
499CONTRIBUTIONS TO COMPUTER ARITHMETIC and Self-Validating numerical methods
C. Ullrich (editor)
J.C. Baltzer AG, Scienti�c Publishing Co. c
 IMACS, 1990
pp. 467-482

THE EFFECTS OF THE ARITHMETIC OF VECTOR

COMPUTERS ON BASIC NUMERICAL METHODS

D. RATZ

Institut f�ur Angewandte Mathematik, Universit�at Karlsruhe, Kaiserstr. 12, D-7500 Karlsruhe 1

Germany

Abstract

A collection of examples is presented which demonstrates the e�ects of the arithmetic of

vector computers on basic numerical methods. It is shown that the results of numerical

algorithms which make use of the additional arithmetic operations in vector mode di�er

from the results computed in scalar mode.

1 Introduction

Today, in a continuous e�ort to increase the processing speed of numerical software,
more and more programs are transferred from general purpose computers to vector
computers where fast and extremely pipelined arithmetical operations can be used.

The main problem with these additional elementary operations is that they do
not comply with any arithmetical standard. Depending on the di�erences between
scalar mode and vector mode computations even for basic operations (shown in [3])
no conclusion can be drawn concerning the accuracy of the computed results, and,
with an algorithm being processed in vector mode, the user may lose control of the

executed computations. Nevertheless, there are some books about numerics and

scienti�c computing on vector computers which only use the MFLOPS-rates as a
test criterion for algorithms (see [8] for example).

The main e�ort in using vector computers is to run an implemented algorithm
as fast as possible. So the programs transferred from general purpose computers to

vector computers have to be tuned via vectorization directives to make extensive
use of the additional arithmetic vector operations such as accumulate or multiply

and accumulate [1]. But these additional operations do not work in the way the
corresponding DO loops would do in scalar mode. So, even elementary numerical

methods may produce di�erent results in vector mode and in scalar mode.

In our tests we studied these e�ects on dot products, extrapolation, polynomial
evaluation, systems of linear equations, vector iterations, Newton's method, systems

of nonlinear equations etc.

500 D. Ratz/The E�ects of the Arithmetic of Vector Computers

As a matter of principle, source code, input data, and starting values have been

exactly the same for the computations in scalar mode and in vector mode (see [3]

for details). In our programs we used two kinds of test data:

� specially constructed (sometimes ill-conditioned) vectors and matrices, for

example Sn;m-vectors, S0n;m-vectors, Boothroyd/Dekker-matrices, Hilbert-

matrices, HRC-matrices

� random data, using random number functions (NAG, CFT77) or generating

"wild" input data by evaluating some arithmetic expressions

In the following sections we will have a look on some of the examples we tested on

the vector computers

� SIEMENS/Fujitsu VP 400-EX

� CRAY-2

� CONVEX C120.

For details about operating system, hardware architecture, used number screen, etc.
see the tables in [3].

In some cases of the tests it was possible to compare the computed results of
scalar and vector mode with the exact results which were obvious or with the veri�ed
inclusions computed with ACRITH [4]. The latter was only used to check the results
of the VP 400 because ACRITH is not available on machines with the number screens
used on the CRAY and on the CONVEX.

2 Notations

In the following sections S = S(b; l; emin; emax) denotes the used number screen,
where b is the base of the
oating-point system, l the length of the mantissa, emin

the minimum exponent and emax the maximum exponent.

The test vectors mentioned above are de�ned in the following way:

De�nition 1: Let C 2 S. The vector s 2 Sn+m+2 with

s = (C ; 1 ; �1 ; : : : ; 1 ; �1| {z }
n components

; �C; 1 ; 1 ; : : : ; 1| {z }
m components

)T

we call Sn;m-vector.

De�nition 2: Let C 2 S. The vector s0 2 Sn+m+2 with

s0 = (C ; 1 ; 1 ; : : : ; 1 ; 1� n| {z }
n components

;�C; 1 ; 1 ; : : : ; 1| {z }
m components

)T

we call S0n;m-vector.

D. Ratz/The E�ects of the Arithmetic of Vector Computers 501

It holds:

n+m+2X
i=1

si =
n+m+2X
i=1

s0i = m

3 Scalar Products

A fundamental algorithm in regard to basic numerical methods is the one for the

computation of the scalar product (dot product) of two vectors v;w 2 Sn by

v � w =
nX
i=1

vi � wi :

The computation of this formula can be made very fast on a vector computer, but

the following examples will show that we have to be very careful in using dot product

DO loops in vector mode.

Example 3.1

In the �rst example we tested the computation of dot products using S0n;m-vectors.
We computed

Pn;m :=

0
BBBBBBBBBBBBBBBBB@

C

1
...
1

1� n

�C
1
...

1

1
CCCCCCCCCCCCCCCCCA

�

0
BBBBBBBBBBBBBBBBB@

D

1
...
1
1
D

1
...

1

1
CCCCCCCCCCCCCCCCCA

;

9>>>=
>>>;

n components

9>=
>; m components

so obviously the exact value of the dot product Pn;m is m. In the following tables
an examplary part of the results we got on the VP 400-EX, on the CRAY-2, and on

the CONVEX C120 is listed.

Results: VP 400-EX (C = 167, D = 168)

Product Scalar Mode Vector Mode

P0;10 10 10

P2;8 8 4
P4;6 6 0

P6;4 4 0

P8;2 2 8

P10;0 0 4

502 D. Ratz/The E�ects of the Arithmetic of Vector Computers

For greater exponents of C and D the results on the VP 400 are the same as

those listed in the table above. On the CRAY-2 we noticed a di�erent behaviour.

Depending on the exponents of C and D the vector mode yielded the exact results

(for small exponents) or wrong results. For large exponents the CRAY-2 results in

vector mode are constantly 0.

Results: CRAY-2 (C = 166, D = 166)

Product Scalar Mode Vector Mode

P0;10 10 13.99: : :9

P2;8 8 11.99: : :9

Results: CRAY-2 (C = 166, D = 167)

Product Scalar Mode Vector Mode

P4;6 6 0

P6;4 4 0
P8;2 2 0

The e�ects on the CONVEX are very similar to those on the CRAY, but there is
no exponent range where the results are as strange as those in the �rst table of the

CRAY-2.

Results: CONVEX C120 (C = 167, D = 167)

Product Scalar Mode Vector Mode

P0;10 10 0
P2;8 8 0
P8;2 {6 {8

It has to be emphasized that the range of the used input data covers only a very

small part of the allowed number range. So the errors of the presented vector mode
results could not be excused due to large exponent ranges.

We made a special experience with the CRAY-2 concerning the bounds of the
DO loops. The results in vector mode computed with �xed DO loop bounds di�er

from the results computed with variables as DO loop bounds. The reason for this is

that the CFT77 compiler [2] on the CRAY-2 recognizes so-called short loops, i. e.

DO loops which are to be executed at least once and at most 64 times.

In such cases the compiler generates special code. For this reason it is not
irrelevant to the computed results what kind of DO loop bounds are used.

Example 3.2

In this second example concerning dot products we generated "wild" data for the

used vectors by evaluating some arithmetical expressions. Then we used those two
vectors x and y as input data for the scalar mode evaluation as well as for the vector

mode evaluation of the dot product P = x � y, with x and y de�ned by

D. Ratz/The E�ects of the Arithmetic of Vector Computers 503

x =

0
BBBBBBBBBBBBBBBBBBBBB@

0:140445440000000000E+10

�0:819377966713735131E�05

�0:258123638852471902E�04

0:351113600000000000E+09

0:231498901015390023E�01

0:171760842031043567E+00

0:200636342857142854E+09

�0:570377732683359966E+02

�0:852656035829167934E+03

0:140445440000000000E+09

0:799350588825554769E+04

�0:129982276418151855E+10

1
CCCCCCCCCCCCCCCCCCCCCA

; y =

0
BBBBBBBBBBBBBBBBBBBBB@

�0:379611791241210937E+09

0:328135475199999988E+09

�0:164067737600000000E+10

�0:181776074907448264E�02

0:410169344000000000E+09

�0:820338688000000000E+09

0:104345990084875078E+02

0:546892458666666627E+09

�0:546892458666666627E+09

�0:498019822870722965E+05

0:820338688000000000E+09

�0:410169344000000000E+09

1
CCCCCCCCCCCCCCCCCCCCCA

To compare the results computed on the VP 400 in scalar and vector mode with a

veri�ed inclusion we used ACRITH on the IBM4381.

Results:

VP 400-EX (Scalar Mode): 0:640000000000000000E+02

VP 400-EX (Vector Mode): �0:199133434295654297E+02
IBM4381 (ACRITH): 0:4254811937828514 88

34E�03

The result computed with ACRITH shows that the scalar mode as well as the
vector mode evaluation deliver a wrong value for P . Moreover, the two results of
the VP 400 are totally di�erent.

Example 3.3

As a last example, we will have a look on dot products Pi = x(i) � y(i); i = 1; 2 with

x(1) =

0
BBBBBBBB@

27182818280
�31415926540
14142135620
5772156649

0

3010299957

1
CCCCCCCCA
; y(1) =

0
BBBBBBBB@

14862497000000
8783669879000000
�223749200000

47737146470000000
0

1850490

1
CCCCCCCCA

x2 =

0
BBBBBBBB@

5772156649
3010299957

0
27182818280

�31415926540
14142135620

1
CCCCCCCCA
; y2 =

0
BBBBBBBB@

47737146470000000
1850490

0

14862497000000
8783669879000000

�223749200000

1
CCCCCCCCA
:

We took these dot products from [7] using some modi�cations:

� an additional vector component with value 0

� all components integers and therefore screen numbers

504 D. Ratz/The E�ects of the Arithmetic of Vector Computers

� interchanged vector components

We computed the dot products on the VP 400-EX and on the CRAY-2 in scalar

and vector mode and on the IBM4381 with ACRITH.

Results:

P1

VP 400-EX (Scalar Mode): 0.462915718600000000E+10

VP 400-EX (Vector Mode): 0.334189890000000000E+09

CRAY-2 (Scalar Mode): {0.179496213989999999E+13

CRAY-2 (Vector Mode): {0.110380659507200000E+13

IBM4381 (ACRITH): {0.100657107000000000E+10

P2

VP 400-EX (Scalar Mode): {0.115474432000000000E+10

VP 400-EX (Vector Mode): 0.000000000000000000E+00
CRAY-2 (Scalar Mode): {0.170625964441600000E+13
CRAY-2 (Vector Mode): {0.110380659507200000E+13

IBM4381 (ACRITH): {0.100657107000000000E+10

As expected the results of the scalar mode evaluation on the VP 400 and on the
CRAY-2 are wrong. Moreover, the results of vector mode evaluation di�er from the
scalar results. For P2 the unexpected result computed by the VP 400 even is 0.

Considering the results of the CRAY-2 we notice that the results computed in

vector mode do not depend on the special order of the vector components. So the
result is the same for all tested orders of the vector components.

4 Extrapolation

In this section we will have a look on a very simple method for linear extrapolation
of three given pairs of values (x1; y1), (x2; y2) and (x3; y3) �tting on a line. A best

linear approximation for y(x) is L(x) = mx+ b where m and b must be computed

via the formulas

m =
x1y1 + x2y2 + x3y3 �

1
3
(x1 + x2 + x3)(y1 + y2 + y3)

x21 + x22 + x23 �
1
3
(x1 + x2 + x3)2

;

and

b =
1

3
(y1 + y2 + y3)�

m

3
(x1 + x2 + x3):

Obviously, the numerator as well as the denominater of the expression m can be

evaluated via a dot product. That was the way we did it in our test series on the

VP 400 in which we proceeded in three steps:

1. Computation of L(x) using REAL arithmetic

D. Ratz/The E�ects of the Arithmetic of Vector Computers 505

2. Computation of L(x) using DOUBLE PRECISION arithmetic

3. Computation of L(x) using DOUBLE PRECISION arithmetic avoiding the

division by 3 in the formula for m.

In step 1 and 2 we computed m via

m =
a � b

a � c

with

a =

�
x1; x2; x3;�

x1

3
;�

x1

3
;�

x1

3
;�

x2

3
;�

x2

3
;�

x2

3
;�

x3

3
;�

x3

3
;�

x3

3

�
;

b = (y1; y2; y3; y1; y2; y3; y1; y2; y3; y1; y2; y3) ; and

c = (x1; x2; x3; x1; x2; x3; x1; x2; x3; x1; x2; x3) :

The vectors a, b, and c served as input data for the scalar mode as well as for the
vector mode. Caused by the divison by three in the vector components of a the dot
product has to handle with "full" mantissas. In step 3 we avoided this division and

we used the vector

a = (3x1; 3x2; 3x3;�x1;�x1;�x1;�x2;�x2;�x2;�x3;�x3;�x3) :

So, in the case of integer data for the xi and the yi, the algorithm has to handle
only "short" mantissas.

Example 4.1

As a �rst example we computed L(x) = mx+ b with given

xi 5201477 5201478 5201479

yi 99999 100000 100001
; x = 5201480:

This example we took from [6].

Results: VP 400-EX

Step / Mode m b L(x)

1 / Scalar 0.0221354142 {15136.812 100000.06
1 / Vector 0.0192254297 {0.625 100000.06

2 / Scalar 1.0020718654 {5112254.7625 100002.00414
2 / Vector 0.9981115984 {5091655.5208 100001.99622

3 / Scalar 1.0 {5101478.0 100002.0

3 / Vector 1.0 {5101478.0 100002.0

Astonishingly, the computed values for L(x) in step 1 happened to be the same for

the scalar mode and the vector mode although the values of m and b totally di�ered.

In step 2 the results got better, but there was still a di�erence between scalar mode

and vector mode. Only in step 3 the right results could be calculated.

506 D. Ratz/The E�ects of the Arithmetic of Vector Computers

Example 4.2

In this second example we computed L(x) = mx+ b with some other given pairs of

values

xi 5789134 5789146 5789158

yi 56789 113578 170367
; x = 5789170:

The results presented below demonstrate the same e�ects.

Results: VP 400-EX

Step / Mode m b L(x)

1 / Scalar 0.00520833209 +83426.25 113578.12

1 / Vector 0.09809404610 {454302.0 113581.06

2 / Scalar 4732.69750284 {27398163239.76 227162.74007

2 / Vector 4732.28829561 {27395794279.36 227152.91909
3 / Scalar 4732.41666666 {27396537438.17 227156.00001
3 / Vector 4732.41666666 {27396537438.17 227156.00001

5 Polynomial Evaluation

Usually the evaluation of a polynomial

p(x) = anx
n + � � �+ a1x+ a0

is done via Horner's scheme. This leads to a linear �rst order recurrence for which
a vectorization is only possible with the help of an expansion method like recursive

doubling or cyclic reduction.

The price to pay for the vectorization is that there are additional operations to
be executed. Therefore, the operation count for the scalar coding is O(n) while the
vectorized coding has an operation count of O(n log2 n) using recursive doubling (see

[8] for details).

Another very simple and fast method to evaluate a polynomial is to compute
p(x) = a � vx, the dot product of

a =

0
BBBBBBB@

an
an�1
...

a1
a0

1
CCCCCCCA

and vx =

0
BBBBBBB@

xn

xn�1

...
x

1

1
CCCCCCCA
:

In the following example we will compare the results of this method in scalar mode

and vector mode with the results of vectorized Horner's scheme and of ACRITH.

Furthermore, we will have a look on a very special e�ect of the VP 400-EX

concerning the di�erence between the results in scalar mode and vector mode.

D. Ratz/The E�ects of the Arithmetic of Vector Computers 507

Example 5.1

We computed

p(x) =
nX
i=0

ai � x
i

with the coe�cients

ai =

8><
>:
�167 for i = 8

164 for i = 11

16�i for i 6= 8; 11

9>=
>; i = 0; 1; : : : ; n

by a dot product in scalar mode and vector mode, with (vectorized) Horner's scheme,
and with DPEVAL (ACRITH), a routine for the exact evaluation of polynomials.

Results: VP 400-EX (xj = 16 + j � 16�7, pj = p(xj))

j pj (scalar) pj (vector) pj (Horner) pj (ACRITH)

{6 {4831838152 {4831838140 {4831838162.0 {4831838139.25
{5 {4026531800 {4026531788 {4026531810.5 {4026531789.81
{4 {3221225448 {3221225436 {3221225456.0 {3221225437.00

{3 {2415919096 {2415919084 {2415919098.5 {2415919080.81
{2 {1610612728 {1610612716 {1610612738.0 {1610612721.25
{1 {805306360 {805306348 {805306374.5 {805306358.31
0 8 4 8.0 8.00
1 805306376 805306372 805306377.5 805306377.68

2 1610612744 1610612740 1610612750.0 1610612750.75
3 2415919112 2415919108 2415919125.5 2415919127.18
4 3221225480 3221225476 3221225504.0 3221225507.00

For all evaluation points xj the values of pj computed in scalar and vector mode

di�er from each other as well as from the value computed with Horner's scheme and
the exact value delivered by ACRITH. At most cases the results of Horner are worse
than the dot product results.

Comparing the listed results of the table above, the attentive reader may notice

a very strange behaviour of the di�erence between scalar mode and vector mode

which is constantly �12 for the negative values of pj and 4 for the negative values.

Using smaller and larger steps for the values of xj we examined this e�ect more
precisely. In the following picture this "special e�ect" concerning the di�erence

between scalar mode and vector mode evaluation is demonstrated.

508 D. Ratz/The E�ects of the Arithmetic of Vector Computers

Ps(x) and Pv(x) denote the value computed in scalar mode and in vector mode,
respectively. The graph shows Ps(x)-Pv(x) being constant in special areas of x and
switching from positive values, to negative values, back to positive values, and to

zero. So, according to this unexpected and unexplainable behaviour, there was no
possibility to predict the vector mode results being greater than or lower than the
results of scalar mode.

6 Systems of Linear Equations

In our test series concerning systems of linear equations Ax = b with x; b 2 Sn and

A 2 Sn�n we used several methods.

Method 1: Computation of R � A�1 with an arbitrary inversion routine and then
computation of x = R � b.

Method 2: Solving Ax = b using the Gaussian elimination method

Method 3: Solving Ax = b using the Gaussian elimination method with partial

pivot selection.

Method 4: Solving Ax = b using the Gaussian elimination method with complete

pivot selection.

D. Ratz/The E�ects of the Arithmetic of Vector Computers 509

In method 1 we made no requirements on the accuracy of the used inversion routine.

The inverse R was computed only once and then used as input data for the scalar

mode and vector mode multiplication with the vector b.

We tested these four methods with Boothroyd/Dekker matrices, Hilbert ma-

trices, HRC matrices (self-designed), HRC0 matrices (self-designed), and random

matrices.

Example 6.1

Our �rst example delt with method one, so we computed x = R � b with R � A�1

delivered by a Gauss-Jordan method where A is a 12 � 12 HRC0 matrix with the

following structure

0
BBBBBBBBBBBBBBBBBB@

� 17

60C
�17C+77

60C

77

120C

77C�43

120C

1

4C

C�3

4C

1

6C

C�5

6C

1

8C

C�7

8C

1

10C

C�9

10C

0 1 0 0 0 0 0 0 0 0 0 0
1 C + 1 �1 �(C + 1) 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
1

2

C+1

2
�1

4
�C+1

4
�1

4
�C+1

4
0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0
1

3

C+1

3
�1

6
�C+1

6
0 0 �1

6
�C+1

6
0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0
1

4

C+1

4
�1

8
�C+1

8
0 0 0 0 �1

8
�C+1

8
0 0

0 0 0 0 0 0 0 0 0 1 0 0
1

5

C+1

5
� 1

10
�C+1

10
0 0 0 0 0 0 � 1

10
�C+1

10

0 0 0 0 0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCCCCCA

and b 2 S12 with bi = 1; i = 1; : : : ; 12.

Results: VP 400-EX (C = 1615)

x (Scalar Mode) x (Vector Mode)

0.268436029600708008E+09 0.268436029600706100E+09
0.999999999767169204E+00 0.999999999767169329E+00
-0.656728087816238403E+05 -0.656588087987899780E+05
0.999999999999999958E+00 0.999999999999999889E+00

-0.107935622215270996E+03 -0.800000000000000000E+02

0.100000000000000000E+01 0.100000000000000000E+01

0.225999990463256836E+03 0.256000000000000000E+03
0.100000000000000000E+01 0.100000000000000000E+01

-0.126999999046325684E+03 -0.962659921646118164E+02

0.100000000000000000E+01 0.100000000000000000E+01

0.256000000000000000E+03 0.581210824966430644E+03
0.100000000000000000E+01 0.100000000000000000E+01

With the exception of the vector components with the value 1 all components of x

di�er. In the worst cases not even one digit of the corresponding components is the

same in scalar mode and vector mode.

510 D. Ratz/The E�ects of the Arithmetic of Vector Computers

Example 6.2

Using the three di�erent Gaussian eliminationmethods (methods 2 - 4) we computed

the solution x of Ax = b where b 2 Sn with bi = 1; i = 1; : : : ; n and A is an n � n

Boothroyd/Dekker matrix, random matrix, Hilbert matrix or a HRC matrix. The

latter we de�ned by

A =

0
BBBBBBBBBBBBBBBBBB@

1

2C
�C�1

2C
0 � 1

C
0 � 1

C
0 � 1

C
0 � 1

C

1

2C

C�1

2C

0 1 0 0 0 0 0 0 0 0 0 0
1

2

C+1

2
�1

2
�C+1

2
0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 1

2

C+1

2
�1

2
�C+1

2
0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 1

2

C+1

2
�1

2
�C+1

2
0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1

2

C+1

2
�1

2
�C+1

2
0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1

2

C+1

2
�1

2
�C+1

2

0 0 0 0 0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCCCCCA

for n = 12.
After solving the systems of linear equations we compared the solutions delivered

by scalar mode and by vector mode. In the following table we present the results

for method 3 only, due to the fact that the results of the other methods are very
similar. For each tested matrix the maximumnumber of di�ering hexadecimal digits
is listed. The index of the HRC matrices represents the exponent P of C = 16P

used to build up the matrix.

Results: (With Partial Pivot Selection)

Matrix VP 400-EX CRAY-2 CONVEX C120

HRC15 all - -
HRC14 0 0 -

HRC13 - all -
HRC12 - 0 -
B/D 7 4 0

Hilbert 5 7 -
Random 4 3 -

A user who is familiar with numerical problems in solving systems of linear equations

would probably expect bad results, but he would never expect such large discrepan-

cies between scalar mode and vector mode. Above all, the ill-conditioned problems
deliver results with large di�erences. For the HRC-matrices there are values of C
which cause the results to di�er in all digits. Surprisingly the results for random

data also di�er, although random data is to be known as well-conditioned.

7 Vector Iteration

Another well-known method for solving a system of linear equations

Ax = b

D. Ratz/The E�ects of the Arithmetic of Vector Computers 511

is the iterative method

xk+1 = Dxk + b

with

D = I �A:

Comparing the scalar mode iteration with vector mode iteration we wanted to get

information about the convergence of the algorithms. Our special intention was to

see whether the e�ects described in the last sections could be neglected during an

iteration or not.

We chose two kinds of input data.

� A 2 S12�12 with

A =

0
BBBBBBB@

15
16

15
16

� 1
16

15
16

� 1
16

. . .
15
16

1
CCCCCCCA
;

so D = (dij) with dij =
1
16

for i; j = 1; 2; : : : ; 12. The vector b was an S0n;m-

vector

� A and b random matrix and random vector, respectivly.

Example 7.1

We tested the iteration xk+1 = Dxk + b where xk; b 2 S12; D 2 S12�12 with

dij =
1
16
, for i; j = 1; : : : ; 12, and b an S0n;m-vector with the starting vector

x0 = b.

Considering the results we noticed at �rst, that the scalar mode iteration and the

vector mode iteration stopped after di�erent numbers of iteration steps. Further-

more, the two resulting vectors were di�erent with the exception of two components.

512 D. Ratz/The E�ects of the Arithmetic of Vector Computers

Results: VP 400-EX (C = 1615)

b = S02;8
Scalar Mode Vector Mode

(54 iterations) (28 iterations)

0.115292150460684698E+19 0.115292150460684698E+19

0.199999999999999978E+01 0.133333333333333326E+01

{0.111022302462515654E�15 {0.666666666666666685E+00

{0.115292150460684698E+19 {0.115292150460684698E+19

0.199999999999999978E+01 0.133333333333333326E+01

0.199999999999999978E+01 0.133333333333333326E+01

0.199999999999999978E+01 0.133333333333333326E+01

0.199999999999999978E+01 0.133333333333333326E+01

0.199999999999999978E+01 0.133333333333333326E+01

0.199999999999999978E+01 0.133333333333333326E+01

0.199999999999999978E+01 0.133333333333333326E+01

0.199999999999999978E+01 0.133333333333333326E+01

Results: CRAY-2 (C = 1612)

b = S08;2
Scalar Mode Vector Mode

(26 iterations) (4 iterations)

0.281474976710655999E+15 0.281474976710655999E+15
0.171428571428571530E+01 0.137500000000000000E+01
0.171428571428571530E+01 0.137500000000000000E+01
0.171428571428571530E+01 0.137500000000000000E+01
0.171428571428571530E+01 0.137500000000000000E+01
0.171428571428571530E+01 0.137500000000000000E+01

0.171428571428571530E+01 0.137500000000000000E+01
0.171428571428571530E+01 0.137500000000000000E+01
{0.628571428571427759E+01 {0.662500000000000000E+01
{0.281474976710655999E+15 {0.281474976710655999E+15

0.171428571428571530E+01 0.137500000000000000E+01

0.171428571428571530E+01 0.137500000000000000E+01

In addition to the tests with S0n;m-vectors we wanted to see what would happen with

the iteration using random data.

Example 7.2

We tested the iteration xk+1 = Dxk + b where xk; b 2 S12; D 2 S12�12 with random

numbers dij and bi (�
1
16
� dij �

1
16
, �1 � bi � 1, i; j = 1; : : : ; 12).

For these tests we chose six di�erent sets of random numbers, the starting vector

x0 = b, and the stopping criterion xk+1 = xk.

D. Ratz/The E�ects of the Arithmetic of Vector Computers 513

Results: VP 400-EX

Set Scalar Mode Vector Mode Di�erence

1 stop after 24 iterations stop after 24 iterations 1-2 hex. digits

2 stop after 24 iterations alternating
3 stop after 22 iterations stop after 22 iterations 1-2 hex. digits

4 stop after 22 iterations stop after 22 iterations 1-2 hex. digits

5 stop after 22 iterations stop after 22 iterations 1-2 hex. digits

6 stop after 22 iterations stop after 21 iterations 2-3 hex. digits

Results: CRAY-2

Set Scalar Mode Vector Mode Di�erence

1 stop after 16 iterations stop after 17 iterations 1 hex. digits

2 stop after 18 iterations stop after 18 iterations 0 hex. digits

3 stop after 17 iterations stop after 17 iterations 0 hex. digits

4 stop after 18 iterations stop after 20 iterations 0 hex. digits
5 alternating alternating

6 stop after 19 iterations alternating

Although using only random data the resulting vectors of scalar mode and vector
mode iteration di�ered in about 2-3 hexadecimal digits on the VP 400. Even worse
is the fact that there were special cases in which the scalar mode iteration converged
but the vector mode iteration, however, alternated.

8 Concluding Remarks

For many users of vector computers the presented results have been very surprising
because they have never thought of such fatal errors appearing in very simple nu-
merical algorithms. Therefore, we hope that some of those users will lose their lack
of concern in using vectorizing compilers.

At the moment we should be very careful in transferring numerical programs

to vector processors. New programs should be tested in vector mode and in scalar

mode with the question of numerical correctness being at least as important as the
MFLOPS-rate.

Moreover, the user of vector computers should get more information about the

macros used for vectorizing DO loops. With this information he might prevent some

of the resulting errors by modifying the implementation of an algorithm. A better
way to prevent these errors would be a modi�cation of the summation macros of

vector computers by the manufacturers themselves in such a way that there is no
di�erence between the result of scalar mode and vector mode.

For the future, vector computer manufacturers should comply with the require-
ments of the "IMACS-GAMM Resolution on Computer Arithmetic" [5]. These

prerequisites will serve as a basis for the implementation of numerical methods with

automatic result veri�cation on vector computers (see [9], [10]). The necessity of
the computer doing the error control computations by itself should be obviously for

514 D. Ratz/The E�ects of the Arithmetic of Vector Computers

every user of vector computers thinking of future peak peformances of more than

100 GFLOPS.

References

[1] Buchholz, W.: The IBM System/370 Vector Architecture. IBM Systems Journal 25/1,

1986.

[2] CRAY Research, Inc.: CFT77 Reference Manual, SR-0018 C, 1988.

[3] Hammer, R.: How Reliable is the Arithmetic of Vector computers? This Volume.

[4] IBM High-Accuracy Arithmetic Subroutine Library (ACRITH). Program Description

and User's Guide, SC 33-6164-02, 3rd Edition, 1986.

[5] IMACS-GAMM Resolution on Computer Arithmetic. Preface of this Volume.

[6] Kulisch, U. and Miranker, W. L.: The Arithmetic of the Digital Computer: A New

Approach. SIAM Review, Vol. 28, No. 1, 1986.

[7] Rump, S. M.: How Reliable are Results of Computers. In: Jahrbuch �Uberblicke

Mathematik, Bibliographisches Institut, Mannheim, 1983.

[8] Sch�onauer, W.: Scienti�c Computing on Vector Computers. North-Holland, Amster-

dam, 1987.

[9] Schumacher, G.: Veri�ed Computations on Supercomputers - Error Control in Matrix

Problems. This Volume.

[10] Schumacher, G.: Einschlie�ung der L�osung von linearen Gleichungssystemen auf Vek-

torrechnern. In: Kulisch, U. (Ed.): Wissenschaftliches Rechnen mit Ergebnisveri�ka-

tion - Eine Einf�uhrung. Akademie Verlag, Ost-Berlin, Vieweg, Wiesbaden, 1989.

