

Microbial diversity and control of the denitrification process during drinking water conditioning using biodegradable polymers

Anja Karolewiez 1,2, Thomas Schwartz 1, Martin Kieninger 3, Wolf-Rüdiger Müller 3, Ursula Obst 1

¹ Institute of Functional Interfaces, Microbiology of Natural and Technical Surfaces Department, Karlsruhe Institute of Technology
² Competence Center for Material Moisture, Karlsruhe Institute of Technology
³ Institute for Sanitary Engineering, Water Quality and Solid Waste Management, Stuttgart

INTRODUCTION

- Microbial denitrification activities are used for nitrate degradation in contaminated raw water sources for drinking water conditioning. Adapted
 bacterial communities are forming biofilms on a biodegradable, non-toxic synthetic material like Polycaprolactone, which is used as carbon
 source and substrate for biofilm growth, respectively. Therefore, there is no need for extra addition of a carbon source associated with dosing
 problems.
- To monitor **biofilm compositions and dynamics** on the Polycaprolactone particles, rDNA based **populations analyses** were performed at different points of time.
- To control the process, different gene expression analyses were performed with specifically designed primers targeting key genes involved in the
 denitrification process.
- Samples were taken from three different raw water denitrification reactors.

METHODS

Samples:

- Up-scaled Rotobio reactor (fig. 1) 2 m³ (cooperation with the Water Technology Center Karlsruhe).
- Rotobio reactor (fig. 2), and Dynasand reactor (fig. 3) 0,05 m³ and 0,8 m3, respectively (cooperation with the University of Stuttgart)

Bacterial population analyses:

16S rDNA PCR, DGGE and sequencing techniques.

Gene expression:

- of 2 different nitrate reductase genes (nar and nap)
- and of 2 different nitrite reductase genes (nirS and nirK)
- were quantified in the specific reference bacteria *Pseudomonas aeruginosa* and *Acidovorax caeni*
- and in natural biofilm communities grown on Polycaprolactone in the three denitrification reactors.

• Bacterial population analyses:

Frequently found bacteria are shown in the table below. Most of them are β -*Proteobacteria*.

	Frequently found bacteria	
α-Proteobacteria	Rhodobacter sp.	
β-Proteobacteria	Acidovorax ssp	
	9 uncultured species	
	Aquaspirillum ssp.	
γ-Proteobacteria	uncultured	
	Xanthomonas sp.	
	Pseudomonas sp.	
σ-Proteobacteria	uncultured	
ε-Proteobacteria	uncultured	
Flavobacteria	Flavobacterium sp.	
Bacteroidetes	Cytophagales	

· Continuous analyses:

Biofilm over 17 weeks showed a stable diversity.

RESULTS

Expression analyses:

- No consistent expression pattern for the nitrate reductase within the reference strains.
- The biofilm on the particles exhibited a constitutive like expression of the nitrate reductase gene and a significant up-regulation of nitrite reductase when nitrite accumulated in the system.

Nitrate reductases		Nitrite reductases	
nar	nap	nirS	nirK
\Rightarrow	Ţ	1	1
Described as a fall of a factor and			

Regulation of the nitrate and nitrite reductases during induced conditions in the 2 m³ Rotobio reactor

CONCLUSIONS

- The stable biofilm diversity is a precondition for a stable denitrification and for the safety of the following drinking water conditioning.
- With our methods used for expression analyses of genes involved in the denitrification process we have a toolbox to understand and control this process for optimization and monitoring even in reactors.