An executable Graphical Representation of
Mediatory Information systems

Jacques Calmet * Dirk Debertin * Sebastian Jekutsch *
Joachim Schu *

Department of Computer Science
Institute for Algorithms and Cognitive Systems
University of Karlsruhe
{calmet,debertin,jekutsch,schue}@ira.uka.de

Abstract

In this paper we present an approach towards a unified modeling and query-processing tool
for mediatory information systems. Based upon Coloured Petri-nets we are able to model the
integration of parametric data (external, uncertain and temporal informations) and visualize
the dataflow in mediatory information systems.

Keywords: Coloured Petri-nets, Interoperable federated systems, Parametric Databases, De-
ductive Databases

1 Introduction

With the transition from isolated to cooperating information systems there is an urgent need for
sound computational query-processing with a diversity of circumstantial informations. Wiederhold
et al. [27, 25, 26] have proposed the concept of a mediator, a device which expresses how the
integration of different information systems is to be achieved. Different languages for building
mediatory information systems have been presented in [17, 15, 12]. These approaches depart from
former proposals as they are declarative, i.e. logic based. We believe that from a software engineering
point of view a declarative language could alleviate the difficult task of building and in particular
maintaining mediatory information systems. In this paper we present a Petri-net model based
upon an extension of the Coloured Petri-nets [9] for such a language, which can be viewed as a
parametric database [4] in the sense that it allows a seamless integration of temporal, uncertain
and inconsistent information. The integration of external data is modeled as functions and relations
over some external software packages. From an implementational point of view we use a common
object request broker [2] to invoke the external functions and for describing the interface to those
external functions/relations. For a detailed description on how external data can be integrated, the
interested reader may refer to [17, 24]. We will focus in this paper on the graphical representation
of the mediatory information system itself rather than the underlying information systems.

A step towards an environment for building mediated systems is a graphical user interface to
assist the mediator developer. On the domain or object level numerous extensions of the entity-

*Author for Correspondence: Jacques Calmet. Department of Computer Science, Institute for Algorithms and
Cognitive Systems, University of Karlsruhe, Am Fasanengarten 5, D-76128 Karlsruhe, Tel: 449 721 608 4208, Fax:
+49 721 608 6116

Relation STOCK
Name | Date | Price

BMW | 17/5 | 771
Daimler | 17/5 | 690

VW 17/5 | 410 Ticker 1 from 18/5, 11 am
BMW 16/5 | 771 BMW 772 Daimler 685 VW 392
Daimler | 16/5 | 692

VW 16/5 | 414)

BMW 15/5 | 770 Ticker 2 from .18/5, 11 am
Daimler | 15/5 680 BMW 772 Daimler 684
VW 15/5 | 405

BMW | 14/5 | 766
Daimler | 14/5 | 685
VW 14/5 | 406

Table 1: External Information Systems in the Example

relationship model in order to model time, uncertainty and object-orientation have been proposed.
Tools as [7, 23] for aiding partial or global schema integration provide assistance in figuring out
possible equivalence among objects, but up to now no graphical tool modeling the dataflow in
mediatory information systems has been made available.

Our model has several other applications: It provides a natural and simple mechanism for main-
taining mediated views very different from algorithms such as [16]. Once the rules defining a view
have been transformed into a Petri net, base relation updates and view redefinitions can be simply
modeled by the addition or deletion of the corresponding places and transitions from the network.
The well understood relationship of Petri nets and concurrency permits the simultaneous firing of
several transitions. Another possible application of our model is the verification of large knowledge-
and databases containing uncertain and temporal informations. The detection of redundancy, cir-
cularity and incompleteness by pattern recognition algorithms has been described in [28].

The paper is structured as follows. We first present the architecture of the mediatory information
system followed by a description of a language for expressing mediatory knowledge and the coloured
Petri-nets. In section 4, an extended Petri-net model for bottom-up evaluation of mediatory knowl-
edge bases is presented. The paper is concluded by a comparison to former approaches, possible
applications and further research directions.

2 Mediatory Architecture

The following example will be used throughout the paper to illustrate our approach. Consider a
broker having access to a relational database containing stock prices of the last few days. Two
different online tickers provide recent stock prices. These two differ in the amount of information
they provide and in their reliability.

A frequent task of the broker is to discover extraordinary events, such as a stock differing more
than 20 DM from its price in former times. He wants this task to be automated. The problems
are that the two kinds of information sources — the relational DB and the online services — are
heterogeneous in their structure, and that the two tickers may be inconsistent in the information
they provide. See table 1 for example values.

Papakonstantinou et. al. provided in [21] an architecture for integrated access to heterogeneous
information sources (IS). It consists of mediators converting queries in a common format (OEM) to
more specialized queries, which in turn are converted by translatorsinto queries in the language of the

View 1 View 2 Mediatorl Mediator2

\ /

perhaps
Global Schema no n?ed
T T T T T
\ / \ / I
IS 1 1S 2 IS 3 IS 1 1S 2 IS 3

(a) (b)

Figure 1: Top-Down-Integration of Heterogeneous Information Sources

requested IS. Such a translator exists for each mediator-IS combination. A translator also includes
other functionalities for utilizing the IS for the mediator such as caching extracted information or
managing remote procedure calls.

This approach differs significantly from traditional integration of multiple databases:

e There is no global schema integrating the local IS schemata.

e The information sources may be heterogeneous in their structure, for example object-oriented
databases, computer algebra systems, flat WWW-pages or other mediators as well. Building
global schemas require more or less uniform datamodels.

e Integrating heterogeneous information sources focus not only on the integration of the data-
object schema but also on integrating the different accessing mechanisms. In fact this is the
central point in [21].

Building a global schema from local schemas is a bottom-up procedure (see for example [22]): One
explicitly defines the local schemas, constructs the global schema above them and finally defines
application views onto the global schema (see Fig.1(a)). The mediatory methodology is in a more
top-down fashion. First, there is a given application requirement for information access, for example
having access to different stock information sources. The mediators providing this view have (via
translators) direct access to the local information sources (IS), because — taken the view from the
top — no global schema of all the IS is available (see Fig.1(b)). Therefore mediators can be seen as
specialized ”global” views. They only integrate those parts of the underlying IS that are crucial for
the application needs they serve. Note that a mediator may be itself an IS for another mediator.

Our approach differs from [21] in that our mediator is knowledge based using a declarative rule
based language. We believe that there is a need for Al-techniques in IS-integration for the following
reasons:

e Two information systems may differ in the information they provide. Choosing the better
(more reliable or more specialized) source requires expertise. In our example the broker has
experience with the two tickers. He knows when to trust them. To simulate this behavior the
mediator has to be some kind of expert system. Other knowledge intensive decisions may be

necessary such as choosing the optimal parameters for a query or consulting the sources in
appropriate order.

e Given a predefined application need, it could be the case that neither each local information
system nor a global schema build from them provides the whole answer. Instead, the answer
to a query may require additional inferences on the external informations. In our example,
none of the sources detect those extraordinary events.

These kinds of mediators do not only integrate heterogeneous IS but also add knowledge. The
result is a new information system providing more than just the sum of the underlying information
systems, but (re-)using and depending on them.

In this paper we will focus on the development of the mediator code. The construction of the
translators, which make up an essential part of our architecture for mediatory knowledge bases will
not be covered.

3 Prerequisites

3.1 A language for mediatory knowledge bases

The language for expressing mediatory knowledge bases has been proposed in [17, 24, 6, 14] and is
based upon generalized annotated logic and constrained databases. In this section we first sketch
generalized annotated logic introduced by M. Kifer and coworkers [13, 11]. It provides us with an
universal language for dealing with temporal, uncertain and inconsistent information or in general
with parametric data with provides the algebraic structure of a lattice. A description of the ongoing
implementation for SUN and PC can be found in [6, 14]. For a comprehensive description of the
language the reader may refer to [17, 11, 13].

3.1.1 Generalized Annotated Programs

Salient features of the language are the so-called annotations p;’s which are constants, variables and
terms over a complete lattice 71. The following definitions are from [13]:

Definition 3.1 An annotation is either an element of 7 (c-annotation), an ennotation variable (v-
annotation) or a complez annotation term (t-annotation). Annotation terms are defined recursively
as follows: members of 7 and variable annotations are annotation terms. In addition, if z¢,..., 2,
are annotation terms, then f(z1,...,2,) is a complex annotation term.

If A is a usual atomic formula of datalog (in [13] predicate calculus) and g is an annotation, then
A : pis an annotated atom. An annotated atom containing no occurrence of object variables is
ground. A is called the object part and p is called the annotation part of A : p.

Definition 3.2 (Annotated clause) If A : p is an annotated atom and By : ui,..., By : ug are
c- or v- annotated atoms, then

Aip— By i AN .ANBg g

is an annotated clause. A : p is called the head of this clause, whereas By : pi,...,Br @ pg 1s
called the body. All variables (object or annotation) are implicitly universally quantified. Any set of
annotated clauses is called a Generalized Annotated Program (GAP).

LA complete lattice (7, =) is a partial ordering with respect to <, a least upper bound (lub) LI and a greatest lower
bound (glb) 1 for every subset of 7. A lattice is linear if < is a total ordering.

Definition 3.3 (Strictly ground instance) Suppose that C is an annotated clause. A stricily
ground wnstance of C' is any ground instance of C' that contains only c-annotations.

Let H be the Herbrand base of the program. An annotated logic interpretation 7 is a mapping
7 : H — T from the base onto a lattice.

Definition 3.4 (Satisfiability) Let I be an interpretation, g € 7 a c-annotation and A a ground
atom:

LLIEA:piff I(4) =

u
2. T E-A:piff ~(p) X I(A4).
3. I M AFff I =F and I | Py

A TEFRVEIffIEF ol F.

5.1 F — Py iff [)= Fyor I | Py

6. Il= " — o iff [= Fy — Fyand I = Fy — .

7. I = (Vo)F ift I = {«/t}F for all ground terms ¢ where z is an object-variable or annotation
variable.

8. I = (Fu)F iff I = {«/t}F for some ground term t where z is an object-variable or annotation
variable.

9. If F is not a closed formula, then I = F'iff I |= (V)F, where (V)F denotes the universal closure
of I'.

There are two different kinds of negation in GAP, the so-called epistemic (or explicit) negation
— and the non-monotonic not. — requires symmetry between true and false, e.g. =A :t = A : f.
For a proposal on how to handle not by adapting the stable and well-founded semantics to GAP
the reader may refer to [17]. We will not discuss this topic further, but the model presented here
can easily be extended to deal with non-monotonic negation in stratified mediatory knowledge bases
along the lines of [20]. For GAP without non-monotonic negation the fixed-point operator has the
following form:

Definition 3.5 (Fixedpoint-operator) Let P be a generalized annotated logic program (GAP),
T a GAP interpretation and 7 a complete lattice. Then a fixed-point operator Rp(Z) for bottom-up
computation of GAP’s is defined as follows: Rp(Z)(p) :=U{p |p:p —p1: 1, ...Dn : lyn is a strict
ground instance of a clause in P and Z |=p1 : p1, .. .Pn : bin}-

Rp may reach the least fixed point ({fp) if for all strict ground instances A, {fp(Rp(A)) is reached
after a finite number of iterations. This condition, called fized-point reachability property [13], holds
for many GAP knowledge bases: If the clause bodies of a program contain only variable (v-) or only
constant (c-) annotations, or if only finite or decreasing monotone functions? appear in the program.
For instance, if the knowledge base consists of Rains(Monday) : 0.5 and Rains(Monday) : 0.8
the least upper bound computed by the fixed-point operator would be Rains(Monday) : 0.8 =
U{0.5,0.8}. Let P(M) denote the powerset of a given set M. Examples of useful lattices as truth
domains are:

e Fuzzy-values: ([0, 1], <) with the maa function as lub.

2A function f is finite if {f(z)|z € DOM(f)} is finite and f is decreasing if for arbitrary arguments z1,...7n
f(z1,...zn) < ziforalll <i< n.

e Inconsistent informations: The set FOUR [11] of {t,f, T, L} of truth values, where T stands
for inconsistency and L for “unknown”. FOUR is a non-linear lattice, because t and f are not
related.

e Timey: The powerset of non-negative integers is a complete lattice when ordered under the C
ordering.

e Times: The set of all closed intervals of non-negative real numbers is a complete lattice when
ordered under the C ordering.

e Multiple Information Systems: The Information Systems (IS) identifier are stemming from the

lattice (P({IS1,...,15,}),C).

The expressiveness of the language is greatly improved by the combination of multiple lattices
in two different ways. First the usual cross-product x with a componentwise ordering, least upper
bound U and greatest lower bound M. Second, the free product, denoted ®, which is similar to the
cross product except that the lub is not defined pointwise but as a formal operation with the rules

(alb)@ec = (a®@)U(b®ec)
a®(bUc) (a@b)U(a®c)

and additional rules which express commutativity and associativity of LI and distributivity of LI with
M.

For instance the [0, 1] x [0, 1] cross-product has been useful in the area of probabilistic rea-
soning. The ordering is defined pointwise, therefore [ai,b1] < [asz,bs] iff a1 < as and by < bs.
Consider as an example for the free-product point-based time and uncertainty. The database
{Rains:[{Monday, Tuesday},0.5], Rains:[{ Tuesday, Wednesday},0.6]} does not permit to answer the
query Rains:[{Monday, Tuesday, Wednesday},0.6] since the least upper bound is not defined point-
wise. Is is only possible to infer {Rains:[{Monday}, 0.5]} and {Rains:[{Tuesday, Wednesday},0.6]}.
Intuitively Rains:[{Monday, Tuesday},0.5] means that it will rain on Monday and Tuesday with a
certainty of at least 0.5.

Possibility of truth and falsehood N =1[0,1] x [0, 1]
Time and uncertainty T®N
Multiple information systems and uncertainty P(l...n)@N
Time, multiple information systems and uncertainty | 7@ P(1...n)®@ N

Table 2: Selected examples of (product)lattices

3.1.2 Integrating external Information Sources

The following description is taken from [16] and [17]. We add a constraint part to annotated clauses
to enrich the expressiveness of GAPs and to provide a way to access external information systems.

Given a domain set D of objects that we wish to reason about, a set F' of functions that are used
to manipulate the objects and a set R of relations over F', a constraint domain Yp is defined as the
tuple (F, R). A constraint term is build out of F' in the obvious way. Note that an element e € D
may be viewed as a 0-ary function in F'. An atomic constraint is a relation r(ay, ...a,) where r € R
and for all 1 < i < n, a; is a constraint term.

Access to an information system will be expressed as an atomic constraint. For example the
relation stock(Name, Date, Price) causes (via the translator) a SQL-call to the relational database
containing the relation STOCK.

A constraint = over Yp is a first order formula which is either true or false in ¥p. ¥p is said to
satisfy Z, denoted by Yp > =, if

=
[1

E is an atomic constraint r(ai,...ay), then (a1 ...a,) €7

ho
[1

His = A, then Yp A

&2
[1

Eis (AA B), then ¥p > A and ¥p > B

=
[1

Eis (AV B), then ¥p > A or Xp > B

A constrained clause C' is an expression of the form
Po:ipog—Z||Pr:ippa Ao . APyt piy

where the || is just a syntactical notion to separate ordinary GAP literals from the constraint part
of a clause. If Yp is a constraint domain and 7 an interpretation then for the constrained clause C
either Xp >-ZorZ =Py :puy A... AP, : py holds.

Definition 3.6 (Mediatory Knowledge bases fixed-point-operator) Let P be a generalized
annotated logic program (GAP) with constrained clauses, 7 a GAP interpretation , 7 a complete
lattice and Yp a constraint domain. Then a fixed-point operator 7p(Z) for bottom-up computation
of mediatory knowledge bases is defined as follows: Tp(Z)(p) .= U{p|p:p —E || p1: 1, -Pn : in
is a strict ground instance of a clause in P such that Xp > Eand Z |=py g1, .. .pn : pin}-

In the running example we need to integrate the information provided by the online tickers. We
store this in the predicate stock/2 annotated by the source and date. today is a build-in constant. In
our example it evaluates to 18/5. To invoke the tickers we use the following non-ground constrained
facts:

stock(Name, Price) : [{ticker, }, {today}] — stock_pricel(Name, Price) ||

stock(Name, Price) : [{tickera}, {today}] — stock_price2(Name, Price) ||

The actual access to the external knowledge source is done when the stock _price relations over the
constraint domains ticker; and tickers are evaluated.

The usefulness of this approach for mediated systems can be illustrated by the running example
from section 2. The predicate

stock(Name, Price) : [P({m,tickerl, ticker2}), Date]

expresses the price of stock Name € {bmw,daimler,vw,...} annotated with the source of the
information — m being the mediator itself — and the date for which the price holds. In the following
we will develop the example knowledge base.

Preference of information systems and incomplete knowledge. The variety of reasoning
modes beyond local or global consistency applicable to mediation suggests that it may be better not
to build a single mode of mediation but to provide the means to write clauses for mediation. In our
example we need to express that the ticker 1 — although providing the additional information about
the actual VW stock price — is not as reliable as ticker 2. Preferring ticker 2 can be expressed by
the following two clauses:

stock(Name, Prices) : [{m}, Date] «— stock(Name, Pricey) : [{tickerl}, Date] A
stock(Name, Prices) : [{ticker2}, Date]
stock(Name, Price) : [{m}, Date] «— stock(Name, Price) : [{tickerl}, Date] A
not(stock(Name,) : [{ticker2}, Date]

Given the example values in table 1 with this clauses we may conclude stock(daimler,684) :

[{m}, {18/5}] as well as stock(vw, 392) : [{m}, {18/5}].

Inferences about external information We would like to detect stocks whose price decreased
more then 20 DM with respect to the days before.

selected_stock(Name) : [{m}, {today}]
Stock(Name, Date, Price) A Price; < Price — 20 ||
stock(Name, Pricey) : [{m}, {today}]

Note that when evaluating the Stock relation the external relational stock database is being accessed
through some remote function call.

Query-processing with temporal data. In [13] it was shown how some kinds of temporal
reasoning could be subsumed by GAP, e.g. clauses of the form

buy(Name) : succ(Date) — selected_stock(Name) : [{m}, Date]

where succ() denotes a function which increases every member of the set Date : 1995/10/0414 : 39 :
97, e.g.
succ({18/5}) = {19/5}.

Paraconsistent query-processing. Definite Horn-clauses used in ordinary deductive database
languages lack the capability to express logical inconsistencies, intrinsic to a mediated environment.
Using lattices like the above mentioned FOUR we are able to explicitly represent clauses which
state how to deal with conflicting information, e.g. buy(vw) : [{m},f] — buy(vw) : [{I51, 152}, T]
states that whenever there is an attribute value conflict concerning the relation buy(vw) in the
information systems IS7, IS5 then the answer of the mediated system m should be false. As one can
see now the computation of the least upper bound in the above fixed-point operator is an essential
operation for sound query-processing in the mediatory knowledge base, otherwise we would not be
able to answer queries like buy(vw) : [{IS1,IS2}, T] with respect to a knowledge base containing

buy(vw) : [{IS1}, t], buy(vw) : [{ISa},f].

3.2 Coloured Petri-nets

A Coloured Petri-net is a triple N = (P, T, A) consisting of disjoint sets P (places) and T (transitions)
and a multi-set A (arcs) over (P x T) U (T x P) forming a bipartite graph. Each place p € P is
assigned a colourset C(p) and a multi-set M (p) of tokens each of colour C(p). Coloursets can be
viewed as datatypes, and tokens are instances having a specific colour. To each arc a = (p,t) € A
or (t,p) € A is attached a label L(a) of type C(p). Note that tokens as well as labels may contain
variables of suitable type. A marking is the distribution of tokens over all places of the net. Each
transition ¢ € T is assigned a boolean guard G(t) expressing constraints on the variables binded to ¢.
See [9] for an extended and more formal definition of coloured petri-nets.

Let IN(t) := {(p,t) € Alp € P}, OUT(t) := {(p,t) € Alp € p}, ot := {p|(p,t) € A} and
te := {p|(t,p) € A} denote the vicinity of t € T. A transition ¢ is called enabled iff the following
conditions hold:

e For each incoming arc a; € IN(t) there is at least one variable substitution o; such that a
token s € M(p) exists with o;(s) = o3(L(a;)). This particular token s must not serve again
as a resource for another substitution o; for j # i. Recall that M(p) is a multi-set, therefore
more than one token of this kind may be present.

o All substitutions o; are compatible. o; and o; are compatible if their concatenation o;0; is
defined. In other words there is no assignment of two different values to the same variable.

o If G(t) evaluates to true under o = 6103+ - - 0y, then o is called an enabling substitution.

There could be more than one enabling substitution ¢ under the same marking. A transition could
fire if it is enabled under a substitution o. If a transition ¢ fires, the tokens M; of the places are
updated to M;41 as follows:

M;(p) \ o(L({p,1))) . pEet\te
Mig1(p) = M;(p) Vo (L({t, p))) . pEte\et
v Mi(p)\o(L((p,1))) Vo (L((t,p))) : pEotnte
M;(p) : otherwise
Given a marking My, a sequence t1,...1, is called a firing sequence if for each ¢ (1 < ¢ < n) t;

is enabled under the marking M;_; and ¢;’s firing results in the marking M;. The firing sequence
changes the marking My into M, .

4 An extended Petri-net Model

In this section the representation of mediatory knowledge and the integration of external information
sources via remote function calls is described.

A transformation of a GAP knowledge base into an extended Petri-net N = (P, T, A) is done
according to the subsequent rules (the clauses are enumerated from 1 to n):

e Each predicate p is a place p in the net.

e Each clause ¢ is a transition ¢ (1 < ¢ < n) in the net.

e Let O be the type of the object part and 7 the annotated lattice of predicate p. Then
C(p):=0xT.

e For every clause ¢ of the form
po(00) t o — p1(01) i1 AL A P (0m,) T Him,

and 1 < i < mg, the net contains the arcs a; := (p;, ¢) with the labels L(a;) := (0;, ;) where
f; 1s a new variable annotation. p; < p; is added as conjunctional condition to the guard of
transition ¢ if y; is a c-annotation. In addition the net contains the arc ag := (¢, po) with the
label L(ag) := (o, tig) where

o © Ho 1s c-annotation
io = < {w;|p; is the same variable as pg} : o is v-annotation
f(or, .. pn) ©po=flp1, ... pn)

The p1,...p, are defined recursively similarly. Note that M{a} = a for every a € T and
n{}:=n7.

e The initial marking is empty, that is Vp € P : My(p) = 0.
Queries can be added to the net as they are headless clauses. The following abstract example
illustrates the transformation in its details. Places are drawn as circles and transitions as rectangles.

We omit typing information and assume that C(p) = C(q) = C(r) = {a} x [0,1]. All uppercase
letters are variables.

Example 1

(1) p(a) : 0.5 —
(2) q(a) : 0.6 —
(3) r(X): %V —pla):V A q(X):V A q(a):0.3

(4) —r(X):0.2

(a,0.5)
- @m
D Ln{v;,va}) (X, V)
()=,
(a,0.6)

— > > 0.
) G va) V3 0.3 vV >0.2

In the following a substitution is written as a set of bindings of the form X/t where X is a variable
and ¢ is a term of appropriate colour. In example 1 answering to the query 7(X):V can be modeled
by a firing sequence 1,2,3,4: Transitions 1 and 2 are always enabled since their guards are true
and no variable binding is necessary. Their firings place the tokens (a,0.5) in p and (a,0.6) in q.
Consider now transition 3. A possible binding is o = {V1/0.5,V2/0.6, V3/0.6, X/a}. Due to the fact
that the guard V3 > 0.3 evaluates to true under o, transition 3 is enabled. Its firing (see below
for problems here) adds the token o((X,0.5-M{V1,V2})) = (a,0.25) to place r. Finally the query
transition 4 is enabled with o = {X/a, V/0.25} which is also the binding for the successful query.

We need to extend the model in the following three ways in order to capture the fixed-point
semantics 3.6 of a mediatory knowledge base:

1. In the example above only one token was in place ¢ after transition 2 fired, but transition 3
needed this token two times to be enabled, one for every arc (q,3). Unlike the definition in
section 3.2 in our model tokens will not be removed if a transition fires. This reflects that
the tokens represent knowledge rather than resources that cannot be shared. It is similar to
the case when a materialized view gets queried, where an element from a view should not be
deleted if it has been queried for. In other words our Petri-net model caches all facts necessary
for answering a query which could lead to a large number of tokens to be kept within the
net. Such an extension avoids conflicts between transitions which need the same token to be
enabled, as encountered in the example.

2. The model presented so far only works with linear annotation lattices. Consider the following
example using the non-linear lattice FOUR.. The ordering of the elements in FOUR is illustrated
at the right of the picture.

10

Example 2

-
(bmw, t) (bmw, V)
O | H
- VT
1

2

After the firings of 1 and 2 buy contains the tokens (bmw,t) and (bmw,f). There are two
possible substitutions for V: {V/t} and {V/f}. None of them satisfies the guard V > T hence
transition 3 is not enabled. This is a contradiction to the fixed-point semantics of GAPs,
because L{t,f} = T. In the example a token (brmw, T) should be in M (p) although none of
the incoming transitions 1 and 2 delivered it. We call such derived tokens reductants [13]3.

Definition 4.1 (Reductants) Given aset M = {(01, 1), . ..(0n, ttn)} of tokens and a unifier

o with o(01) = ... = 0(0,) the token (c(o1),U{u1,...un}) is called a reductant. The function
reductanis(M) computes the set of reductants derived from all subsets of M for which ¢ is
defined.

For example ((a,b), T) is a reductant of the set {((X,b),t), ((a,Y),f)}. It is important that
every annotation in M is a c-annotation to ensure that the least upper bound U is defined. For
markings M (p) this is always the case according to the next theorem. A proof has appeared
in [3].

3. It is also possible to delete tokens from a place. For example every time (a,0.5) € M (p) serves
as a token for an enabling substitution for a transition ¢ (with (p,t) € A), (a,0.6) will as well;
but not vice versa. We say that (a,0.6) subsumes (a,0.5), because 0.6 > 0.5. (a,0.5) might be
deleted from M (p) without changing the behavior of an extended Petri-net.

Theorem 1 (Possible tokens of a place) Let P be a GAP and N its transformation. At all
places p € P of N = (T, P, A) there are only tokens (o,) € M(p) with g € 7 if P is finite.

Definition 4.2 (Subsumption) Given two tokens (o1, f11), (02, p2) € M, the first subsumes the
second if p1 = po2 and there exists a substitution ¢ such that o; = o(01). The function subsump-
tion(M) computes all tokens in M which are subsumed by at least one other token in M.

For example (a,t) and (a,f) are both subsumed by their reductant (a, T), whereas
subsumption({((X,b),t),((a,Y),f),((a,b),T)}) is empty.

To summarize the three extensions presented above we redefine the update of the marking due
to the firing of transition ¢t € T":

(1) Mi{(p) = { %jgg Yot p) Zo)tiet;wise
(2) M{f‘f(p) = M;ffl(p) @] reductants(M;ffl ()
(3) Miyi(p) = M{(p)\ subsumption(M]{{(p))

With this extension example 2 works as expected: Transitions 1 and 2 place the tokens (bmuw, t)
and (bmw,f) in p respectively. M7"¢(p) evaluates to {(bmw,t), (bmw,f), (bmw, T)} and M(p) to
{(bmw, T)}, which enables transition 3, since T = T.

Before presenting algorithms for the testing for firability of a transition and updating of the net
marking, some more definitions are required:

3Different from the definition provided here, in [13] derived rules are named reductants. Note that tokens are
representations for annotated atoms due to the presented transformation.

11

Definition 4.3 (Unification mgua() of tokens) Tokens s = (o, 1) as well as arc labels consist of
two parts, its first being the object part s°® = o and the second being the annotation part s**" = p.
Let mgu(o1,02) denotes the usual most general unification of 01 and o3. Given two tokens/labels
1, 82 the most general annotational unifier mgua(s1, s2) is constructed as follows:

bi b7 . .
mgu(s]?, sy 7) U {sd"" /s{""} . s4™" is v-annotation
— bj _obj .
mgua(si,s2) = ¢ mgu(s;”, s57) : 83" is c-annot. and s{"" > s§n"
unde fined . otherwise

If mgu(s(l)bj , sgbj) is not defined, mgua(s1, s2) is not defined either. Note that mgua() is not sym-

metric. If mgua(si,sz) is defined, s; and s; are said to be unifiable.
For example, mgua(((X,a),0.5),((b,Y),0.4)) = {X/b,Y/a} and mgua((a,t),(a,f)) is not defined.

Definition 4.4 (Compatibility of annotation substitutions) Two substitutions

{V/a} and {V/b} which assign different c-annotations a and b to the same annotation variable V'
are compatible if a and b are comparable due to the ordering of the underling lattice. In this case
their concatenation {V/a}{V/b} is defined as {V/ M{a,b}}. This definition is easily extended to
cases with more than two substitution.

Definition 4.5 (Concatenation of mguas) The substitutions in mguas may be divided in object
variable substitutions and annotation variable substitutions. The concatenation oi05-- -0, of n
mguas o1, ...0, is defined as the usual concatenation of the object variable substitutions unioned
with the above defined concatenation of the annotation variable substitutions.

Testing for fireability

Input: Extended Petri-net N = (P, T, A);
Transition c € T
Output: Maximal set of mgugs each enabling c. ¢ is not enabled if the set is empty.

0 :={} (© is a set of sets of possible substitutions for c)
for all arcs a € IN(¢) do
(Let a be (p,c) € A)
Pq = {}, (¢a is the set of all possible substitutions for a)
for all tokens s € M(p) do
if unifiable(s, L(a)) then ¢, := ¢, Umgua(s, L(a));
if o, = {} then return {};
O :=0Up,;
(Let © be {¢1,...¢0|})
v={}; (T is a set of all enabling substitutions for c)
for all permutations (o1, ...0|e|) With 0; € ¢; € © (1 <1 < |9]) do
if 01,...0)g| are pairwise compatible then ¥ := W U092 -0|gy;
return U,

Firing of a transition

Input: Extended Petri-net N = (P, T, A);
Transition ¢ € T,
Set ¥ of c-enabling substitutions
Output: N with updated marking using every o € ¥

12

for all arcs a € OUT(c) do
(Let a be (c,p) € A)
for all ¢ € ¥ do
M(p) = M(p) U {o(L(a)}
M(p) == M(p) U reductants(M(p));
M(p) == M(p) \ subsumption(M (p));

See [14] for algorithms implementing reductants() and subsumption().

It is worth noting that our model captures the operational semantics of a GAP, which means
that if there is a GAP for which the least fixed-point reachability property does not hold (e.g. from
{p:0,p: HT”“" —p:a,q:1« p:1}itis never possible to answer the query ¢ : 1) the corresponding

Petri-net cannot answer this query as well and runs forever.

So far only the transformation of GAPs to the extended Petri-net model has been described. The
constraint part of a clause ¢, which is essential for the integration of external information sources,
will simply be added to the guard G(c)of transition ¢. For ¢ to be enabled, G(¢) — including the
constraints — has to be satisfied. This implements the fixpoint operator Tp. The following theorems
have been proven in [3] and capture the soundness and completeness of the proposed extended
Petri-net model with respect to the semantics of constrained GAP:

Theorem 2 (Soundness) Let P be a GAP with clauses ¢y, . ..c¢,, ¢, a query and N the extended
Petri-net defined on P. If there is a successful firing sequence in N then ¢, ...¢,_1 = ¢n.

Theorem 3 (Completeness) Let P be a GAP with clauses ¢1,...¢,, ¢, a query and N the
extended Petri-net defined on P. If ¢1,...¢,_1 |E ¢n, then there is a successful firing sequence in N.

Figure 2 (refer to [21] for a similar picture) illustrates the mediatory architecture with the
extended Petri-net. It refers to the broker example and shows the clause which computes the
selected stocks. For the purpose of readability the annotations are being omitted. The transition is
enabled with the substitution { Name/vw, Price1/392}. The relational database is invoked to return
convenient tuples. Only one tuple returned by the translator is drawn. This tuple — (414, 16/5) —
passes the guard so place selected_stock will be updated as shown.

5 Conclusion and further research directions

In this paper we presented a Petri-net model as an executable graphical representation of mediating
knowledge.

In [19] a Petri net model for reasoning in the presence of inconsistency has been presented. It is
based upon a preliminary version of the logic we are using in this paper and does not allow query-
processing with temporal and uncertain informations. In particular v- and t- annotations have not
been addressed, which are necessary for dealing with temporal /uncertain information and aggre-
gation. However, their Petri-net models first-order GAPs. Meseguer [18] developed a consistency
checking algorithm for a propositional rule base based upon Predicate/Transition Petri nets [5]. Sim-
ilar to the work of Bell et al. [1] for computing materialized views by mixed-integer programming
methods, his approach defines the notion of consistency through the solution of a system of linear
equations obtained from the Petri net representation. However, our use of the Coloured Petri net
departs from the Place/transitions nets sufficient for propositional logic. In [28] a tool for knowledge
verification has been presented in which the task of knowledge validation becomes the identification
of certain subgraph isomorphisms of the Petri-net. Inconsistent, redundant, subsumed, circular and

13

Mediator

stock selected _stock

(bmw,772)
(daimler,684)
(vw,426)

/ (Pricey,Date)=RelDB:select(STOCK ,Name)

Price;<Pricey—20

(Name,Price) (Name)

select(STOCK,vw) (/5)
406,14/5

Translator

select Price, Date
, Y

from STOCK

where Name = vw 410 | 17/5
414 | 16/5
ws 155 |
406 | 14/5

-
RelDB

Figure 2: Mediatory knowledge base in action

incomplete rules are defined as patterns of the Petri net model and detected by a syntactic pattern
recognition method. We believe that their method can also be applied using our model description
but only for detecting redundant rules and incompleteness which means to identify those rules which
can never fire or do not have any impact on the rest of the net. With respect to classical relational
languages we explicitly allow to specify how to deal with conflicting information, instead of an ex-
pensive detection of possibly contradicting rules. Therefore detection of conflicting rules becomes
unnecessary in our language.

The algorithms presented are currently under implementation [8]. The tool provides a graphical
user-interface for entering and executing GAPs. A goal is to provide a methodology supported by a
tool for top-down-construction of mediator code. We believe that a graphical representation could
not only facilitate the acquisition of mediating rules but also provides some hints about a possible
distribution of the mediatory knowledge base across a network. However the model only specifies
the data flow but not the control flow. From a software engineering point of view its a good point
to separate them, but a control flow specification — that is prescribing the order in which enabled
transitions fire — is necessary to provide efficient execution.

We did not discuss the development of translators in this paper. A translator depends on
the information system it is put on and therefore different translators are necessary for different

14

sources. We believe that at least parts of a translator will be reusable for various information
sources, so building a translator shell is one of our future goals. Furthermore we plan a detailed
performance analysis of the Petri-net approach for incremental view maintenance in comparison to
other algorithms such as [16].

References

(1]

[15]

[16]

Colin Bell, Anil Nerode, Raymond Ng and V.S. Subrahmanian. Implementing Deductive
Databases by Linear Programming. Proceedings of ACM Symposium on Principles of Database
Systems, 1992, pp. 283-292

ORBIX, distributed object technology. ITONA Technologies Ltd. ORBIX- A Technical
Overview, July, 1993

D. Debertin. Parallizing inference in distributed mediated systems. Master’s thesis, Depart-
ment of Computer Science, IAKS, University of Karlsruhe (in German)

Sashi K. Gadia. Parametric databases: seamless integration of spatial, temporal, belief and
ordinary data. SIGMOD Record, Vol.22, No.1, March 1993, pp.15-20

H.J. Genrich. Predicate/Transition nets. LNCS 25/, Springer-Verlag, 1987 pp. 207-247

V.S. Subrahmanian, S. Adali, A. Brink, R. Emery, Jim Lu, Adil Rajput, T.J. Rogers, R.
Ross, C.Ward. HERMES Heterogenous Reasoning and Mediator System. Draft, University of
Maryland, 1995 (available through WWW).

Stephen Hayne, Sudha Ram. Multi-User View Integration System (MUVIS) : An Expert for
View Integration. ITEEFE Conference on Data Engineering, 1990, pp.402-409

Sebastian Jekutsch. A graphical Tool for Construction And Debugging of GAPs. Project work,
Department of Computer Science, IAKS, University of Karlsruhe (in german)

Kurt Jensen. Coloured Petri Nets: A High Level Language for System Design and Analysis.
in: G. Rozenberg (Ed.): Advances in Petri Nets 1990

P. Kanellakis, G. Kuper and P. Revesz. Constraint Query Languages. ACM Symposium on
Principles of Database Systems, pp. 299-313, 1990

Michael Kifer, E. Loziniskii. RI: a logic for reasoning with inconsistency. Journal of Automated
Reasoning 9, 1992, pp.179-215

R. Krishnamurthy, W. Litwin and W. Kent. Language features for interoperability of databases
with schematic discrepancies. Proceedings ACM SIGMOD, 1991, pp. 40-49

Michael Kifer, V.S. Subrahmanian. Theory of Generalized Annotated Logic. Journal of Logic
Programming 12, 1992, pp. 335-367

Peter Kullmann. SLG-Resolution for Generalized Annotated Logic (in preperation). Mas-
ter’s thesis, Institute for Algorithms and Cognitive Systems, University of Karlsruhe, 1995 (in
German)

A. Lefebvre, P. Bernus, R. Topor. Query Transformation for Accessing Heterogenous
Databases. Joint International Conference and Symposium on Logic Programming, Work-
shop on Deductive Databases, 1992

Jim Lu, Guido Moerkotte, Joachim Schu, V.S. Subrahmanian. Efficient Maintenance of Ma-
terialized Mediated Views. Accepted for ACM SIGMOD, 1995

15

[17]

[18]

[19]

[20]

[21]

Jim Lu, Anil Nerode, V.S. Subrahmanian. Towards a Theory of Hybrid Knowledge Bases. To
appear in IEEE Transactions on Knowledge and Data Engineering

P. Meseguer. A new method to checking rule bases for inconsistency: a Petri Net approach
Proceedings of ECAI, Stockholm, 1990, pp. 437-442

Tadao Murata, V.S. Subrahmanian, Toshiro Wakayama. A Petri Net Model for Reasoning in
the Presence of Inconsistency. IEEE Transactions on Knowledge and Data engineering, Vol3,
No.3, September 1991, pp.281-292

T. Shimura, J. Lobo, Tadao Murata. A Petri Net Semantics for Logic Programs with Negation.
Proceedings of the 1992 International Conference on Software Engineering and Knowledge
Engineering, Capri, Italy, pp.292-299

Yannis Papakonstantinou, Hector Garcia-Molina, Jennifer Widom. Object Exchange Across
Heterogenous Information Sources. Department of Computer Science, Stanford University.

Available via WWW.

M.P.Reddy, B.E.Prasad, P.G.Reddy, Amar Gupta. A methodology for integration of het-
erogenous databases. IEEE Transactions on Knowledge and Data Engineering, Vol 6, No.6,
December 199/

Amit P. Sheth, James A. Larson. A Tool for Integrating Conceptual Schemas and User Views.
IEEE Conference on Data Engineering, 1988, pp.176-183

V.S. Subrahmanian. Amalgamating Knowledge Bases. ACM Transactions on Database Sys-
tems 19,2, 1994, pp. 291-331

Gio Wiederhold. Intelligent Integration of Information. ACM SIGMOD Conference, 1993, pp.
434-437

Gio Wiederhold. Interoperation, Mediation, and Ontologies. Available via WWW

Gio Wiederhold, Sushil Jajodia and Witold Litwin. Integrating temporal data in a heteroge-
nous environment. In: Temporal Databases. Benjamin/Cummings, Jan 1993

D.Zhang, D. Nguyen. PREPARE: A Tool for Knowledge Base Verification. IEEE Transactions
on Knowledge and Data Engineering, 1994, Vol. 6, Number 6, pp. 983-989

16

