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Abstract

Certain zero-bias anomalies (ZBAs) in the voltage, temperature and magnetic

�eld dependence of the conductance G(V; T;H) of quenched Cu point contacts

have previously been interpreted to be due to non-magnetic 2-channel Kondo

(2CK) scattering from near-degenerate atomic two-level tunneling systems1;2,

and hence to represent an experimental realization of the non-Fermi-liquid

physics of the T = 0 �xed point of the 2-channel Kondo model. In this, the

�rst in a series of three papers (I,II,III) devoted to 2-channel Kondo physics,

we present a comprehensive review of the quenched Cu ZBA experiments and

their 2CK interpretation. We �rst review the evidence that the ZBAs are due

to electron scattering from stuctural defects that are not static, but possess

internal dynamics. In order to distinguish between several mechanisms pro-

posed to explain the experiments, we then analyze the scaling properties of

the conductance at low temperature and voltage and extract from the data a

universal scaling function �(v). The theoretical calculation of the correspond-

ing scaling function within the 2CK model is the subject of papers II and III.

The main conclusion of our work is that the properties of the quenched Cu

data, and most notably their scaling behavior, are in good agreement with the

2CK model, and clearly di�erent from several other proposed mechanisms.
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I. INTRODUCTION

The study of systems of strongly correlated electrons that display non-Fermi-liquid be-
havior has attracted widespread interest in recent years, fueled in part by their possible
relevance to heavy-fermion compounds3{5 and high-Tc superconductivity materials6{8. On
the theoretical front, one of the consequences was a renewed interest in various multi-channel
Kondo models, some of which were predicted by Nozi�eres and Blandin9 to contain non-Fermi-
liquid physics. Some of the most recent advances were made by A�eck and Ludwig (AL)
(see10 and references therein), who developed an exact conformal �eld theory (CFT) solution
for the T = 0 �xed point of the multichannel Kondo models. On the experimental front, an
experiment performed by two of us (RB)1;11, that investigated certain zero-bias anomalies
(ZBAs) in the conductance of quenched Copper nanoconstrictions, has emerged as a poten-
tial experimental realization of the 2-channel Kondo (2CK) model and the corresponding
non-Fermi-liquid physics2;12{14. Although this interpretation has been greated with scep-
ticism by some15;16 and alternative mechanisms for the ZBAs have been proposed17;18, the
2CK scenario has recently received important additional suppport from experimental results
on ZBAs in metal break junctions19;20.

In a series of three papers (I, II, III) we present a detailed analysis of these ZBA experi-
ments and their 2CK interpretation. The present paper (I) is a comprehensive review of the
quenched Cu ZBA experiments that attempts to integrate the results into a coherent pic-
ture (while postponing all formal theoretical developments to II and III). Paper II contains a
calculation of the non-equilibrium conductance through a nanoconstriction containing 2CK
impurities, which is compared with the Cu experiments. Paper III, which is the only paper
of the three that requires knowledge of AL's conformal �eld theory solution of the 2CK
model, describes a bosonic reformulation21 of their theory that is considerably simpler than
those used previously and is needed to derive certain key technical results used in paper II.

Let us begin by briey summarizing the quenched Cu ZBA experiments and how they
inspired the theoretical work presented in papers II and III.

RB used lithographic techniques to manufacture quenched Cu constrictions of diameters
as small as 3 nm (see Fig. 1), and studied the conductance G(V; T;H) through the so-
called nanoconstriction (or point contact) as a function of voltage (V ), temperature (T ) and
magnetic �eld (H). Their constrictions were so small that they were able to detect electron
scattering at the level of individual impurities or defects in the constriction. Since the
energy dependence of the scattering rate can be extracted from the voltage dependence of the
conductance, such an experiment probes the actual electron-impurity scattering mechanism.

For very small eV=kB and T (< 5K), RB observed non-ohmic ZBAs in the voltage
(V ) and temperature (T ) dependence of the conductance signals of unannealed, ballistic
nanoconstrictions. The qualitative features of these anomalies (such as their behavior in
a magnetic �eld, under annealing and upon the addition of static impurities), which are
reviewed in detail in the present paper, lead to the proposal1 that the ZBAs are caused by
a special type of defect in the nanoconstrictions, namely two-level systems (TLSs). This
proposal has recently received support from a related experiment by Keijsers et al. on
nanoconstrictions made from metallic glasses19;20 (briey reviewed in section VIII).

There are at least two theories for how TLSs can cause ZBAs in nanoconstrictions. In
the �rst, based on Zawadowski's non-magnetic Kondo model22;23, the interaction between
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TLSs and conduction electrons is described, at su�ciently low energies, by the 2CK model
(reviewed in Appendix B of paper II), leading to an energy dependent scattering rate and
hence a ZBA. In the second, Kozub and Kulik's theory of TLS-population spectroscopy17;18,
the ZBA is attributed to a V -induced non-equilibrium occupation of the upper and lower
energy states of the TLSs (see section VC).

Though the two theories make quite similar predictions for the shape of the ZBA, they
make di�erent predictions for the V=T -scaling behavior of G(V; T ). Whereas Kozub and
Kulik's theory predicts that G(V; T ) does not obey any V=T -scaling relation at all, the 2CK
scenario predicts2 that in the regime T � TK and eV � kBTK (where TK is the Kondo
temperature), the conductance G(V; T ) should obey a scaling relation of the following form:

G(V; T )�G(0; T )

T �
= F (eV=kBT ) (1)

where F (x) is a sample-dependent scaling function. Moreover, AL's CFT solution of the
2CK problem suggested that by scaling out non-universal constants, it should be possible to
extract a universal , (i.e. sample-independent) scaling curve �(x) from F (x), and that the
conductance exponent � should have the universal non-Fermi-liquid value � = 1

2
, in striking

contrast to the usual Fermi-liquid value24 of � = 2. Since no calculation had been provided
in Ref.2 to support the statement that � = 1

2
, its status up to now has been that of an

informed guess rather than a de�nite prediction, a situation that is remedied in papers II
and III.

A detailed scaling analysis2 showed that the data of RB indeed do obey the above scaling
relation, with � = 0:5 � 0:05. It should be emphasized that the veri�cation of scaling is
a very signi�cant experimental result: �rstly, the scaling relation (1), by combining the V -
and T -dependence of G(V; T ) for arbitrary ratios of V=T , contains much more information
than statements about the separate V - or T -dependence would; and secondly, an accurate
experimental determination of the scaling exponent � is possibly only by a scaling analysis
of all the data (for a detailed review of this central ingredient of the data analysis, see
section VII). Accurate knowledge of � is very important, since � succinctly characterizes
the low-energy critical properties of the physics, enabling one to eliminate many otherwise
plausible candidate theories for the ZBA (such as that by Kozub and Kulik).

The experimental value for � agrees remarkably well with the CFT prediction of � = 1

2
;

furthermore, the scaling curve �(x) was indeed the same for all three samples studied in
detail, in accord with the CFT expectation that it should be universal and hence sample-
independent. Thus, this result considerably strenghtens the case for the 2CK interpretation
of the RB experiment, within which the experimental demonstration that � = 1

2
is, remark-

ably, equivalent to the direct observation of non-Fermi-liquid physics.
Nevertheless, this scaling behavior can conceivably also be accounted for by some other

theory. Indeed, Wingreen, Altshuler and Meir15;(a) have pointed out that an exponent of
� = 1

2
also arises within an alternative interpretation of the experiment, based not on 2CK

physics but the physics of disorder. (We believe that this interpretation is in conict with
other important experimental facts, see section VA).

It is therefore desirable to develop additional quantitative criteria for comparing exper-
iment to the various theories. One possible criterion is the scaling function �(x). A very
stringent quantitative test of any theory for the RB experiment would therefore be to cal-
culate the universal scaling function �(x), which should be a �ngerprint of the theory, and
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compare it to experiment. Papers II and III are devoted to this task: �(x) is calculated
analytically within the framework of the 2CK model and its exact CFT solution by AL,
and the results are compared to the RB experiment. When combined with recent numerical
results of Hettler et al.12, agreement with the experimental scaling curve is obtained, thus
lending further quantitative support to the 2CK interpretation for the Cu constrictions.

The main conclusion of our work is that the 2CK interpretation can qualitatively and
quantitatively account for all the scaling properties of the conductance measured in the
ZBAs of Cu point contacts. The experiments by Keijsers et al.20 on metallic-glass nanocon-
strictions add further evidence in support of the 2CK interpretation, as opposed to other
proposed mechanisms. However, we shall note that the 2CK model does not account for two
phenomena observed in the quenched Cu samples. Firstly, the magnetic �eld dependence
of the low-bias conductance is rather strong (the 2CK explanation for the �eld dependence
that was o�ered in Ref.2 does not seem to survive closer scrutiny, as discussed in section IX).
Secondly, the conductance undergoes very sudden transitions at certain voltages Vc

11;25 (see
(P9) of section IV), if T and H are su�ciently small. These voltages can be rather large
(Vc typically ranges between 5 and 20 mV), implying that some new, large energy scale is
involved. These two phenomena are not generic to TLS-induced ZBAs, however, since they
are not observed in metallic-glass constrictions. We shall suggest that the two phenomena
involve \high-energy" physics associated with the strongly-interacting system of electrons
and atomic tunneling centers. Such physics is beyond the scope of the existing 2CK model
and its CFT treatment, which deals only with the \low-energy" aspects of the problem.

Paper I is organized as follows: In section II we describe the fabrication and character-
ization of nanoconstrictions, and summarize some elements of ballistic point contact spec-
troscopy in section III. In section IV we summarize the main experimental facts associated
with the ZBA in the Cu samples, which we state in the form of nine properties, (P1) to (P9).
Section V describes arguments for ruling out a number of possible explanations for the ZBA
that come to mind. The 2CK interpretation is presented in section VI, where its assump-
tions are summarized and critically discussed. Section VII contains a scaling analysis of the
G(V; T ) data at H = 0. A related ZBA experiment on metallic-glass nanoconstrictions is
briey discussed in section VIII. Possible sources of magnetic �eld dependence in the 2CK
scenario are discussed in section IX. Finally, we summarize the results and conclusions of
this paper in section X.

II. THE NANOCONSTRICTION

A schematic cross-sectional view of a typical nanoconstriction (often also called a point

contact) is shown in Fig. 1. The device is made in a sandwich structure. The middle layer
is an insulating Si3N4 membrane. This contains in one spot a bowl-shaped hole, which just
breaks through the lower edge of the membrane to form a very narrow opening, as small as
3 nm in diameter. The narrow neck at the lower opening in the Si3N4 membrane is so small
that this region completely dominates the resistance, measured between the top and bottom
of the structure. Only metal within a distance equal to a few constriction diameters from
the narrowest region contributes signi�cantly to the resistance signal. The small physical
size of the structure serves to focus electrons so that only atoms in a very small region
contribute to the resistance, and the resistance is sensitive to scattering from single defects
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in the constriction region.
To fabricate the devices, electron beam lithography and reactive ion etching are used to

form the bowl-shaped hole in a Si3N4 membrane. The technique for making a bowl-shaped
hole that just breaks through the Si3N4 membrane (which is essential to obtaining a nano-
hole) was developed by Ralls26; the details relevant to the present experiments are described
in Ref.11;section2:2. In ultra-high vacuum (< 2 � 10�10 torr) and at room temperature the
membrane is then rotated to expose both sides while evaporating metal to �ll the hole (thus
forming a metallic channel through the constriction) and coat both sides of the membrane.
A layer of at least 2000 �A of metal is deposited on both sides of the membrane to form
clean, continuous �lms. The phenomena discussed in this paper have been observed in Cu,
Al, Ag, and Pt devices. They are observed only in devices which have been \quenched"
{ cooled to cryogenic temperatures shortly after being made by evaporation. The ZBA
signals dissappear in devices that are allowed to anneal. The time scale required for this
annealing process varies from material to material, from several hours in Cu to several weeks
for refractory metals.

III. BALLISTIC POINT CONTACT SPECTROSCOPY

A constriction is called ballistic if electrons travel ballistically through it, along semi-
classical, straight-line paths between collisions with defects or the walls of the constriction.
This occurs if two conditions are ful�lled: Firstly, it must be possible to neglect e�ects due
to the di�raction of electron waves, i.e. one needs 1=kF � a, where a = constriction radius.
Secondly, the constriction must be rather clean (as opposed to disordered): an electron
should just scatter o� impurities once or twice while traversing the hole. One therefore
needs a� l, where l is the electron mean free path.

The quenched Cu ZBA-devices of RB reasonably meet both conditions: �rstly, for Cu
1=kF ' 0:1nm, whereas a is of order 2-8 nm [as determined from the Sharvin formula for
the conductance, Eq. (3)]. Secondly, for clean, annealed devices l � 200 nm (as determined
from the residual bulk resistivity). For devices containing structural defects, l is reduced to
about l >� 30 nm [see (P4)], which is still about twice the constriction diameter. Thus, we
shall henceforth regard the quenched Cu ZBA-devices as ballistic constrictions.

Some aspects of the theory of transport through ballistic constrictions27;28 are reviewed
in Appendix A of paper II. Here we merely summarize the main conclusions.

The di�erential conductance has the general form

G(V ) �

�����dI(V )dV

����� = Go +�G(V ) : (2)

The constant Go, the so-called Sharvin conductance, arises from electrons that travel bal-
listically through the hole without scattering. Sharvin showed that for a round hole,

Go = a2e2m"F=(2��h
3); (3)

where a is the radius of the hole, and hence the measured value of Go can be used to estimate
the size of the constriction.
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Any source of scattering in the constriction that backscatters electrons and hence pre-
vents them from ballistically traversing the hole gives rise to a backscattering correction
�G. If the electron scattering rate ��1(") is energy-dependent, �G(V ) is voltage depen-
dent. In fact, one of the most important characteristics of ballistic nanoconstrictions is
that the energy dependence of ��1(") can be directly extracted from the voltage dependence
of �G(V ), which implies that ballistic nanconstrictions can be used to do spectroscopy of
electron-defect scattering.

If, for example, the voltage is large enough to excite phonons (> 5mV for Cu), the I-V
curve is dominated by electron-phonon scattering. In this case, it can be shown that at
T = 0, �G = �

�
4e2m2vF a

3

3��h4

�
��1(eV ) where ��1("0) �

R "0
0
d"�2Fp(") is the relaxation rate

for an electron at energy "0 above the Fermi surface. Thus, due to phonon-backscattering
processes, the conductance of any point contact drops markedly at voltages large enough
to excite phonons [V > 5 meV for Cu, see Fig. 2(a)]. Furthermore, the function �2Fp(eV ),
the so-called point contact phonon spectrum, can be directly obtained from @V�G(V ). For
any clean, ballistic Cu nanoconstriction, it should give the same function, characteristic
of the phonon spectrum, and indeed nanoconstriction measurements thereof agree with
other determinations of �2Fp. However, the amplitude of the phonon-induced peaks is
reduced dramatically if there is signi�cant elastic scattering due to defects or impurities in the
constriction region, as has been modeled theoretically29 and demonstrated experimentally30.
Therefore, comparing the point contact phonon spectrum of a given point contact to the
reference spectrum of a clean point contact provides an important and reliable tool for
determining whether the point contact is clean or not.

For voltages below the phonon threshold (V < 5mV for Cu), the V -dependence of �G(V )

is due to scattering o� defects. For a set of defects at positions ~Ri, with an isotropic,
elastic, but energy-dependent scattering rate ��1("), the backscattering conductance has
the following form14:

�G(V ) = �(� (0)e2=h)
Z 1

�1
d![�@!fo(�h!)]

X
i

bi
1

2

h
��1(�h! � 1

2
eV a+i ) + ��1(�h! � 1

2
eV a�i )

i
:

(4)

We factorized out the constant � (0)e2=h to ensure that �G has the correct dimensions
and order of magnitude. We assume that the resistance contribution from each defect
may be calculated independently { that is, we ignore quantum interference for electrons
scattering from multiple defects. The ai and bi are (unknown) constants of order unity that
characterize all those details of scattering by the i-th impurity that are energy-independent
and of a sample-speci�c, geometrical nature. The bi account for the fact that the probability
that an electron will or will not traverse the hole after being scattered o� the i-th impurity
depends on the position of the impurity relative to the hole. The ai account for the fact that
impurities that are at di�erent positions ~Ri in the nanoconstriction feel di�erent e�ective
voltages (because the amount by which the non-equilibrium electron distribution function

at ~Ri di�ers from the equilibrium Fermi function fo depends on ~Ri).
In spite of the presence of the many unknown constants ai, bi, we shall see that it is

nevertheless possible to extract general properties of ��1(") from the measured �G(V; T )
data. For example, from Eq. (4) one can deduce that if
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��1("; T )� ��1(0; T ) /

(
ln [max(T; ")] ;

T �~�("=T ) ;
then �G(V; T ) /

(
ln [max(T; V )] ;
T �F (V=T ) ;

(5)

where ~� and F are scaling functions.

IV. EXPERIMENTAL FACTS FOR QUENCHED CU SAMPLES

In this section we summarize in brief the experimental facts relevant to the ZBA in
quenched Cu samples. Our interpretation of these facts is postponed to later sections,
where some of them will be elaborated upon more fully, and where most of the �gures
quoted below can be found.

The phenomenon to be studied is illustrated by the upper di�erential conductance curve
in Fig. 2. Its three essential features are the following: Firstly, the di�erential conductance
shows a drop for jV j > 5 mV, due to the excitation of phonons, a process which is well
understood (see section III). Secondly, there are sharp voltage-symmetric conductance spikes
at somewhat larger voltages (Vc), called conductance transitions in Ref.1;31, because in the
DC conductance they show up as downward steps with increasing V (see �gure 13 below).
Some of their complex properties are listed in point (P9) below.

Thirdly, the conductance has a voltage-symmetric dip in the conductance near V = 0;
this is the so-called zero-bias anomaly (ZBA). As a sample is cooled, the temperature at
which the zero-bias features become measurable varies from sample to sample, ranging from
10 K to 100 mK. This paper is concerned mainly with the regime V < 5 mV and this ZBA.

The ZBA is a very robust phenomenon. For decades it has been observed, but not
carefully investigated, in mechanical \spear and anvil" point contacts made from a variety
of materials, see e.g.32. Even the dramatic conductance transitions have probably been seen
in early ZBA experiments27, though their presence had not been emphasized there 1.

The advent of the mechanically very stable nanoconstrictions employed by RB allowed
a detailed systematic study of the ZBA. Their �ndings are discussed at length in11 and31.
We summarize them in the form of 9 important properties of the ZBA in quenched Cu
nanoconstrictions:

(P1) Quenching: ZBAs and conductance transitions [Fig. 2(a)] are found only in quenched

Cu samples, i.e. samples that are cooled to cryogenic temperatures within hours after
being formed by evaporation. They are found in about 50% of such samples, and in a
variety of materials, such as Cu, Al, Ag and Pt (Cu was used in the samples discussed
below).

(P2) Amplitude: Typical values for G(V =0) vary from 2000 to 4000 e2=h. The anomaly
is only a small feature on a very big background conductance: its amplitude [Gmax �

1For example, Fig. 3C of27 shows a d2I=dV 2 spectrum with sharp signals, more or less symmetric

about zero, that are consistent with being derivatives of spikes in the dI=dV conductance curve.

Note that these signals are too sharp to be spectroscopic signals smeared by kT , but are indicative

of abrupt transitions.
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G(V =0)] varies from sample to sample, from a fraction of e2=h to as large as 70e2=h
at 100 mK. It's sign is always the same, with G(V; T ) increasing from G(0; To) as V
or T are increased. The sample (# 1 in Fig. 7) showing best scaling (see (P6) below)
had a maximum ZBA amplitude of about 30e2=h.

(P3) Annealing:

(a) After annealing at room temperature for several days, the ZBA and conductance
spikes disappear, and the conductance curve looks like that of a completely clean point
contact [see lower curve in Fig. 2(a)].
(b) Nevertheless, such annealing changes the total conductance by not more than 1%
or 2% (both increases and decreases have been observed), indicating that the overall
structure of the constriction does not undergo drastic changes.
(c) Upon thermal cycling, i.e. brief (several minutes) excursions to room temperature
and back, the amplitude of the ZBA and the V -position of the conductance transitions
change dramatically and non-monotonically. [see Fig. 3(a)]. The complexity of this
behavior suggests that the thermal cycling is causing changes in the position of defects
within the constriction, and the ZBA is very sensitive to to precise con�guration of
the defects.

(P4) E�ect of disorder:

(a) If static disorder is intentionally introduced into a nanoconstriction by adding 1%
or more of impurity atoms such as Au to the Cu during evaporation, the zero-bias
conductance dip and conductance spikes disappear completely [see Fig. 3(b)]. Like-
wise, the signals are absent in samples for which water is adsorbed onto the Si3N4

surface before metal deposition (the standard sample fabrication procedure therefore
involves heating the sample to � 100�C in vacuum, or exposing it for several hours to
ultraviolet light in vacuum, before the �nal metal evaporation is done).
(b) When a strongly disordered region is created near the constriction (by electromi-
gration: a high bias (100-500 mV) is applied at low temperatures so that Cu atoms
are moved around, a method controllably demonstrated in26;33;34), the conductance
shows no ZBA either, but instead small-amplitude, voltage-dependent (but aperi-
odic) conductance uctuations at low voltage [see Fig. 3(c), (d)]. That these are
characteristic of strongly disordered constrictions and can be interpreted as universal
conductance uctuations due to quantum interference, was established in a separate
investigations35,11;chapter 4,36.

(P5) Phonon spectrum: For quenched samples, in the point contact phonon spectrum the
longitudinal phonon peak near 28 mV is not well-de�ned, and the total amplitude
of the spectrum is smaller by about 15% than after annealing. After annealing, the
longitudinal phonon peak reappears and the spectrum corresponds to that of clean
ballistic point contacts. Both these di�erences indicate (see p. 6) that the elastic
mean free path l in the annealed samples is somewhat longer than in the quenched
samples. From the phonon spectrum of the latter, l can be estimated (see section II)
to be l >

� 30 nm [for the sample shown in Fig. 2(a)], still more than about twice
the constriction diameter for that device. Note also that the point contact phonon
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spectrum for a quenched device [Fig. 2(b)] is qualitatively very di�erent from that of
a strongly disordered constriction [Fig. 3(d)]. These facts, viewed in conjunction with
(P3b) and (P4c), implies that the Cu constrictions displaying ZBAs are still rather
clean and ballistic.

(P6) V=T scaling (to be established in detail in section VII):
(a) At H = 0, the conductance obeys the following scaling relation if both V < VK
and T < TK, but for arbitrary ratio v = eV=kBT :

G(V; T )�G(0; T )

T �
= F (v) : (6)

Relation (6) allows a large number of data curves to be collapsed onto a single, sample-
dependent scaling curve [e.g. see Figs. 8(a) and 8(b) below]. The departure of individ-
ual curves from the low-T scaling curve in Figs. 8(a) and 8(b) indicates that V or T
has surpassed the crossover scales VK or TK. From the data, these are related roughly
by eVK = 2kBTK, with TK in the range 3 to 5 K.
(b) F (v) is a sample-dependent scaling function with the properties F (0) 6= 0
and F (v) / v� as v ! 1, and the scaling exponent is found to have the value
� = 0:5� 0:05.
(c) By scaling out sample-dependent constants, it is possible to extract from F (v) a
\universal" scaling function �(v) [shown in Fig. 11(b) below]. �(v) is universal in the
sense that it is indistinguishable for all three devices for which a scaling analysis was
carried out (they are called sample 1,2 and 3 below).

(P7) Logarithms: For V or T beyond the cross-over scales VK or TK, G(V; T ) deviates
markedly from the scaling behavior of (P6) and behaves roughly logarithmically: For
H = 0 and �xed, small T , the conductance goes like lnV for V > VK [Fig. 5(a)];
similarly, for H = V = 0 and T > TK, the conductance goes like lnT [Fig. 5(b)].

(P8) Magnetic �eld:

(a) When a magnetic �eld (of up to 6 T) is applied, the amplitude of the ZBA in Cu
devices decreases [see Fig. 4(b)]. The change in amplitude can be as large as 24 e2=h
if H changes from 0 to 6 T. For su�ciently small H (< 1T), at �xed T and V = 0,
the magnetoconductance roughly follows G(H;T ) / jHj (see Fig. 14 below). However,
the available data is insu�cient to establish linear behavior beyond doubt, and, for
example, would also be compatible with a jHj1=2-dependence.
(b) The ZBA dip undergoes no Zeeman-splitting in H, in constrast to the Zeeman
splitting that is found for devices intentionally doped with magnetic impurities such
as Mn [see Fig. 4(a)].

(P9) Conductance Transitions:

(a) Voltage-symmetric conductance transitions (spikes in the di�erential conductance
at certain \transition voltages" Vc, see Fig. 2) occur only in quenched point contacts
that show ZBAs, but occur in at least 80% of these. The spikes disappear under
annealing, just as the ZBA does (P3a).
(b) (i) A single sample can show several such conductance transitions (up to 6 di�erent
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Vcs have been observed in a single sample). (ii) If T and H are small (say T <
� 1K,

H <
� 0:5T), Vc is typically rather large, with typical values ranging between 5 and 20

mV, well above the typical voltages associated with the ZBA (i.e. Vc > VK). The
spikes have a very complex behavior as a function of temperature (T ) and magnetic
�eld (H), including (iii) a hysteretic V -dependence, (iv) a bifurcation of single spikes
into two separate ones (Vc1; Vc2) when B 6= 0 (Fig. 12), (v) the H-dependent motion
of the spike positions Vc(H) ! 0 when H becomes su�ciently large (Figs. 12, 13),
and (vi) a very rapid narrowing of the peaks with decreasing T . They are described
at length, from a phenomenological point of view, in Ref.31.

Any theory that purports to explain the ZBA in Cu constrictions must be consistent
with all of the above experimental facts. An extention of this list to include the results
of the recent related ZBA experiment by Keijsers et al. on metallic-glass constrictions is
presented in section VIII.

V. IN SEARCH OF A PLAUSIBLE INTERPRETATION

We shall argue that the most plausible interpretation of the above experimental facts is
the 2CK interpretation, which attributes the ZBA to the presence of dynamic TLSs in the
constriction. Before presenting this scenario in section VI, however, in the present section
we �rst eliminate some other conceivable explanations.

A. Static Disorder

Could the ZBA be due to static disorder? For example, one could consider attributing the
decreased conductance near V = 0 to either weak localization due to disorder37 or disorder-
enhanced electron-electron interactions38. In fact, the latter possibility (�rst mentioned, but
deemed implausible, in Ref.12), was recently advocated15 by Wingreen, Altshuler and Meir
(WAM) (Ref.15 also contains a critique of a crucial assumption of the 2CK scenario, which
is discussed in section VIC3).

WAM made the interesting observation that if just the region of the device near to the
point-contact ori�ce were highly disordered, this would give rise to a local depression in the
density of states near the Fermi surface of the form �N("� "F ; T ) / �T 1=2F

�
"�"F
T

�
, where

F is a scaling function. This in turn would reduce the rate at which electrons incident
ballistically into the disordered region could traverse the sample. The total conductance
would hence be reduced by an amount �G(V; T ) / @V

R "F+eV
"F

d"�N("� "F ; T ) = �N(V; T ):
Due to the scaling form of �N , this argument explains the scaling property (P6), and in fact
the scaling curve F (v) of Eq. (6) that it produces is in quantitative agreement with that of
sample 1 (see15;F ig:1). According to their estimates, this scenario would require a disordered
region of diameter 50 nm (the size of the bowl), a mean free path l = 3 nm and a di�usion
constant D = 15 cm2/s, i.e. rather strong disorder.

The WAM scenario is appealing in that it accounts for the unusual T 1=2 behavior using
well-tested physical ideas, without having to evoke any exotic new physics (such as the non-
Fermi liquid physics implied by the 2CK model advocated below). However, it is at odds
with a number of qualitative (and hence very robust) properties of the ZBA11;section6:6:1,15;(b):
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1. According to (P4a), upon the intentional introduction of static disorder the ZBAs are
not enhanced, as one would have expected in WAM's static disorder scenario, but
disappear completely, in contradiction to the latter.

2. The quenched Cu constrictions actually are considerably cleaner than is assumed in
WAM's scenario, as can be seen from three separate arguments:
(a) According to (P5), a direct estimate of the mean free path, based on the point
contact phonon spectrum (a reliable and well-tested diagnostic method27;28) suggests
l >� 30 nm instead of WAM's 3 nm.
(b) WAM attempted to explain (P3a), the disappearence of the zero-bias anomalies
under annealing, by assuming that the presumed static disorder anneals away at room
temperature. However, this suggestion fails a simple quantitative consistency check:
let us model the constriction region by a Cu cylinder 40 nm in diamter and 40 nm
long, with l = 3 nm. Estimating the resistance of this cylinder using the Drude model
yields R = 7
, which would be the dominant part of the resistance of the device
(R < 10
 in the lower-R devices). If annealing now removes su�cient disorder that
the ZBA disappears, l would have to increase considerably, implying that the overall
R of the device would necessarily decrease by tens of percent, which contradicts (P3b)
(according to which resistance sometimes even increases under annealing).
(c) According to (P4b) even a somewhat smaller amount of disorder (l = 7 nm) than
assumed by WAM has been observed to cause voltage dependent conductance uctu-
ations due to quantum interference. However, these tell-tale signs of static disorder
were never seen in the quenched ZBA samples (P4c), though they did appear as soon
as disorder was purposefully induced using electromigration (P4b). In other words, in
Cu nanoconstrictions the signature of static disorder is conductance uctuations, not
a ZBA.

3. In the static disorder scenario, in which the conductance depends only on the average
disorder in the bowl (not on the precise con�guration of individual defects) it is unclear
how to account for the complex behavior of the ZBA under thermal cycling (P3c).

4. The static disorder scenario provides no hint at all about the possible origin of the con-
ductance transitions. WAM have suggested that these may be due to superconducting
regions in the constriction (caused by an attractive electron-electron interaction at
short range), but this suggestion fails to account for the presence of several di�erent
transitions in the same sample (moreover, superconducitivity in a Cu sample seems
highly implausible).

5. As �rst observed in12, WAM's static disorder scenario provides no natural explanation
for the lnV and lnT dependence of the conductance observed at energy scales above
TK (P7) (in contrast to the 2CK model discussed below). However, this objection is
less compelling than the other ones above, because deviations from the scaling form of
�N are expected at large energies, and the apparently logarithmic regime in the data
is su�ciently small as to not be logarithmic beyond all doubt.
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B. Magnetic Impurities

The asymptotic dependence of the conductance on lnV or lnT (P7) is reminiscent of
the magnetic Kondo e�ect, where the resistance increases as lnT with decreasing T (as long
as T > TK). However, there are at least three strong arguments that rule out magnetic
impurities as the source of the anomalies:

1. An e�ect due to magnetic impurities would not anneal away at higher temperatures
(P3a), since magnetic impurities are stable within constrictions, not annealing away
at room temperatures over a time scale of 6 months31.

2. If the magnetic Kondo e�ect were at work, a magnetic �eld would cause a well-known
Zeeman splitting in the zero-bias conductance dip, as has been observed in nanocon-
strictions intentionally doped with the magnetic impurity Mn11;section5:2, as shown in
Fig. 4(a). However, in the devices under present consideration, a Zeeman splitting has
never been observed (P8b).

3. Magnetic impurities in metal break junctions have been observed to cause ZBAs that
do not exhibit splitting because the Kondo temperature scale is larger than the Zeeman
energy39. However the ZBA signals caused by these impurities are very di�erent than
the ones we investigate, because they exhibit Fermi liquid scaling (� = 2) rather than
the � = 0:5 we measure.

C. TLS population spectroscopy

Many of the qualitative features of the quenched Cu ZBAs can be understood within the
framework of Kozub and Kulik's (KK) theory of TLS-population spectroscopy17;19, which
has recently been extended by Kozub, Rudin, and Schober18. This theory assumes that the
constriction contains TLSs with non-zero energy splittings �i, so that the application of a
voltage will induce a non-equilibrium population ni�(V ) of the higher and lower states j�ii
of each TLS (labelled by i). Assuming that these two states have di�erent cross-sections ��i
for scattering electrons, the resistance R(V ) will then depend non-linearly on the voltage
and temperture. According to Kozub and Kulik, the di�erential resistance has the form

1

R

dR

dV
=
X
j

eCj

2�Ej

(�+j � ��j ) tanh(
1

2
��1)S(�j; �j ; qj) ; (7)

where �j = eV=�Ej , �j = kBT=�Ej, Ej is the energy splitting and Cj and qj are geometrical
coe�cients depending on the location of the i-th TLS in the constriction. The function
S(�; �; q), which they calculated explicitly, determines the shape of the di�erential resistance
curve (see Fig. 2 of17), which can vary quite signi�cantly, depending on the parameters q
and � . Note also that since the signs of (�+j � ��j ) are arbitrary (except under special
assumptions, see40), Eq. (7) predicts that ZBAs of both signs should occur.

The shape of the ZBAs measured by RB are qualitatively of the same form as that
predicted by KK's theory (which has signi�cant freedom for curve-�tting, due to the unde-
termined parameters qj and Ej). However, since the function depends on the two parameters
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� and � separately, this theory cannot account for the existance of a scaling law found in
(P6a), and certainly not for the speci�c value � = 1

2
of the scaling exponent (P6b).

Note, however, that Kozub and Kulik's theory cannot be ruled out as being part of
the explanation of some some related ZBA experiments on nanoconstrictions made from
disordered materials, such as those summarized in section VIII, since for these no scaling
behavior has been reported to date.

D. Properties of external circuit

It was pointed out to us by G. Sch�on41 that uctuations in the voltage V due to uctu-
ations in the external circuit can be shown to lead to a conductance G(V; T ) that satis�es
the V=T -scaling behavior in (P6) (but with the exponent � determined by the external
resistance of the circuit, and hence non-universal).

However, since the ZBAs only occur in quenched samples (P1), and since ZBAs anneal
away at room temperature (P3a), they must be due to some internal properties of the
sample. Hence they cannot be due to properties of the external electrical circuit, such as
external voltage uctations.

E. Charge Traps and other Possibilities

The insulating material used in the devices, namely amorphous Si3Ni4, may contain
charge traps42, which could act as Anderson impurities or quantum dots through which
conduction electrons could hop. This could cause dips in the di�erential conductance through
several mechanisms, such as Kondo scattering from Anderson impurities43, inelastic hopping
conduction44;45 or Coulomb blockade e�ects46.

However, charge traps can be ruled out for the present experiments for the following
reason. A charge trap has in fact been unambiguously observed in a di�erent experiment
by Ralph and Buhrman25. The conductance shows a very characteristic peak at V = 0,
in complete contrast to the ZBA-dip. The suggestion of Ref.25 that this is a Kondo peak
that can be associated with Anderson hopping of electrons through the trap was taken
up by K�onig et al.47, who calculated the conductance G(V; T ) for this scenario and found
reasonably good agreement with that experiment. In other words, if charge traps are present,
their signals are unmistakable, and very di�erent from the ZBAs of present interest.

Other reasons ruling out charge traps as causes for the ZBAs may be found in11;section6:6:2.
Also in11;section6:6 a number of other mechanisms were also considered and ruled out as causes
for the observed ZBAs: electronic surface states or quasi-localized states within the metal,
defect rearrangement, mechanical instabilities, superconducting phases and heating e�ects.

VI. THE 2-CHANNEL KONDO (2CK) INTERPRETATION

In this section, we develop the 2CK interpretation of the ZBAs in quenched Cu con-
strictions. It attributes the ZBA to the presence in the constriction region of structural

defects, namely TLSs, that interact with conduction electrons according to the non-magnetic

Kondo model, which renormalizes at low energies to the non-Fermi-liquid regime of the 2CK
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model. We begin by briey recalling in section VIA some properties of two-level systems
(or slightly more generally, dynamical two-state systems) in metals. Successes and open
questions of the 2CK scenario are discussed in subsections VIB and VIC, respectively, and
its key assumptions are listed, in the form of a summary, in subsection VID.

A. Two-state systems

A dynamical two-state system (TSS), is an atom or group of atoms that can move between
two di�erent positions inside a material48. In the absence of interactions, its behavior is
governed by a double well potential, generically depicted in Fig. 6, with asymmetry energy
�z, tunneling matrix element �x. The corresponding Hamiltonian is

HTSS =
1

2
(�z�

z +�x�
x) ; (8)

where �x and � z are Pauli matrices acting in the two-by-two Hilbert space spanned by the
states jLi and jRi, describing the uctuator in the left or right well.

Depending on the parameters of the potential, the atom's motion between the potential
wells is classi�ed as either slow, fast or ultrafast, with hopping rates ��1 < 108s�1, 108s�1 <
��1 < 1012s�1 or ��1 > 1012s�1, respectively49. Slow two-state systems, called two-state

uctuators, have large barriers and neglibibly small �x, and the motion between wells occurs
due to thermally activated hopping or incoherent quantum tunneling. Fast two-state systems
have su�ciently small barriers and su�ciently large �x that coherent tunneling takes place
back and forth between the wells. Such a system is known as a two-level tunneling system

(TLS), because its physics is usually dominated by its lowest two eigentstates (even and odd
linear combinations of the lowest-lying eigenstates of each separate well), whose eigenenergies
di�er by � = (�2

z + �2

x)
1=2. Ultra-fast two-state systems have such a large �x that � too

becomes very large, so that at low temperatures only the lowest level governs the physics.

1. Slow Fluctuators

The fact that two-state systems in metal nanoconstrictions can inuence the conductance
was demonstrated by Ralls and Buhrman33;34;36, who observed so-called telegraph signals
in well -annealed devices (at rather high temperatures of 20-150K). These are slow, time-
resolved uctuations (uctuation rates of about 103s�1) of the conductance between two (or
sometimes several) discrete values, di�ering by fractions of e2=h, which can be attributed to
the uctuations of a slow two-state uctuator in the constriction region.

Such telegraph signals were also observed by Zimmerman et al.50;51, who studied the
conductance of polychrystalline Bi �lms, a highly disordered material with presumably large
numbers of two-state systems. They were able to measure the parameters of individual slow
uctuators directly, �nding values for the asymmetry energy �z ranging from as little as
0:08 K to about 1K. They also demonstrated that in a disordered environment the asymmetry
energy of a TLS is a random, non-monotonic function2 of the magnetic �eld, �z = �z(H)

2The reason is, roughly, that �z depends on the di�erence �� in the local electron density at the
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(as predicted earlier in Ref.52), and hence can be \tuned" at will by changing H.
Unfortunatly, experiments on slow uctuators do not yield any direct information on the

parameters to be expected for fast ones, since their parameters fall in di�erent ranges.

2. Two-Level Systems

Fast uctuators or TLSs presumably have the same microscopic nature and origin as
slow uctuators, being composed of atoms or small groups of atoms which move between
two metastable con�gurations, but with much lower barriers. Therefore, they anneal away
quicker than slow uctuators, which is why they were not seen in the above-mentioned
Ralls-Buhrman experiments on well-annealed samples11;p: 265. Also, whereas slow uctuators
\freeze out" as T is lowered (which is why they don't play a role in the ZBA regime of
T < 5K), at low T fast uctuators continue to undergo transitions by tunneling quantum-
mechanically between the wells.

A fast uctuator or TLS interacting with conduction electrons is usually described
by the non-magnetic or orbital Kondo model, studied in great detail by Zawadowski and
coworkers22;23 (it is de�ned and reviewed in more detail in Appendices B and C of paper II;
for other reviews, see53;49):

H = HTSS +
X
~k

"~kc
y
~k�
c~k0� +

X
~k~k0

cy~k�

h
V 0

~k~k0
+ V x

~k~k0
�x + V z

~k~k0
� z
i
c~k0� : (9)

Here cy~k� creates an electron with momentum ~k and Pauli spin �. The terms V o and V z� z

describe diagonal scattering events in which the TLS-atoms do not tunnel between wells. The
term V x�x describes so-called electron-assisted tunneling processes. During these, electron
scattering does lead to tunneling, and hence the associated bare matrix elements are much
smaller than for diagonal scattering: V x=V z ' 10�3.

Zawadowski and coworkers showed that the electron-assisted term V x�x renormalizes to
substantially larger values as the temperature is lowered (as does a similar V y� y term that is
generated under renormalization). At su�ciently low temperatures (where V z ' V x ' V y),
the non-magnetic Kondo model was shown54 to be equivalent to the standard 2-channel
Kondo (2CK) model, with an e�ective interaction of the following form:

H
eff
int = vK

Z
d"

Z
d"0
X
�;�0

X
��0

cy"��

�
1

2
~���0 �

1

2
~�
�
c"�0� : (10)

The two positions of the fast uctuator in the L- and R wells correspond to the spin up and
down of a magnetic impurity (and L-R transitions to impurity spin ips). The electrons
are labelled by an energy index ", a so-called pseudo-spin index � = 1; 2 (corresponding to
those two combination of angular momentum states about the impurity that couple most
strongly to the TLS), and the Pauli spin index � ="; #. Evidently, � plays the role of the

two minima of the TLS potential. Due to quantum interference e�ects that are ampli�ed by the

presence of disorder, changes in H can induce random changes in �� and hence also in �z .
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electron's magnetic spin index in the magnetic 2CK model, and since the e�ective interaction
is diagonal in � (which has two values), � is the channel index.

This (non-magnetic) 2CK model, with strong analogies to the magnetic one, yields an
electron scattering rate ��1("; T ) with the properties23;55

��1("; T )� ��1(0; T ) /

(
ln [max (T; ")] if T > TK ;

T 1=2~�("=T ) if �2=TK < T � TK :
(11)

(The condition �2=TK < T is explained in section VIIC.) Hence, for T > TK or �2=TK <

T � TK, it yields [via Eq. (5)] a contribution to the conductance of ��(T ) / lnT or T 1=2,
respectively. The latter is typical for the complicated non-Fermi-liquid physics characteristic
of the 2CK model in the T � TK regime. In this respect the non-magnetic 2CK model di�ers
in an important way from the (1-channel) magnetic Kondo model, for which the low-T scaling
is of the Fermi liquid form (/ T 2).

B. Successes of the 2CK Interpretation

We now turn to an interpretation of facts (P1) to (P9) in terms of the 2CK scenario1;2.
Our aim here is to sketch the physical picture underlying the scenario. Those aspects that
require detailed analysis, such as the scaling behavior (P6) and magnetic �eld dependence
(P8), will be discussed more fully in subsequent sections.

Qualitative features: The cooling and annealing properties (P1) and (P3) suggest that the
ZBAs are due to structural defects or disorder that can anneal away at high temperatures
[although the well-resolved phonon spectrum implies that only a small amount of such
disorder can be present (P5)]. This conclusion is reinforced by the remarkably complex and
non-monotonic behavior of the ZBA under thermal cycling (P3c), which indicates that the
ZBA probes the detailed con�guration of individual defects, not just the average behavior
of the entire constriction region.

By assuming that the ZBA is due to fast TLSs, i.e. a speci�c type of structural defect,
the 2CK scenario accounts for all of the properties just mentioned. Property (P4a), the
disappearance of the ZBA upon the addition of 1% Au atoms, can then be attributed to the
TLSs being pinned by the additional static impurities.

Logarithms and Scaling: Next, we assume that the TLS-electron interaction is governed
by Zawadowski's non-magnetic Kondo model, which renormalizes to the 2CK model at low
energy scales. This explains a number of further facts. Firstly, the non-magnetic nature
of the interaction explains the absence of a Zeeman splitting in a magnetic �eld (P8b).
Furthermore, the fact that the 2CK scattering rate ��1("; T ) has a logarithmic form for
" > TK(> T ) or T > TK(> ") [see Eq. (11)] accounts, via Eq. (5), for the asymptotic
logarithmic V - and T dependence (P7) of G(V; T ) for V > VK(> T ) or T > TK(> V ). Thus,
we identify the experimental crossover temperature TK (' 3 to 5K) of (P6a) with the Kondo
temperature of the 2CK model.

Similarly, the scaling form of ��1("; T ) for "; T � TK [see Eq. (11)] accounts, via Eq. (5),
for the observed scaling behavior (P6) of G(V; T ) for V < VK and T < TK. To be more
particular, the very occurence of scaling behavior (P6a), and fact that the experimental
scaling curve �(v) of (P6c) is universal, can be explained (see section VIIA) by assuming
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that the system is in the neighborhood of some �xed point. Assuming this to be the 2CK
non-Fermi-liquid �xed point, the experimentally observed scaling regime can be associated
with the theoretical expected scaling regime of �2=TK < T � TK and V � TK. Moreover,
the non-Fermi-liquid value of � = 1

2
that is then expected for the scaling exponent (see

section VIIA) agrees precisely with the value observed for �. Thus, within the 2CK inter-
pretation, the experimental demonstration of � = 1

2
is equivalent to the direct observation

of non-Fermi-liquid behavior. Finally, it will be shown in paper II that the shape of the
universal scaling curve �(v) is also in quantitative agreement with the 2CK model.

Number of TLSs: Each 2CK impurity in the constriction can change the conductance
by at most 2e2=h.3 Therefore, the sample with the largest ZBA of 70e2=h (sample # 2 in
Fig. 7) would require up to about 40 such TLSs in the constriction. However, this is still
only a relatively small amount of disorder (corresponding to a density of about 10�4 TLSs
per atom11;p:2774). The sample that showed the best scaling (sample # 1 in Fig. 7) had a
signi�cantly smaller amplitude of <� 20e2=h, implying only about 10 active TLSs.

C. Open Questions in the 2CK Scenario

Having discussed the successes of the 2CK scenario, we now turn to questions for which
the 2CK scenario is unable to o�er a detailed explanation, namely the conductance transi-
tions (P9), the strong magnetic �eld dependence (P8a), and the microscopic nature of the
TLSs. We shall point out below that (P9) and (P8a) are not generic to TLS-induced ZBAs,
and speculate that they are related and must involve some new \high-energy" physics, since
(P9) occurs at a large voltage Vc. Therefore, our lack of understanding of the latter need
not a�ect the 2CK interpretation of the low-energy scaling behavior (P6). We conclude
with some speculations about the microscopic nature of the TLSs, and the likelihood that
realistic TLSs will have all the properties required by the 2CK scenario.

1. Conductance Transitions

The fact that conductance transitions occur only in samples that have a ZBA (P9a)
suggests31 that these are related to the ZBA: if the latter is phenomenologically viewed as the

3To see this, we note that in the unitarity limit the scattering rate of electrons o� a k-channel

Kondo defect is proportional to k sin2 � (see e.g.56;Eq:(2:20)), and the phase shift at the intermediate-

coupling �xed point is � = �=2k57. Thus, in the unitarity limit, the contribution to the resistance

of a k = 2 Kondo impurity is the same as for k = 1, namely 2e2=h (the 2 comes from Pauli spin).

4For example, the 6:4
 constriction studied in1 has a diameter of � 13 nm [estimated via the

Sharvin formula Eq. (3)], and there are 105 Cu atoms within a sphere of this diameter about the

constriction. Assuming on the order of �40 active TLSs, their density is therefore roughly of order

10�4/atom. Although the constriction is believed to be crystalline, not glassy, it is worth noting

that this density of TLSs is about the same as estimates for the total density of TLSs in glassy

systems.
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manifestation of some strongly correlated state of the system then conductance transitions
corresponds to the sharp, sudden, \switching o�" of the correlations as V becomes too
large. For example, in the 2CK interpretation, interactions of electrons with TLSs in the
constriction give rise to a strongly correlated non-Fermi-liquid state at small T and V . One
might speculate that if for some reason a large voltage could \freeze" the TLSs, i.e. prevent
them from tunneling, this would disrupt the correlations and give rise to a sudden change
in the DC conductance and hence a spike in the di�erential conductance.

At present we are not aware of any detailed microscopic explanation for the conductance
transitions. However, recent experiments by Keijsers, Shklyarevskii, and van Kempen19

on constrictions made from metallic glasses [reviewed in section VIII, see (P13)] showed
TLS-induced ZBAs with properties very similar to RB's quenched Cu constrictions, but no
conductance transitions at all. This suggests that conductance transitions are not a generic
ingredient of the phenomenology of ZBAs induced by TLSs. Moreover, in the quenched Cu
samples, provided that H and T are su�ciently small, the transition voltage Vc at which the
�rst conductance transition occurs usually lies well above TK, the scale characterizing the
extent of the low-energy scaling regime of the ZBA [see Fig. 2(a)]. (In other words, since
they don't occur near zero bias, the conductance transitions need not be viewed as part
of the zero-bias anomaly phenomenon at all, if one restricts this term to refer only to the
low-energy regime.)

Thus, there seems to be a clear separation of energy scales governing the ZBA and the
conductance transitions The latter must therefore be governed by some new large energy
scale due to a mechanism not yet understood [but speculated about in section IX]. However,
due to the separation of energy scales, the conductance transitions need not a�ect our
description of the low-energy scaling regime of the ZBA below TK (which is � eVc=kB) in
terms of the 2CK model.

2. Strong Magnetic Field Dependence

Since the electron-TLS interaction is non-magnetic, i.e. not directly a�ected by a mag-
netic �eld, the 2CK scenario predicts no, or at best a very weak magnetic �eld dependence
for the ZBA. This agrees with the absence of a Zeeman splitting of the ZBA for the Cu sam-
ples (P8b) (which was in fact one of the main reasons for the proposal of the non-magnetic
2CK interpretation1). However, it leaves the strong magnetic �eld dependence (P8a) as a
puzzle. In section IX we shall investigate two indirect mechanism for H to couple to a 2CK
system, namely via H-tuning of the asymmetry energy �z(H) and via channel symmetry
breaking, but shall �nd that both are too weak to account for (P8a).

It is therefore very signi�cant that the experiments by Keijsers et al. on metallic-glass
nanoconstrictions show a ZBA which does not have any H-dependence [see section VIII,
(P12)], in accord with 2CK expectations. This suggests that, just as the conductance
transitions, the strong magnetic �eld dependence (P8a) of the quenched Cu constrictions
are not a generic feature of TLS-induced ZBAs. Moreover, Fig. 13 suggests that in the
Cu samples these two properties might be linked:, because it shows that the strong H-
dependence of G(V = 0;H) is related to the fact that the transition voltage Vc decreases
to 0 as H is increased (P9b,v). (In other words, if the strongly correlated state sets in at
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smaller Vc as V is lowered, the voltage-regime 0 < V < Vc in which the anomaly can develop
is smaller, so that its total amplitude is smaller.)

Since the main di�erence between the Cu and the metallic-glass constrictions seems to
be that the former contain TLSs with very small �'s, whereas in metallic glasses there will
certainly be a broad distribution of splittings, we speculate that the conductance spikes and
strong H-dependence might both be a consequence of the very small �s occuring in the Cu
samples, perhaps due to interactions between several TLSs with very small splittings.

Thus, we conclude that attempts (such as those in2) to explain the H-dependence of the
ZBA (even at V = 0) purely in terms of the 2CK model, which captures only the physics
at low energies below TK, are misdirected, because the H-dependence would arise, via the
conductance transitions, from the \high-energy" physics associated with the large scale Vc.

This interpretation, according to which a magnetic �eld does not directly a�ect the low-
energy physics of the phenomenon (only indirectly via its e�ect on Vc), can be checked by
doing a V=T scaling analysis at �xed but small, non-zero magnetic �eld. If H is su�ciently
small that the conductance transitions still occur at relatively high voltages (i.e. Vc > TK),
the scaling properties of (P6) should not be a�ected by having H 6= 0). Unfortunately, at
present insu�cient data is available to test this prediction.

The conclusions of this and the previous subsection are summarized in assumptions (A4)
and (A5) in subsection VID.

3. Microscopic Nature of the TLS

Finally, the 2CK interpretation is of course unable to answer the question: What is the
microscopic nature of the presumed TLSs? Now, ignorance of microscopic details does not
a�ect our explanation for why the scaling properties (P6) of the ZBA seem to be universal:
because the latter are presumably governed by the �xed point of the 2CK model, any system
that is somewhere in the vicinity of this �xed point will ow towards it as the temperature
is lowered (provided that relevant perturbations are su�ciently small) and hence exhibit the
same universal behavior, irrespective of its detailed bare parameters.

However, the quality of the scaling behavior implies some rather stringent restrictions
on the allowed properties of the presumed TLSs, because we need to assume that all active
TLSs (e.g. about 10 for sample # 1, which shows the best scaling) are close enough in
parameter space to the non-Fermi-liquid �xed point to show pure scaling.

This implies, �rstly, that interactions between TLSs (which are known to exist in
general33, mediated by strain �elds and changes in electron density), must be negligible,
because they would drive the system away from the 2CK non-Fermi-liquid �xed point. Sec-
ondly, the fact that scaling is only expected in the regime �2=TK < T � TK can be used to
estimate that TK ' 3 to 5K and � <

� 1K (see section VII for details). Kondo temperatures
in the range of 1-10 K are in good agreement with the most recent theoretical estimates
for TLSs58. However, the condition � <

� 1K implies that for active TLSs the distribution of
energy splittings, P (�), must be peaked below � <

� 1K. Since � = (�2

z +�x)
1=2, both the

asymmetry energy �z and tunneling rate �x must be
<
�1K, a value so small that it needs

further comment.
First note that it is not immediately obvious that values of the bare tunneling rate �x

exist at all that allow 2CK physics: For transitions to be able to take place, the barrier
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between the wells must be su�ciently small, but a small barrier is usually associated with
a large bare �x, implying a large bare � (and � sets the energy scale at which the renor-
malization ow toward the non-Fermi-liquid �xed point is cut o�). Now, for a TLS in a
metal, the physics of screening can reduce the direct tunneling rate �x by as much as three
orders of magnitude under renormalization to T � TK

59 (when tunneling between the wells,
the tunnling center has to drag along its screening clowd, which becomes increasingly di�-
cult, due to the orthogonality catastrophy, at lower temperatures). Thus, the renormalized
direct tunneling rate can always be assumed very small. Though this implies a large ef-
fective barrier, this this does not necessarily prohibit 2CK physics, however: Zar�and and
Zawadowski58;60 have shown 2CK physics can be obtained even if �x = 0, provided that
the model contains some other channel for inter-well transitions, such as electron-assisted
transitions via more highly excited TLS states (see appendix C 5 of II).

More serious is the assumption that the renormalized asymmetry energy �r also be
<
�1K.

This may seem very small when recalling that in glassy materials, the distribution P (�) for
the asymmetry energy is rather at, with � varying over many (often tens of) Kelvins. Note,
though, that far from being glassy, the constrictions are believed to be rather clean (P5),
containing almost perfectly crystalline Cu. Therefore, our intuition about the properties of
TLSs in glasses can not be applied to the present system. For example, the TLSs could
possibly be dislocation kinks. (This would naturally account for the disappearance of the
ZBA when static disorder is added (P4a), since dislocation kinks can be pinned by other
defects.) Since the dislocation kink would �nd itself in a rather crystalline material, some
lattice symmetry could guarantee then that the two wells of the TLS are (nearly) degenerate
and hence assure a small �z and hence small �, etc.

Moreover, some role might be played by the mechanism of \autoselection": This assumes
that a given TLS will only be \active", in the sense of contributing to the non-trivial V -
and T -dependence of the conductance, if its (renormalized) parameters happen to be in
the appropriate non-Fermi-liquid regime; if they are not, the TLS would only be an \in-
active spectator" that only a�ects the V - and T -independent background conductance Go.
Moreover, provided that the distribution P (�z) is not zero near �z = 0 (which seems very
unlikely), there should always exist a few TLSs with � <

� 1K, since �x is strongly reduced
by screening.

Despite the above arguments, though, the assumption that all active TLSs have � <
� 1K

remains probably the weakest point in 2CK scenario. To shed more light on this matter, it
would be interesting if ZBA experiments with speci�c type of defects with known parameters
could be performed, see section XB1.

It should be mentioned that Wingreen, Altshuler and Meir (WAM) have recently
claimed15[(a)] that the 2CK interpretation is internally inconsistent if one takes into ac-
count the e�ect of static disorder: using values for the coupling constants deduced from the
observed Kondo temperatures, they concluded that renormalized energy splitting � would
be dramatically increased (to typical values of about 100K), and in particular that there
would be zero probability for zero splitting (P (0) = 0). However, since their arguments
neglected the physics of screening (i.e. the strong reduction of �x under renormalization to
lower temperatures), we believe that their conclusions, in particular that P (0) = 0, are not
persuasive.15;(b),59. A critical discussion of their arguments is given in Appendix D of paper
II.
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D. Summary of Assumptions of 2CK Scenario

The 2CK interpretation of the ZBA in quenched Cu constrictions developed in this sec-
tion can be summarized in the following assumptions:

(A1) The ZBA is due to the presence in the constriction region of structural defects, namely
TLSs, that interact with conduction electrons according to the non-magnetic Kondo
model, which renormalizes at low energies to the non-Fermi-liquid regime of the 2CK
model.

(A2) The TLSs may occur with a distribution of (dressed or renormalized) parameters, but
all \active" TLSs, i.e. those which contribute measurably to the voltage dependence
of the conductance in the Cu point contacts, must have parameters which cause their
behaviors to be governed by the physics of the non-Fermi-liquid �xed point of the
2CK model. This implies in particular that all of these active TLSs do not interact
with each other, and have �2=TK < T < TK for T > 0:4K and TK > 3 to 5K
(implying � <

� 1K). Other two-level systems may be present in the sample, but if their
energy levels are su�ciently asymmetric (due, for instance, to the presence of static
disorder) they will exhibit no Kondo e�ect and will contribute only to the voltage- and
temperature-independent level of the background conductance.

(A3) The number of active TLSs in a constriction can range between 1 and about 40,
depending on the amplitude of the ZBA.

(A4) The large magnetic �eld dependence (P8a) and the conductance transitions (P9) of the
quenched Cu ZBAs are related, but not generic to the ZBA. They cannot be explained
by 2CK physics alone, but involve some new energy scale on the order of Vc.

(A5) A magnetic �eld does not directly inuence the low-energy physics (V < VK, T < TK)
of the ZBA. Therefore, 2CK physics can account for the behavior of the ZBA in
quenched Cu samples at �xed H, provided that H is su�ciently small (<� 1 T) that
the conductance transitions do not inuence the 2CK scaling regime (i.e. Vc > VK).

VII. SCALING ANALYSIS OF G(V; T )

In this section, we present a detailed scaling analysis of the data and establish the scaling
properties of (P6). This is a very important part of the analysis of the experiment, since
the scaling properties were used above to eliminate quite a number of otherwise plausible
candidate explanations of the ZBA.

Of course, the scaling properties (P6) we are about to establish are simply experimen-
tal facts, independent of any theoretical interpretation. Nevertheless, during the writing
of Ref.2, these properties were predicted (before their experimental veri�cation) on the ba-
sis of the CFT solution of the 2CK model, and we shall present our analysis within this
framework. We begin by giving in section VIIA the general scaling argument �rst reported
in2 to motivate the scaling Ansatz for the conductance G(V; T ), and a back-of-the-envelope
calculation of the scaling function �(x).
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A. The Scaling Ansatz

The 2CK model is known9 to ow to a non-trivial, non-Fermi-liquid �xed point at T = 0,
at which the model has been solved exactly by A�eck and Ludwig (AL), using CFT10. This
�xed point governs the physics in the non-Fermi-liquid regime, namely �2=TK < T < TK
and V < VK. We shall now show that the assumption of proximity to this �xed point (A2),
implies the scaling properties (P6) of the conductance G(V; T ). This is demonstrated by a
general scaling argument, and then the scaling function �(v) is obtained by a rough back-
of-the envelope calculation. A more careful calculation, tailored to the nanoconstriction
geometry and its non-equilibrium pecularities, is reserved for paper II.

1. General Scaling Argument

The general scaling argument leading to (P6) goes as follows2: Consider �rst the conduc-
tance signal Gi(V; T ) due to a single TLS (labeled by the index i) with T � T i

K, eV � kBT
i
K
,

�i = 0, but arbitrary ratio eV=kBT . According to the general theory of critical phenomena,
one expects that physical quantities will obey scaling relations in the neighborhood of any
�xed point. For the conductance in the present case, a natural scaling Ansatz is:

Gi(V; T ) = Gio +BiT
��

 
AieV

(kBT )�=�

!
: (12)

The parameters Ai and Bi are non-universal, positive constants, analogous to the a
�
i and bi

of Eq. (4), which may vary, for instance, as a function of the position of the TLSs within
the constriction. However, the function �(v) should be a universal function, a �ngerprint
of the 2CK model that is the same for any microscopic realization thereof. It must have
the asymptotic form �(v) / v� as v ! 1, since G(V; T ) must be independent of T for
eV � kBT . Due to the arbitrariness of Ai and Bi, we are free to use the normalization
conventions that

�(0) � 1 ; �(v) = v� + constant as v� !1 : (13)

Now, if V is small enough, its only e�ect will be to create a slightly non-equilibrium
electron distribution in the leads. In particular, e�ects that directly a�ect the impurity
itself, like V -dependent strains, or the \polarization" of the TLS in one well due to the
non-equilibrium electron distribution, etc. can then be neglected. In this case, which we
shall call the weakly non-equilibrium regime, V only enters in the Fermi functions of the
leads, in the form [e�("�eV=2)+ 1]�1, i.e. in the combination eV=kBT , implying � = �.

For a constriction with several defects, the conductance signal will be additive,5 i.e. (now
using �=�):

5To be more precise: the contributions of the impurities to the resistance R = G�1 are additive,

but since R = Ro +
P

i �Ri(V; T ), with Ro � �Ri(V; T ), the form (14) follows.
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G(V; T ) = Go + T �
X
i

Bi �
�
AieV

kBT

�
: (14)

Subtracting G(0; T ) from this to eliminateGo then immediately results in the scaling relation
of (P6a):

G(V; T )�G(0; T )

T �
=
X
i

Bi [�(Aiv)� 1] � F (v) : (15)

F (v) is non-universal, since it depends on the Ai and Bi.
This is as far as general scaling arguments will take us; a speci�c theory is needed to

predict �. To this end, we argue by analogy with the conductivity of a bulk metal containing
2CK impurities. There the bulk conductivity �(T ) is determined, via the Kubo formula,

�(T ) = 2
e2

3m2

Z
d3p

(2�)3

h
�@"pfo(")

i
~p 2� ("p) ; (16)

by the elastic scattering life-time ��1(") = �2Im �R(") ; where " � "p � "F , and �R(") is
the retarded electron self-energy. �R(") has been calculated exactly by A�eck and Ludwig,
using CFT55, for the bulk k-channel Kondo problem in the neighborhood its T = 0 �xed
point (i.e. for T � TK). They found that in general ��1 has the following scaling form
(motivated in paper III,or55,14;chapter 8):

��1("; f�mg) � �2Im�R("; f�mg) = ��1o

"
1 +

X
m

�m T �m ~�m("=T )

#
: (17)

The sum on m is over all perturbations to the �xed point action that one wants to consider.
Each such perturbation is characterized by a non-universal parameter �m which measures
its strength (and has dimensions of E��m

m , where Em is the energy scale characterizing
this perturbation), a universal scaling dimension �m and a (dimensionless) universal scaling
function ~�m(x). In principle all the �m and ~�m(x) (but not the non-universal �m) can
be calculated exactly from CFT, provided all the �mT

�m are small enough that one is in
the close vicinity of the �xed point. Perturbations with �m < 0 or > 0 are relevant or
irrelevant, respectively, because they grow or decrease as the temperature is lowered at �xed
�m. For all perturbations of interest in this paper, the scaling functions have the properties
~�m(x) = ~�m(�x) and ~�m(x) / x�m as x ! 1 (the latter property follows because the
perturbation must become T -independent in the limit " >> T ).

AL have calculated in detail the leading irrelevant correction to ��1o for the k-channel
Kondo problem, for the case that no relevant perturbations are present. In other words they
take �m = 0 for allm for which �m < 0, and consider only the correction corresponding to the
smallest �m > 0, say �1. When referring only to this correction, we shall drop the subscript
m = 1 and denote the corresponding parameters by �1 � �, �1 � � and ~�1(x) � ~�(x).
They showed that for the k-channel Kondo problem � = 2

2+k
, � = ~�T��

K
> 0 (where ~� is a

dimensionless number of order unity) and ~�(x) < 0.6 (For an explicit expression for ~�(x),

6The sign of � is a priori undetermined in the CFT approach (see55;aftereq: (3:64)); however, to

conform to the expectation that the Kondo scattering rate increases as " or T are decreased, we

need � > 0, since ~�(x) < 0.
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see55;eq:(3:50) or Eq. (48) of paper II).
Considering only this leading irrelevant perturbation, it follows immediately from the

Kubo formula that for the 2CK problem (k = 2, hence � = 1

2
), the bulk conductivity has

the form

�(T ) = �o +
�
T

TK

�1=2
�1 ; (18)

with �1 > 0. The unusual power law T 1=2 is a signature of the non-Fermi-liquid nature of
the T = 0 �xed point. For a Fermi liquid, one would have had T 2.

Although the form (17) for ��1(") was derived by AL only for a bulk geometry, it is
natural to assume that it also governs the conductance in the nanoconstriction geometry
(paper II is devoted to a careful justi�cation of this assumption). This implies that the
exponent in Eq. (12) should also be � = 1

2
, which completes our general-principles motivation

for the scaling Ansatz.

2. Back-of-the-envelope calculation of �(v)

If one is willing to gloss over important subtleties, it is possible to obtain by a simple
back-of-the-envelope calculation a quantitative expression for the scaling function that agrees
with that found by more careful means in paper II.

Our starting point is Eq. (4), which gives the change in conductance due to back-
scattering o� defects in a nanoconstriction in terms of the scattering rate ��1("). Now,
the main di�erence between a bulk metal and a nanoconstriction is that the latter repre-
sents a decidedly non-equilibrium situation. However, in the weakly non-equilibrium regime,
i.e. if the voltage is small enough (V < VK), it is a reasonable guess (which is substantiated
in II) that the form of the scattering rate of electrons o� a TLS in the nanoconstriction is not
all that di�erent as when the TLSs are in the bulk. Hence, let us boldly use7 the equilibrium
form for ��1, namely Eq. (17), in Eq. (4) for �G, thus obtaining (to lowest order in �m):

G(V; T; f�mg) = Go � e2=h
X
m

�mT
�m

Z
d"[�@"fo(")]

X
i

bi
1

2

h
~�m("�

1

2
eV a+i ) +

~�("+ 1

2
eV a�i )

i

(19)

Now write "=kBT � x, eV=kBT � v, fo(v) � [ev + 1]�1, and de�ne (universal) functions
�m(v) by:

b;m�m(a;mv) �
Z
dx[@xfo(x)]~�m(x+ v=2) : (20)

Here a;m and b;m are universal constants, chosen such that �m(v) is normalized as in
Eq. (13), with �m(1) > 0:

7The justi�cation for this assumption is explained in section V 2 of paper II; essentially, we assume

that the leading non-equilibrium corrections to ��1 are of order V=TK, which are negligible in the

weakly non-equilibrium or scaling regime.
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�m(0) � 1 ; �m(v) = v�m + constant, as v�m !1 : (21)

Using the property ~�m(x) = ~�m(�x) in the �rst term of Eq. (19), we �nd

G(V; T; f�mg) = Go + e2=h
X
m

�mT
�mb;m

X
i

bi
1

2

h
�m(a

+

i a;mv) + �m(a
�
i a;mv)

i
: (22)

Let us now specialize again to the leading irrelevant perturbation, for which only �1 �

� 6= 0. (Since for this case ~�(x) < 0, a;1 � a and b;1 � b can both be chosen positive.) In
this case, Eq. (22) is precisely of the form of the scaling Ansatz Eq. (14), with � = 1

2
. Thus

we have found a \derivation" for the scaling Ansatz.8 Moreover, this little calculation has
furnished us with an expression, namely Eq. (20), for the universal scaling function �(v), in
terms of the exactly known universal function ~�(x).

This, in a nutshell, is all there is to the scaling prediction. Of course, to back up this
result by a respectable calculation, considerably more care is required and several conceptual
hurdles have to be overcome. These are addressed in paper II. And �nally, in paper III the
origin of the exponent � = 1

2
is explained; AL originally derived it using the full machinery

of CFT, but it in III it is found muchmore simply and directly using a recent reformulation21

of their theory in terms of free boson �elds.

B. Scaling Analysis of Experimental Data

In this section we summarize the results of a careful scaling analysis of the experimental
data2, based on section 6.4.2 of11, and establish that G(V; T ) has the properies summarized
in (P6) of section IV.

1. First Test of T 1=2 and V 1=2 Behavior

As a �rst test of the scaling relation Eq. (14), one can consider it in the asymptotic limits
v! 0 and 1 , in which the conductance becomes [using Eq. (13)]:

G(0; T ) = Go + T �B� ; (B� �
X
i

Bi) ; (23)

G(V; To) = const + v�Fo at �xed To � eV=kB (Fo =
X
i

BiA
�
i ) : (24)

Figs. 7(a) and 7(b) con�rm that G(0; T ) and G(V; 0) roughly conform to Eqs. (23) and (24),
respectively. Values for B� and Fo can be obtained from straight-line �ts to these data, and
are listed in table I. However, the quality of these data is not good enough to rule out other
values of �, ranging from 0.25 to 0.75.

8Note though that Eq. (12) is actually a little too simplistic, since in Eq. (22) each defect gives

rise to two terms with di�erent a+i and a�i . Note also that bi, o are by de�nition all positive

constants, and �(x) > 0. With the choice � > 0, discussed in footnote 6, we therefore have

G(V; T; �)�G(0; T; �)> 0, consistent with experiment.
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2. Scaling Collapse

A much more stringent determination of � can be obtained from the scaling properties
of the combined V and T dependence of the G(V; T ), which, according to the 2CK interpre-
tation, should follow Eq. (15). To check whether the data obey this relation, the left-hand
side of Eq. (15) should be plotted vs. v�. Provided that the correct value of � has been
chosen, the low-T curves for a given sample should all collapse, with no further adjustment
of free parameters, onto the sample-speci�c scaling curve F (v) vs. v�, which should be linear
for large v� [by Eq. (24)]. By adjusting � to obtain the best possible collapse, � can be
determined from the data rather accurately. The 2CK scenario predicts � = 1

2
.

The raw data for the di�erential conductance G(V; T ) of sample #1 is shown in Fig. 8(a),
for T ranging from 100 mK to 5.7 K. Using � = 1

2
, rescaling as in Eq. (15) and plotting

the left-hand side vs. v1=2, these data have the form shown in Fig. 8(b). The data at low
V and low T collapse remarkably well onto one curve, which we shall call the scaling curve.
Furthermore, F (v) vs. v1=2 has linear asymptote as v !1, in agreement with Eq. (24).

Most of the individual curves deviate from the scaling curve for V larger than a typical
scale VK ' 1meV (this is also roughly the voltage at which lower-lying curves in Fig. 8(a)
begin to fall on top of each other) . Likewise, the lowest curves in the �gure, which correspond
to the highest temperatures, deviate from scaling the scaling curve for almost all V . These
deviations from scaling at high V and T are expected, since if either V > VK or T > TK,
the scaling Ansatz is expected to break down. We estimate TK as that T for which the
rescaled data already deviate from the scaling curve at eV=kBT � 1. This gives TK � 5 K
for the defects of sample 1, which are reasonable values, as discussed in section VIC3, and
establishes the empirical relation eVK ' 2kBTK.

A somewhat complimentary estimate for the highest Kondo temperatures of the TLSs in
these samples comes from the temperature at which the zero-bias signals �rst become visible
as the samples are cooled. For all 3 samples featured here, this value is approximately 10 K.

The quality of the scaling provides an exacting test of the exponent in the scaling Ansatz.
Using � = 0:4 or 0:6 instead of 0.5 in Eq. (15) produces a clear worsening of the collapse of
the data (see Fig. 2(b) of2). As a quantitative measure of the quality of scaling, we de�ne
the parameter D(�), which is the mean square deviation from the average scaling curve
�F (v) � 1

N

PN
n=1 Fn(v) (where n labels the di�erent experimental curves, corresponding to

di�erent temperatures Tn), integrated over small values of jvj:

D(�) � 1

N

NX
n=1

Z vmax

�vmax

dv
h
Fn(v)� �F (v)

i2
: (25)

D(�) = 0 would signify perfect scaling. Taking the 5 lowest T (� 1:4 K) and vmax = 8
(these are the data which a priori would be expected to be most accurately within the
scaling regime, since they are closest to the T = 0 �xed point), one obtains Fig. 9(a).
Evidently the best scaling of the data requires � = 0:48 � 0:05 [the estimated uncertainty
of �0:05 comes from the uncertainty in the exact minimum in the curve in Fig. 9(a)]. This
is in remarkably good agreement with the CFT prediction of � = 1

2
.

We have also tested the more general scaling form of Eq. (12), and have observed scaling
for 0:2 < � < 0:8, with (� � 0:5) � (� � 0:5)=2, with best scaling for � = 0:5 � 0:05. But
as argued earlier on page 22, one expects � = � on general grounds.

26



The scaling Ansatz has also been tested on two other Cu samples. The rescaled data for
sample 2 [Fig. 10(a)] collapse well onto a single curve at low V and T , for � = 0:52 � 0:05
[Fig. 9(b)] and with TK � 3:5 K. At high V and high T the non-universal conductance
spikes of (P9) are visible. The data for sample #3 do not seem to collapse as well [Fig. 10(b)]
(illustrating how impressively accurate by comparison the scaling is for samples #1 and #2).
However, we suggest that this sample in fact displays two separate sets of scaling curves (see
arrows),one for T � 0:4 K and one for 0:6 K � T � 5 K, with interpolating curves in
between. This could be due to defects with a distribution of TK's, some having TK ' 0:4 K
and others having TK � 5 K. The second (higher-T ) set of curves do not collapse onto each
other as well as the �rst, presumably because there is still some (approximately logarithmic)
contribution from the TK ' 0:4 K defects.

3. Universality

If for any sample all the Ai in Eq. (15) were equal, one could directly extract the universal
scaling curve from the data. The curve obtained by plotting

G(V; T )�G(0; T )

B�T 1=2
vs. (AeV=kBT )

1=2 ; (26)

with A determined by the requirement that the asymptotic slope be equal to 1 [compare
Eq. (13)], would be identical to the universal curve (�(x)�1) vs. x1=2. Such plots are shown
in Fig. 11(b). The fact that the scaling curves for all three samples are indistinguishable
indicates that the distribution of Ai's in each sample is quite narrow and is a measure of
the universality of the observed behavior.

To make possible quantitative comparisons of the data with the CFT prediction of
Eq. (20), we now proceed to extract from the data the value of a universal (sample-
independent) constant[essentially a Taylor coe�cient of �(v)], which is independent of the
possible distribution of Ai's and Bi's.

Consider the regime v � 1. As argued earlier, here �(v) ' v�, and since �=�=1/2, with
the normalization conventions of Eq. (13) we can write, asymptotically

�(v)� 1 � v1=2 + �1 +O(v�1=2) : (27)

It follows from Eq. (15) that

F (v) = v1=2F0 + F1 +O(v�1=2) ; (28)

where F0 �
P

iBiA
1=2
i and F1 � �1B�. Values for F0 and F1 may be determined from the

conductance data by plotting F versus v1=2 and �tting the data for large v1=2 to a straight
line. For samples 1 and 2 we �t between (eV=kBT )

1=2 = 2 and 3, and for sample 3 (using
only the curves below 250 mK) between 2 and 2.5.

Values for F0, and F1 are listed in Table I. The uncertainties listed are standard devi-
ations of values determined at di�erent T within the scaling regime for each sample. From
these quantities, an experimental determination of the universal number �1 = F1=B� can
be obtained; it is listed in Table I. The values of �1 are consistent among all 3 samples, in
agreement with our expectation that �1 should be a universal number.
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Paper II will be devoted to a calculation of the universal scaling curve �(v) and the
universal number �1. There it is shown that the quantitative predictions of the 2CK scenario
are indeed consistent with the measured scaling curve.

C. Upper Bound on the Energy Splitting �

The energy splitting � of a TLS is a relevant perturbation to the degenerate 2CK �xed
point. In the language of the magnetic Kondo problem, it acts like a local magnetic �eld,
and hence has scaling dimension �1

2
(see (3.19) of61, or49;section3:4:1(e)). Therefore a non-zero

� implies that the electron scattering rate ��1(") and hence the conductance G(V; T ) will
contain correction terms (to be labelled by m=2), given by Eqs. (17) and (22), respectively,

with �2 = �
1

2
and �2 = ~�2�=E

1

2

2
. Here ~�2 is a dimensionless number of order unity, and E2

is an energy that sets the scale at which � becomes important. Though this scale is not a
priori known in AL's CFT treatment, we shall take E2 = TK, since no other obvious energy
scale suggests itself.

It follows that such �-dependent corrections, which would spoil good V=T scaling, are
unimportant only if �2T

�2 < 1, i.e. as long as

� < (TTK)
1

2 (29)

holds for each active TLS. Note that this inequality allows � to be somewhat larger than
the naive estimate that would follow from � < T . As emphasized by Zawadowski62, this
somewhat enlarges the window of parameter space in which the 2CK scenario is applicable.

The above analysis enables us to estimate an upper bound on the energy splittings of
active TLSs occuring in the quenched Cu samples. The data for samples 1 and 2 show
pure T 1=2 behavior at V = 0 (i.e. absence of �-corrections) for T as small as 0.4 K. Taking
TK�5 K, Eq. (29) implies that for any active TLS, �<1:4 K. This upper bound is a rather
small, and was discussed at some length in section VIC3.

VIII. RELATED EXPERIMENTS

In recent years, ZBAs have been found in a number of di�erent nanoconstriction
studies19;20;63. It should be appreciated that in principle each could be caused by a dif-
ferent mechanism. However, here we would like to summarize a recent ZBA experiment
that seems to have found a ZBA of the same type and origin as that in the quenched Cu
constrictions. Keijsers, Shklyarevskii and van Kempen20 studied ZBAs in mechanically con-
trolled break junctions made from metallic glasses, which due to their disordered nature are
certain to contain many TLSs. Therefore, the assumption that their ZBAs are caused by
TLSs is very compelling. Since this experiment extends our general understanding of TLS-
induced ZBAs, a comparison of similarities to and di�erences from the quenched Cu results
sheds considerable further light on the latter. We review the properties of this experiment
below in the form of a continuation of the list of properties compiled in section IV, together
with their interpretation in terms of the 2CK scenario.
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(P10) Amplitude and Shape:

The ZBA has qualitatively exactly the same shape and sign as that of RB's quenched
Cu samples, with an amplitude of sometimes more than 100 e2=h. | The large
amplitude is to be expected, since metallic glasses contain a high concentration of
TLSs.

(P11) Slow ZBA uctuations:

(a) Remarkably, in some samples the amplitude of their ZBA jumps between two (or
sometimes several) values in a telegraph-noise fashion (on a time scale of seconds),
evidently due to the presence of one (or sometimes several) slow uctuators (see sec-
tion VIA1) in the constriction region.
(b) The amplitude of these telegraph-uctuations �G(V ) is of order 1e2=h or less, and
depends on V . It monotonically decreases from �G(0) to 0 as V increases from 0 to
between 5 and 10 mV.

(P12) Magnetic �eld:

The ZBA shows no H-dependence. | The absence of a large H-dependence here is
exactly as expected in the 2CK scenario (compare section VIC2).

(P13) No Conductance Transitions: The conductance transitions (P9) that occured in at
least 80% of the quenched Cu samples have never been observed in any of the metallic-
glass constrictions.

Keijsers et al. state that the large features of their ZBA can be explained by invoking
either Zawadowski's non-magnetic Kondo model (section VIA2) or KK's theory of TLS-
population spectroscopy (section VC) to describe the interaction of electrons with the fast
TLSs in their system. They propose that the amplitude uctuations can be explained
(in either theory) by assuming that the TLS-electron interaction strengths [V z and V x

in Eq. (9)] are modulated between two values when the slow uctuator hops between its
two positions. This interpretation also explains why the uctuations �G(V ) in the ZBA
amplitude are largest at V = 0 where the ZBA is largest: with increasing V the magnitude
of the ZBA-dip decreases, and hence also the magnitude of its uctuations �G(V ) due to
uctuating interaction parameters. Conversely, the V -dependence of �G(V ) implies that
the large features of the ZBA and the small amplitude uctuations cannot be unrelated
phenomena. Therefore, it is not possible, for example, to attribute the overall ZBA to a
suppression in the density of states due to static disorder (analogous to the proposal of WAM
for quenched Cu samples, see section VA), while assuming the additional small conductance
uctuations to be caused by an independent slow uctuator; the problemwith such a scenario
would be that the amplitude of the uctuations, though of the right magnitude of < e2=h,
would be V -independent.

It seems to us that the published properties of Keijsers et al.'s ZBA are completely
compatible with Zawadowski's non-magnetic Kondo model. Note, though, that in these
samples it is not necessary to assume proximity to the non-Fermi-liquid 2CK �xed point,
since they did not report clear V=T scaling properties [which are in fact not to be expected
for a metallic glass, because its wide distribution of �s violates the condition �2 < TTK of
(A2)].
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We do not agree, though, with the assessment of Keijsers et al. that their data is also
fully compatible with the TLS-population spectroscopy theory of Kozub and Kulik (sec-
tion VC). In this theory, ZBA's of either positive or negative sign are expected to occur [see
Eq. (7)], whereas in more than 700 metallic-glass junctions Keijsers et al. found only nega-
tive anomalies for the conductance64, consistent with VZ's theory. (The positive anomalies
of their earlier experiments on Copper �lms are probably due to a di�erent type of TLS
than those of metallic glasses, namely dislocations19.) Note also that Kozub and Rudin's40

mechansim for obtaining only negative anomalies within KK's theory is not applicable for
metallic glasses, for which their starting assumption, namely that all bare asymmetry ener-
gies be zero, does not hold.

If the ZBAs in metallic are indeed due, as argued above, to non-magnetic Kondo physics,
points (P12) and (P13) have signi�cant implications for the interpretation of the quenched
Cu constrictions: They show that both the strong magnetic �eld dependence (P8a) and
the conductance transitions (P9) observed in the quenched Cu constrictions are not generic
features of TLS-induced ZBAs, which lead us to suggest in section VIC2 that these two Cu
properties might be intimately related.

IX. MAGNETIC FIELD DEPENDENCE IN 2CK SCENARIO

It was stated in section VIC2 that (contrary to our previous interpretation2) 2CK physics
is unable to account for the strong magnetic �eld dependence (P8a) of the ZBA. To demon-
strate this, we now investigate two possible mechansims through which the 2CK scenario
could produce an H-dependence for the ZBA. These are the H-tuning of the asymmetry
energy �z(H), and channel symmetry breaking. Both drive the system away from the de-
generate 2CK �xed point (but not in precisely the same manner), so that H enters as a
relevant perturbation. However, we shall conclude that both mechanism are too weak to
explain the strength of the observed H-dependence.

A. H-tuning of �

One possible mechanism by which H could couple to the system is by by tuning50;51

the TLS asymmetry energy �z(H), and hence the energy splitting �(H), which are then
random functions of H (see section VIA1). With �(H) as a relevant perturbation, the
analysis of section VIIC applies directly, and a correction to the conductance proportional
to �(H) can be expected.

However, in this scenario, the magnetoconductance G(H) should be a random function of
H (since �(H) is), whereas it seems to be always positive for the samples investigated in more
detail. Note also that it would be incorrect to attribute the non-universal non-monotonic
features seen at large H for sample #2 to the random behavior of �(H), since closer scrutiny
reveals that this behavior is due to the H-motion of the conductance transitions (P9b,v).
Moreover, since H-tuning of � has its origin in quantum interference, it is expected to occur
mainly in strongly disordered environments, which the Cu samples are decidedely not [see
(P5)]. Furthermore, it causes conductance changes of order 2e2=h per TLS substantially
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smaller than those observed (P8a) (particularly since the signs of the conductance changes
for di�erent TLSs are random, leading to partial cancellations).

Hence, it seems as though H-tuning of � is not consistent with the observed H-
dependence of the quenched Cu samples.

B. Channel Symmetry Breaking by H

The second mechanism by which a magnetic �eld could a�ect a 2CK system is Pauli
paramagnetism, which breaks channel symmetry (recall that the channel index � refers to
the Pauli spin "; #) by causing a net magnetic moment M = �2

B
HN("F )

65;eq;(10:11). Any
such symmetry-breaking term can in principle give corrections to the critical behavior, and
should hence be included in the CFT analysis.

A channel-symmetry breaking �eld is known to be a relevant perturbation with scaling
dimension �1

2
, (see eqs. (3.15) of61). Hence, in direct analogy to our analysis of the e�ects

of � in section VIIC, it causes a perturbation (to be denoted by m = 3) to the conductance

G(V; T;H), described by Eq. (22) with �3 = �
1

2
and �3 = ~�3�BjHj=E

1

2

3 . Here ~�3 is a
dimensionless number of order unity, and E3 is an energy that sets the scale at which jHj
becomes important. Only the absolute value of H enters, because the model is otherwise
symmetric in spin ", #, so that the sign of the channel-symmetry-breaking �eld cannot be
important.

This correction term in Eq. (22) implies that at a �xed, small temperature To and V = 0,
the conductance obeys

G(0; To;H)�G(0; To; 0) / jHj : (30)

As was argued in Ref.2, the available data is at least qualitatively not in contradiction with
this prediction, since Fig. 14 shows non-analyticity at H = 0 and an initial roughly linear
behavior (P8a) (note though, that H1=2 behavior can not be ruled out either).

What are the e�ects of channel-symmetry breaking at su�ciently large H? Presumably,
the polarization of the Fermi sea will become so strong that one channel of conduction elec-
trons (the one with higher Zeeman energy) will decouple from the impurity altogether, and
the system will cross over9 to the one-channel Kondo �xed point, at which the conductance
T -exponent is � = 2. Hence, at this �xed point the conductance, at �xed, large H, should
obey the V=T scaling relation Eq. (15), with � = 255;eq: (D29).

However, it seems unlikely that these considerations of the large-H regime have any
relevance at all for the Cu samples, since at large magnetic �elds, the conductance transitions
have moved into the ZBA-regime (P9b,v), presumably destroying all remnants of universal
2CK physics (Indeed, a scaling analysis of for sample #2 at �xed H = 6 T shows best scaling
at neither � = 1

2
nor 2, but at � = 0:331, though this value probably does not have special

signi�cance either.)

9The cross-over behavior between the �xed points [e.g. the behavior of G(0; T;H)] can not be

calculated fromCFT, which can only describe the neighborhood of �xed points; it might be possible,

though, to calculate this function exactly using Bethe-Ansatz techniques.
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Having investigated the phenomenology to be expected from channel symmetry breaking,
let us now step back and estimate the likely magnitude of this e�ect. The Pauli paramag-
netism that causes channel symmetry breaking merely shifts the bottom of the spin-up Fermi
sea relative to that of the spin-down Fermi sea by �BH, while their respective Fermi-surfaces
remain aligned. Therefore, the magnitude of the e�ect that H has on the Kondo physics
near the Fermi surface will be of order �BH=D, where D is the bandwidth (� "F ), and hence
negligible. Though this argument is not conclusive (e.g. in poor-man scaling approaches the
band-width is renormalized to much smaller values of order D0 = max[V; T;�]), it casts se-
rious doubts on the channel-symmetry breaking scenario, in particular because the observed
amplitude of the magnetoconductance is by no means small.

Thus, we have to conclude that 2CK physics cannot account for the observedH-behavior
(P8a). In section VIC2 it was therefore suggested to be linked to the H-motion of the
conductance transitions [Vc(H)! 0 as H increases, (P9b,v)].

X. CONCLUSIONS

A. Summary

This paper is the �rst in a series of three (I, II, III) devoted to 2-channel Kondo physics.
We have reviewed in detail the experimental facts pertaining to a prossible realization of
the 2CK model, namely the non-magnetic ZBA in quenched Cu nanoconstrictions, and also
integrated into our analysis insights obtained from new experiments on metallic-glass con-
strictions. We have summarized the facts on the Cu samples in the form of nine properties,
(P1) to (P9) (section IV). Properties (P1-5), which are of a mainly qualitative nature and
very robust, place very strong demands on any candidate explanations of the ZBA: the zero-
bias anomalies disappear under annealing, and hence must be due to structural disorder;
they disappear when static disorder is intentionally added, and hence cannot be due to static
disorder { instead they must be due to dynamical impurities; they show no Zeeman splitting
in a magnetic �eld (P8b), and hence must be of non-magnetic origin. These observations
lead to the proposal1 that the zero-bias anomalies are due to nearly degenerate two-level sys-
tems, interacting with conduction electrons according to the non-magnetic 2-channel Kondo
model of Zawadowski58, which renormalizes at low energies to the non-Fermi-liquid regime
of the 2CK model.

We then presented a quantitative analysis of the V=T scaling behavior of the conductance
G(V; T ) = Go+T �F (eV=kBT ), which demonstrates unambigously that the scaling exponent
has the unusual value of � = 1

2
, in contrast to the usual Fermi-liquid value of � = 2. We

argued that this too can naturally be understood within the phenomenology of the T = 0
�xed point of the 2CK model, within which the experimental veri�cation of � = 1

2
constitutes

the direct observation of a non-Fermi-liquid property of the system. Breakdown of scaling
for larger T and V values is explained too, since for these the system is no longer �ne-tuned
to be close to the T = 0 �xed point, thus spoiling the scaling behavior. Estimates of TK
in the range 1-5 K, which is reasonable, were obtained, as well as an upper bound for the
energy splitting of all active TLSs of � <

� kB1K. This bound is rather small (and has been
criticised, see section VIC3), but is enforced by the quality of the observed scaling.
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The scaling analysis provides su�ciently detailed information about the low-energy
physics of the system that it enabled us to rule out several other candidate mechanisms for
explaining ZBAs. (An alternative interpretation of the scaling properties recently proposed
by Wingreen, Altshuler and Meir can be discounted on other grounds, see section VA).

The 2CK interpretation is su�ciently successful in accounting for the observed phe-
nomenology of the scaling properties (P6), that we believe more quantitative calculations
based on this model to be justi�ed. The remaining two papers in this series, II and III, are
devoted to a quantitative calculation of the scaling function �(v), to be compared with the
experimental curve in Fig. 11(b). The �nal result is shown in V, Fig. 6. When our results
are combined with recent numerical results of Hettler et al.12;13, quantitative agreement with
the experimental scaling curve is obtained.

The main conclusion of this investigation is therefore that the 2CK interpretation is in

qualitative and quantitative agreement with the scaling properties of the data. It can also
account for all other observed properties, with the above-mentioned two exceptions, which
are apparently non-generic to the physics of TLS-induced ZBAs.

B. Open Questions and Outlook

1. Further Experiments

The magnetic �eld dependence of the ZBA in Cu samples is poorly understood; detailed
knowledge of the conductance G(V;H; T ) as a function of all three arguments would be very
revealing. However, as argued above, it is unlikely that the H-behavior can be understood
in detail without an understanding of the conductance transitions. Nevertheless our inter-
pretation that a magnetic �eld does not directly a�ect the low-energy physics of the ZBA
can be checked by doing a V=T scaling analysis at �xed but non-zero magnetic �eld. If H is
su�ciently small that the conductance transitions still occur at relatively high voltages (i.e.
Vc > TK), the scaling properties of (P6) should not be a�ected by having H 6= 0.

It would be very interesting to study the ZBA for a system for which the microscopic
nature of the TLSs were better known, in order to eliminate our present lack of knowledge
about their detailed parameters. An example would be the well-studied case of H interstitials
tunneling in crystalline niobium66{68. In this system, hydrogen molecules (which are usually
mobile in Nb due to their small size) are trapped by interstitial oxygen, nitrogen or carbon,
and then tunnel between two equivalent interstitial sites in the Nb crystal, resulting in a fast
TLS with very well-de�ned parameters (e.g. the separation between the double-well minima
is 1.17�A, the tunneling rate �o = 1:4kBK and the splitting � has a Lorentzian distribution
with a rather small characteristic width of �� = 3kBK). The fact that Nb has a relatively
large Tc of 9.3 K should not be an insurmountable problem, since superconductivity can be
surpressed by a magnetic �eld, which, according to (A5), should not directly a�ect 2CK
physics.

Another possible experiment would be to study the dependence of the ZBA on the size
of the constriction. Recently, Yanson et al.39 have studied break junctions (point contacts
with a mechanically controllable diameter, d) containing magnetic Kondo impurities. They
found that as a function of decreasing d, the magnetic ZBA (due to magnetic Kondo scat-
tering) showed a large increase in width and relative amplitude. This was interpreted as
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an \enormous increase in the apparent Kondo temperature" (by more than three orders of
magnitude) as d is decreased. Zar�and and Udvardi69 have explained this e�ect by pointing
out that a decrease of d results in a strong increase in the uctuations in the local density of
states ��("; r), implying huge increases in TK = "Fe

�2=(3vK�) for some impurities. The lesson
to be learned from this experiment is that since the Kondo temperature is exponentially
sensitive to uctuations in the local density of states, the occurance of Kondo physics in a
nanoconstriction necessarily leads to a strong dependence of the ZBA on constriction size. It
follows that a similar experiment, with non-magnetic TLSs instead of magnetic impurities,
would be very interesting: the presence or absence of a strong size e�ect would strongly
support or conclusively rule out the 2CK interpretation, respectively. One possible problem
with this proposal, though, might be that the typical Kondo temperatures need to be very
small to observe a strong size e�ect (they were� 1K for the magnetic impurities of39), but
for TLSs Kondo temperatures are known to be >

� 1K.

2. Theoretical Questions

On the theoretical side, the 2CK model has recently been subjected to renewed scrutiny
(catalyzed in part by its application to the ZBA and the claim that non-Fermi-liquid behavior
has been observed). The main point of contention is whether any realistic TLS would ever
ow towards the non-Fermi-liquid �xed point of the 2CK model, because of the inevitable
presence of relevant perturbations that drive the system away from this point.

Wingreen, Altshuler and Meir15 have argued that static disorder could lead to a signi�-
cant asymmetry energy � between the two states of the TLS (a relevant perturbation). We
critically discuss their arguments15;59;(b) in Appendix D of paper II, and judge them not to be
persuasive. More recently, studying a formulation of the model that is slightly di�erent from
that introduced by Zawadowski, Fisher and Moustakas16 have discovered another relevant
operator (which was then interpreted by Zawadowski et al.70 to be due to particle-hole sym-
metry breaking). However, their conclusions have themselves been questioned in Ref.70;71,
where the prefactor of this new relevant operator was estimated to be negligably small, and
for other technical reasons, some of which are mentioned in appendix D of paper II.

Certainly, further theoretical work is needed to fully understand the stability, or lack
thereof, of the T = 0 �xed point of the degenerate 2CK model. Both experimental and
theoretical work would be welcome to better understand the nature of the defects giving rise
to ZBAs in metal point contacts, and the parameters governing these defects. Skepticism of
the 2CK interpretation of the data is not unwarranted, since this is seemingly an exotic e�ect.
However, this model has provided a rather complete account of the experimental observations
(P1-7), along with accurate predictions of the scaling properties of the conductance signals
as a combined function of T and V . No other existing model, based on more familiar physics,
has been able to account for the data.

Two experimental observations do appear to lie beyond the present understanding of
2CK physics: the conductance transitions (P9) and the apparantly related strong magnetic
�eld dependence (P8a). A theory of this phenomenon would be most welcome. However,
these e�ects appear to involve either \high energy" e�ects or e�ects due to interactions
between nearly degenerate TLSs which are beyond the scope of the present-day single-
impurity calculations of the 2CK model, which are applicable only to the low T - and V -
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regime in the neighborhood of a T = 0 �xed point. Since these two experimental e�ects are
absent in metallic-glass nanoconstrictions, they should perhaps not be considered generic to
the physics of TLSs in nanoconstrictions.
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FIGURES

FIG. 1. Cross-sectional schematic of a metal nanoconstriction. The hole at the lower edge of

the Si3N4 is so small that this region completely dominates the resistance of the device.
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FIG. 2. A typical conductance curve for a constriction containing structural defects: (a) The

upper curve, showing a dip in conductance at V = 0 and voltage-symmetric spikes, is the di�erential

conductance for an unannealed Cu sample at 4.2 K. The lower curve shows the conductance of

the same device at 4.2 K, after annealing at room temperature for 2 days. The curves are not

arti�cially o�set; annealing changes the overall conductance of the device by less than 0.5%. (b)

Point contact phonon spectrum at 2 K for the device before anneal (dashed line) and after anneal

(solid line).
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FIG. 3. (a) Di�erential conductance versus voltage at 4.2 K for a Cu sample which underwent

repeated thermal cycling11. The time sequence runs from the bottom curve to the top. Curves

are arti�cially o�set. The �rst 2 excursions were to 77 K, the next 5 to room temperature. (b)

Di�erential conductance for a Cu sample intentionally doped with 6 % Au. Static impurities reduce

the electronic mean free path but completely eliminate the zero-bias anomaly of interest to us. (c)

Di�erential conductance and (d) point contact spectrum for a Cu device at 1.8 K in which disorder

has been created by electromigration (which means that a high bias (100-500 mV) has been applied

at low temperatures so that Cu atoms moved around).
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FIG. 4. (a) Conductance signals for 500 ppm magnetic Mn impurities in Cu at 100 mK, showing

Zeeman splitting in an applied magnetic �eld. (b) The ZBA signals from quenched Cu samples

exhibit no Zeeman splitting, demonstrating that they are not due to a magnetic impurity. However,

the shape and amplitude of the ZBA does depend on magnetic �eld.
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FIG. 5. (a) V -dependence of the di�erential conductance for B = 0 and T = 100 mK. (b)

T -dependence of the conductance for B = 0 and V = 0. Straight lines illustrate regions of

logarithmic V - and T -dependencies.
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FIG. 6. A generic two-level-system, with (bare) energy asymmetry � and tunneling rate �0.

An electron-assisted tunneling event is depicted: an electron scatters of the TLS and induces the

atom to tunnel.
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FIG. 7. (a) Temperature dependence of the V = 0 conductance [G(0; T ) � G(0; To)] for 4

unannealed Cu samples, plotted versus T 1=2. The values of G(0; T ) for the di�erent samples,

extrapolated to T = 0 as shown are for sample #1: 2829 e2=h, sample #2: 3973 e2=h, sample #3:

30.8 e2=h, and sample #4: approximately 2810 e2=h. (b) Voltage dependence of the di�erential

conductance at T = 100 mK for some of the same samples as in (a), plotted versus V 1=2. The

size of deviations from T 1=2 behavior in (a) (1 part in 3000) is consistent with the magnitude of

ampli�er drift in these measurements, as they were performed over several days. The V -dependent

measurements in (b) are less subjective to such drift problems, as they are taken over a much

shorter time span.
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FIG. 8. (a) Voltage dependence of the di�erential conductance for sample #1 of 7, plotted

for temperatures ranging from 100 mK (bottom curve) to 5.7 K (top curve). (b) The same

data, rescaled according to Eq. (15) with � = 1

2
, and plotted vs. v1=2 = (eV=kBT )

1=2. The

low-temperature, low-voltage data collapse onto a single curve [linear for large v1=2, in agreement

with Eq. (24)], with deviations when the voltage exceeds 1 mV.
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FIG. 9. The deviation parameter D(�) of Eq. (25), which quanti�es the quality of scaling, for

(a) sample #1 and (b) sample #2. The minimum of D(�) de�nes the value of � that gives the

best scaling, giving � = 0:48� 0:05 for sample #1 and � = 0:52� 0:05 for sample #2.
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FIG. 10. (a) Di�erential conductance data for sample #2, at temperatures from 200 mK to

5.7 K, and (b) for sample #3, at temperatures from 50 mK to 7.6 K, rescaled according to Eq. (15)

and plotted vs. v1=2 = (eV=kBT )
1=2. The low-voltage, low-temperature data collapse well onto

one curve for sample #2, but not for sample #3, partly due to the existence of TLSs with Kondo

temperatures within in (rather than above) the temperature range of the measurement.
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FIG. 11. Representative conductance curves which lie along the scaling curves for samples # 1,

2 and 3 of each of the three samples in Figs. 8(b), Fig. 10(a) and (b), respectively. For sample #1,

the curve corresponds to T=1.1 K, for sample #2 1.4 K, and for sample #3 250 mK. The reason

for selecting these particular curves was that among all those lying along the scaling curve, they

had the best signal-to-noise ratio for each sample. (a) The y-axis is scaled by the value of B�

determined from the temperature dependence of the V = 0 conductance for each sample (values

listed in Table 6.1). (b) In addition, the x-axis is scaled with a number ai for each sample. The

scaling curves for all three samples seem to lie on one universal curve.
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FIG. 12. (a) Transition voltage Vc(H) of the conductance transition31as a function of mag-

netic �eld for a quenched Cu constriction at 4.2 K, showing bifurcation (P9b,iv). At high �elds

Vc(H) ! 0 (P9b,v), the dependence on H being quadratic. (b) Vc(H) for �ve other samples at

4.2 K, with associated decreases to 0, quadratically in H .
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FIG. 13. The DC conductance GDC (as opposed to di�erential conductance G used in all other

plots) at several magnetic �elds for a quenched Cu sample31. An increasing magnetic �eld broadens

the conductance transition at Vc and moves Vc toward zero voltage, destroying the enhancement

at V = Vc of GDC above the normal conductance. Note that although a large applied magnetic

�eld eliminates the conductance transition, a V = 0 minimum in the conductance remains.
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FIG. 14. Magnetic �eld dependence of the V=0 conductance for the 3 unannealed Cu samples

at 100 mK. (a) Absolute magnetoconductance. (b) Magnetoconductance scaled by the value of B�

for each sample. (c) Magnetoconductance relative to the change in conductance between 100 mK

and 6 K. An applied magnetic �eld alters, but does not eliminate, the zero-bias conductance signal

due to TLSs.
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TABLES

TABLE I. Measured parameters of the scaling functions for the Kondo signals in 3 Cu samples.

B�, Fo and F1 have units K
�1e2=h, and �1 is dimensionless.

# B� F0 F1 �1 =
F1
B�

1 7.8�0.2 4.2�0.3 {5.7�0.9 {0.73�0.11

2 25.2�0.7 12.8�0.8 {19.7�1.5 {0.78�0.06

3 10.3�0.4 6.0�0.6 {7.7�1.6 {0.75�0.16
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