
Generative Development of Embedded Real-Time

Systems∗

Gerd Frick Klaus D. Müller-Glaser

FZI Forschungszentrum Informatik
Dept. of Electronic Systems and Microsystems

Haid-und-Neu-Str. 10-14, 76131 Karlsruhe, Germany
esm@fzi.de

Abstract

Embedded real-time systems is a real-world appli-
cation domain where state-of-the-art software de-
velopment processes are already generative. There-
fore it is a source of experience and also of addi-
tional technological requirements that may be of a
general interest. After describing the special setting
of Generative Programming in this area, the paper
presents some lessons learned, open issues, and fur-
ther directions. We conclude with a survey of the
technology being under development at our site.

1 Introduction

According to [3], Generative Programming is a
paradigm for engineering software system families
such that, given a particular requirements specifica-
tion, a customized and optimized system (a mem-
ber of the family) can be automatically constructed
from elementary, reusable implementation compo-
nents by means of configuration knowledge. The
essential elements are a means of specifying fam-
ily members, the implementation components, and
the configuration knowledge mapping from specifi-
cation to implementation. The configuration knowl-
edge is captured in program form, called a genera-
tor.

In other words, a domain-specific language
(DSL) is used to describe a system on a high ab-
straction level, a compiler for this language trans-
lates this abstract system description into a more
concrete description given in an object language in

∗ ECOOP 2002 Workshop on Generative Programming,
June 10, 2002, Malaga, Spain

terms of a base library of abstractions. The base
library consists of the predefined implementation
components, the object language is the composi-
tion language which is necessary for constructing
the system from the components and the existence
of which is implicily assumed in the definition of
Generative Programming rendered above.

In the case of a GUI builder, a well-known
example kind of a program generator, the speci-
fication language is a visual drag&drop (together
with some property dialogs) GUI design language,
there is a library of GUI components (e. g. MFC,
Swing, or Motif), and a general-purpose program-
ming language (such as C++ or Java) is used for
composition. Of course, the generated program is
only one increment of the system (the user inter-
face) and has to be completed by the application
logic etc., which implementation will probably be
done manually in the programming language which
has been used for user interface composition.

It is not uncommon that the implementation
components itself are implemented in terms of a
programming language which is also used as the
composition language. But this is not necessarily
the case; the language for component implementa-
tion and composition may be completely different.
There need not even be a library of components;
the generated system may also be completely con-
structed in terms of the object language.

In the terminology of [3], generators, while
translating a source representation of the system
into a target representation, can perform vertical
transformations (refinements) or horizontal trans-
formations (optimizations) or both. Refinements
transform a higher-level representation of a sys-

1



tem into a lower-level one, preserving the general
structure of the system description. Concepts of the
higher abstraction level are implemented in terms
of concepts on the lower abstraction level. Opti-
mizations transform a representation of a system
into an equivalent one on the same level of abstrac-
tion, changing the system structure to a more effi-
cient one with respect to some implementation goal.
Generators primarily based on vertical transforma-
tions are also called compositional, generators pri-
marily based on horizontal transformations are also
called transformational.

The construction of generators, especially
transformational ones, can be supported by trans-
formation systems. As surveyed by [3], transforma-
tion systems provide a common format for inter-
nal program representation, input and output fa-
cilities for the internal representation, and a trans-
formation engine. Transformations are specified in
a declarative or procedural language against the in-
ternal representation.

In the following sections we will shortly de-
scribe an application domain where generative soft-
ware development is just maturing to become state-
of-the-practice, some lessons learned, open issues
and further directions, and requirements that we
think should be met by technology supporting this
engineering paradigm. We conclude with a survey
of the technology being under development at our
site.

2 Generative software development
for embedded systems

Embedded electronic systems, or embedded sys-
tems for short, are a key technology for prod-
uct innovations in many areas: automotive,
aerospace, telecommunication, household and in-
dustrial applications—to mention some of the
most important. For a wide range of applications
the favorite way to realize an electronic system
is a software-customized low-cost microprocessor
(called microcontroller) taken ’of the shelf‘. The
system to be developed then essentially is a com-
puter program.

The embedded system, being embedded, is
interfaced to a physical environment by means of
sensors (delivering input data to the system) and
actuators (consuming output data of the system).

The task of the system itself normally is to control
the environment (in an open or closed loop). Con-
trol systems are a kind of real-time systems, i. e. the
correctness of the input-output behaviour is deter-
mined not only by data but also by time. Thus, a
notion of time is an integral part of the description
of the behaviour of an embedded system.

Open loop control systems in general are re-
active in nature, with a finite state space and dis-
crete events triggering both transitions between the
discrete states and output actions. Not only the
inputs but also time is captured as events (time-
out events). Closed loop control systems typically
process input signals and generate output signals
which are continuous in time1. Due to their pri-
mary nature, open and closed loop control systems
are also (somewhat imprecisely) called discrete and
continuous systems, respectively.

Visual formalisms (i. e. with graphical nota-
tions) have been used in control systems engineer-
ing for many years. The most well-known of these
for discrete systems is the language of Statecharts,
invented by Harel [8], which allows the description
of finite state machines with a structured, hierar-
chical state space and corresponding transitions.
Additional features are data variables, an inter-
nal event mechanism and transitions guarded by
conditional expressions. For the description of con-
tinuous systems, it is very common to use sig-
nal flow graphs based on a collection of primi-
tive ’blocks‘—representing well-known functional
dependencies between signals (e. g. derivative with
respect to time)—as an abstraction from systems
of differential equations. Both formalisms can be
combined with techniques for hierarchical system
decomposition.

These formalisms have lead to graphical mod-
eling languages supported by tools (CASE2 tools).
They originated as means for constructing model-
based (or executable) specifications. A formal de-
scription of the system, called a model, can—if con-
structive with respect to system behaviour, based
on a certain model of computation—be executed as
a simulation of the system. Thus, early validation
of the system specification against the expected be-

1. Within the computer system the signals of course have
to be discretized, the value space to floating-point or fixed-
point real numbers of finite precision, the time continuum
by discrete time sampling.
2. Computer Aided Software/Systems Engineering

2



haviour is possible. This is a tremendous advantage
over validation of fully developed systems at the
time of system integration, since it is a well-known
fact that the costs of correcting errors are the higher
the later they are detected.

An executable specification of a software sys-
tem is a first prototype of the system itself. The vir-
tual machine executing the prototype system is the
simulator kernel running on the development com-
puter. As a refinement of this, the model (or a re-
fined program derived from it) may be executed on
a dedicated rapid prototyping machine with hard-
ware interfaces to the real environment. In contrast,
the final system implementation will run on a small
(e. g. 8 or 16 bit) and rather slow microcontroller
with a small amount of memory.

The latter requirement has, up to recently,
caused the necessity to implement the system by
re-construcing the specified behaviour in a highly
efficient way in a low-level programming language
(normally C, having replaced assembly languages).
In the meantime, endeavours to automate this pro-
cess have lead to increasingly efficient code gener-
ators, which are starting to be used even for pro-
duction purposes in the automotive industry. Thus,
generative programming, known as ’automatic code
generation‘ or ’autocoding‘, has become state-of-
the-art for embedded systems software and is being
accepted as a development principle.

The most prominent CASE tools used in the
automotive industry are Statemate (the first tool
implementing Statecharts) from I-Logix [9], Matlab
(with its graphical languages Simulink and State-
flow) from The MathWorks [13], and ASCET-SD
from ETAS [5]. Statemate is complemented by the
tool Rhapsody in MicroC from I-Logix for target
code generation; the Matlab suite can be com-
plemented by the TargetLink code generator from
dSPACE [4] or the recent RealTime Workshop Em-
bedded Coder by The MathWorks; ASCET-SD in-
cludes a target code generator. UML [10], which
contains an object-oriented variant of Statecharts,
is also gaining some importance.

Code generators for discrete system models
are typically compositional, refining the high-level
control structure of Statecharts to standard imper-
ative control structures. Code generators for contin-
uous systems on the other hand are highly transfor-
mative, involving flattening of hierarchical signal-
flow diagrams, mapping of functional dependencies

to variables and update procedures, and expression
folding, value caching and other optimizations. In
both cases the specifications are implemented in
terms of an imperative target language (C) and op-
tionally also library calls to a real-time operating
system (providing e. g. time and multi-tasking ser-
vices).

3 Lessons learned, open issues, and
further directions

First of all, it may be observed that generative
software development using domain-specific means
of describing systems and code generators to de-
rive lower-level general purpose programming lan-
guage code automatically has been accepted as and
proven to be a useful principle in the domain of
embedded systems design. Domain engineering is
done mainly by a small number of CASE tool ven-
dors, more or less specialized to specific application
domains and equipping their tools with powerful
domain-specific analysis features. The application
(i. e. embedded system) developers are highly spe-
cialized software engineers, normally not affiliated
with software houses but e. g. automotive manufac-
turers or suppliers.

An important success factor can be at-
tributed to the fact that the domain-specific lan-
guages have not been developed specifically for the
purpose of code generation (generative program-
ming), but have been used years before for sys-
tem simulation and analysis and the purpose of
executable specifications. Code generation being
available, the constructive specification languages
become domain-specific programming languages.
Building executable specifications essentially is pro-
gramming on a higher abstraction level. C code gen-
eration is just an additional stage of the compila-
tion process.

In should be noticed that the specification
languages are formal languages (although partially
with graphical syntaxes) with semantics on their
own; the semantics are not given primarily by the
implementation components and the corresponding
generation processes. In consequence, it is possible
to analyse and validate the system solely on the
domain-specific abstraction level. The separation of
specification semantics from the generation process
allows the tool developers to optimize the gener-

3



ators independently. Nothing else is known from
compilers for conventional programming languages.
It may be mentioned by the way that the domain-
specific means of specification should be treated as
formal languages, not as data models.

The models of computation giving semantics
to the various languages for describing discrete and
continuous systems are different. In practice, het-
erogeneous systems containing both discrete and
continuous parts do appear; the developers have to
deal with more than one model of computation. Un-
less multi-paradigm languages supported directly
by a single tool can be used, the development of het-
erogeneous systems raises a language and tool inte-
gration problem involving model transformations
between different models of computation and/or
different levels of abstraction. This problem is gen-
erally left open by the tool vendors, but solutions,
at least for individual cases, are requested by the
developers. That is the case for an independent
transformation technology supporting translations
between languages and tools. It is also the origi-
nal use case which initiated the development of the
technology described in section 4.

Up to know, generative development of em-
bedded systems software is not yet fully integrated,
leaving additional development steps for manual
postprocessing. Examples for this are not only the
integration of heterogeneous subsystems and the in-
clusion of real-time operating systems (for which
integrated solutions are already available), but es-
pecially the realization of distributed systems and
the implementation of respective communication
behaviour. E. g. in automotive applications one has
to deal with networks of tens of electronic control
units, sensors and actors, linked by a CAN bus (or
other communication systems), interchanging data,
and together realizing a function network. Com-
plexities have already reached a state that urges us
to find new means of abstracting low-level physi-
cal communication behaviour and to integrate them
into the semantics of the specification level, i. e. into
the level of the input for code generation. Includ-
ing aspects of distribution and communication into
system specifications will enable us to enlarge the
scope of the generators in order to eliminate man-
ual coding on the target code level.

It seems to be useful to have separated no-
tions of functional vs. physical models as differ-
ent parts of a system description (like e. g. in UML

or in Statemate). The functional model would de-
scribe the behaviour of the system whereas the
physical model would describe the structure of the
distributed components and the configuration of
the communication system. A mapping between
the two models, expressing which functionality is
assigned to which physical parts, would complete
the specification, i.e. the input to the code gen-
erator(s). But in a real-time setting where timing
is a functional property and communication de-
lays etc. influence the behaviour of a system, a
clear separation of functionality from communica-
tion behaviour is not possible. It seems that at least
some properties of the communication system will
have to be propagated to the functional part of
the model. Therefore the relationship between func-
tional and physical model is not a simple mapping
problem, there is a need for bi-directional integra-
tion of the two. Transformations are needed for re-
finements of and round-trips between the two views
of the system.

For the introduction of physical modelling
a general experience should be respected, gained
from our automotive industry collaborations and
contacts, i. e. that the integration of existing lan-
guages and tools is nearly always preferred over
custom developments. Possible candidate languages
that could be leveraged for physical modelling are
UML and ROOM [12]. For the same reason, a fully
integrated software development environment like
Intentional Programming (see [3]) is not realistic
to be successful in this domain, since established
and powerful CASE tool environments would have
to be replaced. What is needed is, in our view, a
backend technology for representation and tranfor-
mation of formal system descriptions, interfaced to
existing domain-specific languages and tools (as the
interface to the user), and also open for experimen-
tal design and integration of new abstractions (for
research and prototyping of new languages).

4 Overview of the XFL technology

XFL (Extensible Formal Language) is the name of
a technology under development at FZI [7]. A de-
tailed exposition of its concepts is beyond the scope
of this paper, so in the following just some outlines
are sketched.

4



XFL includes a declarative metalanguage
based on a flexible type system for defining ab-
stract syntax and semantics of formal languages
[6], an XML [1] based encoding scheme provid-
ing a default concrete syntax for any language
defined by the metalanguage, and an interpreter
for the metalanguage manipulating target language
phrases. Languages are formalized as collections
of named (typed, polymorphic) abstracts. An ab-
stract is either reducible (a function) or irreducible
(a constructor). The abstractions are organized as
libraries in a modular way allowing sublanguage
sharing and language extensions. The composition
language is as simple as the concept of applica-
tion (term composition). In the concrete syntax,
the named abstracts are applied as XML elements
with the arguments being subelements. Thus, XFL
leverages well-formed XML as a concrete syntax
for terms. The module system leverages the XML
namespace concept; the metalanguage is also XML-
based and is integrated via a reserved namespace.

A translation of one set of abstracts (the
source language) into another (the target language)
can be defined by direct layering, i. e. the higher-
level abstracts are functions reducible to the lower-
level abstracts, which are constructors, or indirectly
by transformation functions mapping constructors
into constructors in any desired way. Thus, both
vertical and horizontal transformations can be de-
fined; the transfomations are executed by the in-
terpreter of the metalanguage performing partial
evaluation.

The XFL concept thus includes a system for
XML-based (intermediate) representation of for-
mal languages as well as a transformation sys-
tem. XFL-represented languages are ordinary XML
languages, which alleviates interfacing to tools or
rendering via style sheets. Due to the metalan-
guage/interpreter approach of the transformation
system there is no need for individual hard-coded
generators or translators, only the essence of the
transformations has to be specified declaratively.

The intended main purpose of XFL is the me-
diation between existing languages and tools as in-
dicated at the end of the section 3. A previous ver-
sion of the XFL system which included a subset
of the above features has been successfully applied
in the COMTESSA [2] project to the integration
of Simulink with Statemate for heterogeneous sys-
tems modelling and to the realization of model ex-

change between both Simulink and Statemate and
the Rodon tool [11] for model based diagnosis.

The open, library based approach (which
is shared with Intentional Programming) and the
XML syntax also allow for easy experimenting
with new abstractions and corresponding genera-
tors. Language protoyping can be based on direct
XML coding, configurable XML editors, or con-
figurable and programmable graphical editors (like
MS Visio or meta-CASE tools). Research and pro-
toyping thus can prepare the development and im-
provement of domain-specific CASE technology.

5 Conclusion and proposal for
worshop discussion

Control systems engineering has originated exe-
cutable domain-specific languages for the descrip-
tion of real-time software systems. Generative tech-
nologies are used to automatically produce efficient
target (C) code for execution on microcontrollers
with limited resources. The inclusion of platform
and design specific code related to operating and
communication systems into automatic code gen-
eration requires additional abstractions and adds a
high-level physical view to the functional view of
specifications. Together with heterogeneity in dif-
ferent types of control systems supported by dif-
ferent domain-specific languages, the interaction of
different languages in the description of a system
appears as a general principle. Uni- or bidirectional
transformations between different abstraction lev-
els and languages can be supported by formal lan-
guage representation and transformation systems
like the XML-based XFL system.

Our proposed contribution to the workshop
is to introduce the audience to an industrial suc-
cess story of generative software development and
to highlight and discuss

1. the problem of semantics of specification lan-
guages in generative programming, and

2. the relation between functional and physical
system structures and its treatment in gener-
ative development.

References

[1] Bray, T., Paoli, J., Sperberg-McQueen,
C. M. (Eds.): Extensible Markup Lan-

5



guage (XML) 1.0. W3C Recommendation,
http://www.w3.org/TR/1998/REC-xml-
19980210, 1998.

[2] http://www.fzi.de/esm/projects/Comtessa/
Comtessa uk.html

[3] Czarnecki, K., Eisenecker, U.W.: Generative
Programming—Methods, Tools, and Applica-
tions. Upper Saddle River, NJ, USA : Addison-
Wesley, 2000.

[4] http://www.dspace.de
[5] http://www.etas.de
[6] Frick, G., Müller-Glaser, K.D.: A Type System

for Language Definitions. (Submitted for publi-
cation in 2002.)

[7] http://www.fzi.de/esm
[8] Harel, D.: Statecharts—A visual formalism for

complex systems. Science of Computer Pro-
gramming, vol. 8, pp. 231-274, 1987.

[9] http://www.ilogix.com
[10] Kobryn, C. (ed.): OMG Unified Modeling Lan-

guage Specification, Version 1.3. OMG Docu-
ment ad/99-06-08, 1999.

[11] http://www.rose.de
[12] Selic, B., Gullekson, G., Ward, P.T.: Real-

Time Object-Oriented Modeling. New York :
Wiley, 1994.

[13] http://www.mathworks.com

6


