ERMITTLUNG DER QUERZUGFESTIGKEIT VON VOLL- UND BRETTSCHICHTHOLZ

ENTWICKLUNG EINES PRÜFVERFAHRENS

von

Jürgen Ehlbeck und Jürgen Kürth

Versuchsanstalt für Stahl, Holz und Steine Abteilung Ingenieurholzbau Universität Fridericiana Karlsruhe Univ.-Professor Dr.-Ing. Jürgen Ehlbeck 1994

INHALTSVERZEICHNIS

	Vorwort	1
1	Ziel des Forschungsvorhabens	2
2	Bisherige Untersuchungen und Prüfverfahren	2
2.0	Allgemeines	2
2.0	Vorhandene Prüfverfahren	3
2.2	Neue Vorschläge	8
2.3	Normentwurf	11
3	Entwicklung eines Prüfverfahrens	13
3.1	Vorgaben	13
3.1.0	Allgemeines	13
3.1.1	Probekörper aus Brettschichtholz	13
3.1.2	Probekörper aus Vollholz	14
3.1.3	Prüfmaschine und Einleitung der Lästen in den Frooekorper	14
3.1.4	Meßeinrichtungen	14
3.2	Deficiency and Prijfverfahren	16
3.3	Prüfvorrichtung für Brettschichtholz	16
3.3.1	Pröfvorrichtung für Vollholz	16
3.3.2	Prüfverfahren	16
334	Prüfkörper	17
3.4	Versuche zur Überprüfung der Anwendbarkeit	17
4	Orientierende Versuche zur Ermittlung der Querzug- festigkeit in Abhängigkeit von den Holzeigenschaften	19
41	Versuche mit Brettschichtholz	19
4.1.0	Allgemeines	19
4.1.1	Versuche in Karlsruhe	20
4.1.2	Versuche in München	21
4.1.3	Übersicht aller Versuche; Abhangigkeit der Queizug-	22
	festigkeit von den Holzeigenschaften	23
4.1.4	Versuche mit einzelnen Lämenen	23
4.2	Versuche mit volliloiz	23
4.2.0	Aligementes Versuche in Karlstuhe	24
4.2.1	Versuche in München	24
4.2.2	Zusammenfassung	25
6	Literatur	27

Anlagen

Vorwort

1

Im ersten Teil der Untersuchungen werden die bisher international verwendeten Prüfverfahren zur Ermittlung der Querzugfestigkeit vorgestellt. Mit den Ergebnissen aus Untersuchungen anderer Institute und aufgrund eines Normvorschlages werden neue Prüfverfahren für Brettschichtholz und Vollholz entwickelt und auf ihre Eignung überprüft. Danach werden erste orientierende Versuche zur Bestimmung der Querzugfestigeit von Brettschichtholz und Vollholz in Abhängigkeit von den verschiedenen Holzeigenschaften durchgeführt.

Das Vorhaben entstand im Auftrag der Entwicklungsgemeinschaft Holzbau (EGH) in der Deutschen Gesellschaft für Holzforschung (DGfH) mit finanzieller Unterstützung des Deutschen Instituts für Bautechnik, Berlin.

Die Planung der Untersuchungen, die Durchführung der Versuche und deren Auswertung erfolgte durch Herrn Dipl.-Ing. J. Kürth. Für die Herstellung der Versuchskörper sowie der Versuchsvorrichtung und die Messungen im Labor waren die Herren G. Kranz und J. Lafferthon verantwortlich. Bei der Auswertung haben unsere Studenten, die Herren cand.ing. J. Bäßler, cand.ing. J. Bartel, cand.ing. M. Frese, cand.ing. P. Metzger und cand.ing. M. Rathschlag tatkräftig mitgewirkt.

Für die am Institut für Holzforschung der Universität München durchgeführten Vergleichsversuche ist vor allem Herrn Prof. Dr.-Ing. P. Glos für die Bereitschaft zur Zusammenarbeit zu danken. Die Münchener Versuche wurden von Herrn Höger durchgeführt, die Auswertung erfolgte durch Herrn Dipl.-Ing. G. Gaede.

Allen Beteiligten ist für die Mitarbeit zu danken.

Jürgen Ehlbeck

1 Ziel des Forschungsvorhabens

Eine gute Holzkonstruktion zeichnet sich heute genauso wie früher u.a. dadurch aus, daß planmäßige Beanspruchungen auf Querzug vermieden werden. Deshalb ist es nicht erstaunlich, daß die Ermittlung der Querzugfestigkeit bisher von untergeordneter Bedeutung war und nur wenige Prüfverfahren für kleine fehlerfreie Holzproben existieren.

Das führte dazu, daß kaum Versuchsergebnisse über die Größe der Querzugfestigkeit von Bauholz vorliegen. Für Sonderfälle der Bemessung behalf man sich in Normen mit groben Abschätzungen zulässiger Querzugspannungen.

Erst mit der Entwicklung der Brettschichtholzbauweise und dem Bau von gekrümmten Trägern und hohen geraden Trägern mit Ausklinkungen ist eine Bemessung des Holzes auf Querzug unvermeidlich geworden. Folgerichtig sieht der Entwurf des EUROCODE 5 (1994) "Entwurf, Berechnung und Bemessung von Holzbauwerken", Bemessungsgleichungen für querzugbeanspruchte Bauteile vor. Für die Ausklinkungen konnte die eigentliche Bemessung auf Querzug mit Hilfe der Bruchmechanik durch einen fiktiven Schubspannungsnachweis mit reduzierter Schubfestigkeit ersetzt werden. Dagegen ist für gekrümmte Träger ein Querzugnachweis im First auf der Grundlage der charakteristischen Zugfestigkeit rechtwinklig zur Faserrichtung zu führen. Die zur Zeit zur Diskussion stehenden Zahlenwerte für die charakteristische Querzugfestigkeit sind jedoch nicht oder nicht ausreichend durch Versuche belegt.

Ein Grund hierfür ist, daß es kein geeignetes, allgemein harmonisiertes Prüfverfahren gibt, mit dem die Bauteil-Querzugfestigkeit bestimmt werden kann.

Ziel dieses Forschungsvorhabens ist es, ein Prüfverfahren zu entwickeln, mit dem die Zugfestigkeit von Bauholz rechtwinklig zur Faserrichtung an einem Prüfkörper bestimmt werden kann, der wie im Bauteil (z.B. bei gekrümmten Trägern) beansprucht wird. Es ist daher besonderes Augenmerk darauf zu legen, daß dem Prüfkörper im Versuch ein möglichst ebener Verformungszustand aufgeprägt wird.

2 Bisherige Untersuchungen und Prüfverfahren

2.0 Allgemeines

Eine Zusammenfassung der wichtigsten Prüfverfahren ist in KOLLMANN (1982) zu finden. Mit der Darstellung der geschichtlichen Entwicklung der Verfahren zur Bestimmung der Querzugfestigkeit aus der Sicht Englands beschäftigt sich BOOTH (1991).

Im folgenden Abschnitt werden die vorhandenen Prüfverfahren kurz dargestellt und ihre Eignung zur Bestimmung der Querzugfestigkeit an Bauteilen diskutiert.

2.1 Vorhandene Prüfverfahren

In Nordamerika besteht schon seit längerem ein standardisiertes Prüfverfahren zur Ermittlung der Querzugfestigkeit, das von der AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) unter der Bezeichnung D143 herausgegeben wurde. Die kleinen Prüfkörper werden aus Holz ohne Wuchsunregelmäßigkeiten (ohne Äste, Risse, Schrägfaserigkeit, etc.) hergestellt, die Prüfkörperform entspricht Bild 1. Die Lasteinleitung erfolgt mit Vorrichtungen aus Stahl, die in die Ausfräsungen des quadratischen Prüfkörpers eingreifen. Die Last wird mit einer konstanten Vorschubgeschwindigkeit von 2,5 mm/min aufgebracht. Eine Messung der Verformungen im Holz ist nicht vorgesehen.

Wesentliche Nachteile dieser Versuchsvorrichtung sind neben den kleinen Prüfkörperabmessungen vor allem die ungleichmäßigen Spannungsverteilungen über den Querschnitt, die durch spannungsoptische Untersuchungen von E.G. Coker und G.P. Coleman (nach KOLLMANN, 1982) nachgewiesen wurden.

Bild 1 Prüfvorrichtung nach ASTM D 143-83

Diese Versuchsvorrichtung wurde von anderen Ländern übernommen, z.B. der früheren Tschechoslowakei oder auch England und ist teilweise auch heute noch in entsprechenden Normen enthalten.

In Deutschland fand das Prinzip Eingang in die DIN EN 302-3 "Klebstoffe für tragende Holzbauteile, Prüfverfahren" (frühere Ausgabe DIN 68141). Dort wird für die Prüfung des Einflusses von Holzfaserschädigungen auf die Klebstoffugenfestigkeit ein Prüfkörper in Anlehnung an den ASTM Standard vorgeschrieben. Für die Herstellung der Prüfkörper sind astfreie, geradfaserige Holzproben zu verwenden, deren Holzfeuchte etwa 12% betragen soll.

KOLB et al. (1984) benutzten bei ihren Untersuchungen die Prüfkörperform nach ASTM D 143 für die Bestimmung der Querzugfestigkeit unter Langzeitbelastung und wechselnden Klimabedingungen. Die französische Norm enthält einen Querzugprüfkörper entsprechend Bild 2 (aus KOLLMANN, 1982), der aber zur Bestimmung der Querzugfestigkeit ungeeignet ist, da die Kerben einen großen Einfluß auf die Spannungsverteilung im Querschnitt haben und Spannungsspitzen im Kerbgrund erzeugen.

Bild 2 Prüfkörper für Querzugversuche nach der französischen Norm (aus KOLLMANN, 1982)

Wegen der ungleichmäßigen Spannungsverteilungen in den Prüfkörpern nach dem Prinzip des Prüfverfahrens der ASTM wurde in England bei der Neufassung des BRITISH STANDARD BS-373 (1938) (übernommen auch in die Fassung von 1957) eine neue Prüfkörperform gewählt, die auf Untersuchungen von JENKIN (1920) zurückgeht. Bild 3 zeigt den Prüfkörper als gedrehte Spule in Hantelform. Genaue Abmessungen werden nicht vorgeschlagen, dafür muß die mittlere Prüfkörperlänge dem doppelten Durchmesser des Querschnittes entsprechen.

Theoretisch ist dadurch eine fast gleichförmige Spannungsverteilung im geraden Bereich (sog. Prüfbereich) möglich, doch ist die Herstellung der Prüfkörper sehr aufwendig. Zudem dürfte der Lasteinleitungsbereich größere Schwierigkeiten bereiten, da hier die Kraft aus der Prüfmaschine über Querpressung in die Prüfkörper eingeleitet wird.

Bild 3 Prüfkörper nach der britischen Norm BS 373 (aus BOOTH, 1991)

In DIN 52365 "Prüfung von Holzspanplatten, Bestimmung der Zugfestigkeit senkrecht zur Plattenebene", werden an einen prismatischer Zugkörper geringer Höhe (=Plattendicke) zwei prismatische Joche aus Hartholz oder Metall zur Lasteinleitung aufgeklebt (Bild 4).

Bild 4 Prüfvorrichtung nach DIN 52365 (aus DIN 52365)

MISTLER (1982) berichtet über Querzugversuche in Bauteilgröße an Brettschichtholz aus Fichte, bei denen prismatische Versuchskörper nach Bild 5 direkt in die Prüfmaschine eingespannt wurden. Dabei traten häufig Brüche in der Nähe der gestörten Lasteinleitungsstellen auf.

Bild 5 Prismatischer Versuchskörper nach Mistler (aus MISTLER, 1982)

Zur Untersuchung der Belastungsgeschwindigkeit (Kurzzeitversuche) und der Belastungsdauer (Langzeitversuche) auf die Größe der Querzugfestigkeit verwendeten MINDESS, MADSEN und BARRETT (1978) Versuchskörper mit aufgeklebten Stahlplatten, die gelenkig mit der Prüfmaschine verbunden wurden (vgl. Bild 6).

Durch die behinderte Querdehnung des Holzes in der Nähe der Stahlplatten entstehen mehrachsige Spannungszustände, die zu Brüchen führen können. Das Ergebnis dieser Versuche war, daß die Belastungsgeschwindigkeit bei Kurzzeitversuchen keinen Einfluß auf die Querzugfestigkeit hat, daß aber bei Langzeitversuchen die Zeit bis zum Bruch der Prüfkörper von der Höhe der aufgebrachten Spannung abhängig ist.

Bild 6 Prüfkörper nach Mindess et al. (aus MINDESS et al., 1978)

Auch FOX (1974) benutzte zur Bestimmung der Querzugfestigkeit und des Elastizitätsmoduls rechtwinklig zur Faserrichtung von Brettschichtholz aus Douglasie die oben dargestellte Prüfkörperform mit aufgeklebten Stahlplatten. Für Versuchsserien mit vielen Prüfkörpern hat diese Versuchsvorrichtung den Nachteil, daß bei Wiederverwendung der Stahlplatten das Reinigen der Oberflächen als Vorbereitung für die nächste Klebung sehr aufwendig ist.

SCHNIEWIND und LYON (1973) haben bei Versuchen mit Prüfkörpern aus Vollholz nach Bild 7 eine direkte Einspannung des Prüfkörpers in die Spannbacken der Prüfmaschine gewählt. Dabei wurde die Höhe der Querpressung durch die Backen so gewählt, daß gerade genügend Reibung für die Einspannung erzeugt wurde und der Einfluß der Spannungsüberlagerung an den Einspannstellen klein blieb. Trotzdem ist mit Brüchen an der Einspannstelle zu rechnen.

Versuche mit kleinen Proben ohne Wuchsunregelmäßigkeiten aus Brettschichtholz und Vollholz wurden von ENQUIST, GUSTAFSSON, JENSEN und RIBERHOLT (1991) durchgeführt. Die Prüfkörper wurden entsprechend Bild 8 tailliert und mit aufgeklebten Winkelprofilen gelenkig mit der Prüfmaschine verbunden.

Bild 8 Prüfkörper nach Enquist et al. (aus ENQUIST et al., 1991)

Alle aufgeführten Prüfverfahren sind entweder mit kleinen Prüfkörpern aus Holz ohne Wuchsunregelmäßigkeiten durchgeführt worden oder haben gestörte Bereiche im Prüfkörper in der Nähe der Lasteinleitungen. Sie eignen sich teilweise für große Versuchsserien, die dabei bestimmten Festigkeitswerte stimmen jedoch nur schlecht mit den wirklichen Querzugfestigkeiten von Vollholz in Bauteilgröße und Brettschichtholz überein.

Da die Querzugfestigkeit wesentlich durch Wuchsunregelmäßigkeiten und durch die Größe des Prüfkörpers beeinflußt wird, gehen neue Vorschläge für Prüfverfahren von Bauholz mit größeren Abmessungen aus, die im folgenden Abschnitt vorgestellt werden.

2.2 Neue Vorschläge

Ein erster Vorschlag für ein einheitliches Prüfverfahren in Europa wurde von LARSEN (1987) gemacht (vgl. Bild 9). Damit sollte eine Möglichkeit geschaffen werden, die charakteristische Querzugfestigkeit zu bestimmen, die nach dem Entwurf des EUROCODE 5 (1987) zur Bemessung gekrümmter Träger benötigt wird. Das Volumen der Prüfkörper aus Brettschichtholz sollte $0,02 m^3$ betragen, bei Vollholz sollten kleinere Proben verwendet werden.

Bild 9 Prüfkörper nach Larsen (aus LARSEN, 1987)

In Nordeuropa wurde vom DANISH BUILDING RESEARCH INSTITUTE (1991) ein ausführlicher Vorschlag für ein Prüfverfahren zur Ermittlung der Querzugfestigkeit und des Elastizitätsmoduls rechtwinklig zur Faserrichtung unter der Bezeichnung NORDTEST method ausgearbeitet.

Bild 10 Prüfkörperform nach der "Nordtest method" (aus DANISH BUILDING RESEARCH INSTITUTE, 1991)

Darin wird für einen prismatischen Prüfkörper nach Bild 10 mit aufgeklebten Stahlplatten gefordert, daß sich bei Belastung die Stahlplatten parallel verschieben sollen, um eine gleichmäßig Dehnungsverteilung über den Querschnitt zu erreichen. Neben Bestimmungen über die Genauigkeit der Meßeinrichtungen enthält dieser Vorschlag Angaben über die Auswertung der Ergebnisse und den Inhalt eines Prüfberichtes.

Dieses Prüfverfahren wurde systematisch von FELDBORG (1991 a und b) untersucht, um den Einfluß der Art der Lasteinleitung auf die Dehnungsverteilung im Prüfkörper und auf die Größe der Querzugfestigkeit festzustellen. Ausgehend von einheitlichen Prüfkörpern aus Brettschichtholz mit einem Volumen von etwa $0,007 m^3$ wurden folgende Fälle unterschieden (vgl. Bild 11):

	mit Zwischenholz (T1)		
Starre Einspannung	ohne Zwischenholz (T2)		
in die Prufmaschine	mit Zwischenholz und exzentrischer Lasteinleitung (T3)		
Calardian Arashluß	mit Zwischenholz (T4)		
an die Prüfmaschine	mit Zwischenholz und exzentrischer Lasteinleitung (T5)		

In den Bildern A1 (Anlage 1) und A2 (Anlage 2) sind die beiden Versuchsvorrichtungen in der technischen Ausführung dargestellt.

Als Ergebnis der Untersuchung konnte festgestellt werden:

- eine gleichmäßige Dehnungsverteilung über die gesamte Prüfkörperlänge konnte wegen der Inhomogenität des Holzes und der sich über den Querschnitt ändernden Steifigkeit in keinem Fall erreicht werden,
- es konnte kein Einfluß der Lasteinleitung auf die Größe der Querzugfestigkeit oder des Elastizitätsmoduls festgestellt werden,
- im Fall T5 wurden große Dehnungsunterschiede zwischen maximaler Randdehnung und mittlerer Dehnung im Schwerpunkt des Prüfkörpers festgestellt; dies hatte aber keine Auswirkung auf die Querzugfestigkeit oder den Elastizitätsmodul.

In Nordamerika wurde von FAUST, FULLER und RICE (1994) ein Prüfverfahren entwickelt, um Bauholz mit Sturmschäden auf Ringschäle und auf die Größe der Querzugfestigkeit zu untersuchen. Dabei wurden Hartholzblöcke aus Ahorn auf kleine quaderförmige Prüfkörper geleimt und anschließend mittels Bolzen Stahlplatten zur Lasteinleitung angeschraubt (vgl. Bild 12). Dadurch wurde erreicht, daß Brüche in der Regel im Prüfkörper und nicht an der Lasteinleitungsstelle auftraten.

Bild 12 Versuchskörper nach Faust et al. (aus FAUST et al., 1994)

2.3 Normentwurf

Im Zuge der Harmonisierung der Prüfverfahren in der Europäischen Union wurde in einer Arbeitsgruppe des technischen CEN-Komitees (CEN TC 124 WG1) auf der Grundlage der NORDTEST method und mit ersten Erkenntnissen aus diesem Forschungsvorhaben ein Normentwurf (prEN 1193) zur Bestimmung der Querzugfestigkeit und des Elastizitätsmoduls rechtwinklig zur Faserrichtung erarbeitet.

Neben den allgemeinen Bestimmungen zur Herstellung der Prüfkörper, zur Klimatisierung, Lagerung und Prüfung bei (20 ± 2) °C und (65 ± 5) % relativer Luftfeuchte, ist in diesem ersten Entwurf vor allem die Größe der Prüfkörper vorgeschrieben (vgl. Bild 12 und Tabelle 1). Bei Brettschichtholz wurde ein Volumen von 0,01 m^3 gewählt, das dem Referenzvolumen nach Eurocode 5 (Entwurf Dezember 1992) entspricht. Bei Vollholz wurden die Abmessungen nach realistischen Bauholzmaßen so festgelegt, daß dies einem Volumen von 0,000567 m^3 entspricht.

a.)

Bild 13 Prüfkörper aus a.) Vollholz, b.) Brettschichtholz

	Vollholz			Brettschi	ichtholz	
b	h	1	Volumen	bxl	$b \ge$	h
mm	mm	mm	<i>m</i> ³	mm ²	mm	mm
45	180	70	0,01	25 000	100	400

b.)

Tabelle 1 Maße für Prüfkörper

Die Zeit bis zum Erreichen der Höchstlast $F_{t,90,\max}$ soll (300±120) s betragen. Die Querzugfestigkeit $f_{t,90}$ ergibt sich aus:

$$f_{t,90} = \frac{F_{t,90,\max}}{b \cdot l} \tag{1}$$

Durch Messung der Verformungen über eine Höhe $h_0 = 0,6 \cdot h$ an zwei sich gegenüberliegenden Seiten des Prüfkörpers kann der Elastizitätsmodul rechtwinklig zur Faserrichtung E_{L90} nach folgender Gleichung bestimmt werden:

$$E_{i,90} = \frac{(F_{40} - F_{10}) \cdot h_0}{(w_{40} - w_{10}) \cdot b \cdot l}$$
(2)

wobei

 F_{40} - F_{10} der Lastzuwachs im linearen Bereich der Last-Verformungskurve zwischen F_{10} als 10% und F_{40} als 40% von $F_{1.90,\text{max}}$ ist und

 $w_{40} - w_{10}$ die zu $F_{40} - F_{10}$ gehörende Verformungszunahme.

Im Prüfbericht sollen folgende Informationen angegeben werden:

Prüfkörper:

Holzart, Sortierklasse, Rohdichte, festigkeitsmindernde Merkmale, Beschädigungen, Maße, Leimart, Anzahl der Lamellen, Herstellwerk, Klimatisierung, Auswahlverfahren

Prüfverfahren:

verwendetes Prüfverfahren, Temperatur und relative Luftfeuchte zur Zeit der Prüfung, Vorrichtung der Lasteinleitung, Meßinstrument

Ergebnisse:

Holzfeuchte, Rohdichte, Istmaß, Festigkeit, Lage und Art des Bruches, Zeit bis zum Bruch

Dieser Normentwurf wurde in seinen verschiedenen Fassungen für die folgenden Untersuchungen als Grundlage verwendet und hinsichtlich seiner Brauchbarkeit überprüft. Zwischenergebnisse aus den hier durchgeführten Untersuchungen wurden bereits in neuen Entwürfen berücksichtigt.

3 Entwicklung eines Prüfverfahrens

3.1 Vorgaben

3.1.0 Allgemeines

Grundsätzlich wurden die Prüfkörper und die Prüfvorrichtungen entsprechend dem europäischen Normentwurf gestaltet, um unmittelbar auf diese Normungsarbeit Einfluß nehmen zu können.

Die Prüfkörper sollen, da die Querzugfestigkeit von der Probengröße abhängt, für vergleichbare Ergebnisse einheitliche Abmessungen besitzen, aber auch baupraktisch zur Verfügung stehen. Für Prüfkörper aus Brettschichtholz bedeutet dies, daß die Abmessungen so gewählt sein müssen, daß sie aus häufig produzierten Trägern gewonnen werden können. Bei Vollholz muß eine Entnahme aus Bohlen oder Kanthölzern möglich sein.

Das Prüfverfahren für Brettschichtholz soll auch zur Prüfung einzelner Lamellen geeignet sein, um für zukünftige Forschungsvorhaben statistische Eingangsdaten für die Querzugfestigkeit und den Elastizitätsmodul rechtwinklig zur Faserrichtung gewinnen zu können. Diese Daten könnten dann bei Simulationsrechnungen verwendet werden, d.h. mit entsprechenden Simulationsmodellen werden Brettschichtholzträger beliebiger Form, Größe und Beanspruchung durch einzelne Lamellenabschnitte und deren bekannten Eigenschaften aufgebaut. Anschließend kann die Tragfähigkeit des gesamten Brettschichtholzträgers z.B. mit Hilfe der Methode der Finiten Elemente und geeigneter Versagenshypothesen bestimmt werden.

Die Prüfkörper sind im Normalklima mit 20 °C und 65% relativer Luftfeuchte bis zur Gewichtskonstanz zu konditionieren und deren Rohdichte und Holzfeuchte zu bestimmen.

3.1.1 Probekörper aus Brettschichtholz

Für die Probekörper werden im Normentwurf Quader mit einem Volumen von $0,01 m^3$ vorgeschlagen, wobei das Verhältnis Länge/ Breite variiert werden kann. Das Produkt Länge x Breite muß 25000 mm^2 , die Breite mindestens 100 mm betragen.

Die Querzugfestigkeit des Brettschichtholzes wird bei derartigen Probekörpern stets durch die Festigkeit der schwächsten Lamelle bestimmt, unabhängig von ihrer Lage im Probekörper. Dies ist gerechtfertigt, da im Bauteil mit einer Beanspruchung auf Querzug auch die Lamelle mit der geringsten Festigkeit am ehesten versagen wird. Ein Laminierungseffekt, also eine Vergütung durch benachbarte Lamellen, wie er bei der Biegefestigkeit auftritt, ist nicht zu erwarten.

3.1.2 Probekörper aus Vollholz

Für Probekörper aus Vollholz werden nach dem Entwurf der Norm Quader mit folgenden Abmessungen vorgeschlagen:

Breite/ Länge/ Höhe = 45/ 70/ 180 mm

Das querzugbeanspruchte Volumen beträgt $0,000567 m^3$.

Für Vollholz wurde eine geringere Breite als für Brettschichtholz gewählt, um Schwindrisse möglichst zu vermeiden.

Schwierigkeiten bereitet hier vor allem die Höhe der Versuchskörper, da nur bei guter Auswahl des Holzes rissefreie Proben zu erhalten sind.

3.1.3 Prüfmaschine und Einleitung der Lasten in den Probekörper

Die Prüfvorrichtung muß geeignet sein, die Last kontinuierlich so aufzubringen, daß ein möglichst ebener Dehnungszustand im Probekörper erreicht wird. Damit soll gewährleistet werden, daß der Probekörper einer ähnlichen Beanspruchung wie im Bauwerk ausgesetzt ist.

Die Untersuchungen von Feldborg ergaben, daß die Querzugfestigkeit weitgehend unabhängig von der Art der Lasteinleitung ist und ein ebener Dehnungszustand wegen der Inhomogenitäten des Holzes sowieso nicht erreicht werden kann. Zur Lasteinleitung können deshalb sowohl der gelenkige Anschluß an die Prüfmaschine als auch die starre Einspannung gewählt werden.

Die Höchstlast sollte innerhalb von (300±120) s erreicht werden.

3.1.4 Meßeinrichtungen

Während des Versuches sind Belastung und Dehnungen des Probekörpers zu messen und kontinuierlich mit einer Genauigkeit von 1% aufzuzeichnen.

3.2 Theoretische Untersuchungen

Mit Hilfe der Methode der Finiten Elemente wurden für Prüfkörper mit unterschiedlichen Abmessungen und bei verschiedenen Arten der Lasteinleitung die Spannungsverteilungen berechnet, um:

eine geeignete Prüfvorrichtung zu finden und zu optimieren,

einen möglichst ebenen Verformungszustand im Prüfkörper zu erreichen,

verschieden große Prüfkörper zur Ermittlung der Abhängigkeit der Querzugfestigkeit vom Volumen untersuchen zu können.

Für das Holz und den Stahl wurden folgende Materialkennwerte verwendet:

Stahl: $E = 210000 \text{ N/mm}^2$, $\mu = 0.3$,

Holz:

 $E_0 = 10000 \ N/mm^2$, $E_{90} = 300 \ N/mm^2$,

$$G = 600 N/mm^2,$$

 $\mu = 0.04$

Ausgehend von den Vorschlägen des Normentwurfes wurden zunächst für den Prüfkörper die Abmessungen Länge/ Breite/ Höhe = 250/ 100/ 400 mm gewählt. Außerdem wurde zur Lasteinleitung eine Stahlplatte mit mindestens 20 mm Dicke vorgesehen.

In den Bildern A3 (Anlage 3) bis A8 (Anlage 8) sind die wichtigsten Ergebnisse der Spannungsverteilungen in verschiedenen Schnitten bei einer Belastung durch eine Einzellast F, die eine mittlere Querzugspannung von 0,8 N/mm^2 hervorruft, dargestellt.

In der einfachen Versuchsvorrichtung nach Bild A3 ist der Versuchskörper direkt an die Stahlplatte geklebt. Eine gleichförmig verteilte Querzugspannung wird erst nach etwa einem Viertel der Höhe h des Prüfkörpers erreicht.

Wird ein Zwischenholz zwischen Stahlplatte und Prüfkörper wie in Bild A4 eingefügt, dann ist schon kurz nach der Lasteinleitungsebene eine gleichförmige Spannungsverteilung zu erhalten.

Bei den Versuchskörpern nach den Bildern A5 und A6 wird das Zwischenholz direkt zur Lasteinleitung verwendet (Stahlplattendicke d = 0 mm) bzw. wird die Dicke der Stahlplatten mit 40 mm angesetzt. Im Vergleich mit Bild A4 zeigt sich, daß über eine dicke Stahlplatte noch schneller eine gleichmäßige Spannungsverteilung erreicht werden kann.

Daß sich diese Versuchsvorrichtung auch gut zur Prüfung von Körpern mit geringer Höhe (ein oder zwei Lamellen) eignet, ist aus Bild A7 zu erkennen.

Dagegen wirkt sich eine Vergrößerung der Prüfkörperlänge schon ab l = 400 mmsehr ungünstig auf die Spannungsverteilungen aus. In Bild A8 sind die Spannungen für einen Prüfkörper der Länge l = 800 mm dargestellt.

Zusammenfassend ist festzustellen:

- Die Kombination Stahlplatte, Zwischenholz, Prüfkörper wirkt sich günstig auf die Spannungsverteilung im Prüfkörper aus.
- Folgende Abmessungen der Einzelteile sind vorteilhaft:Prüfkörper:Länge/ Breite/ Höhe = 250/100/20 400 mmZwischenholz:Länge $\geq 150 mm$ Stahlplatten:Dicke $\geq 40 mm$.
 - Ungleichförmige Querzugspannungsverteilungen können theoretisch nur noch bei einer exzentrischen Lasteinleitung oder infolge von Inhomogenitäten im Holz auftreten.

3.3 Prüfvorrichtung und Prüfverfahren

3.3.1 Prüfvorrichtung für Brettschichtholz

Auf der Grundlage der theoretischen Untersuchungen wurde für Brettschichtholz eine Prüfvorrichtung entsprechend Bild A9 (Anlage 9) entwickelt.

Die Last wird von der Einspannung in die Prüfmaschine über einen Stahlbolzen mit Kardangelenk in eine runde Stahlplatte übertragen, die wiederum mit sechs Schrauben an einer rechteckigen Stahlplatte der Dicke d = 40 mm befestigt ist.

Die Zwischenhölzer haben eine Länge $l_Z = 150 mm$ und werden mit der Faserrichtung in Lastrichtung zwischen die Stahlplatten und den Prüfkörper geklebt. Als Kleber wurde ein Polyurethan Zweikomponenten Klebstoff vom Typ Plastic-Mastic 573.8 verwendet.

Für die Verklebung der Stahlplatten mit den Zwischenhölzern und dem Prüfkörper wurde eine Vorrichtung gebaut, in der die einzelnen Körper so ausgerichtet werden konnten, daß ihre Längsachsen eine Gerade durch die Lasteinleitungspunkte bildeten. Die dabei auftretenden kleinen Fugen konnte der verwendete Kleber ohne Festigkeitsverlust überbrücken.

Aufgrund der Gelenke wurden Zwängungen durch die Einspannung beim Einbau der Prüfkörper vermieden.

Nach dem Versuch läßt sich der Prüfkörper vom Zwischenholz sägen, das dann für eine neue Verleimung verwendet werden kann. Der Verlust an Zwischenholzlänge beträgt nur 1 bis 2 mm, so daß eine häufige Wiederverwendung möglich ist.

3.3.2 Prüfvorrichtung für Vollholz

Für Vollholz wurde eine Prüfvorrichtung entsprechend Bild A10 (Anlage 10) entwickelt.

Auf den Prüfkörper werden Zwischenhölzer mit Faserrichtung in Lastrichtung mit einer Länge $l_Z = 200 \text{ mm}$ in einem ähnlichen Verfahren wie bei Brettschichtholz aufgeklebt.

Zur Lasteinleitung können die Zwischenhölzer unmittelbar in die Prüfmaschine eingespannt werden. Bei der Verleimung sollte darauf geachtet werden, daß alle zu verbindenden Teile die Gleichgewichtsfeuchte im klimatisierten Raum erreicht haben, um Veformungen infolge Feuchteänderungen zu vermeiden. Zusätzlich sollte man alle Körper nach der Verleimung und während des Aushärtens des Klebers in Folie einpacken.

3.3.3 Prüfverfahren

Die Versuche wurden mit konstanter Verformungsgeschwindigkeit so durchgeführt, daß der Bruch innerhalb von 300±120 Sekunden erreicht wurde. Die Messung der Last erfolgte kontinuierlich mittels einer rechnergestützten Vielstellenmeßanlage mit einer Genauigkeit von 1%. In Vorversuchen wurden an den Prüfkörpern aus Brettschichtholz an allen vier Seiten induktive Wegaufnehmer des Typs W2 zur Messung der Verformungen bei einer Meßlänge von 240 mm = 0,6 h angebracht. In späteren Versuchen wurden nur noch drei Wegaufnehmer, wie in Bild A 9 dargestellt, verwendet.

Bei Vollholz wurde mit zwei Wegaufnehmern an diagonal gegenüberliegenden Stellen nahe den Ecken gemessen.

3.3.4 Prüfkörper

Alle Prüfkörper wurden im konstanten Klima von $20^{\circ}C$ und 64% relativer Luftfeuchte bis zur Gewichtskonstanz gelagert und anschließend auf die endgültigen Maße gehobelt. Danach wurden die Abmessungen und das Gewicht der Prüfkörper, sowie stichprobenartig die Holzfeuchte mit einem elektrischen Feuchtemeßgerät ermittelt. An kleinen Vergleichsproben, die im Darrofen getrocknet wurden, konnte die Holzfeuchte überprüft werden.

3.4 Versuche zur Überprüfung der Anwendbarkeit

Nach Herstellung der Prüfvorrichtung wurden zunächst orientierende Versuche mit Prüfkörpern aus Brettschichtholz durchgeführt. Das resorcinharzverleimte Brettschichtholz aus Fichte mit Lamellendicken zwischen 15 und 25 mm hatte bei Versuchsdurchführung eine Holzfeuchte zwischen u = 9,3% und u = 10,8%.

Die erzielten Bruchlasten sind in **Tabelle A1** (Anlage 11) zusammengestellt. Zusätzlich sind die rechnerische Querzugfestigkeit $f_{t,90}$ der Bruchlamellen, der mittlere über eine Höhe von 240 mm ermittelte Elastizitätsmodul rechtwinklig zur Faserrichtung $E_{t,90}$ und die mittlere Rohdichte ρ jedes Prüfkörpers angegeben.

Insgesamt können folgende Punkte festgestellt werden:

- 1.) Alle Brüche traten innerhalb der Prüfkörper auf, d.h. weder die Verklebungen von Stahl mit Zwischenholz noch von Zwischenholz mit Prüfkörper versagten.
- 2.) Die Last-Verformungsdiagramme zeigten einen nahezu linearen Verlauf bis zum Erreichen der Bruchlast. Alle Prüfkörper versagten durch einen plötzlich auftretenden Bruch, der sich teilweise jedoch durch Knistern im Holz ankündigte.
- 3.) Aus den Messungen der Verformungen der Probekörper konnte nicht auf einen ebenen Verformungszustand geschlossen werden. Dies lag an der Inhomogenität des Brettschichtholzes. Durch Auswertung der Bruchflächen zeigte sich, daß ungenügende Verleimung der Lamellen, Ringschäle, Harzgallen oder in der Höhe versetzte Keilzinkungen wahrscheinlich ungleichmäßig verteilte Verformungen zur Folge haben. Dies bedeutet jedoch nicht in jedem Fall eine Reduzierung der Querzugfestigkeit.

4.) In einem frühen Entwurf der europäischen Norm zur Bestimmung der Querzugfestigkeit wurden zur Messung der Verformungen zwei Wegaufnehmer an diagonal gegenüberliegenden Punkten gefordert, deren Meßergebnisse maximal eine Differenz von 10 % hätten aufweisen dürfen. Bei der Mehrzahl der hier durchgeführten Versuche konnte diese Forderung nicht eingehalten werden.

5.) Die ermittelte mittlere Querzugfestigkeit von $f_{t,90} = 0.92 \ N/mm^2$ stimmt gut mit den Ergebnissen eines Forschungsberichtes von EHLBECK, KÜRTH (1990) überein. Aus Gl. (54) dieses Berichtes ergibt sich für die mittlere Querzugfestigkeit bei einem gleichförmig beanspruchten Volumen von $V = 0.01 \ m^3$ folgender Wert:

$$f_{t,90} = \left(\frac{-\ln(0,5)}{0,01}\right)^{0,191} \cdot 0,44 = 0,99 \ N \ / \ mm^2$$

6.) Eine Korrelation zwischen Querzugfestigkeit und Rohdichte war hier nicht erkennbar. Dies ist damit zu erklären, daß die Versuche die Querzugfestigkeit der schwächsten Lamelle ermittelten, während die Rohdichten der gesamten Prüfkörper bestimmt wurden.

4 Orientierende Versuche zur Ermittlung der Querzugfestigkeit in Abhängigkeit von den Holzeigenschaften

4.1 Versuche mit Brettschichtholz

4.1.0 Allgemeines

Nachdem in Vorversuchen die prinzipielle Eignung der entwickelten Prüfvorrichtung zur Ermittlung der Querzugfestigkeit von Brettschichtholz festgestellt worden war, wurden weitere Versuche mit zwei Zielen durchgeführt:

- Erprobung der Prüfvorrichtung vor allem hinsichtlich der gleichmäßigen Spannungsverteilung im Prüfkörper und der auftretenden Bruchursachen sowie die Lage der Brüche,
 - Erforschung einer möglichen Abhängigkeit der Querzugfestigkeit von einigen Holzeigenschaften.

Dazu wurden in einem Holzleimbaubetrieb Bretter ausgewählt, die nach dem Elastizitätsmodul in Faserrichtung E_0 in drei Klassen eingeteilt wurden (vgl. **Tabelle 2**).

Ta	b	ell	e	2
		~ ~ ~ ~	-	_

Einteilung		Klasse	Trägerbez.
9000 N/mm ²	$\leq E_0 < 12500 N/mm^2$	I	QI1 bis 3
12500 N/mm ²	$\leq E_0 < 16500 N/mm^2$	II	QII1 bis 3
16500 N/mm ²	$\leq E_0$	III	Q III 1 bis 3

Die Elastizitätsmoduln wurden entsprechend einem von GÖRLACHER (1990) vorgeschlagenen Verfahren durch Messung der Longitudinalschwingungen bestimmt.

Neben dem Elastizitätsmodul in Faserrichtung wurden von jeder Lamelle die Holzfeuchte und die Rohdichte bestimmt. Alle Lamellen wurden gekennzeichnet, um sie später im fertigen Träger wiederfinden zu können. Die Holzeigenschaften der insgesamt 274 geprüften Lamellen sind in **Tabelle A2** (Anlage 12) zusammengefaßt.

Aus den Lamellen wurden für jede Klasse je drei Brettschichtholzträger mit einer Trägerhöhe von 50 cm, einer Breite von 12 cm und einer Länge von ca. 4,0 m hergestellt (vgl. Bild A11 (Anlage 12). Die Lamellendicke betrug einheitlich 32 mm, die Verleimung erfolgte mit Resorcinharz. Die Bezeichnung der Träger erfolgte nach den Klassen der Bretter und der laufenden Trägernummer (siehe Tabelle 2).

4.1.1 Versuche in Karlsruhe

Für Versuche mit der Prüfvorrichtung nach Bild A9 wurden aus den neun Brettschichtholzträgern je drei direkt hintereinander liegende Prüfkörper entnommen. Jeder Prüfkörper bestand aus 13 Lamellen, insgesamt wurden 27 Prüfkörper hergestellt. Die Bezeichnung der Körper erfolgte aufgrund der Klasseneinteilung (z.B. Q II), der BSH-Trägernummer (z.B. 1) und der Prüfkörpernummer (z.B. 2, damit insgesamt Q II 1-2).

Eine interessante Fragestellung bei dieser Entnahme der Prüfkörper war, ob der Bruch jeweils in der gleichen Lamelle auftreten würde.

Die Einzelteile der Versuchsvorrichtung sind in den Bildern A12 und A13 zu sehen. Der komplette Versuchskörper nach Einbau in die Prüfmaschine ist in Bild A14 (Anlage 13) abgebildet. Die Abmessungen der Prüfkörper sowie die Ergebnisse der Versuche sind in Tabelle A3 (Anlage 14) zusammengestellt.

In Tabelle A4 (Anlage 15) sind Angaben über die Bruchlamellen aufgeführt; die Jahrringbreite und die Rohdichte wurden nach dem Versuch an der Bruchlamelle bestimmt. Für den Elastizitätsmodul in Faserrichtung wurde der Mittelwert des gesamten Brettes aus den Schwingungsmessungen angenommen. Die Elastizitätsmoduln rechtwinklig zur Faserrichtung ergaben sich aus den Verformungsmessungen am Prüfkörper nach Gl.(2) auf Seite 12.

Festzuhalten bleibt:

- Die Bruchursache war stets ein sprödes Querzugversagen mit nahezu linearem Verlauf der Last-Verformungskurven bis zum Bruch (vgl. Bild A15 (Anlage 16)).
 - Die Brüche traten häufig innerhalb einer Lamelle auf (63%); die Lage der Bruchlamelle(n) im Probekörper war nur von der Lage der schwächsten Lamelle oder Fuge abhängig; Probekörper aus demselben BSH-Träger zeigten eine Tendenz zum Bruch in der gleichen Lamelle oder Fuge (vgl. Bild A16 (Anlage 16). Typische Bruchbilder und Bruchflächen sind in den Bildern A17 und A18 (Anlage 17) sowie A19 und A20 (Anlage 18) zu sehen.
 - Die Verformungen im Prüfkörper wurden mit drei Wegaufnehmern über eine Meßlänge von 240 mm gemessen. Die daraus resultierenden Eckverformungen bei einer Last $F = 0.4 F_{t,90,max}$ ergaben unter der Annahme, daß sich alle Meßergebnisse auf eine Ebene beziehen, maximale Abweichungen zu der Verformung im Schwerpunkt des Querschnittes zwischen 3,5 und 31,1 % und lagen im Mittel bei 14,8% (Standardabweichung 8,5 %). Ein ebener Dehnungszustand ist also wegen der Inhomogenitäten im Holz nicht erreicht worden.

Die Zeit vom Prüfbeginn bis zum Bruch lag innerhalb von 300±120 Sekunden und betrug im Mittel 267 Sekunden.

Die Mittelwerte und die 5%-Fraktilen der Rohdichte der Bruchlamellen, der mittleren Rohdichte der Prüfkörper, des Elastizitätsmoduls in Faserrichtung der Bruchlamelle, des mittleren Elastizitätsmoduls rechtwinklig zur Faserrichtung der Prüfkörper und der Querzugfestigkeit sind für die einzelnen Klassen in Tabelle 3 zusammengestellt. Die 5%-Fraktile der Querzugfestigkeit scheint mit steigender Rohdichte der Prüfkörper anzusteigen. Hierbei ist aber zu berücksichtigen, daß sich die Streuung der Einzelwerte bei der geringen Anzahl von Versuchen besonders in Klasse I auf den Fraktilwert ausgewirkt hat. Der Elastizitätsmodul rechtwinklig zur Faserrichtung ist von der hier getroffenen Klasseneinteilung unabhängig.

			Rohd Bruchlam.	ichte Prüfkörp.	Elastizität parallel (Bruchlam.)	smodul rechtw. (Prüfk.)	Festigkeit
Klasse	Anz. Versuche		ρ_{lam} [kg/m ³]	ρ _{Körper} [kg/m ³]	E _{0,lam} [N/mm ²]	$E_{t,90,K\"orper}$ [N/mm ²]	$f_{t,90}$ $[N/mm^2]$
T	9	Mittelw.	410	424	11500	364	0,75
		5%	359	414	10800	351	0,42
П	0	Mittelw.	438	460	13900	357	0,66
11 9	,	5%.	408	452	12100	329	0,53
III 9	0	Mittelw.	514	530	17600	390	0,72
		5%	456	518	16200	363	0,61

Zusätzlich zu den bisherigen Versuchen an der Prüfmaschine mit gelenkiger Lasteinleitung wurden weitere Versuche an einer Prüfmaschine mit starrer Einspannung am Institut für Holzforschung der Universität München durchgeführt und mit den Ergebnissen aus Karlsruhe verglichen.

4.1.2 Versuche in München

In Bild A21 (Anlage 19) ist die prinzipielle Funktionsweise der Prüfmaschine gezeigt. Daneben sind die Versuchskörperabmessungen dargestellt. Der wesentliche Unterschied zu der in Karlsruhe verwendeten Einrichtung besteht in der starren Einspannung der Zwischenhölzer in die Prüfmaschine. Der durch Kolbenhub verschiebliche Schlitten wird seitlich am Rahmen geführt. Der Versuchskörper kann sich nicht drehen, es wird ihm von außen eine nahezu gleichförmige Verformung aufgeprägt.

Die Prüfkörperabmessungen sind die gleichen wie bei den Karlsruher Versuchen, nur die Zwischenholzlänge wurde vergrößert, um eine gute Einspannung zu ermöglichen. Auf die Stahlplatten konnte verzichtet werden.

Von jeder Klasse nach Tabelle 2 wurde ein Brettschichtholzträger ausgewählt, von dem zusätzlich zu den Versuchen nach Abschnitt 4.1.1 abwechselnd ein Prüfkörper für München, danach ein Prüfkörper für Karlsruhe, u.s.w. abgeschnitten wurde. Insgesamt wurden von jeder Klasse je drei Prüfkörper für München und Karlsruhe hergestellt, in der Summe 18 Prüfkörper. Die Versuche wurden entsprechend Abschnitt 3.3 durchgeführt. Abweichend hiervon wurden in München die Verformungen mit zwei Wegaufnehmern W2 an zwei sich diagonal gegenüberliegenden Ecken gemessen.

In den Bildern A22 bis A24 (Anlage 20) ist die Prüfmaschine mit dem Prüfkörper und den Wegaufnehmern zu sehen. Die Abmessungen der Prüfkörper und die Ergebnisse aus Karlsruhe und München sind in der Tabelle A5 (Anlage 21) zusammengestellt. Tabelle A6 (Anlage 22) zeigt zusätzlich Materialkennwerte der Bruchlamellen.

Ergebnisse des Vergleiches der beiden Prüfverfahren:

Die Verformungen der Prüfkörper waren bei der Prüfmaschine in München durch die starre Einspannung gleichförmiger verteilt als in Karlsruhe, d.h. die Unterschiede bei den Verformungsmessungen der einzelnen Wegaufnehmer waren geringer.

In Bild A25 (Anlage 23) sind die Querzugfestigkeiten aller Prüfkörper aus München und Karlsruhe, die aus denselben Trägern geschnitten wurden, zusammengestellt. Bei der Querzugfestigkeit konnte kein Unterschied festgestellt werden. Dies deckt sich mit den Erkenntnissen von FELDBORG (1991 a), wonach die Art der Lasteinleitung auf die Größe der Querzugfestigkeit ohne merklichen Einfluß ist.

Im Bild A26 (Anlage 23) sind die Nummern der Bruchlamellen zusammengestellt. Die Versuche in München ergaben oft Brüche in anderen Lamellen als bei den Versuchen der im Träger benachbarten Prüfkörper in Karlsruhe, ein direkter Einfluß der Prüfvorrichtung konnte aber auch hier nicht festgestellt werden.

4.1.3 Übersicht aller Versuche; Abhängigkeit der Querzugfestigkeit von den Holzeigenschaften

In den Bildern A27 und A28 (Anlage 24) sind alle Versuchsergebnisse in zwei Diagrammen zusammengefaßt.

Für eine Abhängigkeit der Querzugfestigkeit von den Holzeigenschaften ist nur bezüglich der Lamellenrohdichte eine schwache Tendenz erkennbar. Die größten Festigkeits-Einzelwerte wurden überraschend bei niedriger Rohdichte erreicht, wobei allerdings auch die größten Schwankungen zu beobachten sind. Mit steigender Rohdichte nehmen die Schwankungen ab und die Querzugfestigkeit nähert sich einem fast konstanten Wert an. Zu berücksichtigen ist aber, daß die Prüfkörper teilweise aus gleichen Trägern gewonnen wurden und deshalb statistisch abhängig waren. Diese Aussagen sind daher als nicht zuverlässig zu bezeichnen.

Bei den Nummern der Bruchlamellen ist keine Tendenz erkennbar, wonach die Prüfkörper aufgrund der Versuchsvorrichtung bevorzugt an einer bestimmten Stelle versagen. Vielmehr kann davon ausgegangen werden, daß der Bruch in der Lamelle mit der geringsten Festigkeit liegt.

4.1.4 Versuche mit einzelnen Lamellen

Abschließend wurden von zwei Abschnitten eines BSH-Trägers der Klasse III alle Lamellen einzeln geprüft, um einerseits auch hierfür die Prüfvorrichtung zu testen und andererseits die Querzugfestigkeit der Einzellamellen mit der Querzugfestigkeit eines bereits geprüften benachbarten Prüfkörpers zu vergleichen.

Dazu wurde aus den beiden Trägerabschnitten jede zweite Lamelle herausgeschnitten und anschließend für die Prüfvorrichtung nach Bild A9 mit den Zwischenhölzern verklebt.

Um die Verformungsunterschiede bei diesem kleinen Prüfkörper überwachen zu können, wurde mit zwei Wegaufnehmern an diagonal gegenüberliegenden Ecken über eine Meßlänge von 240 mm gemessen, wobei allerdings der größte Teil der Meßlänge in die Zwischenhölzer erfaßte.

Die Abmessungen der Lamellen sowie die Ergebnisse der Versuche sind in **Tabelle A7** (Anlage 25) angegeben. Die Brüche traten stets innerhalb der Lamellen auf, die Bruchlasten lagen in weiten Grenzen zwischen 24,6 und 54,9 kN. In den **Bildern A29** und A30 (Anlage 26) sind typische Bruchbilder zu sehen, die auch die im Holz enthaltenen Wuchsunregelmäßigkeiten wie Harzgallen, Markröhre u, ä. zeigen.

Ein Vergleich der Ergebnisse mit den Einzellamellen und mit den Prüfkörpern aus demselben Träger ist mit den Bildern A31 und A32 (Anlage 27) möglich.

Aus dem unteren Bild mit den Nummern der Bruchlamellen erkennt man, daß in den Lamellen 6 und 11 der Prüfkörper die Brüche am häufigsten auftraten. Im oberen Bild sollten daher die Festigkeiten dieser beiden Lamellen bei Annahme gleicher Eigenschaften der Trägerabschnitte geringer als bei den anderen Lamellen sein. Bei der Lamelle Nummer sechs ergibt sich tatsächlich die geringste Festigkeit, doch ist der Wert noch deutlich höher als bei dem gesamten Prüfkörper.

Dies könnte ein Hinweis auf den Einfluß der Probenhöhe sein, weil damit die Anzahl der Inhomogenitäten wächst und größere innere Momente zur Folge hat. Doch auch die Verleimung stellt eine Inhomogenität dar, so daß die Prüfung von mindestens zwei Lamellen empfehlenswert ist.

4.2 Versuche mit Vollholz

4.2.0 Allgemeines

Für die Versuche mit Vollholz wurden Prüfkörper entsprechend dem europäischen Normvorschlag nach Abschnitt 3.1.2 aus einer Bohle mit einer Holzfeuchte von 10,5 %, einer mittleren Rohdichte von 448 kg/m^3 und einer mittleren Jahrringbreite von 2,1 mm hergestellt. Schwierigkeiten bereitete hier vor allem die Höhe der Prüfkörper, da nur bei guter Auswahl des Holzes rissefreie Proben zu erhalten sind. Es erschien aber nicht sinnvoll, kleinere Prüfkörperabmessungen zu wählen, da für die Prüfung kleiner fehlerfreier Prüfkörper schon eine Reihe gut geeigneter Verfahren vorhanden ist. Auch diese Versuche wurden an den Prüfmaschinen in München und Karlsruhe durchgeführt, um einen Vergleich zwischen starrer und gelenkiger Einspannung zu erhalten.

4.2.1 Versuche in Karlsruhe

Für die Versuchsvorrichtung nach Bild A10 (Anlage 10) wurden zwei Versuchsserien mit neun und zehn Prüfkörpern vorgesehen. Der Unterschied bestand in der Zwischenholzlänge, die 60 cm (Prüfkörperbezeichnung VH11 bis VH19) und 20 cm (VH20 bis VH29) betrug. Die Bilder A33 bis A35 (Anlage 28) zeigen die Versuchskörper in der Prüfmaschine und die Anordnung der Wegaufnehmer.

Die Abmessungen der Prüfkörper und die Ergebnisse der Versuche sind in Tabelle A8 (Anlage 29) zu sehen.

Festzustellen ist:

- 1.) Die Brüche traten im Holz auf, lagen aber meistens in der Nähe der Leimfuge zum Zwischenholz. Typische Brüche sind in den Bildern A36 und A37 (Anlage 30) zu sehen.
- 2.) Die Meßwerte der Verformungen ergaben bei der Serie mit dem langen Zwischenholz Unterschiede bei den beiden Wegaufnehmern bis zu 120 %, bei der Serie mit kurzem Zwischenholz lagen die Meßwertunterschiede zwischen 10 und 40 %. Bei den Festigkeiten zeigte sich dagegen kein Unterschied, die Mittelwerte jeder Serie erwiesen sich als fast identisch.
- 3.) Die Zeiten bis zum Bruch lagen bis auf zwei Prüfkörper, die zur Einstellung der Prüfmaschine benötigt wurden, im Bereich von (300±120) Sekunden.

4.2.2 Versuche in München

Für die Vergleichsversuche in München wurden zehn Versuchskörper (Bezeichnung VH1 bis VH10) mit einer Zwischenholzlänge von 60 cm hergestellt, wobei mehr als 30 cm zur Einspannung in die Prüfmaschine benötigt wurden. Das Bild A38 (Anlage 31) zeigt den prinzipiellen Versuchsaufbau.

Die Abmessungen der Prüfkörper und die Ergebnisse der Versuche sind in Tabelle A8 aufgeführt.

Bis auf zwei Versuche lag die Zeit bis zum Bruch im Bereich von (300±120) Sekunden. Die Verformungsunterschiede zwischen den beiden Wegaufnehmern lagen zwischen 10 und 40 % und entsprachen damit den Werten in Karlsruhe bei Verwendung der kurzen Zwischenhölzer.

Im Bild A39 (Anlage 31) sind die Festigkeiten aller Prüfkörper dargestellt.

Im Vergleich zu den Versuchen in Karlsruhe ergab sich in München bei der Querzugfestigkeit ein um 10 bis 12 % größerer Mittelwert, der auf die normale Streuung und nicht auf den Einfluß der Prüfmaschine zurückgeführt wird.

Eine Abhängigkeit der Querzugfestigkeit von den Holzeigenschaften konnte bei diesen Versuchen nicht festgestellt werden.

5 Zusammenfassung

Die Untersuchung wurde mit der Erfassung und Auswertung vorhandener nationaler und internationaler Prüfverfahren zur Ermittlung der Querzugfestigkeit begonnen.

Dazu gehörten auch neue Untersuchungen über Prüfkörperabmessungen und Arten der Lasteinleitung, die vor allem in Europa im Zuge der Erarbeitung eines einheitlichen Prüfverfahrens mit standardisierten Prüfkörpern gemacht wurden und die zum Entwurf einer europäischen Norm zur Bestimmung der Querzugfestigkeit für Vollholz und Brettschichtholz führte.

Auf der Grundlage dieses Normvorschlages wurden Prüfverfahren für Voll- und Brettschichtholz für eine Prüfmaschine mit gelenkiger Lasteinleitung entwickelt, wobei die Prüfkörpergeometrien entsprechend dem Normvorschlag gestaltet wurden. Es konnte theoretisch nachgewiesen werden, daß durch Aufleimen von Zwischenhölzern (bei Vollholz und Brettschichtholz) und Stahlplatten (nur bei Brettschichtholz) auf die Prüfkörper ein nahezu ebener Verformungszustand erreicht werden kann. Dadurch können über die gesamte Höhe des Prüfkörpers praktisch gleichmäßig verteilte Querzugspannungen erzeugt werden.

Nach dem Bau der Prüfvorrichtungen wurde ihre Eignung in Versuchen überprüft.

Bei der Prüfvorrichtung für Brettschichtholz zeigte sich, daß die Lasten problemlos in den Prüfkörper eingeleitet werden können. Die Brüche traten ausschließlich im Prüfkörper selbst auf. Bei den Verformungen im Prüfkörper traten zwischen der größten Verformung an einer Ecke und der mittleren Verformung im Schwerpunkt des Querschnittes allerdings erhebliche Unterschiede auf, die durch Inhomogenitäten der Holzstruktur verursacht werden. Zur Überprüfung der Festigkeitswerte wurden deshalb an einer Prüfmaschine in München mit starrer Einspannung der Prüfkörper Vergleichsversuche durchgeführt.

Dabei wurden gegenüber der Prüfmaschine mit gelenkiger Lasteinleitung geringere Verformungsunterschiede festgestellt. Dies hatte jedoch keinen nennenswerten Einfluß auf die Größe der Querzugfestigkeit.

Neben den im europäischen Normentwurf vorgeschlagenen Prüfkörpergrößen von $0,01 m^3$ wurden weitere Versuche an der Prüfmaschine mit starrer Einspannung mit einzelnen Lamellen durchgeführt. Die entwickelte Prüfvorrichtung ließ auch hier eine gute Einleitung der Lasten in den Prüfkörper zu, so daß die Brüche im Holz der Lamellen auftraten.

Die Lamellen wurden aus einem Abschnitt eines Brettschichtholzträgers gewonnen, aus dem auch Prüfkörper normaler Größe stammten. Nach Prüfung aller Lamellen dieses Brettschichtholzquerschnittes zeigte sich im Vergleich mit einem Prüfkörper aus demselben Träger, daß in beiden Fällen die gleiche Lamelle die niedrigste Festigkeit besaß, daß aber die Größe der Querzugfestigkeit sehr unterschiedlich war. Eine Ursache könnte sein, daß neben einem Volumeneinfluß die Verleimung der Lamellen für die Querzugfestigkeit von Einfluß ist und deshalb stets mindestens zwei Lamellen mit einer Leimfuge dazwischen geprüft werden sollten.

Bei der Prüfvorrichtung für Vollholz wurden Versuche sowohl an einer Prüfmaschine mit gelenkiger Lasteinleitung als auch mit starrer Lasteinleitung durchgeführt. Die dabei verwendeten Prüfkörper entsprachen mit ihren Abmessungen dem europäischen Normvorschlag, waren aber nur bei guter Holzauswahl rissefrei herzustellen.

Die Ergebnisse der Querzugfestigkeit zeigten nur geringe Unterschiede zwischen den verschiedenen Prüfverfahren, obwohl erhebliche Unterschiede bei den gemessenen Verformungen auftraten.

Eine Abhängigkeit der Querzugfestigkeit von den Holzeigenschaften konnte in geringem Maß bei Brettschichtholz festgestellt werden. Mit wachsender Rohdichte der Lamellen wurden die Streuungen der Versuchswerte geringer und die Fraktilwerte der Querzugfestigkeit folglich größer. Bei den Mittelwerten konnte diese Tendenz aber nicht nachgewiesen werden.

Mit den entwickelten Prüfverfahren ist die Ermittlung der Querzugfestigkeit von Voll- und Brettschichtholz in Kurzzeitversuchen in größeren Versuchsserien möglich. Dabei kann das Prüfverfahren außer auf das in diesen Untersuchungen verwendete Fichtenholz auch auf andere Holzarten angewendet werden, da die Einleitung der Kräfte in den Prüfkörper auch bei höheren Querzugfestigkeiten möglich ist.

Um die Querzugfestigkeiten von Vollholz und Brettschichtholz statistisch gesichert angeben zu können und um vor allem den Einfluß bestimmter Sortierklassen zu erfassen, empfiehlt es sich, nach den entwickelten Prüfverfahren - die für eine europäische Prüfnorm geeignet erscheinen - systematische Querzugversuche durchzuführen.

Es wird von großer praktischer Bedeutung sein, ob charakteristische Querzugfestigkeiten bei Sortierklassen mit höheren charakteristischen Rohdichten (maschinelle Holzsortierung!) mit entsprechend höheren Werten in Ansatz gebracht werden können.

6 Literatur

AMERICAN SOCIETY FOR TESTING AND MATERIALS (1983)

D143-83, Standard methods of testing small clear specimens of timber. ASTM, Philadelphia, USA, 1983

BOOTH, L. G. (1991)

Strength of timber in tension perpendicular to the grain: UK procedures past, present and future. In: Journal of Institute of Wood Science 12(3), 1991, S. 131-142

BRITISH STANDARDS INSTITUTION 1938, 1957

BS 373: Methods of testing small clear specimens of timber. BSI, London, United Kingdom, 1938, 1957

DANISH BUILDING RESEARCH INSTITUTE (1991)

Nordtest method. Timber in structural sizes: Determination of strength and modulus of elasticity in tension perpendicular to grain. NT Build 373, 1991

EHLBECK, J.; KÜRTH, J. (1990)

Einfluß des querzugbeanspruchten Volumens auf die Tragfähigkeit gekrümmter Träger konstanter Höhe und gekrümmter Satteldachträger aus Brettschichtholz. Karlsruhe: Versuchsanstalt für Stahl, Holz und Steine, Abteilung Ingenieurholzbau, Universität Karlsruhe (TH). -Forschungsbericht

ENQUIST, B.; GUSTAFSSON, P.J.; JENSEN, R.B.; RIBERHOLT, H. (1991) Timber beams notched at the support. Lyngby: Department of Structural Engineering, Technical University of Denmark, Report Serie R, No. 280

EUROCODE 5 1987

siehe Kommission der europäischen Gemeinschaften 1987

EUROCODE 5 1994

siehe DINV ENV 1995, Teil 1-1

FAUST, T. D.; FULLER, M.; RICE, J.T. (1994)

A method of testing the full cross section of wood in tension perpendicular to the grain. In: Forest Products Journal, Vol. 44, No. 3, 1994, S. 23-26

FELDBORG, T. (1991 a)

Timber in structural sizes: Stiffness and strength perpendicular to grain. Nordtest method. Danish Building Research Institute, Structural Division, Documentation for SBI-project R13-83, ID 900098, 1991

FELDBORG, T. (1991 b)

Determination of some mechanical properties of timber in structural sizes. In: Proc. of the 1991 Int. Timber Eng. Conference, London, United Kingdom, Vol. 2, S. 2.189-2.199

FOX, S. P. (1974)

Strength and stiffness of laminated douglas-fir blocks in perpendicular-to glueline tension. In: Wood and Fiber, Vol. 6(2), 1974, S. 156-163

GÖRLACHER, R. (1990)

Klassifizierung von Brettschichtholzlamellen durch Messung von Longitudinalschwingungen. Karlsruhe: Fakultät für Bauingenieur- und Vermessungswesen, Dissertation 1990

JENKIN, C. F. (1920)

Report on materials of construction used in aircraft and aircraft engines. HMSO, London 1920

KOLB, H.; GOTH, H.; EPPLE, A. (1984)

Untersuchungen zum Einfluß von Dauerbelastung, Temperatur- und Klimawechsellagerung auf die Querzugfestigkeit von Fichtenholz. Stuttgart: Forschungs- und Materialprüfanstalt Baden-Württemberg 1984, Forschungsvorhaben I.4-33654

KOLLMANN, F. (1982)

Technologie des Holzes und der Holzwerkstoffe. 2. Aufl., Heidelberg: Springer 1982

KOMMISSION DER EUROPÄISCHEN GEMEINSCHAFTEN 1987

Eurocode 5 "Gemeinsame einheitliche Regeln für Holzbauwerke"

LARSEN, H. J. (1987)

Determination of shear strength and strength perpendicular to grain. In: Proc. of meeting CIB-W18A-Timber structures, Paper 20-6-3, Dublin, Ireland, 1987

MINDESS, S.; MADSEN, B.; BARRETT, J. D. (1978)

Rate of loading and duration of load tests on douglas-fir in tension perpendicular to the grain. In: Proc. of the 1st intern. conf. of wood fracture, Banff, Alberta, Canada 1979

MISTLER, H. L. (1982)

Über die Querzugfestigkeit von Fichten-Brettschichtholz in Abhängigkeit von der Bauteilgröße und der Verteilung der Beanspruchung. In: Ingenieurholzbau in Forschung und Praxis, Hrsg. J. Ehlbeck, G. Steck, Karlsruhe: Bruderverlag, 1982, S. 33-40

SCHNIEWIND, A. P.; LYON, D. E. (1973)

A fracture mechanics approach to the tensile strength perpendicular to grain of dimension lumber. In: Wood Science and Technology, Vol. 7 (1973), S. 45-59

Zitierte Normen und Normentwürfe:

Norm DIN EN 302 Klebstoffe für tragende Holzbauteile, Prüfverfahren, Teil 3: Bestimmung des Einflusses von Säureschädigung der Holzfasern durch Temperaturund Feuchtezyklen auf die Querzugfestigkeit (Ausgabe August 1992)

Norm DIN 52365 Prüfung von Holzspanplatten, Bestimmung der Zugfestigkeit senkrecht zur Plattenebene (Ausgabe April 1965)

Norm DIN 68141	Holzverbindungen, P Leimverbindungen fi (Ausgabe Oktober 1969	ir tragende Holzbauteile
Norm DINV ENV 1995	5 Entwurf, Berechnu Holzbauwerken, Bemessungsregeln, Hochbau (Ausgabe .	ng und Bemessung von Teil 1-1: Allgemeine Bemessungsregeln für den Juni 1994)
Entwurf prEN 1193	Bauholz für tragende Z Bestimmung zusätzl mechanischer Eigenso 1993)	Zwecke und Brettschichtholz, icher physikalischer und chaften (Ausgabe Dezember

und

Detail 1. Connection with 12 mm bolt at corner. The spherical washers resting in conical countersinkings allow mutual rotation of the steel plates.

Detail 3. Fixing "point" for measuring elongations.

Test specimen 1

- Glulam member with grain direction parallel to 2 load direction
- Steel plate 215 · 215 · 20 mm with plane shaped area 3 for gluing

(III)

Detail 2. Connection at

center of steel plates.

mutual vertical and

rotational movement

but prevents mutual

horizontal movement.

The connection allows

- Steel plate 215 · 215 · 20 mm, stiffly connected to 4
- grips (7 and 8) of testing machine Wooden wedges for tightholding of plate 4 before loading 'Cl 5 loading
- Hole in plate 3 for tight-fitting spherical dowel 6 fixed to plate 4
- Fixed grip of testing machine 7
- 8
- Cross head of testing machine Displacement transducer at measuring points 1, 2 9 and 3
- Closed rigid frame of 15 · 15 mm aluminium tube 10 with transducer (9) bearings and pinpoint screws for fixing frame to test specimen

Anlage 3

Spannungsverteilungen aus einer FE-Berechnung in verschiedenen Schnitten eines Prüfkörpers (ohne Zwischenholz, mit dünner Stahlplatte)

Anlage 4

Bild A4

Spannungsverteilungen aus einer FE-Berechnung in verschiedenen Schnitten eines Prüfkörpers (mit Zwischenholz und dünner Stahlplatte)

Bild A5

Spannungsverteilungen aus einer FE-Berechnung in verschiedenen Schnitten eines Prüfkörpers (mit Zwischenholz und ohne Stahlplatte)

Anlage 6

Bild A6

Spannungsverteilungen aus einer FE-Berechnung in verschiedenen Schnitten eines Prüfkörpers (mit Zwischenholz und dicker Stahlplatte)

Bild A7

Spannungsverteilungen aus einer FE-Berechnung in verschiedenen Schnitten eines Prüfkörpers (Variation der Prüfkörperhöhe)

Spannungsverteilungen aus einer FE-Berechnung in verschiedenen Schnitten eines Prüfkörpers (Variation der Prüfkörperlänge)

Bild A9

Prüfvorrichtung für Prüfkörper aus Brettschichtholz

Bild A10

Prüfvorrichtung für Prüfkörper aus Vollholz

Vers. Bez.	Bruchlast	Querzug- festigkeit	Elastizitäts- modul	Rohdichte Prüfkörper	Bemerkungen
	F _{1,90,max}	f _{1,90}	E _{1,90}	ρ	
	[<i>kN</i>]	[<i>N/mm</i> ²]	[<i>N/mm</i> ²]	[kg/m ³]	
And a star				4	and the second second
V1	19,3	0,77	423	417	
V2	23,9	0,96	419	429	
V3	31,6	1,26	316	452	ca. 20% Fehlverleimung
V4	20,2	0,81	316	453	ca. 30% Fehlverleimung
V5	33,2	1,33	396	462	
V6	25,9	1,04	412	457	
V7 .	30,0	1,20	394	456	ringförmig gerissen
V8	23,7	0,95	342	447	große Harzgalle
V9	20,5	0,82	435	423	X
V10	21,8	0,87	431	440	
V11	22,9	0,92	453	474	Schwindriß
V12	22,5	0,90	418	440	ringförmig gerissen
V13	24,9	1,00	444	443	
V14	26,9	1,08	401	440	großer Ausfallast
V15	14,5	0,58	377	423	
V16	23,0	0,92	429	468	ringförmig gerissen
V17	24,0	0,96	559	482	
V18	12,7	0,51	317	422	ringförmig gerissen
V19	16,4	0,66	339	426	
Mittelwert		0,92	401	445	
Standard	labweichung	0,21	59	19	
5%-	5%-Fraktile		304	414	

Tabelle A1: Versuchsergebnisse der Vorversuche

Tabelle A2 Holzeigenschaften der Lamellen

		Klasseneinteilung	
	Ι	II	III
untere Grenze E_0 [N/mm ²]	9000	12500	16500
obere Grenze E_0 [N/mm ²]	12500	16500	
Anzahl der Bretter	74 (27 %)	146 (53 %)	48 (18 %)
(6 (2%) Bretter Ausschuß)	1 1 1 1 1		
Rohdichte $\rho [kg/m^3]$			
Mittelwert	412	458	518
Std. Abw.	26	31	28
5% Fraktile	370	406	473
mittlere Holzfeuchte u [%]	8,7	10,1	10,4
Elastizitätsmodul E_0 [N/mm ²]			
Mittelwert	11191	14183	17827
Std. Abw.	914	1084	971
5% Fraktile	9688	12400	16229
		and the second second	

Bild A 11

Herstellung der Prüfkörper aus Brettschichtholzträgern

Bild A12 Zwischenhölzer, Prüfkörper und Kleber

Bild A13 Stahlplatten, Schrauben und Gelenkbolzen

Bild A14 Versuchskörper in der Prüfmaschine

Tabelle A3 Ergebnisse der Querzugversuche

Bez. ¹	Länge	Breite	Höhe	Zeit bis zum Bruch	Bruch- last	Verformungs- unterschied	Festigkeit
	1	Ь	h ₀	1	F _{1,90,max}	w _{max} /w _{mittel} -1	J _{4,90}
1.1.1	[]	[mm]	[mm]	[5]	[kN]	[%]	[<i>N/mm</i> ²]
0111	250	100	400	245	14.9	3,5	0,60
QTI-I QTI-I	250	100	401	235	12,3	9,5	0,49
Q11-2	250	100	401	230	11,4	4,7	0,46
0121	250	100	400	280	18,3	4,3	0,73
012-1	250	100	400	305	21,4	8,2	0,86
0123	250	100	400	270	19,0	14,2	0,76
012-3	250	100	401	280	22,8	17,3	0,91
013-7	250	100	401	345	25,4	15,5	1,02
013-3	250	100	401	325	24,3	26,3	0,97
Mittelwert			1	and the second			0,75
5%-Fraktile							0,42
OII 1-1	250	100	400	280	17,5	4,9	0,70
ОП 1-1	250	100	400	295	19,6	6,8	0,78
QII 1-2 QII 1-3	250	100	400	240	15,8	14,7	0,63
ОП 2-1	250	100	400	245	14,4	27,2	0,58
QII 2-1 QII 2-2	250	100	401	245	16,2	7,2	0,65
0112-2	250	100	401	290	19,4	14,6	0,78
0113-1	250	100	400	250	15,8	19,9	0,63
ОП 3-2	250	100	400	270	15,8	31,1	0,63
O II 3-3	250	100	400	260	13,9	22,8	0,56
Mittelwert			e gerege	1 section in the			0,66
5%-Fraktile	1				1		0,53
O III 1-1	250	100	400	280	20,4	26,4	0,82
O III 1-2	250	100	400	265	18,9	31,8	0,76
O III 1-3	250	100	400	270	19,9	17,2	0,80
0 111 2-1	250	100	400	240	16,4	20,1	0,66
O III 2-2	250	100	400	285	18,8	14,2	0,75
O III 2-3	250	100	401	265	17,1	7,3	0,68
O III 3-1	250	100	400	235	16,1	11,2	0,642
O III 3-2	250	100	400	240	17,3	6,4	0,69
O III 3-3	250	100	400	235	15,7	11,7	0,63
Mittelwert				267		14,8	0,72
5%-Fraktil	e				in Salara		0,61

¹Bedeutung der Bezeichnung: Q I 1-1: Q, Klasse I, Träger 1, Prüfkörper 1

²nicht berücksichtigt bei Mittelwert und 5% Fraktile

Tabelle A4 Materialkennwerte der Bruchlamellen und des Prüfkörpers

Bez. ¹ Bruch-		Jahrring-	Rohd	ichte	Elastizitäts	modul
	lamelle	breite (Bruchl.)	Bruchlam.	Prüfkörp.	parallel (Bruchlam.)	rechtw. (Prüfk.)
-	Nr.	d	ρ1	ρ	E ₀	E _{1,90}
-		[<i>mm</i>]	$[kg/m^3]$	$[kg/m^3]$	[<i>N/mm</i> ²]	[<i>N/mm</i> ²]
QI1-1	8	3,0	373	416	11200	362
QI1-2	8	3,0	355	420	11200	366
QI1-3	8	3,5	374	414	11200	360
Q I 2-1	2	3,6	420	428	11700	367
Q I 2-2	3	4,0	406	426	11300	344
QI2-3	3/4	3,2/4,0	435/433	431	11300/12000	368
QI3-1	1/2	4,5/4.0	406/453	431	11100	369
QI3-2	. 6	2,2	424	423	12000	370
QI3-3	2	4,0	432	431	12300	370
Mittelwert			410	424	11500	364
5%-Fraktile			359	414	10800	351
Q II 1-1	1	3,8	471	468	12600	389
Q II 1-2	10	3,3	420	458	14700	353
Q II 1-3	10	3,3	427	465	14700	363
Q II 2-1	5/6	2,2/2,6	432/428	458	12500/14700	336
Q II 2-2	4	3,1	420	462	13900	370
Q II 2-3	5/6	2,3/2,7	430/421	457	12500/14700	342
Q II 3-1	7/8	1,7/1,9	471/429	460	13200/12500	369
Q II 3-2	3	1,9	443	452	15100	341
Q II 3-3	3/4	1,9/2,5	454/454	456	15100/14600	350
Mittelwert			438	460	13900	357
5%-Fraktile	din en er		408	452	12100	329
Q III 1-1	9	1,0	505	534	17500	398
Q III 1-2	7	1,8	535	531	17200	395
Q III 1-3	1	2,7	448	532	16900	392
Q III 2-1	4/5	1,7/1,8	512/531	517	18000/16700	360
Q III 2-2	6	1,3	489	524	18500	390
Q III 2-3	6	1,4	489	523	16700	366
Q III 3-1	13/Kleber	1,5	508	535	17900	411
Q III 3-2	4/5	1,0/2,3	568/555	540	18500/16800	405
Q III 3-3	7/8	1,9/3,4	551/477	536	19100/16800	393
Mittelwert			514	530	17600	390
5%-Fraktile			456	518	16200	363

¹Bedeutung der Bezeichnung: Q I 1-1: Q, Klasse I, Träger 1, Prüfkörper 1

Versuchsbezeichnung

Bruch im Holz einer Lamelle

Bruch in der Fuge zwischen zwei Lamellen

Bild A16

Nummern der Bruchlamelle(n)

Anlage 17

Bild A17 Prüfkörper Q I 1-3 Ansicht mit Bruch

Bild A18 Prüfkörper Q I 1-3 Ober- und Unterseite der Bruchfläche

Bild A19 Prüfkörper Q III 2-7 Ansicht mit Bruch

Bild A20 Prüfkörper Q III 2-7 Ober- und Unterseite der Bruchfläche

Bild A21

Schematische Darstellung Versuchskörperabmessungen

Prüfmaschine in der

München

und

Bild A22 Versuchskörper in der Prüfmaschine

Bild A23 Ansicht des Prüfkörpers mit Wegaufnehmern

Bild A24 Prüfkörper nach dem Bruch

	Bez. ¹	Länge	Breite	Höhe	Zeit bis zum Bruch	Bruch- last	Festigkeit
	-	1	Ь	h ₀	t	F1,90,max	J ₁₉₀
	-	[<i>mm</i>]	[<i>mm</i>]	[<i>mm</i>]	[5]	[kN]	[<i>N/mm</i> ²]
	Q12-4	250	100	401	298	16,2	0,65
	Q12-6	250	100	401	359	22,0	0,88
	QI2-8	250	100	401	300	14,0	0,56
len	Q II 3-4	250	100	401	422	13,3	0,53
ünch	Q II 3-6	250	100	401	261	13,0	0,52
M	Q II 3-8	250	100	401	314	14,5	0,58
	Q III 2-4	250	100	401	377	17,2	0,69
	Q III 2-6	250	100	401	474	15,0	0,60
	Q III 2-8	250	100	401	427	15,1	0,60
				Mitte	lwert	0,62	
					5%-Fr	aktile	0,44
	QI2-5	250	100	401	293	18,5	0,74
	QI 2-7	250	100	400	265	15,3	0,61
	Q12-9	250	100	400	249	16,9	0,68
Je	Q II 3-5	250	100	400	293	18,4	0,74
Isrul	Q II 3-7	250	100	400	263	14,0	0,56
Kar	Q II 3-9	250	100	401	238	13,1	0,52
	Q III 2-5	250	100	400	323	18,9	0,76
	Q III 2-7	250	100	400	289	16,2	0,65
	Q III 2-9	250	100	400	269	17,3	0,69
					Mitte	wert	0,66
					5%-Fr	aktile	0,53

Tabelle A5 Ergebnisse der Querzugversuche (Vergleich Karlsruhe - München)

¹Bedeutung der Bezeichnung: Q I 2-4: Q, Klasse I, Träger 2, Prüfkörper 4

	Bez. ¹	Bruch- lamelle	Jahrring- breite	Rohd Bruchlam.	lichte Prüfkörp.	Elastizitätsmodul rechtw.	
			(Bruchl.)			(Prüfk.)	
	-	Nr.	d	ρ_1	ρ	E,,90	
	-	-	[<i>mm</i>]	$[kg/m^3]$	$[kg/m^3]$	[<i>N/mm</i> ²]	
München	Q12-4	10/11	3,1/3,5	424/397	429	314	
	Q12-6	11	4,5/4,6	359/375	423	407	
	Q I 2-8	4/5	4,0/2,9	436/459	423	420	
	Q II 3-4	4	1,8/2,5	446/428	452	318	
	Q II 3-6	8	2,6/3,4	418/424	454	341	
	Q II 3-8	4	2,7/2,6	431/440	444	308	
	Q III 2-4	2/3	2,2/1,1	526/518	526	340	
	Q III 2-6	6	1,4	476	522	496	
	Q III 2-8	11	1,7	579	522	411	
Karlsruhe	Q12-5	5/6	3,4/5,3	456/376	426	367	
	QI2-7	3/4	3,0/4,3	418/437	430	353	
	Q I 2-9	3	2,3/3,4	424/392	427	380	
	Q II 3-5	3	2,0	422	449	326	
	Q II 3-7	3	2,0/2,7	437/431	449	327	
	Q II 3-9	4	2,2/2,5	426/434	447	320	
	Q III 2-5	11	1,3	585	521	360	
	Q III 2-7	11	1,5	574	529	367	
	Q III 2-9	6	1.5/1.5	553/503	527	396	

Tabelle A6 Materialkennwerte der Bruchlamellen und der Prüfkörper (Vergleich Karlsruhe - München)

¹Bedeutung der Bezeichnung: Q I 2-4: Q, Klasse I, Träger 2, Prüfkörper 4

- = Versuche in München
- Versuche in Karlsruhe

Nummer der Bruchlamelle

Bild A26

Nummern der Bruchlamellen (Vergleich Karlsruhe - München)

Bild A27 Querzugfestigkeiten aller Prüfkörper in Abhängigkeit von der Rohdichte der Bruchlamellen (bei Bruch durch zwei Lamellen der Wert der kleineren Rohdichte)


```
Nummer der
Bruchlamelle
```

Bild A28

Bruchlamellen aller Prüfkörper

Vers. Körper	Lamelle	Länge	Breite	Höhe	Rohdichte	Bruchlast	Festigkeit
	Nr.	l [mm]	b [mm]	h ₀ [mm]	ρ [kg/m ³]	F _{1,90,max} [kN]	f _{1,90} [N/mm ²]
	1	250	100	28,6	522	43,3	1,73
	3	250	100	28,6	529	34,0	1,36
	5	250	100	28,6	551	45,2	1,81
Q III 2-10	7	250	100	28,6	495	33,4	1,34
	9	250	100	28,6	506	47,6	1,90
	11	250	100	28,6	594	38,2	1,53
	13	250	100	28,6	508	39,6	1,58
	. 2	250	100	28,6	497	35,8	1,43
	4	250	100	28,6	531	30,6	1,22
Q III 2-11	6	250	100	28,6	503	24,6	0,98
	8	250	100	28,6	526	37,5	1,50
	10	250	100	28,6	529	54,9	2,20
	12	250	100	28,6	481	33,3	1,33

Tabelle A7 Ergebnisse der Versuche mit Einzellamellen

Bild A29 Prüfkörper Q III 2-10, 7. Lamelle: Ober- und Unterseite der Bruchfläche (links, mit Harzgalle) sowie Ansicht des Prüfkörpers (rechts, Bruch ringförmig)

Bild A30 Prüfkörper Q III 2-10, 9. Lamelle: Ober- und Unterseite der Bruchfläche (links, mit Markröhre) sowie Ansicht des Prüfkörpers (rechts)

Bild A31 Vergleich der Festigkeiten der Einzellamellen mit den Prüfkörperfestigkeiten

Bild A32

Nummern der Bruchlamellen der Prüfkörper des Trägers Q III 2

Bild A33 Versuchskörper, bestehend aus Prüfkörper aus Vollholz mit 20 cm langem Zwischenholz

Bild A34 Versuchskörper, bestehend aus Prüfkörper aus Vollholz mit 60 cm langem Zwischenholz

Bild A35 Detail mit Wegaufnehmern am Prüfkörper

	Bez.	Länge	Breite	Höhe	Zeit bis	Rohdichte	Bruch-	Festigkeit	
					zum Bruch		F	<u>f</u>	5% Fraktile
S.A.	•	1	b	h ₀	Г. Г. Л.	ρ [kα/m ³]	1' 1,90,max	$J_{L,90}$ [N/mm^2]	[N/mm ²]
	-	[<i>mm</i>]	[mm]		[5]			2.25	[1111111]
München	VH1	70	45	180	324	457	7,1	2,23	
	VH2	70	45	180	368	450	8,4	2,07	
	VH3	70	45	180	332	450	7,9	2,51	
	VH4	70	45	180	317	448	7,5	2,38	
	VH5	70	45	180	311	451	7,2	2,29	
	VH6	70	45	180	340	453	7,9	2,51	Park Sandari
	VH7	70	45	180	485	448	8,1	2,57	e contra la pres
	VH8	70	45	180	353	451	7,8	2,48	
	VH9	70	45	180	493	448	7,3	2,32	2,42
	VH10	70	45	180	320	446	7,0	2,22	2,17
Karlsruhe, Zwischenholzlänge = 60 cm	VH11	70	45	180	444	450	7,2	2,29	
	VH12	70	45	180	255	450	6,7	2,13	
	VH13	70	45	180	274	455	7,1	2,25	
	VH14	70	45	180	313	446	6,6	2,10	
	VH15	70	45	180	287	451	6,3	2,00	
	VH16	70	45	180	247	448	6,5	2,06	
	VH17	70	45	180	266	457	7,5	2,38	
	VH18	70	45	180	276	448	6,8	2,16	2,17
	VH19	70	45	180	295	450	6,8	2,16	1,97
Karlsruhe, Zwischenholzlänge = 20 cm	VH20	70	45	180	290	443	7,0	2,22	
	VH21	70	45	180	282	446	7,0	2,22	
	VH22	70	45	180	353	450	8,0	2,54	
	VH23	70	45	180	319	432	7,5	2,38	
	VH24	70	45	180	272	439	6,5	2,06	
	VH24	70	45	180	292	446	6,9	2,19	
	VIIZ	5 70	45	180	291	443	7,0	2,22	
		7 70	45	180	309	451	7,4	2,35	
	VIIZ		15	180	260	444	5,5	1,75	2,21
	VHZ	5 70	45	19(315	448	6,8	2,16	1,86
1	VH2	9 /0	43	100	, 313		Mittelwe	rt 2,27	
							5 % Frakti	le 1,95	

Tabelle A8 Ergebnisse der Querzugversuche mit Vollholz

Bild A36 Prüfkörper VH 14 Bruch in der Mitte

> **Bild A37** Prüfkörper VH 15 Bruch nahe der Leimfuge

Bild A38 Prüfvorrichtung für Prüfkörper aus Vollholz

Bild A39 Vergleich der Querzugfestigkeiten für Vollholz