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mixed pixels, desert varnish etc. Figure 4 shows two minerals, which have been misclassified as
gipsum.
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Figure 4: Misclassified samples.

The first sample (bauxite) shows the influence of the insufficient SNR of the GER sensor within
the SWIR range, that eliminates the characteristic feature combination of this strata composed of
Fe-constituents and kaolinite. Mixed pixels and mixtures of minerals are the reason for the misclas-

sification of the second sample (kaolinite) [Geerken, 1992]. Mineral mixtures will be added to the
spectral library in future.

8 CONCLUSION

This paper presents a method to identify minerals in hyperspectral data sets. The use of Neural
Network Classifiers for detecting minerals based on a spectral library is explained. Further research
will consider mixtures of minerals and more characteristic features than only absorption features

to improve the accuracy of the image classification. The quality of diagnostic analysis of GER data
is still limited due to insufficient SNR/s.
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sed minerals for the classification within the VNIR/SWIR bohnezite and goethite were used. Three
neutral classes were generated and used for each classification step.

Two MLP-Networks have been designed. The first Network (SWIR) was composed of 23-10-14
neurons and the second (VNIR/SWIR) of 52-15-16 neurons. The Networks were trained with 2000
epochs, while the sensorspecific signature of each mineral was continuously changed. During several
learning simulations the online-method was superior to the offline-methods.

7 RESULTS

To test the efficiency of the Networks, all training patterns were reclassified. The average accu-

racy for a correct class decision has been 92% for the SWIR-Network and 88% for the VNIR/SWIR-
Network, although several minerals show a quite similar spectral behavior.

About 25% of the image’s pixel have been classified. All other pixels show no specific geological
characteristics and have been assigned to a neutral class. Several samples have been analysed to
proof the decisions of the Networks. In all cases the Networks assigned the most matching signature

from the spectral library based on the extracted features. Figure 3 shows the spectra of several
classes and their corresponding spectra of the database.
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Figure 3: Spectrum of samples and best class decisions.

Although the NN provides a good classification technique for hyperspectral data, the results do
not always correspond with reality. Misclassification is caused by masking or changing characteristic
signature due to sensor characteristics and/or due to physical effects such as mineral mixtures,



5 TEST-SITES AND INSTRUMENTATION

The Makhtesh Ramon an anticline structure is located in the Negev, in Israel, about 70 km SSW
of the Dead Sea. In it’s extension it is 40km long and has a varying width of 6 to 9 km. The M. Ra-
mon is a deeply eroded anticlinal structure characterized by a high variety of Mesozoic formations.
The test area shows several mining localities for gypsum, kaolinite and bauxite, and is marked by a
syenitic stock separated in several blocks of different hydrothermally altered zones ([Mazor, 1984]).
Data of this area were acquired during the European Imaging Spectroscopy Airborne Campaign
(EISAC) in July 1989. The instrument used, was a GER-II (Geophysical Environmental Research)
electromechanical scanner providing 63 channels in three modules ([Collins a. Chang, 1982]).

GER covers the VIS/NIR and SWIR range namely VNIR, SWIR-1 and SWIR-2 with a no-
minal spectral resolution of 12.37nm, 120nm and 16.22nm respectively. Data are recorded with a
radiometric resolution of 16 bits. The IFOV of 3.3mrad results in a spatial resolution of 13.44m at
a flight altitude of 15000 feet.

Dark current and giro correction was applied to the raw data. Geometric distortions in scan-
direction were corrected using a simple cosine function. Radiometric correction was applied using
the flat field method. 16 to 8 bit data conversation was performed by cutting the histograms at the
0.2bit frame ([Kaufmann et. al., 1990]).

6 CLASSIFICATION

Several problems demand a complex classification scheme. Due to the fact that the used signal
to noise ratios are not true for a single pixel an unsupervised classification based on a minimum
distance classifier was applied selecting pixels in the neighbourhood of a central pixel which are
spectrally similar. It is assumed that the used SNR’s are valid for the mean spectrum of these pixel
groups. Furthermore more precise spectral details are present in the mean spectra. The second
problem results from the spectral behaviour of the minerals. While spectral features are relatively
constant within the SWIR-range [2000 — 2400nm/], features within the VNIR-range [400 — 800nm)]
based on iron absorption bands are very variable in nature. This is not yet considered in the used
spectral library. Thus, classification is performed in two steps. In the first step only information of
the SWIR-range is used. All unclassified pixels are reclassified in the second step using additional
information of the VNIR-range. A more simple classification scheme could be used by the direct
use of image data as learning patterns. However this would require very precise knowledge of the
geology of the investigated area.

Another problem arises from the use of the MLP-Network. One characteristic of the MLP is,
that the approximation of the classification function is based on a seperation of the feature space
via hyperplanes and not on local receptive fields, like the Radialbasisfunctions Networks (RBFN)
[Lee a. Kil, 1991] do. To force the network to a more precise description of the classes, several
neutral classes with no specific spectral behavior are generated and added to the learning process.
This will be unnecessary when using an RBFN in future.

Following minerals were used for the classification within the SWIR range: alunite, muscovite,
bauxite, kaolonite, illite, gipsum, magnesite, hematite, dolomite and calcite. As additional iron ba-



4 INPUT DATA (SPECTRAL LIBRARY)

Diagnostic analysis of hyperspectral data is mainly based on the existence of characteristic
absorption features. The position and shape of the minima can be used to distinguish between
a number of e.g. minerals in arid areas. Spectral features, evidenced by bands or changes in the
slope of spectral curves, appear as a result of either electronic or vibrational processes. The visible
(0.4- 0.75m) and near infrared (0.7-1.15m) range is characteristic of spectral features introduced
by transition elements. The most important transition element for terrestrial remote sensing is by
far the iron in the bi- and trivalent state. Iron produces electronic features that are mainly caused
by charge transfer bands and crystal field transitions ([Hunt et. al., 1971]). They are rather broad,
and their minima vary in dependence of the mineral species.

The short-wave infrared range between 1.1 and 2.55m is of considerable interest, because it pro-
vides more diagnostic spectral information about the composition of minerals and rocks than the
VIS and NIR range. Phyllosilicates, carbonates and some sulphates show strong, relatively sharp
and distinct absorption features in this section of the spectrum. These absorptions are due to vibra-
tional processes (overtones and combination tones of the fundamental modes occurring in the mid-
infrared) of anion groups and molecules such as OH~, CO3~ and H,O ([Hunt a. Salishury, 1970]
[Hunt a. Salisbury, 1971]). Atomic groups form independent oscillatory units like AlI-OH, Mg—OH
and COs. Minerals containing either of these groups show characteristic frequencies whose posi-
tions are determined by neighbouring molecules. Minerals containing Al-OH—or Mg—OH groups
produce features around 2200nm and 2300nm respectively. Absorption bands within one group
are located closely together. Thus, to be able to separate and identify the mineral species a high
spectral resolution at sufficient signal to noise ratio is needed.

To normalize for the broad shape of the measured spectra and to focus on the absorption
features, hull-functions (Figure 2) of the spectra are calculated, and information of the distances
between the spectrum and its hull extracted. This values are scaled to a range between [0,1], since
sigmoid output functions are used in the NN. In this way each band of the sensor is adjusted to an
input node.
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Figure 2: Spectrum of calcit with hull-function.



sensor systems. On the other hand using the parameters of an existing sensor system the NN can
be used to classify an image which is the subject of this paper.

3 NEURAL NETWORKS

At the current point of development, Neural Networks have still less in common with their origi-
nal biological model, but are similar to statistical techniques, like generalized linear models, discri-
minant analysis, principle componets etc. ([Sarle, 1994]). This is especially valid for the Multilayer-
Perceptron (MLP), a feedforward network, which is used in NESSI. Hornik([Hornik, 1989]) has

shown, that a MLP with one hidden layer can be compared as a universal function approximator.

The MLP shows a very simple structure. Every node of the current layer is connected to every
node of the following layer. The number of input nodes depends on the number of possible features,
given by the sensor definition. The number of output nodes is equal to the number of classes to be
classified. The number of the hidden nodes however has to be chosen dynamically according to the
given problem. There exists no rule of thumb.

The signal transformation in a network is characterized by a synaptic summation (1) of each
neuron: the summation of the input signal z and the neuron’s weight array w, in combination with
a nonlinear transformation function g(z), for example a sigmoid function (2) and a bias term b.

input

y(z) = g( Z_: wjz; —b) (1)

B 1
T lte

9(2) (2)

During the supervised learning phase the weights are dynamically changed to approxima-
te the unknown classification function. This is done by a minimisation of an error-function. In
the last years an enormous number of various techniques has been described and compared (e.g.
[Jervis a. Fitzgerald, 1993]) to improve the convergence of this procedure. They all have in com-
mon a special assumption about the unknown surface of the error-function. The success of a
technique therefore mainly depends on the conformity to the real problem. So three different
methods have been implemented. Beside the traditional backpropagation algorithm with momen-
tum term ([Rummelhart, Hinton a. Williams, 1986]), as an online version, we have also implemen-
ted the Scaled Conjugate Gradient Algorithmus ([Moeller, 1993]) and the RPROP algorithmus
([Riedmiller a. Braun, 1993]), as offline versions. One important advantage of the last two techni-
ques is, that they didn’t need any user specified parameter. Online training means, that the weights
are changed after every training pattern, in opposite to the offline version, where the weights are
changed only after each training epoch.



therefore prefer or disqualify a certain method.

In the case of classifying hyperspectral data with a linked spectra library a huge amount of example
data and variable sensor characteristics are required and postulates the use of the Neural Network
technique.

2 NESSI

A software for Neural Evaluation of Spectral Signatures (NESSI) was developed for this purpose.
It consists of three components (see Figure 1):

e a linked spectral library
e a sensor description database

o the Neural Network (NN) itself.

Image Classification Neural Network - Analysis 3

Feature Extraction

Sensorspecific Signatures

T

Spectral Database Sensor Description

Figure 1: Global scheme of NESSI.

Standard minerals have been measured spectrally in the range of 400 to 2500nm using a Perkin-
Elmer-Laboratory-Spectrometer with a resolution of 1 nm. The spectra were used to built up a
library which is linked to NESSI. A second database containing sensor specific information such
as number of bands , band centers, bandwidths and mean SNR’s of bands is used for describing
the sensor characteristics. The third component is the classification unit performed by a Neural
Network. Sensor specific signatures are generated calculating the reflectance means within the bands
as well as folding the spectra with gaussian or random noise defined by the mean SNR’s. A feature
extraction tool using a segmentary hull function is used to feed the NN with training patterns. A
well trained NN gives the opportunity to analyze the results due to the used inputs such as class
separation in dependence of sensor improvements. Thus, it can also be a valuable tool for defining
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ABSTRACT

The advantage of hyperspectral data sets with its ability for diagnostic analysis
is widely recognized in different fields of application. Real time spectra extraction
in combination with high spatial information can significantly improve the
accuracy of mineral identification.

Insufficient signal to noise ratios as well as mixed pixel/signatures decrease the
accuracy to diagnostic mineral identification. Thus, it is often difficult to link
extracted spectral signatures to distinct minerals.

In this context a software for Neural Evaluation of Spectral Signatures (NESSI)
was developed. The advantage of the neural network technique in combination
with spectral libraries has been proven by noise folded spectra of well defined
mineral mixtures. The technique was then applied to natural rock types and
GERIS hyperspectral image data of the Maktesh Ramon test-site located in
Israel.

The network guaranteed a relative precise identification of the most matching
signature. The average accuracy for a correct class decision was 92% within the
SWIR-network and 88% within the VNIR/SWIR-network. About 25% of the
image could be assigned to minerals of the spectral library. Misclassifications
can mostly be traced to the poor SNR of the GER data and the missing of
mineral mixtures in the spectral library.

1 INTRODUCTION

Various techniques, like Statistical Methods, Fuzzy Logic, Evidence Based Methods, Semantic
Networks or Neural Networks have been successfully applied analyzing and classifying remotely
sensed data. The question which technique is the most suitable for a certain application depends
on the problem itself. Requirements, assumptions and objective demand a special proceeding and



