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1. Introduction

In recent articles [1, 2] particular initial/boundary value problems on the half-
plane and quarter-plane have been considered for the (2+1)-dimensional Krichever-
Novikov equation
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with the Schwarzian derivative f�; xg = @x(�xx=�x) � 1=2(�xx=�x)
2 via the par-

ticular linear decomposition

�y + �xx = 0 ; �t � 4�xxx = 0 (2)

to the backward heat and the linearized Korteweg-de Vries equation. The Kriche-
ver-Novikov equation is important in that it represents the singularity manifold
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equation of the Kadomtsev-Petviashvili equation as derived from the Painlev�e
analysis of the latter. Moreover, it is itself integrable. Further, it can be linked to
the integrable Harry-Dym equation via a reciprocal transformation [3].

It was the latter connection which was originally used in Ref. [1] to obtain the
above decomposition. Thus it was shown in Ref. [4] that the (2+1)-dimensional
Harry-Dym equation

�t + ��1(��1)xxx � 3�3(��2@�1x �y)y = 0 (3)

is invariant under the transformation
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dt ;

y0 = y; t0 = t :

(4)

The compatibility conditions for this reciprocal transformation are

( �)y = ( ��1)xx ;

( �)t =
�
(��2)x + 4��2 x � 6��1(@�1x �y) 

�
xx ;

( �)xt =
�
(��2)x + 4��2 x � 6��1(@�1x �y) 

�
xy ;

(5)

where  = (�0)�1 provides a linear representation for (3).
In Ref. [3] it was established that the (2+1)-dimensional Harry-Dym equa-

tion (3) is reciprocally linked to (1) via a transformation H . (3) expressed in
(x0; y0; t0) admits the solution �0 = 1. Hence, the compatibility conditions (5) show
that �(x; y; t) is a solution of (3), if it is a simultaneous solution of the nonlinear
heat equation
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together with
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and �
1

�
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xt

= �2

�
1

�2

�
xxy

: (8)

It is seen that the latter condition is automatically implied by (6) and (7), so
that it may be discarded. Applications to (6) and (7) of the transformation H as
given in Ref. [3] produces the simultaneous linearization (2) of these equations.
Accordingly, if � is a simultaneous solution of the linear equations (2), then it is
also a solution of the (2+1)-dimensional Krichever-Novikov equation (1).
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This result may be obtained alternatively from the linear eigenfunction repre-
sentation for the Kadomtsev-Petviashvili equation. In Ref. [2] the linear decompo-
sition was used to obtain solutions to classes of initial/boundary value problems
on the half-planes �1 < x < 1; y � 0 and �1 < y < 1; x � 0 as well as on
the quarter-plane x � 0; y � 0.

It is noted that analogous decompositions can readily be obtained for eigen-
function equations associated with other (2+1)-dimensional integrable systems
such as the (2+1)-dimensional Sawada-Kotera equation [5, 6]. Certain boundary
value problems may then be solved after the manner of Refs. [1, 2].

In the present paper, by contrast, our concern is with pure initial value problems
for an overdetermined pair of linear equations of the above type, namely

ut = uxxx ; uy = uxx : (9)

Importantly, the linear decomposition result shows that such solutions as one
obtains apply `mutatis mutandis' to initial value problems for the integrable (2+1)-
dimensional Krichever-Novikov equation. It is recalled that initial value problems
for nonlinear integrable equations in 1+1 dimensions are commonly treated by the
Inverse Scattering Transform and more recently by the �@-Method in 2+1 dimen-
sions. The connections between the results obtained in the present paper by formal
analysis and those derivable by variants of the Inverse Scattering Method remain
to be explored.

We use the formal theory of partial di�erential equations [7] to show that the
analytic solution space of system (9) can be parameterized by three functions of
one variable. This fact is exploited to solve Cauchy problems for the system.

This formal analysis is necessary, because for non-normal systems, i.e. systems
not satisfying the conditions of the Cauchy-Kowalevsky theorem, it is not trivial
to deduce how much Cauchy data can be prescribed in order to render the problem
well posed. This holds especially for overdetermined systems like (9). It turns out
that involution provides the key [8].

The analysis is further used to highlight di�erences between the notion of invo-
lution in formal theory and the notion of a passive system in Janet-Riquier the-
ory [9, 10]. This theory is especially useful for the construction of formally well-
posed initial value problems [11], i.e. problems where exactly the correct amount
of Cauchy data is prescribed to guarantee existence and uniqueness.

The paper is organized as follows: After a brief introduction into the theoretical
framework of formal analysis, Section 3 will treat system (9) in detail. After the
construction of some typical power series solutions, we will consider in Section 5 the
general Cauchy problem for our system. The last section compares the approach
taken here with the Janet-Riquier theory.
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2. Formal Theory of Di�erential Equations

Formal theory uses a geometric approach to di�erential equations based on the jet
bundle formalism. It is beyond the scope of this paper to give a detailed introduc-
tion to the underlying theory. The reader is referred to the literature [7, 12, 13].
Here we are concerned with two topics: the de�nition of an involutive system and
how to compute the arbitrariness of the general solution of such a system.

We will always work in a local coordinate system, although the whole theo-
ry can be expressed in a coordinate independent way. Let x1; : : : ; xn denote the
independent and u1; : : : ; um the dependent variables. Derivatives are written in
multi-index notation p�� = @j�ju�=@x

�1
1 � � �@x�nn where j�j = �1 + � � �+ �n is the

length of � = [�1; : : : ; �n]: The derivatives up to order q de�ne a local section for
the q-th order jet bundle Jq: A di�erential equation Rq of order q can then be
described locally by a system of equations

Rq : ��
�
xi; u

�; p��

�
= 0 ; � = 1; : : : ; p ; j�j � q : (10)

Geometrically, it can be regarded as a �bered submanifold of Jq:

At least some of the ideas behind the concept of involution can best be under-
stood by considering the construction of a formal power series solution for the
system order by order. We will describe a method that works for any system inde-
pendent of whether it can be solved for some derivatives or not. For this purpose,
we introduce the symbol Mq of a system Rq.

DEFINITION 1. The symbol Mq of the system (10) is the solution space of the
linear system of (algebraic!) equations

Mq :
X

�;j�j=q

 
@��

@p��

!
v�� = 0 : (11)

(By abuse of language, we will refer to both the linear system and its solution
space as the symbol).

Here v�� are coordinates of a �nite vector space, i.e. we introduce one coordinate
for each derivative of order q. De�nition 1 is most easily understood by considering
a quasi-linear system, i.e. a system which is linear in the derivatives p�� with j�j = q.
For such a system the symbol is simply obtained by taking only the highest order
part and substituting v�� for p�� .

We make a power series ansatz for the general solution of the di�erential equa-
tion Rq by expanding it around some point x0: Then we substitute this ansatz
into the equations (10) and evaluate at x0: This yields a system of algebraic equa-
tions for the Taylor coe�cients up to order q. The remaining coe�cients can be
computed by linear algebra only.
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For the coe�cients of order q + r we use the prolonged systems Rq+r which
are obtained by di�erentiating each equation in Rq r times totally with respect
to all independent variables. They are all quasi-linear. If we substitute again the
power series ansatz into the prolonged system Rq+r and evaluate at x0; we get an
inhomogenous linear system for the derivatives of order q + r. Its homogeneous
part is given by the prolonged symbol Mq+r, i.e. the symbol of Rq+r.

The coe�cients of lower order appear in the coe�cients and in the right hand
side of this linear system. Thus we are able to express the coe�cients of order q+r
through the coe�cients of lower order. This is the precise meaning of construct-
ing a power series order by order. The arbitrariness of the general solution is
now reected by the dimensions of the prolonged symbols, because at each order
dimMq+r coe�cients are not determined by the di�erential equations but can be
chosen freely.

This construction will, however, fail, if there are non-trivial integrability con-
ditions, i.e. equations of order q + r which are functionally independent of the
equations contained in the prolonged system Rq+r and which are satis�ed by every
solution of the system. Such equations arise usually by cross-di�erentiating and
are detected only in some higher prolongation. They pose additional conditions
on the coe�cients of order q + r. Hence they must all be known to pursue the
above described procedure. We call a system which contains all its integrability
conditions a formally integrable system.

For formally integrable systems it is thus possible to construct order by order a
formal power series solution. In many applications it is of interest to know the num-
ber of arbitrary Taylor coe�cients at any order, i.e. dimMq+r for all r. Formal inte-
grability does, however, not su�ce to determine these dimensions in advance.

For this purpose, we introduce the class of a multi-index � = [�1; : : : ; �n]: It is
the smallest k for which �k is di�erent from zero. If we consider the symbol (11)
as a matrix, then its columns are numbered by the coordinates v�� : We can order
them by class, i.e. taking always a column with a multi-index of higher class left
of one with lower class. Then we can compute a row echelon form.

In this so-called solved form the symbol is especially easy to analyze. Since
we need only linear operations to obtain it, we can always perform the same
operations with the whole system Rq and thus assume that (11) yields the symbol
directly in solved form. We denote the number of rows where the leading entry is

of class k by �
(k)
q and we associate with each such row the multiplicative variables

x1; : : : ; xk:

It is now easy to see that if we prolong each equation only with respect to its
multiplicative variables, we obtain independent equations, because each equation
will have a di�erent leading term. The question is now, whether prolongation
with respect to the non-multiplicative variables leads to additional independent
equations. If not, we call the symbol involutive.
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DEFINITION 2. The symbol Mq is called involutive, if

rankMq+1 =
nX

k=1

k�(k)q : (12)

The system Rq is called involutive, if it is formally integrable and its symbol is
involutive.

The above de�nition of the �
(k)
q is obviously coordinate dependent and it seems,

as if the involution of a symbol depends on the chosen coordinate system. But one
can show that almost every coordinate system leads to the same values for the

�
(k)
q . These are characterized by the property that �

(n)
q ; �

(n�1)
q + �

(n)
q ; : : : ;

P
�
(k)
q

are maximal. A coordinate system which leads to these values is called �-regular.

De�nition 2 assumes that the �
(k)
q are computed in such a coordinate system.

(Another approach to this problem was presented in Ref. [11]).
It is now an important property of involutive symbols that their prolongations

are again involutive. Since prolonging an equation with respect to one of its mul-

tiplicative variables xi yields an equation of class i, we get �
(i)
q+1 =

Pn
k=i �

(k)
q :

Inductive use of this relation leads to

�
(k)
q+r =

nX
i=k

 
r + i� k � 1

r � 1

!
�(i)q (13)

and thus the searched for expression for the ranks of the prolonged symbols

rankMq+r =
nX

k=1

 
r + k � 1

r

!
�(k)q : (14)

Besides the possibility to predict the number of arbitrary Taylor coe�cients
at any order, involutive systems have another important property. There exist an
easily applicable criterion to check whether a system is involutive or not. The
problem of the de�nition of formal integrability is to prove that a system does not
generate non-trivial integrability conditions at any prolongation order. This can,
however, be done for systems with an involutive symbol.

THEOREM 3. Let Rq be a q-th order di�erential equation with an involutive sym-

bol Mq. If there arise no integrability conditions during the prolongation of Rq

to Rq+1, then Rq is involutive.

Whether or not integrability conditions arise during the prolongation, can be
seen from a comparison of the dimensions of the submanifolds. For an involutive
system the equation

dimRq = dimRq+1 � dimMq+1 (15)
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must hold. It shows that integrability conditions are always connected with a rank
de�cit in the symbol.

According to the Cartan-Kuranishi Theorem, any system can be completed to
an involutive one by a �nite number of prolongations and projections (i.e. addition
of integrability conditions). Refs. [14, 15] describe an algorithm for this completion
and its implementation in the computer algebra system AXIOM.

3. Application to our System

To apply the formalism described in the last section to system (9), it is convenient
to rewrite it as a second-order system in order to embed it in the jet bundle J2:
This is achieved by inserting the second equation of (9) into the �rst one to get
ut = uxy : Thus we obtain the system

R2 :

�
uxy � ut = 0 ;
uxx � uy = 0 :

(16)

This system is, however, not in involution. It is not even formally integrable, as
there exists clearly the integrability condition uyy � uxt = 0.

PROPOSITION 4. The second-order system

R
(1)
2 :

8<
:
uxy � ut = 0 ;
uxx � uy = 0 ;
uyy � uxt = 0 :

(17)

is involutive and equivalent to the original system (9).

Proof. To apply Theorem 3, we must �rst check whether the symbol M
(1)
2 of

this system is involutive. De�nition 1 yields

M
(1)
2 :

8<
:
vxy = 0 ;
vxx = 0 ;
vyy � vxt = 0 :

(18)

To compute the �
(k)
2 we need an ordering of the independent variables. We choose

x1 = t; x2 = y; x3 = x. Then we see that the second equation in (18) is of class 3 and
we get the multiplicative variables (t; y; x). The other equations are both of class 2

and yield the multiplicative variables (t; y). Hence, we obtain �
(1)
2 = 0; �

(2)
2 =

2; �
(3)
2 = 1. Since this yields the maximal possible values for �

(3)
2 ; �

(2)
2 + �

(3)
2 and

�
(1)
2 + �

(2)
2 + �

(3)
2 ; the coordinate system is �-regular.

To use De�nition 2 of an involutive symbol we need the prolonged system

R
(1)
3 :

8<
:
uxxy � uxt = 0 ; uxyy � uyt = 0 ; uxyt � utt = 0 ;
uxxx � uxy = 0 ; uxxy � uyy = 0 ; uxxt � uyt = 0 ;
uxyy � uxxt = 0 ; uyyy � uxyt = 0 ; uyyt � uxtt = 0

(19)
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and its symbol

M
(1)
3 :

8<
:
vxxy = 0 ; vxyy = 0 ; vxyt = 0 ;
vxxx = 0 ; vxxy = 0 ; vxxt = 0 ;
vxyy � vxxt = 0 ; vyyy � vxyt = 0 ; vyyt � vxtt = 0 :

(20)

It is easy to see that this symbol has rank 7. One can further see, that indeed all
linearly independent equations are obtained by prolonging each equation of (17)
with respect to its multiplicative variables only.

Thus the symbol M
(1)
2 is involutive. All integrability conditions which arise by

taking linear combinations of equations of R
(1)
3 are already contained in R

(1)
2 . This

can also be checked using Equation (15). We can thus conclude with Theorem 3

that R
(1)
2 is an involutive system as claimed in the Proposition.

To show the equivalence of the two systems (9) and (17), we must compare
their solution spaces. The addition of the integrability condition has no e�ect
on the solution space, because every solution of the original system satis�es it.
The change from a third-order system to a second-order system also makes no
di�erence, as we are only interested in analytic solutions. Thus both systems have
the same analytic solution space and can be considered as equivalent.

We have not shown here, how the system (17) can be deduced systematically
starting with the system R2 and applying the algorithm presented in Refs. [14, 15],
as the needed integrability condition is obvious. It is, however, worth mentioning,
that this construction requires only linear algebra even for non-linear systems.

Finally, we compute the number of arbitrary functions in the general solution
and the number of their argument. In general, there is no unique answer to this
problem [8]. But here we are in a simple case. Since only arbitrary functions with
one argument occur, it makes no di�erence whether they appear algebraically, as
integrals or as derivatives.

PROPOSITION 5. Every representation of the general analytic solution of sys-

tem (17) and thus of system (9) leading to a formal power series which can be

constructed order by order depends on three arbitrary functions each of one argu-

ment.

Proof. As pointed out in Section 2, the arbitrariness can be measured by the
number of parametric derivatives. It is given at each order by the dimension of
the corresponding symbol. From the proof of Proposition 4 we know already that

dimM
(1)
2 = dimM

(1)
3 = 3: It is easy to see from (14) that all higher symbols must

have exactly the same dimension. But constant dimension of all prolonged sym-
bols can only occur, if all arbitrary functions have exactly one argument, because
otherwise the dimension must grow.
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4. Power Series Solutions

The purpose of this section is to construct formal power series solutions for several
initial value problems. This will shed some light on why we always stressed the
order by order construction of the series. We start with the problem

u(t; x0; y0) = h(t) ; ux(t; x0; y0) = h1(t) ; uy(t; x0; y0) = h2(t) ; (21)

where x0; y0 are arbitrary but �xed. We will not use the general method outlined
in Section 2. It is more of theoretical than practical interest. Usually, one obtains
power series solutions simpler by exploiting the special form of a given system.

We make the following ansatz for the series

u(t; x; y) = u(t; x0; y0) + (x� x0) ux(t; x0; y0) + (y � y0) uy(t; x0; y0) + � � � ; (22)

i.e. we expand only with respect to the variables x and y : Clearly we are �nished,
if we can express each derivative of the form

u[pq] :=
@p+qu

@xp@yq
(23)

by u; ux; uy and their t-derivatives. Four di�erent cases arise

1. Suppose p = 0: For q = 1 we have already uy: For q = 2 the third equation
of (17) says uyy = uxt: Thus we need here the integrability condition for the
construction of the power series. Similarly, u[03] = utxy = utt: For the higher
values of q we get a reduction to these lower values, as the last case showed
that three y-derivatives can always be replaced by two t-derivatives.

2. Suppose p�q = 2m;m � 0:We �rst apply q times the second equation of (17),
then m times the �rst one to get u[pq] = @p+mu=@tp@ym: But this is just a
t-derivative of Case 1.

3. Suppose p � q = 2m + 1; m � 0: As in the previous case, we obtain that
u[pq] = @q+mu=@tq+1@ym�1 and thus a reduction to Case 1.

4. Suppose p � q < 0: As in Case 2, we can eliminate the x-derivatives and we
obtain again a t-derivative of Case 1 with q � p y-derivatives.

Since each derivative in the Taylor series (22) is now expressed as t-derivative of
one of the three functions u; ux; uy; it follows that each derivative can be expressed
in terms of the Cauchy data h; h1; h2:

A closer inspection of the four cases shows that we have always expressed the
derivative u[pq] by a derivative of the same or lower order. Thus the prerequisites
of Proposition 5 are satis�ed and we can conclude that the above constructed
formal power series describes the general solution of (17) and thus also of (9) in a
neighborhood of the line x = x0; y = y0:
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To show the necessity of the assumption of an order by order construction in
Proposition 5, we present now a second power series solution which violates it. This
yields a representation of the general solution using only one arbitrary function of
one variable. It arises from the following initial value problem:

u(t0; x; y0) = f(x) : (24)

Using the system in its original form (9), we can rewrite each derivative as a
pure x-derivative

@p+q+ru

@tp@yq@xr
=
@3p+2q+ru

@x3p+2q+r
(25)

and thus express all Taylor coe�cients by derivatives of f . Note, however, the cru-
cial di�erence to the above constructed power series. The order of the derivative
becomes greater in (25). Thus the corresponding power series cannot be construct-
ed order by order and we cannot invoke Proposition 5.

Whether or not a power series solution can be constructed order by order is
not a purely technical point but has some importance for the convergence of the
series. In Janet-Riquier theory (see Section 6) one can prove that for initial value
problems where the power series solution can be obtained order by order the series
converges in a neighborhood of the initial curve for arbitrary analytic Cauchy data.
In problems where this is not the case additional conditions on the Cauchy data
are usually necessary.

For t0 = y0 = 0 one can �nd an integral representation of the general solution
for this initial value problem using Fourier transform methods [1]:

u(t; x; y) =
e2y

3=27t2

(3t)1=3

Z 1

�1
Ai

 
3t(� � x) + y2

(3t)4=3

!
ey(��x)=3tf(�) d� (26)

where Ai(z) denotes the Airy function. The invariance of the system under arbi-
trary translations of the independent variables allows one to extend this solution
to t0; y0 6= 0: Obviously, this representation is not valid for arbitrary f , as the
integral will converge only for functions f falling rapidly enough as x approaches
in�nity.

In the next section, we will also need the solution of the initial value problem
where initial data is posed along parallels to the y-axis. There exist two possibili-
ties. The �rst is:

u(t0; x0; y) = f(y); ux(t0; x0; y) = g(y) : (27)

This time we have to consider all derivatives of the form

ufpqg :=
@p+qu

@xp@tq
: (28)

As above we �nd that
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1. uf2m;0g = @mu=@ym :

2. uf2m+1;0g = @mux=@y
m :

3. ufpqg = @qufp+q;0g=@y
q :

We see that the third case leads to an increase of the order. Thus it is no contradic-
tion of Proposition 5 that (27) contains only two free functions of one variable.

The second possibility of an initial value problem along the y-axis is given by

u(t0; x0; y) = f(y) ; ut(t0; x0; y) = g(y) ; ux(t0; x0; y0) = a : (29)

We get exactly the same three cases as above with the only di�erence that in
Case 2 m must be greater than 0 which leads to the additional constant.

5. A General Cauchy Problem

In this section we shall be guided by the results of Section 4 (which, in turn,
depend on Propositions 4 and 5) in order to solve a general Cauchy problem for
system (9). In the process we explicitly compute the characteristics for the system
in terms of which the solution of the Cauchy problem either does not exist or, if
it does, fails to be unique.

THEOREM 6. Let � be an arbitrary analytic curve in the t-x-y space which is at

no point tangent to a characteristic curve. Let (~t; ~n;~b) denote unit tangent, normal

and binormal vector along �, i.e. a moving orthogonal frame. If u; @u=@~n; @u=@~b

are analytic functions on �, then there exists locally one and only one analytic

solution to the initial value problem

@u

@t
=
@3u

@x3
;

@u

@y
=
@2u

@x2

u; @u=@~n; @u=@~b prescribed on �

(30)

Proof. Since � is an analytic curve in t-x-y space, there exists two real-valued,
analytic functions �(t; x; y) and �(t; x; y) such that � is described by � = � = 0:
Since d� ^ d� 6= 0 generically, we can �nd a third analytic function �(t; x; y) such

that d� ^ d� ^ d� 6= 0 generically. Now since u; @u=@~n and @u=@~b are prescribed
and analytic along �, we can solve the linear system

~t � ~ru
�
=
@u

@� �

; ~n � ~ru
�
=
@u

@~n �

; ~b � ~ru
�
=
@u

@~b �

(31)

uniquely for @u
@t �

; @u@x �
; @u@y �

(the uniqueness follows from the fact that (~t; ~n;~b)

forms an orthogonal frame along �) where � is the chosen parameter along �.
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Since the triad (�; �; �) forms a new coordinate system in a neighbourhood
containing the curve �, a simple chain rule argument shows that the functions
�u(�; 0; 0); @�u=@�(�; 0; 0) and @�u=@�(�; 0; 0) are uniquely determined and analytic
along �, where we have introduced �u(�; �; �) = u(t; x; y).

To construct a formal power series solution order by order, we must use the
involutive system (17) instead of the original system (9). We now transform our
initial value problem (30) to this new coordinate system to obtain the following
one expressed in matrix form0

BBB@
�2x �2x 2�x�x

�x�y �x�y + �y�x �x�y

�2y � �x�t 2�y�y � �x�t � �t�x �2y � �x�t

1
CCCA �

0
BBB@

@2�u
@�2

@2�u
@�@�

@2�u
@�2

1
CCCA =

0
BBB@
T1

T2

T3

1
CCCA ;

�u(�; 0; 0);
@�u

@�
(�; 0; 0);

@�u

@�
(�; 0; 0) ; prescribed and analytic

(32)

where the terms T1; T2; T3 on the right hand side involve �; �; � and their derivatives
together with �-derivatives of �u; @�u=@�; @�u=@�:

We prove the existence and uniqueness of a solution by constructing a power
series solution. In Section 2 it was pointed out, that an order by order construction
is only possible, if the system is involutive. On the other hand, we noted that
involution is an intrinsic property of the submanifold Rq and basically independent
of the coordinate system. Thus a problem can only arise, if our new coordinate
system (�; �; �) is not �-regular.

We can now apply the criterion for an involutive symbol in reverse. We know,
the system and thus its symbol is involutive. Hence the coordinate system is �-
regular, if and only if the number of multiplicative variables is 7 as obtained in
Section 3 for the original coordinate system. This will be the case only, if the
matrixM in the new system (32) is nonsingular. Then we have to take either � or
� as x3 (depending on the row echelon form), the other one as x2 and � as x1. This
ordering leads to one equation of class 3 and two equations of class 2 and thus to
a total of 7 multiplicative variables.

We have now transformed the original initial value problem into a form, where
one can apply the Cartan-K�ahler theorem [7, 16]. It states the existence and
uniqueness of the analytic solution for analytic involutive systems. Indeed, we
know that we can uniquely construct a formal power series solution and by repeat-
ed application of the Cauchy-Kowalewsky theorem one can show that this series
will converge in a neighbourhood of �.

In summary, we have shown that provided � is nowhere tangent to the family
of curves

�(t; x; y) = � ; �(t; x; y) = � ; (33)

detM = 0 (34)
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then the solution of the Cauchy problem (30) will exist, be unique and analytic in
a neighbourhood of �. We complete the proof by noting that the family of curves
de�ned by (33,34) describes the complete set of characteristic curves for the initial
value problem.

By direct inspection of the characteristic equation (34) we �nd at once two sets
of solutions, namely

�(t; x; y) = f1(t; y) ; �(t; x; y) = f2(t; y) (35)

and

�(t; x; y) = g1(t; x) ; �(t; x; y) = g2(t; x) (36)

where the functions f1; f2; g1; g2 are di�erentiable but otherwise completely arbi-
trary.

Now turning to the curves de�ned by (33), we see that (35) leads to the equa-
tion

f1(t; y) = � ; f2(t; y) = � : (37)

Since f1; f2; �; � are arbitrary, (37) describes an arbitrary straight line parallel
to the x-axis in x-y-t space. This speci�es one family of characteristic curves for
our problem. Similar remarks using the solution (36) show that arbitrary straight
lines parallel to the y-axis de�ne a second family of characteristic curves. Since
the characteristic equation (34) is underdetermined, there exists, however, further
solutions than the two above mentioned.

We note that if initial data is prescribed along characteristic curves, then less
Cauchy data than speci�ed in Theorem 6 is required. In the previous section, we
gave explicit power series solutions for the two families of characteristics found
above. However, these cannot be constructed order by order.

Finally, we can deduce from Theorem 6 and the results of Refs. [1, 2] the
following

COROLLARY 7. There exists a solution of the (2+1)-dimensional Krichever-No-

vikov equation (1) in a tubular neighborhood of any analytic curve � in (x�y� t)-
space whenever � is not a characteristic curve as de�ned in Theorem 6.

6. Janet-Riquier Theory

The present formal analysis of the system (9) can also be used to demonstrate some
di�erences between the notion of involution in the formal theory and the notion
of passivity in the Janet-Riquier theory which is based on di�erential algebra.
Passive systems are often also called involutive, they are, however, in general only
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formally integrable. We will not explain this approach but refer the reader to the
literature [9, 10].

As already mentioned, in formal theory a di�erential equation is de�ned as a
�bred submanifold in a jet bundle. Involution is a property of this geometric object
and is independent of the speci�c coordinate system or set of equations used to
describe it. In Janet-Riquier theory, however, it is required to specify a ranking for
the derivatives in order to de�ne passivity. This still holds, even when we restrict
ourselves to orderly rankings, i.e. when we always order a higher order derivative
before a lower order derivative.

We can demonstrate this readily using system (17) and the standard form algo-
rithm of Reid [17]. Within the framework of formal theory (17) (considered as a
submanifold of J2) is an involutive system. With respect to the orderly lexico-
graphic ordering induced by t > y > x the system is however not passive within
Janet-Riquier theory. We must add one more equation: uyyy = utt:

That this equation is indeed necessary, can easily be seen, if we apply the
initial data algorithm of Reid [17]. This algorithm generates a formally well-posed
initial value problem [13] for a given passive system, that allows one to construct
the general solution of the system. Reid uses this information to calculate the
arbitrariness of the solution space.

This algorithm can most easily be understood using a graphic representation.
Figure 1 shows the Reid diagram for the heat equation uxx � uy = 0 using an
orderly ranking of the derivatives. The axes represent the independent variables,
the dots the di�erent derivatives of u. The circle around uxx indicates that it is
the leading derivative of the equation. All derivatives in the dashed area can be
obtained from it by di�erentiating the equation, i.e. they are principal derivatives.
All other derivatives are parametric. They must be prescribed by initial data. As
indicated by the two small arrows, they can be ordered into two straight lines
parallel to the y-axis. Thus we must prescribe u and ux for x = const to obtain a
unique solution.

Figure 2 draws the same diagram for the full system (17) which is involutive
in the sense of formal theory using the orderly ranking induced by t > y > x.
Since there are now three independent variables, the picture is three-dimensional
and we omit the depiction of the individual derivatives by dots. One can, however,
clearly recognize, that the (t-y)-plane contains only parametric derivatives. The
only further parametric derivative is ux. Thus Reid's initial data algorithm leads
to the following initial value problem, containing one free constant and one free
function of two variables:

u(t; x0; y) = f(t; y); ux(t0; x0; y0) = a : (38)

Seemingly, this violates Proposition 5. But a closer look at the prolongationR
(1)
3

reveals that the function f can not be chosen arbitrarily but must satisfy the di�er-
ential equation ftt = fyyy : Using the same methods as in the proof of Proposition 5,
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Fig. 1. Reid diagram for heat equation.
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one can show that the solution space of this equation is spanned by three functions
each of one variable!

But if we �rst apply the standard form algorithm to system (17) to make it
passive in the sense of Janet-Riquier and then the initial data algorithm, we will
get a correct result, as the standard form includes the equation uyyy � utt = 0
which leads of course to the above condition on the function f . Reid's algorithm
yields now the initial value problem

u(t; x0; y0) = f(t) ; uy(t; x0; y0) = f1(t) ; uyy(t; x0; y0) = f2(t) ;

ux(t0; x0; y0) = a :
(39)

The apparent contradiction stemmed only from the incorrect application of the
initial data algorithm to a system which was not passive.

The e�ect that further equations have to be added to an already involutive
system to render it passive is not yet well understood. One could conjecture that
it is connected with the fact that the ordering t > y > x does not lead to a
�-regular coordinate system.

Finally, one should note that, if we restrict ourselves to orderly rankings, the
two initial value problems (21) and (39) are the only possibilities, as the only
freedom lies in the ordering of the third equation of system (17).

The reason for the importance of orderly rankings lies in the fact that only
for them Riquier's theorem [18] guarantees the existence and uniqueness of an
analytic solution. Indeed, we have seen that in case of the initial value problem (24)
additional conditions had to be posed on the initial data in order to prove the
convergence of the power series.
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