
ZAMM 76, S1, 319{322 (1996)

Csendes, T. and Ratz, D.

A review of subdivision direction selection in interval methods for global

optimization

This paper gives a short overview of the latest results on the role of the interval subdivision selection rule in branch-

and-bound algorithms for global optimization. The class of rules that allow convergence for two slightly di�erent model

algorithms is characterized, and it is shown that the four rules investigated satisfy the conditions of convergence.

An extensive numerical study with a wide spectrum of test problems indicates that there are substantial di�erences

between the rules in terms of the required CPU time, the number of function and derivative evaluations and space

complexity. Two of the rules can provide substantial improvements in e�ciency.

1. Introduction

Interval subdivision methods for global optimization [4, 8] aim at providing reliable solutions to global optimization
problems

min
x2X

f(x); (1)

where the objective function f : IRn ! IR is continuously di�erentiable, and the search region X � IR
n is an

n-dimensional interval. No special problem structure is required: only inclusion functions of the objective function
and its gradient are utilized [1]. Denote the set of compact intervals by II := f[a; b] j a � b; a; b 2 IRg and the set of
n-dimensional intervals (also called simply intervals or boxes) by II

n. We call a function F : IIn ! II an inclusion

function of f : IRn ! IR in X, if x 2 Y implies f(x) 2 F (Y ) for each interval Y in X. In other words, f(X) � F (X),
where f(X) is the range of f(x) on X. The inclusion function of the gradient of f(x) is denoted by F

0(X).

There are several ways to build an inclusion function for a given optimization problem (e.g. by using the
Lipschitz constant). Interval arithmetic [1] is a convenient tool for constructing the inclusion functions, and one can
get inclusion functions for almost all functions that can be calculated by a �nite algorithm (i.e. not only for given
expressions).

It is assumed in the following that the inclusion functions have the isotonicity property, i.e. X � Y implies
F (X) � F (Y ), and that for all the inclusion functions w(F (Xi)) ! 0 as w(Xi) ! 0 holds, where w(X) is the
width of the interval X (w(X) = maxX �minX if X 2 II, and w(X) = maxni=1w(Xi), if X 2 II

n).

2. Subdivision direction selection rules in branch-and-bound algorithms

We investigate the followingmodel algorithmthat comprises the most important common features of interval methods
for global optimization (cf. e.g. [4, 8]).

Step 0 Set Y = X and y = minF (X). Initialize the list L = ((Y; y)) and the cut-o� level z = maxF (X).

Step 1 Choose a coordinate direction k 2 f1; 2; : : : ; ng.

Step 2 Bisect Y in direction k: Y = V
1 [ V

2.

Step 3 Calculate F (V 1) and F (V 2), and set vi = minF (V i) for i = 1; 2 and z = minfz;maxF (V 1);maxF (V 2)g.

Step 4 Remove (Y; y) from the list L.

Step 5 Cut-o� test: discard the pair (V i
; v

i) if vi > z (where i 2 f1; 2g).

Step 6 Monotonicity test: discard any remaining pair (V i
; v

i) if 0 =2 F
0

j(V
i) for any j 2 f1; 2; : : :; ng, and i = 1; 2.

Step 7 Add any remaining pair(s) to the list L. If the list becomes empty, then STOP.

Step 8 Denote the pair with the smallest second element by (Y; y).



Step 9 If the width of F (Y ) is less than ", then print F (Y ) and Y , STOP.

Step 10 Go to Step 1.

The interval Y that is �rst set in Step 0, and then updated in Step 8, is called the leading box, and the leading box
of the iteration number s is denoted by Y s. Notice that the cut-o� test does not have any e�ect on the convergence
of the algorithm; it may just decrease the space complexity, the maximal length of list L.

The interval subdivision direction selection rule in Step 1 is the target of our present study. All the rules select
a direction with a merit function:

k := min
n
j j j 2 f1; 2; : : :; ng and D(j) =

n
max
i=1

D(i)
o

(2)

where D(i) is determined by the given rule. For Rule A D(i) := w(Xi) (see e.g. [8]). Rule B selects the coordinate
direction, for which (2) holds with D(i) := w(F 0i (X))w(Xi) (c.f. [4]). For Rule C the merit function is D(i) :=
w(F 0i (X)(Xi � m(Xi))) ([6, 9]). Rule D is derivative-free like Rule A, and reects the machine representation of
the inclusion function F (X) (see [9]): D(i) := w(Xi) if 0 2 Xi, and w(Xi)=minfjxij j xi 2 Xig otherwise. Such
algorithmic improvements can be quite important for some real life applications (like e.g. [7]).
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Figure 1: Remaining subintervals after 250 iteration steps of the model algorithm with the direction selection rules
A, B, C, and D for the Three-Hump-Camel-Back problem.



Typical distributions of subintervals are shown in Figure 1 for the direction selection rules A, B, C, and D, respec-
tively. The direction selection rule A tends to form square-like boxes, while Rule D produces elongated intervals as
the magnitudes of the coordinates di�er. Rules B and C generate similar sets of subintervals, reecting the utilized
derivative information. The remaining number of subboxes were 53, 33, 19 and 52 , respectively.

3. Direction selection rules and the convergence

In [3] and [10], the relation of subdivision direction selection rules to convergence has been studied. We can just
highlight here the most important results. First a property (balanced) of the subdivision direction selection rules
was de�ned. A similar property was discussed in [5]. If an otherwise arbitrary selection rule has this property, than
the related model algorithm converges both in the sense that the width of the inclusion function of the objective
function converges to the global minimum (lims!1 F (Y s) = f

�) and also in the sense that the width of the leading
boxes goes to zero (lims!1w(Y s) = 0). The opposite direction also holds with some unimportant exceptions:
once the model algorithm converges in the �rst sense, then the direction selection rule must be balanced. If the
model algorithm converges for a problem in the second sense, then either the direction selection rule is balanced,
or the given problem has a positive width subinterval full with global minimizer points | that is located with the
procedure.

The subdivision direction selection rules A and D are balanced. The model algorithm with Rules B and C
either converges to a positive width interval that contains exclusively global minimizer points, or the subdivision
rule acts as a balanced rule. Thus, in the overwhelming majority of cases, all the four investigated Rules work like
a balanced rule, and hence the model algorithm converges in both senses. For the exceptional case when a positive
width interval exists that contains exclusively global minimizer points, the provided solution is even more valuable
than a single point solution would be.

The �rst mentioned paper [3] studied the general case, while the second one [10] investigated a slightly modi�ed
algorithm. In Step 8 of the latter, the oldest one of the list members with the smallest second element y is selected
for further processing. While the original algorithm converges to a single global minimizer point, the modi�ed one
converges to all non-hidden global minimizers. Paper [10] showed that the theoretical results regarding the e�ects
of subdivision direction selection rules on the convergence are valid for the modi�ed algorithms too.

4. Numerical experiences

The numerical tests were carried out on large problem set [3, 10] containing all the standard test problems, all the
problems studied in [4], and many more. The general algorithm was coded in FORTRAN-90, and used natural
interval extension and handcoded gradients, while the modi�ed algorithm was coded in PASCAL-XSC and applied
the built-in interval data types and automatic di�erentiation.

E�ort Rule B Rule C Rule D
measure best average worst best average worst best average worst

CPU 8% 93% 145% 6% 94% 155% 19% 943% 32 620%
NFE 20% 93% 197% 18% 93% 195% 20% 202% 3 720%
NDE 20% 93% 205% 18% 93% 203% 19% 198% 3 572%
list length 20% 101% 304% 19% 103% 296% 19% 234% 5 041%

Table 1: Relative e�ort values of the general model algorithm compared to those obtained with Rule A.

While the detailed numerical results can be found in [3], Table 1 contains the most important comparison terms
regarding the CPU time, number of objective function (NFE) and derivative (NDE) evaluations, and the list length
necessary to solve the given problems. According to these �gures, Rules B and C are slightly better than Rule A, and
Rule D proved to be the worst of the four studied rules. For the hard-to-solve problems the mentioned di�erences
were even sharper.



E�ort Rule B Rule C Rule D
measure best average worst best average worst best average worst

CPU 6% 84% 130% 6% 78% 130% 19% 119% 353%
NFE 7% 85% 119% 7% 81% 119% 18% 119% 323%
NDE 6% 86% 121% 6% 81% 121% 18% 118% 338%
list length 5% 89% 117% 5% 86% 129% 14% 116% 283%

Table 2: Relative e�ort values of the modi�ed model algorithm compared to those obtained with Rule A.

The detailed numerical results for the modi�ed algorithm are discussed in [10]. Table 2 comprises the relative e�ort
measures for the modi�ed procedure. These �gures reect the same consequences as drawn on the basis of Table 1
| with some alterations in the di�erences.

In a recent study [2], the model algorithm was completed with many sophisticated accelerating devices (such
as the optimal centered form for the inclusion function, interval Newton steps, nonconvexity test and multisection
strategies). The above consequences regarding the role of the direction selection rules were con�rmed by this
algorithm | with obvious slight di�erences in the actual e�ciency improvement �gures.

5. Summary and conclusions

All the four studied interval subdivision selection rules allow the convergence of the model algorithm. According
to the available numerical tests, Rule B and Rule C can decrease the computational and space complexity of the
majority of global optimization problems. These improvements are especially large for hard-to-solve problems.

In spite of some e�orts made, it is still open how one can achieve similar e�cient solutions when the gradient
information cannot be used in the direction selection rule (like in Rules A and D). A rule utilizing second order
derivative information in a clever way is also missing.
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