
E�cient Speckle Filtering of SAR Images

Wilhelm Hagg, Manfred Sties

Karlsruhe University

EMail: hagg@ipf.bau-verm.uni-karlsruhe.de

sties@ipf.bau-verm.uni-karlsruhe.de

Abstract

In this paper a new promising method of speckle �ltering is des-

cribed and applied to both, synthetically generated and real SAR-

images. The new method, which we call EPOS (Edge Preserving

Optimized Speckle-�lter), is based upon the statistical properties of

speckle noise. The knowledge of speckle variance allows the distinc-

tion of homogeneous areas from those, containing edges or single

scattering targets. This discrimination method is used within a va-

riable sized �lter matrix to choose a region, which is suitable for

calculating an intensity average, that is typical for the center pixel.

Also a method for estimating speckle noise parameters is presen-

ted. This work is part of the project RADARMAP OF GERMA-

NY, where a land use map from the whole area of Germany in a

1:200000 scale is produced. This project is sponsored by DARA.

INTRODUCTION

In radar image analysis the presence of speckle noise, produced

by coherent illumination, will result in a high degree of misclassi-

�cation. Since speckle noise is signal dependent, the distortion of

the image increases with the intensity of the signal. To reduce the

speckle induced variance within an image, averaging of statistically

independent values is neccessary. This can be done by multilook

processing, where independent looks of the same area are averaged.

However, this procedure will result in a loss of spatial resolution,

since all images used for averaging must be obtained from the same

aperture.

A second way to reduce speckle is to average the values of neigh-

bouring pixels. The easiest way to do this is to average all intensities



within a given window around each pixel. This �lter will increase

the radiometric resolution, which is de�ned by the signal variance.

On the other side, the spatial resolution will decrease, since ed-

ges within the image get blurred. Therefore the requirement for

an edge preserving �lter is to reduce the variance while preserving

edges. The way to do this is to select those pixels from the neigh-

bourhood, that are suitable for calculating an intensity average

which is typical for the central pixel. Most speckle �lters di�er in

the way to choose this subset of pixels. Either they use a stati-

stic criterion for the determination of the subset, or they use the

subwindow with the smallest variance of intensities. For the EPOS

�lter we aim to use such a statistical criterion within subwindows

of di�erent spatial arrangement and size. We use the local statistic

of each subwindow to decide, which subwindows are homogeneous

and therefore suitable for calculating an intensity average. Subareas

which contains edges or single scattering targets are excluded from

the averaging region, and therefore edges will be preserved. The

advantage of this method is a better di�erentiation of the subset

choosed for averaging, since we have statistical information from

each subwindow. This better di�erentiation enables a strong con-

dition for selecting subwindows, so the original window size may

increase without a signi�cant loss of spatial resolution. The obtai-

ned large window size will result in a strong reduction of speckle

variance in SAR images.

STATISTICAL PROPERTIES

There are mainly two statistical properties of a SAR signal we

aim to use within our procedure. The �rst follows directly from

the multiplicative nature of speckle noise: The relative standard

deviationR = �

�
de�ned by the mean � and the standard deviation

� remains constant in homogeneous areas of the image. For linear

detection and N independent samples by multilook averaging we



get from [ULABY, 1982]

R =
�

�
=

0:523p
N

for the relative standard deviation.

The second property is the distribution of the signal received from

the radar sensor. From [ULABY, 1982] we know that the proba-

bility density function (PDF) is a chi-squared distribution using

square-law detection, and a Rayleigh distribution with linear de-

tection. If, for linear detection, the number of independent samples

increases, the Rayleigh distribution approximates a gaussian distri-

bution. Also the chi-squared distribution approximates a gaussian

distribution for a large number of samples, but the tendency to-

wards the gaussian distribution is slower than in the case of linear

detection. In [ULABY, 1982] a number of four samples for the li-

near detection and of ten samples for the square-law detection is

mentioned as su�cient for using the gaussian distribution. In prac-

tice this conditions are not always true. Nevertheless, we will use

the assumption of a gaussian distributed signal in further conside-

rations for simplicity.

From statistic books like [FISZ, 1962] we know, that the measure

of the variance �̂2 = 1

N

PN
i=1(xi � mx)

2 from a set of indepen-

dent values xi is a biased estimator of the variance, if the mean

mx = 1

N

PN
i=1

xi is calculated from the same set of values. To get

an unbiased estimator we have to calculate

�2 =
1

N � 1

NX

i=1

(xi �mx)
2:

For the remainder of this paper, all calculated variances are assu-

med to be of this kind.

Another well known property is the chi-squared distribution of

the sum of squares from a gaussian distributed variable. Given the

gaussian distributed variable z = xi�mx with mean 0 and variance

�2, the random variable S2 = 1

2N�1

P2N

i=1
z2 which is calculated

from a sample of 2N independent values xi is �
2

2N distributed



with 2N degrees of freedom. The parameter �2

�
of the distribution

is �2

�
= �

2

2N
and the probability density function is given by

p2N (x) =

8>><
>>:

x
N�1

2N�2N� �(N)
exp(� x

2�2�
); x � 0;

0; x < 0;

where �() is the gamma function. Since the mean mx is also cal-

culated from the sample, it is also gaussian distributed with mean

� and variance �
2

2N
. It is hard to determine exactly the distribution

of the squared relative standard deviation R̂2 = ( S

mx
)2, since we

have a sum over the squared quotient of two gaussian distributed

random variables. If we choose the number of elements within the

sample large enough, the variance of the mean mx becomes small

relative to the mean itself, and therefore we have approximate-

ly also the chi-squared distribution for the square of the relative

standard deviation.

THE EPOS ALGORITHM

The relative standard deviation R remains nearly constant in ho-

megeneous areas, while it increases in the presence of edges. Thus

the knowledge of R within an image allows us to determine homo-

genious areas without edges, texture or single scattering targets.

These areas are then used to calculate an average, that is typical

for each pixel within the area. One way to estimate the value of R

is described in the next section of this paper. The value of R can

be predicted for SAR images, but in most cases a resampling or

a geocoding process occurs before the �ltering, which results in a

change of the actual variance. Another reason for an actual estima-

tion of the variance is the fact, that in real SAR data neighbouring

pixels are not statistically independent. Therefore an estimation

from the image is required.

We know from the last section, that the squared relative stan-

dard deviation R2 is chi-square distributed. No we have to de�ne a

limiting value for R2 along this distribution. One way is to choose



that value as limit, where the probability of beeing less than the

value is an a priori given number. Thus, independent from the size

of a sample, we have the same probability of choosing a segment

within an homogenious area. Actually we choose those values xl
where

P (x < xl) =
1

2
;

which may be obtained from a table for di�erent degrees of free-

doms. The whole EPOS algorithm contains the following steps:

� Estimation of the relative standard deviation R from the

image.

� Calculation of the relative standard deviation R(f ) for all de-

grees f of freedom from the chi-squared distribution.

� Searching for the largest homogeneous area around each pixel.

� The area found is used for calculating the new greyvalue by

averaging.

Now, one of the focal points of the algorithm is the way to choose

the set of pixels for averaging. An increase of the number of ele-

ments within the sample will decrease the variance of the �ltered

image. Therefore we have to maximize the averaging area. On the

other hand we will �nd no homogeneous areas, if the structures

within the image are smaller than the a priori given size of the

�lter matrix, as it occurs in textured regions. To smooth the image

even if it contains small structures, we have to choose a smaller

window for the determination of homogeneous reagions. Therefore

we reduce the size of the analyzed window, if no homogeneous area

was found.

Thus the determination of the largest homogeneous area is done

as follows:

1. Start with a given matrix size m�m of the surrounding win-

dow. (We took m = 11.)



2. Divide the m�m window in 8 even sized, mutually exclusive

subwindows, restricted by 4 straight lines through the central

pixel, and add the central pixel to each segment.

3. Calculate the relative standard deviation Ri; i = (1; :::; 8)

for each segment. The sample contains all sements.

4. While the relative standard deviation of the sampleRs is grea-

ter than the estimated value R(f ) with the according number

f of elements within the sample, remove the segment with the

greatest Ri from the sample.

5. If no segment with Ri � R(f ) was found, reduze matrix size

by 2 and continue with step 2.

6. The remaining sample is the largest homogeneous area.

Using eight segments around each pixel, which are nearly indepen-

dent (with a common central pixel), the probability for �ltering in

homogeneous areas is P8 =
2
8
�1

28
= 0:996. The chance of �ltering

also increases by the use of di�erent window sizes.

PARAMETER ESTIMATION

Using the relative standard deviation as the criterion for a �lter

algorithm is based upon a estimation of noise parameters with

a high degree of accuracy. A new simple method of estimating

multiplicative noise parameters is described in this section.

The measure of the relative standard deviation of the image, by

calculating mean and variance from a number of pixels will result in

a loss of precision for the estimated value, since edges, texture and

single scattering targets will cause an increase of variance. It's hard

to �nd a limiting value between the measure of speckle variance

and the variance caused by edges. The estimated value, no matter

whether the median or the mean or what else is choosen to estimate

it, will be a more or less linear function of the arbitrarily choosen

limiting value. On the other hand, the estimated value will also be



a function of the number of values within each sample, since the

probability of covering an edge increases with the number of pixels

in the sample. Further, if neighbouring pixels are correlated, the

variance estimated will increase with the size of the sample.

To solve those problems we will analyze the probability den-

sity function f (R2) of the squared relative standard deviation

R2 = (�
�
)2. As we saw above, the variance �2 is known as chi-

square distributed, and if the sample is large enough, also R2 is

approximately chi-square distributed. The normalized and smoo-

thed histogram of R2 obtained from the image, now approximates

the chi-squared probability density function (�2 � PDF ), if the

image contains no information but only the noise. If the image

contains information, the PDF will be distorted. For each R2 of

the histogram, a given percentage of pixels will have an increase

of variance, and will therefore appear at a higher R2 within the

histogram. The percentage of shifted pixels for each R2 is given by

the degree of information contained in the image. Since the shift

direction of pixels is always from lower to higher R2, we have a

high degree of distortion for a high R2, while the density of a low

R2 is only decreased by the given percentage. Thus we can use the

histogram at lower values ofR2 to estimate the mean of R2, i.e. the

noise within the image. Since we dont know the a priori degree of

information within the image, there is no sense in approximating

the histogram directly by the �2 � PDF . However it is possible

to approximate the shape of the histogram. The whole estimation

algorithm is as follows:

� Calculate a histogram of R2 values from the image.

� Normalize and smooth the histogram.

� Approximate the shape of the histogram by the �2 � PDF

within the range 0 and that value, where the histogram reaches

halve of its maximum. A least square �tting may be used for

the approximation. To approximate the shape instead of the

histogram itself, multiplicate the �2 � PDF with the rate



of the sums of histogram- and �2 � PDF -values within the

approximated interval, so the sum within the interval is the

same for both.

� The mean of the approximated �2�PDF estimates the value

of R2.

� Take the median of all R2 values estimated from di�erent sized

samples, where sample size is approximately between 14 and

25.

Calculating the histogram of R2 we did a scale for the R2 values

in the way, that the maximum of the histogram is at a third of

the array holding the values. So the algorithm has a better adap-

tion to di�erent values of R2. Each calculated R2 is rounded up

and down to the next integer value available. Smoothing of the

histogram is very neccessary, since we are only interested in the

shape of the graph and not in di�erences between neighbouringR2

values. We did it easily by convolution with the main lobe of the
sin(x)

x
function choosing a rectangular window. The length of the

�lter we used is de�ned by a tenth of R2 at the maximum of the

histogram. The design of digital �lters is described for example in

[HAMMING, 1977].

The determination of an ingenious sample size has two aspects.

First the sample should not be to large, since the information con-

tained within the image will corrupt the estimation as mentioned

above. On the other hand, a small sample will result in the esti-

mation of a smaller standard deviation, if neighbouring pixels are

correlated. The approximation of the histogram by a �2�PDF is

also limited to samples that are not to small. From measurements

within images containing only gaussian noise, we derived a mini-

mum value of 14 pixels within a sample. All estimations with less

than 14 pixels sample size failed, while we had a stabilisation of

the estimated value for 14 and more pixels within one sample. To

make the estimation more reliable, we decide to choose the median

from the estimated values derived by using di�erent sized samples



between 14 and 25 pixels. So the largest sample of 25 pixels may

be calculated from a 5 by 5 window.

RESULTS AND DISCUSSION

To demonstrate the e�ciency of the �lter algorithm we have cho-

sed two images, one from the SAR-instrument of the ERS-1 sat-

telite, the other is a synthetically generated image. The originial

Figure 1: ERS-1 Original and EPOS-�ltered.

and the �ltered SAR image is shown in �gure 1. There is a high

decrease of variance within the homogenious areas while edges are

preserved. Figure 2 shows a synthetically generated image without

and with multiplicative noise added. The results of the synthetical-

Figure 2: Synthetically generated image.

ly generated image is shown in �gure 3 for the EPOS �lter on the

left and for the sigma �lter of [LEE, 1983] on the right side. With

the EPOS �lter the image is nearly fully restored. Edges dont get



blurred as with the sigma �lter, wich we applied twice to the image

using a 7� 7 matrix.

Figure 3: Filtered with EPOS and sigma.

The algorithm of noise estimation was applied to 7 di�erent syn-

thetically generated images, containing well known multiplicative

gaussian noise. The value of R2 of the synthetically added noise

was in the range of 0:005 to 0:03. The relative error of the esti-

mated values varies from 0:001 to 0:046, so we expect the error

in estimation to be less than �ve percent in most cases. Of course

its di�cult to give a general limiting value for the error, since the

estimation is not fully independent from the information contained

within the picture.
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