Ant Algorithms in
Stochastic and Multi-Criteria
Environments

Zur Erlangung des akademischen Grades eines
Doktors der Wirtschaftswissenschaften

(Dr. rer. pol.)

von der Fakultat fur
Wirtschaftswissenschaften
der Universitat Fridericiana zu Karlsruhe

genehmigte
DISSERTATION
von

Dipl.-Inform. Michael Guntsch

Tag der miundlichen Priifung: 13.01.2004
Referent: Prof. Dr. H. Schmeck
Korreferent: Prof. Dr. K.-H. Waldmann

2004 KARLSRUHE

“These weren’t ordinary ants.
Centuries of magical leakage into
the walls of the University had
done strange things to them.”
Terry Pratchett, Sourcery

Contents

Preface

Introduction
1.1 Combinatorial Optimization Problems
1.2 8Scope

Ant Algorithms

2.1 Biological Foundations
2.2 Ant Decision Rule
2.3 Pheromone Update
2.4 Ant Colony Optimization
2.6 Applications

Probabilistic Problems

3.1 Introduction to Probabilistic Combinatorial Optimization Prob-
lems

3.2 Evaluation of Solution Quality
3.2.1 Full Evaluation
3.2.2 Approximate Evaluation

3.3 ACOforthe PTSP,
3.3.1 ACO algorithm for nodexnode Problems
3.3.2 Depth-based Heuristic
3.3.3 Angle-based Heuristic

3.4 Empirical Evaluation L.
341 TestSetup,
3.4.2 Approximate Evaluation
3.4.3 Improved Heuristic Guidance
3.4.4 Comparison with Hilbertsorting and 1-Shift

3.5 Summary and Outlook

13
13
17
21
23
25

29

4 Dynamic Problems 61
4.1 Introduction to Dynamic Combinatorial Optimization Problems 61

4.2 Reactingtoa Change 64
4.2.1 Restart-Strategyo 66
422 m-Strategy oo 66
423 7-Strategyo 67
424 Combinations oo 69
4.2.5 Repairing the Elitist Ant 70

43 Entropy 70

4.4 Evaluation of a Single Insertion or Deletion 71
441 Test Setup 72
442 Results 72

4.5 Evaluation of Continuous Insertion and Deletion 76

46 Test Setup. 76

47 Results. o 78

4.8 Summary and Outlook 84

5 Population-based Ant Colony Optimization 87

5.1 DMotivation 87

5.2 Implementation, 89
5.2.1 Population of Solutions 89
5.2.2 Age-based Strategy 90
5.2.3 Quality-based Strategy 91
5.2.4 Probabilistic Quality-based Strategy 91
5.2.5 Age&Prob Combination 92
52.6 Elitism 92

5.3 Evaluation on Static Problems 93
53.1 A MAX-MIN Ant Algorithm 93
5.3.2 An ACO Algorithm for the QAP 93
533 Test Setup, 94
5.3.4 Comparison of PACO with standard ACO 96
5.3.5 Comparison of PACO with MAX-MIN Ant Algorithm . 100

5.4 Evaluation on Dynamic Problems 101
5.4.1 Dynamic Quadratic Assignment Problem 101
542 Test Setup 101
543 Results 103

5.5 Summary and Outlook 108

6 Multi-Criteria Optimization

6.1 Optimizing more than one Objective

6.2 Pareto-optimality

6.3 PACO for Multi-Criteria Optimization Problems
6.3.1 Population of Solutions
6.3.2 Generating the Probability Distribution

6.4 Empirical Evaluation

6.4.1 An ACO Algorithm for the SMTTSCP

6.4.2 Test Setup
6.4.3 Results

6.5 Summary and Future Work
7 Conclusion
Bibliography

Index

111
111
115
115
116
117
119
119
121
123
130

133

137

149

Preface

Ant Algorithms are an iterative, probabilistic meta-heuristic for finding solu-
tions to combinatorial optimization problems. They are based on the foraging
mechanism employed by real ants attempting to find a short path from their
nest to a food source. While foraging, the ants communicate indirectly via
pheromone, which they use to mark their respective paths and which attract
other ants. In the Ant Algorithm, artificial ants use virtual pheromone to up-
date their path through the decision graph, i.e. the path that reflects which
alternative an ant chose at certain points. The amount of pheromone an ant
uses to update its path depends on how good the solution implied by the path
is in comparison to those found by competing ants of the same iteration. Ants
of later iterations use the pheromone markings of previous good ants as a
means of orientation when constructing their own solutions, which ultimately
results in the ants focusing on promising parts of the search space.

This thesis introduces new Ant Algorithms with superior performance for
stochastic and multi-criterial optimization problems. The first part deals with
adapting Ant Algorithms to probabilistic and dynamic optimization problems.
The standard Ant Algorithm is not very well suited for these types of prob-
lems, since it does not take into account the possibility of a change in the
problem instance. When dealing with probabilistic problems, a probability
distribution over a number of structurally related instances is given, one of
which will actually be realized after the optimization process has terminated.
Since only the probability distribution and not the final, realized instance
is known at runtime, the expected quality of a solution is used as the opti-
mization criterion. The improvements to the regular Ant Algorithm result in
a faster evaluation function, leaving more time for the construction of solu-
tions, as well as in a state-of-the-art solution quality through better heuristic
information available to the ants when building a solution.

In dynamic optimization problems, changes to the problem instance can occur
while the optimization is still going on, giving the algorithm a chance to explic-

itly react to these changes. The goal of the optimization process in a dynamic
environment is to achieve a good average solution quality over time. Hence,
the algorithm must be able to refocus its search after a change in order to keep
finding good solutions, even after many changes. The pheromone modifica-
tions strategies proposed for Ant Algorithms, which change the pheromone
values in a characteristic fashion depending on the proximity of a change, al-
low for the algorithm to exploit previous information which is still accurate
while at the same time exploring in places of severe change. This combination
outperforms resetting the entire pheromone information uniformly.

Inspired in part by the methods used on dynamic problems, a new Ant Algo-
rithm called Population-based Ant Colony Optimization (PACO) is proposed.
PACO maintains a population of solutions instead of explicit pheromone val-
ues, rendering it faster and more versatile than the standard approach. The
existence of a population also creates a potential interface for this Ant Algo-
rithm with other, population-driven meta-heuristics. PACO is shown to offer
performance on par with the best performing Ant Algorithms on static and
dynamic problem instances, which it solves with the aid of a repair mechanism
for old solutions.

In the last part of this thesis, the PACO algorithm is extended to be able to
handle multi-criteria optimization, i.e. the concurrent optimization of several
objectives which cannot be aggregated into a single evaluation function, with
an arbitrary number of criteria. When more than one criterion exists, one
solution dominates another when it is at least as good as the other in all
criteria and better in at least one. The goal in multicriteria optimization
is finding the set of solutions which themselves cannot be dominated, called
the Pareto-optimal set. The PACO algorithm maintains the non-dominated
solutions as a super-population from which a subset is chosen to generate
the probability distributions for the individual criteria. Two methods for
performing a weighted aggregation of the individual probability distributions
are investigated, the better of which outperforms previous Ant Algorithms
devised for bi-criterial optimization.

Acknowledgments

This thesis was written during the five years I spent working at the Institute
for Applied Informatics and Formal Description Methods (AIFB) at the Uni-
versity of Karlsruhe. In January 2004, the thesis was submitted as a partial
fulfillment for obtaining a doctoral degree from the Department of Economics

and Business Engineering at the University of Karlsruhe. I would like to
express my gratitude to a number of people who helped to make this possible.
First, I would like to thank my adviser, Prof. H. Schmeck, for his support of
and interest in my work, and for giving me the time and freedom to follow my
research interests. I am also indebted to Prof. M. Middendorf for the many
insightful discussions on Ant Algorithms and research collaborations we had
over the years.

I regard having worked at the AIFB as a privilege due to the wonderful at-
mosphere [shared with my colleagues, and I owe all of them thanks for their
support and encouragement over the years, especially to the fellow members
of the Efficient Algorithms group.

Finally, I would like to thank my family for their unconditional support and
limitless patience, which were instrumental in helping me keep my sanity while
finishing this thesis.

Karlsruhe, February 2004 M.G.

Chapter 1

Introduction

1.1 Combinatorial Optimization Problems

The field of combinatorial optimization problems is vast and omnipresent in
the transportation, telecommunication, and producing industries. With the
continuing increase in computational power, many situations which are en-
countered in real world scenarios can be simulated and solutions sought with
specific algorithms engineered to work for many if not all instances of a given
problem. Neglecting to optimize results in higher costs compared to com-
petitors, which in turn ultimately leads to either adopting the strategy of
optimization or economic ruin.

Many optimization problems exist for which well-known, efficient algorithms
have been found. Some examples, requiring only an efficient method for the
sorting of and searching in data, are finding the shortest path connecting two
nodes in a graph [Dijkstra, 1959], the minimum weight spanning tree of a
graph [Kruskal, 1956|, or determining the convex hull to a number of points
in the plane [Graham, 1972]. Other problems rely primarily on numerical
principles, e.g. finding the greatest common divider of two numbers [Euclid,
ca. -350]. And a large number of optimization problems, not falling into
one of the earlier two categories, simply admit pleasingly concise methods for
efficiently finding the optimal solution, e.g. maximizing Network Flow [Ford
and Fulkerson, 1962].

However, there remains an entire class of combinatorial optimization problems
which has so far eluded being solved optimally in an efficient, meaning rela-
tively fast, manner. These problems either all admit an efficient deterministic
algorithm for finding the optimal solution, or cannot be solved optimally in a
time polynomially dependent on the size of the problem instance [Cook, 1971,

6 1. INTRODUCTION

Garey and Johnson, 1979]. This class of problems, known as NP, contains
problems such as the Traveling Salesman Problem (TSP), where a salesman,
knowing the least costly connection between all pairs of customers, wishes to
visit each of his customers in such order that the cost of his entire tour, i.e. the
sum of costs incurred by traveling from one customer to the next, is minimal
(see [Lawler et al., 1985] for an overview). To date, it is unknown whether an
algorithm exists that can solve this problem optimally in a number of steps
polynomially bounded by the number of customers. However, the amount of
research that has gone into the field of complexity theory and the implications
of the existence of such an algorithm both make its existence seem unlikely.
Since finding the optimal solution takes too long, the obvious question to
ask next is what level of quality can be found in an acceptable amount of
time. This question has been the origin for many new fields in informatics.
In approximation theory, problems are analyzed in order to ascertain whether
they admit an algorithm that will guarantee coming within a certain relative
distance from the optimal solution for all instances. Going a step further, in
randomized approximation, this relative distance from the optimal solution is
only guaranteed with a certain probability. While these fields have yielded
approximation schemes for a number of problems in NP, among them the Eu-
clidean T'SP [Arora, 1998| and in general dense instances of some problems
[Karpinski, 2001], the approximation gap is sometimes too large to be accept-
able, being a function of the instance size for example, or the algorithm might
have a runtime exponentially dependent on 1/¢ for getting within a relative
distance of € of the optimum, as is the case for the T'SP.

Instead of attempting a theoretical analysis of a problem with the goal of deter-
mining how good a solution can be guaranteed by a sufficiently fast algorithm,
a standard practice has been the application of heuristics. A heuristic method
can best be thought of as a more or less complex rule of thumb, something
that works well for many problem instances that are based on real world data
or constructed randomly. An example for the T'SP is the nearest-neighbor
heuristic, which, starting at some customer, always chooses the closest cus-
tomer from its current location as the next one to visit, until all customers
have been visited. Heuristics like this are called one-shot heuristics, since they
terminate after the construction of one solution. On average, such heuristics
generally perform well, but they often allow for the construction of an in-
stance where their behavior is arbitrarily bad, or at least worse than that of
a different algorithm. It is possible to remedy this fact somewhat through
the introduction of probabilistic behavior into the heuristic, e.g. for the TSP

1.1. COMBINATORIAL OPTIMIZATION PROBLEMS 7

proceeding according to a probability distribution inversely proportional to
the distance to the other cities, so that at least a chance exists for it to make
the right choices, but, lacking any further guidance, it is unlikely that the
heuristic can truly perform better, except by repetition and choosing the best
found solution.

A Dbetter approach is for the heuristic method itself to determine where a
promising portion of solution space lies for a given instance and to intensify the
search for solutions in this area. Achieving this requires the heuristic to learn
to direct its search, a feat that can be observed by certain processes in nature.
Nature has since been a source of inspiration for developing meta-heuristics
to deal with a variety of problems. These meta-heuristics are not bound to
a single problem but rather represent a general mechanism or framework for
solving a whole class of optimization problems.

One of the most direct mappings of the biological learning process to a com-
puter algorithm is the field of Neural Networks (NNs), see [Haykin, 1999] for
an introduction. Modeled to simulate neurons and synapses, these algorithms
are most often employed for classification, prediction, and pattern matching.
They have also seen some application in combinatorial optimization, start-
ing with the proposition of the Hopfield network for the TSP in [Hopfield
and Tank, 1985]. Though this work was not without controversy (due to the
fact that many researchers could not reproduce the reported results), subse-
quent work in [Aiyer et al., 1990] and [Gee, 1993] now essentially guarantees
the feasibility of using the Hopfield network for combinatorial optimization
problems. Although being competitive in terms of solution quality with other
meta-heuristics, one of the main challenges NNs face lies in the runtime neces-
sary to achieve these results. The reason for the comparatively large runtime
is the fact that the inherently parallel structure of a network must be simu-
lated on a sequential machine. See [Smith et al., 1998, Smith, 1999] for an
overview of the applications of NNs in combinatorial optimization.

One of the earliest devised meta-heuristics used for solving combinatorial op-
timization problems is Simulated Annealing (SA), which is based on the ob-
servation that the chemical composition of a metal slowly cooled is crystalline
rather than amorphous as results from fast cooling. This is due to the fact
that in a slowly cooled metal, the individual atoms have the time necessary to
reach the position with the lowest possible energy level, which is achieved in a
crystalline structure. The algorithmic exploitation of this phenomenon, first
undertaken by [Metropolis et al., 1953], proceeds as follows. Given a starting
solution and temperature, the solution is altered a little bit and reevaluated. If

8 1. INTRODUCTION

the new solution is better, it definitely becomes the starting point of the next
perturbation. If the solution is worse, it replaces the old solution only with a
certain probability correlated to the temperature, which slowly decreases over
time. This has the effect that, at the beginning of the algorithm, nearly every
new solution is adopted, while over time it becomes more and more likely that
only better solutions are accepted, restricting the algorithm to hill-climbing.
It has been shown in [Mitra et al., 1986] that, given a sufficiently slow cooling
schedule, SA is guaranteed to converge to the optimal solution.

Another meta-heuristic inspired by nature which has been widely researched
since its proposal by [Holland, 1975] is the Evolutionary Algorithm (EA),
based on the classic principal of “survival of the fittest” [Darwin and Wallace,
1858] where in a gene pool the individuals corresponding to the fittest genes
have better chances for passing their genetic information on to future gener-
ations. The desired result of this process is an individual combining the best
traits of all its ancestors, or, taking the mutability of a gene into considera-
tion, something even better. In the algorithm, a number of initial solutions
are treated as genes, being crossed with one another, with a bias towards
better solutions being selected for the cross-over, to create offspring which
inherit characteristics from all involved parents. The population of solutions
keeps evolving, hopefully towards the area of good solutions which contains
the optimal solution. In keeping a multitude of solutions, EAs are capable of
exploring several promising areas of the search space at once, if diversity and
overall fitness of the population are well balanced. As for SA, theoretical re-
sults for certain types of EA show that it too converges towards the optimum,
given enough time, see [Rudolph, 1997]. A detailed introduction to EAs is
given in [Goldberg, 1989, Michalewicz, 1996].

A relatively new field in terms of its application to combinatorial optimiza-
tion problems is Swarm Intelligence (SI). The term was first used in [Beni,
1988, Beni and Wang, 1989a,b] to describe the coordination of robots. Since
then, two main interpretations of SI have been used for deriving methods to
solve optimization problems. On the one hand, Particle Swarm Optimization
(PSO), which is an evolutionary computation technique inspired by the so-
cial behavior of bird flocking or fish schooling, has been proposed [Kennedy
et al., 2001]. In PSO, a population of solutions evolves by moving through the
solution space, with good solutions acting as attractors. On the other hand,
in [Bonabeau et al., 1999] SI is defined to include any scheme which employs
the swarm mechanics derived from the behavior of social insects, particularly
ants, for solving optimization problems. The concept of Ant Algorithms was

1.2. SCOPE 9

first introduced in [Dorigo, 1992] and since that time has been applied to both
theoretical as well as practical optimization problems with great success. The
performance exhibited by Ant Algorithms and the possibility of adaptation to
new problems makes the study of this field a very worthwhile pursuit.
However, while Ant Algorithms have been adapted to deal with many different
problems in combinatorial optimization, most of these problems were simple,
“clean” problems with a single optimization goal. In practice, this is quite
often not the case. Instead of having absolute certainty about all parameters
of a problem instance, there might be a margin for error which could and
should be considered during the optimization. Other times, an instance might
be dynamic in nature, changing over time and requiring the algorithm to
keep track of the occurring modifications and continually reoptimize in order
to be able to present a valid, good solution at all times. Finally, in many
real world problems, it is not sufficient to optimize only a single objective
while ignoring the effect of the solution on all other objectives. Rather, a
multitude of solutions is sought, each presenting a different trade-off between
the objectives that need to be optimized, leaving the ultimate decision which
solution to realize up to a (human) decision maker. Up to now, little or no
work has been done in these fields with Ant Algorithms.

1.2 Scope

In this thesis, we present novel methods for applying the principles of Ant
Algorithms to stochastic and multi-criteria optimization problems, which in
many cases significantly outperform previous algorithms for these problems.
Using an evaporation based Ant Algorithm, we concentrate on improved heuris-
tic guidance and pheromone diversification techniques for the stochastic prob-
lem classes. We also devise an entirely new class of Ant Algorithm called
Population-based Ant Colony Optimization (PACO), which maintains a pop-
ulation of solutions instead of explicit pheromone values, rendering it faster
and more versatile than the standard approach. PACO is shown to offer good
performance on static and dynamic problem instances, and to lead to superior
results when concurrently optimizing multiple objectives.

Parts of this thesis are based on previous work published in [Guntsch et al.,
2000, Guntsch and Middendorf, 2000, Guntsch et al., 2001, Guntsch and Mid-
dendorf, 2002a,b, Branke and Guntsch, 2003, Guntsch and Middendorf, 2003].
In detail, the structure is as follows:

10

1. INTRODUCTION

e In Chapter 2, we introduce the concept of Ant Algorithms. We describe

the probabilistic decision rule employed by virtual ants constructing a
solution for the instance of a given combinatorial optimization prob-
lem. Different methods for updating the pheromone information are
discussed. Afterwards, the ACO meta-heuristic is explained, and we de-
fine the variant of ACO we predominately use for the remainder of this
thesis. Finally, a small survey of ACO applications is given.

Chapter 3 deals with Probabilistic Problems, specifically the Probabilis-
tic Traveling Salesman Problem (PTSP), where some amount of un-
certainty about the final structure of an instance exists and thus the
expected solution quality must be optimized. We introduce an approx-
imation scheme for the computationally expensive evaluation function,
which significantly reduces the runtime while achieving virtually iden-
tical results. Also, two new guidance schemes for Ant Algorithms are
proposed which enhance performance to a degree that lets the ACO
meta-heuristic outperform the previously best method for this problem.

Dynamic optimization problems, specifically the Dynamic Traveling Sales-
man Problem (DTSP), which is in some ways complementary to the

PTSP, are defined in Chapter 4. Here changes occur to the problem

instance during the run of the algorithm. We introduce a number of

strategies to help the ACO meta-heuristic integrate the changes to an

instance, keeping the balance between exploiting valid old information

and enforcing exploration in the updated areas.

A new Ant Algorithm based on a different approach to managing the
pheromone values in the ACO meta-heuristic, called Population-based
Ant Colony Optimization (PACO), is explored in Chapter 5. Here, we
propose to manage a population of solutions rather than maintain an
explicit pheromone matrix. This update scheme is partially inspired by
one of the strategies for the DTSP from Chapter 4, and we consequently
conduct our tests of this modification on static as well as dynamic opti-
mization problems.

Chapter 6 deals with Multi-criteria Optimization (MCO) based on exten-
sions of the Ant Algorithm defined in Chapter 5. These extensions enable
the PACO algorithm to solve MCO problem instances with an arbitrary
number of objectives by aggregating the probabilitiy distributions cor-
responding to the single criteria composing the multi-criterial instance.

1.2. SCOPE 11

We evaluate our algorithm on 2- and 4-dimensional instances of the Sin-
gle Machine Total Tardiness with Setup Costs Problem (SMTTSCP),
and show that it outperforms a previous Ant Algorithm for bi-criterial
problems.

e We conclude our thesis with a summary and outlook on what we see as
the most promising areas of future work in Chapter 7.

12

1. INTRODUCTION

Chapter 2

Ant Algorithms

2.1 Biological Foundations

Although only 2% of all insect species living in nature are social, they comprise
more than 50% of the total insect biomass globally [Arnett, 1985], and more
than 75% in some areas like the Amazon rain forest [Fittkau and Klinge,
1973]. By social, we mean that these insects, including all ants and termites
and some subspecies of bees and wasps, live in colonies composed of many
interacting individuals. Insect colonies are capable of solving a number of
optimization problems that none of the individual insects would be able to
solve by itself. Some examples are finding short paths when foraging for
food, task allocation when assigning labor to workers, and clustering when
organizing brood chambers, all of which are problems that have counterparts
in real world applications. Insect colonies have more than 100 million years
of experience in solving these problems, perhaps giving them an evolutionary
advantage over human colonies, which have only existed for about 50000 years.
In order for a swarm of insects to cooperate in problem solving, some form of
communication is necessary. This communication between the individuals of
a colony can be more or less direct, depending on the exact species. When a
social bee has found a food source, it communicates the direction and distance
of the location where it found the food to the other bees by performing a
characteristic dance [von Frisch, 1967]. This is a very direct communication,
as the other bees must perceive the dance the one bee is performing in order
to be able to locate the food source. Other forms of direct communication
include stimulation by physical contact or the exchange of food or liquid.

Indirect communication between the individuals of a colony is more subtle and
requires one individual to modify the environment in such a way that it will

14 2. ANT ALGORITHMS

alter the behavior of individuals passing through this modified environment at
a later time. One scenario where this type of environmentally induced action
exists in nature is when termites construct a nest, which has a very compli-
cated structure and exhibits properties like climate control [Liischer, 1961].
Whenever a construction phase has ended, the surroundings of the worker
have changed, and the next phase of working is encouraged, which in turn
results in new surroundings, and so forth. Another example for indirect com-
munication is the laying of pheromone trails performed by certain species of
ants. An ant foraging for food will mark its path by distributing an amount of
pheromone on the trail it is taking, encouraging (but not forcing) ants who are
also foraging for food to follow its path. The principal of modifying the envi-
ronment in order to induce a change in behavior as a means of communication
is called stigmergy and was first proposed by [Grassé, 1959].

Stigmergy is the basis for the organization in many ant colonies. Although
the ants have a queen, this is a specialized ant which is only responsible for
laying eggs and does not have any governing function. Instead, the ants of a
colony are self-organized. The term self-organization (SO) is used to describe
the complex behavior which emerges from the interaction of comparatively
simple agents. Its origins lie in the fields of physics and chemistry, where SO
is used to describe microscopic operations resulting in macroscopic patterns,
see [Nicolis and Prigogine, 1977]. Through SO, the ants are able to solve the
complex problems which they encounter on a daily basis. The benefits of
SO as a basis for problem solving are especially apparent in its distributed
and robust character. Effectively, an ant colony can maintain a meaningful
behavior even if a large number of ants are incapable of contributing for some
amount of time.

To better understand the mechanism behind an ant colonies’ ability to con-
verge to good solutions when looking for a short path from the nest to a food
source, some experiments were undertaken by [Goss et al., 1989, Deneubourg
et al., 1990]. In [Deneubourg et al., 1990], a nest of the Argentine ant Linep-
ithema humile was given two paths of identical length it could take to reach
a food source, and after some time had passed, it was observed that the ants
had converged to one of the paths, following it practically to the exclusion
of the alternative. To test whether this type of ant would converge to the
shortest of a number of paths, a double bridge experiment was performed in
[Goss et al., 1989] where the ants could choose twice between a short and a
long path, see Figure 2.1 for the exact setup.

The Argentine ant is practically blind, so it has no means of identifying a

2.1. BIOLOGICAL FOUNDATIONS 15

Foraging
Area

Figure 2.1: Double Bridge experimental setup, from [Beckers et al.,
1992].

short path directly. However, despite this deficiency, a swarm of these ants is
capable of finding the shortest path connecting the nest to the foraging area
containing the food, as the experiment shows. Initially, all ants are located at
the nest site. A number of ants start out from the nest in search of food, each
ant laying pheromone on its path, and reach the first fork at point A. Since the
ants have no information which way to go, i.e. no ant has walked before them
and left a pheromone trail, each ant will choose to go either right or left with
equal probability. As a consequence, about one half of the foraging ants will
take the shorter route, the rest the longer route to intersection B. The ants
which were on the shorter track will reach this intersection first, and have to
decide which way to turn. Again, there is no information for the ants to use
as orientation, so half of the ants reaching intersection B will turn back toward
the nest, while the rest continues toward the foraging area containing the food.

16 2. ANT ALGORITHMS

The ants on the longer branch between intersections A and B, unaffected by
the other ants they met head-on, arrive at intersection B and will also split up;
however, since the intensity of the pheromone trail heading back toward the
nest is roughly twice as high as that of the pheromone trail heading for the
foraging area, the majority will turn back toward the nest, arriving there at the
same time the other ants which took the long way back arrive. Interestingly,
since more ants have now walked on the short branch between intersections
A and B in comparison to the long one, future ants leaving the nest will now
already be more inclined to take the short branch, which is a first success in
the search for the shortest path.

The behavior of the ants on the second bridge at intersections C and D and
in between is virtually identical to the behavior exhibited before on the first
bridge between intersections A and B. Ultimately, a number of ants will reach
the foraging area and pick up some food to carry back to the nest. Arriving
at intersection D, the ants will prefer the short branch by the same argument
as used above for ants starting out fresh from the nest, and the same holds
again for intersection B. Since the amount of pheromone at intersections A and
C on the path back to the nest is (roughly) equal to the sum of the pheromone
amounts on the two branches leading away from the nest, the shortest complete
path from the foraging area back to the nest is also the most likely to be chosen
by the returning ants. Since the ants are continually distributing pheromone
as they walk, the short path is continually reinforced by more and more ants,
until the amount of pheromone placed thereon in relation to the alternate
routes is so high that practically all ants use the shortest path, i.e. the system
converges to the shortest path through self-reinforcement.

One point that we have neglected to mention so far is that the pheromone
used by ants to mark their trails slowly evaporate over time. This does not
render the arguments used to explain the double bridge experiment any less
valid, it simply makes some of the math used for explanation less rigorous than
implied. Indeed, due to the evaporation of pheromones, path segments that
have not been chosen for some time, invariably long ones, will contain almost
no traces of pheromone after a sufficient amount of time, further increasing the
likelihood of ants taking the short path segments identified by the continually
updated pheromone. Note that the amount of pheromone on the shortest
path has an inherent maximum value, which is reached when the amount of
pheromone deposited by passing ants and evaporated in a given time interval
are the same.

In the rest of this chapter, we explain how the concept of marking paths with

2.2. ANT DECISION RULE 17

pheromones can be exploited to construct algorithms capable of solving highly
complex combinatorial optimization problems.

2.2 Ant Decision Rule

In Section 2.1, we have given an example of how real ants solve optimization
problems in nature. In order to transpose the employed mechanism of stig-
mergy to an algorithmic principle, some abstractions from and modifications
of the natural behavior of ants are necessary. These were first proposed in
[Dorigo, 1992].

Consider the problem of finding the shortest path connecting two points a,b €
V in a symmetric, weighted graph G = (V,E,w) with w: E — R assigning
each edge a positive weight. This is a generalization of the problem solved by
the real ants looking for the shortest path to the food source. An artificial ant
used to construct a solution for this problem would start at one of the two
designated nodes and progressively choose which node to visit next, i.e. which
edge to traverse, from its current position until it has reached the target node.
While the ant is searching, or after it has reached its goal, depending on the
implementation, it marks its trail with artificial pheromone, which influences
the decisions made by future ants building a path through the graph. In
the following, we introduce the process of how artificial ants build solutions
to combinatorial optimization problems in general, and how they mark these
solutions with pheromone for the benefit of future ants.

One of the first drawbacks that becomes apparent when analyzing the behavior
of real ants in the experiments mentioned in Section 2.1 is the possibility of an
ant’s path including circles, or of an ant returning to the nest without having
collected any food. In the shortest path problem, this would correspond to
an ant visiting a node multiple times, which, under the assumption that all
weights are positive, cannot be an optimal solution. Since the goal of using
artificial ants to build solutions is to find the best possible solution, it makes
sense to restrict the possibilities an artificial ant has when choosing which node
to visit next. To achieve this, we let each artificial ant maintain a selection
set S which at any time contains the alternate choices an ant may currently
make. The size and composition of S depend largely on the problem for which
the ant must construct a solution. For the shortest path problem, S could
denote all nodes reachable from the current node, except for those nodes that
have already been visited. Note that, depending on the exact structure of
the underlying graph G, this could lead to the ant being left with an empty

18 2. ANT ALGORITHMS

selection set S = (), which would then require some exception handling. For
most permutation problems, e.g. the Traveling Salesman Problem (TSP), the
Quadratic Assignment Problem (QAP) (see [Koopmans and Beckman, 1957]
for a detailed definition), and all scheduling problems, S denotes customers
not visited, facilities not assigned, and jobs not scheduled, respectively. In all
these cases, S initially contains all possibilities, and is updated each time the
virtual ant makes a decision, resulting in an empty set when the construction
process is completed. Using the set S, it is also possible to model constraints
which a feasible solution must meet. For example, in the Sequential Ordering
Problem (SOP), which essentially is a TSP with precedence constraints on the
the order in which the customers can be visited, S can be used to eliminate all
customers which can not be visited yet from the selection process, and make
them available once the respective precedence constraints are satisfied.

Using the selection set S, we guide an artificial ant in its search process for
a feasible solution. In order for the ant to find a good solution and maintain
the analogy to the foraging behavior of real ants, artificial pheromones are
employed. Artificial pheromones are real valued numbers T € IR assigned to
the alternatives an artificial ant has when constructing a solution. For exam-
ple, in the shortest path problem, a pheromone value Ty; is assigned to each
edge (i,j), indicating how beneficial it is to traverse the corresponding edge.
Formally, an ant located at node i chooses the next node to visit according to
the random proportional transition rule defined by

Ti]'

D_Tin

hesS

Py = (2.1)

The py; values define a probability distribution according to which the ant
makes its decision. As the formula shows, larger pheromone values correspond
to a higher probability for the implied choice being made, which is modeled to
simulate real ants choosing denser pheromone trails with higher probability.

The pheromone values for the shortest path problem are assigned to the edges,
which allows for an intuitive representation of all pheromone values in a phe-
romone matrix encoded in a nodexnode fashion, i.e. Ti; gives information
about the attractiveness of going to node j when located at node i. This
method is also used for many other problems, e.g. TSP, SOP, and schedul-
ing problems with setup costs, where the solution quality is derived from
a predecessor-successor relationship. However, for problems like QAP and
scheduling problems with due dates, where the (immediate) predecessor or
successor of a node in the solution are irrelevant, a nodexplace encoding is

2.2. ANT DECISION RULE 19

employed. As a detailed example, in QAP, facilities are allocated to sites,
the goal being to minimize the sum of distance-weighted flows between the
facilities, see [Koopmans and Beckman, 1957]. Planning facility j after facility
i has, by itself, an indiscernible influence on solution quality, which is why no
pheromone information to this point is meaningful. Rather, the pheromone
values Ty; pertain to placing facility j at site i, which, due to the location
of site 1 and the known distances to the other sites, gives some information
about expected solution quality, especially in combination with other (i,j)
allocations.

Not all problems allow for the pheromone values to be arranged sensibly in a
matrix fashion. In [Michel and Middendorf, 1999], Ant Algorithms are used
for constructing a shortest super-sequence to a given number of strings, i.e.
the shortest string which contains all given strings as a sequence. The char-
acters of each string are marked with pheromone information to increase the
likelihood of being chosen as the next character when the ants construct a su-
persequence. Marking individual nodes (or items) with pheromone values is
proposed by [Leguizamén and Michalewicz, 1999] when using Ant Algorithms
to solve subset problems like the Multiple Knapsack Problem (MKP) , where
the optimal subset (in the form of a binary vector stating which items are
in the subset) to a given number of items is sought which satisfies a number
of linear constraints and maximizes a linear function. The higher the phero-
mone value assigned to an item is, the more likely its inclusion in the knapsack
becomes.

In addition to the pheromone information, many problems allow for some
form of heuristic guidance to be employed by the ants for constructing better
solutions. This heuristic information is available on the same level as the phe-
romone information, i.e. for making local decisions. When an ant is located at
node iin the decision graph, we denote the perceived benefit of moving to node
j by ny;. Used in combination with the pheromone information, the formula
for the random proportional transition rule including heuristic information
is an extension of Formula 2.1:

(2.2)
As for the pheromone values, a larger heuristic value corresponds to a higher

probability of the implied choice being made. The exact form of the heuristic
information depends upon the problem class at hand. For the shortest path

20 2. ANT ALGORITHMS

problem or TSP, a standard practice is to set ny; = 1/di;, where dj; is the
weight of edge (1i,j) or the distance from customer i to customer j respectively,
see [Bonabeau et al., 1999]. A small value for d;; implies an immediate ben-
efit if the corresponding edge is traversed, since the path/tour-length is only
increased by a small amount. Note that for these two problems the heuristic
information is constant, which is not always the case. In Chapter 3, we intro-
duce heuristic information which changes dynamically depending on previous
choices made by the ant in the construction process. Other cases where the
heuristic information is dynamic are some scheduling problems, e.g. the Single
Machine Total Weighted Tardiness Problem (SMTWTP), where jobs with due
dates must be scheduled on a single machine, and the heuristic information
can be chosen according to the difference between the continually increasing
earliest finishing time and the due date of a job, see [Crauwels et al., 1998] for
an overview. For some problem classes, the use of heuristic information does
not improve the performance of the Ant Algorithm by a significant margin,
e.g. for the QAP [Stiitzle and Hoos, 2000]. There are even some cases, e.g. the
Maximum Clique Problem (MCP) , where for a graph the size of the largest
completely connected subgraph is sought, studied in [Fenet and Solnon, 2003],
where the use of heuristic information ultimately leads to a poorer solution
quality.
Two new parameters in Formula 2.2 are « and (3, which are used to adjust
the weight of the pheromone and the heuristic information respectively. For
most applications, setting o« = 3 = 1 is sufficient. However, tuning these
parameters can lead to better performance for some problem classes. For
the TSP, choosing 3 > 1 has been shown to yield good results, e.g. using
3 =2 in [Dorigo and Gambardella, 1997b, Stiitzle and Hoos, 2000] or 3 =5
in [Bullnheimer et al., 1999]. Using a steadily decreasing value of (3 has also
been applied successfully in [Merkle et al., 2002]. Using values of o > 1 has
been studied in [Fenet and Solnon, 2003] to achieve quicker convergence at
the cost of a lower solution quality in the long run.
In [Dorigo and Gambardella, 1997b,a], a modification to the random propor-
tional transition rule is proposed which allows for greater control over the
balance between exploration and exploitation. A parameter qo € [0,1) de-
notes the probability for choosing the best combination of pheromone and
heuristic information perceived by the ant, i.e. for choosing j with

j = argmax T}, - nfh (2.3)

hes

instead of proceeding probabilistically according to Equation 2.2, which is

2.3. PHEROMONE UPDATE 21

done with probability (1—qg). This pseudo-random proportional rule allows
for a calibration of the amount of exploration performed by the ants, similar
to the temperature setting in Simulated Annealing, but usually kept constant
during the run.

The construction process performed by an artificial ant is iterative in nature,
as has already been hinted at above. Going back to the shortest path problem,
the ant starts at one of the two points to be connected, chosen randomly with
equal probability. Afterwards, the ant continually chooses which node to visit
next, until it has arrived at the target node, the sequence of the edges/nodes
it traversed from the initial node denoting its solution. Note that we are
examining only one ant on its way to constructing a solution, and not a swarm.
Although some investigations have been made on running the entire swarm
of ants as a simulation in [Dorigo and Gambardella, 1997a], it has proven to
be beneficial to run the ants sequentially for some variants, while for others
it makes no difference. This has to do with the mechanism used for updating
the pheromone values, which we cover in the following section.

2.3 Pheromone Update

The purpose of the pheromone update is to focus the search process of the
ants on a promising portion of the solution space, which is then explored more
extensively in the hope of finding the optimal solution. The field of update
strategies is perhaps the most studied part of Ant Algorithms, and many
different varieties of updating the pheromone values have been proposed. In
this section, we explain the conceptually different approaches which have been
taken to update pheromone values, and also explain in detail some of the more
successful strategies.

At the most abstract level, the pheromone update should accomplish a posi-
tive reinforcement of those search space regions which seem promising and a
negative reinforcement of all others. The principal mechanisms used for this
are pheromone evaporation (for the negative reinforcement), which diminishes
all pheromone values by a relative amount each time it is applied, and phero-
mone intensification (for the positive reinforcement), achieved by adding an
update term to selected pheromone values. Formally, an update takes the
form

Vi,j € Im] 1y = (1 —p) -1y + Ay (2.4)

where p € (0,1] is a parameter of the algorithm denoting how much of the

22 2. ANT ALGORITHMS

pheromone information is lost with every application of evaporation, and A;; is
an update value, which is 0 if the edge (i,j) was not traversed by the ant. The
exact value of A;; and especially the strategy when an update is performed is
the key difference between most types of Ant Algorithm.

Generally, updates to the pheromone values take place after an iteration of m
ants has constructed solutions. In the Ant System (AS), which was introduced
in [Dorigo, 1992] for solving the TSP, an individual update value Aj(l) for
each ant 1 € [1, m] is calculated, and the update is performed with the sum
of update values Aj; = Y |, Aij(1). Three different methods for determining
the individual Ay; were tested: assigning a constant, inverse to the distance
di; between customers i and j, and, performing best and used subsequently,
inverse to the length of the entire tour, i.e. the solution quality. In addition
to the m ants of an iteration being allowed to perform an update, it was also
proposed to let a number of so called elitist ants, which represent the best
solution found by all ants so far, update the pheromone trail. Using a small
number of these elitist ants, inspired by the elitist strategy in [Holland, 1975],
intensifies the search near the currently best solution, leading to better results
overall. Further research resulted in the introduction of the Ant Colony Sys-
tem (ACS) in [Dorigo and Gambardella, 1997a,b]. Here, an online update of
the pheromone values was proposed in order to enforce exploration: each time
an ant traversed an edge (i,j), it would reduce the corresponding pheromone
value according to

Ty (1—p) Ty +p-To (2.5)

with Ty being the initial pheromone level on all edges, thus encouraging the
following ants to choose different edges (note that this holds only for Ti; > 7o,
i.e. if Ti; has received an update in the not too distant past). Also, the global
update by all ants at the end of an iteration was replaced by one update
performed along the best tour found so far, i.e. by one elitist ant.

Originating from AS and ACS, many other update schemes have been pro-
posed. In [Stiitzle and Hoos, 1997, 2000], the MAX-MIN Ant System (MMAS)
is introduced, which avoids stagnation in the search process by limiting phe-
romone values to the predetermined interval [Tpmin, Tmax]. Limiting the phero-
mone values also bounds the minimum and maximum probability with which
an edge is selected according to Equations 2.1 and 2.2, if the heuristic values
are bounded as well. T'wo further characteristics of MMAS are that only the
best (either globally or of the iteration) ant updates, and that all pheromone
trails are initialized to Tmax, leading to a longer initial search phase in which

2.4. ANT COLONY OPTIMIZATION 23

the ants are guided almost exclusively by the heuristic values, and therefore
a greater likelihood of not converging on the first good solution found. In
[Bullnheimer et al., 1999], a modification the AS called AS-rank is proposed,
where the m ants of an iteration are ranked by their solution quality and, to-
gether with a number of elitist ants of maximum rank, update the pheromone
trail in proportion to their rank.

Some methods also exist that operate without using evaporation. In [Maniezzo,
1999|, pheromone update is accomplished by comparing the solution quality
of the ant to the average quality of the m previous ants. If it is better, a posi-
tive update is performed along the path; if it is worse, the update is negative.
Thus, the update is accomplished in O(m - n) time for m ants, compared to
O(n?) for Equation 2.4. In [Guntsch and Middendorf, 2002b], a population
of solutions is maintained from which the pheromone matrix is derived. Up-
dates are performed on the population, with the insertion of a solution being
equivalent to a positive update of the pheromone matrix, and a deletion to
a negative update (corresponding to the previous positive update which was
undertaken upon insertion). This update mechanism will be studied in more
detail in Chapter 5.

2.4 Ant Colony Optimization

The Ant Colony Optimization (ACO) Meta-Heuristic is defined in [Dorigo and
Caro, 1999] as a common framework for Ant Algorithms in general. The main
points composing an Ant Algorithm are the capability of the ants to construct
a feasible solution, positive and negative reinforcement, and daemon actions of
which individual ants are not capable, like local search or finding the best ant
of an iteration. In this section, we explain the design decisions made for the
ACO algorithm used in this work. A high level overview is given in Algorithm
2.1.

At the beginning of the algorithm, the pheromone matrix is initialized. The
level of the initial pheromone values, as well as which values are initialized,
depend on the problem being considered. For nodexnode problems, where
the sequence of the nodes is optimized, it is customary to initialize the values
Tii = 0 to emphasize that node i cannot follow itself. This problem typically
resolves itself, however, as visiting node i entails a removal of i from S, meaning
that it can no longer be chosen when the ant is located at node i.

The selection set S is initialized to all possible choices {0, ...,n—1} (we use this
representation instead of {1,...,n} to facilitate modulus calculations in later

24 2. ANT ALGORITHMS

Algorithm 2.1 basic, high level ACO algorithm
1: initialize pheromone values Ti; — To

2: repeat

3: foreachantic{l,...,m}do

4 initialize selection set S +— {0,1,...,n—1}
5 let ant i construct solution 7;
6 end for

7. for all (i,j) do
8 Ty = (1 —p) Ty

9 end for

10: determine best solution of iteration 7+
11: if 7" better than current best 7* then

12: set " =t

13: end if

14: for all (i,j) € r" do
15: Tij — Tij + p/2

16: end for

17 for all (i,j) € 7 do

18: Tyj — Ty + p/2

19: end for

20: until condition for termination met

chapters). Depending on the problem, e.g. TSP, it is possible to reduce the
size of S to a so called candidate list of especially good choices, and let the ant
choose only from this list, see [Gambardella and Dorigo, 1996]. The benefit of
this operation is to significantly reduce the runtime of the algorithm for large
instances. However, since this candidate list introduces another parameter
that needs tuning, the impact on ultimate solution quality is unclear, and
other problems where such a candidate list is less opportune are also studied
in this work, we have decided to use the straightforward implementation of
the selection set S.

In [Dorigo and Gambardella, 1997b], a method for finding the optimal number
of ants is discussed which relies on knowledge of the average size of the phero-
mone values before and after a change, both being a function of the problem
size n. Modeling the local pheromone update as a first-order linear recurrence
relation enables m to be expressed as a function of the average pheromone
levels before and after an update, and of the initial pheromone values. Al-
though the authors cannot provide these pheromone levels, they argue that

2.5. APPLICATIONS 25

experimental results show m = 10 to work well, and this is also the case in
our own experiments.

The process of constructing a solution itself is intentionally left vague in Algo-
rithm 2.1, since this procedure differs for the individual problems considered.
A more detailed pseudo-code fragment is provided in the following chapters
for each of the problems studied.

The pheromone update is global and consists of two steps: evaporation of all
pheromone values, and positive updates along the paths found by the best
ant overall and the best of the m ants of the iteration. Using these two ants
for the positive update in an alternating fashion has been studied in [Stiitzle
and Hoos, 1997]. Our own experiments have shown that using more ants
for updating the pheromone matrix does not perform significantly different
compared to using only the two mentioned above. Note that for the positive
update, we write (1,j) € 7, which is defined more accurately for the individual
problems later.

As a condition for termination, the default choice is setting a maximum num-
ber of iterations for the algorithm. Other possibilities include using real CPU
time, convergence of the pheromone matrix to a single solution, or, since true
convergence takes excessively long, number of iterations since last improve-
ment. We choose using a constant number of iterations, since this allows
for keeping the same parameter settings, especially rate of evaporation, for
different problem instances. Using real CPU time is unreliable due to the
background noise of other processes running on the same machine, and con-
ceivably requires some analysis for each instance in order to set a plausible
evaporation rate. As already stated, true convergence takes very long (in-
finitely long if the pheromone values were of arbitrary precision), ruling out
this possibility. Lastly, the number of iterations since the last improvement
is, once again, a parameter of the algorithm that might need tuning in con-
junction with the evaporation rate. We feel that using a maximum number
of iterations is the best method since it has no significant disadvantages and
allows for easy parameter setting and later comparison of empirical results.

2.5 Applications

In this section, we present a survey of some of the noteworthy applications of
ACO. Of course, this survey cannot hope to present a complete overview, and
the interested reader is referred to [Corne et al., 1999, Bonabeau et al., 1999,
Stiitzle and Dorigo, 2002].

26 2. ANT ALGORITHMS

One of the earliest and most intuitive applications of ACO was the TSP
[Dorigo, 1992]. Since all ACO algorithms depend in some fashion on the
metaphor of an ant moving through a graph [Dorigo and Caro, 1999], us-
ing the TSP to illustrate the basic principles of Ant Algorithms is a logical
choice, and it is also used as the introductory example in [Bonabeau et al.,
1999]. ACO has delivered good results on many TSP instances, especially
when combined with local search [Stiitzle and Hoos, 2000]. However, due to
the existence of very good heuristics like Lin-Kernighan [Lin and Kernighan,
1973] and polynomial time approximation schemes [Arora, 1998] for the Eu-
clidean T'SP, ACO algorithms are not the best choice for this problem class.
The situation is better for the Sequential Ordering Problem (SOP), an exten-
sion of the T'SP, where the goal is to find a minimum weight Hamiltonian Path
with precedence constraints among the nodes. Here, a form of Ant Algorithm
called Hybrid Ant System (HAS-ACO) [Gambardella and Dorigo, 2000] is cur-
rently one of the best algorithms available. Other variations of the standard
TSP, like the Probabilistic TSP and Dynamic TSP, are also handled well by
ACO, which we show in Chapter 3 and Chapter 4 respectively.

Another problem related to the T'SP is the Vehicle Routing Problem (VRP),
in which a number of customers must be serviced exactly once, and all vehicles
begin and end their respective tours at a depot. The goal is to minimize the
number of vehicles while meeting constraints such as capacity per vehicle,
maximum tourlength per vehicle, and time windows. Solving this problem
with Ant Systems was first proposed in [Bullnheimer et al., 1997], and further
research has lead to a unified approach for VRPs [Reimann et al., 2003], where
the Ant System is combined with an Insertion algorithm from [Solomon, 1987].
The QAP, defined in [Koopmans and Beckman, 1957] and shown to be NP-
hard in [Sahni and Gonzales, 1976], is a conceptually different optimization
problem compared to the TSP and its derivates in the sense that the phe-
romone matrix is not interpreted in a nodexnode fashion, but rather as
nodexplace. Applying Ant System to the QAP was first undertaken by
[Maniezzo and Colorni, 1998, including a heuristic guidance scheme for the
ants when constructing a solution. Adding local search to the AS algorithm
was shown to be beneficial in [Stiitzle and Hoos, 1998]. In [Gambardella et al.,
1999a], the Hybrid Ant System (HAS) was introduced and applied to the QAP
with good results. The HAS algorithm uses ants to modify solutions instead
of building them, and the pheromone values are used to remember beneficial
changes.

Another class of problems in which Ant Algorithms have seen wide and suc-

2.5. APPLICATIONS 27

cessful application is in scheduling problems. For scheduling with due dates,
e.g. the Single Machine Total Weighted Tardiness Problem (SMTWTP), the
pheromone matrix is also interpreted in a nodexplace fashion. However, in
contrast to the QAP, “place” in this case refers to the place in the schedule and
not a physical location. An ACO algorithm for the SMTWTP was applied by
[Bauer et al., 1999], where ACO found the optimal solution to 125 benchmark
problems more often than the other heuristics evaluated. Ant Algorithms have
also been applied to somewhat more complex scheduling problems, e.g. job
shop scheduling [Colorni et al., 1994|, flow shop scheduling [Stiitzle, 1998],
and, most notably, the Resource Constrained Project Scheduling Problem
(RCPSP) [Merkle et al., 2002], where ACO was state of the art at the time of
publishing.

So far, all the problems discussed have been permutation problems, which can
be handled quite well by ACO. However, some efforts have been undertaken
to apply ACO to areas where solutions are not permutations. As mentioned
above, in [Michel and Middendorf, 1999], ACO is successfully applied to the
shortest supersequence problem. Also, some partitioning problems, e.g. graph
coloring [Vesel and Zerovnik, 2000] and data clustering [Monmarche, 1999],
have been solved with ACO, with varying degrees of success. In [Solnon,
2002], ACO is used as a generic algorithm for solving Constraint Satisfaction
Problems (CSP) with promising results.

As a final note, although not being an application, in the recent past it has
been shown that under certain conditions, some versions of ACO can provably
find the optimal solution to the instance of a problem with a probability
arbitrarily close to 1 [Gutjahr, 2002, Stiitzle and Dorigo, 2002]. Although these
results have no immediate impact on the applicability of ACO algorithms, they
put ACO on the same level as Simulated Annealing or Genetic Algorithms in
terms of solution finding capability. Note that with a lower bound greater
than O on the probability to find the solution or move closer to the solution
in a given iteration, any method will find the optimum with a probability
arbitrarily close to 1 given enough time. Since the number of steps required
for this high probability is never less than exponential, it does not make any
of the mentioned meta-heuristics more attractive than enumeration.

28

2. ANT ALGORITHMS

Chapter 3

Probabilistic Problems

3.1 Introduction to Probabilistic Combinatorial
Optimization Problems

An instance of a Probabilistic COP is an extension of a normal (static) COP
instance, consisting of the static instance and a probability distribution over
the elements of the instance which indicate how probable it is that each re-
spective element will actually be contained in the final instance to which the
solution is applied. A well known example is the Probabilistic T'SP intro-
duced by [Jaillet, 1985], where each customer needs to be visited only with
a certain probability. This probability is known in advance, and the goal is
to find an a priori solution with minimum expected length. Since the final
instance is known only after the optimization process has finished, the com-
plete tour through all customers is applied to the final instance by skipping
customers in the tour that are no longer in the instance. In this chapter, we
give a thorough introduction to the PTSP and show how the ACO algorithm
can be modified to offer state-of-the-art performance for this problem class.
There are several reasons that motivate the study of PCOPs. On an abstract
level, it can serve to identify the robustness of the solutions found by an
algorithm to the static problems. For the concrete case of PTSP, realistic sce-
narios exist in which a driver delivers goods to customers with probabilistic
demand and company policy dictates that the same driver should visit the
same customers when they require a visit. Also, reconstructing a good tour
on short notice might be too expensive computationally, or communicating
the changes to a tour too costly or confusing for a driver. Using an a pri-
ori strategy where each driver is responsible for skipping the customers not
requiring a visit solves these problems.

30 3. PROBABILISTIC PROBLEMS

In [Jaillet, 1985], the PTSP is introduced as a nonlinear integer program-
ming model, which is reformulated as a mixed integer and ultimately as a
linear integer program solved via a branch and bound algorithm. Dynamic
Programming as well as local search heuristics inspired by tour construction
and tour improvement techniques for the static TSP are evaluated. These,
however, do not perform very well, as is shown in [Jaillet, 1985] for Dynamic
Programming and in [Jezequel, 1985] for some of the other heuristics proposed.
The adaptation of T'SP heuristics for the PTSP is also studied in [Rossi and
Gavioli, 1987]. More comparisons of heuristics as well as upper and lower
bounds on solution quality depending on the composition of the PTSP in-
stance are analyzed in [Bertsimas and Howell, 1993]. Further bounds for the
expected tourlength in Euclidean spaces can be found in [Jaillet, 1993]. In
[Laporte et al., 1994], instances with up to 50 customers are solved optimally
using a branch-and-cut approach.

Since the ACO metaheuristic is known to perform well for the static TSP
[Dorigo and Gambardella, 1997b], it is intuitive to apply it to the PTSP as
well. [Bianchi et al., 2002a] study the use of the faster TSP evaluation func-
tion instead of the PT'SP evaluation function to measure solution quality (see
Section 3.2 for more details) in order to have more time to construct solutions.
This method is only beneficial, however, if the probability values for inclusion
of the customers in the instance are close to 1. In [Bianchi et al., 2002b], more
instances are studied and a comparison of ACO to random search and radial
sort is performed. The first real modifications to ACO that help in finding
better solutions are proposed in [Branke and Guntsch, 2003] and form the
basis for this chapter. However, the heuristics we present are an improvement
in comparison to those first employed in [Branke and Guntsch, 2003] both
in terms of the computational effort necessary for their calculation as well as
their applicability to inhomogeneous probability distributions.

In Section 3.2, we examine the evaluation function for the PTSP, which is
computationally more expensive to calculate than e.g. the TSP evaluation
function. A method is proposed for approximating the quality of a solution
and thereby reach a compromise between complexity of computation and ac-
curacy. Section 3.3 introduces the basic ACO algorithm for the PT'SP (as well
as other nodexnode problems) and the modifications inspired by the stochas-
tic nature of the problem. We propose two alternative schemes for providing
heuristic information used by the ants during tour construction. The ben-
efit of using approximate evaluation as well as using the improved heuristic
schemes is shown empirically in Section 3.4, where the ACO algorithm is ap-

3.2. EVALUATION OF SOLUTION QUALITY 31

plied to a multitude of problem instances in a variety of configurations. We
also compare the performance of ACO with that of Hilbert-Sorting followed by
1-Shift, which currently is one of the best known heuristics for solving PTSP
instances [Bertsimas and Howell, 1993]. At the end of this chapter in Section
3.5, we summarize our results and give some indications for possible future
work.

3.2 Evaluation of Solution Quality

This section deals with the evaluation function for PTSP, i.e. the function f
which assigns a quality to a specific tour 7t based on its expected tour-length,
where 7t is a permutation over [0,n — 1] and the tour consists of the edges
{(rQ),mi+1))i=0,...,n—=2}U{m(n—1),71(0)}. In the first subsection, we
examine how to compute the complete PTSP evaluation function, while the
second subsection deals with methods for calculating an approximate value
for f.

3.2.1 Full Evaluation

For an n customer PTSP instance, there are 2™ possible realizations R;, i =
1,...,2™, which contain the customers that will ultimately require a visit,
i.e. a realization is a partitioning of the customers into the set A of those
included and B of those left out of the final instance. Each realization can be
assigned a probability p(R;) € [0, 1] based on the probabilities for inclusion
of the individual customers, i.e. p(Ri) = ([[;caPi) - ([Ticg(1 — pi)), with
> 2. p(Ry) = 1. Let Lg, () describe the (TSP-)tourlength of 7 for realization
R; under the assumption that customers not in R; are skipped in the tour.
The expected tour-length can then be formally described as

21’\
f(m) =) p(Ry) - Lg, (7). (3.1)
i=1

Instead of using Equation 3.1, which takes exponentially long to compute, a
version that needs only O(n?) steps to calculate the expected tourlength for
PTSP was presented in [Jaillet, 1985]. The idea is to calculate the weighted
sum over all distances between customers. A weight for the distance dj; be-
tween customers i and j is equal to the probability that the corresponding
edge ei; will actually be included in the final tour. An edge ej; is included in
the final tour if and only if all customers between i and j in the PTSP tour

32 3. PROBABILISTIC PROBLEMS

are left out of the final realization. Note that for symmetric PT'SPs, where
dy; = dji, ey; 1s also effectively included in the tour if all customers from cus-
tomer j to customer i are omitted, since the tour is a cycle. Using this notion,
the expected tour length can be calculated as

n—In—1 i+j—1
th 7((i+j) mod n))" Pr() - pTE((iJrj) mod n) ° H (] — Pr(k mod n))
i=0 j=1 k=i+1

(3.2)
For homogeneous probability distributions, with Vi € [0,n—1] : p; =p € [0, 1],
this formula can be further simplified to

n—1In—1

:pz dT[7((i+j) mod m) ° (] _p)jil (3'3)
i=0 j=1

3.2.2 Approximate Evaluation

Despite of having a polynomial evaluation time for PT'SP via Equation 3.2, the
resulting O(n?) time for calculating the expected tour-length is still very long
compared to the standard O(n) evaluation for the non-probabilistic TSP, and
[Bianchi et al., 2002a,b] have done some analysis on using the TSP evaluation
function instead of the correct PT'SP function in order to have more time for
constructing solutions. The ACO meta-heuristic needs the quality of solutions
primarily for determining the best solution constructed by the ants of an
iteration, which, along with the best ant overall, updates the pheromone trail,
see Algorithm 2.1, p.24. Thus, it is sufficient to find an approximation function
f" which promotes solution 71,1 € [1,m] to best solution of an iteration with
high probability, if 7r; is indeed (one of) the best solution(s) according to
Equation 3.2:

Viell,ml:f(m) <f(m) = P(Vjell,m]:f'(m) <f'(m))>1—e. (3.4)

We call € the relative promotion error.

It is possible to approximate the true PTSP-evaluation only up to a prede-
termined degree, with different trade-offs between evaluation accuracy and
computational effort. We say that an edge ej; or its corresponding distance
di; has a depth 0 € [0, n—2] with respect to a given tour 7t if there are exactly
0 customers on the tour between i and j, see Figure 3.2 for some examples.
A high 0 for an edge ej; implies a small probability for the edge to be actually
part of a realized tour (as a large number of consecutive customers would have
to be canceled), and thus a small impact on the resulting value for f. For the

3.3. ACO FOR THE PTSP 33

J

(a) Part of tour (b) e1,2 is depth 0

2

(c) e1,3is depth 1 (d) e1,4 is depth 2

Figure 3.1: A portion of a tour in (a) and edges of varying depth in
(b), (c), and (d) for this tour. Note that n edges of any depth exist.

homogeneous case where p; = p € [0, 1] for all customers i € [0,n — 1], this
probability has the value p?-(1—p)?, decreasing exponentially in 8. Therefore,
it might make sense to simply stop the evaluation once a certain depth has
been reached. We define

n—11+0 i+j—1
O(m) = Are(i)m((i+)) mod n) * Pr(i) * Pre((i+j) mod n) * H (1 — Pr(k mod n))
i=0 j=1 k=i+1

(3.5)
as the value of the evaluation up to depth 6. Even though f%(mr) might be
substantially smaller than f(7t), it nonetheless has the potential to provide a
sufficiently small relative promotion error €.

3.3 ACO for the PTSP

This section explains in detail the basic ACO algorithm used for the PTSP, as
well as two new heuristic guidance schemes. The first of these schemes, called
the Depth-based Heuristic, is based more accurately on the increase to overall
solution quality implied by a local decision during tour construction than the
TSP Heuristic which was used in [Bianchi et al., 2002a,b]. The other heuristic
which is based on the characteristic zigzag patterns in PTSP tours [Jezequel,
1985] takes the angle between adjacent edges of the tour into consideration

34 3. PROBABILISTIC PROBLEMS

and is called the Angle-based Heuristic.

3.3.1 ACO algorithm for nodexnode Problems

Algorithm 2.1, p.24, describes the basic ACO algorithm we use without going
into detail on how ant | constructs solution 7r;. The process of constructing a
solution is different for nodexnode and nodexplace problems, which is why
this point was left intentionally vague. In Algorithm 3.1, we clarify this point
for nodexnode problems in general and T'SP type problems in particular .

Algorithm 3.1 Solution construction by ant 1 for nodexnode problems
1: randomly choose start node i €g S

2: set m(0) =1
3: remove 1 from selection set S — S\ {i}
4: for decisiont=1,...,n—1do
5: randomly draw q €g [0, 1]
6 if q < qp then
7 choose j = arg max T3}, - niﬁj
hes
8: else
o: choose j according to probability distribution
’ Z Tk Min
he$
10: end if

11: remove j from selection set S — S\ {j}
122 setim—j

13 set m(t) =1

14: end for

When randomly drawing an element from a set or a number from an interval,
we imply uniform distribution, i.e. equal probability for all results, unless
otherwise stated. For the sake of completeness, Algorithm 3.1 also includes
the pseudo-random proportional rule, even though it will not be used in this
chapter (i.e. for evaluation we set qp = 0 in Section 3.4).

After the construction process, the solution 7t contains all cities in the order
they were visited, i.e. the edges (7t(l),7t(1+ 1)) for L € [0O,n — 2] and (7t(n —
1),7(0)) are traversed. Hence, when updating the pheromone matrix, the
notation (i,j) € 7 from Algorithm 2.1, p.24, translates to (i,j) € {(7t(1), (1 +

3.3. ACO FOR THE PTSP 35

DL€ [0,n = 2[} U{(m(n —1),7(0))}.

The basic nodexnode ACO algorithm can be modified to work more efficiently
when dealing with symmetric problem instances, e.g. when dealing with T'SPs
with Euclidean distances. If Vi,j : diyj = dj; holds, then the tour can be
constructed in either direction with the same solution quality (this also holds
for PT'SP due to commutativity). Thus, when updating the pheromone values
corresponding to a tour, it makes sense to do the update in both directions,
i.e. if (i,j) € m, then update with (i,j) as well as (j,1). This symmetric update
is shown in Algorithm 3.2. Note that the single positive update with p/2 has
been replaced by two updates with p/4, keeping the update amount constant.
We use the symmetric update for all symmetric instances.

Algorithm 3.2 Symmetric update
1: for all (i,j) € n* do
Tyj = Ty + p/4
Tji = T+ p/4

2

3

4: end for

5. for all (i,j) € * do
6 Tij — Tij + p/4
7 T T+ p/4
8: end for

As mentioned above, the heuristic information used previously [Bianchi et al.,
2002a,b] for Ant Algorithms when solving PTSP instances is the TSP Heuris-
tic. This heuristic is defined via the pairwise distances di; between customers
iand j

o 1
Vi#Fjing =—

i (3.6)

assuming that Vi #j : dy; > O holds. This heuristic prefers to visit customers
located close to the current position, and the deterministic version of this
greedy scheme, known as nearest neighbor, achieves good results for many
instances of T'SP. It makes sense to choose the next customer according to the
distance because the distance traversed is immediately incorporated into the
tourlength; hence, on a more abstract level, the decision where to go next is
governed by the immediate impact on solution quality. Of course, this need
not lead to optimal or even good solutions, but usually it is a good indicator
which way to go and therefore beneficial to the ants when constructing a
solution.

36 3. PROBABILISTIC PROBLEMS

However, for the PTSP, the distance dj; is only an approximation of the in-
crease to expected tourlength, the quality of which worsens rapidly for decreas-
ing probability values, and the nearest neighbor approach has been shown to
behave poorly on PTSP instances in [Bertsimas and Howell, 1993]. In the
following two Sections (3.3.2 and 3.3.3), we propose two heuristic guidance
schemes first introduced in [Branke and Guntsch, 2003] which more accurately
reflect the impact of a decision on solution quality.

3.3.2 Depth-based Heuristic

As we have seen in Equation 3.2, when evaluating a solution of a PTSP in-
stance, all distances must be considered, with the tour itself along with the
probability values defining the weights of the individual distances. With the
growing tourlength during the construction process, the estimation of the in-
fluence the next decision will have on the final solution quality becomes more
and more accurate. All distances to the potentially next customer originating
from any customer already integrated into the tour must be considered, since
it is feasible that all customers between a customer i who is already planned
and the target customer j are removed from the final instance. Formally, the
distance dj; is weighted by its likelihood, which is equal to the probability of
customers i and j being included in the final instance and all customers in be-
tween being excluded. We define the probabilistic distance d{j (71) depending
on the partial tour 7t during the construction process as

n—1-|S| n—1-—|S|
di= Y dupoi Prao P] (1= Pam) (3.7)
k=0 h=k+1

Note that m(n — 1 — |S|) = 1. This distance measure now encompasses the
increase to the expected tourlength from the initial customer up to customer
j; the rest of the tour beyond customer j is still unknown, and hence it cannot
be used to judge the effect of choosing j. Figure 3.2 graphically illustrates
normal and probabilistic distances for a partial tour.

Using d{j to define a PT'SP Heuristic analogously to T'SP has one drawback:
the probability p; of the target customer j being in the later realization is
factored into the heuristic value, which is not very useful, since a tour visiting
all the customers must be constructed, and decreasing the probability of going
to a customer j based on its inclusion probability p; will lead to j being
included into the tour at a less opportune point, resulting in a higher expected
tourlength. Therefore, we define a modified probabilistic distance d‘; as

3.3. ACO FOR THE PTSP 37

S [
) %
, ¥
(a) d4_5 (b) délt‘S
S [

.U'I
N
e
.U'I
IN
e

(c) das (d) dis

(e) da7 (f) di 7

Figure 3.2: Normal (a),(c),(e) and probabilistic (b),(d),(f) distances
between customers.

38 3. PROBABILISTIC PROBLEMS

d]% = d{j/Pi

n—1—|S| n—1—|S|
= > duwyPrioc] 0 —Prm) (38)
=0 h=k+1

Using dfj instead of di;, we define the Depth-based heuristic as
Vi;«éj:n];:— (3.9)

Note that for homogeneous PTSP, the use of d{j instead of d‘; in Equation
3.9 would lead to identical results due to the construction of the probability
distribution given in Equation 2.2, p.19, by which an ant makes local decisions.

At first glance, it seems that using the Depth-based Heuristic value entails an
asymptotic increase in the time needed for solution generation in comparison
to the TSP Heuristic, since computing dfj by Equation 3.8 takes O(n) time
and must be performed O(n?) times for a total of O(n?) calculations per tour
construction. The TSP Heuristic values are all computable in O(1), leading

to only O(n?) steps when constructing a tour. However, by maintaining a

P
ij?

iteration is possible while using the Depth-based Heuristic. This is accom-

distance vector D € R™ for storing the values of d, a runtime of O(n?) per
plished by modifying the construction process of an ant in ACO as shown in
Algorithm 3.3 .

If the distance value d‘fj (t) used by the ant for decision t is known, and
customer k is visited instead of customer j, then calculating the new value
d‘f]-(t + 1) is done by considering two possibilities. Either customer k will not
be included in the later instance, which corresponds to the term (1—py) -d‘; (1),
or it will be included, in which case only the distance diy is relevant, resulting
in the term py - dix. The sum of these terms is the value for d‘;(t +1). Note
that the values for dipj(t) do not rise monotonously, as might at first glance be
expected.

Each execution of the loop takes O(n) time, and it is executed ©(n) times.
Due to the possibility of implementing this heuristic with only a negligible run-
time penalty, the Depth-heuristic with limited depth as introduced in [Branke
and Guntsch, 2003] is no longer pursued, since it not only requires a greater
computational effort but is also less precise than using the full depth.

3.3. ACO FOR THE PTSP 39

Algorithm 3.3 Fast implementation of Depth-based Heuristic
1: Initialize D to zero, ie. ¥j =0,...,n—1:D;=0

2: randomly choose start node i €g S
3: set m(0) =1
4: remove i from selection set S +— S\ {i}
5. for decision t=1,...,n—1 do
6: SethES:Dj:Dj-(]—pi)-i-dij-pi
7. setVjeS:nj =1/D;
8: randomly draw q € [0, 1]
9: if q < qp then
10: choose j = arg max T, - (nfj)fs
heS
11: else
12: choose j according to probability distribution
by — - (nf)P
? Z - (ni)P

hes

13: end if

14: remove j from selection set S — S\ {j}
15: seti—j

16: set m(t) =1

17: end for

3.3.3 Angle-based Heuristic

Another heuristic which attempts to give a better indication as to which cus-
tomer to choose next is an Angle-based Heuristic . This heuristic is different
from radial sort [Bertsimas and Howell, 1993], which sorts all nodes in a sin-
gle circular pass. Instead, when deciding which customer to visit next, the
ant takes into account the angle between the last traversed edge and the one
implied by the choice of the next customer.

To explain why the angle between adjacent edges of a tour could be exploited
heuristically, consider the placement of customers in the plane and respective
tours shown in Figure 3.3. The tour on the left is a good TSP tour, while
the tour on the right shows a good PTSP tour assuming e.g. a homogeneous
value of p = 0.5 for all customers. The reason for this can be derived from
Equation 3.2, which lets us compute the size of the coefficient for any distance
di; between two customers i and j. For the example of p; = 0.5, all distances

40 3. PROBABILISTIC PROBLEMS

of depth 1 have a coefficient of just over half the size of the distances of depth
0, which are the only ones used for T'SP evaluation. The sum of distances of
depth 1 are by far greater for the good TSP tour than for the good PTSP
tour, and are not compensated by the shorter distances of depth 0. Since the
distances at depths © > 1 are not significantly different, and their influence
decreases exponentially, the expected tourlength for the right tour in Figure
3.3 is shorter than for the left tour.

Distances of depth 1 tend to be small when the tour has many sharp angles,
since a sharp angle sends the ant back in the direction of the customer it just
came from. Thus, letting the ant prefer sharp angles may guide it toward
significantly better solutions. If the angle between two edges is vy, then we
want the ants to make decisions influenced by cosvy, which is defined for
vectors u,v as cosy = (u,v)/(||u]| - [|[v]|), with (u,v) being the scalar product
of u and v, and |Ju|| = (u,u). With cosy =1 for u and v parallel, cosy =0

for u perpendicular to v, and cosy = —1 for u and v in opposite directions,
we construct
1 (u,v)
£ T)
=10 = (1 — ————). 3.10
"5 =15 20 g (310

It may be too extreme to practically deny any movement in the same direction
as the previous move, for instance for very close customers, which is why a

(a) Good TSP Tour (b) Good PTSP Tour

Figure 3.3: Comparison of the characteristics of TSP and PTSP tours.

3.4. EMPIRICAL EVALUATION 41

linear combination with the T'SP-heuristic of the form

nfj"::c-nfj%—(]—c)-nzj:nzj-(1—%(1—!—%)) (3.11)
with ¢ € [0, 1] could be appropriate. In previous work [Branke and Guntsch,
2003], the parameter c has been treated as a constant. However, for het-
erogeneous PTSP instances, it makes sense to adapt the parameter to the
probability p; of the customer the ant is currently located at. A customer i
with a very low value p; will probably not be part of a later realization, which
is why including the customer between two other customers which lie close to
one another, resulting in a sharp angle, is opportune. On the other hand, if a
customer is almost certainly part of a later realization, then only the distance
to its successor in the tour is relevant, and not the angle. We therefore study
the effect of an adaptive c defined by

c=1-2 (3.12)

for heterogeneous problems.
When intensifying the influence of Angle-based Heuristic information by using
a value of 3 > 1in Equation 2.2, p.19, we apply this value only to the distances
di;. The reason for applying a high (3 value is usually given by the fact that
the individual heuristic values lie too closely together to effectively distinguish
between good and bad choices. Since this is true only for the distance values
and not the values of cosy, we choose to apply 3 only to the distance values
used in Equation 3.11. In any case, it would be possible to achieve a similar
effect as applying 3 to the entire equation by modifying ¢ correspondingly.

Z,.c

Calculation of the value for ng

i 1s possible with a constant computational

effort. However, the constant is not very small, since a number of arithmetic
operations must be carried out for determining each heuristic value. Therefore,
it is more efficient to calculate all possible O(n?) (all incident edges must be
considered) heuristic values during preprocessing and reference them later.

3.4 Empirical Evaluation

3.4.1 Test Setup

Currently, no designated benchmark instances for evaluating algorithms de-
signed to solve the PTSP exist. Instead, it has been common practice to
either generate distances and probabilities randomly [Laporte et al., 1994] or

42 3. PROBABILISTIC PROBLEMS

use instances from the [TSPLIB, 2003], which are supplemented with proba-
bilities for the individual customers [Bianchi et al., 2002a,b]. Each of these ap-
proaches has its respective merits. Random instances with the same expected
solution quality can be generated en masse, hence enabling some estimation
of how good the algorithm performs on an unknown, random distribution of
customers. Testing repeatedly on a known, fixed instance enables a better un-
derstanding of how the performance of the algorithm varies for the particular
structure of that instance and can more easily serve as a basis for comparison
with other algorithms.

In order to make our evaluation as sound as possible, we use two sets of test
problems. The first set of problems uses the customer coordinates from the
three Euclidean TSP instances eil101, kroA200, and rd400 taken from the
[TSPLIB, 2003|, with n = 101, n = 200, and n = 400 customers respectively.
Each set of customer coordinates is augmented with five different probability
distributions for the occurrence of a customer: homogeneous probabilities of
p € {0.25,0.5,0.75}, and heterogeneous distributions, generated by choosing
pi randomly in the range [0.3,0.7] or [0.1,0.9] in such a way that the average
probability for a customer to be included is exactly 0.5. Note that the het-
erogeneous probability distributions are completely different for each of the
three customer location sets. Since the ACO algorithm is probabilistic, the
resulting 15 PTSP instances are tested by running each algorithm 100 times
using different random seeds and averaging the results.

For the second set of problems, 100 instances of 100 customer locations are
randomly generated in the unit square [(0,0),(1,1)] C IR?>. This set is subse-
quently denoted as rnd100. Again, each problem is combined with the five
different probability distributions described above, with each heterogeneous
distribution being unique. This results in five groups (resulting from the differ-
ent probability distributions) of 100 similar PTSP instances each. On these
problem instances, each algorithm has been tested only once, and averages
over all 100 problem instances in a group are reported.

The primary goal of this section is to demonstrate the general suitability of
Ant Colony Optimization and the benefits of our proposed modifications for
the PTSP. Therefore, practically no parameter tuning was performed. Instead,
we use relatively standard settings for the T'SP, which are x =1, 3 =5 for a
strong heuristic guidance, and p = 0.001. The number of iterations was set to
30000 for n € {100, 101}, 40000 for n = 200, and 50000 n = 400, increasing to
compensate for the higher complexity of the instances, which in turn induces
a slower convergence process of the pheromone matrix. Note that since all

3.4. EMPIRICAL EVALUATION 43

instances have Euclidean distances and are therefore symmetric, we use the
update rule described in Algorithm 3.2.

The pheromone values are initialized with tp = 1 in all cases. This leads to a
longer initial search phase in which the influence of the pheromone is minimal,
and the ants proceed probabilistically according to the heuristic information.
Due to the update rule used in Algorithm 3.2, the sum of pheromone values
in a row/column, which is initially n — 1 (since Vi # j : Ty = T19), slowly
approaches a value of 1, since for sum values greater than 1, more pheromone
is evaporated than updated for every row/column.

3.4.2 Approximate Evaluation

In order to determine the effect of using an approximate evaluation function
of limited depth instead of the complete evaluation, we test evaluation depths
of 0 €{0,1,2,4,8,16,32, n—2}. Note that for 6 = 0 in homogeneous cases, the
resulting tour-length corresponds to the T'SP tour-length scaled by p?, and
0 = n — 2 is equivalent to full evaluation in all cases. In order to avoid any
side-effects due to specialized tour construction when comparing evaluation
depths, we use the T'SP-heuristic in the algorithm.

As expected, with increasing approximation depth, the ACO algorithm per-
forms more and more like it is using the full evaluation function. The lower
the approximation depth, the greater the likelihood of the algorithm to make
wrong decisions, i.e. to promote one tour as the iteration’s best while in fact
a different tour is actually better. If this mistake is done often enough, the
pheromone matrix will focus on a part of the search space which seems promis-
ing to the approximation function, but which is sub-optimal according to the
complete evaluation, resulting in a worse solution quality.

The Figures 3.4 and 3.5 illustrate the relative runtime and solution quality
for the ACO algorithm using approximate evaluation on the PTSP instances
based on eil101 after 30000 iterations and rd400 after 50000 iterations re-
spectively. The results for rnd100 and kroA200 are omitted here since they
are virtually identical to €i1101 or lie between those for ei1101 and rd400,
respectively. The basis for comparison is full evaluation in all cases, which by
definition is located at (1,1). The savings in runtime achieved due to approx-
imation lie between 11.27% and 18.65% on eil1101 and 17.65% to 23.87% on
rd400, for approximation depths 6 = 32 to 6 = 0 and irrespective of the value
of p.

However, for small approximation depths, these savings in runtime come at

1.05 T il 1.05 . . .
Full Evaluation—O— : Full Evaluation—O—
Lo Approx. Evaluation—@— | Approx. Evaluation—@—
[} © 1 7
£ £
é 0.95F 7 n§: 0.951 7
2 00 g
= 09F 32 B = - B
%] % 09 »—ibz—<
14 16 i3 16
L © B —0—
0851 @ , , 0851 89 g
8 @ 1 2
HOH & }_ﬁ% 8
0.8 L L 1 1 1 0.8 L L L 1 Il Il
1 1.02 1.04 1.06 1.08 il 0.998 1 1.002 1.004 1.006 1.008 1.01 2.01
Relative Solution Quality Relative Solution Quality
(a) p=0.25 (b) p=0.75
1.05 T T T T c Lo - ; M
Full Evaluation—O— S 09| .-]
A . Evaluation—@— T
1L pprox. Evaluatio | % 0sl . e i
£ o 07 F B
I L i =
E 0.95 z 0.6
2 “g 0.5
g 091 B i 204t
« & g 0.3 [8 -
0.851" gr@4 b o
o 2 | o 8 02 16 --o--
4 O -0 Py o1 32 e
0.8 i | | | | | | | . : L : :
0.995 1 1.005 1.01 1.015 1.02 1.025 1.03 1.03% 1.0 0.25 05 0.75 05 [0.3,0.7] [0.1,0.9]
Relative Solution Quality Probability Distribution
(c) p=0.5 (d) Approximation Value
1.05— . . 1.05— . .
Full Evaluation—O—t Full Evaluation—O—t
Approx. Evaluation—@— Approx Evaluation—@—
1 [t : 1O A
[} [}
£ £
5 095+ b 5 095+ b
4 4
[[
> >
g 7 B g 7 B
g 0.9 & s 0.9 2
o L 14 L
0.851 @ b 0851 @i , b
8191 2 1 8 1@ 2 1
4 o4 s >—g—< o s >—g—<
08 1 1 1 1 1 08 1 1 1 1 1
1 1.01 1.02 1.03 1.04 B0 1 1.01 1.02 1.03 1.04 B0

Relative Solution Quality

(e) p € [0.1,0.9]

Relative Solution Quality

(f) p €10.3,0.7]

Figure 3.4: Relative runtime and solution quality of indicated approxi-
mation depths 6 for 5 PTSP instances based on 11101 in (a)-(c),(e),(f).
The error bars show standard deviation. Subfigure (d) shows the per-

centage of the tour length according to full evaluation computed by the

approximations.

3.4. EMPIRICAL EVALUATION

45

1.05 T T
Full Evaluation—O—t
1k O Approx. Evaluation—@—__|
[
£ oos 1
=4
=}
4
o 091 b
=
g 0.85
Q . ™ 1
04 2
L8
0.8F & Y 7
2
O é 3
075 L L \}_._{ }_’_‘ L oA
0.99 1 1.01 1.02 1.03 1.04 5.0
Relative Solution Quality
(a) p=0.25
1.05 T T 1
Full Evaluation—O—
1o Approx.. Evaluation—@— _|
[}
£ 095 R
=4
35
x
o 091 b
=
g 0.85
S 0.85- i
= —6—
0.8 *»—‘41 b
1
0.75 4] L L L ”—8‘—{
0.998 1 1.002 1.004 1.006 1.008 1.01 1.012 4.01
Relative Solution Quality
(¢)p=05
1.05 T T T
Full Evaluation—C—
1k O Approx. Evaluation—@—_|
()
‘g 0.951 q
c
3
X
o 091 q
=
3 0.85
S 0.85 i
o 32
o3
osF & 1
e ed 4 Y
075 L L L L L
0.99 1 1.01 1.02 1.03 1.04 1.05 4.0

Relative Solution Quality

(e) p € [0.1,0.9]

1.05

Relative Runtime

0.75
0.995 0.996 0.997 0.998 0.999 1

Percentage of Full Evaluation

Relative Runtime

0.95

0.85[

O— -

1

0.9

0.8

Full Evaluation—0—"|
prox. Evaluation—@—

>

1

Relative Solution Quality

(b) p=0.75

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

0.1
0.25

0.5

0.75 0.5 [0.3,0.7] [0.1,0.9]
Probability Distribution

(d) Approximation Value

1.05

0.9

0.85-

0.8

B Y Y

T T T
Full Evaluation—C—
Approx. Evaluation—@—_|

0.75
0.995

1

1.005 1.01 1.015 1.02
Relative Solution Quality

(f) p €10.3,0.7]

Figure 3.5: Relative runtime and solution quality of indicated approx-
imation depths 6 for 5 PT'SP instances based on rd400 in (a)-(c),(e),(f).
The error bars show standard deviation. Subfigure (d) shows the per-

centage of the tour length according to full evaluation attained by the

approximations.

1.001 1.002 1.00341.00

1.025 31.0

46 3. PROBABILISTIC PROBLEMS

the expense of a worse solution quality. For the eil1101 instances, a solution
quality close or identical to that achieved by full evaluation is realized for 6 > 8
with p = 0.25, 6 > 4 for the scenarios p = 0.5,p € [0.3,0.7],p € [0.1,0.9],
and 6 = 1 for p = 0.75, where this approximation depth leads to a less
than 0.2% worse relative solution quality than the full evaluation. The reason
for this decrease in “necessary” approximation depth lies in the fact that
edges of a greater depth have a steadily decreasing influence on the overall
solution quality for rising values of p. The Subfigure 3.4(d) shows how large
the value returned by the indicated approximation of the evaluation function is
in comparison to the correct value from the full evaluation function. It seems
that once a value of around 90% is reached by an approximation function,
i.e. the discarded edges account for only 10% of the full solution quality, the
degree of approximation is sufficient to choose the correct ant of an iteration as
best. On a side note, the edges of higher depth seem to play a marginally less
important role for heterogeneous problems, since the weights for a distance
are computed as a product of values with a given global average, and this
product is highest if all values are equal to the average.

For the results on the rd400 based instances shown in Figure 3.5, there are
many similarities to ei1101, but also some noteworthy difference. In com-
paring the individual approximation depths with one another and the full
evaluation, the same depths 0 as for ei1101 are necessary to achieve a vir-
tually identical solution quality as the full evaluation. In general, however,
a given approximation depth O performs significantly better on these larger
instances with 400 customers than on the smaller ones with 101 customers,
despite achieving only the same degree of approximation in terms of the rel-
ative portion of the solution quality it calculates, see Subfigure 3.5(d). For
p = 0.75, a © = 0 approximation is already sufficient for getting within 0.25%
of the solution quality found by the full evaluation.

As we have mentioned earlier, the reason for the bad performance of the lower
approximations is that they do not recognize the best ant of an iteration and
instead let a different ant perform the update to the pheromone matrix and
perhaps even replace the elitist ant. The Figures 3.6 and 3.7 show the relative
promotion error for ei1101 and rd400 respectively. As we can see, depending
on the approximation depth 0, the algorithm quite often promotes the wrong
ant for updating, with an initial probability of more than 60% for the instance
eil101, p = 0.25, and 6 = 0, and a 44% average over the 30000 iterations
runtime. The 6 = 8 approximation, which performs on par with full evaluation
for this scenario, averages at just over 5% relative promotion error, with a

3.4.

EMPIRICAL EVALUATION

47

Relative Promotion Error Relative Promotion Error

Relative Promotion Error

Evaluation bepth 0 kTSP) _—
Evaluation Depth 1 -

0 5000 10000 15000 20000 25000 30000
Iteration

(a) p=0.25

0.45

Evaluation Ijepth 0 ETSP) _—
0.4 Evaluation Depth 1 ————

0.35
03 " o, 8-
0.25
0.2
0.15
0.1
0.05 *

0 5000 10000 15000 20000 25000 30000
Iteration

(¢)p=05

0.7 T T T
Evaluation Depth 0 (TSP) ——
Evaluation Depth 1 -

2 -

0.6

0
0 5000 10000 15000 20000 25000 30000
Iteration

(e) p € [0.1,0.9]

Figure 3.6:

Average Relative Promotion Error Relative Promotion Error

Relative Promotion Error

Evaluation ljepth 0 (TSP) —
Evaluation Depth 1 -
2 e
4

0 5000 10000 15000 20000 25000 30000
Iteration

(b) p=0.75

0.45
0.4
0.35 x
03 [
025 .
02|
0.15 ¢
0.1
0.05 %

0 $oee
0.25 0.5

" Evaluation Depth 0 (TSP) ——
Evaluation Depth 1 ----x--

2

-y ¥ . S
0.75 0.5 [0.3,0.7] [0.1,0.9]
Probability Distribution

(d) avg. Relative Promotion Error

Evaluation Ijepth 0 ETSP) _—
Evaluation Depth 1 -

0 : i
0 5000 10000 15000 20000 25000 30000
Iteration

(f) p €10.3,0.7]

Relative promotion error of indicated approximation

depths 0 for 5 PTSP instances based on ei1101 in (a)-(c),(e),(f). Subfig-

ure (d) shows the average relative promotion error over 30000 iterations

for the respective probability distributions. The oder of the curves from

top to bottom is identical to the ordering in the legend.

48 3. PROBABILISTIC PROBLEMS
0.7 T T T 0.18 T T T T
Evaluation Depth 0 (TSP) —— Evaluation Depth 0 (TSP) ———
5 0.6 Evaluation Depth 1 - | 5 016 § Evaluation Depth 1 -
= 2 504 2
c 05 Wh‘ S 0.12 |
g 0.4 g 0.1
g 03 g 0.08
g 2 0.06
£ 02 £
E E 0.04
01 0.02 .
0! i ' : i o it T
0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000
Iteration Iteration
(a) p=0.25 (b) p=0.75
05 ‘ . : ‘ 5 045 ‘ . : ‘
Evaluation Depth 0 (TSP) —— = Evaluation Depth 0 (TSP) —+—
. 045 Evaluation Depth 1 - w 04 Evaluation Depth 1 - 7]
o . s . _Fr N 9 s
= 04 2 5 2 %
w =3
= 0.35 E
(=}
5 03 <
g o .
§ 025 @ - |
o b=
s 0.2 {g -]
2 0.15 & e
£ P [* 4
& 0.1 =]
0.05 5 o a]
> -
0 < e oo
0 10000 20000 30000 40000 50000 0.25 0.5 0.75 0.5 [0.3,0.7] [0.1,0.9]
Iteration Probability Distribution
(c) p=05 (d) avg. Relative Promotion Error
0.6 T T T 0.5 T T T T
Evaluation Depth 0 (TSP) —— Evaluation Depth 0 (TSP) ——
. Evaluation Depth 1 - . 045 Evaluation Depth 1 -
2 05 2 - S 04l 2 -
] oo
§ 04 ” g %>
<] i g ©
£ 0.3 MoV i WM " 5 025 f
T il € o2
2027y el 2 015
s g
& 0.1 A & 0.1
0.05

0 ‘ : At
0 10000 20000 30000 40000
Iteration

(e) p € [0.1,0.9]

50000

0
0 10000 20000

30000 40000
Iteration

50000

(f) p €10.3,0.7]

Figure 3.7: Relative promotion error of indicated approximation
depths 6 for 5 PTSP instances based on rd400 in (a)-(c),(e),(f). Subfig-

ure (d) shows the average relative promotion error over 30000 iterations

for the respective probability distributions. The oder of the curves from

top to bottom is identical to the ordering in the legend.

3.4. EMPIRICAL EVALUATION 49

maximum of around 15% at the start. The approximation depths deemed
sufficient for the other scenarios, i.e. 6 = 4 for p = 0.5,p € [0.3,0.7],p €
[0.1,0.9] and 6 = 1 for p = 0.75, have an average relative promotion error of
3% and 3.8% respectively, with maximum values around 8%. The numbers are
similar if somewhat higher for rd400 with averages of 10.7%, 4% and 4.1% for
the three classes above respectively. This is surprising, since it indicates that
although the approximation is making more errors, i.e. promoting the wrong
ant more often in rd400 than in ei1101, it still finds a better relative solution
quality. Possible explanations could be that the tour promoted instead of the
actually best tour is only marginally inferior, or that the approximated fitness
landscape is easier to search, compensating for the promotion errors.

An interesting point is the development of the relative promotion error for an
increasing heterogeneity of the problem instance. In contrast to the necessary
degree of approximation in order to obtain a good solution, which is the same
for p = 0.5, p € [0.3,0.7], and p € [0.1,0.9], the promotion error increases
significantly over these three scenarios. The reason could be that the variance
of the difference between approximated and full solution quality increases with
heterogeneous instances, resulting in more erroneous promotions, while at the
same time the approximated fitness landscape contains less local optima to
trap the search process.

3.4.3 Improved Heuristic Guidance

For comparing the heuristics proposed in Subsections 3.3.2 and 3.3.3, we al-
ways use the full evaluation function in order to eliminate the possibility of
wrong evaluations being the cause for poor performance. In order to gauge
whether the new heuristic functions actually do offer superior guidance com-
pared to the T'SP Heuristic, our first evaluation concentrates on running the
proposed heuristics in a greedy fashion on the rnd100 distributions explained
in Subsection 3.4.1 with homogeneous probabilities from 0 to 1 in increments
of 0.02. The result is shown in Figure 3.8.

For each instance, the average of starting once from each possible customer
was taken. Each point in the curve represents the average over all 100 ran-
dom instances, i.e. of 10000 runs, of the relative performance compared to
the greedy T'SP Heuristic, also known as nearest neighbor, on that instance.
The Depth-based Heuristic offers the highest potential for guiding ants toward
better solutions, especially for low homogeneous values of p. However, when
used with sensible parameter settings, the Angle-based Heuristic also outper-

50 3. PROBABILISTIC PROBLEMS

E I | //,I’ |

= 1 N - - T =

o \ ~o LI / s

3 098} .

- \

° \ /s

] \ L,

©o 096 | / i

(O] \ N/

o \\ i o

4 \ - TSP Heuristic

o 094 - Depth Heuristic ------- .

2 > Angle Heuristic, c=0.5 --------

S C=0.75 -

g 092r | ¢=0.999 - - 1
0 0.2 0.4 0.6 0.8 1

Homogeneous Probability Distribution

Figure 3.8: Comparison of average performance over 10000 runs of

greedy variants of T'SP, Depth-based, and Angle-based Heuristic for sev-
eral parameters.

forms the T'SP Heuristic, albeit either by only a small margin, or at the cost
of a worse performance for higher values of p.

The following evaluations of ACO with the respective heuristic guidance schemes
are based on the customer distribution eil101 with the specified probability
distributions. Unless otherwise stated, the results are practically the same
for the other instances aside from the greater number of iterations needed for
convergence.

The solution quality of ACO with the Depth-based Heuristic compared to
ACO with the TSP Heuristic is shown in Figure 3.9.

Starting with Figure 3.9(a), we see a typical phenomenon for the Depth-based
Heuristic. Although the final solution quality is significantly better than for
ACO with the TSP Heuristic, the convergence is slower. ACO with the Depth-
based Heuristic needs roughly 12000 iterations, i.e. 40% of the runtime, before
its solution quality becomes better than ACO with the TSP Heuristic. To a
lesser extent, this effect also occurs for p = 0.5 and p = 0.75, but is not
visible in Figures 3.9(b) and 3.9(c) due to the scaling used to show final
solution quality. Figure 3.9(d) shows that the effect of slow convergence is
intensified for heterogeneous instances, ACO with the Depth-based Heuristic
requiring 20000 iterations before it performs better than T'SP-guided ACO.
This indicates that heterogeneous instances are perhaps more difficult to solve
than homogeneous ones, since utilizing the information about the probability

3.4. EMPIRICAL EVALUATION 51

345 T T LI 495 1 T T L
TSP Heuristic TSP Heuristic
Depth Heuristic ------- 490 |- Depth Heuristic ------- b
S 340 s {
2 & 485 \
Q Q \
5 335 5 480 |
o o
= E 475 |
2 330} 3
8 g 470 .
g 2 es |]
o 325 y E o
e 460 B -
320 1 1 1 1 - 455 1 1 1 1
5000 10000 15000 20000 25000 30000 5000 10000 15000 20000 25000 30000
Iteration Iteration
(a) p=0.25 (b) p=05
580 N T T LI 440 T T T T
! TSP Heuristic TSP Heuristic
< Depth Heuristic ------- c 435\ Y Depth Heuristic ------- 4
5 575 | 5 \
ko & 430
3 =3
o o
= 570 |- =425
° =l
2 2
3 g 420
< 565 e b < e
w w115 F ~___
560 1 1 1 1 410 1 1 1 1
5000 10000 15000 20000 25000 30000 5000 10000 15000 20000 25000 30000
Iteration Iteration
(¢) p=0.75 (d) p €[0.1,0.9]

Figure 3.9: Comparison of solution quality for ACO with Depth-based
Heuristic vs. TSP Heuristic on ei1101.

of a city being included gives a smaller advantage compared to the TSP than
for the homogeneous instances.

For the Angle-based Heuristic, we test values of ¢ € [0.5,0.9] in increments of
0.05. For the sake of clarity, only the results for ¢ € {0.5,0.8.0.9} are presented
in Figure 3.10; the results for the other parameters can be interpolated from
these values.

The first notable difference between the Angle-based and the Depth-based
Heuristic is that the curve for the ACO with Angle-based heuristic and ¢ = 0.8
is located beneath the curve for the ACO with the T'SP Heuristic for every
instance during the entire run. The parameter ¢ = 0.8 performs best for
all the homogeneous instances studied, and is beaten only marginally by the
adaptive c (see Equation 3.12) on the heterogeneous instances. The other
constant parameters ¢ = 0.5 and ¢ = 0.9 represent the respective end of the
evaluated spectrum of parameters, and perform worse than ¢ = 0.8 and for the

52 3. PROBABILISTIC PROBLEMS
345 N T T L 495 v T T L
0 TSP Heuristic TSP Heuristic
< 310 A Angle Heuristic, c=0.5 ------- - 490) Angle Heuristic, c=0.5 ------- b
£ FA c=0.8 - b £ ! €=0.8 oo
5 A% = S 485 |
5 DR €=0.9 e 5 .
5 335 5 480 -
(e} O
[E 475 |
2 330f 3
3 5 470 |
g g 465
a 325 F &
460 - B
320 1 1 1 1 455 1 1 1 1
5000 10000 15000 20000 25000 30000 5000 10000 15000 20000 25000 30000
Iteration Iteration
(a) p=0.25 (b)) p=05
580 T T T T T 440 T T T T
| . TSP Heuristic 3 TSP Heuristic
\ Angle Heuristic, ¢=0.5 ------- 435 _%‘ P Angle Heuristic, ¢=0.5 ------- 4
e —_ < —
S 5751 4 €=0.8 -~ g =3 \ €08
5 b ' €209 & 430 |\ oo
= o = . adaptive ¢ ---~
=] >
(s} (s} 3
= 570 | =425
° °
2 2
3 g 420
& 565 - T E <
w Wooa15 |
560 1 1 1 1 410 1 1 1 1
5000 10000 15000 20000 25000 30000 5000 10000 15000 20000 25000 30000

Iteration

(c) p=0.75

Iteration

(d) p € [0.1,0.9]

Figure 3.10: Comparison of solution quality for ACO with Angle-based
Heuristic vs. TSP Heuristic on ei1101.

case of ¢ = 0.9 even worse than the T'SP Heuristic. It should be noted that all
values c € [0.65,0.8] perform well and are very close in terms of performance,
making c a relatively robust parameter in this interval.

So far, we have neglected to mention that these improved heuristics, while
resulting in a better solution quality in the same number of iterations, take
longer to calculate than the TSP Heuristic, the values of which are constructed
completely during preprocessing at the beginning of the algorithm. The values
for the Angle-heuristic can also be calculated completely during preprocess-
ing, requiring an O(n?3) sized data structure since all incident edges must be
considered. Accessing this data structure takes significantly longer than the
O(n?) size data structure for the TSP Heuristic. Algorithm 3.3 gives a fast
implementation for deriving the values for the Depth-based Heuristic, but the
exponentiation with 3 must be done at runtime, which costs several multipli-
cations. The values that have been derived from our implementation as time

3.4. EMPIRICAL EVALUATION 53

units per iteration for the three heuristics employed are shown in Table 3.1.

Table 3.1: Time units per iteration for ACO with specified heuristic.
TSP Heuristic | Depth-based Heuristic | Angle-based Heuristic

1 1.43335 1.24021

Since neither of the two new heuristics asymptotically increases the runtime
for the ant decision process, the slowdown can effectively be bounded by the
displayed constants. Figure 3.11 shows an appropriately scaled comparison
between the ACO versions using the TSP, Depth-based, and Angle-based
Heuristic on ei1101 with a homogeneous value of p = 0.5. As can be seen, the
Depth-based Heuristic ultimately still outperforms the other two, even though
no recalibration of the evaporation rate was undertaken to compensate for the
fewer iterations available.

495 — T T

Vo TSP Heuristic
490 -\ . Angle Heuristic, c=0.8 ------- h
485 o Depth Heuristic --------

480 |
a7s |
a0 | N
465 - -

460 | N

455 | | | |
5000 10000 15000 20000 25000 30000

Time Units

Expected Tourlength

Figure 3.11: Comparison of ACO using the TSP, Depth-based, and
Angle-based heuristic on ei1101 with p = 0.5.

The only apparent drawback of the Depth-based Heuristic is the long time
it takes the ACO algorithm to find a good part of the solution space. A
possible explanations for this behavior is that the heuristic values computed
for the Depth-based Heuristic are too uniform to provide useful guidance at
the start of the algorithm. Figure 3.12 shows the progression of the ratio
between maximum and minimum probabilistic distance perceived by the ants
during a tour construction for homogeneous PT'SP instances based on rnd100
with p € {0.25,0.5,0.75,1.0}, with p = 1.0 corresponding to a T'SP instance,
i.e. using the “normal” distance di; between customers i and j. Note that for
n = 100, only 99 decisions are made, since the starting customer is chosen

54 3. PROBABILISTIC PROBLEMS

randomly, and for the final decision, the ratio is always 1 since there is only
one customer left in S.

" p=1.0(TSP) ——
16 p=0.75 - 1

max/min Ratio
= P
o N
T T

o N b~ O
T

0 10 20 30 40 50 60 70 80 90 100
Decision

Figure 3.12: Development of the quotient between maximum and min-
imum probabilistic distance over the course of a tour construction for
several homogeneous instances based on rnd100.

Figure 3.12 indicates that the distance values and therefore the heuristic values
are located in a smaller interval for smaller, homogeneous values of p. The
curves for the heterogeneous probability distributions lie in the vicinity of
p = 0.5 and are not shown.

As a possible remedy for the slow early convergence, we let the ACO algorithm
run with the TSP Heuristic during the initial phase of the algorithm, and then
switch to the Depth-based Heuristic after a number of iterations t. Figure 3.13
shows the resulting solution quality for t € {500, 2000}.

As we can see, immediately after the switch from the T'SP to the Depth-based
Heuristic, the solution quality stops improving and instead draws nearer to
the curve of the solution quality when using only the Depth-based Heuristic.
The final solution quality after 30000 iterations is virtually identical to using
only the Depth-based heuristic.

If the Depth-based Heuristic cannot immediately improve upon tours con-
structed via the TSP Heuristic, it is perhaps more promising to use the Depth-
based Heuristic from the start, but with a higher weight 3 in Equation 2.2,
p.19. This also has the goal of making the weighted heuristic values n® used
during tour construction less uniform and therefore more capable of providing
guidance. However, as Figure 3.14 shows, a quicker early convergence comes
at the cost of a worse final solution quality.

3.4. EMPIRICAL EVALUATION 55

400

a1
N
o

"TSP —

\ \ ‘TSP —

390 f-.: TSP-500 ——— , TSP-500 ——
= TSP-2000 - < 500 R\ TSP-2000 -
380 [\ % Depth 1 ‘g» | Depth
[N 2 L LS 4
E 370 - o 4 = 480 A
2 360 | \] e 5
2 % T 460 1 : 1
S 350 | 2
s s Sa40 | |
X 340 'ﬁ&“\ 1 5

330 . e 7 420 - e —]

320 L L L B it it L L L L L

0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000
Iteration Iteration
(a) p=0.25 (b) p €[0.1,0.9]

Figure 3.13: Comparison of pure TSP and Depth-based Heuristic with
two-phase variations, where the T'SP Heuristic is run up to iteration t €
{500, 2000} and then replaced by the Depth-based Heuristic, on eil101.

400 ¢ 520
390 f j
< < 500
5380 | 1 S
5) 5
< 370 1 < 480
e 360 q =
2 ™ k] 460
© 350 q]
S 2 440
5 340 9 3
330 _— q 420
320 . . | ; :
0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000
Iteration Iteration
(a) p=10.25 (b) p €10.1,0.9]

Figure 3.14: Comparison of different heuristic weights (3 for the Depth-
based Heuristic on eil101.

Ultimately, the two modifications for the Depth-based Heuristic with the aim
of quicker early convergence and an implied better overall solution quality
did not result in significantly better results, being mostly worse and only
marginally better in some cases. Therefore, in the following subsection, we
continue to employ the original Depth-based Heuristic as proposed in Subsec-
tion 3.3.2.

56 3. PROBABILISTIC PROBLEMS

3.4.4 Comparison with Hilbertsorting and 1-Shift

Hilbertsorting, which assigns the index on the space-filling Hilbertcurve to
each point in a two-dimensional plane, is a quick method for finding solutions
to the TSP [Bartholdi and Platzman, 1982, and has also been applied to
the PTSP [Bertsimas and Howell, 1993]. When combined with the 1-Shift
heuristic (also in [Bertsimas and Howell, 1993]), which iteratively performs
the best reinsertion of a node between two others in the tour until no further
improvements can be attained, this method is currently one of the best known
for finding solutions to PTSP instances. Figure 3.15 shows the respective
paths resulting from Hilbertsorting, and from Hilbertsorting with subsequent
application of the 1-Shift heuristic for kroA200 and a homogeneous value of
p = 0.5. Note that the value of p only influences the 1-Shift heuristic.

2000 T T T 2000 T T T
1500 R 1500 R
1000 - 1000 -
500 ¥ - 500 i
0 L L L 0 L L L
0 1000 2000 3000 4000 0 1000 2000 3000 4000

(a) Hilbertsorting only (b) Hilbertsorting with 1-Shift

Figure 3.15: Path structure resulting from Hilbertsorting and subse-
quent 1-Shift on the kroA200 based PTSP instance with p = 0.5.

The resulting solution quality of applying Hilbertsorting with 1-Shift as well
as the performance of the individual heuristic guidance schemes for ACO are
displayed in Table 3.2; the best result for each instance is marked bold. For
the ACO variants, the number in parentheses is the standard error, while
for Hilbertsorting with 1-Shift, it represents the number of 1-Shifts that were
performed until no further improvement was found.

For all but four of the test instances, ACO with the Depth-based heuristic
achieves the best solution quality, by a significant margin in most cases. The
strongly heterogeneous instances seem to be the most difficult ones for ACO,
despite the improvements to the original Depth-based Heuristic in [Branke and
Guntsch, 2003], without which the performance is roughly 5% (p € [0.3,0.7])

3.4. EMPIRICAL EVALUATION 57
Table 3.2: Comparison of results for PTSP instances.

PTSP) Angle-ACO | Hilbertsorting
instance | o0 -ACO | Depth-ACO | 7T 0™ | it 1.Shift
eillo01l 325.903 322.023 325.071 322.233
p=0.25 (+0.162) (+0.228) (+0.161) (43)
eill01l 467.441 460.563 463.570 467.673
p=0.5 (+0.551) (+£0.407) (+0.602) (25)
eillol 567.076 564.036 564.711 570.529
p=0.75 (+0.474) (+0.546) (+0.486) (26)
eillol 415.978 414.708 413.301 399.697

p € [0.1,0.9] (+0.435) (+0.498) (+0.440) (35)

eill101 450.469 442.225 447.056 448.203

p €10.3,0.7] (+0.515) (+0.271) (+0.461) (30)
kroA200 17816.2 17574.6 17719.7 18517
p=0.25 (+17.973) (+10.854) (+12.785) (97)
kroA200 23461.2 23327.8 23341.5 23999.8

p=0.>5 (£22.327) (£22.849) (+19.599) (131)
kroA200 27205.6 27126.1 27179.9 30945.1
p =0.75 (+16.580) (+18.076) (+19.759) (87)
kroA200 20910.4 20806.4 20874.6 21468.6

p € 10.1,0.9] (£23.89) (+24.807) (+£27.797) (102)
kroA200 226'75.5 22569.8 22610.4 24956.3
p €1[0.3,0.7] (+17.248) (+20.591) (+16.654) (93)

rd400 9744.52 9327.92 9505.89 9042.65
p=0.25 (£17.208) (+18.063) (+13.974) (149)

rd400 12698.1 12257.2 12463.14 12305.7
p=0.>5 (+13.794) (+8.713) (+13.325) (127)

rd400 14619.1 14449.1 14455.75 14625.4
p =0.75 (+16.059) (+£10.953) (£12.825) (116)

rd400 11547.1 11304.2 11363.01 10498.7

p € 10.1,0.9] (£16.602) (£11.973) (+13.306) (156)

rd400 12370.1 12034.6 12190.81 11753.4

p €1[0.3,0.7] (+17.664) (+12.152) (+13.158) (140)

rnd100 4.548 4.49 4.535 4.711
p=0.25 (£0.012) (£0.012) (£0.012) (20.545)
rnd100 6.091 6.044 6.076 6.551
p=0.5 (+0.016) (+0.016) (+0.016) (17.395)
rnd100 7.097 7.077 7.093 7.924
p =0.75 (+0.019) (+£0.018) (+0.018) (15.215)
rnd100 5.35 5.308 5.319 5.902

p € 10.1,0.9] (+0.019) (+0.018) (+0.018) (19.795)

rnd100 5.868 5.816 5.849 6.359

p €1[0.3,0.7] (£0.017) (£0.016) (£0.016) (18.25)

58 3. PROBABILISTIC PROBLEMS

to 15% (p € [0.1,0.9]) worse. Also, the rd400 instance for both heterogeneous
probability distributions and the low homogeneous value of p = 0.25 is solved
better by Hilbertsorting with 1-Shift. For p = 0.25, the reason for this is that
after 50000 iterations, ACO was still improving the average solution quality by
a significant amount, indicating that it could have reached the same solution
quality. Note that well over 100 1-Shift operations are performed after the
initial Hilbertsorting for rd400, each of which takes O(n*) time since n-(n—1)
evaluations must be performed to determine which customer to shift, and each
evaluation takes O(n?) time. For the 100 customer instances, the runtime of
Hilbertsorting is about equal to the ACO, while on rd400, it is more than
10 times as long, biasing the comparison toward Hilbertsorting with 1-Shift.
Without the 1-Shift operation, Hilbertsorting is not competitive.

3.5 Summary and Outlook

We have introduced new ideas for improving the performance of Ant Colony
Optimization (ACO) when applied to the Probabilistic Traveling Salesperson
Problem (PTSP). First, an approximation of the evaluation function was pro-
posed, motivated by the fact that the full evaluation takes O(n?) time while
an approximation, with the potential for leading to a practically identical
solution quality, is computable with O(n) steps. Second, two new methods
for deriving heuristic values were proposed with the aim of providing the ants
with better guidance during tour construction. These modifications were eval-
uated empirically on a number of problem instances deemed representative for
determining their performance.

The approximation of the evaluation function works very well, with approxi-
mation depths of 4 or 8 resulting in virtually the same solution quality with
the full evaluation, which corresponds to an approximation depth of n — 2
for an instance with n customers. Since these comparatively low values are
sufficient, further exploration in this area, e.g. for an adaptive approximation
which dynamically changes the approximation depth in order to guarantee
a relative promotion error of € = 0, was not undertaken. We believe that,
although using the approximative evaluation for ACO is justified due to the
large relative savings in runtime, algorithms with a solution construction pro-
cess that takes O(n) steps will benefit even more from this approximation,
since an asymptotic decrease in runtime would be achieved, which is not the
case for the ACO algorithm.

The comparison among the new heuristic guidance schemes and with the TSP

3.5. SUMMARY AND OUTLOOK 59

Heuristic ended in favor of the Depth-based Heuristic, which outperforms the
other two both on a per-iteration basis as well as, to a lesser extent, on a
per-second basis. This is not very surprising, since the Depth-based Heuristic
more accurately takes into account the effect on solution quality that a choice
will have than the T'SP heuristic or the Angle-based Heuristic, which to a
certain extent is an approximation of the Depth-heuristic limited to a depth
of 1. Further attempts to improve the performance of the ACO algorithm
with the Depth-based Heuristic did not succeed, and will be the subject of
future work.

We feel that the Depth-based Heuristic still has some deficiencies, especially
on heterogeneous instances. Nevertheless, without any parameter tuning, the
ACO algorithm using this heuristic significantly outperforms one of the pre-
viously best known heuristic for PTSP, which is Hilbertsorting with 1-Shift,
in all but four cases. For three of these cases, Hilbertsorting with 1-Shift is
given 10 times as much runtime as the ACO algorithm for the optimization
process. We feel confident that, with further improvements especially on het-
erogeneous instances which we plan to test in the future, the ACO algorithm
using the Depth-based Heuristic will also beat Hilbertsorting with 1-Shift on
these remaining instances.

60

3. PROBABILISTIC PROBLEMS

Chapter 4

Dynamic Problems

4.1 Introduction to Dynamic Combinatorial
Optimization Problems

In Chapter 3, we discussed modifications of the ACO algorithm to help it deal
with a stochastic variant of the T'SP called the Probabilistic T'SP, in which an
a preort solution must be constructed and applied later to a reduced instance
with no further reoptimization. In contrast to the PTSP, where the goal is
to find the solution with best expected quality, this chapter deals with the
Dynamic TSP (DTSP), where customers are added and deleted during the
optimization process, and the goal of the algorithm is to provide a good average
solution quality over time [Guntsch et al., 2000]. Although only the DTSP
is discussed, the notion of dynamic problems in which insertions or deletions
occur to the set of elements comprising the instance can be applied to other
static problems as well to receive the corresponding dynamic counterpart, e.g.
the Dynamic Quadratic Assignment Problem, which we introduce in Chapter
5.

In contrast to our definition of DT'SP, other authors have characterized sepa-
rate stochastic variants of the T'SP as Dynamic T'SP. In [Psaraftis, 1988, 1995],
DTSP is defined as the problem of finding an optimal routing policy for a sales-
man for a number of customers with a demand for service generated randomly
by e.g. a Poisson Process. Since these demands become known to the sales-
man as they are generated and he is already en route, this problem cannot be
solved meaningfully with a priori optimization. Another definition is supplied
by [Eyckelhof and Snoek, 2002], where traffic jams, i.e. dynamic increases of
a distance value, are introduced spontaneously along the currently best solu-
tion. Again, since the location of the traffic jam depends on the currently best

62 4. DYNAMIC PROBLEMS

solution of the algorithm which is probabilistic, the dynamic changes cannot
be predicted and a priori optimization cannot be applied. Other problems
exist where, like for the PTSP, all information is known in advance, e.g. the
Time-Dependent TSP, where edge weights are a function of the time [Malan-
draki, 1990, Malandraki and Daskin, 1992]. These problems are not dynamic
in a strict sense. In fact, due to the availability of all information from the
start, they are static problems, and an optimal solution can be constructed a
priori with no need to reoptimize.

As stated above, the Dynamic T'SP we consider is characterized by the in-
sertion and deletion of customers. Note that these changes to the problem
instance do not occur while a solution is being built, but rather between in-
dividual solution constructions. The challenge of the problem does not lie
in adapting a partially constructed tour to the changes in the instance, but
rather to adapt completely finished tours to the modified instance. The cen-
tral point of interest lies in how quickly an algorithm can move from a good
solution on one instance to a good solution on the successor instance.

Some work has been done with the aim of classifying the performance of al-
gorithms on dynamic problems as well as the characteristics of the dynamic
changes in the context of Evolutionary Algorithms. In [Weicker, 2002a,b], a
number of methods for describing how well an algorithm copes with dynamic
changes are defined, including stability, which measures how much the solu-
tion quality deteriorates as the result of a change, and e-reactivity, which is
used to gauge how quickly an algorithm comes within a relative margin e of
the previous level of solution quality. Of course, the values which can be con-
sidered good for stability and reactivity depend on the nature of the changes
to the problem instance. In [Branke, 1999, Branke and Schmeck, 2002], the
changes are characterized by traits like severity, i.e. how large the change to
the instance is, and frequency, i.e. how often such a change occurs.

Our approach and evaluation methods are similar to those introduced above.
If f(t) is the tourlength at time t, then measuring

-
FT) = J f(t)dt (4.1)

for large values of T allows us to gauge the performance of three characteristics
of an algorithm used to “solve” the DTSP:

1. How large is the deterioration of solution quality (i.e. how good are the
first solutions found) immediately after a change?

4.1. INTRODUCTION TO DYNAMIC COMBINATORIAL OPTIMIZATION
PROBLEMS 63

2. How long does it take the algorithm to find solutions of comparable

quality to the previous instance if both instances are similar?

3. Given a certain frequency and intensity of modifications and an approx-
imately constant level of expected solution quality, how good is the level
of solution quality maintained by the algorithm, and how does it develop

over time?

The answer to the first question tells us how good the algorithm will perform
in the worst case scenario of having to “realize” a tour immediately after
a change to the problem instance. The second one gives some indication
of the recovery time needed after a change before a good solution is once
again available. Lastly, the third question asks whether the algorithm can
be run perpetually in a given environment, or if a complete restart becomes
unavoidable after some time.

Applications for this version of DT'SP are present in scenarios where a con-
stant evolution of the structure of the instance at hand takes place as well as
uncertainty about the exact point in time when the optimization process must
be stopped (and the best solution available realized) exists. This situation can
arise in military as well as crisis management fields, where an outside threat
forces the current solution to be realized.

Interestingly, tests on dynamically changing instances of the Shortest Path
Problem have already been performed with real biological ants in [Beckers
et al., 1992]. Here, the two short branches from the double bridge experi-
ment (see Figure 2.1, p.15) were initially removed from the setup and added
after 30 minutes. The ant Linepithema humile was unable to reoptimize on
the changed instance, staying on the long path marked by the pheromones.
However, the species Lasius Niger, which was tested in the same fashion, suc-
cessfully reoriented the path to include both short branches. The strength and
different intensities of pheromone trails combined with the ability of Lasius
Niger to realize when moving almost perpendicular to the direction in which
a food source lies (which is the case on the long branches in the double bridge
setup) and consequently make a u-turn were identified as contributing factors
for this ability to reoptimize.

The contents of this chapter are based upon previous work by the author in
[Guntsch et al., 2000, Guntsch and Middendorf, 2000, Guntsch et al., 2001],
where ACO is used for the DTSP. In Section 4.2, we cover the possible strate-
gies for a standard ACO algorithm to react to a change in the problem instance.
These consist of various methods for modifying the pheromone information

64 4. DYNAMIC PROBLEMS

as well as a scheme for repairing the solution enforced by the elitist ant. To
better explain what these pheromone modification strategies do, we introduce
the concept of pheromone entropy in Section 4.3. An empirical evaluation
with the aim of answering the three questions posed above is performed in
Sections 4.4 and 4.5. We summarize our findings in Section 4.8, and also
discuss possibilities for extensions and future work.

4.2 Reacting to a Change

In this section, we describe how to modify the ACO algorithm so that it
exhibits a better performance for the DTSP. The basic algorithm used is Al-
gorithm 3.1, p.34. In contrast to the PTSP, our modifications do not have
the aim of improving the solution construction process, which for the Dy-
namic TSP is the same as for the regular, static T'SP. Instead, we focus on
ways to modify the pheromone information after a change has occurred to the
problem instance, helping the ants in the reoptimization process. When mod-
ifying the pheromone information, which serves as a form of memory about
the location of good solutions, we must decide how much of and where this
information is still exploitable, and how much should be removed in order to
enforce exploration.

In order to describe our methods for enforcing exploration, we must first de-
scribe the immediate effects a change to the problem instance has on the ACO
algorithm. When a customer i is removed from a DTSP instance, the corre-
sponding row i and column i in the pheromone matrix are equally removed,
since they correspond to the pheromone information about when to go to cus-
tomer 1 and where to leave from customer i respectively. For each customer
i added, a new row i and column i are introduced into the matrix with the
pheromone values initialized to T7p. When a change, i.e. insertions and/or
deletions, to a problem instance occurs, the ants will need to restructure the
tour in order to leave out the deleted customers and include the newly inserted
ones. However, the pheromone information on the outgoing edges from the
“old” customers might be so strong as to practically deny the inclusion into
the tour of the new customers at an opportune place, resulting in the inclusion
at the very end of the construction process when no other choices remain. If
for example the new customers are evenly distributed in a plane and distances
are Huclidean, this will tend to result in a bad solution quality. Hence, it is
necessary to reset the pheromone information on the outgoing edges of the old
customers to some degree, which we call the reset value y. Using y; € [0, 1],

4.2. REACTING TO A CHANGE 65

To To

pelellllells NECREEARERE

(a) Before (b) After

Figure 4.1: Pheromone values on outgoing edges from a customer i (a)

before and (b) after a partial reset with y; = 0.5.

a customer i smoothes the pheromone values on outgoing edges to all other
customers j via

Vi#irmy = (1—vi) Ty +vi-To (4.2)
With the application of Equation 4.2, all pheromone values are reinitialized
to a relative extent defined by i, with y; = 0 denoting no change and y; =1
a complete reset to the initial values. Resetting the entire pheromone matrix
to initial values for static problem instances has also been proposed in [Gam-
bardella et al., 1999a, Corddn et al., 2000] to counter stagnation of the search
process. Figure 4.1 shows an example of the effect a reset with y; = 0.5 has
on the pheromone values on the outgoing edges from a customer i.
When dealing with symmetric problems, it is beneficial to keep the pheromone
matrix symmetric as well, see Subsection 3.3.1. If Ti; = Tj; but customers i
and j are assigned different respective reset values y; # vj, then this symmetry
will be disrupted. Since the customers i and j effectively share the edge (1,j),
it makes sense to use the average

_YitY;
Yij = 3

(4.3)

to reset Ty; as well as Tj;.

Having a mechanism to reinforce exploration via a reset value, what remains
is to define methods for assigning reset values to all customers in a problem
instance once a change has taken place. We call these methods pheromone
modification strategies. We separate two fundamental approaches for assign-
ing reset values: global and local. A global assignment of the reset values
implies that all customers i receive the same reset values y; = y. This type
of assignment can be carried out very fast, especially if vy is not computed
but rather a parameter of the respective strategy. In this spirit, we introduce

66 4. DYNAMIC PROBLEMS

the Restart-Strategy below in Subsection 4.2.1. However, instead of using
a uniform value for the assignment of the reset values, it might also work
well to reset more information in close proximity to the location of the inser-
tions or deletions. Hence, a local assignment which takes this proximity into
account might be useful. The n-Strategy and the 7-Strategy introduced in
Subsections 4.2.2 and 4.2.3 respectively perform a localized assignment with
different definitions of proximity to the changes in the problem instance. In
4.2.4, we show that it is also possible to combine global and local strategies.
A different approach to the preservation of meaningful information is taken
in Subsection 4.2.5, where we introduce a procedure for repairing the solution
represented by the elitist ant so that it potentially represents a good solution
to the changed instance and can continue to increase the search intensity on
a promising portion of the solution space.

4.2.1 Restart-Strategy

The Restart-Strategy is comparatively simple, which is its strength as well as
its weakness. When applied, it assigns to each customer the strategy-specific
parameter Ag € [0, 1] as the reset-values, i.e.

Viiyi =Ag (4.4)

This strategy has the advantage of requiring no computation for assigning the
reset-values, and is therefore very fast. On the other hand, neither location
nor intensity of the change to the problem instance are taken into account,
resulting in an enforcement of exploration in areas of the instance where a
good solution already existed. Thus, this strategy runs the risk of forcing
the ants to find a previous good solution multiple times, depending on the
exact value of Ar. Since its proposal, this strategy has also been successfully
employed for Dynamic Vehicle Routing Problems (DVRPs), see [Montemanni
et al., 2003].

4.2.2 n-Strategy

In the n-Strategy, each customer is assigned a reset value proportionate to
the closest inserted/deleted customer. For customer i, we define the distance
to the old removed and newly added customers j via the heuristic value n;;,
which in turn is defined through the actual distance between customers i and

4.2. REACTING TO A CHANGE 67

j. In order to avoid any imbalance due to scaling, we calculate the average

No = ﬁ Z ij (4.5)
i jA
over all heuristic values. Then, using the heuristic values, we define the heuris-
tic distance d{']. between an old customer i left in the instance and a customer
j € C, where C is the set of customers that were inserted or removed in the
last change to the problem instance, as

Mo
Al =1-— 4.6
Y A - M (46)
with Ag € (0,00). Since we are interested in the closest insertion or deletion,
i.e. the maximum value of d’.fj for all customers j € C, we define
n_ n
di' = 1§1eacx dy; (4.7)
The value of d? is always smaller than 1 by design, so by limiting the minimum
value to 0, we receive the reset-value

vi = max(0,d}) (4.8)

This assignment of reset points can be envisioned as a number of cones being
created above all customers j € C, with the maximum positive height of a cone
above any of the old customers i indicating how high the reset-value y; for
this customer is. The parameter Ag € (0, 00) defines how wide the cone is at
its base; for Ag — 0, the cone approaches a width of 0, which is equivalent to
not applying the strategy at all, while for Af — oo, all pheromone information
is reset to 1o. In Figure 4.2, the n-Strategy with Af = 1 is demonstrated on
a 10x10 grid of customer locations, with a customer near the middle being
removed.

Note that due to the definition of the heuristic distance directly via the heuris-
tic values, the application of the n-Strategy would not be meaningful for a
DTSP where the triangle-inequality does not hold for the distances between
customers.

4.2.3 t-Strategy

Similarly to the n-Strategy, the 1-Strategy also assigns reset-values according
to the distance from the closest insertion or removal. However, instead of
defining the distance by using the heuristic values, the pheromone values are

68 4. DYNAMIC PROBLEMS

Figure 4.2: A 10x10 grid of customers with coordinates from (0,0)
to (9,9) and an optimal path, reset-value distribution according to the
n-Strategy upon removal of the customer at (5,4).

used. Specifically, the pheromone distance dfj between an old customer i and
j € C is derived from how strong i and j are connected with pheromone values.
The pheromone connection of two customers i and j for a given path Py; from
i to j is defined as the product of normalized pheromone values on the edges
of Py;. Hence, the pheromone distance dfj is defined as

T'LLV
dj; = At max H (4.9)

The maximum over all paths can be calculated efficiently using a modified
spanning tree algorithm. To prevent any incompatibility due to absolute sizes,
we scale all pheromone values by the maximum value achievable via the update
rule. This is Tpax = 1 for asymmetric instances and Ty, = 1/2 for symmetric
ones. Using the distance values provided by Equation 4.9, we determine the
“closest” change analogously to the n-Strategy, that is

df =maxd

4.10
jeC ()

T
ij
Since the strategy parameter At € [0,00) is used for linear scaling of the
pheromone distances, and all distances are greater than 0, distance values
greater than 1 must be cut off to calculate the final reset value for a customer

4.2. REACTING TO A CHANGE 69

Figure 4.3: A 10x10 grid of customers with coordinates from (0,0)
to (9,9) and an optimal path, reset-value distribution according to the
T-Strategy upon removal of the customer at (5,4).

i, i.e.

vi = min(1,d) (4.11)
The 1-Strategy can be applied meaningfully to both symmetric and asymmet-
ric problem instances. However, recall that inserted customers have phero-
mone values set to 7y, which can be on the order of magnitude of 1/n, where
n is the size of the instance (see Sections 4.4 and 4.5). This would result in
a very limited range of values, and a linear scaling would result in a complete
reset, which is why, for applying the t-Strategy, we set the pheromone values
from an inserted customer i to the two closest neighbors j; and j, to 1, i.e.
Tij; = 1 and Tij, = 1 if dij] < dijz and Yk 75 j] : dijz < dik- This setting
is temporary, and all pheromone values of inserted customers are reset to Tp
after the t-Strategy has been applied. Figure 4.3 shows an application of the
T-Strategy for a single deletion with At =1.

4.2.4 Combinations

A combination of the global Restart-Strategy with one of the two more locally
acting n- or t-Strategies could be advantageous in a situation where strong
local resetting near the inserted/deleted customers is necessary to incorporate
a change while a lower global resetting is needed to maintain the flexibility for

70 4. DYNAMIC PROBLEMS

the ACO algorithm to change the best tour found more strongly if beneficial.
This combination can be realized by having each of the two strategies involved
distribute reset-values according to their respective scheme and then choosing
for each customer i the maximum of the two reset-values determined by the
two strategies. Formally, if the first strategy distributes yi; and the second

Yi2, then y; = max{yi1,viz}.

4.2.5 Repairing the Elitist Ant

Whenever a change to the instance that the algorithm is running on occurs, the
elitist ant, which enforces the best solution found so far, no longer represents
a valid solution. Consequently, it must be dropped and a new elitist ant is
determined after the first iteration of ants has worked on the changed instance.
The possible loss of information from dropping the old best solution can be
alleviated somewhat by modifying the former best tour so that it once again
yields a valid and presumably good solution to the changed instance. We use
two greedy heuristics for performing this modification:

e all customers that were deleted from the instance are also deleted from
the old best tour, effectively connecting their respective predecessors
and successors,

e the customers that were added are inserted individually into the tour at
the place where they cause the minimum increase in length.

The tour derived from this process is the new tour of the elitist ant. We call
this method KeepkElitist. Clearly, this modification can be combined with the
pheromone modification strategies explained above.

4.3 Entropy

During the later empirical evaluation, we apply the pheromone modification
strategies proposed in Section 4.2. Since these strategies reset the pheromone
values to some extent, we are interested in how much pheromone is actually
reset, i.e. how much “freedom” the ants actually have when constructing a
tour, especially after a change. A well known measure for the amount of
freedom in a probability distribution pq,...,pn is its entropy H, defined in
[Shannon, 1948] as

H=-> pi-log(pi) (4.12)
i=1

4.4. EVALUATION OF A SINGLE INSERTION OR DELETION 71

n—1

Note that H € [0,log(n)]. By design we always have Vi : Zj:o Ty = 1 for
the empirical evaluation in this section. This intuitively allows us to use
the values in the pheromone matrix to compute what we call the pheromone
entropy H™. The pheromone entropy of the matrix is calculated as the average
over the scaled pheromone entropies HY € [0, 1] in the individual rows, where
the scaling is used to make HY independent on n. Formally,

1
HY = > —i; - log(Ty; 4.13
1].Og (n) J#L TL) Og (Tl] ()

T] = T
HY = —) H
i=0

1 n—1
= m %]Z#l _Tij . IOg(Tij)

The pheromone entropy is highest, i.e. H® = 1, when the pheromone values
are equally distributed, e.g. when all matrix elements are set to initial values.
A lower value for H" signifies less freedom of decision for the ants when con-
structing a tour, with H® = 0 indicating that exactly one pheromone value in
each row is 1, and all others 0, which would mean complete convergence. The
actual entropy in the decision process as perceived by the ants was introduced
by [Merkle et al., 2000a, 2002], while pheromone entropy in the above form
has previously been used in [Guntsch and Middendorf, 2000, Guntsch et al.,
2001]. Note that the pheromone entropy does not correspond exactly to the
entropy of the probability distributions perceived during tour construction
for two reasons. First, since we utilize the information about the distance
between two customers during tour construction, we use Equation 2.2, p.19,
which includes the heuristic values, instead of Equation 2.1, p.18. Second,
when the probability distribution over the selection set S is constructed, some
choices will usually be blocked, resulting in a bias. Nonetheless, we use the
entropy in the pheromone matrix, since it is independent of the actual tour
an ant constructs, and it allows us to more accurately gauge the effects of
the pheromone modification strategies, which work solely on the values in the
pheromone matrix.

4.4 Evaluation of a Single Insertion or Deletion

In this section, we empirically evaluate the performance of the respective phe-
romone modification strategies for scenarios in which only a single insertion

72 4. DYNAMIC PROBLEMS

or deletion is conducted. Later, in Section 4.5, scenarios with a continuous
insertion and deletion are studied.

4.4.1 Test Setup

We conduct only a single insertion or deletion of one customer at two different
points in time on the Euclidean instance eil101 from the [T'SPLIB, 2003],
yielding four test scenarios:

del250: delete a customer after 250 iterations
del500: delete a customer after 500 iterations
ins250: reinsert a customer after 250 iterations
ins500: reinsert a customer after 500 iterations

For the two insertion scenarios, a customer is removed before the start of the
algorithm and later reinserted. For all ei1101 scenarios, we run the algorithm
for 1500 iterations. In order to remove any bias due to the location of the
customers inserted or deleted, the results presented in the following Subsection
4.4.2 for the individual scenarios are averages over the respective insertion
or deletion of all 101 customers comprising the instance. Using these four
scenarios, we investigate the immediate effect of the respective strategies on
solution quality. To this end, we also explore the influence of the parameter
setting of each individual strategy.

The ACO algorithm uses the parameters m = 10 ants, x =1, 3 =5, qo = 0.5,
and p = 0.01. We also performed all tests with § = 1 and qo¢ € {0.0,0.9},
with equivalent or worse performance. The elitist ant was dropped when the
insertion/deletion occurred, and redetermined in the first iteration thereafter.
As an initial pheromone value, we use 7o = 1/(n—1), which, using the update
rule defined in Algorithm 3.2, p.35, keeps the row/column sum of pheromone
values at a constant value of 1, which is necessary for calculating the phero-
mone entropy H™ via Equation 77?.

4.4.2 Results

In this subsection we analyze the use of the three main strategies, i.e. the
Restart-, n- and t-Strategy, on the scenarios del250, del500, ins250 and ins500.
Since the results for deletion and insertion were quite similar, we will use only
the respective deletion scenarios to support our arguments in the following.

4.4. EVALUATION OF A SINGLE INSERTION OR DELETION 73

For all three strategies, we tested the influence of the A parameters (i.e. Ag, Ag,
At) which influence the height of the reset-values. The Figures 4.4, 4.5, and
4.6 all show the influence of the strategy parameter A on solution quality and
entropy at 4 discrete points, each corresponding to one of the curves, which
are located 5, 50, and 250 iterations after the deletion has occurred, and the
final result after 1500 iterations.

"It 505 ——
7401 7401 It. 550 %~

It, 750 =
It. 1500

7201 720L

Tourlength
~
o
o
Tourlength
~
o
o

,,,,,

680 F

oy

rrrrrrrrrrrrrrrrrr

.

66015**"*%*)(—****-**%*— g
B

88806006688

B g BB B B g B B B

20

0 5 10 15 20 1
ParameterValue ParameterValue
(a) del250, best solution (b) del500, best solution

It. 550 -
It, 750 --a
0.8 It. 1500
,,,,, e e e
s L.
06 o
> 0 X
g ¥
= 7
=
W o4t /¥
¥
2] ywrme 02 f wrm :
Bl #H
0 . . . 0 . . .
0 5 10 15 20 0 5 10 15 20
ParameterValue ParameterValue
(c) del250, entropy (d) del500, entropy

Figure 4.4: Best results and entropy of n-Strategy with Ag € [0,20] on
del250, del500.

Figure 4.4 shows the results obtained by the n-Strategy for parameter-values
of Ag € [0,20] in 0.5 to 1.0 increments. As can be seen, a higher value of
A entails a worse starting solution and a better final solution, the latter
however holding only for A < 8, after which no significant difference between
the final tourlengths exists. This suggests that “good” values for Ag are not too
large. The respective entropy-curves asymptotically approach their maximum

74 4. DYNAMIC PROBLEMS

value of 1 after the turning point around Af = 2. In conformity with the
development of the best solution, the difference in entropy for Ap > 8 is only
marginal.

BT B
740 - It 800 = 1 740 -
It. 1500

"It 505 ——
It. 550 %

It, 750 ~a-- |
It. 1500

7201 1 720

Tourlength
~
o
o
Tourlength
~
o
o

e8OF i 680
rrrrr SRV b - *
e R S P— - SN >< L
T e] P
0 05 1 15 2 25 3 35 4 0 05 1 15 2 25 3 35 4
ParameterValue ParameterValue
(a) del250, best solution (b) del500, best solution

"It 255 ——
It. 300 %

It, 500 =
08l It. 1500

%05 1 15 2 25 3 35 2 %05 1 15 2 25 3 35 2
ParameterValue ParameterValue
(c) del250, entropy (d) del500, entropy

Figure 4.5: Best results and entropy of t-Strategy with At € [0,4] on
del250, del500.

The results for the t-Strategy with At € [0,4], in increments of 0.25 to 0.5, are
shown in Figure 4.5. The results for a deletion after 250 iterations are some-
what similar to those for the n-Strategy !, but a deletion after 500 iterations
leads to different results. This is due to the mechanism of pheromone-based
distances that is used by the T-Strategy, which leads to % — 1 and there-

!This is the only place where a case of insertion differs from deletion, since when inserting
with the T-Strategy, the value Tmax is used, which is substantially higher than regular values
in the pheromone-matrix at lower iterations. Therefore, the results for ins250 look somewhat
more like those for del500 than those for del250.

4.4. EVALUATION OF A SINGLE INSERTION OR DELETION 75

fore dfj — 1 for advanced iterations. It seems that here the 1-Strategy is quite
efficient when At =~ 1. In this case not too much pheromone is reset so that
the results are good even at iteration 505, but enough to be comparable to a
total reinitialization (see Figure 4.6) after 1500 iterations.

7401

~
N
o

720 -

~
N
o

Tourlength
~
o
o
Tourlength
~
o
o

680

o)}
o]
=]

660% - x x x*nx* B 3

=
[o2]
o

0 0.2 04 0.6 08 1 0 0.2 04 0.6 08
ParameterValue ParameterValue
(a) del250, best solution (b) del500, best solution
1 ' t.2 == 1 It. 50
It, 500 & It, 750 o
08 L1500 . 08l 111500
> 06 5 0.6+ o =
[y 2 o
g 3 L
€ € -
o4l o4l x
0.2 ro " 0.2 g o
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8
ParameterValue ParameterValue
(c) del250, entropy (d) del500, entropy

Figure 4.6: Best results and entropy of Restart-Strategy with Ar €
[0,1] on del250, del500.

The results for the Restart-Strategy are shown in Figure 4.6, with Az € [0, 1]
in 0.025 to 0.1 increments. Similarly to the n-Strategy, the two cases del250
and del500 look almost identical , with a slightly higher entropy- and worse
solution-level for del250. For Ar < 0.5 the solution quality is roughly the same
as before the change 50 iterations after the deletion has occurred. For higher
AR the trade-off of worse solution quality in the beginning for a better solution
quality in the end holds up to A; = 0.9, after which virtually all information is
reset and the ant algorithm needs more time to “rediscover” a good solution.

76 4. DYNAMIC PROBLEMS

Now, the goal is to find an optimal parameter for each of the strategies and
compare their performance. However, determining which parameter is best is
not possible without knowledge of how many iterations after the change the
best found solution is needed. Figure 4.7 (a)-(c) shows which parameter for
each individual strategy resulted in the best average solution over the indicated
number of iterations after the deletion. If we assume that the probability for
needing the new best solution at a specific iteration is equal for all iterations
between the change and iteration 1500, then we only need the rightmost value
in each of these subfigures to determine the best A-setting (i.e. for del250
Ag =7.5, A\t = 1.0, and Ag = 0.85).

Subfigure 4.7 (d) shows the curve for each strategy with their respective op-
timal parameter for del250. As can be seen, the T-Strategy performs best
immediately after the change while the - and Restart-strategy sacrifice good
immediate performance for a better solution quality toward the end. This
fact also results in the latter two strategies having a slightly better average
solution quality over the 1250 iterations considered (n-Strategy : 660.396 and
Restart-Strategy : 660.316 vs. T-Strategy : 661.674).

4.5 Evaluation of Continuous Insertion and Deletion

After having analyzed in detail the principal effect on solution quality that
the various individual pheromone modification strategies proposed in Section
4.2 have upon insertion or deletion of a customer, this section deals with the
performance on a perpetually evolving instance.

4.6 Test Setup

For this empirical evaluation, we use subsets of the Euclidean instance rd400
from the [TSPLIB, 2003]. Specifically, 200 random customers are taken away
from the 400 making up the problem instance to form a spare pool of customers
before the start of the algorithm, leaving the instance with 200 customers.
During the run of the algorithm the actual problem instance is changed every
t iterations by exchanging c customers between the actual instance and the
spare pool, i.e. c customers are deleted from the actual instance and the
same number of customers from the spare pool are inserted. When deciding
which customers to delete, the first customer j is chosen at random and all
other customers i according to a probability distribution defined by n].f]., with
p being a parameter that determines the relative influence of the distances

4.6. TEST SETUP 77

ETA, Del, q0=0.5 TAU, Del, q0=0.5
T T T

Chahge @ 250 ——
Change & 580 ——

Il
»

Parameter with best avg. Solution
IS

Parameter with best avg. Solution
-

400 600 800 1000 1200 1400 400 600 800 1000 1200 1400

Iterations after Change Iterations after Change
(a) n-Strategy (b) T-Strategy
RESTART, Del, q0=0.5 Del-250 Comparison of all strategies with respective best parameter
1 T T T T T T T T T T
Cnange g 250 —— RESTART-0.85 ——
Change @ 500 —— ETA-75

740 H| TAU-1.0 - A

o
@

=4
=

Tourlength
S
3
s

Parameter with best avg. Solution
e
=

o
N

400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400

Iterations after Change Iteration
(c) Restart-Strategy (d) “best” parameters

Figure 4.7: Figures (a)-(c) show which parameter had the best average
solution how many iterations after the deletion, (d) compares the three
strategies for their respective best parameter A for del250.

between 1 and j. The customers that are inserted are chosen analogously from
the spare pool. An example is shown in Figure 4.8.

We test all combinations of parameter values c € {1,5, 25}, t € {50,200, 750},
and p € {0.0, 2.0}, yielding a total of 18 different scenarios. Note that for c =1,
the parameter p has no effect as only one customer is removed /inserted, and
that for p = 0.0, all customers are chosen with equal probability. For each con-
figuration (c,t,p), 10 test runs of 8999 iterations are performed (in iteration
9000, the next change would occur for all tested t), each starting with a dif-
ferent random subset of 200 customers. All results that are used as a basis for
comparison are averages over these 10 runs. Only the results during iterations
3000-8999 are used to measure the performance of the applied strategies, since
the behavior of the ACO algorithm during the first iterations is not represen-

78 4. DYNAMIC PROBLEMS

1000 o T T PNa
> &> & <
R4 oat . © N
. *n o
el - el n < &
© & * 0’ - O<>
800 I . 00 * o % o n <32><><>. & o e
SIS ® © ogfom”
¢ 3> <>. * N & . <& 8
o o,
o & L] °m "
B0 Con 00 o & o o . 1
o O o © g So m
DR o o
o o o o
o, 0% $ o o m n < -
) X o
400, @, oo o° ® MR EERSu
O Rdo <& o ->0 o
L R o L DN
o ¢ o ¢ o
BoS &
o o
200 |- oo B
® o ¢
o
o
i @ 2 %
0 $<> 1<><> 10 < SN L ©
0 200 400 600 800 1000

Figure 4.8: 200 customer subset of rd400 with ¢ = 25 deleted and
inserted customers determined with p = 2.

tative for the latter stages. On the basis of this test setup, we evaluate the
“longterm” ability of the ACO algorithm to adapt to a periodically changing
instance.

The parameter values for the ACO algorithm used in the tests are m = 10
ants, x =1, =5, qo = 0.9, p = 0.05, and 7o = 1/(n — 1). For the phero-
mone modification strategies, we test the parameters Ag € {0.25,0.5,0.75,1.0}
for the Restart-Strategy, Ag € {0.5,1.0,2.0,5.0} for the n-Strategy, and At €
{0.5,1.0,1.5,2.0} for the T-Strategy. A parameter value of 0.0, which is equiva-
lent for all strategies and corresponds to not applying the strategy at all, is also
tested. Furthermore, we combine the Restart-Strategy with Agx € {0.25,0.5}
with the n- and T-Strategies, using their respective parameter-values above,
in order to determine if such a combination can yield better results than the
“pure” strategies by itself. Finally, all of the above settings are tested with
and without keeping a modified elite ant as described in Section 4.2.5 after
the exchange of customers.

4.7 Results

The results of the continuous insertion and deletion over 6000 iterations is
shown in Figures 4.9 for p = 0 and 4.10 for p = 2. In these figures, the
average solution quality over the 6000 iterations in relation to the performance
of the other strategies for each configuration is displayed, i.e. a lighter shade

4.7. RESULTS 79

indicates a good performance of the strategy-parameter combination for the
implied configuration in relation to all other combinations, and a darker shade

stands for a bad performance.

1/Frequency 1/Frequency 1/Frequency 1/Frequency

o 0.5/ 50 200 750 1.0| 50 200 750 20| 50 200 750 50| 50 200 750

X,

£ 0

88

R s

oy

05 1.0 15 2.0
3
1

23

£ Q5

R

G

0.25 0.5 0.75
o
1

S 8

M55

o R

X o
0.0% 1.0-1.5%
0.0-0.5% 1.5-2.0%
0.5-1.0% B8 2.0-2.5%

Figure 4.9: Relative performance of Restart-, n- and t-strategy for
p = 0 and different values of ¢ and t: loss in quality of the best found
solution averaged over iterations 3000-8999 compared to the best per-

forming variant.

Judging from “average darkness”, the best overall strategy is the the m-
Strategy with a parameter A = 2.0, especially for a high degree of prox-
imity for the customers inserted and removed. The t-Strategy with Ar = 1.0
provides good to very good solutions when changes occur quickly, i.e. for
t = 50. The Restart-Strategy, when given enough time and not confronted
with changes that are too severe, is also able to achieve good solutions for
Ar = 0.75. A complete restart, i.e. using the Restart-Strategy with Ax = 1.0,
is only comparable to the other strategies for the cases where many customers
are exchanged, even beating some of the other strategies when they do not
reset enough information. This would likely increase if even more customers
were transferred as the changed problems would become almost independent

80 4. DYNAMIC PROBLEMS

of one another.

1/Frequency 1/Frequency 1/Frequency 1/Frequency
0.5/ 50 200 750 10| 50200 750 20| 50200 750 50| 50200 78

1

5

#Cities

n-Strategy

1.0

T-Strategy
#Cities

0.25 0.5 0.75

Restart
#Cities
g P

25
0.0% 1.0-1.5% 2.5-3.0% 4.0-4.5
0.0-0.5% 1.5-2.0% 3.0-3.5% 4'5-5 6
0.5-1.0% 2.0-2.5% 3.5-4.0% 5 0%

Figure 4.10: Relative performance of Restart-, n- and t-strategy for
p = 2 and different values of ¢ and t: loss in quality of the best found
solution averaged over iterations 3000-8999 compared to the best per-

forming variant.

As for the influence of the proximity-value p, it seems that the difference
in the solution-quality achieved by the individual strategies becomes less for
p = 2 compared to p = 0. For the local strategies, a stronger proximity
of the exchanged customers is beneficial because a cluster of customers be-
ing inserted or deleted will cause a distribution of reset-values that is not as
much dependent on the number of customers comprising the cluster as on
their position in the graph or their degree of connectivity in the pheromone
matrix. Therefore, although the transfer of customers might be large, the
local confinement of this change makes it easier to incorporate for the local
strategies. The Restart-Strategy, however, also benefits from a higher degree
of proximity. This is probably due to the fact that the misleading pheromone
information is more centralized than for the case of equal distribution, and
therefore easier to deal with for the ACO algorithm.

4.7. RESULTS 81

In the following, we use one of the configurations to highlight the differences
between the separate pheromone modification strategies. The Figures 4.11,
4.12, and 4.13 show a detailed view of the optimization behavior for the indi-
vidual strategies and its dependency on their respective A-parameters (Ag, At,
ARr) for the case of (c,t,p) = (1,50,0), i.e. frequently occurring small changes.

117

11650 [{ } Eta'10 -]

11200 5 10 15 20 25 30 35 40 45 50 %05 10 15 20 2 30 3 40 45 50
Iteration mod 50 Iteration mod 50
(a) Solution Quality (b) Entropy

Figure 4.11: Average performance of the n-Strategy for different pa-
rameter values on the configuration (c,t,p) = (1,50,0) over the t inter-
val. Setting Ag = 0 performs poorly, the values being out of range and

hence not shown.

The n-Strategy only slowly becomes worse in terms of solution quality, despite
resetting a lot of pheromone for high values of Ag, as is indicated by the
entropy-curves in Figure 4.11. This implies that a large part of the information
left intact by the n-Strategy is beneficial in quickly finding a new good path.
In contrast, the T-Strategy depicted in Figure 4.12 shows a significant loss
of performance for At > 1, even though the entropy curve indicates that the
increase in reset information is only moderate.

For the Restart-Strategy, not resetting enough as well as resetting too much
information has a negative effect on the entailed solution quality.

For all strategies, the biggest performance gain occurs when going from per-
forming no resetting at all, which means using a parameter-value of 0.0, to
performing even just a little, i.e. setting A = 0.25, At = 0.125, or Ag = 0.125.
The curves for the Restart-Strategy also show that the difference from reset-
ting almost all pheromone information to actually resetting all of it is enor-
mous in terms of solution quality when using this strategy.

As mentioned in the Test Setup, we are also interested in the performance of
combinations of the local - and t-Strategies with the Restart-Strategy. For

82

4. DYNAMIC PROBLEMS

Comparison of Settings for Tau-Strategy in (1,50,0), Avg Interval
11700 T T T T T T T Tal:0.125 — |
Ta -

U:0.25 -
11650 Tau:0.5 -
J Tau:0.75
11600 j Tau:1.0 - 4
| N
5150 2Tau52:0 |

=
2
IS
€
i
°
>
I
5
<

Comp of
1

0.6

IS
IS

Settings for Tau-Strategy in (1,50,0), Avg Interval, Entropy
T

T T T T " Tal:0.125'

11250
11200 5 10 15 20 25 30 35 40 45 50 0 10 15 20 25 30 35 40 45 50
Iteration mod 50 Iteration mod 50
(a) Solution Quality (b) Entropy
Figure 4.12: Average performance of the 1-Strategy for different pa-
rameter values on the configuration (c,t,p) = (1,50,0) over the t inter-
val. Setting At = 0 performs poorly, the values being out of range and
hence not shown.
Co of ttings for Restart-Strategy in (1,50,0), Avg Interval Comp of ttings for Restart-Strategy in (1,50,0), Avg Interval, Entropy
11700 . T T T T T Restart:0.125"—— ir ! ! ! j j "Restart:0.125'——
E estart:0.25 ------ Restart:0.25 ------
11650 . . Restart:0.375 ——] Restart:0.375
N, Restart:0.5 . Restart:0.5
11600 Restart:0.625 ---- 08 Restart:0.625 ---- 1
i Resan0878 - \ Resiant078 1.
%11550 (Restart:1.0) - | 2 Restart:1.0 -
511500 go06
511450 %
o g
&11400 S oal
g E
<11350
11300 0.2+
11250
11200 0

§ 10 15 20 25 30 35 40 45 50
Iteration mod 50

(a) Solution Quality

10 15 20 25 30 3 40 45 50
Iteration mod 50

(b) Entropy

Figure 4.13: Average performance of the Restart-Strategy for different
parameter values on the configuration (c,t,p) = (1,50,0) over the t

interval. Setting Ag = O performs poorly, the values being out of range

and hence not shown.

some cases, this combination provides better solutions than any of the strate-

gies could achieve by itself. An example of this is once again the configuration
(c,t,p) = (1,50,0) shown in Figure 4.14, for which we include additional

parameter-tests to make a more precise analysis. The contour lines for the

combination of the - and Restart-Strategy show that there are two areas in

which good performance was achieved, one of them a true combination with

Ag = 1 and Ag = 0.25, and the other one, which is better in terms of solution

4.7. RESULTS 83

Tourlength

Combination of Tau- and Restart-Strategy

Tourlength
Combination of Eta- and Restart-Strategy 11700 -

11700 -
11600 -
11600 -
11500 -
11500 -

) 11400 -
11400 -

11300 -
11300 -

(a) n-Restart Combination (b) t-Restart Combination

Figure 4.14: Combinations of the local n- and t-Strategies with the
Restart-Strategy for the configuration (c,t,p) = (1,50,0).

quality as well as larger, with Ag € {2,3} and Ax = 0. This suggests that
the n-Strategy does not benefit much, if at all, from being combined with
Restart. For the 1-Strategy on the other hand we see a promising area located
around a combination of medium At and Ar values, specifically for At = 1.0
and Ag € {0.5,0.675}, and also for At = 0.75 and Az = 0.375. Thus the combi-
nation of the t- and Restart-Strategy performs better than either strategy by
itself, and also better than the n-Strategy for this configuration, justifying its
application.

Finally, we combine the KeepElitist method with the individual strategies as
well as the combinations of the n- and 1-Strategies with the Restart-Strategy.
Figure 4.15 shows how this modified the average behavior of the pure strategies
with their respectively best A-parameter on configuration (c,t,p) = (1,50, 0).
As can be observed, for the n- and Restart-Strategy the combination on av-
erage entailed a worse solution, while for the t-Strategy the effect on average
was an improvement. Overall, the heuristic of keeping a modified elite ant was
beneficial only when the number of customers ¢ that was inserted and deleted
was not too large and when the time for adapting to the problem t was small.
If too many customers were exchanged, then the heuristic would no longer
provide a good solution, and the ants would find a better solution in the first
iteration after the change. This case is not dangerous, since keeping the mod-
ified elitist ant would be the same as not keeping it; only the “new” elitist
ant would update the pheromone matrix. The second case in which keeping
an elitist ant does not entail better solutions is when the interval t between

84 4. DYNAMIC PROBLEMS

Effect of using KeepElite on Eta:2.0 in (1,50,0), Avg Interval Effect of using KeepElite on Tau:0.5 in (1,50,0), Avg Interval
T T T T T T T T T T

11600 . @20 11600 " T Tau05——
Eta:2.0 with KeepElite ------ Tau:0.5 with KeepElite ------
11550 - 1 11550 1
11500 11500 [
£ s |
211450 211450
5 5
211400 1211400
° °
g g
§11350 §11350
z S
11300 | 1300 T e
11250 | 1 11250 |
112 \ , , | | , , , , 112 \ , , | | , , , ,
00 —5 10 15 20 2 30 3 40 45 50 005 10 15 20 25 30 3 40 45 50
Iteration mod 50 Iteration mod 50
(a) n-Strategy (b) T-Strategy

Effect of using KeepElite, Restart:0.5 in (1,50,0), Avg Interval

fart:0.5'——

11600 . .
Rest
Restart:0.5 with KeepElite ------

11550

11500 -

(i
=
IS
a
<)

1400 -

o

1350

Average 'I;purleng(h

11300 | - R]

11250 -

11200
0

5 10 15 20 25 30 35 40 45 50
Iteration mod 50

(c) Restart-Strategy

Figure 4.15: Combination of the individual single strategies with Keep-
Elitist for the configuration (c,t,p) = (1,50, 0).

changes is long enough to permit the algorithm to adapt very well to the new
instance, and the guidance provided by an early good solution leads toward
stagnation in the end. This case is potentially dangerous, as the elitist ant
survives the first generation(s) and influences the pheromone matrix, thereby
restricting the search space to a region that is perhaps not very promising.

4.8 Summary and Outlook

In this chapter, we have introduced the Dynamic TSP, and analyzed the per-
formance of the ACO algorithm for this optimization problem. Specifically,
we proposed three pheromone modification strategies to partially reinitialize
the pheromone values, depending on the strategy parameter and, for the local
strategies, the distance from the dynamic changes in the problem instance.

4.8. SUMMARY AND OUTLOOK 85

Furthermore, combining these strategies and keeping a repaired elitist ant
were also studied.

The main focus in evaluating these strategies was the average performance over
time, with the other two points of interest, namely the loss in solution quality
immediately after a change and the rate of recovery, also being discussed
briefly. Since the average solution quality is closely correlated to these latter
two points, this focus is justified.

Overall, the n-Strategy shows the most consistent good performance for the
scenarios considered, in single as well as continuous change environments. This
is not very surprising, since this strategy assigns reset values according to the
Euclidean distance, which works very well for the Euclidean TSP instances
we chose for empirical evaluation. The t-Strategy, which also works locally,
has a much harder time in resetting the relevant information if changes are
large or infrequent. This implies that the reset point distribution undertaken
by the t-Strategy is not as effective as that of the n-Strategy. As mentioned
above, one reason for this inadequacy seems to be the linear scaling of the
reset values, which quickly leads to an “all or nothing” approach for At > 1
in Equation 4.9. Some preliminary testing with a modified t-Strategy, called
1’-Strategy, uses the Equation

:
i Tuv AT
dfj = max I () (4.14)

1j Tmax

(u,v)EPy;

for calculating the distances. A value of At = 1 makes the 1- and 1’-Strategies
identical, but for higher values, the t/-Strategy does a better job of distributing
medium reset values to greater Euclidean distances along the path, which is
the original intention of this strategy. Preliminary results with this new form
of distribution are promising, and we plan to investigate these further in the
future.

Once it was established that resetting information performs better than sim-
ply letting the ACO algorithm continue with a modified problem instance,
the global Restart-Strategy became the main competitor for the local n- and
T-Strategies. The strategy of uniformly resetting pheromone values to some
extent performs surprisingly well, considering that unaffected parts of the in-
stance are reset just as strong as those in the immediate vicinity of a change.
This might actually be one of the reasons why the Restart-Strategy performs
well: it also reoptimizes old parts of the tour after a partial reset, perhaps
enabling it to escape a local but not global optimum in this part of the in-
stance. This explanation is also supported by the good performance of the

86 4. DYNAMIC PROBLEMS

(t,Restart)-Strategy combination, which performs better than either of the
single strategies and at times better than the otherwise dominating n-Strategy.
Another advantage of the Restart-Strategy is that it is immediately applica-
ble to any problem which is dynamic in the same sense as DTSP, since no
problem-specific knowledge is needed.

Further future work for evaluating the three single strategies proposed also
includes asymmetrical TSP instances. For these, it is necessary to modify the
distances used by the n-Strategy, since the triangle inequality need no longer
hold, and the shortest path must be determined for the distance values. It is
likely that the n-Strategy will no longer perform as well in these scenarios as
it was for the Euclidean TSP instances. If an adequate neighborhood can be
constructed, it is also possible to apply the DT'SP strategies to other, non-T'SP
problems. For the Dynamic Vehicle Routing Problem, this has already been
performed in [Montemanni et al., 2003]. We plan to assess the applicability
to other problem classes in the future.

Keeping a repaired elitist ant was good for a marginally better solution in some
configurations for the - and Restart-Strategies, when changes were small and
frequent. The reason for this might be that a single good solution can be-
come quite bad after being repaired to encompass the changes to the problem
instance. Instead of only repairing the solution of the elitist ant, it could be
beneficial to maintain a population of good solutions from past iterations and
apply the repair mechanism to each of them, thereby increasing the likelihood
of a good solution being created. This trail of thought is the inspiration for a
new type of ACO called Population-based ACO (PACO), which we introduce
in Chapter 5.

Chapter 5

Population-based Ant Colony
Optimization

5.1 Motivation

In this chapter, we introduce a new type of Ant Algorithm, the Population-
based ACO (PACO), which is inspired in part by the DTSP in Chapter 4.
This algorithm maintains and updates a population of solutions instead of a
pheromone matrix. We evaluate the performance of the PACO on static as
well as dynamic problem instances.

The normal ACO algorithm, as described in Chapter 2, updates pheromone
values after each iteration and uses evaporation, i.e. multiplication with a
factor (1 — p) < 1, to gradually reduce the influence of previous updates.
This implies a strict chronological hierarchy in the importance of updates,
meaning that in any given iteration, the largest influence on the behavior
of the ants emanates from the updates in the previous iteration, the second
largest from the updates two iterations ago, and so forth. However, during
the run of an algorithm, these nuances between a series of updates is often not
very important. Rather, it is important that new information influences the
behavior of the ants to a large degree, regardless of when exactly during the
past few iterations it was found, and that old information has only little or
no influence during the tour construction. This is especially true in dynamic
problem instances which change over time.

In this chapter, we propose to maintain a population of solutions from which
the pheromone matrix is derived, and to perform all updates only on the
population instead of the matrix. The idea is that every solution in the popu-
lation is reflected by a corresponding update in the pheromone matrix, which

88 5. POPULATION-BASED ANT COLONY OPTIMIZATION

is undertaken when the solution enters the population. This update does not
diminish over the following iterations, i.e. no evaporation takes place. In-
stead, when a solution is removed from the population, a negative update
is performed along those pheromone values which previously received a pos-
itive update when the solution entered the population. The population size
has a constant upper bound, which means that whenever a solution enters a
(full) population, another must leave it. Effectively, this results in a one step
discretization of the evaporation process: for a number of iterations, a given
solution represented by its update to the pheromone matrix has a constant
influence on the ants’ construction process, and no influence thereafter.

We expect several advantages from this new update scheme. The pheromone
values no longer converge to a point where further exploration is impossible,
similarly to the MAX-MIN Ant System, see [Stiitzle and Hoos, 1997, 2000].
The pheromone matrix is also more versatile, since its values can change com-
pletely in the time it takes to replace the solutions in a population. The
discrete nature of the pheromone matrix makes it easier to understand its
structure at any time during the run of the algorithm. The updates to the
pheromone matrix, consisting of n additions and n subtractions, i.e. O(n)
operations, are also faster than for the evaporation case, where each matrix
element must be multiplied with (1—p), which takes O(n?) steps for problems
which use a quadratic pheromone matrix. Note that other methods with an
O(n) update time also exist, e.g. updating by an amount proportional to the
quality of the current solution in comparison to the average solution quality
over the past few iterations, as proposed in [Maniezzo, 1999].

Another advantage we perceive is that the PACO algorithm is specifically
designed to be able to handle dynamic problem instances via a repair function
for the individual solutions in the population. This repair function, which we
called KeepElitist for the DT'SP (see Subsection 4.2.5), modifies a solution for
the instance prior to the change, attempting to use the evaluation function
in such a way that the modifications result in a valid, high-quality solution.
If successful, it implies that the dynamic counterpart of any static problem
can be handled by PACO if the problem admits the application of a repair
function in the spirit of the KeepElitist strategy.

This chapter is based on previous work by the author in [Guntsch and Mid-
dendorf, 2002b,a]. Section 5.2 gives a formal implementation of how the phe-
romone matrix is derived from the population, and includes different ways of
updating the population. In Section 5.3, we test the PACO on static TSPs to
ascertain the performance of the new update scheme. Afterwards, in Section

5.2. IMPLEMENTATION 89

5.4, the PACO algorithm is tested in the environment that originally inspired
it, which is Dynamic Combinatorial Optimization Problems (see Chapter 4).
At the end of the chapter, we provide a summary and an outlook on future
work.

5.2 Implementation

The difference between PACO and standard ACO lies in the memory and
update mechanism; the solution construction remains identical to previously
given implementations in Chapters 2 and 3.

5.2.1 Population of Solutions

The PACO algorithm starts with an empty population P = () and a matrix with
initialized pheromone values, i.e. Vi,j: Tij = To. At the end of an iteration,
the best solution of the iteration 7" is added to the population, and, in case
this exceeds the maximum size k, i.e. if after the update |P| = k+ 1, a solution
o € P is removed. When a solution 7t is added to P, the pheromone matrix is
updated with a value of A along the solution, and, conversely, an update of
—A is performed along the elements implied by a solution ¢ that is removed
from P. Formally, PACO behaves as indicated in Algorithm 5.1.

It is also possible to derive the complete pheromone matrix from the popula-
tion, since the following equality holds for the pheromone values at all times:

Ty =To + A - [t € P(i,j) € m}| (5.1)

We denote the maximum possible value an element of the pheromone value
can attain in the PACO update scheme as

Tmax = To+A -k (5.2)

if the population size is bounded by k. Hence, all pheromone values are located
in the interval [T(, Tmax)- If Tmax iS used as a parameter of the algorithm instead
of A, we can derive

Tmax — T0
A= —"—""F— 5.3
x (53)

Note that the actual value used for Ty is arbitrary, since Tmax could simply
be scaled in accordance to achieve the same ratio and hence have the same
influence on the decision process. For reasons of clarity, we will continue to
use a pheromone initialization Ty which results in a row/column sum of 1 in

90 5. POPULATION-BASED ANT COLONY OPTIMIZATION

Algorithm 5.1 PACO algorithm
1: initialize pheromone values Ti; — To

2: initialize population P s ()

3: repeat

4: for each ant i € {1,..., m} do
5 initialize selection set S — {0,1,...,n—1}
6 let ant i construct solution 7;

7. end for

8: determine best solution of iteration 7"

9: add " to population P +— PU{n"}

10: for all (i,j) € 7" do

11: Ty — Ty + A

12: end for

13: if |[P| > k then

14: remove solution ¢ from population P— P\ o
15: for all (i,j) € 0 do

16: Tij — Tij — A

17: end for

18: end if

19: until condition for termination met

the pheromone matrix. As for the regular, evaporation based algorithm, the
update rule can also be modified to perform symmetric updates analogously
to Algorithm 3.2, p.35, which is used e.g. for Euclidean TSP instances.

So far, we have not described according to which criteria a solution o is cho-
sen to be removed from the population. The following subsections deal with
possible strategies for this removal.

5.2.2 Age-based Strategy

The easiest method for updating the population, which is also the original
one used in [Guntsch and Middendorf, 2002b], is an Age-based Strategy in
which the eldest solution is removed if the population becomes too large.
This strategy insures that each solution has an influence on the construction
process over exactly k iterations, after which it is removed from P.

5.2. IMPLEMENTATION 91

5.2.3 Quality-based Strategy

Instead of keeping the best solution of each of the past k respective iterations in
the population, another obvious strategy is to store the best k solutions found
over all past iterations. In this Quality-based Strategy, when the population
limit is exceeded, the worst solution in the population at that time, including
the solution that has just been added, is removed. Specifically, if the best
solution of an iteration 7" is worse than all solutions in the population, then
P effectively remains unchanged.

5.2.4 Probabilistic Quality-based Strategy

A disadvantage of the (deterministic) Quality-based Strategy is the possibil-
ity that after some iterations, P might consist of k copies of the best solution
found so far, which will happen if the best solution is found in k separate iter-
ations. In this case, the ants would be focused on a very small portion of the
search space, thus significantly hindering further exploration. To ameliorate
this deficiency of the Quality-based Strategy, we introduce a variation called
the Prob-based Strategy, which chooses which element from P to remove prob-
abilistically based on the quality of the solutions. Let f(7t) denote the solution
value associated with a solution 7t and let lower values of f indicate a higher
solution quality. With P ={my,..., 1}, we define a probability distribution

over the solutions m;, i=1,...,k+1:
pi = ﬁ with
xi = f(m)— jeﬁl,%cl}rl}f(nj) + avg(m) and
1k
avg(m) = 5 ; f(m) —_min ()

Figure 5.1 illustrates the transformation from the quality of a solution to its
probability of being removed from the population. As can be seen, any solution
from the population might be removed, and there is a strong preference to
remove bad solutions. As with the Quality-based Strategy, if m; = n™ € P is
chosen for removal, P received no effective update.

92 5. POPULATION-BASED ANT COLONY OPTIMIZATION

I\ I\
2| —
© >
= _ £
o I o -
>
= o
U) H
Solutions Solutions

Figure 5.1: llustration of the transformation from solution quality to

probability of elimination from the population.

5.2.5 Age&Prob Combination

It is possible to combine two of the above strategies, the Age-based and the
Prob-based one, to form a variation which closely resembles the Prob-based
Strategy. In the Age&Prob-based Strategy, we apply the Prob-based Strategy
to the population before the solution that would exceed the population limit
is added. This removes the possibility of the solution that has just been
added being immediately removed again, and therefore guarantees that the
new solution will have an influence on the algorithm’s behavior for at least
one iteration before it can be removed.

5.2.6 Elitism

Finally, we propose a method for employing elitism in the PACO update
scheme, which could be necessary since, depending on which strategy is used
for the removal of solutions from the population, it is possible that the best
solution found is lost after a number of iterations. We define 7t as the elitist
solution, i.e. as the globally best solution found by the algorithm so far during
this run, which is added to the population when elitism is employed. The
elitist solution is not subject to the removal strategies listed above; instead,
it can only be replaced by a better solution. When an elitist ant is used by
the PACO algorithm, it can be assigned an explicit weight w, € [0, 1], which
means that the elitist ant updates with a value A, = W, - Tmax and the k
normal members of the population each update with A = (1 — we) : Tmax/k.

5.3. EVALUATION ON STATIC PROBLEMS 93

5.3 Evaluation on Static Problems

The aim of this section is to establish the update scheme used in PACO as
a viable alternative to other, currently employed methods. To do this, we
compare the performance of PACO to that of the standard ACO and to an
implementation of the MAX-MIN AS to show that the performance achieved
by PACO is at least on the same level as that of the other two mentioned algo-
rithms. Note that we do not claim that our algorithm actually works better,
which would require some form of proof that the optimal parameter set for
each algorithm was tested. Rather, we run each of the algorithms with a num-
ber of sensible parameter settings which enable us to draw conclusions about
the characteristics of PACO. Before we explain our test setup, we introduce a
MAX-MIN Ant Algorithm and show how it differs from the standard ACO
algorithm. Also, we give a thorough definition of the Quadratic Assignment
Problem, which we use as one of our test problems later on.

5.3.1 A MAX-MIN Ant Algorithm

Since the pheromone values in the PACO algorithm are bounded, we want to
compare our algorithm with another version of Ant Algorithm which enforces
minimum and maximum pheromone values. We call this algorithm MAX-
MIN ACO, and it is based on the MAX-MIN Ant System introduced in
[Stiitzle and Hoos, 1997, 2000]. In our implementation, the MAX-MIN ACO
algorithm maintains a pheromone matrix exactly like the standard evaporation
based ACO algorithm. However, instead of using the immediate pheromone
values Ty; to construct the probability according to Equation 2.2, p.19, when
constructing a solution, the initial pheromone value Ty scaled by a parameter

@ > 0 is added:

(T + @ - To)* -}

D (tin+ - 10) b,
hes

Py = (5.4)

The modified pheromone values used by the ants lie in the interval [@ - 7o, 1+
@ - Tol, high settings for ¢ encouraging more exploration and less exploitation
to take place.

5.3.2 An ACO Algorithm for the QAP

The Quadratic Assignment Problem (QAP), described in [Koopmans and
Beckman, 1957], is an optimization problem in which facilities must be as-

94 5. POPULATION-BASED ANT COLONY OPTIMIZATION

signed to locations in such a way that the sum of distance-weighted flows over
all pairs of facilities is minimized. Formally, given a flow matrix F = [fj;] and
a distance matrix D = [di]-], each containing real values, the goal is to find the
permutation 7t which minimizes

fm) = > fiy - diymgy (5.5)

i j#

This equation takes O(n?) steps to evaluate.

As we mentioned in Chapter 2, a nodexnode representation of the pheromone
matrix is inadequate for the QAP, since facilities are assigned to locations
and no relationship exists between facilities independent of their locations.
Therefore, it makes sense for the algorithm to learn which location a facility
was assigned to, leading to a facility xlocation or, more generally, nodexplace
representation of the pheromone matrix. Algorithm 5.2 shows the solution
construction for such problems in which no restrictions exist for the assignment
order. Problems where such restrictions exist are usually scheduling problems,
where heuristic information is only available if jobs are scheduled consecutively
starting at the front. In such cases, instead of choosing a random place,
the algorithm should process them from the start and always proceed to the
following one.

After the construction process, the solution 7t contains all allocations of facili-
ties to locations, i.e. the facility j is assigned to place 7t(j). The notation (i,j) €
7t from Algorithm 2.1, p.24, therefore means (i,j) € {(1,7t(1))[l € [0,n — 1]}.

5.3.3 Test Setup

Our tests focus on the comparison between the PACO algorithm using the
Age-based Strategy and the standard ACO algorithm. We also run our tests
with the MAX-MIN Ant Algorithm described above. As test problems, we use
the TSP, which is a well suited problem to test modifications of the ACO meta-
heuristic since Ant Algorithms are known to perform well on this problem.
On the other hand, we also wish to gauge the effect of the limited pheromone
information available to the ant algorithm, particularly when no heuristic
guidance is used or available. Therefore, we use the Quadratic Assignment
Problem (QAP) as a second problem. Specifically, the performance on the
following T'SP and QAP instances is analyzed:

e Instances from the [TSPLIB, 2003]:

5.3. EVALUATION ON STATIC PROBLEMS 95

Algorithm 5.2 Solution construction by ant 1 for nodexplace problems
1: Initialize set of unassigned places X ={0,...,n—1}
2: while X # () do
3: randomly draw unassigned place i €g X

4: update unassigned places X — X\ {i}
5: randomly draw q € [0, 1]
6: if q < qp then
7: choose j = arg max T, - n?.
hes !
8: else
9: choose j according to probability distribution
B
T i
Py = =
Z Tlh.) T]]_h
hes
10: end if

11: remove j from selection set S — S\ {j}
12: set m(j) =1
13: end while

— eil101, 101 cities, symmetric (Euclidean)

kroA100, 100 cities, symmetric (Euclidean)

d198, 198 cities, symmetric (Euclidean)

— kro124p, 100 cities, asymmetric

ftv170, 170 cities, asymmetric

e Instances from the [QAPLIB, 2003]:

— wilbO0, size 50, symmetric distances
— will00, size 100, symmetric distances

— tail00a, size 100, asymmetric

tail00b, size 100, asymmetric

For the standard ACO algorithm, we couple evaporation rates of p = 0.1,0.05,0.02,0.01,0.005
with a maximum number of iterations t = 2000, 5000, 10000, 20000, 50000, re-

spectively. These runtimes allow for a form of convergence, meaning no further

improvement to solution quality if the algorithm were to continue running, in

practically all cases.

96 5. POPULATION-BASED ANT COLONY OPTIMIZATION

As stated above, we use only the Age-based Strategy for deciding which solu-
tion to remove from the population when using PACO. The reason for this is
that PACO behaves most like the other algorithms when this strategy is used,
and our focus is on determining how the discretization and higher mobility
of the pheromone values affects algorithmic behavior rather than testing the
population update strategies at this point. The different update strategies are
compared later in Section 5.4.

The other parameters for the PACO algorithm that are evaluated are Tpax €
{1,3,10} (note that for the symmetric TSP instances, the actual maximum
pheromone value is Tmax/2 because of symmetric updating) and population
sizes k = 1,5,25. Since no convergence occurs due to the nature of the update
strategy in PACO, all combinations are run for t = 50000 iterations.
Similarly to PACO, the MAX-MIN Ant Algorithm also does not converge and
is therefore run for t = 50000 iterations. To perform a meaningful comparison,
we set the scaling factor ¢ to such values that the ratio between maximum
and minimum attainable pheromone values is the same as for PACO, i.e. we

V= Tmax/To. For evaporation rates, we

set @ €{0.1,0.3,1} to achieve (@ -To) "
use a spectrum of values p € {0.01,0.05,0.25}.

The other variable parameters tested are qo € {0,0.5,0.9} and an elitism weight
we € {0,0.25,0.5,0.75,1}. The elitism weight w, < 1 is simply the relative
amount of updating performed by the elitist ant, leaving (1 —w,) for the best
ant of the iteration or the population respectively. We introduce this addi-
tional parameter to better understand how large an influence elitism should
have, particularly for PACO with Age-based removal.

The constant parameters for all three ACO algorithms are m = 10 ants per
iteration, o« = 1, and, for the TSP, =5 and 19 = 1/(n—1). For QAP, where
we intentionally make no heuristic information available, we effectively have
[} = 0 and, since QAP has a jobxplace encoded matrix where the diagonal
is not set to 0, an initial pheromone value of 1o = 1/n. The results in the
following section are the averages over 10 different random seeds for each
combination.

5.3.4 Comparison of PACO with standard ACO

In order to determine whether the PACO algorithm is a competitive alterna-
tive to the standard one, we rank the different parameter combinations (210
altogether, 75 for the standard and 135 for the Population-based ACO al-
gorithm) according to their average performance on the individual problem

5.3. EVALUATION ON STATIC PROBLEMS 97

instances. From these instance specific ranks, we take the averages for the two
problem classes to generate one class-specific rank for each parameter combi-
nation. Of course, this method cannot be used for a detailed comparison of
solution quality, but the statement “a better average rank implies at least as
good as a performance on average” holds, enabling us to ascertain whether the
PACO algorithm is competitive. Tables 5.1 and 5.2 show the average ranks
of the best respective parameter combination for the standard ACO and for
PACO after a different number of iterations and for different values of p. The
number of iterations used in the tables are to = t/100, t; = t/50, t, = t/25,
t3 =t/10, t4 =t/5, t5 = /2.5, and tg = t.

Table 5.1: Average ranks for standard ACO and PACO on TSP

to t t 13 ty ts5 ts
0 =0.1 Standard | 27 | 34.8 | 50.6 | 57 77 | 89.4 | 101.6
' PACO 9 17.8 | 16.8 | 19.4 | 20.2 | 16.2 14
Standard | 47.4 | 50.6 | 49.4 | 4.2 | 71.8 | 85.2 | 92.6
p=0.05 PACO 18.8 | 18.0 | 19.6 | 19.2 | 16.6 | 14.4 | 11.6
0 = 0.02 Standard | 65.2 | 64.4 | 47.8 | 43.2 | 53 | 62.2 | 77.4
' PACO 17.8 | 19.8 19 17 | 15.2 | 11.8 | 13.6
0 = 0.01 Standard | 69.2 | 68.2 | 48 | 43.4 | 55.8 | 61 69.8
' PACO 18.6 | 18.4 16 154 | 11.6 14 14.6
Standard | 75.2 | 66.2 | 48.6 | 1.2 | 8.2 | 64.2 | T1.6
p=0.005 PACO 17.2 | 15.8 | 14.8 | 12.2 | 13.6 15 18.8

For both tables, with the exception of using p = 0.005 at time t5 for QAP,
the best combination of parameters for the PACO algorithm always achieves
a better average rank than the standard ACO algorithm for any t;, indicating
that it’s performance is indeed competitive.

The average rank (for all t;) over all parameter combinations is 66.5 for TSP
and 53.2 for QAP. The tables show that the average rank of the best param-
eter combination is significantly lower for both the standard ACO and the
PACO algorithm on QAP than on TSP. This seems to indicate that more of
a distinction between good and bad parameter sets can be made for QAP,
whereas for the T'SP the different parameter combinations perform closer to
one another in terms of quality. Also the use of a heuristic for TSP might
result in a more similar behavior of the different parameter combinations.

98 5. POPULATION-BASED ANT COLONY OPTIMIZATION

Table 5.2: Average ranks for standard ACO and PACO algorithm on

QAP
to t t t3 t4 t5 te

Standard | 27.4 | 25.8 | 144 | 4.6 | 2.4 | 6.6 | 25.8

P=01" paco | 4 |a2| 3 | 36 |36|42] 52

Standard | 382 | 262 | 17 | 7 | 5 |86 | 274

P=005" prco | 28 | 34| 26| 32 |52]|58] 52
Standard | 40.8 | 416 | 282 | 158 | 8 | 7 | 17

P=002 5100 | 34 | 26 | 26 | 48 | 58|58 | 62
Standard | 46.8 | 44.6 | 31.8 | 196 | 82| 7 | 18

P=001" pico | 26 | 26 | 36 | 52 | 56|62 74
Standard | 44.8 | 418 | 31.2 | 14 | 9 | 3 | 148

P=000> prco |22 | 44| 5 | 56 64|78 72

Another effect is that for TSP, the best parameter combination seems to be
more instance-specific than for QAP.

Note that for any row in Tables 5.1 and 5.2, the combination of parameters
that is best does not necessarily stay the same. Instead, it undergoes a charac-
teristic development depending on at what time t; best performance is sought.
Tables 5.3 and 5.4 give examples for the parameter-development of the best
combinations that takes place in such a row for the T'SP and QAP respectively.
For the standard ACO algorithm, the typical development toward parameters
that focus more on exploration than on exploitation when given ample time
can be seen with declining qo and we, for T'SP as well as QAP.

For the PACO algorithm, the situation is less clear. For TSP, all best com-
binations from Table 5.1 use population size k = 1, which means that the
only guidance for the ants of a given iteration are the solutions of the elite
ant and of the best working ant from the previous iteration, and the heuristic.
It seems that the ability to quickly explore the neighborhood of a promising
solution (last iteration’s best), combined with a drive toward the best solu-
tion found so far and a strong heuristic influence to prevent choices that seem
drastically bad, works best. Of the best five PACO combinations for the sce-
nario of Table 5.3, four use population size k = 1 and one k = 5. An elite
weight we € {0.25,0.5,0.75} is also used by all these combinations, suggesting
that some degree of enforcement of the best solution found so far is beneficial.
These traits are combined with qop = 0.5 and at first T,.x = 3, replaced by

5.3. EVALUATION ON STATIC PROBLEMS

99

Table 5.3: Parameter-development over time for the best respective
combinations on TSP (top 3 rows for standard ACO algorithm, bottom

four for PACO), p = 0.01.

p=0.01| 200 | 400 | 800 | 2000 | 4000 | 8000 | 20000 |

do 0.5 | 0.5 0 0 0 0 0
We 0.75 | 0.75 | 0.75 | 0.5 0.5 | 0.25 | 0.25
Tmax 1 1 1 1 1 1 1
do 05 | 05 | 05 0.5 0.5 0.5 0.5
We 0.25 025 | 025 | 025 | 0.25 | 0.25 | 0.25
Tmax 3 1 1 1 1 1 1

k 1 1 1 1 1 1 1

Table 5.4: Parameter-development over time for the best respective
combinations on QAP (top 3 rows for standard ACO algorithm, bottom

four for PACO), p = 0.01.

p=0.01| 200 | 400 | 800 | 2000 | 4000 | 8000 | 20000 |

o 00 | 05 |05] 0 0 0 0
We 1 |075| 1 | 075 | 05 | 025 | 0.25
Tomax 1 1 1 1 1 1 1
o 05 |09 |09] 09 | 09 | 09 | 009
We 0.75 | 05 [05| 05 | 05 | 0.75 | 0.75
Tmax 10 3 10
k 1 25 1

Tmax = 1 after t;. The parameter settings qo = 0.9 and Tpax = 10 achieve a
similar effect in the PACO algorithm, both determining how likely it is that
an ant will choose the best (qo) or one of the best (Tyax) choices according

to pheromone and heuristic information. The medium qg value and low Tyax

indicate that deviating often from the best path found so far produces good

results.

For QAP, the parameter combinations which performed well are somewhat dif-

ferent from those for TSP. The only similarity is the strong guidance provided
by an elite ant with w, € {0.5,0.75}. However, both a higher qo and a higher

100 5. POPULATION-BASED ANT COLONY OPTIMIZATION

Tmax Value suggest that it is beneficial to stay closer to the best assignment(s)
encoded in the pheromone matrix. Also, the larger population size of k =5
and once even k = 25 point out that a greater diversity in solutions encoded
into the matrix is helpful. The probable reason for this is the absence of a
heuristic to guide the ants when a strong pheromone trail is not available.

5.3.5 Comparison of PACO with MAX-MIN Ant Algorithm

In order to compare the PACO algorithm with the MAX-MIN Ant Algorithm
proposed in Subsection 5.3.1, we also use a rank-based comparison as above in
Subsection 5.3.4 (altogether 84 different parameter combinations, 45 for the
Max-Min and 39 for the PACO algorithm).

Table 5.5: Average ranks for Max-Min and PACO algorithm on TSP

500 | 1000 | 2000 | 5000 | 10000 | 20000 | 50000
Max-Min 20.6 | 14.6 | 21.6 14 22.3 17.3 17
PACO 2.6 46 | 11.6 | 11.3 | 10.6 11.3 12.6

Table 5.6: Average ranks for Max-Min and PACO algorithm on QAP

500 | 1000 | 2000 | 5000 | 10000 | 20000 | 50000
Max-Min 18.5 | 17.5 14 13 11 8.5 8
PACO 12 | 135 13 9 4.5 7.5 10

Tables 5.5 and 5.6 show the average rank of the best parameter combination
for the PACO and MAX-MIN Ant Algorithm for TSP and QAP respectively.
The main observation than can be made is that for all cases but one (QAP after
50000 iterations), the average rank of the PACO algorithm is lower than that
of the MAX-MIN Ant Algorithm, indicating that the former's performance is
at least as good as the latter’s. This suggests that the solution quality which
is achieved by the PACO algorithm is not only due to the implicit minimum
and maximum pheromone values, but also to the quick adaptation a small
explicit population of solutions is able to perform.

5.4. EVALUATION ON DYNAMIC PROBLEMS 101

5.4 Evaluation on Dynamic Problems

Having established that the PACO algorithm works at least as well as the stan-
dard ACO meta-heuristic on some static problem instances in Section 5.3, we
turn our attention to the dynamic problem instances which originally inspired
the modified update scheme in PACO. When a change occurs to a problem
instance, PACO reacts by repairing all solutions in the population with the
mechanism introduced as the KeepElitist strategy in Subsection 4.2.5. The
new pheromone matrix is derived from the repaired population via Equation
5.1. In addition to the DTSP introduced in Chapter 4, we also test the PACO
algorithm on a dynamic variant of the QAP, which we explain below.

5.4.1 Dynamic Quadratic Assighment Problem

In the Dynamic Quadratic Assignment Problem (DQAP), the locations that
facilities are assigned to can spontaneously change their position. When a
change occurs to a DQAP instance, the following repair mechanism is applied
to the current solutions. The facilities corresponding to the altered locations
are reassigned sequentially to the new positions in such a fashion that the
deterioration in solution quality resulting from each individual assignment is
minimized. For the DQAP, this process is more computationally expensive
than the repair mechanism for the DTSP, requiring O(n) steps for a reassign-
ment for the DQAP compared to a constant number of calculations for the
DTSP.

5.4.2 Test Setup

The DTSP test setup is practically identical to the one used in Section 4.5 for
analyzing the pheromone modification strategies proposed for an evaporation
based ACO algorithm. From the TSP instance rd400 with 400 customers
taken from the [TSPLIB, 2003], 200 random customers are removed to form
a spare pool before the algorithm starts. While the algorithm is running,
k € {1,5,25} random customers are exchanged between the instance and the
spare pool every t € {50,200, 750} iterations. Note that we do not examine the
difference between exchanging completely random and more clustered groups
as we did in Section 4.5. Thus, there are 9 DTSP scenarios (c,t) which we
analyze.

For the DQAP, we take the instance tai150b from the [QAPLIB, 2003] which
consists of 150 facilities and locations, and proceed similarly as for the DTSP.

102 5. POPULATION-BASED ANT COLONY OPTIMIZATION

75 random locations are removed before the start of the algorithm and from a
spare pool, and while the algorithm is running, k € {1,5, 15} random locations
are exchanged between the instance and the spare pool every t € {50, 200, 750}
iterations, resulting in 9 scenarios as for the DT'SP. Note that since the spare
pool is of size 75 and not 200 as for the DTSP instance, we limit the change
severity to 15 locations instead of 25. For all runs, the first 75 facilities in
tail50b were used.

The parameters of the PACO algorithm are chosen in accordance with the
results in Section 5.3 and some preliminary testing. For both the DTSP and
the DQAP, qp = 0.9 and « = 1 was used for the decision rule, while 3 =5
is used exclusively for the DT'SP since no heuristic is utilized for the DQAP.
This implies another different setting, namely the maximum pheromone value,
which is set to Tmax = 1 for the DTSP and Tpnax = 5 for the DQAP, which
requires more pheromone induced guidance due to the absence of heuristic
values. We explore all the proposed strategies for the removal of solutions from
the population, i.e. Age-based, Quality-based, Prob-based, and Age&Prob-
based, with population limits of k € {1,3,6,10}. Note that for k = 1, Age-
based and Age&Prob-based removal are identical. We also evaluate the effect
of elitism by having one of the individuals in the population represent the best
found solution, leaving k — 1 solutions to be managed by the chosen strategy.
We also analyze the effect of elitism. However, in order to make the comparison
between the strategies using elitism and not using elitism fair, we subtract 1
from the maximum population size k when employing elitism to reflect the
additional solution. Otherwise, the algorithms with elitism would have a larger
population and therefore a greater chance of having a good repaired solution
in the population after a change. By proceeding in this fashion, when k =1,
using elitism for any strategy is the same as using Quality-based removal
without elitism. The elitist weight is 1/k, meaning that the elitist solution
has the same influence on the pheromone matrix as the regular solutions.

For each of the scenarios (c,t), 25 random instances were created. The results
in the following section are based on the integral performance, i.e. the average
achieved solution quality, over 9000 iterations, averaged over the 25 random
seeds. For comparison, we measure the performance of a strategy which does
not repair the solutions in the population but rather restarts the algorithm
each time a change occurs. For this, we use PACO with the best performing
configuration on static TSP and QAP, which is Age-based removal with k = 1.

5.4. EVALUATION ON DYNAMIC PROBLEMS

103

5.4.3 Results

1/Frequency 1/Frequency 1/Frequency 1/Frequeng
50 200 750 50 200 750 50 200 750 50 200 79
z1 21 |+ =1 [+ + 21 |+|+
D) £ £ £ £
2 35 35 35 3 5 +
< n n n n
25 25 25 25
1/Frequency 1/Frequency 1/Frequency 1/Frequeng
50 200 750 50 200 750 50 200 750 50 200 79
> 2t 21 21 Xt + B
= 5] 5] 5])
B 25 35 g5 o+ +
> n n n n
Oi 25 25 25 25 -+
1/Frequency 1/Frequency 1/Frequency 1/Frequeng
50 200 750 50 200 750 50 200 750 50 200 79
21 21 | ++ 21 |+ 21+ + |+
8 g £ £ £
o B° 35 + 35 25 +
o n n n n
25 25 25 25
O 1/Frequency 1/Frequency 1/Frequency 1/Frequeng
(@) 50 200 750 50 200 750 50 200 750 50 200 79
< 21 21 + 21 |[++ zi+|++
2 % s | |+ 25| |+ s |+
(@) n n n n
— 25 25 25 25
o
0.0% 1.0-1.5% 2.5-3.0% 4.0-4.5%
0.0-0.5% 1.5-2.0% 3.0-3.5% 4.5-5.0%
0.5-1.0% 2.0-2.5% 3.5-4.0% >5.0%

Figure 5.2: Relative deviation from the respective best solution by the
individual configurations for T'SP is shown. A “+” indicates that the
use of elitism leads to better performance; otherwise, not using elitism

performs better.

The Figures 5.2 and 5.3 show the resulting quality of the PACO algorithm for
the DTSP and DQAP respectively. All scenarios and parameter combinations
proposed in the test setup in Subsection 5.4.2 used with the repair of the
solutions in the population are covered. The interpretation of the figures is
the same as for the previous Figures 4.9 and 4.10 in Chapter 4. Basically, the
lighter a square is in these two figures, the better the relative performance of

104 5. POPULATION-BASED ANT COLONY OPTIMIZATION
1/Frequency 1/Frequency 1/Frequency 1/Frequeng
50 200 750 50 200 750 50 200 750 50 200 79
2l == — 21 21 21
L G 5 5 5
2 g5 |— = 35 g 5 35
< n (] n n
25| == | - 25 25 25
1/Frequency 1/Frequency 1/Frequency 1/Frequeng
50 200 750 50 200 750 50 200 750 50 200 79
2 21 21 21 21
—_— (3] 3] 3] (] |
® 35 3o 3> 35
> n (] n n
OJ 25 25 25 25
1/Frequency 1/Frequency 1/Frequency 1/Frequeng
50 200 750 50 200 750 50 200 750 50 200 79
21 21 21 21
Q 3 T 5 5
(@) > > 5 > g > 5
Pl [Q Q Q
o n (] n n
25 25 25 25
O 1/Frequency 1/Frequency 1/Frequency 1/Frequeng
(@) 50 200 750 50 200 750 50 200 750 50 200 79
< 1= == 21 >1 21
3 @ 5 5 5
o]) —_— - 55 35 25
(@) n n n n
— 25| m— | — 25 25 25
o
0.0% 1.0-1.5% 2.5-3.0% 4.0-4.5%
0.0-0.5% 1.5-2.0% 3.0-3.5% 4.5-5.0%
0.5-1.0% 2.0-2.5% 3.5-4.0% >5.0%

Figure 5.3: Relative deviation from the respective best solution by
the individual configurations for QAP is shown. A “” indicates that
not using elitism leads to better performance better; otherwise, using
elitism performs better.

the indicated configuration on the corresponding scenario. The best configu-
ration always has a white square, and any configuration that performs more
than 5% worse than the respective best is colored completely black. In addi-
tion to the shading, some of the squares in Figure 5.2 exhibit a “+” sign. This
is used when employing elitism in combination with the indicated configura-
tion leads to a better solution than the omission of elitism, which for DT'SP
performs better in the majority of cases, i.e. all those not marked with “+”. A
similar approach was taken in Figure 5.3. However, for DQAP, in most cases

5.4. EVALUATION ON DYNAMIC PROBLEMS 105

the use of elitism leads to better solutions, and hence a “-” is shown when the
omission of elitism performs better.

(25,50)-Comparison of best Population Sizes and Elitism (25,750)-Comparison of best Population Sizes and Elitism
14200 : : : : : . ; 14500 : : : : ; : ;
Age, k=3, no Elite — Age, k=3, no Elite ——
14000 | Prob&Age, k=3, no Elite -] Prob&Age, k=3, no Elite -
Prob, k=3, no Elite ---- 14000 Prob, k=3, no Elite - |
13800 | Quality, k=10, no Elite 1 Quality, k=6, with Elite
13600 | . L o 4 13500 1
£ £
213400 = 1
s &13000,
213200 ¢ 2
= | = :
13000 i, 12500 f\
12800
\ 12000 -
12600
12400 11500
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Iteration Iteration

Figure 5.4: Comparison of strategies in (25,50) and (25,750) scenarios
for TSP (integral performance, i.e. average over all iterations from the
first to the actual).

(15,50)-Comparison of best Population Sizes and Elitism (1,750)-Comparison of best Population Sizes and Elitism
1.5e+08 ——— : ; ; ; ; P — 1.38e+08 = ; ; ; ; E—
Age, k=3, with Elite —— B Age, k=3, with Elite ——
1.495e+08 Prob&Age, with Elite - R Prob&Age, k=3, with Elite -
2 rob, k=3, with Elite - 21.36e+08 L K Prob, k=3, with Elite - |
E 1.49e+08 Quiality, k=3, with Elite 3 Quality, k=3, with Elite
¥ °
%4859‘*08 i £1.34ev08 1
-g 1.48e+08 -g
al.475e+08 w1.32e+08
g g
< S
i 1.47e+08 @ L 30408
+08 [
S 465e+08 o he
o o
£ €
E1.46ev08 £ 26e+08]
1.455e+08
1.45e+08 1.26e+08
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Iteration Iteration

Figure 5.5: Comparison of strategies in (15,50) and (1,750) scenarios
for QAP (integral performance, i.e. average over all iterations from the
first to the actual).

As mentioned above, for DTSP, most configurations perform better when not
combined with elitism. Specifically, the best solution for each scenario is found
by a configuration that does not employ elitism. It should be noted that
even when the use of elitism creates a better solution, the improvement is
typically less than 0.5%. The cases in which configurations benefit most from
using elitism are when only small changes occur to the problem, thus making
it likely that the modified best solution would still represent a very good
solution, and when population size is not too small and there is enough time
to do exploration beside exploitation of the elite solution in the population.

106 5. POPULATION-BASED ANT COLONY OPTIMIZATION

The two best configurations however, which are Age-based and Prob&Age-
based update with k = 3, exhibit best performance when not using elitism.
The Quality-based Strategy performs poorly for most of the scenarios and
population sizes, especially when frequent and severe changes occur. Indeed,
in these cases, the Quality-based strategy performs increasingly bad over time,
with the often and extensively repaired previous best solutions causing a focus
on an area of the search space with bad solution quality, see Figure 5.4. The
reason for this behavior is probably due to the combination of strong and
usually good heuristic values with the deterministic fashion of holding only
the best solutions, which effectively obstructs further exploration.

For DQAP, the behavior of the individual configurations is different from
DTSP in some ways. Here, all configurations with k > 1 benefit from elitism,
and even some with k = 1 (effectively turning them into a Quality-based up-
date strategy). Judging from the good performance of the configurations with
k = 1 and the Quality-based Strategy for larger sizes of k as well, it seems
that the ants require a strong and not too variable guidance when looking
for good solutions, with the quick convergence behavior of a small population
size outweighing the better handling of changes to the problem instance by
a larger population. For small populations, the difference between the indi-
vidual configurations is not very large, which can be seen for 2 representative
scenarios in Figure 5.5. Recall that these curves show integral performance,
which explains why the values are still falling noticeably at the end of 9000 it-
erations. The only strategy which performs significantly worse than the others
is Prob-based removal, which has neither the flexibility exhibited by the Age-
based update in exploring new areas of the search space nor the persistence
of the Quality-based Strategy in exhaustively exploiting the surroundings of
a good solution.

So far we have only examined how the dynamic strategies compare to one an-
other. The easiest method for dealing with any dynamic problem is of course
to simply restart the algorithm. If this method proves more successful than
integrating the changes into an ongoing optimization process, the integration
is superfluous. Figure 5.6 shows the integral performance for the PACO algo-
rithm using the Age-based population update and k = 1 (which is one of the
best configurations for using restart).

One can see that restarting performs vastly inferior to integrating the changes,
for DT'SP as well as DQAP. However, restarting starts becoming competitive
in DTSP when the changes to the instance become too great and/or when
the change interval is long enough. For DQAP, the shades are darker than

5.4. EVALUATION ON DYNAMIC PROBLEMS 107

TSP QAP
1/Frequency 1/Frequency
— 50 200 750 50 200 750
1l 21 21
X % ®
3> i)
% cn w

0.0% 1.0-1.5% 2.5-3.0% 0-4.%
0.0-0.5% 1.5-2.0% 3.0-3.5% 5-5.(%
0.5-1.0% 2.0-2.5% 3.5-4.0% 0%

Figure 5.6: Solution quality when restarting PACO on DTSP and
DQAP, compared to the best performing configuration which incorpo-

rates the changes.

for DTSP, indicating that the necessary change severity and duration between
changes must be even larger in order for restarting to perform on the same
scale.

1, 50) Comparlson between ETA-2 and Prob&Age-3 Strateg|es
11500

ETA2 —
Prob&Age-3 -

11450 |

11400 |

Tourlength

11350

11300 |

U2505—2—35 15 20 25 30 35 40 45 50
Iteration

Figure 5.7: n-Strategy with Ag = 2 compared to Prob&Age with k = 3.

In Chapter 4, we introduced modifications for the standard, evaporation based
ACO meta-heuristic to enhance the performance on the DTSP. We use the
(c,t) = (1,50) scenario given in Figure 5.7 to compare the two approaches.
The best evaporation based ACO strategy that was studied in Section 4.7 for
this scenario is the n-Strategy with Ag = 2; for PACO, we use Prob&Age with
k = 3. The figure shows the characteristic difference between the strategies for
the evaporation based ACO and PACO in general. There is a comparatively
large loss of solution quality by the n-strategy after a change, followed by
fast improvement, while the Prob&Age-strategy shows small solution deteri-

108 5. POPULATION-BASED ANT COLONY OPTIMIZATION

oration and slow improvement. The integral performance by the Prob&Age-
strategy is only slightly worse than that of the n-strategy, which, considering
the n-strategy is DT'SP-specific, is quite promising.

5.5 Summary and Outlook

The Population-based Ant Colony Optimization (PACO) meta-heuristic is a
new type of Ant Algorithm, which maintains a population of solutions from
which pheromone information can be derived rather than an explicit phero-
mone matrix. We have shown for a number of static instances from the T'SP
and QAP problem classes that PACO performs at least as well as the regular
ACO, and also at least as well as a MAX-MIN Ant Algorithm. For the TSP,
where good heuristic information exists, a very small population is necessary
for the algorithm to perform well, often consisting of only a single solution.
For the QAP, the best-performing population size increases to 5, which is plau-
sible since no heuristic information is available, and the algorithm must rely
on previous samples of the solution space. Regardless, the maximum popula-
tion value, which was 25 in our tests, performed significantly worse than the
smaller populations in all test instances, indicating that for PACO, the popu-
lation should always be relatively small, especially when heuristic information
is present. The comparison with the MAX-MIN Ant Algorithm showed that
not only does the PACO algorithm benefit from minimum or maximum phe-
romone values, but also from the versatility of the population, which can move
to new areas of the solution space more quickly than the conventional ACO.
On the dynamic problem instances, again the small populations outperformed
the larger ones, even though the large populations have a higher potential for
good solutions to be present in the repaired population after a change. The
repair mechanism itself is successful, performing significantly better than a
restart of the algorithm with an empty population. For the DTSP, the high
quality heuristic information makes keeping an explicit elitist ant superfluous,
and the Quality-based Strategy for maintaining the population also performs
badly. For the DQAP, the opposite is true. Since no heuristic information is
available, it is essential to maintain the elitist solution, either separately or
through the Quality-based update strategy.

The PACO algorithm holds great potential for future work. Since the PACO
algorithm maintains a population of solutions, it can work together with other
algorithms that manage such a population, like Genetic Algorithms (GA) [Hol-
land, 1975, Goldberg, 1989], Population Based Incremental Learning (PBIL)

5.5. SUMMARY AND OUTLOOK 109

[Baluja, 1994, Baluja and Caruana, 1995], or Asynchronous Teams (A-Team)
[Murthy, 1992, Souza, 1993]. First steps in this direction, specifically using
PACO as a crossover operator for a GA on the TSP, have been undertaken
by [Branke et al., 2003] with great success, and we believe that further work
could highlight the similarities and differences of these population driven ap-
proaches.

Another area of research for PACO is the implementation in hardware. Due
to the discrete nature of the population and the induced pheromone values,
PACO is better suited for a hardware implementation, where floating point
numbers are notoriously expensive in terms of computational complexity. In-
deed, with the hardware implementation given in [Diessel et al., 2002], the
PACO algorithm with a constant population size and working without heuris-
tic information can be implemented in such a way that the generation of an
entire solution takes only O(n) steps. Together with the parallel generation
and evaluation of solutions, this makes the hardware implementation several
orders of magnitude faster than current software implementations on a se-
quential PC.

Another field where PACO has an advantage over the normal ACO due to its
structure is Multi-Criteria Optimization (MCQO), where the search process is
focused on a number of solutions, the so-called Pareto-front, instead of just
one. We analyze the applicability of PACO on MCO in detail in Chapter 6.

110 5. POPULATION-BASED ANT COLONY OPTIMIZATION

Chapter 6

Multi-Criteria Optimization

6.1 Optimizing more than one Objective

Most work on combinatorial optimization problems deals with the optimiza-
tion of a single objective. For many real-world problems optimizing only a
single criterion is a valid approach, especially when either no other objectives
exist or their impact on solution quality is negligible. However, for many
optimization problems, a number of objectives exist, perhaps even conflict-
ing ones, that should all be optimized. Some examples for this are portfolio
optimization, where one attempts to simultaneously minimize the risk and
maximize the fiscal return, bridge construction, where a good design is char-
acterized by low total mass and high stiffness, and some machine scheduling
problems, where both the total tardiness over all jobs and the sum of setup
costs between consecutive jobs should be minimized. Once more than one
objective needs to be considered, there will usually no longer exist a single
globally optimal solution, but rather a number of solutions, none of which is
better than another in all objectives, i.e. none of which is dominated by an-
other solution. These solutions make up the Pareto-optimal set of solutions,
and the aim of Multi-Criteria Optimization (MCO) is to find or approximate
all solutions in this set.

Numerous deterministic methods for solving MCO problems have been sug-
gested. One of the most intuitive is to reduce the multiple optimization
objectives to a single objective by assigning weights w; > 0 to the indi-
vidual objective functions f; and finding the solution 7 which minimizes
F(m) =) ;wj - fi(mr). This technique requires the user to choose weights
that reflect his preferences, and, if the global optimum is found, leads to a
(single) solution from the set of Pareto-optimal solutions. A drawback to this

112 6. MULTI-CRITERIA OPTIMIZATION

method is its inability to cope with problems that have a set of Pareto-optimal
solutions which are concave in the objective space, see [Das and Dennis, 1997].
In Goal Programming [Ignizio, 1976, Schniederjans, 1995], only one objective
is minimized while the others are constrained to remain above a given lower
bound or beneath an upper bound. Again, only a single solution is generated.
If the objectives can be ordered by importance, then using Multilevel Pro-
gramming [Bracken and McGill, 1973, Candler and Norton, 1977] is possible.
At first, all solutions which are optimal with respect to the most important
objective are sought. Then, In this set, all solutions optimal according to the
second criterion are identified, and the reduced set is analyzed with respect
to the third criterion, and so forth. The algorithm ends either before all ob-
jectives have been considered and only one solution is left, or after the last
objective has been processed. All of the methods mentioned above can be used
to generate multiple solutions via multiple passed by changing the parameters,
goals and optimization objective, and hierarchy respectively. However, this is
a very tedious process, and, depending on the shape of the surface defined by
the set of Pareto-optimal solutions, will not be able to find all solutions.

Evolutionary Algorithms (EA) have also been used extensively for solving
MCO problems, see [Deb, 2001, Coello et al., 2002] for an overview. Since
EAs maintain a population of solutions from which new solutions are derived,
they are an intuitive choice for this type of problem, where a set of solutions is
sought. Most MCO problems to which EAs are applied are real-valued, which
is a problem domain that is currently inaccessible to Ant Colony Optimization.
Recently, Ant Colony Optimization (ACO) has also been used for finding
solution to MCO problems where the solution is either represented by a binary
vector or a permutation. In most of the earlier work, it is assumed that
the optimization criteria can be weighted by importance, similarly to the
Multilevel Programming approach. [Mariano and Morales, 1999] propose a
multi colony ACO approach where for each objective there exists one colony
of ants. They study a problem where every objective is influenced only by
parts of a solution: an ant from colony 1 receives a (partial) solution from the
ants of colony i — 1 and then tries to improve or extend this solution with
respect to criterion i. A final solution that has passed through all colonies is
allowed to update the pheromone information if it is part of the current non-
dominated front of solutions found by the algorithm. [Gambardella et al.,
1999b] introduce an ant algorithm for a bi-criterion vehicle routing problem
where they also use one ant colony for each criterion. Criterion 1 (the number
of vehicles) is considered to be more important than criterion 2 (the total

6.1. OPTIMIZING MORE THAN ONE OBJECTIVE 113

travel time of the tours). The two colonies share a common global best solution
which is used for pheromone update in both colonies. Colony 1 tries to find a
solution with one vehicle less than the currently best solution, while colony 2
tries to improve this solution with respect to criterion 2 under the restriction
that the number of vehicles needed does not increase. Whenever colony 1 finds
a new global best solution both colonies start anew (with the new global best
solution). In [Gagné et al., 2000], a multi-criterion approach for solving a single
machine total tardiness problem with changeover costs and two additional
criteria is tested. In their approach the changeover costs are considered to
be most important, and although heuristic values that take all criteria into
account are used by the ants, the amount of pheromone that an ant adds to
the pheromone matrix depends solely on the changeover costs of the solution.
A similar approach is used in [Gravel et al., 2002] for a four criterion industrial
scheduling problem.

In [Doerner et al., 2001c,b], a method for solving a transportation problem
is proposed where the aim is to minimize the total costs by searching for
solutions that minimize two different criteria. The general approach is to use
two colonies of ants where each colony concentrates on a different criterion by
using different heuristics. In [Doerner et al., 2001c] one criterion is considered
to be the main criterion. Every k iterations, the master population which
minimizes the main criterion updates its pheromone information according to
the good solutions found in the slave population, which minimizes the minor
criterion. However, no information flow occurs from the slave to the master
colony. In [Doerner et al., 2001b], both criteria are considered to be of equal
importance. The size of both populations is adapted so that the colony that
finds the better solution with respect to costs becomes larger. Information
exchange between the colonies is done by so called spy ants which base their
decisions on the pheromone matrices in both colonies.

The only ACO approaches so far that aim to cover the Pareto-front of a multi-
objective optimization problem have been proposed in [Doerner et al., 2001a,
Doerner et al.] and in [Iredi et al., 2001]. In [Doerner et al., 2001a, Doerner
et al.], a portfolio optimization problem with more than two criteria is stud-
ied. For each criterion, a separate pheromone matrix is used. Instead of a
population of ants for each criterion each ant assigns weights to the phero-
mone information for all criteria according to a random weight vector when
constructing a solution. Pheromone update is done by ants that found the
best or the second best solution with respect to one criterion. A problem with
this approach is that solutions in the non-dominated front that are not among

114 6. MULTI-CRITERIA OPTIMIZATION

the best with respect to a single criterion do not update the pheromone infor-
mation. In [Iredi et al., 2001], an approach to solve bi-criterion optimization
problems with a multiple colony ant algorithm were the colonies specialize
to find good solutions in different parts of the front of non-dominated solu-
tions is analyzed. Cooperation between the colonies is established by allowing
only ants with solutions in the global front of non-dominated solutions to up-
date the pheromone information. T'wo methods for pheromone update in the
colonies are proposed. In the update by origin method an ant updates only
in its own colony. For the other method the sequence of solutions along the
non-dominated front is split into p parts of equal size. Ants that have found
solutions in the ith part update in colony i, i € [1,p]. This update method
is called update by region in the non-dominated front. It is shown that co-
operation between the colonies results in good solutions being found along
the whole Pareto front. Heterogeneous colonies are used where the ants have
different preferences between the criteria when constructing a solution. For
the Single Machine Total Tardiness with Setup Costs Problem (SMTTSCP),
two pheromone matrices are used: M = (7y;) for the total tardiness criterion,
where Tj; is the desirability that job j be positioned on place i of the schedule,
and M’ = (1j;) for the changeover cost criterion, where Tj; gives information
about scheduling job j immediately after job i.

In this Chapter, we introduce a Population-based Ant Colony Optimization
(PACO, see Chapter 5 for an introduction) approach to solve MCO problems.
The main idea is that the population of solutions used to construct new solu-
tions is chosen from the set of all non-dominated solutions found so far, which
acts as a super-population. The aim is to find a set of different solutions which
covers the Pareto-optimal Front. One advantage of the proposed algorithm
is that it can be applied to problems with more than two criteria and is not
biased to solutions that are the best for one criterion. Also, the algorithm can
be applied to any MCO problem where it is possible to run a single-objective
ACO on the individual criteria. Some of the ideas we present are published
in [Guntsch and Middendorf, 2003].

In Section 6.2, we give a formal definition of dominance and the Pareto-optimal
Front. Afterwards, in Section 6.3, we describe how to modify the PACO
algorithm so that it can solve MCO problems with an arbitrary number of
objectives. Section 6.4 contains the test setup, including a detailed description
of the test problem and instances, how heuristic information is derived, and
how the pheromone matrices are employed. We summarize our results and
comment on possible future work at the end of the chapter in Section 6.5.

6.2. PARETO-OPTIMALITY 115

6.2 Pareto-optimality

Formally, MCO deals with finding solutions 7 which meet the (cy + cy) con-
straints defined via

Vie([l,cgligi(n) > 0 (6.1)

vie[l,ep]:hi(n) = 0 (6.2)
and optimize the vector-function

f(mt) = [fy(m),... ,fg(T[)]T (6.3)

In this case, there are & separate optimization criteria. In contrast to single
criterion optimization where it is always possible to say that a solution 7t is
better than, as good as, or worse than another solution o, ranking solutions is
not always possible once two or more criteria exist. A solution 7t can only be
considered better than a solution o if it is at least as good as o in all criteria
and truly better in at least one. In this case, we say 7 dominates o, denoted
by m = o. Formally, if wlog smaller values for all criteria i = 1,... ¢ are
better, we define

-0 (Vie[l,&]:fi(m) < fi(o)) A(Fie[l,&]: fi(n) < fi(o)) (6.4)

The Pareto-optimal Front of solutions is defined as the subset of solutions
F ={my,...,m} within the set of all feasible solution G, for which

Vne FVoeG:o¥n (6.5)

holds. This idea for optimality in MCO was originally proposed in [Edge-
worth, 1881] and later generalized in [Pareto, 1896|, from where the name is
derived. Figure 6.1 gives an example of a set of feasible solutions G in 6.1(a)
and the corresponding Pareto-optimal Front F C G in 6.1(b) for a scheduling
problem where the total tardiness of all jobs and the sum of setup costs be-
tween consecutive jobs should be minimized. This problem will be explained
in depth in Subsection 6.4.1.

6.3 PACO for Multi-Criteria Optimization Problems

In this section we introduce a PACO approach for finding solutions in multi-
criteria environments. First, we discuss how the solutions used to derive
the pheromone information are selected. Afterwards, new methods for ants
to make decisions based on pheromone and heuristic information originating
from different criteria are introduced.

116 6. MULTI-CRITERIA OPTIMIZATION

Total Tardiness
[)
[)
[)
Total Tardiness
®
@)
O

Sum of Changeover Costs Sum of Changeover Costs

(a) feasible solutions G (b) Pareto-optimal Front F C G

Figure 6.1: Set of feasible solutions G in (a) and the corresponding
Pareto-optimal Front F C G in (b).

6.3.1 Population of Solutions

Normally, the PACO algorithm maintains a population P of solutions which
is reflected completely in the pheromone matrix, i.e. all solutions 7t € P have
performed an update on the corresponding pheromone values, see Algorithm
5.1, p.90, for details. One of the characteristics of PACO which we discussed
in Chapter 5 is that for the combinatorial optimization problems studied, the
population sizes that perform best are relatively small, ranging from 1 to 5
solutions. The size of the set of Pareto-optimal solutions is typically bounded
by a much higher number, which discourages using the entire Pareto-front as
the “active” population which implies the pheromone matrix.

Let Q denote the set of non-dominated solutions that have been found after a
number of iterations by the PACO algorithm. This set will act as the super-
population for PACO, from which the active population P C Q is derived to
construct the pheromone information for the ants to work with. First, the
algorithm chooses one starting solution 7t from Q at random. Then, the k —1
solutions in Q which are closest to 7 with respect to some distance measure
are determined (if |Q| > k — 1), where k is the maximum active population
size. Distance is defined simply by the sum of absolute differences in solution
quality over all criteria. Together, these k solutions form the population P =
{my,..., ™}, with 71y = 7. After a solution has been constructed by an ant, the

6.3. PACO FOR MULTI-CRITERIA OPTIMIZATION PROBLEMS 117

set Q is updated. After m ants have constructed a solution a new population
P is chosen. Algorithm 6.1 shows a high-level description of the process.

Algorithm 6.1 basic procedure for PACO on MCO problems
1: initialize P=0,Q =0
2: repeat

3: derive pheromone information from P
for each ant i € {1,...,m} do
initialize selection set S +— {0,1,...,n—1}
let ant i construct solution 7;
if Ao€ Q:0o > m; then
Q=Qu{m}
end if
10: end for
11: randomly choose T €g Q
12: set P — {n}
13: while |P| < k do
14: find ot = argmin,cq\p > If5(m) — f5(0)]
15: set P=PU{o"}
16: end while

17: until condition for termination met

After the algorithm has terminated, Q is output as the result.

6.3.2 Generating the Probability Distribution

For mono-criterial permutation problems, we have discussed the nodexnode
pheromone matrix representation, as used e.g. for the T'SP, and the nodexplace
representation, which is employed for the QAP or scheduling problems. Multi-
criterial optimization problems can contain both types of criteria, and hence
require both types of matrices. Specifically, the PACO for MCO problems
maintains one pheromone Matrix which is interpreted in a nodexnode fash-
ion and another as nodexplace.

Using these two matrices, it is possible to construct the individual probability
distributions p{j for the criteria 1 = 1,...,§ in a straightforward fashion via
Equation 2.2, p.19. Proceeding in this fashion allows the usage of the heuristic
information available for the respective single criterion, which in many cases
helps the ants build good solutions quickly. What remains after the individ-
ual probability distributions p{j have been computed is to aggregate them in

118 6. MULTI-CRITERIA OPTIMIZATION

a meaningful fashion. The basic idea for accomplishing this aggregation is to
assign a weight wy € (0,1) with 1 € [1,£] to each of the probability distri-
butions p{j which reflect to what extent the search for a new solution in the
non-dominated front should go in the direction of the implied criterion.

The population P is used to determine the weights w, = wy(P) for each cri-
terion L = 1,...,&. The general idea is to give a criterion a high weight if
the solutions in P are good in this criterion compared to all solutions in Q.
Formally, to compute these weights we assign each solution 7w € P a reverse
rank ri(7t) € [0,|Q| — 1] for each criterion 1. By reverse rank we mean that
r(m) = 0 is worst and 1 (7t) = |Q| — 1 is best. Let fi(7t) denote the quality
of solution 7 with respect to criterion [, where, for minimization problems,
lesser values of fi(7t) indicate a better solution. Then

r(m) = |Q| — {o € Qlfi(0) < fi(m)}| —1 (6.6)

and, using this reverse rank, we define the weights w;(7t) for the individual

solutions via
T ()

= m

j
Finally, from the individual solution weights, we calculate the combined weight

(6.7)

for the population P = {my, ..., m} by aggregating the weights of all solutions
in P with respect to the criterion 1

k
1
wi=wi(P) = ;wl(m) (6:8)
=
Note that
&
1=1

for any population P. What remains now is to define exactly how these weights
should influence the aggregation of the probability distributions p{j. We pro-
pose the following two possibilities.

Weighted Sum

Since the weights for the individual criteria are calculated in such a way that
their sum equals one, a straightforward method to aggregate the individual
probability distributions is by calculating the weighted sum

&
pE= Y wipl (6.10)
1=1

6.4. EMPIRICAL EVALUATION 119

The values p{:j are themselves a probability distribution that need not be scaled
any further. Using this method, we expect the search process to be guided
mostly by a single criterion at the edges of the Pareto-optimal Front and by
the average composition at the inner parts.

Weighted Product

This method is an alternative to calculating the weighted sum, which is in-
spired by the idea that a very low probability for a given choice should not be
averaged out by other high probabilities, but rather result in an overall low
probability as well. This is accomplished by calculating a weighted product

£
py = i)™ (6.11)
1=1
This distribution of values must be scaled by the inverse sum over all values
to ensure that it becomes a probability distribution. Thus, for the weighted
product, the values

(6.12)

give the final probability distribution.

6.4 Empirical Evaluation

In this section, we describe the tests performed to evaluate the performance
of PACO on a specific MCO permutation problem, the Single Machine Total
Tardiness with Setup Costs Problem (SMTTSCP). After defining this prob-
lem, we explain which ACO pheromone evaluation and heuristics to use in
order to achieve good performance for the single criteria, i.e. minimizing total
tardiness and the sum of setup costs, followed by the actual test setup and
results.

6.4.1 An ACO Algorithm for the SMTTSCP

The Single Machine Total Tardiness with Setup Costs Problem (SMTTSCP)
consists of scheduling n non-interruptible jobs on a single machine, starting
with the next job in the schedule as soon as the previous is finished. Each of
these jobs has a processing time pj, indicating how long it takes to process this
job on the machine, and a due date dj, which is the time until which the job

120 6. MULTI-CRITERIA OPTIMIZATION

must be finished if no penalty, i.e. cost, is to be incurred. The total tardiness
T () of a schedule 7t is defined as the sum over all individual tardinesses of
jobsj=1,...,n

n
T(n) =) max(Cj — d;,0) (6.13)
j=1
where C;j is the completion time of job j:

G= Y m (6.14)
(1) <m(j)

For this problem, a nodexplace pheromone matrix representation is usually

employed, where Ty; gives information about the expected benefit of assigning

job j to place i in the schedule. Instead of using only the pheromone value

Tij, [Merkle and Middendorf, 2000] study using the sum over all pheromone

values up to and including i

i
1=1

as pheromone information, since this more accurately reflects that a job which
was not chosen despite a high pheromone value should be scheduled soon af-
terwards. A weighted combination of this summation evaluation and regular
evaluation is studied for the Single Machine Total Weighted Tardiness Prob-
lem in [Merkle et al., 2000b] and shown to be superior to regular evaluation.
Therefore, instead of the normal value Ti;, we use

i
Tfj :C'Xi'Tij-i-(] —C)'yi'Z’Ylille (6.16)
1=1

in Equation 2.2, p.19. The parameters of T’{j are c, which determines the
relative influence of the weighted summation evaluation, vy, which indicates
the weight of previous pheromone values at places | < i, and x; and yj,
which are used for scaling, which is necessary since the value provided by
the weighted summation evaluation can be a lot larger than the standard
pheromone value. Specifically, the scaling values are xi = Y ;s > 1_1 ¥* ' Tin
and Yi =) _jcs Tin-

A very good heuristic function proposed in [Merkle and Middendorf, 2000] is
also available for minimizing total tardiness, defined by

1
~ max(T+7p;,dj) =T

nij (6.17)

6.4. EMPIRICAL EVALUATION 121

where T is the total processing time of all jobs already scheduled, i.e. T =
Y opt

In addition to the processing times and due dates which are used to calculate
the total tardiness of a schedule, a cost matrix [cy;] with Vi,j : ¢y # 0 also
exists which contains the setup costs for scheduling job j immediately after
job i. The problem of minimizing the sum of these setup costs is virtually
identical to finding the shortest tour for an asymmetric T'SP, except that the
tour is not a cycle and therefore ends at the last customer. Specifically, the

cost C(m) of a schedule 7t of the jobs j =1,...,n is defined as
n—1
Cm) = D Crfin(isn) (6.18)

i=1

Due to this similarity, we use the standard approach as for a TSP for minimiz-
ing the sum of setup costs. Specifically, the pheromone matrix is represented
in a nodexnode fashion, and the inverse cost is used as heuristic information,
ie.

1

mi= g (6.19)

Due to the fact that the first job scheduled incurs no setup cost, choosing
which job to schedule first is not arbitrary (in contrast to the T'SP). Since it
is not possible to memorize which job to place first in a nodexnode encoded
pheromone matrix, we insert a dummy job into all SMTTSCP instances, which
has no processing time, no due date, and implies no setup cost for any following
job. This dummy job is always scheduled first. We increase the dimension of
the pheromone matrices by 1 to include the dummy job, and can thereby have
information evolve in the nodexnode pheromone matrix about which “real”
job to schedule first.

6.4.2 Test Setup

The SMTTSCP test instances we use are derived from [Iredi et al., 2001].
Each of the two bi-criterial problem instances consists of one due date and one
changeover cost criterion. From these two instances, a four-criterial instance
with two due date and two changeover criteria is constructed. For the first
bi-criterial instance, called instance A from here on, the changeover costs
between the jobs are chosen randomly from the interval [1,100], while for
the other one, dubbed instance B, interval [50,100] is used. The processing
times and due dates are chosen according to an often employed scheme from

122 6. MULTI-CRITERIA OPTIMIZATION

[Crauwels et al., 1998]. For each job j € [1,100], an integer processing time
p; is drawn randomly from the interval [1,100], and, after all jobs have been
assigned a processing time, the due dates for each job j are drawn randomly
from the interval

100 100
RDD RDD
[= ij-(l—TF—T), ij-(1—TF+T) (6.20)
i=1 j=1

RDD is the relative Range of Due Dates and determines the size of the
interval from which the due dates are drawn. TF is the Tardiness Factor and
indicates where the center of the above interval is located. For both instances,
RDD = 0.6 was used; in instance A, we set TF = 0.4 and in instance B,
TF = 0.6. The construction of these instances leads to instance A being easier
to find good solutions for than instance B. The four-criterial instance which
is a combination of instance A and B is called instance AB.

For the algorithm, we evaluate a number of parameter configurations. All
combinations of population sizes k € {1,3,5,8}, qo € {0.0,0.5,0.9} and Tyqax €
{1,5,25,125} are tested for each of the two bi-criterial instances using the prob-
ability aggregations pizj and pg The ants use « = 1,3 =5 for the changeover
based probability distributions, which is in accordance with previous tests on
the similar TSP, and « = 1, = 1 for the tardiness based criteria respec-
tively. The reason for choosing different values of 3 is the varying range of
values and quality of the guidance provided by the heuristic functions for the
two criterion-classes. We test all configurations with m € {1,2,5} ants per
iteration before a new active population is drawn. In the case of more than
1 ant per iteration, all solutions of the iteration are candidates for Q. We
let the algorithm construct 50000 solutions on the bi-criterial instances before
termination. On the four-criterial instance, we allow for the construction of
100000 solutions to compensate for the increased complexity, predominately
using parameter settings that perform well for the two bi-criterial instances
which compose the four-criterial one.

In the following section we present and compare the median attainment sur-
faces of the fronts of non-dominated solutions found for 15 runs of the ant
algorithm with different randoms seeds. The median attainment surface is
the median line of all the attainment surfaces connecting the fronts of non-
dominated solutions in each of the 15 runs. Figure 6.2 gives an example of
the median attainment surface of three separate fronts of non-dominated solu-
tions. Intuitively, the median front is the line-segment which is in the center
according to the criterion to the axis of which the line is moving orthogonally.

6.4. EMPIRICAL EVALUATION 123

10000

" Median Front

9500
9000
8500 -
8000 -
7500
7000

Total Tardiness

6500

6000

5500 -

O Il Il Il Il Il Il Il Il Il
500 550 600 650 700 750 800 850 900 950 1000
Sum of Changeover Costs

Figure 6.2: Median attainment surface of three separate fronts of non-

dominated solutions.

6.4.3 Results

We start the evaluation with two general results. The first is that the prob-
ability aggregation by weighted product vastly outperforms the method by
weighted sum, particularly in the central parts of the front where solutions
should perform well in both criteria, see Figure 6.3. For instances A and B,
the respective median front of solutions found using the weighted product
aggregation completely dominates the one attained via the weighted sum ag-
gregation. The two methods perform closest at the fringes of the respective
fronts, where one probability distribution is used almost exclusively. How-
ever, toward the center of the fronts, it is evident that the weighted product
aggregation is more successful in creating a probability distribution which en-
ables the algorithm to construct solutions which represent good compromises
between the two criteria. For the instance B, the difference in solution quality
is not as pronounced as for instance A, which might be an indicator that it
is more difficult to find very good solutions for the former instance with the
specified number of solution constructions.

The second general result is the expected fact that using m > 1 ants per
iteration does not offer better results. Instead, in most cases the opposite is
the case by a significant margin, as can be seen in Figure 6.4. The shape of the

124 6. MULTI-CRITERIA OPTIMIZATION

40000 yR— 80000 v ——
eighted Sum —— eighted Sum ——
35000 ; Weighted Product --------- § 75000 Li Weighted Product --------- .
\ 70000 -4
g 30000, i 65000 A
5 25000 Bt 5 1\\
3 i S 60000 [
% 20000 ’ % 55000 \L
£ 15000 " < P 50000 1&&
10000 “ 45000 T —
5000 — 40000
0 500 1000 1500 2000 2500 3000 5200 5600 6000 6400 6800
Sum of Changeover Costs Sum of Changeover Costs
(a) Instance A (b) Instance B

Figure 6.3: Best performing combination of parameters for weighted
sum and weighted product probability aggregation for instances A and
B.

curves for m > 1 ants is representative for all configurations and also to some
extent for instance A. While the total tardiness criterion is still optimized
well, the algorithm is less capable of minimizing the changeover costs with
more ants, resulting in fewer and worse solutions being found compared to 1

ant.

75000
70000
65000
60000 [
55000

Total Tardiness

50000 r
45000

40000 : : ' ' :
5200 5400 5600 5800 6000 6200 6400

Sum of Changeover Costs

Figure 6.4: Non-dominated Sets for m € {1,2,5} on instance B.

Since the weighted product aggregation outperforms the weighted sum in all
cases, and using more than 1 ant gives no benefit, we concentrate on examin-

6.4. EMPIRICAL EVALUATION

125

30000

25000

20000

15000

Total Tardiness

10000

00
200 400 600 800 1000 1200 1400 1600
Sum of Changeover Costs

(a) Performance after 1000 Solutions

30000

25000

20000

15000

Total Tardiness

10000

5000
200 400 600 800 1000 1200 1400 1600

Sum of Changeover Costs

(c) Performance after 10000 Solutions

30000

25000

20000

15000

Total Tardiness

10000

5000
200 400 600 800 1000 1200 1400 1600

Sum of Changeover Costs

(e) Performance after 50000 Solutions

Total Tardiness

Total Tardiness

Total Tardiness

30000

25000

20000

15000

10000

00 :
200 400 600 800 1000 1200 1400 1600

Sum of Changeover Costs

(b) (k,do, Tmax) = (5,0.0,5.0)

30000

25000

20000

15000

10000

5000

1000 ——
10000 —
50000 -

200 400 600 800 1000 1200 1400 1600

Sum of Changeover Costs

(d) (k> q0>Tmax) = (3, 05, 1 0)

30000

25000

20000

15000

10000

5000
200 400 600 800 1000 1200 1400 1600

Sum of Changeover Costs

(f) (k) quTmax) = (3,09,]0)

Figure 6.5: Best performing combinations of parameters for weighted

product probability aggregation for instance A at different points in
time. The left column compares the combinations after 1000, 10000,

and 50000 solution constructions, while the right column shows the de-

velopment of each individual parameter set.

126 6. MULTI-CRITERIA OPTIMIZATION

ing the influence of the individual parameters on the PACO algorithm using
only the weighted product aggregation method with m = 1. We begin with
an analysis of the performance on instance A. On this instance, a number
of parameter combinations perform well. Three of the best performing pa-
rameter configurations (k, qo, Tmax) = (5,0.0,5.0), (k, do, Tmax) = (3,0.5,1.0),
and (K, qo, Tmax) = (3,0.9,1.0) are shown in Figure 6.5 after the construction
of 1000 solutions, 10000 solutions, and at the end of the run, after the con-
struction of 50000 solutions. After 1000 solutions, it is still possible to see a
clear difference in performance between the above parameter configurations,
but after 10000 or 50000 iterations, the performance of these configurations is
on par, and a number of configurations with similar parameters exist whose
performance is also nearly identical. The reason for this behavior is not con-
vergence, as can be seen in the right column of Figure 6.5, since the front
is still being improved. Rather, it seems that the problem is simple enough
to allow a broad range of parameters to perform well. Mediocre performance
was only observed for the extreme population sizes k € {1, 8}, which perform
significantly worse than k € {3,5}.

An interesting observation is the correlation of the values qp with the max-
imum pheromone level T.x. For a lower value of qg, higher values of Tpax
are preferred by the algorithm, which have a similar effect as a higher qg, in-
creasing the likelihood of an element which carries a pheromone value Ti; > To
being chosen. Thus, for this instance, there seems to exist something like
an optimal probability distribution according to which solutions should be
constructed to ensure both exploration and exploitation.

For instance B, the more difficult instance, Figure 6.3(b) has already hinted
at the fact that is seems more difficult to find solutions which offer good
quality in both criteria. The parameter configurations we analyze in Figure 6.6
are (k, qo, Tmax) = (3,0.0,25), (k,do, Tmax) = (3,0.5,5), and (k, qo, Tmax) =
(3,0.9,1), which are the best performing combinations for the individual qg
values.

Many characteristics that were observed on instance A are also present here.
Again, a population size k = 3 performs well, and a higher value of qo is
accompanied by a lower value for T, signifying that the probability dis-
tribution should have a distinct form for the algorithm to perform best.
The most notable difference in comparison to instance A is that the rela-
tive development of the front occurs mostly with respect to the “Sum of
Changeover Costs” criterion, while the values for “Total Tardiness” found
after 50000 solution constructions are only slightly better than those found

6.4.

EMPIRICAL EVALUATION

127

Total Tardiness

Total Tardiness

Total Tardiness

75000
70000
65000
60000
55000
50000
45000
40000

5200 5400 5600 5800 6000 6200 6400

Sum of Changeover Costs

(a) Performance after 1000 Solutions

75000
70000
65000
60000
55000
50000
45000
40000

qo=0 ——
q0=0.5 -]
q0=0.9 -

5200 5400 5600 5800 6000 6200 6400

75000
70000
65000
60000
55000
50000
45000
40000

Sum of Changeover Costs

(c) Performance after 10000 Solutions

SN

5200 5400 5600 5800 6000 6200 6400

Sum of Changeover Costs

(e) Performance after 50000 Solutions

Figure 6.6: Best performing combinations of parameters for weighted
product probability aggregation for instance B at different points in time.
The left column compares the combinations after 1000, 10000, and 50000

solution constructions, while the right column shows the development

of each individual parameter set.

Total Tardiness

Total Tardiness

Total Tardiness

75000
70000
65000
60000
55000
50000
45000
40000

5200 5400 5600 5800 6000 6200 6400

(b) (k,do, Tmax) = (3,0.0,25.0)

75000
70000
65000
60000
55000
50000
45000
40000

Sum of Changeover Costs

5200 5400 5600 5800 6000 6200 6400

(d) (k‘> q0>Tmax) = (3,05,50)

75000
70000
65000
60000
55000
50000
45000
40000

Sum of Changeover Costs

5200 5400 5600 5800 6000 6200 6400

(f) (k) quTmax) = (3,09,]0)

Sum of Changeover Costs

128 6. MULTI-CRITERIA OPTIMIZATION

after 10000 solutions have been built. Also, we can see that the quality
of the set of non-dominated solutions found by the parameter configuration
(k, 4o, Tmax) = (3,0.9,1) is superior to (k, qo, Tmax) = (3,0.5,5), which in turn
is superior to (k, qo, Tmax) = (3,0.0,25).

A comparison in performance between the Multi Colony Ant Algorithm ap-
proach for bi-criterial problems proposed in [Iredi et al., 2001], which uses 10
colonies specialized on exploring different, overlapping areas of the Pareto-
front, and the PACO algorithm for instance A is shown in Figure 6.7. For the
greatest part, the set of solutions found by the PACO algorithm dominates the
set found by the 10 colony Ant Algorithm. Only the upper left portion of the
curve, which corresponds to solutions where practically only the changeover
costs were minimized, is somewhat underdeveloped. Note that the compari-
son between these two algorithms takes place after the construction of 30000
solutions, which was the runtime for the 10 colony Ant Algorithm.

45000 . . . T .
10 Colony Ant Algorithm ———
40000 r PACO .

35000 r
30000
25000
20000
15000
10000

5000 | i T I —
0 500 1000 1500 2000 2500 3000

Sum of Changeover Costs

Total Tardiness

Figure 6.7: Comparison between 10 colony Ant Algorithm from [Iredi
et al., 2001] and PACO algorithm with configuration (k, qo, Tmax) =
(3,0.5,1) after 30000 iterations.

For the 4-dimensional instance AB, we evaluate the performance of the PACO
algorithm with the parameter configurations qo = 0.9, k € {1,3,5} and Tpax €
{1,5}. These parameters work well for the two 2-dimensional problem in-
stances A and B which compose AB, and should therefore also offer the best
performance here. In order to gauge the performance on AB, we project the 4-
dimensional non-dominated sets found by the algorithm to the two dimensions
corresponding to instance A or B respectively, and compare these projected

6.4. EMPIRICAL EVALUATION

129

fronts among each other and to the ones found by the algorithm working on

the 2-dimensional instance. The results are depicted in Figure 6.8.

45000

AB->A k=1 ——
40000 AB->A, k=3 - .
AB->A, k=5 -
., 35000
0 h
2 30000
£
3 25000
S
T 20000
°
15000
10000
5000
400 800 1200 1600 2000 2400
Sum of Changeover Costs
(a) k €{1,3,5} on Instance A
35000 : :
AB ->A @ 50000 ——
30000 L AB ->A @ 100000 -
@
& 25000
f=
£
S 20000
k|
5 15000
°
10000
5000

400 800 1200 1600
Sum of Changeover Costs

(c) best AB — A vs. best A

Total Tardiness

Total Tardiness

85000 ‘ ‘
] AB->B, k=1 ——
80000 Y R |
75000 LL AB->B. k=5 -
70000
65000
60000
55000
50000

000
6100 6200 6300 6400 6500 6600 6700 6800
Sum of Changeover Costs

(b) k €{1,3,5} on Instance A

85000 :
AB->B)
80000 AB>H @
75000 '
70000
65000
60000 |- :
55000
50000 LW
45000

40000 — 1 1
5200 5600 6000 6400 6800

Sum of Changeover Costs

(d) best AB — B vs. best B

Figure 6.8: Comparison of 2-dimensional projections of 4-dimensional

fronts corresponding to instances A and B in subfigures (a) and (b)

respectively for different active population sizes after 100000 iterations.

In (c) and (d), the best respective 2-dimensional projection for A and B
after 50000 and 100000 iterations is compared with the best performing

parameter combination on A and B individually.

Using a value of T,y = 1 is superior for all population sizes to Tgax = 5,
which is why we concentrate on highlighting the differences in performance
for the population sizes k € {1,3,5}. For easier reference, we will refer to the
2-dimensional projections of the 4-dimensional non-dominated sets of solu-

tions as projections, while the curves resulting from a run on a 2-dimensional

instance will be called fronts.

130 6. MULTI-CRITERIA OPTIMIZATION

While for the projection to instance A in Subfigure 6.8(a) the different active
population sizes perform very much alike, with k =5 being marginally best,
the situation changes for the more difficult instance B in 6.8(b). Here, k =1
dominates the other values of k completely. Compared to the best perform-
ing parameter configuration on the bi-criterial instances, the projections are
completely dominated by the fronts in both cases, even when given twice the
number of iterations. Again, it seems especially difficult to develop a good
front of solutions in the section corresponding to instance B, where the differ-
ence between best projection and best front is much larger than for instance
A.

The reason for the worse quality of the projections compared to the fronts
is the larger set of objectives which must be optimized concurrently and the
much larger set Q which must be maintained as a result. For the bi-criterial
runs, the average number of solutions in a front after 50000 iterations is about
75.53 , while after 100000 iterations on the best parameter configurations on
instance AB, an average of around 9893.33 solutions is located in the front, 131
times more. This greater spread results in the individual solutions being used
less often to create a pheromone matrix and hence less development taking
place in all directions of the 4-dimensional front, which is the cause for the
comparatively bad quality of the projections. Note however that the quality is
bad only compared to the algorithm running on a bi-criterial instance; taken
for themselves, the projections show that using the PACO algorithm for multi-
dimensional problem instances with more than 2 objectives is indeed feasible
and results in an acceptable solution quality, given the limited runtime.

6.5 Summary and Future Work

We have presented a number of augmentations to the PACO algorithm which
enable it to solve Multi-Criteria Optimization Problems, outperforming a pre-
vious Ant Algorithm on bi-criterial instances and scaling to an arbitrary num-
ber of objectives. T'wo methods for aggregating the probability distributions
for the individual criteria are compared, with the weighted product method
outperforming the weighted sum in all cases. The concept of drawing an active
population from a super-population was introduced and shown to be success-
ful by the predominance of smaller populations in the best configurations for
the individual test instances.

Compared to the Multi-Colony Ant Algorithm in [Iredi et al., 2001], the PACO
algorithm performs better but has an underdeveloped front in the portion

6.5. SUMMARY AND FUTURE WORK 131

where the sum of changeover costs is minimized to the exclusion of total tar-
diness minimization. The reason for this is that the parameters necessary to
achieve a good performance in the tardiness criterion and, most importantly,
in the area where the best trade-offs between the two criteria exist are not op-
timal for minimizing the changeover costs by themselves. A potential solution
to this problem is letting the PACO algorithm run for a number of iterations in
single-criterion mode for each individual criterion, always choosing the best
k solutions as guidance for the criterion that is being optimized, and later
switching to the regular operation mode. Another possibility is empirically
determining the best parameter configurations for minimizing the £ individ-
ual criteria respectively and interpolating between these parameter vectors
depending on the position of the active population P C Q. Evaluating these
ideas is part of planned future work, as well as identifying new test instances
or different problems to gauge the performance of the PACO algorithm, e.g.
instances with a concave Pareto-optimal Front.

Another major focus of future work with the PACO algorithm on MCO prob-
lems is finding ways to limit the size of the super-population Q, keeping only
those solutions that promise to guide the ants toward the broadest and best
developed set of non-dominated solutions. As we explained above, restricting
the size of Q is necessary both for a better development of the front as well as
out of CPU-time considerations, since O(|Q|) time is needed per iteration for
maintaining the non-dominated set. A number of possibilities for eliminating
superfluous solutions have been examined for Evolutionary Algorithms, and
we plan to study which of these methods is best suited for a combination with
PACO as well as devise new methods if necessary.

Besides the study of inherently multi-criterial problems, another motivation
for the use of multi-objective optimization comes from trying to escape local
optima in single-objective optimization, see [Knowles et al., 2001, Jensen,
2003]. In this so called multi-objectivization, the objective function f of the
single criterion is decomposed into a sum f = Zf’:] f;, and the algorithm tries
to optimize two objectives fa =) ;. fi and fg =) ;g fi with A;B C [1,{]
and A UB = [1,£]; the optimal solution to the underlying single-objective
problem obviously lies on the Pareto-optimal front of the multi-objectivized
version. We feel that this procedure could be especially useful for dynamic
problems, where the fitness landscape changes and it is important for the
algorithm to maintain a good overall solution quality (first objective) while at
the same time trying to integrate the changes as efficiently as possible (second
objective). It is conceivable that a dynamic problem is treated as a normal

132 6. MULTI-CRITERIA OPTIMIZATION

single-objective problem until a change occurs, upon which a second criterion
is created which judges how well the change is integrated into the solutions
constructed afterwards. After a number of iterations have passed or a given
quality is met, the second criterion is dropped and the algorithm continues
with the best solutions according to the primary objective. We will evaluate
this scenario in future work.

Chapter 7

Conclusion

We have presented new ACO-based approaches for finding solutions to proba-
bilistic and dynamic combinatorial optimization problems and an entirely new
Ant Algorithm called Population-based Ant Colony Optimization (PACO),
which enables us to efficiently solve a number of dynamic as well as multi-
objective problems.

The approximation of the fitness function and the improved heuristic guidance
on the PTSP enabled our algorithm to find better solutions than previous
versions of ACO in less time. Furthermore, our algorithm outperforms the
previously best heuristic for the PT'SP, Hilbertsorting with 1-Shift, in nearly
all cases, taking only a fraction of the time on the larger instances.

On the DTSP, the pheromone diversification techniques we proposed were suc-
cessful in balancing exploration with exploitation after an unforeseen change to
a problem instance, all partial-reset strategies performing better than restart-
ing the algorithm or doing nothing in response to a change. Furthermore, the
best local strategies which take the locality of a change into account outper-
formed the best global strategy.

Partially inspired by the idea to apply the KeepElitist strategy, which repairs
the solution represented by the Elitist Ant in case of a change, to multiple
solutions, we have introduced an new Ant Algorithm called Population-based
Ant Colony Optimization (PACO). This algorithm no longer maintains an
explicit pheromone matrix containing all previous updates, but rather keeps
a relatively small population, typically less than 10 individuals, of solutions
which implicate pheromone values for the ants to use as guidance. The versa-
tility provided by this population of solutions let the PACO algorithm perform
on par with state-of-the-art Ant Algorithm paradigms like the MAX-MIN Ant
System on static problems, and performs almost as well as the specialized

134 7. CONCLUSION

pheromone reset strategies on dynamic problems. This is a good result consid-
ering that PACO is immediately applicable to a number of dynamic problems
(DTSP and DQAP were evaluated) with only minimal adjustments.

The flexibility of the PACO approach becomes even more apparent for the
case of Multi-Criteria Optimization. Here, the PACO algorithm utilizes the
set of non-dominated solutions as a super-population from which it derives the
active population to construct the pheromone information and aggregates the
individual probability distributions corresponding to the separate criteria dur-
ing the construction phase. With these augmentations, the PACO algorithm
outperforms the Multi-Colony Ant Algorithm on the bi-criterial test-problem.
In addition, the PACO algorithm can scale to an arbitrary number of criteria
with only two pheromone matrices and is still capable of developing a front
of non-dominated solutions, as shown on a four-dimensional test-instance.
Numerous possibilities for future work have been illustrated in the summariz-
ing sections of the individual chapters. We believe the most promising to be
the following:

e The pheromone diversification methods we have proposed have so far
only been tested on the Dynamic T'SP by the author and on the Dynamic
Vehicle Routing Problem by third parties. We see two possibilities for
future research based on these methods. First, we need to consider
how the principle of pheromone diversification could be applied to other
problem classes which are not variants of graph-routing, e.g. dynamic
scheduling problems. Since the diversification is either uniform or based
on heuristic or pheromone information, both of which usually exists
when ACO is applied, this should be feasible. Second, another aspect
lies in the application of partial pheromone resetting to counteract a
stagnation of the search process on static problems, which takes place
when the pheromone values on certain decisions have become too large
to enable further exploration. Using the entropy of the pheromone rows
as a guideline when to apply a partial pheromone reset could prolong
the search process indefinitely.

e The greatest potential for future research is given by the framework
of the PACO algorithm. The current implementation of the algorithm
for mono-criterial, static problems is to start with an empty population
and using the entire population as the active population from which the
pheromone information is derived. Instead of starting with an empty
population, it could make sense to use one or a number of different one-

135

shot heuristics to seed the population with good solutions that guide the
ants from the start. In addition, using only the best k’ < k solutions
currently in the population while maintaining an Age-based update im-
proves results e.g. for the TSP, where preliminary results show that
PACO finds the optimal solution to €il1101, a 101 customer instance
from the [TSPLIB, 2003], in almost every run of 50000 iterations. Pro-
ceeding in this fashion would also be beneficial for the dynamic problems
studied, since the search process while the instance is static is improved,
and a larger population is available for repair, increasing the likelihood
of good, repaired solutions.

The similarity between PACO and Evolutionary Algorithms also creates
the opportunity to hybridize these two meta-heuristics into a common
framework, where the most appropriate techniques from the two compo-
nents could be identified and utilized for best results on a per-problem
basis.

For Multi-Criteria Optimization (MCO), there are also a number of in-
teresting directions in which to proceed. The most important research
topics are analyzing further methods for as well as the limits of aggre-
gating the individual probability distributions during the construction
phase, e.g. on problem instances with concave Pareto-optimal fronts.
Furthermore, it should be explored how good parameter settings for the
individual criteria are best combined to promote the exploration of the
“center” of the front. Finally, to increase the efficiency of the search pro-
cess, it is necessary to introduce a mechanism for limiting the size of the
super-population Q, which is currently composed of all non-dominated
solutions found, to a small yet evenly spread number of solutions which
reduces the computational cost of maintaining the super-population and
enables a better exploitation of the available solutions, ideally resulting
in better performance.

136 7. CONCLUSION

Bibliography

S. V. B. Aiyer, M. Niranjan, and F. Fallside. A theoretical investigation
into the performance of the hopfield model. IEEE Transactions on Neural
Networks 1, pages 204-215, 1990.

R. H. Arnett. American Insects: a handbook of the insects of America
north of Mezico. Van Nostrand Rehinhold, New York, 1985.

S. Arora. Polynomial time approximation schemes for Euclidean traveling
salesman and other geometric problems. Journal of the ACM, 45(5):753—
782, 1998.

S. Baluja. Population-based incremental learning: A method for integrating
genetic search based function optimization and competitive learning,. Tech-
nical Report CMU-CS-94-163, Pittsburgh, PA, 1994.

S. Baluja and R. Caruana. Removing the genetics from the standard genetic
algorithm. In A. Prieditis and S. Russel, editors, The Int. Conf. on Ma-
chine Learning 1995, pages 38—46, San Mateo, CA, 1995. Morgan Kaufmann
Publishers.

J.J. Bartholdi and L.K. Platzman. An o(nlogn) planar traveling salesman
heuristic based on spacefilling curves. Operations Research Letters, 1:121—
125, 1982.

A. Bauer, B. Bullnheimer, R.F. Hartl, and C. Strauss. An ant colony opti-
mization approach for the single machine total tardiness problem. In Proceed-
ings of the 1999 Congress on Evolutionary Computation (CEC 1999),
pages 1445-1450, 1999.

R. Beckers, J.-L. Deneubourg, and S. Goss. Trails and u-turns in the selection
of the shortest path by the ant lasius niger. Journal of Theoretical Biology,
159:397-415, 1992.

138 BIBLIOGRAPHY

G. Beni. The concept of cellular robotic system. In Proceedings 1988 IEEE
Int. Symp. on Intelligent Control, IEEE Computer Society Press, pages
57-62, 1988.

G. Beni and J. Wang. Swarm intelligence. In Proceedings Seventh Annual
Meeting of the Robotics Society of Japan, RSJ Press, pages 425—428, 1989a.

G. Beni and J. Wang. Swarm intelligence in cellular robotic systems. In Pro-
ceedings of the NATO Advanced Workshop on Robotics and Biological
Systems, 1989b.

D. Bertsimas and L. H. Howell. Further results on the probabilistic traveling
salesman problem. FEuropean Journal of Operational Research, 65:68-95,
1993.

L. Bianchi, L. M. Gambardella, and M. Dorigo. An ant colony optimiza-
tion approach to the probabilistic traveling salesman prob lem. In J. J.
Merelo Guervos et al., editor, Parallel Problem Solving from Nature, vol-
ume 2439 of LNCS, pages 883—-892. Springer, 2002a.

L. Bianchi, L. M. Gambardella, and M. Dorigo. Solving the homogeneous
probabilistic traveling salesman problem by the ACO me taheuristic. In
M. Dorigo, G. Di Caro, and M. Sampels, editors, Ant Algorithms, volume
2463 of LNC'S, pages 176-187. Springer, 2002b.

E. Bonabeau, M. Dorigo, and G. Théraulaz. Swarm Intelligence. Oxford
University Press, 1999.

J. Bracken and J. McGill. Mathematical programs with optimization prob-
lems in the constraints. Operations Research, 21:37-44, 1973.

J. Branke. Evolutionary algorithms for dynamic optimization problems -
a survey. Technical Report 387, Insitute AIFB, University of Karlsruhe,
February 1999.

J. Branke, C. Barz, and I. Behrens. Ant-based crossover for permutation
problems. In E. Cantu-Paz, editor, Genetic and Evolutionary Computation
Conference, volume 2723 of LNC'S, pages 754-765. Springer, 2003.

J. Branke and M. Guntsch. New ideas for applying ant colony optimiza-
tion to the probabilistic TSP. In Applications of Evolutionary Comput-
wng: Proceedings of EvoWorkshops 2003, number 2611 in Lecture Notes
in Computer Science, pages 165-175. Springer Verlag, 2003.

BIBLIOGRAPHY 139

J. Branke and H. Schmeck. Designing evolutionary algorithms for dynamic
optimization problems. In S. Tsutsui and A. Ghosh, editors, Theory and
Application of Evolutionary Computation: Recent Trend s, pages 239—
262. Springer, 2002.

B. Bullnheimer, R. Hartl, and C. Strauss. An improved ant system algorithm
for the vehicle routing problem. Technical report, POM Working Paper No.
10/97, University of Vienna, 1997.

B. Bullnheimer, R. Hartl, and C. Strauss. A new rank based version of
the ant system — a computational study. Central European Journal for
Operations Research and Economics, 7(1):25-38, 1999.

W. Candler and R. Norton. Multilevel programming. Technical Report 20,
World Bank Development Research Center, Washington D.C., 1977.

Carlos A. Coello Coello, David A. Van Veldhuizen, and Gary B. Lamont.
Evolutionary Algorithms for Solving Multi-Objective Problems. Plenum
Pub Corp, 2002.

A. Colorni, M. Dorigo, V. Maniezzo, and M. Trubian. Ant system for job-
shop scheduling. JORBEL - Belgian Journal of Operations Research,
Statistics and Computer Science, 34:39-53, 1994.

S. A. Cook. The complexity of theorem prooving procedures. In Proceedings
of the 8rd ACM Symposium on Theory of Computing, ACM, pages 151-
158, 1971.

O. Cordoén, I. Ferndndez de Viana, F. Herrera, and L. Moreno. A new aco
model integrating evolutionary computation concepts: The best-worst ant
system. In M. Dorigo, M. Middendorf, and T. Stiitzle, editors, From Ant
Colonies to Artifictal Ants: Second International Workshop on Ant Al-
gorithms ANTS’2000, pages 22-29, Brussels, Belgium, 2000.

D. Corne, M. Dorigo, and F. Glover. New Ideas in Optimization. McGraw-
Hill, 1999.

H.A.J. Crauwels, C.N. Potts, and L.N. van Wassenhove. Local search heuris-
tics for the single machine total weighted tardiness scheduling problem. IN-
FORMS Journal on Computing, 10:341-359, 1998.

C. Darwin and A. Wallace. On the tendency of species to
form varieties; and on the perpetuation of varieties and species

140 BIBLIOGRAPHY

by natural means of selection. Journal of the Proceedings of
the Linnean Soctety, Zoology, (3):45-62, August 1858. URL
http://www.life.umd.edu/emeritus/reveal/pbio/darwin/dw0l.html.

I. Das and J. Dennis. A closer look at drawbacks of minimizing weighted sums
of objectives for pareto set generation in multicriteria optimization problems.
Structural Optimization, 14(1):63-69, 1997.

Kalyanmoy Deb. Multi-Objective Optimization Using Evolutionary Algo-
rithms. John Wiley, 2001.

J.-L. Deneubourg, S. Aron, S. Goss, and J.M. Pasteels. The self-organizing
exploratory pattern of the argentine ant. Journal of Insect Behavior, 3:
159-168, 1990.

O. Diessel, H. ElGindy, M. Middendorf, M. Guntsch, B. Scheuermann,
H. Schmeck, and K. So. Population based ant colony optimization on FPGA.
In IEEE International Conference on Field-Programmable Technology
(FPT), pages 125-132, December 2002.

E. W. Dijkstra. A note on two problems in connection with graphs. Numer.
Math., (1):269-271, 1959.

K. Doerner, J.W. Gutjahr, R.F. Hartl, C. Strauss, and C. Stummer. Pareto
ant colony optimization: A metaheuristic approach to multiobjective portfo-
lio selection. Annals of Operations Research. to appear.

K. Doerner, J.W. Gutjahr, R.F. Hartl, C. Strauss, and C. Stummer. Investi-
tionsentscheidungen bei mehrfachen Zielsetzungen und kiinstliche Ameisen.
In Chamoni and et al., editors, Operations Research Proceedings, pages
355-362, Berlin, Heidelberg, 2001a. Springer.

K. Doerner, R.F. Hartl, and M. Reimann. Are COMPETants more compe-
tent for problem solving? - the case of a multiple objective transporta tion
problem. In L. Spector et al., editor, Proceedings of the GECCO’01, page
802ft, Berlin, Heidelberg, 2001b. Morgan Kaufmann.

K. Doerner, R.F. Hartl, and M. Reimann. Cooperative ant colonies for opti-
mizing resource allocation in transportation. In W. Boers and et al., editors,
Proceedings of the EvoWorkshops 2001, pages 70 — 79, Berlin, Heidelberg,
2001c. Springer.

BIBLIOGRAPHY 141

M. Dorigo. Ottimizzazione, apprendimento automatico, ed algoritma
basati su metafora naturale (Optimization, learning and natural algo-
rithms) (in italienisch). PhD thesis, Dipartimento di Elettronica , Politec-
nico di Milano, Italien, 1992. 140 Seiten.

M. Dorigo and Gianni Di Caro. Ant colony optimization: A new meta-
heuristic. In Peter J. Angeline, Zbyszek Michalewicz, Marc Schoenauer, Xin
Yao, and Ali Zalzala, editors, Proceedings of the Congress on Evolutionary
Computation, volume 2, pages 1470-1477, Mayflower Hotel, Washington
D.C., USA, 6-9 1999. IEEE Press. ISBN 0-7803-5537-7 (Microfiche).

M. Dorigo and L. M. Gambardella. Ant colonies for the traveling salesman
problem. BioSystems, 43:73-81, 1997a.

M. Dorigo and L. M. Gambardella. Ant colony system: A cooperative learn-
ing approach to the traveling salesman problem. IEEE Transactions on
Evolutionary Computation, 1:53-66, 1997b.

F. Y. Edgeworth. Mathematical Physics. P. Keagan, London, England,
1881.

Euclid. Elements, volume 7, chapter Proposition 2. ca. -350.

C. J. Eyckelhof and M. Snoek. Ant systems for a dynamic tsp: Ants caught in
a traffic jam. In M. Dorigo, Gianni Di Caro, and Michael Sampels, editors,
Ant Algorithms: Third International Workshop ANTS 2002, number
2463 in Lecture Notes in Computer Science, pages 88—99, Brussels, Belgium,
2002. Springer.

S. Fenet and C. Solnon. Searching for maximum cliques with ant colony
optimization. In Ginther Raidl et al., editor, Applications of Evolutionary
Computing - EvoWorkshops 2003: EvoBIO, EvoCOP, EvoIASP, Evo-
MUSART, EvoROB, and EvoSTIM, number 2611 in LNCS, pages 236—245.
Springer, 2003.

E. J. Fittkau and H. Klinge. On biomass and trophic structure of the central
amazonian rain forest ecosystem. Biotropica, 5(1):2-14, 1973.

L. R. Ford and D. R. Fulkerson. Flow tn Networks. Princeton University
Press, 1962.

C. Gagné, M. Gravel, and W.L. Price. Scheduling a single machine where
setup times are sequence dependent using an ant-colony heuristic. In From

142 BIBLIOGRAPHY

Ant Colonies to Artificial Ants: Second International Workshop on Ant
Algorithms ANTS’2000, pages 157-160, 2000.

L. M. Gambardella and M. Dorigo. Solving symmetric and asymmetric tsps
by ant colonies. pages 622-627, 1996.

L. M. Gambardella and M. Dorigo. An ant colony system hybridized with a
new local search for the sequential ordering problem. INFORMS Journal
on Computing, 12(3):237-255, 2000.

L. M. Gambardella, E. D. Taillard, and M. Dorigo. Ant colonies for the qap.
Journal of Operations Research Society, 2(50):167-176, 1999a.

L.M. Gambardella, E. Taillard, and G. Agazzi. MACS-VRPTW: A multi-
ple ant colony system for vehicle routing problems with time windows. In
D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization,
pages 63-76. McGraw-Hill, London, 1999b.

M.R. Garey and D.S. Johnson. Computers and intractability. A guide to
the theory of NP-completeness. Freeman, Oxford, UK, 1979.

A. H. Gee. Problem Solving with Optimization Networks. PhD thesis,
Queen’s College, Cambridge University, Cambridge, UK, 1993.

D. E. Goldberg. Genetic Algorithms. Addison-Wesley, 1989.

S. Goss, S. Aron, J.-L Deneubourg, and J.M. Pasteels. Self-organized short-
cuts in the argentine ant. Naturwissenschaften, (76):579-581, 1989.

R. L. Graham. An efficient algorithm for determining the convex hull of a
finite planar set. Info. Proc. Lett., (1):132-133, 1972.

P.P. Grassé. La reconstruction du nid et les coordinations interindividuelles
chez bellicositermes natalensis et cubitermes sp. la theorie de la stigmergie:
essai d’interpretation du comportement des termites constructeurs. Insectes
Sociauz, 6:41-81, 1959.

M. Gravel, W.L. Price, and C. Gagné. Scheduling continous casting of alu-
minium using a multiple objective ant colony optimization heuristic. Euro-
pean Journal of Operational Research, 143:218-229, 2002.

M. Guntsch, J. Branke, M. Middendorf, and H. Schmeck. Aco strategies for
dynamic tsp. In M. Dorigo, M. Middendorf, and T. Stiitzle, editors, From

BIBLIOGRAPHY 143

Ant Colonies to Artificial Ants: Second International Workshop on Ant
Algorithms ANTS’2000, pages 59—62, Brussels, Belgium, 2000.

M. Guntsch and M. Middendorf. Pheromone modification strategies for ant
algorithms applied to dynamic T'SP. In E.J.W. Boers et al., editor, Applica-
trons of Evolutionary Computing: Proceedings of EvoWorkshops 2001,
number 2037 in Lecture Notes in Computer Science, pages 213-222. Springer
Verlag, 2000.

M. Guntsch and M. Middendorf. Applying population based aco to dynamic
optimization problems. In Ant Algorithms, Proceedings of Third Inter-
national Workshop ANTS 2002, number 2463 in LNCS, pages 111-122.
Springer, 2002a.

M. Guntsch and M. Middendorf. A population based approach for ACO.
In S. Cagnoni and et al., editors, Applications of Evolutionary Comput-
g - EvoWorkshops 2002: EvoCOP, EvolASP, EvoSTIM/EvoPLAN,
number 2279 in LNCS, pages 72-81. Springer, 2002b.

M. Guntsch and M. Middendorf. Solving multi-criteria optimization prob-
lems with population-based aco. In C.M. Fonseca, P.J. Fleming, E. Zitzler,
K. Deb, and L. Thiele, editors, Evolutionary Mult:-Criterion Optimiza-
tion, Second International Conference (EMO’03), number 2632 in LNCS,
pages 464-478, Berlin, Heidelberg, 2003. Springer.

M. Guntsch, M. Middendorf, and H. Schmeck. An ant colony optimiza-
tion approach to dynamic TSP. In L. Spector et al., editor, Proceedings
of the Genetic and Ewvolutionary Computation Conference (GECCO),
pages 860-867. Morgan Kaufmann Publishers, 2001.

W. Gutjahr. Aco algorithms with guaranteed convergence to the optimal
solution. Information Processing Letters, 82(3):145-153, 2002.

S. Haykin. Neural Networks. Prentice Hall, 2nd edition, 1999.

J. Holland. Adapdation in Natural and Articial Systems. MIT Press, Ann
Arbor, Michigan, 1975.

J. J. Hopfield and D. W. Tank. Neural computation of decisions in optimiza-
tion problems. Biological Cybernetics 52, pages 141-152, 1985.

J. P. Ignizio. Goal Programming and Eztensions. Lexington Books, Lex-
ington, Mass., 1976.

144 BIBLIOGRAPHY

S. Iredi, D. Merkle, and M. Middendorf. Bi-criterion optimization with
multi colony ant algorithms. In E. Zitzler and et al., editors, Ewvolu-
tionary Multi-Criterion Optimization, First International Conference
(EMO’01), number 1993 in LNCS, pages 359-372, Berlin, Heidelberg, 2001.
Springer.

P. Jaillet. Probabilistic traveling salesman problems. PhD thesis, Mas-
sachusetts Institute of Technology, Cambridge, MA, 1985.

P. Jaillet. Analysis of probabilistic combinatorial optimization problems in
euclidean spaces. MOR: Mathematics of Operations Research, 18, 1993.

M. T. Jensen. Guiding single-objective optimization using multi-objective
methods. In Giinther Raidl et al., editor, Applications of Evolutionary
Computing - EvoWorkshops 2003: EvoBIO, EvoCOP, EvolASP, Evo-
MUSART, EvoROB, and EvoSTIM, number 2611 in LNCS, pages 268-279.
Springer, 2003.

A. Jezequel. Probabilistic vehicle routing problems. Master’s thesis, Mas-
sachusetts Institute of Technology, Cambridge, MA, 1985.

M. Karpinski. Polynomial time approximation schemes for some dense in-
stances of np-hard problems. Algorithmica, (30):386-397, 2001.

J. Kennedy, R. C. Eberhart, and Y. Shi. Swarm Intelligence. Morgan
Kaufmann, San Francisco, CA, 2001.

J. D. Knowles, R. A. Watson, and D. W. Corne. Reducing local optima in
single-objective problems by multi-objectivization. In E. Zitzler and et al.,
editors, Evolutionary Multi-Criterion Optimization, First International
Conference (EMO’01), number 1993 in LNCS, pages 269-283, Berlin, Hei-
delberg, 2001. Springer.

T. C. Koopmans and M. J. Beckman. Assignmente porblems and the location
of economic activities. Econometrica, (25):53-76, 1957.

J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling
salesman problem. Proc. Amer. Math. Soc, (7):48-50, 1956.

G. Laporte, F. V. Louveaux, and H. Mercure. A priori optimization of the
probabilistic traveling salesman problem. Operations Research, 42(3):543—
549, 1994.

BIBLIOGRAPHY 145

E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. The
traveling salesman problem: A guided tour of combinatorial optimiza-
tion. Wiley, Chichester, 1985.

G. Leguizamén and Z. Michalewicz. A new version of ant system for subset
problems. In Peter J. Angeline, Zbyszek Michalewicz, Marc Schoenauer, Xin
Yao, and Ali Zalzala, editors, Proceedings of the Congress of Evolutionary
Computation, volume 2, pages 1459-1464, Mayflower Hotel, Washington
D.C., USA, 1999. IEEE Press.

S. Lin and B.W. Kernighan. An effective heuristic algorithm for the traveling
salesman problem. Operations Research, (21), 1973.

M. Liischer. Air-conditioned termite nests. Scientific American, (205):
138-145, 1961.

C. Malandraki. Time-dependent vehicle routing problems: Formulations,
solution algorithms, and computational experience. PhD thesis, Depart-
ment of Civil Engineering, Northwestern University, 1990.

C. Malandraki and M. S. Daskin. Time-dependent vehicle routing problems:
Formulations, properties, and heuristic algorithms. Transportation Science
26, pages 185-200, 1992.

V. Maniezzo. Exact and approximate nondeterministic tree-search proce-
dures for the quadratic assignment problem. INFORMS Journal on Com-
puting, 11(4), 1999.

V. Maniezzo and A. Colorni. The ant system applied to the quadratic as-
signment problem. IEEE Trans. Knowledge and Data Engineering, 5(11):
769-778, 1998.

Carlos E. Mariano and Eduardo Morales. MOAQ an ant-Q algorithm for
multiple objective optimization problems. In W. Banzhaf and et al., editors,
Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO), volume 1, pages 894-901. Morgan Kaufmann, 1999.

D. Merkle and M. Middendorf. An ant algorithm with a new pheromone eval-
uation rule for total tardiness problems. In Proceeding of the Evo Workshops
2000, number 1803 in LNCS, pages 287-296. Springer Verlag, 2000.

D. Merkle, M. Middendorf, and H. Schmeck. Ant colony optimization for
resource-constrained project scheduling. In Proceedings of the Genetic and

146 BIBLIOGRAPHY

Evolutionary Computation Conference (GECCO), pages 893-900. Mor-
gan Kaufmann Publishers, 2000a.

D. Merkle, M. Middendorf, and H. Schmeck. Pheromone evaluation in ant
colony optimization. In Proceedings of the Third Asia-Pacific Confer-
ence on Simulated Evolution and Learning (SEAL2000), pages 2726-
2731. IEEE Press, 2000b.

D. Merkle, M. Middendorf, and H. Schmeck. Ant colony optimization for
resource-constrained project scheduling. IEEE Transactions on Evolution-
ary Computation, 6(4):333-346, 2002.

N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. Equa-
tion of state calculations by fast computing machines. Journal of Chemaical
Physics, 21:1087-1092, 1953.

Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Pro-
grams. Springer, 3rd edition, 1996.

R. Michel and M. Middendorf. An aco algorithm for the shortest common
supersequence problem. In D. Corne, M. Dorigo, and F. Glover, editors, New
Ideas 1n Optimization. McGraw-Hill, 1999.

D. Mitra, F. Romeo, and A. Sangiovanni-Vincetelli. Convergence and finite-
time behavior of simulated annealing. Adv. Appl. Prob., 18:747-771, 1986.

N. Monmarche. On data clustering with artificial ants. In Alex Alves Freitas,
editor, Data Mining with Evolutionary Algorithms: Research Directions,
pages 23-26, Orlando, Florida, 18 1999. AAAT Press. ISBN 1-57735-090-1.

R. Montemanni, L. M. Gambardella, A. E. Rizzoli, and A. V. Donati. A new
algorithm for a dynamic vehicle routing problem based on ant colony system.
ODYSSEUS 2003 Second International Workshop on Freight Transportation
and Logistics, May 2003.

S. Murthy. Synergy in Cooperating Agents: Designing Manipulators from
Task Specifications. PhD thesis, Carnegie Mellon University, 1992.

G. Nicolis and I. Prigogine. Self-Organization in Non-Equilibrium Sys-
tems. Wiles & Sons, 1977.

V. Pareto. Cours D’Economie Politique, volume I and II. F. Rouge, Lau-
sanne, Switzerland, 1896.

BIBLIOGRAPHY 147

H. N. Psaraftis. Dynamic vehicle routing problems. In B. L. Golden and
A. A. Assad, editors, Vehicle Routing: Methods and Studies, volume 16
of Studies in Management Science and Systems, pages 223-248. North-
Holland, 1988.

H. N. Psaraftis. Dynamic vehicle routing: status and prospects. Annals of
Operations Research, 61:143-164, 1995.

QAPLIB. http://www.opt.math.tu-graz.ac.at /qaplib/, 2003.

M. Reimann, K. Doerner, and R. Hartl. Analyzing a unified ant system
for the vrp and some of its variants. In G. Raidl et al., editor, Applica-
tions of Evolutionary Computing - EvoWorkshops 2003: EvoBIO, Evo-
COP, EvolASP, EvoMUSART, EvoROB, and EvoSTIM, number 2611
in LNCS, pages 300-310. Springer, 2003.

F. A. Rossi and I. Gavioli. Aspects of heuristic methods in the probabilistic
traveling salesman problem, 1987.

G. Rudolph. Convergence properties of evolutionary algorithms. Kovac,
Hamburg, 1997.

S. Sahni and T. Gonzales. P-complete approximation problems. J. ACM,
(23):555-565, 1976.

M. J. Schniederjans. Goal programming : methodology and applications.
Kluwer Academic Publishers, Boston, 1995.

C. E. Shannon. A mathematical theory of communication. Bell System
Technical Journal, 27:379-423 and 623-656, July and October 1948.

Kate Smith, Marimuthu Palaniswami, and Mohan Krishnamoorthy. Neural
techniques for combinatorial optimization with applications. IEEE Trans-
actions on Neural Networks, 9:1301-1318, 1998.

Kate A. Smith. Neural networks for combinatorial optimization: A review
of more than a decade of research. INFORMS Journal on Computing, 11
(1):15-34, 1999.

C. Solnon. Ants can solve constraint satisfaction problems. IEEE Transac-
tions on Evolutionary Computation, 6(4):347-357, August 2002.

M. M. Solomon. Algorithms for the vehicle routing and scheduling problems
with time window constraints. Operations Research, (35):254-265, 1987.

148 BIBLIOGRAPHY

P. Souza. Asynchronous Organizations for Multi-Algorithm Problems.
PhD thesis, Carnegie Mellon University, 1993.

T. Stiitzle and M. Dorigo. A short convergence proof for a class of aco
algorithms. IEEE Transactions on Evolutionary Computation, 6(4):358—
365, 2002.

T. Stiitzle. An ant approach for the flow shop problem. In Proceedings of
the 6th European Congress on Intelligent Techniques € Soft Computing
(EUFIT ’98), volume 3, pages 1560-1564. Verlag Mainz, Aachen, 1998.

T. Stiitzle and H. Hoos. Max-min ant system and local search for combina-
torial optimization problems. In Proceedings Second International Con-
ference on Metaheuristics, MIC 97, Kluwer Academic, 1998.

T. Stiitzle and H. H. Hoos. The max-min ant system and local search for the
traveling salesman problem. In icec1997, pages 309-314, 1997.

T. Stiitzle and H.H. Hoos. Max-min ant system. Future Generation Com-
puter Systems, 16:889-914, 2000.

TSPLIB. http:// www.iwr.uni-heidelberg.de /groups /comopt /software
/T'SPLIB95 /index.html, 2003.

A. Vesel and J. Zerovnik. How good can ants color graphs? Journal of
computing and Information Technology - CIT, 8:131-136, 2000.

K. von Frisch. The Dance Language and Orientation of Bees. Harvard
University Press, 1967.

K. Weicker. Ewolutionary Algorithms and Dynamic Optimization Prob-
lems. PhD thesis, Institut fiir Formale Methoden der Informatik der Univer-
sitat Stuttgart, 2002a.

K. Weicker. Performance measures for dynamic environments. In J.J. Merelo,
P. Adamidis, H.-G. Beyer, J.L. Ferndndez-Villaca nas, and H.-P. Schwefel,
editors, Parallel Problem Solving from Nature, volume 2439 of LNCS,
pages 64-73. Springer, 2002b.

Index

1-Shift ..o 56
-1 o) o) o AU 29
ACO...... see Ant Colony Optimization
ACO algorithm

for nodexnode problems......... 34
ACO Algorithm

for nodexplace problems......... 94
ACS see Ant Colony System
Angle-based heuristic

adaptivec................... .. 41
Angle-based Heuristic

Combination with T'SP-heuristic . 40

definition ...l 39

implementation.................. 41
Ant Algorithm 23
Ant Algorithms........................ 8
Ant Colony Optimization............. 23
Ant Colony System.................... 22
Ant Systeml 22
AS.. .. see Ant System
AS-rank......... ... 23
changeover costs......... see setup costs
completion time..................... 120
Depth-based Heuristic

implementation.................. 38

definition 38
domination............o.oiiiit 115
double bridge experiment............. 14
duedate.........c.oooiiiit 119
dummy job......... ... 121
elitism weight 96

elitistants. ..., 22

ENbIODPY v e 70
evaporation of pheromones........... 16
Evolutionary Algorithm 8
Goal Programming 112
HAS see Hybrid Ant System
heuristic guidance.................... 19
heuristics.......... 6
Hilbertsorting 56
Hybrid Ant System................... 26
MAX-MIN Ant Algorithm............ 93
MAX-MIN Ant Systems.............. 22
Maximum Clique Problem............ 20
MCP..... see Maximum Clique Problem
MKP ... see Multiple Knapsack Problem
MMAS...... see MAX-MIN Ant System
Multi Colony Ant Algorithm 128
Multilevel Programming............. 112
Multiple Knapsack Problem 19
nearest neighbor...................... 35
Neural Networks....................... 7
nodexnode..........ooviiiiiiiiann... 18
nodexplace...............ii 18
NP 6
onlineupdate 22

Pareto-optimal Front of solutions....115

Pareto-optimalset................... 111
Particle Swarm Optimization.......... 8
pheromone
entropy ... 71
evaporation...................... 21
initialization..................... 23

150 INDEX
intensification.................... 21 SMTTSCP ... see
matriX.......cooveiii 18 Single Machine Total Tardiness
maximum value.................. 89 with Setup Costs Problem
trails in nature................... 14 SMTWTP..... see Single Machine Total
update........... ... 21, 25 Weighted Tardiness Problem

pheromone modification strategies....65 stigmergy............................ 14

population summation evaluation............... 120
of solutions 87 super-population............... 114, 116
update strategies................. 00 Swarm Intelligence 8

probabilistic distance................. 36 symmetric update.................... 35
modified 36 L

Probabilistic Traveling Salesman Problem termln'atlon 25

29 Traveling Salesman Problem........... 6
. . TSP....see Traveling Salesman Problem

processing time...................... 119

pseudo-random proportional rule 21 Vehicle Routing Problem............. 26

PTSP........ see Probabilistic Traveling yvRp see Vehicle Routing Problem

Salesman Problem

PTSP Tour weighted aggregation
approximation of solution quality 32 of objectives.................... 111
depth of an edge................. 32 of probability distributions...... 118
evaluation of solution quality 31

radial sortol 39

random proportional transition rule.. 18,

19

relative promotion error.............. 32

reset value.................... L 64
global assignment................ 65
local assignment 66

reverserank.............l 118

selectionsetl 17
initialization 24

self-organization...................... 14

setupcosts.................Ll 121

shortest path.............. 17

shortest super-sequence............... 19

Simulated Annealing................... 7

Single Machine Total Tardiness with Setup
Costs Problem
Single Machine Total Weighted Tardiness
Problem..................... 20

