

Quantification of C and N trace gas fluxes from a drained peatland forest in Finland using different measuring techniques

R. Kiese, T. Vesala, M. Pihlatie, I. Mammarella, A.-J. Kieloaho, T. Laurila, M. Aurela, K. Minkkinen, T. Penttilä, J. Schoenborn, Annalea Lohila, N. Brueggemann, K. Butterbach-Bahl

Background:

- 30% of Finnish timber production occurs on drained peatlands
- drainage of peatlands results in lowering of groundwater table (app. 40cm) and, thus, in a dramatic change of soil environmental conditions (e.g. soil water, aeration) with impacts on C and N turnover and associated GHG exchange

Hypothesis:

- drained peatland forests are high emitters of N₂O
- N₂O makes up an important part of the ecosystem GHG exchange
- N2O fluxes measured by EC in the interstem section should be comparable to the N2O fluxes measured by closed chamber method

Site characteristics

Climatic conditions 04-06 2007

Measuring equipment:

Automatic chamber measurements

- Valve driven automatic sampling system, (IMK-IFU)
- 9 Measuring chambers (50x50x15cm), (IMK-IFU)
- Gaschrmomatograph equipped with ⁶³Ni ECD for N₂O. (SRI)
- GMD20D Infrared analyzer for CO2, (Vaisala)

- · CSAT3 Sonic Anemometer, (Campbell Sc.)
- Li-7500 Open-Path Infrared CO2/H2O Gas Analyzer, (Li-Cor Inc.)
- . TDL-TGA100A for N2O, (Campbell Sc.)

N,O emission [µg N m² h¹] daily

- N₂O emissions with different measuring techniques
- Chamber N₂O emissions and detection limit of TDL-EC

Conlcusions:

- The drained peatland forest (app. after 40 years of drainage impact) was not a high source of N2O, but frost thaw-event driven N2O emissions can contribute to annual fluxes.
- At current stage N₂O is an insignificant component of the total GHG budget of this site and CO₂ is the main controlling component. However, this might be different by regarding a full cycle from drainage to first harvest of timber.
- Due to the combination of low N₂O emission levels and insufficient turbulent conditions EC-TDL based N₂O emission measurements are highly uncertain. However, EC based CO₂ emissions compared better with chamber based measurements

Contact information: Ralf.Kiese@imk.fzk.de