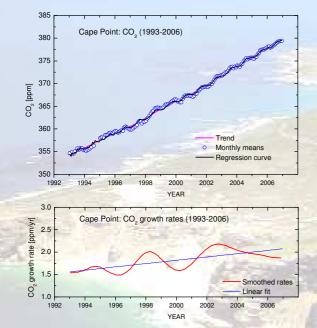


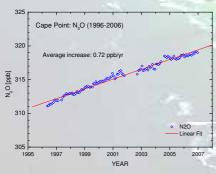
RECENT CHANGES IN TRACE GAS LEVELS AT CAPE POINT, SOUTH AFRICA

Forschungszentrum Karlsruhe IMK- IFU

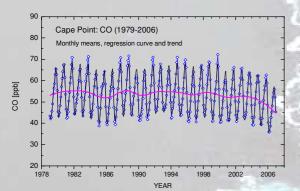
E-G. Brunke¹, C. Labuschagne¹ and H.E. Scheel²

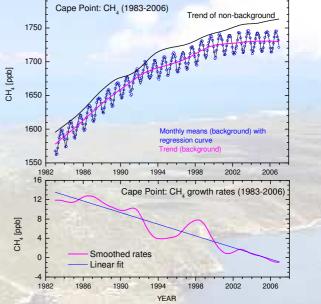

¹ South African Weather Service, PO Box 320, Stellenbosch, South Africa. *ebrunke@weathersa.co.z* ² Forschungszentrum Karlsruhe, IMK-IFU, Garmisch, Germany.

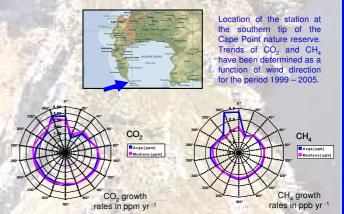
1800


Measurements of CO₂, CH₄, N₂O, CO and O₃ have been made at Cape Point (CPT, 34 °S, 18 °E) spanning differing time periods, ranging from 14 complete years for CO₂ to 28 years in the case of CO. With respect to N₂O, the first seven years (1989 –

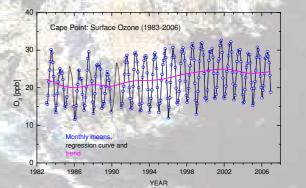
 CO_2 to 28 years in the case of CO. with respect to N₂O, the first seven years (1983) 1995) have been excluded from current analyses because of lower data quality.


The poster presents the latest trend and growth rate estimates, based on data filtered with respect to background concentrations. Note that the temporal variability of trend curves and growth rates is dependent on the degree of smoothing chosen for the calculations.


The CO_2 growth rates, calculated as derivatives of the trend curve, have fluctuated between 1.5 and 2.2 ppm yr¹ (as obtained with 5-year smoothing). Linear regression performed on the growth rates indicates an increase of the fit from 1.6 ppm yr¹ in early 1993 to 2.1 ppm yr¹ at the end of 2006.



The CO time series does not display a significant long-term trend, whereas interannual variability is evident. However, since 2003 an overall decline of the CO mole fractions has been observed. This culminated in an abnormally low annual minimum during February 2006 and a lower than usual annual maximum in October 2006.



For CH₄, an overall decrease in growth-rates, fluctuating markedly over the years, has been observed since 1983. Methane levels have stabilized since 2003, and during 2006 the CH₄ growth rate even dropped to about -1 ppb yr¹. A linear fit of the growth rates yields values of 13 ppb yr¹ for the beginning of 1983 and zero growth for mid-2005.

From 1982 till the mid-1990s the non-background CH_4 trend has closely matched that of the background data. However, thereafter non-background levels have continued their upward trend till present. This is probably related to growing local sources to the north of the station. See plots below.

Wind sector-dependent growth rates reveal an enhanced long-term increase of CO₂ and CH₄ for the northerly sector. For CO₂, the ppm-per-year increase was 3.2 % higher than for background conditions (1.94 vs. 1.88 ppm yr ⁻¹). Similar calculations for CH₄ yielded a 55 % higher rate relative to background (3.74 vs. 2.41 ppb y-⁻¹). Due to the underlying CH₄ concentration distribution, the medians yielded a smaller difference between the rates. The increased trends reflect the recent expansion of the greater Cape Town area.

For surface ozone, a positive trend was recorded between 1990 and 2002, accompanied by an increase in seasonal peak-to-peak amplitudes. Since 2003 the increase has levelled off again.