
Learning via Queries and Oracles

Frank Stephan �

Universit�at Karlsruhe

Abstract

Inductive inference considers two types of que-
ries: Queries to a teacher about the function
to be learned and queries to a non-recursive
oracle. This paper combines these two types
| it considers three basic models of queries
to a teacher, namely QEX[Succ], QEX[<] and
QEX[+], together with membership queries to
some oracle.

The results for these three models of query-
inference are very similar: If an oracle is al-
ready omniscient for query-inference, then it
is already omniscient for EX. There is an ora-
cle of trivial EX-degree, which allows nontriv-
ial query-inference. Furthermore, queries to a
teacher can not overcome di�erences between
oracles and the query-inference degrees are a
proper re�nement of the EX-degrees.

1 Introduction

One famous example of learning via queries to a teacher
is the game Mastermind. The teacher �rst selects the
code { a quadruple of colours { that should be learned.
Then the learner tries to �gure out the code. In each
round, the learner makes one guess what the code might
be and the teacher answers, how many colours and po-
sitions of the guess are correct. The learner succeeds if
the correct code is found after a given number of rounds.
The learner may in addition consult an oracle, e.g., a

�Institut f�ur Logik, Komplexit�at und Deduktionssys-
teme, Universit�at Karlsruhe, 76128 Karlsruhe, Germany,
(Email: fstephan@ira.uka.de). Supported by the Deutsche
Forschungsgemeinschaft (DFG) grant Me 672/4-2. Per-
mission to make digital/hard copies of all or part of this
material without fee is granted provided that the coppies
are not made or distributed for pro�t or commercial advan-
tage, tha ACM copyright/server notice, the title of the pub-
lication and its date appear and a notice that copyright is
by permission of the Association for Computing Machinery
Inc. (ACM). COLT 1995 Santa Cruz, CA, USA, 1995 ACM.

book or a database. This book is of course ignorant
of the current code to be learned since it was pressed
before the teacher elected the code. But nevertheless
the book may be helpful if it contain an algorithm of
how to generate the queries. The power of this help
depends on the quality of the algorithm. In this paper
both phenomena, the teacher and the oracle, are com-
bined and the power of the oracles is measured w.r.t.
di�erent concepts of learning from a teacher.

Angluin [2] introduced learning via queries to a teacher,
who knows the function (or in her case: regular set) to
be learned. Gasarch and Smith [8] considered logical
queries about functions as (9x; y)[f(x) = 0 ^ f(y) = 1]
and (9x)(8y)[f(x) = f(y)) x = y]: In addition to
some logical standard symbols, the logical queries may
use extra symbols to denote arithmetic operations or
relations on the variables and numerical constants; the
power of the query language mainly depends on these
symbols. Gasarch and Smith [8] looked at the symbols
Succ, < and +; they found out that these facilities in-
crease the learning power. But it is impossible to infer
the set REC of all recursive functions, so the learning
power can still be increased by additional concepts.

Gasarch and Pleszkoch [6] brought the notion of queries
to an oracle into the �eld of learning theory. The ma-
chine may only make membership queries to the oracle,
i.e., it may ask whether a given number x is in A or
not in A. Membership queries are more restricted than
logical queries, but in the case of oracles they are more
suitable since they enforce that the learning power of
the various oracles inside a Turing degree is the same.
Furthermore, almost everywhere in the literature, ora-
cles are accessed via membership queries.

Fortnow et al. [5, Section 7] �rst mentioned the com-
bined concept with queries to a teacher and to an ora-
cle, i.e., the IIM M may ask either the teacher a query
about f or make a membership query to an oracle A.
QEX[Succ;A], QEX[<;A] and QEX[+;A] denote these
combined classes of inference; they satisfy the inclusions
EX[A] � QEX[Succ;A] � QEX[<;A] � QEX[+;A].

The topic of this paper is, how much the oracle helps
at a given query language. Gasarch was particularly

1

interested when an oracle is omniscient, i.e., allows to
infer all recursive functions, and when it is trivial, i.e.,
the learner can learn without the oracle the same and
the oracle therefore provides no help for the learner.
Fortnow et al. [5] treat this question for many models
of learning but left it open for models where queries of
both types were allowed. The results depend of course
on the query languages, e.g., the query-language L[+;�]
already codes a K-oracle and therefore QEX[+;�;A] is
omniscient for every oracle A. In this paper, the omni-
scient degree of the three query-languages L[Succ], L[<]
and L[+] is characterized and partial results on inclu-
sion structure and the trivial degree are obtained.

2 Preliminaries

The set of all natural numbers is denoted by !. The
set of all �nite sequences of natural numbers is !�. The
Greek letters � and � denote elements of !�, the Latin
letters f , g and h denote functions. Some functions
can be identi�ed with in�nite strings, e.g., �01 is the
function which takes the value �(x) for x < j�j and 0
otherwise.

REC is the set of all total and recursive functions and
REC0;1 = ff 2 REC : (8x) [f(x) � 1]g. A set A is
Turing reducible to B (A �T B) if A can be computed
via a machine which knows B, i.e., which has an in�-
nite database which supplies for each x the information
whether x belongs to B or not. Such a database is called
an oracle and the query whether x 2 B a membership
query to B. The class fA : A �T Bg is called the Turing
degree of B where A �T B means that both, A �T B
and B �T A hold. Given two sets A and B, the Turing
degree of the join A � B = f2x : x 2 Ag [f2x + 1 :
x 2 Bg is the least upper bound of the Turing degrees
of A and B. K denotes the halting problem, i.e., the
set fx : 'x(x) #g. This notion can be relativized to
A0 = fx : 'Ax (x) #g is the halting problem relative to A
where 'Ax is the x-th recursive function equiped with an
oracle A. A set A is called high if K0 �T A

0, i.e., if the
halting problem relative to K can be solved using the
halting problem relative to A. Further explanations on
recursion theoretic and its notation can be found in the
books of Odifreddi [13] and Soare [16].

A further recursion theoretic notion, which is important
in the context of this paper, is that of the 1-generic sets
which are those that either meet or strongly avoid each
recursive set of strings: If A is 1-generic and W is a
recursive set of strings, then there is either some � 2 W
with � � A (\A meets W") or there is some � =2 W
with � � A and � =2W for all � � � (\A strongly avoids
W"). In this de�nition, \recursive" may be replaced by
\r.e." without changing the concept. The interested
reader may �nd more information on 1-generic sets in
Jockusch's paper [10] or Soare's book [16, A.VI.3.6-9].

Gold [9] introduced the �rst inference criterion EX: He

called a total recursive function M : !� ! ! an induc-
tive inference machine (IIM) for a set S � REC, if M
EX-infers each f 2 S, i.e., ifM converges on each f 2 S
to an index e for f : 'e = f and M (�) = e for almost
all � � f . Osherson, Stob and Weinstein [14] give an
overview on this and many other inference criteria.

M EX[A]-infers a function f , ifM during the inference
process may make membership queries to A. EX[A] de-
notes the class of all sets of recursive functions which
are EX[A]-learnable via some IIM. The oracles are or-
dered by the ability to infer classes of functions, so if
EX[A] � EX[B] then the oracle A supports more pow-
erful inference processes as B. This relation induces an
ordering on the oracles and fB : EX[B] = EX[A]g is
called the inference degree of an oracle A.

While Turing degrees are a measure for the power of
oracles relative to computation, inference degrees are
a measure for the power of oracles relative to learning
classes of recursive functions. It is easy to see that if
A �T B then EX[A] � EX[B]: A can be computed
relative to B and an IIM having B-oracle can simulate
these computations during the inference process. There-
fore if A is recursive then EX[A] � EX[B] for all oracles
B and there is a least inference degree, called the trivial
inference degree, which contains all recursive sets; in-
deed EX[A] = EX for all oracles in this trivial degree.
Slaman and Solovay [15] gave the following characteri-
zation of the trivial degree:

Fact 2.1 [15] A has trivial EX-degree i� either A is

recursive or A has the Turing degree of a 1-generic set

B �T K.

Obviously if an IIM EX[A]-infers the whole class REC
then A belongs to the greatest inference degree. This
degree is called the omniscient inference degree. Adle-
man and Blum [1] showed that for the criterion EX there
exists an omniscient inference degree and that it has the
following easy characterization:

Fact 2.2 [1] A has omniscient EX-degree i� A is high.

A query language is a language that has the usual logical
symbols (equality, constants, variables, quanti�ers and
logical operations to link the atom) and a special symbol
f . Query languages may contain further symbols, in
particular Succ, < and + which denote the successor-
function Succ(x) = x+1 on !, the less-than relation <
on ! and the addition + on !. These three languages
{ with one of the additional symbols { are denoted by
L[Succ], L[<] and L[+]. A query in the language is a
formula without free variables; such formulas without
free variables are called sentences. The intention is that
a query �(f) is asking about f . For example in the
language L[<] the query

(9x)(8y) [y < x_ f(y) = 0]

is asking whether at some point the function becomes
the constant 0. S 2 QEX[?] means, that some machine

2

infers S using the query-language L[?] where ? denotes
in this paper | in contrast to other papers on this �eld
| one of the symbols Succ, <, +. Note that by intro-
ducing a new variable and one quanti�er, Succ and <
can be expressed by < and +, respectively:

x = Succ(y) , y < x ^ (8z) [z < y _

z = y _ z = x _ z > x];

x < y , (9z) [y = x+ z + 1]:

Indeed EX � QEX[Succ] � QEX[<; Succ] = QEX[<] �
QEX[+; <] = QEX[+] holds.

This paper deals with combinations of both concepts.
So a QEX[?;A] IIM queries either the teacher in the
language L[?] about f or makes a membership query
to the oracle A. But the IIM can not make combined
queries, e.g., (9x) [f(x) = 0^x 2 A] is not permitted. So
it is possible to de�ne inference degrees for the criteria
QEX[?] = QEX[Succ], QEX[<], QEX[+]. The inference
degree of A under the criterion QEX[?] is

fB : QEX[?;B] = QEX[?;A]g:

There exists a trivial QEX[?] and an omniscient QEX[?]
degree. So it is the main topic of this paper, to look at
the inclusion structure of the QEX[?]-degrees:

omniscient degree: The omniscient QEX[?]-degree

fA : REC 2 QEX[?;A]g

consists of all high oracles, i.e., REC 2 QEX[?;A]
i� A0 �T K

0.

trivial degree: The trivial QEX[?]-degree

fA : QEX[?;A] = QEX[?]g

contains all recursive sets, but is a proper subset of
the trivial EX-degree fA : EX[A] = EXg.

inclusion structure: The QEX[?]-degrees are a re�ne-
ment of the EX-degrees: if EX[A] 6� EX[B] then
also QEX[?;A] 6� QEX[?;B] but not the other way
round. There are fewer QEX[?] inclusions than EX
inclusions.

complete families: There are complete families S and
S0 which witness the following two non-inclusions
for every non-high oracle A:

S 2 QEX[+]� QEX[<;A]

and

S0 2 QEX[<]�QEX[Succ;A]:

These results require the following two important facts
{ the �rst one of them due to Gasarch, Pleszkoch and
Solovay [7, Theorem 11]; the second one can be obtained
via a modi�cation of their proof.

Fact 2.3 [7, Theorem 11] There are recursive func-

tions k+ and truth+ such that for every sentence � 2

L[+] and every f0; 1g-valued function f : If f is k+(n)-
good and n � j�j then

�(f) , truth+(n; �; f(0); f(1); : : : ; f(n))

where f is k+(n)-good i�

(i) (91x) [f(x) = 1];

(ii) (8x > n) [f(x) = 1
) (k+(n))! divides x];

(iii) (8x > n)(8y > x) [f(x) = f(y) = 1
) x � k+(n) � y]:

The formula y! denotes the product 1 � 2 � : : : � y.

Gasarch, Pleszkoch and Solovay stated Fact 2.3 a lit-
tle bit di�erently; they computed for each � = f(0)
f(1) : : : f(n) and for each sentence � a value k(�; �) de-
pending on � and � instead of n. So the function k+
used here is derived from their function k by the formula
k+(n) = maxfk(�; �) : j�j � n ^ j�j � n+1g where �
ranges over all sentences in L[+] and � over all strings in
f0; 1g�. It is easy to see that every k+(n)-good function
f is also k(�; �)-good for all sentences � and strings �
with j�j � n and j�j � n+1; the formulation of Fact 2.3
given above is more suitable for this paper.

Fact 2.4 There are recursive functions k< and truth<
such that for any sentence � 2 L[<] and any f0; 1g-
valued function f : If f is k<(n)-good and n � j�j then

�(f) , truth<(n; �; f(0); f(1); : : : ; f(n))

where f is k<(n)-good i�

(iv) (91x) [f(x) = 1];

(v) (8x > n) [f(x) = 1) k<(n) � x];

(vi) (8x > n)(8y > x) [f(x) = f(y) = 1
) x+ k<(n) � y]:

For ease of argumentation, the functions k+ and k< sat-
isfy w.l.o.g. the following: k+ and k< are increasing
functions, i.e., k+(n) < k+(n+1) for all n. Further-
more, n < k<(n) � k+(n) for all n, i.e., k+ majorizes
k<.

3 The Omniscient Degree

Fortnow et al. [5] left open the problem to determine the
omniscient inference degree of the criteria QEX[Succ],
QEX[<] and QEX[+]. Since all EX-omniscient oracles
are QEX[?]-omniscient, only the other direction is inter-
esting: whether there are QEX[?]-omniscient oracles,
which are not EX-omniscient. The following theorem
gives a negative answer: if EX[A] 6� EX[B] then also
QEX[?;A] 6� QEX[?;B]. Thus the QEX[?]-degrees are
a re�nement of the EX-degrees and their omniscient de-
gree is a subset of the omniscient EX-degree; indeed
these omniscient degrees are equal.

Theorem 3.1 EX[A] 6�EX[B]) EX[A] 6�QEX[+;B].
3

Proof: The basic idea of this proof is to de�ne a re-
cursive transformation � such that for every S�REC0;1

the transformed set ~S = f�(g) : g 2 Sg has the follow-
ing properties:

(1) ~S � REC0;1:

(2) S 2 EX[A]) ~S 2 EX[A]:

(3) S =2 EX[B]) ~S =2 EX[B]:

(4) ~S =2 EX[B]) ~S =2 QEX[+;B]:

Choosing S 2 EX[A] � EX[B] gives directly a witness
~S 2 EX[A]� QEX[+;B].

The transformation makes use of Fact 2.3 in the way
that on one hand there is an increasing recursive se-
quence a0; a1; : : : such that the transformed function
�(g) is k+(an)-good for all n and on the other hand
�(g) codes g in a very easy way so that (2) and (3) can
be guaranteed. The sequence a0; a1; : : : and the trans-
formation � are de�ned as follows:

a0 = 0;

an+1 = (k+(an))!;

f(x) = �(g)(x)

=

(
g(m) if (9m) [x = a2m];
1 if (9m) [x = a2m+1];
0 otherwise.

Let S � REC0;1. Obviously ~S � REC0;1 and (1) holds.
(2) follows since g can be recovered from f = �(g)
by g(m) = f(a2m): Let M witness S 2 EX[A]. The

new IIM N to witness ~S 2 EX[A] computes on input
f(0); f(1); :::; f(a2m) the values g(0); g(1); :::; g(m), then
N simulatesM to compute e =M (g(0); g(1); : : : ; g(m))
and �nally N outputs an index h(e) for �('e); such a
recursive function h exists since the sequence a0; a1; : : :
is recursive. It is easy to see that N converges on �(g)
to h(e) i� M converges on g to e; thus if M infers S

then N infers ~S. So (2) holds. Similarly one can show
that there is also an inverse translation of the inductive
inference machines and (3) follows by contraposition. It
remains to show (4):

First it is shown that every f = �(g) is k+(an)-good
for all n: Since f(a2m+1) = 1 for all m, (i) holds. Fur-
thermore, if x > an and f(x) = 1, then x = (k+(am))!
for some m � n and (k+(an))! divides x since am � an
and k+(am) � k+(an). Thus (ii) holds. For m � n,
am+1 = (k+(am))! � k+(am) � (k+(am) � 1) � k+(am) �
am � k+(an) � am, thus also (iii) is satis�ed. So f is
k+(an)-good for all n and since aj�j � j�j, the relation

�(f), truth+(aj�j; �; f(0); f(1); : : : ; f(aj�j))

enables to answer any query � to f by analizing the
pre�x f(0)f(1) : : : f(aj�j) of f . So the QEX[+;B] in-
ference algorithm can be translated into an EX[B] al-

gorithm, that is, ~S 2 QEX[+;B]) ~S 2 EX[B] and
~S =2 EX[B]) ~S =2 QEX[+;B]. This �nishes the proof
of (4).

If EX[A] 6� EX[B], then this is witnessed by some S �

REC0;1. By (2) and (3), also ~S 2 EX[A]�EX[B]. From

(4) it follows that ~S =2 QEX[+;B]. Therefore the non-
inclusion EX[A] 6� QEX[+;B] holds.

The inclusions EX[C] � QEX[Succ;C] � QEX[<;C] �
QEX[+;C] hold for all oracles C. Therefore every non-
inclusion in the EX-degrees induces a non-inclusion in
the QEX[?]-degrees. Furthermore the omniscient degree
of the criteria EX, QEX[Succ], QEX[<] and QEX[+]
coincides:

Theorem 3.2 If EX[A] 6� EX[B] then
� QEX[+;A] 6� QEX[+;B];
� QEX[<;A] 6� QEX[<;B];
� QEX[Succ;A] 6� QEX[Succ;B].
Furthermore QEX[+;A], QEX[<;A] and QEX[Succ;A]
are omniscient i� A is high.

4 The Trivial Degree

To characterize the trivial QEX[?]-degrees still is an
open problem, but a new partial result is obtained by
showing that the trivial degrees of QEX[?] and EX are
di�erent. The result is based on the idea of coding some
nonrecursive r.e. set B uniformly into the graph of each
f 2 S for some S =2 QEX[?;B]. Since the IIM can
recover B with queries about f , it can also QEX[?;A]
infer S whenever A � B �T K. There is even an 1-
generic set A �T K such that A � B �T K. This A
has nontrivial QEX[?]-degree but trivial EX-degree. On
the other hand Theorem 3.2 implies that if A has trivial
QEX[?]-degree then A has also trivial EX-degree.

Again the basic idea of the construction is de�ning a
transformation �B depending on an r.e. non-high and
non-recursive oracle B. Starting with the set REC0;1

of all recursive f0; 1g-valued functions, the transformed
set S de�ned as f�B(g) : g 2 REC0;1g has the following
properties:

(1) S � REC0;1:

(2) A� B �T K) S 2 QEX[?;A]:

(3) S =2 EX[B]:

(4) S =2 QEX[?;B] and S =2 QEX[?]:

Posner and Robinson [12] showed

Fact 4.1 Given any nonrecursive set B �T K there is

an 1-generic set A �T K such that A �B �T K.

Using this 1-generic set A, it will come out that A �

B �T K and therefore S 2 QEX[?;A] but on the other
hand S =2 QEX[?], so A does not have trivial QEX[?]-
degree, but A has trivial EX-degree.

Now the proof in detail. Lemma 4.2 is the �rst step in
obtaining such a set B and transformation �B . B is

4

chosen as some kind of de�ciency set of non-high non-
recursive degree; h is an auxiliary function used below.
This special form of B makes it easier to de�ne �B in
the proofs of Theorems 4.3 and 4.4.

Lemma 4.2 In every r.e. Turing degree there is an r.e.

set B and a recursive function h such that

� B = fn : (9m > n) [h(m) � n]g and

� (8n) [h(n) � n].

Proof: Let f be a recursive 1-1 enumeration of some
given r.e. set C. For each s de�ne

g(s) = the f(s)-th element of Bs;

h(s) = minfg(s); sg;

Bs = fn � s : (9m > n)

[m � s ^ h(m) � n]g:

B =
S
sBs satis�es the �rst condition, the second fol-

lows from the de�nition of h. The third follows from
the choice of C and the fact, that B �T C:

B �T C since B is permitted by C. Any new element n
enters B at stage s only if h(s) � n < s and h(s) is the
f(s)-th element of Bs, i.e., n is permitted by the new
element f(s) of C with f(s) � h(s) � n.

B is in�nite, since for any c there is some s with f(n) � c
for all n � s. Since Bs is �nite, Bs is in�nite and its
least c elements do never enter B.

C �T B since c 2 C , c 2 ff(0); f(1); : : : ; f(s+c+1)g
where s is the �rst stage such that the c+1 least elements
of B and Bs are identical. If c =2 C then also c =2
ff(0); f(1); : : : ; f(s+c+1)g since f is an enumeration
of C. Otherwise c 2 C and there is some t with c =
f(t). Let d be the c+1-st element of B and Bs. Since
Bs contains only elements below s, d � s + c + 1. If
t > s + c + 1 then h(t) = g(t) < d < t and d would
be enumerated to B in contradiction to the choice of d.
Thus t � s + c+ 1.

Using Lemma 4.2 and Theorems 4.3 and 4.4, it is pos-
sible to show that there is a set A of nontrivial query
inference degree but of trivial EX-degree. Theorem 4.3
has a full proof for the case of L[+] while Theorem 4.4
deals with the remaining cases L[Succ] and L[<] and its
proof shows only the di�erences to the proof of Theo-
rem 4.3.

Theorem 4.3 There is an 1-generic set A �T K such

that QEX[+;A] 6� QEX[+].

Proof: Let B and h be as in Lemma 4.2 and let B
have non-high and nonrecursive Turing degree. Further
let k be as in Theorem 3.1 and let A be as in Fact 4.1.
The modi�cation from� to �B is more implicit by modi-
fying the sequence a0; a1; : : : from Theorem 3.1 while �B

is analog to �:

a0 = 0;

an+1 =

8><
>:
(k+(an))! + a2h(m)

if n = 2m ^ h(m) < m;
(k+(an))!

otherwise.

f(x) = �B(g)(x)

=

(
g(m) if (9m) [x = a2m];
1 if (9m) [x = a2m+1];
0 otherwise.

The basic idea of the construction is that the queries in
L[+] to f { independent of g { have the same Turing-
degree as B. For each sentence � there is some m >
j�j such that m =2 B. For these m =2 B (but not
for all m), f is k+(a2m)-good and �(f) is equivalent
to truth+(a2m; �; f(0); f(1); f(2); : : : ; f(a2m)). On the
other hand every membership query to B can be an-
swered via logical queries about any f = �B(g).

The item (1) of the four items mentioned before Fact 4.1
follows directly from the construction, so it remains to
show the other three items for proving the theorem:

(2): Let A�B �T K. Then S 2 EX[A�B] sinceK is an
omniscient oracle. Any membership query to B can be
calculated via logical queries about f 2 S; these queries
use only the fact that f 2 S but not which particular
function f is:

m 2 B

, (9n > m) [h(n) � m]

, (9n > m) [a2n+1 6� 0 modulo a2m+1]

, (9x > a2m+1) [f(x) = 1 and
x 6� 0 modulo a2m+1]

, (9x; y; z) [f(x+a2m+1+1) = 1 ^
0 < y < a2m+1 ^

x+ a2m+1 + 1 = z � a2m+1 + y]:

Multiplications with constants can be expressed in the
language L[+], e.g., 5 �x as x+x+ x+ x+ x. The con-
stant a2m+1 can be computed from m. Since a2m+1 is
a constant, the relation 0 < y < a2m+1 can be replaced
by a disjunction over equalites, i.e. y = 1_y = 2_ : : :_
y = (a2m+1 � 1). Thus the whole query is e�ectively
equivalent to a sentence in L[+] and the EX[A � B]
inference process can be simulated by a QEX[+;A] in-
ference machine. Therefore S 2 QEX[+;A].

(3): Assume that S 2 EX[B] viaM . Then a new EX[B]-
IIM N translates the input function g to f = �B(g),
computes e = M (f(0); f(1); : : : ; f(a2m)) and outputs
an index u(e) for 'u(e)(x) = 'e(a2x). It is easy to see

that N witnesses REC0;1 2 EX[B] since �B(g) 2 S for
every g 2 REC0;1. Then B has to be high in contradic-
tion to the choice of B, thus S =2 EX[B].

(4): This part is based on the following observation: If
m =2 B then �(g) is k+(a2m+1)-good. Since f(an) = 1
for all odd n, f takes in�nitely often the value 1 and
satis�es (i). Since h(n) > m for all n > m, all n � 2m+
1 either satisfy an+1 = (k+(an))! or an+1 = (k+(an))!+
a2l! for some l > m; note that a2l = (k+(a2l�1))!. In

5

both cases (k+(a2m+1))! divides an+1 and (ii) holds.
Furthermore, an+1 � k+(an))! � (k+(a2m+1) � an for all
n � 2m + 1, thus also (iii) holds.

Therefore for any sentence � 2 L[+] there ism =2 B such
that j�j � a2m+1. Since f = �B(g) is k+(a2m+1)-good,

�(f), truth+(a2m+1; �; f(0); : : : ; f(a2m+1))

and the query can be answered from f(0); : : : ; f(a2m+1).
Thus S 2 QEX[+]) S 2 EX[B]. Note that the oracle
B can not be removed since it provides the information
to �nd an index 2m+1 such that f is k+(a2m+1)-good.

So all 4 items hold. By Fact 4.1 it is possible to select
a 1-generic set A �T K such that A � B �T K. Then
S 2 QEX[+;A]� QEX[+] and A does not have trivial
QEX[+]-degree.

Theorem 4.4 There is an 1-generic set A �T K such

that QEX[Succ;A] 6� QEX[<].

Proof: This proof is similar to that of Theorem 4.3.
The sets A and B as well as the function h are the same,
but it is necessary to use Fact 2.4 instead of Fact 2.3 and
to adapt �B .

a0 = 0;

an+1 =

8><
>:
an + k<(a3h(m)+1)

if (9m)[n = 3m+ 1];
an + k<(an)

otherwise.

f(x) = �B(g)(x)

=

8><
>:
g(m) if (9m) [x = a3m];
1 if (9m) [x = a3m+1];
1 if (9m) [x = a3m+2];
0 otherwise.

Again f is k<(a3m)-good whenever m =2 B. So any
L[<]-query to f can be answered using B-oracle and a
su�ciently long pre�x of f . On the other hand

m 2 B , (9x > a3m+1) [f(x) = 1 ^
(f(x+k<(a0)) = 1 _ f(x+k<(a1)) = 1 _
f(x+k<(a2)) = 1 _ : : :_ f(x+k<(a3m+2)) = 1)]:

The values k<(ai) are constants, thus each term x +
k<(ai) can be expressed by using su�ciently often the
term Succ, e.g., x+3 equals Succ(Succ(Succ(x))). So B
can be recovered via queries in L[Succ] to f . The rest
of the proof follows the lines of Theorem 4.3.

The following Theorem summarizes the results of this
section:

Theorem 4.5 There is a set A such that

� EX[A] = EX;
� QEX[+;A] 6� QEX[+];
� QEX[<;A] 6� QEX[<];
� QEX[Succ;A] 6� QEX[Succ].

5 Complete Families

The notion of a complete familyS is normally used with
respect to some notion of reduction such that all fami-
lies inferable under a given criterion are reducible to S.
The complete families considered here are not complete
w.r.t. an inference criterion but w.r.t. a non-inclusion,
i.e., a familyS is called complete w.r.t. the non-inclusion
QEX[+] 6� QEX[<] i� S 2 QEX[+] and S =2 QEX[<;A]
for every oracle A of non-omniscient QEX[<]-degree.
In this section it is shown that there are complete fam-
ilies w.r.t. to the non-inclusions QEX[+] 6� QEX[<],
QEX[<] 6� QEX[Succ] and QEX[Succ] 6� EX. As a
corollary one obtains that EX[A] � QEX[Succ;A] �
QEX[<;A] � QEX[+;A] for all non-high oracles A.

Theorem 5.1 There is a family S 2 QEX[+] which is

not QEX[<;A]-learnable for any non-omniscient A.

Proof: This family S is the same as in Theorem 4.3
with the only di�erence that B is chosen to have the
same degree as K. The proof of (2) does not require
that B is non-high and therefore can be adapted to show
S 2 QEX[+]. The oracle B can be recovered by the
same existential queries about f as in Theorem 4.3:

m 2 B ,

(9x; y; z) [(f(x+a2m+1+1) = 1) ^

(y = 0 _ y = 1 _ : : :_ y = a2m+1�2) ^

(x+ a2m+1 = z � a2m+1 + y)]

Note that a2m+1 in this sentence is a constant. So in-
ferring any f 2 S, the IIM has access to B via the
above coded membership queries and since B belongs
to the omniscient EX-degree, the IIM identi�es f . Thus
S 2 QEX[+].

Now it is shown that every f 2 S is k<(an)-good for all
n: The functions f 2 S take the value 1 exactly on some
in�nite subset of fa0; a1; : : :g. So (iv) holds, for (v) and
(vi) it is necessary to look at the sequence a0; a1; : : :;
by construction all m � n satisfy: am+1 � (k+(am))! �
(k+(am)� 1) � k+(am) � am � k+(am) � am + k+(am) �
am + k<(am) � am + k<(an). This implies (iv) since
am � an+1 � an + k<(an) and (v) since for all x > an
and y > x with f(x) = 1 ^ f(y) = 1 there is an m with
x = am and y � am+1 � x+ k<(x).

So each f 2 S is k<(an)-good for all n and therefore
each L[<]-query � to f can be decided after reading
f(0); : : : ; f(aj�j). Thus S 2 QEX[<;A]) S 2 EX[A].
Furthermore, S 2 EX[A]) REC0;1 2 EX[A]. There-
fore if S 2 QEX[<;A] then A is high, i.e., A has omni-
scient QEX[<]-degree.

The next theorem separates the class QEX[<] from the
class QEX[Succ;A]. It has a more complicated proof.
In Theorem 5.1 only existential queries are necessary to
recover B from f . But every existential query in L[<]

6

to a f0; 1g-valued function f can be replaced by a se-
quence of existential queries in L[Succ] to f , or in other
words, if S 2 REC0;1 \ Q1EX[<] then S 2 Q1EX[Succ]
where Q1EX[?] means that queries of the inference pro-
cess may only contain existential quanti�ers but not
universal quanti�ers. There are two ways to overcome
this di�culty: either by dropping the requirement that
S � REC0;1 and considering a class like

ff : f = 'f(0)g [
ff : f = 'x where x = maxfy : f(y) > yg g

or by coding the oracle K in f such that it can not be
recovered via existential queries in L[<]. The proof of
Theorem 5.2 goes the second way.

Theorem 5.2 There is a set S 2 QEX[<] with S =2
QEX[Succ;A] for all non-high oracles A.

Proof: Again let Ks be an enumeration of K; Ks

de�nes the following function h approximating K: Let
h(x; s) = 0 if x 2 Ks and h(x; s) = 1 otherwise, i.e., if
x =2 Ks. Given any function g 2 REC0;1 the function
f = �(g) is de�ned as �0�1�2 : : : with

�s = 0s 1 0s g(s) 0s 100h(0; s) 0s 101h(1; s) 0s

102h(2; s) 0s ::: 10sh(s; s) 0s.

This construction is used to code g andK into f = �(g).
Since the length of the �s does not depend on g but only
on s and since g(s) = �s(2s+1), the �s { and therefore
also g { can be recovered from f . Furthermore, each �s
contains for all x � s the substring 10xh(x; s): Thus if
all h(x; s) = 1, i.e., if x =2 K, then 10s1 occurs in all
strings �s with s � x. Otherwise h(x; s) = 0 for almost
all s and 10x1 is not a substring of �s for almost all s.
So x 2 K i� 10x1 is only �nitely often a substring of f
i� either f(y) = 0 or f(y + x+ 1) = 0 for almost all y.
In short

x 2 K ,

(9z)(8y > z)[f(y) = 0 _ f(y + x+ 1) = 0]:

This query is in L[Succ;<] since x is a constant, e.g., if
x = 3 then y +x+ 1 means Succ(Succ(Succ(Succ(y)))).
Now let

S = f�(g) : g 2 REC0;1g:

S 2 QEX[Succ;<] = QEX[<] since queries to K can be
coded as queries in L[Succ;<] about f . So it remains to
show that S =2 QEX[Succ;A] for every non-high oracle
A. This is done by showing that if S 2 QEX[Succ;A]
then S 2 EX[A]. In particular it is su�cient to show
that every L[Succ]-query � to any f 2 S can be decided
e�ectively by analizing a su�ciently long pre�x of f .

For ease of notation, the additional expressions x =
y+ c, x 6= y+ c and f(x+ c) = d for integer constants c
and d 2 f0; 1g are allowed using the convention f(z) = 0
for z < 0. But the variables still range only over !. The
given formula � w.l.o.g. does not contain complicated
atoms as e.g. f(f(x) + 2) = 1 or f(x) 6= y since these

can be replaced by (f(x) = 0 ^ f(2) = 1) _ (f(x) = 1
^ f(3) = 1) and (f(x) = 0^y 6= 0) _ (f(x) = 1^y 6= 1),
respectively. So if f occurs in the formula, then always
in atoms of the form f(x + c) = d for a variable x, an
integer constant c and a Boolean constant d 2 f0; 1g.

The algorithm step-wise eliminates all quanti�ers from
the formula. It proceeds as follows, where ; 1 and 2
always denote quanti�er-free subformulas of �.

(a) (8u) [(u; x1; : : : ; xn)] occurs in �:
Then the formula (8u) [�(u; x1; : : : ; xn)] is replaced
by :((9u) [:�(u; x1; : : : ; xn)]).

(b) (9u) [(u; x1; : : : ; xn)] occurs in � and is not in
disjunctive normal form:
 is transformed into disjunctive normal form.

(c) (9u) [1(u; x1; : : : ; xn) _ 2(u; x1; : : : ; xn)] occurs
in �.
Then the subformula is replaced by the formula
(9u)[1(u; x1; : : : ; xn)] _ (9u)[2(u; x1; : : : ; xn)].

(d) (9u) [u = x1 + c ^ (u; x1; : : : ; xn)] occurs in �.
If c � 0 then only u is replaced by x1 + c and the
subformula becomes (x1+c; x1; : : : ; xn)). Other-
wise c < 0 and the subformula contains the ad-
ditional information x1 � �c. Thus the subfor-
mula becomes (x1 6= 0 ^ x1 6= 1 ^ : : :^ x1 6= �c�1
^ (x1+c; x1; : : : ; xn)).

(e) (9u)[(u; x1; : : : ; xn)] occurs in �, but none of the
above cases holds.
W.l.o.g. (u; x1; : : : ; xn) = (f(u+ c0) = d0) ^ : : :^
(f(u+ ci) = di)^ (u 6= ci+1)^ : : :^ (u 6= cj)^ (u 6=
xlj+1 + cj+1) ^ : : :^ (u 6= xlk + ck) ^ �(x1; : : : ; xn).
Let c = 2+k+ jc0j+ : : :+ jcij and d = j�0j+ j�1j+
: : :+ j�cj. The formula (9u) [(u; x1; : : : ; xn)] is re-
placed by (0; x1; : : : ; xn)_ (1; x1; : : : ; xn) _ : : : _
 (d; x1; : : : ; xn).

If several of the above rules are applicable, then the �rst
one is executed. Thus is always in disjunctive normal
form, if rule (c), (d) or (e) is applied. Furthermore,
does not contain _'s if rule (d) or (e) is applied. So it
remains to show that (e) works, i.e., that the truth-value
of its formula does not change by this operation.

For ease of argumentation assume that c0 = 0; c1 = 1,
: : : ; ci = i. Let � denote d0d1 : : :di. If � contains more
than two 1's, then � is a substring of �0�1 : : : �i. So
the formula is correct in this case. If � contains 0 or
1 1's, i.e., if � = 0i or � is of the form 0�10�, then
� occurs in �i, in �i+1, : : : , and in �c. So there are
more than k occurrences of � in f before d and since
there are only k � i inequalities in , the subformula
(f(u)f(u+1) : : : f � u+i�1) = �) ^ (u 6= ci+1) ^ : : :^
(u 6= cj) ^ (u 6= xlj+1 + cj+1) ^ : : : ^ (u 6= xlk + ck)
holds. In the last case � has the form 0�10a10� with
i > a + 2. Either a =2 Kc and then � occurs in each of
the strings �i; �i+1; : : : ; �c, so the new formula is correct
by the same argument as before. Or a 2 Kc and then �
does not occur in f beyond d.

7

So the formula is iteratively transformed into an equiva-
lent one without variables and quanti�ers. This formula
consists only of atoms of the form f(c) = d and can be
decided by knowing a su�ciently long pre�x of f .

One standard example to show that the union of EX-
learnable families can be outside EX is the family

S = ff : (9e) [f = 'e ^ 0e1 � f] _

(9� 2 f0; 1g�) [f = �01] g

which consists of all functions which code their index
plus all which are almost everywhere 0 This family S
has also other practical applications: S is not EX[A]-
learnable for any non-omniscient A [11, Proof of The-
orem 8.1]. But S is QEX[Succ]-learnable [8, Theorem
6]: An IIM conjectures 'e but continuously checks for
c = 0; 1; : : : whether (9x > c) [f(x) 6= 0]. These queries
can be formulated without the symbol < since c is a
constant, so if f = �01, then the IIM will discover this
fact after making c = j�j queries. The IIM makes a
mind change to �01 and terminates. Thus one obtains
the following fact:

Fact 5.3 There is a family S 2 QEX[Succ] such that

S =2 EX[A] for all non-high oracles A.

So the families given in Theorem 5.1, Theorem 5.2 and
Fact 5.3 show that the following corollary is true:

Corollary 5.4 EX[A] � QEX[Succ;A] � QEX[<;A]
� QEX[+;A] for all non-high oracles A.

6 Conclusion

The omniscient degrees of EX, QEX[Succ], QEX[<] and
QEX[+] are the same and consist exactly of the high
oracles. The trivial degrees of QEX[Succ], QEX[<] and
QEX[+] are a proper subset of the trivial EX-degree.
Their structure is unknown, but it might be that the
trivial degree of these three query inference criteria con-
sists only of the recursive sets. Whenever EX[A] 6�
EX[B] then the query inference degree of A is not con-
tained in that of B; but still it is unknown whether
the inclusion structure of the query inference degrees
is the same for the three criteria QEX[Succ], QEX[<]
and QEX[+]. The noninclusions QEX[+] 6� QEX[<] 6�
QEX[Succ] 6� EX are strong in the sense that there exist
\complete problems" S; S0; S00 such that S 2 QEX[+]�
QEX[<;A], S0 2 QEX[<] � QEX[Succ;A] and S00 2
QEX[Succ]� EX[A] for all non-high oracles A.

Acknowledgments

The author would like to thank Bill Gasarch, Susanne
Kaufmann and Martin Kummer for proofreading and
comments.

References

[1] L. Adleman, M. Blum. Inductive inference and un-
solvability. Journal of Symbolic Logic, 56:891{900,
1991.

[2] D. Angluin. Learning Regular Sets from Queries
and Counterexamples. Information and Computa-

tion, 75:87{106, 1987.

[3] R. Beigel, W. Gasarch, J. Gill, J. Owings. Terse,
superterse, and verbose sets. Information and

Computation, 103:68{85, 1993.

[4] J. Case, C. Smith. Comparison of identi�cation
criteria for machine inductive inference. Theoretical
Computer Science, 25:193{220, 1983.

[5] L. Fortnow, W. Gasarch, S. Jain, E. Kinber,
M. Kummer, S. Kurtz, M. Pleszkoch, T. Slaman,
R. Solovay, F. Stephan. Extremes in the degrees
of inferability. Annals of Pure and Applied Logic,
66:231{276, 1994.

[6] W. Gasarch, M. Pleszkoch. Learning via queries
to an oracle. In: Proceedings of the Second An-

nual ACM Conference on Computational Learn-

ing Theory{ COLT'89, pp. 214{229, Morgan Kauf-
mann, Los Altos, 1989.

[7] W. Gasarch, M. Pleszkoch, R. Solovay. Learning
via Queries in [+; <]. Journal of Symbolic Logic,
57(1):53{81, 1992.

[8] W. Gasarch, C. Smith. Learning via Queries. Jour-
nal of the Association of Computing Machinery,
39(3):649{676, 1992.

[9] E. M. Gold. Language Identi�cation in the limit.
Information and Control, 10:447{474, 1967.

[10] C. Jockusch. Degrees of generic sets. In: London

Mathematical Societey Lecture Notes, 45:110{139,
1981.

[11] M. Kummer, F. Stephan. On the structure of de-
grees of inferability. In: Proceedings of the Sixth

Annual ACM Conference on Computational Learn-

ing Theory{COLT'93, pp. 117{126, ACM-Press,
New York, 1993.

[12] D. B. Posner, R. W. Robinson. Degrees Joining to
00. Journal of Symbolic Logic, 46(4):714{722, 1981.

[13] P. Odifreddi. Classical recursion theory. North-
Holland, Amsterdam, 1989.

[14] D. Osherson, M. Stob, S. Weinstein. Systems that

learn. MIT Press, Cambridge (MA), 1986.

[15] T. Slaman, R. Solovay. When oracles do not
help. In: Proceedings of the Fourth Annual ACM

Conference on Computational Learning Theory{

COLT'91, pp. 379{383, Morgan Kaufmann, San
Mateo, 1991.

[16] R. I. Soare. Recursively enumerable sets and de-

grees. Springer-Verlag, Berlin, 1987.

8

