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Abstract

Modula���� an extension of Modula��� is a program�
ming language for writing highly parallel programs in
a machine�independent� problem�oriented way� The
novel attributes of Modula��� are that programs are
independent of the number of processors� independent
of whether memory is shared or distributed� and inde�
pendent of the control modes �SIMD or MIMD� of a
parallel machine�

This article brie	y describes Modula��� and dis�
cusses its major advantages over the data�parallel pro�
gramming model� We also present the principles of
translating Modula��� programs to MIMD and SIMD
machines and discuss the lessons learned from our 
rst
compiler� targeting the Connection Machine� We con�
clude with important architectural principles required
of parallel computers to allow for e�cient� compiled
programs�

� Introduction

Highly parallel machines with thousands and tens
of thousands of processors are now being manufac�
tured and used commercially� These machines are of
rapidly growing importance for high�speed computa�
tion� They have also initiated a major shift within
Computer Science from the sequential to the parallel
computer� One of the major problems we face in the
use of these new machines is programmability� How
to write� with no more than ordinary e
ort� programs
that bring the raw power of a parallel computer to
bear on a problem�

Two major approaches to the programming prob�
lem can be distinguished� The 
rst is to automati�
cally parallelize sequential software� Although there
is overwhelming economic justi
cation for it� this ap�
proach will meet with only limited success in the short
to medium term �see� for instance� ������ The goal of
automatically producing parallel programs can only�
if ever� be achieved by program transformations that

start with the problem speci
cation and not with a se�
quential implementation� In a sequential program� too
many opportunities for parallelism have been hidden
or eliminated�

The second approach is to write programs that
are explicitly parallel� We claim that only minor ex�
tensions of existing programming languages are re�
quired to express highly parallel programs� Thus� pro�
grammers will need only moderate additional training�
mainly in the area of parallel algorithms and their
analysis� This area� fortunately� is well developed�
see for instance textbooks ��� and ���� In compiler
technology� however� new techniques must be found
to map machine�independent programs to existing ar�
chitectures� while at the same time parallel machine
architecture must evolve to e�ciently support the fea�
tures that are required for problem�oriented program�
ming styles�

We take the approach of expressing parallelism ex�
plicitly� but in a machine�independent way� In sec�
tion � we analyze the problems that plague most par�
allel programming languages today� Section � then
presents Modula���� an extension of Modula�� ����� for
the explicit formulation of highly parallel programs�
The extension is small and easy to learn� but pro�
vides a programming model that is far more general
and machine independent than other proposals� Next�
we discuss compilation techniques for targeting MIMD
and SIMD machines and report on experience with
our 
rst Modula��� compiler ��� for the Connection
Machine� We conclude with properties of parallel ma�
chine architectures that would improve the e�ciency
of high�level parallel programs�

� Related Work

Most current programming languages for parallel
and highly parallel machines� including �LISP� C��
MPL� VAL� Sisal� Occam� Ada� FORTRAN��� Blaze�
Dino� and Kali ���� �� ��� ��� �� ��� ��� ��� �� su
er
from some or all of the following problems�
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� Whereas the number of processors of a parallel
machine is 
xed� the problem size is not� Be�
cause most of the known parallel languages do
not support the virtual processor concept� the
programmer has to write explicit mappings for
adapting the process structure of each program
to the available processors� This is not only a te�
dious and repetitive task� but also one that makes
programs non�portable�

� Co�locating data with the processors that operate
upon the data is critical for the performance of
distributed memory machines� Poor co�location
results in high communication costs and poor per�
formance� Good co�location is highly dependent
on the topology of the communication network
and must� at present� be programmed by hand�
It is a primary source of machine dependence�

� All parallel machines provide facilities for inter�
process communication� most of them by means
of a message passing system� Nearly all paral�
lel languages support only low level send and get

communication commands� Programming com�
munication with these primitives� especially if
only nearest neighbor communication is available�
is a time consuming and error prone task�

� There are several control modes for parallel ma�
chines� including MIMD� SIMD� data�	ow� and
systolic modes� Any extant� parallel language tar�
gets exactly one of those control modes� What�
ever the choice� it severely limits portability as
well as the space of solutions�

Modula��� provides solutions to the basic problems
mentioned above� The language abstracts from the
memory organization and from the number of physi�
cal processors� Mapping of data to processors is per�
formed by the compiler� optionally supported by high�
level directives provided by the programmer� Com�
munication is not directly visible� Instead� reading
and writing in a �virtually� shared address space sub�
sumes communication� A shared memory� however� is
not required� Parallelism is explicit� and the program�
mer can choose among synchronous and asynchronous
execution mode at any level of granularity� Thus� pro�
grams can use SIMD�mode where proper synchroniza�
tion is di�cult� or use MIMD�mode where synchro�
nization is simple or infrequent� The two modes can
even be intermixed freely�

The data�parallel approach� discussed in ��� and ex�
empli
ed in languages such as �LISP� C�� and MPL
is currently quite successful� because it has reduced

machine dependence of parallel programs� Data�
parallelism extends a synchronous� SIMD model with
a global name space� which obviates the need for ex�
plicit message passing between processing elements�
It also makes the number of �virtual� processing ele�
ments a function of the problem size� rather than a
function of the target machine�

The data�parallel approach has three major ad�
vantages� ��� It is a natural extension of sequential
programming� The only parallel instruction� a syn�
chronous forall statement� is a simple extension of
the well known for statement and is easy to under�
stand� ��� Debugging data�parallel programs is not
much more di�cult than debugging sequential pro�
grams� The reason is that there is only a single lo�
cus of control� which dramatically simpli
es the state
space of a program compared to that of an MIMD
program with thousands of independent loci of con�
trol� ��� There is a wide range of data�parallel al�
gorithms� Most parallel algorithms in textbooks are
data�parallel �compare for instance ��� ���� According
to Fox ���� more than ��� of the �� existing� paral�
lel applications he examined fall in the class of syn�
chronous� data�parallel programs� Furthermore� sys�
tolic algorithms as well as vector�algorithms are spe�
cial cases of data�parallel algorithms�

But data�parallelism� at least as de
ned by cur�
rent languages� has some drawbacks� ��� It is a syn�
chronous model� Even if the problem is not amenable
to a synchronous solution� there is no escape� In par�
ticular� parallel programs that interact with stochastic
events are awkward to write and run ine�ciently� ���
There is no nested parallelism� This means that once
a parallel activity has started� the involved processes
cannot start up additional� parallel activity� A paral�
lel operation simply cannot expand itself and involve
more processes� This property seriously limits parallel
searches in irregular search spaces� for example� The
e
ect is that data�parallel programs are strictly bi�
modal� They alternate between a sequential and a par�
allel mode� where the maximal degree of parallelism is

xed once the parallel mode is entered� To change the
degree of parallelism� the program 
rst has to stop all
parallel activity and return to the sequential mode� ���
The use of procedures to structure a parallel program
in a top�down fashion is severely limited� The problem
here is that it is not possible to call a procedure in par�
allel mode� when the procedure itself invokes parallel
operations �this is a consequence of ����� Procedures
cannot allocate local data and spawn data parallel op�
erations on it� unless they are called from a sequential
program� Thus� procedures can only be used in about
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half of the cases where they would be desirable� They
also force the use of global data structures on the pro�
grammer�

When designing Modula���� we wanted to preserve
the main advantages of data�parallel languages while
avoiding the above drawbacks� The following list
contains the main advances of Modula��� over data�
parallel languages�

� The programming model of Modula��� is a strict
superset of data�parallelism� It allows both syn�
chronous and asynchronous parallel programs�

� Modula��� is problem�oriented in the sense that
the programmer can choose the degree of paral�
lelism and mix the control mode �SIMD�like or
MIMD�like� as needed by the intended algorithm�

� Parallelism may be nested at any level�

� Procedures may be called from sequential or par�
allel contexts and can generate parallel activity
without any restrictions�

� Modula��� is translatable e
ectively for both
SIMD and MIMD architectures�

� The Language Modula���

Modula�� has been chosen as a base for a paral�
lel language because of its simplicity� There are no
reasons why similar extensions could not be added
to other imperative languages such as FORTRAN
or ADA� The necessary extensions were surprisingly
small� They consist of synchronous and asynchronous
versions of a forall statement� plus simple� optional
declarations for mapping array data onto processors
in a machine independent fashion� An interconnec�
tion network is not directly visible in the language� We
assume a shared address space among all processors�
though not necessarily shared memory� There are no
explicit message passing instructions� instead� reading
and writing locations in shared address space subsume
message passing� This approach simpli
es program�
ming dramatically and assures network independence
of programs� The burden of distinguishing between lo�
cal and non�local references� and substituting explicit
message passing code for the latter� is placed on an
�optimizing� compiler� The programmer can in	uence
the distribution of data with a few� simple declara�
tions� but these are only hints to the compiler with no
e
ect on the semantics of the program whatsoever�

��� Overview of the forall statement

The forall statement creates a set of processes that
execute in parallel� In the asynchronous form� the in�
dividual processes operate concurrently� and are joined
at the end of the forall statement� The asynchronous
forall simply terminates when the last of the created
processes terminates� In the synchronous form� the
processes created by the forall operate in unison until
they reach a branch point� such as an if or case state�
ment� At branch points� the set of processes partitions
into two or more subsets� Processes within a single
subset continue to operate in unison� but the subsets
are not synchronized with respect to each other� Thus�
the union of the subsets operate in MSIMD� mode� A
statement causing a partition into subsets terminates
when all its subsets terminate� at which point the sub�
sets rejoin to continue with the following statement�

Variants of both the synchronous and asynchronous
form of the forall statement have been introduced by
previously proposed languages� such as Blaze� C�� Oc�
cam� Sisal� VAL� �LISP ���� ��� ��� �� ��� ��� and oth�
ers ���� Note also that vector instructions are simple
instances of the synchronous forall�

None of the languages mentioned above include both
forms of the forall statement� even though both are
necessary for writing readable and portable parallel
programs� The synchronous form is often easier to
handle than the asynchronous form� because it avoids
synchronization hazards� However� the synchronous
formmay be overly constraining and may lead to poor
machine utilization� The combination of synchronous
and asynchronous forms in Modula��� actually per�
mits the full range of parallel programming styles be�
tween SIMD and MIMD�

The syntax of the forall is as follows��

FORALL ident ��� SimpleType IN �PARALLEL j SYNC�
StatementSequence

END�

The identi
er introduced by the forall statement is
local to the statement and serves as a run�time con�
stant for every process created by the forall� Sim�
pleType is an enumeration or a �sub��range� The
forall creates as many processes as there are elements
in SimpleType and initializes the run�time constant

�MSIMD� Multiple SIMD� Few but more than one instruc�
tion streams operate on many data streams� A compromise
between SIMD and MIMD�

�We use the EBNF syntax notation of theModula�� language
de�nition� with keywords in upper case� j denoting alternation�
�� � � 	 optionality� and 
� � � � grouping of the enclosed sentential
forms�
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of each process to a unique value in SimpleType�
The created processes all execute the statements in
StatementSequence�

��� The asynchronous forall

The created processes execute StatementSequence
concurrently� without any implicit� intermediate syn�
chronization� The execution of the forall terminates
when all created processes have 
nished� Thus� the
asynchronous forall contains only one synchroniza�
tion point at the end� Any additional synchronization
must be programmed explicitly with semaphores and
the operations WAIT and SIGNAL�

In the following example� an asynchronous forall
statement implements a vector addition�

FORALL i�����N��� IN PARALLEL

z�i� �	 x�i� 
 y�i�

END

Since no two processes created by the forall access
the same vector element� no temporal ordering of the
processes is necessary� The N processes may execute
at whatever speed� The forall terminates when all
processes created by it have terminated�

A more complicated example� illustrating recur�
sive process creation� is the following� Procedure
ParSearch searches a directed� possibly cyclic graph
in parallel fashion� It can best be understood by
comparing it with depth�
rst�search� except that
ParSearch runs in parallel� It starts with a root of
the graph and visits nodes in the graph in a parallel
�and largely unpredictable� fashion�

PROCEDURE ParSearch� v� NodePtr �


BEGIN

IF Marked� v � THEN RETURN END


FORALL s�����v��successors��� IN PARALLEL

ParSearch� succ�v� s� �

END


visit� v �


END ParSearch


The procedure ParSearch simply creates as many
processes as a given node has successors� and starts
each process with an instance of ParSearch� Before
visiting a node� ParSearch has to test whether the
node has already been visited and marked� Since mul�
tiple processes may reach the same node simultane�
ously� testing and setting the mark is done in a criti�
cal section �implemented with a semaphore associated
with each node� by the procedure Marked� If the
graph is a tree� no marking is necessary�

��� The synchronous forall

The processes created by a synchronous forall ex�
ecute every single statement of StatementSequence in
unison� To illustrate this mode� its semantics for se�
lected statements is described in some detail below�

� A statement sequence is executed in unison by ex�
ecuting all its statements in order and in unison�

� In the case of branching statements such as IF

C THEN SS� ELSE SS� END� the set of participat�
ing processes divides into disjoint and indepen�
dently operating subsets� each of which executes
one of the branches �SS� and SS� in the exam�
ple� in unison� Note that in contrast to other
data�parallel languages� no assumption about the
relative speeds or relative order of the branches
may be made� The execution of the entire state�
ment terminates when all processes of all subsets
have 
nished�

� In the case of loop statements such as WHILE C

DO SS END� the set of processes for any iteration
divides into two disjoint subsets� namely the ac�
tive and the inactive ones �with respect to the
loop statement�� Initially� all processes entering
the loop are active� Every iteration starts with
the synchronous evaluation of the loop condition
C by all active processes� The processes for which
C evaluates to FALSE become inactive� The rest
forms the active subset which executes statement
sequence SS in unison� The execution of the whole
loop statement terminates when the subset of ac�
tive processes becomes empty�

Hence� synchronous parallel operation closely re�
sembles the lock�step operation of SIMD machines
with an important generalization for parallel branches�

As an example� consider the computation of all
post
x sums of a vector V of length N � The pro�
gram should place into V �i� the sum of all elements
V �i� � � �V �N � ��� A recursive doubling technique as
in reference ��� computes all post
x sums in O�logN �
time� where N is the length of the vector�

Figure � illustrates the process� The program op�
erates by computing partial sums of length s � �j�
where j counts the iterations� The inner forall creates
N processes� Note that there is a one�to�one mapping
between process numbers and elements of the vector�
In each iteration� the length of the partial sums is dou�
bled by parallel summation of neighboring sums� The
if statement inside the forall disables all processes
that must not participate in the computation during
a given iteration�
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VAR V � ARRAY�� �� N��� OF REAL


VAR s � CARDINAL


BEGIN

s �	 �


WHILE s � N DO

FORALL i�����N��� IN SYNC

IF �i
s��N THEN

V�i��	 V�i�
V�i
s�

END

END


s �	 s � �

END

END

v v v v v v v v v v v

v v v v v v v v v v v

v v v v v v v v v v v

v v v v v v v v v v v

v v v v v v v v v v v

0 1 2 3 4 5 6 7 8 9 10

0,1 1,2 2,3 3,4 4,5 5,6 6,7 7,8 8,9 9,10 10

0,3 1,4 2,5 3,6 4,7 5,8 6,9 7,10 8,10 9,10 10

0,7 1,8 2,9 3,10 4,10 5,10 6,10 7,10 8,10 9,10 10

0,10 1,10 2,10 3,10 4,10 5,10 6,10 7,10 8,10 9,10 10

Figure �� Computing post
x sums of a vector

��� Allocation of array data

Co�location of data with the processors that access
the data is important for parallel machines without
uniform access time to memory locations� Poor align�
ment of data and processors may cause excessive com�
munication overhead� We therefore provide a simple�
machine�independent construct for controlling the al�
location of array data� This construct is optional and
does not change the meaning of a program� it a
ects
only performance� A compiler for a machine with uni�
form memory access time may ignore the construct�

The allocation of array data to processors is con�
trolled with one allocator per dimension� The modi�

ed declaration syntax for arrays is as follows�

ArrayType � ARRAY SimpleType �allocator�
f��� SimpleType �allocator�g OF type�

allocator � LOCAL j SPREAD j CYCLE j RANDOM j
SBLOCK j CBLOCK�

Array elements whose indices di
er only in dimen�
sions that are marked LOCAL are associated with the
same processor� This facility is used to avoid distribu�
tion of data in a given dimension�

Dimensions with allocator SPREAD are divided into
segments� one for each of the available processors� A
vector with n elements is assigned to P processors by
allocating a segment of length dn�P e to each proces�
sor� While utilizing all available processors� it mini�
mizes the cost of nearest�neighbor communication�

Dimensions with allocator CYCLE are distributed in
a round�robin fashion over the available processors�
Given P processors� the elements of a vector whose
indices are identical modulo P are associated with the
same processor� In contrast to SPREAD� CYCLE max�
imizes the cost of nearest�neighbor communication�
neighboring array elements are always in di
erent pro�
cessors� leading to better processor utilization if a par�
allel algorithm operates on subsegments of a vector at
a time�

Dimensions with allocator RANDOM are distributed
randomly over the available processors� In contrast to
CYCLE� RANDOM leads to a better processor utilization
if a parallel algorithms accesses the dimension in a
random pattern�

If either SPREAD� CYCLE� or RANDOM apply to sev�
eral successive dimensions� then these dimensions are
�unrolled� into one pseudo�vector with a length that
is the product of the lengths of the individual dimen�
sions� This scheme idles fewer processors than apply�
ing SPREAD� CYCLE� or RANDOM to individual dimen�
sions�

Allocators SBLOCK and CBLOCK apply SPREAD and
CYCLE resp� to each dimension individually� For two
successive dimensions� SBLOCK has the e
ect of creat�
ing rectangular subarrays and assigning those to the
available processors� With this arrangement� nearest�
neighbor communication in all dimensions is best sup�
ported when the interconnection network can be con�

gured into the same number of dimensions as the
arrays�

CBLOCK for two dimensions also creates two�
dimensional subarrays� but the rows and columns of
these subarrays are then distributed independently
in a round�robin fashion over the processor grid�
Again� SBLOCK minimizes nearest�neighbor communi�
cation� while CBLOCK allows high processor utilization
if smaller subarrays are processed in parallel�

� Implementing Modula���

When discussing the principles of compiling
Modula���� we 
rst present the more di�cult case of
compiling for MIMD� and then introduce the simpli�

cations for SIMD� The latter have actually been im�
plemented in our CM compiler� Although this 
rst
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compiler does not contain sophisticated optimization�
it helped us in understanding the main sources of op�
timizations when compiling for massively parallel ma�
chines�

��� Asynchronous forall

����� Asynchronous forall� MIMD implemen�

tation

A straightforward approach to implementing the
forall is to create the required number of lightweight
processes� or threads� Threads of a forall share the
same program �the enclosed statement sequence�� but
have their own stacks� The resulting run�time struc�
ture is a tree of stacks�

On a distributed memory machine� it pays to repli�
cate the entire program to all processors� Code repli�
cation can be accomplished quickly during startup�
either using a broadcast facility or recursive doubling�

The main problems when compiling forall state�
ments are thread creation� thread termination� and
load balancing� All of these problems must be solved
in a parallel fashion� Sequential implementations
would cause a serious bottleneck� and� for algorithms
with 
ne granularity� result in essentially sequential
programs� Note also that foralls may be nested� so
there may be several new sets of threads being created
simultaneously�

The process reaching a forall� called the spawner�
must create the set of threads prescribed by the forall�
The spawner actually creates only the initial thread of
the forall� called the leader� �A simple optimization
is to let the spawner take on the role of the leader��
The leader then replicates itself� All threads created
keep replicating themselves again and again� until the
required number is obtained� This method is another
variant of recursive doubling� A small number of pa�
rameters controls the replication� When a thread has
replicated itself a su�cient number of times� it simply
jumps to the beginning of the forall�s code sequence
and begins execution�

Synchronization and thread termination at the
forall�s end follow the same pattern� Each thread
has a semaphore for receiving termination signals from
other threads� A thread that reaches the end of
its forall 
rst waits for termination signals from all
the threads it spawned during the replication process�
then signals its creating thread� and destroys itself� If
all n threads of a forall terminate at about the same
time� then the leader learns about the combined ter�
mination in time proportional to O�logn�� signals the
spawner� and kills itself �or simply resumes the role of

the spawner��
The problem of load balancing is to distribute

threads over the available processors so that ��� the
load on the processors is equalized� ��� the threads are
co�located with their data� and ��� co�scheduling of
threads within the same forall�instance becomes pos�
sible� Again� a centralized solution must be avoided�
One possibility is for processors to keep a running to�
tal of ready processes and the overall average� The
overall average can be updated periodically �say at
the end of a time�slice� by another recursive doubling
technique in which all processors participate� Newly
created threads are moved between neighboring pro�
cessors depending on the current load in comparison to
the average� Under certain circumstances� migrating
a long�running thread �including its data� to another
processor may be advantageous� In addition� static
compiler analysis can indicate preferred processors for
co�locating data and threads�

Co�scheduling of threads in the same forall is nec�
essary to avoid delays inherent in context swaps when
the threads communicate� Without co�scheduling�
communicating threads may enter a situation where
they execute alternatingly or in co�routine fashion in�
stead of in parallel ����� Co�scheduling can be ac�
complished by increasing the thread priority with the
nesting depth of foralls� or by providing special mech�
anisms for �task forces�� i�e�� for scheduling groups of
threads simultaneously�

Obviously� thread creation� termination� and load
balancing must be as fast as possible� Various opti�
mizations for bulk thread generation are feasible� but
will not be discussed here for lack of space�

The above techniques have not been implemented
in our 
rst compiler� since the CM is a SIMD machine�
However� work has started on a Modula��� compiler
targeting a Transputer cluster� where the techniques
will be used� We are also exploring special hardware
facilities to speed up these tasks�

����� Asynchronous forall� SIMD implementa�

tion

The synchronous nature of a SIMD machine� coupled
with the broadcast bus from the front�end� makes
all three of thread creation� termination� and load
balancing operate in constant time or nearly con�
stant time� For generality� assume nested foralls� m
threads each execute a forall statement� each creat�
ing n new threads� Thus� the number of threads to be
created is t � nm� If n is not uniform for all the m
spawners� then a O�logm��time summation instead of
�constant�time� multiplication must be performed to
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compute t�

Once t is known� t stacks are created by assigning
to each of p processors a segment of dt � pe stacks�
This operations takes constant time and balances the
load perfectly� Process termination also takes con�
stant time� since there is no synchronization overhead�
However� it may be necessary to provide each thread
with some initial data �such as its number� during
creation� Spreading this information takes again loga�
rithmic time� but as demonstrated by the Connection
Machine� special instructions for spreading data are
so fast that� in practice� they can be regarded as con�
stant�

What remains to be discussed is the scheduling of
instructions� Since the asynchronous forall prescribes
no scheduling of the threads at all� the compiler writer
can choose one that works well on a given SIMD or
MSIMD machine� We describe brie	y the implemen�
tation we chose for the Connection Machine �CM�� We
assume initially� that the number of available proces�
sors equals the number of threads�

Activity Bits� The central idea of control 	ow on
SIMD computers is deactivation and reactivation of
processors� controlled by an activity bit associated
with each processor� When the activity bit is o
� the
processor does not execute the instructions issued by
the front�end� This facility is su�cient for simulating
the usual control 	ow constructs in a parallel context�
All that is needed is a stack of activity bits for each
thread� The top of each activity stack is stored into
the activity bit of a processor� Suitable manipula�
tion of the activity bits turns threads on and o
� as
required by the instruction stream issuing from the
front�end�

There are two small extensions of the usual con�
trol 	ow mechanism for SIMD machines� They are
needed for recursion and for exit and return state�
ments� First� consider parallel loops �i�e�� loops within
a forall�� On a SIMD�machine� the front�end repeat�
edly issues the instructions for the loop body� until
the termination conditions of all threads executing
the loop are met� The usual technique is to evalu�
ate a thread�s termination condition directly into its
activity bit� Before each iteration� the front�end tests
whether there are any positive activity bits left� If
not� the loop terminates� An exit statement may also
terminate a loop� by turning o
 the activity bit of the
corresponding thread� However� since an exit state�
ment may be nested several levels deep within a loop�
it must not only set the topmost activity bit to false�
but all those that have been stacked since the last

loop was entered� Similar considerations apply to the
return statement�

Consider the following example�

FORALL i�����N��� IN PARALLEL

LOOP

IF ODD�i� THEN EXIT END


SS

END

END

When control 	ow reaches the exit� then two ac�
tivity bits have been stacked for each thread� one for
the loop� and one for the if statement� To prevent a
thread that has already executed the exit from being
reactivated after the if� its top two activity bits must
be set to FALSE�

Recursion termination is similar to loop termina�
tion� If a recursive call occurs inside a parallel if or
case� then the front�end must sense whether there
is any active thread left in a branch� If not� then
the branch terminates� Without this provision� un�
bounded recursion would ensue�

Parallel Procedure Call� Because procedures can
be called from both sequential and parallel contexts�
each procedure must be compiled twice� Once for ex�
ecuting entirely on the front�end in sequential mode
and a second time for executing within a forall state�
ment� The di
erence is that in the parallel version� the
procedure call and return instructions are executed
only on the front�end� Thus� we need two types of
stacks� On the front�end� we stack return addresses�
On the stacks associated with the parallel threads� we
store parameters and local data� This division is a
direct consequence of SIMD and would even occur if
front�end and parallel processors had the same instruc�
tion set� On the CM� the instruction sets di
er� and
so the sequential and parallel versions are completely
di
erent�

Our compiler relies on a minor language restriction�
Procedures may not be nested within each other� The
reason is that up�level addressing is quite expensive�
Since it is in general unpredictable in what context a
procedure is called� each memory access would have
to distinguish at run�time whether it references data
on the front�end or the parallel processors�

Processor Virtualization� Simulating more
threads than there are processors available is called
processor virtualization� In SIMD mode� it is not pos�
sible to simply create new processes on demand and
let the operating system schedule them� Instead� the
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front�end has to issue the instructions implementing
the body of a forall in a loop� The number of iter�
ations of this loop is given by the ratio of threads to
available processors�

The PARIS instruction set of the CM provides au�
tomatic processor virtualization� This means that pro�
cessor virtualization is transparent to the program�
mer� The 
rmware simulates as many threads as re�
quired� The maximum number of threads is only lim�
ited by the available memory� because the local mem�
ory of each processor must be shared out among the
assigned threads�

Our Modula��� compiler uses the automatic proces�
sor virtualization� However� this virtualization is quite
expensive� The main reason is that the virtualiza�
tion actually implements synchronous virtualization�
which requires many temporary variables� In essence�
this virtualization wraps every single instruction into a
virtualizing loop� even though a loop around the entire
body of a forallwould su�ce �since the asynchronous
forall prescribes no scheduling of threads�� The latter
simulation would be obviously much more e�cient�

��� Synchronous forall

����� Synchronous forall� MIMD implementa�

tion

The synchronous forall requires many more synchro�
nization points than the asynchronous form� There
must be a synchronization point between every two
statements inside a forall� and in the case of the as�
signment� even within a single statement� A parallel
assignment of the from L �� R means that the value
of R is evaluated synchronously and stored in a tempo�
rary� Similarly� the address represented by L is evalu�
ated synchronously and stored in a temporary� Only
after both of these parallel evaluations have completed
can the assignment be made� Otherwise� interference
is possible� as in the assignment A�i� �� A�i����

A synchronization point is implemented with a
scheme similar to the one used to terminate an asyn�
chronous forall� except that now the threads do not
terminate� but wait for a signal to proceed� First�
a logarithmic reduction informs the leader that all
threads in the process have reached the synchroniza�
tion point� Then a logarithmic doubling process sends
signals back out to the threads to continue�

Clearly� synchronization points are expensive� We
are currently investigating methods to eliminate them
where possible� For instance� the synchronization
point inside an assignment is not necessary if the left
and right hand sides do not interfere� Furthermore� by

scheduling processes in a certain fashion� the overlaps
may be reduced greatly� Even synchronization points
between statements can be eliminated if there are no
dependencies� Much of the dependency analysis de�
veloped for parallelizing compilers applies here�

����� Synchronous forall� SIMD implementa�

tion

The SIMD implementation of the synchronous forall
was simple on the CM� the built�in virtualization does
the job� However� this virtualization cannot take ad�
vantage of the optimizations described above� Instead�
it must make conservative assumptions� The resulting
virtualization is far from e�cient� An optimizing com�
piler could produce a much faster virtualization in the
majority of cases� Consider the following example�

FORALL i� ����N��� IN SYNC

A�i� �	 �A�i� 
 �� � �

END

Below are two possible virtualizations on p proces�
sors� expressed in Modula����

s �	 CEILING�N� p�

FORALL j � �� �� p��� IN PARALLEL

FOR i�	 j�s TO MIN��j
���s�N���

DO

TMP�i� �	 A�i� 
 �


TMP�i� �	 TMP�i� � �

END

END

FORALL j � �� �� p��� IN PARALLEL

FOR i�	 j�s TO MIN��j
���s�N���

DO

A�i� �	 TMP�i�

END

END
s �	 CEILING�N� p�

FORALL j � �� �� p��� IN PARALLEL

FOR i�	 j�s TO MIN��j
���s�N���

DO

reg �	 A�i�


reg �	 reg 
 �


reg �	 reg � �


A�i��	 reg

END

END

The program on the left shows the conservative vir�
tualization� as performed by PARIS� The optimized
version on the right hand side exploits the fact that
only one temporary location is required� By using a
single register for it on every processor� the number of
writes to memory are reduced to one third of the un�
optimized version� Furthermore� no synchronization
is necessary� On a SIMD machine� this means that
the two loops can be merged� on a MIMD machine�

�



we save the synchronization point� Furthermore� if
the individual processors have a vector capability� the
computation in each processor can even be interleaved�

While implementing the synchronous forall for the
CM we have identi
ed the main sources of optimiza�
tion in compiling for massively parallel machines� We
have started to include these optimizations in the next
compilers for MasPar� CM� and Transputer� including
the necessary data�dependence analysis�

� Recommendations for Parallel Ma�
chine Architectures

The following list itemizes some broad requirements
that parallel machine architectures should ful
ll to al�
low for e�cient� compiled programs� These require�
ments are likely to be encountered when designing the
translation schemes for parallel� imperative languages�

� Hardware support for fast process creation and
synchronization�

� Shared address space� All processors should be
able to generate addresses for the entire mem�
ory on the system� In particular� the front�end�s
memory should be part of that address space�
A source of great di�culty in our compiler were
the many di
erent types of addresses� The com�
piler has to distinguish between local addresses�
global addresses� addresses in the front�end� gen�
eral communication addresses� and communica�
tion addresses on a grid� Optimizing for all these
cases is often impossible� even with detailed inter�
procedural analysis� Furthermore� parallel point�
ers are quite expensive to implement without a
shared address space � one basically has to simu�
late the shared address space in software��

� Uniform communication mechanism� Most paral�
lel machines today provide a set of instructions for
accessing local memory� a second one for accessing
memory in direct neighbors� and a third set for
accessing distant memory units� The di
erences
in speed are signi
cant and therefore require that
the compiler detect the faster cases� However� it is
often impossible to know statically for which case
to optimize� For instance� we found that in most
cases it was impossible to determine in the com�
piler whether a procedure would access local or
non�local memory� The generated code thus has

�A shared address space does not imply shared memory�

to check all three cases at run�time� Such a sim�
ple and frequently repeated case analysis could be
done much more e�ciently in hardware�

� Autonomous addressing capability� An au�
tonomous addressing capability means that each
processor can generate its own address for access�
ing memory� The Connection Machine does not
have such a facility � on the CM� each proces�
sor must use the same address� The lack of au�
tonomous addressing not only makes many ap�
plications awkward to write� but also precludes
certain optimizations in processor virtualization�

� Single instruction set� SIMD machines today typ�
ically have di
erent instruction sets for front�end
and parallel processors� This property implies
that the code generator of the compiler has to
be written twice� Also� each procedure has to
be translated twice� doubling code size� A speed
di
erential between front�end and parallel pro�
cessors� however� does not appear to be a major
problem�

� Small instruction set� The CM o
ers about ���
PARIS instructions� only a few of which a com�
piler can actually generate� A study determining
the most frequently used instructions in parallel
programs is sorely needed�

� Conclusion

Ease of programming as well as portability of pro�
grams will be of overwhelming importance for the
acceptance of highly parallel machines� Modula���
supports both� few extensions of a sequential pro�
gramming language su�ce for writing highly paral�
lel� problem�oriented programs� and compilers that
can generate e�cient code for a wide range of par�
allel machines appear feasible� Improvements in hard�
ware architecture� operating systems� programming
languages and compiler technology should eventually
render the current practice of machine dependent� par�
allel programming as obsolete as machine dependent�
sequential programming�
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