Scientific Computing and Validated Numerics Copyright © 1996 by Akademie-Verlag, Berlin
Alefeld, Frommer, Lang (Eds.) All rights of reproduction in any form reserved.
pp. 221-227 ISBN 3-05-501737-4

On Branching Rules in Second-Order
Branch-and-Bound Methods for Global
Optimization

Dietmar Ratz

Abstract

This paper investigates different branching rules, i.e. rules for selecting the
subdivision direction, in interval branch-and-bound algorithms for global opti-
mization. Earlier studies ([2],[9]) dealt with the subdivision direction selection in
methods which do not use second-order information about the objective function.
The investigated model algorithm (similar to that in [3]) now uses the enclosure
of the Hessian matrix to incorporate a concavity test for box-discarding and an
interval Newton Gauss-Seidel step to reduce the widths of the boxes resulting
from the underlying generalized bisection method.

Four different branching rules are investigated, and a wide spectrum of test
problems is used for numerical tests. The results indicate that there are substan-
tial differences between the rules with respect to the performance of the model
algorithm. This is clarified by comparing the required CPU times, the numbers
of function and derivative evaluations, and the necessary amounts of storage
space.

0 Introduction

Let f: D — IR be a twice continuously differentiable function, and let D D [z] € IR™.
We address the problem of finding all points #* in the interval vector [z] such that
f(z™) = min f(z).

z€[z]
We are interested in both the global minimizers 2* and the minimum value f* = f(z*).

We use the branch-and-bound method described in [3] and [8] with several modifica-
tions. Our method starts from an initial box [#] € TIR™, subdivides [z], stores the
subboxes in a list L, and discards subintervals which are guaranteed not to contain a
global minimizer, until the desired accuracy of the intervals in the list is achieved. The
tests we use to discard or to prune pending subboxes are cut-off test, monotonicity
test, concavity test, and interval Newton Gauss-Seidel step. For details on these tests
and on the method itself, see [3].

222 Dietmar Ratz

1 Global Optimization Algorithm

In the following, we give a simplified algorithmic description and an overview of our
global optimization method. We use the notations from [3].

Algorithm 1: GlobalOptimize (f, [«], €, Lres, [f*])
L f=Fo(m(lz])); [l =1l L:={} Lwes:=1{}
2. repeat
(a) FindOptml|Components ([y], k1, k2); Branch ([y], k1, k2, [Ul1, [Ul2, [U]s, [Ula);
(b) fori:=1to 4 do

1. |ff < f([U];) then next;;
ii. if MonotonicityTest (V f([U];)) then next;;
iii. if ConcavityTest (V?f([U];)) then next;;
iv. IntervalNewtonGaussSeidelStep (£, [U];, V2 £([U):), [V], p);
v. for j _ltopd0|ff>f([J;) then L := LW ([V];, fv);
(c) while (L #{}) do
i ([y],f_y) := PopHead (L);

ii. f:=min{f, fo(m([y]))}; CutOffTest (L, f);
iii. if Accept (f,[y],¢) then Lics := Lies W ([y], fy) else goto 2(a);

until (L ={}); B
3. ([y]af_y) = Head (Lyes); [f7] = [f_ya fl; return Ly, [f7];

Algorithm 1 first computes an upper bound f for the global minimum value and
initializes I and Lyes. The main iteration (Step 2) starts with a multisection of [y].
Then we apply a range check, the monotonicity test, the concavity test, and the
interval Newton step to the multisected boxes [U1], [Us], [Us], and [U,]. The interval
Newton step results in p boxes, to which we apply a range check. If the actual box
[V]; is still a candidate for a minimizer, we store it in L in Step 2(b)v. Note that the
boxes are stored as pairs ([y], fy) in list L sorted in nondecreasing order with respect
to the lower bounds f, = F(wl)]) and in decreasing order with respect to the ages of
the boxes in L (cf. [8]).

In Step 2(c), we remove the first element from the list L, i.e. the element of L with
the smallest f, value, and we perform the cut-off test. Then, if the desired accuracy is
achieved for [y], we store [y] in the result list L. Otherwise, we go to the branching
step. When the iteration stops because the pending list L is empty, we compute a
final enclosure [f*] for the global minimum value and return L,.s and [f*].

The method can be improved by incorporating an approximate local search procedure
to try to decrease the value f. See [5] for the description of such local search proce-
dures. For our studies in this paper, we do not apply any local method. We also do
not apply any boundary treating, so we assume that all * lie in the interior of [z].

On Branching Rules in Second-Order Branch-and-Bound Methods 223

2 Branching Rules

In Algorithm 1, Step 2(a), different branching rules can be applied to determine “op-
timal” components for subdividing the current box [y] (cf. [2] and [9]). Each of these
rules selects directions k1 and ke with D(k1) > D(k2) > D(¢) for alli=1,...,n and
i & {ki, ka}, where D(i) is fixed by the given rule.

For the current study, we investigate four rules (we leave out Rule D from [2] and [9]):

Rule A: D(i) :=d([y];)

Rule B: D(i) = d{g:([y])) - d([u}:) (ct. [5))
Rule C: D(i) := d (gi([y]) [yl — ci))) (cf. [7))
Rule E: D(i) :=d (([y]Z —¢) - (gi(c) + %Z(HZ]([y]) (vl — Cz)))) .

Here, g = Vf, H = V?f, and ¢ = m([y]), where m([y]) and d([y]) denote the midpoint
and the diameter (width) of [y], respectively.

Similar to Rule C (cf. [7]), the underlying idea of the new Rule E is to minimize

d(f(ly) = d(f([y])—f(C))
v d (- 0" (V) + 5 VD) ([]—c)))
- d;< 0 (G + 5 5 -).

3 Interval Newton Gauss-Seidel Step

In our global optimization method, we apply one step of the extended interval Newton
Gauss-Seidel method (cf. [1]) to the nonlinear system V f(y) = 0 with y € [y]. The
subbox [y] is a candidate box for enclosing a minimizer «*, which we have assumed
must satisfy Vf(z*) = 0. One step of the extended interval Newton Gauss-Seidel
method shall improve the enclosure [y] by formally solving the system ¢ = [H]- (¢ —y),
where ¢ = m([y]), g = Vf(c), and [H] = V?f([y]). This method works better if
we first apply a preconditioning, by using a special matrix R € IR"*™ for computing
b:=R-g and [A] := R -[H], and consider then the system b = [A] - (¢ — y). Then, we
compute Nig([y]) according to

(2] == [y]
[2]; = (ci— (bi+Z_:[A]ij.([z]j_cj)) /[A]“») Alli, i=1,...,n

Nes([8)) = [2]

224 Dietmar Ratz

If 0 € [A];; for some i, extended interval arithmetic (see [3] for details) is applied.
In this case, a gap can be produced in the corresponding components [z]; of [z].
Therefore, the interval Gauss-Seidel step may result in the union of several boxes

Nis(w) = [V V.. .U [V],, where [V]; € IR" i=1,...,p, that is [V] € IIRP*".

In a practical realization of the interval Newton Gauss-Seidel method, it is not nec-
essary to compute the [y]; in fixed order i = 1,...,n. A well-known strategy is the
Hansen/Greenberg realization [4], which first performs the single component steps of
the Gauss-Seidel step for all ¢ with 0 & [A];; and then for the remaining indices with
0 € [A];; by using extended interval arithmetic.

If 0 € [A]i; for several components 7, then the extended interval divisions in the interval
Newton Gauss-Seidel method possibly produces several gaps in the actual box [y]. So
we must split the result N/Sg([y]) into two or more boxes. In this case, different
splitting techniques may be applied resulting in different values for [V] and p.

We give two examples, which are used in the current study:

p<2 Compute all possible gaps in [y], and finally use only the largest gap to split
[y]. This technique is known from Hansen/Greenberg [4], and the Newton
step results in at most 2 boxes, thus N5q([z]) = [V]1 U [V]s.

p<n+1 Compule every gap, and use it immediately to split [y] in a special way. For
this special splitting technique introduced in [7] the Newton step results
in at most n + 1 boxes, thus N s([#]) = [V]1 U ... U[V]n41.

In our special technique with p < n4 1, we use each gap to store one part of the actual

box [y] by using one part of the component [y]; and the other part of [y]; to update [y]

before continuing with the next component step of the interval Gauss-Seidel method.

That is, we perform one component step according to the scheme:

1. Compute [y]; = [v]; U [w];.

2. If [v]; = [w]; = 0, then stop {no solution in [y]}.
3. If [w]; # B, then set [y]; := [w]; and store [y].

4. Set [y]; := [v]; and continue with next .

In many cases, we get (bi + Z[A]Z»j (Wl — cj)) /[A]“ = (—00,00) and no gap
=

occurs, 80 [y]; = [y]s N (=00, 00) remains unchanged. In these cases, we introduce

“gaps” of width zero by splitting [y]; = [v]; U [w]; with [v]; := [y, m([y]i)] and [w]; :=

[m([y]:), 7;], that is we do a bisection.

4 Sorted Interval Newton Gauss-Seidel Step

We investigate the branching rules applied in the main Algorithm 1 also in connec-
tion with the interval Gauss-Seidel step. We use these rules to compute a sorting
vector s = (s1,52,...,8,) with s; € {1,...,n} and s; # s; for ¢ # j, which satisfies

On Branching Rules in Second-Order Branch-and-Bound Methods 225

D(si) > D(sit1),1=1,...,n—1 for the corresponding direction selection rule D(...).
Then, we perform the sorted interval Newton Gauss-Seidel step according to

[]:=[y]
(o= (e = (s + i[A]s,j.([z]j_cj)) S) 0L, i=1m

i#s;

Nes(ly)) =[]

incorporating the Hansen/Greenberg realization and different splitting techniques.

5 Numerical Experiences

For testing we used the two groups of standard test functions and some new functions
(see [5] and [9] for details on the functions). We carried out the numerical tests on an
HP 9000/730 equipped with PASCAL-XSC [6] using the basic toolbox modules for

automatic differentiation and extended interval arithmetic [3].

In our test suite we compared the methods with branching rules A, B, C, and E
combined with the usual splitting technique (p < 2) and with the special splitting
technique (p < n+ 1, “O-width-gaps”). The complete results for all test functions
together with the source code of our test program can be obtained by anonymous
ftp from iamk4515.mathematik.uni-karlsruhe.de (129.13.129.15) in directory
pub/documents/ratz/scan.95.

We list the results for four test functions in the following. Important columns are the
runtime (in STUs), the storage space or maximum list length (LL) and the Eeff; and
Eeffy values. The latter combine the three values for the number of function (FE),
gradient (GE), and Hessian (HE) evaluation to single values approximating the total
evaluation effort in terms of objective function evaluations by

n-(n+1)
2

(with respect to forward (Eeff;) and backward (Eeffy) mode of automatic differentia-
tion, see [8] for details).

Eeffy = FE+n-GE + -HE and Eeffs = FE+ min{4,n}-GE +n-HE

| Shekel10 (n = 4) | | Hartmané (n = 6) |
| p < |Rule||sTUs| FE| GE[HE [Eeff, [Eef, [LL| | p < [Rule]|sTUs| FE|GE|HE| Eeff, [Eeff, | LL]

A 2.09|132|106| 42| 976| 724|117 A || 40.11(1762|959|366|15202| 7794|115

2 B 2.12|133|108| 43| 995| 737|117 2 B 26.61|1141|668(239|10168| 5247| 78
C 1.68|112| 86| 32| 776| 584|115 C 22.32| 963|574(195| 8502 4429| 62

E 1.68|112| 86| 32| 776| 584|115 E || 24.14|1014|611|212| 9132| 4730| 70

A 1.45(144| 62| 22| 612| 480| 33 A || 37.94(2357|697|205|10844| 6375|360

n+l| B 1.71(169| 70| 26| 709| 553(39| |n+1| B 24.93|1542|510(143| 7605| 4440|143
C 1.31(129| 56| 19| 543| 429| 31 C 24.25(1496(491(129| 7151| 4234|235

E 1.33(129| 56| 19| 543| 429| 31 E ||21.90|1377|439|118| 6489| 3841|139

226 Dietmar Ratz

| Levyl2 (n = 10)

Griewank?7 (n=7)

| » < |Rule|[sTUs| FE| GE|HE |Beff, [Beff, | LL]

|p <|Rule]|sTUs| FE|GE[HE|Eeff, [Eeff, | LL]

A 24.71(246|205| 76| 6476| 1826| 43 A 15.57|304|255(114| 5281| 2122| 60

2 B 23.90(239|200| 74| 6309| 1779| 39 2 B 15.12|301(249(111| 5152| 2074| 61
C 23.90(239|200| 74| 6309| 1779| 39 C 15.23|302|251 (112 5195| 2090| 61

E 23.90(239|200| 74| 6309| 1779| 40 E 15.36|301(249(111| 5152| 2074| 61

A 19.19|401|106| 36| 3441| 1185|238 A 11.04|483|125| 52| 2814| 1347|216

n+1| B 17.39(376| 97| 33| 3161| 1094|231 n+1| B 11.24|493|129| 54| 2908| 1387|212
C 18.19(391(101| 34| 3271| 1135|231 C 10.96|477(125| 52| 2808| 1341|211

E 16.76(367| 89| 32| 3017| 1043|228 E 10.94|472(123| 51| 2761| 1321|202
Finally, we give an overview on the results for the complete test set by listing the
necessary resources for the different variants of our method. The values given are

relative values with respect to the method with Rule A and usual splitting.

| p < |Rule| Values | STUs| Eeff; | Feff, | LL]|
best 60.3% | 62.3% | 61.8% | 66.7%

B |average| 95.0% | 94.8% | 94.8% | 102.4%
worst | 131.3% | 129.9% | 129.4% | 178.3%

best 53.2% | 54.5% | 54.1% | 53.9%

2 C | average| 93.9% | 95.0% | 95.0% | 98.5%
worst | 137.1% | 136.1% | 136.8% | 169.6%

best 54.8% | 55.9% | 55.4% | 55.6%

E |average| 95.3% | 95.1% | 95.1% | 99.1%
worst | 141.7% | 134.9% | 134.5% | 157.9%

best 54.5% | 51.7% | 52.2% | 100.0%

A | average| 82.0% | 75.0% | 78.6% | 221.2%
worst | 113.6% | 111.2% | 111.5% | 553.5%

best 45.5% | 40.1% | 40.6% | 66.7%

B |average| 76.5% | 69.6% | 72.9% | 206.4%

n+1 worst | 108.3% | 104.7% | 105.3% | 537.2%
best 45.5% | 40.1% | 40.6% | 66.7%

C average | 73.1% | 67.5% | 70.7% | 207.4%
worst | 101.5% | 104.0% | 104.7% | 537.2%

best 45.5% | 40.1% | 40.6% | 71.4%

E |average| 75.8% | 67.8% | 71.1% | 202.7%
worst | 100.0% | 100.0% | 100.0% | 530.2%

6 Conclusion

Studying the numerical results for the four branching rules combined with different
splitting techniques, we recognize that there are test problems for which Rule B, Rule
C, and Rule E are much more efficient than Rule A. On the other hand, there are also
some problems where the new rules are worse. On average, the branching rules alone
lead to an improvement of about 10%.

The special splitting technique improves the performance of the global optimization
method significantly, by drastically decreasing the evaluation effort. The price to pay

On Branching Rules in Second-Order Branch-and-Bound Methods 227

for this improvement is an increasing storage space. Further improvement is due to the
branching rules B, C, and E, used as sorting rules in the interval Newton Gauss-Seidel
step. This holds for the best cases, the average, and for the worst cases.

Summarizing the consequences of the numerical tests, we can conclude that for Rules
B, C, and E combined with the special splitting technique we can expect an average
improvement of about 25% in the efficiency of the method, keeping in mind that on
average there is approximately a doubling in the necessary storage space.

References

(1]

[2]

[3]

Alefeld, G., Herzberger, J.: Introduction to Interval Computations. Academic
Press, New York, 1983.

Csendes, T., Ratz, D.: Subdivision Direction Selection in Interval Methods for
Global Optimization. STAM Journal of Numerical Analysis, accepted for publica-
tion, 1995.

Hammer, R., Hocks, M., Kulisch, U., Ratz, D.: Numerical Toolbozx for Veri-
fied Computing I — Basic Numerical Problems. Springer-Verlag, Heidelberg, New
York, 1993.

Hansen, E., Greenberg, R.: An Interval Newton Method. Applied Mathematics
and Computations 12, 89-98, 1983.

Hansen, E.: Global Optimization Using Interval Analysis. Marcel Dekker, New
York, 1992.

Klatte, R., Kulisch, U.; Neaga, M., Ratz, D.; Ullrich, Ch.: PASCAL-XSC -
Language Reference with Fxamples. Springer-Verlag, New York, 1992.

Ratz, D.: Automatische Ergebnisverifikation bet globalen Optimierungsproblemen.
Dissertation, Karlsruhe, 1992.

Ratz, D.: Boz-Splitting Strategies for the Interval Gauss-Seidel Step in a Global
Optimization Method. Computing 53, 337-353, Springer-Verlag, Wien, 1994.

Ratz, D., Csendes, T.: On the Selection of Subdivision Directions in Interval
Branch-and-Bound Methods for Global Optimization. Journal of Global Optimiza-
tion, 7, 183-207, 1995.

Address:

D. RaTz, Universitat Karlsruhe (TH), Institut fir Angewandte Mathematik, D-76128
Karlsruhe, Germany, e-mail: Dietmar.RatzOmath.uni-karlsruhe.de.

