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Abstract

Modula-2*, an extension of Modula-2, is a program-
ming language for writing highly parallel programs in
a machine-independent, problem-oriented way. The
novel attributes of Modula-2* are that programs are
independent of the number of processors, independent
of whether memory is shared or distributed, and inde-
pendent of the control modes (SIMD or MIMD) of a
parallel machine.

This article briefly describes Modula-2* and dis-
cusses 1ts major advantages over the data-parallel pro-
gramming model. We also present the principles of
translating Modula-2* programs to MIMD and SIMD
machines and discuss the lessons learned from our first
compiler, targeting the Connection Machine. We con-
clude with important architectural principles required
of parallel computers to allow for efficient, compiled
programs.

1 Introduction

Highly parallel machines with thousands and tens
of thousands of processors are now being manufac-
tured and used commercially. These machines are of
rapidly growing importance for high-speed computa-
tion. They have also initiated a major shift within
Computer Science from the sequential to the parallel
computer. One of the major problems we face in the
use of these new machines is programmability: How
to write, with no more than ordinary effort, programs
that bring the raw power of a parallel computer to
bear on a problem.

Two major approaches to the programming prob-
lem can be distinguished: The first is to automati-
cally parallelize sequential software. Although there
is overwhelming economic justification for it, this ap-
proach will meet with only limited success in the short
to medium term (see, for instance, [18]). The goal of
automatically producing parallel programs can only,
if ever, be achieved by program transformations that

start with the problem specification and not with a se-
quential implementation. In a sequential program, too
many opportunities for parallelism have been hidden
or eliminated.

The second approach is to write programs that
are explicitly parallel. We claim that only minor ex-
tensions of existing programming languages are re-
quired to express highly parallel programs. Thus, pro-
grammers will need only moderate additional training,
mainly in the area of parallel algorithms and their
analysis. This area, fortunately, is well developed;
see for instance textbooks [1] and [5]. In compiler
technology, however, new techniques must be found
to map machine-independent programs to existing ar-
chitectures, while at the same time parallel machine
architecture must evolve to efficiently support the fea-
tures that are required for problem-oriented program-
ming styles.

We take the approach of expressing parallelism ex-
plicitly, but in a machine-independent way. In sec-
tion 2 we analyze the problems that plague most par-
allel programming languages today. Section 3 then
presents Modula-2*, an extension of Modula-2 [20], for
the explicit formulation of highly parallel programs.
The extension is small and easy to learn, but pro-
vides a programming model that is far more general
and machine independent than other proposals. Next,
we discuss compilation techniques for targeting MIMD
and SIMD machines and report on experience with
our first Modula-2* compiler [8] for the Connection
Machine. We conclude with properties of parallel ma-
chine architectures that would improve the efficiency
of high-level parallel programs.

2 Related Work

Most current programming languages for parallel
and highly parallel machines, including *LISP, C*,
MPL, VAL, Sisal, Occam, Ada, FORTRAN90, Blaze,
Dino, and Kali [10, 9, 14, 19, 2, 12, 11, 15, 7] suffer

from some or all of the following problems:



e Whereas the number of processors of a parallel
machine is fixed, the problem size is not. Be-
cause most of the known parallel languages do
not support the virtual processor concept, the
programmer has to write explicit mappings for
adapting the process structure of each program
to the available processors. This is not only a te-
dious and repetitive task, but also one that makes
programs non-portable.

e Co-locating data with the processors that operate
upon the data is critical for the performance of
distributed memory machines. Poor co-location
results in high communication costs and poor per-
formance. Good co-location is highly dependent
on the topology of the communication network
and must, at present, be programmed by hand.
It is a primary source of machine dependence.

e All parallel machines provide facilities for inter-
process communication; most of them by means
of a message passing system. Nearly all paral-
lel languages support only low level send and get
communication commands. Programming com-
munication with these primitives, especially if
only nearest neighbor communication is available,
is a time consuming and error prone task.

e There are several control modes for parallel ma-
chines,; including MIMD, SIMD, data-flow, and
systolic modes. Any extant, parallel language tar-
gets exactly one of those control modes. What-
ever the choice, it severely limits portability as
well as the space of solutions.

Modula-2* provides solutions to the basic problems
mentioned above. The language abstracts from the
memory organization and from the number of physi-
cal processors. Mapping of data to processors is per-
formed by the compiler, optionally supported by high-
level directives provided by the programmer. Com-
munication is not directly visible. Instead, reading
and writing in a (virtually) shared address space sub-
sumes communication. A shared memory, however, is
not required. Parallelism is explicit, and the program-
mer can choose among synchronous and asynchronous
execution mode at any level of granularity. Thus, pro-
grams can use SIMD-mode where proper synchroniza-
tion is difficult, or use MIMD-mode where synchro-
nization is simple or infrequent. The two modes can
even be intermixed freely.

The data-parallel approach, discussed in [6] and ex-
emplified in languages such as *LISP, C*, and MPL
is currently quite successful, because it has reduced

machine dependence of parallel programs. Data-
parallelism extends a synchronous, SIMD model with
a global name space, which obviates the need for ex-
plicit message passing between processing elements.
It also makes the number of (virtual) processing ele-
ments a function of the problem size, rather than a
function of the target machine.

The data-parallel approach has three major ad-
vantages: (1) It is a natural extension of sequential
programming. The only parallel instruction, a syn-
chronous forall statement, 1s a simple extension of
the well known for statement and is easy to under-
stand. (2) Debugging data-parallel programs is not
much more difficult than debugging sequential pro-
grams. The reason is that there is only a single lo-
cus of control, which dramatically simplifies the state
space of a program compared to that of an MIMD
program with thousands of independent loci of con-
trol. (3) There is a wide range of data-parallel al-
gorithms. Most parallel algorithms in textbooks are
data-parallel (compare for instance [1, 5]). According
to Fox [4], more than 80% of the 84 existing, paral-
lel applications he examined fall in the class of syn-
chronous, data-parallel programs. Furthermore, sys-
tolic algorithms as well as vector-algorithms are spe-
cial cases of data-parallel algorithms.

But data-parallelism, at least as defined by cur-
rent languages, has some drawbacks: (1) Tt is a syn-
chronous model. Even if the problem is not amenable
to a synchronous solution, there is no escape. In par-
ticular, parallel programs that interact with stochastic
events are awkward to write and run inefficiently. (2)
There is no nested parallelism. This means that once
a parallel activity has started, the involved processes
cannot start up additional, parallel activity. A paral-
lel operation simply cannot expand itself and involve
more processes. This property seriously limits parallel
searches in irregular search spaces, for example. The
effect is that data-parallel programs are strictly bi-
modal: They alternate between a sequential and a par-
allel mode, where the maximal degree of parallelism is
fixed once the parallel mode is entered. To change the
degree of parallelism, the program first has to stop all
parallel activity and return to the sequential mode. (3)
The use of procedures to structure a parallel program
in a top-down fashion is severely limited. The problem
here is that it is not possible to call a procedure in par-
allel mode, when the procedure itself invokes parallel
operations (this is a consequence of (2)). Procedures
cannot allocate local data and spawn data parallel op-
erations on 1t, unless they are called from a sequential
program. Thus, procedures can only be used in about



half of the cases where they would be desirable. They
also force the use of global data structures on the pro-
grammer.

When designing Modula-2*, we wanted to preserve
the main advantages of data-parallel languages while
avoiding the above drawbacks. The following list
contains the main advances of Modula-2* over data-
parallel languages.

e The programming model of Modula-2* is a strict
superset of data-parallelism. It allows both syn-
chronous and asynchronous parallel programs.

e Modula-2* is problem-oriented in the sense that
the programmer can choose the degree of paral-
lelism and mix the control mode (SIMD-like or
MIMD-like) as needed by the intended algorithm.

e Parallelism may be nested at any level.

e Procedures may be called from sequential or par-
allel contexts and can generate parallel activity
without any restrictions.

e Modula-2* is translatable effectively for both
SIMD and MIMD architectures.

3 The Language Modula-2%*

Modula-2 has been chosen as a base for a paral-
lel language because of its simplicity. There are no
reasons why similar extensions could not be added
to other imperative languages such as FORTRAN
or ADA. The necessary extensions were surprisingly
small. They consist of synchronous and asynchronous
versions of a forall statement, plus simple, optional
declarations for mapping array data onto processors
in a machine independent fashion. An interconnec-
tion network is not directly visible in the language. We
assume a shared address space among all processors,
though not necessarily shared memory. There are no
explicit message passing instructions; instead, reading
and writing locations in shared address space subsume
message passing. This approach simplifies program-
ming dramatically and assures network independence
of programs. The burden of distinguishing between lo-
cal and non-local references; and substituting explicit
message passing code for the latter, is placed on an
(optimizing) compiler. The programmer can influence
the distribution of data with a few, simple declara-
tions, but these are only hints to the compiler with no
effect on the semantics of the program whatsoever.

3.1 Overview of the forall statement

The forall statement creates a set of processes that
execute in parallel. In the asynchronous form, the in-
dividual processes operate concurrently, and are joined
at the end of the forall statement. The asynchronous
forall simply terminates when the last of the created
processes terminates. In the synchronous form, the
processes created by the forall operate in unison until
they reach a branch point, such as an if or case state-
ment. At branch points, the set of processes partitions
into two or more subsets. Processes within a single
subset continue to operate in unison, but the subsets
are not synchronized with respect to each other. Thus,
the union of the subsets operate in MSIMD! mode. A
statement causing a partition into subsets terminates
when all its subsets terminate, at which point the sub-
sets rejoin to continue with the following statement.

Variants of both the synchronous and asynchronous
form of the forall statement have been introduced by
previously proposed languages, such as Blaze, C* Oc-
cam, Sisal, VAL, *LISP [11, 17, 14, 9, 10, 16] and oth-
ers [3]. Note also that vector instructions are simple
instances of the synchronous forall.

Nomne of the languages mentioned above include both
forms of the forall statement, even though both are
necessary for writing readable and portable parallel
programs. The synchronous form is often easier to
handle than the asynchronous form, because it avoids
synchronization hazards. However, the synchronous
form may be overly constraining and may lead to poor
machine utilization. The combination of synchronous
and asynchronous forms in Modula-2* actually per-
mits the full range of parallel programming styles be-
tween SIMD and MIMD.

The syntax of the forall is as follows.?

FORALL ident ”:” SimpleType IN (PARALLEL | SYNC)
StatementSequence

END.

The identifier introduced by the forall statement is
local to the statement and serves as a run-time con-
stant for every process created by the forall. Sim-
pleType is an enumeration or a (sub-)range. The
forall creates as many processes as there are elements
in StmpleType and initializes the run-time constant

IMSIMD: Multiple SIMD. Few but more than one instruc-
tion streams operate on many data streams. A compromise
between SIMD and MIMD.

?We use the EBNF syntax notation of the Modula-2 language
definition, with keywords in upper case, | denoting alternation,
[...] optionality, and (...) grouping of the enclosed sentential
forms.



of each process to a unique value in StmpleType.
The created processes all execute the statements in
StatementSequence.

3.2 The asynchronous forall

The created processes execute StatementSequence
concurrently, without any implicit, intermediate syn-
chronization. The execution of the forall terminates
when all created processes have finished. Thus, the
asynchronous forall contains only one synchroniza-
tion point at the end. Any additional synchronization
must be programmed explicitly with semaphores and
the operations WAIT and SIGNAL.

In the following example, an asynchronous forall
statement implements a vector addition.

FORALL i:[0..N-1] IN PARALLEL
z[i] := x[i] + y[i]
END

Since no two processes created by the forall access
the same vector element, no temporal ordering of the
processes is necessary. The N processes may execute
at whatever speed. The forall terminates when all
processes created by it have terminated.

A more complicated example, illustrating recur-
sive process creation, is the following. Procedure
ParSearch searches a directed, possibly cyclic graph
in parallel fashion. It can best be understood by
comparing it with depth-first-search, except that
ParSearch runs in parallel. It starts with a root of
the graph and visits nodes in the graph in a parallel
(and largely unpredictable) fashion.

PROCEDURE ParSearch( v: NodePtr );
BEGIN
IF Marked( v ) THEN RETURN END;
FORALL s:[0..v".successors-1] IN PARALLEL
ParSearch( succ(v, s) )
END;
visit( v );
END ParSearch;

The procedure ParSearch simply creates as many
processes as a given node has successors, and starts
each process with an instance of ParSearch. Before
visiting a node, ParSearch has to test whether the
node has already been visited and marked. Since mul-
tiple processes may reach the same node simultane-
ously, testing and setting the mark is done in a criti-
cal section (implemented with a semaphore associated
with each node) by the procedure Marked. If the
graph is a tree, no marking is necessary.

3.3 The synchronous forall

The processes created by a synchronous forall ex-
ecute every single statement of StatementSequence in
unison. To illustrate this mode, its semantics for se-
lected statements is described in some detail below:

e A statement sequence is executed in unison by ex-
ecuting all its statements in order and in unison.

e In the case of branching statements such as IF
C THEN SS1 ELSE SS2 END, the set of participat-
ing processes divides into disjoint and indepen-
dently operating subsets, each of which executes
one of the branches (SS1 and SS2 in the exam-
ple) in unison. Note that in contrast to other
data-parallel languages, no assumption about the
relative speeds or relative order of the branches
may be made. The execution of the entire state-
ment terminates when all processes of all subsets

have finished.

e In the case of loop statements such as WHILE C
DO SS END, the set of processes for any iteration
divides into two disjoint subsets, namely the ac-
tive and the inactive ones (with respect to the
loop statement). Initially, all processes entering
the loop are active. Every iteration starts with
the synchronous evaluation of the loop condition
C by all active processes. The processes for which
C evaluates to FALSE become inactive. The rest
forms the active subset which executes statement
sequence SS in unison. The execution of the whole
loop statement terminates when the subset of ac-
tive processes becomes empty.

Hence, synchronous parallel operation closely re-
sembles the lock-step operation of SIMD machines
with an important generalization for parallel branches.

As an example, consider the computation of all
postfix sums of a vector V of length N. The pro-
gram should place into V[i] the sum of all elements
VI[i...V[N —1]. A recursive doubling technique as
in reference [6] computes all postfix sums in O(log N)
time, where N 1s the length of the vector.

Figure 1 illustrates the process. The program op-
erates by computing partial sums of length s = 27
where j counts the iterations. The inner forall creates
N processes. Note that there is a one-to-one mapping
between process numbers and elements of the vector.
In each iteration, the length of the partial sums is dou-
bled by parallel summation of neighboring sums. The
if statement inside the forall disables all processes
that must not participate in the computation during
a given iteration.



VAR V : ARRAY[O ..
VAR s : CARDINAL;
BEGIN
s :=1;
WHILE s < I DO
FORALL i:[0..m-1] IN SYNC
IF (i+s)<N THEN
V[il:= V[il+V[i+s]
END
END;

U-1] OF REAL;

Figure 1: Computing postfix sums of a vector

3.4 Allocation of array data

Co-location of data with the processors that access
the data is important for parallel machines without
uniform access time to memory locations. Poor align-
ment of data and processors may cause excessive com-
munication overhead. We therefore provide a simple,
machine-independent construct for controlling the al-
location of array data. This construct is optional and
does not change the meaning of a program; it affects
only performance. A compiler for a machine with uni-
form memory access time may ignore the construct.

The allocation of array data to processors is con-
trolled with one allocator per dimension. The modi-
fied declaration syntax for arrays is as follows:

ArrayType = ARRAY SimpleType [allocator]
{7, SimpleType [allocator]} OF type.
= LOCAL | SPREAD | CYCLE | RANDOM |
SBLOCK | CBLOCK.

allocator

Array elements whose indices differ only in dimen-
sions that are marked LOCAL are associated with the
same processor. This facility is used to avoid distribu-
tion of data in a given dimension.

Dimensions with allocator SPREAD are divided into
segments, one for each of the available processors. A
vector with n elements is assigned to P processors by
allocating a segment of length [n/P] to each proces-
sor. While utilizing all available processors, it mini-
mizes the cost of nearest-neighbor communication.

Dimensions with allocator CYCLE are distributed in
a round-robin fashion over the available processors.
Given P processors, the elements of a vector whose
indices are identical modulo P are associated with the
same processor. In contrast to SPREAD, CYCLE max-
imizes the cost of nearest-neighbor communication:
neighboring array elements are always in different pro-
cessors, leading to better processor utilization if a par-
allel algorithm operates on subsegments of a vector at
a time.

Dimensions with allocator RANDOM are distributed
randomly over the available processors. In contrast to
CYCLE, RANDOM leads to a better processor utilization
if a parallel algorithms accesses the dimension in a
random pattern.

If either SPREAD, CYCLE, or RANDOM apply to sev-
eral successive dimensions, then these dimensions are
“unrolled” into one pseudo-vector with a length that
is the product of the lengths of the individual dimen-
sions. This scheme idles fewer processors than apply-
ing SPREAD, CYCLE, or RANDOM to individual dimen-
sions.

Allocators SBLOCK and CBLOCK apply SPREAD and
CYCLE resp. to each dimension individually. For two
successive dimensions, SBLOCK has the effect of creat-
ing rectangular subarrays and assigning those to the
available processors. With this arrangement, nearest-
neighbor communication in all dimensions is best sup-
ported when the interconnection network can be con-
figured into the same number of dimensions as the
arrays.

CBLOCK for two dimensions also creates two-
dimensional subarrays, but the rows and columns of
these subarrays are then distributed independently
in a round-robin fashion over the processor grid.
Again, SBLOCK minimizes nearest-neighbor communi-
cation, while CBLOCK allows high processor utilization
if smaller subarrays are processed in parallel.

4 Implementing Modula-2*

When discussing the principles of compiling
Modula-2*, we first present the more difficult case of
compiling for MIMD, and then introduce the simpli-
fications for SIMD. The latter have actually been im-
plemented in our CM compiler. Although this first



compiler does not contain sophisticated optimization,
it helped us in understanding the main sources of op-
timizations when compiling for massively parallel ma-
chines.

4.1 Asynchronous forall

4.1.1 Asynchronous forall, MIMD implemen-
tation

A straightforward approach to implementing the
forall is to create the required number of lightweight
processes, or threads. Threads of a forall share the
same program (the enclosed statement sequence), but
have their own stacks. The resulting run-time struc-
ture is a tree of stacks.

On a distributed memory machine, it pays to repli-
cate the entire program to all processors. Code repli-
cation can be accomplished quickly during startup,
either using a broadcast facility or recursive doubling.

The main problems when compiling forall state-
ments are thread creation, thread termination, and
load balancing. All of these problems must be solved
in a parallel fashion. Sequential implementations
would cause a serious bottleneck, and, for algorithms
with fine granularity, result in essentially sequential
programs. Note also that foralls may be nested, so
there may be several new sets of threads being created
simultaneously.

The process reaching a forall, called the spawner,
must create the set of threads prescribed by the forall.
The spawner actually creates only the initial thread of
the forall, called the leader. (A simple optimization
is to let the spawner take on the role of the leader.)
The leader then replicates itself. All threads created
keep replicating themselves again and again, until the
required number is obtained. This method is another
variant of recursive doubling. A small number of pa-
rameters controls the replication. When a thread has
replicated itself a sufficient number of times, it simply
jumps to the beginning of the forall’s code sequence
and begins execution.

Synchronization and thread termination at the
forall’s end follow the same pattern. Each thread
has a semaphore for receiving termination signals from
other threads. A thread that reaches the end of
its forall first waits for termination signals from all
the threads i1t spawned during the replication process,
then signals its creating thread, and destroys itself. If
all n threads of a forall terminate at about the same
time, then the leader learns about the combined ter-
mination in time proportional to O(logn), signals the
spawner, and kills itself (or simply resumes the role of

the spawner).

The problem of load balancing is to distribute
threads over the available processors so that (1) the
load on the processors is equalized, (2) the threads are
co-located with their data, and (3) co-scheduling of
threads within the same forall-instance becomes pos-
sible. Again, a centralized solution must be avoided.
One possibility is for processors to keep a running to-
tal of ready processes and the overall average. The
overall average can be updated periodically (say at
the end of a time-slice) by another recursive doubling
technique in which all processors participate. Newly
created threads are moved between neighboring pro-
cessors depending on the current load in comparison to
the average. Under certain circumstances, migrating
a long-running thread (including its data) to another
processor may be advantageous. In addition, static
compiler analysis can indicate preferred processors for
co-locating data and threads.

Co-scheduling of threads in the same forall is nec-
essary to avoid delays inherent in context swaps when
the threads communicate. Without co-scheduling,
communicating threads may enter a situation where
they execute alternatingly or in co-routine fashion in-
stead of in parallel [13]. Co-scheduling can be ac-
complished by increasing the thread priority with the
nesting depth of foralls, or by providing special mech-
anisms for “task forces”, i.e., for scheduling groups of
threads simultaneously.

Obviously, thread creation, termination, and load
balancing must be as fast as possible. Various opti-
mizations for bulk thread generation are feasible, but
will not be discussed here for lack of space.

The above techniques have not been implemented
in our first compiler, since the CM is a SIMD machine.
However, work has started on a Modula-2* compiler
targeting a Transputer cluster, where the techniques
will be used. We are also exploring special hardware
facilities to speed up these tasks.

4.1.2 Asynchronous forall, SIMD implementa-
tion

The synchronous nature of a SIMD machine, coupled
with the broadcast bus from the front-end, makes
all three of thread creation, termination, and load
balancing operate in constant time or nearly con-
stant time. For generality, assume nested foralls: m
threads each execute a forall statement, each creat-
ing n new threads. Thus, the number of threads to be
created is ¢ = nm. If n is not uniform for all the m
spawners, then a O(logm)-time summation instead of
(constant-time) multiplication must be performed to



compute t.

Once t 1s known, ¢ stacks are created by assigning
to each of p processors a segment of [t = p] stacks.
This operations takes constant time and balances the
load perfectly. Process termination also takes con-
stant time, since there is no synchronization overhead.
However, it may be necessary to provide each thread
with some initial data (such as its number) during
creation. Spreading this information takes again loga-
rithmic time, but as demonstrated by the Connection
Machine, special instructions for spreading data are
so fast that, in practice, they can be regarded as con-
stant.

What remains to be discussed is the scheduling of
instructions. Since the asynchronous forall prescribes
no scheduling of the threads at all, the compiler writer
can choose one that works well on a given SIMD or
MSIMD machine. We describe briefly the implemen-
tation we chose for the Connection Machine (CM). We
assume initially, that the number of available proces-
sors equals the number of threads.

Activity Bits. The central idea of control flow on
SIMD computers i1s deactivation and reactivation of
processors, controlled by an activity bit associated
with each processor. When the activity bit is off, the
processor does not execute the instructions issued by
the front-end. This facility 1s sufficient for simulating
the usual control flow constructs in a parallel context.
All that is needed is a stack of activity bits for each
thread. The top of each activity stack is stored into
the activity bit of a processor. Suitable manipula-
tion of the activity bits turns threads on and off, as
required by the instruction stream issuing from the
front-end.

There are two small extensions of the usual con-
trol flow mechanism for SIMD machines. They are
needed for recursion and for exit and return state-
ments. First, consider parallel loops (i.e., loops within
a forall). On a SIMD-machine, the front-end repeat-
edly issues the instructions for the loop body, until
the termination conditions of all threads executing
the loop are met. The usual technique is to evalu-
ate a thread’s termination condition directly into its
activity bit. Before each iteration, the front-end tests
whether there are any positive activity bits left. If
not, the loop terminates. An exit statement may also
terminate a loop, by turning off the activity bit of the
corresponding thread. However, since an exit state-
ment may be nested several levels deep within a loop,
1t must not only set the topmost activity bit to false,
but all those that have been stacked since the last

loop was entered. Similar considerations apply to the
return statement.
Consider the following example.

FORALL i:[0..N-1] IN PARALLEL
LOOP
IF 0DD(i) THEN EXIT END;
SS
END
END

When control flow reaches the exit, then two ac-
tivity bits have been stacked for each thread: one for
the loop, and one for the if statement. To prevent a
thread that has already executed the exit from being
reactivated after the if, its top {woe activity bits must
be set to FALSE.

Recursion termination is similar to loop termina-
tion. If a recursive call occurs inside a parallel if or
case, then the front-end must sense whether there
is any active thread left in a branch. If not, then
the branch terminates. Without this provision, un-
bounded recursion would ensue.

Parallel Procedure Call. Because procedures can
be called from both sequential and parallel contexts,
each procedure must be compiled twice: Once for ex-
ecuting entirely on the front-end in sequential mode
and a second time for executing within a forall state-
ment. The difference is that in the parallel version, the
procedure call and return instructions are executed
only on the front-end. Thus, we need two types of
stacks: On the front-end, we stack return addresses.
On the stacks associated with the parallel threads, we
store parameters and local data. This division 1s a
direct consequence of SIMD and would even occur if
front-end and parallel processors had the same instruc-
tion set. On the CM, the instruction sets differ, and
so the sequential and parallel versions are completely
different.

Our compiler relies on a minor language restriction:
Procedures may not be nested within each other. The
reason is that up-level addressing is quite expensive.
Since it is in general unpredictable in what context a
procedure is called, each memory access would have
to distinguish at run-time whether it references data
on the front-end or the parallel processors.

Processor  Virtualization. Simulating more
threads than there are processors available is called
processor virtualization. In SIMD mode, it is not pos-
sible to simply create new processes on demand and

let the operating system schedule them. Instead, the



front-end has to issue the instructions implementing
the body of a forall in a loop. The number of iter-
ations of this loop is given by the ratio of threads to
available processors.

The PARIS instruction set of the CM provides au-
tomatic processor virtualization. This means that pro-
cessor virtualization is transparent to the program-
mer. The firmware simulates as many threads as re-
quired. The maximum number of threads is only lim-
ited by the available memory, because the local mem-
ory of each processor must be shared out among the
assigned threads.

Our Modula-2* compiler uses the automatic proces-
sor virtualization. However, this virtualization is quite
expensive. The main reason 1s that the virtualiza-
tion actually implements synchronous virtualization,
which requires many temporary variables. In essence,
this virtualization wraps every single instruction into a
virtualizing loop, even though a loop around the entire
body of a forall would suffice (since the asynchronous
forall prescribes no scheduling of threads). The latter
simulation would be obviously much more efficient.

4.2 Synchronous forall

4.2.1 Synchronous forall, MIMD implementa-
tion

The synchronous forall requires many more synchro-
nization points than the asynchronous form. There
must be a synchronization point between every two
statements inside a forall, and in the case of the as-
signment, even within a single statement. A parallel
assignment of the from L := R means that the value
of R 1s evaluated synchronously and stored in a tempo-
rary. Similarly, the address represented by L is evalu-
ated synchronously and stored in a temporary. Only
after both of these parallel evaluations have completed
can the assignment be made. Otherwise, interference
is possible, as in the assignment A[i] := A[i+1].

A synchronization point is implemented with a
scheme similar to the one used to terminate an asyn-
chronous forall, except that now the threads do not
terminate, but wait for a signal to proceed. First,
a logarithmic reduction informs the leader that all
threads in the process have reached the synchroniza-
tion point. Then a logarithmic doubling process sends
signals back out to the threads to continue.

Clearly, synchronization points are expensive. We
are currently investigating methods to eliminate them
where possible.  For instance, the synchronization
point inside an assignment is not necessary if the left
and right hand sides do not interfere. Furthermore, by

scheduling processes in a certain fashion, the overlaps
may be reduced greatly. Even synchronization points
between statements can be eliminated if there are no
dependencies. Much of the dependency analysis de-
veloped for parallelizing compilers applies here.

4.2.2 Synchronous forall, SIMD implementa-
tion

The SIMD implementation of the synchronous forall
was simple on the CM: the built-in virtualization does
the job. However, this virtualization cannot take ad-
vantage of the optimizations described above. Instead,
1t must make conservative assumptions. The resulting
virtualization is far from efficient. An optimizing com-
piler could produce a much faster virtualization in the
majority of cases. Consider the following example.

FORALL i: [0..N-1] IN SYNC
A[i] := (Al + 1) / 2
END

Below are two possible virtualizations on p proces-
sors, expressed in Modula-2*.

s := CEILING(N, p)
FORALL j : [0 .. p-1] IN PARALLEL
FOR i:= j*s TO MIN((j+1)%*s,H)-1
DO
THMP[i]
TMP[i] :

Ali] + 1,
TMP[i] / 2

END
END
FORALL j : [0 .. p-1] IN PARALLEL
FOR i:= j*s TO MIN((j+1)#*s,M-1
DO
A[i]l  := THP[i]
END

END

s := CEILING(H, p)

FORALL j : [0 .. p-1] IN PARALLEL
FOR i:= j*s TO MIN((j+1)*s,M)-1

DO
reg := A[i];
reg := reg + 1;
reg := reg / 2;
A[i]:= reg

END

END

The program on the left shows the conservative vir-
tualization, as performed by PARIS. The optimized
version on the right hand side exploits the fact that
only one temporary location is required. By using a
single register for it on every processor, the number of
writes to memory are reduced to one third of the un-
optimized version. Furthermore, no synchronization
i1s necessary. On a SIMD machine, this means that
the two loops can be merged; on a MIMD machine,



we save the synchronization point. Furthermore, if
the individual processors have a vector capability, the
computation in each processor can even be interleaved.

While implementing the synchronous forall for the
CM we have identified the main sources of optimiza-
tion in compiling for massively parallel machines. We
have started to include these optimizations in the next
compilers for MasPar, CM, and Transputer, including
the necessary data-dependence analysis.

5 Recommendations for Parallel Ma-
chine Architectures

The following list itemizes some broad requirements
that parallel machine architectures should fulfill to al-
low for efficient, compiled programs. These require-
ments are likely to be encountered when designing the
translation schemes for parallel, imperative languages.

e Hardware support for fast process creation and
synchronization.

e Shared address space. All processors should be
able to generate addresses for the entire mem-
ory on the system. In particular, the front-end’s
memory should be part of that address space.
A source of great difficulty in our compiler were
the many different types of addresses. The com-
piler has to distinguish between local addresses,
global addresses, addresses in the front-end, gen-
eral communication addresses, and communica-
tion addresses on a grid. Optimizing for all these
cases 1s often impossible, even with detailed inter-
procedural analysis. Furthermore, parallel point-
ers are quite expensive to implement without a
shared address space — one basically has to simu-
late the shared address space in software.3

e Uniform communication mechanism. Most paral-
lel machines today provide a set of instructions for
accessing local memory, a second one for accessing
memory in direct neighbors, and a third set for
accessing distant memory units. The differences
in speed are significant and therefore require that
the compiler detect the faster cases. However, it is
often impossible to know statically for which case
to optimize. For instance, we found that in most
cases 1t was 1impossible to determine in the com-
piler whether a procedure would access local or
non-local memory. The generated code thus has

3 A shared address space does not imply shared memory.

to check all three cases at run-time. Such a sim-
ple and frequently repeated case analysis could be
done much more efficiently in hardware.

e Autonomous addressing capability. An au-
tonomous addressing capability means that each
processor can generate its own address for access-
ing memory. The Connection Machine does not
have such a facility — on the CM, each proces-
sor must use the same address. The lack of au-
tonomous addressing not only makes many ap-
plications awkward to write, but also precludes

certain optimizations in processor virtualization.

e Single instruction set. SIMD machines today typ-
ically have different instruction sets for front-end
and parallel processors. This property implies
that the code generator of the compiler has to
be written twice. Also, each procedure has to
be translated twice, doubling code size. A speed
differential between front-end and parallel pro-
cessors, however, does not appear to be a major
problem.

e Small instruction set. The CM offers about 400
PARIS instructions, only a few of which a com-
piler can actually generate. A study determining
the most frequently used instructions in parallel
programs is sorely needed.

6 Conclusion

Ease of programming as well as portability of pro-
grams will be of overwhelming importance for the
acceptance of highly parallel machines. Modula-2*
supports both: few extensions of a sequential pro-
gramming language suffice for writing highly paral-
lel, problem-oriented programs, and compilers that
can generate efficient code for a wide range of par-
allel machines appear feasible. Improvements in hard-
ware architecture, operating systems, programming
languages and compiler technology should eventually
render the current practice of machine dependent, par-
allel programming as obsolete as machine dependent,
sequential programming.
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