

Development of a water quality monitoring for the distribution system Bribin (District Gunung Kidul)

Kerstin Matthies, Ursula Obst

Karlsruhe Institute of Technology, Institute of Functional Interfaces, Department of Microbiology of Natural and Technical Surfaces, Germany

Introduction

- > karst
- > tropics
- water shortages
 during dry season
- > no water treatment, no water quality monitoring
- dilapidated water distribution system
- water highly contaminated with fecal bacteria

consumers boil water to avoid illness

barely sustainable

map: http://www.iwrm-indonesien.de/

Aims

development and implementation of a water quality monitoring system

Sampling at a reservoir

serves as a base for development of appropriate and sustainable treatment concepts

Appropriate methods

- physiochemical analysis
 - > temperature, pH, O₂, conductivity, turbidity
- microbiological analysis
 - ColiLert-System (quantitative detection of total coliform bacteria and *E.coli*)
- molecular biological analysis
 - > PCR and population analysis

map: distribution network Bribin

Results and Discussion

- > coliforms in each sampling site
- > dry season: increase of bacterial count within distribution system (see figure 1)
- results from dilapidated and heated pipelines
- wet season: coliform contamination much higher (see figure 2)
- results from high input of bacteria and poor filtration capacity of karst underground

Figure 1: Total coliform data, October 2009

Figure 2: Total coliform data, March 2010

Conclusion and Outlook

water highly contaminated with fecal bacteria during dry and wet season

- pipelines have to be renovated
- monitoring has to be established
- hygienisation of water near to customer

Dilapidated pipeline