
On Branching Rules in Second-Order

Branch-and-Bound Methods for Global

Optimization

Scienti�c Computing and Validated Numerics Copyright c 1996 by Akademie-Verlag, Berlin
Alefeld, Frommer, Lang (Eds.) All rights of reproduction in any form reserved.
pp. 221{227 ISBN 3-05-501737-4

Dietmar Ratz

Abstract

This paper investigates di�erent branching rules, i.e. rules for selecting the
subdivision direction, in interval branch-and-bound algorithms for global opti-

mization. Earlier studies ([2],[9]) dealt with the subdivision direction selection in

methods which do not use second-order information about the objective function.
The investigated model algorithm (similar to that in [3]) now uses the enclosure

of the Hessian matrix to incorporate a concavity test for box-discarding and an

interval Newton Gauss-Seidel step to reduce the widths of the boxes resulting
from the underlying generalized bisection method.

Four di�erent branching rules are investigated, and a wide spectrum of test

problems is used for numerical tests. The results indicate that there are substan-
tial di�erences between the rules with respect to the performance of the model

algorithm. This is clari�ed by comparing the required CPU times, the numbers

of function and derivative evaluations, and the necessary amounts of storage
space.

0 Introduction

Let f : D ! IR be a twice continuously di�erentiable function, and let D � [x] 2 IIRn.

We address the problem of �nding all points x� in the interval vector [x] such that

f(x�) = min
x2[x]

f(x):

We are interested in both the global minimizers x� and the minimumvalue f� = f(x�).

We use the branch-and-bound method described in [3] and [8] with several modi�ca-

tions. Our method starts from an initial box [x] 2 IIRn, subdivides [x], stores the

subboxes in a list L, and discards subintervals which are guaranteed not to contain a

global minimizer, until the desired accuracy of the intervals in the list is achieved. The

tests we use to discard or to prune pending subboxes are cut-o� test, monotonicity

test, concavity test, and interval Newton Gauss-Seidel step. For details on these tests

and on the method itself, see [3].

222 Dietmar Ratz

1 Global Optimization Algorithm

In the following, we give a simpli�ed algorithmic description and an overview of our

global optimization method. We use the notations from [3].

Algorithm 1: GlobalOptimize (f; [x]; "; Lres; [f
�])

1. ef := f3(m([x])); [y] := [x]; L := f g; Lres := f g;

2. repeat

(a) FindOptmlComponents ([y]; k1; k2); Branch ([y]; k1; k2; [U]1; [U]2; [U]3; [U]4);

(b) for i := 1 to 4 do

i. if ef < f ([U]i) then nexti;

ii. if MonotonicityTest (rf([U]i)) then nexti;

iii. if ConcavityTest (r2f([U]i)) then nexti;

iv. IntervalNewtonGaussSeidelStep (f; [U]i;r
2f([U]i); [V]; p);

v. for j := 1 to p do if ef � f([V]j) then L := L] ([V]j; fV);

(c) while (L 6= f g) do

i. ([y]; fy) := PopHead (L);

ii. ef := minf ef ; f3(m([y]))g; CutO�Test (L; ef);
iii. if Accept (f; [y]; ") then Lres := Lres] ([y]; fy) else goto 2(a);

until (L = f g);

3. ([y]; fy) := Head (Lres); [f�] := [fy; ef]; return Lres; [f
�];

Algorithm 1 �rst computes an upper bound ef for the global minimum value and

initializes L and Lres. The main iteration (Step 2) starts with a multisection of [y].

Then we apply a range check, the monotonicity test, the concavity test, and the

interval Newton step to the multisected boxes [U1], [U2], [U3], and [U4]. The interval

Newton step results in p boxes, to which we apply a range check. If the actual box

[V]j is still a candidate for a minimizer, we store it in L in Step 2(b)v. Note that the

boxes are stored as pairs ([y]; fy) in list L sorted in nondecreasing order with respect

to the lower bounds fy = f([y]) and in decreasing order with respect to the ages of

the boxes in L (cf. [8]).

In Step 2(c), we remove the �rst element from the list L, i.e. the element of L with

the smallest fy value, and we perform the cut-o� test. Then, if the desired accuracy is

achieved for [y], we store [y] in the result list Lres. Otherwise, we go to the branching

step. When the iteration stops because the pending list L is empty, we compute a

�nal enclosure [f�] for the global minimum value and return Lres and [f�].

The method can be improved by incorporating an approximate local search procedure

to try to decrease the value ef . See [5] for the description of such local search proce-

dures. For our studies in this paper, we do not apply any local method. We also do

not apply any boundary treating, so we assume that all x� lie in the interior of [x].

On Branching Rules in Second-Order Branch-and-Bound Methods 223

2 Branching Rules

In Algorithm 1, Step 2(a), di�erent branching rules can be applied to determine \op-

timal" components for subdividing the current box [y] (cf. [2] and [9]). Each of these

rules selects directions k1 and k2 with D(k1) � D(k2) � D(i) for all i = 1; : : : ; n and

i 62 fk1; k2g, where D(i) is �xed by the given rule.

For the current study, we investigate four rules (we leave out Rule D from [2] and [9]):

Rule A: D(i) := d([y]i)

Rule B: D(i) := d(gi([y])) � d([y]i) (cf. [5])

Rule C: D(i) := d

�
gi([y]) � ([y]i � ci))

�
(cf. [7])

Rule E: D(i) := d

�
([y]i � ci) �

�
gi(c) +

1

2

nX
j=1

(Hij([y]) � ([y]i � ci))
��

:

Here, g =rf , H =r2f , and c = m([y]), where m([y]) and d([y]) denote the midpoint

and the diameter (width) of [y], respectively.

Similar to Rule C (cf. [7]), the underlying idea of the new Rule E is to minimize

d(f([y])) = d(f([y])� f(c))

� d

�
([y]� c)T �

�
rf(c) +

1

2
r

2f([y]) � ([y] � c)
��

= d

nX
i=1

�
([y]i � ci) �

� @f

@xi
([y]) +

1

2

nX
j=1

@2f([y])

@xi@xj
� ([y]j � cj)

��
:

3 Interval Newton Gauss-Seidel Step

In our global optimization method, we apply one step of the extended interval Newton

Gauss-Seidel method (cf. [1]) to the nonlinear system rf(y) = 0 with y 2 [y]. The

subbox [y] is a candidate box for enclosing a minimizer x�, which we have assumed

must satisfy rf(x�) = 0. One step of the extended interval Newton Gauss-Seidel

method shall improve the enclosure [y] by formally solving the system g = [H] � (c�y),

where c = m([y]), g = rf(c), and [H] = r2
f([y]). This method works better if

we �rst apply a preconditioning , by using a special matrix R 2 IRn�n for computing

b := R � g and [A] := R � [H], and consider then the system b = [A] � (c� y). Then, we

compute N 0

GS([y]) according to

[z] := [y]

[z]i :=
�
ci �

�
bi +

nX
j=1

j 6=i

[A]ij � ([z]j � cj)
� .

[A]ii

�
\ [z]i; i = 1; : : : ; n

N 0

GS([y]) := [z]

224 Dietmar Ratz

If 0 2 [A]ii for some i, extended interval arithmetic (see [3] for details) is applied.

In this case, a gap can be produced in the corresponding components [z]i of [z].

Therefore, the interval Gauss-Seidel step may result in the union of several boxes

N 0

GS([y]) = [V]1 [: : :[[V]p, where [V]i 2 IIRn, i = 1; : : : ; p, that is [V] 2 IIRp�n.

In a practical realization of the interval Newton Gauss-Seidel method, it is not nec-

essary to compute the [y]i in �xed order i = 1; : : : ; n. A well-known strategy is the

Hansen/Greenberg realization [4], which �rst performs the single component steps of

the Gauss-Seidel step for all i with 0 62 [A]ii and then for the remaining indices with

0 2 [A]ii by using extended interval arithmetic.

If 0 2 [A]ii for several components i, then the extended interval divisions in the interval

Newton Gauss-Seidel method possibly produces several gaps in the actual box [y]. So

we must split the result N 0

GS([y]) into two or more boxes. In this case, di�erent

splitting techniques may be applied resulting in di�erent values for [V] and p.

We give two examples, which are used in the current study:

p � 2 Compute all possible gaps in [y], and �nally use only the largest gap to split

[y]. This technique is known from Hansen/Greenberg [4], and the Newton

step results in at most 2 boxes, thus N 0

GS([x]) = [V]1 [[V]2.

p � n+ 1 Compute every gap, and use it immediately to split [y] in a special way. For

this special splitting technique introduced in [7] the Newton step results

in at most n+ 1 boxes, thus N 0

GS([x]) = [V]1 [: : :[[V]n+1.

In our special technique with p � n+1, we use each gap to store one part of the actual

box [y] by using one part of the component [y]i and the other part of [y]i to update [y]

before continuing with the next component step of the interval Gauss-Seidel method.

That is, we perform one component step according to the scheme:

1. Compute [y]i = [v]i [[w]i.

2. If [v]i = [w]i = ;, then stop fno solution in [y]g.

3. If [w]i 6= ;, then set [y]i := [w]i and store [y].

4. Set [y]i := [v]i and continue with next i.

In many cases, we get
�
bi +

nX
j=1

j 6=i

[A]ij � ([y]j � cj)
� .

[A]ii = (�1;1) and no gap

occurs, so [y]i := [y]i \ (�1;1) remains unchanged. In these cases, we introduce

\gaps" of width zero by splitting [y]i = [v]i [[w]i with [v]i := [y
i
;m([y]i)] and [w]i :=

[m([y]i); yi], that is we do a bisection.

4 Sorted Interval Newton Gauss-Seidel Step

We investigate the branching rules applied in the main Algorithm 1 also in connec-

tion with the interval Gauss-Seidel step. We use these rules to compute a sorting

vector s = (s1; s2; : : : ; sn) with si 2 f1; : : : ; ng and si 6= sj for i 6= j, which satis�es

On Branching Rules in Second-Order Branch-and-Bound Methods 225

D(si) � D(si+1), i = 1; : : : ; n�1 for the corresponding direction selection rule D(: : :).

Then, we perform the sorted interval Newton Gauss-Seidel step according to

[z] := [y]

[z]si :=
�
csi �

�
bsi +

nX
j=1
j 6=si

[A]sij � ([z]j � cj)
� .

[A]sisi

�
\ [z]si; i = 1; : : : ; n

N 0

GS([y]) := [z]

incorporating the Hansen/Greenberg realization and di�erent splitting techniques.

5 Numerical Experiences

For testing we used the two groups of standard test functions and some new functions

(see [5] and [9] for details on the functions). We carried out the numerical tests on an

HP 9000/730 equipped with PASCAL{XSC [6] using the basic toolbox modules for

automatic di�erentiation and extended interval arithmetic [3].

In our test suite we compared the methods with branching rules A, B, C, and E

combined with the usual splitting technique (p � 2) and with the special splitting

technique (p � n + 1, \0-width-gaps"). The complete results for all test functions

together with the source code of our test program can be obtained by anonymous

ftp from iamk4515.mathematik.uni-karlsruhe.de (129.13.129.15) in directory

pub/documents/ratz/scan.95.

We list the results for four test functions in the following. Important columns are the

runtime (in STUs), the storage space or maximum list length (LL) and the Ee�1 and

Ee�2 values. The latter combine the three values for the number of function (FE),

gradient (GE), and Hessian (HE) evaluation to single values approximating the total

evaluation e�ort in terms of objective function evaluations by

Ee�1 = FE + n �GE+
n � (n+ 1)

2
�HE and Ee�2 = FE+ minf4; ng �GE + n �HE

(with respect to forward (Ee�1) and backward (Ee�2) mode of automatic di�erentia-

tion, see [8] for details).

Shekel10 (n = 4)

p � Rule STUs FE GE HE Ee�1 Ee�2 LL

A 2.09 132 106 42 976 724 17
2 B 2.12 133 108 43 995 737 17

C 1.68 112 86 32 776 584 15
E 1.68 112 86 32 776 584 15
A 1.45 144 62 22 612 480 33

n+1 B 1.71 169 70 26 709 553 39
C 1.31 129 56 19 543 429 31
E 1.33 129 56 19 543 429 31

Hartman6 (n = 6)

p � Rule STUs FE GE HE Ee�1 Ee�2 LL

A 40.11 1762 959 366 15202 7794 115
2 B 26.61 1141 668 239 10168 5247 78

C 22.32 963 574 195 8502 4429 62
E 24.14 1014 611 212 9132 4730 70
A 37.94 2357 697 205 10844 6375 360

n+1 B 24.93 1542 510 143 7605 4440 143
C 24.25 1496 491 129 7151 4234 235
E 21.90 1377 439 118 6489 3841 139

226 Dietmar Ratz

Levy12 (n = 10)

p � Rule STUs FE GE HE Ee�1 Ee�2 LL

A 24.71 246 205 76 6476 1826 43
2 B 23.90 239 200 74 6309 1779 39

C 23.90 239 200 74 6309 1779 39
E 23.90 239 200 74 6309 1779 40
A 19.19 401 106 36 3441 1185 238

n+1 B 17.39 376 97 33 3161 1094 231
C 18.19 391 101 34 3271 1135 231
E 16.76 367 89 32 3017 1043 228

Griewank7 (n = 7)

p � Rule STUs FE GE HE Ee�1 Ee�2 LL

A 15.57 304 255 114 5281 2122 60
2 B 15.12 301 249 111 5152 2074 61

C 15.23 302 251 112 5195 2090 61
E 15.36 301 249 111 5152 2074 61
A 11.04 483 125 52 2814 1347 216

n+1 B 11.24 493 129 54 2908 1387 212
C 10.96 477 125 52 2808 1341 211
E 10.94 472 123 51 2761 1321 202

Finally, we give an overview on the results for the complete test set by listing the

necessary resources for the di�erent variants of our method. The values given are

relative values with respect to the method with Rule A and usual splitting.

p � Rule Values STUs Ee�1 Ee�2 LL

best 60.3% 62.3% 61.8% 66.7%
B average 95.0% 94.8% 94.8% 102.4%

worst 131.3% 129.9% 129.4% 178.3%

best 53.2% 54.5% 54.1% 53.9%
2 C average 93.9% 95.0% 95.0% 98.5%

worst 137.1% 136.1% 136.8% 169.6%

best 54.8% 55.9% 55.4% 55.6%
E average 95.3% 95.1% 95.1% 99.1%

worst 141.7% 134.9% 134.5% 157.9%
best 54.5% 51.7% 52.2% 100.0%

A average 82.0% 75.0% 78.6% 221.2%
worst 113.6% 111.2% 111.5% 553.5%

best 45.5% 40.1% 40.6% 66.7%
B average 76.5% 69.6% 72.9% 206.4%

n+1 worst 108.3% 104.7% 105.3% 537.2%

best 45.5% 40.1% 40.6% 66.7%
C average 73.1% 67.5% 70.7% 207.4%

worst 101.5% 104.0% 104.7% 537.2%

best 45.5% 40.1% 40.6% 71.4%
E average 75.8% 67.8% 71.1% 202.7%

worst 100.0% 100.0% 100.0% 530.2%

6 Conclusion

Studying the numerical results for the four branching rules combined with di�erent

splitting techniques, we recognize that there are test problems for which Rule B, Rule

C, and Rule E are much more e�cient than Rule A. On the other hand, there are also

some problems where the new rules are worse. On average, the branching rules alone

lead to an improvement of about 10%.

The special splitting technique improves the performance of the global optimization

method signi�cantly, by drastically decreasing the evaluation e�ort. The price to pay

On Branching Rules in Second-Order Branch-and-Bound Methods 227

for this improvement is an increasing storage space. Further improvement is due to the

branching rules B, C, and E, used as sorting rules in the interval Newton Gauss-Seidel

step. This holds for the best cases, the average, and for the worst cases.

Summarizing the consequences of the numerical tests, we can conclude that for Rules

B, C, and E combined with the special splitting technique we can expect an average

improvement of about 25% in the e�ciency of the method, keeping in mind that on

average there is approximately a doubling in the necessary storage space.

References

[1] Alefeld, G., Herzberger, J.: Introduction to Interval Computations. Academic

Press, New York, 1983.

[2] Csendes, T., Ratz, D.: Subdivision Direction Selection in Interval Methods for

Global Optimization. SIAM Journal of Numerical Analysis, accepted for publica-

tion, 1995.

[3] Hammer, R., Hocks, M., Kulisch, U., Ratz, D.: Numerical Toolbox for Veri-

�ed Computing I { Basic Numerical Problems. Springer-Verlag, Heidelberg, New

York, 1993.

[4] Hansen, E., Greenberg, R.: An Interval Newton Method . Applied Mathematics

and Computations 12, 89{98, 1983.

[5] Hansen, E.: Global Optimization Using Interval Analysis. Marcel Dekker, New

York, 1992.

[6] Klatte, R., Kulisch, U., Neaga, M., Ratz, D., Ullrich, Ch.: PASCAL{XSC {

Language Reference with Examples. Springer-Verlag, New York, 1992.

[7] Ratz, D.: Automatische Ergebnisveri�kation bei globalen Optimierungsproblemen.

Dissertation, Karlsruhe, 1992.

[8] Ratz, D.: Box-Splitting Strategies for the Interval Gauss-Seidel Step in a Global

Optimization Method. Computing 53, 337{353, Springer-Verlag, Wien, 1994.

[9] Ratz, D., Csendes, T.: On the Selection of Subdivision Directions in Interval

Branch-and-Bound Methods for Global Optimization. Journal of Global Optimiza-

tion, 7, 183{207, 1995.

Address:

D. Ratz, Universit�at Karlsruhe (TH), Institut f�ur Angewandte Mathematik, D-76128

Karlsruhe, Germany, e-mail: Dietmar.Ratz@math.uni-karlsruhe.de.

