ASYNCHRONY IN PARALLEL COMPUTING:
FROM DATAFLOW TO MULTITHREADING*

JURIJ SILCT, BORUT ROBIC!, AND THEO UNGERERS

Abstract. The paper presents an overview of the parallel computing models, architectures, and
research projects that are based on asynchronous instruction scheduling. It starts with pure dataflow
computing models and presents an historical development of several ideas (i.e. single-token-per-arc
dataflow, tagged-token dataflow, explicit token store, threaded dataflow, large-grain dataflow, RISC
dataflow, cycle-by-cycle interleaved multithreading, block interleaved multithreading, simultaneous
multithreading) that resulted in modern multithreaded superscalar processors. The paper shows that
unification of von Neumann and dataflow models is possible and preferred to treating them as two
unrelated, orthogonal computing paradigms. Today’s dataflow research incorporates more explicit
notions of state into the architecture, and von Neumann models using many dataflow techniques to
improve the latency hiding aspects of modern multithreaded systems.

Key words. parallel computer architectures, data-driven computing, multithread computing,
static dataflow, tagged-token dataflow, threaded dataflow, cycle-by-cycle interleaving, block inter-
leaving, multithreaded superscalar

AMS subject classifications. 68-02, 68MO05, 68Q10

1. Introduction. There are many problems that require enormous computa-
tional capacity to solve, and therefore present opportunities for high-performance
(parallel) computing. There are also a number of well-known hardware organization
techniques for exploiting parallelism. In this paper we give an overview of the com-
puters where parallelism 1s achieved by executing multiple asynchronous threads of
instructions concurrently.

For sequential computers the principal execution model 1s the well known von
Neumann model which consists of a sequential process running in a linear address
space. The amount of concurrency available is relatively small [228]. Computers
having more than one processor may be categorized in two types, SIMD or MIMD
[82], and allow several multiprocessor von Newmann program execution models, such
as shared memory (with actions coordinated by synchronization operations, e.g. P
and V semaphore commands [75]), or distributed memory (with actions coordinated
by message passing facilities [118, 135], e.g. explicit operating system calls). A MIMD
computer in principle will have a different program running on every processor. This
makes for an extremely complex programming environment. A frequent program
execution model for MIMD computers is the single-program multiple data (SPMD)
model [62] where the same program is run on all processors, but the execution may
follow different paths through the program according to the processor’s identity.

In multiprocessor systems, two main issues must be addressed: memory latency,
which is the time that elapses between issuing a memory request and receiving the cor-

*Received by the editors January 14, 1997; accepted for publications (in revised form) September
9, 1997. This work was partially supported by the Ministry of Science and Technology of the Republic
of Slovenia under grants J2-7648 and J2-8697.

tComputer Systems Department, Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana,
Slovenia (Jurij.S8ilc@ijs.si).

tFaculty of Computer and Information Science, University of Ljubljana, Trzagka cesta 25, SI-1000
Ljubljana, Slovenia, and Computer Systems Department, Jozef Stefan Institute, Jamova cesta 39,
SI-1000 Ljubljana, Slovenia (Borut.Robic@fri.uni-1j.si).

$Department of Computer Design and Fault Tolerance, University of Karlsruhe, P.O.Box 6980,
D-76128 Karlsruhe, Germany (Ungerer@ira.uka.de).

1

2 J. SILC, B. ROBIC AND T. UNGERER

responding response, and synchronization, which is the need to enforce the ordering
of instruction executions according to their data dependencies. The two 1ssues can-
not be properly resolved in a von Neumann context since connecting von Neumann
processors into a very high speed general purpose computer also brings bottleneck
problems [20].

As an alternative, the dataflow model was introduced as the radically new model
capable of properly satisfying the two needs [8, 17, 66, 88]. Dataflow models use
dataflow program graphs to represent the flow of data and control. Synchronization is
achieved by a requirement that two or more specified events occur before an instruction
is eligible for execution [191]. For example, in the graph/heap model [65] an instruction
is enabled by the presence of simple tokens (i.e., data packets) on the arcs of copies
of the dataflow graph, whereas the unraveling interpreter model (U-interpreter) [19]
enables instructions by matching tags that identify the graph instance to which a token
belongs. In [158] a detailed implementation of an unraveling dataflow interpreter of
the Trvine Dataflow (Id) programming language is proposed. Dataflow models have
also guided the design of several multithreaded computers [70].

Unfortunately, direct implementation of computers based on a pure dataflow
model has been found to be an arduous task. For this reason, the impact of the
convergence of the dataflow and control-flow was investigated [16, 125, 127, 141, 169].
In particular, Nikhil and Arvind posed the following question: “What can a von Neu-
mann processor borrow from dataflow to become more suitable for a multiprocessor?”
and offered the answer in terms of the P-RISC (Parallel RISC) programming model
[164]. The model is based on a simple, RISC-like instruction set extended with three
instructions that give a von Neumann processor a fine-grained dataflow capability
[16]. Tt uses explicit fork and join commands. Based on P-RISC programming model
a multithreaded Id programming language is implemented [162, 163]. Another model
designed to support nested functional languages using sequential threads of instruc-
tions is the Multilisp model [114, 115, 116, 146]. Multilisp is an extension of the Lisp
dialect Scheme with additional operators and semantics to deal with parallel execu-
tion. The principal language extension provided by Multilisp is future(z). Upon
executing future(z), an immediate undetermined value is returned. The computa-
tion of & occurs in parallel and the result replaces undetermined when complete. Of
course, any use of the result would block the parent process until the computation is
finished.

The incorporation of conventional control-flow thread execution into the dataflow
approach resulted in the multithreaded computer architecture which is one of the most
promising and exciting avenues for the exploitation of parallelism [10, 43, 87, 128, 151,

159].

2. The day before yesterday: Pure dataflow. The fundamental principles
of dataflow were developed by Jack Dennis [65] in the early 1970s. The dataflow model
[8, 68, 93, 191] avoids the two features of von Neumann model, the program counter
and the global updatable store, which become bottlenecks in exploiting parallelism
[27]. The computational rule, also known as the firing rule of the dataflow model,
specifies the condition for the execution of an instruction. The basic instruction
firing rule, common to all dataflow systems is as follows: An instruction is said to be
executable when all the input operands that are necessary for its execution are available
to it. The instruction for which this condition is satisfied is said to be fired. The effect
of firing an instruction is the consumption of its input values and generation of output
values. Due to the above rule the model is asynchronous. It is also self-scheduling

ASYNCHRONY IN PARALLEL COMPUTING 3

since instruction sequencing is constrained only by data dependencies. Thus, the flow
of control is the same as the flow of data among various instructions. As a result, a
dataflow program can be represented as a directed graph consisting of named nodes,
which represent instructions, and ares, which represent data dependencies among
instructions [64, 138] (Fig.2.1 a,b). Data values propagate along the arcs in the form
of data packets, called tokens. The two important characteristics of the dataflow
graphs are functionality and composability. Functionality means that evaluation of a
graph is equivalent to evaluation of a mathematical function on the same input values.
Composability means that graphs can be combined to form new graphs.

In a dataflow architecture the program execution is in terms of receiving, process-
ing and sending out tokens containing some data and a tag. Dependencies between
data are translated into tag matching and transformation, while processing occurs
when a set of matched tokens arrives at the execution unit. The instruction which
has to be fetched from the instruction store (according to the tag information) con-
tains information about what to do with the data and how to transform the tags.
The matching and execution unit are connected by an asynchronous pipeline, with
queues added to smooth out load variations [136]. Some form of associate memory is
required to support token matching. It can be a real memory with associative access,
a simulated memory based on hashing, or a direct matched memory. Each solution
has its proponent but none is absolutely suitable.

Due to its elegance and simplicity, the pure dataflow model has been the subject
of many research efforts. Since the early 1970s, a number of dataflow computer proto-
types have been built and evaluated, and different designs and compiling techniques
have been simulated [17, 66, 88, 151, 168, 185, 196, 205, 208, 216, 219]. Clearly,
an architecture supporting the execution of dataflow graphs should support the flow
of data. Depending on the way of handling the data, several types of dataflow ar-
chitectures emerged in the past [15]: single-token-per-arc dataflow [72], tagged-token
dataflow [23, 229], and explicit token store [171]. We describe them in the following
subsections.

2.1. Single-token-per-arc dataflow. The single-token-per-arc (or static) ar-
chitecture was first proposed by Dennis [72] (Fig.2.1 ¢). At the machine level, a
dataflow graph is represented as a collection of activity templates, each containing
the operation code of the represented instruction, operand slots for holding operand
values, and destination address fields, referring to the operand slots in subsequent
activity templates that need to receive the result value. The static dataflow approach
allows at most one token to reside on any one arc. This is accomplished by extending
the basic firing rule as follows [67]: A node is enabled as soon as tokens are present
on its input arcs and there is no token on any of its output arcs. To implement the
restriction of at most one token per arc, acknowledge signals, traveling along addi-
tional arcs from consuming to producing nodes, are used as additional tokens. Thus,
the firing rule can be changed to its original form.

The major advantage of the single-token-per-arc dataflow model is its simplified
mechanism for detecting enabled nodes. Unfortunately, this model of dataflow has
a number of serious drawbacks [15]. Since consecutive iterations of a loop can only
partially overlap in time, only a pipelining effect can be achieved and thus a lim-
ited amount of parallelism can be exploited. Another undesirable effect 1s that token
traffic 1s doubled. There is also a lack of support for programming constructs es-
sential to any modern programming language. Despite these shortcomings, several
machines were constructed and the most important are listed below. They made a

4 J. SILC, B. ROBIC AND T. UNGERER

tremendous impact on the field of computer architecture by introducing radically new
ways of thinking about massively parallel computers. They also served as a basis for
subsequent dataflow computers.

MIT Static Dataflow Architecture: This machine was designed at the Massachusetts
Institute of Technology (MIT) (Cambridge, Ma, USA) [66, 67, 69, 72] as a direct im-
plementation of a single-token-per-arc dataflow model. It consisted of five major
subsystems: a memory section, a processing section, an arbitration network, a control
network, and a distribution network. All communication between subsystems was by
asynchronous packet transmission over the channels. A prototype was built consist-
ing of eight processing elements (emulated by microprogrammable microprocessors)
and an equidistant packet routing network using 2 x 2 routing elements; it was used
primarily as an engineering model [71].

LAU System: Researchers at the CERT (Toulouse, France) carried out the first
research effort to go through the entire process of graph, language, and machine
design. Their system, called LAU [49, 50, 175, 211], was built in 1979. “Language a
assignation unique” (LAU) is a French acronym for single-assignment computation.
The LAU system used static graphs and had its own dataflow language based on
single-assignment.

TD’s Distributed Data Processor: The Distributed Data Processor (DDP) [51,
52] was a system designed by Texas Instruments (USA) aimed to investigate the
potential of dataflow as the basis of a high-performance computer. The DDP was
not commercially exploited, but a follow-on design with Ada as the programming
language [102] had application in military systems.

DDM1 Utah Data Driven Machine: DDMI [63] was a computing element of a
recursively structured dataflow architecture designed at the University of Utah (Salt
Lake City, Ut, USA) and was completed at Burroughs Interactive Research Center
(La Jolla, Ca, USA). The machine organization was based on the concept of recur-
sion. It was tree structured, with each computing element connected to a superior
element (above) and up to eight inferior elements (below). Each processing element
consisted of an agenda queue, which contained firable instructions, an atomic memory
(providing the program memory), and an atomic processor.

NEC Image Pipelined Processor: NEC Electronics (Japan) has developed the first
dataflow VLSI microprocessor chip pPD7281 [47, 133, 134, 213, 214]. Tts architecture
was a pipeline with several blocks, or working areas, organized in a loop. A link
table and function table stored object code, while the data memory was used for
temporary storage of the tokens to be matched. The address generator and flow
controller matched two tokens; which were temporarily stored in the queue before
they were processed by the processing unit.

Hughes Dataflow Multiprocessor: The Hughes Dataflow Multiprocessor (HDFM)
project began in 1981 at Hughes Aircraft Co. (USA), prompted by the need for high
performance, reliable, and easily programmable processors for embedded systems.
The HDFM [42, 89, 225, 226] consisted of many, relatively simple, identical process-
ing elements connected by a global packet-switching network. The interconnection
(3-D bussed cube) network was integrated with the processing element for ease of
expansion and minimization of VLSI chip types. The communications network was
designed to be reliable; with automatic retry on garble messages, distributed bus arbi-
tration, alternate path packet routing, and failed processing element translation table
to allow rapid switch-in and use of spare processing elements. The communication
network was able to physically accommodate up to an 8 x 8 x 8 configuration or

ASYNCHRONY IN PARALLEL COMPUTING 5

512 processing elements. Candidates proposed for the HDFM network were evaluated
in [81]: a 3-D bussed cube network, a multi-stage network, a hypercube network, a
mesh network, and a ring network. The processor engine was a three-stage pipelined
processor with three operations overlapped: instruction fetch and dataflow firing rule
check, instruction execution, and result and destination address combining to form a
packet.

2.2. Tagged-token dataflow. The performance of a dataflow machine signif-
icantly increases when loop iterations and subprogram invocations can proceed in
parallel. To achieve this, each iteration or subprogram invocation should be able to
execute as a separate instance of a reentrant subgraph. However, this replication
is only conceptual. In the implementation, only one copy of any dataflow graph is
actually kept in memory. Each token includes a tag, consisting of the address of
the instruction for which the particular data value is destined, and other information
defining the computational context in which that value is used. This context is called
the values color. Each arc can be viewed as a bag that may contain an arbitrary num-
ber of tokens with different tags. Now, the firing rule is: A node is enabled as soon as
tokens with identical tags are present at each of its input arcs. Dataflow architectures
that use this method are referred to as tagged-token (or dynamic) dataflow architec-
tures (Fig.2.1 d). The model was proposed by Watson and Gurd at the University of
Manchester (England) [229], and by Arvind and Nikhil at MIT [23].

The major advantage of the tagged-token dataflow model is the higher perfor-
mance it obtains by allowing multiple tokens on an arc. One of the main problems
of tagged-token dataflow model was the efficient implementation of the unit that col-
lects tokens with matching colors. For reasons of performance, an associative memory
would be ideal. Unfortunately, it would not be cost-effective since the amount of mem-
ory needed to store tokens waiting for a match tends to be very large. Therefore, all
existing machines use some form of hashing techniques which are typically not fast
enough compared with associative memory. In what follows, we list the most impor-
tant tagged-token dataflow projects.

Manchester Dataflow Computer: The researchers at the University of Manchester
focused on the construction of a prototype dataflow computer [28, 29, 38, 44, 45
92, 107, 108, 109, 110, 111, 112, 129, 184, 218, 229, 230]. The graph structure in
this machine was static with token labels to keep different procedure calls separate.
The machine was first implemented as a simulation program in 1977/78, and as the
hardware prototype in 1981. It consisted of a single processing element and a single
structure storage module connected together via a simple 2 x 2 switch. The processing
element had pipelined internal structure [59], with tokens passing through a queue
module, a matching unit [60] and an instruction fetch unit before being processed by
one of 20 function units in a parallel array that provided the computational power.
The function units were microcoded, and different instructions took quite different
times to execute. To overcome the restriction in the Manchester machine that only two
successor instructions could be specified in one instruction, the TUPlicate operator
(iterative instruction) was introduced [36, 37]. Using TUPlicate operator reduced the
size of code and led to a significant reduction in execution time especially for large
programs. The Extended Manchester Dataflow Computer (EXMAN) from Indian
Institute of Science (Bangalore, India) [174] incorporated three major extensions to
the basic machine: a multiple matching units scheme, an efficient implementation of
the array data structure, and a facility to concurrently execute reentrant routines.
To allow all storage functions to be performed concurrently also a prototype parallel

6 J. SILC, B. ROBIC AND T. UNGERER

structure store was developed [139].

MIT Tagged-Token Dataflow Machine: This project originated at the University
of California at Irvine (Ca, USA) and continued at MIT. The Irvine dataflow ma-
chine [21, 98, 99] implemented a version of the U-interpreter [97] and array handling
mechanisms to support I-structure concepts [20, 23, 24, 157]. An I-structure may be
viewed as a repository for data values obeying the single-assignment principle. That
is, each element of the I-structure may be written only once but it may be read any
number of times. The machine was proposed to consist of multiple clusters intercon-
nected by a token ring. Each cluster (four processing elements [22]) shared a local
memory through a local bus and a memory controller. The MIT machine [17, 90]
was a modified Irvine machine, but still based on the Id language. Instead of using a
token ring, an N x N packet switch network for interprocessor communications was
used.

SIGMA-1: The SIGMA-1 [121, 122, 193, 232] system is a supercomputer for
large-scale numerical computation and has been operational since early 1988 at the
Electrotechnical Laboratory (Tsukuba, Japan). It consists of 128 processing elements
and 128 structure elements interconnected by 32 local networks (10 x 10 crossbar
packet switches) and one global two-stage Omega network. Sixteen maintenance
processors are also connected with the structure elements and with a host computer
for 1/O operations, system monitoring, performance measurements, and maintenance
operations [120].

PATTSY Processor Array Tagged-Token System: PATTSY [160] was an experi-
mental system that had been developed at the University of Queensland (Brisbane,
Australia), which supported the dynamic model of dataflow execution. PATTSY had
a host computer that provided the user-interface to the machine and accepted user
programs which i1t converted into dataflow graph. These graph were mapped onto
the processing elements (PEs), but the actual scheduling of operation was carried
out at runtime. An 18 processor prototype of the machine was operational. It used
an IBM-PC as the host and the PEs were built from Intel 8085 based single board
microcomputers.

NTT’s Dataflow Processor Array System: The dataflow processors array system
[212] from Nippon Telephone and Telegraph (Japan) was a dynamic tagged-token de-
sign intended for large scientific calculation. A hardware experimental system Eddy
[13], consisting of 4 x 4 processing elements, was built and used to test some appli-
cations.

Q-p One-Chip Data-Driven Processor: The Q-p [25, 144, 166] is specifically de-
signed to be a one-chip functional element which is easily programmable to form
various dedicated processing functions. Particular design considerations were taken
to achieve high flow-rate data-streams processing capabilities. In the Q-p, a novel
bi-directional elastic pipeline processing concept was introduced to implement token
matching. The Q-p was developed jointly by Osaka University, Sharp, Matsushita
Electric Ind., Sanyo Electric, and Mitsubishi Electric (Japan).

DDDP Distributed Data Driven Processor: The DDDP [140] from OKI Electric
Ind. (Japan) had a centralized tag manager and performed token matching using a
hardware hashing mechanism similar to that of the Manchester Dataflow Computer.
A prototype consisting of four processing elements and one structure store connected
by a ring bus achieved 0.7 MIPS.

SDFA Stateless Data-Flow Architecture: SDFA was designed at the University of
Manchester and inspired by the Manchester Dataflow Computer. As its name implies,

ASYNCHRONY IN PARALLEL COMPUTING 7

the SDFA system [204, 205] had no notion of states. There were no structure stores,
and only extract-wait functionality was provided in the matching stores. All the
instructions in the instruction-set were simple and based on RISC principles. There
were no iterative or vector style instructions producing more than two tokens per
execution.

CSIRAC II: The origins of the CSIRAC II dataflow computer date from 1978
[78]. Tt was built at the Swinburne Institute of Technology (Hawthorn, Australia).
The architecture is unusual in that the temporal order of tokens with the same color
on the same graph arc is maintained [76, 77].

PIM-D Parallel Inference Machine: The PIM-D was proposed to be one of the
candidates for a parallel inference machine in the Fifth Generation Computer System
and was a joint venture of ICOT and OKI Electric Ind. (Japan) [130, 131, 132].
This machine was constructed from multiple processing elements and multiple struc-
ture memories interconnected by a hierarchical network and exploited three types of
parallelism: OR parallelism, AND parallelism, and parallelism in unification.

2.3. Explicit token store. One of the main problems of tagged-token dataflow
architectures is the implementation of an efficient token matching. To eliminate the
need for associative memory searches, the concept of an explicitly address token store
has been proposed [171]. The basic idea is to allocate a separate memory frame
for every active loop iteration and subprogram invocation. Each frame slot is used
to hold an operand for a particular activity. Since access to frame slots is through
offsets relative to a frame pointer, no associative search is necessary (Fig.2.1e). To
make this concept practical, the number of concurrently active loop iterations must
be controlled. Hence, the constraint condition of k-bounded loops was proposed in
[18, 53], allowing the number of concurrently active loop iterations to be bounded by
a constant.

The explicit token address store principle was developed in the Monsoon project,
but is applied in most dataflow architectures developed more recently (see Subsection
3.2. below), i.e. as so-called direct matching in the EM-4 and Epsilon-2.

Monsoon: The Monsoon dataflow multiprocessor was built jointly by MIT and
Motorola (USA) [55, 172, 192, 217]. Monsoon dataflow processor nodes are coupled
by a packet-communication network with each other and with I-structure storage
units. The main objective of the Monsoon dataflow processor architecture was to
alleviate the waiting/matching problem by explicitly using address token store. This
is achieved by a dataflow processor using an eight-stage pipeline. The first pipeline
stage 1s the instruction fetch stage which is arranged prior to the token matching, in
contrast to dynamic dataflow processors with associative matching units. The new
arrangement is necessary, since the operand fields in an instruction denote the offset
in the memory frame that itself is addressed by the tag of a token. The explicit token
address is computed by the composition of frame address and operand offset. This
is done in the second stage, which is the first of three pipeline stages that perform
the token matching. In the third stage a presence bit store access is performed to
find out if the first token of a dyadic operation has already arrived. If that is not the
case, the presence bit is set and the current token is stored of the frame slot in the
frame store in the fourth stage. Otherwise the presence bit is reset and the operand
retrieved from the frame store in the fourth pipeline stage. The next three stages are
execution stages in the course of which the next tag i1s also computed concurrently.
The eighth stage forms one or two new tokens that are sent to the network, stored in
a user token queue, a system token queue, or directly recirculated to the instruction

8 J. SILC, B. ROBIC AND T. UNGERER

fetch stage of the pipeline (see next section). Several small Monsoon systems have
been built and installed at universities and research institutes.

load 10, (sp + a) "a" duplicated ~ Q b c
by source node

(tagged) token
loadrl, (sp + b)

mul 10, r1, r2

instruction = node

loadrl, (sp +¢)

matching

div 10, r1, 10 destination

add r2, 10, r0 data path = arc

(a) (b)
FRAME
STORE
DIRECT
FETCH FETCH MATCHING
A4
Z =) W 95}
.| e IRE E N 5
el B2l |5 2l 158 | B 53 | 3
=2 158 | B SE| (22| | 8 S 2% | =
Z 2 5 Z 3 g - > RN = >
z & = & =)
N /[‘l:
1 <€ TokEN |, [Toxen [€ Token| | roxen [€
N UPDATE | |> QUEUE l<—| l};t)}l;f\/l;! | r QUEUE < FORM [

(©) () (e)

Fig. 2.1 — Computing a - b + £ with: (a) control flow; (b) dataflow. Pure dataflow
basic execution pipeline: (c) single-token-per-arc dataflow; (d) tagged-token dataflow;
(e) explicit token store dataflow.

3. Yesterday: Combining control-flow and dataflow. Pure dataflow com-
puters based on the single-token-per-arc or tagged-token dataflow model usually per-
form quite poorly with sequential code. This is due to the fact that an instruction
of the same thread can only be issued to the dataflow pipeline after the completion
of its predecessor instruction. In the case of an 8-stage dataflow pipeline, an instruc-
tion of the same thread can be issued at most every eight cycles. If the load is low,
for instance for a single sequential thread, the utilization of the dataflow processor

ASYNCHRONY IN PARALLEL COMPUTING 9

drops to one eighth of its maximum performance. A further drawback is the over-
head associated with token matching. Before a dyadic instruction is issued to the
execution stage, two result tokens are necessary. The first token is stored in the
waiting-matching store, thereby introducing a bubble in the execution stage(s) of the
dataflow processor pipeline. Only when the second token arrives is the instruction
issued. For example, the pipeline bubbles sum up to 28.75 % executing a Traveling
Salesman program on the Monsoon machine [172].

Since a context switch occurs in fine-grain dataflow after each instruction execu-
tion, no use of registers i1s possible. Use of registers could optimize the access time
to data values, avoid pipeline bubbles caused by dyadic instructions, and reduce the
total number of tokens during program execution.

One solution of these problems is combining the dataflow and control-flow mecha-
nisms. The symbiosis between dataflow and von Neumann architectures is represented
by a number of research projects developing von Neumann/dataflow hybrids [41, 127].
The spectrum of such hybrids is very broad, ranging from simple extensions of a von
Neumann processor with a few additional instructions to specialized dataflow systems
attempting to reduce overhead by increasing the execution grain size and employing
various scheduling, allocation, and resource management techniques developed for von
Neumann computers. These developments illustrate that dataflow and von Neumann
computers do not necessarily represent two entirely disjoint worlds but rather are the
two extreme ends of a spectrum of possible computer systems (Fig.3.1 a,b,c).

After early hybrid dataflow attempts, several techniques for combining control-
flow and dataflow have emerged: threaded dataflow [173], large-grain dataflow [127],
RISC dataflow [164], and dataflow with complex machine operations [80]. We describe
them in the next five subsections (for a comparison of the techniques see [31]).

3.1. Early hybrid dataflow. The first attempts towards hybrid dataflow com-
puting were made already in the early 1980s in quite diverse directions. Some of them
are listed below.

JUMBO Newcastle Data-Control Flow Computer: The JUMBO [220] was built at
the University of Newcastle upon Tyne (England) to study the integration of dataflow
and control-flow computation. It has a packet communication organization with token
matching. There are three principal units (matching unit, memory unit, processing
unit) interconnected into ring by FIFO buffers.

MADAME Macro Dataflow Machine: The MADAME architecture from Jozef
Stefan Institute (Ljubljana, Slovenia) was suitable for execution of acyclic dataflow
(sub)graphs and supported synchronous dataflow computing [197, 198, 199, 200]. The
advantage of such computing over pure dataflow is that more efficient runtime code
can be generated because instructions can be scheduled at compile-time rather than
at runtime.

PDF Piecewise Dataflow Architecture: The PDF architecture addressed Lawrence
Livermore National Laboratory’s (Livermore, Ca, USA) needs for supercomputing
power. This architecture [177, 178] blended the strengths found in STMD, MIMD,
and dataflow architectures. The PDF contained a SIMD processing unit and a scalar
processing unit that managed a group of processors (MIMD). Programs that ran on
the PDF were broken into basic blocks and scheduled for execution using dataflow
techniques. Two levels of scheduling divided responsibility between the software and
hardware. The time-consuming analysis of when blocks can overlap was done in the
compile-time, before program executions began. Individual instruction scheduling was
done in hardware.

10 J. SILC, B. ROBIC AND T. UNGERER

MUSE Multiple Stream Evaluator: The MUSE machine [40] from University of
Nottingham (England) was a structured architecture supporting both serial and par-
allel processing which allowed the abstract structure of a program to be mapped onto
the machine in a logical way. The MUSE machine had many features of dataflow
architecture but in its detailed operation it steered a middle course between a pure
dataflow machine, a tree machine, and the graph reduction approach.

RAMPS Real Time Acquisition and Mulliprocessing System: RAMPS [30] was a
parallel processing system developed at EIP Inc. (USA) for high performance data
acquisition and processing applications. RAMPS used dataflow at a macro level while
tasks were executed using a sequential model of computation.

DTN Dataflow Computer: The DTN Dataflow Computer [227] (developed by the
Dutch company Dataflow Technology Nederland) is a high-performance workstation
well suited for applications containing relatively small computing-intensive parts with
enough parallelism to execute efficiently on the dataflow engine. The DTN Dataflow
Computer contains a standard general purpose host, a graphical subsystem (four
microprogrammable systolic arrays), and a dataflow engine. The dataflow engine
consists of eight identical modules connected by a token routing network. Each module
contains four NEC Image Pipelined Processors, interface chip, and image memory.

ETCA Functional Dataflow Architecture: A functional dataflow architecture has
been developed at ETCA (Arcueil, France) and is dedicated to real-time processing
[190]. Two types of data-driven processing elements, dedicated respectively to low and
mid-level processing are integrated in a regular 3-D array. Its design relies on close
integration of dataflow principles and functional programming. For the execution of
low-level functions, a custom dataflow processor with six bi-directional I/O ports was

developed [176].

3.2. Threaded dataflow. In a dataflow program each subgraph that exhibits
a low degree of parallelism can be identified within a dataflow graph and transformed
into a sequential thread. By the term threaded dataflow we understand a technique
where the dataflow principle is modified so that instructions of a sequential instruc-
tion stream can be processed in succeeding machine cycles. A thread of instructions
is issued consecutively by the matching unit without matching further tokens except
for the first instruction of the thread. Threaded dataflow covers the repeat-on-input
technique in the Epsilon-1 and Epsilon-2 processors, the strongly connected arc model
of EM-4, and the direct recycling of tokens in Monsoon. Data passed between instruc-
tions from the same thread is stored in registers instead of writing them back to mem-
ory. These registers may be referenced by any succeeding instruction in the thread.
Thereby single-thread performance is improved. The total number of tokens needed
to schedule the instructions of a program is reduced thus saving hardware resources.
Pipeline bubbles are avoided for dyadic instructions within a thread. Two threaded
dataflow execution techniques can be distinguished: the direct token recycling, and
consecutive execution of the instructions of a single thread. The first technique, used
by the Monsoon dataflow computer, allows a particular thread to occupy only a single
slot in the 8-stage pipeline, which implies that at least 8 threads must be active for
a full pipeline utilization to be achieved. This cycle-by-cycle instruction interleaving
of threads is used in a similar fashion by some multithreaded von Neumann comput-
ers (Section 4.). To optimize single-thread performance the Epsilon-processors and
the EM-4 execute instructions from a thread consecutively. The circular pipeline of
fine-grain dataflow is retained. However, the matching unit has to be enhanced with
a mechanism that, after firing the first instruction of a thread, delays the matching

ASYNCHRONY IN PARALLEL COMPUTING 11

of further tokens in favor of issuing all instructions of the thread consecutively. By
this mechanism cycling of tokens through the pipeline for the activation of the next
instruction is suppressed. The three highly influential projects are given below.

Monsoon: The Monsoon dataflow processor can be viewed as a cycle-by-cycle
interleaving multithreaded computer [173] due to its ability of direct token recycling.
By use of this technique a successor token is directly fed back in the eight-stage Mon-
soon pipeline bypassing the token store. Another instruction of the same thread is
executed every eighth processor cycle. Monsoon allows the use of registers (eight reg-
ister sets are provided) to store intermediate results within a thread, thereby leaving
the pure dataflow execution model.

FEpsilon-2: Epsilon-2 machine [100, 101] developed at Sandia National Laborato-
ries (Livermore, Ca, USA), supports a fully dynamic memory model, allowing single
cycle context switches and dynamic parallelization. The system is built around a
module consisting of a processor and structure unit, connected via a 4 x 4 crossbar to
each other, an I/O port, and the global interconnect. The structure unit is used for
storing data structures such as arrays, lists, and I-structures. The Epsilon-2 proces-
sor retains the high performance features of the Epsilon-1 prototype, including direct
matching, pipelined processing, and a local feedback path. The ability to execute
sequential code as a grain provides RISC-like execution efficiency.

EM-4 and EM-X: In the EM-4 project [35, 142, 181, 182, 183, 186, 187, 188, 189,
206] at Electrotechnical Laboratory (Tsukuba, Japan), the essential elements of a
dynamic dataflow architecture using frame storage for local variables are incorporated
into a single chip processor. In this design a strongly connected subgraph of a function
body is implemented as a thread that uses registers for intermediate results. The
EM-4 was designed for 1024 nodes. Since May 1990 the EM-4 prototype with 80
nodes (EMC-R gate-array processor) is operational. In 1993 the EM-X [143] (upgrade
of EM-4) was designed to support latency reduction by fusing the communication
pipeline with the execution pipeline, latency hiding via multithreading, and runtime
latency minimization for remote memory access.

3.3. Large-grain dataflow. This technique, also referred to as coarse-grain
dataflow, advocates activating macro dataflow actors by the dataflow principle while
executing the represented sequences of instructions by the von Neumann principle
[34, 61, 80, 127]. Large-grain dataflow machines typically decouple the matching
stage (sometimes called signal stage, synchronization stage, etc.) from the execution
stage by use of FIFO-buffers. Pipeline bubbles are avoided by the decoupling. Off-
the-shelf microprocessors can be used for the execution stage. Most of the more recent
dataflow architectures fall in this category and are listed below. Note, that they are
often called multithreaded machines by their authors.

TAM Threaded Abstract Machine: The TAM [54, 56] from the University of
California (Berkeley, Ca, USA) is an execution model for fine-grain interleaving of
multiple threads, that is supported by an appropriate compiler strategy and program
representation instead of elaborate hardware. TAM’s key features are placing all
synchronization, scheduling, and storage management under explicit compiler control.

*T: The *T (pronounced “start” [165]) is a direct descendant of dataflow architec-
tures, especially of the Monsoon, and unifies them with von Neumann architectures.
*T has a scalable computer architecture designed to support a broad variety of parallel
programming styles including those which use multithreading based on non-blocking
threads. A *T node consists of the data processor (executing threads), the remote-
memory request coprocessor (for incoming remote load/store requests), and the syn-

12 J. SILC, B. ROBIC AND T. UNGERER

chronization coprocessor (for handling returning load responses and join operations),
which all share local memory. This hardware is coupled with a high performance
network having a fat-tree topology with high cross-section bandwidth. A modified
version of the *T [165] was implemented in cooperation by MIT and Motorola, based
on a 88110 superscalar microprocessor (called 88110MP [32, 33]). Despite its name
the StarT-ng [14, 46] bears no resemblance to its predecessor *T and to dataflow ma-
chines. It defines a rather conventional multiprocessor with PowerPC 620 processors
augmented with special hardware for message-passing and shared memory access.

ADARC Associative Dataflow Architecture: In the Associative Dataflow Archi-
tecture ADARC [209, 210, 233] the processing units are connected via an associative
communication network. The processors are equipped with private memories that
contain instruction sequences generated at compile-time. The retrieval of executable
instructions is replaced by the retrieval of input operands for the current instructions
from the network. The structure of the network enables full parallel access to all
previously generated results by all processors. A processor executes its current in-
struction (or instruction sequence) as soon as all requested input operands have been
received [209]. Tn [233] it is shown that that ADARC is well-suited to implement neu-
ral network models. ADARC was developed at J.W.Goethe University (Frankfurt,
Germany).

Pebbles: The Pebbles architecture [180] from Colorado State University (Fort
Collins, Co, USA) is a large-grain dataflow architecture with a decoupling of the
synchronization unit and the execution unit within the processing elements. The
processing elements are coupled via a high-speed network. The local memory of each
node consists of an instruction memory which is read by the execution unit and a data
memory (or frame store) which is accessed by the synchronization unit. A ready queue
contains the continuations representing those threads that are ready to execute. The
frame store is designed as a storage hierarchy where a frame cache holds the frames
of threads that will be executed soon. The execution unit is a 4-way superscalar
Microprocessor.

From Argument Fetch Dataflow Processor to MTA and FARTH: The EARTH
(Efficient Architecture of Running Threads) [155], developed at McGill University
and Concordia University (Montréal, Canada), is based on the MTA (Multithreaded
Architecture) [86, 126] and dates back to the Argument Fetch Dataflow Processor.
An MTA node consists of an execution unit that may be an off-the-shelf RISC micro-
processor and a synchronization unit to support dataflow-like thread synchronization.
The synchronization unit determines which threads are ready to be executed. Execu-
tion unit and synchronization unit share the processor local memory which is cached.
Accessing data in a remote processor requires explicit request and send messages.
The synchronization unit and execution unit communicate via FIFO queues: a ready
queue containing ready thread identifiers links the synchronization unit with the ex-
ecution unit, and an event queue holding local and remote synchronization signals
connects the execution unit with the synchronization unit, but also receives signals
from the network. A register use cache keeps track of which register set is assigned
to which function activation [126]. MTA or EARTH rely on non-blocking threads.
The EARTH architecture [161] is implemented on top of the experimental (but rather
conventional) MANNA multiprocessor [91].

3.4. RISC dataflow. Another stimulus for dataflow/von Neumann hybrids was
the development of RISC dataflow architectures, notably P-RISC [164], which allow
the execution of existing software written for conventional processors. Using such a

ASYNCHRONY IN PARALLEL COMPUTING 13

machine as a bridge between existing systems and new dataflow supercomputers made
the transition from imperative von Neumann languages to dataflow languages easier
for the programmer.

P-RISC Parallel RISC: The basic philosophy underlying the development of the
P-RISC architecture [164] can be characterized as follows: use a RISC-like instruction
set, change the architecture to support multithreaded computation, add fork and join
instructions to manage multiple threads, implement all global storage as I-structure
storage, and implement the load/store instructions to execute in split-phase mode
(Fig.3.1 d,e). The architecture based on the above principles was developed at MIT.
It consists of a collection of PEs and Heap Memory Elements, interconnected through
a packed-switching communication network.

3.5. Use of complex machine operations. Another technique to reduce the
instruction level synchronization overhead is the use of complex machine instructions,
for instance vector instructions. These instructions can be implemented by pipeline
techniques as in vector computers. Structured data is referenced in block rather than
element-wise, and can be supplied in a burst mode. This deviates from the I-structure
scheme where each data element within a complex data structure is fetched individ-
ually from a structure store. A further advantage of complex machine operations is
the ability to exploit parallelism at the subinstruction level. Therefore the machine
has to partition the complex machine operation into suboperations that can be exe-
cuted in parallel. The use of a complex machine operation may spare several nested
loops. The use of a FIFO-buffer allows the machine to decouple the firing stage and
the execution stage to bridge the different execution times within a mixed stream of
simple and complex instructions issued to the execution stage. As a major differ-
ence to conventional dataflow architectures tokens do not carry data (except for the
values "true" or "false"). Data is only moved and transformed within the execution
stage. This technique is used in the Decoupled Graph/Computation Architecture, the
Stollmann Dataflow Machine, and the ASTOR architecture. These architectures com-
bine complex machine instructions with large-grain dataflow, described above. The
structure-flow technique proposed for the SIGMA-1 enhances an otherwise fine-grain
dataflow computer by structure load and structure store instructions, that move for
instance whole vectors from or to the structure store. The arithmetic operations are
executed by the cyclic pipeline within a single PE. A more detailed description is
given below.

Decoupled Graph/Computation Archilecture: In this architecture, developed at
the University of Southern California (Los Angeles, Ca, USA), the token matching
and token formatting and routing are reduced to a single graph operation called
determine execulability [80]. The decoupled graph/computation model separates the
graph portion of the program from the computational portion. The two basic units of
the decoupled model (computational unit and graph unit) operate in an asynchronous
manner. The graph unit is responsible for determining executability by updating the
dataflow graph, while the computation unit performs all the computational operations
(fetch and execute).

Stollman Data Flow Machine: The Stollman dataflow machine [95, 96] from
Stollman GmbH (Hamburg, Germany) is a coarse-grain dataflow architecture directed
towards database applications. The dataflow mechanism is emulated on a shared-
memory multiprocessor. The query tree of a relational query language (such as the
database query language SQL) is viewed as dataflow graph. Complex database query
instructions are implemented as coarse-grain dataflow instruction and (micro-)coded

14 J. SILC, B. ROBIC AND T. UNGERER

as a traditional sequential program running on the emulator hardware.

mul mul sub
add add div

mul

sub

add

add

mul
mul

(@) (b) (©

op-code operands

X 109 join2 || -
....................... . 10 — I
Y d
11 jump 120

115 sqrt d2
116 jump || 120

join frame pointer 120 | join2 || dj
operation dest. instruction address 121 add d, d1,d2
122 fork 159

123 | jump || 141

141 sub vy dy
- 159 join 2
R I . 160 [div_|}.,d, ..
\4 \4 \4
(d) (e)

Fig. 3.1 — Spectrum of scheduling models: (a) fully ordered (control flow); (b) par-
tially ordered (dataflow); (c) partially ordered graph and fully ordered grains (e.g.
Epsilon-2 hybrid). “RISCifying” dataflow (P-RISC dataflow/von Neumann hybrid):
(d) conceptual; (e) encoding of graph.

ASTOR Augsburg Structure-Oriented Architecture: The ASTOR architecture
[223, 224, 234, 235] from University of Augsburg (Germany) can be viewed as a
dataflow architecture that utilizes task level parallelism by the architectural struc-
ture of a distributed memory multiprocessor, instruction level parallelism by a token-
passing computation scheme, and subinstruction level parallelism by SIMD evaluation
of complex machine instructions. Sequential threads of data instructions are compiled
to dataflow macro actors and executed consecutively using registers. A dependency
construct describes the partial order in the execution of instructions. It can be visu-
alized by a dependency graph. The nodes in a dependency graph represent control

ASYNCHRONY IN PARALLEL COMPUTING 15

constructs or data instructions; the directed arcs denote control dependencies between
the nodes. Tokens are propagated along the arcs of the dependency graph. To distin-
guish different activations of a dependency graph, a tag is assigned to each token. The
firing rule of dynamic dataflow is applied: a node is enabled as soon as tokens with
identical tags are present on all its input arcs. However, in the ASTOR architecture
tokens do not carry data.

4. Today: Multithreading. In a single-threaded architecture the computation
moves forward one step at a time through a sequence of states, each step corresponding
to the execution of one enabled instruction. The state of a single-threaded machine
consists of the memory state (program memory, data memory, stack) and the processor
state which consists of activity specifier (program counter, stack pointer) and register
context (a set of register contents). The activity specifier and the register context
make up what is also called the contert of a thread. Today most architectures are
single-threaded architectures.

According to [70], a multithreaded architecture differs from the single-threaded
architecture in that there may be several enabled instructions from different threads
which all are candidates for execution (Fig.4.1). Similar to the single-threaded ma-
chine, the state of the multithreaded machine consists of the memory state and the
processor state; the later, however, consists of a collection of activity specifiers and a
collection of register contexts. A thread is a sequentially ordered block of instructions
with a grain-size greater than one (to distinguish multithreaded architectures from
fine-grained dataflow architectures).

NODE N1 NODE N2
ctxt1 ctxt2 ctxt3
N2
% rload_req
.......... A

L:rload A* 2 e — | ==+ =L Lp N1 ~

L S ~ <

.......... ctxt1 ~
~
~
~
~
N
Sa
A

.......... .
7
7
N1 -7
I | R AN M. DU I start a7
..... aeePian L

ctxt1
v

Fig. 4.1 — Multithreading: when a thread issues a remote-load request, the processor
starts executing another thread.

Another notion is the distinction between blocking and non-blocking threads. A
non-blocking thread is formed such that its evaluation proceeds without blocking the
processor pipeline (for instance by remote memory accesses, cache misses or syn-
chronization waits). Evaluation of a non-blocking thread starts as soon as all input
operands are available, which is usually detected by some kind of dataflow principle.
Thread switching is controlled by the compiler harnessing the idea of rescheduling
rather than blocking when waiting for data. Access to remote data is organized

16 J. SILC, B. ROBIC AND T. UNGERER

split-level by one thread sending the access request to memory and another thread
activating when its data is available. Thus a program is compiled into many very
small threads activating each other when data become available. The same hardware
mechanisms may also be used to synchronize interprocess communications to awaiting
threads, thereby alleviating operating systems overhead [159]. In contrast, a block-
wng thread might be blocked during execution caused by remote memory accesses,
cache misses or synchronization needs. The waiting time, during which the pipeline
is blocked, is lost when using a von Neumann processor, but can be bridged by a
fast thread switch in a multithreaded processor. The thread is resumed when the
reason for blocking is removed. Use of non-blocking threads typically leads to many
small threads that are appropriate for execution by a hybrid dataflow computer or
by a multithreaded architecture that is closely related to hybrid dataflow. Blocking
threads may be normal threads or whole processes of a multithreaded UNIX-based
operating system.

Notice, that we exclude in this section architectures that are designed for the
execution of non-blocking threads. Although these architectures often are called mul-
tithreaded, we categorized them as threaded dataflow (Subsection 3.2.) or large-grain
dataflow (Subsection 3.3.) since a dataflow principle is applied to start execution of
non-blocking threads. Thus, multithreaded architectures (in the more narrow sense
applied here) stem from the modification of RISC or even of superscalar RISC pro-
cessors. They are able to bridge waiting times that arise in the execution of blocking
threads by fast thread switching. This ability is in contrast to RISC processors or
today’s superscalar processors, that use busy waiting or a time-consuming, operating
system based thread switch. One characteristic for such multithreaded architectures
is the use of multiple register sets and a mechanism that dynamically triggers the
thread switch. Thread switch overhead must be very low, from zero to only a few
cycles.

Current microprocessors utilize instruction-level parallelism by a deep processor
pipeline and by the superscalar instruction issue technique. A superscalar processor
is able to dispatch multiple instructions each clock cycle from a conventional linear
instruction stream [73]. DEC Alpha 21164, IBM & Motorola PowerPC 604 and 620,
MIPS R10000, Sun UltraSparc and HP PA-8000 issue up to four instructions per cycle
from a single thread. VLSI-technology will allow future generations of microprocessors
to exploit instruction-level parallelism up to 8 instructions per cycle, or more.

However, the instruction-level parallelism found in a conventional instruction
stream is limited. Recent studies showed the limits of processor utilization even of
today’s superscalar microprocessors. Using the SPEC92 benchmark suite, the Pow-
erPC 620 showed an execution of 0.96 to 1.77 instructions per cycle [74], and even an
8-issue Alpha processor will fail to sustain 1.5 instructions per cycle [222].

The solution 1s the additional utilization of more coarse-grained parallelism. The
main approaches are the multiprocessor chip and the multithreaded processor. The
multiprocessor chip integrates two or more complete processors on a single chip.
Therefore every unit of a processor i1s duplicated and used independently of its copies
on the chip. In contrast, the multithreaded processor stores multiple contexts in dif-
ferent register sets on the chip. The functional units are multiplexed between the
threads that are loaded in the register sets. Depending on the specific multithreaded
processor design, only a single instruction pipeline is used, or a single dispatch unit
issues instructions from different instruction buffers simultaneously. Because of the
multiple register sets, context switching is very fast. Multithreaded processors tolerate

ASYNCHRONY IN PARALLEL COMPUTING 17

memory latencies by overlapping the long-latency operations of one thread with the
execution of other threads - in contrast to the multiprocessor chip approach. While
the multiprocessor chip is easier to implement, use of multithreading in addition to a
wide issue bandwidth is a promising approach.

Research on multithreaded architectures has been motivated by two concerns:
tolerating latency and bridging of synchronization waits by rapid context switches.
Three different approaches of multithreaded architectures are distinguished: cycle-by-
cycle interleaving [117, 173, 202, 215], block interleaving [2, 3, 106], and simultaneous
multithreading [221, 222].

4.1. Cycle-by-cycle interleaving. In the cycle-by-cycle interleaving model the
processor switches to a different thread after each instruction. In principle, an instruc-
tion of the same thread is fed in the pipeline after the completion of the execution
of the previous instruction. There must be at least as many register sets (loaded
threads) available on the processor as the number of pipeline stages. Since cycle-by-
cycle interleaving eliminates control and data dependencies between instructions in
the pipeline, pipeline conflicts cannot arise and the processor pipeline can be easily
built without the necessity of complex forwarding paths. This leads to a very simple
and therefore potentially very fast pipeline - no hardware interlocking i1s necessary.
The latency is tolerated by not scheduling a thread until its reference to a remote
memory has completed. This model requires a large number of threads and complex
hardware to support them. Interleaving the instructions from many threads also limits
the processing power accessible to a single thread, thereby degrading the single-thread
performance. The use of the dependence look-ahead technique in HEP, Horizon and
Tera gives some help. Some machines that use cycle-by-cycle interleaving are given
below.

HEP Heterogeneous Element Processor: The HEP system was a MIMD shared-
memory multiprocessor system developed by Denelcor Inc. (Denver, Co, USA) be-
tween 1978 and 1985 [137, 145, 201, 202, 203], and was a pioneering example of a
multithreaded machine. Spatial switching occurred between two queues of processes,
one of these controlled program memory, register memory, and the functional mem-
ory while the other controlled data memory. The main processor pipeline had eight
stages, matching the number of processor cycles necessary to fetch a data item from
memory in register. Consequently eight threads were in execution concurrently within
a single HEP processor. In contrast to all other cycle-by-cycle interleaving processor,
all threads within a HEP processor shared the same register set. Multiple proces-
sors and data memories were interconnected via a pipelined switch and any register
memory or data memory location could be used to synchronize two processes on a
producer-consumer basis by a full /empty bit synchronization on a data memory word.

MASA Multilisp Architecture for Symbolic Applications: The MASA was a mul-
tithreaded processor architecture for parallel symbolic computation with various fea-
tures intended for effective Multilisp program execution [85, 117]. MASA featured a
tagged architecture, multiple contexts, fast trap handling, and a synchronization bit
in every memory word. Its principal novelty was the use of multiple contexts both
to support interleaved execution from separate instruction streams and to speed up
procedure calls and trap handling (in the same manner as register windows).

Horizon: This (paper) architecture was based on the HEP but extended to a mas-
sively parallel MIMD computer. The machine was designed for up to 256 processing
elements and up to 512 memory modules in a 16 x 16 x 6 node internal network.
Like HEP it employed a global address space, and memory-based synchronization

18 J. SILC, B. ROBIC AND T. UNGERER

through the use of full /empty bits at each location [94, 148, 215]. Each processor sup-
ported 128 independent instruction streams by 128 register sets with context switches
occurring at every clock cycle.

Tera MTA Multi- Threaded Architecture: The Tera MTA [9, 11, 12] is based on the
Horizon architecture and currently under construction by Tera Computer Company
(Seattle, Wa, USA) (after many delays introduction to market is scheduled for Spring
1997). The machine is a vast multiprocessor with multithreaded processor nodes ar-
ranged in 3D mesh of pipelined packet-switch nodes. In the case of the maximum
configuration of 4096 nodes, arranged in a 16 x 16 x 16 mesh, there are up to 256
processors, 512 memory units, 256 1/O cache units, 256 1/O processors, and 2816
switching nodes. Each processor is 64-bit custom chip with up to 128 simultaneous
threads in execution. It alternates between ready threads, using a deep pipeline. Inter-
instruction dependencies are explicitly encoded by the compiler. Each thread has a
complete set of registers. Memory units have 4-bit tags on each word, or full/empty
and trap bits [12]. The Tera MTA exploits parallelism at all levels, from fine-grained
instruction-level parallelism within a single processor to parallel programming across
processors, to multiprogramming among several applications simultaneously. Conse-
quently, processor scheduling occurs at many levels, and managing these levels poses
unique and challenging scheduling concerns [11].

SB-PRAM and HPP: The SB-PRAM [1, 26] or HPP (High Performance PRAM)
[83, 84] is a MIMD parallel computer with shared address space and uniform memory
access time due to its motivation: building a multiprocessor that is as close as possible
to the theoretical machine model CRCW-PRAM. Processor and memory modules are
connected by a butterfly network. Network latency is hidden by pipelining several
so-called virtual processors on one physical processor node in cycle-by-cycle inter-
leaving mode. A first prototype (SB-PRAM) [26] is running with four processors, a
second prototype (HPP) is under construction. In the SB-PRAM 32 virtual proces-
sors are scheduled round-robin for every instruction [83]. The project is running at
the University of Saarland (Saarbriicken, Germany).

4.2. Block interleaving. The block-interleaving approach, exemplified by the
MIT Sparcle processor, executes a single thread until it reaches a long-latency op-
eration, such as a remote cache miss or a failed synchronization, at which point it
switches to another context. The Rhamma processor switches contexts whenever a
load, store or synchronization operation is discovered.

In the block interleaving model a thread is executed for many cycles before context
switching. Context switches are used only to hide long memory latencies since small
pipeline delays are hidden by proper ordering of instructions performed by the opti-
mizing compiler. Since multithreading is not used to hide pipeline delays, fewer total
threads are needed and a single thread can execute at full speed until the next context
switch. This may also simplify the hardware. There are three variations of this model.
The switch-on-load version switches only on instructions that load data from shared
memory while storing data in shared memory does not cause context switching (since
local memory loads and other instructions all complete quickly and can be scheduled
by the compiler). However, context switches sometimes occur sooner than needed: If
a compiler ordered instructions so that a load from shared memory was issued several
cycles before the value was used, the context switch should not have to occur until
the actual use of the value. This strategy is implemented in the switch-on-use model
[154]. Here, a valid bit is added to each register. The bit is cleared when the loading
from shared memory to the corresponding register is issued and set when the result

ASYNCHRONY IN PARALLEL COMPUTING 19

returns from the network. A thread context switches if it needs a value from a register
whose valid bit is still cleared. A benefit of this model is that several load instructions
can be grouped together thus prefetching several operands of an instruction. Instead
of using valid bits, an explicit context switch instruction can be added between the
group of loads and their subsequent uses. This model, which is called ezplicit-switch
[56, 165], is simpler to implement and requires only one additional instruction.

The multithreading with caching approach adds caches to the block interleaving
model. Only those loads that miss in the cache have long latencies and cause context
switches. By filtering out many of the remote references, caching reduces the number
of threads. In [39], it is shown that for most applications just two or three threads
per processor is sufficient. There are three variations of the cache-extended block
interleaving model. The switch-on-miss model [5] context switches if load from shared
memory instructions misses in the cache. Such a context switch 1s not detected
immediately, however, so a number of subsequent instructions have already entered
the CPU pipeline and thus wasted CPU time. The switch-on-use-miss model [106]
context switches when an instruction tries to use the (still missing) value from a
shared load that missed in the cache. The conditional-switch model provides the
benefits of grouping (of the explicit-switch model) and caching. In this model, the
explicit switch instruction is ignored if all load instructions (in the preceding group)
hit the cache; otherwise, the context switch is performed. In what follows, we describe
five representatives of the block interleaving model of multithreading.

CHoPP Columbia Homogeneous Parallel Processor: The CHoPP [154] was a
shared memory MIMD with up to 16 powerful computing nodes. High sequential
performance is due to issuing multiple instructions on each clock cycle, zero-delay
branch instructions, and fast execution of individual instructions. Each node can
support up to 64 threads.

Sparcle Processor in Alewife System: The MIT Alewife multiprocessor [3, 4, 5,
6, 7, 147] is based on the multithreaded Sparcle processor. The Sparcle processor is
derived from a Sparc RISC processor. The eight overlapping register windows of a
Sparc processor are organized in four independent non-overlapping thread contexts,
each using two windows (one as register set, the other as a context for trap and mes-
sage handlers). Thread switching is triggered by external hardware when a remote
memory access is detected. Emptying the pipeline from instructions of the thread that
caused the context switch and organizational software overhead sum up to a context
switching penalty of 14 processor cycles. The Alewife multiprocessor has been oper-
ational since May 1994 [4]. It uses a low-dimensional direct interconnection network.
Despite its distributed-memory architecture, Alewife allows efficient shared-memory
programming through a multilayered approach to locality management. Communica-
tion latency and network bandwidth requirements are reduced by a directory-based
cache-coherence scheme referred to as LimitLESS directories. Latencies still occur al-
though communication locality 1s enhanced by runtime and compile-time partitioning
and placement of data and processes.

MSparc: An approach similar to the Sparcle processor is taken at the University
of Oldenburg (Germany) with the MSparc processor [156, 179]. MSparc supports up
to four contexts on chip and is compatible to standard Sparc processors. Switching
is supported by hardware and can be achieved within one processor cycle. The mul-
tithreading policy is block interleaving with the switch-on-cache-miss policy as in the
Sparcle processor.

J-Machine: The MIT Jellybean Machine [58, 167] is so called because it is to

20 J. SILC, B. ROBIC AND T. UNGERER

be built entirely of a large number of “jellybean” components. The initial version
uses an 8 x 8 x 16 cube network, with possibilities of expanding to 64K nodes.
The “jellybeans” are message driven processor (MDP) chips, each of which has a
36-bit processor, a 4K word memory, and a router with communication ports for 6
directions. External memory of up to 1 M words can be added per processor. The
MDP creates a task for each arriving message. In the prototype, each MDP chip
has 4 external memory chips that provide 256 K memory words. However, access is
through a 12-bit data bus, and with an error correcting cycle, the access time is four
memory cycles per word. Each communication port has a 9-bit data channel. The
routers provide support for automatic routing from source to destination. The latency
of a transfer is 2 microseconds across the prototype machine, assuming no blocking.
When a message arrives, a task is created automatically to handle it in 1 microsecond.
Thus, it is possible to implement a shared memory model using message passing, in
which a message provides a fetch address and an automatic task sends a reply with
the desired data.

Rhamma: The multithreaded Rhamma processor [103, 104] from the University of
Karlsruhe (Germany) uses a fast context switch to bridge latencies caused by memory
accesses or by synchronization operations. Load/store, synchronization and execution
operations of different threads are executed simultaneously by specialized functional
units within the processor. The units are coupled by FIFO buffers and access dif-
ferent register sets. Fach unit stops the execution of a thread when it recognizes an
instruction intended for another unit. To perform a context switch the unit passes
the thread tag to the FIFO buffer of the unit that is appropriate for the execution
of the instruction. Then the unit resumes processing with another thread of its own
FIFO buffer. The Rhamma processor is most similar to the Sparcle. However, the ex-
ecution unit of the Rhamma processor switches the context whenever it comes across
a load, store or synchronization instruction, and the load/store unit switches when-
ever it meets an execution or synchronization instruction (switch-on-load policy). In
contrast to Sparcle, the context switch is in an early stage of the pipeline, thus de-
creasing context switching time. On the other hand, the overall performance of the
Rhamma processor suffers from the higher rate of context switches unless the context
switch time is very small. Software simulations showed the need for extremely fast
context switching. Therefore a VHDL representation of Rhamma with optimizations
towards fast context switching was developed, simulated and synthesized. Specific
implementation techniques reduce switching costs to zero or at most one processor
cycle. These techniques use a context switch buffer which is a table containing the
addresses of instructions that already yielded a context switch.

4.3. Simultaneous multithreading or multithreaded superscalar. The
stimultaneous multithreading or mullithreaded superscalar approach [152, 194, 195,
221, 222] combines a wide issue superscalar instruction dispatch with the multiple
context approach by providing several register sets on the multiprocessor and issuing
instructions from several instruction queues simultaneously. Therefore, the issue slots
of a wide issue processor can be filled by operations of several threads. Latencies
occurring in the execution of single threads are bridged by issuing operations of the
remaining threads loaded on the processor. In principle, the full issue bandwidth can
be utilized. Project dependent details are briefly discussed below.

Media Research Laboratory Processor: The multithreaded processor of the Me-
dia Research Laboratory of Matsushita Electric Ind. (Japan) [123, 124] is the first
approach to simultaneous multithreading. Instructions of different threads are is-

ASYNCHRONY IN PARALLEL COMPUTING 21

sued simultaneously to multiple functional units. Simulation results on a parallel
ray-tracing application showed that using 8 threads a speed-up of 3.22 in case of one
load/store unit and of 5.79 in case of two load/store units can be achieved over a
conventional RISC processor. However, caches or TLBs are not simulated, nor is a
branch prediction mechanism.

Simultaneous Multithreading: The simultaneous multithreading approach from
the University of Washington (Seattle, Wa, USA) [79] surveys enhancements of the
Alpha 21164 processor [222] and of a hypothetical out-of-order issue superscalar mi-
croprocessor that resembles R10000 and PA-8000 [221]. Simulations were conducted
to evaluate processor configurations of an up to 8-threaded and 8-issue superscalar.
This maximum configuration showed a throughput of 6.64 instructions per cycle due to
multithreading using the SPEC92 benchmark suite and assuming a processor with 32
functional units (among them multiple load/store units) [222]. The second approach
[221] evaluated more realistic processor configurations and reached a throughput of
5.4 instructions per cycle for the 8-threaded and 8-issue superscalar case. Implemen-
tation issues and solutions to register file access and instruction scheduling were also
presented.

Multithreaded Superscalar (Sigmund & Ungerer): While the simultaneous multi-
threading approach [222] surveys enhancements of the Alpha 21164 processor, the mul-
tithreaded superscalar processor approach from the University of Karlsruhe [194, 195]
is based on a simplified PowerPC 604 processor. Both approaches, however, are
similar in their instruction issuing policy. The multithreaded superscalar processor
implements the six-stage instruction pipeline of the PowerPC 604 processor (fetch,
decode, dispatch, execute, complete, and write-back) [207] and extends it to employ
multithreading. The processor uses various kinds of modern microarchitecture tech-
niques as e.g. separate code and data caches, branch target address cache, static
branch prediction, in-order dispatch, independent execution units with reservation
stations, rename registers, out-of-order execution, and in-order completion. How-
ever the instruction set is simplified (using an extended DLX [119] instruction set
instead). A software simulation evaluated various configurations of the multithreaded
superscalar processor. While the single-threaded 8-issue superscalar processor only
reached a throughput of about 1.14 instructions per cycle, the 8-threaded 8-issue su-
perscalar processor executed 4.19 instructions per cycle (the load/store frequency in
the work load sets the theoretical maximum to 5 instructions per cycle). Increasing
the superscalar issue bandwidth from 4 to 8 yields only a marginal gain in instruction
throughput - a result that is nearly independent of the number of threads in the mul-
tithreaded processor. A multiprocessor chip approach with 8 single-threaded scalar
processors reaches 6.07 instructions per cycle. Using the same number of threads, the
multiprocessor chip reaches a higher throughput than the multithreaded superscalar
approach. However, if the chip costs are taken into consideration, a 4-threaded 4-issue
superscalar processor outperforms a multiprocessor chip built from single-threaded
processors by a factor of 1.8 in performance/cost relation [194].

Multithreaded Superscalar (Bagherzadeh et al.): This multithreaded superscalar
processor approach [105, 153] combines out-of-order execution within an instruction
stream with the simultaneous execution of instructions of different instruction streams.
A particular superscalar processor called Superscalar Digital Signal Processor (SDSP)
is enhanced to run multiple threads. The enhancements are directed by the aim of
minimal modification to the superscalar base processor. Therefore most resources on
the chip are shared by the threads, as for instance the register file, reorder buffer,

22 J. SILC, B. ROBIC AND T. UNGERER

instruction window, store buffer, and renaming hardware. Based on simulations a
performance gain of 20 - 55 % due to multithreading was achieved across a range of
benchmarks. The project runs at the University of California at Irvine.

5. Coming: Micro dataflow and nanothreading. The latest generation of
microprocessors - as exemplified by the Intel PentiumPro [48], MIPS R10000 [231],
and HP PA-8000 [149] - displays an out-of-order dynamic execution that is referred
to as local dataflow or micro dataflow by microprocessor researchers.

In the first paper on the PentiumPro, the instruction pipeline is described as
[48]: “The flow of the Intel Architecture instructions is predicted and these instruc-
tions are decoded into micro-operations (micro-ops), or series of micro-ops, and these
micro-ops are register-renamed, placed into an out-of-order speculative pool of pend-
ing operations, executed in dataflow order (when operands are ready), and retired
to permanent machine state in source program order.” After register renaming the
instructions (or micro-ops) are placed in an instruction window of pending instruc-
tions and in a reorder buffer that saves the program order and execution states of
the instructions (instruction window and reorder buffer may coincide). State-of-the
art microprocessors typically provide 32 (R10000), 40 (PentiumPro) or 56 (PA-8000)
instruction slots in the instruction window or reorder buffer. Instructions are ready
to be executed as soon as all operands are available. A 4-issue superscalar processor
dispatches up to 4 instructions per cycle to the execution units provided that resouce
conflicts do not occur. Dispatch and execution determine the out-of-order section of
a microprocessor. After execution instructions are retired in program order.

Comparing dataflow computers with such superscalar microprocessors shows sev-
eral similarities and differences which are briefly discussed below.

While a single thread of control in modern microprocessors often does not incor-
porate enough fine-grained parallelism to feed the multiple functional units of todays
microprocessors, dataflow resolves any threads of control into separate instructions
that are ready to execute as soon as all required operands are available. Thus, the
fine-grained parallelism potentially utilized by a dataflow computer is far larger than
the parallelism available for microprocessors.

Data and control dependencies potentially cause pipeline hazards in micropro-
cesssors that are handled by complex forwarding logic. Due to the continuous context
switches in fine-grain dataflow computers and in cycle-by-cycle interleaving machines,
pipeline hazards are avoided with the disadvantage of a poor single thread perfor-
mance.

Antidependencies and output dependencies are removed by register renaming
that maps the architectural registers to the physical registers of the microprocessor.
Thereby the microprocessor internally generates an instruction stream that satisfies
the single assignment rule of dataflow. Modern microprocessors remove antidepen-
dencies and output dependencies on-the-fly and avoid the high memory requirements,
the often awkward solutions for data structure storage and manipulation, and for loop
control caused by the single assignment rule in dataflow computers.

The main difference between the dependence graphs of dataflow and the code
sequence in an instruction window of a microprocessors 1s branch prediction and
speculatively execution. The accuracy of the branch prediction is surprisingly high
- more than 95 % are reported for single SPECmark programs. However, rerolling
execution in case of a wrongly predicted path, is costly in processor cycles especially
in deeply pipelined microprocessors. The idea of branch prediction and speculative
execution has never been evaluated in the dataflow environment.

ASYNCHRONY IN PARALLEL COMPUTING 23

Due to the single thread of control, a high degree of data and instruction locality
is present in the machine code of a microprocessor. The locality allows to employ
a storage hierarchy that stores the instructions and data potentially executed in the
next cycles close to the executing processor. Due to the lack of locality in a dataflow
graph, a storage hierarchy is difficult to apply in dataflow computers.

The matching of executable instructions in the instruction window of microproces-
sors 1s restricted to a part of the instruction sequence. Because of the serial program
order, the instructions in this window are likely to be executable soon. Therefore
the matching hardware can be restricted to a small number of instruction slots. In
dataflow computers the number of tokens waiting for a match can be very high. A
large waiting-matching store is required. Due to the lack of locality the likelyhood
of the arrival of a matching token is difficult to estimate so caching of tokens to be
matched soon is difficult in dataflow.

An unsolved problem in todays microprocessors is the memory latency caused by
cache misses. As reported for the SGI Origin 2000 distributed shared memory system
[150] these latencies are 11 processor cycles for a primary-level cache miss, 60 cycles
for a secondary-level cache miss, and can be up to 180 cycles for a remote memory
access. In number of missed instruction slots the latencies should be multiplied by the
degree of superscalar. Only a small part of the memory latency can be removed or
hidden in modern microprocessors even when techniques like out-of-order execution,
write buffer, cache preload hardware, lockup free caches, and a pipelined system
bus are employed. So microprocessors often idle and are unable to exploit the high
degree of internal parallelism provided by a wide superscalar approach. The rapid
context switching of dataflow and multithreaded architectures shows a superior way
out. Idling is avoided by switching execution to another context.

An 8-issue (or even higher) superscalar dispatch will be possible in the next gen-
eration of microprocessors. Finding enough fine-grain parallelism to fully exploit the
processor will be the main problem. One solution is to enlarge the instruction window
to several hundred instruction slots with hopefully more simultaneously executable
instructions present. There are two draw-backs to this approach. First, regarding
that all instructions stem from a single instruction stream and that on average every
seventh instruction is a branch instruction, most of the instructions in the window will
be speculatively assigned with a very deep speculation level (todays depth normally
is four at maximum). Thereby most of the instruction execution will be speculative.
The principal problem here arises from the single instruction stream that feeds the
instruction window. Second, if the instruction window is enlarged, the updating of the
instruction states in the slots and matching of executable instructions lead to more
complex hardware logic in the dispatch stage of the pipeline thus limiting the cycle
rate increase which is essential for next generations of microprocessors. Solutions are
the decoupling of the instruction window with respect to different instruction classes
as in the PA-8000, the partitioning of the dispatch stage into several pipeline stages,
and alternative instruction window organizations. One alternative instruction win-
dow organization is the multiple FIFO-based organization in the dependence-based
microprocessor [170]. Only the instructions at the heads of a number of FIFO buffers
can be dispatched to the execution units in the next cycle. The total parallelism in the
instruction window is restricted in favour of a less costly dispatch that does not slow
down processor cycle rate. Thereby the potential fine-grained parallelism is limited -
a technique somewhat similar to the threaded dataflow approaches described above.
It might be interesting to look, with respect to alternative instruction window or-

24 J. SILC, B. ROBIC AND T. UNGERER

ganizations, at dataflow matching store implementations and dataflow solutions like
threaded dataflow as exemplified by the repeat-on-input technique in the Epsilon-
2 and strongly-connected arcs model of EM-4, or the associative switching network
in the ADARC, etc. For example, the repeat-on-input strategy dispatches very small
compiler-generated code sequences serially (in an otherwise fine-grained dataflow com-
puter). Transfered to the local dataflow in an instruction window, a dispatch string
might be used where a serie of data dependent instructions are generated by a com-
piler and dispatched serially after the dispatch of the leading instruction. However,
the high number of speculative instructions in the instruction window remains.

Another new idea is the nanothreading technique of DanSoft (Kogice, Slovak
Republic) [113]. Nanothreading dismisses full multithreading for a nanothread that
executes in the same register set as the main thread. The DanSoft nanothread requires
only a 9 bit program counter, some simple control logic, and it resides in the same page
as the main thread. The nanothread might be used to fill the instruction dispatch
slots of a wide superscalar approach (like in simultaneous multithreading) without
the need for several register sets.

But the main problem of todays superscalar microprocessor may not be found
in the instruction window organization. It is the necessity of instruction comple-
tion/retirement due to the serial semantic of the instruction stream. For example, if
a load instruction causes a secondary-level cache miss, the whole reorder buffer may
soon be clogged by succeeding instructions (succeeding in sequential program order)
that are already executed. Because of the sequential program order that should be
restored by the completion stage, these instructions cannot be retired and removed
from the reorder buffer even if the instructions are independent of the load instruc-
tion that caused the cache miss. The completion may be the main obstacle for further
performance increase in Microprocessors.

In principle, an algorithm defines a partial ordering of instructions due to control
and true data dependences. The total ordering in an instruction stream for todays
microprocessors stems from von Neumann languages. Why should

e a programmer design a partially ordered algorithm, and
e code the algorithm in total ordering because of the use of a sequential von
Neumann language,
e the compiler regenerate the partial order in a dependence graph, and
e generate a reordered “optimized” sequential machine code,
e the microprocessor dynamically regenerate the partial order in its out-of-order
section, execute due to a micro dataflow principle,
e and then reestablish the unnatural serial program order in the completion
stage 7
Ideally, an algorithm should be coded in an appropriate higher-order language (e.g.
dataflow-like languages might be appropriate). Next, the compiler should generate
machine code that still reflects the parallelism and not an unnecessary serialization.
Here, a dataflow graph viewed as machine language might show the right direction.
A parallelizing compiler may generate this kind of machine code even from a program
written in a sequential von Neumann language. The compiler could use compiler
optimization and coding to simplify the dynamic analysis and dispatch out of the
instruction window. The processor dismisses the serial reordering in the completion
stage in favour of an only partial reordering. The completion unit retires instructions
not in a single serial order but in two or more series (as in the simultaneous mul-
tithreaded processors). Clogging of the reorder buffer is avoided since clogging of a

ASYNCHRONY IN PARALLEL COMPUTING 25

thread does not restrict retirement of instructions of another thread.

6. Conclusion. Conceptually, the research in parallel computing shows a clear
unification of two paradigms, 1.e. von Neumann and dataflow computing. One of
the key realizations made by the dataflow community is that pure dataflow and pure
control-flow are not orthogonal to each other but are at two ends of a “continuum.”
Hence, the trend in dataflow research was to incorporate explicit notions of state
into architecture. As a result, many of the pure dataflow ideas were replaced by
abstractions that are more conventional. At the same time, von Neumann computing
incorporated many of the dataflow techniques. Based on these and other merging
ideas the multithreaded model of computing emerged within the “continuum” with
several theoretically and commercially fruitful advantages.

Historically, commercial parallel machines have demonstrated innovative organi-
zational structures, often tied to a particular programming model, as architects sought
to obtain the ultimate in performance out of any given technology. The period up
to 1985 is dominated by advancements in bit-level parallelism (8-bit microprocessors
was replaced by 16-bit, 32-bit etc.). Doubling the width of the datapath reduces the
number of cycles required to perform an operation. The period from the mid-80s to
mid-90s is dominated by advancements in the instruction-level parallelism, where the
basic steps in instruction processing could be performed in a single cycle, most of the
time. The RISC approach was straightforward to pipeline the stages of instruction
processing so that an instruction is executed almost every cycle, on average. In or-
der to utilize the parallelism in the hardware, it became necessary to issue multiple
instructions in each cycle, called superscalar execution, as well as pipelining the pro-
cessing of each instruction. Although superscalar execution will continue to be very
important, barring some unforeseen breakthrough in instruction level parallelism, the
leap to the thread-level parallelism is increasingly compelling as chips increase in ca-
pacity. Introducing thread-level parallelism on a single processor reduces the cost
of the transition from one processor to multiple processors, thus making small scale
SMPs more attractive on a broad scale. In additions, it establishes an architectural
direction that may yield much grater latency tolerance in the long term. To conclude,
there are strong indications that multithreading will be utilized in a future processor
generations to hide the latency of local memory access [57].

Acknowledgements. The authors are grateful to referees of this paper for their
meticulous review and many helpful comments.

REFERENCES

[1] F. ABoLHASSAN, R. DREFENSTEDT, J. KELLER, W.J. PAUL, AND D. SCHEERER, On the physical
design of PRAMSs, Computer Journal, 36 (1993), pp. 756-762.

[2] A. AGARWAL, Performance tradeoffs in multithreaded processors, IEEE Trans. Parallel and
Distr. Syst., 3 (1992), pp. 525—539.

[3] A. AcarwaL, J. BaBB, D. CHAIKEN, G. D’Souza, K. JoHnsoN, D. Kranz, J. KUuBIaTOWICZ,
B.-H. Lim, G. Maa, AND K. MACKENZIE, Sparcle: A multithreaded VLSI processor for
parallel computing, Lect. Notes Comput. Sc., 748, Springer-Verlag, Berlin, 1993, pp. 395.

[4] A. AcarwaL, R. BiancHini, D. CHAIKEN, K.L. Jounson, D. Kranz, J. KuBiaTowicz, B.-
H. Liv, K. MACKENZIE, AND D. YEUNG, The MIT Alewife machine: Architecture and
performance, in Proc. 22nd ISCA, June 1995, pp. 2-13.

[5] A. AcarwaL, G. D’Souza, K. Jounson, D. Kranz, J. KuBiaTtowicz, K. KURIHARA, B.-H.
Lim, G. Maa, D. NussBauM, M. PARKIN, AND D. YEUNG, The MIT Alewife machine:
A large-scale distributed-memory multiprocessor, in Proc. Workshop on Scalable Shared
Memory Multiprocessors, 1991.

26 J. SILC, B. ROBIC AND T. UNGERER

[6] A. AcarwaL, J. KuBiaTowicz, D. Kranz, B.-H. Lim, D. YEUNG, G. D’Souza, AND
M. PARKIN, Sparcle: An evolutionary processor design for large-scale multiprocessors,
IEEE Micro, 13 (June 1993), pp. 48-61.

[7] A. AgarwaL, B.-H. Lim, D. Kranz, anD J. KuBiaTowicz, April: A processor architecture
for multiprocessing, in Proc. 17th ISCA, June 1990, pp. 104-114.

[8] T. AGERwALA AND ARVIND, Data flow systems, IEEE Computer, 15 (Feb. 1982), pp. 10-13.

[9] G. AwEeRrsoN, R. AWERSON, D. CaLLAHAN, B. KOBLENZ, A. PORTERFIELD, AND B. SMITH,
FEzploiting heterogeneous parallelism on a multithreaded multiprocessor, in Proc. 1992
Intl. Conf. Supercomputing, 1992, pp. 188-197.

, Integrated support for heterogeneous parallelism, Multithreaded computer architec-
ture: A summary of the state of the art, R.A. lannucci, G.R. Gao, R. Halstead, and
B. Smith, eds., Kluwer Academic, 1994.

[11] G. Awerson, S. KaHaN, R. Korry, aND C. McCANN, Scheduling on the Tera MTA, Lect.
Notes Comput. Sc., 949, Springer-Verlag, Berlin, 1995, pp. 19.

[12] R. AwversoN, D. CaLLaHaN, D. CuMMINGS, B. KOBLENZ, A. PORTERFIELD, AND B. SMITH,
The Tera computer system, in Proc. 1990 Intl. Conf. Supercomputing, June 1990, pp. 1-6.

[13] M. Amamiva, N. TakaHasHI, T. NARUSE, aAND M. YosHIDA, A dataflow processor array
system for solving partial differential equations, in Proc. Intl. Symp. Applied Math. and
Infor. Sci., March 1982.

[14] B.S. ANG, ARVIND, AND D. CHIOU, StarT the next generation: Integrating global caches and
dataflow architecture, Advanced Topics in Dataflow Computing and Multithreading, G.R.
Gao, L. Bic, and J.-L. Gaudiot, eds., IEEE Computer Society Press, 1995, pp. 19-54.

[15] ArvinD, L. Bic, aND T. UNGERER, Ewolution of dataflow computers, Advanced topics in
data-flow computing, J.-L.. Gaudiot and L. Bic, eds., Prentice Hall, 1991, pp. 3—33.

[16] ArRvVIND AND S.A. BrROBST, The evolution of dataflow architectures from static dataflow to
P-RISC, Intl. J. High Speed Computing, 5 (1993), pp. 125-153.

[17] ArvIND AND D.E. CULLER, Dataflow architectures, Ann. Review in Comput. Sci., 1 (1986),
Pp. 225-253.

, Managing resources in a parallel machine, Fifth Generation Computer Architectures,
Elsevier Science Publishers, 1986, pp. 103-121.

[19] ArvinD, K.P. GosTELOW, AND W. PLOUFFE, An asynchronous programming language and
computing machine, Tech. Report 114a, Univ. California at Irvine, Dept. Information and
Comput. Sci., Dec. 1978.

[20] ArvIND AND R.A. IaNNUCCI, A critigue of multiprocessing von Newmann style, in Proc. 10th
ISCA, June 1983, pp. 426-436.

[21] ArvIND AND V. KATHAIL, A multiple processor dataflow machine that supports generalized
procedures, in Proc. 8th ISCA, May 1981, pp. 291-302.

[22] ArviNnD, V. KaTHAIL, AND K. PINGALI, A processing element for a large multiprocessor
dataflow machine, in Proc. Intl. Conf. Circ. Comput., Oct. 1980.

[23] ArvIND AND R.S. NIKHIL, Ezecuting a program on the MIT tagged-token dataflow architecture,
Lect. Notes Comput. Sc., 259, Springer-Verlag, Berlin, 1987, pp. 1-29.

, Ezecuting a program on the MIT tagged-token dataflow architecture, IEEE Trans.
Computers, C-39 (1990), pp. 300—318.

[25] K. Asapa, H. TERADA, S. MaTsumoTO, S. MivaTa, H. Asano, H. Miura, M. SHIMIZU,
S. Komorl, T. FUKUHARA, AND K. SHIMA, Hardware structure of a one-chip data-driven
processor: (Q-p, in Proc. 1987 ICPP, Aug. 1987, pp. 327-329.

[26] P. BacH, M. BRAUN, A. FORMELLA, J. FRIEDRICH, T. GRUN, AND C. LINCHTENAU, Building
the 4 processor SB-PRAM prototype, in Proc. 30th Hawaii Intl. Conf. Syst. Sci., Jan.
1997, vol.5, pp. 14-23.

[27] J. Backus, Can programming be librated form the von Newmann style? A functional style
and its algebra of programs, Comm. ACM, 21 (1978), pp. 613—641.

[28] P.M.C.C. BarRAHONA AND J.R. GURD, Simulated performance of the Manchester multi-ring
dataflow machine, in Proc. 2nd ICPC, Sep. 1985, pp. 419-424.

, Processor allocation in a multi-ring dataflow machine, J. Parall. Distr. Comput., 3
(1986), pp. 67-85.

[30] S. BARKHORDARIAN, RAMPS: A realtime structured small-scale data flow system for parallel
processing, in Proc. 1987 ICPP, Aug. 1987, pp. 610-613.

[31] M. BEck, T. UNGERER, AND E. ZEHENDER, Classification and performance evaluation of hy-
brid dataflow techniques with respect to matriz multiplication, in Proc. GI/ITG Workshop
PARS’93, April 1993, pp. 118-126.

[32] M.J. BECKERLE, An overview of the START (*T) computer system, Tech. Report MCRC-
TR-28, Motorola Technical Report, July 1992.

[10]

[18]

[24]

[29]

ASYNCHRONY IN PARALLEL COMPUTING 27

[33] , Overview of the START (*T) multithreaded computer, in Proc. COMPCON’93, 1993,
pp. 148-156.

[34] L. Bic, A process-oriented model for efficient execution of dataflow programs, J. Parall. Distr.
Comput., 8 (1990), pp. 42-51.

[35] L. Bic anD M. AL-MOUHAMED, The EM-4 wnder implicit parallelism, in Proc. 1993 Intl.
Conf. Supercomputing, July 1993, pp. 21-26.

[36] A.P.W. BOHM, J.R. GURD, AND Y.M. TEO, The effect of iterative instructions in dataflow
computers, in Proc. 1989 ICPP, Aug. 1989, pp. 201-208.

[37] A.P.W.BOHM AND J. SARGEANT, Code optimization for tagged-token dataflow machine, IEEE
Trans. Computers, C-38 (1989), pp. 4-14.

[38] A.P.W. BOHM AND Y.M. TEO, Resource management 1n a multi-ring dataflow machine, in
Proc. CONPARRSS, Sep. 1988, pp. B 191-200.

[39] R.F.BOOTHE, Evaluation of multithreading and caching in large shared memory parallel com-
puters, Tech. Report UCB/CSD-93-766, Univ. California Berkeley, Comput. Sci. Division,
July 1993.

[40] D.F. BrAILSFORD AND R.J. DUCKWORTH, The MUSE machine — an architecture for structured
data flow computation, New Generation Computing, 3 (1985), pp. 181-195.

[41] R. BUEHRER AND K. EKANADHAM, Incorporating data flow ideas into von Newmann processors
for parallel processing, IEEE Trans. Computers, C-36 (1987), pp. 1515-1522.

[42] M.L. CAMPBELL, Static allocation for a dataflow multiprocessor, in Proc. 1985 ICPP, Aug.
1985, pp. 511-517.

[43] W.W. CarLsON aND J.A.B. FORTES, On the performance of combined data flow and control
flow systems: FExperiments using two iterative algorithms, J. Parall. Distr. Comput., 5
(1988), pp. 359-382.

[44] A.J. CaTTO AND J.R. GURD, Resource management in dataflow, in Proc. Conf. Functional
Programming Lang. Comput. Arch., Oct. 1981, pp. 77-84.

[45] A.J. CaTTO, J.R. GURD, AND C.C. KIRKHAM, Non-deterministic dataflow programming, in
Proc. 6th ACM European Conf. Comput. Arch., April 1981, pp. 435-444.

[46] D. Cuiou, B.S. ANG, R. GREINER, ArRvIND, J.C Hor, M.J. BECKERLE, J.E. HIicKs, AND
A. BOUGHTON, START-NG: Delivering seamless parallel computing, Lect. Notes Comput.
Sc., 966, Springer-Verlag, Berlin, 1995, pp. 101-116.

[47] Y.M. CHONG, Data flow chip optimizes image processing, Comput. Design (Oct. 1984), pp. 97—
103.

[48] R.P. CowELL AND R.L. STEC, A 0.6 um BiCMOS processor with dynamic ezecution, in
Proc. Intl. Solid State Circuits Conf., Feb. 1995.

[49] D. ComTE AND N. Hirpl, LAU multiprocessor: Microfunctional description and technologic
choice, in Proc. 1st Eur. Conf. Parallel and Distr. Proc., Feb. 1979, pp. 8-15.

[50] D. ComTE, N. HiFpi, AND J.C. SYRE, The data driven LAU multiprocessor system: Results
and perspectives, in Proc. World Comput. Congress IFIP’80, Oct. 1980, pp. 175-180.

[61] M. CornisH, The TI dataflow architecture: The power of concurrency for avionics, in Proc.
3rd Conf. Digital Avionics Syst., Nov. 1979, pp. 19-25.

[52] M. CornisH, D.W. HoGaN, aND J.C. JENSEN, The Tewas Instruments distributed data pro-
cessor, in Proc. Lousiana Comput. Exposition, March 1979, pp. 189-193.

[63] D.E. CULLER, Managing parallelism and resources in scientific dataflow programs, Ph.D.
thesis, MIT, Cambridge, MA, June 1989.

[54] D.E. CULLER, S. GoLDSTEIN, K.E. SCHAUSER, AND T. vOoN EICKEN, TAM - A compiler
controlled threaded abstract machine, J. Parall. Distr. Comput., 18 (1993), pp. 347-370.

[55] D.E. CULLER AND G.M. PapaDoPoULOS, The explicit token store, J. Parall. Distr. Comput.,
10 (1990), pp. 289-308.

[56] D.E. CULLER, A. SaH, K.E. SCHAUSER, T. vON EICKEN, AND J. WAWRZYNEK, Fine-grain par-
allelism with minimal hardware support: A compiler-controlled Threaded Abstract Ma-
chine, in Proc. 4th Intl. Conf. Arch. Support for Programming Lang. Operating Systems,
April 1991, pp. 164-175.

[57] D.E. CULLER, J.P. SINGH, AND A. GUPTA, Parallel Computer Architecture, Morgan Kaufmann
Publishers, 1998 (to appear).

[58] W.J. DaLLy, J. Fiskg, J. KEEN, R. LETHIN, M. Noakgs, P. NuTH, R. DAVISON, AND
G. FYLER, The message-driven processor: A multicomputer processing node with effi-
cient mechanisms, IEEE Micro, 12 (April 1992), pp. 23-39.

[59] J.D.G. Da Suva AND J.V. WooDs, Design of a processing subsystem forthe Manchester data
flow computer, in Proc. IEE, 128 (1981), pp. 218-224.

, A pseudoassociative matching storage wusing hardware hashing, in Proc. IEE, 130

(1984), pp. 19-25.

[60]

28 J. SILC, B. ROBIC AND T. UNGERER

[61] K. Da1 anp W.K. Girol, A basic architecture supporting LGDF computation, in Proc. 1990
Intl. Conf. Supercomputing, 1990, pp. 23-33.

[62] F.DAREMA, D.A. GEORGE, V.A. NORTON, AND G.F. PFISTER, A single-program-multiple-data
computational model for EPEX/FORTRAN, Parallel Comput., 7 (1988), pp. 11-24.

[63] A.L. Davis, The architecture and system method of DDM1: A recursively structured data
driven machine, in Proc. 5th ISCA, April 1978, pp. 210-215.

[64] A.L. Davis anD R.M. KELLER, Data flow program graphs, IEEE Computer, 15 (Feb. 1982),
pPp. 26—41.

[65] J.B. DENNIS, First version of a data-flow procedure language, Lect. Notes Comput. Sc., 19,
Springer-Verlag, Berlin, 1974, pp. 362-376.

[66] , The variaties of data flow computers, in Proc. 1st Intl. Conf. Distr. Comput. Syst.,
Oct. 1979, pp. 430-439.

[67] , Data flow supercomputers, IEEE Computer, 13 (Nov. 1980), pp. 48-56.

[68] , Dataflow computation: A case study, Computer architecture - Concepts and systems

(V.M. Milutinovi¢, ed.), North-Holland, 1988, pp. 354-404.

[69] J.B. DEnnis, G.A. BougHTON, aND C.K.C. LEUNG, Building blocks for data flow prototypes,
in Proc. 7th ISCA, May 1980, pp. 1-8.

[70] J.B. DENNIS AND G.R. GaAo, Multithreaded architectures: Principles, projects, and issues,
Multithreaded computer architecture: A summary of the state of the art, R.A. lannucci,
G.R. Gao, R. Halstead, and B. Smith, eds., Kluwer Academic, 1994, pp. 1-74.

[71] J.B. DEnNIS, W.Y.P. LiM, AND W.B. ACKERMAN, The MIT data flow engineering model, in
Proc. 9th World Comput. Congress IFIP’83, Sep. 1983, pp. 553-560.

[72] J.B. DENNIS AND D.P. MisuNaS, A preliminary architecture for a basic data-flow processor,
in Proc. 2nd ISCA, Jan. 1975, pp. 126-132.

[73] K. DIEFFENDORF AND M. ALLEN, Organtzation of the Motorola 88110 superscalar RISC mi-
croprocessor, IEEE Micro, 12 (April 1992), pp. 40-63.

[74] T.A. Diep, C. NELSON, AND J.P. SHEN, Performance evaluation of the PowerPC 620 micro-
processor, in Proc. 22nd ISCA, June 1995, pp. 163-174.

[75] E.W.DuksTRA, Co-operating sequential processes, Programming Languages (F. Genuys, ed.),
Academic Press, 1968, pp. 43-112.

[76] G.K. EGaN, The CSIRAC II dataflow computer: Token and node definitions, Tech. Report
31-009, School of Electrical Engineering, Swinburne Institute of Technology, 1990.

[77] G.K. Ecan, N.J. WEBB, AND A.P.W. BOHM, Some architectural features of the CSIRAC I
data-flow computer, Advanced topics in data-flow computing, J.-L.. Gaudiot and L. Bic,
eds., Prentice Hall, 1991, pp. 3-33.

[78] K.G. EGAN AND S. WATHANASIN, Data-driven computation: Its suitability in control systems,
in Proc. Science Research Council’s Workshop on Distr. Comput., July 1978.

[79] S.J. EGGERs, J.S. EMER, H.M. LEvy, J.L. Lo, R.L. STAMM, AND D.M. TULLSEN, Simultanec-
ous multithreading: A foundation for newt-generation processors, IEEE Micro, 17 (Oct.
1997).

[80] P. EvriPIDOU AND J.-L. GAUDIOT, The USC decoupled multilevel data-flow execution model,
Advanced topics in data-flow computing, J.-L. Gaudiot and L. Bic, eds., Prentice Hall,
1991, pp. 347-379.

[81] M.R. Exum AND J.-L. GAUDIOT, Network design and allocation comsideration in the Hughes
data-flow machine, Parallel Comput., 13 (1990), pp. 17-34.

[82] M. FLYNN, Some computer organizations and their effectiveness, IEEE Trans. Computers,
C-21 (1972), pp. 948-960.

[83] A. FormELLA, J. KELLER, AND T. WALLE, HPP: A high performance PRAM, Lect. Notes
Comp. Sc., 1123, Springer-Verlag, Berlin, 1996, pp. 425-434.

, HPP: A high performance PRAM, Tech. Report H 124, 02/96, University of Saar-
bruecken, 1996.

[85] T. Fuiita, A multithreaded processor architecture for parallel symbolic computation, Tech.
Report MIT/LCS/TM-338, CS Lab., MIT, Cambridge, MA, 1987.

[86] G.R. Gao, An efficient hybrid dataflow architecture model, J. Parall. Distr. Comput., 19
(1993), pp. 293-306.

[87] G.R. Gao, J.-L. GaubpioT, aND L. Bic, Dataflow and multithreaded architectures: Guest
editor’s introduction, J. Parall. Distr. Comput., 18 (1993), pp. 271-272.

[88] J.-L. GaubioT aND L. Bic, Advanced topics in dataflow computing, Prentice Hall, 1991.

[89] J.-L. GaubioT, R.W. VEDDER, G.K. TUCKER, D. FINN, AND M.L. CAMPBELL, A distributed
VLSI architecture for efficient signal and data processing, IEEE Trans. Computers, C-34
(1985), pp. 1072-1087.

[90] D. GuosaL AND L.N. BHUYAN, Performance analysis of the MIT tagged token dataflow ar-

[84]

ASYNCHRONY IN PARALLEL COMPUTING 29

chitecture, in Proc. 1987 ICPP, Aug. 1987, pp. 680—683.
[91] W.K. Giro1, U. BRUNING, AND W. SCHRODER-PREIKSCHAT, MANNA: Prototype of a dis-
tributed memory architecture with mazimized sustained performance, in Proc. 5th Eu-
romicro Workshop on Prallel and Distributed Processing, Jan. 1996.
[92] J.R.W. GraUERT, J.R. GURD, AND C.C. KIRKHAM, Evolution of dataflow architecture, in
Proc. IFIP WG 10.3 Workshop on Hardware Supported Implementation on Concurrent
Lang. in Distr. Systems, March 1984, pp. 1-18.
[93] J.R.W. GrAUERT, J.R. GURD, C.C. KIRKHAM, AND I. WATSON, The dataflow approach, Dis-
tributed Computing, F.B. Chambers, D.A. Duce, and G.P. Jones, eds., Academic Press,
1984, pp. 1-53.
[94] R.R. GLENN AND D.V. PRYOR, Instrumentation for a massively parallel MIMD application,
in Proc. Intl. Conf. Measurement and Modeling of Comput. Syst., May 1991, pp. 208-209.
[95] E. GLUcK-HILTROP, The Stollman dataflow machine, in Proc. CONPARSS, Sep. 1988.
[96] E. GLOck-HiLTROP, M. RAMLOW, AND U. SCHURFELD, The Stollman dataflow machine, Lect.
Notes Comput. Sc., 365, Springer-Verlag, Berlin, 1989, pp. 433-457.
[97] K.P. GosTELOW AND ARVIND, The U-interpreter, IEEE Computer, 15 (Feb. 1982), pp. 42—49.
[98] K.P. GosTELOW AND R.E. THOMAS, A view of dataflow, in Proc. National Comput. Conf.,
June 1979, pp. 629-636.
, Performance of a simulated dataflow computer, IEEE Trans. Computers, C-29 (1980),
pp. 905-919.
[100] V.G. GRAFE aND J.E. HocH, The Epsilon-2 multiprocessor system, J. Parall. Distr. Comput.,
10 (1990), pp. 309-318.
[101] V.G. Grarg, J.E. HocH, G.S. DavibsoN, V.P. HoLMmEs, D.M. DAVENPORT, AND K.M.
STEELE, The Epsilon project, Advanced topics in data-flow computing, J.-L. Gaudiot
and L. Bic, eds., Prentice Hall, 1991, pp. 175-205.
[102] J.D. GrimM, J.A. EGGERT, AND G.W. KARCHER, Distributed signal processing using data
flow techniques, in Proc. 17th Hawaii Intl. Conf. Syst. Sci., Jan. 1984, pp. 29-38.
[103] W. GRUENEWALD AND T. UNGERER, Towards extremely fast comtewt switching in a block-
multithreaded processor, in Proc. 22nd Euromicro Conf., Sep. 1996, pp. 592-599.
, A multithreaded processor designed for distributed shared memory systems, in Proc.
Intl. Conf. Advances in Parallel and Distr. Comput., March 1997.
[105] M. GuLaTI AND N. BAGHERZADEH, Performance study of a multithreaded superscalar micro-
processor, in Proc. 2nd Intl. Symp. High-Performance Comput. Arch., Feb. 1996, pp. 291—
301.
[106] A. GupTa, J. HENNESSY, K. GHARACHORLOO, T. MowRY, AND W.-D. WEBER, Comparative
evaluation of latency reducing and tolerating techniques, in Proc. 18th ISCA, May 1991,
Pp. 254-263.
[107] J.R. GURD, The Manchester dataflow machine, Future Generations Computer Systems, 1
(1985), pp. 201-212.
[108] J.R. GurDp, C.C. KIRKHAM, AND I. WATSON, The Manchester prototype dataflow computer,
Comm. ACM, 28 (1985), no. 1, pp. 34-52.
[109] J.R. GURD AND I. WaTsoN, A multilayered data flow computer architecture, in Proc. 1977
ICPP, Aug. 1977, pp. 94.
[110] —, Data driven system for high speed computing, Part I: Structuring software for parallel
evecution, Computer Design, 19 (1980), pp. 91-96.

[99]

[104]

[111] , Data driven system for high speed computing, Part II: Hardware design, Computer
Design, 19 (1980), pp. 97-106.
112 Preliminary evaluation of a prototype dataflow computer, in Proc. 9th World Comput.
s Y p yp p s P

Congress [FIP'83, Sep. 1983, pp. 545-551.

[113] L. GWENNAP, DanSoft develops WVLIW design, Microprocessor Report, 11 (Feb. 17, 1997),
pp. 18-22.

[114] R.H. HALSTEAD, JR., Implementation of Multilisp: Lisp on a multiprocessor, in Proc. ACM
Symp. Lisp and Functional Programming, Aug. 1984, pp. 9-17.

[115] , Multilisp: A language for concurrent symbolic computation, ACM Trans. Program-
ming Lang. Syst., 7 (1985), pp. 501-538.
[116] , Parallel computing using Multilisp, Parallel computation and computers for artificial

intelligence (J. Kowalik, ed.), Kleuwer Academic, 1988, pp. 21-49.

[117] R.H. HALSTEAD, JR. AND T. FuiiTA, MASA: A multithreaded processor architecture for par-
allel symbolic computing, in Proc. 15th ISCA, May 1988, pp. 443—-451.

[118] R. HEMPEL, A.J.G. HEY, O. McCBRyYAN, AND D.W. WALKER, Message passing interfaces
(special 1ssue), Parallel Comput., 20 (1994), pp. 417-673.

[119] J. L. HENNEsSY AND D. A. PATTERSON, Computer architecture a quantitative approach, Mor-

30

[120]

[121]

[122]

[123]

[124]

[125]
[126]
[127]
[128]
[129]

[130]

[131]

[132]

[133]

[134]
[135]

[136]
[137]
[138]
[139]
[140]

[141]

[142]

[143]

[144]
[145]

[146]

J. SILC, B. ROBIC AND T. UNGERER

gan Kaufmann, 1996.

K. Hiraki, K. NISHIDA, S. SEKIGUCHI, AND T. SHIMADA, Maintenance architecture and LST
implementation of a dataflow computer with a large number of processors, in Proc. 1986
ICPP, Aug. 1986, pp. 584-591.

K. HIRAKI, S. SEKIGUCHI, AND T. SHIMADA, Status report of SIGMA-1: A dataflow supercom-
puter, Advanced topics in data-flow computing, J.-L. Gaudiot and L. Bic, eds., Prentice
Hall, 1991, pp. 207-223.

K. Hiraki, T. SHIMADA, AND K. NISHIDA, A hardware design of the SIGMA-1, a data flow
computer for scientific computations, in Proc. 1984 ICPP, Aug. 1984, pp. 524-531.

H. HiraTa, K. KIMURA, S. NAGAMINE, Y. MOCHIZUKI, A. NISHIMURA, Y. NAKASE, AND
T. NISHIZAWA, An elementary processor architecture with simultaneous instruction 1ssu-
ing from multiple threads, in Proc. 19th ISCA, May 1992, pp. 136-145.

H. HiraTA, Y. MOCHIZUKI, A. NISHIMURA, Y. NAKASE, AND T. NisHIZAWA, A multithreaded
processor architecture with simultaneous instruction issuing, Supercomputer, 49 (1992),
pPpR. 23-39.

J.L.A. HUGHES, Implementing control-flow structures in dataflow programs, in Proc. COM-
PCON Spring 82, Feb. 1982, pp. 87-90.

H.H.J. Hum, K.B. THEOBALD, AND G.R. GAO, Building multithreaded architectures with off-
the-shelf microprocessor, in Proc. IPPS 94, April 1994, pp. 288-294.

R.A. Iannucct, Toward a dataflow/von Newmann hybrid architecture, in Proc. 15th ISCA,
May 1988, pp. 131-140.

R.A. Iannuccl, G.R. Gao, R. HALSTEAD, AND B. SMITH, Multithreaded computer architec-
ture: A summary of the state of the art, Kluwer Academic, 1994.

Y. Inacamr AND J.F. FoLEY, The specification of a new Manchester dataflow machine, in
Proc. 1989 Intl. Conf. Supercomputing, June 1989, pp. 371-380.

N. Ito, M. KisHi, E. KuNo, AND K. Rokusawa, The data-flow based parallel inference ma-
chine to support two basic languages in KLI, in Proc. IFIP TC-10 Working Conf. Fifth
Generation Comput. Arch., July 1985, pp. 123-145.

N. ITto AND K. MusaDa, Parallel inference machine based on the data flow model, in Proc.
Intl. Workshop High Level Comput. Arch., May 1984.

N. Ito, M. Sato, E. Kuno, AND K. Rokusawa, The architecture and preliminary evaluation
results of the experimental parallel inference machine PIM-D, in Proc. 13th ISCA, June
1986, pp. 149-156.

M. IwasHITA AND T. TEMMA, Ezperiments on a data flow machine, in Proc. IFIP Conf., 1987,
Pp. 235-245.

T. JEFFERY, The nPD7281 processor, Byte (Nov. 1985), pp. 237-246.

I. JErREBIC, B. SLIVNIK, AND R. TROBEC, Library for programming on tourus-connected mul-
tiprocessors, in Proc. PACTA’92, Sep. 1992, pp. 386-395.

C. JESSHOPE, Scalable parallel computers, EURO-PAR Conf. (Stockholm, Sweden), Aug. 1995,
Tutorial.

H.F. JORDAN, Performance measurements on HEP: A pipelined MIMD computer, in Proc.
10th ISCA, June 1983, pp. 207-212.

K.M. Kavi, B.P. BuckLEs, AND U.N. BHAT, A formal definition of data flow graph model,
IEEE Trans. Computers, C-35 (1986), pp. 940-948.

K. Kawakami aAND J.R. GURD, A scalable dataflow structure store, in Proc. 13th ISCA, June
1986, pp. 243-250.

M. KisHi, H. YASUHARA, AND Y. KAWAMURA, DDDP: A distributed data driven processor, in
Proc. 10th ISCA, June 1983, pp. 236-242.

D. KrappHoLZ, Y. L1ao, D. J. WaNG, AND A. OMONDI, Toward a hybrid data-flow/control-
flow MIMD architecture, in Proc. 5th Intl. Conf. Distr. Comput. Syst., May 1985, pp. 10—
15.

Y. Kopama, Y. Koumura, M. SaTto, H. SAKANE, S. SAKAI, AND Y. YAMAGUCHI, EMC-Y:
Parallel processing element optimizing communication and computation, in Proc. 1993
Intl. Conf. Supercomputing, July 1993, pp. 167-174.

Y. Kobama, H. SAKANE, M. SaTo, H. YAMANA, S. SAKAI, AND Y. YAMAGUCHI, The EMC-X
parallel computer: Architecture and basic performance, in Proc. 22nd ISCA, June 1995,
pp. 14-23.

S. Komori, K. SHIMA, S. M1vaTA, AND H. TERADA, Parallel processing with large grain data
flow techniques, IEEE Micro, 9 (June 1989), pp. 45-59.

J.S. KowaLik, Parallel MIMD computation: The HEP supercomputer and its applications,
MIT Press, 1985.

D.A. Kranz, R.H. HALSTEAD, AND E. MOHR, Mul-T: A high-performance parallel Lisp, ACM

ASYNCHRONY IN PARALLEL COMPUTING 31

SIGPLAN Notices, 24 (1989), no. 7, pp. 81-90.

[147] J. KUuBIATOWICZ AND A. AGARWAL, Anatomy of a message in the Alewife multiprocessor, in
Proc. 1993 Intl. Conf. Supercomputing, July 1993, pp. 195-206.

[148] J.T. KUEHN AND B.J. SMITH, The Horizon supercomputing system: architecture and software,
in Proc. Supercomputing '88, Nov. 1988, pp. 28-34.

[149] A. KuMAR, The HP PA-8000 RISC CPU, IEEE Micro, 17 (March/April 1997), pp. 27-32.

[150] J. LauboN anD D. LENoskI, The SGI Origin: A ccNUMA highly scalable server, in Proc.
24th ISCA, June 1997, pp. 241-251.

[151] B. LEE aAND A.R. HURsON, Dataflow architectures and multithreading, IEEE Computer, 27
(Aug. 1994), pp. 27-39.

[152] J.L. Lo, S.J. EaGERrs, J.S. EMER, H.M. LEvy, R.L. STAMM, AND D.M. TULLSEN, Converting
thread-level parallelism to instruction-level parallelism via simultaneous multithreading,
ACM Trans. Comput. Systems, 15 (1997).

[153] M. LoikKKANEN AND N. BAGHERZADEH, A fine-grain multithreading superscalar architecture,
in Proc. PACT’96, Oct. 1996, pp. 163-168.

[154] T.E. Mankovic, V. Popescu, aAND H. SULLIVAN, CHoPP priciples of operations, in Proc. 2nd
Intl. Supercomputer Conf., May 1987, pp. 2-10.

[155] O.C. MaqQuELIN, H.H.J. HuM, aND G.R. Gao, Costs and benefits of multithreading with off-
the-shelf processors, Lect. Notes Comp. Sc., 966, Springer-Verlag, Berlin, 1995, pp. 117—
128.

[156] A. MikscHL AND W. DaMM, Msparc: A multithreaded Spare, Lect. Notes Comp. Sc., 1123,
Springer-Verlag, Berlin, 1996, pp. 461-469.

[157] J. MILEwWsKI, Data driven comntrol in I-structures, in Proc. 2nd Intl. Conf. Parallel Computing,
Sep. 1985, pp. 377-382.

[158] J. MiLEwsKI AND I. MorRl, Efficient loop handling in a stream-oriented unraveling dataflow
interpreter, Comput. Artif. Intell., 9 (1990), pp. 545-570.

[159] S.W. MooRE, Multithreaded processor design, Kluwer Academic Publishers Boston, 1996.

[160] V.L. NarasIMHAN AND T. Downs, Operating system features of a dynamic dataflow array
processing system (PATTSY), in Proc. 3rd Annual Parallel Processing Symp., March
1989, pp. 722-740.

[161] S.S. NEMAWARKAR AND G.R. Gao, Measurement and modeling of EARTH-MANNA multi-
threaded architecture, in Proc. 4th Intl. Workshop MASCOTS’96, Feb. 1996, pp. 109-114.

[162] R.S. NIkHIL, The parallel programming language Id and 1ts compilation for parallel machines,
Intl. J. High Speed Computing, 5 (1993), pp. 171-223.

, A multithreaded implementation of Id using P-RISC graphs, Lect. Notes Comput.
Sc., 768, Springer-Verlag, Berlin, 1994, pp. 390-405.

[164] R.S. NIKHIL AND ARVIND, Can dataflow subsume von Newmann computing?, in Proc. 16th
ISCA, May 1989, pp. 262-272.

[165] R.S. NikHIL, G.M. PAPADOPOULOS, AND ARVIND, *T: A multithreaded massively parallel ar-
chitecture, in Proc. 19th ISCA, May 1992, pp. 156-167.

[166] H. NisHikawa, H. TERADA, K. KoMaTsu, S. YosHIDA, T. OkaMoToO, Y. Tsuil, S. TAKAMURA,
T. ToKURA, Y. NISHIKAWA, S. HARA, AND M. MEICHI, Architecture of a one-chip data-
driven processor: (-p, in Proc. 1987 ICPP, Aug. 1987, pp. 319-326.

[167] M.D. Noakgs, D.A. WaLLacH, aND W.J. DaLLy, The J-Machine multicomputer: An archi-
tectural evaluation, in Proc. 20th ISCA, May 1993, pp. 224-236.

[168] M. OJSTERSEK, V. ZUMER, AND P. Kokor, Date flow computer models, in Proc. CompEuro
87, May 1987, pp. 884—-885.

[169] A. OmonDI AND D. KrLapPHOLZ, Combining control driven and data driven computation for
high processing rate, in Proc. Intl. Computing Symp., March 1985.

[170] S. PaLacHARLA, N.P. JoupPI, AND J.E. SMITH, Complexity-effective superscalar processors,
in Proc. 24th ISCA, June 1997, pp. 206-218.

[171] G.M. PapapoprouLos, Implementation of a gemeral-purpose dataflow multiprocessor, Tech.
Report TR-432, MIT Laboratory for Computer Science, Cambridge, Ma., Aug. 1988.

[172] G.M. PapabopouLos AND D.E. CULLER, Monsoon: An explicit token-store architecture, in
Proc. 17th ISCA, June 1990, pp. 82-91.

[173] G.M. PapabopouLos aND K.R. TRAUB, Multithreading: A revisionist view of dataflow archi-
tectures, in Proc. 18th ISCA, May 1991, pp. 342-351.

[174] L.M. PaTNnAIK, R. GOVINDARAJAN, AND N.S. RaMADOSS, Design and performance evaluation
of EXMAN: EXtended MANchester data flow computer, IEEE Trans. Computers, C-35
(1986), pp. 220-244.

[175] A. Pras, D. CoMTE, O. GELLY, AND J. C. SYRE, LAU system architecture: A parallel data
driven processor based on single assignment, in Proc. 1976 ICPP, Aug. 1976, pp. 293-302.

[163]

32 J. SILC, B. ROBIC AND T. UNGERER

[176] G.M. QUENOT AND B. ZAVIDOVIQUE, A data-flow processor for real-time low-level image
processing, in Proc. IEEE Custom Integrated Circuits Conf., May 1991, pp. 1241-1244.

[177] J.E. REQUA, The pieccwise data flow architecture conirol flow and register management, in
Proc. 10th ISCA, June 1983, pp. 84-89.

[178] J.E. REQUA aND J.R. McGRaw, The piecewise data flow architecture: Architectural concept,
IEEE Trans. Computers, C-32 (1983), pp. 425-438.

[179] J. Risau, A. MikscHL, aND W. Damm, A RISC approach to weak cache coherence, Lect.
Notes Comp. Sc., 1123, Springer-Verlag, Berlin, 1996, pp. 453—-456.

[180] L. Ron anD W.A. NAJJAR, Design of a storage hierarchy in multithreaded architectures, in
Proc. 28th MICRO, 1995, pp. 271-278.

[181] S. Sakal, Synchronization and pipeline design for a multithreaded massively parallel com-
puter, Advanced Topics in Dataflow Computing and Multithreading, G.R. Gao, L. Bic,
and J.-L. Gaudiot, eds., IEEE Computer Society Press, 1995, pp. 55-74.

[182] S. Sakal, K. OxamoTo, H. MaTsuoka, H. Hirono, Y. KobaMa, AND M. SATO, Super-
threading: Architectural and software mechanisms for optimizing parallel computation,
in Proc. 1993 Intl. Conf. Supercomputing, July 1993, pp. 251-260.

[183] S. Sakal, Y. YaMmacucHl, K. Hiraki, Y. KobaMma, anD T. YUBA, An architecture of a
dataflow single chip processor, in Proc. 16th ISCA, May 1989, pp. 46-53.

[184] J. SarGgEANT AND C.C. KIRKHAM, Stored data structures onm the Manchester dataflow ma-
chines, in Proc. 13th ISCA, June 1986, pp. 235-242.

[185] A.V.S. SasTry, L.M. PATNAIK, AND J. S1LC, Dataflow architectures for logic programming,
Electrotehnical Review, 55 (1988), pp. 9-19.

[186] M. SaTo, Y. KobaMa, S. SAKAI, AND Y. YAMAGUCHI, EM-C: Programming with ewplicit
parallelism and locality for the EM-4 multiprocessor, in Proc. PACT 94, Aug. 1994, pp. 3—
14.

[187] , Experiences with executing shared memory programs using fine-grained communica-
tron and multithreading in EM-/4, in Proc. IPPS 94, April 1994, pp. 630-636.

[188] M. SaTo, Y. KobaMa, S. SAKAI, Y. YAMAGUCHI, AND Y. KoUMURA, Thread-based program-
ming for the EM-4 hybrid dataflow machine, in Proc. 19th ISCA, May 1992, pp. 146-155.

[189] M. SaTo, Y. KoDAMA, S. SAKAIL Y. YAMAGUCHI, AND S. SEKIGUCHI, Distributed data structure
in thread-based programming for a highly parallel dataflow machine EM-4, Advanced
Topics in Dataflow Computing and Multithreading, G.R. Gao, L. Bic, and J.-L. Gaudiot,
eds., IEEE Computer Society Press, 1995, pp. 131-142.

[190] J. SBrOT, G.M. QUENOT, AND B. ZAVIDOVIQUE, A functional data-flow architecture dedicated
to real-time image processing, IFIP Trans., A-23 (1993), pp. 129-140.

[191] J.A. SHARP, Data flow computing, Ellis Horwood Ltd. Publishers, 1985.

[192] A. SHaw, ARVIND, AND R.P. JOHNSON, Performance tuning scientific codes for dataflow
execution, in Proc. PACT’96, Oct. 1996, pp. 198-207.

[193] T. SHiMADA, K. HirakI, K. NISHIDA, AND S. SEKIGUCHI, Evaluation of a prototype data flow
processor of the SIGMA-1 for scientific computations, in Proc. 13th ISCA, June 1986,
Pp. 226-234.

[194] U. SiaMmUND AND T. UNGERER, Evaluating a multithreaded superscalar microprocessor versus
@ multiprocessor chip, in Proc. 4th Parallel Syst. Algorithms Workshop, April 1996.

, Identifying bottlenecks wn multithreaded superscalar multiprocessor, Lect. Notes
Comp. Sc., 1123, Springer-Verlag, Berlin, 1996, pp. 797-800.

[196] J. SiLc AND B. ROBIC, The review of some data flow computer architectures, Informatica, 11
(1987), pp. 61-66.

[195]

[197] , Efficient dataflow architecture for specialized computations, in Proc. 12th World
Congress on Scientifics Computation, July 1988, pp. 4.681-4.684.

[198] , Synchronous dataflow-based architecture, Microproc. Microprog., 27 (1989), pp. 315—
322.

[199] , MADAME - Macro-dataflow machine, in Proc. MELECON '91, May 1991, pp. 985—
988.

[200] J. SiLc, B. ROBI¢, AND L.M. PATNAIK, Performance evaluation of an evtended static dataflow
architecture, Comput. Artif. Intell., 9 (1990), pp. 43-60.

[201] B.J. SmITH, A pipelined, shared resource MIMD computer, in Proc. 1978 ICPP, Aug. 1978,
pp. 6-8.

[202] — | Architecture and applications of the HEP multiprocessor computer system, SPIE
Real-Time Signal Processing IV, 298 (1981), pp. 241-248.

, The architecture of HEP, Parallel MIMD computation: HEP supercomputer and its
application (J.S. Kowalik, ed.), MIT Press, 1985, pp. 41-55.

[204] D.F SNELLING, The design and analysis of a Stateless Data-Flow Architectures, Tech. Report

[203]

ASYNCHRONY IN PARALLEL COMPUTING 33

UMCS-93-7-2, University of Manchester, Department of Computer Science, 1993.

[205] D.F SNELLING AND G.K. EGAN, A comparative study of data-flow architectures, Tech. Report
UMCS-94-4-3, University of Manchester, Department of Computer Science, 1994.

[206] A. Soun, C. KiM, AND M. SaTo, Multithreading with the EM-4 distributed-memory multipro-
cessor, in Proc. PACT’95, June 1995, pp. 27-36.

[207] S. P. Song, M. DENMAN, AND J. CHANG, The PowerPC 604 RISC microprocessor, IEEE
Micro, 14 (Oct. 1994), pp. 8-17.

[208] V.P. SRINI, An architectural comparison of dataflow systems, IEEE Computer, 19 (March
1986), pp. 68-88.

[209] J. STROHSCHNEIDER, B. KLAUER, AND K. WALDSCHMIDT, An associative communication net-
work for fine and large grain dataflow, in Proc. Euromicro Workshop on Parallel and
Distr. Processing, 1995, pp. 324-331.

[210] J. STROHSCHNEIDER, B. KLAUER, S. ZICKENHEIMER, AND K. WALDSCHMIDT, Adarc: A fine
grain dataflow architecture with associative communication network, in Proc. 20th Eu-
romicro Conf., Sep. 1994, pp. 445-450.

[211] J.C. SyrE, D. CoMTE, AND N. HIFDI, Pipelining, parallelism and asynchronism in the LAU
system, in Proc. 1977 ICPP, Aug. 1977, pp. 87-92.

[212] N. TakaHASHI AND M. AMAMIYA, A data flow processor array system: Design and analysis,
in Proc. 10th ISCA, June 1983, pp. 243-250.

[213] T. TEMMA, Dataflow processor for image processing, Intl. Journal of Mini and Microcomputers
5 (1980), no. 3, 52-56.

[214] T. TeMma, M. IwasHrTa, K. MaTtsumoTo, H. KUurokawa, AND T. NukivaMa, Date flow
processor chip for image processing, IEEE Trans. Elec. Dev., ED-32 (1985), pp. 1784—
1791.

[215] M. THISTLE AND B.J. SMITH, A processor architecture for Horizon, in Proc. Supercomputing
88, Nov. 1988, pp. 35-41.

[216] S.A. THOREsON, A.N. LoNng, AND J.R. KERNS, Performance of three dataflow computers, in
Proc. 14th Ann. Comput. Sci. Conf., Feb. 1986, pp. 93-99.

[217] K.R. TrAUB, G.M. ParaborpouLos, M.J. BECKERLE, J.E. Hicks, AND J. YOUNG, Owerwiev
of the Monsoon project, in Proc. 1991 Intl. Conf. Comput. Design, 1991, pp. 150-155.

[218] P.C. TRELEAVEN, Principal components of a data flow computer, in Proc. 1978 Euromicro
Symp., Oct. 1978, pp. 366-374.

[219] P.C. TRELEAVEN, D.R. BROWNBRIDGE, AND R.P. HoPKINS, Data-driven and demand-driven
computer architectures, Computing Surveys, 14 (1982), pp. 93-143.

[220] P.C. TRELEAVEN, R.P. HoPKINS, AND P.W. RAUTENBACH, Combining date flow and control
flow computing, Computer Journal, 25 (1982), pp. 207-217.

[221] D.M. TuLLsEN, S.J. EaGERs, J.S. EMER, H.M. LEvy, J.L. Lo, aND R.L. STAMM, Ezploiting
choice: Imstruction fetch and issue on an implementable simultaneous multithreading
processor, in Proc. 23th ISCA, May 1996, pp. 191-202.

[222] D.M. TurLLseN, S.J. EGGERS, AND H.M. LEvVY, Simultancous multithreading: Mazimizing
on-chip parallelism, in Proc. 22nd ISCA, June 1995, pp. 392—403.

[223] T. UNGERER AND E. ZEHENDNER, A multi-level parallelism architecture, Tech. Report 230,
Univ. Augsburg, Institute for Mathematics, 1991.

[224] |, Threads and subinstruction level parallelism in a data flow architecture, Lect. Notes
Comput. Sc., 634, Springer-Verlag, Berlin, 1992, pp. 731-736.

[225] R. VEDDER, M. CAMPBELL, AND G. TUCKER, The Hughes data flow multiprocessor, in Proc.
5th Intl. Conf. Distr. Comput. Syst., May 1985, pp. 2-9.

[226] R. VEDDER AND D. FINN, The Hughes data flow multiprocessor: Architecture for efficient
signal and data processing, in Proc. 12th ISCA, June 1985, pp. 324-332.

[227] A.H. VEEN AND R. vaN DEN BORN, The RC compiler for the DTN dataflow computer, J.
Parall. Distr. Comput., 10 (1990), pp. 319-322.

[228] D.W. WaLL, Limits of instruction-level parallelism, in Proc. 4th Intl. Conf. Arch. Support
for Programming Languages and Operating Syst., April 1991, pp. 176—-188.

[229] 1. WaTsoN aND J.R. GURD, A prototype data flow computer with token labelling, in Proc.
National Comput. Conf., June 1979, pp. 623-628.

[230] I. WaTsoN anD J.R. GURD, A practical data flow computer, IEEE Computer, 15 (Feb. 1982),
pp. 51-57.

[231] K.C. YEAGER, The MIPS R10000 superscalar microprocessor, IEEE Micro, 16 (April 1996),
pp. 28-40.

[232] T. YuBa, T. SHIMADA, K. Hirak1, AND H. KisHiwaai, SIGMA-1: A dataflow computer for
scientific computations, Comput. Physics Comm., 37 (1985), pp. 141-148.

[233] A.C. YUCETURK, B. KLAUER, S. ZICKENHEIMER, R. MOORE, AND K. WALDSCHMIDT, Mapping

34 J. SILC, B. ROBIC AND T. UNGERER

of neural networks onto dataflow graphs, in Proc. 22nd Euromicro Conf., Sep. 1996,
pp. 51-57.

[234] E. ZEHENDNER AND T. UNGERER, The ASTOR architecture, in Proc. 7th Intl. Conf. Distr.
Comput. Syst., Sep. 1987, pp. 424—-430.

, A large-grain data flow architecture wtilizing multiple levels of parallelism, in Proc.

CompFEuro '92, May 1992, pp. 23-28.

[235]

