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Abstract

We have presented a novel approach to parallel motion planning for robot manipulators

in 3D workspaces. The approach is based on a randomized parallel search algorithm

and focuses on solving the path planning problem for industrial robot arms working in

a reasonably cluttered workspace. The path planning system works in the discretized

con�guration space, which needs not to be represented explicitly. The parallel search is

conducted by a number of rule-based sequential search processes, which work to �nd a

path connecting the initial con�guration to the goal via a number of randomly generated

subgoal con�gurations. Since the planning performs only on-line collision tests with

proper proximity information without using pre-computed information, the approach is

suitable for planning problems with multirobot or dynamic environments.

The implementation has been carried out on the parallel virtual machine (PVM) of a

cluster of SUN4 workstations and SGI machines. The experimental results have shown

that the approach works well for a 6-dof robot arm in a reasonably cluttered environment,

and that parallel computation increases the e�ciency of motion planning signi�cantly.
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1 Introduction

This report documents parts of the work in the framework of the HEROS Project1, which

has been carried out at the Institute for Real-Time Computer Systems and Robotics at

the University of Karlsruhe. We have come up with a novel approach to parallel motion

planning for robot manipulators in the three dimension case. The implementation has

been conducted on a parallel virtual machine (PVM) of a cluster of SUN4 workstations

and SGI machines available in the institute.

The issue of robot motion planning has been studied for more than a few decades

and many important contributions to the problem have been made ([Lat91, Hwa92]).

One of the most important results is the application of the concept of con�guration

space ([LP83]). However, it has been shown that the complexity of the generalized

movers problem is exponential with respect to the con�guration space dimension ([SS83])

and is PSPACE hard ([Rei79]). Although the con�guration space (C-space) approach

provides a good framework for theoretical research, motion planning purely based on the

approach normally results in a non-practical planner for real-life situations. The C-space

approach is well-suited for robots of few DOF (< 4) in a static environment. But it is

unfavourable for problems with multiple robots or dynamic environments, since in these

cases, C-obstacles and C-free-space have to be recomputed, which is computationally

very expensive. In order to avoid the complexity of the explicit computation of the

con�guration space (i.e., C-free-space and C-obstacles) or its approximation, as was

done in [LPJMO92], our method works implicitly in the discretized con�guration space

with a number of explicit and implicit constraints. The explicit constraints result from

the mechanical consideration of the robot, such as the limitations of joint motions. The

implicit ones are derived from collision avoidance between the robot and obstacles. In

this way, whether a con�guration q of the robot is in C-free space or C-obstacle space

is determined through collision detections between the robot and the obstacles around,

which is calculated in the workspace.

Since the procedure of collision detection could be heavily invoked throughout motion

1HEROS - Hazardous Environment RObot Systems, ERBCHRXCT930086, a Human Capital and

Mobility Project of the European Union.
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planning, an e�cient collision detection scheme is essential. We have adopted the Oxsim

framework ([QCM95]) to build up the robot and world models for the simulation of the

parallel motion planning. In this framework, the collision detection is based on the

modi�ed GJK distance algorithm ([GJK88]) with some heuristics. Nevertheless, if the

collision detection is called stepwise during planning in the discretized C-space, there

can be a very large number of detections to consume signi�cant computation time. For

the extreme case of the robot in an environment without any obstacles, the stepwised

collision detections along a planned path are actually not necessary. To minimize the

number of collision detection invocations, we have utilized the heuristic of distance

information to increase e�ciency.

Algorithms for motion planning can be generally classi�ed in terms of whether the

algorithm is complete. Complete algorithms are only practical for simple situations with

few degrees of freedom. The main reason for that is due to the faact that the search

space for a path is so large. Therefore, in this report, we will restrict ourselves to consid-

ering incomplete (but useful) algorithms working in the discretized con�guration space.

In an e�ort to decrease the computation time, some researchers have worked on par-

allel computations of motion planning ([Hen96]). With parallel processing, not only can

some existing sequential algorithms be parallelized but some new parallel algorithms

can be designed based on the characteristics of parallelism. We propose a parallel algo-

rithm that would not make much sense for a sequential machine but is fairly e�ective

with parallel processing. The algorithm is implemented using a parallel virtual machine

(PVM), which is a software package that allows a heterogeneous network of parallel and

serial computers to work as a single concurrent computational resource. Along with

the package, a number of routines are provided with the support of a user interface.

The main advantages of PVM are that it provides a set of user interface primitives that

may be incorporated into existing procedural languages and that it is available on most

of the network and/or parallel architectures. For further details about PVM, refer to

[GBD+93].

The rest of the report is organized as follows: Section 2 relates our work to previous
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one in path planning and parallel processing approaches to motion planning. Section 3

presents our approach to motion planning in detail. Section 4 introduces some heuristics

for improving the performance of the motion planner. Section 5 details the implemen-

tation of the algorithm and the experimental results. Section 6 gives the conclusion and

possible extensions.

2 Related Work

With regard to autonomous robot systems, motion planning is one of the most important

aspects in robotics. It has been attracting a great deal of interest over the last 20 years.

Generally, motion planning problems can be described in this way: given initial and goal

con�gurations, we need to �nd a path for a robotic device, which is to move along the

planned path without colliding with obstacles around it. The path connects the initial

and the goal con�gurations.

Glavina [Gla90] proposed an algorithm to solve the �ndpath problem by combining

a goal-directed straight-and-slide search and a randomized generation of subgoals. The

idea is to conduct the search by following the straight line till the searching point reaches

a C-obstacle in the discretized con�guration space. Then, the searching con�guration

point slides along the obstacle boundary only if it reduces the con�guration distance,

which is a function of a suitably weighted combination of the con�guration variables.

The sliding process continues until the point gets stuck at a local minimumwith respect

to the con�guration distance function. Then, a new subgoal is generated randomly. The

reachability of the subgoal is tested by the same straight-and-slide searching method

from all introduced points (start and goal, and previous subgoals). Eventually, a site

graph can be constructed as an abstract representation of the C-free-space. During the

entire process, stepwise collision tests are carried out in order to detect whether the point

is running into a C-obstacle. The algorithm was implemented using a moving polygonal

object and the environmental polygonal obstacles in the 2D case.

Our work di�ers from the previous research in various ways. Rather than working

on the moving polygonal object in a 2D case, we consider motion planning for robot

manipulators in 3D workspaces. We employ a complete domain-dependent rule base
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to guide path searching. The number and depth of local minima are reduced through

a number of subgoals randomly or intentionally generated in parallel processing. In

addition, we utilize some heuristics to reduce the number of collision detections instead

of conducting stepwise collision tests during planning.

Qin [QCM95] presents a solid modelling scheme which is useful for e�cient 3D

path planners. The scheme makes use of the enhanced version of Gilbert, Johnson

and Keerthi's minimum distance algorithm ([GJK88]). This provides an e�cient proto-

type to be tailored to collision detection and to distance computation respectively. We

have adopted this scheme in this work. In addition, other heuristics for speeding up

collision detection are also being investigated by Henrich and Cheng [HC92], who intro-

duced hierarchical representations of both obstacles and the robot working favourably

for complex environments.

Kavraki and Latombe [KL94] proposed an approach concerning the randomized pre-

processing of the con�guration space to built up a global network of connected con�gura-

tions. The idea is to use generate-and- test method to construct a network of randomly

but well selected collision free con�gurations. However, the algorithm requires that

each generated con�guration be checked to see if it is in C-free space, which could be

computationally very expensive.

Challou et al. [CGK93] and [CGKO95] presented a parallel motion planner using

the parallel formulation of a randomized heuristic search. The algorithm is based on the

parallelisation of the randomized robot planning method proposed by [BL91].

Henrich [Hen96] presented an extensive overview of the parallel approaches to robot

motion planning. The parallel approaches are divided into four classes: grid-based,

graph-based, potential �eld, and mathematics programming. The method presented in

this report can be generally classi�ed as grid-based.

3 Outline of the Approach

Our work focuses on developing an e�ective approach towards solving the path plan-

ning problem for industrial robot arms operating in a reasonably cluttered environment.

This means that the workspace of the robot arm is not maze-like. So it is basically
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assumed that the path planning problem has a number of acceptable solutions, though

the assumption is not compulsory.

The approach is applied in the discretized con�guration space of the robot arm.

The C-space needs not be represented explicitly with the support of a fast collision

test and geometric reasoning. This avoids problems of computational complexity and

memory requirement for the transformation between the robot worldspace and the C-

space. Given the start and goal con�gurations, a conventional search (such as depth-�rst

search, best- �rst search, etc.) within the C-free space will readily involve a great deal of

backtracking, and will therefore require a large amount of computation. The main reason

is that the search space is normally very large and has some local minima with respect

to some heuristic function of con�guration parameters. One of the human-inspired

path�nding strategies is to divide the whole complicated search task into several simpler

sub- tasks by setting up proper subgoals between the start and the goal con�gurations.

However, the problem of how to set up subgoals properly is usually not trivial, and it

may help to make use of the generalized Voronoi diagrams (GVD) of the robot's free

workspace or other global information.

Figure 1 shows an example of a path search with dead-end obstacles (cul-de-sac type).

It illustrates that while the direct search from the start to the goal, or vice verca, is not

cheap, an indirect search with some via points may be very helpful. This phenomenon,

along with the availability of parallel processing, encourages us to come up with a straight

randomized parallel search algorithm. The general idea of this algorithm is to randomly

generate a number of subgoals in the discretised C-free space. Then, parallel searching

with each subgoal attempts to �nd a path connecting the initial con�guration with

the goal via the subgoal con�guration. The purpose of the approach is for the motion

planning system to cope with some deep local minima (see Figure 1). In this sense, it is a

two-phase search which tries to �nd a subpath connecting the initial with the randomly

generated subgoal and a subpath connecting the subgoal with the �nal goal. The reasons

for not using a three- or multi- phase search are (1) that a path from the initial to the

goal via more than two randomly generated subgoals will usually be longer in length and

(2) the planner may correspondingly take a longer time than that in a two phase search

(see Section 5). But we claim that a three- or multi-phase search will be very e�ective

6



s

g

s

g

(1) (2)

x v

Figure 1: An illustrative diagram for path search. (1) Searching for a path is costly no matter whether

from the start to the goal or vice versa. (2) With a via point v, the combination of searching from v to the

start and to the goal, respectively, is much easier.
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Figure 2: Compared to the two 2-phase search paths: s- v1-g and s-v2-g, the 3-phase search may result in

paths: s-v2- v1-g or s-v1-v2-g, both of which are longer than the 2-phase search results ( Arbitrary obstacles

are omitted for clarity).
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to help the robot avoid some very deep local minima if all subgoals are generated under

the guidance of some global information. For the current implementation, we restrict

ourselves to the two-phase randomized parallel search. Experiments have shown that

the motion planning system works well for a 6-dof robot arm in a reasonably cluttered

workspace (see Figure 7).

Our motion planning simulation system consists of several modules. One module,

called the master module, is to build up the robot and the workspace model with the

help of a geometric modeller, known as ROBMOD ([CA88]). Another module for visual-

isation, known as the display module, has been directly imported from the OxSim robot

simulation system. The master module is to send information concerning the planned

path to the display module for updating the robot position. Another important module,

called the path�nd module, is designed to connect to the master module. The master

module provides data concerning the initial and the goal con�gurations to the path�nd

module. In return, the latter reports path information to the former. The path�nd

module is designed to search a path for the given initial and goal con�gurations in par-

allel. Each task within the module is to �nd a path connecting the initial con�guration

to the goal via a randomly generated subgoal. Whenever such a path has been found by

one of the parallelly running processes, the path will be reported to the master module

and then all tasks will be terminated immediately. The interrelation of the modules is

shown in Figure 3.

3.1 Sequential search

For each path search task from one con�guration to the other, we have employed an

expert system method to perform path searching with the guidance of a set of rules.

We use CLIPS 2 as the expert system shell, which is embeded as a module into C++

programs. For generality, the following discussion is for a general n-dof robot arm.

Let Cn be the n-dimension con�guration space. In order to reason and search, we dis-

cretize the con�guration space Cn into a rectangloid grid GCn (with appropriate modular

2C Language Integrated Production System, developed in NASA.
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Similar to [Lat91], for a given point x 2 Zn, its p- neighbors (1 � p � n) are

de�ned as all points in Zn having at most p coordinates di�ering from those of x by the

amount of exactly one increment in absolute value. That is, x has six 1- neighbors in

3D and 2n 1-neighbors in n dimensional space.

In our reasoning system, path planning considers only the 1-neighbors of the current

con�guration as candidates to move to in each step. Then a number of rules are designed

to select an optimal candidate according to the following cost function P:

P(q) =

8>>>>><
>>>>>:

+1 if q does not satisfy constraints (1)

+1 if q is not in C-free space

f(q) otherwise

where f(q) must be de�ned to be decreasing as q approaches the goal con�guration

ggoal and f(ggoal) = 0. In this sense, f(q) is similar to an attractive force in the arti�cial

potential method [Lat91], the force which draws the robot towards the goal con�guration.

Therefore, we can de�ne f(q) as

f(q) =
nX
i=1

!i((F(qgoal))i � (F(q))i)
2 (3)

where ! = (!1; !2; :::!n) is a weight vector with !i > 0, which is determined heuristically

using the model of the robot manipulators.

With f(q) de�ned in (3), the symbolic reasoning can be directly performed since

reasoning at this level can be conducted in Zn.

In support of some procedural geometrical primitives, a number of rules have been

introduced up to guide the search for a path in GCn. In addition to rules for initialisation,

for the detection of goal reaching and for the generation of candidates for the next

movement, there are several other rules devoted to decision-making for the next step.

At each step, all the candidates which have been previously visited will be removed �rst;

then the candidate with the lowest cost with respect to P(q) is checked to see if it is

out of the robot workspace or in C- obstacles. If it is in the C-free space and within

the robot workspace, the candidate will be accepted and all others removed; otherwise,

it will be removed and the next best candidate will be checked. Provided the selection

procedure results in an empty set of candidates, a rule will force the search to backtrack.

For more details on the rule-based search, refer to [QC96]. In this implementation, we

have used 12 rules with the support of 8 procedural geometrical primitives.
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In addition to the rule-based search method, other conventional search algorithms,

such as A� search, Iterative Deepening A�, or other depth-�rst search ([KGGK94]), may

be used as an alternative. But these search mechanisms are usually either computation-

ally expensive or require high memory, which is unfavourable in motion planning.

3.2 Parallel search

Given the start and goal con�gurations, the sequential search algorithm alone may take

too much computation time to �nd a path. To improve the e�ciency of the path

search, we take advantage of parallel processing to conduct the path search using the

randomized parallel search algorithm. In the example shown in Figure 4, a number of

processes concurrently conduct a search for a path connecting the start and the goal

con�gurations. Each process generates one subgoal randomly in the C-free space and

then starts searching for a subpath from the subgoal to the start con�guration and for

another subpath from the subgoal to the goal con�guration. The �nal path is the proper

concatenation of the two subpaths. Whenever a process returns such a �nal path, all

search processes will be terminated.

The termination criterion used here is very simple and easy to implement under the

PVM. Other termination criteria, such as imposing a time bound or the cost limit of an

incumbent path in terms of length, may not work well for our algorithm, because time

and path length are hard to be estimated in advance.

For each process, the search always starts from the subgoal to the start and to the

goal con�gurations, rather than from the start con�guration to the subgoal and then

from the subgoal to the goal con�guration or vice versa. It is out of concern that if the

start or the goal con�guration is in a deep local minimum, it can be hard to jump out

of such a minimum by starting the search from the start or the goal con�guration even

with help of subgoals. In this case, it may be made easier by searching from a subgoal to

the start and the goal con�gurations. This e�ect is especially exploited by the parallel

algorithm where multiple subgoals are used.

As we know, the �nal path obtained in this method tends not to be optimal even if

each subpath is optimal. But we claim that it is probabilistically optimal provided that

the number of random subgoals tends to be in�nite.

11



( 4 )

( 1 ) ( 2 )

( 3 )

s

g

s

g

s

g

s

g

Figure 4: An illustrative diagram of the randomized parallel search in the 2D case for simplicity. (1)

Randomly generated subgoals in C-free space. (2) Each process conducts a search for a subpath from the

subgoal to the start con�guration. (3) After �nishing the search at step 2, each process starts searching for

another subpath from the subgoal to the goal con�guration. (4) The �rst path a process returns will be

accepted as the �nal path and then all search processes will be terminated, though some processes are on

the way of searching.
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In some situation with or without sparsely-cluttered obstacles, the search for a path

from the start to the goal con�guration or vice versa may be more e�cient. To make the

method more robust, two extra processes are designated to conduct the search directly

from the start to the goal con�guration and from the goal to the start con�guration

respectively, while other processes conduct the search through subgoals. Therefore, it

holds that the time for planning with one process is not less than that with multi-

processes.

Overall, our approach to parallel processing has some advantages:

� no heavy communication load. The only communications are for problem broad-

cast and solution collection between the master module and the path�nd module.

� no load balancing necessary, since all search processes will be terminated whenever

a process returns a �nal path.

� independent of parallel architecture, such as processor interconnection topologies.

� low memory space requirements, as each sequential search is like a depth-�rst

search with proper backtracking.

4 Heuristics

Human beings are very good at using heuristics in everyday life. Employing proper

heuristics can generally provide a short-cut in problem- solving. This is the same in

robot motion planning systems. In this section, we will introduce some heuristics that

have been used in our algorithm.

4.1 Discretisation resolution

As previously mentioned, the motion planning takes place in a discretised con�guration

space of the robot manipulator. The resolution settlement of discretisation is also an

important issue. There is a trade-o� in the granularity of discretisation or resolution:

too �ne will increase the search space exponentially and too coarse may result in failing

to �nd a path even if there one exists.
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We have adopted a heuristic to help set up the discretisation resolution of the C-space.

Instead of having a uniform resolution along each con�guration coordinate, we set up the

resolution along each coordinate di�erently by estimating the maximum movements of

the robot's ende�ect at each step the robot moves along the coordinate. The resolution

should be so �ne that the maximum movement of the robot ende�ect is not more than

a pre-set distance at each step the robot moves along the coordinate. In this way,

generally, the nearer a joint is to the base, the �ner the discretisation resolution is for

the corresponding joint angle.

Formally, for the i-th coordinate qi of the C-space, let Ni be the number of intervals

along qi. Then,

Ni = d
qmax

i
� qmin

i

��i
e

and

��i = 2arcsin(
MaxMove

2l
) ;

where qmax

i
and qmin

i
are the limits of joint motions (see Formula (1) ), l is the length

between the center of the i-th joint to the farthest point the ende�ect can reach, and

MaxMove is a pre-set distance the robot moves along the coordinate at one step (see

the picture).

MaxMove

l

∆θ

4.2 Prediction of maximum movement

Geometric reasoning plays an important role in motion planning. [LP87] used it to build

up the approximation of the con�guration space by calculating the maximummovement

of links. Similarly, [Bee92] used the idea to provide analytical formulae for a speci�c

robot model to reason about the occupancy of C-obstacles.
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This heuristic is used to improve the rule-based sequential search algorithm by min-

imizing the number of collision detections. As introduced in x 3.1, the rule-based search

performs a collision test at least once during each movement step. So, even in the ex-

treme case that there is no obstacle around, the search still must conduct unnecessary

collision tests at each step along the line connecting the start and the goal con�gura-

tions. To cope with the problem, we make use of a heuristic called prediction of maximum

movement.

The idea of the heuristic is to utilize proximity information in path searching rather

than simply conducting collision tests at each step. As we know, the movement of the

robot ende�ect is not more than the pre-set MaxMove at each step that the robot

moves along any one of the coordinate axis directions of the C-space. This also implies

that the movement of any other points on the robot arm is not more than MaxMove

at each step. Let d be the minimum distance between the robot and obstacles around.

Let FreeSteps be

FreeSteps = b
d

MaxMove
c :

Then, we can conclude that the robot arm is ensured to be collision-free for FreeSteps

consecutive steps. This helps release the searching from collision tests for FreeSteps

steps. Figure 5 shows an example with FreeSteps = 3.

5 Experimental Results

The motion planning system is implemented in C++ with the embedded rule- based

expert system. Experiments have been carried out on a parallel virtual machine of a

cluster of SGIs and SUN4 workstations. The number of machines or processors available

is limited (up to 45 workstations). In addition, the heterogeneneous machines range from

SUN Sparc classic to Sparc20 and from SGI IRIX5.3 R3000 to IRIX5.3 R4000. In this

section, we will present some experimental results and show the performance of the

planning system with some examples.

Due to the randomness of our parallel algorithm, the time taken to solve one problem

may vary more or less from one run to another3. All the data presented in this section

3Under the PVM, other users on the network may also a�ect the experimental results. But the
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Figure 5: An illustration of using the heuristic of prediction of maximummovement with FreeSteps = 3.

(1) The arm's current con�guration. (2) The arm is ensured to be collision-free while moving along �1 for 3

consecutive steps in either the positive or negative direction (with �2 �xed). (3) Similar as the above with

�1 and �2 exchanged. (4) The arm is collision-free while moving along the coordinate axis (either �1 or �2)

directions of the C- space for 3 consecutive steps.
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Figure 6: The diagram of the kinematic description of the 6-dof robot model.

are calculated by taking the mean value of 10 numbers which are selected from 12

experimental results by deleting the maximum and the minimum values, so that the

data collected can be more representative.

In the experiment, we used a 6-dof robot manipulator of PUMA 200 type as the robot

model. Figure 6 shows the kinematic description of the model. In our experiments on a

SGI machine of IRIX5.3 R4000, it takes 3.4 ms to modify the robot from one con�gura-

tion to another, and averagely about 0.435 ms to conduct a single collision detection for

the case shown in Figure 7. The discretisation resolution has been set through the heuris-

tics (see Section 4), so that the joint i of the robot moves ��i at each movement step,

where (��0;��1;��2;��3;��4;��5) = (2:23�; 2:23�; 3:47�; 6:88�; 6:88�; 9:56�). The weight

vector ! for the cost function f(q) in Formula (3) is set to be (6; 5; 4; 3; 2; 1), which gives

higher priority to the �rst few joints.

Experiments have also shown that employing the heuristic of prediction of maximum

movement improves the performance of the planning system. In the example shown in

Figure 7, averagely, the planning takes about 22.69 seconds and conducts 622 collision

tests without using the heuristic. Nevertheless, it only takes about 9.64 seconds and

conducts 371 collision tests by use of the heuristic on the PVM of a cluster of ten SUN4

and four SGI machines.

experiments took place at a time when this e�ect could be mimimal.
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(a) (b)

(c) (d)

Figure 7: Snapshots of the robot in motion. The planning takes 9.64 seconds averagely on the PVM of

a cluster of ten SUN4 and four SGI machines. (a) The robot is in the initial con�guration, (b) and (c) the

robot is searching its way towards the goal, (d) the arm reaches the goal.

18



(a) (b)

(c) (d)

Figure 8: The robot arm is in motion. The planning takes 32.96 seconds averagely on PVM of a cluster

of 41 SUN4 and 4 SGI machines.

Another example shown in Figure 8 is to �nd a path for the robot arm in the

workspace occupied with 15 randomly sized and located rectangular obstacles. It takes

32.96 seconds on the PVM of a cluster of available 41 SUN4 and 4 SGI machines. Further

experiments show that the e�ciency increases with increasing number of processors (see

Figure 9). Figure 10 shows that the more subgoals employed, the better a path in length

is found in the example which is shown in Figure 8. Nevertheless, for this example, there

is not much di�erence between the ways of searching from subgoals to the start and from

the start to the subgoals for the �rst subpath. The reason is that the start con�guration

of the robot has a relatively open neighborhood of the C-free-space.

As we know, speedup is de�ned as the ratio of the time taken to solve a problem on

a single processor with the best sequential algorithm to the time needed to solve the

same problem on a parallel machine with identical processors. The performance of our
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Figure 9: The illustrative graph of the performance of the randomized parallel planning algorithm (each

process is assigned to one processor).

Figure 10: The more subgoals employed, the better a path in length can be found (each process deals

with one subgoal).
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Figure 11: The illustrative graph for speedup of the algorithm for one example.

algorithm on the example shown in Figure 8 implies the speedup achieved is as shown

in Figure 11, though the experiments are not conducted on identical processors and the

time taken to �nd a path on a single processor may not be optimal.

Figure 12 gives a further example for �nding a path for the robot arm in the

workspace occupied with 20 randomly sized and located rectangular obstacles. It takes

34.81 seconds on the PVM of a cluster of available 41 SUN4 and 4 SGI machines.

6 Conclusions

This report presents a novel approach to parallel motion planning for robot manipulators

in 3D workspace. The approach is based on the randomized parallel search algorithm

and focuses upon solving the path planning problem for industrial robot arms working

in a reasonably cluttered workspace. The path planning is conducted in the discretized

con�guration space which needs not to be represented explicitly. The general idea of the

randomized parallel search algorithm is to randomly generate a number of subgoals in

the discretised C-free space and then do a parallel search with each subgoal. A path is

then found connecting the initial con�guration to the goal via the subgoal con�guration.

Searching for subpaths connecting a subgoal to the start and the goal con�guration is
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(a) (b)

(c) (d)

Figure 12: The robot arm is in motion. The planning takes 34.81 seconds averagely on PVM of a cluster

of 10 SUN4 and 4 SGI machines.
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based on a rule-based sequential search method.

The implementation is carried out on a cluster of SUN4 workstations and SGI ma-

chines under the support of the parallel virtual machine. The experimental results have

shown that the approach works well for a 6-dof robot arm in a reasonably cluttered envi-

ronment, and that computation with multi-processors increases the e�ciency of motion

planning signi�cantly.

However, the method is not recommendable for general redundant robot manipula-

tors, as a too large search space may result in high computation time. In addition, the

method of the current implementation makes use of randomly generated subgoals for a

two-phase parallel search. This may not work well in a very complex workspace, such

as a maze-like one. The major problem lies in the fact that no global information is

used for subgoal selection. An extension of the work can be to investigate the method

of the subgoal selection under the support of global topological information of the en-

vironment, for example, using the generalized Voronoi diagrams or information derived

from arti�cial potential �elds in the workspace, to improve the robustness and e�ciency

of the method.

Since the planning performs only on-line collision tests with proper proximity infor-

mation without using pre-computed information, the approach is suitable for planning

problems with multirobot or dynamic environments. Therefore, in addition to the case

of dynamic environments, one extension of the work can be to exploit motion planning

for two robot arms working in a shared workspace. The issue of coordinating the two

arms can be solved by integrating time scheduling into our current algorithm for path

searhing.
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