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umentation of the design and, thus, may support maintenance. Likewise, such a documentation
may support the reuse of design specifications since it is much easier to decide which design deci-
sions still apply in a different context (e.g., different task, different target environment, etc.). Clear-
ly, the documentation of design process and rationale poses an additional workload on the
designer. Yet, the designer may be relieved from other low level tasks since this information may
be exploited for intelligent support of the design process, e.g., by supporting the selection of design
decisions and keeping track of dependencies, but also by automating parts of the development
through the provision of automated transformations of standard data types into code fragments of
the target environment. In order to strike a balance between additional overhead and benefit
gained, we adopted a model for design rationale which does not contain some of the aspects includ-
ed in the proposals of (Potts and Bruns, 1988; Lee, 1991) such as, e.g., a detailed description of the
argumentation for or against design alternatives.

The considerations we made are less important if a kbs is constructed on the basis of an already
available shell since in that case, most design decisions have alredy been made while the shell was
built and cannot be influenced when building an application. Thus, there is only limited need for a
distinct design phase. Shell-based approaches, however, have other disadvantages: general-pupose
shells do not provide a conceptual model to guide knowledge acquisition while role-limiting shells
incorporate a strong model of the problem-solving method, but usually lack flexibility when the
built-in problem-solving method does not exactly fit the problem at hand.

Clearly, tool support is required in order to make the design framework of MIKE easier to use.
Work on such a tool environment is in progress. This includes the extension of the KARL inter-
preter, but also some types of automated support, such as generation of code fragments for the
standard data types in DesignKARL as well as data conversions between implemented and speci-
fied parts of the design product. Furthermore, the documentation of the design process and ration-
ale will be supported by the tool environment. Current work also includes the evaluation of the
proposed design framework by using it on applications of realistic size such as, e.g., the Sisyphus
elevator configuration task (Poeck, Fensel, Landes, and Angele, 1994).
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KADS does not prescribe a particular formalism for the model of expertise. The range of descrip-
tion formalisms may include semi-formal notations as well as formal languages. Therefore, the de-
scription of the design model cannot make assumptions about the shape of the model of expertise
and, thus, it is not possible to describe design decisions as detailed as in MIKE.

KADS views the task of making the model of expertise operational as part of the design phase
(Schreiber, 1993). Thus, extra effort is required if the model of expertise shall be evaluated by
means of a prototype. In contrast, MIKE views prototyping as an integral part of the knowledge
acquisition phase. Consequently, the construction of an executable description of the model of ex-
pertise cannot be deferred to the design phase, but has to be part of the knowledge acquisition
phase. As a consequence, the description of the model of expertise has to be much more detailed
than in KADS.

The design phase in MIKE is to some extent influenced by “conventional” design approaches. The
basic issues addressed during design in MIKE, namely defining an appropriate system structure,
decomposing subsystems into smaller units such as modules, and developing appropriate data
structures and algorithms, can be found quite similarly in structured design approaches (e.g. (Your-
don and Constantine, 1978)) as well as object-oriented design methods such as (Coad and Your-
don, 1991; Rumbaugh, Blaha, Premerlani, Eddy, and Lorensen, 1991). The design approach in
MIKE tries to combine benefits of both paradigms: real world entities are modelled as objects and
object classes, which is a quite intuitive representation, but processing steps are represented on a
global level instead of distributing responsibility for such steps to different object classes. Thus,
the problem-solving method as it is expressed in the model of expertise can be identified more eas-
ily in the final implementation, which may prove valuable for system maintenance and which con-
forms to the principle of structure-preservation in a better way than a purely object-oriented
approach. Design in MIKE pays particular attention to the non-functional requirements which con-
stitute the rationale for design decisions. This emphasis on specifically non-functional require-
ments is not normally part of design approaches in software engineering.

6 CONCLUSION
An executable description of the model of expertise with KARL constitutes the basis for the design
phase in MIKE. Consequently, functional requirements towards the system have already been de-
scribed and evaluated in the model of expertise, and therefore, the design phase is driven by non-
functional requirements. Design decisions basically affect thestructure of the systemandthe algo-
rithms and data structures employed and are made in an incremental fashion. Due to the tentative
nature of design decisions, there is a need for early evaluation of design decisions by means of a
prototype which is derived from the KARL prototype used during knowledge acquisition by sub-
stituting portions of it by corresponding parts operationalized in the target language.

In order to make the design process more transparent, we argue that it is insufficient to describe
only the shape of the artefact in the design model. Instead, we propose to also document the history
of design decisions and the motivation behind them by relating them to non-functional require-
ments. DesignKARL as an extension of KARL is used as the formalism for the description of the
design product as well as the design process and rationale within the design model. A description
of the design model which also addresses design process and rational may serve as a thorough doc-



Example 5

In example 2, the elementary inference actionCreate is refined into a processing module. As a con-
sequence, the structure of the processing moduleAssign which containsCreate as part of its de-
composition has to be adapted since an additional level of decomposition is introduced:

STRUCTURE P_MODULEAssign@tn INTO P_MODULEAssign@tn+1
DECOMPOSITION OF INFERENCE ACTIONCreate@tn

Figure 2 summarizes the design decisions that have been made in examples 1 to 5. Large boxes
indicate processing modules, while the small boxes denote roles (in particular, views). Circles in-
dicate inference actions or algorithms. ♦
Introduce and Abandon.Design decisions mayintroduce constituents which do not have a coun-
terpart in earlier versions of the artefact. For instance, functions for handling communication with
other components of the system may be introduced as well as error handling routines for reasonable
reactions to unexpected situations in order to increase system reliability. These issues usually do
not show up in the model of expertise since they do not affect the solution of the overall task.

Conversely, portions of the artefact may be removed, e.g. because the corresponding issue is de-
cided upon not be realised due to an incompatibility with some non-functional requirement. In that
case, the last appearance of the affected constituents are marked with anabandon relationship.

4.1.3 Description of Design Rationale

Design decisions are motivated by certain requirements that have to be met in the final implemen-
tation. In order to make the development process more transparent and thus support further devel-
opment and maintenance, the rationale behind particular design decisions should be made explicit.
The model employed in MIKE for the description of design rationale and its connection to non-
functional requirements is based on ideas developed in (Potts and Bruns, 1988; Lee, 1991) and
(Chung, 1991; Mylopoulos, Chung, and Nixon, 1992). For the sake of brevity, however, the de-
scription of design rationale will not be detailed here, but will be subject of a future paper.

5 RELATED WORK
Work on the design phase in KADS (van de Velde, Duursma, and Schreiber, 1993; Schreiber,
1993; Terpstra, 1993) is closely related to the work reported here. The scope of the KADS design
model is broader than the one in MIKE since KADS commits itself neither to particular analysis
or design paradigms (such as function-oriented or object-oriented), nor to specific classes of im-
plementation environments. Therefore, on the one hand, an explicit selection of a design paradigm
and a decomposition according to that paradigm have to be carried out in the design phase and, on
the other hand, the mapping to the target environment may be more difficult since design paradigm
and implementation environment may differ considerably in spirit. These issues are presently less
important in MIKE as a consequence of the restrictions we made at this stage of the project.

Like MIKE, KADS also adopted the idea of a risk-driven iterative life-cycle. In particular, building
a model is viewed as a process of configuring, refining, and assessing a generic template for the
respective model. This point of view is comparable to the one taken in MIKE, except that MIKE
does not emphasize the idea of model templates.



data structure to explicitly represent the ordering of employees. The realisation below specifies the
mapping between the newly introduced representation of the ordering by means of the sequence
ordered_components and the previous representation by means of the predicatebefore_comp. Giv-
en an employeexC which is ranked higher than an employeeyC by before_comp, both employees

must be contained in the sequenceordered_components, and vice versa. In particular,xC will be at

a position i which is smaller thanyC’s index j.

REALISE VIEW Next_Comp@tn BY VIEW Next_Comp@tn+1
∀xC,∀yC

( before_comp(high: xC, less : yC)@tn ↔
(∃i, ∃j (xC ε ordered_components[i]∧ yC ε ordered_components[j]∧ (0 < i) ∧ (i < j))@tn+1 ).

END. ♦
Structure. During design, the structure of some constituents of the artefact may need to be refined
or modified. For instance, portions of the model of expertise may be concerned with the manage-
ment of particular data, while in the design phase it is decided to employ a dedicated data manage-
ment component for that purpose. In that case, the structure of the artefact changes since data
administration is now external to the reasoning component. Astructure relationship connects the
two versions of the affected module. A structure relationship is also used if the interfaces of mod-
ules are modified or an additional level of decomposition is introduced, e.g., by refining an elemen-
tary inference action into a processing module as a consequence of additional control information.

Recall that design should aim at preserving the structure of the model of expertise. Therefore,
structural changes beyond refinement of parts of the artefact should only be made if there are good
reasons for doing so. In addition, it should be made sure that structural changes leave the concep-
tual level intact. Otherwise, the modifications should be carried out in a new cycle through the anal-
ysis phase.

Figure 2 Schematic depiction of design decisions

Next_Comp@tn

Create@tn

Next_Comp@tn+1

Assign@tn Assign@tn+1

Create_1@tn+1

Create@tn+1

Create@tn+1

realise

realise

structure

decomposition

... ...

Create_2@tn+1



Example 3

The reasoning component of the Sisyphus application consists of a top-level processing module
Assignand a single domain module (which constitutes the entire domain layer). The reasoning
component receivesemployees andplaces to be assigned from the user interface and returns the
set ofemployees (including an attribute describing the placement) to the user interface.

COMPONENTReasoning
INPUT

CLASSemployee FROM COMPONENTInterface TO D_MODULEDomain INIT Interface;
CLASSplaces FROM COMPONENTInterface TO D_MODULEDomain INIT Interface;

OUTPUT
CLASSemployee FROM D_MODULEDomain TO COMPONENTInterface INIT Reasoning;

P_MODULESAssign;
D_MODULESDomain;

END. ♦

4.1.2 Description of the Design Process

Besides describing the shape of the system at the current stage of development, a record of how the
developer arrived at that state is required since this may convey valuable information for further
development and maintenance. Basically, a design decision is equivalent to a relation between two
versions of parts of the system description. These relations are not part of the design product, but
constitute meta information about parts of the design product. Four basic types of design decisions
have been identified:realise, structure, introduce, andabandon.

Realise. During design, classes and predicates are refined to data types on the one hand and infer-
ence actions and subtasks are refined to algorithms and, possibly, processing modules on the other
hand. These transitions are described byrealisations which indicate how one version of such an
item relates to its precursor. In some sense, realisations express invariant properties of the relation-
ship between the two versions involved.

Data realisations specify a mapping between data structures similarly to the mapping between do-
main-specific and generic classes and predicates in views and terminators. Mappings are described
as logical clauses which may include pre-defined operations on data types. These expressions do
not only explicate the derivation of an arbitrary version from its precursor in order to make the de-
sign process more transparent, but are also used in the automatic conversion between representa-
tions during prototyping (see section 3.3.3). Data conversions are required if parts of the original
KARL specification are coupled with parts that are already operationalized in the target language.
The link between such parts is established by roles. Since data may be exchanged in both direc-
tions, the transition from abstract to refined versions has to be described as well as the inverse.

Processing realisations indicate how results computed by a task expression (which may be a com-
plete subtask, but may also be one or more calls to inference actions arranged in a certain control
sequence) relate to results computed by corresponding algorithms. Admissible relationships in a
processing realisation are set equality, set inclusion, or set membership between results computed
by the algorithm and results of the task expression.

Example 4

In example 1, a new version tn+1 of the viewNext_Comp is created by introducing an additional



ing the description into more manageable pieces. Modules convey the additional advantage of in-
formation hiding by making internals inaccessible to the outside. Access is only granted to data
items and functionality which the module explicitly exports to the outside. As a consequence of the
aim for structure-preserving design, the three knowledge layers of the model of expertise should
be preserved in the design model. In order to retain the distinction of the different knowledge types,
domain modules andprocessing modules are provided as structuring primitives.

Domain Modules. Domain modules are a means to group related domain knowledge and restrict
communication with other domain and processing modules since each module is associated with
an interface part to denote the classes and predicates which it imports from outside or exports to
the outside. Access from outside is only possible to classes and predicates mentioned in the export
part of the module interface. In the body of a module, auxiliary classes and predicates may be de-
fined for internal use. In the rule section of the body, extensions of imported or locally defined
classes and predicates are described by means of logical expressions.

Processing Modules. Processing modules allow the developer to decompose the inference and
task layers of the model of expertise into smaller pieces. Due to the close relation of inference and
task layer, each processing module corresponds to the decomposition of a composed inference ac-
tion together with its associated subtask. The inference part of a processing module describes the
roles and inference actions (or algorithms) which constitute the decomposition of the composed
inference action, while the control part specifies the control flow between those inference actions
(or algorithms).Create@tn+1 in the previous example constitutes such a processing module.

Like domain modules, processing modules communicate with other modules via an interface
which relates a processing module to its abstraction and its decompositions according to the de-
composition relationship between inference actions. The interface also signifies which data or con-
trol information the processing module exchanges with other parts of the system or external agents
such as the user, but also which data are exchanged within the reasoning component, i.e. it is indi-
cated which roles serve as input or output roles for the inference action described in the processing
module and which domain modules supply domain knowledge to views and receive knowledge
through terminators.

4.1.1.2.4 Components

Components are the top-level building blocks of the complete system. Basically, components and
their relationships describe the architecture of the system. Each component corresponds to a func-
tional unit of the system such as, e.g., reasoning component, user interface, explanation facility,
data management unit, etc. While designing the reasoning component (which comprises reasoning
mechanisms and knowledge base), other components are treated as black boxes, i.e. their internals
are not detailed with DesignKARL. Only their interfaces are specified with DesignKARL. The in-
formation in the interface description of a component largely corresponds to the type of informa-
tion captured in the Task and the Communication Models (de Hoog, Martil, Wielinga, Taylor,
Bright, and van de Velde, 1992), or, formerly, the Model of Cooperation (de Greef and Breuker,
1992) of the KADS model suite. The interface description covers such aspects as providing refer-
ences to the data exchanged, sender and recipient, and an indication who is the active participant
in the transfer or what triggers the transfer.



Then, an employee is to be placed next (i.e., is an element of the classnext_comp) if no other em-
ployee is to be treated first (i.e., the employee in question is not a less preferable one):

ELEMENTARY INFERENCE ACTION Create@tn
...
RULES

∀xC, ∀xS
( xC[states :: {xS}] ε possible_comp ←

xSε states∧ xC ε components∧ ¬ assigned_components(c : xC, st : xS)).
 ∀xA, ∀xC, ∀xS (assigned_components(c : xC, st : xS) ← xS[assign :: {xA[c : xC]}] ε states).

∀xC, ∀xS
(xC ε next_comp[states :: {xS}] ←

xC[states :: {xS}] ε possible_comp ∧ ¬ unpreferred_comp(c : xC, st : xS) ).
∀xC, ∀xS, ∀yC

(unpreferred_comp(c : xC, st : xS) ←
xC[states :: {xS}] ε possible_comp ∧ yC[states :: {xS}] ε possible_comp ∧
before_comp(high : yC, less: xC )).

END.
Using the refinement of the viewNext_Comp, a new version ofCreate can achieve the same result
more efficiently by using the first element of the newly introduced sequence as the set of next em-
ployees to be placed, provided the sequence is suitably adapted each time its first element is proc-
essed. As this involves additional control knowledge, the original elementary inference action is
refined into a processing module (see section 4.1.1.2.3) comprising the counterpart of the original
inference action plus another (very simple) algorithm which manipulates the data structure (using
pre-defined operations such ashead andtail).

P_MODULECreate@tn+1
INTERFACE

DECOMPOSITION OFAssign;
PREMISESStates, Next_Comp, Next_Slots;
CONCLUSIONSSuccessors, Next_Comp;

CONTROL
(STORES: Successors) := Create_1(STORES: States; VIEWS: Next_Comp, Next_Slots);
(VIEWS: Next_Comp) := Create_2(VIEWS: Next_Comp);

INFERENCE
ENRICHED INFERENCE ACTIONCreate_1

...
RULES

∀xC, ∀xS (xC ε next_comp[states :: {xS}] ← xC ε head(ordered_components) ∧ xS ε states) .
END.

ALGORITHM Create_2
...
RULES

ordered_components := tail(ordered_components) .
END.

END. ♦
4.1.1.2.3 Modules

Modules allow the developer to reduce the overall complexity of the design process by decompos-



UPWARD MAPPING
∀xC,∀yC

(before_comp(high: xC, less : yC) ← xC ε big_boss ∧ yC ε employees∧ ¬ (xC ≅ yC) ).
... // ... as before

END; ♦
4.1.1.2.2 Algorithms

Besides defining appropriate data structures, an important goal of the design phase is the develop-
ment of suitablealgorithms. Knowledge acquisition focuses on describing which processing steps
have to be carried out in principle in order to solve a problem. This description may have to be re-
fined and, possibly, restructured in order to be realized efficiently. Two basic variants to describe
algorithms exist in DesignKARL.

One possible form of algorithm description is very similar to the specification of control flow in
KARL. An algorithm is built from primitive expressions which either assign a value to data struc-
tures or variables or invoke an inference action (or another algorithm) and assign its return values
to a respective role variables. In the design phase, variables used in an algorithm may refer to any
of the available data types. Primitive expressions may be combined using the control constructs
sequence, iteration and alternative.

In addition, enriched inference actions are used as a preliminary form of algorithm. In that case,
the description is accomplished by a set of logical clauses. As a difference to the description of in-
ference actions during knowledge acquisition, clauses in enriched inference actions may refer to
any of the available data structures by means of pre-defined operations. This type of description is
intended primarily for the refinement of bodies of inference actions as a consequence of introduc-
ing data structures.

Thus, algorithms in DesignKARL are not necessarily sophisticated algorithms from, e.g., a text-
book but typically result from gradual refinement of inference actions by introducing control
knowledge which improves efficiency, but which is not required from a conceptual point of view.
Adding control knowledge, however, should preserve the validity of the algorithm. In this context,
validity means that the algorithm description yields “similar” results as the original declarative de-
scription. Yet, for validity it is not always required to reproduce the original output values exactly.
If only a subset of the original output data is actually used for further processing, it is sufficient for
validity if the algorithm computes just this subset. This condition, however, is not required to hold
at each level of decomposition of the two corresponding representations.

Recall that modifications resulting in a different problem-solving method should not be design de-
cisions, but should be accomplished by a new iteration of the knowledge acquisition phase since
that type of modification also affects the conceptual level and not only the realisation of the system.

Example 2

In Example 1 the viewNext_Comp is refined. In order to exploit this refinement for improving ef-
ficiency, the use of the view in inference actions has to be adapted correspondingly. The predicate
before_comp is used in, e.g., the inference actionCreate, which is responsible for selecting em-
ployees that are to be placed next. The rules below state that an employee can be placed at all (i.e.,
is an element of the classpossible_comp) if she is not already placed (assigned_components).



information is recorded in the binary predicatebefore_comp underlying the viewNext_Comp. In
this view, employees are modelled as elements of the (domain-specific) classemployees and the
(generic) classcomponents. Attributes and attribute values of an element of a class appear in square
brackets where needed. The clauses below express that, e.g., the head of the group should be as-
signed before any other employee, secretaries should be treated before all others except for the
head of the group, etc.

VIEW Next_Comp@tn
DEFINITIONS

PREDICATEbefore_comp
high : {components};
less : {components};

END;
UPWARD MAPPING

∀xC, ∀yC
(before_comp(high: xC, less : yC) ← xC ε big_boss ∧ yC ε employees∧ ¬ (xC ≅ yC) ) .

∀xC,∀yC,∀yV
(before_comp(high: xC, less : yC) ←

xC[role : “Secretary”] ε employees∧ yC[role : yV] ε employees∧
¬ (yV ≅ “Secretary”) ∧ ¬ (yC ε big_boss)) .

∀xC, ∀yC, ∀yV
(before_comp(high: xC, less : yC) ←

xC[role : “Manager”] ε employees∧ yC[role : yV] ε employees∧
¬ (yV ≅ “Secretary”) ∧ ¬ (yV ≅ “Manager”) ∧ ¬ (yC ε big_boss)) .

∀xC, ∀yC, ∀yV
(before_comp(high: xC, less : yC) ←

yC[role : yV] ε employees∧ xC ε boss∧
¬ (yC ε boss)∧ ¬ (yV ≅ “Secretary”) ∧ ¬ (yV ≅ “Manager”)) .

...
END;

The computation of the extension of the predicatebefore_comp may be expensive and is repeated
each time an employee is placed although the order in which people are considered is static. There-
fore, efficiency can be improved by introducing an additional data structure to store the ordering
information explicitly. Then, the ordering can be computed once and is afterwards retrieved from
the data structure rather than being re-computed. A sequence of sets is chosen as suitable data
structure. Each element in the sequence consists of the set of employees which are ranked equally

with respect to the ordering1.

VIEW Next_Comp@tn+1
DEFINITIONS

PREDICATEbefore_comp
high : {components};
less : {components};

END;

SEQUENCEordered_components OF SET OFcomponents;

1.  The relationship between the representations inNext_Comp@tn andNext_Comp@tn+1 is specified in the description of the
design decision relating the two versions ofNext_Comp, see Example 4 at page 17.



be performed on instances of the respective type for testing or data retrieval and storage. The col-
lection of data types comprises the typesvalue, class, predicate, andset (which are already avail-
able in KARL) as well as the typessequence, stack, queue, n-ary tree, hash table, index structure,
andreference. Only a restricted set of data types is offered in DesignKARL since such a restriction
facilitates support for their implementation by mapping them to appropriate code fragments for
particular target environments. The data types in DesignKARL are similar to those in common pro-
gramming languages like, e.g., C++ or Modula, plus hash tables and index structures, which are
widely used in database applications. Therefore, the collection of data types should be sufficient
for most applications. Yet, new data types might be added in future versions of DesignKARL if
there is a strong need to do so.

In the design phase, additional features may be used in conjunction with classes and predicates. For
instance, methods, i.e. user-defined operations, may be associated with classes. Methods may ap-
ply to the class (class methods) or to its elements (member methods) and can be specified by logical
expressions or by algorithms (see below). Subclasses and elements of a class inherit the methods
defined in that class. During design,abstract classes (cf., e.g., (Rumbaugh, Blaha, Premerlani,
Eddy, and Lorensen, 1991)) may be introduced as ‘artificial’ superclasses in order to exploit meth-
od inheritance without being required for conceptual reasons. Member methods may, e.g., be used
for computing the values of derived attributes of an object. Class methods are particularly useful
in views and terminators as realization of mapping expressions which connect classes at the infer-
ence layer with data items at the domain layer. In contrast to common object-oriented languages,
methods may also be associated to predicates in DesignKARL since a connection between domain
and inference layer can also be established via predicates associated with views and terminators.

References indicate where a particular object or data structure can be found rather than which par-
ticular features the object or data structure itself does carry. The use ofreferences may be conven-
ient if direct manipulation of data items would, e.g., involve a lot of copying or repeated search in
a large collection of data items for an item with a distinctive feature. The data typessequence,
stack, queues, andn-ary tree embody particular ordering relationships among the data items to be
represented in the usual way.Hash tables andindex structures are particularly suited for efficient
access to large quantities of data.Hash tables are a generalization of sequences with data items be-
ing retrieved using a hash function (cf., e.g., (Cormen, Leiserson, and Rivest, 1990). The hash
function has to be defined when declaring a hash table and uses a particular feature of the data items
as an argument. Similarly,index structures (cf., e.g., (Elmasri and Navathe, 1989)) exploit a direct
association between values of a particular feature of the data items and a location within the data
structure used for storing them. In contrast to hash tables, this association does not involve the com-
putation of a function to obtain potential locations of the required data item. Rather, a particular
feature such as, e.g., an attribute of an object class is used as an index to the stored data.

Example 1

The use of appropriate data structures is illustrated in the context of the Sisyphus office assignment
task (Linster, 1992). A solution of that problem consists of a consistent assignment of all employ-
ees to office rooms. To that end, employees are selected for being assigned in a certain order which
in essence reflects the idea that employees which are most constrained with respect to possible
places should be treated first. In a KARL specification of the Sisyphus problem (Fensel, 1993), this



be an element of at least one class and inherits all attributes which are defined for the extension of
these classes. Attributes are either functional or relational. Individual objects and tuples of predi-
cates are described bylogical expressions which are in essence expressions of first-order logic plus
some extensions in order to master object-oriented data modelling. Expressions describe which en-
tities actually exist in the application, how they look like, and which relationships hold between
concrete entities. At the domain layer, there is no account of how and when this knowledge will be
used for the solution of the problem.

The inference layer specifies inference steps by means ofinference actions androles. Potential
processing steps are described by means of elementary or composed inference actions. Elementary
inference actions are associated with logical expressions which declaratively specify how output
data are computed from input items. Composed inference actions obtain their semantics by decom-
position to more basic inference actions. Roles constitute generic descriptions of inputs and outputs
of inference actions and are associated with classes and predicates. There are three types of roles:
stores, views, andterminators. Stores connect inference actions and act as containers for interme-
diate data. Views and terminators establish connections to the domain layer. Upward (or, respec-
tively, downward) mappings indicate which elements of classes or tuples of predicates at the
domain layer correspond to elements of generic classes or predicates associated with the views
(terminators). Views read from the domain layer while terminators write to the domain layer.

The inference layer does not indicate when and in which sequence inference actions will be exe-
cuted. Control of execution is specified at the task layer. To that end, complexprograms may be
built from primitive programs, i.e. calls of inference actions or assignments to boolean variables,
using the usual control constructs sequence, alternative, and iteration. Programs may be combined
to subtasks, thus establishing a counterpart to composed inference actions at the inference layer.
Subtasks may in turn be used as constituents of programs.

The connection of the different layers is established by the fact that views and terminators at the
inference layer access domain knowledge and calls to programs and subtasks at the task layer cause
the corresponding inference actions to be executed at the inference layer. Detailed descriptions of
KARL may be found in, e.g., (Angele, Fensel, and Studer, 1994; Fensel, 1993).

4.1.1.2 Extensions in DesignKARL

Important tasks in system design are describing how data and processing can be realized appropri-
ately in the target environment on the one hand, and imposing structure on the overall system and
further decomposing the resulting constituents on the other hand. Extensions introduced in addition
to KARL primitives address these issues. Some of these extensions are illustrated in the context of
a KARL model of the Sisyphus office assignment task (Fensel, 1993) which is used as a running
example in the following sections.

4.1.1.2.1 Data Types

An object class in KARL abstracts from information which is not important from the conceptual
point of view. Often, such additional information, e.g., an implicit ordering of elements of a class,
can be exploited for efficient use or can facilitate the mapping to language primitives of the target
environment. Therefore, in DesignKARL, a set of commondata types is provided for making such
additional information explicit. Each data type is associated with pre-defined operations that may



4 THE FORMALISM FOR THE DESIGN MODEL
The initial input for the design phase in MIKE is a KARL specification of the system’s reasoning
behaviour and of the required knowledge in the model of expertise. Design incrementally adds de-
tails which concern the realization of that behaviour and affect data structures or algorithms and
the structure of the system. Thus,DesignKARL as the formalism for the description of the design
model is an extension of KARL by language primitives addressing these design-specific aspects.

DesignKARL must also be capable of describing the design process. A basic concept in that con-
text is the application of a particular design activity. DesignKARL must be able to express what
type of activity is performed. A design activity implies a change of a particular portion of the arte-
fact. Yet, the design activity does not create a completely new artefact, but only a newversion of
the artefact. In order to be able to refer to different versions of the design product or portions there-
of, a so-called tense-shift operator @ is introduced which establishes a connection between items
that are meant to be contemporary. Informally, a reference to itemk@tn denotes the specific version

of itemk which exists at “time” tn. Versions can be ordered by means of a partial precedence order.

Details on the operator @ can be found in (Rönnquist, 1992).

Since the rationale of design decisions must also be recorded, DesignKARL provides additional
language primitives for non-functional requirements and their relationships, but also for linking re-
quirements and their decomposition to design activities.

Due to the close relationship between non-functional requirements and the application and the ef-
fects of design decisions, a common formalism for the description of these aspects seems to be ap-
propriate. A largely uniform description formalism across different phases of the life-cycle has the
advantage that a system designer does not have to get acquainted to many different languages. As
kbs design can itself be viewed as an expert task, the use of an extension of KARL for describing
design product as well as design process and rationale is manifest since KARL was developed to
specify knowledge-intensive tasks. In the following sections, some of the language elements of
DesignKARL will be presented.

4.1 Language Elements of DesignKARL

4.1.1 Description of the Design Product

4.1.1.1 Primitives of KARL

The model of expertise in MIKE, and consequently KARL as the formalism for its description, is
influenced by core ideas of KADS (Wielinga, Schreiber, and Breuker, 1992; Schreiber, Wielinga,
and Breuker, 1993). Different knowledge types are separated by means of a distinct layer for each
type, namely domain layer, inference layer, and task layer.

The domain layer contains the required domain-specific knowledge for the task to be solved. In
KARL, domain knowledge is modelled in terms of entities and relationships.Objects denote enti-
ties in the domain of discourse. Features of entities are described by attributes which are encapsu-
lated within the object, while relationships between entities are specified aspredicates. Concepts,
i.e. collections of entities exhibiting the same features, are described byclasses which may in turn
be characterized by attributes. Classes are arranged in a generalization hierarchy. Any object must



tion or measurement of the design model or by running a prototype. Prototyping also integrates
clients and users participate in the evaluation process more directly. Only limited conclusions,
however, can be drawn if the prototype neither runs in the target software environment nor on the
intended hardware. Conversely, the prototype cannot run completely in the target environment
since this contradicts the idea of providing feedback as early as possible. This dilemma can be re-
solved by running a hybrid prototype which consists of portions of the original KARL prototype
(i.e. the executable model of expertise) in conjunction with portions that have already been opera-
tionalized in the target language and which substitute their counterparts in the model of expertise.
Specifically, those parts which are primarily affected by the design decisions to be evaluated are
operationalized in the target language. Running the design prototype then comprises appropriately
switching between the KARL interpreter and the interpreter of the target language (including suit-
able data conversions). Clearly, this form of prototyping requires the target language to be known,
which is one of the reasons to restrict ourselves presently to C++ as target software environment.

Evaluation of design decisions also involves checking their admissibility with respect to functional
requirements, i.e. the system must still exhibit the required functionality. In some cases, admissi-
bility may be ensured by formal means, e.g., by employing only semantics-preserving transforma-
tions. Usually, however, admissibility is checked via testing, which in MIKE can be accomplished
by comparing the results of the design prototype and the KARL prototype if both are supplied the
same input data. Test cases that have already been used for evaluating the KARL prototype may
be reused for checking the design prototype.

3.3.4 History and Rationale

Several authors (cf., e.g., (Potts and Bruns, 1988; Lee, 1991; Baxter, 1992)) noticed that it is often
insufficient to use a description of the current version of the artefact as the only basis for further
development and maintenance. In that case, it is hard to figure out which design decisions and ac-
tivities have already taken place and for what reasons have been made. Thus, “a maintainer may
repeat mistakes that were made by the original designer but not documented or may undo earlier
decisions that are not manifest in the code” (Potts and Bruns, 1988, p. 418]. Due to the tentative
nature of many design decisions, it may also be necessary to revise earlier decisions and try other
design alternatives.

Therefore, the design history and the rationale behind decisions should be made explicit. The
record of design activities should not just contain those steps that led to the current version of the
artefact, but should also reflect revised decisions and the reasons why they failed. Non-functional
requirements often interact, i.e. a decision which contributes to the satisfaction of one non-func-
tional requirement may often inversely affect another requirement (e.g. the trade-off between stor-
age space and processing time). Usually, design decisions interact. Introducing a particular data
structure for explainability reason precludes, e.g., the removal of this data structure in order to save
memory space. An account of design process and rationale must also address these relationships.

In order to address these issues, the design model in MIKE does not just consist of a description of
the designproduct, i.e. the artefact under development, but also includes an account of the design
process.



resulting in a different problem-solving method, a new iteration of knowledge acquisition should
be carried out, thus propagating the changes also into design, instead of just modifying the design
model and leaving the model of expertise intact. The original model of expertise as it results from
the most recent iteration of the knowledge acquisition phase is preserved unchanged during design.

3.3.2 Addressing Design Issues

The design phase consists of three subphases, namelyrequirements analysis, model construction,
andmodel evaluation, which are traversed in a cyclic fashion. Figure 1 at page 3 shows these steps
in the context of the MIKE life-cycle.

Requirements analysis involves collecting comments of clients and users concerning the current
realization of the system. Such comments are recorded, analysed, and described as non-functional
requirements. Thus, one basic activity in the analysis substep is the identification of additional, pre-
viously unnoticed non-functional requirements that the system has to meet. On the other hand, giv-
en a collection of non-functional requirements, the designer usually cannot address them all at
once; rather, only a subset will be tackled before aiming at the remaining ones. Thus, a second as-
pect in the analysis step consists in analysing the non-functional requirements in order to select
those to address next, e.g., those currently associated with the highest risk.

After the selection of a subset of the requirements, the designer decides on possible ways to meet
the selected requirements or at least to contribute to their fulfilment. Such design activities imply
changes of portions of the artefact. Thus, the model construction step consists in performing suit-
able design activities which result in a new “version” of the artefact. The decision process can be
viewed as first posing a top-level goal, namely to reach a state in which the model of the system
meets the chosen non-functional requirements. Since top-level goals usually cannot be met imme-
diately, they will be decomposed into subgoals (cf., e.g., (Mylopoulos, Chung, and Nixon, 1992)).
Some of these subgoals must be fulfilled jointly to satisfy a higher-level goal while others consti-
tute alternatives such that the higher-level goal is fulfilled if any of the subgoals is met. Goal de-
composition is continued until elementary goals are reached which can be directly achieved by
elementary design decisions such as, e.g., refining a particular data structure in a specific way.

Finally, design decisions have to beevaluated if they actually effected an improvement with re-
spect to the selected requirements under the constraint that the system still exhibits the required
functionality. Valuable support for evaluation can be given by running an operational prototype of
the system which reflects the effects of design decisions. The result of the evaluation is the basis
for the next requirements analysis step within the design phase. If decisions taken turn out as fail-
ure, the chosen requirements must be re-considered and the decisions just taken must be revised.
It is also possible that the decisions taken are initial steps towards the satisfaction of the chosen
requirement, but do not yet suffice to fulfil it to the desired extent. In that case, complementary
decisions and activities are required. Finally, if the result of evaluation is satisfactory, the focus
shifts to other requirements which are not yet sufficiently met in the current state of the system.

3.3.3 Prototyping in the Design Phase

Non-functional requirements refer to the realization of the system in a particular environment. De-
pending on the type of requirement, the effects of design decisions can either be judged by inspec-



A knowledge-based system usually encompasses additional components such as, e.g., a sophisti-
cated user interface and an explanation facility besides the reasoning component. Since all the
components co-operate during the use of the system, specific needs of one component may have
repercussions on others. For instance, good explanations of the system’s reasoning behaviour may
require to store a larger amount of intermediate data or store data in a more explicit fashion than is
required for just finding a solution. These needs constitute additional non-functional requirements
for the reasoning component since they do not directly affect its functionality.

3.3 Characterization of the Design Process

3.3.1 Design Issues

The main points of interests in the design phase are the structure of the system and its constituents
on the one hand, and data structures and algorithms on the other hand.

Although the co-operation of the components of a kbs may give rise to mutual requirements, many
of a component’s internals are irrelevant for others. Independence with respect to internals, how-
ever, can only be achieved if a suitable system structure and appropriate interfaces for the interac-
tion between components are defined. In that case, the development of the components can even
be carried out according to different development paradigms which are particularly suitable for the
component in question. Furthermore, a proper system structure reduces the overall complexity of
the development task. The structure of the system may also be influenced by requirements like
maintainability or understandability.

As (Schreiber, 1993) points out, the design process should preserve the structure of the model of
expertise since otherwise the model of expertise may, e.g., only provide limited support for main-
tenance. Therefore, structural modifications beyond refining existing structures should be em-
ployed with great care. Clearly, restructuring is unavoidable if the target software environment is
not compatible with the development paradigm followed so far. For instance, structure preserving
design is hard to accomplish if knowledge acquisition is carried out according to the MIKE pro-
posal, i.e. pursuing a function-oriented (structured) approach in combination with object-oriented
data modelling, but the target environment is a rule-based expert system shell. In that case, design
can either preserve the structure of the model of expertise with its specification of control on a glo-
bal level, thus leaving a wide gap between design and implementation, or design introduces struc-
tures which can directly be mapped to the implementation environment, thus causing structural
changes with respect to the model of expertise since, e.g, the global control knowledge of the task
layer has to be distributed among many individual rules. In order to avoid these problems, our con-
siderations are currently restricted to target software environments which allow for structure-pre-
serving design such as, e.g., C++.

The second basic design aspect besides system structure is system behaviour, which can be influ-
enced by the choice of data structures and algorithms. For instance, data management may be im-
proved by appropriate data structures while processing may be improved by employing more
sophisticated algorithms. Changes in data structures usually imply that algorithms using them have
to be adapted correspondingly. Conversely, a particular algorithm mostly requires data structures
which are tailored to its needs. It should be made sure that decisions taken in this context actually
constitutedesign decisions: if decisions significantly affect the functionality of the system, e.g., by



tween the types of requirements to be addressed during knowledge acquisition on the one hand and
design on the other hand.

What are the requirements that must be considered during the design phase of a kbs? While there
is some work focusing particularly on non-functional requirements in other areas such as informa-
tion system design (Chung, 1991; Mylopoulos, Chung, and Nixon, 1992), the investigation of rel-
evant types of requirements for knowledge-based systems has become a research topic only
recently. (Williams, Tomlinson, Bright, and Rajan, 1992) and (Guida and Mauri, 1993) provide
taxonomies of factors that determine the quality of knowledge-based systems, but do not distin-
guish functional and non-functional aspects. Based on these taxonomies,efficiency, maintainabil-
ity, understandability, reliability, portability, andrequirements resulting from the chosen hardware
or software environment or the system architecture have been identified so far as important top-
level non-functional requirements in the design phase in MIKE. It should be noted that two aspects
of efficiency have to be distinguished, namely efficiency as integral part of the problem-solving
method and efficiency of the realisation of the problem-solving method. These two aspects have
already been discussed as efficiency at the knowledge level vs. efficiency at the symbol level by
(Schreiber, Akkermans, and Wielinga, 1990). While the former aspect has to be addressed during
knowledge acquisition, the latter aspect is part of the design phase.

It should also be mentioned that MIKE currently concentrates on the development of reasoning
mechanisms and knowledge base. Other constituents of a kbs such as user interface, data manage-
ment component, etc. are, in spite of their importance for the success of the system, not addressed
in depth at this stage of the project since issues concerning the development of these constituents
are already much better understood through work in conventional software engineering. Thus, re-
quirements referring to those constituents in particular are presently not captured in the design
model. Due to their interdependencies, the development of the individual constituents of a kbs
should nevertheless be carried out in parallel.

3.2 Where Do Non-Functional Requirements Come From?

Because of their specific character, non-functional requirements usually cannot be acquired com-
pletely during knowledge acquisition. Some indications how functionality has to be exhibited may
be contained in informal documents of the hyper model (Neubert, 1993), e.g., hints about which
results are needed with a certain precision or within a particular response time. Yet, knowledge ac-
quisition focuses on conceptual issues such as identifying the activities to perform for solving a
particular problem and getting hold of the knowledge required for these activities. This type of in-
formation is available in some form or the other from human experts for the particular task, where-
as these experts usually have only very limited ideas about specific aspects of a computational
solution besides that it must solve the task. Therefore, the main sources of information about non-
functional requirements are future users of the system and the client, who wants the respective task
performed by a computer. The clarification of which non-functional requirements have to be sat-
isfied, but also the estimation to which extent known non-functional requirements are met can be
supported by running a prototype which already conforms to (most of) the functional requirements.
Emphasis, however, shifts from checking the functionality of the system (“doing the right things”)
to evaluating how the system exhibits particular facets of its functionality (“doing things right”),
i.e. prototyping gets an experimental flavour (Floyd, 1984).



Figure 1 The knowledge engineering process in MIKE (reprinted from (Angele, Fensel, Landes, Neubert,
and Studer, 1993))

3 THE SCOPE OF THE DESIGN MODEL

3.1 Two Basic Types of Requirements

In life-cycle oriented approaches to software development, the analysis phase usually emphasizes
a certain portion of requirements, namely thefunctional aspects of the problem’s solution. In ad-
dition to functional requirements,non-functional requirements must also be captured, described,
and finally met by the realization of the system. (Kahn, Keller, and Panara, 1990) provide a collec-
tion of types of non-functional requirements (quality attributes in their terminology) such as effi-
ciency, reliability, maintainability, etc. which are important for the quality of a software system in
general. Compared to functional requirements, such requirements convey a different type of infor-
mation: while functional requirements express which functionality the system must supply, non-
functional requirements constrain how behaviour may be exhibited, i.e. non-functional require-
ments are in essence requirementsabout functional requirements.

The analysis phase in “conventional” software engineering approaches corresponds to the knowl-
edge acquisition phase in knowledge engineering approaches. In contrast to specifications in “con-
ventional” software engineering, the model of expertise as the result of knowledge acquisition
cannot only addresswhat functionality the system must provide, but alsohow the required func-
tionality can be exhibited since knowledge about how to solve a problem constitutes an indispen-
sable part of the expertise. Aspects concerning therealization of the functionality, however, are the
concern of the design phase and neglected during knowledge acquisition. In MIKE, knowledge ac-
quisition results in an executable description of the model of expertise which can be run as a pro-
totype. Thus, this prototype constitutes a computational solution which is capable of solving the
considered task at least in principle, though usually in an inefficient way. Consequently, the model
of expertise can already be evaluated with respect to functional requirements before the transition
into the design phase takes place (cf. also (Landes, 1993)). Thus, there is a clear distinction be-
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a formalism for the design model which is capable of describing the artefact under construction as
well as design decisions and their rationale. Section 5 puts the work presented here in relation to
some other approaches, and section 6 concludes the paper with a discussion of the approach.

2 SOME CORE IDEAS OF MIKE
In (Angele, Fensel, Landes, Neubert, and Studer, 1993), it has been elaborated that knowledge en-
gineering has to be viewed as a modelling process which involves interpretation of elicited knowl-
edge and observations of the expert by the knowledge engineer. Since interpretation is by its very
nature prone to errors and misunderstandings, early feedback by reality is required and revisions
of the model must be admissible in any stage of the development process. Furthermore, as even the
part of reality which is relevant for an expert task is often too complex to be covered completely
by a model, such a model is only an approximation which is subject to further refinement or mod-
ification due to new observations. Thus, knowledge engineering must be carried out incrementally.

The gap between informal knowledge as it is gained from a human expert and its final implemen-
tation is usually much too wide to be bridged in a single step. Experience in “conventional” soft-
ware engineering shows that the development process should be split into several steps each of
which concentrates on a particular aspect of the overall development task. Consequently, different
representations are required each of which is particularly suited for describing the results of one of
the development steps or substeps thereof. MIKE distinguishesknowledge acquisition, design, im-
plementation, andevaluation as basic development phases. As first substep of the knowledge ac-
quisition phase, a natural language description of the expertise is constructed. This description is
the basis for the interpretation of the acquired knowledge which results in a semi-formal, but struc-
tured description by means of the so-called hyper model (Neubert, 1993). Interpretation is followed
by formalization, resulting in a so-called model of expertise. Its shape in MIKE is strongly influ-
enced by ideas from KADS in that three basic types of knowledge are distinguished, which are rep-
resented at different layers of the model of expertise. The representation formalism for the model
of expertise in MIKE is the formal specification language KARL (Fensel, 1993; Angele, Fensel,
and Studer, 1994). Since KARL possesses an operational semantics (Angele, 1993) in addition to
its model-theoretic semantics, the model of expertise can be evaluated by means of (basically) ex-
plorative prototyping (Floyd, 1984). The tight integration of prototyping into the development
process is a consequence of the iterative and approximative nature of that process.

Models in the knowledge acquisition phase focus on how the task at hand can be solved, but ab-
stract from considerations how this solution will finally be realized on a computer. The latter issues
are addressed in the design phase and described in its result, the design model. The design model
then contains an account of all the requirements the system has to meet and how these goals can
be achieved. The design model serves as the basis for implementing the requirements in the final
system which is the result of the implementation phase.

Finally, the implemented system has to be evaluated in order to determine if the requirements
posed are actually met by the system in its entirety.

As knowledge engineering is an incremental process, these phases are traversed in a cyclic fashion
similar to Boehm’s spiral model (Boehm 1988) (see Figure 1). Details on the life-cycle of MIKE
can be found in (Angele, Fensel, Landes, Neubert, and Studer, 1993; Angele, 1993).
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Abstract. Not only knowledge acquisition, but also the principled transition from
knowledge acquisition to implementation is an important question in knowledge engi-
neering. This paper focuses on this transition and characterises the design phase of the
MIKE approach to model-based incremental development of knowledge-based sys-
tems. The role of non-functional requirements in the development process is discussed
and it is argued that for reasons of transparency, the description of the design should
not just contain the description of the artefact, but should additionally include a record
of the design decisions and their motivation, i.e. their relationship to the requirements
posed. DesignKARL is outlined as the formalism for describing the artefact as well as
design decisions and their rationale in MIKE.

1 INTRODUCTION
In recent years, it has been recognized that building expert systems according to the rapid proto-
typing paradigm comes along with a number of shortcomings (cf., e.g., (Angele and Fensel, 1992)).
In particular, the knowledge engineer has to tackle a variety of tasks in a completely intertwined
fashion, i.e. she must simultaneously analyse the given information, design, implement, and eval-
uate the system. Consequently, different aspects of knowledge must be considered in parallel and
will often be mixed up in the implementation. As another drawback, the final implementation often
constitutes the only documentation of the expertise incorporated in the system.

In order to overcome these problems for being able to build large-scale systems which can be used
and maintained over a long period of time, more principled methods for constructing knowledge-
based systems (kbs) are required. As one such principled framework, the MIKE (Model-based In-
cremental Knowledge Engineering) approach has been proposed. MIKE shares many of the basic
ideas with KADS (Wielinga, Schreiber, and Breuker, 1993; Schreiber, Wielinga, and Breuker,
1993) and aims at integrating the benefits of life-cycle models, prototyping, and formal specifica-
tions in a single method (Angele, Fensel, Landes, Neubert, and Studer, 1993).

The focus of this paper lies on the design phase of the MIKE life-cycle and the design model as the
result of this phase. The basic principles of MIKE will briefly be addressed in section 2 in order to
clarify the context of the design model. The role of non-functional requirements and other aspects
that influence shape and contents of the design model are discussed in section 3. Section 4 outlines


