
Incremental Theory Reasoning Methods for

Semantic Tableaux

Bernhard Beckert & Christian Pape

Institute for Logic, Complexity and Deduction Systems
University of Karlsruhe

Am Fasanengarten 5, 76128 Karlsruhe, Germany

fbeckert;papeg@ira.uka.de, http://i12.www.ira.uka.de/~beckert

Abstract. Theory reasoning is an important technique for increasing
the e�ciency of automated deduction systems. In this paper we present

incremental theory reasoning, a method that improves the interaction

between the foreground reasoner and the background (theory) reasoner
and, thus, the e�ciency of the combined system. The use of incremental

theory reasoning in free variable semantic tableaux and the cost reduc-

tion that can be achieved are discussed; as an example, completion-based
equality reasoning is presented, including experimental data obtained

using an implementation.

1 Introduction

Theory reasoning is an important technique for increasing the e�ciency of au-

tomated deduction systems. The knowledge from a given domain (or theory) is

made use of by applying e�cient methods for reasoning in that domain. The

general purpose foreground reasoner calls a special purpose background reasoner
to handle problems from a certain theory.

Following the pioneering work of Stickel [22], sound and complete theory re-

asoning methods have been described for various calculi; e.g., path resolution

[17], the connection method [20], model elimination [2]. In addition, background

reasoners have been designed for various theories, in particular for equality re-

asoning [4]; an overview can be found in [3].

Besides the e�ciency of the foreground and the background reasoner, the

interaction between them plays a critical rôle for the e�ciency of the combi-

ned system: It is a di�cult problem to decide whether it is useful to call the

background reasoner at a certain point or not, and how much time and other

resources to spend for its computations. In general, to give a perfect answer

to these questions is as di�cult as the theory reasoning problem itself (if the

theory is undecidable, it is undecidable whether a call to the background reaso-

ner is useful). Even with good heuristics at hand, one cannot avoid calling the

background reasoner at the wrong point: either too early or too late.

This problem can (at least partially) be avoided by using incremental me-

thods for background reasoning, i.e., algorithms that|after a futile try to solve

a theory reasoning problem|allow to save the results of the background reaso-

ner's computations and to reuse this data for a later call.1 Then, in case of doubt

the background reasoner can be called early without running the risk of doing

useless computations. In addition, an incremental background reasoner can reuse

1 This should not be confused with partial theory reasoning, where the background

reasoner derives new formulae and hands these back to the foreground reasoner. The
information derived by an incremental background reasoner cannot be used by the

foreground reasoner, but only by the background reasoner during later calls.

data multiply, if di�erent extensions of a problem have to be handled. An im-

portant example are completion-based methods for equality reasoning, that are

inherently incremental.

We focus on theory reasoning in semantic tableaux [21, 11] and related meth-

ods|such as model elimination [16] and the connection method [8]|, where a

background theory reasoner is used to close tableau branches resp. to compute

connections or links (total theory reasoning).

The paper is organized as follows: In Section 2 we introduce notation and

recall the basic de�nitions of theory reasoning; in Section 3 we de�ne the parti-

cular version of free variable semantic tableaux we will be using in the following

sections.2 In Section 4 our main results are presented: incremental theory reaso-

ning is introduced and formally de�ned, its use in free variable semantic tableaux

is described, and the cost reduction that can be achieved is discussed. In Sections

5 and 6 we present completion-based equality reasoning as an example, and de-

scribe an actual implementation; Section 7 contains experimental data obtained

using this implementation. Finally, in Section 8 we draw conclusions from our

work.

2 Preliminaries

2.1 Notation

Let us �x a �rst-order language L which is built up from countable sets P of pre-

dicate symbols, F of function symbols, C of constant symbols and V of object

variables in the usual manner (for each arity there are countably many func-

tion and predicate symbols). We use the logical connectives ^ (conjunction),

_ (disjunction), � (implication), $ (equivalence), and : (negation), and the

quanti�er symbols 8 and 9.

Since in the tableau proofs it will be necessary to introduce Skolem terms, we

extend our �rst-order language L to a language LSko by adding countably many

constant symbols and function symbols for each arity which do not already

appear in L.

We use the standard notions of free and bound variable, (grounding) substi-

tution, sentence, model, logical consequence (denoted by j=), valuation, satis�a-

bility and tautology (see De�nition 1).

Subst is the set of all idempotent substitutions with �nite domain (without

making any real restrictions we only consider substitutions of this type). A sub-

stitution � with domain fx1; : : : ; xng can be denoted by fx1=t1; : : : ; xn=tng, i.e.

�(xi) = ti (1 � i � n). The restriction of � to a set V of variables is denoted

by �jV . A substitution may be applied to quanti�ed formulae; in that case, quan-

ti�ed variables are never replaced; e.g., ((8x)p(x; y))fx=a; y=bg = (8x)p(x; b).

2.2 Theory Reasoning

In general any satis�able set of universally quanti�ed formulae is a theory, i.e.,

we identify the theory with the de�ning set of axioms.

De�nition1. A theory T � L is a satis�able set of universally quanti�ed for-

mulae.

A T -interpretation is an interpretation that satis�es T .

A formula � (a set of formulae �) is T -satis�able if there is a T -interpretation
satisfying � (resp. �), else it is T -unsatis�able.

2 We stress that the results presented in this paper can easily be adapted to other

versions of semantic tableaux and similar calculi.

2

A sentence � is a T -tautology if it is satis�ed by all T -interpretations.

A formula � is a T -consequence of a set of formulae 	 , denoted 	 j=T �, if

� is satis�ed by all T -interpretations that satisfy 	 .

The restriction to theories consisting of universally quanti�ed formulae is

necessary, because exactly for such formulae the Herbrand-type Theorem 2 holds

[20], that is essential for the completeness of tableau-like calculi using theory

reasoning. This restriction, however, is easy to get around, because existential

quanti�ers can be removed by skolemization.

Theorem2. A set � of universally quanti�ed formulae is T -unsatis�able i�
there is a �nite set of ground instances of formulae from � that is T -unsatis�able.

Example 1. The most important theory in practice is the equality theory E . It

consists of the following axioms:3

(1) (8x)(x � x)

(2) for all function symbols f 2 F with arity n � 0:

(8x1) � � � (8xn)(8y1) � � � (8yn)((x1 � y1 ^ : : :^ xn � yn) �

f(x1; : : : ; xn) � f(y1; : : : ; yn))

(3) for all predicate symbols p 2 P with arity n � 0:

(8x1) � � � (8xn)(8y1) � � � (8yn)((x1 � y1 ^ : : :^ xn � yn) �

(p(x1; : : : ; xn) � p(y1; : : : ; yn)))

Symmetry and transitivity of � are implied by reexivity (1) and monotonicity

for predicate symbols (3), because � 2 P.

The following are the basic de�nitions for theory reasoning:

De�nition3. Let � be a set of formulae. � is T -complementary i� every in-

stance of � is T -unsatis�able.

Example 2. The formula :(x � y) is E-unsatis�able; it is, however, not E-

complementary, because its instance :(a � b) is E-satis�able. The formula

:(x � x) is both E-unsatis�able and E-complementary.

De�nition4. Let � be a set of literals, called key. A set R of literals is a residue
of �, if there is a substitution � 2 Subst such that

1. �� [R is T -complementary (R denotes the negation f:� : � 2 Rg of R),

2. R = R�.

In that case, the pair h�;Ri is called a refuter for �. If the residue is empty, we

identify the substitution � with the refuter h�; ;i.

It is neither really necessary to require the formulae in the key nor in the residue

to be literals, but all further considerations are much simpler that way.

3 The equality predicate is denoted by �, such that no confusion with the meta-level

equality = can arise.

3

2.3 Partial and Total Theory Reasoning

The central idea behind theory reasoning is the same for all calculi based in some

way on Herband's theorem (tableau-like calculi, resolution, etc.) A key � � 	

is chosen from the set 	 of formulae already derived by the foreground reasoner

and is passed to the background reasoner, which computes refuters h�;Ri for �.

There are two main approaches: if the background reasoner only computes

refuters with an empty residue, we speak of total theory reasoning else of partial
theory reasoning.

In the case of partial reasoning, where R = f�1; : : : ; �ng (n � 1), the formula

�1 _ : : :_ �n is added to the derived formulae 	 and the substitution � is applied.

If the foreground reasoner is then able to show that (� [f�1 _ : : :_ �ng)� is

T -unsatis�able for some substitution � , this proves that 	�� is T -unsatis�able:

if 	�� were T -satis�able, then one of the sets (� [f�1 _ : : :_ �ng)� and (��[

R)� , that have been shown to be T -unsatis�able, had to be T -satis�able.

Although total theory reasoning can be seen as a special case of partial theory

reasoning, the way the foreground reasoner makes use of the refuter is quite

di�erent: no further derivations have to been made by the foreground reasoner;

�� and thus 	� has been proven to be T -complementary by the background

reasoner. In the tableau framework, where (usually) the key � is taken from a

tableau branch B, this closes B if the substitution � is applied (see Section 3).

In the following, we restrict all our considerations to total theory reasoning;

nevertheless, most of the techniques introduced in this paper are as well appli-

cable to partial theory reasoning.

For completeness of the combination of foreground and background reasoner,

the background reasoner has to compute sets of refuters that are|in a certain

sense|complete. We use the following de�nition, which is strong enough to be

su�cient for all theories and calculi:4

De�nition5. A set � of refuters is complete for a key �, if for each ground

substitution � 2 Subst that is a refuter for � there is a �0 2 � and a substitution

� such that � = � � �0.

3 Semantic Tableaux

3.1 Free Variable Semantic Tableaux

First, we formally de�ne the free variable tableau calculus, using a slightly non-

standard representation:5 Tableaux are multi-sets of multi-sets of �rst-order for-

mulae; as usual, the branches of a tableau are implicitly disjunctively connected

and the formulae on a branch are implicitly conjunctively connected.

De�nition6. A tableau is a (�nite) multi-set of tableau branches, where a ta-

bleau branch is a (�nite) multi-set of �rst order formulae.

There are two possibilities to derive a new tableau from an old one: (1) apply-

ing a tableau expansion rule and (2) closing a branch by applying a substitution

to the tableau (incremental theory reasoning provides a third possibility: calling

the background reasoner, see Sec. 4.4).

The expansion rules are the classical �-, �-, - and �-rules for �rst-order

formulae. The rule patterns are summarized in Table 1.6

4 Depending on the actual theory and the calculus used, weaker requirements may be

4

� �1 �2

� ^ �

:(� _) :� :

:(� �) � :

::� � �

� �1 �2

� _ �

:(� ^) :� :

� � :�

�$ � ^ :� ^ :

:(�$) � ^ : :� ^

 1(y)

(8x)�(x) �(y)

:(9x)�(x) :�(y)

� �1(t)

:(8x)�(x) :�(t)

(9x)�(x) �(t)

�

�1

�2

�

�1 �2

1(y)

where y is a new free

variable.

�

�1(f(x1; : : : ; xn))

where f is a new (Skolem) function

symbol, and x1; : : : ; xn are the free va-

riables occurring in �.

Table 1. Formula types and tableau rule schemata.

To prove a formula � to be a tautology, we start from the initial tableau

ff:�gg.7 New tableaux are derived by applying the tableau expansion rules and

closing branches by applying a substitution.

De�nition7. A tableau branch B is closed under a substitution � i� there are

formulae �;: 2 B such that �� = �, i.e., �� and : � are complementary.

The problem of �nding a single substitution that closes all branches of a ta-

bleau simultaneously is simpli�ed|as usual in practical applications|by closing

the branches one after the other: if a substitution is found that closes a single

branch, it is applied to the whole tableau to close that branch, before other

branches are considered. Closed branches are removed from the tableau instead

of just marking them as being closed. Thus, a proof is found, when the empty

tableau has been derived.

Theorem8 (Soundness and Completeness). A �rst-order sentence � is a
tautology i� there is a sequence

ff:�gg = T0; T1; : : : ; Tn�1; Tn = ; (n � 0)

of tableaux such that for 1 � i � n the tableau Ti is constructed from Ti�1 by

1. applying one of the expansion rules from Table 1, i.e., there is a branch
B 2 Ti�1 and a formula � 2 B (that is not a literal) such that

Ti =

8>><
>>:

(Ti�1 n fBg) [f(B n f�g) [f�1; �2gg if � is of type �
(Ti�1 n fBg) [f(B n f�g) [f�1g; (B n f�g)[f�2gg if � is of type �
(Ti�1 n fBg) [fB [f1gg if � is of type
(Ti�1 n fBg) [f(B n f�g) [f�1gg if � is of type �

2. or closing a branch B 2 Ti�1, i.e., Ti = (Ti�1 n fBg)�, where the branch B
is closed under � (Def. 7).

su�cient to preserve completeness.
5 We stress that this calculus di�ers from classical free variable tableaux [11] only in

notation and the way tableaux are represented.
6 The �-rule is more liberal than that used in [11]; it has recently been proposed and

proven sound by H�ahnle and Schmitt [14]. Even more liberalized �-rules have been
investigated in [7] and [1].

7 If visualized as a binary tree, the initial tableau consists of the single node :�.

5

The construction of a closed tableau is a highly non-deterministic process,

because at each step one is (in general) free (1) to choose a branch B of the

tableau, (2) to expand or to close B, and to choose (3a) a formula � 2 B for

expansion or (3b) a substitution that closes B.

3.2 Semantic Tableaux with Total Theory Reasoning

We make use of the fact, that if there is a T -refuter for a key taken from a

tableau branch B then B and all its instances are T -unsatis�able:

De�nition9. Given a theory T , a tableau branch B is T -closed under a sub-

stitution � if � is a refuter for a key � � B.

Using the above de�nition, Theorem 8 can easily be adapted to theory re-

asoning:

Theorem10 (Soundness and Completeness, Theory Reasoning).

Given a theory T , a �rst-order sentence � is a T -tautology i� there is a sequence

ff:�gg = T0; T1; : : : ; Tn�1; Tn = ; (n � 0)

of tableaux, such that for 1 � i � n the tableau Ti is constructed from Ti�1 by

1. applying one of the expansion rules from Table 1 (see Theorem 8 for a formal
de�nition),

2. or closing a branch B 2 Ti�1, i.e., Ti = (Ti�1 n fBg)�, where the branch B
is T -closed under � (Def. 9).

4 Incremental Background Reasoners

4.1 Motivation

As already mentioned in the introduction, one of the main problems in using

theorem reasoning techniques in practice is the e�cient combination of fore-

ground and background reasoner and their interaction:

{ A late call to the background reasoner can lead to bigger tableaux and

redundancy. Although several branches may share the same subbranch and

thus contain the same key for which a refuter exists, the background reasoner

is called separately for these branches and the refuter has to be computed

multiply.

{ On the other hand, an early call to the background reasoner may not be

successful and time consuming; this is of particular disadvantage if the theory

is undecidable, and as a result the background reasoner might not terminate

although no refuter exists.

Both these phenomena may considerably decrease the performance of a prover,

and it is very di�cult to decide (resp. to develop good heuristics that decide)

1. when to call the background reasoner;

2. when to stop the background reasoner if it does not �nd a refuter.

Example 3. The following example shows that earlier calls to the background

reasoner can reduce the size of a tableau proof exponentially: Assume � to be a

set of formulae such that � j=T :p(sn(0)) (n � 0) for some theory T . Figure 1

shows a proof for

� j=T (p(0)$ p(s(0))$ � � � $ p(sn(0))) ;

6

where the background reasoner is called when a literal of the form p(sn(0)) ap-

pears on a branch. As a result, all the left-hand branches are closed immediately

and the tableau is of linear size in n.

If the background reasoner were only called when a branch is exhausted,

i.e., when no further expansion is possible, then the tableau would have 2n

branches and the background reasoner would have to be called 2n times (instead

of n times).

An incremental background reasoner can be of additional advantage, if the

computations that are necessary to show that � j=T p(sn(0)) are similar for

all n. In that case a single call to the background reasoner in the beginning may

provide information that later can be reused to close all the branches with less

e�ort.

�

:(p(0)$ p(s(0))$ � � � $ p(sn(0)))

p(0) ^ :(p(s(0))$ � � � $ p(sn(0)))

p(0)

:(p(s(0))$ � � � $ p(sn(0)))

:p(0) ^ (p(s(0))$ � � � $ p(sn(0)))

:p(0)

p(s(0))$ � � � $ p(sn(0))

:p(sn�1(0))

p(sn�1(0))$ p(sn(0))

p(sn�1(0)) ^ :p(sn(0))

p(sn�1(0))

:p(sn(0))

:p(sn�1(0)) ^ p(sn(0))

:p(sn�1(0))

p(sn(0))

Fig. 1. Short tableau proof for � j=T p(0)$ p(s(0))$ � � � $ p(sn(0)) (Example 3).

Even the best heuristic cannot avoid calls to the background reasoner at the

wrong time. However, on certain conditions it is possible to avoid the adverse

consequences of early calls: If the algorithm the background reasoner uses is

incremental, i.e., if the data produced by the background reasoner during a

futile try to compute refuters can be reused for a later call.

If early calls have no negative e�ects, the disadvantages of late calls can easily

be avoided by using heuristics that, in case of doubt, call the background reasoner

at an early time. The problem of not knowing when to stop the background

reasoner is solved by calling it more often with less resources (time, etc.) for

each call.

An additional advantage of using incremental background reasoners in the

tableau framework is that computations can be reused multiply for di�erent

extensions of a branch|even if the computation of refuters proceeds di�erently

for these extensions.

4.2 Incremental Keys

Obviously there has to be some strong relation between the keys transferred to

the background reasoner, to make it possible to reuse the information computed.

7

Since, between calls to the background reasoner, we want to (1) extend the

tableau by new formulae and (2) apply substitutions (to the tableau), these are

the two operations we want to allow for changing the keys:

De�nition11. A sequence (�i)i�0 of keys is incremental if for i � 0 there is a

set 	i of literals and a substitution �i such that

�i+1 = �i�i [i

where 	i = 	i�i.

In general, not all refuters of �i are refuters of �i+1 (because a substitution is

applied); nor are all refuters of �i+1 refuters of �i (because new formulae are

added).

4.3 Iterative and Incremental Algorithms

To be able to formally denote the state the computation of a background reasoner

has reached and the data generated, we use the following notion of background

reasoner:

De�nition12. A background reasoner is a triple hA; I;Si. A is an algorithm
(a function) operating on a data structure D:

A : D �!D

I is an initialization function that transforms a given key into the data structure

format:
I : 2fL2LSko : L is a literalg

�!D

The output function S extracts computed refuters from the data structure:

S : D �! 2Subst

Of course, the input and output functions have to be reasonably easy to

compute; in particular the cost of their computation has to be much smaller

than that of applying the algorithm A,8 which is supposed to do the actual

work.

For the sake of simplicity, we focus on algorithms that are iterative in the

following sense:9

De�nition13. A background reasoner is iterative if for every key � and i � j

S(Ai(I(�))) � S(Aj(I(�))) :10

It is sound if for every key � and i � 0

S(Ai(I(�)))

is a set of refuters for �.

It is complete if for every key �
[
i�0

S(Ai(I(�)))

is a complete set of refuters for � (Def. 5).

8 In practice their cost should be linear or at most polynomially in the input.
9 This is no real restriction: If a background reasoner applies di�erent transformations
to the data at each step of its computation, this can be modeled by adding the index i

and the state of the reasoner to the data structure, such that the right operation or

sub-algorithm can be applied each time the background reasoner is invoked.
10 In practice one weakens this condition to the extend that it is allowed to remove

refuters that are subsumed by other refuters.

8

Our goal is to be able to stop the background reasoner when it has reached

a certain state in its computations for a key �, and to proceed from that state

with a new key �0 = �� [. For that purpose we need an update function, that

adapts the data structure representing the state of the computation to the new

literals 	 and the substitution �.

De�nition14. Let T be a theory and R = hA; I;Si a sound and complete

iterative background reasoner for T . An update function

U :D� 2fL2LSko :L is a literalg
� Subst�!D

is correct (for R), if for every key �0 = �� [and

Dn = U(An(I(�)); 	; �) (n � 0)

1. S(Ai(Dn)) is a set of refuters for �
0 for all i � 0 (soundness);

2.
S
i�0 S(A

i(Dn)) is a complete set of refuters for �0 (completeness).

According to the above de�nition a correct update function behaves as expected

when used for a single incremental step. Theorem 15 shows that this behavior

extends to sequences of incremental steps. In addition, the algorithm can be

applied arbitrarily often between incremental steps:

Theorem15. Let (�i)i�0 be an incremental sequence of keys, where

�i+1 = �i�i [i (i � 0) ;

R a sound and complete iterative background reasoner (Def. 13), and U a correct
update function for R (Def. 14). Let (Di)i�0 � D be de�ned by

1. D0 = I(�0),

2. Di+1 = U(Ani(Di); �i+1; 	i+1) for some ni � 0.

Then

1. S(Di) is a set of refuters for �i for all i � 0 (soundness) and

2.
S
j�0

S(Aj(Di)) is a complete set of refuters for �i (completeness).11

Example 4. Let (�i)i�0 be an incremental sequence of keys, where �i+1 = �i�i[

	i (i � 0). Then for every sound and complete iterative background reasoner

hA; I;Si the trivial update function de�ned by

U(D;	i; �i) = I(�i�i [i)

is correct.

The above example shows that it is not su�cient to use any correct update

function to achieve a better performance of the calculus, because using the trivial

update function means that no information is reused. A useful update function

has to preserve the information contained in the computed data.

Whether there actually is a useful and reasonably easy to compute update

function depends on the theory T , the background reasoner, and its data struc-

ture. (In Section 6 we present an example for such a useful update function.)

11
S

i�0
S(Di) is (in general) not a complete set of refuters for any of the keys, since no

inclusion relation holds for the sets of refuters of an incremental sequence of keys.

9

4.4 Semantic Tableaux and Incremental Theory Reasoning

The incremental theory reasoning method presented in the previous section is

easy to use for tableau-like calculi, because the de�nition of incremental sequen-

ces of keys matches the construction of tableau branches. The keys of a sequence

are taken from an expanding branch, and the substitutions are those applied to

the whole tableau.

The keys used in calls to the background reasoner, as well as the information

computed so far by the background reasoner, have to be attached to the tableau

branches:12

De�nition16. A tableau is a (�nite) multi-set of tableau branches, where a ta-

bleau branch is triple h�;D;�i; � is a (�nite) multi-set of �rst order formulae,

D 2 D (where D is the data structure used by the background reasoner), and

� is a set of literals (a key).

Now, the free variable tableau calculus introduced in Section 3.2 can be ad-

apted to incremental theory reasoning: calling the background reasoner is added

as a third possibility to change the tableau (besides expanding and closing bran-

ches). Soundness and completeness of the resulting calculus is a corollary of

Theorems 10 and 15:

Theorem17 (Soundness and Completeness, Incremental Version).

Given a theory T , a sound and complete background reasoner R = hA; I;Si

for T (Def. 13), and a correct update function U for R (Def. 14).
A �rst-order sentence � is a T -tautology i� there is a sequence

fhf:�g; I(;); ;ig= T0; T1; : : : ; Tn�1; Tn = ; (n � 0)

of tableaux (Def. 16) such that for 1 � i � n the tableau Ti is constructed from
Ti�1 by

1. applying one of the expansion rules from Table 1, i.e., there is a branch
B = h�;D;�i 2 Ti�1 and a formula � 2 � (that is not a literal) such that

Ti =

8>>>><
>>>>:

(Ti�1 n fBg) [fh(� n f�g)[f�1; �2g; D; �ig if � is of type �
(Ti�1 n fBg) [fh(� n f�g)[f�1g; D; �i;

h(� n f�g)[f�2g; D; �ig if � is of type �
(Ti�1 n fBg) [fh� [f1g; D; �ig if � is of type
(Ti�1 n fBg) [fh(� n f�g)[f�1g; D; �ig if � is of type �

2. closing a branch B = h�;D;�i 2 Ti�1, i.e.,

Ti = fh�0�;D0; �0i : h�0; D0; �0i 2 (Ti�1 n fBg)g ;

where � 2 S(D),
3. or calling the background reasoner, i.e., there is a branch

B = h�;D;�i 2 Ti�1 ;

a number c > 0 of applications, and a key �0 of the form13

�0 = �� [� �

such that
Ti = (Ti�1 n fBg) [fh�;A

c(U(D;	; �)); �0ig :

12 If only maximal keys are used (all literals on the branch), the keys do not have to

be attached to the branch.
13 There is always a key satisfying this condition (in particular the set of all literals on

the branch).

10

4.5 Achievable Cost Reduction

The maximal cost reduction that can be achieved by using an incremental reaso-

ner is reached if the costs are those of the non-incremental background reasoner

called neither too early nor too late, i.e., if always the right key in the incremen-

tal sequence is chosen and the background reasoner is only called for that key

(which is not possible in practice).

More formally: If we search for a substitution � that is a refuter for one or

more of the keys in an incremental sequence (�i)i�0 (where �i+1 = �i�i [i),

then the index imin of the \right" key and the minimal number of applications

of the background reasoner nmin are de�ned by:

imin = minfk � 0 : � is a refuter for �kg

nmin = minfn � 0 : there is a � 0 2 S(An(I(�imin))) more general than �g :

Thus, the minimal costs of �nding � using a non-incremental approach are:14

cost(I; �imin) + cost(Anmin ; I(�imin)) :

However, these minimal costs cannot be reached using a deterministic non-

incremental background reasoner, because the index imin is not known (which

is equivalent to the problem of early/late calls).

The costs of an incremental approach depend on the number ci of applications

of the algorithm during step i. The number j of incremental steps that have to

be made until � is found can be bigger than imin (if the ci have been chosen too

small). The costs are:

cost(I; �0) +

j�1X
i=0

cost(U ; (D0
i; 	i; �i)) +

jX
i=0

cost(Aci ; Di) ;

where D0 = I(�0), Di = U(D0
i�1; 	i�1; �i�1) (for i � 1), and D0

i = A
ci(Di) (for

i � 0). The actual costs become smaller and approach their minimum, if the costs

of applying the update function approach zero, if all the information computed

by the background reasoner can be reused for a later call, and if the numbers ci
of applications have not been chosen too small.

If substitutions are applied, i.e., if the �i are not the empty substitution,

usually not all information derived for a key �i can be reused, because part of

it becomes invalid for an instance �i�i (see Section 6).

In practice, the costs of an incremental method are between the ideal value

and the costs of calling a non-incremental reasoner for each of the keys in an

incremental sequence (without reusing).

But even if the costs for one sequence, i.e., for closing one tableau branch,

are higher than that of using a non-incremental method, the overall costs for

closing the whole tableau can be small because information is reused for more

than one branch.

5 Equality Handling in Semantic Tableaux

If total theory reasoning methods are employed for handling equality in free

variable tableaux, the background reasoner has to solve rigid E-uni�cation pro-

blems [12] to compute refuters:

14 cost(f;x) denotes the costs of computing the application of the function f to the

argument x.

11

De�nition18. A rigid E-uni�cation problem hE; s; ti consists of a �nite set E

of equalities (l � r) 2 LSko and terms s and t.

A substitution � is a solution to the problem i� E� j=E (s� � t�) where the

free variables in E� are \held rigid", i.e. treated as constants.

A complete set of refuters for a key K can be computed by extracting the

set P (K) of rigid E-uni�cation problems from K according to the following de-

�nition and solving the problems in P (K):

De�nition19. Let K be a key. Then E(K) = fl � r : (l � r) 2 Kg is the set
of equalities in K, and P (K) =

fhE(K); hs1; : : : ; sni; ht1; : : : ; tnii : p(s1; : : : ; sn);:p(t1; : : : ; tn) 2 K, p 6= �g [

fhE(K); s; ti : :(s � t) 2 Kg

is the set of rigid E-uni�cation problems in K.

Theorem20. For any key K the set of solutions to the rigid E-uni�cation pro-
blems in P (K) is a complete set of refuters for K (w.r.t. the equality theory E).

Various methods for computing rigidE-uni�ers have been described [12, 9, 5],

the most e�cient of which are completion-based.15 Fortunately, completion-

based methods for rigid E-uni�cation can easily be used for incremental back-
ground reasoning: Let (�i)i�0 be a sequence of incremental keys, then the fol-

lowing equations hold for the sequence (P (�i))i�0 of corresponding rigid E-

uni�cation problems:

E(�i+1) = E(�i�i) [E(i)

P (�i+1) = P (�i�i) [P (i) [P
0

(where P 0 contains additional E-uni�cation problems extracted from literals

p(s1; : : : ; sn), :p(t1; : : : ; tn) one of which is in �i�i and one of which is in 	i).

Therefore, a correct update function only has to

1. apply the substitution �i to the old set of E-uni�cation problems and rewrite

rules,

2. add the new rewrite rules and E-uni�cation problems to the old ones, and

3. remove the rewrite rules that are not valid for the substitution �i (these rules

constitute information that cannot be reused).

6 Implementation

A completion-based method for solving mixed E-uni�cation problems [5], which

is an extension of rigid E-uni�cation,16 has been implemented as part of the

15 We use the version of total theory reasoning in semantic tableaux where branches are
closed one after the other. To close all branches simultaneously, a simultaneous rigid

E-uni�cation problem has to be solved. This is much more di�cult than the non-

simultaneous version: simultaneous rigid E-uni�cation is undecidable [10] whereas
the non-simultaneous problem is NP-complete [12].

16 Mixed E-uni�cation is a combination of the classical universal E-uni�cation and rigid

E-uni�cation. The performance of provers using E-uni�cation for handling equality

can be increased considerably, if mixed E-uni�cation is used instead of the purely

rigid version: An equality has often to be applied more than once in a proof, each

time with di�erent substitutions for the variables occurring in it. In tableau-like

calculi the mechanism to do so is to generate several instances of the equality. It is,

however, often possible to recognize equalities that are \universal" w.r.t. variables

they contain (e.g. equalities that occur on only one branch of a tableau). If mixed E-
uni�cation is used, this knowledge can be used to avoid generating additional copies

of equalities.

12

tableau-based theorem prover 3T
AP [6, 13]. The E-uni�cation problems extrac-

ted from a branch (resp. key) are transformed into (sets of) constrained terms

and rewrite rules; the constraints describe the sets of substitutions for which, if

the substitution is applied to the tableau, a derived term or rewrite rule remains

valid. An algorithm that can be seen as an extension of the Unfailing Knuth-

Bendix-Algorithm [15] with narrowing [18] is employed to search for refuters. In

3T
AP only maximal keys are used, i.e., all literals from a tableau branch. The

indeterminism of free variable tableaux is resolved by closing branches from left

to right, using a �xed order in which formulae are expanded, and backtracking

w.r.t. the substitutions that are applied to the tableau: if a branch cannot be

closed, the last application of a substitution � is undone and other closing sub-

stitutions are searched for that close the same branches as �.

In the old version of 3T
AP information computed by the background reasoner

could not be reused, and the background reasoner was either

{ only called for exhausted tableau branches, i.e., if no expansion rule was

applicable (observing a limit on the number of -rule applications), which

usually led to late calls; or

{ called each time before a �-rule was applied; which usually led to early calls.

Fortunately, due to the inherently incremental nature of 3T
AP 's algorithm for

solving rigid E-uni�cation problems, it has been easy to design and implement

a correct and reasonably simple update function U(D;	; �): rewrite rules and

uni�cation problems are extracted from the new literals in 	 ; they can be ad-

ded to the data structure D without any further changes. The substitution � is

applied to the constrained rules and terms in D. Which rewrite rules and terms

are not valid for � and have to be removed can be checked using the constraints

attached to rules and terms (experiments show that in practice only few rules

and terms have to be removed).

The new incremental version of the background reasoner is always called be-

fore a �-rule is applied. The number of iterative steps during a call is determined

by a heuristic, that the user can a�ect by changing certain parameters.

7 Experiments and Results

In the following we present some experimental data obtained using the imple-

mentation described in the previous section. Three di�erent theory reasoning

methods are compared:

1. Calling the background reasoner each time before a �-rule is applied

(a) reusing the computed information for later calls (reuse),

(b) without reusing information (no reuse);

2. calling the background reasoner for exhausted branches only (late call).17

The generated tableaux are in general the same for Cases 1a and 1b,18 they are

di�erent (larger) if the background reasoner is only called for exhausted branches

(Case 2). In the statistics TR is the number of tableau rule applications and EQ

denotes the number of calls to the equality background reasoner. Proof times

are given in seconds, running on a SUN SPARC 10 (\1" means that no proof

could be found in reasonable time).

17 A branch is exhausted if no expansion rule can be applied (observing a pre-de�ned

limit on the number of -rule applications).
18 They can di�er, if without reusing information (Case 1b) a limit (e.g. on the number

of equality applications) is reached before a branch is closed, and that limit is not

reached if information is reused (Case 1a).

13

branches closed time [sec]

Problem TR EQ background foreground reuse no reuse late call

pel48 4 7 4 0 0.75 0.95 0.76

pel49 27 21 14 0 25.88 29.42 28.79

pel51 29 20 8 4 4.32 4.38 3.96
pel52 26 18 8 2 5.15 5.19 4.59

pel55 102 30 4 20 8.95 5.74 32.73

hash3 334 151 76 0 25.25 61.33 1

hash9 929 545 273 0 84.77 1 1

hash11 250 63 32 0 27.23 43.72 1

hash12 173 19 10 0 14.45 31.96 1

hash13 260 63 32 0 34.40 39.06 1

hash25 530 251 126 0 50.62 1 1

Table 2. Statistics for some of Pelletier's problems (pel) and problems from program

veri�cation (hash).

Table 2 shows results for some of Pelletier's problems [19] (pel) and problems

taken from an application in program veri�cation where lemmata on a speci�-

cation of hash tables are to be proven (hash).

The tableaux for Pelletier's problems are quite small. Here, reusing informa-

tion does not lead to an improvement, neither does it have any negative e�ects.

The proof for problem pel55 is shortened considerably by making early calls to

the background reasoner.

The more di�cult examples from program veri�cation show that the impro-

vement gained by reusing information corresponds roughly to the size of the

tableau proof: the more branches there are, the more re-computations of the

same information can be avoided.

8 Conclusion

Incremental theory reasoning is a technique that improves the interaction bet-

ween foreground and total background reasoner. The adverse e�ects of early or

late calls to the background reasoner may|if only partially|be avoided; in ad-

dition, information computed by the background reasoner can be reused multiply

to compute refuters for di�erent extensions of a key.

The experimental evidence presented in Section 7 shows that|although in

practice not all information can be reused|using incremental methods may

indeed increase the overall performance of a deduction system.

Up to nowmost of the work in theory reasoning has been directed towards de-

signing more e�cient foreground and background reasoners. However, our work

shows, that they should not be completely separated; their interaction is equally

important. Besides using incremental methods, it is essential to develop good

heuristics (depending on the theory or domain) in order to decide when, with

which key, and for how long to call the background reasoner.

References

1. M. Baaz and C. G. Ferm�uller. Non-elementary speedups between di�erent versions
of tableaux. In Proceedings, 4th Workshop on Theorem Proving with Analytic

Tableaux and Related Methods, St. Goar, LNCS 918, pages 217{230. Springer, 1995.

14

2. P. Baumgartner. A model elimination calculus with built-in theories. In H.-J.
Ohlbach, editor, Proceedings, GermanWorkshop on Arti�cial Intelligence (GWAI),

LNCS 671, pages 30{42. Springer, 1992.

3. P. Baumgartner, U. Furbach, and U. Petermann. A uni�ed approach to theory
reasoning. Forschungsbericht 15/92, University of Koblenz, 1992.

4. B. Beckert. Adding equality to semantic tableaux. In K. Broda, M. D'Agostino,

R. Gor�e, R. Johnson, and S. Reeves, editors, Proceedings, 3rd Workshop on Theo-
rem Proving with Analytic Tableaux and Related Methods, Abingdon, pages 29{41,

Imperial College, London, TR-94/5, 1994.

5. B. Beckert. A completion-based method for mixed universal and rigid E-
uni�cation. In A. Bundy, editor, Proceedings, 12th International Conference on

Automated Deduction (CADE), Nancy, France, LNCS 814, pages 678{692. Sprin-

ger, 1994.
6. B. Beckert, S. Gerberding, R. H�ahnle, and W. Kernig. The tableau-based theorem

prover 3T
AP for multiple-valued logics. In Proceedings, 11th International Confe-

rence on Automated Deduction (CADE), Saratoga Springs, NY, LNCS 607, pages
758{760. Springer, 1992.

7. B. Beckert, R. H�ahnle, and P. H. Schmitt. The even more liberalized �-rule in free

variable semantic tableaux. In G. Gottlob, A. Leitsch, and D. Mundici, editors,
Proceedings, 3rd Kurt G�odel Colloquium (KGC), Brno, Czech Republic, LNCS 713,

pages 108{119. Springer, 1993.

8. W. Bibel. Automated Theorem Proving. Vieweg, Braunschweig, second revised
edition, 1987.

9. E. de Kogel. Rigid E-uni�cation simpli�ed. In Proceedings, 4th Workshop on

Theorem Proving with Analytic Tableaux and Related Methods, St. Goar, LNCS
918, pages 17{30. Springer, 1995.

10. A. Degtyarev and A. Voronkov. Simultaneous rigid E-uni�cation is undecidable.

UPMAIL Technical Report 105, Uppsala University, May 1995. Presented at:
Annual Conference of the European Association for Computer Science Logic

(CSL'95), Paderborn.

11. M. C. Fitting. First-Order Logic and Automated Theorem Proving. Springer, 1990.
12. J. H. Gallier, P. Narendran, S. Raatz, and W. Snyder. Theorem proving using

equational matings and rigid E-uni�cation. Journal of the ACM, 39(2):377{429,

Apr. 1992.
13. R. H�ahnle, B. Beckert, and S. Gerberding. The many-valued tableau-based theo-

rem prover 3T
AP . Tr 30/94, Universit�at Karlsruhe, Fakult�at f�ur Informatik, Nov.

1994.
14. R. H�ahnle and P. H. Schmitt. The liberalized �-rule in free variable semantic

tableaux. Journal of Automated Reasoning,, 13(2):211{222, Oct. 1994.

15. D. E. Knuth and P. B. Bendix. Simple word problems in universal algebras. In
J. Leech, editor, Computational Problems in Abstract Algebras, pages 263{297. Per-

gamon Press, Oxford, 1970.

16. D. W. Loveland. A simpli�ed format for the model elimination procedure. Journal

of the ACM, 16(3):233{248, July 1969.

17. N. V. Murray and E. Rosenthal. Theory links: Applications to automated theorem

proving. Journal of Symbolic Computation, 4:173{190, 1987.
18. W. Nutt, P. R�ety, and G. Smolka. Basic narrowing revisited. Journal of Symbolic

Computation, 7(3/4):295{318, 1989.

19. F. J. Pelletier. Seventy-�ve problems for testing automatic theorem provers. Jour-
nal of Automated Reasoning, 2:191{216, 1986.

20. U. Petermann. How to build-in an open theory into connection calculi. Journal

on Computer and Arti�cial Intelligence, 11(2):105{142, 1992.
21. R. Smullyan. First-Order Logic. Springer, 1968.

22. M. E. Stickel. Automated deduction by theory resolution. Journal of Automated

Reasoning, 1:333{355, 1985.

15

16

