
Algebra, ISL Report PR 801/96, Saint-Louis, pp. 27.1{27.3, 1996.

Languages for Cooperative Problem Solving in

Mathematics

Karsten Homann

Universit�at Karlsruhe

Institut f�ur Algorithmen und Kognitive Systeme

Am Fasanengarten 5 � 76131 Karlsruhe � Germany

homann@ira.uka.de

ABSTRACT

The design of languages to combine and integrate several systems has been initiated

in many areas. For instance, the integration of theorem proving and symbolic math-

ematical computing has recently emerged from prototype extensions of single systems

to the study of environments with interaction among distributed systems. An overview

of recent well-known projects on such cooperations is given in the references cited in

[BHC95]. However, there are no common languages, protocols, or standards for such

interfaces.

Communication and cooperation mechanisms for logical and symbolic computation

systems enable to study and solve new classes of problems and to perform e�cient com-

putation through cooperating specialized packages. On the one hand, computer algebra

systems (CAS ) o�er an extensive collection of e�cient mathematical algorithms which

could improve the e�ciency of theorem proving systems (TPS ). On the other hand,

they ignore AI methods (e.g. theorem proving, planning of proofs and computations,

machine learning) and their capabilities, e.g. veri�cation of properties of mathematical

objects using a TPS.

The classi�cation of communication and cooperation methods for logical and sym-

bolic computation systems [CaHo96] provides a general framework for methodologies

for combining mathematical services and their characteristics, capabilities, require-

ments, and di�erences. The advantages of combining systems performing any kind

of mathematical computation (mathematical services) are improved expressive power

and more powerful inference capabilities. There are various applications for composing

those systems, like multi-logic provers, hardware and software veri�cation, proofs with

arithmetics and constraints, program transformations.

There is a lack of languages and standards for interfaces between systems for math-

ematical computation. The reasons are manyfold: (i) CAS and TPS are designed,

implemented and validated as stand-alone systems, (ii) many systems are copyrighted



and allow neither communication nor external access to internal methods, (iii) they do

not provide interfacing.

A communication language de�nes how mathematical information can be exchanged

among services. It must be recognized by each system in order to to translate the

information into their internal representation. Appropriate languages are the input

language or internal encoding of one of the involved systems or standardized commu-

nication languages.

Several communication languages for interfaces between software systems exchang-

ing mathematical information have been developed. OpenMath [AvLS95] classi�es

these projects according to the framework given in the basic OpenMath model. Figure 1

illustrates an interface which is part of any mathematical service. Some applications

may not distinguish between some of the levels.

objects

expressions

data−structures

encodings

application specific representation

encoded objects

Figure 1: An Interface for Mathematical Services

The communication is not implemented as the input language to one of the in-

volved systems but as an interface compiling the service speci�c representation into

a standardized encoding. This encoding is either a stream of bytes or an extended

Lisp-like representation suitable for transmission via �les, cut & paste, email, ftp, and

broadcasting like Unix sockets.

Thus, the communication language can be described by specifying the di�erent

levels in the model: objects, expressions, data structures, and encodings.

Cooperation by distributing tasks between mathematical services is a subject of

ongoing research. Among the arising problems is the black box behaviour of almost

any current system. To plan and control such environments requires to represent meta-

knowledge in local or global bridges or supervisors.

Among the work in progress is the design of an intelligent assistant { an environment

whose semantics allows a consistent treatment of algorithms and theorems. A result of

this work is the integration of the tactical theorem prover Isabelle and Maple [BHC95].

The extension of contexts [CaHo95] is another step towards environments performing

distributed mathematical problem solving.

2



References

[AvLS95] J. Abbott, A. van Leeuwen, A. Strotmann

Objectives of OpenMath. Submitted to Journal of Symbolic Computation,

1995.

[BHC95] C. Ballarin, K. Homann, J. Calmet

Theorems and Algorithms: An Interface between Isabelle and Maple. In

A.H.M. Levelt (Ed.), Proceedings of International Symposium on Sym-

bolic and Algebraic Computation (ISSAC'95), pp. 150{157, ACM Press,

1995.

[CaHo95] J. Calmet, K. Homann

Distributed Mathematical Problem Solving. In E. Shamir, M. Koppel

(Eds.), Proceedings of 4th Bar-Ilan Symposium on Foundations of Arti�cial

Intelligence (BISFAI'95), pp. 222{230, 1995.

[CaHo96] J. Calmet, K. Homann

Classi�cation of Communication and Cooperation Mechanisms for Logical

and Symbolic Computation Systems. To appear in Proceedings of First In-

ternational Workshop Frontiers of Combining Systems (FroCoS'96), Kluwer

Series on Applied Logic, 1996.

3


