
Language Learning from Texts:
Mind Changes, Limited Memory and Monotonicity

(Extended Abstract) �

E�m Kinber
y

University of Delaware
Frank Stephan

z

Universit�at Karlsruhe

Abstract

The paper explores language learning in the limit
under various constraints on the number of mind-
changes, memory, and monotonicity. We de�ne
language learning with limited (long term) mem-
ory and prove that learning with limited memory
is exactly the same as learning via set driven ma-
chines (when the order of the input string is not
taken into account). Further we show that ev-
ery language learnable via a set driven machine is
learnable via a conservative machine (making only
justi�able mindchanges).

We get a variety of separation results for learning
with bounded number of mindchanges or limited

memory under restrictions on monotonicity. Many

separation results have a variant: If a criterion A
can be separated from B, then often it is possible

to �nd a family L of languages such that L is A
and B learnable, but while it is possible to restrict
the number of mindchanges or long term memory

on criterion A, this is impossible for B.

1 Introduction

Learning languages from texts has become a subject of
intensive research within recent years. One of the cen-
tral problems in this area is: how do various restrictions
on the behaviour of a learner limit the learning abilities?
We consider three types of restrictions: monotonicity-
requirements, limitations on number of mindchanges

�Permission to make digital/hard copies of all or part
of this material without fee is granted provided that the
coppies are not made or distributed for pro�t or commercial
advantage, tha ACM copyright/server notice, the title of the
publication and its date appear and a notice that copyright is
by permission of the Association for Computing Machinery
Inc. (ACM). COLT 1995 Santa Cruz, CA, USA, 1995 ACM.

yDepartment of Computer and Information Sciences,
University of Delaware, Newark, DE 19716, U.S.A., email
hkinber@cis.udel.edui.

zInstitut f�ur Logik, Komplexit�at und Deduktionssys-
teme, Universit�at Karlsruhe, 76128 Karlsruhe, Germany,
email hfstephan@ira.uka.dei. Supported by the Deutsche
Forschungsgemeinschaft (DFG) grant Me 672/4-2.

and on memory. But we do nowhere restrict the fami-
lies to be learned; i.e., we learn r.e. indices of languages
from arbitrary families of r.e. sets unlike Angluin [1],
who considered learning r.e. families of recursive sets
under similar constraints.

Our �rst restriction is on the amount of memory used
by a learner. Already [5, 19] considered, among many
other models, some, where the learner had access only
to the most recent input and most recent conjectures.
Freivalds, Kinber and Smith [6] created a model for
distinguishing between short term memory, which is
cleared before reading a new word from the input text,
and long term memory, which keeps information on pre-
vious words and results, but is limited in size. Kinber
[12] applied this concept to learning classes of r.e. lan-
guages and obtained some �rst results. Our major re-
sult for this model is that families learnable with limited
long term memory are exactly those learnable via a set
driven machine (whose behaviour does not depend on
the input order). This result sheds a new light on the
nature of set driven learning. For instance, it has en-
abled us to show that any set driven learnable family is
conservatively learnable (when the learner can change
his mind only if a new evidence has appeared) with lin-
ear memory, as well as to show that there are conserva-
tively learnable families which can not be learned by a
set driven machine.

Conservativeness �ts into the various monotonicity con-
straints which were introduced by Jantke [10] and Kapur
[11]. These constraints model learning by generaliza-
tion and by specialization. The intention of these two
notions is that the learner, being fed more and more
positive examples of the language, produces better and
better generalizations (specializations, respectively). In
the strongest interpretation, the learner has to infer a se-
quence of hypotheses describing a growing (descending,
respectively) chain of languages, i.e., Li � Lj (Li � Lj,
respectively) if the learner guessed Lj later than Li.
Jantke, Kapur, Lange and Zeugmann in various publi-
cations [10, 11, 13, 17] de�ned and explored Several nat-
ural approaches to monotonicity. Many non-inclusion
facts from this �eld are sharpened as follows: a fam-
ily is learnable with a small memory in one sense and
non-learnable in a stronger sense.

1

Third, we use the number of mindchanges a learner
makes on a text as a measure of learning complexity.
Learning with restrictions on the number of mindchan-
ges was widely explored in many works, e.g. in [13, 18].
We found that if some monotonicity requirement A im-
plies B, then any family of languages L which is A in-
ferable with k mindchanges is also B inferable with k
mindchanges. On the other hand, if A does not imply
B, then there is a family of languages learnable accord-
ing to A with 2 mind changes which still fails to be
learnable according to B.

2 The Learning Requirements

We consider the Gold-style [4, 7, 19] formal language
learning model. An algorithmic learning device, being
fed the sequence of strings s in the target language L
and symbols # (representing pauses in the presentation
of data), produces a sequence of hypotheses H1;H2; : : :
such that the limit of this sequence is a program for the
target language. More formally, let � denote a �xed
�nite alphabet of symbols; often we use � = f0; 1g or
� = f0; 1; �g. In languages natural numbers are always
identi�ed with their binary representation, e.g. 5 means
101.

Any subset L � �� is called a language. L denotes
the complement �� � L of L. We consider only r.e.
languages, We is the e-th language according to some
�xed acceptable numbering of all r.e. languages. Let #
=2 �. An in�nite sequence T 2 (L[#)1 is called a text
for L if every word in L appears at least once in T . The
range of a text or a �nite initial segment � � T is the
set of all words unequal # appearing in T (�). Further-
more, let < denote a recursive linear ordering of all �nite
texts in (�� [f#g)� such that j�j < j� j) � < � .

FollowingGold [7], we de�ne an Inductive Inference Ma-
chine (IIM) to be an algorithmic device which works
as follows: it takes larger and larger initial segments
� � T and either requires the next input string w,
or it �rst outputs a hypothesis, i.e., a number e to
guess the set We, and then it requests the next in-
put string. Throughout this paper, we always consider
learning from text and never from informant; therefore
we do not indicate explicitly in the names of the learning
criteria that they are TEXT learning criteria.

De�nition 2.1 Let L be a family of languages and L 2
L. An IIM M LIM identi�es L on a text T i� there is
some index e such that L = We, M (�) = e for some
� � T and M (�) 2 fe; ?g for all � � � with � � T .
Here the symbol \?" denotes that M does not want
to make a guess. \?" is needed in the special cases
of limited long term memory (if M cannot remember
its last guess but does not want to make a new one)
and bounded mindchanges (e.g., if the �rst guess must
be correct, but M has not seen su�cient information to
make up its mind). Moreover, an IIMM LIM infers L i�
it LIM identi�es L on every text for L. For any k 2 N ,
we say that an IIM M identi�es L with k mindchanges,

if for any text T for L,M outputs at most k+1 di�erent
guesses e0; : : : ; ek and never returns to an old ei after
once guessing ei+1.

Note that we do not require any properties of L and the
guesses e such as L being an r.e. family of sets, or each
e being a characteristic index.

De�nition 2.2 Following Freivalds, Kinber and Smith
[6], we assume that every IIMM has two types of mem-
ory: long termmemory and short termmemory. M uses
its long termmemory to remember any information that
can be useful in later stages of inference; for instanceM
memorizes portions of the input it has seen or prior con-
jectures. The short term memory is potentially unlim-
ited and is annihilated every time the IIM either outputs
a new conjecture or begins to read a new word in the
input. The short term memory clearing is done auto-
matically and takes one time step. Separation of the
short term memory from the long term memory is very
useful (and proved to be very fruitful in [6]) to ensure
an accurate accounting of the real long term memory
needed for learning the unknown language. The limita-
tion on the size of the long term memory after reading
the input � is always a function of the size of range(�)
| therefore if a �nite set is learned, then the long term
memory is limited during the whole inference process
by a constant depending on this set.

De�nition 2.3 Informally speaking, an IIM learns mo-
notonically if it produces better and better generaliza-
tions. However, monotonicity and dual monotonicity
can be de�ned mathematically in various ways. Here
we follow [10, 11, 13, 17]. Let the IIM M identify an
language L from text. On this inference process M is
said to satisfy the additional requirement

SMON (strongly-monotonic)
i� We �We0

SMONd (dual strongly-monotonic)
i� We �We0

MON (monotonic)
i� We \ L � We0 \ L

MONd (dual monotonic)
i� We [L � We0 [L

CONV (conservative)
i� range(�0) � We) e = e0

WMON (weakly-monotonic)
i� range(�0) � We)We � We0

WMONd (dual weakly-monotonic)
i� range(�0) � We)We � We0

for all guesses e = M (�) and e0 = M (�0) with � � �0

and �; �0 2 (L [#)�. The requirements SMON and
SMONd are straightforward and very strong. But they
are also of limited power: If a SMON learner erroneously
adds a word to a hypothesis, it cannot remove this word
from the target language description. The requirements
MON and MONd are designed to overcome this di�-
culty while keeping as much of the original requirements
as possible. CONV inference permits only reasonable

2

mindchanges: the learner may only make a new con-
jecture if the old one is de�nitely inconsistent with the
data seen so far. WMON and WMONd are variants,
which try to integrate the ideas of conservativism and
monotonicity.

SMON:f , SMONd:f , : : : denote the combinations of
limited memory and the monotonicity requirements.
E.g., SMON:f denotes that an IIM, whose memory is
limited by f , infers each set L by an ascending sequence
of guesses We1 � We2 � : : : � Wek = L.

3 Technical Summary

We study the connection between di�erent requirements
of learning, in particular, between limitations on the
usage of long term memory, monotonicity requirements
and bounds on the number of mindchanges:

Limited memory and set driven inference:

A class of languages is learnable with some bound
on the long term memory i� it is learnable via a set
driven IIM. Any set driven IIM can be made con-
servative, but there are classes of languages learn-
able via a conservative IIM, but not learnable via
a set driven IIM.

Limited memory hierarchy:

If two functions f < g < id, then there is a class of
languages which can be learned strongly monotonic
using the memory bound g but which is not LIM:f
learnable.

Limited memory and monotonicity:

Between the monotonicity-requirements SMON,
SMONd, MON, MONd, LIM only the trivial in-
clusions hold, which also preserve bounds on the
long term memory. Every non-inclusion A 6! B is
witnessed via a set learnable using only a constant
amount of memory. Also some B:id learnable set
can be learned with constant amount of memory
under requirement A while requirement B does not
permit any more restrictive bound on the use of
long term memory.

Constant long term memory:

If a class of sets is learnable via a constant amount
of memory, then it is also learnable with a constant
bound on the number of mindchanges. This transi-
tion preserves the monotonicity requirements. But
the other way round does not hold, i.e., there is a
class learnable with at most one mindchange which
can not be learned via any set driven machine.

Monotonicity requirements and bounded

number of mindchanges:

WMON ! CONV and LIM ! WMONd are the
only non-trivial inclusions; on the other hand the
non-inclusion MON 6!WMON di�ers from results
in more restricted contexts. All inclusions preserve
the bounds on the number of mindchanges while
the non-inclusions are already witnessed by classes
of sets learnable via only two mindchanges.

4 The Limited Memory Hierarchy

This section analyzes the hierarchy of language classes
learnable with limited long term memory. The main
results are:

� The classes LIM:f of all f with (8x)[f(x) � id(x)]
coincide. Here id denotes the amount of memory to
store range(�) of any text �. Our machine model
is chosen such that id(x) = x, for all x: Given a
function f the IIM has the right to store a �nite set
fw1; : : : ; wng of strings such that jw1j+ : : :+ jwnj �
f(jv1j+ : : :+ jvmj) and n � m where fv1; : : : ; vmg
is the range of the input seen so far.

� It turns out that the class LIM:id is just the class
of languages learnable via a set driven IIM. This
class coincides with CONV:id, but it is properly
contained in the class of all CONV learnable lan-
guages.

� There is some L which is LIM:f learnable but not
LIM:g i� there is a x with g(x)<f(x)�x.

� The following diagram illustrates the results graph-
ically:

LIM : c
. &

LIM : f LIM : g
& .

CONV : id$ LIM : id$ SET DRIVEN
#

CONV
#

LIM

where f and g are incomparable functions with c �
f; g � id.

Wexler and Culicover [5, Section 2.2] de�ned that an
IIMM is set driven ifM (�) =M (�) whenever range(�)
= range(�). Dealing with a set driven IIMM it is often
easier to write M (range(�)) instead of M (�).

Kinber [12] asked, whether there is some LIM learnable
family which is not LIM:f learnable for any (arbitrary
fast growing) f . Gisela Sch�afer [19, Proposition 4.4.2A]
showed that there is a LIM learnable family L which is
not inferred via any set driven IIM. By Theorem 4.1
(b))(a), Sch�afer's L is actually not LIM:f learnable
for any f since L otherwise would also be learnable via
a set driven IIM. So L witnesses a positive answer of
Kinber's question.

Theorem 4.1 The following statements are equivalent
for a family L:
(a) Some set driven IIM infers L.
(b) L is LIM:g learnable for some g.
(c) L is CONV:id learnable.

Proof: We show (b))(a) and (a))(c); the direction
(c))(b) is obvious.

3

Proof of (b))(a): An IIM LIM:g learning some fam-
ily L is given by two partial recursive functions m and
M such that on long term memory x, m(x;w) is the
new long term memory after reading the input word w
and M (x;w) is its guess (where M (x;w) =? stands for
\no new guess"). Further let ~m(�) = � and ~m(�w) =
m(~m(�); w); here the long term memory is considered
as a string initialized to �. So ~m(�) is the content of the
long termmemory after reading �. The guess after read-
ing the input �w is M (~m(�); w). M , m and ~m are par-
tial recursive functions such that (L[f#g)� � dom(~m)
and ~m((L[f#g)�)� (L[f#g) � dom(m); dom(M) for
any L 2 L.

Let L 2 L, W � L and n be the size of the �nite set
W . j ~m(�)j � g(n) on every input � 2 (W [f#g)�, thus
the set X(W) = f ~m(�) : � 2 (W [f#g)�g is �nite and
r.e.; furthermore m(x;w) 2 X(W) for all x 2 X(W)
and w 2 W . So one enumerates X(W) until the �rst
stage t such that

(i) mt(x;w)#2Xt(W) for all x 2 Xt(W)
and w 2W [f#g;

(ii) Mt(x;w)" for all x 2 Xt(W)
and w 2W [f#g;

(iii) � 2 Xt(W).

Since X(W) is �nite, this stage will be reached. Fur-
thermore, whenever at some t the conditions (i), (ii)
and (iii) are satis�ed, no new element will enter X(W);
i.e., X(W) = Xt(W). Now Mt is the output-function
and mt the transition-function for a �nite automaton,
whose states are the elements of X(W).

On the �nite automaton, it is possible to check whether
�w is a locking sequence forW , i.e., whether range(�w)
� W , (9e 6=?)[M (~m(�); w) = e] and M (~m(�w�); v)
2 f?; eg for all �v 2 (W[f#g)+. If there is a locking se-
quence, then there is one of length at most (jX(W)j+1),
thus it is decidable whether there is a locking sequence
or not. A set driven IIM N for L is given by

N (W) =

8>>>><
>>>>:

M (~m(�); w) if �w is a locking sequence
for W and no �v < �w
is a locking sequence
for W ;

? otherwise, i.e., there is no
locking sequence for W .

If L is �nite, then N will output the correct value for
W = L. If L is in�nite, then there is a locking se-
quence. Let �w be the <-�rst locking sequence. For
all sequences �v < �w with e0 = M (~m(�); v) there is
some extension �u � �v such that �u 2 (L[f#g)� and
M (~m(�); u) =2 f?; e0g. Thus they are not considered for
any W � range(�u) and so N converges to an index of
L for all su�ciently large subsets of L.

Proof of (a))(c): This is done in two stages. FirstM
is replaced by a new IIM N such that N never returns
to old output, i.e., whenever N (U) 6= N (V) for �nite
sets U;W with U � W then N (W) 6= N (U) for all
�nite supersets W of V . In a second stage a direct

modi�cation s of the output of N is de�ned such that
N 0 given by N 0(W) = s(N (W)) is a conservative IIM
for the class L inferred by M .

For the �rst step let p be an injective recursive padding
function such that Wp(e;U;F) = We for every index e,
every �nite set U and every �nite class F of �nite sets.
Let U (W) be the <-�rst set U � W with M (V) =
M (W) for all V 2 [U;W] and let F(W) contain all
F < U (W) with F � W and M (F) 6= M (V) for some
V 2 [F;U]. Now let N (W) = p(M (W); U (W);F(W)).

Obviously N is recursive and N is de�ned on input W
whenever M (V) is de�ned for all V � W . If L is �nite
then N (L) computes an index of the set WM(L) and
thus N infers every �nite set L 2 L. If L is in�nite then
there is an index e of L and a <-�rst �nite set U � L
withM (W) = e for all W 2 [U;L]. Now U (W) v U for
all W 2 [U;L]. Note that if V � W and U (V) � U (W)
then F(V) � F(W). Therefore there is someW 2 [U;L]
with U (V) = U and F(V) = F for all V 2 [W;L]. Thus
N (V) = p(e; U;F) for all V 2 [W;L] and N infers also
every in�nite L 2 L.

So N also is an set driven IIM for L. Now let V1 � V2 �
V3 be three �nite sets. Assume that N (V3) = N (V1) =
p(M (V1); U (V1);F(V1)), i.e.,M (V1) =M (V3), U (V1) =
U (V3) and F(V1) = F(V3). First M (V2) = M (V1)
holds since otherwise U (V3) 6� V1. Second U (V2) v
U (V1). U (V2) =2 F(V1), since otherwise U (V2) � V1 and
there would be V 2 [U (V2); V1] � [U (V2); V2] such that
M (U (V2)) 6= M (V) in contradiction to the choice of
U (V2). FromU (V2) =2 F(V3) and U (V2) v U (V3) follows
U (V2) = U (V3). Third from U (V1) = U (V2) = U (V3)
and V1 � V2 � V3 it follows that F(V1) � F(V2) �
F(V3) and from F(V1) = F(V3), equality follows. So
N (V2) = N (V1). In other words N never returns to an
old guess.

So N satis�es all requirments and the �rst step is com-
plete. For the second step let

Ws(e) =

8>><
>>:

We;t�1 for the �rst t > 0 such that
either (9U � We;t)[N (U)"]
or (9U � We;t)(9V 2 [U;We;t])

[N (U) = e ^N (V) 6= e];
We if there is no such t.

where We;t denotes the set of elements of We enumer-
ated during the �rst t steps of a canonical uniform enu-
meration of all r.e. sets We; w.l.o.g. We;0 = ;. Now
whenever N (U) 6= N (V) and U � V then V 6� WN(U),
thus the inference process is conservative. Let L 2 L.
Then there is some e with L = We and some �nite set
W � We with N (V) = e for all V 2 [W;We]. Assume by
the way of contradiction that We 6= Ws(e). Either there

is some �nite V � We with N (V) " . This contradicts
L 2 L. Or there are �nite sets U; V with N (U) = e,
N (V) 6= e and U � V � L. But N (V [W) = e
and W � L, thus N returns to an old value in con-
tradiction to the construction of N . So both cases fail
and Ws(e) = We. N

0 given by N 0(W) = s(N (W)) is a

CONV:id IIM for L.
4

Dana Angluin [1] and Gisela Sch�afer [19, Proposition
4.4.2A] give an example for a language which is LIM
learnable but cannot be learned either via a conservative
or via a set driven IIM. The next result shows that there
is also a language L which is conservative learnable but
not via a set driven IIM.

Theorem 4.2 There is a conservatively learnable fam-
ily L which is not learnable via a set driven IIM; in
particular L is not LIM:g learnable for any g.

Proof: Let be a partial recursive f0; 1g-valued
function which has no total recursive extension. Now
let U = fi� (i) : i 2 dom()g, U has a recursive enu-
meration fUsgs2!. A �nite set V is incompatible with
Us i� i�0; i�1 2 Us [V for some i. V is incompatible
with U i� V is incompatible with Us for some s.

Let L consist of U and all �nite sets V incompatible
with U . The following IIM M infers the family L con-
servatively:

WM(�) =

8><
>:

U if range(�) is
compatible with Uj�j;

range(�) if range(�) is
incompatible with Uj�j.

M is conservative, since the �rst mindchange from U to
range(�) occurs only if range(�) is incompatible to U
and thus range(�) 6� U . All further guesses are canon-
ical indices of �nite sets, so that the conservativeness is
not violated by any further mindchange. Also M infers
U and all �nite sets V incompatible to U .

Assume now that a set driven IIM N infers L. Then
there is a locking set W � U such that N (W 0) = N (W)
for all �nite sets W 0 with W � W 0 � U . Now de�ne a
recursive function f as follows:

f(i) =
n
0 if N (W [fi�0g) = N (W);
1 otherwise.

The function f is total and recursive since N is. If
 (i) #= 0 then i�0 2 U and thus N (W [fi�0g) =
N (W). If (i) #= 1 then V = W [fi�0g is a �nite
set which is incompatible to U . Thus WN(V) = V and

N (V) 6= N (W) since N is set driven; so f(i) = 1. The
total recursive function f extends in contradiction to
the choice of ; thus such an IIM N cannot exist.

Theorem 4.3 Let f � id be a monotonic increasing
function. Some family L is SMON:f learnable but not
LIM:g learnable for any g 6� f .

The set given after Theorem 6.1 is SMONd learnable
(and therefore also MON and MONd learnable) but not
learnable via a set driven IIM. So it remained the ques-
tion, whether every SMON learnable set is learnable via
a set driven IIM. Jain [8] refuted this conjecture and
found a counterexample:

Theorem 4.4 [8] Some SMON learnable class can not
be inferred via a set driven IIM.

5 Combining all Types of Restrictions

The next theorem shows that the hierarchy of the stron-
ger monotonicity requirements is not changed by adding
restrictions to the use of long term memory.

Theorem 5.1 Let A and B be two learning criteria.
Then every A:f learnable L is also B:f learnable i�
there is an arrow (or a transitive chain of arrows) from
A to B in the diagram below.

SMON SMONd

.&

MON MONd

& #
LIM

If A 6! B, i.e., if there is neither a direct arrow nor a
chain of arrows from A to B, then

� there is a class of sets which is Ak:c learnable but
not B learnable;

� there is a class of sets which is Ak:c and B:id learn-
able but not B:f learnable for any f � id� 2.

It is always possible to take k = 3 mindchanges and
c = 2 bits of long term memory.

The fact, that the classes witnessing the non-inclusions
in Theorem 7.1 are learnable with a constant number of
mindchanges, does not hold by a
uke. All classes learn-
able with constant long term memory are also learn-
able with constantly manymindchanges as the following
Theorem 7.2 shows.

Theorem 5.2 Let A be one of the inference criteria
CONV, SMON, SMONd, MON, MONd, LIM, WMON,
WMONd. If a class L is A learnable with constant long
term memory, then L is also A learnable with a constant
bound on both: memory and mindchanges. For any un-
bounded increasing function f there is a SMON:f learn-
able class which is not LIM learnable with a bounded
number of mindchanges.

Proof: Considering constant long term memory,in
this proof it is more convinient to look upon the IIM
as a �nite state machine with input-alphabet ��[f#g.
Since the alphabet is in�nite, the IIM has a partial-
recursive transition-function instead of a �nite table.
Let M (�) denote the guess of M after reading � and
let m(�) denote the state of M after reading �; m and
M are partial recursive and they are de�ned for all �
with range(�) � L for someL 2 L. This time, it is more
suitable to measure the size of the long term memory in
the number c of states of the �nite automaton. It will
turn out, that there is an IIM N inferring L with 2c�2
mind changes.

The new IIM N simulates M and makes only a subse-
quence of M 's guesses. If the given text for a language
L 2 L is T = w1w2w3w4 : : : then N does not simulate

5

the behaviour of M on T itself, but on a related text
T 0 = w1�1w2�2w3�3 : : : with range(�i) � fw1; : : : ; wig.
N does not calculate the �i explicitly, N only uses the
fact that such �i exist. The main idea is to ignore a new
guess of M , if it is possible to force M to return to the
last guess e of N via inserting such a �i. So N does not
take all guesses of M and achieves the bound 2c�2 on
the number of mind changes.

Now the formal construction of N : N has two variables
to store the current state and an older state of M ; fur-
ther for each state s of M , N has a counter bs which
takes the values 0; 1; 2 and stores whether N has made
0, 1 or 2 guesses on transitions into s. So N 's long term
memory needs only to store one out of c2 � 3c possible
values for the vector of these variables: constant long
term memory is su�cient for N . N is initialized by
N (�) = M (�), M (�) = ? since M makes only guesses
after reading a word of input. d0 = m(�) is initialized
to the initial state of M , bm(�);0 = 1 and bs;0 = 0 for
all other states s. De�ning N inductively, assume that
N (w1w2 : : :wn) is de�ned and input wn+1 is read. Fur-
ther, let e = N (w1w2 : : :wj) be the last guess of N and
dj be the state ofM after processing w1�1w2�2 : : :wj�j.

Let � = w1�1w2�2 : : :wn�n. The construction has the
invariant dn = m(�). Let q = m(�wn+1) denote the
state which M takes after reading wn+1 in state dn.

� If M (�wn+1) = ?, i.e., if there is no new guess.
Then N does also not make any new guess. So
N (w1w2 : : :wnwn+1) = ?, �n+1 = � and dn+1 =
q = m(�wn+1�). All values bs remain unchanged:
bs;n+1 = bs;n.

� If M (�wn+1) = e0 and bq;n < 2.
Then N makes the same guess, i.e., �n+1 = �
and N (w1w2 : : :wnwn+1) = e0. For bookkeeping,
bq;n+1 = bq;n + 1 while the other bs remain un-
changed (i.e., bs;n+1 = bs;n). Again dn+1 = q =
m(�wn+1�).

� If M (�wn+1) = e0 and bq;n = 2.
Then N makes no new guess, but N returns to the
state dj after the last guess: N (w1w2 : : :wnwn+1)
= ?, bs;n+1 = bs;n and dn+1 = dj. Note that there
is a string �n+1 such that e =M (�wn+1�n+1) and
dn+1 = dj = m(�wn+1�n+1).

It is easy to see that N needs only to know dj; dn, the
values bs;n and the behaviour of M with input wn+1 in
state dn.

It remains to show that �n+1 always exists in the third
case. Let i denote the �rst stage such that di = q.
If q = m(�), then i = 0 and bq;i = 1. If q 6= m(�),
then bs;i � 1 since bq;0 was initialized to 0 and is in-
creased only via M going into stage q. Since all bs are
unchanged from stage j on, bq;j = 2 and i < j. Now
let �n+1 = wi+1�i+1 : : :wj�j. So �n+1 is a path from
the state q = di to the state dj and M (�wn+1�n+1) =
M (w1�1w2�2 : : :wj�j) = e.

N makes at most 2c�1 guesses, since N increases at
each guess some bs, bm(�) is increased at most once and
each other bs is increase at most twice. Thus N makes
at most 2c�2 mind changes.

Let e be the last guess. M outputs e either in�nitely
often on T 0 or e is M 's last guess on T 0. Since T 0 is
also a text for L, M has also to converge on T 0 to an
index for L and thus, L = We. Since N makes a sub-
sequence of M 's guesses on the text T 0, N satis�es the
same monotonicity criteria as M .

The family L to witness the second part consists of all
�nite sets Lk = fw0; w1; : : : ; wkg where wn = 0g(0)1g(1)

: : :ng(n) for all n and g is some kind of inverse to f , i.e.,
g(n) = minfm : f(m) � ng.

The SMON IIM needs only to store the maximal n
such that a word wn has been presented on the input.
Whenever some wm occurs in the input, the IIM checks
whether m � n. If so, the IIM does nothing. If not,
the IIM guesses Lm = fw0; w1; : : : ; wmg where Lm can
easily be calculated from wm. n takes the new value m.

L is not learnable with a bounded number of mind
changes, since L0 � L1 � L2 � : : : and the data of
each Lk may be presented such that k mind changes
are necessary to learn Lk.

The IIM N from the �rst part of Theorem 5.2 uses more
memory than M , but the amount of memory still is
constant. The growth of the memory size from M to
N is exponential: If M needs a long term memory of c
states, then N needs 3c � c2 states. It might be, that the
theorem is not optimal with respect to the increase of
memory-usage.

But the result is optimal with respect to the number of
mind changes, since the class L = ff0; 1; : : : ; ag : a =
2; : : : ; 2cg is on one hand learnable via an IIM whose
long term memory consists of c states and on the other
hand not learnable with less than 2c�2 mind changes:

For each given IIM there is a text for f0; 1; : : :; 2cg such
that the IIM outputs each guess f0; 1; : : : ; ag for a =
2; 3; : : :; 2c. But L can be learned via an IIM using the
c states 1; 2; 3; : : : ; c. The state 1 is the initial state.
Assume now that the IIM is in state i reads a number
j. If j < 2i, the IIM makes no guess and stays in the
state i. If j � 2i, the IIM guesses f0; 1; 2; : : :; jg and

goes to stage d j
2
e.

A further question is, whether there is a reversal of The-
orem 5.2, i.e., whether bounded mind changes imply
constant memory. But this fails: The family L contain-
ing the sets

Ui = fi�0; i�1; i�2; : : :g where i =2 K;
Vi = fi�0; i�1; i�2; : : : ; i�'i(i)g where i 2 K:

is SMONd using only one mindchange. But L is neither
WMON nor CONV learnable. Besides witnessing the
non-inclusion SMONd ! WMON from Theorem 6.1,
L witnesses that there are sets learnable via one mind-

6

change which fail to be learnable under memory restric-
tions. Theorem 4.3 gives for every monotonic f � id an
example of a family which on one hand is learnable via
a SMON:f IIM making at most two mind changes and
on the other hand is not LIM:g learnable for any g 6� f .

So it is suitable to consider a more restrictive precon-
dition and a less restrictive hypothesis, namely classes
learnable with 0 mind changes versus set driven infer-
ence. Note that learning with 0 mind changes implies
that all monotonicity criteria hold.

Recall that an IIM which stores the last guess in its
long term memory, i.e., which satis�es S[�] = fM (�)g

and M (�w) = ~M (M (�); w), is called iterative. A mod-
i�cation of the proof of Theorem 5.2 shows that every
class learnable with an IIM using a long term memory
consisting of c states is also learnable via an IT IIM
making at most 2c�2 mind changes. The following the-
orem looks at the connections between learning with 0
mind changes, iterative learning and set driven learning.

Theorem 5.3 FIN denotes the criterion to learn with-
out any mind change.
(a) The class L = fW : jW j = 2g is FIN learnable but

not LIM:f learnable for any f 6� id.
(b) Every FIN learnable class is also IT learnable [20].
(c) Every IT learnable class H is learnable via a set dri-

ven IIM.

Proof: The proof of part (b) can be found in Sch�afer
[20, p. 35].

Proof of (a): The algorithm, which outputs an index
of range(�) i� 2 = jrange(�)j and makes no guess oth-
erwise, obviously infers L without any mind change.

On the other hand consider a LIM:f IIM with f(n) < n
for some n. Then there are cn+1�1 words of length up to
n but the long term memory of the IIM can take only cn

di�erent values after reading some word of length up to
n. Thus there are two di�erent words v and w such that
both produce the same long term memory after being
presented as �rst word of the input. It turns out, that
the IIM will either fail to recognize fu; vg or fu;wg for
some suitable u.

Proof of (c): Assume that the iterative IIM M learns
the class H. Since the content of the long term memory
is identical to the last guess, one can assume that M
never guesses ?. Furthermore note thatM (�w) =M (�)
implies that M (�wn) =M (�) for all n.

Let TW denote the ascending text with #'s of any given
language W , i.e., if W = fw1; w2; : : :g is in�nite then
TW = w1#w2# : : : and if W = fw1; w2; : : : ; wng is �-
nite then TW = �W#1 where �W = w1#w2# : : :#wn.
Now the new set driven IIM N works as follows:

N (W) =
n
M (�W) if M (�W) =M (�W#);
an index for W otherwise.

There are two cases:

Either L 2 H is �nite. Then it has to be shown that
N (L) must be an index of L: If M (�L) 6= M (�L#),

this is true by the de�nition of N . Otherwise M (�L) =
M (�L#

n) for all n and M converges on the text TL to
the the output M (�L) of N . Since M infers L, M (�L)
is an index for L and also N infers L.

Or L 2 H is in�nite. Then it has to be shown that
there is a �nite set F such that N (W) = e for all
W 2 [F;L] and some index e for L. M converges on
the text TL to some index e of L. Let F be the �rst
set such that M (�) = e for all � 2 [�F ; TL]. Then
~M(e; w) = e for all w 2 L � F and ~M (e;#) = e since
otherwise a further mind change would occur on the text
TL. If W = F [fwg then w 2 L � F . Now N (W) = e

since �W = �F#w, M (�W) = ~M(~M (M (�F);#); w) =
~M(~M (e;#); w) = ~M(e; w) = e and further M (�W#) =
~M(M (�W);#) = ~M (e;#) = e. By induction N (W) =
e follows for all W 2 [F;L] and N infers L.

6 Bounded Number of Mindchanges

This section deals with relations of the type \If L is
A learnable then L is B learnable" between the mono-
tonicity criteria in the general case without restrictions
of long term memory. Thus also the criteria CONV,
WMON and WMONd are considered. Jain and Shar-
ma [9] obtained these results for standard inference in
the limit, here we also consider bounds on the number
of mindchanges and give an overview by the following
theorem:

Theorem 6.1 Let A and B be two learning criteria.
Then every A learnable L is also B learnable i� there is
an arrow (or a transitive chain of arrows) from A to B
in the diagram below.

SMON SMONd

. # .& #

MON MONd

& & #

WMON ! WMONd

" # " #
CONV LIM

If in the diagram there is an arrow from A to B or a
transitive chain of arrows, then

� Any A learnable class of languages is B learnable;

� Any class of languages which is A learnable with
k mindchanges is also B learnable with k mind-
changes.

Otherwise (A 6! B)

� there is a A learnable class of languages which is
not B learnable;

� there is a class of languages which is A learnable
with 2 mindchanges but which is not B learnable;

� there is a class of languages which is A learnable
with 2 mindchanges and B learnable, but any B

7

learning algorithm makes an unbounded number of
mindchanges.

All inclusions except WMON ! CONV and LIM !
WMONd are obvious. While in many restricted con-
texts, MON learners are always also WMON learners
[10, 11, 13, 15, 16, 17, 21], this natural relation fails in
the general context.

7 Conclusion

First we considered learning r.e. languages from text
under limitations on long term memory. It turned out
that every superlinear bound can be tightened to a lin-
ear one without loosing inference power. Furthermore
these classes of languages are learnable via a set driven
inference machine. In the sublinear case there is a whole
hierarchy. Second we found out that every class of lan-
guages is learnable under long term memory restriction
is also conservatively learnable. So it was natrual to
combine memory restrictions also with the other mono-
tonicity requirements; the inclusions and non-inclusions
on the criteria SMON, SMONd, MON, MONd and LIM
are not changed by in addition requiring bounds on long
term memory. If some IIM M infers L with constant
amount of long term memory, thenM can be translated
into an IIM N which makes only a bounded number of
mindchanges. Furthermore, if M satis�es some mono-
tonicity requirement, so does N . On the other hand
there is no reversal on this fact, i.e., ifM makes at most
one mindchange, it can not be translated into an equiv-
alent N having a bound on long term memory. Third
we showed that inclusion structure of monotonicity cri-
teria does not change if in addition a bounded number
of mindchanges is required.

Acknowledgments

The authors are thankful to John Case, Susanne Kauf-
mann, Martin Kummer and Mandayam Suraj for proof-
reading and helpful discussions.

References

[1] Angluin, D. (1980), Inductive inference of formal lan-
guages from positive data, Information and Control 45,
pp. 117{135.

[2] Angluin, D., and Smith, C.H. (1983), Inductive in-
ference: theory and methods, Computing Surveys 15,
pp. 237{269.

[3] Angluin, D., and Smith, C.H. (1987), Formal in-
ductive inference, in \Encyclopedia of Arti�cial Intelli-
gence" (St.C. Shapiro, Ed.), Vol. 1, pp. 409{418, Wiley-
Interscience Publication, New York.

[4] Blum, M., and Blum, L. (1975), Towards a mathe-
matical theory of inductive inference, Information and

Control, 28, pp. 125{155.

[5] Wexler, K., and Culicover, P.W. (1980), For-
mal principles of language acquisition. The MIT-Press,
Cambridge Massachusets.

[6] Freivalds, R., Kinber, E., and Smith, C.H. (1993),
On the impact of forgetting on learning machines, in
\Proceedings of the 6th Annual ACM Conference on
Computational Learning Theory", Santa Cruz, July
1993, pp. 165{174.

[7] Gold, E.M. (1967), Language identi�cation in the
limit, Information and Control 10, pp. 447{474.

[8] Jain, S (1994) Private Communication.

[9] Jain, S., and Sharma, A. (1994), On monotonic
strategies for learning r.e. languages, in \Proceedings
of the 5th Workshop on Algorithmic Learning Theory",
October 1994, pp. 349{364.

[10] Jantke, K.P. (1991) Monotonic and non-monotonic
inductive inference, New Generation Computing 8, pp.
349{360.

[11] Kapur, S. (1992), Monotonic language learning, in

\Proceedings of the 3rd Workshop on Algorithmic
Learning Theory", October 1992, Tokyo, JSAI, pp.
147{158.

[12] Kinber, E. (1994), Monotonicity versus E�ciency for
Learning Languages from Texts, in \Proceedings of the
5th Workshop on Algorithmic Learning Theory", Octo-
ber 1994, pp. 395{406.

[13] Lange, S., and Zeugmann, T. (1992), Types of
monotonic language learning and their characterization,
in \Proceedings of the 5th Annual ACM Conference
on Computational Learning Theory", Pittsburgh, July
1992, pp. 377{390, ACM Press, New York.

[14] Lange, S., and Zeugmann, T. (1993), Language
Learning in Dependence on the Space of Hypotheses,
in \Proceedings of the 6th Annual ACM Conference
on Computational Learning Theory", Santa Cruz, July
1993, pp. 127{136, ACM Press, New York.

[15] Lange, S., and Zeugmann, T. (1993), Learning re-
cursive languages with bounded mindchanges, Interna-
tional Journal of Foundations of Computer Science 4,
N02, 1993, pp. 157{178.

[16] Lange, S., and Zeugmann, T. (1994), A guided tour
across the boundaries of learning recursive languages,
unpublished manuscript.

[17] Lange, S., Zeugmann, T., and Kapur, S. (1992),
Monotonic and dual monotonic language learning, to
appear in Theoretical Computer Science. A prelimary
version appeared as GOSLER-Report 14/94, TH Leip-
zig, FB Mathematik und Informatik, August 1992.

[18] Mukouchi, Y. (1992), Inductive inference with bound-
ed mindchanges, in \Proceedings of the 3rd Work-
shop on Algorithmic Learning Theory", Tokyo, October
1992, JSAI, pp. 125{134.

[19] Osherson, D., Stob, M., and Weinstein, S. (1986),
\Systems that Learn, An Introduction to Learning The-
ory for Cognitive and Computer Scientists", MIT-Press,
Cambridge, Massachusetts.

[20] Sch�afer, G. (1984), �Uber Eingabeabh�angigkeit und
Komplexit�at von Inferenzstrategien. Thesis, Rheinisch-
Westf�alische Technische Hochschule Aachen, Mathema-
tisch-Naturwissenschaftliche Fakult�at.

[21] Zeugmann, T. (1993), Algorithmisches Lernen von
Funktionen und Sprachen. Habitilationsschrift, Tech-
nische Hochschule Darmstadt, Fachbereich Informatik.

8

