tr(A) denotes the trace of the matrix A. This equation is complemented by the initial

condition P0(c) = P (c, t0|c0, t0) = δ(c − c0). In order to replace the left-hand side of the

latter equation by the substantial derivative, we introduce the variable transformation

u = eA (t−t0)c ⇔ c = e−A (t−t0)u (D-3)

and get after some algebra the equation for P (u, t) = P (u, t|u0, t0)

dP (u, t)
dt

= Tr(A)P (u, t) +
1
2
∇T

u eA (t−t0) D eA
T (t−t0) ∇u P (u, t) (D-4)

with the initial data P0(u) = P (u, t0|u0, t0) = δ(u− u0). Applying a Fourier transformation

according to P̂ (k, t) = 1(
2π
)3/2

∞∫
−∞

d3u e−ik·uP (u, t), yields an ordinary differential equation

in time whose solution reads as

P̂ (k, t) =
1(

2π
)3/2

exp

{
Tr(A) (t − t0) − iuT

0 k− 1
2
kT

M k

}
, (D-5)

where the initial condition P̂0(k) = 1
(2π)3/2 e−ik·u0 already has been inserted and M is given

by

M =

t∫
t0

eA (s−t0) D eA
T (s−t0)ds . (D-6)

To perform the integration with respect to time, we consider

eA (s−t0) D eA
T (s−t0) =

d

ds

[
eA (s−t0)

G eA
T (s−t0)

]
(D-7)

and conclude that G has to be a symmetric matrix (since D is symmetric) defined by

D = A G + G A
T . (D-8)

Then expression (D-6) reads as

M = eA (t−t0) G eA
T (t−t0) − G (D-9)
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which reveals that M is also a (real) symmetric matrix. Performing the inverse Fourier

transformation of the expression (D-5) we obtain the intermediate result

P (u, t) =
eTr(A) (t−t0)

(2π)3

∞∫
−∞

d3k exp
{
−1

2
kT

M k + iVTk
}

, (D-10)

where the abbreviation V = u − u0 is introduced. With the auxiliary vector

x = k − i M
−1 V (D-11)

the exponent of the integrand can be reformulated in such a way that only the integral
∞∫

−∞
d3x exp

{
− 1

2x
T M x

}
has to be evaluated. Since M is symmetric, we can find the (or-

thogonal) eigenvector matrix B of M which has the property B
T M B = diag[λ1, λ2, λ3]. With

the new vector y = B
−1 x and the fact that d3x = |B| d3y we can perform the integration and

finally obtain for the distribution function

P (u, t) = eTr(A) (t−t0)

√|M−1|
(2π)3/2

exp
{
−1

2
VT

M
−1V

}
, (D-12)

where M−1 is the inverse of (D-9). Switching back to the original variables c according to

(D-3), we immediately get

P (c, t) =

√|H|
(2π)3/2

exp
{
−1

2

(
c− e−A (t−t0) c0

)T

H

(
c− e−A (t−t0) c0

)}
, (D-13)

where H = eA
T (t−t0) M−1 eA (t−t0) and the identity |eAτ | = eTr(A)τ is taken into account.

Furthermore, we note that the transition probability is normalized:
∞∫

−∞
d3c P (c, t) = 1 . (D-14)

Using the identities

∇ξe−
1
2 ξT

H ξ = −H ξ e−
1
2 ξT

H ξ

and

∇ξ ∇T
ξ e−

1
2 ξT

H ξ =
(
H ξ ξT

H − H ξ
)

e−
1
2 ξT

H ξ

with ξ = c − ĉ0, we conclude and that the first moment and the variance are given by

< c >=

∞∫
−∞

d3c cP (c, t) = ĉ0 = e−A(t−t0) c0 (D-15)

and

< (c − ĉ0)(c − ĉ0)T >=< (c cT > −ĉ0 ĉT
0 = H

−1 (D-16)

respectively, where we assumed that the integrals of e−
1
2 ξT

H ξ and ∇T e−
1
2 ξT

H ξ over a surface

vanish at infinity.
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Appendix E. Some Properties of the Rosenbluth Potentials

The main interesting properties of the Rosenbluth potentials can be traced back to the

following identities for g = v − w and g = |v − w|:
∇vg =

g
g

(E-1)

∇v

(
1
g

)
= − g

g3
(E-2)

∇v · g = 3 (E-3)

∇v ·
[
∇vg

]
= ∇2

v g =
2
g

(E-4)

∇v ·
[
∇v

(1
g

)]
= ∇2

v

(1
g

)
=

⎧⎨
⎩

0 , v �= w

−4πδ
(
v − w

)
, v = w

, (E-5)

where δ
(
v−w

)
is the Dirac distribution. Applying the latter relations to the potentials H(β)

and G(β), we immediately obtain

∇2
v H(β)(x,v, t) = −4π

mα

μαβ
fβ(x,v, t) (E-6)

and

∇2
v G(β)(x,v, t) = 2

μαβ

mα
H(β)(x,v, t) , (E-7)

which means, that the potentials H(β) and G(β) are determined by the solution of Poisson

equations with sources proportional to fβ and H(β), respectively.
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Appendix F. Fourier Transformation of the Coulomb Potential

In order to obtain the Fourier transformation of the Coulomb potential 1/g
(
g = |v−w|

)
,

it is convenient to start from the Yukawa (or Debye) potential

ϕη(g) =
e−η g

g
, (F-1)

where η is a positive real number. Clearly, in the limit η → 0 one recovers the usual Coulomb

potential. The Fourier transformation of the latter equation

ϕ̂η(k) = F
{

e−η g

g

}
=

1
(2π)3/2

∞∫
−∞

d3g e−ik·g e−η g

g
(F-2)

can be determined analytically. For that, one introduces spherical coordinates in g-space,

perform the integration over the azimuthal and polar angle and get

ϕ̂η(k) =
1

i
√

2πk

∞∫
0

dg e−η g
(
eikg − e−ikg

)
. (F-3)

The final integration yields the Fourier transformation of the Yukawa potential given by

ϕ̂η(k) =
2√
2π

1
k2 + η2

, (F-4)

from which one obtains immediately the Fourier transformation of the Coulomb potential in

the limit η → 0:

ϕ̂(k) =
2√

2π k2
. (F-5)
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Appendix G. Hierarchical Sets

A row vector of the form

α = (j1, j2, . . . , jλ) (G-1)

is called a multi-index, where jν ∈ {0, 1, . . . , μ} for ν ∈ {1, 2, . . . , λ} and λ = 1, 2, . . . .

The length of a multi-index is abbreviated by l (α) ∈ {1, 2, . . . } . The special multi-index

of length zero is denoted by v: l (v) = 0. Furthermore, n (α) imforms about the number of

components of α which are equal to zero. For instance, α = (0, 0): l (α) = n (α) = 2 and

α = (1, 0, 0, 1, 1): l (α) = 5, n (α) = 2. The set of all multi-indices is denoted by M and

defined according to

M =
{

(j1, j2, . . . , jλ) | jν ∈ {0, 1, . . . , μ} , (G-2)

ν ∈ {1, 2, . . . , λ} for λ = 1, 2, . . .
}
∪
{
v
}

,

where μ is related to the number of components of the considered Wiener process.

Definition:

A subset A ⊂ M is called a hierarchical set if

• A is not empty: A �= ∅,
• all α ∈ A are uniformly bounded in lenght: inf

α∈A
< ∞, and

• −α ∈ A for each α ∈ A \ {v}.
Furthermore, the remainder set B (A) of A is specified by

• B (A) =
{
α ∈ M| − α ∈ A

}
.

Here, “−α“ is obtained from “α“ by deleting the first component of the row vector: −α =

− (j1, j2, . . . , jλ) = (j2, . . . , jλ).

According to this definition one can see that

Aγ =
{

α ∈ M| l (α) + n (α) ≤ 2 γ or l (α) = n (α) = γ +
1
2

}
(G-3)

is a hierarchical set for γ = 0.5, 1.0, 1.5, . . . .

• A0 =
{
v
}

, A0.5 = A0 ∪
{

(0); (1)
}
, A1.0 = A0.5 ∪

{
(1, 1)

}
.

Another example of a hierarchical set is established by

Γβ =
{

α ∈ M| l (α) ≤ β

}
(G-4)

with the remainder set

B
(
Γβ

)
=
{

α ∈ M| l (α) = β + 1
}

(G-5)

for β = 1.0, 2.0, 3.0, . . . .

• Γ1.0 =
{

v; (0); (1)
}

, Γ2.0 = Γ1 ∪
{
(1, 1); (1, 0); (0, 1); (0, 0)

}
.
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In the following we state explicitly the ITE in the case d = m = 1 (one-dimensional in

space and one Wiener process) for the hierarchical set Γ2.0. For this we start from the one-

dimensional Itô SDE (69) in integral form

C(t) = C(t0) +

t∫
t0

ds F{s} +

t∫
t0

dW (s)B{s} , (G-6)

and apply the Itô formula (80) with L(0) = F d
dC + 1

2B2 d2

dC2 and L(1) = B d
dC . Then, we obtain

immediately the ITE for Γ2.0 which reads as

C(t) = C(t0) +
∑

α∈Γ2.0

kα{t0} Iα

= C(t0) + k(0) I(0) + k(1) I(1)

+ k(1,1) I(1,1) + k(1,0) I(1,0) + k(0,1) I(0,1) + k(0,0) I(0,0) , (G-7)

where the Itô coefficient functions are given by

k(0) = F{t0} , k(1) = B{t0}

k(1,1) =
[
B

dB

dC

]
{t0} , k(1,0) =

[
B

dF

dC

]
{t0}

k(0,1) =
[
F

dB

dC
+

1
2
B2 d2B

dC2

]
{t0} , k(0,0) =

[
F

dF

dC
+

1
2
B2 d2F

dC2

]
{t0} .

The remainder for this ITE is found to be

R =
∑

α∈B(Γ2.0)

kα{t0} Iα , (G-8)

with multi-indices α taken from the set

B(Γ2.0

)
=
{

(0, 0, 0); (1, 0, 0); (0, 1, 0); (0, 0, 1); (1, 1, 0); (1, 0, 1); (1, 1, 1)
}

.
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Appendix H. Low-Order strong Itô-Taylor scheme

One-Dimensional Schemes (d = m = 1): The simplest strong Taylor approximation of the

SDE (69), is the Euler scheme of the form

Cn+1 = Cn + F
(
Cn, tn

)
Δtn + B

(
Cn, tn

)√
Δtn ηn , (H-1)

for the approximation of the stochastic variable C(t), where Cn = C(tn) and C0 = V (t0). It

is obvious from the ITE that this scheme contains only Wiener integrals of multiplicity one,

which are given by I(0) = Δtn and I(1) = ΔWn =
√

Δtn ηn+1 (see relation (73)), respectively,

where ηn+1 ∼ N (0, 1) is a Gaussian distributed random number with mean μ = 0 and variance

σ2 = 1. Note, that the Euler scheme converges with strong order γ = 1/2. The order of the

Euler scheme can easily be improved by considering the next term of the ITE (94), which is

given by B dB
dC I(1,1) with I(1,1) =

t∫
t0

dWs2

s2∫
t0

dWs1 . The Itô integral I(1,1) of multiplicity two

can be computed analytically (see footnote 1) and approximated with (73) according to

I(1,1) =
1
2

[
(Wt+Δt − Wt)2 − Δt

]
≈ 1

2

[
(ΔWn)2 − Δtn

]
. (H-2)

Finally, the Taylor scheme of strong order γ = 1 reads as

Cn+1 = Cn + F
(
Cn, tn

)
Δtn + B

(
Cn, tn

)
ΔWn

+
1
2
B B′

[
(ΔWn)2 − Δtn

]
, (H-3)

which was first proposed by Milstein, where ΔWn =
√

Δtn ηn+1 and B′ = dB/dC. Clearly,

the latter equation reveals a certain disadvantage of the strong Taylor approximation, namely,

the derivative of the diffusion coefficient B =
√

D must be evaluated. Note, that in the

general case, the derivatives of various orders of the diffusion and drift coefficients have to be

considered. Strong schemes which avoid the computation of derivatives at each time step are

known as explicit strong approximations. To obtain the explicit Milstein scheme we consider

B
(
Cn + ΔCn

)
− B

(
Cn

)
=
[
F
(
Cn

)
Δtn + B

(
Cn

)√
Δtn

]
B′ ≈

√
Δtn B B′ ,

and get in the lowest order of this approximation the explicit strong order γ = 1 scheme due

to Platen

Cn+1 = Cn + F
(
Cn, tn

)
Δtn + B

(
Cn, tn

)
ΔWn

+
1

2
√

Δtn

[
B
(
C̃ n, tn

)
− B

(
Cn, tn

)] [
(ΔWn)2 − Δtn

]
, (H-4)

with the supporting value

C̃ n = Cn + F
(
Cn, tn

)
Δtn + B

(
Cn, tn

)√
Δtn , (H-5)

where ΔWn =
√

Δtn ηn+1 with ηn+1 ∼ N (0, 1).

Multi-Dimensional Schemes: In the following we present strong Taylor approximations for the

multi-dimensional SDE (82). In order to find the lowest strong order schemes in vector form,

we first introduce the auxiliary vector bn
p = B

(
Cn, tn

)
ep ∈ Rd at the time level tn, which

104



represents the pth column of the matrix B, and ep ∈ Rm is a unit vector with the entry “1”

in the pth row. Then, for the approximation C(t) of the stochastic variable V(t), we obtain

from the ITE (94)

Cn+1 = Cn + F
(
Cn, tn

)
I(0) +

m∑
q=1

bn
q I(q)

+
m∑

p,q=1

bn
p · ∇c bn

q I(p,q) + O(Δt3/2) , (H-6)

where we used the result that L(p) can be expressed by L(p) = bn
p · ∇c with the nabla

operator ∇c =
(

∂
∂C1

, ∂
∂C2

, ∂
∂C3

)T

. Considering only the first three terms of the rhs (H-6),

we obtain the forward Euler scheme of strong order γ = 1/2. Including the remaining term,

expression (H-6) establish the stong γ = 1 order Milstein scheme, where the analytical form

of the diffusion coefficients are needed to perform the derivatives. The explict – which means

derivation free – strong Milstein scheme in the multi-dimensional case is obtained by replacing

the derivation according to

bn
p · ∇c bn

q,i =
1√
Δtn

[
bn
q,i

(
Sn

p

)− bn
q,i

(
Cn
)]

(H-7)

with the supporting vector

Sn
p = Cn + ΔCn ; ΔCn = F

(
Cn, tn

)
Δtn + bn

p

√
Δtn , (H-8)

where bn
q,i is the ith component of bn

q . Similar to the one-dimensional case, the Itô integrals

of multiplicity one are approximated according to I(q) = ΔW q
n =

√
Δtn ηq

n+1 with ηq
n+1 ∼

N (0, 1). However, an additional difficulty arise in computing the Itô integrals of multiplicity

two. In order to evaluate these integral, we adopt from the literature the result [49]

I(p,q) =

⎧⎪⎨
⎪⎩

1
2

[(
ΔW p

n

)2

− Δtn

]
for p = q

J(p,q) for p �= q

, (H-9)

which allows to compute the Itô integral I(p,q) from its Stratonovich counterpart J(p,q). It is

possible to represent multiple stochastic Stratonovich integrals in effectiv approximate way.

The method for multiple Stratonovich integrals based on the Fourier (Kahunen-Loéwe) series

expansion; for details we refer the reader to the books [50] or [49]. In essence, the series

expansion is truncated at PS and the multiple Stratonovich integrals J(j1,j2,...,jl); Δt are ap-

proximated by Riemann-Stieltjes integrals J(PS)
(j1,j2,...,jl); Δt, which converge to the Stratonovich

integral. After a simple, but lengthy computation we obtain the result

J(PS)
(p,q) =

Δt

2
ξp ξq + Δt

√
ρPS

(
μ(PS)

p ξq − μ(PS)
q ξp

)

+
Δt

2π

PS∑
r=1

1
r

[
ζp,r

(√
2 ξq + ηq,r

)
− ζq,r

(√
2 ξp + ηp,r

)]
(H-10)

with

ρPS =
1
12

− 1
2π2

PS∑
r=1

1
r2

, (H-11)
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where ξj , ζj,k, ηj,k and μ
(PS)
j are independent standard Gaussian random variables (which

means, zero mean and variance one: N (0, 1)). It is obvious from the latter expression that

the strong Milstein scheme is numerical much more expensive than the strong forward Eu-

ler, because a lot of additional random variables have to be generated. Furthermore, if we

interpret Itô integrals as random numbers, it is clear from equation (H-10) that, especially

high multiplicity integrals possess a very complex “inner structure” which may be resolved

by standard Gaussian random numbers.

Numerical Experiment: In order to investigate the approximation behaviour of the strong for-

ward Euler and Milstein scheme (H-6) experimentally, we consider the one-dimensional Itô

process V =
{
V (t) ; 0 = t0 ≤ t ≤ T = 1

}
satisfying

dV (t) = −1
2

V (t) dt + V (t) dW 1(t) + V (t) dW 2(t) (H-12)

on the time interval 0 ≤ t ≤ 1 for the initial value V0 = V (0) = 1, where W 1(t) and W 2(t)

are two independent Wiener processes. Using the multi-dimensional Itô formula (83) for

Φ = ln V (t), we can immediately check that the SDE (H-12) has the analytical solution

V (t) = V0 exp
{
−3

2
t + W 1(t) + W 2(t)

}
, (H-13)

where ΔW j(t) is determined from relation (72). For the comparison of the strong approxima-

n

ep
s

2 3 4 5 6 7 8 9 10 11 12

10-3

10-2

10-1

Euler
Milstein (with)
Milstein (no)

Figure 8.1. Comparison of the mean batch average ε̂ (= eps) as a function

of the exponent n (corresponding to the discretization Δt = 2−n) for the

Euler scheme (full line with gradients), the Milstein scheme with derivations

(full line with squares; PS = min(2n, 512)) and the derivation-free Milstein

scheme (dashed-dotted line with open circles; PS = 16).

tion of the SDE (H-12) according to (H-6) with the analytical solution (H-13), we organized
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the simulation into M = 40 batches of N = 100 trajectories each and compute the mean ε̂ of

the batch average ε̂k from

ε̂ =
1
M

M∑
k=1

ε̂k =
1
M

M∑
k=1

(
1
N

N∑
j=1

|Vj,k(T ) − Cj,k(T )|
)

(H-14)

for different discretizations Δt = 2−n of the considered time interval, where Cj,k(T ) represents

the solution of the strong Euler or Milstein approximation. The results depicted in Figure 8.1,

where the mean of the batch averages ε̂ is plotted as a function of the discretization exponent n

for the Euler (full line with gradients), the Milstein (full line with squares; PS = min(2n, 512))

and the derivation-free Milstein (dashed-dotted line with open circles; PS = 16) scheme.

Clearly, this plot demonstrate that the agreement between the Milstein scheme with and

without derivations is very good and suggests to use the less expensive derivation-free scheme.

Furthermore, we derive from the slope of the curves that the experimental order of convergence

is ∼ 0.54 and ∼ 1.01 for the Euler and the Milstein scheme, respectively, which agree very

well with the nominal strong order of γ = 1/2 and γ = 1. Finally note, that ε̂ may be

considered as a measure of the pathwise closeness at the end of the time interval [0, 1], which

represent the absolute error criterion. Moreover, the quality of the estimate (H-14) can be

assessed with the variance

σ̂2
ε =

1
M − 1

M∑
k=1

(
ε̂k − ε̂

)2

of the batch averages, which is necessary to evaluate a confidence interval for ε̂ based on the

Student t-distribution [50].
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Appendix I. Weakly Consistent Schemes

If there exists a nonnegative function ϕ = ϕ(δ) with lim
δ↓0

ϕ(δ) = 0 such that

E
{∣∣∣E{ 1

Δtn

(
Vδ

n+1 − Vδ
n

)}
− F
(
Vδ

n, tn
)∣∣∣2
}

≤ ϕ(δ) (I-1)

and

E
{∣∣∣E{ 1

Δtn

(
Vδ

n+1 − Vδ
n

)(
Vδ

n+1 − Vδ
n

)T
}
− B
(
Vδ

n, tn
)

B
T
(
Vδ

n, tn
)∣∣∣2
}

≤ ϕ(δ) (I-2)

for n = 1, 2, . . . , then a discrete approximation Vδ
n with maximum time step size δ =

max
∀n

{Δtn} = Δt is weakly consistent, where D = B BT .

Weak Euler Scheme (116)

For the Euler scheme in the form

Vn+1 = Vn + F
{
tn
}

Δt +
∑

p

bq

{
tn
} I(p) (I-3)

we obtain

E
{
Vn+1 − Vn

}
= F

{
tn
}

Δt , (I-4)

from which we conclude that (I-1) vanishes. Since E
{
I(p) I(q)

}
= Δt δpq we get from

E
{(

Vn+1 − Vn

)(
Vn+1 − Vn

)T
}

= F
{
tn
}
FT
{
tn
}

(Δt)2

+
∑
p,q

bp

{
tn
}
bT

q

{
tn
} E{I(p) I(q)

}

= F
{
tn
}
FT
{
tn
}

(Δt)2

+ D
{
tn
}

Δt . (I-5)

that condition (I-2) is of the order O
(
(Δt)2

)
. Consequently, the Euler scheme (I-3) is weakly

consistent.

Weak β = 2.0 Itô-Taylor Scheme (125)

In the following we consider this scheme in the form

Vn+1 = Vn + F
{
tn
}

Δt +
1
2

[
L(0) F

]{
tn
}

(Δt)2

+
∑

p

bp

{
tn
} I(p) +

∑
p,q

[
bp · ∇c bq

]{
tn
} I(p,q)

+
∑

p

[
bp · ∇c F

]{
tn
} I(p,0) +

∑
p

[
L(0) bp

]{
tn
} I(0,p) . (I-6)
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It is obvious that the expectation of (I-6) immediately yields

E
{
Vn+1 − Vn

}
= F

{
tn
}

Δt +
1
2

[
L(0) F

]{
tn
}

(Δt)2 (I-7)

and, hence, the left-hand side of relation (I-1) is proportional to (Δt)2. Keeping only the two

lowest orders in Δt, we find for scheme (I-6) that

E
{(

Vn+1 − Vn

)(
Vn+1 − Vn

)T
}

≈ D
{
tn
}

Δt + H
{
tn
}

(Δt)2 , (I-8)

where H is given by

H
{
tn
}

=

(
FFT +

1
2

(
bp

[
bp · ∇c F

]T
+ bp

[
L(0) bp

]T

+
[
bp · ∇c F

]
bT

p +
[
L(0) bp

]
bT

p

)){
tn
}

. (I-9)

From this observation we obtain that the expectation value (I-2) is also propotional to (Δt)2

and the Itô-Taylor Scheme (I-6) is weakly consistent.
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