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Abstract. The combination of logical and symbolic computation systems
has recently emerged from prototype extensions of stand-alone systems
to the study of environments allowing interaction among several systems.
Communication and cooperation mechanisms of systems performing any
kind of mathematical service enable to study and solve new classes of prob-
lems and to perform efficient computation by distributed specialized pack-
ages.

The classification of communication and cooperation methods for log-
ical and symbolic computation systems given in this paper provides and
surveys different methodologies for combining mathematical services and
their characteristics, capabilities, requirements, and differences. The meth-
ods are illustrated by recent well-known examples.

We separate the classification into communication and cooperation
methods. The former includes all aspects of the physical connection, the
flow of mathematical information, the communication language(s) and its
encoding, encryption, and knowledge sharing. The latter concerns the se-
mantic aspects of architectures for cooperative problem solving.

1. Introduction

The design of general techniques to combine and integrate several systems
has been initiated in many areas. For instance, the integration of theorem
proving and symbolic mathematical computing has recently emerged from
prototype extensions of single systems to the study of environments with
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interaction among distributed systems. However, there are no common lan-
guages, protocols, or standards for such interfaces.

Communication and cooperation mechanisms for logical and symbolic
computation systems enable to study and solve new classes of problems and
to perform efficient computation through cooperating specialized packages.
On the one hand, computer algebra systems (CAS) offer an extensive col-
lection of efficient mathematical algorithms which could improve the effi-
ciency of theorem proving systems (7'PS). On the other hand, they ignore
Al methods (e.g. theorem proving, planning of proofs and computations,
machine learning) and their capabilities, e.g. verification of properties of
mathematical objects using a TPS.

Basic architectures for performing communication among TPS and CAS
are introduced in [14]. The classification given here is a result of gener-
alizations and extensions of communication and cooperation mechanisms
for software systems performing any kind of mathematical computation.
We call such systems mathematical services (MS) which cover CAS and
other symbolic computation packages, TPS, proof checkers and verifica-
tion tools, numerical computation systems, visualization and type-setting
applications, and format converters. This classification is illustrated by well-
known recent examples of communication and cooperation mechanisms for
both logical and symbolic computation systems. It provides and surveys dif-
ferent methodologies for combining such systems and their characteristics,
capabilities, requirements, differences, and may guide the developments and
selection of methods in this ongoing research. However, it must be pointed
out that some of the presented architectures and communication methods
are not specific to mathematical information and could be applied to com-
bine other systems as well.

We separate the mechanisms into communication and cooperation meth-
ods. The former include all aspects of the physical connection, the flow of
mathematical information, the communication language(s) and its encod-
ing, encryption, and knowledge sharing. Communicating MS send and re-
treive mathematical information and messages. The aspects of the “seman-
tics” of these interactions are specified according to the level of cooperation
among the distributed systems. Depending on their behaviour they can be
clagsified into: master/slave, subpackage, black box, trust, extensible and
exchangeable, consistency and closure.

As of today, there is no systematic investigation of the different possible
methodologies to integrate heterogeneous mathematical systems. The goal
of this paper is to fill this gap.

This paper is organized as follows. Section 2 gives an overview about
architectures combining logical and symbolic computation systems. The
advantages are illustrated by some recent well-known examples. The classi-
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fication of such architectures based upon the features of the involved com-
munication and cooperation methods is given in section 3 and section 4
respectively.

2. Combining Logical and Symbolic Computation Systems

The advantages of combining logical and symbolic computation systems
are improved expressive power and more powerful inference capabilities.
There are various applications for composing those systems, like multi-
logic provers, hardware and software verification, proofs with arithmetics
and constraints, program transformations.

There is a lack of languages and standards for interfaces between sys-
tems for mathematical computation. The reasons are manyfold: (i) CAS
and TPS are designed, implemented and validated as stand-alone systems,
(ii) many systems are copyrighted and allow neither communication nor
external access to internal methods, (iii) they do not provide interfacing.

Several communication and cooperation methods have already been ex-
amined. The basic level of cooperation is just to exchange mathematical
information. To enable mathematicians, TPS or CAS to pass proofs, theo-
rems, functions, algorithms or any kind of mathematical objects offline by
electronic mail, cut & paste or ftp requires communication in terms of a
common language. Open Mechanized Reasoning Systems [11] and Open-
Math [2] introduce general languages suitable for specifying and communi-
cating mathematical objects in theorem proving and symbolic mathemati-
cal computing respectively.

Higher levels of online cooperation can be achieved by adding links to
interactive tools. The interfaces between HOL and Maple [13] and Isabelle
and Maple [4] introduce the powerful arithmetics of a computer algebra sys-
tem into a tactical theorem prover to reason about numbers or polynomials
much more efficient. Maple [6] acts as a slave to the prover which controls
external calls by evaluation tactics. [15] presents an interaction to provide
expressive algebra of constructive type theory in computer algebra. The
theorem prover Nuprl is an algebraic oracle to the CAS Weyl. Analytica [7]
is an example for cooperation within the language of another system. It is
written in the Mathematica [17] environment and can solve sophisticated
problems in elementary analysis.

CAS/rm represents a sophisticated example of a powerful graphical
system-independent common user interface [16]. It was designed so that ex-
pert users can set up connections to alternative CAS or visualization tools
easily and at runtime. An architecture for proof planning in distributed
theorem proving is given in [8]. TPS compete and then cooperate using
completion in pure equational logic using team work. The advantage of
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distribution is to profit from heuristics of several systems to reduce the
typically immense search spaces.

3. Communication Methods

Prerequisite for distributed mathematical problem solving is communica-
tion. This section examines the communication language, its encoding and
encryption, the flow of mathematical information, and the exchange of
mathematical objects by common knowledge representation.

3.1. COMMUNICATION LANGUAGE AND ENCODING

A communication language defines how mathematical information can be
exchanged among services. Such a language must be recognized by each
system in order to to translate the information into their internal represen-
tation. Appropriate languages are the input language or internal encoding
of one of the involved systems or standardized communication languages.

To select the syntax of the input language of one of the systems is natu-
ral and allows the straightforward interaction with this system. Currently,
most interfaces between MS are built as prototypes designed to demon-
strate the advantages of combining heterogeneous systems. Thus, the com-
munication language has not been chosen according to general protocols.
The prototypes described in [13, 4] communicate in terms of Maple expres-
sions. The theorem provers HOL and Isabelle are extended both by adding
syntax translations and evaluation tactics. In case of common knowledge
representation (3.4) or subpackages (4.2) it is a good option to use the
internal encoding of one specific system as communication method. The
interaction with the Analytica [7] package is implemented with a common
representation of the objects and in expressions of Mathematica’s language.

Communicating in terms of the input language of one system is generally
not a good choice because

systems are tough to interchange. [4] selects the input and output object
representation of Maple as its communication language. To replace
Maple by any other CAS requires to define a new syntax (4.3).

the input language differs from the representation language. The input ob-
ject representations must be encoded into the internal application spe-
cific representations. Some types of cooperation gain efficiency at run
time by communicating these internals (4.1,4.2).

services are based upon different semantics. There is no standardized se-
mantics to expressions of mathematical objects. Some systems request
case sensitive input, d, diff or differentiate may represent different func-
tions, and the mathematical notions differ, like ~ or **,
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Several communication languages for interfaces between software sys-
tems exchanging mathematical information have been developed, Camino-
Real [3], ASAP, CC and central control [10], Posso/XDR [1], MP [12],
CAS/7 [16], and MathLink [18]. OpenMath [2] classifies these projects ac-
cording to the framework given in the basic OpenMath model as illustrated
in figure 1.

objects

@

expressions

@

application j

application
representation

representation

-— . =
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MS; | interface

iiiiiii MSj

Figure 1. The communication model

The communication is not implemented as the input language to one of
the involved systems but as an interface compiling the service specific rep-
resentation into a standardized encoding. This encoding is either a stream
of bytes or an extended Lisp-like representation suitable for transmission
via files, cut & paste, email, ftp, and broadcasting like Unix sockets. Thus,
the communication language can be described by specifying the different
levels in the model: objects, expressions, data structures, and encodings.

3.2. ENCRYPTION

Current interfaces between MS do not consider system security aspects
since the interaction often only involves packages running in the same local
network. Because of the wish to transmit mathematical information via
files, cut & paste, email or ftp (see above) future encodings must be designed
to provide connections with identification and encryption.

3.3. BIDIRECTIONAL COMMUNICATION

Cooperation among several software systems can be achieved with indirect,
unidirectional and bidirectional communication. According to the flow of
mathematical information several architectures are illustrated in figure 2.
Although there are no links between the services with indirect communi-
cation, interaction is possible if both systems can communicate with a com-
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unidirectional bidirectional
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Figure 2. Flow of mathematical information

mon user interface, central unit, mediator or evaluator. Such an interface
provides links to some MS. A user can access the systems and can apply
(symbolic or numerical) algorithms or theorems to solve a given problem,
depending on the class of the problem. Such a simple type of interaction
allows already the use of arbitrary CAS and ATP. However, the systems do
not interact directly and a user must be familiar with both systems. Such
an architecture combines the advantages, but also the drawbacks. CAS/7
represents a sophisticated example for such an architecture [16].

To manage the communication and to hide the control from the user
interface leads to an architecture with common evaluator or central control.
The evaluator controls the selection of the modules by meta-knowledge on
all functions and predicates. It also controls the application of algebraic al-
gorithms and exchange of data and theorems in the MS. The mathematical
knowledge is represented separately in each module. The Central Control
project [10] is a typical representative for this architecture. The tools are
mainly independent: they can perform their tasks without the help of other
tools.

Unidirectional links can most often be found when communicating with
input or output devices like math editors, visualization tools, graphical in-
terfaces, SGML, in case of master/slave cooperation (4.1), or subpackages
(4.2). As mentioned previoulsy, typically such interfaces do not support
general encodings as communication language but the input or output lan-
guage of one system [4, 15, 13, 7].

The first environments providing bidirectional links have been studied
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recently. Such a communication requires to exchange common mathemati-
cal objects or relies on a common knowledge representation. At any step,
arbitrary combinations of algorithms and theorems can be applied to solve
a given problem. This combines the advantages of all involved mathemat-
ical services. The uni- and bidirectional communication is generalized to a
software bus of mathematical services in [5] as illustrated in figure 3. The
highlighted connection between Maple and Isabelle is described in [4].
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Figure 3. Software bus of mathematical services

3.4. COMMON KNOWLEDGE REPRESENTATION

Many applications require several MS to share their knowledge about
mathematical objects. In many cases, communicating this information is
neither efficient nor practical, because it may not be explicitly known which
knowledge is required.

Some cooperation mechanisms obviously benefit from sharing their
knowledge, i.e. communication with subpackages or direct function calls in
foreign packages (4.2, Analytica [7]). A software bus (figure 3) may include
a knowledge representation system suitable for representing the common
knowledge. Both architectures are illustrated in figure 4.

Recent communication methods are not restricted only to exchange of
function calls, theorems, numerical data, polynomials or basic mathematical
information. For example, OpenMath [2] provides the exchange of mathe-
matical objects with a defined semantics derived from its associated lexi-
cons. However, there are no protocols to provide meta-knowledge about the
systems algorithms or type information about their arguments.

To represent explicitly the mathematical information embedded in
CAS requires to introduce the representation of meta-information, e.g. in
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subpackage

Figure 4. Common knowledge representation

terms of schemata [14]. Different schemata contain this knowledge as type
schemata and algorithm schemata.

The explicit representation of the mathematical information of systems
performing symbolic computations is an ongoing research project. The cor-
responding work has been initiated for theorem provers, e.g. by the open
mechanized reasoning group [11].

4. Cooperation Methods

Communicating services exchange mathematical information and messages.
This section introduces features and architectures according to the level of
cooperation of these distributed systems. We illustrate interaction among
systems playing different roles in the cooperation. Additionaly, some se-
mantic issues and their resulting limitations are discussed.

4.1. MASTER/SLAVE

Mathematical problems are typically solved by dividing the problem into
subproblems, solving subtasks by suitable CAS or TPS, and combining
solutions to get the final result. Usually, one system is not sufficient for
computing the solution. There are often more efficient special packages,
some algorithms are not implemented, or the subproblem does not fit the
scope of one MS. However, it is often sufficient to solve the problem in
the environment of one single system with the aid of other MS. This is
one reason why nowadays interfaces among CAS and TPS are typically
restricted to master/slave cooperation [7, 13, 15, 11, 4]. The use of a MS
is limited to some specialized tasks (algebraic simplifications, numerical
computations) within the overall control of another MS (proofs, algebraic
algorithms). The master acts as server to some client service.
Master/slave interfaces are easier to design. The master can act as a
common control, the user interface of the master can act as GUI, the com-
munication language can be chosen as the input and output language of the
master, and the internal object representation of the master is the common
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knowledge representation. Master /slave communication typically occurs as
unidirectional links (3.3) or with an intermediate bridge [13]. Some math-
ematical services act only as computational engine, decision procedure or
oracle.

Additionaly, many groups improve the power of their own CAS or TPS
by allowing external calls to other MS&. CAS are extended by links to
TPS to verify certain conditions or type restrictions [15], and TPS are
extended by links to CAS or numerical software to deal with arithmetics
[13], mathematical objects, or to guide their proofs.

4.2. SUBPACKAGE

To avoid communication and common knowledge representation some MS
are designed to work within the environment or language of another service
(figure 4).

An example for a subpackage of CAS is Analytica [7] written in the
framework of Mathematica [17]. Another example is Otter [9] which allows
external function calls out of proofs. User-defined algorithms are introduced
with an identification by a special character (e.g. $GCD). The extension
of the prover requires the recompilation of the whole system and each al-
gorithm has to be implemented in C. CAS provide an extensive collection
of very efficient mathematical algorithms, thus reimplementation is neither
necessary nor meaningful.

4.3. EXTENSIBILITY AND INTERCHANGEABILITY

General interfaces are to a certain extent system-independent and may be
connected to another or many other MS as illustrated in figure 5. A general
communication language must be adopted by each of the involved systems

(3.1).
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Figure 5. Extending and interchanging mathematical services

In case of master/slave cooperation, it is typically easy to change the
slave by replacing the syntax translations and if necessary the evaluation
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tactics. To replace the master is difficult because it hosts the complete
interface. One example is the cooperation between Maple and Isabelle [4]
where the CAS remains unchanged and is exchangeable. The interface is
part of Isabelle’s extended simplifier. Extending the interface to provide
communication with other MS is also usually easy.

To extend or change one MS in subpackage cooperation is more dif-
ficult. Since one system must provide the language and representation of
both systems, extension or change is only meaningful between compatible
packages. For example, it is impossible to replace Mathematica by Maple
to run the Analytica package.

4.4. BLACK BOX

To cooperate among each other mathematical services must be able to in-
teract in non-trivial ways. Deciders and black boxes (yes/no/result type
packages) are not adequate in general because they do not provide internal
mathematical information. Cooperating MS may need to accept informa-
tion and produce results incrementally. Black boxes — often called oracles
— are commonly implemented in interfaces among MS as they allow to
combine systems as tools (clients) in master/slave cooperations [4, 13].

Components like handles for open mechanized reasoning systems [11]
give access to proofs and derivation structures of TPS and open the black
boxes. They can be extended to contexts [5] which provide the necessary
intermediate information to incremental and cooperative problem solving.
One example of symbolic calculators providing internal information is by
schemata ([14], 3.4).

4.5. CONSISTENCY AND CLOSURE

Systems exchanging terms face two problems: does another service under-
stand all transmitted terms and are the resulting terms defined in the sig-
nature of the service.

To guarantee that a mathematical service understands transmitted
terms the term algebra must provide consistency w.r.t. the signature of
that service.

Definition 1
The term algebra Tx.(X) is called consistent w.r.t. the signature A, iff for all
[ €A anyterm f(ay,...,a,) € Tx(X) already lies in Ty (X).

In a consistent term algebra all subterms of a term are in the sub-
signature T4 (X), provided that the outermost connective belongs to the
subsignature A. It is thus easy to recognize terms that can be passed to
a service during cooperation. One has to verify that the outermost con-
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nective lies in A. Consistent term algebras are a strong limitation because
they prevent to generate terms containing objects of foreign mathematical
services. However, nowadays systems were designed as stand-alone systems
and typically cannot handle such objects, e.g. they cannot reduce parts
of expressions which also contain unknown objects like logical connectives
between polynomial expressions of CAS.

The corresponding problem to understand the result computed by an-
other service occurs in bidirectional communication and master /slave coop-
eration. To ensure that a term returned by a mathematical service (viewed
as an operator E) does not contain unknown symbols is ensured by closure
w.r.t. signatures. Even if 7% (X)) is consistent w.r.t. A the result returned by
the service may lie in a signature B ¢ 3.

Definition 2
The operator IV : T4 (X) — Tp(X) is closed w.r.t. Aand B if AC BCX.

The OpenMath model introduces a common communication language
for CAS which can be transformed into OpenMath objects. The mathe-
matical service tries to compile these objects into the application specific
representation. Objects containing unknown terms are rejected and can not
be represented. In the case of communication in terms of input syntax of
one of the systems problems with consistency and closure can be avoided by
restriction to common subsets of both signatures. The examples illustrated
in this paper require both consistency and closure.

4.6. TRUST

[13] introduces levels of trust between CAS and TPS which can be general-
ized to classify any cooperation among MS. Depending on the confidence
on the accuracy of the answers given by another service a system trusts
completely, partially, or not at all.

No trust at all may force one system to verify some conditions or results
by another, or — if possible — use the results as an aid to compute the result
by itself. This is especially useful in guiding a proof where verification is
much less computationally complex than computation. Additionaly, MS
may sometimes generate incorrect answers which is often unacceptable, i.e.
in theorem proving.

Partial trust can occur when accepting results are accepted during in-
teractive or temporary computations but these results have to be checked
before being recorded. Another technique is to mark each result in the com-
putation and communication with a rational representing its confidence.

Complete trust ([15, 4]) means that the result given to any request is
accepted as truth. This is commonly implemented in current prototypes
among MS and numerical packages because of its simplicity and efficiency.
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For example, the advantage of fast computations by symbolic or numerical
software may be jeopardized by the slow arithmetics of theorem provers.

5. Conclusion

The development of general techniques for the integration of systems per-
forming mathematical computations has not yet led to the definition of
common languages, protocols, and standards. The classification of commu-
nication and cooperation methods given in this paper provides and surveys
methodologies for combining MS and their characteristics, capabilities, re-
quirements, differences. Its purpose is to guide the selection of methods and
developments in this ongoing research.

Cooperation by distributing tasks between mathematical services is a
subject of ongoing research. Among the arising problems is the black box
behaviour of almost any current system. To plan and control such environ-
ments requires to represent meta-knowledge in local or global bridges or
supervisors.

Among the work in progress is the design of an intelligent assistant — an
environment whose semantics allows a consistent treatment of algorithms
and theorems. A result of this work is the integration of the tactical theorem
prover Isabelle and Maple [4]. The extension of contexts [5] is another
step towards environments performing distributed mathematical problem
solving.

There are obviously different approaches to what can be seen as inter-
operability of heterogeneous systems. For instance, we are presently inves-
tigating the feasibility of designing communication protocols based upon
the types of the objects to be exchanged. This can be set in the framework
of an agent approach to software engineering.
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