Meteorology and air pollution in an alpine Valley during two striking different winter periods

Florian Bilgeri, **Klaus Schäfer**, **Friedrich Obledner** and **Stefan Ermeis**

Institute of Meteorology and Geophysics, Innsbruck University, Austria
Institute for Meteorology and Climate Research, Forschungszentrum Karlsruhe, Garmisch Partenkirchen, Germany

Introduction

During winter essentially, Alpine valleys are frequently prone to enhanced air pollution inducing serious im-

- **Threshold exceedances**
 - **Summary of daily means (2005/2006)**
 - **Summary of daily means (2007/2008)**
 - **Emissions 2005/2006 (NO2)**
 - **Emissions 2007/2008 (NO2)**
 - **Vertical temperature gradient 2005/2006 [100m]**
 - **Vertical temperature gradient 2007/2008 [100m]**

Climatology

The climatological analysis of the data from Innsbruck shows, that the two investigated periods were completely different regarding the meteorological parameters. Compared with the climatological long-term means (1971-2000), the winter 2005/06 (from December to the End of February) was 1.5°C colder, the number of days without a temperature < 0°C was higher (15.4°C) and there was a long-lasting snow cover, which lasted until Easter. The sum of the precipitation slightly exceeded the long-term mean. In contrast, the temperature during January and February 2007 was 2.8°C warmer and the mean and it was too dry (18.7% mm rainfall).

Weather type classification

The investigation of the weather types after the scheme of Steinacker (1991) exhibits, that the relative distribu-

- **Summary of daily means of emission (NO2) in the valley cross-section**
 - **Figure 2.2**: Local variability - NOx-passive samplers

Summary and Conclusion

The weather-type analysis showed almost the same distribution of the larger scale atmospheric patterns during both periods. There were even more high pressure events in winter 2005/06, but in 2007/08 the values of air pollution were considerably higher than in winter 2007/08. This difference was based on the lower emission rates during the high pressure events in Dec/07 and on the long lasting snow cover over 2005/06. The induced rather stable layering in the lower atmosphere during winter 2005/06, whereas due to the lower albedo run. mean 2008 the atmosphere could be heated and mixed more efficiently. To be added, there were more southerly flows in 2005/06, causing more days with foehn events than in 2007/08. However, during both periods we found higher values of NOx at the sunny slope than at the opposite slope of the valley. This was a result of the different stability at the slopes, normally the shady side was more stable.

Acknowledgements

This work is partly based on data that have been collected within the ALPRAH project, which is funded by the EU’s 6th Framework Programme (Contract No. 019032). The authors wish to thank Wolfgang Guggenbühl and Florian Kamer (IMGI), members of the measurement group.

References