
ZAMM 76, S1, 323{326 (1996)

Ratz, D.

Improved Techniques for Gap-Treating and Box-Splitting in Interval Newton
Gauss-Seidel Steps for Global Optimization with Validation

Interval global optimization algorithms often incorporate an interval Newton Gauss-Seidel step to rapidly reduce the

widths of the boxes resulting from the underlying generalized bisection method. It aims at determining the roots

of the gradient of the objective function, whereas various other techniques eliminate regions containing roots which

do not correspond to global optimizers. The interval Newton Gauss-Seidel step uses extended interval arithmetic

which allows the division by intervals containing zero. The latter may produce gaps in the resulting coordinate

intervals, which can be used to split the resulting box. We investigate the impact of di�erent gap-treating and box-

splitting techniques producing di�erent numbers of subboxes, and we propose strategies which improve the overall

e�ciency of the interval Newton Gauss-Seidel step and therefore of global optimization methods. We present results

of computational experiments with standard global optimization problems.

1. Introduction

Let f : D ! IR be a twice continuously di�erentiable function, and let D � [x] 2 IIRn. We address the problem of

�nding all points x� in the interval vector [x] such that

f(x�) = min
x2[x]

f(x): (1)

We are interested in both the global minimizers x� and the minimum value f� = f(x�).

We use the branch-and-bound method described in [8] and [3] with several modi�cations. Our method starts

from an initial box [x] 2 IIRn, subdivides [x] and stores the subboxes in a list L, and discards subintervals which are

guaranteed not to contain a global minimizer, until the desired accuracy of the intervals in the list is achieved. The

tests we use to discard or to prune pending subboxes are cut-o� test, monotonicity test, concavity test, and interval

Newton Gauss-Seidel step. For details on these tests and on the method itself, see [3].

2. Global Optimization Algorithm

In the following, we give a simpli�ed algorithmic description and an overview on our global optimization method.

Algorithm 1: GlobalOptimize (f; [x]; "; Lres; [f
�])

1. ef := f3(m([x])); [y] := [x]; L := f g; Lres := f g;

2. repeat

(a) k := OptimalComponent ([y]); Bisection ([y]; k; [u]1; [u]2); Bisect := false;

(b) for i := 1 to 2 do

i. if ef < f([u]i) then nexti;

ii. if MonotonicityTest (rf([u]i)) then nexti;

iii. if ConcavityTest (r2
f([u]i)) then nexti;

iv. IntervalGaussSeidelStep (f; [u]i; [H]; [V]; p);

v. for j := 1 to p do if ef � f ([V]j) then L := L] ([V]j; fV);

(c) while (L 6= f g) and (not Bisect) do

i. ([y]; fy) := PopHead (L); ef := minf ef ; f3(m([y]))g; CutO�Test (L; ef);
ii. if Accept (f; [y]; ") then Lres := Lres] ([y]; fy) else Bisect := true;

until (not Bisect);

3. ([y]; fy) := Head (Lres); [f�] := [fy; ef]; return Lres; [f
�];

In Algorithm 1, we �rst compute an upper bound ef for the global minimum value and initialize L and Lres. Step

2 is the main iteration starting with a bisection of [y]. Then we apply a range check, the monotonicity test, the

concavity test, and the interval Newton step to the bisected boxes [u1] and [u2]. The interval Newton step results in

p boxes, to which we apply a range check. If the actual box [V]j is still a candidate for a minimizer, we store it in

L. Note that the boxes are stored as pairs ([y]; fy) in list L sorted in nondecreasing order with respect to the lower

bounds fy = f([y]) and in decreasing oder with respect to the ages of the boxes in the list (cf. [8]).

In Step 2(c), we remove the �rst element from the list L, i.e. the element of L with the smallest fy value,

and we perform the cut-o� test. Then, if the desired accuracy is achieved for [y], we store [y] in the result list Lres.

Otherwise, we go to the bisection step. When the iteration stops because the pending list L is empty, we compute

a �nal enclosure [f�] for the global minimum value, and we return Lres and [f�].

The method can be improved by incorporating an approximate local search procedure trying to decrease the

value ef . See [5] for the description of such local search procedures. For our studies in this paper, we do not apply

any local method. We also do not apply any boundary treating, so we assume that all x� lie in the interior of [x].

3. Interval Gauss-Seidel Step

In our global optimization method, we apply one step of the extended interval Newton Gauss-Seidel method (cf. [1])

to the nonlinear system rf(y) = 0 with y 2 [y]. The subbox [y] is a candidate box for enclosing a minimizer x�,

which we have assumed must satisfy rf(x�) = 0. One step of the extended interval Newton Gauss-Seidel method

shall improve the enclosure [y] by formally solving the system g = [H] � (c � y), where c = m([y]), g = rf(c), and

[H] = r2f([y]). This method works better if we �rst apply a preconditioning , by using a special matrix R 2 IRn�n

for computing b := R � g and [A] := R � [H], and consider then the system

b = [A] � (c � y):

Then, we compute N 0

GS([y]) according to

[z] := [y]

[z]i :=
�
ci �

�
bi +

nX
j=1

j 6=i

[A]ij � ([z]j � cj)
� .

[A]ii

�
\ [z]i; i = 1; : : : ; n

N 0

GS([y]) := [z]

9>>>>=
>>>>;
: (2)

If 0 2 [A]ii for some i, extended interval arithmetic (see [3] for details) is applied. In this case, a gap can be produced

in the corresponding components [z]i of [z]. Therefore, the interval Gauss-Seidel step may result in the union of

several boxes N 0

GS([y]) = [V]1 [: : :[[V]p, where [V]i 2 IIRn, i = 1; : : : ; p, that is [V] 2 IIRp�n. Di�erent splitting

strategies for treating the gaps may be applied resulting in di�erent values for [V] and p.

We summarize the most important properties of the interval Newton Gauss-Seidel step in

T h e o r em 1. Let f : D � IRn ! IR be a twice continuously di�erentiable function, and let [x] 2 IIRn be an

interval vector with [x] � D. Then N 0

GS([x]) has the following properties:

1. Every zero x� 2 [x] of rf satis�es x� 2 N 0

GS([x]).

2. If N 0

GS([x]) = ;, then there exists no zero of rf in [x].

3. If N 0

GS([x])
�

� [x], then there exists a unique zero of rf in [x] and hence in N 0

GS([x]).

For proofs, see [5]. Note that p = 0 in case 2 and p = 1 in case 3 of Theorem 1.

In a practical realization of the interval Newton Gauss-Seidel method (2), it is not necessary to compute the

[y]i in �xed order i = 1; : : : ; n. A well-known strategy is the Hansen/Greenberg realization [4], which �rst performs

the single component steps of the Gauss-Seidel step for all i with 0 62 [A]ii and then for the remaining indices with

0 2 [A]ii by using extended interval arithmetic.

4. Splitting Strategies

If 0 2 [A]ii for several components i, then the extended interval divisions in the interval Newton Gauss-Seidel method

possibly produces several gaps in the actual box [y]. Therefore, we have to split the result N 0

GS([y]) in two or more

boxes. In this case, di�erent splitting strategies may be applied. We give four examples:

p � 2 Compute all possible gaps in [y], and �nally use only the largest gap to split [y]. This strategy is known

from Hansen/Greenberg [4], and the Newton step results in at most 2 boxes, thus N 0

GS([x]) = [V]1[[V]2.

p � 8 Compute all possible gaps in [y], and �nally use at most 3 gaps to split [y]. This strategy was suggested

by Hansen [5], and the Newton step results in at most 23 = 8 boxes, thus N 0

GS([x]) = [V]1 [: : :[[V]8.

p � 2n Compute all possible gaps in [y], and �nally use them all to split [y]. As far as we know, nobody uses

this strategy, because the Newton step results in at most 2n boxes causing a proliferation of subboxes,

thus N 0

GS([x]) = [V]1 [: : :[[V]2n.

p � n+ 1 Compute every gap, and use it immediately to split [y] in a special way. For this special splitting strategy

introduced in [7] the Newton step results in at most n+ 1 boxes, thus N 0

GS([x]) = [V]1 [: : :[[V]n+1.

In our special strategy with p � n + 1, we use each gap to store one part of the actual box [y] by using one part of

the component [y]i and the other part of [y]i to update [y] before continuing with the next component step of the

interval Gauss-Seidel method. That is, we perform one component step according to the scheme:

1. Compute [y]i = [v]i [[w]i.

2. If [v]i = [w]i = ;, then stop fno solution in [y]g.

3. If [w]i 6= ;, then set [y]i := [w]i and store [y].

4. Set [y]i := [v]i and continue with next i.

E x amp l e 1. We handle a box [y] of dimension n = 3 assuming that we produce a gap in each component.
Incorporating the above strategy, the three component steps of the method split [y] in the following manner:

[y] =

[y]1
[y]2
[y]3

!
1

!

[v]1
[y]2
[y]3

!
2

!

[v]1
[v]2
[y]3

!
3

!

[v]1
[v]2
[v]3

!

storing
#1 #2 #3 #4

[w]1
[y]2
[y]3

!
=: [V]1

[v]1
[w]2
[y]3

!
=: [V]2

[v]1
[v]2
[w]3

!
=: [V]3

[v]1
[v]2
[v]3

!
=: [V]4

In many cases, we get
�
bi+

nX
j=1

j 6=i

[A]ij � ([y]j � cj)
� .

[A]ii = (�1;1) and no gap occurs, so [y]i := [y]i\ (�1;1) is

unchanged. In these cases, we introduce \gaps" of width zero by splitting [y]i = [v]i [[w]i with [v]i := [y
i
;m([y]i)]

and [w]i := [m([y]i); yi], that is we do a bisection. All four splitting strategies can bene�t from this trick.

5. Branching Rules and Sorted Interval Gauss-Seidel Step

In Algorithm 1, di�erent subdivision direction selection rules can be applied to determine an \optimal" component k

for bisection of the current box [y] (see [2] and [9]). Each of these rules selects a direction k withD(k) = maxni=1D(i),

where D(i) is determined by the given rule. We investigated two rules in connection with the interval Gauss-Seidel

step: Rule A with D(i) := d([y]i) and Rule C with D(i) := d(gi([y]) � ([y]i �m([y]i))), where g([y]) = rf([y]). We

use these rules to compute a sorting vector s = (s1; s2; : : : ; sn) with si 2 f1; : : : ; ng and si 6= sj for i 6= j, which

satis�es D(si) � D(si+1), i = 1; : : : ; n � 1 for the corresponding direction selection rule D(: : :). Then, we perform

the sorted interval Newton Gauss-Seidel step according to

[z] := [y]

[z]si :=
�
csi �

�
bsi +

nX
j=1

j 6=s
i

[A]sij � ([z]j � cj)
� .

[A]sisi

�
\ [z]si; i = 1; : : : ; n

N 0

GS([y]) := [z]

9>>>>=
>>>>;

(3)

incorporating the Hansen/Greenberg realization and di�erent splitting strategies.

6. Numerical Experiences

For testing we used the two groups of standard test functions and some new functions (see [5] and [9] for details on

the functions). We carried out the numerical tests on a HP 9000/730 equipped with PASCAL{XSC [6] using the

basic toolbox modules for automatic di�erentiation and extended interval arithmetic [3].

In two test suites we compared the methods with no sorting, sorting rule A, and sorting rule C combined with

di�erent splitting strategies. In the �rst test suite we used the \0-width-gap" technique only in the special splitting

strategy, in the second test suite, we used it in all four splitting strategies.

For the �rst test suite, the special splitting strategy improves the performance of the global optimization

method signi�cantly, by drastically decreasing the number of Hessian and gradient evaluations and only slightly

increasing storage space. Further improvement is due to the sorting rule C, which can improve the e�ciency of

the algorithm independently of the splitting strategies used. When using the \0-width-gap" technique, the splitting

with p � 8 can also improve the performance, whereas the splittings with p � 2 or p � 2n often produce bad results.

We list the results for two test functions in the following. Important columns are the runtime (in STUs), the

storage space or list length (LL) and the E e� values combining the three values FE, GE, and HE to a single value

approximating the total evaluation e�ort in terms of objective function evaluations (see [8] for details). The complete

results for all test functions together with the source code of our test program can be obtained by anonymous ftp

from iamk4515.mathematik.uni-karlsruhe.de (129.13.129.15) in directory pub/documents/ratz/iciam.95.

Hartman 3 (n = 3)

Splittings Sorting STUs FE GE HE E e�1 E e�2 LL

C 1.08 87 161 45 840 705 12

p � 2 A 1.93 158 283 83 1505 1256 21

no 1.95 158 283 83 1505 1256 21

C 1.11 87 161 45 840 705 12

p � 8 A 1.96 158 283 83 1505 1256 21

no 1.95 158 283 83 1505 1256 21

C 1.18 87 161 45 840 705 12

p � 2n A 1.95 158 283 83 1505 1256 21

no 1.93 158 283 83 1505 1256 21

C 0.65 82 79 21 445 382 19

p � n+ 1 A 1.30 169 161 43 910 781 35

no 1.83 237 243 55 910 1131 47

Hartman 3 (n = 3) 0-width-gaps

Splittings Sorting STUs FE GE HE E e�1 E e�2 LL

C 1.16 116 154 42 830 704 25

p � 2 A 3.36 346 469 112 2425 2089 62

no 3.39 350 471 113 2441 2102 62

C 0.64 97 68 19 415 358 35

p � 8 A 1.21 177 139 33 792 693 55

no 1.23 181 141 34 808 706 55

C 0.69 97 68 19 415 358 35

p � 2n A 1.21 177 139 33 792 693 55

no 1.23 181 141 34 808 706 55

C 0.65 82 79 21 445 382 19

p � n+ 1 A 1.30 169 161 43 910 781 35

no 1.83 237 243 55 910 1131 47

Levy 11 (n = 8)

Splittings Sorting STUs FE GE HE E e�1 E e�2 LL

C 9.26 123 221 74 4555 1599 23

p � 2 A 9.29 123 221 74 4555 1599 24

no 9.29 123 221 74 4555 1599 24

C 9.24 123 221 74 4555 1599 23

p � 8 A 9.26 123 221 74 4555 1599 24

no 9.26 123 221 74 4555 1599 24

C 9.29 123 221 74 4555 1599 23

p � 2n A 9.26 123 221 74 4555 1599 24

no 9.26 123 221 74 4555 1599 24

C 4.12 148 71 23 1544 616 86

p � n+ 1 A 4.77 163 87 27 1831 727 103

no 5.09 178 85 28 1831 742 99

Levy 11 (n = 8) 0-width-gaps

Splittings Sorting STUs FE GE HE E e�1 E e�2 LL

C 5.60 105 120 42 2577 921 43

p � 2 A 5.80 109 122 44 2669 949 48

no 5.80 109 122 44 2669 949 48

C 4.91 177 78 27 1773 705 112

p � 8 A 5.16 184 83 29 1892 748 118

no 5.16 184 83 29 1892 748 118

C 41.03 1874 48 15 2798 2186 1432

p � 2n A 38.96 1830 56 17 2890 2190 1518

no 39.16 1830 56 17 2890 2190 1518

C 4.12 148 71 23 1544 616 86

p � n + 1 A 4.77 163 87 27 1831 727 103

no 5.09 178 85 28 1831 742 99

7. References

1 Alefeld, G., Herzberger, J.: Introduction to Interval Computations. Academic Press, New York, 1983.

2 Csendes, T., Ratz, D.: Subdivision Direction Selection in Interval Methods for Global Optimization. SIAM Journal of
Numerical Analysis, accepted for publication, 1995.

3 Hammer, R., Hocks, M., Kulisch, U., Ratz, D.: Numerical Toolbox for Veri�ed Computing I { Basic Numerical

Problems. Springer-Verlag, Heidelberg, New York, 1993.
4 Hansen, E., Greenberg, R.: An Interval Newton Method . Applied Mathematics and Computations 12, 89{98, 1983.

5 Hansen, E.: Global Optimization Using Interval Analysis. Marcel Dekker, New York, 1992.

6 Klatte, R., Kulisch, U., Neaga, M., Ratz, D., Ullrich, Ch.: PASCAL{XSC { Language Reference with Examples.
Springer-Verlag, New York, 1992.

7 Ratz, D.: Automatische Ergebnisveri�kation bei globalen Optimierungsproblemen. Dissertation, Karlsruhe, 1992.

8 Ratz, D.: Box-Splitting Strategies for the Interval Gauss-Seidel Step in a Global Optimization Method. Computing 53,
337{353, Springer-Verlag, Wien, 1994.

9 Ratz, D., Csendes, T.: On the Selection of Subdivision Directions in Interval Branch-and-Bound Methods for Global

Optimization. Journal of Global Optimization, accepted for publication, 1995.

Address: Dr. Dietmar Ratz, Universit�at Karlsruhe, Institut f�ur Angewandte Mathematik, D-76128 Karlsruhe

