
October 12, 1995, 1{17 ()

Bucknell University Technical Report.

Signed Formula Logic Programming: Operational

Semantics and Applications *

JACQUES CALMET calmet@ira.uka.de

Department of Computer Science, Institute for Algorithms and Cognitive Systems, University of

Karlsruhe,76128 Karlsruhe, Am Fasanengarten 5

JAMES J. LU** jameslu@bucknell.edu

Department of Computer Science, Bucknell University, Lewisburg, PA 17837. U.S.A.

MARIA RODRIGUEZ
��

Department of Computer Science, Bucknell University, Lewisburg, PA 17837. U.S.A.

JOACHIM SCH�U schue@ira.uka.de

Department of Computer Science, Institute for Algorithms and Cognitive Systems, University of

Karlsruhe,76128 Karlsruhe, Am Fasanengarten 5

Abstract. Signed formula can be used to reason about a wide variety of multiple-valued logics.
The formal theoretical foundation of logic programming based on signed formulas is developed in

[26]. In this paper, the operational semantics of signed formula logic programming is investigated
through constraint logic programming. Applications to bilattice logic programming and truth-

maintenance are considered.

Keywords: Logic for Arti�cial Intelligence, Multiple-valued Logic, Signed Formula, Constraint
Logic Programming, Truth-Maintenance, Bilattices

* Please address all correspondence to:

James Lu

Department of Computer Science
Bucknell University

Lewisburg, PA 17837
U.S.A.

E-mail: jameslu@bucknell.edu

Phone: +1 717 524 1394
Fax: +1 717 524 1822

** Work supported in part by the NSF under Grant CCR9225037.

SIGNED FORMULA LOGIC PROGRAMMING 1

1. Introduction

The logic of signed formulas facilitates the examination of questions regarding

multiple-valued logics through classical logic. As such, logic programming based

on signed formulas also facilitates the analysis of multiple-valued logic program-

ming systems through classical logic programming. The theoretical foundation and

the applications of the logic of signed formulas have been investigated extensively

[13], [14], [23], [24], [27], [28]. On the other hand, logic programming based on

signed formulas | signed formula logic programming | is recently formalized in

[26]. There, the semantical connections between a signed formula logic program

and its associated underlying multiple-valued logic program are studied. In ad-

dition, the relationships between signed formula logic programming and the class

of annotated logic programming [4], [19] are established. It is shown that signed

formula logic programming and annotated logic programming together provide a

basis for reasoning with \inconsistent" multiple-valued logic programs.

This paper extends the work in [26] by considering �rst of all, the operational

details of signed formula logic programming. It is demonstrated that a signed for-

mula logic program may be formulated as an equivalent constraint logic program.

From a practical stand point, this equivalence makes available to signed formula

logic programming a wide variety of implementation techniques that have been de-

veloped for constraint logic programming. Moreover, the operational behavior of

constraint logic programming sheds insights into the search space of signed resolu-

tion, which was a procedure proposed in [26] for processing queries with respect to

signed formula logic programs. Secondly, in this paper we analyze two independent

applications of signed formula logic programming: bilattice logic programming [9]

and assumption based truth-maintenance [6]. The application to bilattice logic

programming demonstrates how a signed formula logic program may be used to

answer questions about an underlying multiple-valued logic program. On the other

hand, the application to assumption based truth-maintenance provides a semanti-

cal characterization of the popular reasoning system through signed formula logic

programming.

The organization of the paper is as follows. Section 2 summerizes the theo-

retical foundation of signed formula logic programming. Section 3 describes the

semantical connection of signed formula logic programming and constraint logic

programming. Analyses and comparisons of the operational semantics of the two

formalisms are provided. Section 4 investigates the applications of signed formula

logic programming to bilattice logic programming (Section 4.1) and assumption

based truth maintenance system (Section 4.2).

2. Signed Formula Logic Program

2.1. Signed Formula

The basic building blocks of signed formulas are a multiple-valued logic � and

its associated set of truth values �. A sign is an expression, which may contain

variables, that denotes a non-empty subset of �.1 Suppose S is a sign and F is a �-

formula. Then S : F is a signed atom.2 More complex formulas | signed formulas

| may be constructed recursively using signed atoms and classical connectives by:

:F , F1 j F2, F1 & F2, F1 F2, where F ;F1;F2 are signed formulas.3 If S : F is

a signed atom in which F contains no occurrences of �-connectives, then S : F is

said to be �-atomic.

2 CALMET, LU, RODRIGUEZ AND SCH�U

2.2. Logic Program

We are interested in signed clauses | signed formulas of the form

S0 : A S1 : F1 & ::: & Sn : Fn

where S0 : A is a �-atomic signed atom, and each S1 : F1; :::; Sn : Fn is a signed

atom. A �nite set of signed clauses is called a signed formula logic program (SFLP).

In a signed clause, the conjunction appearing on the right hand side of the

symbol is called the body of the clause, and the single signed atom to the left of

the is called the head of the clause. Variables that occur in the clause, whether

they appear in formulas over � or in signs, are assume to stand for all possible

ground instantiations, under the restriction that variables appearing in signs are

substituted with subsets of �, and variables that appear in atoms are substituted

with terms in �. A bodiless signed clause is sometimes called a signed fact, or a

signed unit clause. A headless signed clause is a signed query.

Interpretations over the logic � map ground atoms to �, and are extended to �-

formulas according to the meaning of the connectives that appear in the formulas.

De�nition.(Satisfaction)A �-interpretation I satis�es a variable free signed atom

S : F i� I(F) 2 S.4 Satisfaction is extended to arbitrary signed formula in the usual

way. A signed clause is satis�ed by an interpretation I if each ground instance of

the clause is satis�ed by I. An SFLP P is satis�ed by an interpretation I if each

signed clause is satis�ed by I; I is said to be a model of P .

We write Mod(S : F) to denote the collection of all �-interpretations that satisfy

the signed atom S : F .

Proposition 1 Mod extends to arbitrary signed formulas as follows.

� Mod(F1 & F2) =Mod(F1) \Mod(F2).

� Mod(F1 j F2) = Mod(F1) [Mod(F2).

� Mod(:F) =
�Mod(F), where
 is the set of all �-interpretations.

� Mod(F1 F2) = Mod(F1) [(
 �Mod(F2))

The classical notion of logical consequence applies. It is written with the symbol

j=. The collection of all models of an SFLP P is denoted Mod(P).

Clearly, there will be SFLPs for which no models exist. Consider for example the

SFLP P over the � = f0; 0:2; 0:5; 0:8;1g.5

f1g : A

f0g : A

P possesses no model since no �-interpretation can assign both 1 and 0 to the

proposition A. The existence of such an inconsistent program does not concern us.

It simply indicates that there exist formulas in the underlying multiple valued logic

� for which certain assignment of truth values is impossible. Indeed, their exis-

tence give rise to the interesting possibility of using signed formula logic programs

in conjunction with annotated logic to reason about inconsistent multiple valued

knowledge bases [25].

SIGNED FORMULA LOGIC PROGRAMMING 3

2.3. Semantics

An important property of classical logic programming is that a program P possesses

an unique minimal model (with respect to an appropriate ordering). In the case of

an SFLP, this property does not hold. For instance, using � = f0; 0:2; 0:5;0:8; 1g

again as our truth values, if we have the program P that contains the single unit

signed atom f0; 1g : A , then P has two models:

I1(A) = 1

I2(A) = 0

If we regard � as ordered according to the usual less than relation, then a reasonable

choice for a minimal model is I2 since 0 � 1. However, as the truth value set �

need not be equipped with any ordering, consequently if we treat the elements in

� as being independent of one another, then I1 and I2 are incomparable models.

This leaves us with a rather undesirable situation. An SFLP may in general be

disjunctive, and this complicates computational issues since it may be necessary to

answer queries with respect to multiple models | a di�cult problem well-known

in the research on disjunctive logic programming [22]. Fortunately we may obtain

a good approximation to the models Mod(P) of an SFLP via an extension to the

notion of interpretation. Intuitively, extended interpretations can be thought of as

functions that measure the \inde�niteness" of each proposition in an SFLP.

De�nition.(Extended Interpretation) An extended interpretation I of � is a

mapping from ground atoms to subsets of �. It extends to arbitrary variable-free

�-formulas as follows: Suppose � is an n-ary connective in �, and F1; :::;Fn are

variable free �-formulas. Then

I(�(F1; :::;Fn)) = f�(�1; :::; �n) j �i 2 I(Fi); 81 � i � ng

De�nition.(Extended Satisfaction)An extended interpretation I e-satis�es (ex-

tended satis�es) a variable free signed atom S : F if I(F) � S. E-satisfaction for

arbitrary signed formula is de�ned in the usual way. The collection of all extended

interpretations that e-satisfy S : F is denoted EMod(S : F). An extended inter-

pretation that e-satis�es an SFLP P is called an e-model of P , and the collection

of all e-models is denoted EMod(P).

For a given logic of signed formulas, the class of all extended interpretations forms

a complete lattice under the ordering v given by:

I1 v I2 i� I2(A) � I1(A) for any ground atom A:

Care must be taken to observe that the ordering v \reverses" the ordering �. This

does not go against intuition. Since a sign S is interpreted disjunctively, i.e. can

a formula evaluate to one of the values in S, the ordering v is, in some sense,

modeling de�niteness. In other words, an extended interpretation is more de�nite

than another if the �rst assigns a smaller set of truth values to each formula. The

next lemmas are immediate.

Lemma 1 Suppose I2(A) � I1(A) for any ground atom A. Then I2(F) � I1(F)

for any ground �-formula F .

Lemma 2 Suppose I1 v I2. Then for any signed atom S : F . I1 2 EMod(S : F)

implies I2 2 EMod(S : F).

4 CALMET, LU, RODRIGUEZ AND SCH�U

Various standard results of classical logic programming can now be proven for

signed formula logic programs, including the existence of an unique minimal e-

model, and the existence of a monotone operator whose post-�xpoints coincide with

the e-models of the program. We quickly state them for the sake of completeness

in Theorems 1 and 2. The interesting non-standard result is Theorem 3, where

the connection between models of P (i.e. Mod(P)), and the e-models of P (i.e.

EMod(P)) is established.

Theorem 1 Suppose P is an SFLP. Then there is an unique minimal e-model EP
of P under the ordering v, given by

EP (A) =
[

I2EMod(P)

I(A)

for any ground atom A. Moreover, EP corresponds to the least �xpoint of the

operator WP which maps from and to extended interpretations of P :

WP (I)(A) =
T
fSjS : A S1 : F1 & ::: & Sn : Fn is a ground instance of

a clause in P and I 2 EMod(Si : Fi); for each 1 � i � ng

The least �xpoint of WP can be approximated by iterating WP starting with the

least extended interpretation that maps � to every �-formula. We use the following

notation. 6

W
*0

P = I�, where I�(A) = � for any ground atom A.

W
*n

P = WP (W
*n�1

P), for n a successor ordinal.

W
*n
P = tm�nW

*m
P , for n a limit ordinal.

The symbol t denotes the least upper bound with respect to v.

Theorem 2 W
*!
P = EP .

Theorem 3 fI(A) j I 2Mod(P)g is an e-model of P .

Corollary 1 EP (A) v fI(A) j I 2Mod(P)g.

In general, an SFLP P may be translated into an equivalent �-atomic SFLP.

Theorem 4 Suppose P is an SFLP. Then there is a �-atomic SFLP P 0 such that

Mod(P) = Mod(P 0).

Typically, the �-atomic SFLP P 0 will contain many more clauses than P . However,

queries with respect to �-atomic SFLPs are much easier to process with as we may

adapt query answering procedures for classical logic programming in a relatively

straightforward manner.

Example: Let's reconsider the MVL over � = f0; 0:2; 0:5;0:8; 1g. Let ^ denote

the function min.7 Suppose an SFLP contains the signed clause

f0:5g : A f0:5g : (B ^C):

Then, as ^ corresponds to min, B^C evaluates to 0:5 i� one of B and C evaluates

to 0:5 while the other evaluates to 0:5; 0:8 or 1. Hence one �-atomic equivalent of

the above signed clause is an SFLP that contains the following �ve clauses.

f0:5g : A f0:5g : B & f0:5g : C

f0:5g : A f0:5g : B & f0:8g : C

f0:5g : A f0:5g : B & f1g : C

f0:5g : A f1g : B & f0:5g : C

f0:5g : A f0:8g : B & f0:5g : C

SIGNED FORMULA LOGIC PROGRAMMING 5

2.4. Processing Signed Query

We assume only �-atomic SFLPs in this section. Consider the following simple

intuition. Given an SFLP P containing the signed clause S1 : A Body. Suppose

we pose the signed query S2 : A which asks whether the truth value of A is

contained in the set S2. If we are able to show that Body of the given clause holds,

then S1 : A holds in which case it remains to show that A has one of the values

in S2 � S1. In a refutational setting, this translates to the following resolution

inference.

De�nition.(Signed resolution) Let C be the signed clause S0 : A0 S1 :

A1 & ::: & Sn : An and Q be the signed query D1 & S : A & D2 where D1; D2

are conjunctions of signed atoms. Suppose A0 and A are uni�able via mgu �. Then

the query

 (D1 & �(S; S0) : A & S1 : B1 & ::: & Sn : Bn & D2)�

is called the signed resolvent of C and Q, where the binary function � takes two

arguments, both subsets of �, and it returns a subset of � de�ned by

�(T1; T2) = �� ((�� T1) \ T2):

The idea of signed resolution is as described before. The reason for the two

subtractions performed in � is to \reverse" the sign.

It is fairly straightforward to see that if a signed query contains a signed atom

S : A where S evaluates to �, then the atom may be removed from the query

without a�ecting its set of models. We assume that such a simpli�cation step is

taken whenever possible. In particular the signed atom �(S; S0) : A in the signed

resolvent above may be removed if �(S; S0) = �.

Example: Suppose we have the �-atomic SFLP P shown below, and that we are

interested in determining whether r can evaluate to one of f0:8; 1g, i.e. f0:8; 1g : r.

1. f1; 0:8; 0:5g : r f1g : p

2. f1; 0:8; 0:2g : r f0:8; 1g : q & f0:8g : s

3. f1g : p

4. f0:8g : q

5. f0:8g : s

This question may be answered by the following signed deduction.

Q0 : f0:8; 1g : r (Initial Query)

Q1 : f1; 0:8; 0:2;0g : r & f1g : p (Q0,1)

Q2 : f1g : p & f0:8; 1g : q & f0:8g : s (Q1,2)

Q3 : f0:8; 1g : q & f0:8g : s (Q2,3)

Q4 : f0:8g : s (Q3,4)

Q5 : 2 (Q4,5)

Lemma 3 �(T1; T2) = � i� T2 � T1.

6 CALMET, LU, RODRIGUEZ AND SCH�U

Theorem 5 Signed resolution is sound and complete for �-atomic formulas with

respect to EP .

In the case that an SFLP contains signs in which variables occur, testing whether

a signed deduction succeeds involves simultaneous testing of whether several signs

denote �.

Example: Let P be the SFLP de�ned over � = f0; 0:5; 1g as shown below.

(V \W) : A V : B & W : C

f1; 0g : B

f1; 0:5g : C

The query f1g : A can be answered with the following signed refutation.

 �(f1g; (V \W)) : A & V : B & W : C

 �(f1g; (V \W)) : A & �(V; f1; 0g) : B & W : C

 �(f1g; (V \W)) : A & �(V; f1; 0g) : B & �(W; f1; 0:5g) : C

In each of the queries, if the variables that occur in any of the signs can be consis-

tently replaced by subsets of � so that each sign evaluates to �, then the deduction

terminates. A careful inspection reveals that only the last of the above queries can

be so substituted with V = f1; 0g and W = f1; 0:5g.

3. Constraint Logic Programming

Query processing based on signed resolution, as presented in Section 2.4, is the-

oretically straightforward. However, complex implementation issues arise due to

the possibility that a signed atom resolved upon may remain in the resolvent (see

Section 3.3). In light of this, we seek to �nd a connection between SFLP and an

existing logic programming formalismwith a simpler operational semantics. If such

a connection can be established, then we bene�t �rst of all by having available ex-

isting implementation techniques, and secondly the operational simplicity of the

existing logic programming formalismmay help to clarify issues that are speci�c to

SFLPs. This is the motivation behind the work described in this section. Specif-

ically, we show a transformation of SFLP to constraint logic programming (CLP)

over the domain of P(�); the \upside down" powerset lattice over �. This transla-

tion will enable the application of CLP query processing techniques, together with

set constraint solving methods (e.g. [2]), to SFLPs.

The work on constraint logic programming was pioneered by Ja�ar and Lassez

[16]. The integration of constraint solving into the semantics of logic program-

ming signi�cantly extends the applicability of logic programming to domains once

thought unsuited for logic programming. We give a very brief summary of the

theory of CLP.

A CLP consists of de�nite horn clauses augmented with constraints over some

speci�ed domain. We assume a �rst order language L. A structure over L, �, is a

collection of objects D (i.e. the carrier), and an assignment of the symbols of L to

the functions and the relations on D.

The predicate symbols in L are divided into two disjoint sets, �c and �p. An

atomic constraint is an atom formed in the usual way from the symbols of L, but

whose predicate symbol belongs to the set �c. A constraint is a well-formed formula

built from atomic constraints, logical connectives, and quanti�ers. A constraint

clause is an expression of the form

SIGNED FORMULA LOGIC PROGRAMMING 7

A � k B1 & ::: & Bn

where � is a constraint, and A;B1; :::; Bn are atoms whose head symbols belong to

�p. A constraint logic program is then a �nite collection of constraint clauses.

A �-valuation is a mapping from variables in L to elements in D, extended

straightforwardly to arbitrary expressions in L. A constraint � is solvable if there

is a �-valuation that when applied to �, yields a relation �� over D that is true.

The �-valuation is said to be a solution of �.

An �-base of a constraint logic program P is the set

fp(~x)� j p 2 �p and � is a �-valuationg:

A �-interpretation is a subset of the �-base, and a �-model I of a constraint

logic program P is a �-interpretation such that for every constraint clause A

�kB1 & ::: & Bn in P , if � is a �-valuation that is a solution of � and Bi� 2 I

for i = 1; :::; n, then A� 2 I. As Ja�ar and Lassez showed [16], a CLP program

is assured of a least �-model, which may be approximated through a monotone

operator that is analogous to the TP operator of classical logic programming.

To simplify the presentation, we consider in the remainder of the section, only

those SFLPs in which all �-formulas are propositional; signs that appear in signed

clauses may still contain variables. This assumption is made only for the sake of

brevity. All of the discussion that follows extends to non-ground SFLPs easily.

3.1. SFLP to CLP

As mentioned above, there is a natural representation of a �-atomic SFLP as a

CLP program over the domain P(�).

De�nition.(Constraint Form) Given a �-atomic SFLP P , the constraint form of

P is the CLP, denoted CF (P), made up of the following two collections of non-

ground CLP clauses.

1. A(V) S � V k B1(S1) & ::: & Bn(Sn)

where the signed clause S : A S1 : B1 & ::: & Sn : Bn is in P .

2. A(V) (V1 \ V2) � V k A(V1) & A(V2)

where A is any atom that occurs in P .

3. A(V) V = �

where A is any atom that occurs in P .

The variables V; V1 and V2 range over non-empty subsets of �. The constraint form

of a signed query Q = S1 : B1 & ::: & Sn : Bn is obtained as a special case of the

�rst step above. That is, CF (Q) = B1(S1) & ::: & Bn(Sn).

Example: Consider the SFLP P from the last example in Section 2.4.

(V \W) : A V : B & W : C

f1; 0g : B

f1; 0:5g : C

The constraint form of P is the CF (P) below.

8 CALMET, LU, RODRIGUEZ AND SCH�U

A(U) (V \W) � U k B(V) & C(W)

A(U) (U1 \ U2) � U k A(U1) & A(U2)

A(U) U = �

B(U) f1; 0g � U

B(U) (U1 \ U2) � U k B(U1) & B(U2)

B(U) U = �

C(U) f1; 0:5g � U

C(U) (U1 \ U2) � U k C(U1) & C(U2)

C(U) U = �

Note the clauses B(U) U = � and C(U) U = � are subsumed by B(U)

f1; 0g � U and C(U) f1; 0:5g � U respectively, and hence they may be removed.

The extended interpretations for P and the CLP-interpretations of CF (P) nat-

urally correspond, in the sense of satis�ability, via the following mapping . For

any ground atom A and variable free sign S:

A(S) 2 (I) i� I(A) � S:

Hence if we have an SFLP written over the truth values � = f0; 0:5; 1g, and I is

the interpretation that maps A to f0:5g, then

 (I) = fA(f0:5g); A(f0; 0:5g);A(f1;0:5g); A(f0;0:5; Ig)g

Before demonstrating that is \meaning preserving", we prove a useful property

of the CLP models of CF (P). First, a model I is said to be supported if for each

atom A 2 I, there is a ground instance of a clause A �kB1 & ::: & Bn such that

each Bi is in I, and that the constraint � is true. This is a simple generalization

of the notion of supportedness for classical logic programming [1].

Lemma 4 Suppose I is a supported CLP model of CF (P) and A(S) is a ground

atom in I. Then for any T � � such that S � T , A(T) 2 I.

Proof: I is supported implies that there is a clause C in CF (P)

A(V) S0 � V k B1(S1) & ::: & Bn(Sn)

and a substitution � such that A(V)� = A(S), Bi(Si)� 2 I, and � is a solution to

S0 � V . Clearly, any substitution that is identical to � for any variable other

than V , and that V � � V , is a solution to S0 � V . Moreover, Bi(Si) 2 I since

Bi(Si) = Bi(Si)� (note that V does not occur in any Bi(Si) by the construction

of CF (P)). It follows that as I is a model of C, A(V) 2 I.

Theorem 6 I is an e-model of P i� (I) is a CLP model of CF (P).

Proof:

if: Consider a ground instance C of a clause in CF (P) whose body is satis�ed by

 (I). There are three cases to consider, each corresponding to a case in the

construction of CF (P) (see the de�nition of constraint form). In the �rst case,

C has the form

A(S0) S � S0 k B1(S1) & ::: & Bn(Sn)

where S � S0 holds. There is a corresponding instance C0 in P of the form

SIGNED FORMULA LOGIC PROGRAMMING 9

S : A S1 : B1 & ::: & Sn : Bn

As Bi(Si) 2 (I), I(Bi) � Si. Then I(A) � S since I is an e-model of P . It

follows by transitivity that I(A) � S0. By the de�nition of , A(S0) 2 (I).

In the second case, C has the form

A(S0) (S1 \ S2) � S0 k A(S1) & A(S2)

where A(S1) and A(S2) are both contained in (I), and (S1 \ S2) � S0 holds.

For i = 1; 2, I(A) � Si. Consequently, I(A) � (S1 \ S2). By the transitivity of

set inclusion, I(A) � S0 and A(S0) 2 (I).

In the last case where C has the form

A(S0) S0 = �

where S0 = � holds. As I(A) � � holds trivially, A(�) 2 (I).

only if: Suppose

S0 : A S1 : B1 & ::: & Sn : Bn

is a ground instance of a clause in P where I 2 EMod(Si : Bi) for each 1 � i � n.

The corresponding constraint form of the clause can be represented via the

schema

A(V0) S0 � V0 k B1(S1) & ::: & Bn(Sn)

where V0 stands for any subset of � that contains S0. Clearly, one particular

instance of V0 is S0. Hence as (I) is a CLP model of CF (P), A(S0) 2 (I).

It follows that I(A) � S0.

Corollary 2 (EP) coincides with the least CLP model of CF (P).

3.2. Query Processing Revisited

A query in a CLP language is an expression of the form

 � k A1 & ::: & An

where � is a constraint, and A1; :::; An are atoms. Query processing in CLP com-

bines classical logic programming backtracking with constraint solving. We call

such a procedure CLP-resolution. At each step of a CLP-deduction, the solvabil-

ity of the constraint part of the current goal is required. Considerations such as

incremental computation is useful in practice. As a starting point, consider the

following example.

Example: Recall the example in Section 3.1. A signed refutation of the query

 f1g : A was given earlier in the example in Section 2.4. The corresponding CLP

query is the expression A(f1g) and may be refuted as follows.

10 CALMET, LU, RODRIGUEZ AND SCH�U

 (V \W) � f1g k B(V) & C(W)

 (V \W) � f1g & f1; 0g � V k C(W)

 (V \W) � f1g & f1; 0g � V & f1; 0:5g � W .

The constraint appearing in each step of the deduction is solvable.

Consider another example in which the extra clauses of the constraint form, in-

troduced via the second step of the de�nition of the constraint form, are used.

Example: Let � = f0; 0:5; 1g and let P be the SFLP below to the left. CF (P) is

the CLP shown on the right.

SFLP P Corresponding CLP CF (P)

f1; 0g : A A(V) f1; 0g � V

f1; 0:5g : A A(V) f1; 0:5g � V

A(V) (U1 \ U2) � V k A(U1) & A(U2)

The query Q = f1g : A may be refuted using both signed resolution and CLP

resolution shown below.

Signed Deduction CLP Deduction

 f1g : A A(f1g)

 �(f1g; f1; 0g) : A (U1 \ U2) � f1g k A(U1) & A(U2)

 �(�(f1g; f1;0g);f1;0:5g) : A (U1 \ U2) � f1g & f1; 0g � U1 k A(U2)

 (U1 \ U2) � f1g & f1; 0g � U1 & f1; 0:5g � U2

Theorem 7 (Soundness and Completeness) Suppose P is an SFLP and Q is a

signed query. Then P j= Q i� there is a CLP-deduction of the empty clause from

the program CF (P) beginning with the query CF (Q).

3.3. Implementation Issues

Two simple prototype interpreters have been implemented in the language C for

experimentation[30]. One is based on signed resolution, and the other is based on

CLP. We are especially interested in comparing the structure of the search space

induced by each of the query processing methods.

Annotated logic, as studied in [4], [17], [18], [19], has been shown to relate to

signed formulas [23]. In [20], a query processing procedure for annotated logic

programming was introduced that shares certain characteristics with the signed

resolution procedure developed in this paper. In particular, since the signed atom

resolved upon in signed resolution is not necessarily removed in the resolvent, and

since signed atoms may share variables in their signs, the independence of literal

selection in classical logic programming [21] no longer holds. Hence a function

that fairly chooses signed atoms from queries appearing in a deduction has to be

provided. Viewing an SFLP as a CLP further sheds light on this issue.

Let's reconsider the program P from the last example in Section 2.4. Suppose we

adopt the strategy of selecting the leftmost signed atom in each deduction step, no

proof of the query f1g : A can be obtained. In the proof exhibited in Section 2.4,

signed resolution was applied to the �rst signed atom in the �rst query, the second

signed atom in the second query, and the third signed atom in the last query.

SIGNED FORMULA LOGIC PROGRAMMING 11

>

f t

?

�

�

�

H

H

H

H

H

H

�

�

�

- t

6

k

Figure 1. The Bilattice FOUR.

Now viewing the program in its constraint form (see example in Section 3.1), it

can be seen that the problem of atom selection is transformed into the (traditional)

problem of fair clause selection. The query in question has the constraint form

 A(f1g), and can be resolved easily by CLP-resolution using the usual Prolog

left-most atom selection (see the �rst example in Section 3.2). Indeed, any other

atom selection strategy will work. Hence by considering SFLP as CLP, we have

traded o� selection strategies on the signed atoms of queries for selection strategies

on the clauses in the transformed program.

A closer examination reveals that in this example, the structure of the search

space induced by CLP-resolution can be obtained by, in each step, shu�ing the

signed atom resolved upon to the rightmost part of the resolvent prior to the next

deduction.8 This observation can, in fact, be generalized.

4. Applications

4.1. Bilattice Logic Programming

This section applies SFLP to analyzing �nitely valued bilattice logic programs [9].

We are interested in �nding, for each bilattice logic program P , an SFLP SFB(P)

that can be used to answer questions of the form:

Given bilattice logic program P , a sign S and a atom A, can A evaluate to

some value in S, under the intended meaning [jP j] of P?

In bilattice logic programming, [jP j] is typically associated with a single interpre-

tation | though several acceptable choices exist. Hence formally, the relationship

desired is

SFB(P) j= S : F i� [jP j](F) 2 S:

A logic of bilattice �B is a multiple-valued logic whose set of truth values � is a

bilattice | a set equipped with two orderings, �k and �t, each inducing a complete

lattice on the elements in �. � contains four distinguished elements: ?, >, f , and

t, which denote respectively the least and the greatest elements with respect to

�k, and �t. FOUR shown in Figure 1 is thus the smallest non-trivial bilattice.

The least upper bound and greatest lower bound operations with respect to the

ordering �k are denoted
 and � respectively, while with respect to the ordering

�t, they are denoted _ and ^ respectively. The symbol : denotes negation, and

satis�es the properties a �k b) :a �k :b and a �t b) :b �t :a. Furthermore,

� satis�es the interlacing condition, which says that each of the operations _;^

is monotone with respect to the ordering �k, and similarly, each of the operations

�;
 is monotone with respect to the ordering �t [9].

12 CALMET, LU, RODRIGUEZ AND SCH�U

There are a number of constants in the language of �B . A body formula is built

out of atomic formulas, constants, and the connectives :, _, ^,
, and �. A �B-

clause is an expression of the form A F where A is an atomic formula, and F is

a body formula. A �nite set of �B-clauses is called a bilattice logic program.

A �B-interpretation I assigns a value in � to each constant, each ground atom,

and are extended to each body formula according to the functions represented by

the operators :, _, ^,
, and �. It is assumed that all interpretations evaluate the

constants in the same way, in particular true is a constant that evaluates to t, and

false is a constant that evaluates to f under any �B-interpretation.

As mentioned, several reasonable possibilities exist for the intended meaning of a

bilattice logic program P . We focus on the one provided by the operator �P , given

by Fitting in [9], which maps from and to �B-interpretations.

Given a �B-interpretation I, �P (I) is the �B-interpretation that assigns to each

atomic formula A, a truth value determined by the following.

�P (I)(A) =
_
fI(F)jA F a ground instance in Pg

�P is monotone with respect to �k, and it is monotone with respect to �t provided

that the symbol : does not appear in P. In each case, the existence of the least �xed

point of �P is guaranteed by the Knaster-Tarski theorem on monotone operators

over lattices. We denote lfpt(�P) the least �xed point of �P under the �t ordering.

Example: Consider the bilattice logic program P over FOUR

r p
 (q _ t)

s t� p

u p
 t

p true

q true

lfpt(�P) assigns t to each of r, p, and q. It assigns > to s, ? to u, and f to t.

The �xed point lfpt(�P) establishes [jP j]. It tells us that for each ground atom

A, the truth value of A is at least lfpt(�P)(A), with respect to the ordering �t.

To mimic this semantic using an SFLP, the signs that we choose must allow the

iteration of the operator W to reect lfpt(�P). It turns out that the signs of

interest are of the form "t � = f� 2 �j� �t �g.

De�nition.(SFB) Let P be a bilattice logic program P . SFB(P) is the SFLP

consisting of the following set of signed clauses.

f"t t : A j A true 2 Pg [

f"t f : A j A false 2 Pg [

f"t V : A V : F j A F 2 P where F is a complex body formula, and

V is a variable that does not occur in the clauseg [

f"t t : true ; "t f : false g

The last set in the above union ensures that the constants true and false are

interpreted faithfully in SFB(P).

Example: Continuing with the previous example, SFB(P) contains the following

signed clauses.

SIGNED FORMULA LOGIC PROGRAMMING 13

"t V : r V : (p
 (q _ t))

"t V : s V : (t� p)

"t V : u V : (p
 t)

ftg : p

ftg : q

ft; f ;?;>g : false

ftg : true

The function lfp(WSFB(P)) is shown below.

true false u t s r q p

ftg ft; f ;?;>g f?; tg ft; f ;?;>g f>; tg ftg ftg ftg

For each proposition A, lfp(WSFB(P))(A) ="t � i� lfpt(�P)(A) = �. Indeed, this

relationship holds for any bilattice logic program, as the next theorem indicates.

Theorem 8 Suppose P is a positive bilattice logic program. Then lfpt(�P)(A) = �

i� lfp(WSFB(P)) e-satis�es the signed atom "t � : A.

SFB(P) can now be used to answer questions about P under the meaning [jP j].

Given an atom A and a subset S of �, the question of whether A evaluates to S

under the intended meaning of P can be expressed as a signed query S : A, and

an answer may be obtained through procedures such as signed resolution.

4.2. Assumption-Based Truth Maintenance

A lattice of truth values similar to P(�) of Section 3 using the reverse subset

ordering appears in assumption-based truth maintenance systems [6]. The powerset

P(A) of a propositional language A forms a complete lattice when ordered under

the reverse subset ordering, denoted �. The basic idea of coding the assumptions

under which a proposition holds into its truth values was originally proposed by

Ginsberg [12], but his work was carried out in the context of multiple-valued logic

theorem proving.

Here, we provide a semantical characterization of assumption-based reason main-

tenance by means of signed formulas. In addition to gaining theoretical insights,

since we have revealed that signed formula logic programs can be operationalized

by means of constraint logic programs, a possible parallel implementation of an

assumption-based reason maintenance system by means of concurrent constraint

logic programming languages [31] will therefore be possible.

Informally assumptions are primitive data from which all other data can be de-

rived through the use of justi�cations. A justi�cation in the original ATMS is

just a propositional Horn-clause without negation. A node consists of a datum,

label and justi�cations. To illustrate the di�erence between a justi�cation in the

ATMS and a clause in the problem solver, consider the following example from

DeKleer: the deduction of Q(a) from P (a) and Q(X) P (X) is recorded as

a justi�cation P (a); Q(X) P (X)) Q(a) where datum refers to a datum in the

truth maintenance system. An ATMS determines beliefs based on the justi�cations

so far encountered not with respect to the logic of the problem solver. Therefore,

the propositional symbols occurring within labels are uninterpreted symbols and

justi�cations are material implications.

14 CALMET, LU, RODRIGUEZ AND SCH�U

In our approach, the underlying logic of the problem solver does the bookkeeping

performed by the reason maintenance system. Since the problem solver is a signed

logic program, the inferences and data to be recorded by the reason maintenance

are restricted. The problem solver datum is either derived, or it is a program clause.

An environment is a set of given assumptions and a label is a set of environments.

Formally, a label is a propositional formula in disjunctive normal form, and a datum

holds in a given environment if it can be derived from the justi�cations and the

environment. A Nogood is a minimal assumption set such that the assumptions

contained within cannot be true together with respect to the set of justi�cations.

An ATMS context is the set formed by the assumptions of a consistent environment

combined with all nodes derivable from those assumptions.

One particular di�erence between our formulation and the original ATMS is that

our semantics does not capture the removal of environments subsumed by Nogoods

(labels of atoms with inconsistent truth values). In other words, the semantics of

an SFLP is monotonic in contrast to the ATMS where just discovered Nogoods are

to be removed. In our case, a Nogood is simply an empty clause with a nonempty

sign.

The key idea in rede�ning assumption-based reason maintenance9 as signed logic

program is to write labels in the form of signs, i.e. de�ne a suitable set of truth

values �. In this sense our reason maintenance system departs from most other

systems as it amalgamates the inference machine of the problem solver and the rea-

son maintenance component. Following the argument of [29], a reason maintenance

system itself should be able to detect inconsistencies and to compute automat-

ically the dependencies of new beliefs from older ones instead of just recording

them passively. Besides, the amount of time spent for communication between the

problem-solver and the reason maintenance system is reduced since the dependency

computation takes place without any extra costs during the inference process. As

pointed out earlier, we may de�ne � as P(A). Then an appropriate lattice function

computing the minimal label from the sign of the body literals may be written in

the heads of signed clauses. In the following example we show how the �xpoint op-

erator WP computes the label of ground atoms. We de�ne a function fn as follows:

fn : P(A)
n 7! P(A) is de�ned as

fn(E1; : : : ; En) =
[

L2(E1�:::�En)

n[

i=1

L # i

where Ei 2 P(A) for each 1 � i � n, and L # i denotes the i-th component of L.

Example: Let us consider a MVL � over � = P(fA;B;C;D;Eg) and the following

SFLP.

f2(V;W) : p V : q;W : r

ffA;Bg; fB;C;Dgg : q

ffA;Cg; fD;Egg : r

Then, the label of p is computed as follows. The cartesian product V �W is the

following set.

V �W = f(fA;Bg; fA;Cg); (fA;Bg;fD;Eg);

(fB;C;Dg; fA;Cg); (fB;C;Dg; fD;Eg)g

Then the collection of l1 [l2 for each pair (l1; l2) in V �W is the set

ffA;B;Cg; fA;B;D;Eg; fA;B;C;Dg; fB;C;D;Egg

SIGNED FORMULA LOGIC PROGRAMMING 15

This set is the result of f2(V;W). It is also the truth value assigned to p by W
*!
P .

5. Related Work

Ideas described in this paper evolved from a number of recent work. Signed reso-

lution was developed by Baaz and Ferm�uller [3] for signed formulas whose signs

were restricted to singleton sets. A more general version of signed resolution was

studied independently by H�ahnle [15], and Murray and Rosenthal [27]. Each of

these developments was set in the context of theorem proving. The application

of CLP to SFLP was based in part on the work of Fr�uhwirth [10]. His method

generated CLP-queries directly from the original program; the program is not �rst

transformed into a CLP. In addition, only applications to annotated logic pro-

gramming was considered. In order to characterize di�erent reason maintenance

systems semantically, a similar line of research has been pursued by Fehrer [8] who

elaborated independently on a closely related idea. His work focuses on Gabbay's

labeled deductive system [11] which is a much more general framework than signed

formulas which can be used for general theorem proving in di�erent kinds of logics.

The basic idea of transforming a multiple-valued logic program into a constraint

logic program was proposed and implemented in [5]. Some benchmarking results

can also be found there. However, the work again applies only to annotated logic

programming, which is a restricted form of SFLP.

Acknowledgements

Reiner H�ahnle's provided numerous useful comments on a preliminary draft of this

paper. The latex style �le was created by Amy Hendrickson.

Notes

1. To simplify the presentation, we blur the distinction between the language from which such
an expression is constructed, and the objects in � over which the symbols of this language is

interpreted.

2. Abstractly, formulas in � are constructed from atomic formulas and connectives of various
arity. Suppose� is an n-ary connective, andF1; :::;Fn are �-formulas. Then the the expression

�(F1; :::;Fn) is also a �-formula.

3. We use j and & to denote classical or and and respectively. The symbols _ and ^ will be
used in Section 4.1 to denote connectives in �.

4. Again for emphasis, I is a witness to the question \Can F evaluate to a value in S?"

5. The truth value set f0;0:2;0:5;0:8;1g has been applied in fuzzy reasoning [32].

6. We use *, which deviates slightly from the well-known " notation used in the logic programming
literature, because in Section 4.1, " is used to denote upsets of partially ordered sets [7].

7. This is the usual interpretation associated with conjunction in fuzzy logics.

8. This amounts to, also, the strategy adopted by Fr�uhwirth in his implementation of annotated
logic programming [10].

9. For historical reasons the term ATMS (assumption based truth maintenance) is sometimes
used in this paper.

References

1. K.R. Apt, H.A. Blair, and A. Walker. Towards a theory of declarative knowledge. In
J. Minker, editor, Foundations of Deductive Databases and Logic Programming, pages

16 CALMET, LU, RODRIGUEZ AND SCH�U

89{142. Morgan Kaufmann, 1987.

2. A. Aiken and E. Wimmers. Solving systems of set constraints. In Proceedings of the

7th Symposium Logic in Computer Science, pages 329{340. Computer Society Press,
1992.

3. M. Baaz and C. G. Ferm�uller. Resolution for many-valued logics. In A. Voronkov,
editor, Proceedings of Conference Logic Programming and Automated Reasoning, pages
107{118. Springer-Verlag, 1992.

4. H.A. Blair and V.S. Subrahmanian. Paraconsistent logic programming. Theoretical

Computer Science, 68:135{154, 1989.

5. D. Debertin. Parallel inference algorithms for distributed knowledge bases (in ger-
man). Master's thesis, Institute for Algorithms and Cognitve Systems, University of
Karlsruhe, 1994.

6. J. DeKleer. An assumption-based TMS. Arti�cial Intelligence, 28:127{162, 1986.

7. B.A. Davey and H.A. Priestley. Introduction to Lattices and Order. Cambridge Uni-
versity Press, 1990.

8. D. Fehrer. A Unifying Framework for Reason Maintenance. In Michael Clarke, Rudolf
Kruse, and Seraf��nMoral, editors, Symbolic and Quantitative Approaches to Reasoning
and Uncertaint y, Proceedings of ECSQARU '93, Granada, Spain, Nov. 1993, volume
747 of Lecture Notes in Computer Science, pages 113{120, Berlin, Heidelberg, 1993.
Springer.

9. M. Fitting. Bilattices and the semantics of logic programming. Journal of Logic

Programming, 11:91{116, 1991.

10. T. Fr�uhwirth. Annotated constraint logic programming applied to temporal reasoning.
In Proceedings of the Symposium on Programming Language Implementation and Logic

Programming, pages 230{243. Springer-Verlag, 1994.

11. Dov M. Gabbay. LDS- labelled deductive systems. Preprint, Dept. of Computing,

Imperial College, London, September 1989.

12. M.L. Ginsberg. Multivalued logics: A uniform approach to inference in arti�cial intel-

ligence. Computational Intelligence, 4(3):265{316, 1988.

13. R. H�ahnle. Uniform notation of tableau rules for multiple-valued logics. In Proceed-

ings of the International Symposium on Multiple-Valued Logic, pages 26{29. Computer
Society Press, 1991.

14. R. H�ahnle. Automated Theorem Proving in Multiple-Valued Logics. Oxford University
Press, 1993.

15. R. H�ahnle. Short normal forms for arbitrary �nitely-valued logics. In Proceedings

of International Symposium on Methodologies for Intelligent Systems, pages 49{58.

Springer-Verlag, 1993.

16. J. Ja�ar and J-L. Lassez. Constraint logic programming. In Proceedings of the 14th

ACM Symposium on Principles of Programming Languages, pages 111{119. ACM
Press, 1987.

17. M. Kifer and E. Lozinskii. Ri: A logic for reasoning with inconsistency. In IEEE

Symposium on Logic in Computer Science, pages 253{262, 1989.

18. M. Kifer and E. Lozinskii. A logic for reasoning with inconsistency. Journal of Auto-

mated Reasoning, 9:179{215, 1992.

19. M. Kifer and V.S. Subrahmanian. Theory of generalized annotated logic programming

and its applications. Journal of Logic Programming, 12:335{367, 1992.

20. S. Leach and J.J. Lu. Computing annotated logic programs. In Proceedings of the

International Conference on Logic Programming, pages 257{271. MIT Press, 1994.

21. J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 2 edition, 1988.

22. J. Lobo, J. Minker, and A. Rajasekar. Foundations of Disjunctive Logic Programming.

MIT Press, 1992.

23. J.J. Lu, N.V. Murray, and E. Rosenthal. Signed formulas and annotated logics. In

Proceedings of the 23rd International Symposium on Multiple-Valued Logics, pages
48{53. Computer Society Press, 1993.

24. J.J. Lu, N.V. Murray, and E. Rosenthal. Signed formulas and fuzzy operator logics. In
Proceedings of the International Symposium on Methodologies for Intelligent Systems.

Springer-Verlag, 1994.

25. J.J. Lu and E. Rosenthal. Annotations, signs, and generally paraconsistent logics.
Intelligent Systems, pages 143{157, 1995.

26. J. Lu. Logic programming with signs and annotations. To appear in Journal of Logic
and Computation, 1995.

27. N.V. Murray and E. Rosenthal. Signed formulas: A liftable meta-logic for multiple-
valued logics. In Proceedings of International Symposium on Methodologies for Intel-

ligent Systems, pages 275{284. Springer-Verlag, 1993.

SIGNED FORMULA LOGIC PROGRAMMING 17

28. N.V. Murray and E. Rosenthal. Signed formulas: A liftable meta-logic for multiple-
valued logics. Fundamenta Informatica, 1995.

29. J.P. Martins and S.C. Shapiro. A model for belief revision. Arti�cial Intelligence,
35:25{79, 1988.

30. M. Rodriguez. Solving set constraints in signed formulas and logic programming, May
1995. Honors Thesis for the degree of BS, Bucknell University.

31. V. Saraswat. Concurrent Constraint Programming. PhD thesis, Carnegie-Mellon, 1991.

32. T.J. Weigert, J-P. Tsai, and X. Liu. Fuzzy operator logic and fuzzy resolution. Journal
of Automated Reasoning, 10:59{78, 1993.

