
Proving Compiler Correctness with Evolving Algebra

Speci�cations

Bernhard Beckert Reiner H�ahnle

1 Introduction

The purpose of this note is to de�ne a framework for proving compiler correctness with evolving

algebra (EA) speci�cations [2]. Although our speci�c domain is the veri�cation of a Prolog-to-

WAM compiler [1, 3], we think that our considerations are fairly general and they should be

useful in other areas as well.

The starting point for us was the observation that the notions of correctness and completen-

ess as used in [1] become quite counterintuitive when seen from the point of view of compiler

construction.

First we will de�ne our general view of the semantics of a programming language, of how

semantics can be speci�ed using EAs, and of compiler correctness; then we describe how the

correctness of a compiler may be proven; and �nally we point out the di�erences to the approach

of [1] and to the notion of correctness as commonly used in logic.

2 General View

2.1 Semantics of a Programming Language

A language L is a set of (well-formed) programs. Associated with each language is a domain I

of input values and a domain O of output values.1

The semantics � of a language is a total function

� : L� I ! O [f?g

that assigns to each program p 2 L and input value i 2 I an output value �(p; i) 2 (O [f?g),

where ? denotes non-termination.

2.2 Evolving Algebras

An evolving algebra A = hT ;�i consists of a set T of transition rules and a signature �. By A

we denote the set

A = fA : A is in the similarity class of �g

of all static algebras associated with A.

A static algebra A 2 A is called terminal i� none of the transition rules in T is applicable

to A.

1In the case of Prolog, L is the set of all (well-formed)Prolog programs, I is the set of all (well-formed) queries,
and O is the set containing all answer substitutions and the special symbol fail.

1

2.3 Using an Evolving Algebra to Specify the Semantics of a Language

An EA A can be used to formally describe the semantics � of a language L. The static algebras

A 2 A represent a program p with input i and its associated current computation state. The

transition rules T of A specify an interpreter for programs and computation states.

In addition, to de�ne �, we associate with each program p and input i, an initial algebra

A0 = Init(p; i) 2 A, where Init is a total function

Init : L� I ! A :

Finally, an output function

Out : A ! O

has to be given. Out may be partial; it only has to be de�ned on terminal algebras.

Since we de�ned the semantics � to be a function, i.e., the programs of the language to

be deterministic, the EA A we use to describe the semantics has to be deterministic, too:2 To

each A 2 A either exactly one transition rule is applicable (if A is non-terminal) or no rule is

applicable (if A is terminal). In general, this property of A has to be proven separately.3

From here on we assume A to be deterministic. Thus, for each initial algebra A0 there is

either

1. exactly one in�nite sequence A0 T
! A1 T

! A2 T
! � � �

2. or exactly one �nite sequence A0 T
! A1 T

! � � �
T
! A�n such that A�n is terminal.

We call this sequence the A-sequence for A0.

Now, the semantics � can be described (resp. de�ned) using A, Init, and Out in the following

way:4

�(p; i) =

8<
:

Out(A�n) if the A-sequence for A0 = Init(p; i) is �nite and

A�n its �nal element

? if the A-sequence for A0 = Init(p; i) is in�nite

One consequence of the use of EAs is that programs, inputs and computation states are not

properly separated in the static algebras and in the transition rules. Neither is it desirable to

separate them as this causes only syntactical overhead and has otherwise no advantages.

2.4 Compiler Correctness

If two languages L1 and L2 are given with input domains I1; I2 and a single output domain O,

then a total5 function

C : (L1 � I1) ! (L2 � I2)

is called a compiler (that compiles the \source language" L1 into the \target language" L2).

Note, that a compiler does not generate an initial algebra, but a program/input pair of the

target language. In general, a compiler is neither an injective nor a surjective function.

Given semantics �1 for the source language and �2 for the target language, the compiler C

is correct (w.r.t. �1 and �2) i� for each p 2 L1 and i 2 I1

�1(i; p) = �2(C(i; p)) :

2The semantics of a non-deterministic language is not a function but a relation between L � I and O [?.
3In the case of the Prolog-to-WAM compiler, we focus on, the EAs are de�ned in such a way, that it follows

immediately from the syntactical form of the transition rules that they are deterministic.
4In practice, Init andOut should be (and in the case of the Prolog-to-WAM compiler are) \simple" to compute

functions, at least they should be computable. In theory, however, this is not necessary: neither Init, nor Out,
nor the transition rules of A have to be computable to de�ne �.

5We do not de�ne completeness of compilers since it does not make much sense in the present setting. It boils
down to the fact that C is total.

2

Figure 1 illustrates the logical dependencies between some of the notions introduced, where

the semantics of the two languages are given by EAs A1 = hT1;�1i and A2 = hT2;�2i, initializa-

tion functions Init1; Init2, and output functions Out1; Out2 as described above.6 In that case,

the correctness of C can be formally de�ned in the following way: C is correct i� for each p 2 L1

and i 2 I1:

1. If the A1-sequence for Init1(p; i) is �nite with �nal element A�n1
1

, then the A2-sequence

for Init2(C(p; i)) is �nite with �nal element A�n2
2

, and

Out1(A
�n1
1

) = Out2(A
�n2
2

) :

2. If the A1-sequence for Init1(p; i) is in�nite, then the A2-sequence for Init2(C(p; i)) is

in�nite.

Because A1 and A2 are deterministic, this is equivalent to:

10. If the A1-sequence for Init1(p; i) is �nite with �nal element A�n1
1

and the A2-sequence for

Init2(C(p; i)) is �nite with �nal element A�n2
2 , then

Out1(A
�n1
1

) = Out2(A
�n2
2

) :

20. The A1-sequence for Init1(p; i) is �nite if and only if the A2-sequence for Init2(C(p; i)) is

�nite.

Note, however, that the compiler C is not surjective (in general). Therefore, its correctness

is not related to a property of all A2-sequences, nor of all A2-sequences starting with an initial

algebra Init2(p
0; i0) (where p0 2 L2 and i0 2 I2),

7 but only of all A2-sequences starting with an

initial algebra Init2(C(p; i)) (where p 2 L1 and i 2 I1)

hp1; i1i //

Init1

��

C

A0
1

//

T1
A1
1

//

T1
� � � //

T1

��

R

A
�n1
1

//

Out1
o

hp2; i2i //

Init2
A0
2

//

T2
A1
2

//

T2
� � � //

T2
A�n2
2

//

Out2
o

Figure 1: Schematic diagram of compiler correctness with EAs.

Example 1 As an example for the general setup we consider the correctness of the �rst two

levels of the Prolog-to-WAM compiler as given in [3].

Here, the languages L1 = L2 consist of all Prolog programs, the input domains I1 = I2
contain all Prolog queries, and the output domain O contains all answer substitutions and the

special symbol fail.

The particular compiler is the identity function and therefore trivial. Note that this does not

mean that the correctness of this particular compilation step is trivial to prove. The transition

rules of the two evolving algebras are di�erent, and thus the two semantics �1 and �2 are

de�ned di�erently. In that case, proving the correctness of the compiler amounts to proving

that �1(p; i) = �2(p; i) for all p 2 L and i 2 I, i.e., �1 = �2.

6The Relation R shown in the �gure is described in Section 3.
7Between the �rst two levels the Prolog-to-WAM compiler is the identity function (see Example 1) and thus

surjective. This, however, should not be considered to be a typical example.

3

3 Proving Compiler Correctness

In order to carry out an actual correctness proof, we need to make a link between static algebras

Ai
1 and A

j
2
. This is done with a suitable auxiliary relation R whose validity, of course, must be

proved as well. The relation R is not part of the statement of the correctness theorem, but is

introduced only during its proof. Note that R is not necessarily de�ned explicitly in the proof.

The correctness proof8 has the general form of an induction on the length of the A1-sequence

of algebras. The induction base involves showing the correctness of the mapping Init from

programs to initial algebras. For the induction step both the A1- and the A2-sequence must

be partitioned into appropriate segments that correspond to each other. In most cases A2 is

a proper re�nement of A1 which means that one transition of A1 corresponds to one or more

transitions of A2. This gives roughly the following picture:

Ai
1

//

T1

��

R

Ai+1
1

��

R

A
j
2

//

T2 T2
// ��� A

j+k
2

It has to be part of the invariant of the induction that for each Ai
1 there is a A

j
2 such that

R(Ai
1; A

j
2), where A

j
2 is terminal whenever Ai

1 is terminal. To guarantees Part 1 of correctness,

R has to be chosen such that if R(A�n1
1 ; A

�n2
2) and A

�n1
1 ; A

�n2
2 are terminal, then Out1(A

�n1
1) =

Out2(A
�n2
2).9

If k � 1 in all cases, then each A2-sequence is at least as long as the corresponding A1-

sequence. This property guarantees Part 2 of correctness. However, if A2 is not a proper re�ne-

ment of A1 this might not be the case. More generally, we might have a m-to-k correspondence

instead of an 1-to-k correspondence between transitions in the induction step. This can occur

when compilation involves code optimization that leads to a removal of redundant instructions

(tail recursion is one example).

4 Relationship to Other Notions

In the paper of B�orger & Rosenzweig [1] correctness means Part 1 of our de�nition. They work

also with the notion \completeness" which in their framework simply means Part 1 of correctness

with A1 and A2 exchanged (note that Part 2 of our correctness follows from completeness in

the sense of B�orger & Rosenzweig). Clearly their notions are derived from \correctness" and

\completeness" as they are used in logic between, say, a calculus and model semantics. In logic,

however, there is no re�nement relation in either direction between calculi and semantics, because

the respective algebras are not evolving algebras, but simply abstract algebras in the usual sense.

The very notion of a compiler from a source language into a target language, however, in-

troduces a preferred direction between the respective EAs, even if the target machine cannot be

considered as a proper re�nement of the source machine. This means that, if we �x the natural

direction as the correctness direction, the notion of completeness is not needed, because it would

correspond to \correctness of decompilation" which is pretty uninteresting and very di�cult to

prove in general. We only need a very weak form of completeness hidden as the non-termination

property of our correctness notion; it is ensured for proper re�nements anyway.

As a consequence, it is not really necessary to formally prove both correctness and comple-

teness in the WAM case study, rather, it is su�cient to prove correctness for each compilation

level as it is de�ned above.

8That is, the constructive proof we are thinking of; there might be other ways to prove compiler correctness.
9In the case of Prolog, this means that on both levels identical variable bindings are maintained.

4

Another di�erence between the present approach and the one in [1] is that in the latter

both the function C and the relation R appear in the statement of correctness, where it is

called F . We �nd it clearer to distinguish between compilation of programs (done by C) and

\compilation" of the static algebras (done by R), that represent computation states. In logic

we have this distinction as well: there, compilation is usually trivial and involves, for instance,

mapping of objects of the semantics de�ning abstract algebra to clauses etc.; R, for instance,

might correspond to the semantical validity of the inference schema of resolution etc. The latter

kind of relations are typically introduced during a correctness (or completeness) proof, but they

are not part of the theorem.

References

[1] Egon B�orger and Dean Rosenzweig. The WAM|de�nition and compiler correctness. In Ch.

Beierle and L. Pl�umer, editors, Logic Programming: Formal Methods and Practical Applica-

tions, volume 11 of Studies in Computer Science and Arti�cial Intelligence. North-Holland,

Amsterdam, 1995.

[2] Yuri Gurevich. Evolving algebras 1993: Lipari Guide. In E. B�orger, editor, Speci�cation and

Validation Methods. Oxford University Press, 1994.

[3] Peter H. Schmitt. Proving WAM compiler correctness. Interner Bericht 33/94, Universit�at

Karlsruhe, Fakult�at f�ur Informatik, 1994.

5

