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We study some two-dimensional dilaton gravity models using the formal theory of partial differ-
ential equations. This allows us to prove that the reduced phase space is two-dimensional without an
explicit construction. By using a convenient (static) gauge we reduce the theory to coupled ordinary
differential equations and we are able to derive for some potentials of interest closed-form solutions.
We use an effective (particle) Lagrangian for the reduced field equations in order to quantize the
system in a finite-dimensional setting leading to an exact partial differential Wheeler-DeWitt equa-
tion instead of a functional one. A WKB approximation for some quantum states is computed
and compared with the classical Hamilton-Jacobi theory. The effect of minimally coupled matter is
examined.

PACS: 04.60.Kz, 02.30.Jr, 04.20Fy

I. INTRODUCTION

A tensor formulation of physical theories makes no overt reference to any particular frame of reference. To interpret
these theories it is often necessary to extract from them coordinate independent information. In particular in theories
of classical gravitation, coordinate freedom is either explicitly removed by working in a particular coordinate system
or regarded as generating constraints for the subsequent analysis. For the classical theory it may simply be a matter
of taste as to which procedure is adopted. However the discussion of quantization is often acutely sensitive to the
choice adopted.

Following Witten’s observation [35] that models of two dimensional dilaton gravity offer a means of studying the
Hawking effect with back reaction there has been an enormous interest in such models. They arise naturally from
certain truncations of low energy string effective actions [3] and symmetric configurations in higher dimensions [34].
Such models have been rendered completely integrable at the classical level by exploiting the local conformal flatness
of all two dimensional manifolds and their quantization discussed from several alternative viewpoints [26].

In this paper we reexamine the conditions that are responsible for this remarkable integrability and offer an alterna-
tive quantization. The basic observation is that a particular conformal gauge reduces the classical integrability to the
problem of solving a system of ordinary differential equations. Methods from the formal theory of partial differential
equations [24,27] allows us to compute the dimension of the reduced phase space without explicitly constructing it.
This technique should also prove useful in more complicated theories where explicit reduction 1s not possible.

Using methods from the Hamilton-Jacobi theory for systems with constraints [6,14] we construct local expressions
for the dynamical degrees of freedom for dilaton gravity on the line. This i1s in marked difference to other approaches
to the quantization of the reduced theory [18,22]. The quantum amplitudes are shown to satisfy a simple hyperbolic
wave equation which is exactly soluble for appropriate boundary conditions. Similar quantum theories were already
obtained by different authors [21,23] in an approximate minisuperspace approach. But here it is not necessary to
make such an approximation because of the finite-dimensional reduced phase space.

A straightforward semi-classical analysis of the exact quantum description yields a WKB phase that encodes all the
classical dilaton gravity solutions. We explicitly demonstrate that the integral curves that annihilate the gradient of
the WKB phase form a family of exact classical vacuum solutions. This suggests that such a quantization of dilaton
gravity deserves further scrutiny.

The article is organized as follows: After a brief discussion of the classical action and its field equations, we use in
Section IIT a formal analysis to derive indirectly the dimension of the reduced phase space. In Section IV we explicitly
reduce the field equations by a gauge fixing to a system of ordinary differential equations and construct its general
solution. After considering some explicitly solvable models we proceed in Section VI to the Hamilton-Jacobi analysis
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of the system. Its results are used in Section VII for the quantization. Section VIII discusses the effect of minimally
coupling a matter field. Finally, some conclusions are given.

II. CLASSICAL ACTION AND FIELD EQUATIONS

In two dimensions a general coordinate invariant Lagrangian density containing the metric g,,, a scalar dilaton
field @ and their derivatives up to second order is given by

Clow 8] = V77 (50 0,00,0+ V(®) + D@ m

where R denotes the curvature scalar associated with the metric and D is a scalar function.
Using field redefinitions one can, however, considerably simplify this action. The kinetic term for ® can be eliminated
by a Weyl rescaling of the metric [18]

G = Q2(P)g 2)
if © satisfies the differential equation
dIn 2
4D'(® =1.
(@) (3

If we additionally redefine the dilaton field ® = D(®), we obtain the action

Llgu @) = V=5 (V(®) + OR) (4)
where the new potential V (®) is given by

5 _ V(2(2)

V(®) = R(0@)) (5)

(One must be careful here, if D has critical points [1]).
Henceforth we will restrict our attention to this action and drop the bar over the fields. Variation with respect to
the metric yields the “Einstein Equations”

VuVe® — g |VPV,2 4+ V(®)| =0, (6)
whereas variation with respect to ® leads to the additional equation
R+ V' (®)=0 (7)

determining the curvature scalar.

Before we start a detailed analysis of these field equations, we study briefly the relation between the potentials
appearing in (1) and (4) for the most often considered case D(®) = a®” for some constants a,n. If n # 2 a solution
of (3) is given by

Q((b) _ e—‘1>2_"/4an(n—2); (8)
while for n = 2
Q(®) = B/, (9)
For n = 1 we obtain thus from (5)
V(®) = V(®/a)e~ /%", (10)

This implies especially that for an exponential potential V(®) ~ ¢“? the potential remains an exponential after the
transformation but with a modified coefficient v = (2av — 1)/2a?. Note that this results also holds for v = 0, i.e. if
the potential consists just of a cosmological constant. Conversely, the potential becomes constant, if a = 1/2v.



For n = 2 the transformation reads
V(®) = V(x\/®/a)(®/a)~ /5, (11)

Thus Lagrangian densities of the form £ = ®R + A®" as they are e.g. considered in Ref. [20] can be derived from a
model in the form (1) with D(®) = —®?/8n and a “cosmological constant” as potential V(®) = A/(—8n)".

A class of models which appeared first in effective string actions and which has found considerable interest due to
the existence of black hole solutions [3,35] is described by the action

Ll ¥ = gV=7 (R+4(V6) +0) (12)

where ¢ is a constant. Using field redefinitions one can transform it to [25]
Clg ) Loont Loeora
Llgur, 0] = V=4 | 59" 0u0006 + 540 R+ cce (13)

with an arbitrary constant ¢. Elimination of the kinetic term leads then to a modification of the exponential. Note
that this simple Liouville form of the transformed action is due to the factor 4 in (12). A different factor v leads to a
modified potential of the form pg!=7/4e?/e.

III. FORMAL ANALYSIS

The first step in a formal analysis 1s always to complete the given system of partial differential equations to an
involutive one [24,27]. This completion is closely related to the Dirac formalism for systems with constraints. Actually,
one can interpret the Dirac algorithm as a completion procedure for the Hamilton-Dirac equations of the system [30].

In our case the involution analysis is rather simple; as 1t 1s straightforward to show that the combined field equa-
tions (6,7) are already in involution. An interesting fact hereby is that (6) entails (7), if we exclude the trivial case
that @ is constant. The integrability conditions of (6) require that either (7) holds or ® must be constant. Similar
effects are known from other theories coupled to gravity.

The arbitrariness of the general solution of a system of g-th order partial differential equations in n independent
variables can be determined from its Cartan characters oz((lk), k=1,...,n[28]. A simple calculation for our system
yields

P =2 ol =56. (14)

By a comparison with a Taylor expansion of the general solution these characters can be interpreted in terms of
numbers of arbitrary functions of different numbers of arguments. Here we obtain that the general solution of our
field equations can be written as an algebraic expression containing two arbitrary functions of two arguments and two
arbitrary functions of one argument.

Another way to represent the arbitrariness of the general solution is given by the Hilbert polynomial H (r) of the
field equations. Tt denotes the number of Taylor coefficients of order » which can be chosen arbitrarily. From (14) we
obtain [27,28] (note the slightly different notation used there)

H(r)=2r+4. (15)

It is important to note that H (r) yields the correct values only for r > 2, as we are dealing with second-order equations.
On the other hand the number of arbitrary Taylor coefficients of order less than or equal to 2 is determined by the
dimension of the submanifold described by the field equations in the appropriate second-order jet bundle; thus in our
case it 18 20.

We must, however, adjust for the covariance under coordinate transformations. Especially the two functions of two
variables stem obviously from this gauge covariance. We have recently shown how such a correction can be performed
as soon as the gauge group is known [28,29]. The key is the introduction of a gauge corrected Hilbert polynomial
which in turn leads to gauge corrected Cartan characters.

In our case we must subtract the invariance under the transformation

0zP 8x° _
Juv = @Wa?gpo ; (16a)
o=, (16b)



The transformation depends on two gauge functions z” through their first derivatives. Thus if we expand again in
a power series, we can give G(r) coefficients of order r arbitrary values through gauge transformation where G(r) is
given by

G(@:Q(Zi):%ﬂ. (17)

By comparison with the Hilbert polynomial we see that all the arbitrariness for » > 2 stems from this gauge
covariance. Hence the gauge corrected Cartan characters vanish and the reduced phase space of this theory is finite-
dimensional. Usually G(r) yields the correct values only from a certain value of » on. In our case, however, one can
easily see by writing out the first terms of the expansion that it is correct for all » > 0. Thus we can further conclude
that 18 Taylor coefficients of order up to two can be given arbitrary values by gauge transformation. Since the general
solution of our field equations contains only 20 arbitrary coefficients at these orders we obtain that the dimension of
the reduced solution space is two. This fact was also proven in Refs. [1,18] using an explicit reduction.

Actually, in this simple case it 1s not necessary to use the Cartan characters to prove the finiteness of the reduced
phase space. The easier concept of the strength of a differential equation introduced by Einstein [7,32] suffices here. A
straightforward computation shows that the field equations are absolutely compatible and have a vanishing strength,
if one takes the gauge symmetry into account. But since we are dealing with a two-dimensional space-time, this
implies immediately that the gauge reduced solution space is finite-dimensional. However, the exact dimension can
be computed only with the refined analysis used above.

We can understand this finiteness by considering the metric as an external field. (6) represents then a finite type
system for the dilaton field ®, as each second order derivative of @ is determined by an equation. Thus the general
solution of this system depends only on a finite number of parameters. All arbitrary functions stem therefore from
the metric as solution of (7).

IV. REDUCTION TO ORDINARY DIFFERENTIAL EQUATIONS

The solution of every system of finite type can be obtained by solving systems of ordinary differential equations [4,17].
The reduction is based on the theory of complete systems and can be performed in a purely algorithmic way. However,
in our case 1t will not be necessary to follow this procedure which would lead to a fairly complicated system of ordinary
differential equations [27]. By choosing an appropriate gauge the reduction can be obtained directly.

We first exploit the well-known fact that every two-dimensional metric is (locally) conformally flat [8] and set

v = Ny, (18)
where 7,,, = diag (—1,1) is the Minkowski metric. The curvature scalar of such a metric is given by
R= (Mt — Agz)e™ ™. (19)
Thus after some trivial manipulations the combined field equations can be written in the following form:

Dy — LB A + BoN,) + LAV(D) = 20a
Bup — L@+ Du)y) — LAV (D) = 20b
By — L@ X+ PeA,) =0, (20c

At = Agw + V(@) = 0. (20d

0, (
0, (

)
)
)
)

Banks and O’Loughlin [1] showed that the field equations imply the existence of a Killing vector
ky =€, V'O (21)

orthogonal to the gradient of ®. Thus we can always choose the gauge ®; = 0. Then (20c) leads to Ay = 0, if we
discard the uninteresting case ® = const. This means that it suffices to study static metrics.

We will assume from now on that we are in a coordinate system where Ay = ®; = 0. The first two equations of (20)
yield ®,, — ®, A, = 0. This can be integrated once and yields

b, = Ae? (22)



with an integration constant A. Note that this implies that the sign of ®, never changes and that it is fixed by the
sign of A. Substituting this in (20b) leads to

Al = V(D). (23)
Differentiating (22) allows one to eliminate A and arrive finally at the simple equation
Ady, — V(®)P, = 0. (24)

There is no need to consider (20d), as it is an integrability condition and thus automatically satisfied.
Rewriting the potential as a derivative, V(®) = W’ (®), one can easily obtain an implicit solution of (24). Integrating
once yields the first integral

Ad, — W(®) = B (25)

for some constant B. Separation of variables leads to

_ Adyp
2
weo= [ @

Once this expression is inverted to obtain @ in explicit form, A can be derived algebraically from (22)

A=In (BJFTVQV@)) . (27)

We have thus found a three-dimensional solution space. This is no surprise, as the field equations together with the
used gauge conditions describe a three-dimensional manifold in the second-order jet bundle. A similar construction
in light cone coordinates was presented in Ref. [19].

To conclude this section we briefly discuss the three occurring integration constants. C' can obviously be set to
any value by changing the origin of the coordinate system. Thus we can set it to zero without loss of generality.
Similarly, A can be adjusted to any value by a coordinate scaling « — 2/A, t — {/A, as under such a transformation
A — A +1In A2,

By contrast B has an invariant meaning. Since A = ®,e~*, we obtain from (25)
B=¢®2 - W(d). (28)
This expression can be expressed covariantly as
B = ¢*"V, oV, - W(P). (29)

One can show that B corresponds to the ADM energy of the system [11].

Thus only one of the three integration constants parameterizing the general solution of the field equations has an
invariant meaning. The other two can be absorbed in coordinate transformation. This effect is extensively discussed
in Ref. [18].

This is exactly the result one would expect in ordinary gravity from the Birkhoff theorem: Up to coordinate
transformations the static vacuum solutions form a one-parameter family. For this reason some authors speak of the
generalized Birkhoff theorem of dilaton gravity [19].

V. SOME SOLVABLE MODELS

We start by considering a linear potential of the form V(®) = k® + m, i.e. the so-called Jackiw-Teitelboim or
Liouville gravity [15,33] with a cosmological constant k& # 0. In this case the field equations decouple and we obtain
for the conformal factor the equation

Aoz — ke =0 (30)

which can be considered either as a special case of the Poisson-Boltzmann equation or as describing stationary solutions
of the Liouville equation. Tts general solution is given by [15]



Mz)=—1In {% sinh? [B(z — xo)]} (31)

with two integration constants 3, zy. Obviously, zg is without physical significance and can be set zero. The curvature
is constant

R=k. (32)
From (23) we obtain immediately
A
O(z) = - [28 coth (B(x — x0)) — p] . (33)

Next we consider potentials of the form V(®) = ae® as they occur in the effective string actions.! Here it is

simpler to go back to the equations (22,23) and to introduce new dependent variables ¥, i by ¢ = V(®) and p = Ae?*.
This transformation yields the system

Ve = Bop = BAp. . (34)
Thus these new variables are related through
Y(x) = pA[p(x) + D] (35)

with an integration constant ). Eliminating ¢ leads to a simple Bernoulli equation for p which can be solved by
separation of variables. We must distinguish two cases: If D = 0, we obtain

1
po) = (30
and for the curvature scalar
Ap?
= 37
Gr_C (37)
with a further integration constant C'. Otherwise we find
D
we) = =—5pr 7 (38)
and the curvature scalar
ADC 32

By setting C' =0 in (37) and C' = 1 in (39), respectively, we can move the singularity of the curvature to z = 0.
The third important model is provided by spherically symmetric gravity in 341 dimensions [34]. Tt can be reduced

to a dilaton gravity action in two dimensions of the form (4) where the potential is given by V(®) = 1/1/2®. As

above we must distinguish two cases in the integral in (26). If B = 0, the solution can be given in explicit form

d(x) x+C)°. (40)

= E(
Otherwise an inversion is not possible. The implicit solution is

r+C=A[V28— Bl (1+28/57)] . (41)
In any case the curvature scalar is given by

1
R= Z@—B/z. (42)

! As already mentioned in Section II more generally one obtains a potential of the form a®7e®®. These models can still be
solved exactly [16]; however, many case distinctions arise.



VI. HAMILTON-JACOBI THEORY

After the gauge reduction we obtained in Section IV the following system of one first-order and two second-order
ordinary differential equations

By — V(D) =0, (43a)
Aoz — V(@) =0, (43Db)
DAy — MV (®) =0. (43c)

Note that the first-order equation produces together with any of the second-order ones the other second-order
equation as an integrability condition. The two second-order equations, however, form a normal system and thus
cannot generate the first-order one.

We now try to find an effective Lagrangian for the gauged equations of motion (43). A reasonable starting point is
obtained by applying our gauge conditions to the full Lagrangian density (4) and integrating once by parts

L@, = Dp)y + V(D). (44)

The corresponding Euler-Lagrange equations are the two second-order equations in (43). Thus this action yields a
too general dynamics, as it “looses” one condition! Performing a Legendre transformation on (44) shows that the
missing equation demands the vanishing of the Hamiltonian of the system (“zero energy condition”)

Hy=mgmy — eV (®) =0 (45)

where the canonically conjugate momenta are given by mg = A, and my = @, respectively.
If we denote Hamilton’s principal function as usual by S, the Hamilton-Jacobi equation of the unconstrained system
described by the Lagrangian £, is

85 0SS ... .
Tt aeay ¢ V(@) =0. (46)

Imposing the constraint (45) leads to a second equation for S, namely [6,14]

9508 ..

Obviously, we can now discard (46) by simply looking for a principal function independent of x.
Ideally, one would like to find a complete integral S(xz, ®, A, p1,p2) of (46) such that it satisfies the constraint (47)
for ps = 0. Such a complete integral generates a canonical transformation to new coordinates (g1, g2, p1, p2) via

08 08
T = a_q) 3 T = 3_/\’ (48&)
. 0s ., 8S (48h)

T =5 ¢ =75
Op1 Op2

In these coordinates the system decouples [12] into an unconstrained one depending only on the canonical pair (¢*, p1)
plus a trivial one containing the gauge degree of freedom (g%, p2). pa is constrained to zero and ¢ remains completely
arbitrary.

Unfortunately, we have not been able to construct such a complete integral. However, we found an incomplete
integral [14] satisfying the full system (46,47)

W(d
SO@, A, p1) = pre* + % (49)

where again W/ (®) = V(®). S can be extended to a complete integral by making the ansatz
S($a q)a AaplapZ) = S(O) (q)a Aapl) +p2 [A(q)a AaplaPZ) - l‘] . (50)

It is not difficult to show that such a function A always exists. The special form of (50) allows us to evaluate the
canonical transformation (48) on the constraint surface p; = 0. There we obtain



o =V(®)/p1, ™ =piet, (51a)
gt =er —W(®)/(p1)?. (51b)

We cannot compute ¢Z, but this does not matter, as it is purely gauge.

The new coordinates (¢*, p1) are gauge independent observables, as one can easily check that their Poisson brack-
ets with the Hamiltonian vanish (modulo the constraint). Furthermore we can relate them with the integration
constants A, B used in Section IV

A=p, B=(p)’q¢". (52)

VII. QUANTIZATION

Since we have reduced dilaton gravity to the zero energy sector of a finite-dimensional dynamical system, we can
quantize it in a simple way obtaining a standard Wheeler-DeWitt equation instead of a functional equation. We choose
the usual representation of the momenta in terms of partial derivatives. The vanishing of the classical Hamiltonian (45)
yields the following hyperbolic equation for the wave function ®(®, A)

h* o + eV (®)T =0 (53)
—+te =0.
0PI
The simple field redefinition p = ¢*, p = W(®) where again W/(®) = V(®) transforms it into the Klein-Gordon
equation (in characteristic coordinates)

0*w
0pdu

h* + 0 =0. (54)

In order to validate our quantization procedure we compute the semi-classical limit of this theory using the WKB
approach. Thus we make the following ansatz for ¥ depending on two real fields S, A

@ (p, p) = Alp, p)er 5o (55)
(54) yields the following differential equation
B2 Apy 4+ ih(AS,, + AuS, + A,S,) — AS, S+ A=0. (56)

Now we expand both functions in power series in h: A = A® +hAM 4+ and S = SO 4 ASM) 4 In the classical
limit, i.e. for A — 0, this leads to

SO =1. (57)

This is exactly the Hamilton-Jacobi equation (47) we obtained in the last section (transformed to the new coordi-
nates p, ) and we can reuse the incomplete integral (49). In the new coordinates p, u the A-® relation (27) derived
in Section IV reads

Ap=""2 (58)

Identifying p; with A one can easily that these classical trajectories are orthogonal with respect to the Minkowski
metric to the curves described by S(®) = const. Thus we obtain the correct classical limit.

For the next terms in the WKB approximation we obtain the following differential equations

S 4 s0s =0, (59a)
SA© 4 50 A0 4 AP =, (59b)
SEAW 4 5 A0 4 S AW 1 5 AP 4 5O A 4 5 AP =0 (59¢)

They can be solved easily by introducing the new variables 20% = Ap 4+ p/A



SO (et o7y =0t +C, (59d)
St o7)=F(o7), (59¢)
Aot 7)) = G(o7), (59f)
AV (ot o7y =H(o™)+ |G(e™)F" (6™ )+ G'(¢7)F'(¢7)|ot (59g)

with an arbitrary constant C' and three arbitrary functions F, G, H.

VIII. MINIMALLY COUPLED MATTER

We now couple minimally a matter field ¢ by adding

Lar = k/=g(V)? (60)

with a coupling constant  to the action (4). Its energy-momentum tensor is given in the conformal gauge (18) by

T = T = ST (W 4 ), (61a)
T = —ke™ Myl . (61Db)
Adding again the gauge fixing condition A+ = 0 it is easy to show that we obtain exactly in the same way as

before that ®; = 0 and additionally that )y = 0. Thus we can still reduce the field equations to ordinary differential
equations. Note that this stems from the fact that there is no coupling between the dilaton field and the matter.
The reduced field equations have now the form

Qpy — V(D) =0, (62a)
Aoz — V(@) =0, (62b)
Vra =0, (62c)

Py — AV (®) + kY2 =0. (62d)

Again we can identify the last equation with a zero energy condition for the unconstrained system defined by the
Lagrangian

L@\ 0] = By + 602+ V(D). (63)
Quantizing the Hamiltonian constraint we obtain again a hyperbolic wave equation as Wheeler-DeWitt equation

ARG SUNS Ui
0PN 4k OY?

+ eV (2)® =0. (64)

In the absence of matter ® and A entered the equation on equal footing. There was no way to decide whether ® + A
or ® — A should be a timelike coordinate in the superspace. Now the sign of k induces a (241)-split of the superspace.
However, in general it is not clear which part of the split is timelike and which spacelike.

IX. CONCLUSION

A similar reduction to ordinary differential equations was used by Banks and O’Loughlin [1]. We would like to point
out some differences in the obtained quantum theories. They do not consider whether their quantum theory yields
the correct classical limit. Actually, it is easy to see that they would not obtain their classical model. The latter one
depends on three fields, whereas their quantum theory knows only two degrees of freedom. The field g used in their
parameterization of the metric simply disappears.

There exists an alternative way to endow the gauge reduced equations of motion with a Hamiltonian structure.
In Section VI we started with the second-order system (43). Alternatively one can use the first-order formulation
obtained in Section IV after one integration



¢, = Ae*, (65a)
AXy = V(D). (65b)
These are the Euler-Lagrange equations for the first-order Lagrangian

W
L1[®,N] = ®N, + A — # . (66)
It is well-known that such a Lagrangian leads directly to generalized Poisson brackets [31] which can also be considered
as Dirac brackets [13]. Applying this formalism to £; yields

(Ao} =1. (67)

In this description we can thus interpret the dilaton and the conformal factor as canonically conjugate coordinates!
However, we believe that (66) represents a dubious starting point for a quantization, as A is treated as a parameter.
But we saw in Section VI that it can be identified with a dynamical variable!

Since we have not been able to find a complete integral of the Hamilton-Jacobi equation (46) we could not pursue
this argument until the end. We have not constructed the full canonical transformation which leads to the decoupling
of the Hamiltonian. Otherwise we could have used its regular, gauge-independent part for the quantization and thus
quantize the fully reduced phase space.

Instead we have used a finite-dimensional classical system and imposed from the outside a gauge symmetry by
considering only its zero energy sector. This symmetry corresponds to the residual gauge freedom left after fixing the
gauge with the condition Ay = 0. Then we proceed in the usual way following Dirac [5] by requiring that the wave
function is annihilated by an operator version of the (first-class) constraint.

It appears natural to ask for the relationship between the quantum theory obtained this way and the one obtained
by following the above mentioned Hamilton-Jacobi procedure. One can expect that they are not equivalent. This
situation is very similar to the quantization of the free relativistic particle. The approach we took here corresponds
to the covariant quantization. No gauge fixing is performed and we get a covariant wave function (the Klein-Gordon
equation (54) is obtained in characteristic coordinates!).

One should probably study in more detail the relation between the residual gauge symmetry in the reduced field
equations (43) and the symmetry generated by the constraint #, = 0. As mentioned in Section IV the integration
constant A can be changed by a rescaling of #. In the context of the field equations we consider this as a gauge
transformation. For the system described by the particle Lagrangian £, this corresponds to a reparametrization
of the evolution parameter z and is not contained in the gauge transformations generated by #,. Under these
transformations A = p; remains invariant.

This connection can be made more transparent by using a reparametrization invariant action. To this end one
introduces a new evolution parameter v and sets © = X (). This leads to the action (the dot denotes derivatives with
respect to )

dA
L[\, X] = S X V(D). (68)

The original equations of motion are recovered, if one imposes the gauge fixing condition X —y = 0. Since this condition
depends explicitly on the evolution parameter, the gauge fixed Hamiltonian acquires a correction term [9,10]. Once
this is taken into account, one obtains exactly the same quantum theory as we did in Section VII.

Finally, we would like to stress again that applying methods from the formal theory of partial differential equations
allows us to compute the dimension of the fully reduced phase space without constructing it. This indicates that these
techniques should also be useful for more complicated models where this construction cannot be performed explicitly.

This holds especially for systems where one can show that for a full gauge reduction one must pose in addition
initial and/or boundary conditions. For instance in the case of standard four-dimensional general relativity it is easy
to see that the gauge corrected Cartan characters cannot be obtained from any system of differential equations, as
they do not satisfy all properties of Cartan characters. This implies that it is not possible to fix the gauge completely
by imposing gauge conditions in the form of differential (or algebraic) equations. Nevertheless, one can determine the
arbitrariness of the fully reduced phase space [27,29].
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