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ZUSAMMENFASSUNG

Diese Arbeit beschreibt die Implementierung der Adjungierten Sensitivitdtsanalyse (Adjoint
Sensitivity Analysis Procedure, ASAP) im nicht-gleichgewichtigen, nicht-homogenen Zwei-
Flassigkeiten-Modell des RELAP5/MOD3.2-Computercodes, variable Bohr-Konzentrationen
sowie nicht-kondensierbare Gase mit berlicksichtigt. Das Ergebnis dieser Implementierung
ist das Adjungierte-Sensitivitats-Modell (Adjoint Sensitivity Model, ASM-REL/TF), entwickelt
sowohl fur die Differential- als auch fir die diskretisierten Gleichungen, die die Basis des
Zwei-Flussigkeiten-Modells mit nicht-kondensierbaren Komponenten bilden. Die geforderte

Konsistenz zwischen diesen beiden Darstellungsarten wird ebenfalls behandelt.

Die Validierung des ASM-REL/TF wurde anhand von RELAP5/MOD3.2-Beispielaufgaben
durchgeflihrt, die (i) nur die flissige Phase, (ii) nur die Gas-Phase und (iii) eine zweiphasige
Mischung (Wasser und Dampf) zum Gegenstand hatten. Die RELAP5/MOD3.2-
Beispielaufgabe "Zwei Kreislaufe mit Pumpen" (“Two-Loops with Pumps”) wurde benutzt, um
die Genauigkeit und Stabilitat der numerischen Lésung des ASM-REL/TF zu Uberprifen,
wenn nur die flussige Phase vorhanden ist. Fur den Fall, daf3 ein Gemisch der flissigen und
gasformigen Phase gegeben ist, wurde in gleicher Weise die ebenfalls mit RELAP5/MOD3.2
ausgelieferte Beispielaufgabe “Edwards Pipe” fiir die Validierung herangezogen. Zur Uber-
prifung von Genauigkeit und Stabilitat bei reiner Gas-Phase wurden beide Beispielaufgaben
ein zweites Mal herangezogen, wobei jedoch die jeweils vorhandenen Phasen durch reinen

Dampf ersetzt wurden.

Die Ergebnisse, die mit diesen Rechnungen erzielt wurden, lassen die typischen Sensitivita-
ten der Verbindungsgeschwindigkeiten und Volumen-gemittelten Driicke in Abhangigkeit von
Stérungen in den Anfangsbedingungen erkennen und zeigen, dafl’ die numerische Ldsung
des ASM-REL/TF ebenso robust, stabil und genau ist wie die urspringlichen RE-
LAP5/MOD3.2-Berechnungen. Dartber hinaus konnte die Lésung des ASM-REL/TF dazu
genutzt werden, Sensitivitaten der Volumen-gemittelten Driicke in Abhangigkeit von Variatio-

nen im Pumpen-Kopf zu berechnen.

Zusatzlich zu der eben beschriebenen Implementierung und ihrer Validierung illustriert diese
Arbeit die herausragende Rolle, die die Sensitivitdten in den thermodynamischen Eigen-

schaften des Wassers in der Sensitivitdtsanalyse der Thermohydraulik-Codes fur die Be-



rechnung von Leichtwasserreaktoren spielen. Anhand der allseits bekannten ASME Steam
Tables (ASME Dampf-Tabelle, 1993), zeigt diese Arbeit typische analytische und numeri-
sche Ergebnisse fir die Sensitivitaten der thermodynamischen Eigenschaften des Wassers
in Abhangigkeit von Druck, Temperatur und den numerischen Parametern, die in den ma-
thematischen Formulierungen dieser Eigenschaften auftauchen. Besondere Aufmerksamkeit
ist hierbei den sehr grolien Sensitivititen gewidmet, die von den spezifischen isobaren
Warmekapazitaten von Flussigkeit und Gas, C,, und Cgq, der spezifischen Fllssigkeits-
enthalpie, h;, dem spezifischen Gasvolumen, V4, dem volumetrischen Expansionskoeffizien-
ten fur Gas, 34, und dem isothermen Gaskoeffizienten, kg, an den Tag gelegt werden. Die

Abhangigkeit von B4 und kg vom sensitivsten Parameter stellt sich als nicht-linear heraus,

wahrend sich die Abhangigkeit von Cy, Cpg, hy, V, vom sensitivsten Parameter als linear

erweist, so dal die respektiven Sensitivitdten exakt die Effekte der Variation der entspre-

chenden Parameter vorhersagen.

Im Gegensatz dazu erweisen sich die Sensitivitaten des spezifischen Flissigkeitsvolumens,
Vi, des volumetrischen Expansionskoeffizienten fir Flissigkeiten, R, der spezifischen Gas-
enthalpie, hy, und des isothermen Kompressibilitatskoeffizienten fur Flussigkeiten, k¢, in Ab-
hangigkeit von den Parametern, die in ihrer jeweiligen mathematischen Berechnung auftau-

chen, als ziemlich klein.

Diese Sensitivitaten sind essentiell fir die korrekte Einordnung der einzelnen Parameter ge-
malf ihrer jeweiligen Bedeutung fir das Endergebnis, flir die Bewertung der Auswirkung der
Nicht-Linearitaten, und, ganz generell, fur die Durchfihrung umfassender Sensitivitats- und
Unsicherheitsanalysen der Thermohydraulik-Codes, die auf Wasser als Arbeitsfllissigkeit

basieren.



ABSTRACT

This work presents the implementation of the Adjoint Sensitivity Analysis Procedure (ASAP)
for the non-equilibrium, non-homogeneous two-fluid model, including boron concentration
and non-condensable gases, of the RELAP5/MOD3.2 code. The end-product of this imple-
mentation is the Adjoint Sensitivity Model (ASM-REL/TF), which is derived for both the differ-
ential and discretized equations underlying the two-fluid model with non-condensable(s). The
consistency requirements between these two representations are also highlighted. The vali-
dation of the ASM-REL/TF has been carried out by using sample problems involving: (i) lig-
uid-phase only, (ii) gas-phase only, and (iii) two-phase mixture (of water and steam). Thus,
the “Two-Loops with Pumps” sample problem supplied with RELAP5/MOD3.2 has been used
to verify the accuracy and stability of the numerical solution of the ASM-REL/TF when only
the liquid-phase is present. Furthermore, the “Edwards Pipe” sample problem, also supplied
with RELAP5/MOD3.2, has been used to verify the accuracy and stability of the numerical
solution of the ASM-REL/TF when both (i.e., liquid and gas) phases are present. In addition,
the accuracy and stability of the numerical solution of the ASM-REL/TF have been verified
when only the gas-phase is present by using modified “Two-Loops with Pumps” and the
“Edwards Pipe” sample problems in which the liquid and two-phase fluids, respectively, were
replaced by pure steam. The results obtained for these sample problems depict typical sen-
sitivities of junction velocities and volume-averaged pressures to perturbations in initial con-
ditions, and indicate that the numerical solution of the ASM-REL/TF is as robust, stable, and
accurate as the original RELAP5/MOD3.2 calculations. In addition, the solution of the ASM-
REL/TF has been used to calculate sample sensitivities of volume-averaged pressures to

variations in the pump head.

This work also illustrates the role that sensitivities of the thermodynamic properties of water
play for sensitivity analysis of thermal-hydraulic codes for light-water reactors. Using the well-
known ASME Steam Tables (1993), this work presents typical analytical and numerical re-
sults for sensitivities of the thermodynamic properties of water to pressure, temperature, and
the numerical parameters that appear in the mathematical formulation of these properties.
Particular attention is given to the very large sensitivities displayed by the specific isobaric
fluid and gas heat capacities, C, and Cg, the specific fluid enthalpy, hy, the specific gas vol-
ume, Vg, the volumetric expansion coefficient for gas, g, and the isothermal coefficient for

gas, kq. The dependence of 34, and kq on the most sensitive parameters turns out to be non-

linear, while the dependence of C, C,g, hy, Vg on the most sensitive parameters turns out to



be linear, so the respective sensitivities predict exactly the effects of variations in the respec-
tive parameters. On the other hand, the sensitivities of the specific fluid volume, V;, the volu-
metric expansion coefficient for fluid, ;, the specific gas enthalpy, hg, and the isothermal co-
efficient of compressibility for fluid, k, to the parameters that appear in their respective
mathematical formulae are quite small. Such sensitivities are essential for ranking the re-
spective parameters according to their importance, for assessing the effects of nonlinearities
and, more generally, for performing comprehensive sensitivity/uncertainty analyses of ther-

mal-hydraulic codes which use water substance as the working fluid.
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NOTATION

* Lower-case Roman

b, f, fz, gl, g2 - vectors of sources in REL/CDE

h; - specific fluid enthalpy
hg - specific gas enthalpy
ks - isothermal coefficient for fluid

kg - isothermal coefficient for gas

v, - gas velocity

v, - fluid velocity

* Upper-case Roman

A - matrix operator for REL/CDE

Cyr - specific isobaric fluid heat capacity

Cyg - specific isobaric gas heat capacity

DR(ZO,QO;Q,E) - sensitivity of the response R with respect of parameter variation I

G= (gl,. . .,gJ) - vector of parameters

G™, H™ - matrix operators, components of FSM
P - the system pressure

Q(“) - the vector of sources for the discretized ASM

R(X G) - the response of interest

9

R__. - predicted perturbed response

pred
R,..= Ri&" +®,G’ +£) - the exact (recalculated) perturbed response
S — vector of inhomogeneous sources in the original REL/CDE

X



Vs - the fluid specific volume
V, - the gas specific volume

U, - the fluid specific internal energy

U, - the gas specific internal energy

X, -the total non-condensable mass fraction

X, - the non-condensable mass fraction for the i-th non-condensable species

X™ - vector of variations of the final time-step variables

XE“) - vector of variations of the intermediate time-step variables

* Lowercase Greek

a, - the void fraction

3¢ - the volumetric expansion coefficient for fluid
R4 - the volumetric expansion coefficient for gas

x = (x,.... ,x, ) - vector of state variables

2t =)0 ) ) e ) 0, ) ) o ) v, ) ) (B, ) B ), )
- the vector of discretized state variables for volume k and/or junction |

P, - the boron density

* Uppercase Greek

C=(y,.7,,....v,)=(8g,,8g,.,...,0g, ) - vector of parameter variations

O=(D,...,0,)= (éUg,..., 6vf) - vector of variations of the state variables
O (x,t)= (d)f(x,t),. : .,d);(x,t)) - the vector of adjoint functions

== (E(()),. . .,E(NF)) - the vector of discretized adjoint functions

Xi



Y= |_(6Ug )z”,... , (E))N(n )EHJ - the variations in the vector of dependent variables

Xii



1 INTRODUCTION

The numerical simulation and analysis of light-water reactor (LWR) plant transients has pro-
gressed significantly through the coupling of three-dimensional neutron kinetics codes with
reactor core and plant thermal-hydraulics codes. Such coupled code systems are now used
both for normal operating conditions and for postulated accident scenarios. One of the most
advanced code systems of this kind is the coupled RELAP5/PANBOX2/COBRA3 (R/P/C)
code system’?, in which (i) the RELAP5 code simulates the thermal-hydraulic characteristics
of LWR's by using a non-equilibrium, non-homogeneous two-phase flow model together with
conservation equations for boron concentration and non-condensable gases (ii) the PANBOX
code solves the diffusion-theory-based neutron kinetics equations in three-, one-, or zero-
(point)-dimensions using the nodal expansion method, and (iii) the COBRA code computes
the flow and enthalpy in the sub-channels of rod bundles for boiling and non-boiling condi-

tions by including the effects of cross-flow mixing.

The implementation of efficient methods to analyze the sensitivity of results (responses) cal-
culated with the R/P/C code system would represent a major development towards estab-
lishing a general-purpose code system for the analysis of postulated accident scenarios. To
provide the R/P/C system with an efficient yet exhaustive sensitivity analysis capability, a
research and development program has been initiated at the Institut fir Reaktorsicherheit at
Forschungszentrum Karlsruhe in cooperation with Siemens/KWU. The goal of this program is
to implement the local Adjoint Sensitivity Analysis Procedure (ASAP) for nonlinear systems,

originally developed by Cacuci®®, into the codes comprising the R/P/C system.

Sensitivity analysis should, in principle, be performed both locally and globally in the space
spanned by the parameter variations. The objective of local sensitivity analysis*® is to ana-
lyze the behavior of the system responses by calculating sensitivities around a chosen point
or trajectory in the combined phase-space of parameters and state variables. Once these
sensitivities are available, they can be used for: (a) ranking the importance of parameters as
they affect the calculated response; (b) analyzing the effects of parameter variations on the

response; (c) performing extensive uncertainty analysis; (d) prioritizing the introduction of



improvements in the respective computer code; and (e) eliminating unimportant phenomena
for later considerations in a global analysis. Note that the objective of global analysis subse-
quently developed by Cacuci® is to determine all of the system's critical points (bifurcations,
turning points, response extrema) in the combined phase-space formed by the parameters,
state variables, and adjoint variables, and subsequently analyze these critical points by local

sensitivity analysis.

The purpose of this work is to present the main aspects of implementing the local ASAP for
the non-equilibrium, non-homogeneous two-fluid flow model, including boron concentration
and non-condensable gases, of the RELAP5/MOD3.2 code’. The main conceptual steps
involved in this implementation of the local ASAP are the same as pioneered by Cacuci and
Wacholder® in their work on applying the ASAP to the well-posed system of quasi-linear par-
tial differential equations that describe transient one-dimensional, two-phase flow. Very few
applications of the local ASAP (and no global sensitivity analysis applications) to two-phase
flow problems have been reported in the open literature so far. Following the seminal work of
Ref. 8, which also used the homogeneous equilibrium model of two-phase flow as an explicit

paradigm, Cacuci et al°. and Wacholder et al™

. presented an exact sensitivity analysis of a
two-phase flow problem involving boiling transition between single-phase and two-phase
flow. Later, Ounsy, Brun, and de Crecy'' have applied Cacuci’s ASAP to Burgers’ equation
as a paradigm for non-linear hyperbolic systems. Although they initially misapply the ASAP
(by omitting to include, ab initio, the requisite shock condition as part of the set of equations
defining the problem, and henceforth falsely concluding that the ASAP is not applicable to
“non-linear hyperbolic problems”), they nevertheless come up with the correct results by in-
cluding the shock condition explicitly, a posteriori. They also present several sensitivities cal-

culated with the CATHARE code" .

This work is organized as follows: Sec. 2.1 presents briefly the so-called “Numerically Con-
venient Set of Differential Equations” (REL/CDE), which are obtained from the basic differen-
tial equations that underlie the non-homogeneous, non-equilibrium, one-dimensional two-
fluid model. The REL/CDE are discretized using a staggered-mesh in the spatial direction,
and either a one-step (“nearly-implicit”) or a two-step (“semi-implicit”) discretization proce-
dure in time; the resulting set of nonlinear algebraic equations is presented in Sec. 2.2. As

will be detailed in Sec. 3, the local sensitivity analysis theory for nonlinear systems devel-



oped by Cacuci®*® will be applied both to the Differential REL/CDE and to the Discretized
REL/CDE. This two-tiered, parallel, approach is employed because:

(a) The ASAP is easier to implement and program using the Discretized REL/CDE, since the
discretized geometry of RELAP5/MOD3.2 (i.e., the RELAP5 defined volumes, junctions,
etc.) can be used directly, without additional modifications, which is a considerable ad-

vantage in view of the complex geometries modeled by RELAPS5.

(b) Implementing the ASAP for the Differential REL/CDE leads to the Differential Adjoint
Sensitivity Model (ASM-REL/TF), as will be detailed in Sec.3.2.1, which is not discretized
and therefore not readily solvable numerically. To discretize the Differential ASM-REL/TF

is a time-consuming task, considering the complex geometry modeled in RELAPS.

(c) However, as will be discussed in Sec. 3.3, the Discretized ASM-REL/TF may not neces-
sarily turn out to be consistent with the Differential ASM-REL/TF. As discussed in Sec.
3.3, the respective consistency must be ensured, and this can be done only if the Differ-
ential ASM-REL/TF is also available.

As is well known, this sensitivity analysis theory comprises two complementary aspects,
namely the Forward Sensitivity Analysis Procedure (FSAP), and the Adjoint Sensitivity
Analysis Procedure (ASAP). Correspondingly, Sec. 3.1.1 highlights the derivations underly-
ing the application of the FSAP for the REL/CDE, while Sec. 3.1.2 highlights the FSAP for
the Discretized REL/CDE. These derivations underscore the fact that the FSAP should be
used only for the less usual situations when the number of results (or responses) of interest
for sensitivity analysis exceeds the number of parameter variations to be considered. On the
other hand, in the far more common situations encountered in practice, when the number of
responses is less than the number of parameter variations, the ASAP must be used since, in
view of the numerous parameters in RELAP5/MOD3.2, it is clear that the ASAP is the only
practical way to perform a complete and systematic sensitivity analysis of the reactor plant
transients calculated with this code. Underlying the ASAP are the Differential Adjoint Sensi-
tivity Model (ASM-REL/TF), which comprises nine coupled differential equations that are lin-
ear in the adjoint function, and its discrete counterpart, the Discrete ASM-REL/TF, which
comprises thirteen linear algebraic equations that result from the use of the RE-
LAP5/MOD3.2 time discretization(s) and staggered-mesh spatial discretization procedures.
The following fundamental characteristics of the ASAP have been highlighted during its im-
plementation in the RELAP5/MOD3.2 two-fluid model: (a) the adjoint functions are independ-

ent of parameter variations; (b) the adjoint functions must be calculated anew for every re-



sponse; (c) the ASM-REL/TF is linear in the adjoint function and may be solved by methods
that are, in principle, independent of those used to solve the original, nonlinear equations;
and (d) the adjoint functions depend (nonlinearly, in general) on the base-case solution,
which must therefore be available prior to solving the ASM-REL/TF. The derivations under-
lying the application of the ASAP to the Differential REL/CDE are presented in Sec. 3.2.1,
while the derivations underlying the application of the ASAP to the Discretized REL/CDE are
presented in Sec. 3.2.2.

Section 3.3 highlights the fundamentally important aspect of consistency between the differ-
ential and the corresponding discretized equations used for sensitivity analysis. The indis-
pensable a priori assumption must be that the original differential equations (in this case, the
REL/CDE) are discretized consistently (in RELAP5/MOD3.2); otherwise, the base-case solu-
tion could not be calculated correctly. Starting from this indispensable assumption, the fol-
lowing consistency correspondences must be assured: (i) the Discretized Forward Sensitivity
Model (FSM) must be consistent with the Differential FSM, if the FSAP is used; (ii) the Dis-
cretized Adjoint Sensitivity Model (ASM-REL/TF) must be consistent with the Differential
ASM-REL/TF, if the ASAP is used; and (iii) the Discretized (representation of the) Response
Sensitivity must be consistent with the Integral (representation of the) Response Sensitivity
both for the FSAP and for the ASAP, in which the Integral and the Discretized Response

Sensitivity are represented in terms of adjoint functions.

Section 4 presents typical results that illustrate the verification of the numerical solution of the
ASM-REL/TF, for several sample problems that involve, respectively: (i) the liquid-phase
only, (ii) the gas-phase only, and (iii) two-phase flow. Thus, Sec. 4.1 presents results that
illustrate the verification of the numerical solution of the ASM-REL/TF when only the liquid-
phase is present. The “Two-Loops with Pumps” sample problem supplied with RE-
LAP5/MOD3.2 is used for this purpose. By replacing the liquid (water) by gas (pure steam)
but keeping the respective geometry, a modified “Two-Loops with Pumps” sample problem is
obtained and used, as described in Sec. 4.2, to verify the accuracy and stability of the nu-
merical solution of the ASM-REL/TF when only the gas-phase is present. For the same veri-
fication purpose, a modified “Edwards Pipe” sample problem, in which only the gas-phase is
present (thus describing the transient depressurization of a pipe filled with pure steam), is
also used in Sec. 4.2. Finally, Sec. 4.3 illustrates the verification of the numerical solution of

the ASM-REL/TF when both (i.e., liquid and gas) phases are present; the “Edwards Pipe”



sample problem, as supplied with the RELAP5/MOD3.2 code, is employed for this verifica-

tion.

This work also illustrates the role that sensitivities of the thermodynamic properties of water
play for sensitivity analysis of thermal-hydraulic codes for light-water reactors. Using the well-
known 1993 ASME Steam Tables', Sec. 5 presents typical analytical and numerical results
for sensitivities of the thermodynamic properties of water to pressure, temperature, and the
numerical parameters that appear in the mathematical formulation of these properties. Note
that the explicit, exact expressions of all of these sensitivities have been obtained by using
the symbolic computer language MAPLE V', In particular, Sec. 5 highlights the very large
sensitivities displayed by the specific isobaric fluid and gas heat capacities, C;, and C,g, the
specific fluid enthalpy, hy, the specific gas volume, V, the volumetric expansion coefficient for
gas, By, and the isothermal coefficient for gas, kq. In addition, Sec. 5 also presents the sensi-
tivities of the remaining thermodynamic properties of water, namely: the specific fluid volume,
Vs, the volumetric expansion coefficient for fluid, R, the specific gas enthalpy, hy, and the
isothermal coefficient of compressibility for fluid, k;. Finally, Sec. 6 summarizes and con-

cludes this work by highlighting possible directions for future research.

2 THE RELAPS/MOD3.2 TWO-FLUID MODEL

The RELAP5/MOD3.2 code’ simulates the thermal-hydraulic characteristics of light-water
reactors (LWR) by using a non-homogeneous, non-equilibrium, one-dimensional two-fluid
model, which consists of a system of nine coupled nonlinear partial differential equations
describing the conservation of mass, momentum and energy for the liquid and gaseous
phases, including non-condensable materials in the gaseous phase and boron concentration
in the liquid field. These conservation equations are not solved directly in RELAP5/MOD 3.2;
instead they are transformed into the so-called “Numerically Convenient Set of Differential
Equations”, abbreviated henceforth as REL/CDE, which comprises the “non-condensable
density equations” (for each species, and for the total), the “vapor energy equation”, the “lig-

uid energy equation”, the “difference density equation”, the “sum density equation”, the “dif-



ference momentum equation”, the “sum momentum equation”, and the “boron conservation

equation”.

2.1 The Numerically Convenient Set of Differential Equations (REL/CDE)

The explicit forms of the “Numerically Convenient Set of Differential Equations”, abbreviated
henceforth as REL/CDE, are:

the “non-condensable density equation”:

Lol ap X, 1 0
n g o T OGP, ™
at ot ot Aodx

(a,0,X,v,A)=0 (2.1)

the “vapor energy equation”:

d d ouU
(ngg +P) ;g +a,U &+ocgpg . +l{aix(ocgnggng)+ P(;ix(ocgng)} =

. .
I h h_fh;JHig(Ts_Tg)%_{h* : JHif( S_Tf) (2.2)

the “liquid energy equation”:

oL 9 au, 1] 9
_(prf +P) atg +O‘fo%+O‘fpf atf X{g(afprfoA)"' Pg(afoA):|
h: . P, h; . P-P
_ (h; o JHig(T - T, )F+ (hl _ghi JHif(T “T,)+ S H, (T, -T,) (2.3)

_ [(“Tsjhg , (%)h;}rw +Q,, +DISS,.



the “difference density equation”:

Jp ap o, 1 9
O‘g(.})_tg_()tfa_tf"'(pg +pf) atg +Xa_x(agnggA_afprfA)
Py (s s (2.4)
2[HigP(T ST, )+ H, (T —Tf)}
- . . +2L,.
h, —h;
the “sum density equation”:
ap ap oo 1 9
. a_tg + o a_tf + (pg - pf) atg + Xa_x(agnggA + ocfpfva)= 0. (2.5)
the “sum momentum equation”:
v v, 1 v, 1 av:i P
op, —S+op—+—ap, —L+—op,——=-—+p_B, -ap,v.FWG
Py T T e T P T T T TP T AP (2.6)
—ayp, v, FWE =T, (v, - v,)
the “difference momentum equation”:
ov ov? 2
e v IOV, Love 1 _LI0P | FWG+v, FWF+
ot ot 2 0dx 2 9x P, Pr)ox ¢
nov, - ] 2 alv,-v.) o
g pVI - afpfvg +agngf —meI(Vg _Vf)_c pm Vg _Vf .
agpgafpf pgpf ot
the “mass conservation equation for each non-condensable component:
ad 1 9
a(ocgpgxnxm)+ X&(agngnXngA)= 0 (2.8)



where

M . M .
X'= ni = nl’

’ i M ni M !
i=1

and where M ; represents the mass of the i-th non condensable component in the gaseous

phase, while M represents the total mass of non-condensable gas in the gaseous phase;
and, finally, the “boron conservation equation”

P, + 1 a(OtfprbeA) -0, (2.9)
o0 A 0x

Py __ Py .
pm(l_X) 0P

where the concentration parameter is defined as C, =

Equations (2.1) through (2.9) can be represented mathematically as the matrix-valued op-

erator equation

N(x.G)-5(G)=0, (2.10)

where y = (x,,... ,x, ) denotes a vector whose components are the nine dependent (i.e.,

state) variables in the REL/CDE system, as follows: the gas specific internal energy,

Ug =%, the fluid specific internal energy, U, =y, , the pressure, P =y, the void fraction,
O, =%y the total non-condensable mass fraction, X, =%, the non-condensable mass
fraction for the i-th non-condensable species, X . =%, , the boron density, p, =%, the gas

velocity, v, =, and the fluid velocity, v =7, . Itis important to note here that the two-fluid



model equations depend on a large number of parameters, such as those entering in various
correlations, initial and/or boundary conditions, formulae expressing the thermodynamic
properties of water (the 1993 ASME Steam Tables'?), and those describing the geometry of
the problem under consideration, etc. These parameters are denoted in Eq. (2.10) by the J-

component vector G = (gl,,,.,gj), where J denotes the total number of parameters in RE-

LAP5/MOD3.2.

Note that Eq. (2.10) contains first-order derivatives in time and space; therefore, it must be

supplemented with appropriate initial and boundary conditions, which are hereby denoted as

>0

)_((x t )= X, ,t(x), for t =t and all x (2.11)

—In1

)_((xo,t) = Xbound(t), forx =x_ and all t > 0. (2.12)

At this stage, it is important to note that since Eq. (2.10) is nonlinear, it can, in principle, ad-
mit multiple solutions as well as discontinuous solutions that model shock waves. All of the
considerations in this work, however, are restricted to those domains in phase (x,t) and pa-
rameter-space in which the solution of Egs. (2.10) through (2.12) is unique. Bifurcations,
shock waves, and all other physical phenomena that might lead to non-unique solutions are

beyond the scope of this work.

2.2 The Discretized REL/CDE

In RELAP5/MOD3.2, the REL/CDE are discretized spatially using a staggered spatial mesh
that defines the RELAP “volumes”; furthermore, two adjacent volumes are connected to each
other by RELAP “junctions”. The velocities are defined at junctions, while all other state vari-
ables are defined as volume-averaged variables. This spatial discretization procedure is

illustrated in Fig. 1, below.



Vector node
or junction Mass and energy control

volume or cell

vg and vf
Scalar node
P,Ug,Uf
(K-1) K ¥l L (L+1)
rrrrrrrrrrrrrrrrrrrrr S e ° @ A
7N
k-2 k-1 k k+1
i2 | i1 ] i+l +2
J: RELAP "junctions" k: RELAP "volumes"

Momentum control
volume or cell

Fig. 1. Spatial discretization procedure (staggered mesh) for discretizing the REL/CDE

The Discretized REL/CDE equations for each cell are obtained by (i) integrating the mass

and energy equations with respect to the spatial variable x, from a junction at X; to the next

junction at x,,, and (ii) integrating the momentum equations with respect to the spatial vari-

+17

able x, from a cell center x , to the adjoining cell center x | .

Two time-discretization procedures are implemented in RELAP5/MOD3.2; they are referred
to as the nearly-implicit scheme, and the semi-implicit scheme, respectively. The nearly-
implicit scheme is essentially a one-step integration procedure, while the semi-implicit
scheme is a two-step integration procedure. Since the mathematical formalism of a one-step
procedure can be formally considered to be a particular case of a two-step procedure, only

the two-step procedure, i.e., the semi-implicit scheme, will be analyzed in this work.

10



In the semi-implicit scheme, the time advancement depends on the state of the fluid, in a
control volume, for two successive time steps. The following four cases can occur in a control

volume:

(a) “two-phase to two-phase”, where two-phase flow conditions exist at both the old (n) time-

step, and the new (n+1) time step, respectively;

(b) “one-phase to one-phase”, where one-phase flow conditions (either pure gas or pure lig-

uid) exist at both the old (n) time-step, and the new (n+1) time step, respectively;

(c) “two-phase to one-phase” (also referred to as “disappearance”), where two-phase flow
conditions exist at the old (n) time-step, and one-phase flow conditions exist at the new (n+1)

time-step, respectively;

(d) “one-phase to two-phase” (also referred to as “appearance”), where one-phase flow con-
ditions exist at the old (n) time-step, and two-phase flow conditions exist at the new (n+1)

time step, respectively.

After integration over x, from a junction at x; to the next junction at x,,, the mass and en-

j+l?

ergy equations yield a set of algebraic equations that can be written in matrix form as

1 n+l 2 n+l 1 n+l 2 n+l
Ax=b+gv,, +g v, +Evi, +£vT, (2.13)

where

All A12 0 A14 A15 XET]} - XEL
Ay Ay Ay Ay Ay ﬁ;+Ll _Urgl,L
A=Ay Ay, Ay Ay Ayl X= G?TLI_U?’L i
A41 A42 A43 A44 A45 a;+Ll _argl,L
As As, Ay Ay A L L .

11



0 g g 0 0
b, g g 0 0
b=|by|, g={0] g=lof f=f5 £=f]
b, g, 2 f, £y
|0 gt | g5 | fs £7 ]

for each time-step n, volume k and/or junction j; the symbols with tilda indicate quantities that

are evaluated at an intermediate (provisional) time-step. All of the variables appearing in the
components of the matrix A and the vectors b, gl, gz, f, £2 are evaluated at old-time step,

n. The expressions of these components are listed in Appendix A.

The sum momentum equation is integrated over x, from a cell center x , to the adjoining cell

center x , , to obtain

(agpg);'(vn” —Vn) ( fpf) ( e+l V?)AAXj +%(dgpg)?[(vé)i —(V;);]At

1 i n
+ () [ )“]A gp VISG? - (6, ) VISF Jt

= _(1 - Yl)(PL -P )n+1 At + [(pm)j X _(agp )n FWG; (Vg)I-I+1 - (at‘pt ) FWFH( )n+1
(o (P e Jax ac - [(dgpg);'HLOSSG“ "' _ (¢, ) HLOSSF v ™! ]m

g JgJ

(2.14)

Similarly, the difference momentum equation is also integrated over x from a cell center x

to the adjoining cell center x| to obtain

12



e ot oo vz - vi)- b = v ] o 2l Ve, B2 - (2 o
-i[<agpg>/<agpg>];ws<};m-§[<afpf>/< ) [ )"]A

2

+ %[(dfpf )/(afpf )];1 VISanAt = _(1 - ﬂ)[(Pg —Pg )/(pgpf )]Jn (PL - Py )ml At - {FWG? (Vg)z

BALC AR PSSR 219

0P, Oy
[ v - aprvet —azprvi ) a J@agnfl
+( meIj([1+fx (-}, )" =[1+£(co -1 (v, )‘F“)}Axm

_{(dgpg)/(agpg)}jHLOSSG;?(vg)j”—[(afpf (ctep; )] HLOSSF! (v )““}At

Equations (2.13) through (2.15) constitute a system of 13 coupled algebraic equations that

can be represented in matrix form as

Nx™',G)-5(G) =0 (2.16)

For clarity, Eq. (2.16) displays only the most essential functional dependencies, namely

those on the following quantities:

O =0, ) e ) ) 0, o i, ) ) E,) T )

(&g)i”,(}?n)E”J, which represents the vector of discretized state variables for volume k

and/or junction j; the first nine components of Z;‘”are state variables at time-step (n+1),
while the last four components (with tilda) represent state variables evaluated at an interme-
diate (provisional) time-step, between time-steps (n) and (n+1), respectively;

(i) G= (gl,...,gJ), which represents a J-component column vector whose components

comprise all numerical parameters in RELAP5/MOD3.2 that are subject to variations;

and

13



(iii) S= (sl,...,s13 ) which represents a 13-component column vector whose components

comprise all of the inhomogeneous source terms appearing in Egs.(2.13) through (2.15).

The system of algebraic equations represented by Eq.(2.16) is solved to obtain (i) the pres-

sure, the fluid and gas velocities at the new time step (n+1), and (ii) the intermediate time-

step variables (ﬁg)i+l,(ﬁf)n+l (&g)“” (}N(n)fl. For the cases (b) and (d) defined above,

k > k °
when one-phase conditions exist at the old time step (n), the intermediate time-step is actu-
ally skipped by setting (ﬁg)zﬂ = (Ug)i”,(ﬁf)z+1 = (Uf)ﬁ”,(&g)i” = (ag)z+l,()~(n):+l = (XH)E”,

so that the intermediate time-step variables are used directly at time-step (n+1). For the
cases (a) and (c) defined above, when two-phase conditions exist at the old time-step (n),

the non-expanded forms of the mass and energy equations are used to obtain

(Ug)E”,(Uf)i”,(ocg)i”,(Xn)E”. As an illustrative example, the calculation of (Ug)f“, for a

volume L and time-step (n+1), is presented below; the calculation of the other three state

n+l
L )

variables are presented in Appendix A. Thus, to calculate (Ug) the quantity (ocgngg )'L'”

is calculated from the non-expanded form of the vapor energy equation

VL |.(agngg )I;l - (agngg )E J+ |:dg,j+1 (pg,ﬁlUg,jH + PL )VrgljrjilAjH - dg,j (pg,jUg,j + PL )VESIAJ‘ ]At

S T
=Vl -ay )+ —[h;hjh; ] S - ){ﬁ}H (T -Tey)

P' -P! ~ ~ -
__L - s.L Hy (Tg“il _ Tf‘tzl )+ Iy HlTsj(h;L )n + (HTSJ(h;L )n} +Qj, . +DISS; }VLAt.
L

The quantity (ocgpg)z+1 is calculated next from the non-expanded form of the vapor density

equation shown below:

14



I_(OL )n+l (agpg )i J+ (ag,j+1pg,j+lvgilA nggJ g+1A )A
I;SHL e (fort g e, (e -

_ 1, VAt
R U e

Finally, the ratio of the results from the previous two operations is calculated to obtain

(U, )" = (00,0, ) flergp, S

3 DETERMINISTIC SENSITIVITY ANALYSIS OF THE
TWO-FLUID MODEL IN RELAPS5/MOD3.2

Many results, customarily referred to as “responses”, R(_,Q), calculated by RE-

LAP5/MOD3.2 can be generally represented in the integral form

Ry, G)= t]-dtxj.dxF[)_((x,t), G(x,1)] (3.1)

ty  Xo

In particular, this integral form can be used to represent either instantaneous or averaged (in

space and/or time) values of the dependent variables; for example, setting

F()_(,Q)=6ij6(x xl)é(t t ) (x t) in Eq. (3.1), where 9, represents the Kronecker-delta

functional while B(X—xl) and 6(t—t1) denote Dirac-delta functionals, yields the instantane-
ous value of the i-th dependent variable at the point (x4,t;) in space-time, namely

R(_,G) Xl(xl, ) On the other hand, setting F( ,G) 6ij‘)_((x,t) in Eq. (3.1), yields the

space-time averaged value of the i-th dependent variable, namely R x, Idt J-dxxl )

to X0

15



Conceptually, the REL/CDE are solved using base-case (or nominal) parameter values, de-

noted here by QO, to obtain the base-case (or nominal) solution %"’ . In turn, the base-case

(nominal) solution and parameter values are used to obtain the base-case (nominal) re-

sponse value R°()_(°,§°). The base-case (nominal) parameter values G° = (gf,...,g}’) are

customarily determined from experimental data; consequently, their numerical values are not

known exactly but are known only within some bounds (e.g., tolerances, variations); these

bounds can be represented by the vector I' = (y,,7,.,...,7, )= (8g,,8g,....,8g, ), whose com-

ponents are the respective parameter variations 6gj.

When the parameter variations I = (yl,yz,...,yj)s (6g1,6g2,...,6gj) are introduced in Egs.

(2.10) and (3.1), the corresponding "perturbed" solution becomes )_(0 + ®, satisfying the per-

turbed system

Nlx® +@,G° +T)-8(G° +T)=0, (3.2)

while  the perturbed response would become R(X°+Q,Q°+£), where

¢ = ((I)l,...,CI)g)E (6Ug,..., 6Vf) denotes the nine-component vector of variations in the re-
spective components of % - In principle, the above equation could be solved repeatedly, for
each vector of variations I = (yl,yz,...,yJ)E (6g1,6g2,...,6gj) of interest, to obtain exactly

perturbed solution 7’ +®, but such a procedure would become impractical when many

variations 0g, must be considered.

The objective of local sensitivity analysis®® is to analyze the behavior of the system re-
sponses locally around a chosen point or trajectory in the combined phase-space of pa-
rameters and state variables. On the other hand, the objective of global sensitivity analysis®
is to determine all of the system's critical points (namely, bifurcations, turning points, ex-
trema) in the combined phase-space formed by the parameters, state variables, and adjoint
variables, and subsequently analyze these critical points by local sensitivity analysis. The

most general and fundamental concept for the definition of the local sensitivity*® of a re-

16



sponse to parameter variations is the Gateaux (G-) differential. By definition, the G-

differential DP(gO;h) of an operator P(g) at €’ with increment h is

Dple’:h)=time [ Ple’ + eh)- ple’) |- < {ple” +en)}. ., (3.3)

e—0 de

for all (i.e., arbitrary) vectors h, and scalar €. The G-differential DP(@O;h) is related to the

total variation [P(go +h) —P(go )J through the relationship

Ple’ +h)-Ple’)= DPle’:h)+ W(h). with lim[W(eh)/e]= 0. (3.4)

It is important to note here that in most practical cases the G-differential DP(gO;h) is linear
in h; in such cases, Eq. (3.4) indicates that the terms in W(h) are of second- and higher-

order in |h].

Applying Eq.(3.3) to Eq. (3.1), while noting that g=()_(,§), e’ = ()\(O,QO), and h=(®,I),

yields the sensitivity DR(Z",QO;@,[) of the response defined in Eq. (3.1) as

bR o,go;@,g)gi{}m"j@o re.G 4 gg]}
t xtO h o ox 0 (3:5)
= Idt J-dx(aF/BQ)OE(X,t)+ Idt J-dx(aF/a)_()oQ(x,t).

For the response R()_(,Q) defined in Eq.(3.1), Eq.(3.4) takes on the form

Rl +@,6° +T)=Rl¢’,6° )+ DRy, 6%, T)+ o] +|r]'] (356)
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indicating that the exact value of the perturbed response, R&O +D,G’ +[), namely the

response-value that would be obtained by (exact) recalculations using perturbed values, is

predicted by the sensitivity DR(ZO,QO;Q, E) to first-order accuracy in |@| and |[L].

3.1 Implementation of the Forward Sensitivity Analysis Procedure (FSAP) in
RELAPS5/MOD3.2

This Section presents the implementation of the Forward Sensitivity Analysis Procedure for
Nonlinear Systems (FSAP), as originally developed by Cacuci®® , for the two-fluid model of
RELAP5/MOD3.2. Thus, Sec. 3.1.1 below presents the implementation of the FSAP for the
“Numerically Convenient Set of Differential Equations” (REL/CDE) represented by Eq. (2.10),
while Sec. 3.1.2 describes the implementation of the FSAP for the set of algebraic equations
represented by Eq. (2.16), obtained by discretizing the REL/CDE using the semi-implicit
time-discretization scheme and the staggered-mesh spatial discretization scheme that was
described in Sec. 2.2.

3.1.1 Implementation of the FSAP for REL/CDE

As Eq. (3.5) indicates, the sensitivity DR(ZO,QO;@,E) can be calculated once the function

® is determined. To first-order accuracy in ||£ , @ is the solution of the Forward Sensitivity

Model (FSM), obtained by taking the G-differentials of the Differential REL/CDE. In the
following, the derivation of the FSM is illustrated by presenting the calculations of the respec-
tive G-differentials for a typical “momentum-like”-conservation equation, a typical “density-
like”-conservation equation, and a typical “energy-like”-conservation equation. For example,

the G-differential of the “sum momentum equation” is obtained by calculating the expression
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4 {[(oc; + eda

o +8dX ,UD +edU,,P° +edP;g7 + edg; v, +8dv,
de ! at

e,
(—oc;—eé(x )ai( +86Vf)-pf(U‘f’+£6Uf,P°+86P;g3.’+86gj)+

(O(;+860(g) ( +e0X ,U; +edU, P°+86ng+86g)a(v +86V)2+
ax

N — N —

(1 -a, - sé‘)ocg)pf(U‘; +edU,P° +edP; g7 + eé‘)gj)ai(v‘g + sé‘)vf)2
X
; aiX(P" +eop )b, = ;—g{E6(X§ + 80X, U + 60U, Ul +edU,, 0’ +edar,.
P° + 86P,V; + 86Vg,v‘f’ + 86Vf;g;.’ + sﬁgj)}E=0
where EG(_,Q) is defined as

Es((,G)=p.B, - 0,0, FWG v, —0;p,FWFv, T, (v, - v, ),

and where FWG, FWF, and Fg are nonlinear algebraic functions of the dependent vari-

ables y and parameters G .

Performing the differentiation operations in the above equation yields
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(o) (o) 2 (o] (o) 2

(XO an +la(Vg) apg _ aE6 6X + OLO an+la(Vg) apg _ aE6 6U
ot 2 ox X, . X, . " ot 2 ox aUg aUg £
-

ov? olv? 0 oE
+ a(f) Vf +l (Vf) . pf _ 76 6Uf

o 2 0x U, . U, .

Jove el | Tave vl (e,

+| P, +—————|-p; +— - daL,

ot 2 ox ot 2 ox | (oo,

o o 2] 2]
9 9 9 ; r
N azl: Ve +% (:;)g() ng +(1?|:an +18(Vf) apfj —(aEéJ J6P+i(6P)+

ot JP ot 2 0x JP JoP 0x
0 d oE 0 d JE
+a°p° —ov, )+ —(v°-dv ) |- 1 &v. +a’p’ | —(0v, )+ —(Vvo-Ov, | |- 81 8v
gpg(at( g) ax( ¢ g)} (avg] e P (at( f) ax( f f)j (anjo £

o 0 )? 2
oE oE av olv 0 0 °
— 6 6A+ 6 6g] _ az g +l ( g) pg +OL? an +la(vf) apf 6gJ
0A ), 0g; ot 2 0x 0g; at 2 0x ag;

As a further example, the G-differential of the “sum density equation” is calculated by per-

forming the differentiation shown in the following equation:

%{(a; + séag)%pg(Xfl +8dX,,U; +edU,,P° +dP;g] + ségj)
+(1—oc; —aéocg)%pf(U‘f’ +edU,P° +edP; g} +86gj)
+ (pg(Xf1 +e0X,,U; +edU,,P° +edP;g7 + eégj)—pf(U‘; +ed0U,,P° +¢dP; g + ségj))

%(a; + Séag)*'m{%[( o+ séag)(v‘; +edv, XA" + séA)
pg(Xﬁ + eé‘)Xn,U; + £6Ug,P° + séP;g? + ségj)

(1 -, —eda, )pf(U‘f’ +&dU,,P® +£dP; g +edg; Xv‘f’ +edv; XAO + séA)] }} , =0

=l

Similarly, the G-differential of the “liquid energy equation” is obtained by calculating the ex-
pression
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%{— [pf(U? +&dU,, P’ + dP; g7 + £dg; XU? +edU; )+ P’ + séP]% (ocg + sé‘)ocg)

+ (1 —a, - eé‘)ochU? + £6Uf)%pf(U? +¢dU,, P’ +¢dP; g} + ségj)

+(1—cxg —sf)ocg)p (U0+86Uf,P0+86P g| +¢dg, ) (U°+86U )

1

+ 0o, 86A{ ’ [(1 0‘ - edal )pf(U? +&dU,,P’ +86P;g? + séngU? +56Uf)~

(V? + eévaAo + 86A)+ (PO + zzf)P)i [(1 —a, - €da, XV? +edv; XAO + £6A)]}}
£=0

0x

d

" de
gj +80g; )}8=0

{E (XO +edX,, Uy +edU, Uy +€dU;, 0 +eda,, P’ + €dP, vy +&dv,, vy +€dvy;

where

E3(X,§)E£ h; ]Hig(Ts—Tg)+£ h, JHif(TS—Tf)

| —h; h! —h,

{lTjh (_ j }r +Q,, +DISS,,

and where H,, I',, Q,, and DISS, are nonlinear algebraic functions of the dependent

variables x and parameters G .

The G-differentials of the remaining equations comprising the REL/CDE are calculated simi-
larly. Collecting all of the G-differentiated REL/CDE vyields the FSM for the two-fluid model,

which can be represented in the form
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9
Z{%[Smn(x,t)‘bn(x,t)hAol(x)%[Ao(x)Tmn(x,t)@n(x,t)]+ U, (x,t) (Dn(x,t)}
= L2 (3.7)
J
= szj(X’t)rj (Xat)’ form = 1,...9.
=1
where the vector-valued function @ =(®,,...,®, )= (6Ug,..., dv, ) is subject to the known ini-

tial-time condition @(x,t0)=A)_((x,to), for all x, and the known boundary condition

Q(xo,t)= A)_((xo,t) at x, for all t, respectively.

The expressions for the quantities Smn(x,t), Tmn(x,t), Umn(x,t) and Qmj(x,t) introduced in

the above equation have been obtained by symbolic computer calculus using MAPLE V2.
Since the quantities Smn(x,t), Tmn(x,t), and Umn(x,t) appear on the left-side of Eq. (3.7),

they will also appear in the expression of the ASM-REL/TF, as will be shown in the sequel in

Sec. 3.2; for this reason, their explicit formulae are presented in Appendix B.

The solution of Eq. (3.7) could, in principle, be used in Eq.(3.6) to calculate the sensitivity

DR&(",Q“;Q,[), since the error in obtaining @E(@l,...,d>9) from Eq. (3.7) is of second-
order in ||£|| Note, however, that Eq. (3.7) would need to be solved anew (i.e., repeatedly)

for each I, which is impractical if there are many I'.. Thus, the Forward Sensitivity Analysis

Procedure (FSAP) is computationally just as expensive as performing repeatedly the exact
recalculations by solving Eq. (3.2) with the RELAP5/MOD3.2 code system, and then recal-

culating the exact perturbed response R(ZO +®,G° + [).

3.1.2 Implementation of the FSAP for the Discretized REL/CDE

A result (response) calculated by RELAP5/MOD3.2 can be generally represented in discre-

tized form as

22



R(Zd»§)= %i%%(&dﬁ) (3.8)

n=0 j=1 k=1

where NF, NJ, and NV denote, respectively, the total number of time steps, the total number

of junctions, and the total number of volumes in the problem under consideration.

When the parameter variations I = (yl,yz,...,yj)s (6g1,6g2,...,6g1) are considered in Egs.

(2.16) and (3.8), the corresponding "perturbed" solution would become )_(Z + ¥, satisfying the

perturbed system

Ny +®,G° +T)-8(G° +T)=0, (3.9)

while  the perturbed response would become R&Z+2,Q°+£), where

Y = |_(6Ug)i”,...,(65(n )E”J denotes the corresponding variations in the vector of depend-

ent variables y .

Applying Eq. (3.3) to (3.8) yields the following expression for the sensitivity DR of R to varia-
tions ' (in G around G°)and ¥ (in X, around )_(Z):

NE NJ NV [ 13 gF" I 9F"
DR=>>>|Y 2w +> &1 |=DR(¥)+DR(T) (3.10)
no0 o1 k| a1 0%y o G,

where DR(E) represents the “direct effect” term while DR(E) represents the “indirect ef-

fect” term.
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The indirect effect term DR@) can be calculated only after having obtained W, which can

be obtained, to first order in ||£|| by taking the G-differential of Eq.(2.16) to obtain the Dis-

crete FSM, and subsequently solving this system. To derive the Discrete FSM, it is conven-

ient to introduce the following notations:

for variations in the volume-averaged dependent variables, over a volume k = 1,..,NV, at

time-step n, n = 1,..,NF, the following notations are introduced:

(x1)"=(u,). (x2) =6, ) (x2)" = (6P)r, (%} )" = (bcr, ),
(x:)" = (6%, )0, (X2 )" = (6%,,)1, (X])" = (09, )7

for variations in the dependent variables defined at junctions j = 1,...,NJ, at time-step n, the

following notations are introduced:

(Vi) = v, ) (V)" = v, ) 5

for variations in the volume-averaged, intermediate-time-step variables, for a volume k =

1,...,NV, at time-step n, the following notations are introduced:

2.) =60, ). (z:) =60, ). (z) =3, ). (z:) = (6%, )7

It is also convenient to denote the total number of volume-averaged dependent variables by

My, and the total number of intermediate-time-step variables by M,, at any time step n; note

that 4=<M; =7 and 0=M, =<4, Note also that the  quantities

(XL )n, oo (Xi )n , (Yll )n, (Yk2 )n , (ZL )n yeens (Zﬁ )n are actually components of W; they were
introduced in order to simplify the notation in the derivations to follow below, aimed at elimi-

nating the intermediate-time variables.

Applying the definition of the G-differential to Eq. (3.9) and using the above notations yields

the following matrix representation of the Discrete FSM:

M, 2 M,
;[nglxgl +CvirX ]+ ;[DVJ‘;IYj + Evg‘;lY;‘-l]+ Z[ TV 1zn] FV™,

foru=1,...,M,;; n=1,...,NF;
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M

o e T Sl b e

v=1 v=1

foru=12; n=1,...,NF;

M

o

In IZn Invl’
W

M, 2
> [Brx: «crxe e Y [orgye + By
v=l

=1 =1

<
<

foru=1....M,;n=1,...,NF (3.11)

The various matrices and vectors appearing in the above Discrete FSM are defined as fol-

lows:
FV! = FIn =] FI, :
(fV);V (NV1) (fj);J (NIx1) (ﬁ);\, (Nvx1)
Xy Yy Z
X! = Y, =] 2, = ;
u w u
NV (nvx) N (nix1) NV ] (nvx)

BV!-?V = |_(bv)g,v JNVxNV); CVJV = |.(CV);L JNV NV)’ DV“ = [(dV);W JNVxNJ);

[(GV);V JviNJ); TV;‘v = (diag{(tv-“V )E })NVXNV ; TIEV = (diag{(tiuv )11: })NVXNV :

EV, =

BJﬁv E[(bj)gv JNJxNV); CJEV EI.(Cj)g .INJ NV)? DJH E[(dj)gv JleNJ);
BTy E[(ej)ﬁ JNJ w) Bl E[(bi)gv JviNv)' CL,, E[( )u JNVxNV);
DI, E[(di)gv JNVxNJ); EL, E|.( ) JNVxNJ);
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The vectors on the right-side of Egs. (3.11) represent the I -dependent terms that result
from the application of the definition of the G-differential to Eq. (2.16). All of the components
entering the definitions of the matrices appearing on the left-side of Egs. (3.11) and vectors
appearing on the right-side of Egs. (3.11) have been obtained explicitly using the symbolic
computer language MAPLE V, and have been programmed accordingly, but will not be re-

produced here because of their lengthy and cumbersome expressions.

The algebraic system represented by Eq. (3.11) can be written in a more compact form by

introducing the partitioned matrices:

1)

26

— BVH BVl,Ml D\/11 DV12
BVMI,I ]3'VM1,M1 DVMI,I DVM1,2 = Bgn) 5
BJ, BJI,MI DJ,, DJ,,
i Bl,, BJZ’MI DI, DIy, d(My+2)x(M; +2)
- 7(n)
BI,, BIl,M1 DI, DI,
. . . . _n).
=B)";
_BIMz’l BIMz’Ml DIMZ’I DIMZ’z_sz(M1+2)
TV v,
11 LM, (n)
: : TL,, TILMz
TV, Vi . =T : : =T/
0 TIM2,1 TIMZ,MZ MM,
L 0 —(M1+2)"M2
_ —(n) _
Cv, CVLM1 EV,, EV,, X, (n)
CVMI,I CVMI,MI EVMI’I EVMI,2 = an) : XMI = Xn;
cJ, CJI,MI EJ,, EJ,, Y,
i Cl,, CJZ,Ml El, El, J(M,+2)x(M, +2) LY



CIL,, Cl, v, EI, EI, Z,

Cl,,  Cl,, EI,, EI Z,,

M2.2 1M, x(M,+2)

and introduce them in Eq. (3.11) to obtain the following system of matrix equations:

Bgn—l) X(n) + Tl(n—l) X(ln) - Fl(n—l) _ an—l) X(n—l)
(3.12)

B(zn—l) X(n) + Tz(n—l) X(In) — Fz(n—l) _ C(Zn—l) X(n—l)

As shown in Appendix C, the matrix Tz(“_l) in Eq. (3.12) is always nonsingular, and therefore

admits an inverse [Tz(“_l)}l; the procedure to calculate [Tz(“‘l)}1 is also presented in Appen-

dix C. The matrix [Tz(“‘l)}1 is used in Eq. (3.12) above to eliminate the vector of “intermedi-

ate-time” unknowns, XE“). The result of this elimination is the following system of matrix

equations:

G x® L geU X0 g0 forn=1,...,NF
(3.13)

X(O) — Kinit
where K™ is a vector that contains the (known) perturbations in the initial conditions, and

where the matrices G, H™", and K™ are defined as follows:

G(n—l) = B(n—l) _ T(n—l) [TZ(H—I)TIB(ZH—I)’ H(n—l) = an—l) _ Tl(n—l) I:Tz(n_l)}l C(zn_l),

1

—_

and K" = Fiot) _ o) [Tz(“'l)}le(“‘l), respectively.
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3.2 Implementation of the Adjoint Sensitivity Analysis Procedure (ASAP) in
RELAPS5/MOD3.2

This Section presents the implementation of the Adjoint Sensitivity Analysis Procedure for
Nonlinear Systems (ASAP), as originally developed by Cacuci*®, for the two-fluid model of
RELAP5/MOD3.2. Thus, Sec. 3.2.1 presents the implementation of the ASAP for the Differ-
ential REL/CDE, while Sec. 3.2.2 describes the implementation of the ASAP for Discretized
REL/CDE.

3.2.1 Implementation of the ASAP for REL/CDE

The Adjoint Sensitivity Analysis Procedure (ASAP) relies* on the fact that the FSM repre-

sented by Eq. (3.7) is linear in ®. It is therefore possible to introduce the vector
@*(x,t)s (CDT(X,t),...,CDZ(x,t)) of adjoint functions by taking the inner product of ®" with Eq.
(3.7) to obtain

(¢".L0) - (", @) + flo.0°]. (3.14)

[T
where: (i) the angular brackets denote the inner product <a_, l;> = J.dt J.dxg(x, t)-b(x, t),
ty X,

(i) M is the formal adjoint of L, and (iii) {P[@,Q*J}, denotes the bilinear concomitant evalu-
ated on the surface, in space-time, of the computational domain (x,t). In practice, the right-
side of Eq. (3.14) is obtained by first performing the vector-multiplication between Q* and
L&, and then by integrating the resulting differential equations by parts over x and t such as

to transfer all of the differentiation operations from the components of ® to the components

of Q*.
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Following the ASAP guidelines* to obtain the ASM-REL/TF, the following sequence of opera-
tions is performed in Eq. (3.14): (i) set gg* = (aF/a;_<)°; (ii) eliminate the unknown values

@(x,tf) and @(xf,t) by imposing @*(X,tf)=Q and @*(xf,t)=Q as “final-time” and, re-
spectively, “boundary” conditions for Q*; and (iii) use the known initial and boundary condi-

tions for @ . This sequence of operations transforms Eq. (3.14) to

X te
((oF/ox) @) - (@ ,Lg>+xjg (X,tOE(x,to)-A)_((x,to)}ix+tjg (x,. t)T(x,.t)* Ax 515
where the vector-valued adjoint function Q* satisfies the following system of equations:

S s, 000 fot- A(x)T,, a(@7 /A" Jax + U, (x.t) @ (x, 1)} = (F/ax,, )'. m=1,.. 316)

n=1

and where Q* is subject to the final-time conditions Q*(x, tf)= 0, for all x, and the bound-
ary conditions Q* (xf,t) =0, for all t. Equation (3.16) together with the respective boundary

and initial conditions for the adjoint function ® *(x, t) are referred to as the Adjoint Sensitivity

Model (ASM-REL/TF).

Comparing Egs. (3.5) and (3.15) reveals that the sensitivity DR can now be expressed in

terms of the adjoint function Q* as

DR(".G":®. L)

X Y
j=1

fax [at (aF/ay, Pr + tjdtxjdx o e @g)

(3.17)

X

oo oot TG, ) gt i [0, e, o) g,

Xo
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Equation (3.16) reveals the following important characteristics regarding the ASAP:
the ASM-REL/TF does not depend on the parameter variations Fj ; hence, the adjoint func-
tion 9* is independent of parameter variations, too;

the source for (i.e., the right-side of) the ASM-REL/TF depends on the response R; hence,

(0] " must be calculated anew for every R;

the ASM-REL/TF is linear in Q*; hence, the numerical methods for calculating @* need not

o

be the same as originally used for calculating the base-case solution ~ of the nonlinear

original system described by Eq. (2.10). (Particularizing this conclusion to our code system,
the implication is that the numerical methods for solving the ASM-REL/TF need not be the

same as the original numerical methods used in RELAP5/MOD3.2). In many cases, it is

easier to calculate the adjoint function Q* , Which results from the solution of a linear system,

rather than the original calculation of )_(°, which results from the solution of a nonlinear sys-

tem;

the ASM-REL/TF depends (in general, nonlinearly) on the base-case (nominal) solution x°

through the quantities Smn(x,t), Tmn(x,t), and Umn(x,t); hence, the adjoint function ®"

depends, in general nonlinearly, on the base-case solution %°, too. Thus, the base-case

o

solution

must be available prior to solving the ASM-REL/TF. Furthermore, the program-
ming strategy for solving the ASM-REL/TF must be intertwined efficiently with the program-
ming in the original code (in this case, RELAP5/MOD3.2) in order to optimize the calculation
of 9* by minimizing memory requirements and CPU-time for its calculation. It is important to

note here that if the original system were linear (such as would occur, for example, for neu-
tron and/or radiation transport problems), then the ASM-REL/TF would not only be linear,
too, but would in addition be independent of the base-case solution, and could therefore be

calculated independently of it.

From the characteristics described in items (a) through (d) above, it follows that the Adjoint

Sensitivity Analysis Procedure (ASAP) should be used whenever the number of parameter

variations Tj exceeds the number of responses R of interest; this is generally the case in
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practice. The reverse case, when the number of responses R exceeds the number of pa-
rameter variations I'j, occurs rather seldom in practice. Should such a case occur, however,
the FSAP might be used for sensitivity analysis, if it already exists in the respective code;

otherwise, direct recalculations should be performed, since they would require no additional

programming.
3.2.2 Implementation of the ASAP for the Discretized REL/CDE

The (Discrete) ASM-REL/TF corresponding to the (Discrete) FSM represented by Eq.(3.13)
is obtained by introducing the respective adjoint, vector-valued, function via the scalar (inner)
product of two vectors in a finite-dimensional Euclidean space. This inner product is formed
by writing Eq.(3.13) as a single (partitioned) matrix equation, and by multiplying this matrix

equation on the left by a yet undefined partitioned column-vector E = (E(O),...,E(NF)), with

components =) of the same size and structure as X(“), to obtain an expression of the form

NF
ZTAX = ZE(“)A(“)X(“), where A represents a matrix composed of the corresponding matri-
n=0

ces G™ and H™. The (Discrete) ASM-REL/TF is then obtained by transposing the inner

product Z"AX to obtain X" ATE, and by setting this expression to be equal to the indirect

effect term, as follows:

NF
DR(¥)=X"A"2=X"Q =Y X"Q"
n0 (3.18)

NF
TK _

n=0

- EZTAX = (g ()

[1]
1]

The source Q(“) appearing in Eq.(3.18) is determined by the quadrature scheme chosen to

calculate numerically the system response R in EQ.(3.8). From the identification

NF
X'ATE=X"Q =) X"Q", it follows that the (Discrete) ASM-REL/TF is given by the sys-
n=0

tem of matrix equations
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[G(NF—I)]TE(NF) = Q(NF), for n = NF
o'z 4 [HO [ =) 2 QW) forn=NF-1,....1 (319)
)4 [HO] 2D 2QY, forn=0

S

In view of Egs.(3.10) and (3.18), it follows that the sensitivity DR of the response R is given in

terms of the adjoint function Z = (E(()),...,E(NF)) by the following expression

NF
DR = DR()+ DR(¥) = DR(D)+ > =K ™ (3.20)

n=0

Note that the (Discrete) ASM-REL/TF represented by Eq.(3.19) must be solved backwards in

time, starting, in principle, from the final time-step NF. In practice, however, the calculation of

the vector-valued adjoint function E = (E(O),...,E(NF)) commences backwards in time only

from the time-step, n, at which the source terms Q(“) are non-zero. Furthermore, just as for
the Differential ASM-REL/TF represented by Eq.(3.16), Eq.(3.19) reveals that (a) the adjoint
function 2 is independent of parameter variations; (b) £ must be calculated anew for every
R; (c) the ASM-REL/TF is linear in E, and (d) the adjoint function E depends (nonlinearly, in
general) on the base-case solution )_(Z, which must therefore be available prior to solving the

ASM-REL/TF.

3.3 Consistency Between the Differential/Integral and the Discretized Repre-

sentations in Sensitivity Analysis

This section highlights the fundamentally important aspect of consistency between the differ-
ential and the corresponding discretized equations used for sensitivity analysis. In this con-
text, consistency means that the discretized representation converges to the corresponding

differential and/or integral representation in the limit as Ax; —0 and At— 0. A priori, it

must be assumed that the original systems of differential equations (in this case, the
REL/CDE) has been discretized consistently, i.e., Eq.(2.16) represents a consistent discreti-

zation of Eq. (2.10). This is an indispensable assumption, of course, since if it were false,
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then one could not calculate the base-case solution correctly. Similarly, it must also be as-
sumed that Eq.(3.8) represents a consistent discretization of the response represented by
Eq.(3.1). Starting from these essential assumptions, the following consistency correspon-

dences must be assured:

(a) the Discretized FSM represented by Eq. (3.11) must be consistent with the Differential
FSM represented by Eq. (3.7);

(b) the Discretized ASM-REL/TF represented by Eq. (3.19) must be consistent with the Dif-
ferential ASM-REL/TF represented by Eq. (3.16);

(c) the Discretized Response Sensitivity represented by Eq.(3.10), the Integral Response
Sensitivity represented by Eq.(3.5), the Integral Response Sensitivity represented by
Eq.(3.17) in terms of adjoint functions, and the Discretized Response Sensitivity repre-

sented by Eq.(3.20) in terms of adjoint functions, must all be consistent with each other.

If item (a) above turns out to be false, i.e., if the Discretized FSM represented by Eq. (3.11)
turns out to be inconsistent with the Differential FSM represented by Eq. (3.7), then the a
priori assumption that the original nonlinear differential equations (in this case, the REL/CDE)
have been discretized consistently must be carefully re-examined. If this a priori assumption
is still confirmed to be correct, then the Discretized FSM represented by Eq. (3.11) must be

discarded from further consideration. Two possibilities arise at this juncture:

(a.1) if the implementation of the FSAP is necessary, then the Differential FSM represented
by Eq. (3.7) must be discretized in a consistent manner, to enable its subsequent numerical
solution; note that the Differential FSM represented by Eq. (3.7) can be discretized, in princi-
ple, independently of the original discretization procedures used to discretize the original

nonlinear differential equations (in this case, the REL/CDE), or

(a.2) if the implementation of the FSAP is not necessary, then item (b) described above must

be verified.

If item (b) above turns out to be false, i.e., if the Discretized ASM-REL/TF represented by Eq.
(3.19) turns out to be inconsistent with the Differential ASM-REL/TF represented by Eq.
(3.16), then the Discretized ASM-REL/TF represented by Eq. (3.19) must be discarded; in-
stead, the Differential ASM-REL/TF represented by Eq. (3.16) must be discretized consis-
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tently, and subsequently solved numerically. The considerations of consistency outlined so

far are depicted in the flow-chart shown in Fig. 2 below.

Finally, if item (c) above turns out to be false, then the Integral Response Sensitivity repre-
sented in terms of adjoint functions, cf. Eq.(3.17), must be discretized in a consistent manner
to enable its correct numerical calculation. In closing, it is important to note that the funda-
mental hypothesis underlying all of the consistency considerations in this section is that the
differential and/or integral forms (i.e., the Differential FSM, ASM-REL/TF, and Integral-
Response-representation) are the forms that contain/model physical reality; thus, it is the
discretized forms that must conform to, and represent consistently, the differential/integral

forms, rather then the other way around.
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Fig. 2. Required consistencies between the differential and discretized formulations of FSM
and ASM-REL/TF
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4 VALIDATION OF THE ADJOINT SENSITIVITY
MODEL FOR THE RELAP5/MOD3.2 TWO-FLUID
MODEL

A very important use of Eq.(3.17) is for validating the computation of the adjoint function @*.
For example, by choosing the response R, to denote the i-th REL/CDE dependent variable
at some discrete point (xl,tf) in space-time, by setting I'=0, A)_((xo,t)=Q, and
A)_((x,to)=[0,...,6(x—xl)Axi (x,to),...O] in Eq.(3.17), i.e., by effecting solely a variation in the

initial conditions of the i-th dependent variable in the REL/CDE, the following expression is

obtained:

DRi(XOsQO;Q’L;Q*)= q);k(xl’to)sii(xl’to )AXi(Xl’to) (4.1)

The above expression reveals that the sensitivity DR, can be used to validate the i-th com-

ponent of the adjoint function @, as follows: (i) on the one hand, Eq.(3.16) is solved to ob-
tain the adjoint function, and then perform the multiplication on the right-side of Eq. (4.1) to

obtain DR;; the sensitivity DR, would then be added to the nominal response value

Rf(x_",g’) to obtain the predicted perturbed response, R as indicated by Eq.(3.6); (ii) on

pred ?
the other hand, the exact perturbed response is recalculated R = Ri(z" +®,G’ +£), for

the perturbation Axi(xl,to). Recall that, according to Eq.(3.6), the values of R ., and R

reca pred

agree with each other up to second order perturbations in the system parameters. Therefore,

by deliberately selecting the perturbation Axi(xl,to) to be so small as to render the effects
of higher-order terms negligible in Eq.(3.6), the value of R, should agree closely with the
value of R, if the adjoint function ®. had been accurately computed. On the contrary, if
the computation of the respective adjoint function was not accurate, then R ., would differ

from R no matter how small one selected the variation Ay (xl,to).

recal ?
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The programming considerations for implementing the ASAP in RELAP5/MOD3.2 are high-
lighted in Appendix A. In particular, it is important to note that the ASM-REL/TF is solved by
calling, at each time-step, the subroutine DSLUGM™, which is a generalized minimum resid-
ual (GMRES) iterative sparse-matrix solver that uses incomplete LU factorization for precon-

ditioning non-symmetric linear systems.

4.1 Validation of the ASM-REL/TF for Liquid-Phase Using the “Two-Loops
With Pumps” RELAP5/MOD3.2 Sample Problem

Using the concepts outlined above, the accuracy and stability of the numerical solution of the
ASM-REL/TF for the liquid-phase have been verified by using the “Two Loops With Pumps”
sample problem supplied with the RELAP5/MOD3.2 code. This problem models two, mostly
identical, closed loops containing 19 pipe-volumes and a pump-volume. For the first loop, the
pipe-volumes are numbered consecutively from 101 to 119, while the pump-volume has
number 201 and connects pipe-volumes 101 and 119; similarly, the second loop consists of
pipe-volume numbers 301 to 319, with pump-volume 401 connecting pipe-volumes 301 and

319. Each loop is filled with fluid, and has friction and an orifice.

At the start of the transient, the water in the first loop is at zero (initial) velocity, but the pump
is rotating in the positive direction. Thus, the pump trip is initially false, and the pump angular
velocity is constant at the initial value until the pump trip becomes true. With the pump rotat-
ing at a constant angular velocity but the water at rest, the head is high and the water is ac-
celerated. As the velocity of the water increases, wall friction and area change losses in-
crease because these losses depend on the velocity of water. At the same time, the pump
head obtained from the homologous data will decrease as the volumetric flow increases. A
steady state is reached when the pump head and the loss effects balance. This steady state
is reached after about 14.5 seconds from initiating the transient; at this time, the fluid velocity
attains a value that remains constant for the next 5.5 seconds. At about 20 sec., the pump is

tripped and therefore the pump speed and fluid velocities begin to decrease.
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For the second loop, the initial angular rotational velocity for the (second) pump is zero; a
pump motor torque curve, corresponding to an induction motor, is used. From the curve, the
torque is positive at zero angular velocity; the torque increases slowly as the velocity in-
creases, up to a value that is slightly below the synchronous speed. Then, the torque de-
creases sharply to zero at the synchronous speed, where the developed torque matches the
frictional torque and the torque imposed by the water. While the net torque is positive, the
water is accelerated. Once the second pump approaches synchronous speed, the transient

behavior of the second becomes similar to that of the first loop.

To verify the stability and accuracy of the numerical solution of the ASM-REL/TF, various
variations in the initial conditions have been considered for the pressures in the volumes and,
respectively, velocities at the junctions comprising the respective loops. Note that such per-
turbations do not correspond to actual physical processes, but are introduced numerically as
mathematical means to verify the accuracy and stability of the numerical solution of the ASM-
REL/TF. To facilitate the comparisons between the results (sensitivities) predicted by the
ASM-REL/TF and the corresponding exact recalculations, the numerical values presented in
the various tables below were deliberately not rounded off, but were displayed with all the
decimals printed by RELAPS5.

For the results reported in this section, the fluid used in the “Two-Loops With Pumps” sample
problem described above is single-phase water. To ensure that the fluid remains in the liquid-
phase throughout the transient, the initial conditions were P;;=1.56E+7 Pa and T;;,;=555K.
The solution of the ASM-REL/TF was then verified by effecting various perturbations in the
initial pressures and velocities, as well as in the pump head, by calculating the respective

predicted responses, and by comparing these predictions with exact recalculations.
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TABLE |

“Two-Loops With Pumps” — liquid-phase: influence of perturbations in the initial

pressure in volume 301 (adjacent to the pump) on the pressure in same volume.

Perturbation Transient Nominal
Duration / Value Porea-P° Preca-P°
No. of time steps (N/m?)
0.05sec./5t.s. 1.56259E+7 7391.4 7400
1% 0.2sec./20t.s. 1.56259E+7 7391.5 7400
of the initial 0.5. sec./ 52 t.s. 1.56263E+7 7391.5 7300
pressure 5.sec./ 144 t.s. 1.56549E+7 7392.0 7400
20. sec. / 294 t.s. 1.73607E+7 7440.8 7500
0.05sec./5t.s. 1.56259E+7 36957 36600
5% 0.2sec./20t.s. 1.56259E+7 36958 36600
of the initial 0.5.sec./52ts. | 1.56263E+7 36958 36600
pressure 5.sec./ 144 t.s. 1.56549E+7 36960 36600
20.sec./294ts. | 1.73607E+7 37204 36900
0.05sec./5t.s. 1.56259E+7 73914 72400
10% 0.2sec./20t.s. 1.56259E+7 73915 72500
of the initial 0.5.sec./52t.s. 1.56263E+7 73915 72400
pressure 5.sec./ 144 t.s. 1.56549E+7 73920 72300
20.sec. /294 t.s. 1.73607E+7 74408 73000

The behavior of the volume-averaged pressure in volume 301 (adjacent to the pump) to vari-
ous perturbations in the initial values of the pressure in the same volume are presented in
Fig. 3 and TABLE |. These results are typical for the pressure sensitivities to variations in the
initial pressures for all of the other loop-volumes, as well. The values presented for Py, are
obtained by re-running the entire transient using the respective perturbed initial condition. As
noted from the results in Fig. 3 and TABLE |, the solution of the ASM-REL/TF, which is used
to obtain P4, is very accurate and stable, practically coinciding with the exact recalculations

for the entire duration of the transient (294 time steps).
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Fig. 3. “Two-Loops With Pumps” — liquid-phase: influence of perturbations in the initial pres-

sure in volume 301 (adjacent to the pump) on the pressure in same volume.

TABLE 1l “Two-Loops With Pumps” — liquid-phase: influence of perturbations in the initial

velocity in junction 301 (adjacent to the pump) on the velocity in same junction.

Perturbation | Transient duration | Nominal value
In initial ve- / 0 0 0
locity (j301) | nr. of time steps Vi (307) Viped T Ve Vet = Vg
(m/s)
0.05sec./5ts. 1.20631E-5 1.50766E-3 1.50840E-3
3.048*1072 0.1sec./10t.s. 1.13544E-4 1.60894E-3 1.60889E-3
m/s 0.2sec./20ts. 9.80435E-4 2.467843E-3 2.47489E-3
(0.1 ft/s) 0.5sec./50ts. | 1.60002E-2 1.74949E-2 1.74856E-2
att=0 1.0 sec. /100 t.s. .12428 .12559 .12550
0.05sec./5ts. 1.20631E-5 44879E-1 .44507E-1
.9144 m/s 0.1sec./ 10 ts. 1.13544E-4 44975E-1 .44186E-1
(3 ft/s) 0.2sec./20t.s. 9.80435E-4 45822E-1 44432E-1
att=0 0.5sec. /50 t.s. 1.60002E-2 .60609E-1 .57258E-1
1.0 sec. /100 t.s. .12428 .16369 .15583
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Fig. 4. “Two-Loops With Pumps” — liquid-phase: influence of perturbations in the initial ve-

locity in junction 301 (adjacent to the pump) on the velocity in same junction.

The influence of perturbations of 0.1ft/s and 3ft/s, respectively, in the initial velocity (0.0 ft/s)
in junction 301 on the subsequent time-dependent behavior of the velocity in the same junc-
tion (301) are depicted in Fig. 4 and TABLE I, respectively. The effects of the perturbations
in the initial velocity are noticeable during the early stages of the transient only, but then di-
minish quickly in time. Note that the results obtained using the ASM-REL/TF for the 0.1ft/s
perturbation are practically indistinguishable from the exact recalculations, thus confirming
the robustness, stability, and accuracy of the respective numerical solution of the ASM-
REL/TF. The nonlinear effects are more prominent for the 0.9144m/s (3 ft/s) perturbation,
particularly at early time values, but these effects also diminish in time and converge to the

respective steady state values, as would be expected.
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TABLE Il Predicted and RELAP5-recalculated velocity in junction 305 (perturbations in the

initially zero velocity in the same junction)

Perturbation | Transient duration | Nominal value

in initial ve- / (m/s) Vg = Vo Vi = Ve
locity (j305) | nr. of time steps V9 (1305) f.pred 1) frecal = 7
0.05sec./5ts. 9.76885E-6 1.50596E-3 1.50601E-3
3.048*107 0.1sec./10t.s. 1.12958E-4 1.60825E-3 1.60821E-3
m/s 0.2sec./20t.s. 9.79162E-4 2.47356E-3 2.47352E-3
(0.1 ft/s) 0.5sec. /50 t.s. 1.59969E-2 1.74817E-2 1.74821E-2

att=0 1.0 sec. /100 t.s. 12427 .12556 .12550

5.0 sec./142 t.s. 1.6241 1.6241 1.6241

10.0 sec./192 t.s. 2.9979 2.9979 2.9979

20.0 sec./292 t.s. 4.4761 4.4761 4.4761
0.05sec./5t.s. 9.76885E-6 1.4971E-2 1.49366E-2
3.048*10” 0.1sec./ 10 t.s. 1.12958E-4 1.5065E-2 1.49976E-2
m/s 0.2sec./20t.s. 9.79162E-4 1.5923E-2 1.57965E-2
(1 ft/s) 0.5 sec. /50 t.s. 1.59969E-2 3.0848E-2 3.0646E-2

att=0 1.0 sec. /100 t.s. 12427 13722 .13603

5.0 sec./142 t.s. 1.6241 1.6241 1.6241

10.0 sec./192 t.s. 2.9979 2.9979 2.9979

20.0 sec./292 t.s. 4.4761 4.4761 4.4761
0.05sec./5t.s. 9.76885E-6 4.4896E-2 4.4499E-2
.9144 m/s 0.1sec./ 10 t.s. 1.12958E-4 4.4971E-2 4.4180E-2
(3 ft/s) 0.2sec./20t.s. 9.79162E-4 4.5811E-2 4.4426E-2
att=0 0.5 sec. /50 t.s. 1.59969E-2 6.0453E-2 5.72603E-2

1.0 sec. /100 t.s. 12427 .16138 .15582

5.0 sec./142 t.s. 1.6241 1.6241 1.6240

10.0 sec./192 t.s. 2.9979 2.9979 2.9978

20.0 sec./292 t.s. 4.4761 4.4761 4.4761

The results presented above in Tables | and Il and Figs. 3 and 4, respectively, are typical for
perturbations in all of the volume-averaged pressures and junction-velocities of the “Two-
Loops With Pumps Problem”. Additional results that illustrate this general trend are pre-
sented in TABLE Ill and TABLE IV, and in Figs. 5 and 6. Thus, TABLE Ill and Fig. 5 present
results for the sensitivities of the time-dependent velocity in junction 305 to perturbations (of
0.1ft/s, 1ft/s, 3ft/s) in the initial velocity (0.0ft/s) at this junction. Furthermore, TABLE IV and
Fig. 6 present the sensitivities of the time-dependent velocity at junction 103 in loop 1 to
perturbations from zero in the initial velocity at this junction. Recall that the perturbations in-
troduced numerically in the volume-averaged pressures and junction velocities serve only as
mathematical means to verify the accuracy and stability of the numerical solution of the ASM-

REL/TF, and are irrelevant to actual physical processes. Nevertheless, the results obtained
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indicate that the numerical method for solving the ASM-REL/TF is as accurate, robust, and

stable as the original numerical methods used in RELAP5/MOD3.2 for solving liquid-phase

problems.
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Fig. 5. Influence of perturbations in the initial junction velocity (j305) on the velocity in the

same junction
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Fig. 6. Influence of initial conditions on the fluid velocity at junction 103

As example of a perturbation that does have physical meaning within the liquid-filled “Two-
Loops With Pumps Problem*, the ASM-REL/TF has been used to obtain the sensitivity of the
pressure in the loops to variations in the pump head. Typical results for such sensitivities are
presented in TABLE V, which, in particular, shows the time-dependent (100 time-steps) sen-
sitivity of the pressure in Vol. 101 (adjacent to the pump in Loop 1) to a small (1%) and, re-
spectively, large (10%) variation in the pump head. These results show that the pressure
variations predicted by the ASM-REL/TF for the 1%-perturbations in the pump head are very
close to, albeit somewhat larger than, the exactly recalculated pressures. For the larger
(10%) pump head variations, the nonlinear effects become stronger, leading to a more
marked over-prediction of the exactly recalculated results by the ASM-REL/TF-calculated

sensitivities.
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TABLE IV Predicted and RELAPS-recalculated fluid velocity at junction 103 (perturbations in

initial conditions at the same junction)

Perturbation | Transient duration | Nominal value | Adjoint Method | Exact Recalcu-
in initial ve- / V5 (j103) Vj perturbed lation
locity (j103) nr. of time steps (m/s) (m/s) Vj recalc. (m/s)
0.05sec./5t.s. 1.3319 1.3331 1.3331
3.048*107 0.1sec./10t.s. 2.2565 2.2573 2.2573
m/s 0.2sec./20t.s. 2.8760 2.8761 2.8761
(0.1 ft/s) 0.5 sec. /50 t.s. 2.9662 2.9662 2.9662
att=0 1.0 sec. /100 t.s. 2.9664 2.9664 2.9664
0.05sec./5t.s. 1.3319 1.3447 1.3442
3.048*10™ 0.1sec./10t.s. 2.2565 2.2647 2.2643
m/s 0.2sec./20ts. 2.8760 2.8774 2.8770
(1 ft/s) 0.5 sec. /50 t.s. 2.9662 2.9662 2.9662
att=0 1.0 sec. /100 t.s. 2.9664 2.9664 2.9664
0.05sec./5t.s. 1.3319 1.3703 1.3687
.9144 m/s 0.1sec./10t.s. 2.2565 2.2812 2.2799
(3 ft/s) 0.2sec./20 t.s. 2.8760 2.8804 2.8790
att=0 0.5sec. /50 t.s. 2.9662 2.9662 2.9662
1.0 sec. /100 t.s. 2.9664 2.9664 2.9664

TABLE V “Two-Loops With Pumps” — liquid-phase: influence of pump head perturbations on

pressure.
Perturbation Transient Nominal
Duration / Value Pored-P° | Precar-P°
No. of time steps (N/m?)
0.01 sec 1.57426E+7 1165.3 1100
1% of the initial 0.05 sec 1.57372E+7 1032.9 900
pump head 0.1 sec 1.57238E+7 | 829.68 700
0.5 sec 1.57058E+7 | 253.37 100
1sec (100t.s.) | 1.57319E+7 | 256.37 100
0.01 sec 1.57426E+7 11653 11600
10% of the 0.05 sec 1.57372E+7 10329 8700
initial 0.1 sec 1.57238E+7 | 8296.8 4300
pump head 0.5 sec 1.57058E+7 | 2533.7 1200
1sec (100t.s.) | 1.57319E+7 | 2563.7 600

4.2 Validation of the ASM-REL/TF for Gas-Phase Using Modified “Two-Loops
With Pumps” and “Edward’s Pipe” RELAP5/MOD3.2 Problems

To validate the solution of the ASM-REL/TF for the gas-phase, the “Two-Loops With Pumps

Problem” described above in Sec. 4.1 has been modified by replacing the water (liquid) by
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steam (gas). This modification was effected by using the following initial conditions:

Pini=7.0E+6 Pa and T4;,=620K. Otherwise, the geometry was kept unchanged.

TABLE VI

pressure in volume 103 (3 volumes away from pump) on the pressure in same volume.

“Two-Loops With Pumps” — gas-phase: influence of perturbations in the initial

Perturbation Transient Nominal
Duration / Value Poreda-P° Preca-P°
No. of time steps (N/m?)
0.1sec./10t.s. | 7.00433E+6 331.48 320
0.1% 0.5sec./50ts. | 7.00627E+6 331.47 320
of the initial 1sec./100ts. | 7.00984E+6 331.48 330
pressure 5.sec./142t.s. | 7.03846E+6 331.27 330
20.sec./ 292 t.s. | 7.14594E+6 330.82 320
0.1sec./10t.s. | 7.00433E+6 3314.8 3320
1% 0.5sec./50ts. | 7.00627E+6 3314.7 3320
of the initial 1sec./ 100 t.s. 7.00984E+6 3314.8 3330
pressure 5.sec./142t.s. | 7.03846E+6 3312.7 3330
20.sec./ 292 t.s. | 7.14594E+6 3308.2 3320
0.1sec./10t.s. | 7.00433E+6 33148 32590
10% 0.5sec./50ts. | 7.00627E+6 33147 32560
of the initial 1sec./100ts. | 7.00984E+6 33148 32560
pressure 5.sec./142t.s. | 7.03846E+6 33127 32540
20.sec./ 292 t.s. | 7.14594E+6 33082 32530

The influence of perturbations in the initial pressure in volume 103, which is located three
volumes away from pump, on the pressure in same volume is illustrated by the results pre-
sented in TABLE VI. Just as has been noted for the liquid-phase problem analyzed in Sec.
4.1, these perturbations are introduced numerically, and do not correspond to actual physical
processes; they are used as mathematical means to verify the accuracy and stability of the
numerical solution of the ASM-REL/TF. The results in TABLE VI show that the solution of the
ASM-REL/TF, which is used to obtain P.q, iS very accurate and stable, practically coinciding
with the exact recalculations for the entire duration of the transient (292 time steps), for all

the perturbations (0.1%; 1%; 10%) effected in the initial pressure.

TABLE VII “Two-Loops With Pumps” — gas-phase: influence of pump head perturbations on

the pressure in volume 103.

Perturbation Transient Nominal
Duration / Value Porea-P° Preca-P°
No. of time steps (N/m?)
1% of the initial | 0.1 sec (10t.s.) | 7.00433E+6 27.335 20
pump head 0.5sec (50 t.s.) 7.00627E+6 9.8272 9
1sec (100t.s.) 7.00984E+6 9.8588 10
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10% of the 0.1sec (10t.s.) | 7.00433E+6 273.35 160
initial 0.5sec (50t.s.) | 7.00627E+6 98.272 50
pump head 1sec (100 t.s.) 7.00984E+6 98.588 50

the pressure in volume 101 (adjacent to the pump).

TABLE VIII “Two-Loops With Pumps” — gas-phase: influence of pump head perturbations on

Perturbation Transient Nominal
Duration / Value Poreda-P° Preca-P°
No. of time steps (N/m?)
1% of the initial | 0.1 sec (10 t.s.) 7.00487E+6 31.278 30
pump head 0.5sec (50 t.s.) 7.00630E+6 9.8284 10
1sec (100 t.s.) 7.00988E+6 9.9438 9
10% of the initial | 0.1 sec (10 t.s.) 7.00487E+6 312.78 180
pump head 0.5 sec (50 t.s.) 7.00630E+6 98.284 50
1sec (100 t.s.) 7.00988E+6 99.438 40

The influence of varying the pump head on the time-dependent behavior of the pressure in
various volumes has also been investigated. Typical examples of the sensitivities of the vol-
ume-averaged pressures to variations in the pump-head are presented below in TABLE VII,
for volume 103, and TABLE VIII, for volume 101, respectively. Although the results presented
in these tables are reproduced with all the digits printed by the RELAP code (in order to em-
phasize the respective differences), these results indicate that the pressure variations pre-
dicted by using the ASM-REL/TF are practically indistinguishable from the exact recalcula-
tions.

To verify further the accuracy and stability of the numerical solution of the ASM-REL/TF for
the gas-phase, the well-known “Edwards Pipe” problem, supplied with the RELAP5/MOD3.2
code, has been modified by filling it initially with pure steam, rather than water, as in the
original setting of this problem. The modified “Edwards Pipe” problem thus contains steam
(i.e., gas-phase) only, initially at rest in the pipe, with initial pressure and internal energy of 7
MPa and 0.27E+7 J/kg, respectively. The pipe is then depressurized by opening an end into
a large reservoir at atmospheric pressure and an internal energy of 0.25E+7 J/kg. To main-
tain pure gas (steam)-conditions throughout the depressurization, the transient calculation
was restricted to the first 57 time steps after initiation of the transient depressurization, since

condensation begins to appear beyond this point in time.
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TABLE IX “Edwards Pipe” — gas-phase: influence of perturbations in the initial pressure in

volume 301 (near to the pipe’s closed end) on the pressure in the same volume

Perturbation

Transient duration

Nominal value

/ (N/mz) F)pred'Po F)recal'Po
No. Of time steps
0.1% of the initial | 0.001 sec./19 t.s. 7.0E+6 -322.86 -320
pressure 7.0E+6 | 0.005 sec./38 t.s. 6.8909E+6 16.078 20
(N/m?) 0.01 sec/ 57 ts. 3.4896E+6 116.69 120
5% of the initial 0.001 sec./19 t.s. 7.0E+6 -16143 -14300
pressure 7.0E+6 | 0.005 sec./38 t.s. 6.8909E+6 803.90 710
(N/mz) 0.01 sec/57 ts. 3.4896E+6 5834.3 7910
10% of the initial | 0.001 sec./19 t.s. 7.0E+6 -32286 -25060
pressure 7.0E+6 | 0.005 sec./38 t.s. 6.8909E+6 1607.8 1370
(N/mz) 0.01 sec/ 57 t.s. 3.4896E+6 11669 13970

The ASM-REL/TF results and the respective comparisons with exact recalculations are pre-
sented in Fig. 7 and TABLE IX. These results indicate that the pressure response variations
predicted by using the sensitivities calculated with the ASM-REL/TF agree well with the ex-
actly recalculated variations. For the larger (10%) variations, the effect of nonlinearities be-
comes more evident, particularly as the condensation point is approached in time. All in all,
the results shown in TABLE IX and Fig. 7 indicate that the numerical method used for solving

the ASM-REL/TF is also quite accurate for the gas phase segment of the two-fluid model.
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Fig. 7. “Edwards Pipe” — gas-phase: influence of perturbations in the initial pressure in vol-

ume 301 on the pressure in the same volume
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4.3 Validation of the ASM-REL/TF for Two-Phase Using the “Edwards Pipe”
RELAP5/MOD3.2 Sample Problem

In addition to having verified the numerical solution of the ASM-REL/TF by using sample
problems involving single-phase fluids as described in the foregoing in Sec. 2.1 and 2.2, the
solution of the ASM-REL/TF has been also verified by using the original “Edwards Pipe”
sample problem supplied with the RELAP5/MOD3.2 code. In this (original) setting, “Edwards
Pipe” models the depressurization of a pipe, filled initially with single-phase water at a pres-
sure of 7 MPa and temperature of 502 K. The transient depressurization of the single-phase
water is initiated by releasing one end of the pipe. The time-dependent behavior of the liquid,
namely water turning into a two-phase mixture during the pipe depressurization, simulates
the basic features of a loss of coolant accident in a pressurized water reactor. It is important
to mention that the calculation of the transient behavior of the pressure, temperature, and
fluid- and gas-velocities that describe “Edwards Pipe” problem requires the complete hydro-

dynamics of the RELAP5/MOD3.2 two-fluid model, including several flow regimes.

lllustrative results for validating the numerical solution of the ASM-REL/TF for the first 0.1s
(109 time steps) of the “Edwards Pipe” problem are presented in TABLE X. The two-phase
flow regimes involved during these 109 time-steps are bubbly, slug, and mist flows, respec-
tively; the transitions between regimes occur very rapidly. The results presented in TABLE X
illustrate the effects of perturbations in the initial pressure in volume 305 on the subsequent
time-evolution of the pressure in the same volume. The good agreement between the results
for the predicted responses obtained using the ASM-REL/TF and the exactly recalculated
responses indicates that the solution of the ASM-REL/TF is calculated robustly and accu-
rately for the respective two-phase flow regimes. Beyond the first 109 time-steps, horizontal
stratification begins to occur in some volumes. Validation of the solution of the ASM-REL/TF

for this regime is currently in progress.
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volume 305 on the pressure in the same volume.

TABLE X “Edwards Pipe” — two-phase: influence of perturbations in the initial pressure in

Perturbation Transient duration | Nominal value
/ (N/mz) l:)pred Precal
no. of time steps
0.1% of the initial | 0.01 sec./19t.s. | 2.66073E+6 | 2.66070E+6 | 2.66071E+6
pressure 7.0E+6 | 0.06.sec/69ts. | 2.57470E+6 | 2.57471E+6 | 2.57473E+6
(N/m?) 0.1sec/109ts. | 2.58221E+6 | 2.58238E+6 | 2.58241E+6
10% of the initial | 0.01sec./19t.s. | 2.66073E+6 | 2.66218E+6 | 2.66222E+6
pressure 7.0E+6 | 0.06.sec/69ts. | 2.57470E+6 | 2.57609E+6 | 2.57613E+6
(N/m?) 0.1sec/109ts. | 2.58221E+6 | 2.57538E+6 | 2.57548E+6
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5 SENSITIVITIES OF WATER MATERIAL PROPER-
TIES: ILLUSTRATIVE EXAMPLES

The material properties of water play an essential role in all calculations with RE-
LAP5/MOD3.2. The standard reference for the mathematical formulae of the thermodynamic
properties of ordinary water substance is the well-known monograph entitled "ASME Steam
Tables" (1993). In particular, this reference contains expressions for the specific fluid volume,
Vs, the specific gas volume, V, the specific isobaric fluid heat capacity, C, the specific iso-
baric gas heat capacity, C,4, the volumetric expansion coefficient for fluid, 3, the volumetric
expansion coefficient for gas, 34, the specific fluid enthalpy, h;, the specific gas enthalpy, h,
the isothermal coefficient of compressibility for fluid, k¢, and the isothermal coefficient for gas,
kg- The mathematical expressions for these thermodynamic properties comprise highly non-
linear functions of pressure, P, and temperature, T, and each expression involves many tens

of experimentally determined numerical parameters.

The influence of such parameters, as well as of T and P, on results involving water as the
working fluid can be quantitatively assessed by calculating the sensitivities of the various
material properties; as already discussed in the foregoing, these sensitivities are actually the
partial G-derivatives of the various material properties with respect to T, P, and the respec-
tive parameters. Exact explicit mathematical formulae have been obtained for the sensitivi-
ties of all of the material properties with respect to T, P, and numerical parameters by using
the symbolic computer language MAPLE V. lllustrative examples of sensitivities calculated
with MAPLE V are presented in Appendix B.

The relative sensitivity of a material property, symbolically denoted below by [Mat. Prop.], to
a parameter 3, which can, in particular, represent T, P, or any other numerical coefficient, is

defined as
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Relative Sensitivity with respectto 3 = G[Mat. Prop.] B _
ap [Mat. Prop.|

In the above definition, the superscript zero signifies that all quantities enclosed within the
outside brackets are to be evaluated at known base-case (nominal) values. On the other

hand, the recalculated relative changes is defined as

Recalculated Relative Change = [Mat. Prop.(B0 + AB)—Mat. Prop.(ﬁ" )]ALBM . PB =t
at. rop.i )

where |_Mat. Prop.(BO + AB)J denotes the exactly recalculated (perturbed) value of the respec-

tive material property, using the perturbed parameter value ([3" +A|3). In view of Eq. (3.6),

the difference between the relative sensitivity and the recalculated relative change provides a
quantitative measure of the nonlinear dependence of the respective material property on the

parameter in question.

The sensitivities of all thermodynamic properties of water to the temperature, T, and pres-
sure, P, are presented in TABLE XI. The nominal values T¢, T,°, and P° for the temperatures
and pressure, respectively, were selected to be in ranges of interest to reactor calculations.
As can be seen from TABLE XI, the absolute values of the relative sensitivities of the mate-
rial properties to temperature are quite large, with C,4 showing the largest relative sensitivity
to variations in T. On the other hand, the quantity most sensitive to (and nonlinear in) pres-
sure is the specific volume of gas, V,. Least sensitive to pressure is the specific fluid enthalpy
h, even though h; is quite sensitive to temperature changes. The influence of nonlinearities
becomes evident by comparing the relative sensitivities with the respective recalculated rela-
tive changes. Thus, the good agreement between the respective values in Table XI for small
parameter variations indicates that the numerical value of the respective sensitivity has been
calculated correctly. The nonlinear effects become markedly evident when the respective

parameter variations are increased.
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TABLE XI Relative sensitivities of water material properties to temperatures and pressures

typically encountered in reactor safety analysis ( Ty = 564.7K, T, = 620.6K, P® =159.2bar)

Water Relative Rel. Recalculated Relative Rel. Recalculated
Prop. | sensitivity with | var. relative sensitivity with | var. relative
respectto T change respect to P change
1.V 1.447 10 1.447 -.0358 10 -.0358
10™ 1.448 10" -.0358
10 1.453 10 -.0358
10 1.507 10 -.0357
2.V, 12.671 10” 12.667 -3.327 10” -3.327
10" 12.626 10" -3.328
10 12.253 10 -3.335
10 10.146 10 -3.420
3. Cy 2.112 10” 2.112 -.082 10” -.0816
10" 2.114 10" -.0816
10 2.127 10 -.0816
10 2.271 10 -.0813
4. Cyq -87.002 10” -86.885 14.205 10” 14.208
10" -85.844 10" 14.232
10 -76.565 10° 14.479
10” -36.224 10 17.440
5. By 6.390 10° 6.390 -.240 10° -.240
10" 6.394 10" -.240
10 6.434 10° -.240
10~ 6.870 10~ -.239
6. Bq -84.259 10° -84.152 14.089 10° 14.091
10" -83.208 10™ 14.114
10 -74.803 10 14.345
10 -37.918 10 17.115
7. h 3.526 10” 3.526 -.077 10” -.0762
10" 3.530 10" -.0762
10 3.568 10 -.0761
10 4.211 10 -.0752
8. hy 3.688 10" 3.672 -.674 10" -.674
10 3.541 10 -.678
10 2.829 10 -.720
9. Kk 9.703 10” 9.703 -.337 10” -.336
10" 9.711 10" -.336
107 9.786 107 -.336
10 10.600 10 -.335
10. kg -53.661 10° -53.597 8.107 10° 8.108
10" -53.037 10" 8.121
107 -48.034 107 8.250
10 -25.596 10 9.796

The sensitivities of the thermodynamic properties of water to the numerical parameters that
enter in their respective mathematical formulae are presented in TABLE XII through TABLE
XXI and have been grouped according to their relative importance to the fluid and gas

phases, respectively. The base-case values for evaluating the sensitivities of the thermody-
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namic properties of fluid water have been chosen to be T, =523.15K, P° =150.0bar, which
are conditions typically used in RELAP5/MOD3.2 for simulating reactor operational tran-

sients. On the other hand, the thermodynamic properties of gaseous water have been evalu-

ated at the base-case values T; =613.15K, P° =146.0bar, where the gas is at saturation.

Finally, the specific fluid enthalpy, h;, and the specific gas enthalpy, hg, have been evaluated

at Ty =T; =523.15K, P° =39.7bar, since these base-case conditions correspond to non-

saturated fluid/gas at the typical temperatures used in RELAP5/MOD3.2. These base-case
values also close to values provided in the Steam Tables®, which facilitates their direct verifi-

cation.

The sensitivities of the specific isobaric fluid heat capacity, C.;, and the specific isobaric gas
heat capacity, Cyq, are presented in TABLE XlIl and, TABLE XIII respectively. These results
show that C and C4 are extremely sensitive to variations in the first 30% (of the order of ten
parameters); they are moderately or negligibly sensitive to the remaining parameters. It is
important to note, though, that the dependence of C, and C,q on the most sensitive pa-
rameters is linear, so the respective sensitivities predict exactly (not just to first order!) the
effects of variations in the respective parameters. Nevertheless, as will be discussed in the
sequel, such large sensitivities could propagate large uncertainties into the RELAP5/MOD3.2

results from the respective material properties.

TABLE XIV presents numerical results for the sensitivities of the specific fluid enthalpy h; to
all of the 33 empirical parameters that enter in its mathematical formula. These sensitivities
are again ordered according to their absolute values, from high to low, and display features
that are similar to those for C,s and C,q4 in the previous two tables. Thus, the sensitivities of
h, to the first ten parameters are extremely large, the sensitivities to the next five are mod-
erately large, while the sensitivities to the last eighteen or so are negligible regarding their
respective effects on h; . It is important to note that h, depends linearly on the parameters
associated with the largest sensitivities; this fact is also reflected by the numerical results
presented in the columns labeled (hfreGl - h‘f’) and (hf‘"‘all —h‘f’), respectively. The respective

values agree exactly, as would be expected in case of a linear dependence. Nevertheless,
such high sensitivities would lead to potentially large contributions to the overall uncertainty
in h,.
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The sensitivities of hg shown in TABLE XV are quite small; note that the base-case condi-
tions for calculating the sensitivities of hy are not at saturation. This is in contrast to the cal-
culation of the sensitivities of the other material properties of gaseous water, namely: (i) the
specific gas volume, V, presented in TABLE XVI; (ii) the volumetric expansion coefficient for
gas, 3y, presented in TABLE XVII, and (iii) the isothermal coefficient for gas, kg, presented in

TABLE XVIII. The base-case conditions for calculating these sensitivities have been chosen
to be T, =613.15K, P° =146.0bar, where the gas is at saturation. The results in these
tables show trends that are similar to those shown in TABLE XII through TABLE XIV for Cg,
Cpg, and hy, respectively. Although the dependence of V, on the most sensitive parameters
is linear (so the respective sensitivities predict exactly the effects of variations in the respec-

tive parameters), the dependencies of 34, and k; on the most sensitive parameters are non-

linear.

Finally, TABLE XIX through TABLE XXI display the sensitivities of the remaining fluid ther-
modynamic properties, namely: (i) the specific fluid volume, V;, shown in TABLE XIX; (ii) the
volumetric expansion coefficient for fluid, R;, shown in TABLE XX; and (iii) the isothermal
coefficient of compressibility for fluid, ki, shown in TABLE XXI, respectively. All of these sen-
sitivities are quite small, and would be important to consider in an uncertainty analysis only if

the corresponding uncertainties were extremely large.

In closing, it is also important to discuss the essential role played by sensitivities for per-
forming uncertainty analysis. The use of sensitivities for uncertainty analysis can be readily

illustrated by recalling (see., e.g., Ronen'®) that the linear approximation of the variance of a

response R is given by var(R) = ZS S. cov( g ) where S, is the sensitivity of R to the

i,j=1
parameter g, and cov(gl,g ) is the covariance matrix for the parameters g; and g;. If all of

J
the parameters are uncorrelated, then this formula reduces to Var<R> = ZS?O? , Where 0? is

the variance (uncertainty) of the distribution of the parameter g;. These formulae highlight

the interplay between the parameter sensitivities and uncertainties in contributing to the

overall response uncertainty - as expressed by Var<R>. Thus, the largest contributions to the
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response uncertainty, Var<R>, come from those parameters g, that display not only a large
uncertainty 0? but also a high sensitivity S;. If either one (e.g., the sensitivity S;) or the
other (e.g., the uncertainty 0?) of these two components is small, then their respective prod-

uct will obviously contribute less to Var<R> than if both components were simultaneously

large.
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TABLE XII Sensitivities of the isobaric fluid heat capacity, C,;, to the numerical parameters

that enter its ASME mathematical formulation ( P° =150.0bar,

T =523.15K )

Rel. Rel.
Rel. sens. | Par. Rel. sens. | Par.
Pagam ac_pfi Xar. Cg;ed _ C;f C]rsefcal _ Cgf Pagl;am acipfﬁ Xar, Cg;ed _ gf C]rgefcal _ Cgf
! do. O° gj 4 ag; C° gj
8 Copr 0 bt 0
gj gj
1.As | 21356.05 | 0.1 10111.91 10111.91 10° | -.6605E-3 | -.6486E-3
linear dep.| 0.5 50559.59 50559.59 10" | -.6605E-2 | -.5561E-2
2.A; -20340 0.1 -9627.17 -9627.17 16.A2 | .557E-2 0.1 .2637E-2 .2637E-2
lineardep.| 0.5 | -48135.87 | -48135.87 linear dep. | 0.5 .1318E-1 .1318E-1
3.As | -14357.93 | 0.1 -6795.50 -6795.50 17.as .300E-2 | 10™ .1421E-5 .1419E-5
linear dep.| 0.5 | -33977.50 | -33977.50 10° .1421E-4 .1400E-4
4.As | 12085.68 | 0.1 5720.06 5720.06 10° .1421E-3 .1227E-3
linear dep.| 0.5 28600.31 28600.31 10”7 1421E-2 4146E-3
5.A4 6039.87 0.1 2858.62 2858.62 18.a; | -.266E-2 | 10® | -.1263E-5 | -.1263E-5
linear dep.| 0.5 14293.14 14293.14 10° | -1263E-4 | -.1263E-4
6.Ag | -4094.11 | 0.1 -1937.71 -1937.71 10% | -.1263E-3 | -.1263E-3
linear dep.| 0.5 -9688.57 -9688.57 10" | -1263E-2 | -.1262E-2
7.As | -1458.13 | 0.1 -690.12 -690.12 19.a9 .829E-3 0.1 .3926E-3 .3926E-3
linear dep. | 0.5 -3450.62 -3450.62 linear dep. | 0.5 .1963E-2 .1963E-2
8.A0 605.16 0.1 286.41 286.41 20.A14 | -.573E-3 | 0.1 -.2712E-3 | -.2712E-3
linear dep.| 0.5 1432.09 1432.09 linear dep.| 0.5 -.1356E-2 -.1356E-2
9. Ao 156.20 0.1 73.93 73.93 21.a11 | .469E-3 0.1 2222E-3 2222E-3
linear dep.| 0.5 369.65 369.65 linear dep. | 0.5 A111E-2 A111E-2
10.a4 .25957 10 .1228E-3 1228E-3 | 22.A15 | -.887E-4 | 01 -4198E-4 | -.4198E-4
107 .1228E-2 .1230E-2 linear dep. | 0.5 -.2099E-3 | -.2099E-3
10~ .1228E-1 .1251E-1 23.A17 | .546E-5 0.1 .2588E-5 .2588E-5
10”7 .1228 .1502 linear dep. | 0.5 .1294E-4 .1294E-4
11.a3 | -.10989 10" | -.5201E-4 -.5201E-4 | 24.As | .388E-6 0.1 .1839E-6 .1839E-6
10° | -.5201E-3 -.5200E-3 linear dep. | 0.5 .9197E-6 .9197E-6
107 | -.5201E-2 -.5196E-2 | 25.A46 | -.529E-7 | 0.1 -.2506E-7 | -.2506E-7
10" | -.5201E-1 -.5155E-1 linear dep. | 0.5 -.1253E-6 | -.1253E-6
12.a4 | .786E-1 10 .3720E-4 .3720E-4 | 26.A10 | .134E-7 0.1 .6344E-8 .6344E-8
10° .3720E-3 3721E-3 linear dep. | 0.5 3172E-7 3172E-7
10 .3720E-2 .3731E-2 27.as | -.353E-8 | 10° | -.167E-11 -.167E-11
107 .3720E-1 .3832E-1 10° | -167E-10 | -.167E-10
13.A11 | .581E-1 0.1 .2750E-1 .2750E-1 10~ -.167E-9 -.167E-9
0.5 1375 1375 10”7 -.167E-8 -.167E-8
14.as | -.321E-1 | 107 | -.1521E-4 -1521E-4 | 28.a; | .135E-10 | 10™ .642E-14 .642E-14
10° | -.1521E-3 -.1521E-3 10° .642E-13 .642E-13
107 | -.1521E-2 -.1519E-2 10 .642E-12 .642E-12
10" | -1521E-1 | -.1497E-1 10" | .642E-11 .642E-11
15.a10 | -.139E-1 | 10® | -.6605E-5 -.6604E-5 | 29.A» | -.10E-10 | 0.1 -.509E-11 -.509E-11
10° | -.6605E-4 -.6593E-4 linear dep. | 0.5 -.254E-10 -.254E-10
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TABLE Xl Sensitivities of the specific isobaric gas heat capacity, C,g, to the numerical pa-

rameters that enter its ASME mathematical formulation ( P° =146.0bar, Tg0 =613.15K)

Rel. Sens. Rel. Sens.
Param 0 . ed 0 recal o Param o . ed 0 recal o
g aC_ng_J Agl Cg; _Cpg Cpg _Cpg g aC_ng_J Agl Cg; _Cpg Cpg _Cpg
agj ng g? agj ng g?
1.Bos | 19063.26 | 0.1 23277.92 23277.92 linear dep.| 0.5 1.178 1.178
linear dep. | 0.5 116389.6 116389.6 | 19.bs, -.1501 10" | -.1833E-3 -.1833E-3
2.Bgs | -18611.13 | 0.1 -22725.84 -22725.84 10° | -.1833E-2 -.1833E-2
lineardep.| 0.5 | -113629.2 -113629.2 107 | -.1833E-1 -.1827E-1
3.Bg2 | -10903.58 | 0.1 -13314.24 -13314.24 107 -.1833 -.1767
linear dep.| 0.5 -66571.2 -66571.2 20.Bp .1493 0.1 .1823 .1823
4.Bos | 9623.61 0.1 11751.28 11751.28 linear dep.| 0.5 9119 9119
linear dep.| 0.5 58756.42 58756.42 | 21.B71 .1455 0.1 1776 1776
5.Bg1 330047 0.1 4030.17 4030.17 linear dep. | 0.5 .8883 .8883
linear dep. | 0.5 20150.85 20150.85 | 22.B2q 1197 0.1 1462 1462
6.Bgs | -2059.82 | 0.1 -2515.22 -2515.22 linear dep.| 0.5 .7314 .7314
linear dep.| 0.5 | -12576.14 -12576.14 | 23.B11 | .615E-1 0.1 7511E-1 7511E-1
7.Boo -412.84 0.1 -504.12 -504.12 linear dep. | 0.5 .3755 .3755
linear dep.| 0.5 -2520.61 -2520.61 24.B1; | .456E-1 0.1 .5568E-1 .5568E-1
8.L1 -20.52 10" | -.2506E-1 -.2573E-1 linear dep. | 0.5 .2784 .2784
10 -.2506 -.3319 25.Bosa | .312E-1 0.1 .3818E-1 .3818E-1
10° -2.506 -351.46 linear dep. | 0.5 .1909 .1909
10 -25.06 .5204 26.Bs2 | -.283E-1 0.1 -.3463E-1 -.3463E-1
9.L, 10.73 107 1311E-1 .1293E-1 linear dep.| 0.5 -1731 -.1731
10° 1311 1146 27.Bsp | .225E-1 0.1 .2752E-1 .2752E-1
107 1.311 4654 lineardep.| 0.5 .1376 .1376
10 13.11 5204 28.B7» | -.216E-1 0.1 -.2643E-1 -.2643E-1
10.Lo 10.21 107 1247E-1 .1230E-1 linear dep.| 0.5 -.1321 -.1321
10° 1247 1097 29.Be1 | .137E-1 0.1 .1676E-1 .1676E-1
10 1.247 .4601 linear dep.| 0.5 .8384E-1 .8384E-1
10 12.47 .5204 30.Bs2 | .132E-1 0.1 .1612E-1 .1612E-1
11.b 5.246 10”7 .6406E-2 .6410E-2 linear dep. | 0.5 .8060E-1 .8060E-1
10° .6406E-1 .6444E-1 31.by; | -.853E-2 | 107 | -.1041E4 -.1041E-4
107 .6406 .6805 10° | -.1041E-3 -.1041E-3
10” 6.406 15.13 10% | -1041E-2 | -.1041E-2
12.Bs1 1.360 0.1 1.6607 1.6607 10" | -.1041E-1 -.1036E-1
linear dep.| 0.5 8.3039 8.3039 32.Bs2 | -.844E-2 | 0.1 -.1031E-1 -.1031E-1
13.bg1 1.329 107 .1623E-2 .1623E-2 linear dep. | 0.5 -.5158E-1 -.5158E-1
10° .1623E-1 .1628E-1 33.Bos | -.774E-2 | 0.1 -.9463E-2 -.9463E-2
107 .1623 1672 linear dep.| 0.5 -4731E-1 - 4731E-1
10 1.623 2.248 34.Bos | -.727E-2 | 0.1 -.8887E-2 -.8887E-2
14.B41 -.9511 0.1 -1.161 -1.161 linear dep. | 0.5 -.4443E-1 -4443E-1
linear dep. | 0.5 -5.807 -5.807 35.bg1 | -.246E-2 | 10° | -.3015E-5 -.3015E-5
15.Bs2 -.7675 0.1 -.9372 -.9372 10° | -.3015E-4 -.3014E-4
linear dep.| 0.5 -4.686 -4.686 107 | -.3015E-3 -.3007E-3
16.B34 4262 0.1 .5204 .5204 10" | -.3015E-2 -.2938E-2
linear dep.| 0.5 2.602 2.602 36.B» | -.241E-3 | 0.1 .2954E-3 .2954E-3
17.Bs1 .2527 0.1 .3086 .3086 linear dep. | 0.5 A477E-2 AN477E-2
linear dep. | 0.5 1.543 1.543 37.Bx3 | - 749E-4 | 0.1 -.9154E-4 -.9154E-4
18.Bs3 .1930 0.1 .2357 .2357 linear dep. | 0.5 -4577E-3 -4577E-3
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TABLE XIV Sensitivities of the specific fluid enthalpy, h;, to parameters in its mathematical

formulation( P° =39.7bar, T =523.15K)

Rel. Rel.
Rel. Sens. Par. Rel. Sens. Par.
Param 0 Var. red 0 recal o| Param o Var. red 0 recal 0
e] ohy &) Ag; hP™ -hf | hE™ -hf 9 Ohy &) Ag; hE™ -hf | BF™ ~hy
0gj hyf 0 0gj hy o
gj 8]
1. As 9744.20 0.1 .105E7 .105E7 17.Ax .737E-3 0.1 .8009E-1 .8009E-1
Linear dep. 0.5 .529E7 .529E7 linear dep. 0.5 4004 .4004
2.As -8185.48 0.1 -.888E6 -.888E6 18. as 413E-3 10" 4491E-4 4491E-4
Linear dep. 0.5 -.444E7 -.444E7 10° 4491E-3 4492E-3
3. Ar -7730.90 0.1 -.839E6 -.839E6 107 4491E-2 .4500E-2
Linear dep. 0.5 -419E7 -.419E7 10”7 4491E-1 .4588E-1
4. Ay 4591.12 0.1 .498E6 .498E6 19. Asp -.303E-3 0.1 -.329E-1 -.329E-1
Linear dep. 0.5 .249E7 .249E7 linear dep. 0.5 -.1649 -.1649
5. Ag 3937.18 0.1 427E6 427E6 20. A1s -.173E-3 0.1 -.188E-1 -.188E-1
Linear dep. 0.5 .213E7 .213E7 linear dep. 0.5 -.940E-1 -.940E-1
6. As -1662.57 0.1 -.180E6 -.180E6 21. ag .120E-3 0.1 .1303E-1 .1303E-1
Linear dep. 0.5 -.902E6 -.902E6 linear dep. 0.5 .6516E-1 .6516E-1
7. Ay -1167.03 0.1 -.126E6 -.126E6 22. as 424E-4 10" 4610E-5 .4603E-5
Linear dep. 0.5 -.633E6 -.633E6 10° 4610E-4 .4533E-4
8. Ay 356.208 0.1 .386E5 .386E5 107 4610E-3 .3904E-3
Linear dep. 0.5 .193E6 .193E6 10”7 4610E-2 .1204E-2
9. Ao 153.33 0.1 .166E5 .166E5 23. ayy 144E-4 0.1 .1567E-2 .1567E-2
Linear dep. 0.5 .832E5 .832E5 linear dep. 0.5 .7836E-2 .7836E-2
10. A4 -35.015 0.1 -3801.97 -3801.97 24. Ass -111E-5 0.1 -.121E-3 -.121E-3
Linear dep. 0.5 -.190E5 -.190E5 linear dep. 0.5 -.606E-3 -.606E-3
11. a3 44819 10”7 .4866E-1 .4866E-1 25. Az -.300E-6 0.1 -.326E-4 -.326E-4
10° .4866 .4866 linear dep. 0.5 -.163E-3 -.163E-3
107 4.866 4.864 26. A -.566E-8 0.1 -.615E-6 -.615E-6
10" 48.66 48.50 linear dep. 0.5 -.307E-5 -.307E-5
12. a4 .854E-1 10 .9274E-2 .9276E-2 27. A .168E-8 0.1 .183E-6 .183E-6
10° .9274E-1 .9292E-1 linear dep. 0.5 .915E-6 .915E-6
107 .9274 .9457 28. ap .100E-8 0.1 .108E-6 .108E-6
10" 9.274 11.38 linear dep. 0.5 .544E-6 .544E-6
13.A14 -.493E-1 0.1 -5.362 -5.362 29. Ay .100E-8 0.1 .108E-6 .108E-6
Linear dep. 0.5 -26.81 -26.81 linear dep. 0.5 .544E-6 .544E-6
14. a4 .284E-1 10”7 .3085E-2 .3085E-2 30. ag .923E-10 10”7 .100E-10 .100E-10
10° .3085E-1 .3085E-1 10° .100E-9 .100E-9
107 .3085 .3090 107 .100E-8 .100E-8
10 3.085 3.142 10”7 .100E-7 100E-7
15. axp -.211E-2 10 -.229E-3 -.229E-3 31. Ay -.51E-10 0.1 -.562E-8 -.562E-8
10° -.229E-2 -.229E-2 linear dep. 0.5 -.281E-7 -.281E-7
107 -.229E-1 -.225E-1 32. as -.21E-12 10" -.234E-13 -.234E-13
10" -.2296 -.1912 10° -.234E-12 -.234E-12
16. a, .861E-3 10" .9355E-4 .9355E-4 107 -.234E-11 -.234E-11
10° .9355E-3 .9355E-3 10”7 -.234E-10 -.234E-10
10” .9355E-2 .9355E-2 33. A .606E-14 0.1 .658E-12 .658E-12
10" .9355E-1 .9352E-1 linear dep. 0.5 .329E-11 .329E-11
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TABLE XV Sensitivities of the specific fluid enthalpy hg, to parameters in its mathematical

formulation ( P® =39.7bar, T, =523.15K)

Rel. Sens. Rel. Sens.
o red o recal o o red o recal o
Pagjam ah_gg_J Afij hg™ =hg | hg™ -hy Pagjam ah_gg_] A%j hg™ =hg | hy™ —hy
dgi hy | & dgj hy | 8
1. Bos .71513 0.1 200.26 200.26 23.Bg1 | -.1507E-3 | 0.1 -.4222E-1 -.4222E-1
linear dep. | 0.5 1001.34 1001.34 linear dep.| 0.5 -.2111 -.2111
2. By .34070 0.1 95.41 95.41 24.Bgs | -.1079E-3 | 0.1 -.3022E-1 -.3022E-1
linear dep. | 0.5 477.06 477.06 linear dep. | 0.5 -.1511 -.1511
3.b -.14198 10* | -.3976E-1 -.3976E-1 | 25.Bs2 | .9998E-4 | 0.1 .2799E-1 .2799E-1
10° -.3976 -.3981 linear dep. | 0.5 .1399 .1399
10” -3.976 -4.027 26.By2 | -.6337E-4 | 0.1 - 1774E-1 - 1774E-1
10”7 -39.76 -45.36 linear dep. | 0.5 -.8874E-1 -.8874E-1
4.Bqp | -.2766E-1 | 041 -7.746 -7.746 27.By3 | .5112E-4 | 041 .1431E-1 .1431E-1
linear dep.| 0.5 -38.731 -38.731 linear dep. | 0.5 .7158E-1 .7158E-1
5.B11 | -.1817E-1 | 0.1 -5.088 -5.088 28.B72 | .4614E-4 | 0.1 .1292E-1 .1292E-1
linear dep.| 0.5 -25.444 -25.444 linear dep.| 0.5 .6461E-1 .6461E-1
6.Bos | .1731E-1 | 0.1 4.847 4.847 29.Bg | -.1882E-4 | 0.1 -.5270E-2 | -.5270E-2
linear dep. | 0.5 24.237 24.237 lineardep.| 0.5 | -.2635E-1 -.2635E-1
7.B2 | -.1146E-1 | 0.1 -3.211 -3.211 30. L | -.4299E-5 | 10” | -.1203E-5 | -.1235E-5
linear dep. | 0.5 -16.058 -16.058 10° | -.1203E-4 | -.1571E-4
8.B31 | -.1111E-1 | 0.1 -3.111 -3.111 10” | -.1203E-3 | -.7334E-2
linear dep. | 0.5 -15.559 -15.559 10" | -.1203E-2 .2466E-4
9. B4y | .9985E-2 | 0.1 2.796 2.796 31.Bg1 | -.3759E-5 | 0.1 -.1052E-2 | -.1052E-2
linear dep.| 0.5 13.981 13.981 lineardep.| 0.5 | -.5264E-2 | -.5264E-2
10.Bo3 | -.7082E-2 | 0.1 -1.983 -1.983 32.Lo | .2312E-5 [ 107 .6475E-6 .6386E-6
linear dep. | 0.5 -9.917 -9.917 107 .6475E-5 .5657E-5
11.Bs1 | -.6300E-2 | 0.1 -1.764 -1.764 10~ .6475E-4 .2256E-4
linear dep. | 0.5 -8.822 -8.822 107 .6475E-3 .2466E-4
12.Bos | -.2745E-2 | 0.1 -.7687 -.7687 33. L, | .2074E-5 | 10™ .5810E-6 .5741E-6
linear dep. | 0.5 -3.843 -3.843 107 .5810E-5 .5170E-5
13.Bs2 | .2676E-2 | 0.1 -7494 -7494 10 .5810E-4 .2241E-4
linear dep.| 0.5 3.747 3.747 10”7 .5810E-3 .2466E-4
14.Bgos | -.9234E-3 | 041 -.2586 -.2586 34.bg1 | -.9547E-6 | 10° | -2673E-6 | -.2673E-6
linear dep.| 0.5 -1.293 -1.293 10° | -2673E-5 | -.2674E-5
15.Bg3 | .9229E-3 | 0.1 .2584 .2584 10” | -2673E-4 | -.2677E-4
linear dep. | 0.5 1.292 1.292 10" | -2673E-3 | -.2711E-3
16.Bs3 | -.5183E-3 | 0.1 -.1451 -.1451 35.bs1 | .3074E-6 | 10™ .8608E-7 .8608E-7
linear dep.| 0.5 -.7258 -.7258 107 .8608E-6 .8608E-6
17.Bg2 | -.5161E-3 | 0.1 -.1445 -.1445 10~ .8608E-5 .8608E-5
linear dep. | 0.5 -.7227 -.7227 10” .8608E-4 .8604E-4
18.Bgs | .4902E-3 | 0.1 1373 1373 36.b71 | .1681E-6 | 10™ .4708E-7 4708E-7
linear dep. | 0.5 .6865 .6865 107 4708E-6 4708E-6
19.B32 | -.4824E-3 | 041 -.1350 -.1350 10~ 4708E-5 4708E-5
linear dep. | 0.5 -.6754 -.6754 10 .4708E-4 .4708E-4
20.B71 | -.4204E-3 | 041 - 1177 - 1177 37.Bg2 | -.5067E-7 | 0.1 -.1419E-4 | -.1419E4
linear dep.| 0.5 -.5887 -.5887 linear dep.| 0.5 -.7095E-4 -.7095E-4
21.B42 | .1733E-3 | 041 4854E-1 4854E-1 38.bs; | .5166E-8 | 107 .1446E-8 .1446E-8
linear dep.| 0.5 2427 .2427 107 .1446E-7 .1446E-7
22.Bg1 | .1531E-3 | 041 .4288E-1 4288E-1 10™ .1446E-6 .1446E-6
linear dep.| 0.5 2144 2144 10” .1446E-5 .1446E-5
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TABLE XVI Sensitivities of the specific gas volume, Vg, to the numerical parameters that

enter its ASME mathematical formulation ( P° =146.0bar,

T, =613.15K)

Rel. Rel.
Rel. sens. | Par. Rel. Sens. | Par.
Pagam Vv, g}’ Var. Vé’red _ V; Vgccal _ Vgo Pargm % i Var. Vé’red _ V; Vgccal _ Vgo
i — 5 | Agj 9i 3 o | Ag;
ag-‘ Vg o gj Vg o
gj gj
1.Bgs | -12239.7 | 0.1 -13194.87 | -13194.87 | 18.Bs3 | -.15242 0.1 -.16432 -.16432
linear dep.| 0.5 | -65974.36 | -65974.36 linear dep.| 0.5 -.82160 -.82160
2.Bgs | 11250.28 | 0.1 12128.23 12128.23 | 19.B71 | -.11813 0.1 -.12735 -.12735
linear dep. | 0.5 60641.19 60641.19 linear dep. | 0.5 -.63677 -.63677
3. B2 7454.4 0.1 8036.13 8036.13 20.B21 | -.6726E-1 | 0.1 -.725E-1 -.725E-1
linear dep.| 0.5 40180.65 40180.65 linear dep. | 0.5 -.3625 -.3625
4.Bgs | -5489.58 | 0.1 -5917.98 -5917.98 | 21.B3; | -.6150E-1 | 0.1 -.6630E-1 -.6630E-1
linear dep.| 0.5 | -29589.91 -29589.91 linear dep.| 0.5 -.3315 -.3315
5.Bg1 | -2409.25 | 0.1 -2597.26 -2597.26 | 22.B4p | -.5264E-1 | 041 -5674E-1 -5674E-1
linear dep.| 0.5 | -12986.34 | -12986.34 linear dep. | 0.5 .2837 .2837
6. Bos 1111.1 0.1 1197.81 1197.81 23.Be1 | -.5084E-1 | 0.1 .5480E-1 .5480E-1
linear dep. | 0.5 5989.06 5989.06 linear dep.| 0.5 -.27404 -.27404
7. Bgo 322.75 0.1 347.94 347.94 24.bg; | -.5060E-1 | 10* | -.5455E-4 | -.5456E-4
linear dep. | 0.5 1739.72 1739.72 10° | -.5455E-3 | -.5466E-3
8. 14 1.79724 0.1 1.9374 1.9374 107 | -.5455E-2 | -.5567E-2
linear dep.| 0.5 9.6874 9.6874 10" | -.5455E-1 -.6790E-1
9. L4 .94649 10™ .1020E-2 .1046E-2 | 25.Be2 | .4047E-1 | 0.1 .4363E-1 .4363E-1
10 .1020E-1 .1333E-1 linear dep.| 0.5 .2181 .2181
10” .1020 10.2894 26.B41 | -.3310E-1 | 0.1 -.3569E-1 -.3569E-1
10 1.020 -.2224E-1 linear dep. | 0.5 -.17846 -.17846
10.Bs1 | -.60403 0.1 -.6511 -.6511 27.B72 | -3200E-1 | 0.1 -3450E-1 -3450E-1
linear dep. | 0.5 -3.255 -3.255 linear dep. | 0.5 17251 17251
11.B41 .55367 0.1 .59688 59688 28.Bg1 | -.1779E-1 | 0.1 -.1918E-1 -.1918E-1
linear dep. | 0.5 2.9844 2.9844 linear dep. | 0.5 -.9590E-1 -.9590E-1
12. L, | -.50675 10" | -.54629E-3 | -.53899E-3 | 29.B2; | .1363E-1 | 0.1 .1470E-1 .1470E-1
107 | -.54629E-2 | -.47920E-2 linear dep.| 0.5 .7350E-1 .7350E-1
10° | -.54629E-1 | -.19767E-1 | 30.B; | -.1100E-1 | 0.1 -.1186E-1 -.1186E-1
10 -.54629 -.22241E-1 linear dep.| 0.5 -.5931E-1 -.5931E-1
13.B12 | -.46088 0.1 -.49685 -.49685 31.bg; | .6918E-2 | 107 .7457E-5 .7457E-5
linear dep. | 0.5 -2.4842 -2.4842 107 .7457E-4 .7455E-4
14. Lo | -46037 | 10° | -4963E-3 | -.4902E-3 10 | .7457E-3 | .7437E-3
10° | -4963E-2 | -.4404E-2 10" | .7457E-2 7257E-2
107 | -4963E-1 | -1927E-1 | 32.b7s | .3921E-2 | 107 | .4227E-5 | .4227E-5
10”7 -.4963 -.2224E-1 10° A227E-4 A227E-4
15.b | -.44629 10" | -4811E-3 -.4812E-3 10 4227E-3 4225E-3
10° | -4811E-2 | -4819E-2 107 | 4227E-2 | .4212E-2
10° | -4811E-1 | -4900E-1 | 33.be1 | .2447E-2 | 10" | .2638E-5 | .2638E-5
10 -.4811 -.6283 10° .2638E-4 .2638E-4
16.Bso | .44523 0.1 47997 47997 107 .2638E-3 .2633E-3
linear dep. | 0.5 2.3998 2.3998 107 .2638E-2 .2592E-2
17.B31 | -.35894 0.1 -.38696 -.38696 34.Bs2 | -.1036E-2 | 0.1 - 1117E-2 -1117E-2
linear dep.| 0.5 -1.9348 -1.9348 linear dep. | 0.5 -.5587E-2 -.5587E-2
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TABLE XVII Sensitivities of the volumetric expansion coefficient for gas, 34, to parameters in

its mathematical formulation (P° =146bar, T, = 613.15K)

Rel. sens. Agj Rel. Sens. Agj
i B R I e I S v B I B A
Il - Il -
g By g By
1.Bos | 55764.89 | 10° | .8861E-1 -.3956 13. |4 1612 | 10° | -.2562E-5 | -.2562E-5
10 .8861 -.7883E-1 10° | -.2562E-4 | -.2558E-4
10” 8.861 - 7299E-1 107 | -.2562E-3 | -.2517E-3
10 88.61 -.7245E-1 107 | -.2562E-2 | -.2172E-2
2.Bos | -52091.92 | 10° | -8277E-1 | -3895E-1 | 14.B4; | -1.580 | 10* | -2512E-5 | -.2512E-5
10° -.8277 -.6757E-1 10° | -2512E-4 | -.2510E-4
107 -8.277 - 7292E-1 107 | -.2512E-3 | -.2498E-3
10 -82.77 -.7351E-1 10" | -.2512E-2 | -.2380E-2
3.By | -33409.52 | 10° | -5308E-1 | -.3041E-1 | 15.Bs, | -1.370 | 10* | -2177E-5 | -.2177E-5
10° -.5308 -.6279E-1 10° | -2177E-4 | -2176E-4
107 -5.308 -.7027E-1 107 | -2177E-3 | -.2167E-3
10 -53.08 -.7112E-1 10" | -.2177E-2 | -.2084E-2
4.Bgs | 25825.68 | 107 | .4103E-1 9098E-1 | 16.bg; 1.103 10" | .1752E-5 1753E-5
10° 4103 -.9140E-1 10° | .1752E-4 A757E-4
10~ 4.103 - 7614E-1 107 | .1752E-3 .1804E-3
107 41.03 -.7489E-1 10" | .1752E-2 2412E-2
5.Bg; | 10619.12 | 10° | .1687E-1 2223E-1 | 17.Baq .8384 10" | .1332E-5 .1332E-5
10° 1687 -.1197 10° | .1332E4 1332E-4
10~ 1.687 -.7307E-1 107 | .1332E-3 1337E-3
10 16.87 -.7033E-1 10" | .1332E-2 1381E-2
6.Bos | -5309.63 | 10° | -.8437E-2 | -.7593E-2 | 18.By, | .5634 10" | .8954E-6 .8954E-6
10° | -.8437E-1 | -.3996E-1 10° | .8954E-5 .8958E-5
10” -.8437 -.6966E-1 10° | .8954E-4 .8995E-4
10 -8.437 -.7525E-1 10" | .8954E-3 .9386E-3
7.Bo | -1398.64 | 10° | -2222E-2 | -2153E-2 | 19.Bs3 | .4239 10" | .6736E-6 B6736E-6
10° | -.2222E-1 | -.1680E-1 10° | .6736E-5 6737E-5
107 -2222 -.5257E-1 10° | .6736E-4 .6746E-4
10 -2.222 -.6679E-1 10" | .6736E-3 .6840E-3
8. L, -13.53 10" | -2150E-4 | -.2205E-4 | 20.B/4 .3209 10" | .5100E-6 .5100E-6
10° | -.2150E-3 | -.2818E-3 10° | .5100E-5 .5100E-5
107 | -.2150E-2 -.1243 10° | .5100E-4 .5106E-4
10" | -.2150E-1 4620E-3 10" | .5100E-3 5161E-3
9. L, 7.192 10" | .1142E-4 A127E-4 | 21.Bgq .2280 10" | .3623E-6 .3623E-6
10° | .1142E-3 .1001E-3 10° | .3623E-5 .3623E-5
107 | .1142E-2 A114E-3 10° | .3623E-4 .3623E-4
10" | .1142E-1 4620E-3 10" | .3623E-3 .3629E-3
10.Lo | 6.628 10" | -.1053E-4 .1040E-4 | 22.B; 1571 10" | .2496E-6 .2496E-6
10° | -.1053E-3 | .9326E-4 10° | .2496E-5 2496E-5
107 | -.1053E-2 | .4029E-3 107 | .2496E-4 .2498E-4
10" | -.1053E-1 4620E-3 10" | .2496E-3 .2513E-3
11.b 4.165 10" | .6618E-5 .6622E-5 | 23.bgx | -.1369 10" | -.2175E-6 | -.2175E-6
10° | .6618E-4 B6655E-4 10° | -.2175E-5 | -.2175E-5
10° | .6618E-3 .7009E-3 107 | -2175E-4 | -.2167E-4
107 | .6618E-2 1511E-1 10" | -.2175E-3 | -.2095E-3
12.Bs1 | 2.038 10" | .3239E-5 .3239E-5 | 24.Bs | -1073 | 10° | -1705E-6 | -.1705E-6
10° | .3239E-4 3241E-4 10° | -.1705E-5 | -.1705E-5
107 | .3239E-3 .3258E-3 107 | -.1705E-4 | -.1704E-4
10" | .3239E-2 3447E-2 10" | -.1705E-3 | -.1696E-3
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Rel. Rel.

Param | Rel. sens. | Par. Rel. Sens. | Par.
o] aﬂg gjy Var. /J)é)red _ ﬂgo éccal _ /J)go Param aﬂg gjy Var. /J)é)red _ ﬂgo grccal _ﬂgo

— Agj gj — Agj

agj ﬁg o agj ﬁg )

g; g;
25.Bsx | .1071 10" | .1702E-6 1702E-6 | 29.Bs, | -.6358E-1 | 10° | -.1010E-6 | -.1010E-6
10° | .1702E-5 .1702E-5 10° | -.1010E-5 | -.1010E-5
10° | .1702E-4 1703E-4 10° | -.1010E-4 | -.1010E-4
10" | .1702E-3 A1713E-3 10" | -.1010E-3 | -.1006E-3
26.Bg; | .8365E-1 | 107 | .1329E-6 1329E-6 | 30.b71 | -.1670E-1 | 107 | -.2654E-7 | -.2654E-7
10° | .1329E-5 .1329E-5 10° | -.2654E-6 | -.2654E-6
10° | .1329E-4 1329E-4 107 | -.2654E-5 | -.2653E-5
10" | .1329E-3 .1336E-3 10" | -.2654E-4 | -.2641E-4
27.B7 | -.7270E-1 | 10°* | -1155E-6 | -.1155E-6 | 31.B.3 | -.1464E-1 | 10° | -2327E-7 | -.2327E-7
10° | -1155E-5 | -.1155E-5 10° | -.2327E-6 | -.2327E-6
10° | -.1155E-4 | -.1154E-4 107 | -.2327E-5 | -.2327E-5
10" | -.1155E-3 | -.1151E-3 10" | -.2327E-4 | -.2324E-4
28.B¢1| .6505E-1 | 10° | .1033E-6 1033E-6 | 32.By2 | .1263E-1 | 10° | .2008E-7 .2008E-7
10° | .1033E-5 .1033E-5 10° | .2008E-6 .2008E-6
107 | .1033E-4 .1034E-4 107 | .2008E-5 .2008E-5
10" | .1033E-3 .1037E-3 10" | .2008E-4 .2010E-4
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TABLE XVIII Sensitivities of the isothermal coefficient of compressibility for gas, kg, to pa-

rameters in its mathematical formulation (P° =146bar, T, = 613.15K)

Rel. sens. . Rel. Sens. Agj
Param Ik, g Ag; Kgred—r(é’ K;ecal—r(;’ Param Ik, g o Kgred—r(é’ K;m'—lcg
9; — o 9; —= =L | &j
0g; Kg g; 0g; Kg
1.Bos | 55788.72 | 10* | .1073E-5 | -.4793E-5 | 13.1, -1.157 | 10 | -.2227E-10 | -.2227E-10
10° | .1073E-4 -.9551E-6 10° | -.2227E-9 | -.2223E-9
10° | .1073E-3 -.8843E-6 107 | -.2227E-8 | -.2188E-8
10" | .1073E-2 | -.8778E-6 10" | -.2227E-7 | -.1888E-7
2.Bos | -51278.92 | 10° | -9867E-6 | -.4643E-6 | 14.Bs | -1.144 | 107 | -.2202E-10 | -.2202E-10
10° | -.9867E-5 | -.8055E-6 10° | -.2202E-9 | -.2201E-9
10° | -.9867E-4 | -.8693E-6 107 | -.2202E-8 | -.2190E-8
10" | -.9867E-3 | -.8763E-6 10" | -.2202E-7 | -.2087E-7
3.Byy | -33977.24 | 10° | -6538E-6 | -.3746E-6 | 15Bs, | -1.078 | 10" | -.2076E-10 | -.2076E-10
10° | -.6538E-5 | -.7733E-6 10° | -.2076E-9 | -.2075E-9
107 | -.6538E-4 | -.8655E-6 107 | -.2076E-8 | -.2066E-8
10" | -.6538E-3 | -.8759E-6 10" | -.2076E-7 | -.1987E-7
4.Bgs | 2502158 | 10° | .4815E-6 .1067E-5 | 16.bg, .6245 10" | .1201E-10 | .1202E-10
10° | .4815E-5 | -.1072E-5 10° | .1201E-9 .1205E-9
10° | .4815E-4 | -.8933E-6 10° | .1201E-8 .1236E-8
10" | .4815E-3 | -.8787E-6 10" | .1201E-7 1639E-7
5.Bg; | 10981.41 | 10* | .2113E-6 2783E-6 | 17.Baq 6143 10" | .1182E-10 | .1182E-10
10° | 2113E-5 | -.1499E-5 10° | .1182E-9 .1182E-9
107 | 2113E-4 | -.9151E-6 10° | .1182E-8 .1186E-8
10" | 2113E-3 | -.8807E-6 10" | .1182E-7 1226E-7
6.Bos | -5064.42 | 10° | -.9745E-7 | -.8771E-7 | 18.B1» | .4608 10" | .8869E-11 | .8869E-11
10° | -.9745E-6 | -.4616E-6 10° | .8869E-10 | .8873E-10
107 | -.9745E-5 | -.8046E-6 10° | .8869E-9 .8910E-9
10" | -.9745E-4 | -.8692E-6 10" | .8869E-8 .9297E-8
7.Boo | -1471.13 | 10° | -2830E-7 | -2742E-7 | 19.Bss | .3693 107" | .7107E-11 | .7107E-11
10° | -.2830E-6 | -.2140E-6 10° | .7107E-10 | .7108E-10
10° | -.2830E-5 | -.6696E-6 10° | .7107E-9 .7118E-9
10" | -.2830E-4 | -.8507E-6 10" | .7107E-8 7217E-8
8. L4 -4.314 | 10" | -.8301E-10 | -.8514E-10 | 20.B7 2766 107 | .5324E-11 | .5324E-11
10° | -.8301E-9 | -.1083E-8 10° | .5324E-10 | .5325E-10
10° | -.8301E-8 | -.4283E-6 107 | .5324E-9 .5330E-9
10" | -.8301E-7 .1813E-8 10" | .5324E-8 .5388E-8
9. L, 2.309 10" | .4444E-10 | .4385E-10 | 21.Bgs 1375 107 | .2647E-11 | .2647E-11
10° | .4444E-9 .3900E-9 10° | .2647E-10 | .2647E-10
107 | .4444E-8 1611E-8 107 | .2647E-9 .2647E-9
10" | .4444E-7 .1813E-8 10" | .2647E-8 .2652E-8
10.Lo | 2.098 10" | .4038E-10 | .3989E-10 | 22.B4; | -.1088 10" | -.2094E-11 | -.2094E-11
10° | .4038E-9 .3585E-9 10 | -.2094E-10 | -.2094E-10
10° | .4038E-8 .1570E-8 107 | -.2094E-9 | -.2093E-9
10" | .4038E-7 .1813E-8 10" | -.2094E-8 | -.2083E-8
11.b 2.001 10" | .3851E-10 | .3854E-10 | 23.B3, .1052 10" | .2025E-11 | .2025E-11
10° | .3851E-9 .3873E-9 10° | .2025E-10 | .2025E-10
10° | .3851E-8 A4077E-8 107 | .2025E-9 .2026E-9
10" | .3851E-7 .8649E-7 10" | .2025E-8 .2038E-8
12.Bs1 | 1.463 10" | .2816E-10 | .2816E-10 | 24.By | .9119E-1 | 10™* | .1754E-11 | .1754E-11
10° | .2816E-9 .2818E-9 10° | .1754E-10 | .1754E-10
10° | .2816E-8 .2833E-8 107 | .1754E-9 .1756E-9
10" | .2816E-7 2997E-7 10" | .1754E-8 .1766E-8
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Rel. Rel.
Rel. sens. | Par. Rel. Sens. | Par.
Param oxc, g? Var. Kgred _Kg K;ccal _Kg Param oxc, g? Var. Kgred _Kg Kgccal _Kg
gj — = | Ag; gi — = | Ag;
agj Kg o agj Kg o
gj gj
25.Bg1 | .8803E-1 | 10” | .1694E-11 | .1694E-11 [ 29.B1; | .3310E-1 | 10" | .6371E-12 | .6371E-12
10° | .1694E-10 | .1694E-10 10° | .6371E-11 | .6371E-11
107 | .1694E-9 1694E-9 107 | .6371E-10 | .6373E-10
10" | .1694E-8 .1702E-8 10" | .6371E-9 .6392E-9
26.bg | -.8538E-1 | 10 | -.1643E-11 | -.1643E-11 | 30.B2s | -.1848E-1 | 10” | -.3558E-12 | -.3558E-12
107 | -.1643E-10 | -.1642E-10 10 | -.3558E-11 | -.3558E-11
107 | -.1643E-9 | -.1636E-9 10” | -.3558E-10 | -.3557E-10
10" | -.1643E-8 | -.1581E-8 10" | -.3558E-9 | -.3553E-9
27.B7 | -.7496E-1 | 107 | -.1442E-11 | -1442E-11 | 31.by; | -.1600E-1 | 10 | -.3079E-12 | -.3079E-12
10° | -.1442E-10 | -.1442E-10 10° | -.3079E-11 | -.3079E-11
107 | -.1442E-9 | -.1442E-9 10 | -.3079E-10 | -.3077E-10
10" | -.1442E-8 | -.1437E-8 10" | -.3079E-9 | -.3063E-9
28.Bgy | -.7007E-1 | 107 | -.1348E-11 | -.1348E-11 | 32.B,, | .1492E-1 | 10* | 2871E-12 | .2871E-12
10 | -.1348E-10 | -.1348E-10 10° | .2871E-11 | .2871E-11
107 | -1348E-9 | -.1347E-9 107 | .2871E-10 | .2871E-10
10" | -.1348E-8 | -.1343E-8 10" | .2871E-9 .2874E-9
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TABLE XIX Sensitivities of the specific fluid volume, V;, to the numerical parameters that

enter its ASME mathematical formulation ( P° =150.0bar,

T =523.15K )

Rel. Rel.
Rel. sens. | Par. Rel. Sens. | Par.
Param | v, g} | Ve | Vo | Vet |Param | gy, g | Ver | vy e
% Vi |3 % VP | o
] ]
1.A11 | 1.0254 | 0.1 1263 1263 11.A2 | .322E-3 | 0.1 .3968E-4 .3968E-4
linear dep.| 0.5 .6319 .6319 linear dep. | 0.5 .1984E-3 .1984E-3
2.as | 1.0064 | 107 124E-3 124E-3 | 12.ag | -.2041E-3 | 10* | -.2515E-7 | -.2510E-7
10 124E-2 124E-2 10° | -.2515E-6 | -.2468E-6
107 124E-1 124E-1 107 | -.2515E-5 | -.2086E-5
10 124 123 10" | -.2515E-4 | -.5920E-5
3. a 4076 107 | .5024E-4 5024E-4 |13.a4; | -.1715E-3 | 0.1 | -.2113E-4 | -.2113E-4
10° | .5024E-3 5028E-3 linear dep.| 0.5 | -.1056E-3 | -.1056E-3
107 | .5024E-2 .5071E-2 | 14.a9 | .5746E-4 | 0.1 .7081E-5 .7081E-5
10" | .5024E-1 .5559E-1 linear dep.| 0.5 | .3540E-4 .3540E-4
4.a; | -9702E-1 | 10* | -.1195E-4 | -.1195E-4 | 15.A,( | -.2804E-4 | 0.1 | -.3456E-5 | -.3456E-5
10° | -.1195E-3 | -.1195E-3 linear dep.| 0.5 | -.1728E-4 | -.1728E-4
107 | -1195E-2 | -.1189E-2 | 16.as» | .9469E-5 | 0.1 .1166E-5 .1166E-5
10" | -.1195E-1 | -.1139E-1 linear dep.| 0.5 | .5834E-5 .5834E-5
5.A12 | -6730E-1 | 0.1 | -8294E-2 | -8294E-2 | 17.A7 | -.5552E-5 | 0.1 | -.6843E-6 | -.6843E-6
linear dep.| 0.5 | -.4147E-1 | -.4147E-1 linear dep. | 0.5 | -.3421E-5 | -.3421E-5
6. A | .3837E-1 | 0.1 AT729E-2 A729E-2 | 18.A15 | .4823E-5 | 0.1 5944E-6 .5944E-6
linear dep.| 0.5 .2364E-1 .2364E-1 linear dep.| 0.5 .2972E-5 .2972E-5
7.a4 | .3352E-1 | 10° | .4131E-5 4131E-5 | 19.A1s | -789E-6 | 0.1 | -9724E-7 | -.9724E-7
10° | .4131E-4 4131E-4 linear dep.| 0.5 | -.4862E-6 | -.4862E-6
107 | .4131E-3 4138E-3 | 20.Aqo | -.4082E-7 | 0.1 | -.5030E-8 | -.5030E-8
10" | .4131E-2 A4204E-2 linear dep.| 0.5 | -.2515E-7 | -.2515E-7
8.A13 | .3164E-2 | 0.1 .390E-3 .390E-3 | 21.A1s | .1866E-7 | 0.1 .2300E-8 .2300E-8
linear dep.| 0.5 .195E-2 .195E-2 linear dep.| 0.5 .1150E-7 .1150E-7
9.ay | -.1799E-2 | 107 | -2218E-6 | -.2217E-6 | 22.as | .1003E-8 | 10° | .1236E-11 | .1236E-11
10° | -.2218E-5 | -.2213E-5 10° | .1236E-10 | .1236E-10
107 | -.2218E-4 | -.2168E-4 10" | .1236E-19 | .1236E-19
107 | -.2218E-3 | -.1791E-3 | 23.A» | .3430E-11]| 0.1 | .4228E-12 | .4228E-12
10.a, | .1423E-2 | 10* | .1753E-6 .1753E-6 linear dep.| 0.5 | .2114E-11 | .2114E-11
10° | .1753E-5 1753E-5 | 24.a7 | -.122E-11 | 10° | -.1512E-14 | -.1512E-14
10° | .1753E-4 1753E-4 107 | -.1512E-13 | -.1512E-13
10" | .1753E-3 1754E-3 10" | -.1512E-12 | -.1512E-12
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TABLE XX Sensitivities of the volumetric expansion coefficient for fluid, R, to parameters in

its mathematical formulation (P° = 150bar, T; =523.15K)

Rel. sens. . Rel. Sens.
Pagfm 0B & | Bg | I - B | B - BY Pagfm 0B & | Bg | I - B2 | BE - BY
ag; pe | & ag; pe | &
1. a 22207 | 10" | .3934E-6 .3935E-6 | 13.a9 | .1058E-2 | 10° | .1875E-9 .1875E-9
10° | .3934E-5 .3940E-5 10° | .1875E-8 .1875E-8
107 | .3934E-4 .3998E-4 107 | .1875E-7 .1875E-7
10" | .3934E-3 4687E-3 10" | .1875E-6 .1875E-6
2. a, 2441 10" | .4325E-7 4325E-7 | 14.A15 | .2674E-3 | 107 | .4737E-10 | .4737E-10
10° | .4325E-6 4326E-6 10° | .4737E-9 A737E-9
10° | .4325E-5 4339E-5 107 | .4737E-8 A737E-8
10" | .4325E-4 A468E-4 10" | .4737E-7 AT737E-7
3.as | -2370 | 10* | -.4200E-7 | -.4200E-7 | 15.A3 | .2497E-3 | 10° | .4424E-10 | .4424E-10
10° | -.4200E-6 | -.4197E-6 10° | .4424E-9 4424E-9
107 | -.4200E-5 | -.4175E-5 107 | .4424E-8 A424E-8
10" | -.4200E-4 | -.3965E-4 107 | .4424E-7 A423E-7
4.Aq | -1188 | 10" | -2105E-7 | -.2105E-7 | 16.As7; | .7143E-4 | 10° | .1265E-10 | .1265E-10
10° | -.2105E-6 | -.2103E-6 10° | .1265E-9 .1265E-9
10° | -.2105E-5 | -.2083E-5 10° | .1265E-8 .1265E-8
107 | -2105E-4 | -.1909E-4 10" | .1265E-7 1265E-7
5.a; | -.9089E-1 | 10® | -1610E-7 | -.1610E-7 | 17.A»1 | -.1242E-4 | 10" | -.2202E-11 | -.2202E-11
10° | -.1610E-6 | -.1608E-6 10° | -.2202E-10 | -.2202E-10
10° | -.1610E-5 | -.1593E-5 107 | -.2202E-9 | -.2202E-9
10" | -.1610E-4 | -.1455E-4 10" | -.2202E-8 | -.2202E-8
6.A, | .6730E-1 | 10* | .1192E-7 1192E-7 | 18.As | .1015E-4 | 107 | .1798E-11 | .1798E-11
10° | .1192E-6 1192E-6 10° | .1798E-10 | .1798E-10
107 | .1192E-5 .1193E-5 107 | .1798E-9 1798E-9
10" | .1192E-4 .1200E-4 10" | .1798E-8 .1798E-8
7.Ay | 4443E-1 | 10° | .7872E-8 7872E-8 | 19.as, | -.9469E-5 | 10°* | -.1677E-11 | -.1677E-11
10° | .7872E-7 7872E-7 10° | -.1677E-10 | -.1677E-10
107 | .7872E-6 .7869E-6 107 | -.1677E-9 | -.1677E-9
10" | .7872E-5 7842E-5 10" | -1677E-8 | -.1677E-8
8.ar | -.3634E-1 | 10° | -.6438E-8 | -.6437E-8 | 20.A19 | .5252E-6 | 10" | .9305E-13 | .9305E-13
10° | -.6438E-7 | -.6424E-7 10° | .9305E-12 | .9305E-12
107 | -.6438E-6 | -.6294E-6 107 | .9305E-11 | .9305E-11
10" | -.6438E-5 | -.5202E-5 10" | .9305E-10 | .9305E-10
9.as | -.1016E-1 | 10® | -.1800E-8 | -.1797E-8 | 21.Ass | -4013E-6 | 10” | -.7110E-13 | -.7110E-13
10° | -.1800E-7 | -.1770E-7 10° | -.7110E-12 | -.7110E-12
10 | -.1800E-6 | -.1524E-6 10° | -.7110E-11 | -.7110E-11
10" | -.1800E-5 | -.4704E-6 10" | -.7110E-10 | -.7110E-10
10.A | .6502E-2 | 10° | .1152E-8 1152E-8 | 22.ag | -.2481E-7 | 10” | -.4395E-14 | -.4395E-14
10° | .1152E-7 1152E-7 10° | -.4395E-13 | -.4395E-13
10° | .1152E-6 .1152E-6 10° | -.4395E-12 | -.4395E-12
107 | .1152E-5 1152E-5 10" | -.4395E-11 | -.4395E-11
11.a, | -4530E-2 | 107 | -.8027E-9 | -.8027E-9 | 23.A» | -.774E-10 | 10" | -.1372E-16 | -.1372E-16
10° | -.8027E-8 | -.8027E-8 10 | -.1372E-15 | -.1372E-15
107 | -.8027E-7 | -.8027E-7 10° | -.1372E-14 | -.1372E-14
10" | -.8027E-6 | -.8031E-6 10" | -.1372E-13 | -.1372E-13
12. a1 | -.3463E-2 | 10” | -6135E-9 | -.6135E-9 | 24.a; | .5153E-10| 10* | .9129E-17 | .9129E-17
10° | -6135E-8 | -.6135E-8 10° | .9129E-16 | .9129E-16
107 | -6135E-7 | -.6135E-7 107 | .9129E-15 | .9129E-15
10" | -.6135E-6 | -.6135E-6 10" | .9129E-14 | .9129E-14
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TABLE XXI

rameters in its mathematical formulation (P° =150bar, T; = 523.15K))

Sensitivities of the isothermal coefficient of compressibility for fluid, k;, to pa-

Rel. sens. Rel. Sens.
Param | ax g | A2y | Pk | e oa | PO i o] G o | -k
Il - Il -
agj K? g? agj K? g?

1. aq 2.752 10" | .3540E-12 | .3541E-12 | 11.Aq3 | -.3164E-2 | 10™ | -.4070E-15 | -.4070E-15
10° | .3540E-11 | .3548E-11 107 | -.4070E-14 | -.4070E-14
107 | .3540E-10 | .3619E-10 10 | -.4070E-13 | -.4070E-13
10" | .3540E-9 .4508E-9 10" | -.4070E-12 | -.4069E-12

2. as -8948 | 10* | -.1150E-12 | -.1150E-12 [ 12.A1 | .2935E-2 | 10" | .3775E-15 | .3775E-15
107 | -.1150E-11 | -.1149E-11 10° | .3775E-14 | .3775E-14
107 | -.1150E-10 | -.1139E-10 107 | .3775E-13 | .3775E-13
10" | -1150E-9 | -.1047E-9 10" | .3775E-12 | .3775E-12

3. as 7747 10" | .9964E-13 | .9964E-13 | 13.a9 | .1554E-2 | 10° | .1999E-15 | .1999E-15
10° | .9964E-12 | .9963E-12 10° | .1999E-14 | .1999E-14
107 | .9964E-11 | .9948E-11 107 | .1999E-13 | .1999E-13
10" | .9964E-10 | .9806E-10 107 | 1999E-12 | .1999E-12

4. a, .3091 10™ | .3976E-13 | .3976E-13 | 14.as2 | -.9911E-3 | 10 | -.1274E-15 | -.1274E-15
10° | .3976E-12 | .3977E-12 107 | -.1274E-14 | - 1274E-14
107 | .3976E-11 | .3990E-11 107 | -.1274E-13 | - 1274E-13
10" | .3976E-10 | .4118E-10 107 | -1274E-12 | -.1274E-12

5.A | .6730E-1 | 10° | .8656E-14 | .8656E-14 | 15.as | .2041E-3 | 10" | .2625E-16 | .2620E-16
10° | .8656E-13 | .8656E-13 10° | .2625E-15 | .2575E-15
10° | .8656E-12 | .8662E-12 107 | .2625E-14 | .2177E-14
10" | .8656E-11 | .8714E-11 10" | .2625E-13 | .6178E-14

6.a1 | -.3938E-1 | 10” | -.5065E-14 | -5063E-14 | 16. a1 | .1715E-3 | 10* | .2205E-16 | .2205E-16
10 | -.5065E-13 | -.5051E-13 10° | .2205E-15 | .2205E-15
107 | -.5065E-12 | -.4928E-12 107 | .2205E-14 | .2205E-14
10" | -.5065E-11 | -.3921E-11 10" | .2205E-13 | .2205E-13

7.A1, | -.3837E-1 | 10 | -4936E-14 | -.4936E-14 | 17.A1s | .4168E-4 | 10° | .5361E-17 | .5361E-17
10 | -.4936E-13 | -.4935E-13 10° | .5361E-16 | .5361E-16
107 | -.4936E-12 | -.4934E-12 107 | .5361E-15 | .5361E-15
10" | -.4936E-11 | -.4917E-11 10" | 5361E-14 | .5361E-14

8.A1; | -.3745E-1 | 10 | -.4817E-14 | -4816E-14 | 18.A17 | .5552E-5 | 10° | .7141E-18 | .7141E-18
107 | -.4817E-13 | -.4812E-13 10° | 7141E-17 | .7141E-17
107 | -.4817E-12 | -.4768E-12 107 | 7141E-16 | .7141E-16
107 | -.4817E-11 | -.4369E-11 107 | 7141E-15 | .7141E-15

9.a; | .9608E-2 | 10* | .1235E-14 | .1235E-14 | 19.As5 | -.4823E-5 | 10° | -.6203E-18 | -.6203E-18
10° | .1235E-13 | .1235E-13 10 | -.6203E-17 | -.6203E-17
107 | .1235E-12 | .1235E-12 10° | -.6203E-16 | -.6203E-16
10" | .1235E-11 | .1236E-11 10" | -.6203E-15 | -.6203E-15

10.A% | .8711E-2 | 10° | .1120E-14 | .1120E-14 | 20.A:s | .4272E-5 | 10" | .5495E-18 | .5495E-18
10° | .1120E-13 | .1120E-13 10° | .5495E-17 | .5495E-17
10° | .1120E-12 | .1120E-12 10° | .5495E-16 | .5495E-16
107 | .1120E-11 | .1120E-11 10" | .5495E-15 | .5495E-15
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Rel. sens. Rel. Sens.
Param | ax g | A% | Pk | e oa | PO i gf G ok | -k
Il - 0 Il - 0
0g; K¢ g;j 0g; K¢ gj
21.As6 | -.1866E-7 | 10™ | -.2400E-20 | -.2400E-20 | 23.A5, | -.5369E-9 | 10 | -.6905E-22 | -.6905E-22
10 | -.2400E-19 | -.2400E-19 10 | -.6905E-21 | -.6905E-21
107 | -.2400E-18 | -.2400E-18 107 | -.6905E-20 | -.6905E-20
10" | -.2400E-17 | -.2400E-17 10" | -.6905E-19 | -.6905E-19
22.ag | -.8097E-8 | 107 | -.1041E-20 | -.1041E-20 | 24. a; | .1227E-11| 107 | .1578E-24 | .1578E-24
10 | -.1041E-19 | -.1041E-19 10° | .1578E-23 | .1578E-23
10° | -.1041E-18 | -.1041E-18 10° | .1578E-22 | .1578E-22
10" | -.1041E-17 | -.1041E-17 10" | .1578E-21 | .1578E-21
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6 CONCLUSIONS

This work has highlighted the implementation of the deterministic, /ocal sensitivity analysis
theory originally developed by Cacuci®® for the non-homogeneous, non-equilibrium, one-
dimensional two-fluid model in RELAP5/MOD3.2. Particular emphasis has been given to the
implementation of the Adjoint Sensitivity Analysis Procedure (ASAP), since this procedure is
practically the only way to perform a complete and systematic sensitivity analysis of the re-
actor plant transients calculated with RELAP5/MOD3.2. Underlying the ASAP are the Differ-
ential ASM-REL/TF, which comprises nine coupled differential equations that are linear in the
adjoint function, and its discrete counterpart, the Discrete ASM-REL/TF, which comprises
thirteen linear coupled algebraic equations that result from the use of the RELAP5/MOD3.2
time discretization(s) and staggered-mesh spatial discretization procedures. The following
fundamental characteristics of the ASAP have been highlighted during its implementation in
the RELAP5/MOD3.2 two-fluid model: (a) the adjoint functions are independent of parameter
variations; (b) the adjoint functions must be calculated anew for every response; (c) the
ASM-REL/TF is linear in the adjoint function and may be solved by methods that are, in prin-
ciple, independent of those used to solve the original, nonlinear equations; and (d) the adjoint
functions depend (nonlinearly, in general) on the base-case solution, which must therefore
be available prior to solving the ASM-REL/TF.

This work has also underscored the fundamentally important aspect of consistency between
the differential and the corresponding discretized equations used for sensitivity analysis. In
this context, consistency means that the discretized representation converges to the corre-
sponding differential and/or integral representation in the limit of vanishing spatial mesh- and
time-step sizes. Assuming a priori that the original systems of differential equations (in this
case, the REL/CDE) had been discretized consistently, the following consistency correspon-
dences must be assured: (i) if the FSAP is used, then the Discretized FSM must be consis-
tent with the Differential FSM; (ii) if the ASAP is used, then the Discretized ASM-REL/TF
must be consistent with the Differential ASM-REL/TF; and (iii) the Discretized Response
Sensitivity and the Integral Response Sensitivity must be consistent with each other in both
the FSAP and the ASAP formulations. If these consistency requirements cannot be naturally

fulfilled when deriving the Discretized ASM-REL/TF, then the differential and/or integral forms
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(i.e., the Differential FSM, ASM-REL/TF, and Integral-Response-representation) must be
used and discretized independently in a consistent manner since it is the differential/integral

forms that contain/model physical reality.

The accuracy and robustness of the solution of the Adjoint Sensitivity Model (ASM-REL/TF)
corresponding to the RELAP5/MOD3.2 two-fluid model with non-condensable(s) has been
verified by using sample problems involving: (i) liquid-phase only, (ii) gas-phase only, and (iii)
two-phase mixture (of water and steam). Thus, the “Two-Loops with Pumps” sample problem
supplied with RELAP5/MOD3.2 has been used to verify the accuracy and stability of the nu-
merical solution of the ASM-REL/TF when only the liquid-phase is present. Furthermore, the
“Edwards Pipe” sample problem, also supplied with RELAP5/MOD3.2, has been used to
verify the accuracy and stability of the numerical solution of the ASM-REL/TF when both (i.e.,
liquid and gas) phases are present: the particular regimes considered were bubbly, slug, and
mist flows. In addition, the accuracy and stability of the numerical solution of the ASM-
REL/TF have been verified when only the gas-phase is present by using modified “Two-
Loops with Pumps” and the “Edwards Pipe” sample problems, in which the liquid and two-
phase fluids, respectively, were replaced by pure steam. The results obtained for all of these
sample problems represent typical sensitivities of junction velocities and volume-averaged
pressures to perturbations in initial conditions, and indicate that the numerical solution of the
ASM-REL/TF is as robust, stable, and accurate as the original RELAP5/MOD3.2 calcula-

tions.

The sensitivities of the thermodynamic properties of water to temperature, pressure, and the
experimentally-determined parameters that enter in their respective mathematical formula-
tions play an essential role for sensitivity analyses of results calculated by thermal-hydraulic
codes, such as RELAP5/MOD3.2, which use water as the working fluid (e.g.,). Such sensi-
tivities are of interest to many applications including, but not limited to, the analysis of light
water reactors. Therefore, this work has also presented typical analytical and numerical re-
sults for sensitivities of water material properties based on the mathematical formulations
listed in the ASME 1993 Steam Tables'. Such sensitivities can be used to rank the respec-
tive parameters according to their importance, and to assess the effects of nonlinearities on
results calculated by the respective code. Furthermore, the sensitivities for the ASME 1993
Steam Tables'? are expected to indicate priority areas for investigating the new, IAPWS-IF97

formulations'® for the material properties of water, since these formulations will eventually
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form the basis for all calculations involving water. More generally, once these sensitivities are
available, they can be used for: (a) ranking the importance of parameters as they affect the
calculated response; (b) analyzing the effects of parameter variations on the response; (c)
performing extensive uncertainty analysis; (d) prioritizing the introduction of improvements in
the respective computer code; and (e) eliminating unimportant phenomena for later consid-

erations in a global analysis.

Future research could encompass both the analysis of international benchmarks with the
RELAP5/PANBOX/COBRA (R/P/C) code system, and the continuing validation of the ASM-
REL/TF for the two-fluid model in RELAP5/MOD3.2. Furthermore the coupling of the ASM-
REL/TF of RELAP5/MOD3.2 to the corresponding three-dimensional ASM for the neutron
kinetics model in PANBOX, when it becomes available within the R/P/C multipurpose code
system, would provide an efficient way to perform comprehensive deterministic and statistical

sensitivity/uncertainty analyses for reactor transient analysis.
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APPENDIX A: THE RELAP5/MOD3.2 DISCRETIZED
SET OF “NUMERICALLY CONVENIENT DIFFEREN-
TIAL EQUATIONS”

The components of the matrix A introduced in Eq. (2.13) are defined as follows:

ap ap, ap
All = ag( n (:)Xgn gJ) A12 = a‘ X U 1y ° A14 = ngn’ AIS = n (:)I)g ’
0 s P-P oT
A, =a,U, Pe - At “H,, h, AtH ¢ I At “H,,
X, | h ht h, —h; X, P 90X,
9 s s P-P oT
A, =a,U, Pe , At SH o b, AtHlf I At “H, —
U, | h: —h U, P 9U
h’ T.
A23 =- *—g* AtHif ‘ t _A gf f A ng +P
h -h; aU, P U,

d h’ P s 0T h, *  P-P T
Ay =0,U, De , —— [At—=H,, o %%, —= — |AtH,, At “H, | —-
P |(h -h. | P ® 9P oP) |h -h oP P oP

oP |

JT,

* P LT, h s P-P oT
Ay =a,u, e | By Py [T S ¥ SN VR Sk e
P |hi-h.] P % oP 4P ) (h' -h oP P oP

d P s 9T s
A, =a, Pe - 2 - |[At—=H,, o _ %, - 2 - AtHifi,
X, |(hi-h;) P X, aX, h! —h; 0X
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d P s 0T s
Ay =0, i + = 2 - |[At—H,, %% +| = 2 ¥ AtHifﬂa
U, |h,-h; P U, U, h, -h; ou

g g

ap 2 oT
Ay=-a . (h* * JAtHif ﬁ’ Ay =p, +Ps,

“6U, (h-h; }

0 A P s oT s
A45 =ag pg _(X-f apt + * 2 * At_sHig aT - : + * 2 * AtHif aT s

gp P \hi-h; ) P (o P ) |hl-h; oP

P, P, P, P, P,
A =0ﬁgaa A =0‘gaa A =af_f’ As =P, —Pss A =0 —p T

The components of the vector b introduced in Eq. (2.13) are defined as follows:

. p h, P-P
b, - {h; _fh’;]At?sHig(Ts —Tg)‘(h* _gh’;JAtH“(TS )T, )

I-¢), (l+¢}),
+AtI“WK > ]hf+( > ]hg}+QWgAt+DISSgAt,

h; P . h, . P-P,
b, {h; _fh,;]At?sHig(T -Tg)+(h;+h;]AtHif(T ~T, )+ At . H,(T,-T,)

I-¢) , I+¢),,
—Atl“w[( > jhf+( 5 ]hg}+QWfAt+DISSfAt,

2 P 2
b, = _[h* o JAt?SHig (r*-1,)- {m]AtHif (T* =T, )+ 24T,

g

The components of the vectors fl,fz,gl,gz introduced in Eq. (2.13) are defined below:

fsl = _ldf,j+1(pf,j+1Uf,j+1 +Py )Aj+1JAt/V, fi = (dfpfA)j+1At/Va fsl = _(dfpfA)j+1At/V;
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£2 et (or,Up s +PA /Y, £2 = —(cp A) AL/, £2 = (6,0,A), AL/ V;

gi = _(dgng“A)jn At/V, glz = _|_ g.j+l (pg1+1 g.j+l +P ) J+1 JAt/V g4 g5 - (étgf)gA)j+1 At/V;

gt = (a0, %,A) AV, g2 =lar, (b, 0, +P A Ae/V, gl =g =(a,p,A) ALV,

The fluid specific internal energy, (Uf)z”, is calculated for a volume L at time-step (n+1) by

using the following sequence of three operations: (i) The non-expanded liquid energy equa-

tion, which reads

VLl(afprf )ILHI _(afprf )r]i J"' [df,j+1 (pf,j+1Uf,j+1 +Py )V?-;-IHA_H'I af](prUf] +P )"MIA‘]M
) ~ Y N U
= V. By (e a){{ﬁ} 1; Hy, (T T)(ﬁ]H (T -Tp)

g
P - PSLH;fL(TrHI T‘Rzl)_r&{(l s}(h,“)n (l-lz-s}(, )ni|+Q“Wf’L+DISS?’L}VLAta

+
pr 2

is solved to obtain (ocfprf )E”; (if) the non-expanded liquid density equation, which reads

V I_(afpf)n+1 _(afpf)EJ ( fJ+1pr+1VIfH_;l+lAJ+1 afjpf ]VIleA )A

Ps ZsLope (Tsn+1 _Tn+1 )+ HlnfL(TE,nn _Tfnzl)

Pn lgL

_ -T7, VoA,
(b, - (0, "

is solved to obtain(ocfpf)ﬁ”; and (iii) the ratio of the results obtained in steps (i) and (ii), re-

spectively, is calculated to obtain (U, )i" = (a,p,U, )" / (o, )i
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The total non-condensable mass fraction, (Xn)'ﬁ+l for volume L at time-step (n+1) is calcu-

lated by first solving the non-expanded total non-condensable density equation
n+1 n . . n n+l )& n+1
VL |.(agngn )L - (agngn )L J+ (ag,jﬂpg,ﬁlx J+1Vg J+1A g Jng n,j gJ A )At = 0

to obtain (ozgngn)’i”, and then calculating directly (X, )" = (agng )n”/(ozgpg)z“ by us-

n/L n/y

ing the previously calculated value of (ocgpg )E” .

The gas void fraction, (ozg )E” , for a volume L at time-step (n+1), is calculated as follows:

n+l
(ag)L =1-af} =1- M where

A n+l ’
f,L

I =pf, + (a;ijl(l’f“ —Pf)+(§%]L(U?fﬁ -up).

f

The non-condensable mass fraction for the i-th non-condensable species, (X .)'ﬁ”, for vol-

ume L at time-step (n+1) is calculated by first solving the non-expanded equation for the indi-
vidual non-condensable density

Vellop, X, X, ) - (o0, X, X, )
+(dg,j+1pg,1+1XEJ+1X2i,j+1V;1+1A nggJXn X2 yIA L )At =0,

ni,j gJ

to obtain (ozgngnXni )E”, and then by using the previously calculated quantity (agngn)’i”

to obtain (X ;)" —( P X, X )“”/(oagngn)n”.

L

78



APPENDIX B: COEFFICIENTS IN THE EQUATIONS
COMPRISING THE FSM

Taking the G-derivative of the vapor energy equation yields the following expressions for the

components S__ (x,t), Tmn(x,t), and Umn(x,t):

o o [} o ap [} o [} ap o o o aE
S“(x,t)socgpg+ocgUg =, T“(x,t)socgUng = | +0,p, Ve, U, (x,t)=- —~|,
au ) 0

& /o

JoE
Slz(xat)EO’ T12(X’t)50a U12(Xat)5_(aUlJ 5
f/o

or 10| OP o710 of P My 1 9 (o oo
Sl3(X’t)EagUg( an] ) TB(x,t)EOLgUng( g] ) U13(X,t)E =+ (angA )_(

[ 4] 4] 0.0 [ 0_.0 aPO aE’l oaPO
S (x,t)=p° U +P°,  T,(x,t)=p2veUs +PVS, U,(x,t)=- . _ﬁaag] Vi

°17° ap 0770+,0 ap JE
Sl5(X’t)EagUg(8 g] ) Tls(Xot)EagUng(a gJ ) UlS(Xat)E_( lj >

, 0P° | 0E
Slg(x’t)EO’ TIS(X’t)Ea;(p;U; +PO)> Uls(xat)E_a _[_IJ >

£ 9x v,

0E
Sl9(x’t)509 T19(Xat)50a U19(Xot)5_{?J,
f (o]

79



and where the quantity El()_(,g) is defined as

' h'
EI(Z"Q)E _(h/ h_fh/ JHig (TS - Tg )_£h, _gh/ JHif (TS - Tf)
f f

g g

P-P l+e), (l-¢) .
- P Hgf(Tg _Tf)+|:(T]hg +(Tjhf:|rw +ng +DISSg

Taking the G-derivative of the liquid energy equation yields the following expressions for the

components S__ (x,t), Tmn(x,t), and Umn(x,t):

oE
821(X>t)50a Tzl(xot)EOa Uzl(xat)E—(aUzJ ,

g

o o o ap 0.0 o o ap aE
Szz(xat) = a’f[pf + Uf(anf l} T,(x,t) = ay Vf[pf + Uf(anf l} Uzz(X,t) = —(an ]0,

o [0 a 0 o) o) a a 1 a o (3] [} aE
SZS(Xat)Eanf(%j ) Tzs(xat)EafoUf(ﬁj ’ U23(X’t)5i+ —(OLfoA )_( BPZJ ’

°17° o o[ . .oyT0 0 oE aPO o aPO
SZ4(X’t)E_(prf +P )’ T24(X>t)E_Vf(prf +P ), U24(Xat)5_[ 2] +

aocg

0X

n /o

SZS(X’t)EO’ Tzs(x,t)EO, Uzs(X,t)E_( aEz] )

st(Xat)EOa ng(xat)EO, Uzs(X,t)E_(aE2J’

E)Vg

o o o o 0 aPO aE
Sz9(X>t)EOa T29(X>t)5af(prf+P )’ U29(X’t)5_af J0x _(asz ’
f /o
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and where the quantity E2()_(,Q)is defined as

! h/
el [ )
f

g

P-P _
AL AT (Y —Tf)_ﬁ“_ﬁjh; +(1ngh§}l“w +Q,, +DISS,.

Taking the G-derivative of the sum density equation yields the following expressions for the

components S (x,t), Tmn(x,t), and Umn(x,t):

o ap ] a ] ] ap ] o a
S33(X’t)5ag( (')ng +O‘f(%j ) T33(X,t)EOlng( Gng +0‘fo(%} > U33(X,t)50,
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Sy (X,t) =0, Ty (X,t) =o;pf, Uy (X,t) =0,

Taking the G-derivative of the difference density equation gives the following expressions for

the components Smn(x,t), T, (x,t), and Umn(x,t):

J0E
S44(X,t)sp(f’+p;, T44(X,t)Ep;V;+p?V(f’, U44(X’t)5_( 4}’

o 9P o of 9P OF
S45(X’t)5ag( g] ’ T45(X,t)EO(ng(anJ, U45(X,t)5_( 4J 5

0X n,

n /o

Sus (X,t)

1]
=
—

oo
—_
>

-t
N—

1]

R
(=Rl
e
0 o
=
oo
—_
>

-t
~—

1]

|

7\
D
™

N
o

0E
S49(X,t)50, T49(X’t)5_a(f)p(f)a U49(X’t)5_( 4J’

and where the quantity E4()_(,Q) is defined as
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E4(>_(ag)5 _ ig(Ts _;flg )_"'hI:Iif(TS -T; )J+2rw'
g f

Taking the G-derivative of the non-condensable density equation gives the following expres-

sions for the components Smn(x,t), T (x,t), and Umn(x,t):

ou

g

d d
sﬁ(x,t)ga;x;( pgj, Tﬂ(x,t)zagxgvg( pgj, U, (x,t)=0,

S5 (Xat) =0, T, (Xat) =0, Uy, (Xst) =0,

d d
SSS(X’t)Ea;XE( ;;gJ ) T53(x,t)50(;V;Xﬁ( pg] > U53(X,t)50,

854(X,t)5sz° T54(Xat)5p;XOVO U54(Xat)509

n?’

o ] ] ] ap ] ] o ] ap
SSS(X’t)EQgpg'I'aan(anj > Tss(x,t)EOLng[pg +Xn£ gJ } Uss(xat)an

n/o

Ssx(xat) =0, T (Xot) = O(;p;Xﬁ, Usg (Xat)

0,

S, (x,1)=0, Ty(x,t)=0, U,(x,t)=0.

Taking the G-derivative of the mass conservation equation for each non-condensable com-

ponent gives the following expressions for the components Smn(x,t), Tmn(x,t), and

U, (x,t):
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Se(X,t)=poXOXS,  Te(x,t)=po XX ve,  Ug,(x,t)=0,

n“*ni ' g

d d
Sés(x,t)sa;Xfﬂ(p; +X§£&J J T65(x,t)5a;VzXfﬂ(p; +X§[§J j U (x,t)=0,

90X .

See(X,t)=a0poX?2,  Teo(x,t)=alpiviX?, Uglx,t)=0,

g7 n? g” n?

868(X7t) =0, T (Xat) = a;szngﬁ, Us (Xot) =0,

Seo(x,t)=0, T,(x,t)=0, Ug(x,t)=0.

Taking the G-derivative of the boron density equation yields the following expressions for the

components S__ (x,t), Tmn(x,t), and Umn(x,t):
S71(X’t) =0, T71(X>t) =0, U71(X,t) =0,

Sy (Xat) =0, T, (Xat) =0, U, (Xat) =0,
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S (Xot) =0, T, (Xot) =0, U, (Xot) =0,

S24 (Xat) =0, T74(Xat) =0, U74(Xat) =0,

S75(X’t)50a T (Xat)EO’ U75(X>t)50a

S16 (Xat) =0, T76(X’t) =0, U76(X’t) =0,

Sy (Xat) =l, T, (Xat) =vy, U, (Xat) =0,

S78(X’t) =0, Ty, (Xot) =0, Uy (Xat) =0,

S79(Xot) =0, T, (Xat) =Py, Uy (Xat) =0.

Taking the G-derivative of the sum momentum equation gives the following expressions for

the components Smn(x,t), T, (x,t), and Umn(x,t):

ot 2 ox |au, ) (au,

2
0 o P
SSI(X’t)EO’ Tsl(Xat)EOa U81(Xat)Ea;[avg +13(V‘°’) J( pg] _(GESJ )

at 2 ox |\ 9X, X,

>
ove 9lve 9
Sss(xat)EO’ Tss(Xat)EOa Uss(xat)Ea;[ — +l (Vg) J( ng _(aEgj )
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S, (x,1)=0, Ty(x,t)=1,

0 o \2 5

(o) aV aV a 6 o a 0 a aE
Uss(Xat)E— L dA +Ot; £ +l ( g) Pg +a? Ve +l (Vf) P _ 3 ’
A° dx ot 2 ox | P ) ot 2 ax o) P )

2 2
J v, 10lvy o ave  1alvy oE
884(X,t)507 T84(Xat)509 U84(X9t)5pg[ atg +E (a)g() J__pf( (?)]tf +5 (:‘)])f() J_[aagJ ’

2
o aVO 1 0 VO ap aE
SSS(Xat)EOa TSS(X’t)EO’ USS(X’t)Eag[ atg +§ (ai) J(axg J _(aXS j ’

0.0 0.0 0 d o o 1 ° 0 o o o oE
Sgg(X,t)EOLgpg, ng(X,t)EOLgngg, USS(X’t)E_g(agpg)_EVg&(A agpg)_(aVs]oa

0,0 0,.,0_0 a 0 .0 ) a 0_0_0 GE
889(X’t)5afpf’ T89(X’t)Eafprf’ U89(X’t)E_a(afpf)__Vf _X(A a‘fpf)_(a 8j s
where the quantity Eg()_(,g) is defined as

E,(x.G)=pB, - a,p,v,FWG - ap,v,;FWF-T, (v, - v, )

Taking the G-derivative of the difference momentum equation gives the following expres-

sions for the components S__ (x,t), T, (x,t), and U__ (x,t):

1 oP°[ dp oE oE a(VO —V(f))
= | = U = - g - 9 | — 10 g
Sgl(x’t) " 91(X’t) " 91(X’t) (92)2 ox (aLgl [atgl £8Lgl a
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o a 0_ [0}
S,,(x,t)=0, T,(x,t)=0, U,,(x,t)= 1 oP (apfj _(aEgj _(aEIOJ (Vg Vf)’

U,

X, 0X, X, ot

°of 9 olve =v°
S (x,1)=0, T(x,0)=0, Uy(xt)=- P ( pg] _(aEgJ _(aEmJ (ve vf)’

9E;, 1 ,0A° (OE
S =1-E%, T,(xt)=vS, Uyklxt)s 0o —ye 22 | T2 |
(1) o Tulxt)=vg, Uglxt) ot AT ox (avgl

0 o 1 ,0A° OE] oE
S99(X’t)EE10_1’ T99(Xat)E_Vfa U99(Xat)EFVf X - atlo _( QJ ,

and where the quantities Eg()_(,g) and Elo()_(,g)are defined as

E9(X,Q)E —VgFWG +v,FWF+ Fg|_pV1 - (O(fpfvg + 0P,V )J
) APy OePy

- pFI(Vg -V, ),

and, respectively,
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APPENDIX C: ELIMINATION OF THE INTERMEDIATE
TIME-STEP VARIABLES IN THE DISCRETIZED FSM

(ro)fy) - (T,
The matrix T\") is defined as T\" = : : , where M, is the number of
(rol, - (T,
intermediate time-step variables existing in the system. To simplify the notation for the deri-
vations to follow in this Appendix, the time-step index n will be omitted, since all matrices

involved in these derivations are evaluated at time-step n.

k] o

T U T
The matrix T, is partitioned in the form T, E[ } where TE[
L V (TI)ZI (TI)22

where the matrices L, U, and V are defined below:

(a) if M, =3, i.e., if only the quantities INJE ,U},at appear as intermediate time-step

variables in Eq. ( ll.12 ), then the matrices L, U, and V are defined as follows:

L= [(TI)31 (TI)sz]; U= ﬁ:gij ; V= (TI)33 :

(b) if M, =4, i.e., all intermediate time-step variables exist in Eq. ( 111.12 ), then the

matrices L, U, and V are defined as follows:

The inverse [TJl of T, can be calculated by partitioning; this yields
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P, P
[T,]" = L}” Plz} , where the matrices P,,, P,,, P,,, P,, are defined as follows:
21 22

P, E[V—LT"U}I, P, =-P,LT", P, =-T'UP,,, P, =T+ T 'UP,LT"".

To evaluate the matrices P, i,j=1,2, it is necessary to evaluate T™'. Using the same in-

t t
version-by-partitioning procedure as above for the matrix T, yields T~ = [t“ 12] where
21 22

the matrices t,,, t,,, t,,, t,, are defines as:

ty, = [(TI)22 - (TI)21 (TI)1_11 (TI)12 }1’ t, =-ty (TI)21(TI)1_11 ;

t, = _(TI);ll (TI)lztzz’ t, = (TI);ll + (TI)1_11 (TI)lztzz (TI)21(TI)1_11 .

Since the matrices (TI)EV are by definition diagonal matrices, it follows that

n

t), = diag{(ti)22 ~ (6P (4)? /(40)" }l}k = diag{r,, )"
t, = _diag{'zz (ti)zl/(ti)ll};1 = diag{tﬂ}i ,
t, = _diag{'zz (ti)lz /(ti)ll};l = diag{tlz}i,

t, = diag{[1+(ti)‘2 (ti)zlrzz/(ti)“]/(ti)“};l = diagfr, f;, for k=1, NV,

The matrices P,,, P, P,,, P,, will now be calculated explicitly for the two cases (a) and (b)

defined above:

Case (a): M, =3:
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In this case, P,, is obtained as follows:

(O (N t”}ﬂ“)w}}_l - dinglp, ).

t21 t22

where p,, = {ti)* — (6)"[5,, (6)” + 1,0 (6 |- (62, () + s ()2 |

Furthermore, the row-matrix P,, is obtained in the form
1 2 . . . n . n
P, = |_P21 P21l1x2)’ where P, = dlag{— P» [(t1)31T11 + (t1)321721]}k = dlag{ql}k

P221 = diag{— P2 [(ti)311712 + (ti)ﬂrzz ]}E = diag{ch}i :

Pl
The column-matrix P, is obtained as P, ={ 12} : where
(24)

12 = dlag{ I:Tll(ti)m +7T), (ti)23 ]}E = diag{sl}ﬁ,

12 = dlag{ [ 1(ti)13 +7Ty, (ti)23 ]}E = diag{sz}i .

Finally, the matrix P,,, defined as P“ET"I[I—UPZI] can be written in the form

R R
P,=| """ "1, where, for all k=1,..,NV, the matrices R,,R,,,R,,,R,, are defined as
RZl RZZ

follows:

R, = dlag{cn[ tl ql]_ T (ti)Bql}i
R, —dlag{ 11(t1) q, "'1712[1_(ti)23qz]};l
R, = dlag{cﬂ[ tl ql]_ Ty (ti)23q1}z

R, —dlag{ 21(“) q, +Tzz[1_(ti)23chk
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Case (b): M, =4:

In this case, the matrix P,, is given by the expression

S el il N [ A e

where the following definitions have been used:

Py = (1), ={(T0), [t (T0), + 1, (TD),, ]+ (D), [, (T) + 0, (TT), = dingfp .
P2 = (T0)y, (), [t (7D, + (T, Jo (TD), [ (TT) + 05, (TD),, [ = dingdps
Py, = (T0)y, —{(T) [t (T, + 1 (T0), J (D), [, (T, + 1, (TD),, [ = diagdp.
P27 = (10 ~{(T0) [t (T + 1, (T, T (T [t (T0) + 0, (TD),, [ = diaglpos

Carrying out the above calculations leads to the following expression for P,, :

W, W
P, ={ ! 12}, where the components W, = diag{wij }z, i,j=1,2 are calculated from the

WZl W22
formulae
_1 -1 -1
Wo= —PUV'PEW,: W= (P2) - w,p2 ()
1 1 -1
W= [pzopnleu)es] wy= —wapaen)”

Carrying out the remaining calculations for the components W; = diag{wij}i; ,j=12 de-

fined above gives:
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Wi =(1—W12p21)/5; Wi, = _plz/é;WZI =—p21/6; W =p11/6, with 8 =p,,p,, =P ,P, -

Having calculated P,, and T™', the remaining matrices P, , P,,, P,, are obtained as follows:
P.. = Wll W12 (TI)SI (TI)SZ t11 t12 _ P2111 P2112
1w, W, |[(Tn),, (TI), || t, ty,]| |P2 P2
21 22 41 42 21 22 P21 P21

where PJ = diag{qij }z, i,j=12, with

q, = W, =(ti)n'c11 + (t1)32121J+ W, gti)mtu +(tl)421721 )
q, = W, _(ti)“':12 +(ti)*,, ]+ Wi, =(ti)“”clz + ()%, |
Q= — Wy =(ti)31r11 +(t1)32r21]+ Wy, (ti)“‘tn +(t) %7y, b
qQ,, = W, _(ti)“r12 + (t1)32‘522]+ W, (tl)41T12 + (t1)42122

Similarly, the matrix P, is obtained as

P. = _|:t11 t12 j||:(TI)l3 (TI)14 :||:W11 W12 i| = |:P112l P1122j|
N t21 t22 (TI )23 (TI )24 W21 W22 ]‘)1221 P1222

where P = diag{sij }z, i,j=1,2, with

sy = -1, (t1)13w11 +(t1)l4w21J+ 112[(t1)23wll +(t1)24w21 ,
Spm o () w oy + () o e o657 Wiy + () woo
Sy =~ =(ti)13W11 +(ti)l4w21]+122[(ti)23w11 + (6w | |
Spm =t () Wiy + (1) Wy (6 wy, + () W
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Finally, the matrix P,, is obtained as follows:

P =T—1[I_UP ]= tll t12 1 O _ (TI)B (TI)M lel1 P2112 _ Rll R12
! “ t21 t22 O 1 (TI)ZS (TI)24 P2211 132212 - R21 RZZ ,

where the matrices R,,R,,R,,,R,, are defined as follows: R; = diag{rij }z, 1,j=12, with

iy
[

= )+ () 0y )P, @)
-1y (ti)“q12 +(ti)l4q22 +T, - (ti)”q12 +(ti)24q22 ,
L= T,|- (ti)wq11 +(ti)l4q21 -1, (ti)”q11 +(ti)24q21
—‘521[(ti)l3q12 + (ti)14 q22]+ T, {1 —[(ti)23 q,, + (ti)”qzz]}

el
S
[

I\J'-‘
[\
[
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APPENDIX D: PROGRAMMING CONSIDERATIONS
FOR IMPLEMENTING THE ADJOINT SENSITIVITY
ANALYSIS PROCEDURE (ASAP)

Since the RELAP5/MOD3.2 code has a modular structure, each mathematical model is com-
puted in a separate subroutine. This modular structure allows the implementation of the
ASAP as a new “Option” in RELAP5/MOD3.2, without having to alter the functionality of the
original code. If the ASAP Option is activated, the code calculates and stores at the end of
each successful RELAP-time-step the information necessary to solve the ASM-REL/TF. As it
has already been shown in Section Ill, the ASM-REL/TF must be computed backwards in
time; therefore, the entire RELAP-calculation of the base-case problem must be stored for

subsequent use in calculating the adjoint functions.

The flow-chart in Fig. 8, below, shows the modifications and additions effected in the RE-
LAP5/MOD3.2 code in order to implement the ASAP Option. In this figure, the RELAP-
subroutines that have been modified are listed with their original names, while the subrou-
tines that have been added to RELAP are written in bold type. The modifications introduced
in the original RELAP subroutines do not affect the base-case calculation; they are used
solely to calculate derivative of various terms in the REL/CDE to state (i.e., dependent) vari-

ables and parameters.

The top-level of the transient/steady-state block in RELAPS5, the TRNCTL subroutine, com-
prises the logic to call the lower-level subroutines; including: (i) the subroutine TRNSET,
which controls the settings necessary to initiate the transient calculation, (ii) the subroutine
TRAN, which controls the advancement of the solution, and (iii) the subroutine TRNFIN,
which closes the transient. As an addition, the subroutine ADJSEN is called, at the end of the
RELAPS5-calculation, to solve the ASM-REL/TF; note that the various components that com-
prise the ASM-REL/TF would have already been calculated and stored in various files during

the forward, RELAP-calculation of the base-case problem.
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Fig. 8. Adjoint Sensitivity Model (ASM-REL/TF) Transient Block Diagram for the Two-Fluid
Model in RELAP5/MOD3.2

There are two types of G-derivatives arising when implementing the ASAP, namely: G-
derivatives with respect to the state variables, and G-derivatives with respect to the system
parameters. In principle, such derivatives can be calculated either exactly by using the sym-
bolic computer language MAPLE V" or by calculating them numerically. When MAPLE V is
used, the respective derivatives are calculated in the original RELAPS5-subroutines, as an
addition to the original functions of that subroutine. For example, the RELAP5-subroutine
VLVELA calculates the volume-averaged velocities. When the ASAP Option is activated,
VLVELA calculates, in addition, all of the derivatives of the volume-averaged velocities with

respect to the state variables.

On the other hand, if the analytical expression of the function is too complicated to calculate
exactly via MAPLE V, then the respective derivatives are calculated numerically using differ-
ence schemes, by calling the subroutine NUMDER. Most often, the numerical derivatives are

calculated using a centered-difference scheme; in this case, the numerical calculation of the

derivative of a quantity F with respect to a state variable 7, for a volume or junction k, is

implemented by calling twice the subroutine that calculates the quantity F, as follows:
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call F subroutme((xd )k ) = FU
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g ) (X(Zi)k_ (Xg)k

where “F _subroutine” denotes the RELAP5-subroutine that calculates the quantity F, and ¢
is a small scalar (usually 0.01-0.05). It is important to mention here that “F _subroutine” does

not represent an original RELAP-subroutine, but rather a new, specially written subroutine
that calculates the quantity F as efficiently as practicable. For example, the RELAP-

subroutine PHANTYV calculates the gas and liquid interface heat transfer coefficients per unit

volume H,, and Hj, for all of the volumes in the system under consideration. However, to
calculate the derivatives of H;, and H;. with respect to all of the state variables but for a

single volume, it is not necessary to calculate the values of H,, and H;; for the unaffected

volumes. Therefore, although the existing RELAP5-subroutine PHANTV could be called to

calculate the derivatives of H,, and Hj with respect to the state variables, this would be

very inefficient; the new subroutine, SPHANTYV, is called instead, since this subroutine has

been written specifically to calculate the respective derivatives efficiently.

At the end of each successful time-step, the components of the ASM-REL/TF are calculated
in the subroutine FWDEQS by taking the G-differential of each equation of the REL/CDE.
The newly-written subroutines that calculate the respective G-differentiated equations are as

follows:

EQINT1 calculates the G-differential of the vapor energy equation;
EQINT2 calculates the G-differential of the liquid energy equation;
EQINT3 calculates the G-differential of sum the density equation;
EQINT4 calculates the G-differential of the difference density equation;

EQINTS5 calculates the G-differential of the non-condensable density equation;
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NONCDEQ calculates the G-differential of the mass conservation equation for each non-

condensable species;

BRNEQ calculates the G-differential of the boron density equation;

EQFIN1 calculates the G-differential of the equation for obtaining the final gas energy;
EQFIN2 calculates the G-differential of the equation for obtaining the final liquid energy;
EQFINS3 calculates the G-differential of the equation for obtaining the final gas void fraction;

EQFIN4 calculates the G-differential of the equation for obtaining the final total non-

condensable mass fraction.

Prior to saving the components needed for solving the ASM-REL/TF, the subroutine ELINT-

VAR is called to eliminate the various derivatives of the intermediate variables

(ﬁg)n (ﬁf)i,(&g)“ ()N(n)i After the elimination of these derivatives, the remaining ASM-

o e
REL/TF matrix has at each time-step the maximal order of 7NV +2%NJ, where
NV represents the total number of system volumes and NJ represents the total number of
system junctions. Although this matrix is still large, it is sparse, so only the non-zero ele-
ments and their positions in the matrix need to be recorded. As will be discussed below, the
sparse-matrix solver chosen for solving the ASM-REL/TF requires that the sparse-matrix be
stored in the SLAP Triad Format™. This format is easy to generate and use; it requires stor-
age of three arrays containing following quantities: (a) the array A(i), 1=1,...,n, containing
the non-zero elements in the sparse matrix; here, n represents the total number of non-zero

elements in the respective sparse matrix; (b) the arrays (IA(i),JA(i)), containing the indices

that uniquely identify the position of the respective non-zero element in the original sparse

matrix. An example of using the SLAP Triad Format is shown below:

5X5 Matrix SLAP Triad Format for the 5X5 matrix shown on the left

(11 12 0 0 15]
21 22 0 0 O
0 0 33 0 35
0 0 0 4 O

51 0 53 0 55

1 2 3 4 5 6 7 8 9 10 11
A 51 12 11 33 15 53 55 22 35 44 21
A5 1 1 3 1 5 5 2 3 4 2
JAA1 2 1 3 5 3 5 2 5 4 1
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At the end of each successful time-step, the subroutine FORWRT saves the elements of the
ASM-REL/TF in a file called forsen. Optionally, the FSM can be solved in the subroutine

FWDSYS to verify the accuracy of the information calculated at each successful time-step.

When the RELAPS base-case calculation is completed, the subroutine ADJSEN is called to
solve the ASM-REL/TF, backwards in time. For this purpose, the information stored in the file
forsen is read backwards, starting with the last record. At each time step, the ASM-REL/TF is
solved by using the sparse-matrix solver DSLUGM™, which requires that all of the diagonal
elements be non-zero. If this requirement is not fulfilled by the matrix read off the forsen file,
the subroutine MC21A"" is called to find a row permutation that yields a zero-free diagonal.
The permutation of rows is then performed by calling the subroutine PERM. Optionally, the

resulting matrix could be subsequently balanced by calling the subroutine BAL'®.

The subroutine DSLUGM™ is an incomplete LU generalized minimum residual (GMRES)
iterative sparse-matrix solver; the incomplete LU factorization is used for preconditioning
non-symmetric linear systems. As input, DSLUGM requires the respective matrix in SLAP
Triad Format’ and the source of the system. Although the SLAP Triad format is easy to gen-
erate, it is not efficient to use on vector machines for computing iteratively the solution of a
linear system. This drawback is circumvented by changing from the SLAP Triad Format to
the SLAP Column Format™ in DSLUGM. In the SLAP Column Format, the non-zeros are
stored counting down columns (except for the diagonal entry, which must appear “first” in
each column). These values are stored in the array A, for each column, starting with the di-
agonal element. The IA array holds the row index for each non-zero. The JA array holds the
offsets into the IA and A arrays, for the beginning of each column. An example of the SLAP

Column format is shown below:

5X5 Matrix SLAP Column format for the 5X5 Matrix on left
11 12 0 0 15
1 2 3 4 5 6 7 8 9 10 11
21 22 0 0O O
A 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
0O 0 33 0 35
A1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
0O 0 0 44 0
JAA.1 4 6 | 8 9 | 12 | |
51 0 53 0 55
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At the end of the calculation using the DSLUGM subroutine, the resulting matrix is returned
in the SLAP Column Format.
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APPENDIX E: SENSITIVITIES OF FLUID ISOTHER-
MAL COEFFICIENT OF COMPRESSIBILITY

To illustrate the use of the symbolic computer language MAPLE V' for computing exactly
the sensitivities of the thermodynamic properties of water, this Appendix presents the ex-

pressions obtained using MAPLE V for the fluid isothermal coefficient of compressibility, k, .

The mathematical formula given in the ASME Steam Tables® for «, reads:

A AP
Allas(aZJ 2463

5 oP P, P’ Azoelg(% + 62) A21(a12 —9)[3 AR |V,
Ke=-—75 27 N -12 5 +6 +35 v
17 z ay +0 (a, +B)P, . 0P, |V,
T,
where f = 1, 6 =—L, and where
PC TC

Y=1-2,6"-2,0°, Yp=-2a,0+6a,0", Z=Y+,a,Y>-2a,0+2a,p.

The derivative of k, with respect to the fluid temperature T; has been obtained explicitly by

using MAPLE V®; it reads:
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0°Z
A aq 19 A, a;
GKf 110 1 5 A ax, | 0Z A,0 5 JT. 0P

+24 +—
289 Z39/17 17 222/17 an Tc (alo + B)S Pc 17 Z22/17
(2 AIS + 6A19B]
_11 P 216A20617( )+ ZIB 60 IA‘ZZE)2 _ Al3 _19 1A‘l6618
( +0" )ZT T,(a, +B) P, T.P, B TP, | T. (a7 +0" )2 T,
_|_2A14e 10 ( _8)9 _3A21|3 +11(Al7 +2AISB+32A19B2 k’lo _18A20817(a9 +82)
Tc Tc Tc (ag + 611 ) TC Tc

19 2
£_%+a“J—2A206 (— 3 - +a“]—20 éozzﬁ K, Ve ,
(alo + B) T, (alo + B) 07T, P, Vi

Similarly, the derivative of k, with respect to the fluid pressure P has also been obtained

explicitly by using MAPLE V, and it reads:

07z JZ 07z
p 110 A a ( j AllaSKf(j A ( 9) Aa ( j A
ﬁ_ _ 6P 5 aP 6 21 a12 - +i 6P 6 19

o | 289 z°" 17 z®m Pl 17 227 e, 40"
2% 6A19B
Ap0®(a, +07) A AB P P Ap0®(a, +02) A, (a,-0p
_ 0220”39 -6 2P 3 P ¢ _1p220Y + o2 \3n T
(alo +B)6Pcz 6*P; 6%P, a; +0" (alo +B)5 P, P,
VC
k)
\Z

The symbolic computer language MAPLE V has also been used to obtain explicitly the de-

rivatives of k, with respect to all of the numerical parameters that enter in its mathematical

formula. These derivatives are listed below:

C

ks S , K, )
dA, 17 72y, dA, V. U 9A, V. U 0A,, Vv,

V(Saz—ﬂ Zj
ok, 1 P 0K \Y 0K, —GVCK 0K, 9 V.,
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o, (-a,T,+T,)"V, oK, T’V ok, TV,
IA 5 T’ Ve U 0A (a7Tc19 +Tf19)V T0A, (asTc“ +Tf11)Vf h
oK, =2TC“(I+PKf) V., K, =3TC”(2+PKf)[3 Ve o
aAlS (aSTc“ + Tfll)PCVf v aAl‘) (218’Tc11 +Tfll) Pch v
0K
= 0" (a, T2 + T2V, (12P* ~ 3K, Pa,, - 3k, PP+ k,a,,a%,P’ +5k,a, 2’ P*P

20

+10x,a,,a%,P’P? +10k,a,,a%P2P* + 5k,a,,a,,P.P* + KfallPS)/(T

20
c

(aIOPc + P)S Vi )a

0K, 3 (~a, T +T,)V.A(2+Px,) ok, _ B>V (3+Pxk,)

IA,, TPV, T 0A,, 0PV, ’

a 2

M 5 AV, 22(8Zj 92 g SZ g iq e 2| [z,

0a, 289 dP )\ 0a, dPoa, 0a,

) V4 ?

Ke __ > AalV. 22(8J G2 gl T2y gl L 2] flzom,),

da, 289 dP )\ da, dPoa, da,

a 2

K2 ALaV 22(”) 92\ g Ly _yq| % e z| [z,

da, 289 0P )\ da, dPoa, 0a,

a 2

K2 ALaV 22(‘9Zj 92\ g Ly _yql L ke 2| flzom,),

da, 289 oP )\ da, dPoa, da,

0 A,V V4 2

e —85(8—)Z+110a5 92N 92 g5 |02 |74 289,70, 24 ||,
da;  289(z¥7V,) 9P 9P ) 9a, 9Pda, da,
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0K, =10A15(_ a I +T; )QVch oK, A16Tc38Vch

da, .V, Coda, (a0 +TOfV,

gk, TRV,[2AP, +6A,P+Kk,A P +2K,A PP +3K,A,P?)

92y (asTcH +Tf11)2 PV,

2

9 A0V
Ke o Do : (12P;‘ -3x,P’a,, - 3x,PP+x,a,a,P’ +5k,a,a},P'P+10x,a,a,,P P’
da, (alOPC +P) V;

2 p2p3 4 5
+10x,a,,a;,P;P" +5k;a,a,,P.P" +k;a, P ),

O, A0 T2 + T POV (54 a,P + P, )
0ay, T. (amPc + P)6 Vi

2

oK, Azoelg(ach2 +T] )VCKf oK _ _3A21[3Vc(—2+PKf)

da,, T2V, 0a,, PV,
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